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Preface

Climate change caused by excessive carbon dioxide (CO2) emissions poses a global challenge.

Developing innovative wastewater treatments that minimize or eliminate CO2 emissions is crucial

to achieving carbon neutrality. To reduce carbon emissions from water treatment processes,

technological and scientific innovation is required, such as biomass production, the use of

bubble-less-gas mass-transfer bioreactors, reduced aeration with enhanced microbial processes,

high-efficiency pumps and blowers, low-pressure self-cleaning free membranes, and the integration

of solar power and bioelectrical systems. Considering the present technology for water and

wastewater treatment, there is significant scope for improvement. By exploring low-carbon sewage

treatment technologies, we expect to establish a theoretical basis for practical engineering applications

and contribute to achieving the goal of carbon neutrality, which is central to the promotion of

sustainable socio-economic development. This rationale underpins this Special Issue, which focuses

on low-carbon water treatment and energy recovery.

Xin Zhao, Lili Dong, and Zhaoyang Wang

Editors
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1. Introduction

Climate change led by excessive carbon dioxide (CO2) emissions poses a global chal-
lenge. Developing innovative wastewater treatments that minimize or eliminate CO2
emissions is crucial to achieve carbon neutrality. To reduce carbon emissions from the water
treatment processes, technological and scientific advances are required, such as biomass
production to lower CO2 emissions, the use of bubble-less gas mass transfer bioreactors,
reduced aeration with enhanced microbial processes, high-efficiency pumps and blowers,
low-pressure self-cleaning free membranes, and the integration of solar power systems and
bioelectrical systems. The present technology for water and wastewater treatment offers
significant room for improvement. By exploring low-carbon sewage treatment technolo-
gies, a theoretical basis for practical engineering applications is expected to be established,
contribute toward the goal of carbon neutrality, which is of great significance for promoting
sustainable socio-economic development [1]. This rationale underpins the Special Issue
focusing on low-carbon water treatment and energy recovery.

2. Application of Energy Saving and Low-Carbon Technologies in Water Treatment

In light of the above, this Special Issue aims to gather cutting-edge research on per-
tinent subjects, specifically focusing on advancements in water treatment technologies
based on conventional water treatment technologies, to achieve the best possible utilization
of resources and energy consumption, as well as low-carbon treatment technologies to
minimize greenhouse gases emissions. Challenging issues relating wastewater treatment in
the process of sustainable and resource-based utilization were addressed. A total of 14 pa-
pers were submitted, of which 11 (79% acceptance rate) were selected for publication. The
Special Issue encompasses a wide range of topics, primarily centered on energy recovery,
pollutant removal, and the assessment of removal efficacy.

Fuel cells have been attracting increasing attention owing to their ability to directly
convert chemical energy in fuel into electrical energy. The paper authored by Han et al.
demonstrated that compared with other types of fuel cells, aluminum–air fuel cells have
the characteristics of high-power density, high current density, high fuel utilization rate
(up to approximately 95% energy utilization), stable structure, and strong adaptability
to fuel [2]. In addition, aluminum–air fuel cells offer a promising solution for achieving
carbon neutrality in wastewater treatment, presenting an alternative to traditional energy-
consuming electrocoagulation systems [2]. Hydrogen (H2), known for its cleanliness,
cost-effectiveness, and renewability, was considered an attractive alternative to traditional
fossil fuels, and could greatly alleviate the global greenhouse effect and energy crisis
at present. Amongst various H2 production methods, an electrocatalytic H2 evolution
reaction (HER) via electrochemical water splitting, an important energy recovery technique,
has attracted considerable attention in the field. In their forthcoming paper, Jiang et al.
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found that HER activity is inherently correlated with the density of the GBs in Au NPs,
where active sites bind H2 more strongly [3]. Their finding holds promise for enhancing
the catalyst’s HER performance. Advances in nanotechnology have paved the way for
antimicrobial technology in nanomaterials. The increased bacterial and viral resistance
has hindered traditional methods of water purification and disinfection. The review by
Xin et al. was an exhaustive summary of recent research advances on antimicrobial ZnO-
based nanomaterials [4]. By summarizing previous studies, ZnO-based nanomaterials
with excellent antibacterial effects were obtained. In detail, various strategies to enhance
the antimicrobial ability of ZnO-based nanomaterials were proposed. Finally, current
limitations of the improvement strategies outline future directions for development and
potential applications in the field. Here, two papers focus on the degradation of pollutants
in water, specifically addressing typical organic pollutants and metal ions. In the first
paper authored by Liu et al., the persistence, toxicity, mobility, and widespread pollution
of short-chain PFASs in the water cycle are discussed. The study compares how various
treatment techniques, such as the adsorption, electrochemical oxidation, and photocatalytic
degradation have certain removal effects on short-chain PFASs [5]. Among these techniques,
adsorption proves to be the most widely applied technique for the effective removal of
short-chain PFASs, suitable for a wide concentration range of pollution and aligning with
low-carbon policies. The findings provide a scientific basis for the effective treatment
and regulation of short-chain PFAS contaminations in diverse water sources. For metal
ions, the coexistence of iron and manganese was common in groundwater. Ways in which
to remove iron and manganese efficiently and stably have become the focus of research.
Kang et al., [6] developed a three-dimensional response surface to investigate the interaction
of three variables (pH, manganese sand dosage, and the initial Fe/Mn concentration ratio)
on the removal of iron and manganese ions. The study revealed that pH exerts the most
significant influence on the adsorption process, and the optimal conditions for Fe and Mn
ion adsorption by modified Mn sand were pH 7.2, 3.54 g/L of sand, and an initial Fe/Mn
ratio of 3.8. In addition, the authors confirmed that the relative error between the model
predictions and experimental values was close to 1%.

Reliable evaluation and accurate prediction of water pollution indicators are crucial
for effective water resource management and pollution control. In studies on water quality
evaluation and prediction, water quality evaluation and prediction models were estab-
lished, combining the autoregressive integrated moving average (ARIMA) model and the
wavelet neural network (WNN) mode with the bat algorithm to determine the optimal
weight of each individual model [7]. The trained T–S fuzzy neural network was applied
to the water quality evaluation, achieving total positive water quality grade evaluation
rates of 90.38% and 88.46%, respectively. For the prediction of water quality, the combined
model (ARIMA–WNN) produced a higher prediction accuracy, with an improvement of
up to 68.06%. In the following article authored by Zhang et al., the focus was on nitrogen
removal through partial nitrification coupled with ANAMMOX technology treating live-
stock wastewater. The study aimed to evaluate the influences of non-biodegradable organic
matter and microbial communities on the performance [8]. Nitrite accumulation efficiencies
of 78.4% and 64.7% were obtained in an intermittent aeration sequencing batch reactor and
a continuous aeration sequencing batch reactor, respectively, at a loading rate of 0.93 kg
ammonium/m3/d. With ANAMMOX activity at low loading rates (118 ± 13 mg COD/L
and 168 ± 9 mg COD/L) and an average nitrite removal rate of 87.4%, partial nitrification
treating the livestock wastewater was successfully achieved.

To address the gap in computer-aided multi-class environmental microorganism (EM)
detection, Li et al., proposed a novel squeeze-and-excitation-based mask region convo-
lutional neural network (SEM–RCNN) [9]. Mask RCNN, one of the most applied object
detection models, uses ResNet for feature extraction. Specifically, in terms of technology,
an improved method combining Mask RCNN with SENet was proposed in this paper. In
terms of applications, model training and testing were conducted in a small dataset of EMs
and a large dataset of blood cells, respectively. Currently, the field of transparent image
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analysis has emerged as a prominent research topic due to advancements in computer
vision, enabling image analysis through computer use. To address the low contrast between
the foreground and background of transparent images making their segmentation difficult
for computers, Li and Yang [10] aimed to address these problems in transparent images by
cropping the image into patches and classifying their foreground and background. They
used CNNs and ViT deep learning methods to compare the patch- and pixel-level perfor-
mances of the transparent image segmentation. The study highlighted the advantages of
CNN and ViT models in image classification. CNN excels at extracting the local features
of images, whereas ViT effectively captures the global features of images combined with
contextual information. To address the limitation of contour conglutination of dense objects
while counting, the next paper [11] proposed a novel pixel interval down-sampling network
(PID-Net), which was an end-to-end convolutional neural network (CNN) model with
an encoder–decoder architecture for dense, tiny object (yeast cells) counting tasks with
higher accuracy. By comparing with the proposed PID-Net and classical U-Net-based yeast
counting results, the evaluation indexes of accuracy, dice, Jaccard, precision, counting accu-
racy, and Hausdorff distance of PID-Net improved by 0.04%, 0.15%, 0.26%, 0.4%, and 5.7%,
respectively, and the Hausdorff distance decreased by 0.0394. These results highlighted the
enhanced segmentation performance of PID-Net for the accurate counting of dense, tiny
objects in a small dataset.
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Abstract: With the rapid development of the social economy, the demand for water resources is
gradually increasing, and the corresponding impact of water pollution is also becoming more severe.
Therefore, the technology of sewage treatment is developing rapidly, but corresponding problems
also arise. The requirements of energy conservation and emissions reduction under the goal of carbon
neutrality and dual carbon pose a challenge to the traditional concept of sewage treatment, and
there is an urgent need for low-carbon sewage treatment technology aiming at energy conservation,
consumption reduction and resource reuse. This review briefly introduces conventional sewage
treatment technology and low-carbon sewage treatment technology, and analyzes the research
status and development trend of low-carbon sewage treatment technology in detail. The analysis
and comparison of conventional and low-carbon sewage treatment technologies is expected to
provide a theoretical basis for the practical engineering application of low-carbon sewage treatment
technologyto achieve the goal of carbon neutrality. It is of great significance to promote the sustainable
development of society and the economy.

Keywords: sewage treatment; low-carbon technology; research status; sustainable development

1. Introduction

In recent years, with the rapid development of urbanization and the rapid growth of
population, the pressure on our living environment is also increasing day by day [1,2]. The
development of industry and people’s efforts to meet their quality-of-life requirements have
caused a certain degree of impact on the environment. Problems such as the greenhouse
effect and water pollution can be seen everywhere in our daily life [3,4]. In addition, the
ecological and environmental problems brought by these problems are gradually feeding
back into our lives, causing a series of predictable troubles. Global warming caused by
greenhouse gases, rising sea level, frequent bad weather, malodorous water and toxic and
harmful waste water are causes for alarm, requiring countermeasures [5]. It has become
the consensus of all countries in the 21st century to reduce greenhouse gas emissions,
reduce carbon emissions and slow down global warming. At the General Debate of the
75th Session of the United Nations General Assembly, China proposed to strive for the
grand goal of carbon neutrality before 2060 [6]. This is China’s solemn commitment to the
world, demonstrating its responsibility as a major country and enhancing its international
influence [7]. It also makes clearer the importance of greenhouse gas emissions, low-carbon
living and achieving carbon neutrality.

It has become an important trend of social development in the modern era to ensure the
quality of our ecological environment, implement energy savings and emissions reductions,
improve energy utilization, promote environmental protection and high-efficiency and
high quality development, and seek low-carbon technology as the new way forward for
the development of energy-consuming industries [8–10]. Sewage treatment accounted for
much energy consumption in in our country, and the proportion of energy consumption

Appl. Sci. 2023, 13, 1400. https://doi.org/10.3390/app13031400 https://www.mdpi.com/journal/applsci
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in society as a whole was increasing year by year [11]. At present, sewage treatment
technology in our country consists mainly of conventional pretreatment and conventional
advanced treatment, two treatment units, and the treatment methods used differ according
to sewage quality and other factors. However, whether physical or biochemical treatment
is adopted, a large amount of resources and energy is consumed in the process [12]. In
addition, a large number of additional pollutants such as CO2, CH4 and N2O are produced
in the treatment process, which is the main contribution of the sewage treatment system
to global warming. To some extent, this is a non-green means of changing water quality
via energy consumption by energy dissipation and pollution transfer [13]. At the same
time, a variety of pollutants contained in sewage are rarely recovered for use, resulting in a
great waste of resources [14]. Effective exploitation and utilization of potential resources in
sewage or sludge is a means of achieving low carbonization of sewage treatment.

It is very important to vigorously develop energy-saving and low-carbon sewage
treatment technology for each treatment process and treatment unit. With the demand
for water resource protection and recycling due to economic and social development,
sewage treatment in all aspects will increase significantly in the future [15,16]. Therefore,
in large sewage treatment systems, low-carbon treatment technology should be promoted
in all aspects, and any available resources, whether pollutants themselves or products
generated by the treatment process, should be fully utilized to carry out reasonable carbon
conversion [17]. In the treatment technology, those processes with high energy consumption
and low treatment efficiency should be eliminated, and the treatment process should be
improved by means of co-construction or expansion. In addition, accurate assessment
of sewage quality and targeted water treatment should be achieved through automated
control, to replace tedious and unstable manual control. The operating parameters of each
processing unit should be optimized on the basis of accurate assessment, and the best
processing effect achieved, while minimizing resource and energy consumption [18,19].
Through the research and development of emerging sewage treatment technologies at
home and abroad, new sewage treatment technologies, new materials or microorganisms
can be developed to achieve lowcarbon, carbon reuse, carbon sequestration and other clean
and green treatment technologies as much as possible.

This review briefly introduces conventional sewage treatment technology and low-
carbon sewage treatment technology, and then analyzes the research status and develop-
ment trend of low-carbon sewage treatment technology in detail. Through the analysis and
comparison of conventional and low-carbon sewage treatment technologies, it is expected
to provide a theoretical basis for the practical engineering application of low-carbon sewage
treatment technologies and continue towards achieving the goal of carbon neutrality, which
is of great significance to promoting the sustainable development of the social economy.

2. Conventional Wastewater Treatment Technology

This section examines conventional urban sewage treatment technology, and takes the
activated sludge removal process as an example to discuss and analyze.

The traditional activated sludge removal process is to supply oxygen to activated
sludge in sewage through external aeration equipment, and convert organic matter in
sewage (40–50%) into CO2 through activated sludge, and the remaining organic matter
(50–60%) into residual sludge, which is difficult to be degraded by microorganisms [20].
From long-term engineering practice and various studies, it has been found that, depending
on the change of water quality, the characteristics of microbial metabolic activity, operation
management, technical economics, discharge requirements, etc., a variety of operation
modes and pool types have been developed. The main types are as follows: pushed-
flow activated sludge method, completely mixed activated sludge method, adsorption-
regeneration activated sludge method, delayed aerated activated sludge method, pure-
oxygen-aerated activated sludge method, sequential-batch-reactor activated sludge method
(SBR), etc. Their removal rates of biological oxygen demand (BOD), chemical oxygen
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demand (COD), total suspended solids (TSS) and other pollution indicators in municipal
sewage, as well as their advantages and disadvantages, are shown in Table 1 below:

Table 1. Removal rate of BOD, COD, TSS and other pollution indicators in municipal sewage by
activated sludge methods and their advantages and disadvantages.

Operation Mode of
Activated

Sludge Method

BOD COD TSS
Advantages Disadvantages References

Removal Rate (%)

Pushed-flow activated
sludge process 90–95 90–95 90–95

1© The degradation
efficiency of sewage
is higher.
2© The treatment of

wastewater is more flexible.

The phenomenon of
insufficient aeration at the
head of the tank and
excessive gas supply at the
tail of the tank increases the
power cost.

[21,22]

Completely mixed
activated sludge process 85–90 85–90 90–95

1© Strong ability to bear the
impact load, to weaken the
peak load.
2© It can save power and

facilitate
operation management.

1©Continuous water inflow
and outflow may cause
short circuits.
2©Prone to sludge swelling.

[23,24]

Adsorption-regeneration
activated sludge process 80–90 80–85 85–90

1© The contact time is
shorter and the adsorption
pool volume is smaller.
2© Bearing a certain impact

load, the sludge in the
regeneration tank is
convenient to use.

1©The treatment effect of
wastewater is lower than
that of the traditional
activated sludge process.
2©The treatment effect of

wastewater with high
dissolved organic matter
is poor.

[21,25]

Delayed aerated activated
sludge process 75–95 85–95 90–95

1© The organic load is low,
the residual sludge is less,
and the sludge is stable and
does not need to be digested.
2© It has high stability of

treatment water quality,
strong adaptability to the
impact load of wastewater
and does not require a
primary sedimentation tank.

The tank capacity is large,
the aeration time is long, the
construction cost and the
operation cost are high, and
it occupies a large area.

[26,27]

Pure-oxygen-aerated
activated sludge process 90–95 85–90 90–95

1© Greatly improves oxygen
diffusion ability in
the mixture
2© The volume of gas

required can be greatly
reduced, the volume load
can be greatly increased, it is
not prone to sludge
swelling, it has high
treatment efficiency, the
required aeration time is
short, the amount of
residual sludge generated
is less.

The device is complex,
management is troublesome,
and the structure of the
closed container is
demanding.

[28–32]

Sequential-batch reactor
activated sludge

process (SBR)
85–95 85–90 90–99

The operation management
is simple, the cost is
reduced, the impact load is
resistant, the effluent quality
is good, the activated sludge
filamentous bacteria can be
inhibited, the nitrogen and
phosphorus removal.

Automation control
requirements are high.
Operation, management
and maintenance require
high quality of operation
and management personnel.
High requirements for
drainage equipment.

[33–37]

2.1. Pushed-Flow Activated Sludge Process

The pushed-flow activated sludge process is also known as the traditional activated
sludge process. The surface of the push-flow aeration tank is rectangular. Under the
push of aeration and hydraulic conditions, the water in the aeration tank is evenly pushed
to flow. The wastewater enters from the head end of the tank and flows out from the
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tail end of the tank, and the liquid flow in the front section and the liquid flow in the
back section do not mix. The process flow chart is shown in Figure 1. In the process
of aeration, with the change in environment from the head of the tank to the end of the
tank, , the biological reaction rate, the F/M value, the quantity and quality of microbial
community, the adsorption, flocculation and stabilization of activated sludge, and the
settlement-concentration performance are all constantly changing [21,22].

Figure 1. Process flow chart of pushed-flow activated sludge process.

The traditional activated sludge aeration tank is rectangular, the water flow is longitu-
dinal mixed push flow, the aeration time of the mixed liquid in the aeration tank is usually
4–8 h, the sludge concentration is generally controlled within 2–3 g/ L, the amount of re-
turned sludge requires 25–50% of the water intake, and the removal rate of BOD, COD and
suspended matter can reach 90–95% [38]. The pushed-flow activated sludge method has
the advantages of high treatment efficiency and flexible treatment modes, but it also leads
to an energy surplus. The activated sludge at the head of the tank always absorbs gas from
the head of the tank to the end of the tank, which increases the power cost to a certain extent
and has the problem of energy waste, which is not conducive to the low-carbon emissions
advocated by the present concept of carbon-neutral and sustainable development.

2.2. Completely Mixed Activated Sludge Process

A completely mixed aeration tank means that the waste water is fully mixed with
the original mixture after entering the aeration tank. Therefore, the composition, F/M
value and quantity and quality of microbial community of the mixture in the tank are
completely uniform. The position of the whole process on the sludge growth curve is only
one point. This means that the biological reaction is the same in all parts of the aeration
tank, and the oxygen absorption rate is also the same. This process is characterized by a
strong ability to withstand impact load, and the ability of the mixed liquid in the tank to
dilute the wastewater and weaken the peak load. And because the aerobic requirement of
the whole tank is the same, it can save power. The aeration tank and sedimentation tank
can be built together for easy operation and management. However, the continuous inflow
and outflow of water may cause short circuits, and the process is prone to sludge swelling
and other problems [23]. The technological process is shown in Figure 2. For the treatment
of municipal wastewater, the BOD load (Ns) is 0.2–0.6 kg BOD5 / (kg MLSS·d), the volume
load (Nv) is 0.8–2.0 kg BOD5 / (m3·d), the sludge age (mean residence time of biosolids)
(θr) is 5–15 days, the concentration of suspended solids (MLSS) is 3000–6000 mg/L, the
concentration of volatile suspended solids (MLVSS) is 2400–4800 mg/L, the sludge reflux
ratio (R) is 25–100%, and the aeration time (t) is 3–5 h. The removal rate of BOD, COD
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and TSS reaches more than 85% [24]. Since the completely mixed aeration tank requires
continuous water inflow and outflow, and the tank is fully and evenly mixed, there is the
problem that the sludge resources cannot be better treated, and it is easy to cause sludge
expansion. At the same time, it is not easy to adjust the treatment method after certain
changes in sewage quality making the recycling of sludge resources is especially difficult.
Compared with the traditional activated sludge process, it may be more efficient in energy
utilization. However, the poor utilization of sludge is a shortcoming.

Figure 2. Process flow chart of completely mixed aeration tank.

2.3. Adsorption-Regeneration Activated Sludge Process

The adsorption-regeneration activated sludge method is also known as the biological
adsorption method or contact stabilization method. The main feature of this operation
mode is that the adsorption and metabolism of activated sludge for the degradation of or-
ganic pollutants are each carried out in their own reactors. The wastewater is fully recycled
in the regeneration pool, and the activated sludge with strong activity enters the adsorption
pool at the same time. The two contact fully in the adsorption pool, and most of the organic
matter in the wastewater is absorbed by the activated sludge, and purified. The sludge
separated from the secondary sedimentation tank enters the regeneration tank, where the
activated sludge metabolizes and degrades the organic matter, and microorganisms prolif-
erate. When the microorganisms enter the endogenous metabolic stage, the activity and
adsorption function of the sludge are fully recovered, and it then enters the adsorption tank
together with the wastewater [25,39]. The technological process is shown in Figure 3. For
the treatment of municipal wastewater, the BOD load (Ns) is 0.2–0.6 kg BOD5/(kg MLSS· d),
the volume load (Nv) is 1.0–1.2 kg BOD5/(m3·d), the sludge age (mean residence time
of biosolids) (θr) is 5–15 d, the mixed liquid suspended solids concentration (MLSS) is
1000–3000 mg/L, the mixed liquid volatile suspended solids concentration (MLVSS) is
3200–5200 mg/L, the adsorption pool concentration is 600–1200 mg/L, the regeneration
pool concentration is 2400–7000 mg/L, and the adsorption pool reaction time is 0.5–1.0 h.
The removal rates of BOD, COD and TSS can reach 80–90% under the conditions of 3–6 h of
regeneration tank, 25–100% sludge reflux ratio (R) and 3–5 h aeration time (t). Its treatment
effect on sewage is lower than that of the traditional activated sludge process, and it also
has the disadvantage of poor treatment effect on wastewater with high dissolved organic
matter [40]. Its advantages are that its energy consumption and sludge utilization are
considerable, and it can more fully use the sludge, combined with the regeneration pool to
carry out sludge conversion operation, reduce the discharge and disposal of sludge, and to
a certain extent achieve the purpose of energy saving.
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Figure 3. Process flow chart of adsorption-regeneration activated sludge method.

2.4. Delayed Aerated Activated Sludge Process

The delayed aerated activated sludge process is also called the completely oxidized
activated sludge process. The main characteristics of the process are low organic load,
continuous internal metabolism of sludge, less residual sludge, and stable sludge with
no need for further digestion treatment. This process can be called the comprehensive
wastewater and sludge treatment process. The process has the advantages of high stability
of water quality treatment, strong adaptability to the impact load of wastewater, and no
need to set up a primary sedimentation tank. The main disadvantages are large pool
capacity, long aeration time, high construction and operation costs, and large size. This
process is suitable for the sewage and industrial wastewater needs of a small town, which
requires high water quality, and therefore should not be treated by sludge alone. The
aeration tanks used in the process are completely mixed or push-flow. The technological
process is as shown in Figure 2. When the reference values of the various design parameters
used in the treatment of urban sewage are the same as 2.2, the removal rate of BOD, COD
and TSS can only reach 85–90%. The removal rate is also lower than that of the previous
activated sludge treatment processes [26,27].

This process has a very strong advantage in the operation and management of sludge,
and can make full use of sludge resources, so as not to need much sludge disposal, and save
part of the energy in the whole treatment system. However, its long aeration time, high
operating cost and large area are great shortcomings of the process, and these shortcomings
are difficult to make up objectively. Therefore, the process can only be applied if the site
conditions are sufficient, and the water quality conditions are more suitable to better use
the advantages of sludge treatment to better realize the purpose of energy saving, emissions
reduction and low carbonization of sewage treatment.

2.5. Pure-Oxygen Activated Sludge Process

Compared with air aeration, pure-oxygen aeration, also known as enriched-oxygen
aeration, has the following characteristics:

(1). The oxygen content of air is generally 21%; the oxygen content of pure oxygen is
90–95%, and the partial pressure of oxygen is 4.4–4.7 times higher than that of air,
so pure oxygen aeration can greatly improve the diffusion capacity of oxygen in the
mixed liquid.

(2). The oxygen utilization rate can be as high as 80–90%, while the air-aerated activated
sludge method is only about 10%, so the volume of gas required to achieve the same
oxygen concentration can be greatly reduced.

(3). Activated sludge concentration (MLSS) can reach 4000–7000 mg/L, so the volume
load can be greatly increased at the same organic load.

(4). The sludge index is low, only about 100, which is not prone to sludge swelling;
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(5). High treatment efficiency and short aeration time.
(6). The amount of residual sludge produced is small.

There are three types of pure oxygen aeration pool: (1) multistage- sealed, in which
oxygen is introduced into the pool from the closed top cover, the sewage from the first stage
is pushed forward step-by-step, oxygen flows from a centrifugal compressor through a
hollow shaft into a rotary impeller, which mixes the sludge and oxygen in the pool to keep
full contact, so that the sludge can greatly absorb unused oxygen and biochemical reaction
metabolites from the previous level of discharge. (2) The old aeration tank is reformed, and
a curtain is set on the pool. Not only pure oxygen enters, but also compressed air. Some
tail gas is discharged, and can also be recycled. (3) Open pure oxygen aeration tank. The
technological process is shown in Figure 4. When the reference values of the various design
parameters used in the treatment of urban sewage are the same as 2.2, the removal rate of
BOD, COD and TSS can reach 90% [28–32].

Figure 4. Process flow chart of pure-oxygen-aerated activated sludge method.

By supplying pure oxygen, the process can greatly improve the diffusion capacity of
oxygen in solution and reduce the volume of gas, thus reducing aeration time, aeration
energy consumption and carbon footprint. However, it still cannot achieve good sustainable
development and utilization of resources in the disposal of sludge operation management.
In addition, the structure and management requirements of the equipment are relatively
high, which increase the operating costs of the treatment process.

2.6. Sequential-Batch Activated Sludge Process

The sequential-batch activated sludge process is also known as the SBR process because
of the intermittent form of operation, so each reaction tank is a batch of sewage treatment;
hence the name. Because of the high flexibility of the SBR operation, it can replace the
continuous activated sludge process in most situations to achieve the same or similar
results. By changing the operation mode of the SBR, you can simulate the operation mode
of the full hybrid and push-flow processes. In the reaction stage, the organic matter in the
reaction tank is degraded by microorganisms, and the wastewater concentration becomes
lower and lower, which is very similar to the steady-state push flow, except that it is a kind
of temporal push flow. If the influent period is long and the accumulation of organic matter
in the wastewater of the reaction tank is very small during this period, then the situation
is close to a complete mixture. The technological process is shown in Figure 5. When the
reference values of the various design parameters used in the treatment of urban sewage
are the same as 2.2, the removal rate of BOD, COD and TSS can reach 90% [33–37].
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Figure 5. Process flow chart of sequential-batch activated sludge method.

The process improves on the traditional push-flow activated sludge method, and can
simulate a complete mixture in certain cases, which can better make up for some problems,
such as long aeration time and easy sludge swelling caused by sludge disposal. However,
it still fails to solve the fundamental problems of aeration energy consumption and sludge
resources, there are still problems of high operation, management and maintenance costs,
and the process has relatively high requirements for drainage equipment. During the whole
treatment process, when the sewage is biochemically treated by an activated sludge system,
a large amount of external energy is consumed for the oxygen supply, and a large amount
of greenhouse gases such as CO2, CH4 and N2O are released during the treatment process.
However, there are many ways to dispose the residual sludge. Simple treatment such as
random accumulation and landfill will also result in the emission of CO2, CH4 and N2O
due to anaerobic fermentation and other factors.

2.7. Summary Discussion

Activated sludge is the main pollutant-removal process. In the cell composition of
activated sludge microorganisms, carbon (C), hydrogen (H), oxygen (O) and nitrogen (N)
account for about 90–97%, and the rest (3–10%) are inorganic nutrient elements, mainly
phosphorus (P). The treatment of domestic sewage generally does not require additional
nutrients, and some industrial wastewater treatment do require additional nutrients.
In conventional aerobic treatment, N and P nutrients are added in accordance with
BOD:N:p = 100:5:1. The removal rate of nutrients by the activated sludge method is more
than 95%. A 5000 m3/d municipal sewage treatment plant will produce a residual sludge
volume of 7–19 g/(L·d) when treating municipal wastewater by the activated sludge
processes described in 2.1, 2.2, 2.5 and 2.6. The 2.3 adsorption-regeneration activated
sludge method can make full use of the regenerating tank to activate and reuse the residual
sludge and reduce the sludge discharge. The amount of residual sludge produced is
about 1–8 g / (L·d) [41–44]. The 2.4 organic load of the delayed aerated activated sludge
method is low, the sludge is continuously in a state of endogenous metabolism, and
the residual sludge is basically absent. The sludge produced by the activated sludge
process needs to be transported to the dewatering plant and then treated. After the
initial dewatering treatment of the sludge enrichment tank, it is further dehydrated
through a plate-and-frame filter press and other measures. In this process, the main
energy consumption is the electric energy of the plate-and-frame filter press, as well as
the auxiliary energy consumption of the sludge transport conveyor belt. In the process of
wastewater treatment, the main energy consumption in the biochemical reaction tank is air
blast aeration and electricity consumption of some auxiliary equipment. An urban sewage
treatment plant with a 15,000 m3/d treatment capacity requires more than 3 blowers
and at least 1 plate-and-frame frame filter press. Therefore, based on the calculation of
3 blowers and 1 plate-and-frame filter press, the daily energy consumption produced by
full load operation would be 2582.68 Kw·h [45,46]. However, the wastewater produced
in this process can be reused for greening, flushing, and so on. The dehydrated sludge
can be used as plant fertilizer, building materials, and so on.
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In the process of sewage treatment, which consumes much external energy, the form
of pollution is actually changed from water pollution to air pollution and sludge pollution,
which is obviously not in line with the concept of sustainable development. The COD
in sewage can also be used for anaerobic digestion to produce CH4 and fermentation to
produce hydrogen. The CH4 and H2 produced can be reused as part of the plant thermal
raw materials. The generated surplus sludge can also be used, and the best utilization
is incineration capacity. The concept of resource reuse is also implemented to achieve
sustainable development, realize low-carbon treatment of sewage and reduce carbon
footprint [47].

In addition, in terms of resource utilization, traditional sewage treatment mainly
recycles treated water for greening irrigation, washing or industrial cooling, but ignores
the problem that sewage itself contains rich carbon resources [48]. Sewage is actually
a carrier of resources and energy. It is estimated that the potential chemical energy of
urban sewage with a COD of 400–500 mg/L is 1.5–1.9 kW·h/m3 [49], and a metabolic
heat of 0.14 × 108 J can be generated per kg of COD [50]. The heat generated by an
increase or decrease of 5 ◦C of sewage is almost equal to the annual power generation
of 332 large power plants, and about 4 times the metabolic heat of organic matter [51].
Sewage contains such a huge amount of energy that if the chemical energy or even heat
energy of part of the COD were rationally utilized and converted into electric energy, it
could theoretically achieve self-sufficiency in energy consumption, and even output energy
(electric energy, heat energy) for use outside of the plant. There is much theoretical evidence
to prove that new sewage treatment plants in the future could be not energy consumers,
but energy suppliers [52]. However, the traditional sewage treatment process uses energy
to supply oxygen to remove COD, which results in a large amount of chemical energy and
heat energy in sewage not being extracted and utilized, which goes against the concept
of sustainable development. Therefore, recycling and utilization of potential energy in
sewage treatment has important practical significance, and plays an immeasurable role in
practicing the concept of low-carbon development and promoting the low-carbon operation
of sewage treatment.

3. Low-Carbon Sewage Treatment Technology

As one of the major sources of greenhouse gas emissions, the current sewage pollu-
tion removal technology mainly relies on energy dissipation and pollution transfer. The
treatment process has high energy consumption and emits a large amount of greenhouse
gases such as CO2, CH4 and N2O. To effectively control the greenhouse gas emissions
from sewage treatment plants and achieve the emission reduction requirements under the
dual-carbon target, the traditional concept of sewage treatment must be challenged. It
is required that the process of sewage treatment should be as low-carbon as possible, to
realize self-sufficiency in energy and full utilization of resources in the process of sewage
treatment, and make up for energy consumption and recycle resources by relying on the
energy and resources contained in sewage treatment plants or the sewage itself [53].

The removal process of activated sludge in conventional municipal sewage treatment
technology still has serious problems of high energy consumption. The removal rate of
nutrients and pollutants in sewage can reach more than 95%, but the consumption of
aeration energy and waste sludge cannot be ignored. In a hypothetical calculation, a
municipal sewage treatment plant with a treatment capacity of 15,000 m3/d consumes
2582.68 Kw·h of electricity in the biochemical treatment unit and sludge disposal alone, not
including air pollution and greenhouse gas emissions produced in the treatment process.
Thus it can be seen that the application of low-carbon wastewater treatment technology is
very important.

The most serious problem of the push-flow activated sludge method is that the sludge
at the head and tail of the tank receives the aeration time unevenly, which leads to a
large amount of wasted aeration, resulting in unnecessary energy consumption. The
characteristic problem of the push-flow reaction tank is that the BOD concentration is high
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where the water flows in, and low where the water flows out, so the number of aerators
should decrease along the long direction of the tank, that is, to increase the spacing between
aerators. In this way, the BOD concentration of the effluent can be met, one-time input
can be reduced, and unnecessary aeration can be reduced [54]. The author believes that
an intelligent aeration management system can be designed, through which the aeration
capacity and aeration time of the push-flow gallery can be intelligently regulated, to make
the oxygen demand of the sludge just enough to achieve the purpose of low carbonization
and energy savings [55,56]. The completely mixed activated sludge method is a unified
operation mode after the sludge and wastewater are completely mixed. Compared with
the push-flow activated sludge method, it has no major problems in aeration energy
consumption, but because it is a completely mixed operation, it is prone to sludge expansion
and the production of excessive residual sludge, which affects effluent quality. In the face
of the problems of the process system, it is necessary to monitor the process operation
management in detail and continuously observe the water quality changes to prevent
sludge buildup. In case of emergency, drugs can be added to enhance sludge settlement
performance or directly kill filamentous bacteria through emergency measures [57]. Both
the pure-oxygen-aerated activated sludge method and the SBR process are relatively mature.
The biggest common problem is that the equipment is more complex and the requirements
for management personnel are higher. In addition, these four process systems have two
common problems that most need to be solved: aeration energy loss and sludge disposal
energy loss. The essence of the activated sludge method is the adsorption and metabolism of
activated sludge microorganisms to remove pollutants, and the metabolism needs to absorb
oxygen, and the energy consumption of aeration is difficult to avoid. Therefore, in order
to solve this problem, Tan Tiepeng [58] described the research process of oxygen demand
in the activated sludge process at home and abroad, and the energy-saving technology
of the microporous aeration system, and compared the microporous aerator with the
perforated tube; it was proven that the former saves 4.4% more electricity compared
with the latter. Wang Xian [59] et al. proposed a design concept of subsection control
of dissolved oxygen concentration in an aeration tank by discussing oxygen demand
and its distribution in the aeration tank, and applying oxygen transfer theory. If this
design concept is applied to engineering practice, compared with the conventional design
method, the energy consumption and equipment capacity of an aeration system can be
reduced by about 15%. The author believes that energy consumption can be properly
reduced through intelligent regulation of aeration equipment. At the same time, the
metabolism mode of activated sludge microorganisms can be acclimated or changed to
reduce the consumption of oxygen, or even operate without oxygen, or be combined
with photosynthetic bacteria to achieve metabolism through photocooperation instead of
oxygen energy consumption; these studies are very meaningful. As for the problem of
sludge disposal, the author believes that the energy consumption of sludge disposal can
be compensated by incineration power generation to achieve low carbonization as far as
possible. In addition, the treated sludge can also be recycled as building materials and
land fertilizer, to achieve the purpose of sustainable development [60–62]. The adsorption-
regeneration activated sludge method and delayed aerated activated sludge method make
good use of the residual sludge and reduce the sludge load. The sludge remains in a
state of endogenous metabolism, thus greatly reducing the generation of residual sludge.
Therefore, the problem of low carbonization in these two process systems is mainly the
energy consumption of aeration. Similarly to the above four process systems, to solve the
problem of aeration energy consumption, it is still necessary to change the microbial nature
of activated sludge or reduce energy consumption as much as possible.

At present, Dai Xiaohu et al. [63], considering the development stage and interna-
tional development trend of our country, put forward the development concept of “green,
low-carbon, resource recycling, environmentally friendly, locally-adapted conditions” and
corresponding key measures. Ruan Xiaoyang et al. [64] proposed that sludge is a pollutant
with utilization value, and can become a resource as long as the sludge is treated and
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disposed by certain means. This is of great significance for improving the ecological envi-
ronment, while also helping to reduce the consumption of natural resources and promote
the sustainable development of cities in the process of recycling. For low-carbon sewage
treatment technology, the main emission reduction measures are summarized as follows:
resource recovery carbon conversion and reuse, comprehensive treatment of low carbon
and carbon sequestration, operation parameter optimization and process improvement,
reasonable carbon distribution, and other related upgrading and renovation treatment
technologies. The discussion of the low-carbon operation modes in these sewage treatment
processes is summarized in Table 2 below. All kinds of water treatment technologies are
gradually upgraded and reformed. While high water treatment efficiency is required, clean
treatment technologies such as low-carbon emission continue to emerge, and some sewage
treatment plants have put them into use and achieved good results [65–67]. Therefore,
this paper analyzes the current research status of low-carbon sewage treatment technol-
ogy and the prospects for development in the future, so as to provide guidance for more
understanding of low-carbon sewage treatment technology.

Table 2. Discussion and summary of low-carbon operation modes in the sewage treatment process.

Low-Carbon
Operation Mode

Low Carbonization
Pathway

Concrete Measure Low-Carbon Achievement

Resource recycling
carbon conversion

and reuse

recycle water
After the sewage treatment is up

to standard, it will be used for
factory reuse. “Turning waste into treasure” rationally utilizes all

valuable and usable substances produced in the
process of sewage treatment, maximizes the concept of

sustainable development, reduces carbon emissions
and carbon loss from all aspects, and reduces

carbon footprint.

Energy-carrying gas Energy-carrying gases such as
CH4 and H2 are used for fuel.

heat energy
Heat generated by

microorganisms during sewage
treatment is used for heating.

sludge Recovery disposal sludge is used
in a burning capacity.

Comprehensive
treatment of low carbon

and
carbon sequestration

energy-saving and
cost-reducing

According to the nature of
wastewater, the appropriate

treatment process can be selected
to reduce the energy consumption

such as aeration.
To keep up with the pace of the times, the production
and processing equipment is updated over time, and
the low-carbon energy-saving equipment is used as

much as possible to reduce carbon emissions.
Actively develop and utilize new sewage treatment
microorganisms to reduce energy consumption and

carbon emissions as much as possible and reduce
carbon footprint.

equipment replacement Upgrade equipment such as old
blowers or mixers.

Development and
utilization of carbon

sequestration
microorganisms

Reasonable development and
utilization of photosynthetic

bacteria and other
microorganisms for low energy

consumption and carbon
sequestration methods.

Operation parameter
optimization and

process improvement

Operation parameter
optimization

Intelligent parameter control is
carried out for each

processing unit.
Under the premise of ensuring the standard of sewage
treatment, the operation parameters of each treatment
unit should be controlled, so as to achieve the standard

of sewage treatment with the lowest energy
consumption possible of each physical unit.

The treatment process of each treatment unit should be
updated in time, and the sewage treatment should be

completed according to the concepts of sustainable
development and low-carbon treatment.

combined technology

According to the nature of
sewage, can choose a lower

carbonization treatment method
combined treatment.

technology
improvement

The low carbonization process
was improved.

3.1. Research Status
3.1.1. Resource Recovery Carbon Conversion and Reuse

In the process of sewage treatment, there are many resources that may be neglected and
not fully utilized, for example, some of the energy and heat lost, the transfer of pollutants
and the existing sludge. In fact, these can be converted into carbon to achieve recycling.
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After treatment, those that can reach the standard of reuse can be reused in the factory for
greening irrigation, washing or industrial cooling water and other methods of recycling,
which is conducive to the dual carbon goal. The chemical and heat energy, and other
energy resources generated in the sewage treatment process, may be directly consumed or
discharged in the traditional treatment process without effective use, resulting in a great
waste of resources. The heat energy may be relatively small, but it could still be put to
effective use. Miricioiu et al. [68] prepared materials for CO2 adsorption by activating
the residual sludge generated during sewage treatment. After many tests, the adsorption
capacity of the material was 11.87 cm 3/g, the separation efficiency was high, and the CO2
recovery rates were 99.68 and 98.11%, respectively. Studies [69,70], have shown that the
heat energy can be recycled through water source heat pump technology and used for
heating the sewage treatment plant or surrounding facilities, which can more fully utilize
energy resources, reduce carbon emissions, and realize the low-carbon potential of the
sewage treatment plant. In addition, in sewage treatment plants with biological sewage
treatment, the sludge discharged often contains many substances such as nitrogen and
phosphorus converted from sewage. These resources can also be reused to reduce the
use of new carbon, to achieve the purpose of relatively low carbonization. Studies [71]
have shown that sludge containing nitrogen and phosphorus can be used as fertilizers for
composting. And some concentrated sludge that does not contain harmless ingredients can
be used as raw materials for incineration power generation after treatment, so that they are
valuable for power generation, which can also effectively realize the purposes of energy
saving, reuse and low carbonization.

3.1.2. Comprehensive Treatment of Low Carbon and Carbon Sequestration

The traditional activated sludge treatment process requires a large amount of carbon
source input and aeration, both of which increase the utilization of carbon. The extensive
use of aeration consumes a large amount of external energy for sewage treatment, which
leads to the waste of resources, and the generated CO2 and other gases increase air pollution.
The traditional activated sludge method also produces a large amount of activated sludge,
which represents a certain amount of sludge pollution, and does not conform to the concept
of low carbonization. Compared with the activated sludge method, anammox technology
can directly generate nitrogen by the reaction of nitrous nitrogen and ammonia nitrogen,
which can greatly save the energy consumption of aeration and the input of carbon sources,
but also reduce the production of sludge, greatly realizing the goal of low-carbon sewage
treatment. It is a relatively clean biological nitrogen removal water treatment technology
and has a good development prospect.

The annual energy consumption of the Sheboygan Wastewater Treatment Plant in the
United States accounts for 3% of the total social energy consumption and is the most energy-
consuming public facility [72]. In order to achieve the goals of energy self-sufficiency in
wastewater treatment and sustainable utilization of resources, the United States Water En-
vironment Research Foundation (WERF) has indicated that all wastewater treatment plants
in the United States must achieve carbon-neutral operation by 2030 [73]. The Sheboygan
Wastewater Treatment Plant is the first to start the practice of carbon neutral operation.
Based on the operational goal and implementation plan of “zero energy consumption” of
the “Wisconsin Focus Energy” project, the Sheboygan Wastewater Treatment Plant carried
out a series of energy recovery plans from 2002 to 2011, adding 12 30 kW micro gas turbines
and 4 heat recovery treatment plants. By 2012, the plant could generate 16,800 kW·h/d of
electricity and 16,120 kW·h/d of heat by using cogeneration technology, which offset about
90% of the power consumption and 85% of the heat demand of the sewage plant, basically
achieving energy self-sufficiency. In terms of sludge disposal, the equipment for sludge
enrichment and dewatering disposal has been upgraded to achieve dehydration treatment
with lower energy consumption. At the same time, the treated sludge can make up for the
energy consumption of sludge disposal through incineration and power generation, and
can also be used for farmland soil remediation, building materials, etc., to fully realize the
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sustainable development concept of low carbonization and resource recycling [74,75]. In
the process of treating part of the industrial wastewater, additional nutrients need to be
added, and underutilized nutrients can be recycled to reduce carbon loss. The wastewater
discharged is to the standard of reuse for plant greening and equipment washing. In
addition, the sewage plant self-funded nearly 1.1 million US dollars for a series of energy-
saving upgrading and operation optimizations, updating the pump and blower and other
mechanical equipment for energy savings of 20 and 13% respectively, installing a flow
control valve (energy saving 17%), updating the digestion tank heating equipment, up-
grading the programmable logic controller (PLC), supervisory control and data acquisition
(SCADA) and so on, greatly reducing energy consumption. By 2013, the Sheboygan Sewage
Treatment Plant had achieved a ratio of electricity production to electricity consumption of
90–115% and a ratio of heat production to heat consumption of 85–90%, basically close to
the goal of carbon neutral operation.

The technology of the Sheboygan Wastewater Treatment Plant is worth studying for
domestic sewage treatment plants. The energy treatment of sludge can not only effectively
relieve the difficult situation of sludge disposal, but also relieve the pressure of fossil energy
consumption, and greatly reduce the impact on the environment. Through the double
measures of open source and cost reduction, a series of energy saving transformations has
been carried out, which provides valuable experience for other sewage treatment plants.

As for low-carbon water treatment, it is still difficult to change only in the aspect of
energy saving and carbon reduction. It still needs some technologies that can sequester
carbon, directly use or otherwise not emit CO2 and require low energy from the outside
world. At present, it has been found that sewage treatment by photosynthetic bacteria and
other organisms can absorb nitrogen and phosphorus and other substances in water for
their own use without treatment, and CO2 can also be absorbed and converted into organic
carbon for internal use by photosynthesis [76–79].

3.1.3. Operation Parameter Optimization and Process Improvement

According to the water quality of different sewage, the treatment process selected by
the sewage treatment plant will be different. When facing a specific sewage, the operation
parameters of the different treatment process will also change slightly. Only by adjusting the
most appropriate operation parameters can the treatment be most effective and require the
lowest energy consumption. Duan Steel [80] envisioned the application prospect of energy-
saving and low-carbon technology in sewage treatment through the construction of a
precise aeration system. Liu Guitao [81] et al., based on fuzzy control of three-level inverter
frequency conversion speed regulation energy-saving technology, studied the frequency
conversion speed regulation system control of a high-powered pump in a sewage treatment
plant, and finally realized effective control of a high-powered motor, which can significantly
improve the energy-saving effect of a high-power motor in sewage treatment. Through
the application of frequency converters in the energy-saving transformation of an aeration
fan in a sewage treatment station, Mu Jian [82] adapted the frequency conversion to start
slowly, effectively avoiding fan surge, effectively reducing starting current and running
current, thus achieving the purpose of energy savings, and at the same time reducing the
influence of an overly large or small opening of an intake valve on the load of the rear
system. Ma Yong [83] et al. adjusted the sludge layer height of a secondary sedimentation
tank to control the sludge return flow of the A/O process, and took the sludge layer height
of secondary sedimentation tank as the control variable to establish the sludge return
control strategy and controller. An A/O process pilot test device was used to treat real
domestic sewage, and the established controller was verified. The results showed that the
average effluent ammonia and total nitrogen concentrations were reduced by about 8 and
15%, respectively, compared with the traditional constant sludge reflux ratio control. With
an increase in the returned sludge concentration, the sludge discharge and sludge return
flow decreased correspondingly. The returned sludge concentration increased by 25.6%
on average, and the sludge return flow decreased by 20% on average. The average SS

17



Appl. Sci. 2023, 13, 1400

concentration of effluent was reduced by 35.3%, which could avoid sludge loss and maintain
the stable operation of the system. Compared with the traditional constant sludge reflux
ratio control, the controller has great advantages in terms of system stability, operation cost
and effluent quality by adjusting and improving the high- energy-consumption electrical
equipment in the whole sewage treatment plant, especially the high-powered equipment
such as the water pump and blower. Appropriate adjustment of operating parameters and
process optimization can better realize the low-carbon sustainable development concept
of sewage treatment. In the whole water treatment process, different water quality will
lead to different treatment intensity of each treatment unit in the process. For example,
with different concentrations of nitrogen and phosphorus, COD and BOD in the water, the
treatment units are also different, so each unit needs to be adjusted to the most suitable
operating parameters, to ensure the best treatment effect under the conditions of the lowest
energy consumption and low carbon [84].

Traditional sewage treatment processes use physical or chemical methods to remove
colloidal substances in sewage, and biological methods to treat organic pollutants in sewage.
Existing studies [16] have shown that the improvement of the SBR process adds a pre-anoxic
zone on the basis of the original, and the preliminary denitrification of the sewage is carried
out through the pre-anoxic process, which provides a good reaction environment for the
subsequent treatment, optimizes the selection of carbon sources in the distribution of raw
water, and improves the efficiency of the sewage treatment overall and the recovery and
utilization rate of water resources. With the improvement of the A2O process, the anaerobic
phosphorus removal area and low oxygen aeration area are set next to the settlement area
in order to form an integrated setting, which is conducive to improving work efficiency
and shortening sewage treatment time. Making full use of the principle of air pressure, a
low-oxygen aeration area in front of the air push zone is established to provide natural
force and reduce energy consumption and impact load. The unique dissolved-oxygen
control system can enhance the removal of COD, total nitrogen TN and total phosphorus
TP. At the same time, the process has a wide range of applications, mainly in the efficient
treatment of municipal sewage and various types of industrial waste water. It is the main
process of urban sewage treatment with low-carbon sources.

For the first time, the coupling process of SHARON and anammox was successfully
applied to the treatment of sludge digestion solution with high ammonia nitrogen in
the Dokhaven Sewage Treatment Plant in Rotterdam, Netherlands. Compared with the
traditional nitrification and denitrification process, the coupling process of SHARON and
anammox can reduce the CO2 emission by 88% and the operating cost by 90%. Domestic
studies on this process are mostly in the pilot stage. Zhao Qing et al. [85] treated landfill
leachate through the short-cut nitrification-coupled anammox process, and found that the
average removal rate of ammonia nitrogen and nitrite nitrogen in this system was over
95%. Nimazelang et al. [86] started and acclimated the one-stage short-cut nitrification and
anammox process in SBR. When the process reached stable operation, the SBR effluent was
put into the filter column with different volume filling ratios of slow-release carbon sources
to conduct in-depth nitrogen removal research. The results show that after 176 days of
start-up and acclimation in SBR, stable operation of the one-stage short-cut nitrification
and anammox process is successfully achieved, with the removal rate of ammonia nitrogen
up to 98% and the total nitrogen removal rate up to 73%. Beijing Drainage Group adopted
the anaerobic ammonia oxidation process to treat sludge digesters, with a total treatment
scale of 15,900 m3/d, which can reduce carbon emissions by 10,500 t per year [71].

In the context of rapid development, the value of development needs to be well
considered. Successful development must be of good long-term value. Through the
improvement of the industry, improvement of shortcomings, improvement of the quality
and efficiency of the process, the process operation can produce better value. For the
optimization of process operation parameters, the process and sewage quality change
rapidly with various factors, so it is more necessary to monitor the operation parameters in
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detail, utilize the best reaction parameters, realize the most efficient process operation, and
improve the process value.

3.2. Growing Trend

At present, the discharge standards of sewage treatment are very strict. All kinds
of sewage treatment industries are following the discharge indicators, and vigorously
developing and optimizing. At the same time, with the emergence of the development of
carbon-neutral and low-carbon industry, the research on energy conservation and emission
reduction has become an important task in industrial development. Therefore, although the
sewage treatment industry is not a prominent carbon emission industry, its long-term water
treatment projects and the accumulation of large amounts of high energy consumption
will definitely contribute to carbon emissions [87]. Therefore, in the process of sewage
treatment, it is very important to develop the low-carbon treatment technology of sewage
through energy saving, consumption reduction and resource recovery as much as possible.
However, at present, the new methods of low-carbon water treatment technology and
related evaluation standards are still relatively lacking. When we are developing low-
carbon water treatment technology, we also need to have an accounting of the carbon
emissions in the whole treatment process, so as to promote the perfection of the certification
and testing system for low-carbon sewage treatment technology. In addition, it would help
us regulate put emissions requirements on CO2 and other greenhouse gases from sewage
treatment. According to the current situation, in the future we will need more advanced
monitoring systems, and obtain the greenhouse gas pollutants produced in the process of
sewage treatment to make the corresponding inventory descriptions, and develop a series
of discharge standards. In terms of the carbon emission assessment of sewage treatment
plants, more appropriate algorithms are also needed to establish a deep learning model, so
as to better realize the accurate accounting of carbon emissions in the process of sewage
treatment [88–90].

According to the above research status of low-carbon sewage treatment technology,
we can find that it is possible to realize low-carbon sewage treatment. According to
the current situation of each existing sewage treatment plant, reasonable improvements
should be made under the supervision and technical support of relevant departments.
Relevant departments cannot be one-size-fits-all, requiring the unified transformation of
each sewage treatment plant, but specific rectifications must be carried out. The proposed
resource recycling carbon conversion and reuse is the basic guarantee for the current
low-carbon sustainable development. The concept of sustainable development can and
must be realized under any conditions, which is the general trend of development. As
for the implementation of low-carbon and carbon sequestration comprehensive treatment,
optimization of operation parameters and process improvement, it is necessary for each
sewage and water treatment plant to carry out the implementation according to its own
regional water quality and plant conditions. Proper equipment upgrading and process
optimization are beneficial, but it is also necessary to be guided by facts.

4. Conclusions

With the rapid development of urbanization and the rapid growth of population, the
amount of sewage is also increasing sharply. Therefore, the problem of sewage treatment
has become urgent. In addition, the waste of resources and energy consumption in the
process of sewage treatment and the additional impact on the environment are also ur-
gent matters. Since the conventional wastewater treatment activated sludge process is
always achieved through activated sludge microorganisms to complete the degradation
of pollutants, it necessitates oxygen energy consumption and sludge generation. No mat-
ter how the processing technology and parameters are changed, it cannot avoid energy
consumption and the disposal of harmful substances. Therefore, it is difficult to achieve
carbon neutrality and reduce carbon emissions. On the other hand, although some energy
consumption is unavoidable, in low-carbon sewage treatment technology, low-carbon
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sewage treatment can be achieved through the resource recycling of carbon conversion and
reuse, the generation of new methods of low-carbon carbon sequestration, and a certain
degree of operational parameter optimization and process optimization, so as to implement
the concept of low-carbon sustainable development as far as possible, and can be gradually
improved through scientific research. Therefore, as described in this paper, on the basis
of traditional conventional water treatment technology, it is also necessary to constantly
study and update water treatment technology to realize the full utilization of resources and
energy consumption as far as possible, as well as low-carbon water treatment technology,
to reduce the production of CO2 and CH4 and other greenhouse gases. Promoting the
innovation and improvement of sewage treatment technology and processes on the basis of
saving energy and reducing consumption, high efficiency and low carbonization of sewage
treatment can be realized, while the problem of sewage treatment is dealt with well.
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Featured Application: The Al–air fuel cell provides an energy self-sufficient electrocoagulation

system for phosphate removal.

Abstract: A self-powered electrocoagulation system with a single-chamber aluminum–air fuel cell
was employed for phosphate removal in this study. Electricity production and aluminum hydroxides
in solution were also investigated. When the NaCl concentration increased from 2 mmol/L to
10 mmol/L, the phosphate removal increased from 86.9% to 97.8% in 60 min. An electrolyte composed
of 10 mmol/L of NaCl was shown to obtain a maximum power density generation of 265.7 mW/m2.
When the initial solution pH ranged from 5.0 to 9.0, 98.5% phosphate removal and a maximum power
density of 338.1 mW/m2 were obtained at pH 6.0. Phosphate was mainly removed by aluminum
hydroxide adsorption. These results demonstrate that the aluminum–air fuel cell can be applied as
electricity-producing electrocoagulation equipment. Aluminum–air fuel cells provide an alternative
method to meet the goal of carbon neutrality in wastewater treatment compared with traditional
energy-consuming electrocoagulation systems.

Keywords: aluminum–air fuel cell; electrocoagulation; phosphate removal; electricity production

1. Introduction

The discharge of phosphorus into water bodies has caused a serious worldwide water
eutrophication problem [1,2]. A concentration of 0.1–0.2 mg/L phosphate can induce
incipient eutrophication in running water, while the critical concentration reduces to
0.005–0.01 mg/L of phosphate for still water [3]. The eutrophication of water threatens
the health of aquatic creatures, livestock, and even humans. Therefore, the removal of
phosphorus from municipal wastewater is essential to avoid water eutrophication. In
China, the national limit for total phosphorus (TP) effluent of the Class 1A Discharge
Standard is 0.5 mg/L [2]. The TP concentration is approximately 4–9 mg/L in China’s
municipal wastewater treatment plants [4]. Biological phosphorus removal processes are
the conventional and most widely applied technology. However, the biological treatment
system occupies a large area of land, requires high energy consumption, and needs to
control the operation conditions to reach this standard [5]. For the high discharge standard
of phosphate in municipal wastewater treatment, physicochemical treatments, such as
chemical precipitation by adding aluminum or iron coagulants, are applied for the further
removal of phosphate after biological treatment [6,7]. Chemical coagulation increases the
operating costs, produces excessive amounts of chemical sludge, and leads to potential
risks of secondary pollution.
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Electrocoagulation (EC) is considered a promising wastewater treatment technology
that comprises three aspects: coagulation, flotation, and electrochemistry [8]. In the EC
process, a sacrificial metal anode, such as Al or Fe, dissolves and releases metal ions
into the solution with an impressed current [8]. Various metal hydroxides are formed by
the hydrolysis process. Hydrogen bubbles and OH− ions are discharged at the cathode.
Pollutants and impurities are mainly removed by multiple physicochemical reactions with
metal hydroxides and generate precipitates simultaneously [9,10]. EC is an effective method
for phosphate removal, and the advantages of the EC system compared with chemical
coagulation are its easy operation, no additional chemical requirements, and less sludge
production [10–12]. However, the electrical energy demands need to be reduced to make
the EC process economically viable and eco-friendly. Recently, a new type of EC process
using an air cathode has been investigated to reduce EC energy demands [13–15]. At the
air cathode, an oxygen reduction reaction proceeds with a related catalyst, and oxygen gas
is obtained through air diffusion without aeration. With a minor added operation voltage
of 0.5 V, 98% of phosphate was removed in a shortened time of 15 min [16]. The reason for
this decrease in the electrical energy requirement of the EC with the air cathode is that the
metal anode and the oxygen reduction air cathode exist in a potential gradient.

Metal–air fuel cells, which consist of a metal anode and an air cathode, have been
investigated for synchronous contaminant removal and energy generation [17]. Over the
last few decades, metal–air fuel cells have been implemented to remove arsenate, chromium,
p-arsanilic acid, and humic acid, and for algal recovery [18–24]. Some researchers have
also applied metal–air fuel cells for phosphate removal and recovery. When wastewater
contained nitrogen and phosphorus together, Mg–air fuel cells were employed to recycle
the nitrogen and phosphorus by forming struvite precipitation [25,26]. Iron–air fuel cells
are a new option for recovering phosphate from wastewater. Phosphate was recovered
by the formation of vivianite precipitation. Within 3 months of continuous operation, the
iron–air fuel cell output voltage achieved approximately 400 mV, and 97% of phosphate was
removed from synthetic industrial wastewater [27]. Different configurations of iron–air fuel
cells were constructed to treat wastewater containing anaerobically digested sludge. The
phosphate removal rate of a two-chamber fuel cell obtained a rate of 11.60 mg-P/L/h [28].
Aluminum is also commonly used as an electrode in electrocoagulation for phosphate
removal, and aluminum–air fuel cells have been utilized to remove arsenate. Thus, it
is important to research the performance of phosphate removal and the influence of the
phosphate removal rate on aluminum–air fuel cells.

In this study, an energy self-sufficient single-chamber aluminum–air fuel electrocoagu-
lation system was constructed for phosphate removal. Different electrolyte concentrations,
initial pH values of the solution, and phosphate concentrations were investigated to de-
termine their influences on phosphate removal and power generation. The coagulated
precipitation in an aluminum–air fuel cell was also selected and analyzed to demon-
strate the phosphate removal process in the aluminum–air fuel cell. The self-powered
aluminum–air fuel cell provides an energy-friendly electrocoagulation process for nutrient
contaminant removal, which is significant in wastewater treatment for achieving the goal
of carbon neutrality.

2. Materials and Methods

2.1. Reactor Construction

An aluminum–air fuel cell reactor was constructed using a rectangular plexiglass
reactor of 80 mL (length: 4 cm, width: 2 cm, height: 10 cm, Figure 1). The area of the
air cathode was 40 cm2 (4 cm × 10 cm). The air cathode, including stainless steel mesh,
activated carbon (Xinsen Carbon Co., Ltd., Nanping, Fujian, China), conductive carbon
black (Jinqiushi Chemical Co. Ltd., Tianjin, China), and PTFE (60 wt%, Hesen Electrical Co.,
Ltd., Shanghai, China), was constructed using a rolling process, as described in a previous
study [29]. For the diffusion layer, conductive carbon black and an appropriate amount of
ethanol were mixed using mechanical and ultrasonic agitation for 15 min. The PTFE was
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then added and the solution was further stirred for 15 min. The carbon black was kneaded
like dough. Then, it was compacted and shaped between the rollers, and the diffusion layer
was pressed to a thickness of 0.4 mm. Finally, the diffusion layer sheet and the stainless-steel
mesh were rolled together and calcined in a muffle furnace at 340 ◦C for 20 min. Activated
carbon powder was used as the catalyst to create the catalytic layer. Similar to the operation
of the diffusion layer, a certain amount of activated carbon powder, ethanol, and PTFE
were mixed and rolled to create a catalytic layer sheet with a thickness of 0.3 mm. The
catalytic layer was then rolled together on the other side of the stainless-steel mesh. The
anode was a piece of aluminum mesh of 40 cm2 (mesh size 1.0 mm × 1.5 mm), which was
placed opposite to the cathode. Before operation, the aluminum mesh was washed with an
acetone solution to remove the residual oil and stains on the anode surface. The anode was
then immersed in 1.0 mol/L HCl solution for 10 min to remove the oxidation layer on the
surface. The anode was used after it was washed with deionized water.

Figure 1. Schematic diagram (a) and photo (b) of the aluminum–air fuel cell for electrocoagulation.

2.2. Solutions and Experimental Procedure

The phosphate solution was dispensed with KH2PO4 (99.9%) and NaCl (99.5%), which
were prepared to increase the solution’s conductivity. The reactor was operated with a
resistor of 10 Ω. The concentration of NaCl in the solution varied from 2 mmol/L to
10 mmol/L with 5 mg/L PO4

3−-P to analyze the solution conductivity effect. The initial
solution pH of 5.0–9.0 was adjusted by adding 1.0 mol/L HCl or 1.0 mol/L NaOH. The
PO4

3−-P concentrations ranged from 1 mg/L to 5 mg/L to compare the performances with
different original PO4

3−-P concentrations. Approximately 1.5 mL of solution was removed
every 5 min for PO4

3−-P analysis. The self-powered electrocoagulation experiments were
conducted at room temperature.

2.3. Measurements and Calculations

The samples extracted at different times were tested after they were filtered through
0.45 μm pore diameter syringe filters. The phosphate concentration was measured using the
ammonium molybdate spectrophotometric method (photoLab® 7600 UV, WTW, Munich,
Germany) [30]. The pH was tested using a pH meter (pH 7110, WTW, Munich, Germany).
The voltage across the resistor was monitored at 1 min intervals using a data acquisition
system (PISO-813, ICPDAS Co., Ltd, Taiwan, China). The current density (I) was calculated
based on Ohm’s law (I = U/(RA)), and the power density (P) was calculated as P = IU/A,
where U is the voltage (mV), R is the external resistor (Ω), and A is the surface area of the
cathode. Polarization curves and electrode potential curves were obtained by recording the
voltages under various external resistances (5–1000 Ω). A saturated calomel electrode (SCE,
0.242 V vs. a standard hydrogen electrode) was inserted into the reactor chamber as the
reference electrode to test the electrode potential. The theoretical dissolved aluminum ion
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concentration was calculated, and the number of aluminum ions was calculated according
to Faraday’s law. The equation for Faraday’s law is as follows:

m =
I × A × t × M

Z × F
(1)

Here, m is the theoretical dissolved mass of aluminum ions (g), I is the current density
(A/cm2), t is the operation time (s), A is the surface area of the cathode (40 cm2), M is the
molecular weight of the aluminum material (M = 26.98 g/mol), Z is the number of electrons
released from the aluminum anode (the Z of aluminum is 3 eq/mol), and F is Faraday’s
constant (96,485 C/mol). The volume of the electrolyte solution used for the aluminum ion
concentration calculation was V = 80 cm3. The P-precipitants obtained from the 10 mmol/L
NaCl solution were collected and vacuum-dried at 40 ◦C for chemical phase analysis. The
precipitates were tested by X-ray diffraction (D8 ADVANCE, Bruker, Karlsruhe, Germany)
under operating conditions of 100 mA and 40 kV in the range of 2θ = 10–90◦. The aluminum
anode and precipitates were analyzed using scanning electron microscopy (Carl Zeiss AG,
Sigma500, Oberkochen, Germany) and energy-dispersive spectroscopy.

3. Results and Discussion

3.1. Effects of Electrolyte Concentration

The electrolyte concentration of NaCl directly influenced the resistance between the
electrodes and changed the output current [30]. In the EC process, increasing the electrolyte
concentration could increase the phosphate removal efficiency and reduce the electrolysis
operation time. The aluminum–air fuel cell system’s phosphate removal performance was
monitored with different concentrations of NaCl ranging from 10 mmol/L to 2 mmol/L
with a resistor of 10 Ω. With the decrease in the electrolyte concentration, the phosphate
removal rate in the aluminum–air fuel cell showed a downward trend, and the required re-
action time was prolonged. The phosphate removal in the aluminum–air fuel cell containing
8 mmol/L of NaCl was slightly lower than that of the cell containing 10 mmol/L of NaCl.
When the NaCl concentration decreased to 2 mmol/L, the phosphate removal reached
97.8%, 93.3%, 91.8%, and 86.9% at 60 min, respectively (Figure 2a). White flocculent precipi-
tates were observed with different operating concentrations of electrolytes. At 10 mmol/L
of NaCl, the phosphate removal was 98.0% at 50 min, and the rate of removal decreased
with longer operation times, which demonstrated that the operation time could be reduced
with a higher electrolyte concentration. When the NaCl concentration was decreased from
10 mmol/L to 2 mmol/L, the average output current density of the aluminum–air fuel
cell decreased from 0.20 mA/cm2 to 0.06 mA/cm2 (Figure 2b). The low conductivity of
the solution led to an increase in the internal resistance of the fuel cell, slowing down the
mass transfer in solution and the dissolution rate of the aluminum anode [24]. When the
NaCl concentration declined from 10 mmol/L to 2 mmol/L, the calculated dissolutions
of aluminum ions were 33.7 mg/L, 32.2 mg/L, 20.3 mg/L, and 9.5 mg/L, respectively.
A higher conductivity electrolyte increased the anode dissolution and produced larger
amounts of aluminum hydroxides for complex precipitation reactions in the solution; thus,
a higher electrolyte concentration was favorable for phosphate removal [20]. In a traditional
EC system, an increase in the electrolyte concentration can improve energy consumption,
leading to an increase in the EC operating costs. On the contrary, a higher electrolyte
concentration will generate more electricity for the aluminum–air fuel cell.
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Figure 2. Effects of different electrolyte concentrations on (a) phosphate removal and (b) current
generation in the aluminum–air fuel cell.

To analyze the influence of electrolyte concentrations on the electrochemical perfor-
mance of the aluminum–air fuel cell, polarization curves and electrode potentials were
tested with different electrolyte concentrations. As the electrolyte conductivity decreased,
the maximum power density of the aluminum–air fuel cell reduced from 265.7 mW/m2

to 76.6 mW/m2 (Figure 3a). The electrode potentials of the aluminum anode and the air
cathode both decreased with a decline in conductivity (Figure 3b). With a higher electrolyte
concentration, more aluminum ions dissolved, generating a higher current output.

Figure 3. (a) Power density and polarization curves and (b) electrode potential curves for the
aluminum−air fuel cell with different electrolyte concentrations.

3.2. Effects of Initial pH

The pH value can be a significant factor in the electrocoagulation process. In this
work, the initial solution pH ranged from 5.0 to 9.0, the initial phosphate concentration
was 5 mg/L, and the NaCl concentration was 10 mmol/L. As shown in Figure 4a, different
initial pH values influenced the phosphate removal rate in the aluminum–air fuel cell
system. When the solution pH was alkaline, the phosphate removal rate was faster than the
rate under acidic conditions in the early stage. Within 50 min, all phosphate removal rates
reached values higher than 90% with different initial pH values. At 60 min, as the initial
pH 5.0 changed to pH 9.0, the phosphate removal reached 96.3%, 98.5%, 96.3%, 97.0%, and
95.6%. In contrast to the removal rate trend, the highest level of final phosphate removal
was obtained at pH 6.0, which was likely due to the higher aluminum dissolution with
a higher current output at pH 6.0 [31]. The average current density of the aluminum–air
fuel cell ranged between 0.18 and 0.20 mA/cm2, which changed slightly during electricity
production. At pH values of 5.0 to 9.0, the calculated aluminum ion concentrations were
30.7 mg/L, 33.9 mg/L, 33.1 mg/L, 31.9 mg/L, and 32.2 mg/L. These results also indicated
that the self-driven electrocoagulation could adapt to different pH conditions, as shown in
previous research [20].

29



Appl. Sci. 2023, 13, 4628

(a) (b) 

Figure 4. Effects of different initial pH values on (a) phosphate removal and (b) current generation in
the aluminum−air fuel cell.

The power density of the aluminum–air fuel cell varied slightly under different pH
conditions (Figure 5a,b). The maximum power densities of the aluminum–air fuel cell were
higher at pH 6.0 and pH 7.0, being 338.1 mW/m2 and 332.8 mW/m2, respectively. Under
alkaline conditions, the cell maximum power densities decreased; at pH 9.0, the maximum
power density was 292.8 mW/m2. The difference in the fuel cell electrode potential under
different pH conditions was not obvious.

Figure 5. (a) Power density and polarization curves and (b) electrode potential curves for the
aluminum−air fuel cell with different initial pH.

The electrocoagulation performance was influenced by the aluminum dissolution
and the final pH. In this experiment, pH variation was also investigated with different
initial pH values, as shown in Table 1. After 60 min of operation with the initial pH value
ranging from 5.0 to 9.0, the final pH changed in different trends. For the acidic and neutral
conditions, the pH value increased, while with initial pH values of 8.0 and 9.0, the final
pH value decreased. The variation trends were similar to previously reported trends [20].
The dissolution rate of aluminum was also related to the current density and the pH value.
The behaviors of the electrode and aluminum ions in solution also affected the solution
pH. For the aluminum–air fuel cell, the electrode and overall reactions were as shown in
Equations (2)–(4). At the aluminum anode, electrons were released from the aluminum,
and then the aluminum ions reacted with water, as shown in Equation (5) [32,33]:

Anode : Al → Al3+ + 3e−E0 = 1.66 V (2)

Cathode :O2 + 4H+ + 4e− → 2H2OE0= 1.23 V (3)

Overall :Al + O2 + H+ → Al3+ + H2OE0 = 2.89 V (4)

Al3+ + 3H2O → Al(OH)3 + 3H+ (5)
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Table 1. The pH value changes of the aluminum–air fuel cell before and after operation for 60 min.

Initial pH 5.0 6.0 7.0 8.0 9.0

Final pH 5.6 6.4 7.3 7.9 8.8

At the air cathode, OH− ions can also be generated through the four-electron oxygen
reduction reaction with water, as shown in Equation (6):

O2 + 2H2O + 4e− → 4OH− (6)

At pH 5–6, for most of the polymeric species, the ratios of precipitation of Al3+ and
OH− were less than 3, which caused the OH− ions to accumulate in the solution during
the operation process and increased the pH [33]. Under alkaline conditions, more OH−
ions could be consumed by aluminum ions to form polymeric aluminum hydroxide, and
this process decreased the pH value.

3.3. Effects of Initial Phosphate Concentration

Generally, the removal efficiency of phosphate was negatively correlated with the
initial phosphate concentration in the EC process, and the phosphate removal was limited
at the start of the operation, as the amount of coagulants produced was relatively small [14,
34,35]. In this study, the phosphate concentration was set to approach the concentration of
real domestic wastewater. A 10 mmol/L NaCl electrolyte and a 10 Ω operating condition
were used, and the initial concentrations of phosphate in the simulated wastewater were
set to 5 mg/L, 4 mg/L, 3 mg/L, 2 mg/L, and 1 mg/L, respectively. As the results in
Section 3.1 show, the operation time could be reduced to 50 min with 10 mmol/L of NaCl.
The maximum phosphate removal rate was achieved at 50 min, and the level of phosphate
removal decreased after 60 min. At lower phosphate concentrations, a higher phosphate
removal rate was obtained at the beginning of the operation. With the increase in the
phosphate concentration, the phosphate removal rate increased at 50 min, achieving 92.2%,
93.0%, 92.6%, 96.9%, and 98.0%, respectively (Figure 6). In the actual sewage treatment
process, the concentration of phosphate in sewage changes greatly. These results indicate
that in a relatively low phosphate concentration range, the aluminum–air fuel cell system
can achieve a high phosphate removal efficiency. Compared with the existing EC process,
which consumes electricity, an electrical-power-generating electrocoagulation system was
applied to this work, which provided an energy-friendly and promising electrocoagulation
process for phosphate removal.

Figure 6. The relationship between the initial phosphate concentration and phosphate removal in the
aluminum−air fuel cell.

3.4. Comparison of Energy Demand and Implications

In traditional EC systems for phosphorous removal using aluminum electrodes or
a combination of aluminum and iron electrodes, the energy demand per cubic meter
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of P-wastewater was approximately 1.1–6.1 kWh, as shown in Table 2. When an air
cathode was applied as the electrode, the energy consumption decreased compared with
the traditional EC system. In the air cathode EC system which used a titanium inert
electrode, only 0.009–0.06 kwh was added, and the operation time required was only
15 min [13]. Photovoltaic solar modules were also applied to power the EC process, and
the energy from the solar energy modules was enough for the EC system, although the
solar energy conversion efficiency was less than 13% [30]. For the aluminum–air fuel cell,
with a 10 mmol/L NaCl electrolyte and a 10 Ω operation condition, the average power
density at 60 min was approximately 160 mW/m2. As the power density curves show,
the aluminum–air fuel cell output power density was related to the output current. The
power production was less than that of the solar cell; however, the aluminum–air fuel cell
electrocoagulation system did not require an external electricity unit such as a solar cell
module. This simple device is more practical in wastewater treatment, and solar energy is
also highly dependent on weather. Compared with the traditional EC system, the operating
cost for anode consumption is similar, but the cost of the air cathode in the aluminum–air
fuel cell is higher than that of the conventional EC cathode [19]. The air cathode cost and
lifetime should be one of the future research points considered for scale-up. Therefore, in
future studies, the construction of a scale-up system, the electrode lifetime, and overall
economic assessment including labor, sludge handling, maintenance, and depreciation
costs will be key issues for practical application [18,36–38].

Table 2. Energy consumption of different electrocoagulation systems and the removal rates of
phosphorus reported in different studies with Al electrodes.

Electrode Type Wastewater Type
Energy

(kWh/m3)
Current Density

(mA/cm2)
Phosphate

Removal (%)
Reference

Al–Al urban wastewater 4.5 1 99 [39]
Al–Fe synthetic solution 1.1–6.1 1–4 97–99 [3]

Al, air cathode domestic wastewater 0.4–9.9 0.6–1.2 97–99 [14]
Al, air cathode, titanium sheet domestic wastewater 0.009–0.06 1 71–98 [13]
Al, air cathode, graphite sheet, domestic wastewater 0.05−0.14 1 85–98 [16]

Al–Al, photovoltaic solar landscape water — — 1.3–3.8 96–99 [30]
Al–air cathode fuel cell synthetic solution — — 0.06–0.2 86–98 This study

Another advantage of the metal–air fuel cell is that the air cathode is capable of
generating hydrogen peroxide with a suitable oxygen reduction catalyst, which has the
potential to treat wastewater by combining coagulation and oxidization processes. For
domestic wastewater treatment, the aluminum–air fuel cell can be used at the pre-treatment
segment and the advanced treatment segment to remove phosphate. Organic contaminants
such as antibiotics, resistant genes, and persistent organic pollutants which are harmful to
human health can coexist with phosphate in wastewater. The multiple physicochemical
processes in aluminum–air fuel cells provide promising methods to treat the complex
effluents in the advanced treatment stage.

3.5. Mechanisms of Phosphate Removal

The aluminum anode was analyzed before and after fuel cell operation using SEM to
clarify the phosphate removal process (Figures 7 and 8). The anode surface formed a corro-
sion pit after the operation (Figure 7a,b), providing evidence that the anode spontaneously
dissolved aluminum ions into the solution. Previous studies have shown that pitting
corrosion exists on metal surfaces when they are covered by a compact oxide film [40].
Furthermore, chloride ions in the electrolyte solution are the aggressive ions on the metal
surface. Chloride ions can trigger the pitting corrosion reaction, and the passivation layer
on the electrode surface will decompose. For the Al anode, a corrosion-protective film
consisting of aluminum oxide can easily form on the surface, and the protective film is
stable within a pH range of 4–8.5. However, chloride ions can react with the protective film
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and expose the anode surface, which will increase the anode dissolution rate [34]. These
processes are shown in Equations (7)–(9) [41]:

Al2O3 + Cl− + 6H+ → 2AlCl3 + 3H2O (7)

Al(OH)3 + nCl− → Al(OH)3−nCln + nOH−, n = 1, 2, 3 (8)

AlCl3 + Cl− → AlCl+4 (9)

 

Figure 7. SEM results of the Al electrode in this study, (a) the original electrode, and (b) the electrode
after the operation.

 

Figure 8. SEM images of phosphate precipitation in aluminum–air batteries (a) and EDS results (b).

The morphology of the precipitates from 10 mmol/L of NaCl and 5 mg/L of phosphate
was observed by SEM, and the elemental compositions were analyzed by EDS, as shown
in Figure 8a,b. The precipitates had a blocky structure, and the EDS results showed that
the precipitates were mainly composed of P, Al, and O elements, which indicated that the
phosphate was removed with the aluminum compounds.

There are two main mechanisms that exist in the aluminum coagulation phosphate
removal process, namely co-precipitation by monomeric aluminum and adsorption by
aluminum hydroxide [42]. In the EC process with aluminum electrodes, both direct precip-
itation and adsorption by aluminum hydroxide were observed, and direct precipitation
for phosphate removal was more efficient than hydroxide adsorption removal [43,44]. The
phosphate removal behavior was related to the water conditions and the aluminum species.
AlPO4 precipitate can be formed by Al3+ and phosphate, and the Al13 species can also
induce formation of AlPO4 by complex adsorption [45]. For the coagulation process, pH
influences the speciation of aluminum and accordingly affects the phosphorus removal
mechanism. When the pH value was below 3.5, the dominant aluminum species was Al3+.
As the pH value increased from 3.5 to 10.0, the dominant species were complex monomeric
and polymeric aluminum hydroxides. Al(OH)4

− became the predominant species when
the pH value was above 10.0 [46]. The precipitated products from different initial pH values
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were examined by XRD to reveal the crystalline structure (Figure 9). Three diffraction peaks
were observed in the flocs. The second peak was in the range of 23–33◦, and the third peak
was at approximately 41◦, which was likely within the spectrum of Al(OH)3. The crystal
plane of AlPO4 was also found in the second peak range [45–47]. However, the absence of
sharp peaks in the XRD results indicated that the flocs had a poor crystalline structure, and
that many of the precipitates were in an amorphous state, which was similar to a previous
report on aluminum coagulants [47]. Combining the precipitates, XRD results, and the
aluminum species constructions with different pH values, it can be concluded aluminum
hydroxide adsorption was the main mechanism for removing phosphate. A schematic
diagram of the phosphate removal process is summarized in Figure 10.

Figure 9. XRD patterns of floc precipitation in the aluminum–air fuel cell.

Figure 10. Schematic diagram of the phosphate removal process in the aluminum−air fuel cell.

4. Conclusions

A single-chamber aluminum–air fuel cell system was utilized to remove phosphate,
and the effects of various factors were examined for phosphate removal. The phosphate
removal mechanism was also discussed. An increase in the electrolyte concentration im-
proved the level of phosphate removal and electricity production. With 10 mmol/L of
NaCl, 97.8% phosphate removal was achieved, and the maximum power density reached
265.7 mW/m2. For different initial pH values, the optimal condition for electricity pro-
duction was pH 6.0, and 98.5% phosphate removal was achieved in 60 min. The aver-
age current density obtained was 0.20 mA/cm2, and the maximum power density was
338.1 mW/m2. Aluminum hydroxides were synthesized, and phosphate was primarily
removed via the aluminum hydroxide adsorption process. The aluminum fuel cell can treat
phosphate wastewater and generate energy simultaneously. Compared with conventional
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electrocoagulation systems, the aluminum–air fuel cell system can be considered an en-
ergy self-sufficient alternative, which is significant for achieving carbon neutrality in the
wastewater treatment industry.
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Abstract: The electrocatalytic hydrogen evolution reaction (HER) of a given metal catalyst is intrinsi-
cally related to its electronic structure, which is difficult to alter for further improvement. Recently,
it was discovered that the density of grain boundaries (GBs) is mechanistically of great importance
for catalytic activity, implying that GBs are quantitatively correlated with the active sites in the HER.
Here, by modeling the atomistic structure of GBs on a Au(110) surface, we find that HER performance
is greatly enhanced by Au GBs, suggesting the feasibility of the HER mediated by GBs. The promoted
HER performance is due to an increase in the capability of binding adsorbed hydrogen on the sites
around GBs. A Au catalyst with a dominantly exposed (110) plane is synthesized, where considerable
GBs exist for experimental verification. It is found that HER activity is inherently correlated with
the density of the GBs in Au NPs. The improvement in HER activity can be elucidated from the
geometrical and electronic points of view; the broken local spatial symmetry near a GB causes a
decrease in the coordination numbers of the surface sites and the shift up of the d–band center,
thereby reducing the limiting potential for each proton−electron transfer step. Our finding represents
a promising means to further improve the HER activity of a catalyst.

Keywords: grain boundaries; electrocatalytic hydrogen evolution; density functional calculations; gold

1. Introduction

In recent decades, human beings have relied on fossil fuels for over 80% of their total
energy needs. Hydrogen, as a clean, economic and renewable energy carrier, is considered
to be an attractive alternative to traditional fossil fuels, and it can greatly alleviate the global
greenhouse effect and energy crisis at present [1]. Amongst various hydrogen production
techniques, the electrocatalytic hydrogen evolution reaction (HER) via electrochemical
water splitting, an important energy recovery technique, has received great attention as
a hot research topic [2–4]. Consequently, ever–increasing efforts have been devoted to
developing a variety of new catalysts with the aim of improving HER performance [5,6].
However, noble metal–based materials such as platinum (Pt) (e.g., Pt/C) are still the most
efficient catalysts widely used to catalyze hydrogen evolution, owing to their outstanding
thermodynamical and kinetic features for the HER [3]. Unfortunately, Pt is an extremely
scarce and precious metal, which results in a high cost for the HER. Therefore, designing
a new catalyst or boosting the activity of existing non–noble materials other than Pt has
become urgent.

As an important descriptor, hydrogen bonding ability is often taken into account in the
screening or designing of HER catalysts [7–9]. According to the Sabatier principle, either a
too weak or too strong adsorption ability results in a drop in HER performance in that a too
weak adsorption of H* leads to a pronounced decline in intermediate stabilization, while a
too strong adsorption inhibits the desorption of gaseous hydrogen [10]. The superior HER
of Pt is due to its optimal H* binding energy, or Gibbs free energy, which is close to zero. To
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date, many non–noble materials suffer from a weak H* binding ability. Identifying how
to enhance their H* binding activity remains an enormous challenge. Therefore, various
routes have been proposed to control the microstructure of catalysts in order to expose
more active facets or sites [11–13]. However, further improving HER activity is still a great
challenge due to the inherent electronic structure of the catalysts themselves, leading to
a certain capacity for H* binding, which almost cannot be tuned. Inspired by a previous
study on the relationship between grain boundaries (GBs) and catalytic activity in various
reactions [14–16], GBs rich in the atomic arrangement disorder were found to alter the
local electronic structure around GBs [17,18]. In addition, GBs feature under–coordinated
sites and microstrains [16,19], which favor H binding. Kim [17], using extensive density
functional theory (DFT) calculations to model the atomistic structure of GBs on a Au(111)
surface, concluded that the grain boundary of Au is conducive to the adsorption of COOH
by the active site, thus enhancing electrochemical CO2 reduction. Dong [18] believes that
the GB sites on a Au(110) surface lead to a high selectivity toward CH3OH. Thus, GBs are
expected to have a stronger H* binding capability so as to compensate for the unsaturated
coordination of GB atoms resulting from such a disorder. However, these studies lack an
investigation of the atomic and electronic structures of grain boundaries and an explanation
of the enhanced catalytic performance of grain boundaries.

Herein, we first predict the impact of grain boundaries on a Au surface on the HER
occurring at GBs via density functional theory (DFT) calculations, in light of the much
weaker H* binding capacity of Au [20]. Then, a Au NP catalyst with GBs is prepared for the
verification of GB–assisted HER activity. HER activity greatly increases with an increase
in the density of GBs in Au NPs. Additionally, the atomic and electronic structures are
analyzed to determine the role of the GBs. On the basis of the theoretical and experimental
studies, it is found that the GBs can prodigiously promote the chemical bonding ability of
H* intermediate, resulting in enhanced catalytic activity in hydrogen evolution.

2. Compactional and Experimental Methods

2.1. Computational Model and Method

Of many possible high–angle grain boundaries (HAGBs), an ∑6{2–21} HAGB atomistic
model on a Au(110) surface was constructed using coincidence site lattice (CSL) theory, as
shown in Figure 1. This HAGB surface model consists of three layers containing 52 Au
atoms (Figure S1). Five atop catalytic active sites were selected, labeled as s1–s5 (Figure 1).

Figure 1. Top view of the Σ6{2–21} HAGB model on Au(110) surface with three atomic layers in an
orthogonal supercell (25.29 × 8.94 × 17.80 Å3). The GB area is highlighted by blue lines. The selected
Au around GB is labeled as s1–s5.

Spin–polarized DFT calculations were performed using Vienna ab initio Simulation
Package (VASP) [21]. The revised Perdew−Burke−Ernzerhof (rPBE) exchange–correlation
functional within the generalized gradient approximation (GGA) was used with the projec-
tor augmented wave (PAW) pseudopotential [22]. A plane–wave cutoff energy of 450 eV
was used for clean surface and adsorbate surface relaxation. The relaxation was complete
when the residual force was less than 0.05 eV/Å. During the structure relaxation, two down-
most layers were fixed to their original position of the slab without the adsorbate, while
the uppermost layer and adsorbate were fully relaxed. Then, 2 × 1 × 1 Monkhorst−Pack
mesh sampling was employed for the clean surface and adsorbate surface in the surface
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Brillouin zone. A vacuum space of 15 Å perpendicular to the slab surface was used to
avoid artificial interaction. Additional computational details about the calculation of the
free energy diagram can be found in the Supporting Information.

2.2. Preparation of Au/CFP Electrodes

Au nanoparticles were deposited on carbon fiber paper by magnetron sputtering under
a sputtering vacuum of 5 × 10−2 mbar and a sputtering current of 20 mA for 30 s using a
tabletop DC magnetron sputtering coater (Leica EM SCD 500). The purity of the Au target
used for deposition was 99.999%. The annealing of Au/CFP electrodes was performed
using a tube furnace (Thermo Scientific) with a flowing Ar atmosphere at 100 sccm, heated
at a given temperature (200~400 ◦C) for 2 h. The use of an Ar atmosphere prevented the
formation of carbon coatings on the Au nanoparticles.

2.3. Electrochemical Characterization

All electrochemical measurements were performed on a CHI 1100C electrochemical
workstation (Chenhua, China). The Pb underpotential deposition (upd) measurements
of the Au/CFP electrodes were performed in 0.1 M NaOH solution containing 1 mM
Pb(OAc)2, and Pt and Ag/AgCl electrode (3.0 M KCl) were the counter electrode and
reference electrode, respectively. The voltammogram scan rate was 50 mV s–1.

Electrochemical hydrogen evolution measurements were performed in 0.5 M H2SO4
with continuous purging of N2 (>99.999% purity) using a standard three–electrode cell,
where the Au/CFP electrodes, the graphite rod (>99.999% purity) and the Hg/Hg2Cl2
electrode (saturated KCl solution) were used as the working, counter and reference elec-
trodes, respectively. The potential was calibrated with respect to RHE in the high–purity
hydrogen–saturated electrolyte, with a Pt plate as the working electrode. A flow of N2 was
maintained over the electrolyte (0.5 M H2SO4) during the electrochemical measurements in
order to eliminate the possible effects of other gases. The polarization curves were recorded
with a scan rate of 5 mV s−1 without iR correction.

3. Results and Discussion

3.1. Theoretical Prediction of GB–Assisted HER
3.1.1. Gibbs Free Energy

The HER is a multi–step electrochemical process occurring on the surface of an elec-
trode [23]. In acid media, two possible routes have been elucidated for the HER, i.e.,
the Volmer−Heyrovsky and the Volmer−Tafel mechanisms, which can be described as
follows [24,25]:

H3O+ + M + e− � H ∗ −M + H2O (1)

H ∗ −M + H3O+ + e− � M + H2 + H2O (2)

2H ∗ −M � 2M + H2 (3)

Step (1) refers to the Volmer reaction, while steps (2) and (3) refer to the Heyrovsky
and Tafel reactions, respectively. We first explore the impact of the GBs on the Au(110)
surface on the Volmer reaction, which dominantly determines the overall HER perfor-
mance; for this, we chose various active sites at and near the Au GBs (Figure 1). Figure 2a
shows the Gibbs free energy change (ΔGH*) profile of the HER in acid media. The ΔGH*
values of the flat Au(110) and Pt(111) GB–free surfaces are also presented for comparison
(Tables S1 and S2). It should be noted that ΔGH* dramatically reduces once the GBs are in-
troduced. Additionally, ΔGH* exhibits site–dependent HER activity for sites in the vicinity
of the GBs. To be specific, the ΔGH* for s1 is 0.18 eV, approximately 0.4 eV less than the flat
Au(110) (0.58 eV), whereas s2 and s3 have a ΔGH* of about −0.07 eV; this is less than that
of Pt (−0.09 eV), which is more close to zero. As is well known, the optimal value of ΔGH*
for the HER is zero, as hydrogen binding is neither too strong nor too weak. Therefore, the
activity for the Volmer reaction is greatly promoted by the GBs. In addition, the sites near
the GBs (s4 and s5) reduce ΔGH* by ~0.13 eV with regard to the Au(110) surface, suggesting
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that GBs on the Au(110) surface not only greatly promote HER activity on their own (s1–s3)
but also activate the sites nearby (s4–s5) to further lower the reaction barrier.

Figure 2. (a) The calculated free−energy diagram of HER at the equilibrium potential (U = 0 V) for
Au(110) (black), Pt(111) (green) and different active sites on Au GBs. (b) The volcano relation of
the limiting potential for HER as a function of EB(H*). The arrow indicates the desired direction for
catalyst design with higher activity, and the color pentagrams represent GB sites on Au surface for
prodigious promotion of HER. Theoretical overpotentials (ηHER) are the vertical difference between
the points and the equilibrium potential (red dashed line).

3.1.2. Limiting Potentials

To further evaluate the HER performance, we compared the limiting potential
(UL = −ΔGH*/e) of various metal materials with different exposed facets (Tables S3 and S4).
Figure 2b presents a volcano plot, which typically correlates EB(H*) with UL. GB–free
Au(110) is located far from the top on the right side of the volcano plot, indicating that
Au(110) binds H* weakly enough not to form a stable intermediate, which readily desorbs
off the surface; thus, a much higher overpotential is required to yield gaseous hydrogen [10],
which is in agreement with the previous discussion. When GBs are formed on Au(110),
HER activity moves close to the top of the volcano. The active sites at the GBs (s1–3) possess
superior HER performance to almost all the metal catalysts considered here. Additionally,
the UL required is also reduced for sites near the GBs (s4 and s5). In particular, s1, s2 and
s3 lie close to the top of the volcano plot near Pt, although PDS is different, suggesting
that their HER activity is similar to that of the Pt extended surface. The enhanced HER
performance is mainly due to the increase in the ability to bind H* on the Au(110) surface
with GBs. Therefore, the GBs on the Au(110) surface can dramatically improve H* binding
strength and, thus, boost the HER process.

3.1.3. Exchange Current Density

For the purpose of the application of the GB concept in the HER experiment, we
calculated the exchange current density (j0), the most common experimental descriptor,
to measure the catalysts’ HER activity [10,26]. According to the micro–kinetic model, at
equilibrium, j0 can be theoretically computed as an indirect function of ΔGH* [10],

j0 = Fk0Ctotal

[
(1 − θ)1−αθα

]
(4)

θ =
exp

(−ΔG∗H
/

kBT

)
1 + exp

(−ΔG∗H
/

kBT

) (5)

where k0 is the standard rate constant, α is the transfer coefficient (α was set to 0.5 in this
work), Ctotal is the total number of HER active sites on the surface of the catalyst, and kB is
the Boltzman constant. The relationship of catalysts correlating EB(H*) is presented with
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the logarithm of j0 (log j0) (Figure 3a). Similar to the UL–EB[H*] plot, a typical volcano plot
is also clearly observed, which is consistent with that in a previous study [10]. Pt and other
HER–active materials are close to the top of the volcano curve, which denotes the scaling
relationship between log j0 and EB[H*]. The flat Au(110) surface has log j0 = −10.88 A·cm−2

at EB[H*] = 0.50 eV, which implies that Au(110) is not a good HER catalyst because its j0 is
extremely small. Once GBs are formed on the Au(110) surface, the log j0 of the sites around
the GBs is significantly increased (s1–s5), and they shift up toward the volcano top. s1–s3
are promoted several to a dozen million times in j0 with respect to the Au(110) surface. It
is more surprising that, for s1 and s2, log j0 jumps to −3.30 A·cm−2, which is close to the
volcano top, outperforming Pt(111) (log j0=−3.50 A·cm−2). This dramatic increase in j0 is
also ascribed to the strong H* binding capability caused by GBs on the Au surface.

Figure 3. (a) Computational exchange current density (log (j0)) for hydrogen evolution over Au GB
sites, and various metal surfaces plotted as a function of the hydrogen binding energy. (b) Current
density of hydrogen evolution as a function of the applied potentials for Au(110) with varying
concentrations of GBs on Au(110), and Pt(111) is presented for comparison. The inset presents a
magnified version of the plot.

3.1.4. GB–Mediated Current Density

In fact, the active sites on the Au surface with GBs consist of GB sites and normal sites,
which both contribute to the hydrogen evolution. Thus, the overall HER performance of
the Au(110) surface with GBs should be described by current density (j) at a given applied
potential, which results from the combination of Au GBs and a flat Au(110) surface. For
this purpose, we plotted the current density of hydrogen evolution as a function of the
applied potential (U) using the kinetics of electrode reactions [27], which can simulate a
linear scan voltammetry (LSV) curve. Under the precondition of ruling out mass transfer
effects, the LSV curve of the HER can be predicted using the Butler–Volmer Equation
(Supporting Information),

j = j f orward + jbackward = j0
[
e−α f η − e−(1−α) f η

]
(6)

where α is the transfer coefficient, η is a certain overpotential, and f denotes F/RT. Figure 3b
shows a j–U plot of Au(110) surfaces with varying amounts of GBs by controlling the ratio of
GB sites (s1–s3)/normal sites. The GB–free Au(110) surface has the largest overpotential of
−0.73 V (vs SHE) at a current density of 20 μA cm−2. Surprisingly, GBs induce a significant
decrease in the overpotentials required for the HER. Of particular note is that only 0.01% of
the GBs on Au(110) lead to a dramatic decrease in the overpotential by almost one–half
from −0.73 to 0.33 (V vs. SHE), suggesting that quite a low GB density on Au(110) can
extremely boost the overall HER performance. As can be clearly seen in Figure 3, the higher
the density of the Au GBs, the lower the potential that the catalyst will have. When the
density of the GBs increases to 1%, the overpotential to achieve 20 μA cm−2 further reduces
to −0.09 V (see inset). A total of 5% of GBs can further reduce the overpotential to 0.01 V.
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However, we cannot expect even higher HER activity by continuously increasing the GB
density, because there exist only a few GBs on a real catalyst surface.

3.2. Experimental Verification of GB–Assisted HER Activity
3.2.1. Exposed Surface Characterization

To determine the accessible exposed facet of the as–prepared Au electrodes, we used
the lead underpotential deposition (Pb–upd) technique. The Pb–upd process is very
sensitive to the surface structure of the gold electrode with a distinct voltammetric profile,
where the main peaks appear at different characteristic potentials for different exposed
facets of Au electrodes [28,29]. As a result, the main peaks can be used as indicators to
characterize the surface structure of the electrode. In Figure 4, it can be clearly observed that
the pristine Au/CFP electrode shows only one significant deposition peak in the Pb–upd
voltammogram profile, which is located at ~−0.47 V (vs. Ag/AgCl) and corresponds to
the (110) facet of Au. Upon scan reversal, the Pb–upd layer is oxidized to dissolved Pb2+

in the form of Pb(OH)− in alkaline solution in a sharp peak at ~−0.38 V (vs. Ag/AgCl),
which is in good agreement with the results of a previous study [30]. Additionally, the CFP
electrode exhibits no Pb–upd peak, suggesting that Pb–upd is attributed to the Au itself.
Therefore, Au(110) is the dominant exposed surface faceting of the as–deposited Au/CFP
electrodes, which provides the experimental basis for the verification of our GB–assisted
HER on Au(110).

Figure 4. Pd−upd voltammetric profile of as−deposited Au/CFP and clean CFP electrodes
(0.5 × 1 cm2). Scan rate: 50 mV/s.

We performed a detailed characterization of the morphology and structure of the
as–prepared and annealed Au/CFP. From SEM and compositional maps (Figure S2), it
can be seen that Au is deposited on the CFP electrode with a uniform distribution and
a small particle size. The as–deposited Au/CFP was characterized by X–ray diffraction
(XRD) (Figure S3). When the sputtering time is short, such as 30 s or 2 min, the intensity of
the Au diffraction peaks is weak, because the content of Au is small and the particle size
is small.

The morphological structures of the as–deposited and annealed Au/CFP were in-
vestigated via transmission electron microscopy (TEM) observation (Figure 5). The high–
resolution TEM (HR–TEM) images show a lattice fringe spacing of 2.35 Å corresponding
to the (111) facet direction of the Au nanoparticles (NPs). It can be clearly seen that the
as–deposited Au NPs feature a representative surface rich in GBs, showing a polycrystalline
character to some extent (Figure 5a). Notably, the grain boundary angle in Figure 5a is
similar to that in our calculated GBs surface model (Figure 1).
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Figure 5. High–revolution TEM images of as–prepared (a) and annealed Au/CFP electrodes at 300 ◦C
(b) and 400 ◦C (c). The light yellow lines indicate GBs in the Au NPs. The white lines indicate the
lattice fringe spacing for Au NPs. The scale bar represents 5 nm.

To control the density of the GBs on Au(110), we annealed the pristine Au/CFP under
an Ar atmosphere at different temperatures, namely, 300 ◦C and 400 (producing Au/CFP300
and Au/CFP400, respectively). By comparing the change in the morphology before and after
annealing, it is interesting to note that the (110) facet is still dominant on various Au/CFP
electrodes. In addition, the density of the GBs in the Au NPs dramatically decreases as the
annealing temperature is increased (Figure 5b,c). At 300 ◦C, only a few Au NPs with GBs
are observed, and the GB density in the Au NPs becomes much lower, suggesting that most
Au NPs are transformed into a monocrystalline form. Nevertheless, Au NPs are completely
monocrystalline after annealing at 400 ◦C.

3.2.2. Electrochemical HER Characterization

The effect of GBs on the HER activity of the Au NPs was examined in acid aqueous
solution (0.5 M H2SO4). Figure 6a shows representative LSV curves for the CFP sub-
strate, pristine Au/CFP and annealed Au/CFP electrodes (Au/CFP200, Au/CFP300 and
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Au/CFP400). The CFP substrate has negligible HER activity and, thus, is expected to exert
no influence on the current density contribution by the GBs. The pristine as–deposited
Au/CFP has the highest HER activity and shows an overpotential of 330 mV at a current
density of 10 mA/cm2. By contrast, the overpotentials required to achieve 10 mA/cm2

HER current density for the annealed Au/CFP electrodes are 470 mV (Au/CFP200), 530 mV
(Au/CFP300) and 550 mV (Au/CFP400). In combination with the above TEM analysis, the
HER activity significantly decreases with the decrease in the density of the GBs in the Au
NPs. Au/CFP300 has only a 20 mV lower overpotential than Au/CFP400, as the GBs in
the Au NPs almost diminish after annealing at 300 ◦C and 400 ◦C, which is consistent
with the above TEM observation (Figure 5b,c). Obviously, the experimental LSV curve is
in good agreement with our simulated current density curve (Figure 3b). Although it is
quite difficult to measure the GB density accurately due to the irregular shape of Au NPs,
the overpotential difference (220 mV) still indeed suggests that the GBs in Au NPs could
significantly enhance HER activity.

Figure 6. Effect of GBs on Au surface on the electrochemical HER activity of Au/CFP electrodes.
(a,b) Electrochemically active (EA) surface area−calibrated linear sweep voltammetry (LSV) curves
and Tafel plots for four Au/CFP electrodes with a size of 0.5 × 1 cm2 (electrolyte: 0.5 M H2SO4, scan
rate: 5 mVs−1). (c) Turnover frequency per surface Au atom of various Au/CFP samples, and the
inset is the TOF value obtained at an overpotential of 300 mV.

A comparison of Tafel plots for various Au/CFP electrodes is shown in Figure 6b. It
can be seen that the introduction of GBs in Au NPs leads to a smaller Tafel slope compared
with the GB–free counterparts, resulting in values of 145 and 185 mV dec−1 for Au/CFP and
Au/CFP400, respectively. As widely accepted, Tafel slopes of 120, 40 and 30 mV dec−1 have
been observed for the Volmer, Heyrovsky and Tafel determining rate steps, respectively [31].
Regarding the HER mechanism, the rate–determining step for this Au catalyst is the Volmer
reaction, i.e., the initial adsorption of protons from the acid solution to form adsorbed
H [10]. Of note is that GBs may change the rate–determining step (RDS); that is, RDS
may be changed from binding H* to desorbing hydrogen at Au atoms around the GBs by
increasing the capability of binding H (Figure 2a, Table S2), which is in agreement with the
theoretical ΔGH* for the GB sites and normal sites (Figure 2a).

To exclude the improvement in HER activity caused by particle size and surface
areas, we calibrated the electrochemically active (EA) surface area (Figure S4) of the as–
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prepared Au/CFP electrodes. Based on the EA surface area, we then calculated the turnover
frequency (TOF) per surface Au atom to compare the intrinsic activity of various Au/CFP
electrodes. Figure 6c shows the experimental TOF as a function of applied overpotential.
The TOF value increases with the overpotential following the Tafel behavior for all Au/CFP
electrodes. The TOF value of the as–deposited Au/CFP is even higher than those of
the other annealed Au/CFP electrodes, indicating that, after annealing treatment, the
highly effective sites for the HER significantly decrease. Additionally, the TOF values
of Au/CFP300 and Au/CFP400 are almost the same over the whole overpotential range.
Specifically, at an overpotential of 300 mV, the as–deposited Au/CFP electrode exhibits a
high TOF value of 0.33 s−1, which is extremely higher than those of the annealed Au/CFP
electrodes (0.04 s−1 for Au/CFP200 and 0.01 s−1 for Au/CFP300 and Au/CFP400) (see inset,
Figure 6c). The trend in the TOF value for various Au/CFP electrodes is consistent with
LSV and Tafel, and it is inherently correlated with the decrease in the density of the GBs
on the Au surface after annealing (Figure 5). Thus, creating GBs is a much more effective
strategy to improve HER activity of the originally inactive metal electrocatalyst.

3.3. Origin of GB–Enhanced HER

Although Au(110) is not a traditional active catalyst for the hydrogen evolution
reaction [20], it becomes a great activity catalyst for the HER by forming grain boundaries,
as stated above. The improved HER activity is ascribed to the H* binding energy caused
by the GBs in the Au electrocatalyst. As the strength to bind H* is inherently decided
by the underlying electronic structure of the catalyst itself, we focus on the differences
in atomic and electronic structures, which may provide good guidance. The density of
states (DOS) is calculated to understand the interaction between the H atoms and Au GB
sites and, thus, to gain an insight into the different HER activities of the GB sites. Only the
5d–projected DOS of Au atoms is presented because Au 5d orbitals decide the formation
of H−Au bonds. Figure 7 shows the Au 5d orbital–projected DOS (PDOS) onto s1, s2
and s5 on Au(110) with GBs. The 5d–PDOS of the flat Au(110) with H* is also presented
for comparison. Compared with the GB–free Au(110), the peak positions and shapes of
Au(110) with GBs vary. The variation in the H* binding strength for different GBs sites can
be explained by a d–band model, in which the d–band center (εd) is correlated with the
adsorption energy of the adsorbate by considering either the adsorbed H* state by itself or
the energy–level realignment in the HER process [32]. As previously mentioned, neither a
too strong nor a too weak binding strength is suitable for HER, and an appropriate εd can
ensure an appropriate strength of the H−Au bond and catalytic activity for the HER. The
value of εd can be calculated by

εd =

∫ +∞
−∞ E × DOS(E)dE∫ +∞

−∞ DOS(E)dE
(7)

Considering the dominant role of d–states under the Fermi level in the H* binding
process, we integrated the domain of the Au 5d states below the Fermi energy to obtain
an effective εd. As seen in Figure 7a, the εd values for s1, s2 and s5 around the GBs are
calculated to be −3.38 eV, −3.08 eV and −3.47 eV, respectively, higher than the GB–free
Au(110) surface (−4.05 eV). That is, GBs indeed allow εd to shift up toward the Fermi
energy on the Au(110) surface. It is well known that a higher d–band center corresponds
to stronger adsorption [32]. Consequently, the upper shift of εd suggests that the sites
near GBs have a larger H* binding strength and, thus, a lower UL in comparison with
the clean Au surface. To quantitively evaluate the relationship between HER activity and
the electronic structure of Au(110) GBs, we present the trend in UL(H*) on different GB
sites as a function of εd in Figure 7b. We can see that εd exhibits an approximately linear
relationship with UL with r = 0.84, suggesting that the sites just at the GBs are superior to
the sites near the GBs.
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Figure 7. (a) Au 5d orbital−PDOS on active sites on Au(110) with and without GBs. The Fermi energy
(Ef) is set to zero and is represented by a black vertical dashed line. The green, thick bar represents the
εd of a specific atom on Au(110) surface in the absence or presence of GBs. (b) The trends in UL for

HER on different GBs sites as a function of CNd and εd. The perfect Au(110) plane is also presented
for comparison.

In fact, GBs feature disorder of the atomic arrangement, where under–coordinated
atoms exist; we can also elucidate the origin of GB–assisted HER from a geometrical point
of view. By considering the environment of their neighboring atoms, we use the concept of

the bond–energy–integrated coordination number (CNd) proposed by us [33,34]. CNd can

differentiate the surface sites in HER activity. The CNd of the five active sites mentioned
above is calculated according to the following expression [34]:

CNd
=

∑
rij<rc
i �=j

√
μ
(2)
id√(

Vd,∞
nn

)2
(8)

where μ
(2)
id is the second moment of the local density of states projected on the d orbital of

site i, which is calculated by summing the square of the d–electron hopping integrals to the
neighboring d orbitals by only counting the first nearest neighboring atom j within a cutoff
distance of rc = 3.2 Å. Vdsσ, Vddσ, Vddπ and Vddδ are the d–electron hopping integrals to the
s or d orbital of the first nearest–neighbor atom for the formation of σ, π and δ bonds. Vd,∞

nn
is the corresponding d–electron hopping integral in bulk metal, which is a constant for the
catalysts of the same metal.

In Figure 7b, we can see that CNd exhibits an approximately linear relationship with
UL, with r = 0.88. The sites around the GBs (s1–s5) have a smaller CN than those on the
flat Au(110) surface (=7.00). Of note is that a decrease in CNd corresponds to a decrease
in UL. As stated above, UL is strongly correlated with H* binding strength; therefore,

a smaller CNd implies a higher EB[H*] for Au GBs and, thus, better HER performance.

Therefore, HER activity (or H* binding) can be directly evaluated by the CNd of the active
sites around the GBs. Compared with the flat extended surface, atoms around GBs have
no regular arrangement; that is, they are rich in atomic disorder, leading to the lack of
complete coordination (unsaturated coordination). Thus, strong Au–H bonds have to
form to compensate for the lack of coordination, following the bond–order conservation
theory [35,36], leading to a higher H* binding capacity of the sites around GBs. By making

a comparison with the UL– CNd relationship, it is evident that a smaller CNd corresponds
to a larger εd shift, indicating that the lack of a coordination number alters the εd of active
sites around GBs. Hence, in the present case, the bond–energy–integrated coordination
number or the d–band center theory explains the origin of the improved HER activity; both
originated from the disorder of the atomic arrangement, which inherently exists at GBs.
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4. Conclusions

In summary, via DFT simulations, we studied the HER performance of Au mediated
by GBs. The active site around GBs exhibited superior HER performance with a remarkably
low overpotential required, which arose from the significant enhanced capacity of binding
H. The Au catalyst with GBs was experimentally prepared using the magnetron sputtering
technique, and it exhibited superior HER activity compared to the Au catalyst without
GBs. HER activity was inherently correlated with the density of the GBs in the Au catalyst,
where active sites bind hydrogen more strongly. The possible reasons for this increase in H*
binding ability were discussed, including geometrical and electronic features. The origin
of the GB–assisted HER was the disorder of the atomic arrangement in the GB region on
the Au surface, leading to the lack of complete coordination; thus, a strong H–Au bond
formed to compensate for the lack of coordination. In addition, this disorder gave rise
to the migration of the d–band center upward to the Fermi energy, leading to increased
bonding. The GB–mediated HER performance emphasizes that the GB technique may be
particularly suitable for applications in practical electrochemical hydrogen production.
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Abstract: Advances in nanotechnology have led to the development of antimicrobial technology of
nanomaterials. In recent years, photocatalytic antibacterial disinfection methods with ZnO-based
nanomaterials have attracted extensive attention in the scientific community. In addition, recently
widely and speedily spread viral microorganisms, such as COVID-19 and monkeypox virus, have
aroused global concerns. Traditional methods of water purification and disinfection are inhibited
due to the increased resistance of bacteria and viruses. Exploring new and effective antimicrobial
materials and methods has important practical application value. This review is a comprehensive
overview of recent progress in the following: (i) preparation methods of ZnO-based nanomaterials
and comparison between methods; (ii) types of nanomaterials for photocatalytic antibacterials in
water treatment; (iii) methods for studying the antimicrobial activities and (iv) mechanisms of ZnO-
based antibacterials. Subsequently, the use of different doping strategies to enhance the photocatalytic
antibacterial properties of ZnO-based nanomaterials is also emphatically discussed. Finally, future
research and practical applications of ZnO-based nanomaterials for antibacterial activity are proposed.

Keywords: nanomaterial; photocatalyst; antibacterial; zinc oxide; water treatment; antimicrobial

1. Introduction

With rapid global population growth, urbanization increasing, illicit misuse of fresh-
water resources, and continued destruction of the global climate, the increasing demand
for clean water is becoming a global concern [1–3]. Seven billion people, more than 15%
of the world’s people, are facing a shortage of fresh water resources, which even causes
them to not have enough fresh water to sustain normal life and productive work [4,5].
Water scarcity is exacerbated by the increasing water pollution from releases of waterborne
pathogens, inorganic pollutants, organic pollutants, agricultural chemicals, derivatives of
human and animal drugs, and endocrine disruptors [6–8].

Infectious diseases caused by biological contamination such as typhoid fever, dysen-
tery, cholera, and diarrhea are a major cause of death worldwide and continue to replicate
at an alarming rate [9]. The extensive use of antibiotics and antibacterial drugs has led
to strong drug resistance in viruses and bacteria, which further exacerbates the spread of
biological infectious diseases [10]. In addition, the recent epidemics of global security issues
such as the COVID-19 virus and monkeypox virus are caused by the spread of viruses
that threaten all human beings and have a great impact on human production, life, and
health [11–14]. Similar to bacteria and pathogenic microorganisms, epidemic viruses are
always difficult to eradicate due to the abuse of antibiotics and various disadvantages of
disinfectants [15,16]. In view of the above situation, it is crucial to explore more effective
solutions and approaches.

Recent advancements in semiconductor materials and new nanomaterials have blazed
new trails for their applications in the fields of photocatalysis and bacterial inactivation [9].
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Nanotechnology provides a variety of promising nanomaterials for the field of photocat-
alytic antimicrobial. Metal oxides have many advantages such as non-toxic, stable, and
efficient biological properties, which make them stand out among many nanomaterials and
become a research hotspot in this field. Numerous nanomaterials doped with metal oxides
such as ZnO [17], Fe2O3 [18], TiO2 [19], Ag2O [20], CaO [20], MgO [21], and CuO [22]
have been applied as efficient antibacterial agents for both Gram-positive (G+) and Gram-
negative (G-) bacteria, such as Escherichia coli, Salmonella enteritidis, Streptococcus pyogenes,
Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella typhimurium, Fecal intestinal cocci,
etc. [23]. Among the antibacterial agents, ZnO-based nanomaterials are widely recognized
as promising antibacterial agents with strong photocatalytic antibacterial activity [24,25].
Nevertheless, the wide bandgap of ZnO is approximately 3.2–3.3 eV, which affects its
light absorption ability, resulting in a response only in the ultraviolet band [26]. Previous
studies indicated that defects of nanomaterials in photocatalytic antibacterial processes
could be effectively improved after being modified [27]. Strategies, such as loading an-
tibacterial agents, loading oxidized nanomaterials, and adjusting the particle size, material
microshape, and concentration of ZnO were employed to enhance the antibacterial proper-
ties. While exploring the antibacterial ability improvement, the antibacterial mechanism
should also be in-depth investigated.

In previous studies, some mechanisms for photocatalytic antimicrobials, such as metal ion
release, reactive oxygen species (ROS) generation [28], destruction of cell membranes, internaliza-
tion of nanoparticles [29], interruption or blockade of transmembrane transport, etc., have been
proposed [30,31]. Overall, the purpose of all antibacterial mechanisms is to disrupt the bacterial
cell structure and break it down into harmless substances. However, our understanding of the
specific process of substance transformation during the photocatalyst-induced antimicrobial
process is still very limited, which requires further exploration.

This review is an exhaustive summary of recent research advances on the antimicrobial
of ZnO-based nanomaterials. By summarizing previous studies, ZnO-based nanomate-
rials with excellent antibacterial effects were obtained. From the perspective of material
preparation, different preparation methods are reviewed, and both the advantages and
disadvantages are compared. Subsequently, the antimicrobial mechanism of ZnO-based
nanomaterials is discussed in-depth from both the physical and chemical aspects. In detail,
various strategies to enhance the antimicrobial ability of ZnO-based nanomaterials in recent
studies are proposed. Finally, temporary deficiencies in the improvement strategy are
summed up, and prospects for the future development direction and application potential
are presented.

2. ZnO-Based Nanostructures Preparation

Among the numerous methods for preparing ZnO-based nanomaterials, the wet-
chemical/solution technique has many advantages such as simplicity, rapid operation, and
cost savings, which make it a promising method for the preparation of ZnO-based nano-
materials. The advantages and disadvantages of commonly used wet-chemical/solution
techniques, such as the sol–gel method, co-precipitation method, microwave-assisted
method, and hydrothermal method, are presented in detail in Table 1. The preparatory
stage of ZnO nanomaterial growth is fully wetted by wet-chemical/solution techniques,
which greatly improves the stability of the materials.
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Table 1. Advantages and disadvantages of different antibacterial synthesis methods.

Method Preparation Shape Advantages Disadvantages References

Sol–gel

Nanorods;
Nanotubes;
Nanobelts;
Nano springs;
Nano spirals;
Nano rings.

(1) Uniform doping;
(2) High stability;
(3) Low synthesis temperature.

(1) Expensive raw material prices;
(2) Longer reaction time;
(3) Organics escape.

[32–34]

Co-precipitation

Homogeneous
and spherical;
Nanobelts;
Nano springs.

(1) Simple preparation process;
(2) Low cost;
(3) Short synthesis cycle.

(1) Additional precipitant;
(2) High temperature calcination;
(3) Uneven dispersion.

[35,36]

Microwaves-assisted

Nanorods;
Nanotubes;
Nanobelts;
Nano springs.

(1) High synthesis efficiency;
(2) Energy saving;
(3) Improved material
properties.

(1) Indeterminate form;
(2) Large investment;
(3) High requirements for
equipment.

[37–39]

Hydrothermal
Nanobelts;
Nano springs;
Nano spirals.

(1) Less thermal stress;
(2) High particle purity;
(3) Controllable crystal shape;
(4) Low cost.

(1) Inconvenient to observe;
(2) Not intuitive;
(3) High equipment requirements;
(4) Technical difficulty;
(5) Poor safety performance.

[40–42]

2.1. Sol–Gel Method

The sol–gel method is one of the most effective chemical methods for nanocompos-
ites preparation with desired properties and advantages, such as low cost, mild reac-
tion, environmental friendliness, reliability, and simplicity [43]. In the preparation of
photocatalytic materials, the materials synthesized by this method have better photocat-
alytic activity [44]. ZnO nanoparticles were successfully synthesized using the gel-sol
method by Hasnidawani [45], and the surface morphology was verified by Fe-SEM images
(Figure 1), which was confirmed to have a rod-like structure with a dense particle structure.
Varieties of ZnO nanostructures have been discovered, which are in the form of nanorods,
nanotubes, nanobelts, nano springs, nano spirals, nano rings, and many more [46]. Among
these structures, the rod-like structure is the best nanostructure compared to others due
to their one-dimensional nanostructures (such as nanorods, nanowires, and nanotubes)
that can facilitate more efficient carrier transport for the decreased grain boundaries, sur-
face defects, disorders, and discontinuous interfaces [47,48]. In the process of preparing
ZnO-based nanomaterials by the sol–gel method, the influence of factors such as solution
drop acceleration rate, reaction temperature, pH, etc., will have a significant impact on the
antibacterial properties of the materials [49]. Effects of various preparation influencing
factors on the antibacterial properties of ZnO were tested, and pH was proven to be the
most important influencing factor [50]. The reason is suggested to be that the neutral
and acidic solution environment is more suitable for Zn2+ to function and achieve an
antibacterial effect. As long as the optimal pH and preparation temperature are found, the
sol–gel method will be one of the effective preparation methods with high efficiency and
low cost. Therefore, in recent studies, the sol–gel method is used more in the synthetization
of ZnO-based nanoparticles [51–53].
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Figure 1. FE-SEM micrographs of synthesized ZnO at different magnifications. Reprinted/adapted
with permission from Ref. [45]. Copyright © 2022, Elsevier B.V.

2.2. Co-Precipitation Method

The co-precipitation method does not require expensive raw materials and complicated
equipment, which provides a suitable method for low-cost and large-scale production [54].
Furthermore, in addition to simpler devices, suitable metals, metal oxides, and surfactants
are added to change the morphology of the materials [55]. The co-precipitation method was
chosen to prepare ZnO-based nanoparticles in an aqueous solution at two different reaction
temperatures (50 ◦C and 70 ◦C) by Kotresh et al. [56]. The surface morphology of ZnO
nanoparticles prepared by the co-precipitation method was observed by scanning electron
microscope (SEM) images as shown in Figure 2. It can be seen from the SEM images that
the particles are uniformly spherical with a dense and dense structure. The spherical ZnO
nanoparticles prepared by the co-precipitation method are favorable for uniform disper-
sion in the photocatalytic reaction and efficiency improvement of photocatalytic reactions.
However, it was found that the droplet acceleration rate had the greatest impact on the
antibacterial properties of ZnO-based nanomaterials synthesized by the co-precipitation
method [57]. The size of the nanoparticles synthesized by the co-precipitation method is
affected by the drop rate of the solution, which will affect the contact area of the nanoparti-
cles during the antibacterial reaction, thereby greatly affecting the antibacterial effect [58].
Therefore, the droplet acceleration rate and particle size need to be carefully considered
during synthesis, which is an important part of the success of the co-precipitation method.
Due to the advantages of the co-precipitation method with a simple preparation process,
the use of this method has gradually increased in nanomaterial synthesis research in recent
years [59–61].

 

Figure 2. SEM images of sample A and sample B. Reprinted/adapted with permission from Ref. [56].
Copyright © 2022, Elsevier GmbH.
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2.3. Microwave-Assisted Method

The microwave-assisted method is not only an energy-saving, environmentally friendly,
and heat-free method, but also with many advantages such as fast synthesis speed and the
ability to tune the particle shape [44,62]. ZnO nanoparticles with different morphologies
can be synthesized by the microwave-assisted hydrothermal method by adjusting the time
and power of microwave irradiation [63,64]. Through microwave-assisted chemistry tech-
niques, ZnO nanostructures with different morphologies were synthesized in different pH
reaction mixtures (acidic, basic, or neutral). Furthermore, nanomaterials are synthesized
without any heating and addition of surfactants. Hence, obtaining ZnO particles with
oxygen vacancies and defects is expected to improve their pollutant degradation behav-
ior due to the fast reaction process and non-stoichiometric synthesis [65]. As shown in
Figure 3, the microscopic morphology of the microwave-synthesized ZnO nanostructures
was observed by SEM. It can be seen intuitively that the appearance of ZnO nanoparticles
changes dramatically with the pH change. In addition, from the XRD analysis in Figure 4,
it was demonstrated that the change in intensity and peak width of the two sets of samples
(prepared with NaOH and KOH as pH control agents) can be observed as the solution pH
changes. The above results showed that the shape of synthesized ZnO nanoparticles is
affected by pH changes, which has important implications for the directional synthesis of
nanoparticles with diverse morphologies. In addition, several studies have shown that the
power of the microwave is the most important factor affecting the synthesis of ZnO-based
nanomaterials by microwave-assisted method [66,67]. Moderate-power microwave have
been shown to be suitable for the synthesis of ZnO-based nanomaterials with stronger
antibacterial capabilities [68,69]. However, the exact power influence mechanism needs to
be further explored.

 
Figure 3. Typical SEM images of synthesized ZnO nanostructures at different reaction pH values.
Reprinted/adapted with permission from Ref. [65]. Copyright © 2022, Elsevier Ltd and Techna Group S.r.l.
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Figure 4. Typical XRD patterns of ZnO nanostructures synthesized with different reaction pH
((a) NaOH and (b) KOH as pH controlling agents, 7, 8, 10, 12 correspond to their respective concen-
trations). Reprinted/adapted with permission from Ref. [65]. Copyright © 2022, Elsevier Ltd. and
Techna Group S.r.l.

2.4. Hydrothermal Method

The hydrothermal method is a convenient and highly efficient method, which requires
a lower reaction temperature and saves costs [70]. In addition, by adjusting the duration,
density, and reaction temperature of the contained substances, the morphology and size
of the particles can be controlled [71]. As shown in Figure 5a–c, TEM images of synthe-
sized ZnO particles at precursor concentrations of 5, 10, and 20 mM are revealed. The
morphological features of the poorly dispersed nano-ZnO crystals are clearly demonstrated
by the TEM images in all cases. At precursor concentrations of 5, 10, and 20 mM, ZnO
nanoparticles were observed to have diameters of approximately 4.5, 6, and 8–9 nm, re-
spectively. Furthermore, it was also observed from the images that the size distribution
of the nanoparticles was fairly uniform [72]. As shown in the XRD pattern (Figure 6),
the crystalline structure of the synthesized ZnO particles after hydrothermal treatment
was confirmed. Simultaneously, no impurity peaks were detected from the XRD pattern,
indicating that the target substance with a higher purity was successfully synthesized [72].
Furthermore, the preferred orientation of the ZnO particle samples was not seen from XRD
patterns, suggesting that ZnO crystals may have the most shapes other than rods or sheets.
Based on the above conclusions, the hydrothermal method is a suitable method to prepare
ZnO-based nanoparticles with different shapes. In addition, the antibacterial effect of
ZnO-based nanomaterials prepared by hydrothermal method is affected by several factors,
such as pH, reaction temperature, and dosage ratio [73,74]. The reaction temperature
directly affects the structure of the material and changes the antibacterial ability, while
the pH changes the surface properties and shape of the material to affect the antibacterial
ability [75].
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Figure 5. Electron microscope image of ZnO nanoparticles: the concentration of precursor is
(a) 5 mM, (b) 10 mM, and (c) 20 mM. Reprinted/adapted with permission from Ref. [72]. Copyright
© 2022, Elsevier Ltd.

Figure 6. XRD patterns of ZnO samples synthesized with different precursor concentrations.
Reprinted/adapted with permission from Ref. [72]. Copyright © 2022, Elsevier Ltd.

3. Types of Nanomaterials for Photocatalytic Antimicrobials in Water Treatment

A variety of nanomaterials as efficient adsorption materials and catalytic degradation
and purification of wastewater will be discussed in this section. As shown in Figure 7,
various microbial contaminants and their sources, as well as different nanomaterials for
removal applications are revealed [76]. Limitations of single nanomaterials can be overcome
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by various strategies such as polymer/metal oxide nanocomposite [77], metal oxide/metal-
based nanomaterials [78,79], polymer/metal oxide nanocomposite [80,81], and polymer-
structure-based materials [82,83].

 
Figure 7. Schematic representation of microbial contamination sources and their various nanoma-
terials for water treatment. Reprinted/adapted with permission from Ref. [76]. Copyright © 2022,
Elsevier Ltd.

The nanocomposite is a safe, non-toxic, green and environmentally friendly nanoma-
terial, usually prepared with ZnO and TiO2 as substrates. The addition of TiO2 and ZnO
NPs in some polymers such as polypropylene matrix would increase the dielectric constant
of the nanocomposite, thereby enhancing the photocatalytic ability of the material [84]. In
addition, the polymer boundary layer transition zone forms a crystalline structure, which
increases conductivity and acts as a tuning surfactant [85], which greatly enhances the
photoreactivity of the catalytic material. A variety of composite nanomaterials have been
reported that can be applied to organic pollutants and microbial contamination removal
from water [86]. Moreover, the addition of Ag, zinc, zeolite, and titanium is obtained having
better efficiencies in pathogenic pathogens and microorganisms removal from water [87,88].
For example, silver NPs with polyurethane will flexibly remove almost 100% of B. subtilis
and E. coli from water [89,90].

Among the composite nanomaterial antibacterial agents, ZnO-based nanomaterials
have the advantages of strong compatibility, green friendliness, lower costs, and simple
preparation, so they occupy a large proportion of the related studies in this field in re-
cent years. Studies showed that ZnO has stronger direct interactions with bacterial and
pathogen cell surfaces than other semiconductor materials [91]. In addition, ZnO nano-
materials leak Zn2+ in solution, which can exacerbate toxicity to bacteria, pathogens, and
viruses. Compared with Cu+, Fe2+, and Al3+, Zn2+ showed a better ability to fight microbial
contaminants [92]. Therefore, ZnO-based nanomaterials have a better potential to combat
microbial contamination, which is of practical significance for the study of antimicrobial
contamination. Among types of microbial pollution in the water environment, bacterial
pollution is still the most important problem to be solved. Thus, in the next section, the
antimicrobial properties and mechanisms of ZnO-based nanomaterials, as well as methods
for studying antimicrobial properties are introduced, and the methods for improving their
catalytic properties are summarized and discussed.

4. ZnO-Based Nanomaterials for Antimicrobial Application in Water Treatment

The antibacterial activity of ZnO-based nanomaterials is greatly affected by the mor-
phology and particle diameter. Considerable methods for the preparation of ZnO-based

60



Appl. Sci. 2022, 12, 7910

nanomaterials with different morphologies have been reported in the literature, such as
nanorods [93–96], nano/micro flowers [97–101], microspheres [102], nano
powders [103–105], nanotubes [4], quantum dots [106,107], films [107], nanoparticles [108],
and capped nanoparticles [109], to understand their application prospects for antibacterial
agents. To conduct an in-depth exploration of the antibacterial properties of ZnO-based
nanomaterials, the antibacterial research methods in this chapter are firstly introduced, and
then the antibacterial mechanism and material improvement strategies are expounded to
discuss the latest studies in this field.

4.1. Research Methods for Antimicrobial Activities of ZnO Nanostructures

To better study the effect of antibacterial agents, many techniques have been adopted to
test antibacterial properties in recent years. As shown in Table 2, various kinds of adsorbents
for microbes removal in different water resources are listed, which has great reference
significance for antibacterial application studies. In the process of antibacterial ability
testing, the accuracy of the results is affected by many factors, such as types of bacterial
species and the type of data to be tested, etc. In addition, external factors such as the
experimental environment also affect antibacterial detection. Commonly, the temperature
of 37 ◦C and incubation time of 24 h are selected for the tests. Moreover, culture media of
Tryptic Soy Broth, Luria–Bertani (LB) broth, Nutrient Agar, and Tryptic Soy Agar (TSA)
are commonly used. Meanwhile, depending on the technique used, parameters such
as minimum inhibitory concentration (MIC), zone of inhibition (ZOI), colony count, or
optical density of bacterial cultures are selected as the basis for the evaluation. The specific
application methods and practical application cases of various antibacterial detection
technologies are introduced below, which are beneficial for better understanding the
antibacterial properties of ZnO-based nanomaterials.

Table 2. Various kinds of adsorbents for microbial removal in different water resources.

Water Type Sample Type Microbial Pollution Target Types of Adsorbents References

sDrinking water

Domestic drinking water Bacteria; virus; protozoan;
Activated carbon; [110]
Carbon-graphene; [111]
Nano adsorbent; [112]

Microbial contaminants. Carbon-graphene. [113]

Drinking water source
Biological contaminants; Nano adsorbent; [114]
Microbial contaminants; Iron Oxide Nanoparticles; [115]
E. coli. Mixed matrix. [116]

Wastewater

Lake wastewater Pathogenic microorganisms. Zinc oxide; Iron oxide; Silver
oxide nanoparticles. [117,118]

Domestic wastewater

Antibiotics; Biochar; [119]
Pathogenic microorganism; Activated carbon; [120]
V. fischeri, B. subtilis, E. coli; Carbon nanotube; [121]

Pathogenic microorganism. Copper oxide; Zinc oxide; Silver oxide;
Titanium oxide. [122,123]

Industrial wastewater
Pathogenic microorganisms; Graphene oxide nanosheets;

Silver nanoparticles; [124]

Virus. Carbon nanotubes; TiO2. [125]

Laboratory water

Laboratory simulated water

Enterobacter, Citrobacter, Hafnia; Biochar stabilized; Iron oxide; Copper
oxide nanoparticles; [126]

Klebsiella, Escherichia; Fe3O4; SnO2; NiO;
PAN/boehmite nanofibers. [127]

S. aureus, E. coli; Electro spun; Nanofibers; [128]

Bacteria; virus. Silver @ Eggshell;
Nanocomposite. [83,129]

Laboratory pure water
S. aureus, E. coli, C. albicans; Ag nano-embedded pebbles;

Nano cellulose; [85]

E. coli.
Nanofibers; Granular activated carbon; [130,131]
Graphite flake. [132]

4.1.1. Disk-Diffusion Method

The disk-diffusion method is a simple and efficient antimicrobial test, also known as
the Kirby–Bauer antibiotic test (KB test) [133]. Mueller–Hinton agar and Brucella blood agar
are commonly used as media for this method [133]. During the disk-diffusion method, the
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pH of the medium is usually controlled at around 7.2. The bacterial suspension containing
a specific concentration was spread on the above agar medium and the experimental
environment was required to be absolutely dry [22,24,93,94,97,134–136]. Under sterile
conditions, a certain number of ZnO-based nanomaterials were soaked on the filter paper
disk using the selected solvent according to the specific requirements of the experiment.
Let the disk dry and carefully mount it on the medium in a Petri dish. Solvent-soaked disks
were used as controls to ensure the accuracy of the test. Next, the dishes were incubated at
37 ◦C for 24 h, providing the right conditions for bacterial growth. Subsequently, due to the
bactericidal activity of the ZnO-based nanomaterials, no bacterial growth was observed
around the disks at specific distances. The minimum concentration at which ZnO-based
exhibited antibacterial activity was called the minimum inhibitory concentration (MIC)
and the area around the disk with no bacterial growth observed was called the zone of
inhibition. The lower the MIC value, the larger diameter of the inhibition zone and the
higher antibacterial activity. Based on this, the antibacterial properties of ZnO-based
nanomaterials were judged [137,138].

4.1.2. Well-Diffusion Method

The medium used in the well-diffusion method is similar to the method described in
Section 4.1.1, and the two methods can be used together analogously. In contrast to the disk-
diffusion method, the filter paper disk is installed by drilling holes in the media plate. The
wells were filled with various concentrations of ZnO nanoparticle suspensions for testing.
In addition, the calculation method of MIC and ZOI can also refer to the disk-diffusion
method [108,139–142]. Consistent with the disk-diffusion method, sterile conditions are
also one of the most necessary environmental conditions for antimicrobial performance
testing. Based on MIC and ZOI, the pros and cons of antibacterial properties of ZnO-based
nanomaterials can be studied and the efficiency can be evaluated.

4.1.3. Antimicrobial Measurements in Liquid Culture Media

During the incubation period, the turbidity of the growth solution increases with bac-
terial growth. The liquid turbidity and cell proliferation can be measured by periodically
measuring the optical density. The technique does not require reagents and special han-
dling [143–147]. The basic principle of this method is to judge the quality of antibacterial
performance by observing the absorbance at a specific wavelength in a spectrophotometer
and regularly monitoring the corresponding bacterial growth. Umar et al. used ZnO
nanomaterials as antibacterial agents to conduct growth inhibition experiments on E. coli
and achieved excellent experimental results as shown in Figure 8 [101].

 
Figure 8. Bacterial growth curve of E. coli under different ZnO-NFs concentrations.
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4.1.4. Colony Unit Measurements

Colony unit measurement, also known as the diffusion plate technique, is often
used to count the amount of living bacteria cells. ZnO-based nanomaterials are intro-
duced into agar plates or dispersed as suspensions in specific liquid media. The strains
were mounted on agar plates and incubated at 37 ◦C for a specific time. Colony form-
ing units are counted using an appropriate counting method. In addition, the colony
forming unit (CFU) value can be used to judge the antibacterial ability of ZnO-based
nanomaterials [148–151]. Stankovic et al. [152] calculated the percentage of bacterial cell
reduction (R%) using Equation (1).

R% =
CFUcontrol − CFUsample

CFUsample
(1)

where CFUcontrol = numbers of CFUs per milliliter for the negative control, and
CFUsample = CFUs per milliliter in the presence of ZnO dispersion.

Within a certain range, the above formula can be used to calculate the bacterial
concentration, and the antibacterial performance can be investigated based on the calcula-
tion results.

4.1.5. Microtiter Plate Method

The microtiter plate method, also known as the microplate method, is a method of per-
forming antimicrobial testing by observing changes in a variable number of small test tubes
or plates of microwells. Resazurin [153], 2,3,5-triphenyltetrazolium chloride (TTC), crystal
violet [4] and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) [154],
etc., are put into the wells as indicator solutions. Next, known or different concentrations
of the test strain was dispersed into the wells of a microtiter plate. A known concentration
of ZnO nanomaterials was then dispersed into the wells after dilution in a sterile broth
medium. The palate was then incubated at 37 ◦C for timed intervals. The bacterial cell
activity can be judged by the change of absorbance to detect the antibacterial ability.

4.2. Mechanisms of ZnO-Based Antimicrobial Nanomaterials
4.2.1. Mechanisms of ZnO-Based Photocatalytic

In photocatalysis, an electron–hole couple is created under light force by reduction or
oxidation reactions on the catalyst surface. The photocatalytic degradation mechanism of
ZnO-based photocatalyst on pollutants is shown in Figure 9. Photocatalysis occurs when
a ZnO-based photocatalyst is illuminated by light with energy greater than its band gap
energy [27]. Charge separation is triggered by a light energy absorption process, which
excites electrons from VB to CB, leaving holes in VB [155]. Subsequently, the photogenerated
e−/h+ supports a move to the ZnO photocatalyst surface. Simultaneously, e− and h+
recombine, which reduces the quantum yield. The level of this recombination rate is affected
by many factors, such as the structure of the photocatalyst and the surface modification
process of the photocatalysts [156,157]. The ZnO surface is aggregated with reactive e− and
h+, which promote oxidation and reduction reactions that generate excess ROS, including
superoxide anion (·O2

−) hydroxyl radicals (·OH). Furthermore, the redox potential of the
CB bottom of ZnO is more negative than that of O2/O2

−. Therefore, these excited electrons
can generate O2

−·. Simultaneously, the top of the VB of ZnO is more positive than the redox
potential of ·OH/H2O. Consequently, H2O molecules can be oxidized by these holes to
form hydroxyl radicals. These highly reactive radicals (·OH, O2

−·) directly oxidize organic
pollutant molecules in solutions.
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Figure 9. Basic mechanism of ZnO photocatalysis. Reprinted/adapted with permission from Ref. [27].
Copyright© 2022, Elsevier B.V.

4.2.2. Chemical Effect of ZnO-Based Nanomaterials on Antibacterial

In the process of exploring the antibacterial mechanism of ZnO-based nanomaterials,
three main chemical antibacterial mechanisms were obtained: generation of reactive oxy-
genated species (ROS) [158], release of Zn2+ ions [31], and photoinduced production of
H2O2 [159]. The ROS mechanism is basically the same as the photocatalytic mechanism
mentioned in Section 4.2.1.

Similar exhaustive studies carried out by Li et al. [31] and Song et al. [160] demon-
strated that the toxicity of Zn2+ ions to cells is one of the mechanisms for the sterilization of
ZnO-based nanomaterials. The concentration of ZnO NPs in ultrapure water in the toxicity
test was 5 mg/L. To compare the cytotoxicity, a Zn2+ ion solution also prepared in ultrapure
water was used (concentration below 0.1 mg/L). TEM images of the treated G− strains of
E. coli are shown in Figure 10. It is evident that the morphology of E. coli was deformed
after modification with ZnO-based nanomaterials or Zn2+ ion solution. Figure 10b,c shows
intracellular fluid leakage due to Zn2+ ions and osmotic stress. The experimental results
showed that the cytotoxic effects of ZnO NPs and Zn2+ ion-treated solutions on E. coli were
comparable. This fully proves that the release of Zn2+ has a positive effect on antibacterial,
and it also shows that it is one of the antibacterial mechanisms of ZnO-based nanomaterials
(Figure 11).

 

Figure 10. TEM images of (a) untreated E. coli cells, (b) treated with ZnO nanoparticles, and (c) treated
with Zn2+ ions solution in ultrapure water. Reprinted/adapted with permission from Ref. [31].
Copyright © 2022, American Chemical Society.
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Figure 11. Schematic diagram of cell damage to G+ bacteria by Zn2+ ions. Reprinted/adapted with
permission from Ref. [27]. Copyright© 2022 Elsevier B.V.

Besides the light-induced reactive oxygen species produced by ZnO NPs, many pieces
of literature consider H2O2 as the main substance for antibacterial activity against dermo
bacteria [28,161]. Negatively charged ROS cannot penetrate bacterial cell walls, but H2O2
can also easily penetrate bacterial cell walls. Sawai et al. [162] believed that the H2O2
produced by ZnO slurry was the main reason for the biocidal mechanism. It can also be
hypothesized that after H2O2 or HO disrupts the membrane, ROS can penetrate the cell
wall and enter the intracellular space, thereby enhancing the biocidal effect (Figure 12).

Figure 12. Schematic diagram of the damage to bacterial cells caused by ZnO nanomaterials produc-
ing H2O2. Reprinted/adapted with permission from Ref. [27]. Copyright© 2022, Elsevier B.V.

4.2.3. Influence of Physical Effects of ZnO-Based Nanomaterials on
Antibacterial Performance

In the process of exploring the antibacterial mechanism of ZnO-based nanomaterials,
there are three main chemical antibacterial mechanisms: plasma membrane disruption
through ZnO interactions [163], cellular internalization of ZnO-based nanoparticles [164],
and mechanical damage of the cell envelope [165].

At suitable pH, the bacterial surface is negatively charged due to the dissociation of
carboxyl and other functional groups. Meanwhile, ZnO-based nanomaterials are positively
charged with a zeta potential of +24 mV [161]. As shown in Figure 13, the opposite
charges carried by bacterial cells and ZnO NPs are the reasons for the strong electrostatic
attraction between them. Strong electrostatic interactions force particles larger than 10 nm
in size to accumulate on the outer surface of the plasma membrane and neutralize the
surface potential of the bacterial membrane, resulting in increased surface tension and
membrane depolarization. In addition, strong electrostatic interactions can induce bacterial
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cell changes such as changes in cell membrane and membrane vesicle structure, rupture,
morphological changes, and components, leading to bacterial cell death [166,167]. Since
interactions play an important role in the bactericidal effect, surface modifiers and templates
of ZnO-based nanomaterials would enhance the interaction with bacterial cell walls.

 

Figure 13. Schematic diagram of the physical action of ZnO nanomaterials for sterilization.
Reprinted/adapted with permission from Ref. [27]. Copyright© 2022, Elsevier B.V.

Another important mechanism is cellular internalization. Cellular internalization is
simply summarized as those nanostructures with a size of less than 10 nm pass through
the plasma membrane, accumulate in bacterial cells, and destroy intracellular components
such as nucleic acids [164,168–170]. In addition, it has also been suggested that the cellular
interaction of ZnO with bacteria can enhance cell permeability (Figure 14) [171]. In conclu-
sion, cellular internalization is one of the physical methods that plays an important role in
the antibacterial process of ZnO-based NPs.

 
Figure 14. TEM images of B. atrophaeus (a) control, (b) ZnO powders, (c) ZnO nanorods, and (d) ZnO
nanoparticles. Reprinted/adapted with permission from Ref. [172]. Copyright © 2022, Elsevier B.V.
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The last physical mechanism is to use ZnO NPs to create cell membrane damage to
destroy bacterial cells and achieve antibacterial effects. Compared with bulk ZnO materials,
the presence of surface defects, uneven surface texture, and rough edges and corners on
the surface of ZnO-based nanomaterials can lead to effective abrasiveness, resulting in
excessive mechanical damage to bacterial cell membranes [163].

4.3. Effects of Radiation Types on the Antibacterial Activity of ZnO-Based Nanomaterials

In the process of photocatalytic antibacterial studies, ultraviolet (UV) light, sunlight,
and other visible light are the most common types of radiation. In previous studies, ZnO
nanomaterials have always been used for antibacterial testing under UV light due to their
high band constraints [173–175]. From the work of Joe et al. [174], an important conclusion
was found that the oxygen vacancy of ZnO crystals enhanced the photogeneration of ROS,
and ZnO nanoparticles (NPs) with polar facets exhibited the most significant effect of an-
tibacterial activity under UV light stimulation. Furthermore, Ma et al. creatively combined
N-halamine-based materials with ZnO to improve the stability of ZnO’s antibacterial per-
formance under UV light. As a simple and effective method for nanoparticle modification,
this technique can be further extended to the application of ZnO nanoparticles in other
polar substrates for antibacterial functionalization [176].

Despite the promising antibacterial performance of ZnO-based nanomaterials under
UV-driven radiation, photocatalysis using UV-active semiconductors is difficult due to the
limited use of the solar spectrum. Simultaneously, significant progress has been made in
photocatalysis using visible-light-active heteronanostructured semiconductors due to their
simplicity of use, practicality, reproducibility, reliability, and commercialization [177,178].
Recently, several studies have found that photocatalytic efficiency can be improved by
promoting the surface charge transfer reaction of ZnO. In addition, it may also affect the
absorption spectrum of many metal oxide nanoparticles including ZnO, which enables the
composites to undergo photocatalytic reactions under visible light [179–183]. The antibac-
terial activity of ZnO-based nanomaterials driven by visible light is of great significance for
the development of photocatalytic antibacterials. Compared with ultraviolet light, visible
light is more accessible, which makes visible light photocatalysis one of the hottest research
fields. In addition, studies have shown that the ability of ZnO-based nanomaterials to excite
ROS under visible light will be greatly improved, which also leads to the improvement of
antibacterial ability under visible light [184,185]. Therefore, the design and preparation of
visible-light-driven ZnO-based nanomaterials will become a meaningful research direction
in future explorations.

4.4. Strategies for Enhancing ZnO-Based Nanomaterials Antibacterial Activity
4.4.1. Alkaline Earth Metal Doping into ZnO

Common alkaline earth metals including Ca, Mg, Al, and Sr, are frequently used
to introduce significantly altered NPs, such as lattice defects and ionic radius differences
between metal ions and Zn2+ ions, which can improve optical properties and photodegrada-
tion activity of catalysts. Taking Sr as an example, it played an important role in enhancing
the catalytic degradation ability of commonly used metal oxides such as ZnO, TiO2, which
can be used for photocatalytic degradation of organic pollutants in wastewater and pho-
tocatalytic antibacterial [186]. Due to the lack of local d orbitals in alkaline earth metals
and the presence of local d orbitals in transition metals, the doping of alkaline earth metals
is more effective in reducing the optical threshold energy of semiconductors than that of
transition metals [187].

Antibacterial activity of Mg-doped ZnO nanostructures was investigated by
Okeke et al. [188] towards E. coli, P. aeruginosa and Staphylococcus aureus. The zones
of inhibition diameter of the Zn1−xMgxO sample against the selected bacteria pathogen
are displayed in Figure 15. The results showed that all samples were susceptible to bacteria.
The presence of more reactive sites allows surface defects to create space for ZnO to interact
with microorganisms [189]. Therefore, the increase of surface defects in ZnO nanostructures
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increases the reaction sites and the rate of interaction with microorganisms. Bacteria are
250 times larger than nanoparticles [105], while the bacterias have a larger relative surface
area, which makes it easier for nanoparticles of much smaller size to enter the interior of
bacterial cells and cause damage.

 
Figure 15. (a–c) Diameter of inhibition zones of Zn1−xMgxO against bacteria pathogen.
Reprinted/adapted with permission from Ref. [188]. Copyright© 2022, Elsevier Ltd.

4.4.2. Transition Metals Doping into ZnO

The addition of transition metal ions can generate electronic states in the intermediate
bandgap region to change charge separation and recombination kinetics, which is bene-
ficial to enhancing the ability of photocatalytic antibacterial [190]. Numerous common
transition metals, such as Co, Cu, Ni, Fe, and Mn, are often doped into ZnO to enhance its
photocatalytic antibacterial ability [191].

Fe is the most used metal for enhancing the photocatalytic antibacterial ability of
ZnO. Iron has two oxidation states with ionic radii of 0.61 Å and 0.55 Å, which are used as
dopants for zinc lattice sites, respectively, since their ionic radii are smaller than those of
zinc +2 (0.74 Å) radius. Hence, the doping can be alternative or interstitial to increase the
conductivity of the product. Chandramouli et al. [192] doped Fe into ZnO and investigated
the antibacterial properties of the composites. As shown in Figure 16, TEM images of
Figure 16a pure, Figure 16b Fe doped, and Figure 16c capped ZnO NPs are observed.
For undoped and doped ZnO NPs, they are more spherical with dimensions of 17–19 nm.
Simultaneously, the agglomeration phenomenon occurs when ZnO is doped with Fe,
which is due to the greater surface area and energy. Furthermore, the antibacterial activity
against E. coli showed that the capped ZnO NPs were less toxic to the organism than ZnO
NPs. As shown in Figure 17, the XRD patterns associated with various different ZnO-
based nanomaterials are displayed. Iron doping of ZnO reduces the grain size, resulting
in a further increase in the grain size of glucose-terminated ZnO nanoparticles, which
is consistent with previous reports [193]. Therefore, Fe-ZnO nanoparticles have good
antibacterial activity.
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Figure 16. TEM images of (a) pure, (b) Fe doped, and (c) capped ZnO nanoparticles.
Reprinted/adapted with permission from Ref. [192]. Copyright© 2022, Elsevier B.V.

 
Figure 17. XRD patterns of various ZnO-based nanomaterials. Reprinted/adapted with permission
from Ref. [192]. Copyright© 2022, Elsevier B.V.

4.4.3. Noble Metals Doping into ZnO

Due to the formation of Schottky barriers at the metal–semiconductor interface, noble
metal ions (such as Au, Ag, Pd, etc.) doped on the ZnO surface are considered to be excellent
photogenerated electron traps. In addition, noble metals delay electron–hole recombination
by preventing photoexcited electrons from returning to the ZnO surface, which greatly
enhances the photocatalytic antibacterial ability of the composites [194]. Of all the precious
metals, silver is the most stable and suitable dopant with good thermal conductivity and
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electrical conductivity, which will better play the photocatalytic effect of the composite
material. Therefore, it has potential as a catalyst. The surface plasmon resonance (SPR)
properties of silver also contribute to visible light absorption and subsequent electron–hole
pair generation for the degradation of contaminants in water and for antibacterial [195].

Ye et al. [184] reported the synthesis of a series of ZnO/Ag2MoO4/Ag(ZAA) samples
with theoretical molar ratios of ZnO and Ag2MoO4 of 20:1, 30:1, and 60:1 by ultrasonic-
assisted hydrothermal synthesis, and named the corresponding products as ZAA-20, ZAA-
30, and ZAA-60 to investigate the optimal Ag2MoO4/Ag loadings. As shown in Figure 18,
the characteristic diffraction peaks of ZnO and Ag2Mo4 can be clearly found in the XRD
patterns, which indicates that the ZnO/Ag2Mo4 composite was successfully synthesized.
The sharp diffraction peaks reveal the ultra-high crystallinity of the ZnO-based nanocom-
posites. In addition, with the increase of the molar ratio of ZnO to Ag2MoO4, the diffraction
peak intensity of ZnO on the (002) and (110) crystal planes gradually weakened, while the
diffraction peak intensity of Ag2MoO4 gradually increased. The antibacterial properties of
ZnO nanosheets and ZAA nanocomposites against different contents of G− E. coli and G+
S. aureus were evaluated by the visible light electroplating counting method. In Figure 19,
the bacterial cell numbers of all nanocomposites were shown to decrease with increas-
ing contact time, and the photocatalytic antibacterial activities of the four ternary ZAA
nanocomposites were much better than that of pure ZnO sheets. The experimental results
demonstrate that the addition of noble metal Ag will significantly improve the antibacterial
properties of ZnO nanomaterials.

Figure 18. XRD patterns of ZnO, Ag2MoO4/Ag, ZA, and ZAA nanocomposite with different
proportions. Reprinted/adapted with permission from Ref. [184]. Copyright© 2022, Elsevier B.V.
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Figure 19. Photographs of antibacterial test results of ZnO, Ag2MoO4/Ag, and ZAA samples against
Escherichia coli (a–c) and Staphylococcus aureus (d–f). Reprinted/adapted with permission from
Ref. [184]. Copyright© 2022, Elsevier B.V.

4.4.4. Rare Earth Metal Doping into ZnO

Doping rare earth metals into ZnO can improve the ability of the composite in trapping
photogenerated carriers and reducing electron–hole recombination, which can enhance
the photocatalytic antibacterial ability. In the rare earth doping process, f-orbital doping
is the most common and efficient way, which can improve the photocatalytic activity by
enhancing the adsorption of pollutants on the catalyst surface, while reducing the band
gap energy to the visible light range [196]. Lanthanide ion doping is considered a versatile
strategy to tune the optical response and improve the photocatalytic performance of ZnO.
Lanthanides are composed of 17 elements in the periodic table, including Sc, Y, La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Lanthanides have attracted
much attention due to their multifunctional properties resulting from their unique f-orbital
structures, and due to the f-f or f-d intra-electron transitions, lanthanides are considered
candidates for luminescent centers in doped materials, which is beneficial to prolonging
the effective response time [197–199].

Doping ZnO with Ln3+ and Ce4+ ions can convert the magnetism from diamagnetism
to ferromagnetism, improve the n-type conductivity, enhance the photo response, increase
the concentration of free electrons in the CB, and increase the electron
mobility [200–202]. A novel Z-type ZnO–CeO2-Yb2O3 heterojunction photocatalyst was
prepared for the first time by Tauseef et al. [203], and its physical, photocatalytic, and
antibacterial properties were investigated. Growth samples were tested for antimicrobial
properties against E. coli and S. aureus. The effects of operating parameters such as catalyst
dosage, dye concentration, and solution pH on the photocatalytic performance of the
nanocomposites were investigated. The ZOIs of S. aureus and E. coli along with the stan-
dard antibiotic ciprofloxacin are shown in Figure 20a,b. The synthesized nanocomposites
exhibited good activity against both bacteria with a ZOI > 6 mm, but higher activity against
E. coli with a ZOI of 14 mm shown in Figure 21a,b. Positively charged heavy metal ions such
as Zn2+, Ce4+, and Yb3+ can be released from the surface of the nanocomposite to interact
with negatively charged microbial cell membranes. The entry of these metal ions into the
cell membrane reduces the capacity and permeability of proteins, which in turn leads to
the death of microorganisms such as bacteria and viruses. The above antibacterial action
mechanism can be visualized in Figure 22C. In conclusion, the nanocomposites doped with
rare earth ions are effective materials for preventing diseases caused by S. aureus and E. coli.
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Figure 20. Antibacterial effect of ZnO-CeO2-Yb2O3 nanocomposites: (a) gram-positive Staphylococcus
aureus bacteria, (b) gram-negative Escherichia coli bacteria at different concentrations, and (c,d) Stan-
dard antibiotics Ciprofloxacin against S. aureus and E. coli. Reprinted/adapted with permission from
Ref. [203]. Copyright© 2022, Elsevier Masson SAS.

 
Figure 21. Comparison of the zone of inhibition (ZOI) against different species of bacteria (a,b),
mechanism of antibacterial activity of ZnO–CeO2-Yb2O3 nanocomposite (c). Reprinted/adapted
with permission from Ref. [203]. Copyright© 2022, Elsevier Masson SAS.
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Figure 22. SEM images of various prepared CS/PVA/ZnO-related materials and precursors: (A) pure
chitosan, (B) ZnO, and (C) CS/PVA/ZnO. Reprinted/adapted with permission from Ref. [204].
Copyright© 2022, Elsevier B.V.

4.4.5. Organic Antimicrobial Agents Doping into ZnO

Studies have shown that the composites obtained by co-doping and fusion of organic
antibacterial agents and ZnO nanoparticles exhibited stronger antibacterial activity than
ZnO nanoparticles alone [205,206]. The organic antimicrobial agents are usually immo-
bilized or embedded on the ZnO surface. Taking chitosan (CS) as an example, it is an
abundant natural biopolymer derived from the deacetylation of chitin in crustacean shells
and can be made into films, fibers, beads, and powders. Cationic polymers are generally
antimicrobial [207,208]. In general, antibacterial activity depends on molecular weight
(Mw), degree of deacetylation, temperature, and solution pH [209,210].

Gutha et al. [204] used CS and ZnO as raw materials to prepare a new composite
material chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO), which was used as a
novel antibacterial agent with wound healing properties. CS/PVA/ZnO was proved to
be an effective antibacterial nanomaterial after being analyzed by various characterization
methods. SEM images of various prepared CS/PVA/ZnO-related materials and precursors
are shown in Figure 22A–C. The surface of sole chitosan was obtained to be smooth. The sole
ZnO nanoparticles showed nanosheet-like morphology. The surface of sole CS/PVA/ZnO
microbeads presents a certain pore structure, and the surface of the microbeads is rough,
which is conducive to exerting the ability of photocatalytic antibacterial. The antibacterial
activities of CS, CS/PVA, and CS/PVA/ZnO are shown in Figure 23. The diameter of
the inhibition zone against E. coli cultures (G-) was 10 mm in the CS group, 14 mm in the
CS/PVA group, and 19 mm in the CS/PVA/ZnO group (Figure 23A). Likewise, S. aureus
cultures (G+) had a diameter of 12 mm in the CS group, 15 mm in the CS/PVA group, and
20 mm in the CS/PVA/ZnO group (Figure 23A).
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Figure 23. The antibacterial activities of CS, CS/PVA, and CS/PVA/ZnO: (A) Diameter of zone
of inhibition on E. coli culture (gram negative bacteria); (B) Effect of mammalian cell viability of
freshly prepared CS, CS/PVA, and CS/PVA/ZnO on MG63 (human osteosarcoma cell line) and
(C) MCF7 (Human breast cancer cell line) cells. Reprinted/adapted with permission from Ref. [204].
Copyright© 2022, Elsevier B.V.

5. Future Scope and Conclusions

5.1. Future Scope

Although ZnO-based nanomaterials have been applied in organic pollutants removal
from water and conduct antibacterial reactions in water, there is still plenty of space for
improvement. The following points are the aspects that can be improved and strengthened
in the application process of ZnO-based nanomaterials in the future:

(1) Exploring strategies for changing the weak toxicity of ZnO-based nanomaterials so
that they can be better used in drinking water treatment, clinical medicine, virus
killing, and other fields closely related to human beings.

(2) Enhancing the ability of ZnO-based nanomaterials to respond to visible light enables
them to have a wider range of applications. Visible light is one of the most abundant
light sources, and a better response under visible light can maximize the use of existing
energy and reduce investment.

(3) Exploring the use of ZnO-based nanomaterials for photocatalytic removal of resistant
bacteria, cancer cells, and other difficult-to-remove microorganisms and pathogen
cells to improve the availability of the material.

(4) Exploring stronger ZnO-based nanomaterial structures and carriers to improve recyclabil-
ity and improve existing problems such as high solubility and difficulty in recycling.

5.2. Conclusions

This manuscript is based on recent developments in antibacterial water treatment
with ZnO-based nanomaterials. Due to the increasing global requirements for water
environment quality and drinking water quality, especially for the prevention and control
of various epidemics, new ideas and directions are provided for our study. Therefore, the
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existence of bacteria and harmful microorganisms in water is introduced in detail, and
various commonly used antibacterial agents and antibacterial methods are summarized. In
conclusion, different morphologies of ZnO-based nanomaterials can be effectively used
against various Gram-positive and Gram-negative strains by physicochemical interactions
with bacterial cells. Cell membrane damage and biocidal activity are thought to be triggered
by the collective action of chemical and physical interactions. Chemical interactions leading
to the production of ROS and H2O2 and the release of Zn2+ ions from ZnO solubility have
been proved to be the main cause of the above activities. Subsequently, based on this theory,
an in-depth study of the antibacterial mechanism was carried out. Finally, the review also
summarizes the following synthetic strategies to improve the antibacterial properties of
ZnO: (1) doping of alkaline earth metals to ZnO; (2) doping of transition metals to ZnO;
(3) doping of noble metals to ZnO; (4) doping of rare earth metal to ZnO; and (5) loading
organic antimicrobial agents.

It can be expected that the antibacterial potential of ZnO-based nanomaterials in
water treatment is very promising. Studies on ZnO-based nanomaterials continuously
increased in recent years, although they still have many aspects that can be improved. In
the future, we can expect more perfect ZnO-based nanomaterials to be prepared to solve
more antimicrobial-related problems in water treatment.
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Abstract: In recent years, an increasing amount of short-chain perfluoroalkyl substance (PFAS)
alternatives has been used in industrial and commercial products. However, short-chain PFASs
remain persistent, potentially toxic, and extremely mobile, posing potential threats to human health
because of their widespread pollution and accumulation in the water cycle. This study systematically
summarized the removal effect, operation conditions, treating time, and removal mechanism of
various low carbon treatment techniques for short-chain PFASs, involving adsorption, advanced oxi-
dation, and other practices. By the comparison of applicability, pros, and cons, as well as bottlenecks
and development trends, the most widely used and effective method was adsorption, which could
eliminate short-chain PFASs with a broad range of concentrations and meet the low-carbon policy,
although the adsorbent regeneration was undesirable. In addition, advanced oxidation techniques
could degrade short-chain PFASs with low energy consumption but unsatisfied mineralization rates.
Therefore, combined with the actual situation, it is urgent to enhance and upgrade the water treatment
techniques to improve the treatment efficiency of short-chain PFASs, for providing a scientific basis
for the effective treatment of PFASs pollution in water bodies globally.

Keywords: low carbon; short-chain PFASs; water treatment; adsorption; advanced oxidation

1. Introduction

Since the 1950s, perfluoroalkyl substances (PFASs) have been widely used in indus-
trial production and commercial products, involving chrome plating, foam extinguishing
agents, aviation hydraulic oil, and food packaging paper [1,2]. They are a class of man-
made chemicals with all the hydrogen atoms on the carbon skeleton replaced by fluorine
atoms, together with a terminal functional group [3]. Abbreviations for different PFASs are
shown in Table 1. Due to the strong energy of the C-F bond (536 kJ/mol), PFASs possess
exclusive physio-chemical characteristics, including environmental persistence, extraor-
dinary resistance to both environmental and biological degradation, high thermal and
chemical stability against oxidation, photolysis, and hydrolysis reactions, hydrophobicity
and oleophobicity, as well as multiple toxicities [4]. Moreover, many PFAS (precursors)
can easily degrade into persistent PFAS (acids). Therefore, long-chain PFASs (C8-C14) and
their sodium, as well as ammonium, salts were added into the candidate list of regulatory
substances in the EU, and PFOA and PFOS were added in the Stockholm Convention
on Persistent Organic Pollutants (POPs) list [5]. With the ban of long-chain PFASs, short-
chain PFASs (PFCAs < C8, PFSAs < C7) have been produced and used as substitutes in
large quantities.

With the improvement of modern analytical techniques such as high-resolution mass
spectrometry in non-target and suspect screening approaches in recent years, the researchers
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found that long-chain PFASs tended to be adsorbed by solid matter (soil, sediment, etc.),
which made them less mobile. However, short-chain PFASs showed a high polarity and
solubility, which rendered them difficult to be removed through environmental adsorp-
tion and water treatment processes, thus contributing to long-term mobility in the water
cycle through migration of surface water, groundwater, and natural and urban water
systems [6–9]. However, short-chain PFASs show similar properties with long-chain con-
geners, including being persistent, bioaccumulative, and toxic to a certain extent [10].
Therefore, short-chain PFASs could be classified as persistent and mobile organic com-
pounds (PMOCs) [6].

Table 1. Abbreviation for different PFASs.

Abbreviation

TFA Trifluoroacetic acid GenX 2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-
heptafluoropropoxy) propanoic acid

PFSAs Perfluoroalkane sulfonates PFCAs Perfluoroalkyl carboxylic acids
PFBS Perfluorobutane sulfonic acid PFBA Perfluorobutanoic acid

PFPrA Pentafluoropropionic acid PFPeA Perfluoropentanoic acid
PFHxS Perfluorohexane sulfonic acid PFHxA Perfluorohexanoic acid
PFOS Perfluorooctane sulfonic acid PFOA Perfluorooctanoic acid

PFHpA Perfluoroheptanoic acid PFNA Perfluorononanoic acid
PFDA Perfluorodecanoic acid PFDoA Perfluorododecanoic acid

Large quantity usage of short-chain PFASs could lead to accumulation in the water
cycle and water pollution, thereafter threatening drinking water quality. For instance,
the concentrations of PFBS and PFBA in Tangxun Lake of Wuhan in China reach up to
3.66 μg/L and 4.77 μg/L, respectively [11]. There was a serious PFBS contamination
in groundwater around fluorochemical plants in Fuxin in China, with a concentration
up to 31 μg/L [12], exceeding 10 times the health risk limits (HRLs) in drinking water
(3 μg/L) issued by the Minnesota Department of Health (MDH). Thus, it is an urgent
incident to effectively develop suitable water treatment techniques to regulate short-chain
PFAS contaminations in waters.

At present, activated carbon (AC) adsorption and ozonation are the commonly applied
techniques for organic contaminant elimination in drinking water treatment. However,
AC presented low efficiency for very polar compounds [6]. Meanwhile, ozonation gen-
erally exhibited poor reactive activity to polar compounds containing acidic functional
groups [13], which might be a source of smaller and more polar by-products than the
parent compounds [14]. Consequently, the removal efficiency of conventional treatment
for short-chain PFASs was undesirable. Moreover, various techniques presented different
removal efficiencies for short-chain PFASs, even requiring high energy consumption, strict
operating conditions, and releasing a large number of by-pollutants [15].

Recently, the C40 Cities Network of 91 large cities committed to low carbon infras-
tructure to ensure carbon emissions peak by 2020 and almost halve by 2030 [16–18]. In
2020, China announced that it would take more aggressive policy measures to achieve peak
carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060 [19]. Specifically,
the regulation instruments include applying forced power to administer high energy con-
sumption and emission of pollutants [20,21]. Therefore, it is significant to explore effective
low carbon treatment techniques to eliminate short-chain PFAS contaminations under
convenient conditions.

This review aims to select suitable treatment techniques for short-chain PFASs. To
achieve this aim, the low carbon treatment techniques for PFASs involving adsorption,
electrochemical oxidation, photocatalytic oxidation, membrane separation, pyrolysis, and
ultrasonic chemical degradation, and their individual removal efficiency, operating condi-
tions, and removal mechanisms were systematically summarized. Thereafter, based upon
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the characteristics of short-chain PFASs, the suitable treatment techniques were determined
by the comparison of the applicability, as well as the pros and cons of various techniques.
This will provide a scientific basis for the effective treatment and regulation of short-chain
PFAS contaminations in different waters.

2. Methodology of Literature Sources

To obtain an overview of short-chain PFAS chemical usage, the present review initially
focused on the risk profiles and risk management assessments. Reports that addressed
fluorosurfactants and fluoropolymers were also involved. Literature related to certain
use categories was retrieved for more information either on the substances used, or to
understand why PFAS are, or were, necessary for a given use.

In addition, databases, patents, information from PFAS manufacturers, and scientific
studies were examined via “Web of Science”, “PubMed”, and “CNKI”. The retrieved
keywords involved but were not limited to “per- and polyfluoroalkyl substances”, “PFAS”,
“PFAAs”, “short-chain PFAS”, “water treatment”, “adsorption”, “anion-exchange”, “ad-
vanced oxidation”, “persistent organic pollutant”, “emerging contaminant”, “low carbon”.
The searches were not exhaustive in any of the sources described, and there are still many
more reports, scientific studies, patents, safety data sheets, and databases with information
on the usage of PFASs than the ones cited here [22].

3. Treatment Techniques for Short-Chain PFASs

3.1. Adsorption Technique

Low carbon technique of adsorption could remove contaminations effectively in the
waters, which were widely applied in the treatment of PFASs. This technique uses a porous
solid as the adsorbent to adsorb one or several contaminations in the wastewater (WW)
that does not change physicochemical property, thus achieving the purification purpose [4].
The commonly used adsorption materials mainly include carbons, anion-exchange resins,
flocculants, etc. The key influencing factors of adsorption efficiency involved ionic strength,
pH, organic matter (OM) concentration, physicochemical properties of PFASs in solution,
and adsorbent characteristics (such as particle size, porosity rate, and functional group on
surface). Comparisons on the adsorption capacities of different adsorbents for short-chain
PFASs are shown in Table 2.

3.1.1. Adsorption by Carbon-Based Adsorbents

AC adsorption. AC is widely used to remove contaminants in wastewater due to low
cost, high efficiency, and convenient operation [4]. Ochoa-Herrera et al. adopted granular
activated carbon (GAC) to adsorb PFBS, with an adsorption capacity of 98.7 mg/g [23].
Hansen et al. used GAC and powdered activated carbon (PAC) to carry out batch adsorp-
tion experiments for short-chain PFASs; PAC achieved higher removal rates within 10 min
(20–40% for GAC, 60–90% for PAC) due to shorter internal diffusion distance and higher
BET surface area (SBET) of PAC [24]. This phenomenon demonstrated that the particle size
of AC was a significant factor affecting the removal efficiency of short-chain PFASs, and
smaller particle sizes presented superior removal efficiency. The effect of pore size on the
removal efficiency of bamboo-derived AC (BdAC) and coal-based AC (microporous type)
for PFHxA were investigated, revealing that the BdAC adsorption capacity was 13-fold
lower than microporous ACs [25,26]. In addition, the GAC was explored to eliminate differ-
ent carbon chain length PFASs [27], the removal efficiency of short-chain PFCAs was lower
than congeners PFSAs, in which the removal rates of PFBA, PFPeA, PFHxA, and PFHpA
were all below 19%, especially 10% for PFBS. Furthermore, the regeneration capacity of
adsorbed AC was also inferior when eluting. Therefore, it is necessary to explore new
catalysts to modify AC for promoting adsorption and regeneration capacity [1].

Biocarbon adsorption. Biocarbon is a pollution-free solid biofuel produced by pyrol-
ysis of biomass under aerobic or anaerobic conditions, which contains abundant voids,
high carbon content, and high calorific value. The nature of biocarbon is different due to

87



Appl. Sci. 2022, 12, 1941

various raw materials and parameters in the production process [28]. Inyang and Dick-
enson [29] explored the adsorption capacity of hardwood biochar (HWC) and pinewood
biochar (PWC) for PFBA and PFOA, demonstrating that the PFBA adsorption capacity
was 3–4 times lower than PFOA. Meanwhile, the removal efficiency of HWC vaporized
at 900 ◦C could be improved due to high SBET. However, the batch adsorption kinetics
experiments showed that the removal efficiency of GAC for PFBA was superior to HWC,
indicating a low adsorption capacity of biocarbon for short-chain PFASs.

Carbon nanotube (CNTs) adsorption. CNTs have the advantages of easy reaction
process control, convenient operation, and low cost of raw material. Deng et al. [30] used
single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT)
to remove short-chain PFASs (PFBA, PFHxA, PFHpA, PFBA, and PFBS) and long-chain
PFASs (PFOA, PFHxS, and PFOS) under neutral conditions. It showed that 95% of PFOS
and PFOA were removed by SWCNT within 5 h, but only 7.5% of PFBA was eliminated by
SWCNT within 48 h, and PFSAs were more easily adsorbed than PFCAs. Moreover, in the
comparison study of MWCNT functional groups, owing to the deprotonation that occurred
on the carboxyl and hydroxyl functional groups, contributing to lower hydrophobicity and
more negative surface potential, the adsorption efficiency of non-functional MWCNT for
short-chain PFASs was improved. Therefore, based upon the above studies, the adsorption
efficiency and technical maturity of CNTs were similar to ACs.

The main adsorption mechanism of carbon materials was hydrophobic and electro-
static effects, as well as possible hydrogen bonds and covalent bonds effects [4]. The
hydrophobic effect would be improved with an increased C-F chain length; thus, long-
chain PFASs were better adsorbed than short-chain congeners. Meanwhile, the removal
efficiency of adsorbents for PFASs was also depended on the terminal functional groups;
for instance, the removal efficiency of PFSAs was better than PFCAs. In addition, the
electrostatic attraction could occur between the anionic PFASs and positive charge ad-
sorbents. Therefore, the changes of ionic strength involving cations or anions and pH in
the solution would influence the adsorption efficiency. For example, the increase of ionic
strength caused by monovalent or divalent cations (Na+, K+, Ca2+, etc.) might enhance
PFAS removal efficiency, while the pH increase would reduce the adsorption capacity of
most adsorbents [31,32]. However, the electrostatic repulsion between anionic PFASs and
a negatively charged adsorbent could be overcome by the hydrophobic effect of the C-F
chain [33]. Therefore, the removal of short-chain PFASs was mainly dependent on the elec-
trostatic effect, while long-chain PFASs mainly tended to hydrophobic effects. Adsorption
mechanisms of carbon-based adsorbents for PFASs removal are shown in Figure 1.

 
Figure 1. Adsorption mechanism of carbon-based adsorbents for PFAS removal.
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3.1.2. Anion-Exchange Resin Adsorption

Resin adsorption gradually attracted researchers’ attention due to its strong adsorption,
regeneration ability, and convenient operation. The carbon chain length (or hydrophobicity)
and terminal functional groups of PFASs could influence the adsorption of anion-exchange
resin for PFASs. Maimaiti et al. explored the adsorption of large pore anion-exchange
resins about IRA910 for single PFASs (PFBA, PFHxA, PFOA, PFBS, PFHxS, and PFOS),
showing that the chain length had a great influence on PFCAs adsorption compared with
PFSAs [34]. The adsorption efficiency of PFSAs was better than PFCAs, in which the
optimum adsorption efficiency of PFBS could be up to 1023.32 mg/g. Moreover, in order to
investigate the treatment effect and regeneration capacity of anion-exchange resin, Du et al.
eluted the IRA67 resin that saturated adsorption with PFOA and PFHxA using the mixture
solution of NaCl and methanol, the recovery could achieve 98% and 40%, respectively. This
phenomenon indicated that short-chain PFASs were difficult to remove from the resin. In
addition, the properties of ion-exchange resin also played an effect on the adsorption for
short-chain PFASs [25]. For instance, the adsorption capacity of the ion-exchange resin was
superior to the non-ion exchange resin, and most of them were better than ACs.

The mechanism of anion-exchange resin mainly included hydrophobic effects, electro-
static effects, and ion-exchange effects. Generally, the resin with stronger hydrophobicity
possessed a virtuous adsorption ability; however, the regeneration capacity was deprived
by contrast [4]. Furthermore, the adsorption of short-chain PFASs might be influenced by
pH via changing the resin surface potential or morphology [34]. For instance, in various
ranges of pH, strong base anion (SBA) resin was impregnable due to its ionization form.
In contrast, weak base anion (WBA) resin was influenced significantly [31], which could
take effect when the amine group was protonated under acidic conditions. Moreover, the
main mechanism for short-chain PFAS removal was single-molecule anion-exchange by
the analysis of transmission electron microscope; thus, the inorganic anions in solution
would compete with PFAS anions for the ion-exchange sites and then decrease the removal
efficiency. The ion-exchange reaction equations are shown in (1) and (2), where [R4N+] and
[R3N] indicate the ion-exchange site [15].

[R4N+]Cl− + PFAS− ↔ [R4N+]PFAS− + Cl− (1)

[R3N] + H+ + PFAS− ↔ [R3NH+]PFAS− (2)

3.1.3. Coagulation and Electrocoagulation

Coagulation possessed the advantage of low price and high adsorption efficiency [4].
Deng et al. [35] discovered that the removal efficiency of PFOA exceeded 90% when the
dosage of polymer aluminum chloride (PACl) was 10 mg/L. However, the removal effi-
ciency of PFOA was reduced significantly when multiple PFASs existed simultaneously, and
the removal rates followed the order of PFBA > PFHxA > PFOA > PFDoA > PFOS, which
demonstrated that the removal efficiency of short-chain PFASs was superior, compared
with long-chain congeners.

Electrocoagulation received widespread attention because of its higher removal effi-
ciency for PFASs and short treatment period [4]. The electrocoagulation technique mainly
produced a large number of cations and then generated flocs by sacrificing the anode; thus,
the dissolved contaminants could be purified by condensation and adsorption of flocs,
which was subsequently carried to the surface of the solution by the H2 and O2 produced
by the electrodes through electrical floating. The Electrocoagulation mechanism for PFAS
removal is shown in Figure 2. Liu et al. [36] adopted the periodically reversing electroco-
agulation (PREC) technique to treat contaminated groundwater around fluorochemical
plants, indicating that the PREC was effective for the removal of PFASs with different
lengths of carbon chains. Subsequently, the above group approved that the PREC technique
with Al-Zn electrodes for multiple PFSA removal was impactful, the removal rates of
PFBS, PFHxS, and PFOS could reach up to 87.4%, 95.6%, and 100% within 10 min under
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optimal conditions (12.0 V, pH = 7, 400 r/min) [37]. In general, the removal mechanism of
electrocoagulation was a hydrophobic effect and might exist with electrophoretic, polarized,
and electric fields [38]. In addition, several influencing factors involving current density,
inorganic ions, and OM were also crucial for the removal of short-chain PFASs.

Figure 2. Electrocoagulation Mechanism for PFASs removal.

Table 2. Comparisons on adsorption capacities of various adsorbents for short-chain PFASs.

Adsorbent
Adsorbent

Dose/(mg/L)
PFASs

PFAS
Concentration

(mg/L)

Experiment
Condition

Removal Efficiency References

GAC (F400) 1000 PFBS 15–150 DI, 30 ◦C,
pH = 7.2 98.7 mg/g [23]

BdAC 200 PFHxA 31.4
WW, 25 ◦C

pH = 4, 48 h
170 r/min

18.84 mg/g [25]

IRA67 100 PFHxA 31.4
WW, 25 ◦C

pH = 4, 48 h
170 r/min

37.68 mg/g [25]

AC (micropore) 250

PFBA 6.5–204 DI, room
temperature
pH = 6, 3 d

51.36 ± 4.28 mg/g

[26]PFBS 6–247 51.01 ± 3 mg/g

PFHxA 7.2–217 235.54 ± 72.23 mg/g

CTF 250 PFBA 6.5–204
DI, room

temperature
pH = 6, 3 d

92.03 ± 4.28 mg/g [26]

SWCNT 250 PFBA 106.4
DI, 25 ◦C

pH = 7, 2 d
200 r/min

7.5% [30]

IRA910 100
PFBS

50–400
DI, 25 ◦C,

pH = 6, 240 h
160 r/min

1023.32 mg/g
[34]

PFBA 635.69 mg/g

Electrocoagulation – PFBS 0.031
GW, pH = 7.0

10 min, 400 r/min
Al-Zn, 12 V

87.4% [36]
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3.1.4. Adsorption with Other Materials

In recent years, the performance and construction of new materials that could be
controlled and modified easily were synthesized by researchers. Wang et al. used a
covalent triazine-based framework (CTF) to eliminate PFBS, with an adsorption capacity
of 92.03 mg/g [25]. Subsequently, Zaggia et al. explored the adsorption capacity of AC,
CTF, and IRA910 for PFBA and found that the order followed the rules of micropore
AC < CTF < IRA910, which demonstrated the adsorption mechanism was an electrostatic
effect between the triazine group and the PFAS anion head [32]. Ionic strength might
be another major factor of other materials that influenced the adsorption efficiency. For
example, the adsorption efficiency of poly-styrene carboxylic acid (PS-COOH) for short-
chain PFCAs in seawater was better than river water due to the large ionic strength in
seawater [39].

Therefore, in various kinds of adsorption materials, the adsorption efficiency of anion
exchange resin and electrocoagulation for short-chain PFASs were remarkable. However,
the elution ability of the anion exchange resin was inferior when the short-chain PFASs
were adsorbed, and the flocs of electrocoagulation were still required for further treatment.
Secondly, AC owned the property of low cost and high removal efficiency, while the
regeneration ability was unsatisfactory. Finally, new adsorption materials could improve
electrostatic attraction effectively, but the application should be further explored.

3.2. Advanced Oxidation/Reduction Techniques

Advanced oxidation/reduction techniques have been used for the degradation of
PFASs, with the advantages of high conversion efficiency and simple operation, and some
techniques could achieve complete mineralization. However, these techniques generally
put emphasis on long-chain PFASs, including PFOA and PFOS. Whether these techniques
could remove short-chain PFASs was still lacking in studies. This section provides a
systematic summary of the application of the degradation of short-chain PFASs about the
techniques of electrochemical oxidation and photocatalytic degradation, etc.

3.2.1. Electrochemical Oxidation

Electrochemical oxidation is an emerging advanced oxidation technique due to the ad-
vantages of high removal efficiency, strong oxidative ability, and low energy consumption.
This technique was found to degrade long-chain PFASs effectively. The most commonly
used oxidation anodes included Ti/SnO2, Ce/PbO2, boron-doped diamond (BDD) elec-
trodes, and their modified electrodes. Comparisons on the removal efficiency of short-chain
PFASs by different electrode materials are shown in Table 3.

Table 3. Removal efficiency of short-chain PFASs by different electrode materials.

Anode PFASs
PFASs

Concentration
(mg/L)

Experiment
Condition

Removal
Efficiency/(%)

References

Ti/SnO2-Sb/PbO2-Ce

PFBA

100 20 mA/cm2,
10 mmol/L NaClO4

31.8

[40]
PFPeA 41.4
PFHxA 78.2
PFHpA 97.9

BDD PFHxA 870 100 mA/cm2,
OM, inorganic salt

98 [41]

Si/BDD PFBS >150 rotating disk electrode 90 [42]

Niu et al.’s research group found that the degradation efficiency of Ti/SnO2-Sb for
100 mg/L PFOA could reach 98.8% when the current density was 40 mA/cm2, pH at 5, and
the electrolyte with 10 mmol/L NaClO4 [43]. Subsequently, the research group explored
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the Ti/SnO2-Sb/PbO2-Ce electrode to degrade short-chain PFASs of PFHpA and PFBA,
with removal rates of 97.9% and 31.8%, respectively. This might be related to the high
resistance of short-chain PFASs and the co-existence of multiple PFASs [40]. In addition,
Soriano et al. used a BDD electrode to remove high concentrations of 870 mg/L PFHxA in a
solution containing OM and inorganic salt, finding that the removal rate was 98% within 2 h
when the current density was at 100 mA/cm2, and energy consumption was 45 Wh/L [41].
Liao et al. explored a Si/BDD electrode for the elimination of high concentration PFBS
(>150 mg/L) at low current density; the removal rate was 90% within 1 h [42]. Based
upon the above studies, the BDD and its modified electrodes achieved remarkable results
compared with other electrodes involving SnO2 and PbO2. However, the base materials
of Si were too weak and performed unfortunate electrical conductivity. Therefore, high
manufacturing costs and lack of suitable base materials limited the large-scale application
of BDD electrodes. At present, it is important to discover a cheap and stable base material
for the industrial application of BDD electrodes [37].

The degradation of PFASs on the electrode surface was related to electron transfer and
free radical oxidation; the proposed pathways for electrochemical oxidation of PFOS in
water are shown in Figure 3.

Figure 3. Proposed pathways for electrochemical oxidation of PFOS in water.

Initially, the electrons are transferred from the terminal functional group of PFASs
to the anode driven by the electric field and formed PFAS radicals (·CnF2n+1COO or
·CnF2n+1SO3), the extremely unstable PFAS radicals undergo decarboxylation or desulfation
to form ·CnF2n+1. The generated ·CnF2n+1 could react with H2O, OH−, or ·OH, and finally
-CF2 groups were cut down gradually to generate short-chain PFASs with the specific
reaction equations shown in (3)–(7) [44,45].

CnF2n+1COO− → ·CnF2n+1COO + e− (3)

CnF2n+1SO3
− → ·CnF2n+1SO3 + e− (4)

CnF2n+1 +H2O → ·CnF2n+1OH + H+ (5)

CnF2n+1OH → Cn−1F2n−1COF+H+ +F− (6)
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Cn−1F2n−1COF+H2O → Cn−1F2n−1COOH+H++F− (7)

Plenty of studies have demonstrated that the degradation efficiency of short-chain
PFASs was still lower than long-chain congeners. In order to improve the removal efficiency
of short-chain PFASs and reduce the energy consumption effectively, the studies of influence
factors, including the current density, pH, electrolyte, OM, and microorganisms in solution,
must be carried out. Meanwhile, the electrode modification could improve the removal
efficiency and the defluoridation efficiency of PFASs, as well as improve the electrode life
successfully, but the metal doping on electrodes might lead to partial contamination during
treatment processes [4].

3.2.2. Photocatalytic Degradation

Direct photolysis. Photocatalytic degradation is an advanced oxidation technique that
can mineralize target compounds by UV light and photocatalysts. However, PFASs cannot
absorb light over 220 nm directly, and the degradation rate of PFBA and PFPeA was only
16.3% and 24.3% by direct photolysis, respectively [15]. Hori et al. found that PFPeA could
strongly absorb the light from the vacuum UV region to 220 nm due to the degradation of
PFASs under VUV irradiation (<190 nm) by the active substances produced by homolysis
and ionization of water, involving a hydrated electron (eaq

−), hydrogen radical (H·), and
hydroxyl radical (·OH) [46]. Therefore, how to use catalysts to promote the generation of
active substances about free radicals for the photodegradation of PFASs was imperative.
The photocatalytic efficiency of PFASs with different catalysts is shown in Table 4.

The sulfate radical (SO4
•−) produced from persulfate (S2O8

2−) under UV irradiation
was observed to be more effective for PFASs degradation over ·OH. Therefore, S2O8

2− was
used as an oxidant to degrade PFAS frequently [47]. For instance, Hori et al. found that
the short-chain PFCAs in aqueous solution were oxidized to CO2 and F− by SO4

•− when
the concentration of S2O8

2− was 50 mmol/L [46]. Subsequently, this group also found that
Fe3+ was an effective catalyst for photodegradation, and the photodegradation efficiency of
PFBA and PFPeA were improved to 49.9% and 64.5% due to strong light absorption from
the complexation of PFASs with Fe3+ [47]. Water-soluble polyacid photocatalysts could
also promote C-F bond cleavage of PFPrA, thereafter generated to TFA, CO2, and F−, but
the energy consumption of the process was exorbitant [48].

Zero-valent iron (ZVI) reduction. Reductants including zero-valent iron particles or
iodine salt could also enhance the photodegradation of PFASs. ZVI was used as a reductive
agent for the photodegradation of PFASs due to its high reduction potential (−0.447 V) and
reactive surface area [15]. For instance, Hori et al. observed that the degradation efficiency
of short-chain PFSAs (C2-C6) could be up to 95% using ZVI, owing to the generation of
iron oxide in the ZVI surface, which could interact with PFASs ions synergistically, thus
promoting defluoridation efficiently [49].

Photocatalytic degradation. Photocatalysts were scarcely implemented in short-chain
PFASs; the photodegradation efficiency could be deduced by examining the degradation
intermediates and degradation efficiency of long-chain PFASs. For example, Panchangam
et al. adopted TiO2 photocatalysts for 120 mmol/L of PFOA degradation under UV irra-
diation at 254 nm within 7 h, 97% of PFOA were converted to short-chain intermediates,
including PFPrA, PFBA, PFPeA, PFHxA, and PFHpA, in which PFHpA reached the maxi-
mum at 5 h [50]. Currently, the widely used method for modifying TiO2 was doping with
precious metals (Pt, Pd, Au) or other metals (Pb, Cu, Fe). Li et al. explored TiO2 doped
with Pt to completely decompose 144.9 mmol/L PFOA within 7 h under UV irradiation at
365 nm; the defluoridation efficiency was 34.8%. It was 12.5-fold faster than unmodified
TiO2 due to the deposited Pt particles could store excessive electrons and promote the
electrons transferred to PFAS availably [51]. In addition, the composite materials were
used to improve the photocatalytic degradation of PFASs, such as TiO2-MWCNT and
TiO2-rGO. It was found that the degradation efficiency of PFOA could reach 100% when
using TiO2-MWCNT after 8 h under irradiation of UV at 265 nm [52].
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In addition to the above n-type photocatalysts of TiO2, p-type photocatalysts involv-
ing In2O3 and Ga2O3 have attracted widespread attention because they could enhance
the degradation capacity of PFASs. However, p-type photocatalysts showed a strong de-
pendence on the material shape and microstructure [15]. For example, the In2O3 porous
microsphere had the highest photocatalytic activity on the degradation of PFOA, which was
74.7 times faster than TiO2. Similarly, short-chain intermediate PFHpA could be completely
degraded within 3 h by the In2O3 nanoplates, whereas In2O3 nanocubes were much less
effective. However, in the degradation process, the short-chain intermediates were still
generated from PFOA degradation, and the concentration of intermediates was positively
related to their carbon chain length [50,53].

New photocatalysts could decompose PFAS, but the information about the application
for short-chain PFASs was still limited. According to the degradation data of long-chain
PFASs, the degradation conclusions could be deduced as the following: photocatalytic
degradation of PFASs was a gradual splitting decomposition of CF2. The reaction of
breaking the chain generated short-chain intermediates. The short-chain products showed
strong resistance to photocatalytic degradation [15].

During the photodegradation process, the catalyst dosage and pH were imperative
influencing factors. In the low concentration range between 20–100 mmol/L of persulfate,
the photochemical reactivity could be improved with the concentration increase. Whereas
further increasing persulfate concentrations could result in saturation of the reaction rate,
Because SO4

•− could react with persulfate or itself, this side reaction would reduce the
degradation efficiency [15]. Moreover, a high concentration of hydrated hydrogen ions
(H3O+) would quench eaq

− under acidic conditions, thus contributing to the reactivity
decrease due to the quantum yield of eaq

− declining sharply. However, under alkaline
conditions, the reactivity would be enhanced due to the quantum yield of eaq

− increasing
by the reaction of H· and OH− [54].

Table 4. Photocatalytic efficiency of PFASs with different catalysts.

Catalyst Catalyst Dose PFASs
Experiment
Condition

Removal
Efficiency (%)

References

Fe3+ 5 mmol/L
PFBA UV 49.9

[47]PFPeA UV 64.5

ZVI particles 960 mmol/L Short-chain PFSAs
(C2–C6)

UV, 350 ◦C
20 MPa 95 [49]

TiO2 0.66 g/L PFOA 254 nm
pH < 3 100% [50]

TiO2-MWCNT 0.4 g/L PFOA 300 W, 365 nm
pH = 5 100% [52]

TiO2-rGO 0.1 g/L PFOA 150 W, 254 nm
pH = 3.8 93 ± 7% [55]

3.3. Other Techniques
3.3.1. Plasma Technique

Plasma is the collection of positive and negative electric particles that consist of elec-
trons, ions, radicals, and neutral particles, which are electric and electroneutral, thus called
the fourth state beyond gas, liquid, and solid electrically. Diverse from most AOPs and
conventional techniques, plasma techniques could convert water into highly active sub-
stances, involving ·OH, O, H·, HO2·, O2

•−, H2, O2, H2O2, and eaq
− [56]. When using

the plasma technique for PFASs elimination, the degradation process was gradually re-
duced to intermediates, and then intermediates, perfluoroalkyl radicals, and perfluoro
alcohols/ketones-perfluoroalkyl were oxidized [57]. However, this technique was hardly
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applied and is invalid in the degradation for short-chain PFASs. For example, Takaki et al.
adopted BaTiO3 iron beads as a filling medium to degrade C2F6; the degradation efficiency
was only 20% [58]. Moreover, short-chain PFASs, fluorine ions, and CO2 by-products were
produced during the plasma treatment of PFASs.

3.3.2. Thermolytic and Sonochemical Degradation

In the recent decade, thermolytic and sonochemical degradation have attracted wide
attention. Tsang et al. [59] found that 99% of CF4 could be removed under urban incinera-
tion conditions (about 850 ◦C) and assumed the pyrolysis of 800–900 ◦C could resolve long
and short-chain PFASs efficiently. Krusic et al. [60] explored the gas phase decomposition
of PFOA in quartz tubes at 355–385 ◦C, finding that PFOA retained thermal stability below
300 ◦C but completely degraded at 370 ◦C after 360 min. However, the by-products of
small molecule substances were generated continuously, which demonstrated the greater
resistance of short-chain PFASs. Subsequently, Campbell et al. explored pre-concentrating
PFHxA on GAC, which could improve the thermal mineralization rate from 46% to 74% [61].
Furthermore, in order to investigate the effect of ultrasonic chemistry on the degradation
of PFASs with different carbon chain lengths, Campbell et al. investigated the degrada-
tion efficiency on six kinds of PFASs at 358 kHz, the order was PFOA > PFHxA > PFBA
and PFOS ≈ PFHxS > PFBS [62]. Similarly, Fernandez et al. found that the degradation
efficiency of ultrasonic chemicals raised with carbon chain length increased [63]. For one
thing, long-chain PFASs with strong hydrophobicity were inclined to be adsorbed on the
gas-liquid interface for thermal decomposition or oxidation degradation. For another,
short-chain PFASs were more difficult to be defluorinated than long-chain congeners. Gen-
erally, these techniques could mineralize short-chain PFASs, but nongreen environmental
factors about the generous discharge of CO2 and high energy consumption limited the
development in actual application.

3.3.3. Membrane Separation

In recent years, low carbon treatment of membrane separation techniques, including
nanofiltration (NF) and reverse osmosis (RO), have made great advances. During the rejec-
tion in membrane processes, the molecular size and structure of PFASs were considered key
factors. For instance, NF membranes could reject more than 96% of PFHxA (μg/L to mg/L)
under neutral pH, whereas the rejection rate of shorter-chains PFASs about PFBS decreased
to 69% attributable to the small molecular size [64]. Furthermore, charge, hydrophobicity,
pH, and dipole moment might also affect the solute-membrane interactions and thus the
rejection efficiency of PFAS. It was shown that pH reduction could increase the membrane
rejection efficiency of PFHxA. Moreover, the presence of the ions generally suppressed
the electrical repulsion, but the exclusion efficiency was enhanced with increasing ionic
strength, which indicated that the exclusion of membrane size was the dominant factor.
In the practical application, the rejection efficiency of short-chain PFASs would be easily
influenced because of membrane contamination. In addition, membrane separation tech-
niques could produce a high concentration of PFASs and still require subsequent treatment
or disposal.

3.3.4. Bioremediation Techniques

Kwon et al. degraded PFOS (1400–1800 μg/L) by cultivating P. aeruginosa microor-
ganism with the removal rate of 67% [65]. However, short-chain PFASs were difficult to
degrade by common microbes. For example, the concentration of PFBS in the effluent of
sewage treatment plants remained unchanged or increased after conventional activated
sludge or biofilm bioreactors. That is, short-chain PFASs showed high resistance to various
activated sludge systems [5]. While in plant tissues, both short and long-chain PFASs all
have a tendency to accumulate. Recent studies have shown that the biological accumulation
of PFASs followed a U-type trend. The lowest hydrophobicity (e.g., PFBA and PFPeA) and
the maximum hydrophobic species (e.g., PFNA and PFDA) presented the greatest absorb
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efficiency [66]. Another study on the uptake and distribution of PFASs in maize showed
that plant adsorption and distribution of PFASs were dependent on chain length, functional
groups, and plant tissue. Generally, short-chain PFASs were transferred to the overground
portion of plants, while long-chain PFASs were mainly transported to the root [67].

4. Comparisons on Different Treatment Techniques

So far, low carbon treatment techniques of short-chain PFASs have included adsorp-
tion, membrane separation, bioremediation, as well as degradation techniques relating
to advanced oxidation, plasma, thermolytic, and sonochemical degradation. The above
technologies could remove short-chain PFASs to a certain extent, but their treatment effects,
operating conditions, removal mechanism, and applicability were quite different. The
comparisons on treatment techniques for short-chain PFASs are presented in Table 5.

Adsorption was the utmost widely applied technique for short-chain PFASs, and its
energy consumption could be nearly ignored besides the low energy cost of the adsorbent
regeneration. The removal mechanisms of short-chain PFASs were mainly electrostatic
action, hydrophobic effect, and ion exchange [4]. As shown in Table 5, this technique has
the advantages of convenient operation, low carbon, low cost, and low energy consumption,
as well as application with a wide concentration range of short-chain PFASs, especially
trace levels. However, the technique has the drawbacks of a long adsorption period and
low regeneration efficiency [27,36].

Advanced oxidation techniques, involving electrochemical oxidation and photocat-
alytic degradation, degraded short-chain PFASs primarily relying on active free radicals,
which possessed the advantages of a short treatment period and low energy consump-
tion [5,15]. However, the techniques were not suitable for trace levels of short-chain PFASs,
and its low mineralization rate and subsequent CO2 generation rate from mineraliza-
tion were also the main problems for achieving the low-carbon goals [43]. In addition,
electrochemical oxidation could produce high expenses of electrode materials and the
risk of electrode contamination. The photocatalytic degradation technique generated the
problem of secondary pollution by catalyst addition and might thus be limited in actual
applications [15].

The plasma technique was applied to the degradation of long-chain PFASs effectively,
but few studies focused on its degradation of short-chain PFASs, and the energy consump-
tion was still higher for complete mineralization [58]. The thermolytic and sonochemical
techniques could achieve complete mineralization, but the energy consumption was too
high, and the operating conditions were stringent [61]. The membrane separation tech-
nique could reject short-chain PFAS pollutants effectively, but membrane pollution and
membrane flux instability were the main problems [64]. Bioremediation techniques could
take advantage of their low carbon and environmentally-friendly processes, but they gen-
erated the problems of long remediation period and low efficiency, as well as inefficient
short-chain PFAS elimination and remaining in organisms [65].

Based upon the analysis, the most widely used and effective method could be adsorp-
tion, followed by advanced oxidation. However, there were still limitations of removal
efficiency in the application of eliminating short-chain PFASs. Since short-chain PFASs
were more resistant to be adsorbed and degraded than long-chain congeners, PFASs of
C1–C3 were barely degradable. Combined techniques might be developed based on
concentration/recycling-degradation of short-chain PFASs in water bodies rather than
degradation. The combination of adsorption and gas–liquid series electrical discharge treat-
ment has been applied in the degradation of dyestuff, which achieved excellent removal
efficiency compared with the adsorption alone [68].
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5. Conclusions and Future Research Recommended

This paper showed that the adsorption, electrochemical oxidation, and photocatalytic
degradation have certain removal effects on short-chain PFASs by comparisons on various
treatment techniques. Considering the removal efficiency, treatment time, energy consump-
tion, and cost, adsorption was the most widely applied technique for the effective removal
of short-chain PFASs, which was suitable for a wide concentration range of pollution and to
meet the low-carbon policy. Whereas, long adsorption period and unsatisfied regeneration
ability were the main problems. The advanced oxidation techniques of electrochemical and
photocatalytic activity could degrade short-chain PFASs, but low mineralization efficiency
contributed to intermediates of short-chain PFASs, as well as abundant organic matter and
CO2 and they were especially inappropriate to eliminate trace short-chain PFASs. Therefore,
it was desirable to choose suitable techniques according to PFAS properties, as well as the
advantages and disadvantages of various techniques.

The contaminations of short-chain PFASs have attracted much attention at present,
while most studies still focused on the laboratory-scale treatment of long-chain PFASs,
including PFOA and PFOS, and data on the treatment of short-chain PFASs is still absent.
Therefore, future studies need to focus on the following topics: (1) Targeting long duration
period and poor material regeneration ability for the adsorption technique; the functional
groups of adsorbent materials need to be modified for improving electrostatic attraction
and hydrophobic effects and enhancing the adsorption efficiency and elution of short-chain
PFASs. (2) Innovative design for short-chain PFAS treatment by electrode and catalyst
modification to develop advanced oxidation techniques, with high degradation efficiency
in low-carbon and low-energy consumption, as well as adaptability for low-concentration
PFASs. (3) With the increasing pollution of short-chain PFASs in drinking water, extensive
emphasis should be placed on the development of advanced treatment techniques for
actual groundwater and surface water, along with exploration of new adsorption materi-
als, electrode materials, and catalysts, which could remove low concentrations of short-
chain PFAS under the background of multiple substances co-existing in the actual waters.
(4) Short-chain PFASs were more resistant to degradation than long-chain congeners, and
PFASs of C1-C3 were barely degradable. Therefore, concentration/recycling of short-chain
PFASs in water bodies should be considered rather than degradation. In addition, com-
bined techniques might be developed based on concentration/recycling-degradation, such
as adsorption and advanced oxidation, for the efficient removal of short-chain PFASs from
actual waters.

Author Contributions: Conceptualization, Y.L. and J.B.; methodology, Y.L. and T.L.; software, M.L.;
validation, X.Z., C.L. and L.S.; formal analysis, T.L.; investigation, T.L; resources, Y.L. and J.B.; data
curation, T.L. and X.H.; writing—original draft preparation, Y.L. and J.B.; writing—review and
editing, Y.L. and X.H.; visualization, T.L.; supervision, Y.L. and T.L.; project administration, Y.L.
and J.B.; funding acquisition, J.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
21976124 and No. 21507092), the Natural Science Foundation of Liaoning Province of China (No.
2019-ZD-0217), and the Liaoning Revitalization Talents Program (No. XLYC2007195).

Acknowledgments: Thanks for the financial support from the National Natural Science Foundation
of China (No. 21976124 and No. 21507092), the Natural Science Foundation of Liaoning Province of
China (No. 2019-ZD-0217), and the Liaoning Revitalization Talents Program (No. XLYC2007195).

Conflicts of Interest: The authors declare no conflict of interest.

98



Appl. Sci. 2022, 12, 1941

References

1. Rahman, M.F.; Peldszus, S.; Anderson, W.B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in
drinking water treatment: A review. Water Res. 2013, 50, 318–340. [CrossRef] [PubMed]

2. Jian, J.; Chen, D.; Han, F.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per-
and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [CrossRef] [PubMed]

3. Park, M.; Wu, S.; Lopez, I.J.; Chang, J.Y.; Karanfil, T.; Snyder, S.A. Adsorption of perfluoroalkyl substances (PFAS) in groundwater
by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 2020, 170, 115364.
[CrossRef] [PubMed]

4. Liu, Y.; Hu, X.; Zhao, Y.; Wang, J.; Bao, J. Treatment techniques for perfluorinated compounds and their alternatives. Environ.
Chem. 2018, 37, 1860–1868. [CrossRef]

5. Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The overlooked short- and ultrashort–chain poly- and perfluorinated substances:
A review. Chemosphere 2019, 220, 866–882. [CrossRef] [PubMed]

6. Reemtsma, T.; Berger, U.; Arp, H.P.H.; Gallard, H.; Knepper, T.P.; Neumann, M.; Quintana, J.B.; Voogt, P.D. Mind the gap:
Persistent and mobile organic compounds-water contaminants that slip through. Environ. Sci. Technol. 2016, 50, 10308–10315.
[CrossRef]

7. Arp, H.P.H.; Brown, T.N.; Berger, U.; Hale, S.E. Ranking REACH registered neutral, ionizable and ionic organic chemicals based
on their aquatic persistency and mobility. Environ. Sci-Proc. Imp. 2017, 19, 939–955. [CrossRef]

8. Kotthoff, M.; Bücking, M. Four Chemical trends will shape the next decade’s directions in perfluoroalkyl and polyfluoroalkyl
substances research. Front. Chem. 2018, 6, 1–6. [CrossRef]

9. Gellrich, V.; Stahl, T.; Knepper, T.P. Behavior of perfluorinated compounds in soils during leaching experiments. Chemosphere
2012, 87, 1052–1056. [CrossRef]

10. Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a
regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9. [CrossRef]

11. Zhou, Z.; Liang, Y.; Shi, Y.; Xu, L.; Cai, Y. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short–chain PFAAs
in Tangxun Lake, China. Environ. Sci. Technol. 2013, 47, 9249–9257. [CrossRef] [PubMed]

12. Bao, J.; Li, C.; Liu, Y.; Wang, X.; Yu, W.; Liu, Z.; Shao, L.; Jin, Y. Bioaccumulation of perfluoroalkyl substances in greenhouse
vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China. Environ. Res. 2020, 188, 109751.
[CrossRef] [PubMed]

13. Eschauzier, C.; Beerendonk, E.; Scholte-Veenendaal, P.; Voogt, P.D. Impact of treatment processes on the removal of perfluoroalkyl
acids from the drinking water production chain. Environ. Sci. Technol. 2012, 46, 1708–1715. [CrossRef] [PubMed]

14. Schmidt, C.K.; Brauch, H.J. N, N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation
and its fate during drinking water treatment. Environ. Sci. Technol. 2008, 42, 6340–6346. [CrossRef] [PubMed]

15. Li, F.; Duan, J.; Tian, S.; Ji, H.; Zhu, Y.; Wei, Z.; Zhao, D. Short–chain per- and polyfluoroalkyl substances in aquatic systems:
Occurrence, impacts and treatment. Chem. Eng. J. 2020, 380, 122506. [CrossRef]

16. Wang, H.; Lu, X.; Deng, Y.; Sun, Y.; Nielsen, C.P.; Liu, Y.; Zhu, G.; Bu, M.; Bi, J.; McElroy, M. China’s CO2 peak before 2030 implied
from characteristics and growth of cities. Nat. Sustain. 2019, 2, 748–754. [CrossRef]

17. Watts, M. Commentary: Cities spearhead climate action. Nat. Clim. Chang. 2017, 7, 537–538. [CrossRef]
18. Wang, Y.; Xu, Z.; Zhang, Y. Influencing factors and combined scenario prediction of carbon emission peaks in megacities in China:

Based on Threshold-STIRPAT model. Acta Sci. Circumst. 2019, 39, 4284–4292. [CrossRef]
19. Song, Q.; Liu, T.; Qi, Y. Policy innovation in low carbon pilot cities: Lessons learned from China. Urban Clim. 2021, 39, 100936.

[CrossRef]
20. Liu, Q.; Zhang, W.; Yao, M.; Yuan, J. Carbon emissions performance regulation for China’s top generation groups by 2020: Too

challenging to realize? Resour. Conserv. Recy. 2017, 122, 326–334. [CrossRef]
21. Ma, W.; De, J.M.; De, B.M.; Mu, R. Mix and match: Configuring different types of policy instruments to develop successful low

carbon cities in China. J. Clean. Prod. 2021, 282, 125399. [CrossRef]
22. Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An

overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process Impacts 2020, 22, 2345–2373. [CrossRef]
[PubMed]

23. Ochoa-Herrera, V.; Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption on to granular activated carbon, zeolite
and sludge. Chemosphere 2008, 72, 1588–1593. [CrossRef] [PubMed]

24. Hansen, M.C.; Borresen, M.H.; Schlabach, M.; Cornelissen, G. Sorption of perfluorinated compounds from contaminated water to
activated carbon. J. Soils Sediments 2010, 10, 179–185. [CrossRef]

25. Du, Z.; Deng, S.; Chen, Y.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Removal of perfluorinated carboxylates from washing wastewater
of perfluorooctanesulfonyl fluoride using activated carbons and resins. J. Hazard. Mater. 2015, 286, 136–143. [CrossRef] [PubMed]

26. Wang, B.; Lee, L.S.; Wei, C.; Fu, H.; Zheng, S.; Xu, Z.; Zhu, D. Covalent triazine-based framework: A promising adsorbent for
removal of perfluoroalkyl acids from aqueous solution. Environ. Pollut. 2016, 216, 884–892. [CrossRef]

27. McCleaf, P.; Englund, S.; Östlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly- and perfluoroalkyl
substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res.
2017, 120, 77–87. [CrossRef]

99



Appl. Sci. 2022, 12, 1941

28. Wang, M.; Zhou, Q. Environmental effects and their mechanisms of biochar applied to soils. Environ. Chem. 2013, 32, 768–780.
[CrossRef]

29. Inyang, M.; Dickenson, E.R.V. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems.
Chemosphere 2017, 184, 168–175. [CrossRef]

30. Deng, S.; Zhang, Q.; Nie, Y.; Wei, H.; Wang, B.; Huang, J.; Yu, G.; Xing, B. Sorption mechanisms of perfluorinated compounds on
carbon nanotubes. Environ. Pollut. 2012, 168, 138–144. [CrossRef]

31. Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from
water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res.
2020, 171, 115381. [CrossRef] [PubMed]

32. Gao, Y.; Deng, S.; Du, Z.; Liu, K.; Yu, G. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by
anion-exchange resin: A comparative study. J. Hazard. Mater. 2017, 323, 550–557. [CrossRef] [PubMed]

33. Zaggia, A.; Conte, L.; Falletti, L.; Fant, M.; Chiorboli, A. Use of strong anion exchange resins for the removal of perfluoroalkylated
substances from contaminated drinking water in batch and continuous pilot plants. Water Res. 2016, 91, 137–146. [CrossRef]
[PubMed]

34. Maimaiti, A.; Deng, S.; Meng, P.; Wang, W.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Competitive adsorption of perfluoroalkyl
substances on anion exchange resins in simulated AFFF-impacted groundwater. Chem. Eng. J. 2018, 348, 494–502. [CrossRef]

35. Deng, S.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. Removal of perfluorooctanoate from surface water by polyaluminium chloride
coagulation. Water Res. 2011, 45, 1774–1780. [CrossRef]

36. Liu, Y.; Hu, X.; Zhao, Y.; Wang, J.; Lu, M.; Peng, F.; Bao, J. Removal of perfluorooctanoic acid in simulated and natural waters with
different electrode materials by electrocoagulation. Chemosphere 2018, 201, 303–309. [CrossRef]

37. Bao, J.; Yu, W.; Liu, Y.; Wang, X.; Liu, Z.; Duan, Y. Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural
groundwater by electrocoagulation. Chemosphere 2020, 248, 125951. [CrossRef]

38. Niu, J.; Wang, C.; Shang, E. Removal of perfluorinated compounds from wastewaters by electrochemical methods: A general
review. Sci. Sin. Technol. 2017, 47, 1233–1255. [CrossRef]

39. Llorca, M.; Schirinzi, G.; Martínez, M.; Barceló, D.; Farré, M. Adsorption of perfluoroalkyl substances on microplastics under
environmental conditions. Environ. Pollut. 2018, 235, 680–691. [CrossRef]

40. Niu, J.; Lin, H.; Xu, J.; Wu, H.; Li, Y. Electrochemical mineralization of per-fluorocarboxylic acids (PFCAs) by Ce-doped modified
porous nanocrystalline PbO2 film electrode. Environ. Sci. Technol. 2012, 46, 10191–10198. [CrossRef]

41. Soriano, A.; Gorri, D.; Urtiaga, A. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical
degradation of the NF concentrate. Water Res. 2017, 112, 147–156. [CrossRef] [PubMed]

42. Liao, Z.; Farrell, J. Electrochemical oxidation of perfluorobutane sulfonate using borondoped diamond film electrodes. J. Appl.
Electrochem. 2009, 39, 1993–1999. [CrossRef]

43. Niu, J.; Li, Y.; Shang, E.; Xu, Z.; Liu, J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 2016, 146,
526–538. [CrossRef] [PubMed]

44. Lin, H.; Niu, J.; Liang, S.; Wang, C.; Wang, C.; Wang, Y.; Jin, F.; Luo, Q.; Chiang, S.Y.D.; Huang, Q. Development of macroporous
magneli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances. Chem.
Eng. J. 2018, 354, 1058–1067. [CrossRef]

45. Niu, J.; Lin, H.; Gong, C.; Sun, X. Theoretical and experimental insights into the electrochemical mineralization mechanism of
perfluorooctanoic acid. Environ. Sci. Technol. 2013, 47, 14341–14349. [CrossRef]

46. Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R. Efficient decomposi-
tion of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol.
2005, 39, 2383–2388. [CrossRef]

47. Hori, H.; Yamamoto, A.; Koike, K.; Kutsuna, S.; Osaka, I.; Arakawa, R. Photochemical decomposition of environmentally
persistent short–chain perfluorocarboxylic acids in water mediated by iron (II)/(III) redox reactions. Chemosphere 2007, 68,
572–578. [CrossRef]

48. Hori, H.; Takano, Y.; Koike, K.; Kutsuna, S.; Einaga, H.; Ibusuki, T. Photochemical decomposition of pentafluoropropionic acid to
fluoride ions with a water-soluble heteropolyacid photocatalyst. Appl. Catal. B-Environ. 2003, 46, 333–340. [CrossRef]

49. Hori, H.; Nagaoka, Y.; Yamamoto, A.; Sano, T.; Yamashita, N.; Taniyasu, S.; Kutsuna, S.; Osaka, I.; Arakawa, R. Efficient
decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in
subcritical water. Environ. Sci. Technol. 2006, 40, 1049–1054. [CrossRef]

50. Panchangam, S.C.; Lin, A.; Shaik, K.L.; Lin, C. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatal-
ysis in acidic aqueous medium. Chemosphere 2009, 77, 242–248. [CrossRef]

51. Li, M.; Yu, Z.; Liu, Q.; Sun, L. Photocatalytic decomposition of per-fluorooctanoic acid by noble metallic nanoparticles modified
TiO2. Chem. Eng. J. 2016, 286, 232–238. [CrossRef]

52. Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites
under 365nm UV irradiation. Chemosphere 2011, 86, 853–859. [CrossRef] [PubMed]

53. Chen, M.; Lo, S.L.; Lee, Y.C.; Huang, C.C. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified
titanium dioxide. J. Hazard. Mater. 2015, 288, 168–175. [CrossRef] [PubMed]

100



Appl. Sci. 2022, 12, 1941

54. Jin, L.; Zhang, P. Photochemical decomposition of perfluorooctane sulfonate (PFOS) in an anoxic alkaline solution by 185nm
vacuum ultraviolet. Chem. Eng. J. 2015, 280, 241–247. [CrossRef]

55. Gomez-Ruiz, B.; Ribao, P.; Diban, N.; Rivero, M.J.; Ortiz, I.; Urtiaga, A. Photocatalytic degradation and mineralization of
perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst. J. Hazard. Mater. 2017, 344, 950–957. [CrossRef]

56. Stratton, G.R.; Dai, F.; Bellona, C.L.; Holsen, T.M.; Dickenson, E.R.V.; Thagard, S.M. Plasma-Based water treatment: Efficient
transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. Environ. Sci. Technol. 2017, 51,
1643–1648. [CrossRef]

57. Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Thagard, S.M.; Holsen, T.M. Breakdown products from perfluorinated alkyl
substances (PFAS) degradation in a plasma-based water treatment process. Environ. Sci. Technol. 2019, 53, 2731–2738. [CrossRef]

58. Takaki, K.; Urashima, K.; Chang, J.S. Scale-up of ferro-electric packed bed reactor for C2F6 decomposition. Thin Solid Films 2006,
506, 414–417. [CrossRef]

59. Tsang, W.; Burgess, D.R.; Babushok, V. On the Incinerability of Highly Fluorinated Organic Compounds. Combust. Sci. Technol.
1998, 139, 385–402. [CrossRef]

60. Krusic, P.J.; Roe, D.C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid. Anal. Chem. 2005, 126, 1510–1516.
[CrossRef]

61. Watanabe, N.; Takata, M.; Takemine, S.; Yamamoto, K. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during
reactivation of granular activated carbon (GAC) in nitrogen atmosphere. Environ. Sci. Pollut. Res. Int. 2018, 25, 7200–7205.
[CrossRef] [PubMed]

62. Campbell, T.Y.; Vecitis, C.D.; Mader, B.T.; Hoffmann, M.R. Perfluorinated surfactant chain-length effects on sonochemical kinetics.
J. Phys. Chem. A 2009, 113, 9834–9842. [CrossRef] [PubMed]

63. Fernandez, N.A.; Rodriguez-Freire, L.; Keswani, M.; Sierra-Alvarez, R. Effect of chemical structure on the sonochemical
degradation of perfluoroalkyl and poly-fluoroalkyl substances (PFASs). Water Res. 2016, 2, 975–983. [CrossRef]

64. Wang, J.; Wang, L.; Xu, C.; Zhi, R.; Miao, R.; Liang, T.; Yue, X.; Lv, Y.; Liu, T. Perfluorooctane sulfonate and perfluorobutane
sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular
organic foulants. Chem. Eng. J. 2018, 332, 787–797. [CrossRef]

65. Kwon, B.G.; Lim, H.J.; Na, S.H.; Choi, B.I.; Shin, D.S.; Chung, S.Y. Biodegradation of perfluorooctanesulfonate (PFOS) as an
emerging contaminant. Chemosphere 2014, 109, 221–225. [CrossRef] [PubMed]

66. Müller, C.E.; LeFevre, G.H.; Timofte, A.E.; Hussain, F.A.; Sattely, E.S.; Luthy, R.G. Competing mechanisms for perfluoroalkyl acid
accumulation in plants revealed using an arabidopsis model system. Environ. Toxicol. Chem. 2016, 35, 1138–1147. [CrossRef]
[PubMed]

67. Krippner, J.; Brunn, H.; Falk, S.; Georgii, S.; Schubert, S.; Stahl, T. Effects of chain length and pH on the uptake and distribution of
perfluoroalkyl substances in maize (Zea mays). Chemosphere 2014, 94, 85–90. [CrossRef]

68. Zhang, Y.Z.; Zheng, J.T.; Qu, X.F.; Chen, H.G. Effect of granular activated carbon on degradation of methyl orange when applied
in combination with high-voltage pulse discharge. J. Colloid Interface Sci. 2007, 316, 523–530. [CrossRef]

69. Chen, J.; Zhang, P.; Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J. Environ. Sci. 2007,
19, 387–390. [CrossRef]

70. Hori, H.; Yamamoto, A.; Kutsuna, S. Efficient photochemical decomposition of long–chain perfluorocarboxylic acids by means of
an aqueous/liquid CO2 biphasic system. Environ. Sci. Technol. 2005, 39, 7692–7697. [CrossRef]

101





Citation: Kang, H.; Liu, Y.; Li, D.; Xu,

L. Study on the Removal of Iron and

Manganese from Groundwater Using

Modified Manganese Sand Based on

Response Surface Methodology. Appl.

Sci. 2022, 12, 11798. https://doi.org/

10.3390/app122211798

Academic Editors: Xin Zhao,

Lili Dong and Zhaoyang Wang

Received: 24 October 2022

Accepted: 17 November 2022

Published: 20 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Study on the Removal of Iron and Manganese from
Groundwater Using Modified Manganese Sand Based on
Response Surface Methodology

Han Kang *, Yan Liu, Dan Li and Li Xu

School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
* Correspondence: hj_kh@sjzu.edu.cn; Tel.: +86-1389-793-1713

Abstract: This study used modified manganese sand as an adsorbent to explore its adsorption effect
on iron and manganese ions from groundwater. The effects of pH, manganese sand dosage, and the
initial concentration of Fe/Mn on the removal rate of iron and manganese ions were studied through
single-factor experiments. Based on the above three factors, a quadratic polynomial model between
the adsorption rate and the above factors was established to determine the optimal adsorption
conditions. The response surface analysis showed that pH had the most significant effect on the
adsorption process. The optimum conditions for the adsorption of iron and manganese ions by
modified manganese sand were pH = 7.20, the dosage of manganese sand = 3.54 g/L, and the initial
concentration ratio of Fe/Mn = 3.80. The analysis of variance showed that the RSM model could
accurately reflect the adsorption process of manganese sand. In addition, we confirmed that the
relative error between model predictions and experimental values was close to 1%, proving that the
response surface model was reliable. The kinetic data of the manganese sand were described well
with the pseudo-second-order model. The isothermal adsorption of iron and manganese ions by
modified manganese sand was fitted well using the Langmuir equation.

Keywords: modified manganese sand; iron and manganese ions; response surface methodology

1. Introduction

Iron and manganese are natural components in the crust. High levels of iron and
manganese in groundwater are common. In China, 20% of groundwater resources have
excess iron and manganese [1]. In water supply networks, iron and manganese in tap
water are oxidized to high valence during disinfection. The oxide precipitation formed in
the pipeline is easily adsorbed into the water supply network, affecting the quality of the
drinking water supply [2]. Although iron and manganese are necessary trace elements for
the human body, drinking high-iron and -manganese surface water or groundwater for a
long time will lead to chronic poisoning and damage to human health [3–5]. Physiologically,
a large amount of iron ingested by the human body cannot be removed through metabolism.
Excessive iron accumulation will induce diabetes, skin diseases, and other diseases, while
excessive manganese can cause pathological changes in human organs and even cause
neurotoxicity [6–8].

The coexistence of iron and manganese is common in groundwater. In recent years,
how to efficiently and stably remove iron and manganese has become the focus of research.
Iron usually exists in a soluble ferrous (Fe(II)) state. The most stable oxidation state of
manganese is +2 valence [9,10]. The traditional removal methods of Fe(II) and Mn(II) in
groundwater include natural oxidation, biological, and adsorption [11–14]. The natural
oxidation method is to oxidize Fe2+ to Fe3+ via aeration and then generate Fe(OH)3 precip-
itation. The removal of manganese requires adding alkali based on aeration to improve
pH. The procedure flow of this method is complex, and the high pH in effluent needs
acidification treatment, which increases the treatment cost and management difficulty.
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The biological method mainly depends on microorganisms to reduce iron and manganese
concentration in groundwater. However, the metabolism of microorganisms is influenced
by the oxygen content, and insufficient oxygen slows down the metabolism of microorgan-
isms [15]. Although oxidation and biological methods are widely used, their disadvantages
are unstable effluent quality and difficulty to control reaction conditions. In contrast, the
adsorption method has the advantages of large capacity, less energy consumption, and less
pollution [16,17]. It is widely used in removing iron and manganese from groundwater
and is considered one of the most effective methods to remove iron and manganese [18,19].
Manganese sand is the most widely used adsorbent for water adsorption of iron and
manganese ions [20].

This study aimed to determine the best conditions for the adsorption effect of modified
manganese sand. Response surface methodology can effectively optimize the optimal pro-
cess parameters and evaluate the interactions between various influencing factors [21,22].
We established a response surface model (RSM) based on single-factor experiments to
determine the optimal adsorption factors. The model helped analyze various factors af-
fecting the experiment in a limited number of experiments. Meanwhile, we analyzed the
interaction between the factors and proved the rationality of the response surface model
through experiments.

2. Materials and Methods

2.1. Experiment Material and Equipment

A standard solution of iron and manganese ions, hydrochloric acid (Sinopharm Chem-
ical Reagent Co., Ltd., Shanghai, China), NaOH (Tianjin Bodi Chemical Co., Ltd., Tianjin,
China), and manganese sand (Shenyang Keer Automation Instrument Co., Ltd., Shenyang,
China) were used in this study. MnO2 content was 40%, iron content was 15%, SiO2 content
was 18%, MnC2 content was 27%, the solubility of hydrochloric acid was <3.5%, and the
particle size was 0.9–1.7 mm. A p611 pH tester (Shanghai Youke Instrument Co., Ltd.,
Shanghai, China) and a UV-5500 ultraviolet-visible spectrophotometer (Shanghai Yuan Xi
Instrument Co., Ltd., Shanghai, China) were used for the analyses.

2.2. Preparation of High-Efficiency Manganese Sand and Determination of Removal Rate

Studies have shown that Mn2+ is very stable under acidic conditions and difficult
to remove through oxidation. Nevertheless, modified manganese sand can reduce the
lower limit of pH in the manganese removal. In order to obtain high-efficiency manganese
sand, we adopted the impregnation method to modify manganese sand [23]. Untreated
manganese sand (0.9–1.7 mm) was cleaned with deionized water to remove the impurities
on the surface and then placed in a drying oven at a constant temperature of 100 ◦C.
The dried manganese sand was put into a 500 mL beaker and mixed with 5% potassium
permanganate solution, and the mixture of manganese sand and the modifier was then
heated at 50 ◦C for 16 h in a constant-temperature water bath. Then, it was dried again for
12 h in an oven at 100 ◦C to obtain the modified manganese sand.

To confirm the effect of adsorption, we studied the removal rate of the adsorption process
and configured several water samples with different iron and manganese ion concentrations.
Briefly, 2 mg/L iron together with the manganese ion water sample and the manganese sand
adsorbent were added to a 250 mL conical flask. The pH of the solution was adjusted with
0.1 mol/L NaOH and HCl. After sealing, it was placed in a constant temperature shaker
at 25 ◦C with a rotating speed of 120 r/min. For the sampling after adsorption, a 0.45 μm
filter membrane was used. The absorbance was measured at 510 nm via o-phenanthroline
spectrophotometry (detection limit: 0.03 mg/L; the relative standard deviation of the labo-
ratory was 0.44%). The absorbance was measured at 525 nm through potassium periodate
spectrophotometry (detection limit: 0.05 mg/L; the relative standard deviation was 3.94%).
The iron and manganese ion removal rate is calculated according to Formula 1.

R =

(
C0 − Ce

C0

)
× 100% (1)
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where C0 is the initial concentration of adsorbate, mg/L. Ce is the final concentration of
adsorbate, mg/L.

2.3. Characterization of Properties

The sample pore size distribution and other parameters were determined using an
ASAP 2020 physical adsorption meter manufactured by an American microphone instru-
ment company. Nitrogen adsorption was determined at 77 K and within the range of
10−3~1.0 relative pressure (p/p0), using nitrogen as the adsorbing medium. The sample
was degassed for 2 h at 300 ◦C before the test. The micromorphology of manganese sands
before and after modification was observed using an S-4800 scanning electron microscope
(Hitachi Limited, Tokyo, Japan).

2.4. Single-Factor Experimental Design

In order to obtain reasonable experimental factors, we designed single-factor experi-
ments, which provided guidance for the design of the response surface experiments. The
single-factor experiments were based on three influencing factors: pH (4, 5, 6, 7, 8, 9);
manganese sand dosage (1.5, 2, 2.5, 3, 3.5, 4, 4.5 g/L); and initial concentration of Fe/Mn
(2, 4, 6, 8, 10). The concentrations of iron and manganese ions were 1 and 0.5 mg/L, 2
and 0.5 mg/L, 3 and 0.5 mg/L, 4 and 0.5 mg/L, and 5 and 0.5 mg/L, respectively. Three
groups of parallel tests were set up to detect the concentration of iron and manganese in the
water sample and calculate the removal rate. The appropriate value range of each factor
was determined.

2.5. Response Surface Experimental Design

The interaction of pH, the amount of adsorbent, and the initial concentration ratio
of iron and manganese ions on the adsorption of manganese sand was studied. The
adsorption conditions were optimized within the experimental range, and the experimental
design was optimized using the Box–Behnken response surface. Based on the single-factor
experiments described in Section 2.4, the range of three input variables was determined: pH
(A), manganese sand dosage (B), and the Fe/Mn initial concentration ratio (C). A central
composite design was carried out for the adsorption experiment at three levels: low (−1),
medium (0), and high (1). There were 17 groups of experiments; each group of experiments
was repeated three times, and the average value was taken as the corresponding response
value. Table 1 shows the coding values for each level.

Table 1. Variables and experimental design levels for the Box–Behnken design.

Factors Code
Levels

−1 0 1

pH A 6.5 7 7.5
Manganese sand dosage (g/L) B 3.2 3.5 3.8
Initial concentration of Fe/Mn C 3 4 5

2.6. Adsorption Kinetic Experiment

Several solutions containing 2 mg/L iron and manganese ions were prepared. Briefly,
2 g of manganese sand was weighed for each sample and put into 250 mL conical flasks
in an incubator. The temperature of the incubator was set to 25 ◦C, and the oscillation
intensity was set to 120 r/min to ensure full contact between the modified manganese sand
and the water sample. The samples were taken at 15, 30, 60, 120, 240, 360, 480, 600, and
720 min, respectively, to determine the concentration of iron and manganese ions in the
filtrate. An adsorption kinetic model of manganese sand was established to explore the
mechanism of iron and manganese removal.
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2.7. Adsorption Isotherm Experiment

Briefly, 2 g of manganese sand was weighed in a 250 mL conical flask to prepare iron
and manganese solutions with different initial concentrations. The iron and manganese
solutions with different initial mass concentrations were poured into the water samples,
and the pH value was adjusted to 7.2. The solutions were placed in a 120 r/min constant
temperature oscillator, shaken, and adsorbed for 12 h, and then samples were taken to
determine the concentration of iron and manganese ions in the filtrate. The Langmuir and
Freundlich models were used to explore the mechanism of iron and manganese removal.

3. Results and Discussion

3.1. SEM Results of Manganese Sand

The unmodified (a) and modified (b) manganese sand were scanned with a scanning
electron microscope. From Figure 1b, it can be seen that the manganese sand modified by
potassium permanganate had a loose cluster distribution, and the roughness of the surface
increased. There were many different sizes of pores on the surface of manganese sand,
which may be one of the reasons for the improvement in its adsorption performance.

  
(a) (b) 

Figure 1. SEM of unmodified manganese sand (a) and modified manganese sand (b).

3.2. Surface Area and Porosity Analysis

Compared with unmodified manganese sands, the specific surface area, the pore
volume, and the average pore size of the modified manganese sand samples in Table 2
increased by 26.9%, 41.7%, and 26.9%, respectively. During the modification process, the in-
fluence of the potassium permanganate solution on the internal thin layer and impurities of
manganese sand samples changed the micropore structure of the manganese sand samples
themselves, and through the connection of small pores, intermediate pores were formed.
With the increase in the specific surface area and pore diameter, modified manganese sand
was more beneficial to the diffusion and adsorption of iron and manganese ions.

Table 2. BET test results of manganese sand.

Sample
BET Surface Area

m2/g
Total Pore Volume

cm3/g
Average Pore Size

nm

Unmodified
manganese sand 19.281 0.060 12.451

Modified manganese
sand 24.459 0.085 15.797

The adsorption volume of manganese sand increased with the increase in relative
pressure. When the relative pressure was about 0.5 in Figure 2, the curve was divided into
two smooth curves. The hysteresis loop occurred at high pressure, and capillary condensa-
tion occurred. According to the figure, the nitrogen adsorption–desorption isotherms of
manganese sand and modified manganese sand belonged to type IV isotherms in the BDDT
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classification system. The adsorption–desorption curve revealed an obvious hysteresis
phenomenon, which was the result of nitrogen capillary condensation in the mesopore.
The adsorption effect of the modified manganese sand was improved, which showed that
the pore expanded after being corroded by potassium permanganate.

Figure 2. Nitrogen adsorption–desorption curve.

3.3. Single-Factor Experimental Results and Analysis
3.3.1. Effect of pH on the Iron and Manganese Ion Removal

PH was one of the essential factors for iron and manganese ion removal. We studied
the effect of the initial pH value on the adsorption process. As shown in Figure 3, the iron
and manganese ions’ removal rate showed an upward trend with the increase in pH. When
the pH rose from 6.0 to 7.0, the iron ion removal rate rapidly increased from 69.8% to 80.4%,
and the manganese ion removal rate rapidly increased from 62.3% to 75.5%. However,
when the pH was greater than 7, the iron and manganese ion removal rate increased slowly,
and the change was not significant.

The hydrated ion radius of H+ in water was much smaller than Fe2+ and Mn2+. Under
acidic conditions, a large number of H+ competed with iron and manganese ions for
adsorption sites [24], resulting in the low removal efficiency of iron and manganese. At
the same time, when the pH was too low, an iron filter membrane was easily formed on
the surface of manganese sand, and iron infiltrated the filter layer and interfered with the
formation of the manganese active filter membrane, thus affecting the manganese removal
effect [25,26]. However, if the pH was too high, on the one hand, the iron ions in the solution
precipitated in the form of hydroxide, which reduced the catalytic capacity, and on the other
hand, it would inhibit the production of OH−. The above results showed that when the pH
value was close to neutral, the removal rate of iron and manganese ions was significantly
improved. Based on the consideration of economic factors and manganese sand adsorption
conditions [27], the optimal pH value of manganese sand adsorption was 7.0.
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Figure 3. Effect of pH on the iron and manganese ions’ removal. R1 is the iron ion removal rate; R2 is
the manganese ion removal rate.

3.3.2. Effect of Manganese Sand Dosage on the Iron and Manganese Ion Removal

It can be seen from Figure 4 that, with the increase in manganese sand consumption,
the system had more adsorption sites, and the removal rate of iron and manganese ions
gradually increased. When the amount of manganese sand increased from 1.5 g/L to
3.5 g/L, the iron removal rate increased from 61.6% to 84.5%, and the manganese removal
rate increased from 61.1% to 74.7%. When the dosage continued to increase from 3.5 to
4.5 g/L, the iron ion removal rate slowly increased from 84.5% to 85.2%, and the manganese
ion removal rate slowly increased from 74.7% to 75.8%. This showed that increasing the
dosage of manganese sand has little effect on adsorption in this range.

With the increase in manganese sand dosage and adsorption sites, the removal rate
of iron and manganese ions increased. However, an excessive amount of manganese
sand also aggravated the collision between the particles, which was not conducive to the
adsorption of ions, and the maximum amount of the adsorbed substances when the unit
mass of the adsorbent reached equilibrium was reduced. Considering process costs and the
regeneration cost of manganese sand, we considered the amount of manganese sand used
in this test to be controlled at about 3.5 g/L. Therefore, the optimal dosage of manganese
sand was determined to be 3.5 g/L.

 
Figure 4. Effect of manganese sand dosage on the iron and manganese ion removal. R1 is the iron ion
removal rate; R2 is the manganese ion removal rate.
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3.3.3. Effect of Initial Concentration of Fe/Mn on the Iron and Manganese Ion Removal

As can be seen from Figure 5, with the increase in the initial concentration ratio
of Fe/Mn from 2 to 4, the iron ion removal rate in the solution increased from 78.4%
to a maximum of 82.9%. The manganese ion removal rate showed a decreasing trend,
and the degree of decrease became obvious after the Fe/Mn ion concentration ratio was
greater than 4.

The above phenomenon indicated that when the concentration of iron in the solution
was small, the generated iron hydroxide acted as a coagulant and adsorbed iron, so the
removal rate of iron was slightly increased. With the increase in the iron ion concentra-
tion, the system had a dynamic adsorption equilibrium. At the same time, there was a
competitive adsorption relationship between iron and manganese ions. Excess iron ions
dissociated in the solution and affected the removal of manganese ions. Therefore, a higher
Fe/Mn concentration ratio was not favorable for the removal of Fe and Mn ions. Based
on the above analysis, the reasonable initial Fe/Mn concentration ratio in this experiment
was about 4.

Figure 5. Effect of the initial concentration ratio of iron and manganese ions on the iron and man-
ganese ions’ removal. R1 is the iron ion removal rate; R2 is the manganese ion removal rate.

3.4. Analysis of Response Surface Experimental Results
Experimental Results

Based on the single-factor experimental results, 17 groups of comparative experiments
were designed by using the response surface method. The experimental results are shown
in Table 3.

Design-Expert 10.0 analysis was performed, and the experimental results are shown
in Table 4. The quadratic polynomial regression model for the interaction between pH (A),
manganese sand dosage (B), and the Fe/Mn initial concentration ratio (C) was obtained
as follows:

Y1 = 83.14 + 1.49A − 0.057B − 0.65C + 0.62AB − 0.41AC + 0.16BC − 1.42A2 − 0.97B2 − 1.18C2 (2)

Y2 = 76.04 + 1.36A + 1.15B + 0.13C − 0.75AB − 0.70AC − 2.39BC − 3.16A2 − 3.53B2 − 2.89C2 (3)

where Y1 is the predicted Fe removal efficiency (%), Y2 is the predicted Mn removal
efficiency (%), A is the pH value, B is the manganese sand dosage, and C is the initial
concentration ratio of Fe/Mn.
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Table 3. Experimental design and results.

No.
Independent Factors Removal Rate %

No.
Independent Factors Removal Rate %

A B C Fe2+ Mn2+ A B C Fe2+ Mn2+

1 −1 −1 0 79.92 65.24 10 0 1 −1 81.34 72.43
2 1 −1 0 81.60 70.24 11 0 −1 1 80.32 71.58
3 −1 1 0 78.57 69.95 12 0 1 1 80.52 68.17
4 1 1 0 82.81 71.94 13 0 0 0 83.15 75.23
5 −1 0 −1 79.37 68.32 14 0 0 0 83.24 76.37
6 1 0 −1 83.15 71.65 15 0 0 0 83.29 76.95
7 −1 0 1 78.74 69.72 16 0 0 0 82.95 75.38
8 1 0 1 80.89 70.24 17 0 0 0 83.06 76.28
9 0 −1 −1 81.78 66.27

The analysis of variance is an essential statistical method to test the significance and
suitability of regression models. The results of the analysis of variance for the regression
models of Y1 and Y2 obtained from the response surface are shown in Table 4. The F-value
was used for statistical saliency detection, and the p-value was used for each regression
coefficient. If the p-value in the model was smaller, the experimental results were more
significant. In this experiment, the p-values of the two models were <0.01, indicating
that the model had high significance and was suitable for the optimization study of this
parameter. Similarly, the F-value in Table 4 showed that the quadratic model had certain
sufficiency and significance. The p-values of the lack of fit for both models were greater than
0.05, showing that the model was consistent in the regression study. As can be seen from
the data in Table 4, the correlation coefficients of the predicted value of the model’s removal
rate and the experimental value were 0.9972 and 0.9747, respectively. This could better
reflect the removal effect of iron and manganese ions. The values of C.V. were 0.16 < 10%
and 1.20 < 10%, respectively, proving that the experiment had good accuracy and reliability.
In the model, the values of Adeq precision referred to the effective signal-to-noise ratio and
were considered reasonable if they were greater than 4. The Adeq precision values of the
two models, as shown in the table, were 45.006 > 4 and 15.392 > 4, which means the model
had high accuracy [28]. In conclusion, the results of this analysis revealed that the model
could replace the real point of the test to analyze the results.

Table 4. Analysis of variance of regression models.

Source
Sum of Squares

df
Mean Square F-Value p-Value

Fe2+ Mn2+ Fe2+ Mn2+ Fe2+ Mn2+ Fe2+ Mn2+

Model 43.87 197.39 9 4.84 21.93 279.12 30.02 <0.0001 <0.0001 significant
A-pH 17.79 14.69 1 17.79 14.69 1018.64 20.01 <0.0001 0.0029

B-Dosage 0.026 10.49 1 0.026 10.49 1.51 14.35 0.2582 0.0068
C-Fe/Mn 3.34 0.14 1 3.34 0.14 191.30 0.219 <0.0001 0.6800

AB 1.54 2.27 1 1.54 2.27 88.04 3.10 <0.0001 0.1217
AC 0.66 1.97 1 0.66 1.97 38.03 2.70 0.0005 0.1442
BC 0.10 22.90 1 0.10 22.90 5.86 31.34 0.0460 0.0008
A2 8.52 42.09 1 8.52 42.09 488.01 57.61 <0.0001 0.0001
B2 3.96 52.52 1 3.96 52.52 226.95 71.88 <0.0001 <0.0001
C2 5.84 35.21 1 5.84 35.21 334.41 48.19 <0.0001 0.0002

Residual
error 0.12 5.11 7 0.017 0.73

Lack of fit 0.047 3.05 3 0.016 1.02 1.07 1.97 0.5395 0.2613 not sig-
nificant

Pure error 0.075 2.07 4 0.019 0.52
summation 44 202.51 16

C.V.% 0.16 Adeq Precision 45.006
R2 0.9972

1.20 15.392 0.9747

Figure 6 illustrates the correlation between the predicted value and the actual value
of the removal efficiency in the response surface model. The experimental data points
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in the figure were more distributed on the straight line or on both sides of the straight
line, indicating a good fit of the model. The summary of the fitted output report showed
that the quadratic response model was suitable for explaining the relationship between
the pollutant variables, so it could be used to analyze and optimize the effect of iron and
manganese ions in water on the adsorption system.

 
(a) (b) 

Figure 6. Residual plots of Fe and Mn ions (a) and plots of predicted vs. actual values (b).

3.5. Analysis of Interaction between Factors

The response surface method overcomes the problem with orthogonal experiments,
namely that they cannot give intuitive graphics. According to the fitted quadratic equation
model, the response surfaces between different test factors can be plotted. Two-dimensional
and three-dimensional response surface maps can better explain independent variables
and interaction effects [29]. The shape of the contour can reflect the size of the interaction.
A circle indicates that the interaction between the two factors is not apparent, and an ellipse
indicates that the interaction is obvious. In other words, the greater the flattening degree
of the ellipse, the more significant the interaction between the two factors [30]. Using
this method, we analyzed and evaluated the effect of manganese sand on ion removal
according to the interaction between any two factors. An additional factor was controlled
at the intermediate level when discussing the influence of the interaction on the removal
rate. The 3D surface plots of the independent and dependent variables are illustrated in
Figures 7 and 8.

3.5.1. Interaction of Three Factors in Iron Ion Removal

It can be seen from Figure 7a–c that when the pH was 7.1–7.3, the dosage of manganese
sand was 3.4–3.6 g/L; that is, the initial concentration ratio of iron and manganese ions
was between 3.5 and 4, the 3D surface had the deepest chromaticity, and the iron ion
removal effect was better. It can be seen from the figure that the removal rate of iron ions
could be significantly improved by increasing pH, which indicated that the change in pH
significantly affected the whole adsorption system during the process of the adsorption of
iron ions by manganese sand. The figure shows that with the increase in pH, the dosage of
manganese sand, or the concentration of iron and manganese ions, the degradation rate
of iron ions first increased and then decreased. Therefore, there was an optimal matching
value between the different influencing factors, and appropriate experimental conditions
can maximize the economic benefits of the model and effectively improve the iron ion
removal rate.

Figure 7a shows the interaction between the pH value and the manganese sand dosage
and their effect on the iron ion removal rate when the initial concentration ratio of iron to
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manganese was 4. It can be seen from the figure that the two-dimensional contour line
was oval, indicating that the interaction between the pH and the dosage was significant.
Figure 7b shows the interaction between the pH and the initial concentration ratio of iron
and manganese when the dosage was fixed at 3.5 g/L. The steepness of the response
surface in the figure was not as significant as the above combination, indicating that the
interaction between the pH value and the initial concentration ratio of iron and manganese
was not as significant as the interaction between the above pH value and the dosage of
manganese sand. The slope of the pH in the response surface graph was steep, indicating
that the pH value had a greater impact on the iron removal rate than these two factors. The
interaction between the manganese sand dosage and the initial concentration ratio of iron
and manganese is shown in Figure 7c. The steepness of the response surface in the figure
was not obvious, indicating that the interaction between the dosage of manganese sand
and the initial concentration ratio of iron and manganese was not significant.

(a) (b) (c) 

Figure 7. The 3D response surface diagram of manganese sand dosage and pH (a), initial concentra-
tion ratio of Fe/Mn and pH (b), initial concentration ratio of Fe/Mn and manganese sand dosage
(c) influence iron ion removal.

(a) (b) (c) 

Figure 8. The 3D response surface diagram of manganese sand dosage and pH (a), initial concentra-
tion ratio of Fe/Mn and pH (b), initial concentration ratio of Fe/Mn and manganese sand dosage
(c) influence manganese ion removal.

3.5.2. Interaction of the Three Factors in Manganese Removal

The insignificant ellipticity of the contours in Figure 8a indicated that the interaction
between the pH and the dosage had no significant effect on the manganese ion removal rate.
When the initial concentration ratio of Fe/Mn was fixed at 4, the slope of the pH on the
response surface was very steep, indicating that the pH value had a more obvious influence
on manganese ion removal in these two factors. Under the condition of a fixed dosage,
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the removal efficiency of manganese ions changed with the increase in the pH value. It
can be seen from the response surface model that, with the increase in the pH value and
the dosage of manganese sand, the removal of Mn2+ by manganese sand first increased
and then decreased. When the dosage of manganese sand was 3.4–3.6 g/L, the pH value
remained between 6.9 and 7.3, and the removal rate of manganese ions was within the
maximum range.

As can be seen from the contour lines in Figure 8b, there was an interaction between
the pH value and the initial concentration ratio of Fe/Mn. The slope of the pH value in
the response surface was large, which means that the influence of the pH value on the
experimental adsorption process was more significant. With the increase in the pH value
from 6.5 to 7.5, the removal of Mn2+ by manganese sand first increased and then decreased.
When the concentration ratio of Fe/Mn was 3.5–4.5, and the pH value was 6.9–7.3, the
removal rate of manganese ions by manganese sand was within the maximum range.

Figure 8c shows the interaction model of the manganese sand dosage and the con-
centration ratio of iron and manganese ions at pH = 7. It can be seen that the response
surface had an “arch shape”, indicating that the interaction between these two factors in
the manganese ion removal process was very significant. When the initial concentration
ratio of Fe/Mn was constant, the removal of manganese ions first increased and then de-
creased with the increase in dosage. The slope reflecting the dosing amount in the response
surface plot was larger, indicating that when considering the interaction between these two
factors, the dosage significantly affected the removal of manganese. When the amount of
manganese sand was controlled at 3.5–3.6 g/L, and the initial concentration ratio of Fe/Mn
was controlled at 3.5–4, the removal effect of manganese ions was the best.

3.6. Validation Experiment

From the response surface analysis, it can be seen that there was an efficient combi-
nation of operating parameters for the complex interaction among the three influencing
factors. Through the optimization function of the Design-Expert software, the optimal
parameters of the reaction system were predicted as follows: pH = 7.20, the dosage of
manganese sand was 3.54 g/L, and the initial concentration ratio of iron and manganese
was 3.80. Under this optimal condition, the predicted iron ion removal rate was 83.62%,
and the manganese ion removal rate was 76.10%. In order to verify the prediction results,
three groups of parallel experiments were carried out in the same reaction system. The
average removal rate of iron ions was 82.78%, and the average removal rate of manganese
ions was 75.89%, both of which were close to the prediction values, and the relative devia-
tion was less than 1%. These results show that the model can truly reflect the influence of
the various analyzed factors on iron and manganese ion removal rate.

3.7. Analysis of Adsorption Kinetic Model

Figure 9 shows the adsorption kinetic curves reflecting the adsorption of iron and
manganese ions by manganese sand. The trends of the adsorption rate curves of the
two models were basically similar. During the initial 240 min of the adsorption process,
manganese sand had many adsorption sites, a large curve slope, and a fast adsorption
rate. With the progress in adsorption, the adsorption sites on the surface of manganese
sand were gradually occupied by iron and manganese ions, and the adsorption rate slowly
decreased until the adsorption equilibrium was reached at 480 min.
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(a) (b) 

Figure 9. The adsorption kinetic model of iron (a) and manganese (b) ions.

The quasi-primary and quasi-secondary kinetic fitting parameters are shown in
Tables 5 and 6. In the adsorption of iron and manganese ions by the unmodified manganese
sand and modified manganese sand, the fitting regression coefficients of the quasi-first-
order kinetic model were less than those of the quasi-second-order kinetic model, so it can
be described by the quasi-second-order kinetic model. Compared with the unmodified
manganese sand, the theoretical adsorption capacity of the modified manganese sand was
improved. This was because the specific surface area of the modified manganese sand
increased, and the adsorption point increased, which was conducive to increasing the
reaction residence time of the adsorbent and the adsorbate, and at the same time, increasing
the equilibrium adsorption capacity.

Table 5. Kinetic fitting parameters of the adsorption of iron ions by manganese sand.

First-Order Kinetic
Equation

Second-Order Kinetic
Equation

Qe k1 R2 Qe k1 R2

Unmodified manganese sand 0.0941 0.4701 0.9839 0.110 5.059 0.995
Modified manganese sand 0.1189 0.5564 0.9772 0.139 4.828 0.998

Table 6. Kinetic fitting parameters of the adsorption of manganese ions by manganese sand.

First-Order Kinetic
Equation

Second-Order Kinetic
Equation

Qe k1 R2 Qe k1 R2

Unmodified manganese sand 0.1026 0.4298 0.9819 0.126 3.307 0.992
Modified manganese sand 0.1261 0.4961 0.9790 0.150 3.687 0.996

3.8. Analysis of Adsorption Isotherm Model

We used the Langmuir and Freundlich models to fit the adsorption process. The
thermodynamic model parameters are shown in Table 7. The Langmuir and Freundlich
isotherm models showed a good linear relationship in Figure 10. It can be seen from Table 7
that R2

L was greater than R2
F. Obviously, the determination coefficient of the Langmuir

isotherm equation was closer to 1, and the fitting effect was good. The adsorption of the
ions by manganese sand was a single-layer surface chemical adsorption. In the quasi-
second-order kinetic model, the adsorption reaction was assumed to be a single-layer
adsorption system, and the adsorption mechanism was chemical adsorption, which was
consistent with the fitting result of the adsorption isotherm.
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(a) (b) 

Figure 10. Adsorption isotherm models of iron (a) and manganese (b) ions.

Table 7. Constants of Langmuir and Freundlich isotherms.

Langmuir Freundlich

KL qm R2 KF 1/n R2

Fe 1.97 0.395 0.9908 0.2148 0.395 0.9670
Mn 2.05 0.444 0.9918 0.2505 0.337 0.9759

4. Conclusions

In this study, we investigated the interaction of three variables (pH, the manganese
sand dosage, and the initial concentration ratio of Fe/Mn) on the removal of iron and
manganese ions using RSM. We first determined the optimal experimental range of the
three factors through single-factor experiments. ANOVA explained the significance of
the factors, and the results proved the accuracy of the model. To determine the interac-
tions between the input variables, we developed a three-dimensional response surface.
The isothermal model of the adsorption process and the adsorption mechanism were
also investigated.

(i) The Box–Behnken experimental design results showed that the interaction between
the pH value and the dosage was the most obvious for iron removal. The interaction
between the dosage and the initial concentration ratio of iron to manganese was the
most obvious for manganese removal;

(ii) The results of response surface optimization showed that when pH was 7.20, the
amount of adsorbent was 3.54 g/L, and when the initial concentration ratio of iron
and manganese ions was 3.80, the adsorption rates of iron and manganese ions by
manganese sand was higher, reaching 83.62% and 76.10%;

(iii) The adsorption of iron and manganese ions by manganese sand followed the Lang-
muir isotherm adsorption model and the quasi-second-order kinetic model. The
modified manganese sand had a remarkable adsorption effect on iron and manganese
ions and thus can be used as a good material for a new type of ion adsorbent.
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Abstract: Along with increasingly serious water pollution, water environmental problems have
become major factors that hinder the sustainable development of our economy and society. Reliable
evaluation of water quality and accurate prediction of water pollution indicators are the key links
in water resource management and water pollution control. In this paper, the water quality data
of Lanzhou Xincheng Bridge section in the Yellow River Basin and Sichuan Panzhihua Longdong
section in the Yangtze River Basin were used to establish a water quality evaluation model and
a prediction model. For the water quality evaluation model, we constructed the research samples
by means of equal intervals and uniform distribution of interpolated water quality index data
according to Environmental Quality Standards for Surface Water. The training samples were determined
by a stratified sampling method, and the water quality evaluation model was established using
a T-S fuzzy neural network. The experimental results show that the highest accuracy achieved by
the evaluation model in water quality classification was 94.12%. With respect to the water quality
prediction model, we propose ARIMA-WNN, which combines the autoregressive integrated moving
average model (ARIMA) and a wavelet neural network (WNN) with the bat algorithm (BA) to
determine the optimal weight of each individual model. The experimental results show that the
highest prediction accuracy of ARIMA-WNN is 68.06% higher than that of the original model.

Keywords: water quality evaluation; water quality forecasting; T-S fuzzy neural network;
combined model

1. Introduction

Water is the foundation of human existence and the driving force for social stability
and a nation’s prosperity. However, water resource management has been ignored and
forgotten for a long time. It was not until the mid-19th century that, due to the rapid
development of industry, water pollution became increasingly serious and water resource
management became increasingly prominent. [1]. Since then, the declining water quality
of rivers, lakes and groundwater has become a global problem. Although an increasing
number of countries has begun to attach importance to water resources and implement
a series of protection measures for the sustainable development of water resources, the
water resources environment is still deteriorating, with increasing pollution and waste
caused by economic development, the acceleration of urbanization and population growth.

The river pollution situation is serious. The water quality level has fallen to IV or
worse in 31.4% of the more than 208,000 km of managed river sections in China and below
class V in 14.9% of managed sections, indicating that water resources have completely lost
their potential for daily use [2]. Of the ten major river basins in China, only some in the
southwest and northwest have moderate water quality (categories I to III), and the major
river systems in the north, such as the Yellow River, Liao River and Huai River, are rated IV
or V. The declining self-purification ability of rivers and deteriorating industrial wastewater
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management have further worsened the water quality of small tributaries flowing into the
major rivers of our country.

Lakes are also heavily polluted. The water quality of nearly half of the 62 key lakes
in the country is of grades IV and V or inferior. The three major lakes in China, Taihu
Lake, Chaohu Lake and Dianchi Lake, are polluted to varying degrees, in states of mild,
moderate and severe pollution, respectively, with total phosphorus and chemical oxygen
demand representing the main pollutants.

The groundwater quality situation is also worrying. In China’s major cities,
27 percent of centralized drinking water sources do not meet official standards. Among the
5118 groundwater monitoring points in various provinces and cities across the country,
the proportion of poor and extremely poor water quality is more than half, threatening
people’s daily water use [3,4].

Water environmental problems have become a major factor hindering the sustainable
development of China’s economy and society, and the effective treatment of water pollu-
tion and the rational management of water resources are urgent problems to be solved.
The accurate prediction of water quality indicators and the reliable evaluation of water
quality grades are the basis for understanding the current water quality status and taking
corresponding protection measures, so water quality prediction and evaluation have great
practical significance.

In this paper, we take the water quality of Lanzhou Xincheng Bridge section in Yellow
River Basin and Longdong section in Yangtze River Basin as the research object, establish
a water quality evaluation model and propose a new water quality prediction model.

A T-S fuzzy neural network was used to establish the evaluation model combined
with the relevant water quality information of the two basins. In the process of model train-
ing, an innovative method of interpolating water quality index data with equal intervals
and uniform distribution was adopted to construct research samples, and the method of
stratified sampling was used to construct training samples. The trained model was applied
to water quality evaluation of Lanzhou Xincheng Bridge section in the Yellow River Basin
and Longdong section in the Yangtze River Basin. A total of 52 groups were randomly
selected from the real water quality index data from 2004 to 2015, and the results of water
quality status were output and compared with the real water quality grade to prove the
effectiveness and generalizability of the evaluation model.

Furthermore, a new model is proposed for water quality prediction, which combines
the autoregressive integrated moving average (ARIMA) model and the wavelet neural
network (WNN) mode with the bat algorithm to determine the optimal weight of each
individual model. The combined model was used to predict the water quality indices of
Lanzhou Xincheng Bridge section in the Yellow River Basin and Longdong section in the
Yangtze River Basin. First, 624 weekly monitoring data points of each indicator from 2004 to
2015 were used as the training set, and 52 data points from 2016 were used as the validation
set. ARIMA and WNN were used for prediction. The empirical mode decomposition
(EMD) algorithm was used to denoise the data before WNN prediction [5]. Secondly, the
bat algorithm was used to determine the optimal weight; the final prediction result was
the weighted sum of the prediction results of ARIMA and WNN. Then, the prediction
results of the combined model were compared and analyzed relative to the prediction
results of three individual models (backpropagation (BP), neural network and least squares
support vector machine (LSSVM)) to prove the ability of the proposed combined model
for water quality prediction [6,7]. Finally, the prediction results of each index in 2016 were
substituted into the previously established water quality evaluation model, and the output
results had a high coincidence rate with the real water quality grade, which further verified
the effectiveness of the evaluation model.
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2. Literature Review

2.1. Research Status of Water Quality Evaluation

At present, multivariate statistical methods are widely used in water quality evalua-
tion and analysis abroad. Singh K P et al. (2005) applied multivariate statistical methods
to the water quality evaluation of eight monitoring sites of the Gomti River in India from
1999 to 2001, demonstrating the advantages of multivariate statistical methods in pro-
cessing and evaluating a large number of complex water quality datasets and obtaining
effective water quality evaluation results [8]. Shrestha S et al. (2007) collected a total of
14,976 data points measuring 12 water quality indicators at 13 different monitoring points
from 1995 to 2002 using multivariate statistical tools for spatiotemporal variable analysis
of a large set of complex water quality data of the Fuji River. The water quality status of
the 13 observation points was divided into three categories by stratified cluster analysis:
mild, moderate and severe pollution [9]. Zhang X et al. (2011) used the monthly data of
23 indicators from 16 different monitoring points in southwest Kowloon, Hong Kong, from
2000 to 2007, employing hierarchical cluster analysis to divide the 12 months into two
periods and the 16 monitoring points into three categories. Discriminant analysis provides
analysis results from both spatial and temporal aspects. Among the 23 indicators, 4 are
the main factors affecting the temporal distribution, and 8 indicators are the main factors
affecting the spatial distribution [10]. Ogwueleka T C (2015) used principal component
analysis, cluster analysis and factor analysis to study the water quality of the Kaduna River
and analyze the potential pollution factors of the river [11]. The multivariate statistical
method is a classical method for water quality assessment and management, but it cannot
provide comprehensive information about water quality. On this basis, in this study, the
selected neural network constantly updates and iterates the model parameters, adjusts
the weights and thresholds to the state that can output the optimal results and applies the
trained model to the evaluation task.

2.2. Research Status of Water Quality Prediction

Previously proposed water quality prediction models are based on qualitative analysis.
Water quality prediction was first studied in 1925, when Phelps and Streeter proposed the
S-P model to track BOD-DO changes in water quality. Since then, with the worsening global
water pollution and drinking water crises, an increasing number of water quality prediction
models have been proposed. However, due to the complexity of water environments, it
is difficult to obtain accurate prediction results with traditional mathematical models, so
scholars began to use neural networks to predict water quality. Singh KP et al. (2009)
used the monthly data of 11 water quality indicators from 8 different monitoring points
over 10 years to establish two BP neural network models, 11-23-1 and 11-11-1, to calculate
the levels of dissolved oxygen and biochemical oxygen demand of Gomti River in India
and indirectly judge the water quality [12]. Seo IW et al. (2016) used an artificial neural
network model to predict eight water quality indicators downstream of Cheongpyeong
Dam [13]. Zhang ran et al. (2013) established a GM(1,1) model to predict the water quality
of the Yellow River estuary from 2012 to 2015 [14]. Zhang Ying et al. (2015) took the section
of Shanghai Qingpu Urgent Water Port in Taihu Lake Basin as an example and applied
the gray model after residual correction of an extreme learning machine regression model
for the prediction of water quality indicators. They used the data of the first 100 days of
2013 of six water quality indicators, including dissolved oxygen and chemical oxygen de-
mand, to predict the data of the 101st to 110th days [15]. Xu Hongmin et al. (2007) proposed
a weighted support vector regression model to predict the concentration of permanganate
in Taihu Lake Basin using the same method; the results showed that the prediction accuracy
of this algorithm was higher than that of SVM and RBF neural network alone [16]. Accord-
ing to the idea of neural network weighting introduced in the abovementioned literature,
in this study, we designed and implemented a mixed model to predict water quality.
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3. Materials and Methods

3.1. T-S Fuzzy Neural Network

T-S fuzzy neural network is a new fuzzy neural network proposed by Takagi and
Sugeno in 1985 [17]. Fuzzy reasoning rules are adopted in ‘i f then′ form:

Ri : I f x1 is Ai
1, x2 is Ai

2, . . . , xk is Ai
k then yi = pi

0 + pi
1x1 + . . . + pi

kxk (1)

where ‘i f then′ are the front part and back part of fuzzy rules, respectively (the former is
the input part of fuzzy rules, and the latter is the determined output); Ai

j is a fuzzy set of

fuzzy models; pi
j(j = 1, 2, . . . , k) is a fuzzy model parameter; and yi is the output of the

fuzzy rules. The process shows that the output is a linear combination of inputs, as shown
in Figure 1.
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Figure 1. Structural diagram of T-S fuzzy neural network.

3.2. ARIMA

The autoregressive integrated moving average (ARIMA) model was proposed by Box
and Jenkins in the 1970s [18]. It is based on the autoregressive model (AR) proposed by
Yule in 1927 and the combination of the moving average model (MA) and autoregressive
moving average model (ARMA) with AR and MA proposed by Walker in 1931 [19–21]. In
this model, the future value of a variable is considered a linear combination of past values
and past errors:

yt = θ0 + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + εt − θ1εt−1 − θ2εt−2 − . . . − θqεt−q (2)

ϕ(B)∇dyt = θ(B)εt (3)

where yt is the actual value; εt is the random error at time t; ϕi and θj are the coefficients;
p and q are the orders of autoregressive and sliding average polynomials, respectively;
B represents the lag operator, where Δd = (1 − B)d; d is the number of differences; and
ϕ(B) and θ(B) are defined as:

ϕ(B) = 1 − ϕ1B − ϕ2B2 − . . . − ϕpBp (4)

θ(B) = 1 − θ1B − θ2B2 − . . . − θqBq (5)

3.3. Wavelet Neural Network

Wavelet neural network (WNN) is a neural network model that combines wavelet
transform and artificial neural network, which replaces the excitation function of the
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traditional neural network with the wavelet basis function. It was first proposed in 1992 by
Zhang Q and Benveniste A of LRISA, a famous French information science institute [22].
The combination of wavelet transform and neural network provides unique advantages.
In recent years, it has been widely used in nonlinear function approximation, dynamic
modeling and non-stationary time series prediction. X1, X2, . . . , Xk are input parameters,
ωij and ωjk are connection weights and Y1, Y2, . . . , Ym are predicted outputs. The formula
for calculating the output of the hidden layer is:

h(j) = hj

[
∑k

i=1 ωijxi−bj
aj

]
, j = 1, 2, . . . , l (6)

where hj is the wavelet basis function; aj and bj are the scale factor and translation factor
of the wavelet basis function, respectively; ωij is the connection weight between the input
layer and the hidden layer; and h(j) is the output value of the node of the seventh hidden
layer. The calculation formula of the output layer is:

y(k) =
l

∑
j=1

ωjkh(j) k = 1, 2, . . . , m (7)

where ωjk is the connection weight between the hidden layer and the output layer, and y(k)
is the output value.

3.4. ARIMA-WNN

Actual time series data often have both linear and nonlinear characteristics, and
ARIMA or WNN alone cannot reflect the dual linear and nonlinear characteristics of time
series. In order to simultaneously utilize the good linear fitting ability of the differential
autoregressive moving average model and the powerful nonlinear relationship mapping
ability of the wavelet neural network model, we combine ARIMA and WNN methods.

Assuming yt(t = 1, 2, . . . , L) is the actual value of the time series, L is the number of
sample points, and ŷt and ŷit(i = 1, 2, . . . , N, t = 1, 2, . . . , L) is the predicted value of the
combined model and the first single method, respectively; then:

ŷt =
N
∑

i=1
λi ŷit (8)

where λi is the weight of the prediction method, and ∑N
i=1 λi = 1. The weight coefficients

of each of the component models in the combined model are determined by solving the
following optimization problems:

Min
L
∑

t=1
(yt − ŷt)

2, s.t.
N
∑

i=1
λi = 1, 0 ≤ λi ≤ 1 (9)

On this basis, we propose a new combination model composed of the ARIMA model
and WNN [23]. The optimal weight of a single model is obtained by the bat algorithm, and
the predicted value of the combination model is expressed as follows:

PΣ = λ1PWNN + λ2PARIMA (10)

where PΣ is the final predicted value; λ1, λ2, PWNN , PARIMA are the weight coefficients and
predicted values of WNN and ARIMA models, respectively; and λ1 + λ2 = 1, as shown
in Figure 2.
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Figure 2. ARIMA—WNN structure.

3.5. Bat Algorithm

The bat algorithm (BA) is a swarm intelligence optimization algorithm that simulates
the behavior of bats to hunt down prey, which was proposed by Yang X S in 2010 [24]. Let
the bat search for prey in the n dimensional space at the moment of t − 1; the flight speed
and position of bat i are vt−1

i , xt−1
i , respectively; then, the update rules of the bat’s flight

speed (vt
i ) and location at time t are:

fi = fmin + ( fmax − fmin) ∗ β (11)

vt
i = vt−1

i +
(

xt−1
i − x∗

)
∗ fi (12)

xt
i = xt−1

i + vt
i (13)

Among them, β ∈ [0, 1] is a uniformly distributed random number; fmax and fmin
are the maximum and minimum search frequency, respectively; the bat’s pulse search
frequency is fi; and fi ∈ [ fmin, fmax]. The bat algorithm controls the prey hunting range of
bats by adjusting fi and controls the global search in the whole updating process, which is
the optimal solution for the current bat population.

For a local search, the bat algorithm is completed by random disturbance. Each
bat randomly selects one solution from the current optimal solution set as the current
optimal solution (xold); then, we use the following formula to update the position to obtain
a new solution:

xnew = xold + εAt (14)

where ε ∈ [−1, 1] is a random number, and At is the average loudness of all bats at time t.

3.6. Materials

(1) ADF

The ADF test determines whether the series is stationary by checking whether the
sum of the autoregressive coefficients is 1 [25]. Compared with the DF test, which can only
be used to determine whether the AR(1) model is stationary, the ADF test can be used to
determine the stationarity of the AR(P) model. The hypothesis test is established as:

H0 : ρ = 0

H1 : ρ < 0

The test statistic is:
τ = ρ̂

S(ρ̂) (15)

where ρ = ϕ1 + Λ + ϕp − 1, and S(ρ̂) is the sample standard deviation of parameter ρ.
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(2) AF

The autocorrelation function describes the correlation between the random sequence
at time t and the value at time t − k [26].

ρk =
Cov(yt ,yt−k)√

Var(yt)
√

Var(yt−k)
=

E[(yt−μ)(yt−k−μ)]√
Var(yt)

√
Var(yt−k)

= γk
σ2 (16)

where E(yt) = μ, σ2 = E(yt − μ)2, and γk denotes the covariance of yt and yt−k.

(3) PAF

The partial autocorrelation function shows that for sequence yt in determining yt−1,
yt−2, . . . , yt−k+1, the correlation between yt and yt−k is denoted by ϕkk [26]:

ϕkk =

⎧⎨
⎩

γ1 k = 1
γk−∑k−1

j=1 ϕk−1,jγk−j

1−∑k−1
j=1 ϕk−1,jγj

k = 2, 3, . . .
(17)

(4) The AIC criterion

The AIC criterion was proposed by Japanese statistician Hiroji Akike as a measure of
model fit excellence [27].

AIC = n log σ2 + 2(p + q) (18)

where n is the number of samples; σ2 is the sum of squares of the fitted residuals; and
p and q are the orders of the AR and MA models, respectively. Models are established
from low-order to high-order according to the ARIMA values, and the AIC value of each
model is calculated. According to the criterion, the model with the lowest AIC value is the
optimal model.

(5) MAE

Mean absolute error (MAE) is a measure of accuracy for regression [28]. It sums up
absolute values of errors and divides them by the total number of values. It gives equal
weight to each error value. The formula for calculating MAE is shown in Equation (19).

MAE = ∑ (|ŷi−yi |)
n (19)

(6) MAPE

The reason why mean absolute percentage error can describe accuracy is that it is
often used as a statistical index to measure the accuracy of prediction [29].

MAPE = 1
n ∑

(∣∣∣ ŷi−yi
yi

∣∣∣) ∗ 100% (20)

(7) RMSE

Root mean squared error (RMSE) is the square root of MSE and scales the values of
MSE to the ranges of observed values [28]. It is estimated according to Equation (21).

RMSE =

√
∑ (|ŷi−yi |)2

n
(21)

(8) AI

In this paper, a new index (AI, accuracy improvement) is introduced to show the im-
provement of prediction ability of the combined model compared with the single model [30].
Si and Sc are the MAPE of the single model and combined model, respectively.

RI = |Si−Sc |
Si

× 100% (22)
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4. Results and Discussion

4.1. Water Quality Evaluation Model
4.1.1. Data Preprocessing

The three water quality monitoring indicators used in this paper are from the data
center of the Ministry of Environmental Protection (http://datacenter.mep.gov.cn/index
(accessed on 1 September 2021)): dissolved oxygen (DO), chemical oxygen demand per-
manganate (CODMn) and ammonia nitrogen (NH3-N). The corresponding water quality
grades of each index value are shown in Table 1:

Table 1. Environmental quality standards for surface water (GB3838-2002).

Classification Class I Class II Class III Class IV Class V Class Inferior V

DO/(mg · L−1) ≥ 7.5 6.0 5.0 3.0 2.0 rest
CODMn/(mg · L−1) ≤ 2.0 4.0 6.0 10 15 rest
NH3-N/(mg · L−1) ≤ 0.15 0.50 1.0 1.5 2.0 rest

In order to solve the problem of inadequate sample size due to only taking the water
quality evaluation grading standard as the research sample, the water quality index data
are interpolated by the method of equal interval and uniform distribution [31]. For the
convenience of modeling, the output value is continuous, and its value range is (0.5,6.5).
The relationship between output value and water quality grade is shown in Table 2.

Table 2. Corresponding water quality grade of output values.

Output Value Water Quality Grade

0.5 < y ≤ 1.5 Class I
1.5 < y ≤ 2.5 Class II
2.5 < y ≤ 3.5 Class III
3.5 < y ≤ 4.5 Class IV
4.5 < y ≤ 5.5 Class V
5.5 < y ≤ 6.5 Class inferior V

4.1.2. Model Building Process

In this study, T-S fuzzy neural network is used to evaluate water quality. The number
of input and output nodes of the model is determined by the input and output dimensions
of training samples. According to the index data considered in this paper, the input and
output dimensions are determined to be three and one, respectively, so the number of
input and output nodes is three and one, respectively. Through trial-and-error method, the
number of hidden layer nodes is determined to be six, so the structure of water quality
evaluation model is as follows: 3–6–1 [32]. The four coefficients (P0, P1, P2 and P3), the
width (b) and center (c) of the membership function were randomly initialized.

After normalizing the input data, training of each parameter in the model was
started [33]. After 100 iterations, the network finally converged, and the training error
was 3.46 * 10−4.

4.1.3. Water Quality Evaluation of Lanzhou Xincheng Bridge Section

The process of water quality evaluation is realized in MATLAB, and the confusion
matrix and water quality evaluation chart are output, as shown in Figure 3 [34]:

 

Figure 3. Water quality grade confusion matrix of Lanzhou Xincheng Bridge section.
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In classification models, confusion matrices are often used to observe and judge the
number of correct and incorrect classifications. As shown in Figure 3, among the 52 weeks
of random sampling, correct in water quality evaluation was achieved for 47 weeks, and
the total correct judgment rate reached 90.38%. The correct prediction rate of class II and
class III water quality was 91.11% and 85.71%, respectively. Class II water quality was
misjudged as class I for one week, class II water quality was misjudged class as III for three
weeks, and class III water quality was misjudged class II for one week.

The total number of correct and incorrect judgments and the corresponding water
quality grade can be determined according to the above analysis, but it is not clear in which
week the incorrect judgment occurred. This information can be obtained from the water
quality evaluation chart presented below.

In Figure 4, the x-axis indicates the number of weeks; the y-axis indicates the water
quality evaluation; and the green dot and the red dots represent the real water quality
grade and the water quality grade determined by the model, respectively. Overlapping
of the red and green dots indicates that the water quality level is correctly judged for that
week, whereas divergence indicates an incorrect judgment. As shown in Figure 4, the water
quality grade is concentrated in class II and class III, which is not accidental because during
the whole time period from 2004 to 2015, the water quality grade is mainly class II and class
III. Five of the fifty-two water quality grades were incorrectly judged; details are shown
in Table 3.

Figure 4. Water quality evaluation of Lanzhou Xincheng Bridge section.

Table 3. Water quality grade misjudgment of Lanzhou Xincheng Bridge section.

Week True Water Quality Misjudged Quality

1 II I
4 II III
9 II III
37 II III
38 III II

4.1.4. Water Quality Evaluation of Longdong Section

Similarly, the trained T-S fuzzy neural network is applied to the water quality evaluation
of Longdong section in Panzhihua, Sichuan, in the Yangtze River Basin, with a confusion
matrix and water quality evaluation map as output, as shown in Figures 5 and 6, respectively.

127



Appl. Sci. 2023, 13, 1286

 

Figure 5. Confusion matrix of water quality grades in the Longdong section.

Figure 6. Water quality evaluation of Longdong section.

According to the confusion matrix, the water quality grade was correctly judged
for 46 weeks and incorrectly judged for 6 weeks; the total correct judgment rate reached
88.46%. The correct judgment rates of class I and II water quality were 94.12% and 82.35%,
respectively. Class I water quality was misjudged as class II for two weeks, class II was
misjudged as class I for three weeks and class III was misjudged as class II for one week.

As shown in Figure 6, the water quality was mainly classified as class I and class II for
the 52-week investigation period. In the 12th and 17th weeks, water quality in class I was
incorrectly classified as class II; in the 21st, 42nd and 48th weeks, the water quality in class
II was incorrectly classified as class I; and in the 14th week, the water quality in class III
was incorrectly classified as class II. Results are shown in Table 4:

Table 4. Misjudgment of water quality grade in Longdong section.

Week True Water Quality Misjudged Quality

12 I II
14 III II
17 I II
21 II I
42 II I
48 II I

The water quality evaluation results presented above indicate that an ideal state was
achieved in all investigated river basins. In the Yellow River in Lanzhou Xincheng Bridge
section and Panzhihua, Sichuan province, in the Yangtze River Basin Longdong section, the
water levels were correctly classified at rates of 90.38% and 88.46%, respectively, indicating
that the trained T-S fuzzy neural network achieved satisfactory quality evaluation with
good generalization ability.
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4.2. Water Quality Prediction Model
4.2.1. Water Quality Prediction of Lanzhou Xincheng Bridge Section

For prediction with the ARIMA model, we used E-views10 software, which is created
by IHS Global Inc in the State of California, United States. An original sequence dia-
gram was generated to intuitively judge whether the data sequence was stable, as shown
in Figure 7.

 

Figure 7. Original dissolved oxygen values.

In Figure 7, the x-axis shows the time in months, and the y-axis shows dissolved
oxygen in milligrams per liter. The series in the figure does not indicate an obvious trend
or seasonality, so it was preliminarily judged to be stationary series [35]. For further confir-
mation, an ADF unit root test was performed. The results show that the ADF test statistic
is less than the critical value at levels of 1%, 5% and 10%, so the dissolved oxygen series is
stationary and does not require differential processing [36]. An autocorrelation diagram
and partial autocorrelation diagram were generated for model order determination, as
shown in Figure 8.

As shown in Figure 8, the trailing and censoring characteristics of the autocorrelation
function and partial autocorrelation function are very obvious in the dissolved oxygen
data series. The decay of the autocorrelation function is very slow, which is a typical
characteristic of trailing. However, the partial autocorrelation function rapidly decays to
within two times the standard deviation after two steps, so the AR(2) model is determined.
The estimation results of the model are shown in Table 5.

The R2 of the model reached 79.34%, and an adaptability test was conducted on
the AR(2) model was conducted, i.e., a white noise test of the residuals, as shown in
Figure 9 [37]:

As shown in Figure 9, the autocorrelation and partial autocorrelation functions of
the residual sequence both fall within two standard deviations, and the P value is signifi-
cantly greater than 0.05. Therefore, it is a white noise sequence, indicating that the useful
information in the original sequence has been extracted and the model has passed the
adaptability test. Then, the AR(2) model established in this paper is used to predict the test
data. A comparison between the predicted value and the real value is shown in Figure 10.
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Figure 8. Autocorrelation and partial autocorrelation of dissolved oxygen.

Table 5. Parameter estimation of the AR(2) model.

Variable Coefficient Standard Error T Statistic p Value

C 8.16 0.20 40.13 <0.001
AR(1) 0.78 0.04 20.46 <0.001
AR(2) 0.11 0.04 2.99 <0.001

 
Figure 9. White noise test of residual value.
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Figure 10. ARIMA Prediction Diagram.

In Figure 10, the x-axis represents time, the y-axis represents the concentration of
DO, the blue line represents the predicted value of the ARIMA model and the orange line
represents the real value. We can intuitively observe that the coincidence degree of the two
lines is relatively high, which indicates that the prediction effect of the ARIMA model is
strong. Before using wavelet neural network for prediction, the irrelevant noise in the data
is removed. The empirical mode decomposition (EMD) of the dissolved oxygen sequence
was carried out by MATLAB, as shown in Figure 11:

Figure 11. EMD diagram of dissolved oxygen.

The original data series were decomposed into eight intrinsic mode functions (IMFs)
and a residual sequence. The frequency decreases from IMF1 to IMF8, and each IMF has
its own unique frequency and cycle [38]. Due to the high-frequency property of IMF1 and
its chaotic fluctuation trend, it was removed on the basis of the original data sequence
too obtain a new sequence after denoising. The original sequence was denoised as shown
in Figure 12:

131



Appl. Sci. 2023, 13, 1286

Figure 12. Comparison of dissolved oxygen sequence before and after denoising.

The denoised sequence is smoother than the original sequence, showing its original
fluctuation trend more clearly. Therefore, the denoised sequence can be used for subsequent
experimental demonstration and analysis.

First, a three-layer forward neural network is created, the parameters of each network
are initialized and a training set is constructed to train the wavelet neural network. The
data for weeks T-1, T-2, T-3 and T-4 are used to predict the number of neurons in week
T. Therefore, the number of neurons in the input layer and output layer is four and one,
respectively, and the number of neurons in the hidden layer is nine, as determined by the
trial-and-error method; therefore, the structure of the wavelet neural network proposed in
this paper is 4–9–1. The Morlet wavelet function is selected as the wavelet basis function,
the number of iterations is set as 100, the learning probability is 0.001 and the training target
is 10−6. The weight and parameters of the network are modified by gradient correction
method so that the predicted output is close to the desired output [39]. The predicted result
is output and compared with the real value, as shown in Figure 13.

Figure 13. WNN prediction diagram.

The bat algorithm is used to determine the coefficients of each model, and the process
of determining the optimal weight is transformed into the process of hunting prey by bats;
therefore, the combined prediction model of dissolved oxygen in Lanzhou Xincheng Bridge
section of the Yellow River Basin is as follows:

PDO = 0.1495PWNN + 0.8505PARIMA
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The combined prediction model of permanganate and ammonia nitrogen was obtained
according to the same steps:

PCODMn = 0.7852PWNN + 0.2148PARIMA

PNH3−N = 0.3274PWNN + 0.6726PARIMA

4.2.2. Forecast Results and Analysis

The MAPE, MAE, RMSE of DO, CODMn and NH3-N in 2016 under the single model
and combined model prediction, as well as the degree of improvement of the combined
model compared with the single model prediction ability were obtained according to the
modeling process described above, as shown in Tables 6 and 7, respectively.

Table 6. Comparison of water quality index predictions.

Water Quality Index Prediction Accuracy Index ARIMA WNN Combined Model

DO
MAPE 2.73% 5.57% 2.58%
MAE 0.2395 0.4716 0.2248
RMSE 0.2867 0.5587 0.2758

CODMn

MAPE 19.64% 12.97% 11.96%
MAE 0.4885 0.3517 0.3160
RMSE 0.6853 0.4611 0.4079

NH3-N
MAPE 16.18% 17.40% 13.85%
MAE 0.0320 0.0307 0.0268
RMSE 0.0427 0.0324 0.0324

Table 7. Improvement in the predictive ability of the combined model relative to the single model.

DO CODMn NH3-N

AIARIMA 5.49% 39.10% 14.40%
AIWNN 53.68% 7.79% 20.40%

For the three water quality indicators, the MAPE, MAE and RMSE values of the
combined model are lower than those of the single model, and the prediction effect is better.
In the prediction of DO, CODMn and NH3-N, the prediction accuracy of the combined
model is improved by 5.49% and 53.68%, 39.10% and 7.79%, and 14.40% and 20.40%
compared with the ARIMA model and WNN, respectively.

For a particular set of data, a higher weight is assigned to a single model of the
combined model, which indicates that the method has a better predictive ability. Taking DO
as an example, the prediction accuracy of the ARIMA model is higher than that of WNN,
and it has a better prediction ability. In the ARIMA-WNN model, the bat algorithm was
used to calculate the weights of the two individual models as 0.8505 and 0.1495, respectively,
meaning that the individual model with better prediction ability had more weight and
proving the reliability of to the bat algorithm to determine the weight coefficient in the
combined model. The combined model of water quality prediction proposed in this paper
was compared with the prediction results of each individual model, the BP neural network
and LSSVM. The results are shown in Figures 14–17:

As shown in the figures presented above, the MAPE, MAE and RMSE of the combined
model are significantly lower than those of the comparison models. The fitting figures of
the real and predicted values also show that the water quality prediction model proposed
in this paper has a higher fitting degree to the real data.
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Figure 14. Comparison of each model fitting for dissolved oxygen.

Figure 15. Comparison of each model fitting for CODMn.

Figure 16. Comparison of each model fitting for NH3-N.

4.2.3. Water Quality Prediction of Longdong Section

In order to verify the predictive ability of the combined model proposed in this
paper for different water systems, the water quality index data of the Longdong section of
Panzhihua in Sichuan Province of the Yangtze River Basin are selected for prediction and
analysis. The modeling results are as follows:

PDO = 0.1044PWNN + 0.8956PARIMA

PCODMn = 0.0432PWNN + 0.9568PARIMA

PNH3−N = 0.8646PWNN + 0.1354PARIMA

The improvement in the prediction accuracy and combined model prediction ability
of the single and combined models for each indicator are compared in Tables 8 and 9.
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Figure 17. Comparison of the combined model with other models.

As shown in Table 8, the prediction effect of the combined model is better than that
of each single model. For DO, CODMn and NH3-N, the combinatorial model outper-
formed the ARIMA model by 2.99%, 6.73% and 68.06%, respectively, in terms of predic-
tion ability and outperformed the prediction of the WNN model by, 58.33%, 66.17% and
11.67%, respectively.

In the prediction of various indicators of the Longdong section of Panzhihua in Sichuan
in the Yangtze River Basin, the bat algorithm still assigns more weight to the single model
with better prediction ability and less weight to the single model with poor prediction
ability. With respect to DO, the MAPE value predicted by the wavelet neural network
is 4.68%, compared with 2.01% for the ARIMA model, which suggests that the ARIMA
model achieves better predictive performed; therefore, in the combinatorial model, the
bat algorithm assigns it a weight of 0.8956, whereas the WNN only assigns it a weight of
0.1044. In comparison with a BP neural network and LSSVM, the prediction accuracy of
the combined model proposed in this paper is higher; the comparison results are shown
in Figures 18–21.

In the prediction of various water quality indices in the Longdong section of Panzhihua,
Sichuan, in the Yangtze River Basin, the prediction effect of the combined model is better
and the accuracy is higher than that of the single model, the BP neural network and the
LSSVM, indicating that the combined model proposed in this paper is suitable for water quality
prediction in different river basins, with satisfactory generalization performance [40].
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Table 8. Comparison of single and combined model prediction accuracy of each indicator.

Water Quality Indicator Prediction Accuracy Indicator ARIMA WNN Combined Model

DO
MAPE 2.01% 4.68% 1.95%
MAE 0.1860 0.4116 0.1815
RMSE 0.2481 0.5201 0.2446

CODMn

MAPE 6.39% 17.62% 5.96%
MAE 0.1169 0.3220 0.1045
RMSE 0.1578 0.5055 0.1498

NH3-N
MAPE 27.02% 9.77% 8.63%
MAE 0.0236 0.0092 0.0088
RMSE 0.0315 0.0144 0.0148

Table 9. Improvement in the predictive power of the combined model compared to a single model.

DO CODMn NH3-N

AIARIMA 2.99% 6.73% 68.06%
AIWNN 58.33% 66.17% 11.67%

Figure 18. Comparison of model prediction of dissolved oxygen.

 

Figure 19. Comparison of model prediction of CODMn.
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Figure 20. Comparison of model prediction of NH3-N.

Figure 21. Combined model compared to other models.

4.2.4. Water Quality Evaluation in 2016

The results in presented in Section 4.1.3 prove that the trained T-S fuzzy neural network
described in this paper has excellent ability in the determination of water quality grade. On
this basis, the water quality index data of two sections predicted for 2016 were substituted for
water quality evaluation. The results are shown in Tables 10 and 11 and Figures 22 and 23.
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Figure 22. Water quality evaluation of Lanzhou Xincheng Bridge section in 2016.

Figure 23. Water quality evaluation of Longdong section in 2016.

Water quality evaluation using the T-S fuzzy neural network trained as described in
this paper revealed that among the 52 weeks of 2016, water quality was misjudged in the
Lanzhou Xincheng Bridge section of the Yellow River Basin and the Longdong section of
Panzhihua, Sichuan, the Yangtze River Basin for 7 and 10 weeks, respectively, with total
correct judgment rates of 86.54% and 80.77%, respectively. Because the input data contain
errors, this result is acceptable, verifying the reliability of the water quality evaluation
model trained as described in this paper.

5. Conclusions

Water quality evaluation and prediction are not two completely independent proce-
dures. On the contrary, they form a mutually dependent system and complement each
other. Accordingly, in this study, we established a water quality evaluation–prediction
system, established a water quality evaluation model using a T-S fuzzy neural network and
constructed research samples by interpolating water quality index data evenly distributed
on the basis of each index grading standard stipulated in the Environmental Quality Stan-
dards for Surface Water. A stratified sampling method is used to construct training samples.
The trained T-S fuzzy neural network was applied to the water quality evaluation of the
Lanzhou Xincheng Bridge section in the Yellow River Basin and the Longdong section in
the Sichuan Panzhihua section in the Yangtze River Basin, with total positive water quality
grade evaluation rates of 90.38% and 88.46%, respectively, indicating the positive water
quality evaluation effect and generalizability of the model.
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For the prediction of water quality, in this paper, we proposed a new combined model,
ARIMA-WNN, which establishes the combined prediction model for each water quality
index of the two basins and compares the prediction results with the combined model.
The results show that compared with the single model, the combined model (ARIMA-
WNN) has a higher prediction accuracy, and the prediction ability can be improved by up
to 68.06%. Compared with commonly used water quality prediction models (BP neural
network and LSSVM), we found that the MAPE, MAE and RMSE of the combined model
are significantly lower, which demonstrates the excellent water quality prediction ability of
the combined model.

Determining reasonable weight coefficients for each single model in the combined
model is the basis for obtaining accurate prediction results, and in this study, we used
the bat algorithm to achieve this process. Swarm intelligence optimization algorithms
have developed rapidly in recent years, and a variety of new methods have emerged in
succession [41]. Determining the optimal weight is a subject that can be studied in depth,
and additional methods should be proposed and tested in subsequent work [42].
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Abstract: After the anaerobic digestion of livestock manure, high concentrations of nutrients still
remain. Treatment of livestock wastewater through partial nitrification coupled with anaerobic
ammonium oxidation (ANAMMOX) could be a useful technology depending on the investigation of
microorganism enrichment and partial nitrification coupled with achievement of the ANAMMOX
process. The results show 78.4% and 64.7% nitrite accumulation efficiency was successfully obtained
in an intermittent aeration sequencing batch reactor and a continuous aeration sequencing batch
reactor, respectively, at a loading rate of 0.93 kg ammonium/(m3·d). The main reason for the high
nitrite accumulation efficiency was the intermittent aeration strategy which generated a 20–30 min
lag reaction for nitrite oxidation and promoted the growth of the dominant ammonium oxidation
bacteria (Nitrosomonas). Non-biodegradable organic matter in the effluents of partial nitrification did
not have obvious influence on ANAMMOX activity at low loading rates (118 ± 13 mg COD/L and
168 ± 9 mg COD/L), and up to 87.4% average nitrite removal rate was observed. However, with the
influent COD concentration increasing to 242 ± 17 mg/L, the potential inhibition of ANAMMOX
activity was exerted by non-biodegradable organic matter.

Keywords: livestock wastewater; partial nitrification; ANAMMOX; non-biodegradable organic
matter; nitrogen removal; microbial community

1. Introduction

Every year, a large amount of livestock manure containing high concentrations of
nutrients and solids is produced from centralized livestock farms [1,2]. Anaerobic digestion
is one of the sustainable technologies for livestock manure management. However, after
anaerobic digestion treatment, most ammonium and non-biodegradable organic matter
(mainly cellulose and hemicelluloses) in livestock manure still remains in the digestate
wastewater [3,4]. The lack of a biodegradable carbon source in the livestock wastewater
could lead to difficulties in the operation of the conventional nitrification–denitrification
process. In this case, further studies of the livestock wastewater treatment biotechnology
with low carbon cost and the effects of non-biodegradable organic matter on nitrogen
removal are necessary.

Partial nitrification is an efficient technology for treating low-carbon wastewater by
achieving biological nitrogen removal via nitrite rather than nitrate. This process has two
advantages over the conventional nitrification–denitrification process: (I) reduction of the
carbon demand of denitrifying bacteria by 40%; and (II) reduction of the aeration energy
by 25% [5]. In the partial nitrification process, nitrite accumulation efficiency is related to
nitrogen levels, pH, dissolved oxygen (DO) and loading rate, which are suggested to be
the important factors for the washing out of nitrite-oxidizing bacteria (NOB) [6–8]. The
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high concentrations of ammonium and non-biodegradable organic matter in the livestock
wastewater were unfavorable for partial nitrification. Thus, effective control strategies
should be developed and investigated to achieve stable nitritation.

Anaerobic ammonium oxidation (ANAMMOX) has been considered as an effective
technology for the reduction of accumulated nitrite by oxidation of ammonium rather than
organic carbon [9]. In the ANAMMOX process, bacteria grow with bicarbonate as the
sole carbon source. Thus, without the need for organic matter, this technology has been
exploited to treat nitrogen-rich wastewater, such as landfill leachate, animal manure and
supernatant of digested sludge [10,11]. ANAMMOX bacteria are considered to be difficult
to cultivate because of their low specific growth rate (μmax = 0.065/d) and sensitivity to or-
ganic matter, which could induce the inhibition of ANAMMOX enrichment [12]. Thus, the
non-biodegradable organic matter withdrawn from partial nitrification reactors should be
an important issue on the successful use of ANAMMOX for treating livestock wastewater.

In livestock wastewater, there is not enough biodegradable organic matter for the
conventional biological nitrogen removal process. Thus, partial nitrification coupled with
ANAMMOX was considered to be an efficient combined technology for nitrogen removal.
In this research, in order to evaluate the influences of non-biodegradable organic matter
and control strategies on livestock wastewater treatment efficiency, long-term partial ni-
trification coupled with ANAMMOX reactors were established via microbial community
analysis to investigate the performance of nitrogen removal from the livestock wastewater.

2. Materials and Methods

2.1. Experimental Setup

Two identical laboratory-scale sequencing batch reactors (SBRs) and an ANAMMOX
reactor were constructed (Figure 1). The reactors were made from transparent Plexiglas,
each having an effective volume of 10 L.

Figure 1. Schematic diagram of SBRs and ANAMMOX reactor systems.

One SBR was operated with an intermittent aeration (IASBR) strategy and the other
was operated with continuous aeration (CASBR) in an 8 h cycle. For the IASBR, after a
60 min non-aeration period, the reactor was intermittently aerated with successive 50 min
aeration/30 min non-aeration periods. For the CASBR, 250 min continuous aeration was
adopted after a 180 min non-aeration period. Then, the settle phase lasted 40 min before
the effluent was withdrawn in the last 10 min. Each SBR was stirred with a rectangular
mixing paddle. The air was supplied using aquarium air pumps at an air flow rate of
0.8–0.9 L air/min.

The characteristics of the livestock wastewater taken from a mesophilic manure di-
gester were: 10,260 ± 780 mg/L of COD; 3112 ± 94 mg/L of NH4

+-N; 3478 ± 75 mg/L of
total nitrogen (TN); 1.25 ± 0.18 g/L of suspended solids (SS); and pH of 8.26 ± 0.05. The
wastewater had a COD to TN ratio of 2.96, and the BOD5 to COD ratio was only 0.38, indi-
cating a low proportion of biodegradable organic matter in the wastewater. The livestock
wastewater was fed to SBRs with peristaltic pumps at loading rates of 3.08 kg COD/(m3·d)
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and 0.93 kg NH4
+-N/(m3·d). The temperature of two SBRs was controlled at 26 ± 1 ◦C,

simulating the digestate liquid temperature after anaerobic digestion.
An upflow anaerobic sludge blanket (UASB) reactor was built for cultivating ANAM-

MOX biomass (Figure 1). The effluents of IASBR were collected and adjusted with NH4Cl
to obtain a desirable nitrogen ratio (NH4

+-N: NO2
−-N = 1: 1.32) for the influent of the

ANAMMOX reactor [9]. The seed sludge fed to the UASB was a mixture of anaerobic
denitrification sludge, anaerobic composting sludge, river sediment sludge, local soil and
partial nitrification activated sludge. Before treating the raw effluents of IASBR, influent
synthetic wastewater (30 mg/L NH4

+-N and 40 mg/L NO2
−-N from Day 1 to Day 100;

60 mg/L NH4
+-N and 80 mg/L NO2

−-N from Day 101 to Day 223; and 90 mg/L NH4
+-N

and 120 mg/L NO2
−-N from Day 223 to Day 289) was continuously fed into the UASB

at a hydraulic retention time (HRT) of 8 h for ANAMMOX biomass cultivation. The tem-
perature of the UASB was controlled at 35 ± 2 ◦C, and an optimum pH of 8.0 ± 0.4 was
controlled through adding NaHCO3 into the influent.

2.2. Analytical Methods

COD, BOD5 and SS were tested in accordance with the standard APHA methods [13].
NH4

+-N, NO2
−-N and NO3

−-N were measured with Hach kits (Hach, Ames, IA, USA).
A pH probe (pH 320, WTW, Weilheim, Germany) and a DO sensor (Unisense, Aarhus,
Denmark) were used for pH and DO measurement, respectively.

The nitrite accumulation efficiency (η) is a term used to describe the performance of
partial nitrification as per Equation (1):

η =
SNO2

−−N

SNO2
−−N + SNO3

−−N
× 100% (1)

where SNO2
−−N and SNO3

−−N are the concentrations of NO2
−-N and NO3

−-N in the
effluent, respectively.

2.3. Batch Experiments

All batch experiments were carried out in 1 L beakers. Air diffusers were placed at the
bottom of the beakers. Washed activated sludge (Day 120) from two SBRs was added to the
beakers, and the sludge concentrations in the beakers were adjusted to close to those inside
the SBRs. The pH was controlled at 8.20 ± 0.05.

Specific oxygen uptake rate (SOUR) measurements: (I) NH4Cl or NaNO2 was fed
into the beaker to obtain specified 30 mg/L NH4

+-N or NO2
−-N, respectively; (II) after

feeding, the aeration commenced until DO became saturated in the beakers; (III) aeration
was turned off, and DO concentrations consumed by the oxidation of NH4

+-N or NO2
−-N

were recorded.
Influence of intermittent aeration on partial nitrification: (I) 0, 10, 20, 30 and 40 min

non-aeration periods were set in 5 beakers, where argon gas was striped at the bottom of the
beakers in order to continuously remove DO; (II) specified 30 mg/L NH4

+-N and NO2
−-N

were added into the beakers through adjusting NH4Cl and NaNO2 dosages, (III) aeration
commenced, and liquid samples were taken at intervals for the measurement of NO2

−-N
and NO3

−-N concentrations.

2.4. Microbial Population Analysis by 16S rRNA Gene Sequencing

In order to assess potential population changes of the partial nitrification biomass in
IASBR and CASBR, 2 mL of sludge was sampled from each reactor. DNA was extracted
using the repeated bead beating and column purification extraction process [14]. Modified
16S Illumina adapter fusion primers were used to generate amplicon libraries. The primers
were CaporasoNexF and CaporasoNexR [15,16]. PCR was conducted by using 20 ng of
DNA from the sludge samples as a template and Kapa HiFi Hotstart ReadyMix (Kapa
Biosystems, London, UK) according to the manufacturer’s instructions. The thermocycling
conditions were: one cycle of 95 ◦C for 3 min, then 26 cycles of 95 ◦C for 30 s, 55 ◦C for
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30 s, 72 ◦C for 30 s, followed by one cycle of 72 ◦C for 5 min. QIAquick PCR Purification
Kits (Qiagen, UK) were used to purify libraries. Two unique 8 bp indices were then added
(one index at the 5′ end of the amplicon and the other at the 3′ end) to each amplicon in a
second round of PCR using primers from the Illumina Nextera XT indexing kit. PCR was
performed with 5 μL of each amplicon as a template and Kapa HiFi Hotstart ReadyMix.
PCR conditions for this second round were: one cycle of 95 ◦C for 3 min, then 8 cycles of
95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s, followed by one cycle of 72 ◦C for 5 min. Indexed
libraries were then purified, pooled, gel purified, spiked and denatured. Sequencing was
performed on the Illumina MiSeq sequencer using 500 cycle MiSeq reagent kits (San Diego,
CA, USA). Sequence quality control, pre-processing, amplicon sequencing and data analysis
were carried out as in the descriptions in previous studies [16].

3. Results and Discussion

3.1. Overall Performance of Partial Nitrification on Treating Livestock Wastewater

The IASBR and CASBR were operated for 120 days, and the COD removal rate
reached a steady state after 15 days. The average COD removal rate was 87.6 ± 1.7% and
89.7 ± 3.4% in IASBR and CASBR, respectively. In the effluent, BOD5 concentration was
only 20 ± 13 mg/L. The effluent was added into a flask with activated sludge taken from
the IASBR, and then it was continuously aerated for two days. There was no evident
decrease in COD, indicating that most of the remaining COD in the effluent was non-
biodegradable organic matter, such as cellulose and hemicelluloses [3].

Nitrite accumulation occurred immediately in the beginning period (Figure 2) due
to the activated sludge in IASBR and CASBR seeded from a partial nitrification reactor.
However, during this period, it was observed that the effluent NH4

+-N level rose with a
significant pH decrease (from 7.9 in Day 1 to 6.1 in Day 10). It shows that the alkalinity
in the livestock wastewater was not sufficient to sustain a stable pH. Thus, an additional
4.5 g/L of alkaline solution (NaHCO3) was added to the digestate liquid from Day 13.
The nitrification activity recovered immediately, and after Day 30, the effluent NH4

+-N
concentration dropped to below 10 mg/L with a stable pH of 8.1 ± 0.2.

 
Figure 2. Performance of effluent NH4

+-N concentration and NO2
−-N accumulation efficiency in

SBRs (�: effluent NH4
+-N in IASBR; �: effluent NH4

+-N in CASBR; �: NO2
−-N accumulation

efficiency in IASBR; Δ: NO2
−-N accumulation efficiency in CASBR).

In two SBRs, NO2
−-N accumulated and more than 90 mg/L of NO2

−-N appeared
in the effluent as soon as the reactor operation commenced. In the steady state, effluent
NO2

−-N concentration increased to 544 ± 36 mg/L and 492 ± 65 mg/L in IASBR and
CASBR, and an average nitrite accumulation efficiency of 78.4 ± 1.3% and 64.7 ± 3.2%
was achieved, respectively. It was observed that the accumulation efficiency of effluent
NO2

−-N in CASBR was lower than that of IASBR. The nitration activity recovered when
the partial nitrification sludge experienced continuous aeration. Therefore, the oxidation
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of NO2
−-N to NO3

−-N was encouraged in CASBR, and NOB activity partly recovered to
lead to an increase in the NO3

−-N concentration in the effluent from Day 38.
Batch experiments show that in the NH4

+-N oxidation process, the SOUR of IASBR
and CASBR was 13.6 and 9.5 mg O2/(g biomass·h), and as for the NO2

−-N oxidation,
the SOUR of IASBR and CASBR was 1.4 and 2.0 mg O2/(g biomass·h), respectively. In
IASBR and CASBR, the SOUR of NH4

+-N was over more than that of NO2
−-N. This means

that the capability of nitrite accumulation was actively maintained under the intermittent
aeration and continuous aeration conditions. The additional alkalinity supplement might
have been the important factor promoting partial nitrification in two SBRs. It caused the
pH values in two SBRs to range from 7.9–8.4. When pH is above 7.5, it may inhibit the
growth and activity of NOB [17,18].

It was observed that the partial nitrification efficiency in IASBR was 21.2% higher than
that in CASBR, and the SOUR ratio of NH4

+-N oxidation to NO2
−-N oxidation reached

9.71:1 in IASBR. Under the intermittent aeration condition, the control strategy of alternat-
ing aeration and non-aeration could provide a suitable environment for partial nitrification.
In order to investigate the influence of intermittent aeration on nitrite accumulation, under
the condition of alternating 0, 10, 20, 30 or 40 min non-aeration periods with continuous
50 min aeration period conditions, the capability of partial nitrification was examined
through batch experiments (Figure 3).

Figure 3. Influence of aeration strategy on partial nitrification (�: 0 min non-aeration duration;
-: 10 min non-aeration duration; �: 20 min non-aeration duration; •: 30 min non-aeration duration;
�: 40 min non-aeration duration).

Besides the 0 min non-aeration condition, after the commencement of aeration, the
increase in nitrate was retarded for 12, 18, 18 and 21 min, respectively. NO2

−-N oxida-
tion was not activated immediately after aeration started when the non-aeration period
was adopted [19]. After a “lag time” of NO2

−-N oxidation, the activity of the NOB re-
covered, and the calculated NO3

−-N accumulation rates were 0.0972, 0.0977, 0.0967 and
0.9930 mg NO3

−-N/(L·min), respectively. Compared with 0.1030 mg NO3
−-N/(L·min)

in the 0 min non-aeration condition, which could denote continuous aeration condition,
there was no evident decrease of NO3

−-N accumulation rates in the intermittent aeration
conditions. Thus, the intermittent aeration strategy was discovered to induce a lag reac-
tion for NO2

−-N oxidation in a short time, but had no further effects on the inhibition of
NOB activity.

The average ratios of NO2
−-N accumulation rate to NO3

−-N accumulation rate
within the 50 min aeration period were investigated (Figure 4). In 10, 20, 30 and 40 min
non-aeration conditions, the ratios were 1.28, 1.44, 1.51 and 1.35 times of that in 0 min
condition, respectively. As for the 40 min non-aeration condition, the NH4

+-N oxida-
tion rate was only 0.294 mg NH4

+-N/(L·min), compared with 0.358, 0.364, 0.356 and
0.346 mg NH4

+-N/(L·min) in 0, 10, 20 and 30 min non-aeration conditions, respectively.
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This means that a slight inhibition of ammonium-oxidizing bacteria (AOB) could be car-
ried out in the 40 min non-aeration condition. Thus, the optimal alternating non-aeration
duration was 20–30 min for partial nitrification treatment of livestock wastewater.

Figure 4. Ratio of NO2
−-N accumulation rate to NO3

−-N accumulation rate under the different
non-aeration durations.

Sludge samples were taken from two SBRs to investigate the microbial population
by 16S rRNA gene sequencing on Day 45 (partial nitrification set-up stage) and Day 109
(partial nitrification steady-state stage) compared with seed sludge (Figure 5).

Figure 5. Microbial population analysis of partial nitrification sludge by 16S rRNA gene sequencing.

Except for unculturable bacteria, the determined microbial analysis results show that
the dominant genus in the sludge samples was recognized to be capable of degrading a wide
range of refractory organic pollutants; for example, Comamonas (7.2–11.5% of total genera),
Thauera (3.4–6.7% of total genera), Truepera (3.4–5.9% of total genera), and Pseudomonas
(0.7–4.5% of total genera), or of degrading celluloses, including Cytophaga (2.8–4.9% of total
genera) and Pseudoxanthomonas (1.1–5.1% of total genera) [20–23]. Paracoccus (7.0–11.4%
of total genera) was found to be the main denitrifier in two reactors [24]. Besides the
nitrification genera (Figure 6), about 6.5–8.5% of the other genera might be species of
bacteria indigenous to livestock manure, such as Enterococcus and Fastidiosipila.

148



Appl. Sci. 2022, 12, 3626

Figure 6. Microbial population analysis of nitrification genus in two SBRs.

Nitrification genus analysis (Figure 6) shows that Nitrosomonas was the key bacteria
for NH4

+-N oxidation in two SBRs, and was recognized as the main AOB species in IASBR
and CASBR. Common NOB genera (including Nitrobacter and Nitrospira) were not detected
evidently. It shows NOB was inhibited by partial nitrification conditions. However, favor-
able conditions for NO2

−-N oxidation actually occurred in IASBR and CASBR (Figure 2).
One of the reasons might be that the concentration of common NOB genera in the SBRs
was too low to be identified by 16S rRNA gene-sequencing equipment; another reason
was that the special NOB species, such as Marichromatium which was considered as a kind
of heterotrophic NO2

−-N oxidation bacteria [25], presented in two SBRs to induce the
oxidization of NO2

−-N. The persistent high-COD environment in the reaction cycle was
considered to be one of the reasons for the growth of Marichromatium bacteria.

According to Figure 6, the percentage of AOB and NOB decreased in both of IASBR
and CASBR on Day 45 compared with the seed sludge. The high concentration of SS in
the original livestock wastewater could dilute the density of bacteria in the reactors and
inhibit the propagation of AOB and NOB in the start-up stage. In this period, the decreased
pH could also affect the activity of AOB and NOB [26]. In the steady-state stage (Day 109),
the quantity of Nitrosomonas in IASBR rapidly recovered from 9.3% to 11.8%, but only a
0.4% increase appeared in CASBR. It shows that the growth of AOB could be accelerated in
the intermittent aeration condition. As for Marichromatium, 1.0% and 2.2% of the increase
was observed in IASBR and CASBR from Day 45 to Day 109, respectively. It shows that the
NOB activity recovered in the long-term livestock wastewater treatment process. However,
in IASBR, due to the inhibition of the intermittent aeration strategy, the recovery of NOB
was lower than that in CASBR.

3.2. Cultivation and Performance of ANAMMOX for Treating Partial Nitrification Effluents

ANAMMOX was considered as a potentially useful technology for treating NO2
−-N

containing wastewater without an organic carbon source. In order to investigate the
performance of NO2

−-N reduction from the effluents of the partial nitrification reactor and
the effects of non-biodegradable organic matter on the activity of ANAMMOX biomass, a
UASB reactor experiment was conducted.

Before introduction of IASBR effluents into the UASB, synthetic wastewater was fed
to cultivate and enrich ANAMMOX bacteria. When the effluent NO2

−-N concentration
in the UASB was below 15 mg/L within 15 days, the concentration of influent synthetic
wastewater increased as follows: 30 mg/L NH4

+-N and 40 mg/L NO2
−-N from Day 1

to Day 100 (Stage 1); 60 mg/L NH4
+-N and 80 mg/L NO2

−-N from Day 101 to Day 223
(Stage 2); and 90 mg/L NH4

+-N and 120 mg/L NO2
−-N from Day 223 to Day 289 (Stage 3).

In the conventional ANAMMOX process, the theoretical ratio of consumed NO2
−-N to

consumed NH4
+-N is 1.32, and the theoretical ratio of consumed NO3

−-N to consumed
NH4

+-N is −0.26 [10]. In the cultivation period of ANAMMOX biomass, these ratios were
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calculated compared with the theoretical values in order to determine the ANAMMOX
activity (Figure 7).

Figure 7. Performance of ANAMMOX biomass cultivation (�: ratios of consumed NO2
−-N to

consumed NH4
+-N; �: ratios of generated NO3

−-N to consumed NH4
+-N).

In Stage 1, almost no NO2
−-N was removed, and NH4

+-N was partly consumed
by microbial anabolism during the start-up periods. After operation for 38 days, the
phenomenon of NO2

−-N removal gradually appeared. However, it took 40–50 days for the
profile of NO2

−-N to reach a pseudo-steady state. In this period, 66.2% of NO2
−-N removal

was observed, and the ratio of consumed NO2
−-N to consumed NH4

+-N reached 0.95. In
Stage 2, with the increase in influent synthetic wastewater concentrations, accumulated
NO2

−-N appeared again in the UASB. From Day 131, the concentration of NO2
−-N began

to decrease, and satisfactory ANAMMOX performance with an average ratio (consumed
NO2

−-N to consumed NH4
+-N) of 1.24 was observed from Day 180 to Day 223. In Stage 3,

no evident changes of ANAMMOX activity were obtained with higher nitrogen loading
rates. This shows that a stable ANAMMOX reactor was established with an average
NO2

−-N removal rate of 81.5%.
In order to investigate the effects of non-biodegradable organic matter on the activity

of ANAMMOX biomass in livestock wastewater, the non-biodegradable organic matter
was centrifuged from the effluent of IASBR after two days’ continuous aeration in a flask
with partial nitrification sludge. Influent synthetic wastewater in Stage 3 was fed into
100 mL flasks with different dosages of non-biodegradable organic matter (the initial COD
concentrations were 50, 100, 150, 200, 250, 300, 350 and 400 mg/L in the flasks). Then,
ANAMMOX biomass taken from the UASB was added into the flasks, and the biomass
concentrations in the flasks were adjusted to close to those inside the UASB. Then, the
flasks were continuously stirred with magnetic stirrers after stripping DO out for 3 min by
using argon gas. Lastly, the effluents were withdrawn and influent synthetic wastewater
with non-biodegradable COD was fed in again at a HRT of 8 h. After 1 day and 5 days,
the effluent NH4

+-N, NO2
−-N and NO3

−-N concentrations were measured to evaluate the
effects of non-biodegradable organic matter on ANAMMOX (Figure 8).
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Figure 8. Influence of non-biodegradable organic matter on ANAMMOX activity (�: nitrite removal
rate after 1 day; �: nitrite removal rate after 5 days).

The results show that short-term exposure to non-biodegradable organic matter did not
affect the activity of ANAMMOX biomass evidently. After 1 day’s reaction, the NO2

−-N
removal rates were all kept at above 76% under the different non-biodegradable COD
concentrations. However, according to the results after 5 days’ reaction, high concentrations
of COD could further inhibit ANAMMOX activity with the extension of exposure reaction
time. When the non-biodegradable COD concentration was more than 200 mg/L, the
NO2

−-N removal rate decreased rapidly from 71.2% to 49.8%. It was found that non-
biodegradable organic matter in the livestock wastewater had potential inhibition ability
against ANAMMOX activity under high concentrations and long-term exposure conditions.
The reason might be that the non-biodegradable organic matter, including cellulose and
hemicelluloses in livestock wastewater, could disrupt the structure of the biofacies and
lead to changes in extracellular polymeric substances (EPS) contents and granulation of
ANAMMOX biomass [27].

The long-term performance of the treatment efficiency of the livestock wastewater after
partial nitrification by using ANAMMOX technology were investigated at the different
non-biodegradable COD concentration gradients. The effluents of IASBR with NH4Cl
adjustment (containing 1240 ± 45 mg/L of COD, 26 ± 3 mg/L of BOD5, 420 ± 7 mg/L of
NH4

+-N and 552 ± 28 mg/L of NO2
−-N) were fed into the UASB after diluting 10 times

from Day 1 to Day 17 (118 ± 13 mg COD/L), diluting 7.5-times from Day 18 to Day 35
(168 ± 9 mg COD/L) and diluting 5 times from Day 36 to Day 50 (242 ± 17 mg COD/L),
respectively (Figure 9).

Figure 9. Profiles of ANAMMOX reactor treating the diluted effluents of IASBR (�: NH4
+-N

concentration; �: NO2
−-N concentration).
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In the condition of 10-times dilution, 80.1% of NO2
−-N was removed immediately

after 3 days. It shows that the treatment efficiency of cultured ANAMMOX bacteria was
stable under the low concentration of non-biodegradable organic matter condition. In
the condition of 7.5-times dilution, with the increases in influent COD and NO2

−-N con-
centrations, the performance of effluent NO2

−-N in UASB became worse from Day 18.
However, the resumption of ANAMMOX activity was confirmed after 4 days and an
average NO2

−-N removal rate of 87.4% was achieved in this period. At this COD loading
rate, non-biodegradable organic matter did not severely affect the activity of ANAMMOX.
In the third stage, effluent NO2

−-N and NH4
+-N gradually increased and the NO2

−-N
removal rate decreased to 60.5%. Potential inhibition of ANAMMOX biomass appeared
with the increase in COD concentrations. One of the reasons was that ANAMMOX activity
became worse under high concentrations of non-biodegradable organic matter accord-
ing to Figure 8; another reason might be that heterotrophic denitrifiers existed in the
effluents of IASBR which could compete with ANAMMOX bacteria at a high loading
rate [28]. The long-term experimental results demonstrate that when the concentration of
non-biodegradable organic matter was lower than 168 ± 9 mg COD/L, the application
of ANAMMOX technology on nitrogen removal from the effluents of partial nitrification
treating livestock wastewater was feasible.

4. Conclusions

The performance of nitrogen removal through partial nitrification coupled with
ANAMMOX technology treating livestock wastewater was studied to evaluate the in-
fluences of non-biodegradable organic matter and microbial communities in this research.
The obtained results are as follows:

Partial nitrification was successfully achieved for treating the livestock wastewater.
At loading rates of 3.08 kg COD/(m3·d) and 0.93 kg NH4

+-N/(m3·d), COD removal
efficiency was 87.6 ± 1.7% and 89.7 ± 3.4%, and average nitrite accumulation efficiencies
of 78.4 ± 1.3% and 64.7 ± 3.2% were obtained in IASBR and CASBR, respectively.

The optimal alternating non-aeration duration was 20–30 min for partial nitrification
in IASBR, and the intermittent aeration strategy was discovered to induce a lag reaction
for NO2

−-N oxidation in a short time, but had no further effects on the inhibition of
NOB activity.

Nitrosomonas was the key bacteria for NH4
+-N oxidation in the partial nitrification pro-

cess. Under the intermittent aeration strategy, the quantity of Nitrosomonas increased from
9.3% to 11.8%, but only a 0.4% increase appeared in CASBR. Heterotrophic Marichromatium
was the main NO2

−-N oxidation bacteria under the high-concentration non-biodegradable
organic matter condition.

Feeding the effluents of partial nitrification into the ANAMMOX reactor, non- biodegrad-
able organic matter showed potential inhibition effects on ANAMMOX activity with the
extension of exposure reaction time and the increase in COD concentrations. When the
concentration of non-biodegradable organic matter was lower than 168 ± 9 mg COD/L, an
average NO2

−-N removal rate of 87.4% was achieved.
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Abstract: This paper proposes a novel Squeeze-and-excitation-based Mask Region Convolutional
Neural Network (SEM-RCNN) for Environmental Microorganisms (EM) detection tasks. Mask
RCNN, one of the most applied object detection models, uses ResNet for feature extraction. However,
ResNet cannot combine the features of different image channels. To further optimize the feature
extraction ability of the network, SEM-RCNN is proposed to combine the different features extracted
by SENet and ResNet. The addition of SENet can allocate weight information when extracting
features and increase the proportion of useful information. SEM-RCNN achieves a mean average
precision (mAP) of 0.511 on EMDS-6. We further apply SEM-RCNN for blood-cell detection tasks on
an open source database (more than 17,000 microscopic images of blood cells) to verify the robustness
and transferability of the proposed model. By comparing with other detectors based on deep learning,
we demonstrate the superiority of SEM-RCNN in EM detection tasks. All experimental results show
that the proposed SEM-RCNN exhibits excellent performances in EM detection.

Keywords: environmental microorganisms; object detection; deep learning

1. Introduction

Environmental Microorganisms (EMs) collectively refer to all microorganisms that
have an impact on the environment, including microorganisms living in the natural environ-
ment (such as oceans and deserts) and artificial environments (such as fisheries and wheat
fields) [1]. There are about 1011 ∼ 1012 types of EMs on Earth [2]. All of them play a positive
or negative role in the task of environmental governance. For example, plant rhizosphere-
promoting bacteria can help promote plants’ healthy growth. It can also inhibit pathogenic
microorganisms that harm plants. However, harmful rhizosphere bacteria can inhibit the
normal growth of plants by producing phytotoxins [3]; the emergence of cyanobacteria
will accelerate the process of eutrophication of water bodies and damage water quality,
which will eventually lead to the death of a large number of aquatic organisms; aspidisca
has a strong sensitivity to the chemical substances contained in the water body. Therefore,
aspidisca is widely applied for evaluating the quality of the aquaculture water body in the
water aquaculture industry. To better play the role of EMs in environmental governance,
research on EM detection is essential. The methods of EM detection can be mainly grouped
into manual microscope observation methods and computer-aided detection methods.
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Manual microscope observation methods refer to the observation and record of EMs
in the field of view by an experimenter with certain professional knowledge using a
microscope. However, there exist some limitations and disadvantages with respect to
manual microscope observation methods. First, the experimenter cannot make quick
judgments and must consult many reference materials when facing a wide variety of EMs.
Second, all experimenters have to spend a substantial amount of time when learning the
basics of EMs and the operation of the microscope. Finally, the detection results obtained
by different operators might be different, and the objectivity of the detection results is
insufficient [4]. Therefore, manual microscope observation methods have great limitations
for EM detection tasks.

Compared to manual microscope observation methods, computer-aided detection
methods are more objective, accurate, and convenient. With rapid developments in com-
puter vision and deep learning technologies, computer-assisted image analysis is broadly
applied in many research fields, including fire emergency [5], histopathological image
analysis [6–9], cytopathological image analysis [10–12], object detection [13–17], microor-
ganism classification [18–23], microorganism segmentation [24–27], and microorganism
counting [28,29]. In addition, with the advancement of computer hardware and the rapid
development of computer-aided detection methods, the results obtained by computer-
aided detection methods in EM detection are improving. Currently, the most popular
computer-aided detection method is the EM detection method based on deep learning [30].
However, there is no relevant research on the detection of multi-class EMs. Therefore, we
choose some classical detectors based on deep learning for multi-class EM detection and
propose a novel detector called squeeze-and-excitation-based mask region convolutional
neural network (SEM-RCNN). The flowchart of SEM-RCNN is shown in Figure 1.

Figure 1. The flowchart of SEM-RCNN.

In Figure 1, three main parts are contained. Part one is the original dataset part, which
includes enough images of EMs for model training and testing. We will introduce the
specific information about the original dataset in detail in the experimental section. Part
two is the data-processing part. In this part, the original dataset is firstly labeled in the
format of the object detection dataset. Then, all data are grouped into the training set,
validation set, and test set according to a certain proportion. Part three is the EM detection
part. Firstly, the original SEM-RCNN is pre-trained on Microsoft Common Objects in
Context (MS-COCO) dataset. Then the proposed model is finetuned and trained on the
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training and validation sets of EMDS-6. After that, the detection performance of the trained
model is verified on the test set. Finally, we evaluate the detection results of SEM-RCNN
by employing appropriate evaluation indicators.

The main contributions of this paper are listed as follows:

• A novel detector based on convolutional neural network (CNN): SEM-RCNN is
proposed for multi-class EM detection;

• The block of SENet is designed to combine with ResNet as the backbone of the
proposed SEM-RCNN, which can extract features with a self-attention mechanism;

• The proposed SEM-RCNN achieves the optimal detection performance both for small
(EMDS-6) and large (blood cell) datasets.

To illustrate the proposed method clearer, the structure of this paper is designed as
follows: In Section 2, the related research about computer-aided EM detection is summa-
rized; In Section 3, detailed information about SEM-RCNN is introduced; In Section 4,
the detailed operation of the experiments is introduced, including experimental data, ex-
perimental settings, evaluation criteria, detection results, and extensive experiment; In
Section 5, the paper is summarized comprehensively.

2. Related Work

In this section, we group all computer-aided EM detection methods into classical
image-processing-based methods, traditional machine-learning-based methods, and deep-
learning-based methods. The detection methods are introduced based on relevant research
studies.

2.1. Classical Image Processing Based Methods

Classical image-processing-based methods are the earliest computer-aided methods
for EM detection. Classical image-processing-based methods contain two subcategories of
detection methods, segmentation-based methods, and classification-based methods.

Thresholding-based methods are the most used technologies for image segmentation,
such as in [31–48]. Thresholding methods are the most commonly used methods in image
segmentation. In addition, thresholding methods can select an appropriate threshold for
detection according to different EMs, which gives these methods strong generalization
abilities. In [32], an area threshold was applied for Chlamydomonas and Chlamydomonas
bicuspidata detection. In [37], the multiple thresholds method was employed for motile
microorganisms. Multiple thresholds were firstly applied to binarize input images. Then,
all white regions are regarded as EMs. In [40], the color threshold was applied for tubercle
bacillus detection. In [43], adaptive threshold and global threshold were applied for
nematode detection. An adaptive threshold was employed for binarizing the original
image. Then, a global threshold was applied for extracting reference labels. By combining
these two processed images, the nematode can be detected. Among all these works,
the Otsu threshold is the most used one. In [33,42,44–46], the Otsu threshold is applied
for different EMsdetection. The main idea of Otsu was to select an optimal threshold
automatically from a gray-level histogram by a discriminant criterion [49]. The Otsu
threshold can provide good results with simple calculations. Even if the gray value of the
object to be segmented is similar to the gray value of the background, the Otsu threshold
can achieve good segmentation results. However, due to the limitation of the calculation
method, when the difference between the foreground and the background area is too large,
the Otsu threshold cannot achieve a good segmentation result [50].

Classification-based methods apply shape features, geometric features, color features,
texture features, and statistical features for EM detection, such as in [51–65]. In [51,52,55],
shape features were selected as vital information for EM detection, including contour
features, area features, squareness, angular, roundness, etc. In [56], a contour feature was
used for detecting Methanospirillum hungatei and Methanosarcina mazei. In [52], a C. elegans
nematode worm detection method based on angular features was designed. In [55], round-
ness was selected as the criterion for judging whether the detected objects are Rotavirus-A
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particles. In [57,59–63,66], geometric features were selected for EM detection. In [60],
the area was regarded as an important indicator for judging the presence of bacteriophage.
In [61], the most suitable combination of some kinds of geometric features was selected
and applied for bacilli detection. In [62,63], an automatic detection method based on
area-to-length ratio was proposed for six different airborne fungi spores. In [57,61], color
features were employed for initial screening regions containing EMs. In [64], a Anabaena
and Oscillatoria detection method based on texture features was proposed. From all these
classification based methods, we can find that shape features are the most suitable feature
for EM detection. In addition, detection methods by combining different features can
achieve improved detection performances than a single feature.

2.2. Traditional Machine-Learning-Based Methods

Since 2006, traditional machine-learning-based methods have been gradually applied
in the field of EM detection, such as in [67–79]. The main idea of this method is to determine
the EMs category according to the acquired feature information and the corresponding
network structure. In [67], a back propagation neural network was employed for bacteria
detection. After several preprocessing steps such as threshold-based segmentation and
denoising, morphological features of bacteria are extracted and then sent to a back propa-
gation neural network for detection. In [68], a genetic algorithm-neural network method
was presented for tubercle bacillus detection. By applying a color filter, moving k-means
clustering, and region growing, a suitable segmented image was obtained, which is then
sent to the color filter, moving k-means clustering and region growing for the final detection.
In [69], a probabilistic neural network is applied for pathogens detection. First, the original
image is processed by background correction and object isolation. Then, regions that
may contain pathogens were selected. At last, a probabilistic neural network is built for
pathogen detection.

Based on the research on traditional machine learning methods in this field, we
find that the most widely used classification model is the support vector machine (SVM)
classifier, mentioned in [70–79]. SVM can construct an optimal separation hyperplane in
the feature space of the data to maximize the gap between positive and negative samples
in the training set [80], which makes SVM an efficient classifier for binary classification
tasks. Furthermore, SVM can efficiently use smaller training samples. This enables SVM
in achieving higher classification accuracies on a smaller training set. Therefore, after the
development of related technologies of SVM, it has been gradually applied to the detection
of EMs. In [71], an SVM classifier is proposed for P. minimum species detection. In addition,
to improve the accuracy of the detection results, the SVM classifier is combined with a
random forest classifier. In [74], a multi-class SVM was proposed for EM detection. First,
the Sobel edge detector is applied for image segmentation. After that, shape features,
Fourier descriptors, and some other features were extracted from processed images and
then sent to a multi-class SVM for detecting EMs. In [78], an SVM classifier is applied for
planktonic organisms detection. The preprocessing step includes threshold segmentation,
robust refocusing criterion, and re-segmentation. After that, the processed image is detected
by an SVM classifier.

2.3. Deep-Learning-Based Methods

Compared with methods based on traditional machine learning, deep-learning-based
methods have the advantages of the wide range of applications and high applicability. In the
feature extraction step of detection processing, traditional machine-learning-based methods
use manual feature engineering methods, which are labor-intensive and time-consuming.
Deep-learning-based methods can achieve automatic feature learning through advanced
network structures and complex features compared to simple ones. Therefore, with the
development of deep learning technologies, increasing research about EM detection using
deep learning methods is presented, such as in [81–90]. In [81–83], CNN was employed
for EM detection. In [81], a tubercle bacillus detector was designed based on CNN. In [83],
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a CNN-based method was proposed for actinobacterial species detection. In [88], a region
convolutional neural network (R-CNN)-based detector was proposed for diatom detection.
In addition, a you only look once (YOLO)-based detector is prepared for comparisons. The
result indicates that YOLO performs better than R-CNN in diatom detection. In [84–87],
Faster R-CNN-based methods were employed for EM detection. In [85], a Faster R-CNN-
based detector was proposed for parasite egg detection. In [87], Faster R-CNN was applied
for algal detection. About 1859 samples were prepared for the test.

After consulting all these related research studies, we found that classical image-
processing-based methods were mainly used as preprocessing methods in current EM
detection studies. The most widely used methods in EM detection are traditional machine-
learning-based methods. Although there are a few studies about deep-learning-based
methods, deep-learning-based methods show great potential in EM detection. Therefore,
we designed a deep-learning-based detector for EM detection called SEM-RCNN.

3. SEM-RCNN-Based EM Detection Method

The structure of the proposed SEM-RCNN is shown in Figure 2, which mainly includes
the input step, feature extraction step, region proposal step, a mapping step between
candidate boxes and feature maps, and the output step.

Figure 2. The structure of SEM-RCNN.

Figure 2: (a) Input: The dataset contains images of 21 types of EMs and their corre-
sponding labeled images. There are 840 images in total, and each type has 40 original
images (Sections 4.1 and 4.2.1 for details). (b) Feature extraction: A combination network
based on SENet and feature pyramid network (FPN) is proposed for fuller and deeper
feature extraction (Section 3.1 for details). (c) Region proposal: A region proposal network
(RPN) was applied to obtain multi-candidate boxes of the object (Section 3.2 for details).
(d) Mapping between candidate boxes and feature maps: The method based on the region
of interesting align (ROI align) is applied for accurate mapping between candidate boxes
and the feature map, as well as the mapping between the feature map and the fixed size
feature map (Section 3.3 for details). (e) Output: A multi-branched structure is applied for
feature maps regression, and the combined approach of the fully connected layer, bounding
box regression, and Softmax is applied for object detection (Section 3.4 for details).
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3.1. Feature Extraction Step

The feature extraction step is the basis for deep learning to perform all tasks. There-
fore, whether a suitable feature extraction network is selected or not directly affects final
detection results. After analyzing and comparing the existing networks, we finally chose
the deep residual network (ResNet) [91] combined with a squeeze-and-excitation network
(SENet) [92] as the basic backbone, together with the feature pyramid network(FPN) [93].
ResNet can solve the degradation problem occurring in the training process of CNN. SENet
can effectively enhance the needed feature information while suppressing less useful fea-
ture information. FPN can achieve the accurate detection of multi-scale objects by making
good use of shallow feature information and deep feature information.

3.1.1. ResNet

The main contribution of ResNet concerns an inevitable problem in the training of
CNN, called the degradation problem. In general, as the number of layers of the network
model increases, the overall detection effectiveness of the CNN model improves. However,
when the number of layers deepens to a certain level, the effectiveness of the CNN model
decreases, which is the degradation problem that occurs when CNN is trained. The idea of
residual learning is introduced with conventional CNNs in ResNet to solve the degradation
problem encountered in the deep training of CNN. The structure of a residual block is
shown in Figure 3, where x denotes features learned by the shallow network; F(x) is the
residual function. The residual block allows the deep network to learn new features relative
to the shallow network continuously. From Figure 3, the actual features learned by the
network after the residual block are F(x) + x, which means that a deep network can obtain
deeper and more complex features from the features extracted by the shallow network
based on the introduction of the residual block.

Figure 3. The structure of residual block.

3.1.2. SENet

SENet is a network structure that focuses on enhancing data channel information and
enhancing desired feature information while suppressing less useful feature information
based on the self-attention mechanism. SE block is the basic module of SENet and can be
well integrated with many existing models. The corresponding experimental classification
and detection results show that the combination with an SE block can increase the feature
representation capability of the model and, thus, improve the classification or detection
effects of the model. The basic structure of the SE block is shown in Figure 4. Among them,
Ftr is the traditional convolution operation. X and U represent the input and output of this
convolution operation, respectively; C, W, H, C′, W′, and H′ represent the scales of data;
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function Fsq and Fex represent the two core processes of the SE block, squeeze processing
and excitation processing; X̃ represents the final output of the SE block.

Figure 4. The structure of the SE block.

In the SE process, a squeeze operation is first performed on the convolution output.
To make better use of the interconnected information between input data channels, the SE
block first uses the idea of averaging to convert the information of all pixels involved in a
plane into a specific value. The specific calculation procedure for averaging is shown in
Equation (1).

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

In Equation (1), zc represents the squeeze output of the c channel data of input data;
uc represents the c channel data of input data. It can be seen from the formula that input
data eventually become a column vector in the squeeze process. The length of this vector is
the same as the number of channels, and each data value in this vector is closely related to
the corresponding channel data.

After that, to further exploit the interlinked information between channels, SE designs
an excitation process. The equation for this process is shown in Equation (2).

s = Fex(z, W) = σ(g(z, W)) = σ(W2σ(W1z)) (2)

In Equation (2), σ is the rectified linear unit (ReLU) activation function; W1 ∈ R
C
r ×C;

W2 ∈ R
C× C

r ; W1 is the dimensionality reduction layer with a dimensionality reduction
ratio of r. W2 is the proportionally identical data-dimensionality increase layer. After
the excitation process, the complexity of the entire model is controlled. Moreover, vital
features are enhanced, and weak features are limited based on the self-attention mechanism.
Moreover, the generalization ability of the model is enhanced. The sigmoid function
processes the final output of the excitation process to a value between zero and one.

The final output of the SE block multiplies the value obtained after compression and
activation processing with the data of all the channels that U has. Based on such processing,
the SE block can enhance features that have a greater impact on the experimental results
while weakening features that have a smaller impact on experimental results.

3.1.3. FPN

FPN is a network component that assists CNN in detecting objects with different
scales. From the comparison of the information contained in shallow and deep features,
shallow features have richer location information and are more suitable for predicting the
location coordinates of the object; deep features have richer category information and are
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more suitable for predicting the category of the object. Therefore, a suitable combination of
shallow and deep features can achieve the accurate detection of EMs, which is the main idea
of FPN. FPN consists of three main network structures: down–up processing, up–down
processing, and horizontal linkage of feature layers, as shown in Figure 5.

Figure 5. The structure of FPN.

Down–up processing is the feedforward process of CNN. By non-stop convolutional
operations, multiple feature maps of different scales are obtained in this step. After that,
the feature maps output by the deepest level network are up-sampled by the operation
to keep the same size as the feature maps output by the previous level network. Then,
upsampled feature maps are fused with the feature maps outputted by the previous layer
network. Feature maps obtained based on FPN are richer in feature information than tradi-
tional feature maps. In addition, to better fuse the information of each map, FPN processes
the fusion between feature maps by using the horizontal linkage operation. The horizontal
linkage is performed by convolutional processing using a 1 × 1-sized convolutional kernel.
In general, FPN can combine the rich location information of shallow feature maps and the
rich category information of deep feature maps to provide accurate categories and locations
of objects at different scales without increasing computational efforts.

3.1.4. Backbone of Feature Extraction Step

By fusing ResNet, SENet, and FPN, we finally design the backbone of SEM-RCNN,
as shown in Figure 6. There are mainly five steps in the red dashed box in Figure 6. In
stage one, 64 convolution kernels with a kernel size of 7 × 7 and a stride of 2, followed by
batch normalization (BN) and ReLU operations, were applied for feature extraction. Then,
max-pooling with a size of 3 × 3 and stride of 2 was applied to reduce the size of feature
maps. After that, the following four steps are based on the combination approach of SER
block_1 and SER block_2. The SER block_1 and SER block_2 are important parts of the
backbone, and its structure are shown in Figure 7. From Figure 7, we can see that the SER
block_1 is mainly used to deal with the case where the input and output dimensions are
different; the SER block_2 is mainly used to deal with the case where input and output
dimensions are the same. For the input parameters of SER block_1, the channel of the
input image is denoted as C, the width (same as height) of the input image is denoted as W,
the output channel of the feature map is denoted as C1, and the stride is denoted as s. For
example, in stage two of Figure 6, input images are processed at the size of 54 × 54 with
64 channels. Hence, in the first step of SER block_1, 64 convolution kernels with the kernel
size of 1 × 1 and stride of 1 (followed by BN and ReLU operations) were applied first. Then,
the convolution kernels with the kernel size of 3 × 3 and 1 × 1 were applied sequentially to
extract the feature and to adjust channels. At the same time, the input image is processed
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by 64 × 4 convolution kernels with the kernel size of 1 × 1 and stride of 1 (right part of
SER block_1). Finally, the feature maps after global pooling and sigmoid (the left part of
SER block_1) are residually connected with the right part of SER block_1. The output size
of SER block_1 is 56 × 56 with channels of 64 × 4. The structure of SER block_2 is similar
to SER block_1, but the output size is the same as the input size. The combination method
of SER block_1 and SER block_2 repeats four times in SEM-RCNN for feature extraction.

Figure 6. The backbone structure of SEM-RCNN. Red dashed box is SENet and ResNet part; blue
dashed box is FPN part.

Figure 7. The structure of SER block_1 and SER block_2.
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Based on our sufficient research foundation [15,20–22,24,29], it can be found that
only a few studies employed deep learning methods to perform the detection task in
microorganism image analysis. Since the detection task in microorganism image analysis
has strong application background, almost all studies directly utilize existing deep learning
models, such as RCNN [88] and Faster R-CNN [84,85]. Different from these studies, we
proposed a novel self-attention-based two-stage detection framework, which is inspired by
ResNet, SENet, and FPN. This framework achieves state-of-the-art performances on the
detection task, which significantly promotes the development of the detection technology
in the application of microorganism image analyses.

3.2. Region Proposal Step

Generating candidate boxes for objects is an important processing step of an object
detector. In this step, a suitable target candidate frame needs to be generated based on the
input feature map. Here, we choose the region proposal network (RPN) to accomplish the
task of candidate boxes proposal for SEM-RCNN. RPN can generate prediction boxes for
objects with different scales in a short period. RPN mainly includes three processing steps:
generating anchor boxes, judging the category of generated anchor boxes, and adjusting
the position of anchor boxes. The main flow of RPN is shown in Figure 8. First, RPN
generates a certain amount of anchor boxes based on the input feature map; after that,
the generated Anchor boxes are convolved with a convolution kernel of 3× 3; then, the Soft-
max function and the border regression algorithm are used to distinguish prospect and
background of boxes and obtain position coordinates of the predicted boxes respectively;
finally, the candidate boxes are determined based on the obtained category scores and
position coordinates.

Figure 8. The structure of RPN.

3.3. RoI Align

After obtaining suitable boxes, the detector needs to associate the obtained boxes with
feature maps. Here, RoI Align is employed to this end. The main idea of RoI Align is to
use bilinear interpolation to obtain the value of floating-point coordinates. Therefore, RoI
Align chooses to keep the floating-point coordinates in determining the corresponding area
in the feature map based on the position coordinates of the candidate box. When dividing
the area corresponding to the candidate box on the feature map equally into multiple small
fixed-size feature maps, RoI Align chooses to maintain the segmented boundaries instead
of performing quantization operations. Eventually, bilinear interpolation allows the RoI
Align to obtain the feature values corresponding to the four coordinate positions of each
small feature map.

Bilinear interpolation is the calculation of the value of a pixel point (floating point)
that does not exist in the location image from the value of a known pixel point. The bilin-
ear interpolation method can be computed by performing two horizontal interpolation
operations and then one vertical interpolation or by performing two vertical interpolation
operations and then one horizontal interpolation. Here, the specific calculation process of
the bilinear interpolation method with lateral interpolation followed by vertical interpola-
tion is introduced. The specific coordinates of Q11, Q21, Q12, Q22, R1, R2 and P involved in
the formula are shown in Figure 9.
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Figure 9. Schematic diagram of the bilinear interpolation method.

First is the first horizontal interpolation calculation, as shown in Equation (3).

f (R1) ≈ x2 − x
x2 − x1

f (Q11) +
x − x1

x2 − x1
f (Q21) (3)

This is followed by a second horizontal interpolation calculation, as shown in
Equation (4).

f (R2) ≈ x2 − x
x2 − x1

f (Q12) +
x − x1

x2 − x1
f (Q22) (4)

The last step is calculation of the value of P point based on the two transverse interpo-
lation results (f (R1) and f (R2)) obtained from above calculation, as shown in Equation (5).

f (P) ≈ y2 − y
y2 − y1

f (R1) +
y − y1
y2 − y1

f (R2) (5)

3.4. Output

The final goal of SEM-RCNN is to obtain the bounding box and class of object. There-
fore, in the output part of SEM-RCNN, the feature map after RoI Align processing is first
classified using a fully connected (FC) layer. Then, the output of the coordinate information
of the object is realized by the FC layer and border regression; the output of the class infor-
mation of the object is realized by the fully connected layer and Softmax function. Finally,
the task of target detection is accomplished by combining border coordinate information
and class information, as shown in Figure 10.

Figure 10. The output part of SEM-RCNN.
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4. Experiment Results and Analysis

4.1. Dataset

We use the Environmental Microorganism Dataset Sixth Version (EMDS-6) [94]. The
original EMs images with their corresponding ground truth (GT) images of 21 types of
EMDS-6 are shown in Figure 11.

Figure 11. The EMs images in EMDS-6. The color images above are original images and the binary
images below are the corresponding GT images.

EMDS-6 includes 21 types of EMs that have 840 original images and 840 ground truth
images, respectively, as shown in Figure 11. There are 21 categories with 40 images in
each category. In the training process, the dataset is evenly distributed to each category for
balanced training. In our work, we perform object annotation using Lambelme software
based on original and ground truth images provided by EMDS-6. Most of the images in
EMDS-6 only contain one type of EM.

4.2. Experimental Settings
4.2.1. Data Settings

For EMDS-6, each type of EM is randomly grouped into training, validation, and test
dataset with a ratio of 4:1, which means 32 images are applied for training (with 5-fold
cross validation), and the last 8 images are applied for testing. Though the dataset is small
for training a complex model, it can still achieve excellent detection performance by using
transfer learning [94].

4.2.2. Hyper-Parameter Settings

In the process of training, the proposed SEM-RCNN model is pre-trained on the
MS-COCO dataset, firstly. Then, the training step of SEM-RCNN contains two steps. The
head is frozen and trained with an epoch of 150 and a learning rate of 0.0001. After that,
the whole network is trained with an epoch of 150 and a learning rate of 0.001. The final
model parameters have the lowest loss function obtained on the validation set. There are
98,793,356 trainable parameters of SEM-RCNN in total. The intersection over union (IoU)
is the ratio of intersection and concatenation of the prediction box and true box. A result
can be considered a correct detection only if the IoU value of the prediction box is greater
than the set threshold, so the IoU threshold is a critical hyperparameter that may highly
affect the performance of the proposed model. To systematically choose the IoU threshold,
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we test the detection performance of different IoU settings using SEM-RCNN based on
SE-ResNet-101. The IoU threshold is set from 0.1 to 0.9 with the stride of 0.1, and the
average detection indices based on 5-fold cross validation are shown in Table 1.

Table 1. The average detection indices (with 5-fold cross validation) of SEM-RCNN based on different
IoU threshold settings.

IoU
Threshold

Mean IoU mAP Precision Recall F1-Score

0.1 0.633 0.428 0.422 0.461 0.441
0.2 0.724 0.500 0.505 0.538 0.524
0.3 0.732 0.511 0.509 0.550 0.526
0.4 0.745 0.494 0.505 0.545 0.519
0.5 0.709 0.479 0.488 0.508 0.498
0.6 0.728 0.500 0.497 0.526 0.511
0.7 0.584 0.404 0.404 0.431 0.417
0.8 0.923 0.485 0.401 0.515 0.451
0.9 0.999 0.464 0.257 0.497 0.339

By reviewing Table 1, we find that the set of IoU thresholds is critical for the detection
performance of the proposed model. The highest mAP, Precision, Recall, and F1-score can
be obtained when the IoU threshold is set as 0.3. Though the mean IoU is higher when the
threshold is set as 0.4, 0.8, and 0.9, the other indices (such as Precision) are not satisfactory.
Therefore, by considering the aggregate detection performance, the IoU threshold is set as
0.3, which performs accurately and balanced.

4.3. Evaluation Criteria

We use mean average precision (mAP) as the evaluation metric in our experiments.
mAP, as the best evaluation metric for the target detection task, combines the accuracy of
detection category and location. The calculation of mAP is shown in Equation (6).

mAP =
1
n

n

∑
i=1

APi (6)

In Equation (6), n presents the number of classes of EMs; AP is determined by the
area under the accuracy-precision curve. The calculations of accuracy and precision are
related to true positive (TP), true negative (TN), false positive (FP), false negative (FN),
and intersection over union (IoU). The description of TP, TN, FP, and FN is shown in Table 2.
The calculations of accuracy and precision are shown in Equations (7) and (8), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Table 2. Description of TP, TN, FP, and FN.

True Label

Positive Negative

Predict label Positive TP FP
Negative FN TN

4.4. Detection Results and Analysis

The detection results of SEM-RCNN on EMDS-6 is shown in Figure 12.
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Figure 12. The detection results of SEM-RCNN on EMDS-6. The color boxes indicate the positions
predicted by SEM-RCNN, for which its captions indicate the predicted categories and the probabilities.

The loss curves while training and validation are shown in Figure 13. It shows that the
bounding box loss and classification loss curves of the proposed SEM-RCNN can converge
steadily and quickly, which indicates that the proposed SEM-RCNN model has satisfactory
performance on bounding box regression and object classification tasks.

Figure 13. The loss curves of SEM-RCNN while training and validation on EMDS-6.

In order to show more intuitively how the SEM-RCNN compares with other detectors,
we compare them in the form of a table in the following. In Table 3, we compared the
average detection indices (with 5-fold cross validation) of SEM-RCNN and Mask RCNN
on EMDS-6 when combined with ResNet-50 and ResNet-101.
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Table 3. The average detection indices (with 5-fold cross validation) of SEM-RCNN and Mask RCNN.

Model Mask RCNN SEM-RCNN

Backbone ResNet-50 ResNet-101 SE-ResNet-50 SE-ResNet-101
mAP 0.440 0.488 0.450 0.511

precision 0.434 0.485 0.425 0.509
recall 0.458 0.511 0.451 0.550

F1-score 0.446 0.498 0.455 0.526

From Table 3, we can find that SEM-RCNN proposed in this paper can achieve better
detection performance than Mask RCNN both in single-object and multi-object for EM
detection. Overall, the models based on the backbone of ResNet-101 and SE-ResNet-101
perform better than those based on ResNet-50 and SE-ResNet. Compared with the original
ResNet-based Mask RCNN, the performance increment of SEM-RCNN based on deeper
SE-ResNet is much better than the Mask RCNN based on deeper ResNet both for mAP,
precision, recall, and F1-score. Moreover, the mAP of the proposed SEM-RCNN achieves
0.511, which is much better than the result of Mask RCNN. The confusion matrix of the
proposed SEM-RCNN is shown in Figure 14, showing the classification performance of the
proposed model.

Figure 14. The confusion matrix of the detection results of SEM-RCNN on EMDS-6 (with 5-fold cross
validation). Deeper color indicates the higher classification probability.

From Figure 14, most of the test images can be classified correctly. However, there still
exists some mis-detected images. For example, 5 images of Codosiga are wrongly classified
as Epistylis, showing the large error rate of the proposed model. By referring to the images
of the two EMs in Figure 15, we find that the EMs have similar morphological features,
and both are clustered microorganisms.
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Figure 15. The example images of Codosiga and Epistylis in EMDS-6.

Moreover, by reviewing Figure 14, we find that Stentor is easily classified as Parame-
cium, an example is shown in Figure 16. Most EMs are colorless and transparent, so the
morphological feature determines the classification result. However, though the EMs are in
variance shapes, they may perform similar shapes at different growth phases. On the other
hand, the quantity and quality of the dataset will have a greater impact on the model’s
performance. However, the satisfactory EM dataset is relatively difficult to obtain due
to some objective reasons, such as the impurities in the acquisition environment, uneven
natural light, and other adverse factors. So the model still cannot classify similar EMs
accurately due to the small dataset.

Figure 16. The example images of Stentor which are classified as Paramecium in EMDS-6.The color
boxes indicate the positions predicted by SEM-RCNN, for which its captions indicate the predicted
categories and the probabilities.

4.5. Extensive Experiment

To compare the detection performance of SEM-RCNN with existing deep learning-
based detectors, we chose several classical detectors for our experiments. Table 4 introduces
the detection results and population variances (with 5-fold cross validation) of some
classical deep-learning-based detectors.

Table 4. Detection result of some classical deep-learning-based detectors (with 5-fold cross validation).

Model Ours SSD
Faster

R-CNN
RetinaNet YOLOv3 YOLOv4

mAP 0.511 0.421 0.377 0.401 0.425 0.436
Varp 1.46 × 10−5 6.64 × 10−6 1.38 × 10−5 8.46 × 10−5 3.78 × 10−5 5.65 × 10−5
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From the final detection results, SEM-RCNN achieves better detection performance
than SSD, Faster R-CNN, RetinaNet, YOLOv3, and YOLOv4. The results prove that it
is feasible to improve the detection effectiveness of a detector by increasing its feature
extraction capability.

To further prove the object detection performance of the proposed SEM-RCNN model,
another dataset of EMs should be applied for the extensive experiment. However, by review-
ing our previous works about EMs image analysis and EMs dataset [15,18–22,24–26,28,29,95],
there are few proper open-access EMs dataset, which is caused by several objective reasons,
including the uneven natural lighting and too many impurities while imaging. Hence,
a dataset containing 8 types of blood cells is applied for the extensive experiment, includ-
ing erythrocytes, basophils, eosinophils, lymphocytes, monocytes, neutrophils, platelets, and im-
munoglobulins. The reasons why we choose the blood cell images consisting four aspects:
firstly, the images of EMs and blood cells are both microscopic images, which have strong
morphological and shape similarities; secondly, both of them are non-directional images,
where all objects in these images have no fixed positive direction; thirdly, both of them
can be applied for multi-class detection tasks; finally, both of them have lots of noise and
redundant impurities. Besides, the application of the blood cell image dataset can prove the
strong generalization ability of the proposed SEM-RCNN. There are 17,090 labeled blood
cell images in total, and the proposed SEM-RCNN is trained for 150 epochs with finetuning
based on the pre-trained model for MS-COCO dataset. The result is shown in Table 5. By
reviewing Table 5, we find that the proposed SEM-RCNN can achieve excellent blood cell
detection performance. Most of the evaluation metrics are more than 0.9, which performs
better than Mask RCNN significantly. The detection result is shown in Figure 17, which
shows satisfactory detection performance of the proposed SEM-RCNN.

Table 5. Detection result of SEM-RCNN for blood cell detection.

Evaluation Metrics IoU mAP Precision Recall F1-Score

SEM-RCNN 0.905 0.907 0.898 0.910 0.904
Mask RCNN 0.875 0.850 0.843 0.853 0.848

Figure 17. The results of SEM-RCNN for cell dataset detection.The color boxes indicate the positions
predicted by SEM-RCNN, for which its captions indicate the predicted categories.

5. Conclusions and Future Work

The analysis and research of EMs are essential. Therefore, a suitable method for
EM detection needs to be explored. After summarizing and analyzing the work related
to EM detection, we designed the SEM-RCNN for the detection of EMs. In terms of
applications, to fully demonstrate the feasibility of SEM-RCNN for EM detection, model
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training and testing were conducted in a small dataset of EMs and a large dataset of blood
cells, respectively. The final detection results demonstrate the feasibility of SEM-RCNN
for detecting EMs. In terms of technology, an improved method combining Mask RCNN
with SENet is proposed in this paper. To verify the feasibility of the improved method,
the detection results of SEM-RCNN and the original Mask RCNN are compared on the
EMDS-6 dataset and blood cell dataset, respectively. The comparison results showed that
the detection results of SEM-RCNN improved two to three points in mAP than that of the
original Mask RCNN. Finally, SEM-RCNN achieved a 0.511 mAP on EMDS-6 and 0.907
mAP on the blood cell dataset.

This paper fills the gap in computer-aided multi-class EM detection research. However,
considering the continuous innovation of related technologies and the challenges that need
to be faced in practical applications, there is still more research potential and room for
improvement in several aspects of this study. Regarding current research results, further
research content with respect to our work will mainly be considered from EMs data. From
the detection results on dataset EMDS-6 and blood cell dataset, it can be seen that sufficient
training data can significantly improve the detection effect of the model. In contrast,
insufficient training data can lead to poor detection effects from the model. Therefore,
in the follow-up study, we will focus part of our efforts on expanding the existing microbial
dataset to build an EMs dataset with more sufficient data and to better meet the training of
detection models.
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Abbreviations

The following abbreviations are used in this manuscript:

EMs environmental microorganisms;
CNN convolutional neural network;
MS-COCO microsoft common objects in context;
SEM-RCNN squeeze-and-excitation-based mask region convolutional neural network;
RCNN region convolutional neural network;
FC fully connected;
ReLU rectified linear unit;
BN batch normalization;
SVM support vector machine;
YOLO you only look once;
ResNet deep residual network;
SENet squeeze-and-excitation network;
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FPN feature pyramid network;
RPN region proposal network;
EMDS-6 the Environmental Microorganism Dataset Sixth Version;
mAP mean average precision;
TP true positive;
TN true negative;
FP false positive;
FN false negative;
IoU intersection over union;
GT ground truth.
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Abstract: Currently, the field of transparent image analysis has gradually become a hot topic. How-
ever, traditional analysis methods are accompanied by large amounts of carbon emissions, and
consumes significant manpower and material resources. The continuous development of computer
vision enables the use of computers to analyze images. However, the low contrast between the
foreground and background of transparent images makes their segmentation difficult for computers.
To address this problem, we first analyzed them with pixel patches, and then classified the patches
as foreground and background. Finally, the segmentation of the transparent images was completed
through the reconstruction of pixel patches. To understand the performance of different deep learning
networks in transparent image segmentation, we conducted a series of comparative experiments
using patch-level and pixel-level methods. In two sets of experiments, we compared the segmentation
performance of four convolutional neural network (CNN) models and a visual transformer (ViT) model
on the transparent environmental microorganism dataset fifth version. The results demonstrated that
U-Net++ had the highest accuracy rate of 95.32% in the pixel-level segmentation experiment followed
by ViT with an accuracy rate of 95.31%. However, ResNet50 had the highest accuracy rate of 90.00%
and ViT had the lowest accuracy of 89.25% in the patch-level segmentation experiments. Hence, we
concluded that ViT performed the lowest in patch-level segmentation experiments, but outperformed
most CNNs in pixel-level segmentation. Further, we combined patch-level and pixel-level segmenta-
tion results to reduce the loss of segmentation details in the EM images. This conclusion was also
verified by the environmental microorganism dataset sixth version dataset (EMDS-6).

Keywords: patch-level; pixel-level; image classification; image segmentation; transparent images;
deep learning; convolutional neural network; visual transformer; environmental microorganism

1. Introduction

With the advent of science and technology, the application of transparent images has
increasingly been used in various fields around humans, such as the segmentation of renal
transparent cancer cell nuclei in medicine [1]. The shape and location information of the
cell nucleus are of great significance in the segmentation and diagnosis of benign and
malignant tumors [2,3]. Another example is the identification of the number of transparent
microorganisms in an environment to determine the degree of environmental pollution [4].
In recent years, the segmentation of transparent objects in images has become a hot topic in
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vision research [5,6]. It is not easy to detect whether there are transparent or translucent
objects in the images because the transparent object area to be observed is generally small
or thin, and the colors and contrasts of the foreground and background are similar [7]. Only
the residual edge can lead to a low resolution of the foreground or background, which
largely depends on the background and lighting conditions. Therefore, there is an urgent
need for effective methods for identifying transparent or translucent images.

In recent years, deep learning has achieved a good performance in the field of computer
vision. We consider the excellent performance of computer vision in image analysis [8],
such as its high speed, high accuracy, low consumption, high degree of quantification,
and strong objectivity [9]. Additionally, compared with traditional manual methods, com-
puter image analysis can reduce manual effort from time-consuming tasks. Consequently,
computer vision-based approaches can overcome the limitations of traditional methods
and demonstrate great potential for transparent image analyses [10]. Particularly, when
the object is transparent or has low contrast in the image, more foreground information
is required; therefore, more visual details are found to recover the lost information from
patches or pixels. As shown in Figure 1, the foreground and background of microorganisms
are similar. There is only a small amount of information on the edges; which makes it
difficult for traditional convolutional neural network (CNN) algorithms to distinguish
transparent objects in images globally [11]. To address this problem, it is necessary to
analyze transparent images from patches. We cropped the image into fixed-size patches
and created a deep learning network to learn the features of the visual information of
foreground and background patches. The network trained in this manner is sensitive
to the foreground and background, which helps to distinguish transparent objects and
achieve segmentation.

Figure 1. An example of transparent images (a low contrast environmental microorganism image).

In recent years, machine vision has been widely used for image processing [12,13].
Deep learning is a more effective method in the field of machine vision, such as the popular
Convolutional Neural Network (CNN) Xception, VGG-16, Resnet50, Inception-V3, U-Net,
and novel Visual Transformers (ViT) [14]. CNNs gradually expand the receptive field by
increasing the size of the convolution kernel until it covers the entire image; thus, CNNs
complete the image extraction from local to global information. Contrarily, transformers can
obtain global information from the beginning, making learning more challenging, but their
ability to retain long-term dependence is more potent than that of CNN [15]. Therefore,
CNNs and transformers have both advantages and disadvantages when handling visual
information. Therefore, this study compares the patch-level and pixel-level segmentation
performance of transparent images with different CNN and visual transformer methods.
This study aims to determine the adaptability of various deep learning models in this
research domain.

The main contributions of this paper are as follows:
(1) A comparative study on patch-level transparent image segmentation was con-

ducted to help analyze transparent images.
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(2) The segmentation performances of multiple CNN and ViT deep learning net-
works under patch-level and pixel-level images were compared, which is convenient in
performing further ensemble learning.

2. Related Work

This section briefly introduces related research on transparent images in practical
analysis tasks and classical deep learning models.

2.1. Introduction to Transparent Image Analysis

Object analysis is one of the essential branches in robot vision; particularly, the analysis
of transparent images of objects (transparent images) is challenging [16]. In the traditional
machine learning method, the multiclass fusion algorithm can only extract the shallow
features of a transparent image, and the obtained feature layer is incomplete. Practically, it
is difficult for multiclass fusion algorithms to detect transparent objects. For example, home
robots cannot see objects at all when they detect transparent glassware. The ClearGrasp
machine learning algorithm performs well in analyzing transparent objects [17]. It can
estimate the high-precision data of transparent objects from RGB-D transparent images,
thereby improving the accuracy of transparent object detection.

Photoelectric sensors are widely used in industrial automation, mechanization, and in-
telligence as a necessary technical means for analyzing objects. In [18], it uses the properties
of light to detect the position and changes of an object. Sensors and smart systems are
used to separate recyclable materials (transparent materials and metals) into different bins,
without using manpower.

There are many transparent objects in the industrial field, such as transparent plastics,
colloids, and liquid drops. These transparent objects bring considerable uncertainty to
products. For factories to have high-quality products, it is sometimes essential to analyze
these transparent objects and control their shapes. However, it is difficult to segment the
shapes of transparent objects using morphological methods. For instance, Hata et al. used a
genetic algorithm to segment a transparent paste-drop-shape in the industry and obtained
good performance [19].

Segmentation of transparent objects is significantly useful for computer vision applica-
tions. However, the foreground of a transparent image is usually similar to its background
environment, which leads to commonly used image segmentation methods handling trans-
parent images generally. The light-field image segmentation method can accurately and
automatically segment transparent images with a small depth-of-field difference and im-
prove the accuracy of the segmentation with less calculations [20]. Hence, they are widely
used for the segmentation of transparent images.

The correct segmentation of zebrafish in biology has extensively promoted the de-
velopment of the life sciences. However, zebrafish transparency makes the edges blurred
during segmentation. The mean-shift algorithm can enhance the color representation in the
image and improve the discrimination of the specimen against the background [21]. This
method improves the efficiency and accuracy of zebrafish specimen segmentation.

Visual object analysis is vital for robotics and computer vision applications. Commonly
used statistical analysis methods, such as the bag-of-features, are often applied to image
segmentation [22]. The principle is to extract local features of the image for segmentation.
However, the foreground transparent objects in transparent images do not have complete
features; therefore, it is difficult to accurately segment transparent images. The more
popular method is the light field distortion feature [23], which can describe transparent
objects without knowing the texture of the scene, thus improving the segmentation accuracy
of transparent images.

2.2. Introduction Classic of Deep Learning Network Models

Simonyan et al. proposed a VGG series of deep learning network models (VGG-Net),
of which VGG-16 is the most representative [24]. VGG-Net can imitate a larger receptive
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field by using multiple 3 × 3 filters, enhancing nonlinear mapping, reducing parameters,
and improving the network to better its analytics. Meanwhile, VGG-16 continues to deepen
the previous VGG-Net with 13 convolutional layers and three fully connected layers. With a
continuous increase in the convolution kernel and convolution layer, the nonlinear ability
of the model becomes stronger. VGG-16 can better learn the features in images and achieve
good performance in image classification, segmentation, and detection. Simonyan proved
that as the depth of the network increases, the accuracy of the image analysis increases [24].
Nevertheless, this increase in depth is limited. An excessively increase in the depth of the
network may lead to network degradation problems. Therefore, the optimal network depth
of the VGG-Net is set to 16–19 layers. Moreover, VGG-16 has three fully connected layers,
which causes more memory to be occupied, a long training time, and difficulty in tuning
the parameters.

He et al. proposed a ResNet series of networks and added a residual structure in the
networks to solve the problem of network degradation [25]. The ResNet model introduces
the jumpy connection method (shortcut connection). This connection method allows the
residual structure to skip levels that are not fully trained in the feature extraction process
and increases the model’s utilization of feature information during the training process.
As the most classical model in the ResNet series, ResNet50 has a 50-layer network structure.
This model adopts a highway network structure, which allows the network to have strong
expression capabilities and acquire more advanced features. Therefore, it is widely used
in image analysis. However, the network model is significantly deep and complicated;
therefore, determining the layers in the deep network that are not thoroughly trained and
then optimizing the network is a complex problem.

Szegedy et al. proposed a GoogLeNet network model, which has the advantage of
reducing the complexity of networks based on ResNet. They first proposed Inception-V1,
whose network is 22 layers deep and comprises multiple inception structure cascades as
basic modules; each inception module consists of a 1 × 1, 3 × 3, 5 × 5 convolution kernel
and a 3 × 3 maximum pooling, which is similar to the idea of multiscale, and increases the
adaptability of the network to different scales [26]. With the continuous improvement of the
inception module, the Inception-V2 network uses two 3 × 3 convolutions instead of 5 × 5
convolutions. This improves the Batch Normalization (BN) method, which rescales the data
distribution to accelerate the model convergence [27]. Inception-V3 network introduces the
idea of decomposing convolution, splitting a larger two-dimensional convolution into two
smaller one-dimensional convolutions, further reducing the number of calculations [28].
Concurrently, Inception-V3 optimizes the inception module, embeds the branch in the
branch, and improves the model’s accuracy.

Xception is another improvement after Inception-V3 [29]. It mainly uses depthwise
separable convolution to replace the convolution operation in Inception-V3. The Xception
model uses deep separable convolution to increase the width of the network, which im-
proves the accuracy of the classification and ability to learn subtle features. Xception adds
a residual mechanism similar to ResNet to significantly improve the speed of convergence
during training and accuracy of the model. However, Xception is relatively fragmented
during the calculation process and results in a slower iteration speed during training.

U-Net is a CNN that was initially used to perform medical image segmentation. The U-
Net architecture is symmetrical. It comprises a contracting and an expansive paths [30]. U-
Net makes two significant contributions. The first is the extensive use of data augmentation
to solve the problem of insufficient training data. The second is its end-to-end structure,
which can help the network retrieve information from the shallow layers. Owing to its
outstanding performance, U-Net has been widely used in semantic segmentation.

The transformer is a deep neural network based on the self-attention mechanism,
enabling the model to be trained in parallel and obtain global information from the training
data. Owing to its computational efficiency and scalability, it is widely used in natural
language processing (NLP). Recently, Dosovitskiy et al. proposed a vision transformer (ViT)
model that performs significantly well in image classification tasks [31]. In the first training
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step, the ViT model divides pictures into fixed-size image patches and uses their linear
sequence as the input of the transformer model. In the second step, position embeddings
are added to the embedding patches to retain the position information, and the image
features are extracted through the multihead attention mechanism. Finally, the classification
model is trained. ViT overcomes the limitation that the CNN model cannot be calculated
in parallel, and self-attention can produce a more interpretable model. ViT is suitable for
solving image-processing tasks, but experiments have proven that large data samples are
required to improve the training effect.

Currently, deep learning methods are used to solve practical application problems
in various fields. For example, in [32], a deep learning model was developed to detect
and track sperm, which can effectively assist doctors in determining male reproductive
health. In [33–36], a deep learning network is used to identify areas of cervical cancer
that helps doctors to analyze cervical histopathological images. Owing to the spread of
coronavirus disease 2019 (COVID-19), medical resources have continuously been depleted.
In [37], the detection performance of 15 different deep learning models for COVID-19
X-ray image identification are compared, which can help reduce the workload of doctors.
In [38], a multiple network model was proposed for the analysis of intracranial pressure
(ICP) and heart rate (HR) after severe traumatic brain injury in pediatric patients. In [39],
to help pathologists detect cancer subtypes and genetic mutations, a deep learning model
was developed. In [40], to predict the response to immune checkpoint inhibitors in ad-
vanced melanoma and effectively assist doctors in diagnosis, a deep learning model was
trained on clinical data. In [41], machine-learning methods are used to investigate, predict,
and discriminate COVID-19.

3. Comparative Experiment

This section introduces patch-level and pixel-level segmentation experiments and
the segmentation results of transparent images under several deep learning networks.
The patch-level and pixel-level image segmentation workflows are shown in Figure 2.

Figure 2. Workflow of patch-level and pixel-level segmentation in transparent images (using envi-
ronmental microorganism EMDS-5 images as examples) ((a) is the image of the training set and the
grayscale of the original image. (b) is the patch-level and pixel-level training process. In (c) is the test
set image. (d,e) are patch-level and pixel-level segmentation results, respectively).

3.1. Experiment Setting
3.1.1. Data Settings

In this study, we used the environmental microorganism dataset fifth version (EMDS-5)
as transparent images for the analysis [4]. The effectiveness and robustness of deep learning
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methods based on the small dataset, EMDS-5, are provided in detail in [42]. Table 1 shows
the data distribution of EMDS-5 in the experiment. It is a newly released version of
the EMDS series, which includes 21 types of EMs, each of which contains 20 original
microscopic images and their corresponding ground-truth (GT) images (examples are
shown in Figure 3). We randomly divided each category of the EMDS-5 into training,
validation, and test datasets in a ratio of 1:1:2. Thus, we obtained 105 original images and
their corresponding GT images for training and validation, respectively, and 210 original
images for testing.

Table 1. EMDS-5 experimental data setting.

Training Set Validation Set Test Set

Actinophrys 5 5 10
Arcella 5 5 10

Aspidisca 5 5 10
Codosiga 5 5 10
Colpoda 5 5 10
Epistylis 5 5 10
Euglypha 5 5 10

Paramecium 5 5 10
Rotifera 5 5 10
Vorticlla 5 5 10
Noctiluca 5 5 10
Ceratium 5 5 10
Stentor 5 5 10

Siprostomum 5 5 10
K.Quadrala 5 5 10

Euglena 5 5 10
Gymnodinium 5 5 10

Gonyaulax 5 5 10
Phacus 5 5 10

Stylonychia 5 5 10
Synchaeta 5 5 10

total 105 105 210

3.1.2. Data Preprocessing
Patch-Level Data Preprocessing

In the first step, considering that the light source had a significantly large effect on
the color of the microscope image and that the same sample show different colors under
different light sources, the color information was less important for the sign extraction
of the microscopic image [43]. Therefore, we converted the EM microscopic images into
grayscale to reduce the computational workload of the network model. In the second
step, we converted all image sizes into 256 × 256 pixels because the microscopic images
were of various sizes. In the third step, the training and validation images, and their
corresponding GT images were cropped into patches (8 × 8 pixels), and 105 × 1024 =
107,520 patches were obtained. Based on the corresponding GT image small patches, we
divided these small patches into two categories: foreground and background. The partition
criterion was based on whether the area of interest in the patch comprises half of the
entire patch. If so, we assigned the foreground as the label of this patch; otherwise, it
was annotated as the background. Finally, we found that the 8 × 8 pixel patches with
foreground and background were 16,554 and 90,966, respectively. During the training
process, we found that the model weights were heavily biased towards negative samples
owing to the imbalance between positive and negative samples. To avoid data imbalance
during training, we rotated the training set image small patches by 0°, 90°, 180°, and 270°,
and mirrored them for data augmentation. We then further obtained 16,544 ×8 = 132,432
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patches, from which 90,966 patches were randomly selected as the patches that were finally
used in the training set. Details of the image patches are listed in Table 2.

Table 2. Patch-Level data preprocessing. FG (foreground) and BG (background).

Data Set Training Set Validation Set Test Set

8 × 8 pixels FG 90,966 17,356 32,445
8 × 8 pixels BG 90,966 90,164 182,595

8 × 8 Total 181,932 107,520 215,040

Pixel-Level Data Preprocessing

The image was converted to grayscale and resized to 256× 256 pixels for the pixel-level
segmentation experiments.

Figure 3. Examples of the environmental microorganism image in EMDS-5. (a) is the original images
of EMDS-5, each image contains one or more EM objects of the same species, and one image is selected
for each species as a representative. (b) correspond to the real segmentation images of microorganisms
in each image in the (a). The pixel value of the background part in the microorganism image is set to
0, and the foreground part is set to 1.

3.1.3. Hyper Parameters

The patch-level experiment used the Adam optimizer with a learning rate of 0.0002,
and the batch size was set to 32. During the training, we used the cross-entropy loss
function to optimize the deep learning model [44]. Figure 4 shows the accuracy and loss
curves of the different deep learning models used in this experiment. The epoch was
determined based on the convergence of the loss curve. In our pretest, we tried to train
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100 epochs and maintained the best training model weights, and found that the best model
appeared between 40 and 50, where too much training caused overfitting and too little
training was not able to train the optimal model. Therefore, considering the computational
performance of the workstation, we finally set 50 epochs for training. Deep neural networks
have a strong expressive ability compared to traditional models that require more data to
avoid overfitting. Because our experiment was conducted on a small dataset, we employed
a transfer learning approach to avoid the overfitting problem [45]. Meanwhile, because of
the outstanding classification ability of CNN in ImageNet and the significant performance
of transfer learning with a limited training data set [24], we used the limited EM training
data to fine-tune the CNN model pretrained by ImageNet [46,47]. It has been proven
that using CNN pretrained on ImageNet is useful for classification tasks through the
concept of transfer learning and fine-tuning [48]. Before fine-tuning the pretrained CNN,
we froze the parameters of the pretrained model. Subsequently, we used patch-level data
to fine-tune the dense layers of the CNN. We retained the backbone network of the CNN
classification network to extract image features and replace the last fully connected layer
of the CNN model with Global Average Pooling2D + dense + dense + SoftMax. Global
average Pooling2D simplifies many parameter operations. The purpose of the dense layer
is to extract the correlation between these features through nonlinear changes in the dense
layer and map them to the output space. Finally, the class probability result was outputted
using SoftMax. We also compared the validation set accuracy of the ViT model with and
without pre-trained weights. In both sets of experiments, we trained three times and then
averaged the results. We found that ViT without pretrained weights and ViT with ImageNet
pretrained weights had accuracies of 0.8923 and 0.8926 on the validation set, respectively.
During training, ViT takes approximately 2G less memory for loading than the ImageNet
pretrained weight model. To compare the performance of the two methods, we used ViT
without pretraining as the optimization option. We set the network depth to six, heads to
16, mlp_dim to 3000, and dropout and emb_dropout to 0.1. The pixel-level experiment
used the Adam optimizer with a learning rate of 0.001, and the batch size was set to 4.
Figure 5 shows the loss curves of the different deep learning models in this experiment.
The training curves began to converge after 90 epochs of iterations for the five models.
To prevent overfitting, we set 100 epochs for training.

Figure 4. A comparison of the image segmentation results of the loss and accuracy curves of deep
learning on 8 × 8 pixels training and validation sets. (Each legend has four curves, respectively,
the accuracy and loss values of the training set, and the accuracy and loss values of the validation set).
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Figure 5. A comparison of the image segmentation results of the loss curves of deep learning on
pixel-level training and validation sets.

3.2. Evaluation Metrics

To compare the classification foreground and background performances of different
methods, we used the commonly used deep learning classification indexes—accuracy (Acc),
precision (Pre), recall (Rec), specificity (Spe), and F1-Score (F1)—to evaluate the patch-level
results [49]. Acc reflects the ratio of correct classification samples to total samples. Pre
reflects the proportion of correctly predicted positive samples in the model classification
of positive samples. Rec reflects the correct proportion of model classification for all
positive samples. Spe reflects the proportion of the model that correctly classifies negative
samples among the total negative samples. F1 is a calculation result that comprehensively
considers the Pre and Rec of the model. In addition, we employed Dice, Jaccard, Pre,
Acc, and Rec to evaluate the results of pixel-level segmentation [38]. Vpred represents the
foreground predicted by the model. Vgt represents the foreground in the ground-truth
image. From Table 3, we can determine that the higher the values of the first four metrics
(Dice, Jaccard, recall, and accuracy), the better the segmentation results. True positive
(TP), false negative (FN), false positive (FP), and true negative (TN) are concepts in the
confusion matrix.

Table 3. Evaluation metrics.

Metrics Formula Metrics Formula

Acc TP+TN
TP+TN+FP+FN Dice 2×|Vpred∩Vgt|

|Vpred|+|Vgt|
Pre (P) TP

TP+FP Jaccard |Vpred∩Vgt|
|Vpred∪Vgt|

Rec (R) TP
TP+FN F1 2×P×R

P+R
Spe TN

TN+FP

3.3. Comparative Experiment

To ensure the reliability of the deep learning models, we performed five-fold cross-
validation in all experiments in this study [50]. We took the average of the experimentally
obtained model performance indicators as the data for the final evaluation model (precision,
recall, F1-Score, accuracy, time, size, Dice, and Jaccard).

3.3.1. Comparative Experiment of Patch-Level Segmentation
Comparison on Training and Validation Sets

To compare the classification performance of the CNNs and ViT models, we cal-
culated the precision, recall, F1-Score, and maximum accuracy to evaluate the models.
The segmentation results of the 8 × 8 pixel patches in the validation set are presented in
Table 4. Overall, the Pre of the deep learning network that classifies the transparent image
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background was higher than that of the foreground image. In addition, the Pre of the
five models for classifying transparent image backgrounds was approximately 97%; the
highest was the VGG-16 value of 97.6%, and the lowest was the Xception and ViT value of
96.7%. The Pre rate of foreground classification VGG-16 was the best, and the Pre rate was
63.1%. Inception-V3 showed the lowest value (53.3%). For transparent image foreground
classification, the highest Rec rate was obtained with Xception (89.2%), and the lowest was
ViT (84.1%). For transparent image background classification, the highest Rec rate was the
ViT value of 90.3%, and the lowest was the Xception value of 85.0%. The Spe obtained by
the five models in the classification background was opposite to the Rec rate obtained in
the classification foreground. Among the five models, the highest Acc was ResNet50 with
92.87%, and the lowest was ViT with 89.26%.

Table 4. Classification performance of models of five-fold cross-validation experiment on validation
set of 8 × 8 pixels patches. MAcc (Max Acc), FG (foreground) and BG (background) (In [%]).

Model Class Avg.Pre Avg.Rec Avg.Spe Avg.F1 MAcc

ResNet50 FG 62.3 88.2 89.7 73.0 92.87BG 97.5 89.7 88.2 93.4

Inception-V3 FG 61.8 88.6 89.5 72.8 90.24BG 97.6 89.5 88.6 93.4

VGG-16 FG 63.1 88.6 90.0 73.7 92.09BG 97.6 90.0 88.6 93.6

Xception FG 53.3 89.2 85.0 66.7 91.10BG 96.7 85.0 89.2 90.9

ViT FG 62.4 84.1 90.3 71.6 89.26BG 96.7 90.3 84.1 93.4

Comparison on Test Set

Table 5 summarizes the results of the five network predictions. We found that the
Acc of ResNet50 was the highest (90.00%), and that of Xception was the lowest at 85.85%.
Furthermore, the lowest predicted Acc of the transparent foreground was the Xception
with 51.8%, and the highest was the ResNet50 (62.2%).

To express the classification results of the CNN and ViT models for transparent image
patches more intuitively, we summarize the confusion matrices predicted by the five
models, as presented in Figure 6. Inception-V3 correctly classified 2509 more foreground
patches than the ViT model. However, Inception-V3 correctly classified only 260 more
foreground patches than Xception. In classifying background patches, the Resnet50 model
exhibited the best performance, correctly classifying 165,369 background patches. Resnet50
correctly classifies 10,183 background patches better than the Xception model, but only
625 more background patches than ViT. The classification details are shown in Figure 6.
In addition, the number of correctly classified backgrounds in ResNet50 was 165,369,
accounting for 90.57% of the total correct background patches, and the Pre of the classified
background patches was 97.55%. Among the five models, ResNet50 exhibited the highest
prediction accuracy rate of 90.06%. The classification accuracies of the Xception and
Inception models were lower than those of the other five models at 85.85% and 86.30%,
respectively. Moreover, we found that the Xception and Inception models exhibited poor
background, but better foreground recognition performances. The Inception-V3 model
correctly classified approximately 29,688 foreground patches, accounting for 91.50% of
the total number of foreground patches. The Xception model misclassified a maximum
of 27,409 background patches, accounting for 15.01% of the total background patches.
Among the five models, the classification performance of the VGG model was relatively
moderate. To better illustrate the classification results, we reconstructed the transparent
image after dicing, as shown in Figure 7.
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Figure 6. Predict the confusion matrix on test set of 8 × 8 pixels’ patches.

Figure 7. Reconstruct the 8 × 8 pixel patch transparent image segmentation results. (The figure
contains the original image, ground truth image and Resnet50, Inception-V3, VGG-16, Xception, ViT
network model predicted segmentation results).
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Table 5. Classification performance of models of five-fold cross-validation experiment on test set of
8 × 8 pixels’ patches. PAcc (prediction accuracy), FG (foreground) and BG (background) (In [%]).

Model Class Avg.Pre Avg.Rec Avg.Spe Avg.F1 Avg.PAcc

ResNet50 FG 62.2 87.2 90.6 72.6 90.0BG 97.5 90.6 87.2 93.9

Inception-V3 FG 52.6 91.5 85.4 66.8 86.29BG 98.3 85.4 91.5 91.4

VGG-16 FG 60.7 89.4 89.7 72.6 89.6BG 97.9 89.7 89.4 93.6

Xception FG 51.8 90.7 85.0 65.9 85.85BG 98.1 85.0 90.7 91.1

ViT FG 60.4 83.8 90.2 70.2 89.25BG 96.9 90.2 83.8 93.4

3.3.2. Comparison Experiment of Pixel-Level Segmentation

To compare the effect of path-level segmentation, we conducted extended experiments
using pixel-level segmentation. We applied five networks for the comparative experiments:
U-Net, U-Net++, SegNet, TransUnet, and Swin-UNet. We used these five networks to
compare the performance of the CNN and ViT for pixel-level segmentation. U-Net, U-
Net++, and SegNet stand for CNN network, Swin-UNet stands for transformer networks,
and TransUnet stands for CNNs joining the transformer. Table 6 presents the outcome of the
five model prediction metrics. We found that U-Net++ exhibited the highest segmentation
performance overall, but also had the longest training time. U-Net exhibited the worst
segmentation performance. The segmentation result of the vision transformer network
(Swin-UNet) was second after that of U-Net++. The Jaccard and precision values were
71.26% and 85.00%, respectively, which were higher than those of the other network
models. To compare the segmentation results more intuitively, we presented the pixel-
level segmentation results in Figure 8. Clearly, the pixel-level segmentation results are
better than those of the patch level. However, the patch-level segmentation effect was
better for multiobject transparent microorganism images. Compared to the 8 × 8 patch-
level segmentation, the network model with a transformer structure (Swin-UNet) at the
pixel level performed well, and the ViT was higher than the accuracy of the CNN model.
However, in the 8 × 8 patch-level experiment, the accuracy of the CNN was higher than
that of ViT. It is shown in Figure 5 that the loss curve stability of Swin-UNet is significantly
better than that of the other four models during training. The training loss stability of the
ViT model was better than that of the CNN model. To reflect the training process of the
model more intuitively, the Intersection-over-Union (IOU) curves of the five models on the
training and validation sets in the pixel-level experiment is presented in Figure 9.

Table 6. Segmentation performance of models of five-fold cross-validation experiment on the test set.

Model Avg.Dice Avg.Jaccard Avg.Precision Avg.Recall Avg.Acc

U-Net 71.82 59.23 68.98 76.06 91.93
U-Net++ 82.51 73.51 83.42 85.98 95.32
SegNet 78.21 67.70 77.45 84.66 74.06

Trans-Unet 75.50 64.13 72.52 86.75 93.44
Swin-UNet 81.00 71.26 85.00 82.08 95.31
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Figure 8. Reconstruction of pixel-level segmentation results on transparent images of the test set. (The
figure contains the original image, ground truth image and U-net, Trans-Unet, Swin-Unet, U-Net++,
and SegNet network model predicted segmentation results).

Figure 9. A comparison of the image segmentation results of the IOU curves of deep learning on
pixel-level training and validation sets.

3.3.3. Additional Experiment Based on EMDS-6 Dataset

To demonstrate the applicability of the models in our comparative experiments, we
compared five models in pixel-level experiments on the EMDS-6 dataset. A partial EM
sample of EMDS-6 is shown in Figure 10. EMDS-6 contains 840 EM’s microscopic images
within 21 classes. We divided the dataset into training, validation, and test sets in a 1:1:2
ratio. We trained five models using the same parameters as those used in the EMDS-5
experiments. The performance metrics of the experimental results of the five models are
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presented in Table 7. We found that on EMDS-6, the pixel-level segmentation performance is
consistent with the segmentation performance of EMDS-5. The segmentation performance
of the U-Net, U-Net++, and Swin-Unet models was similar, and the segmentation accuracy
was approximately 95%. SegNet exhibited the worst segmentation performance, with an
accuracy of 91.21%. In addition, the number of images in EMDS-6 was twice that of EMDS-
5; therefore, the model learns more EM information during training, leading to an overall
improvement in the segmentation performance of the five models. The loss and IOU curves
trained using the five models are shown in Figures 11 and 12, respectively. We found that
the loss and IOU curves trained by the five models were similar to the results in EMDS-5;
therefore, the five models are suitable for comparison experiments. The segmentation
results are shown in Figure 13.

Figure 10. Examples of the environmental microorganism image in EMDS-6. (a) is the original
images of EMDS-6, each image contains one or more EM objects of the same species, and one image
is selected for each species as a representative. (b) correspond to the real segmentation images of
microorganisms in each image in the (a). The pixel value of the background part in the microorganism
image is set to 0, and the foreground part is set to 1.
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Table 7. Segmentation performance of models of five-fold cross-validation experiment on the EMDS-6
test set.

Model Dice Jaccard Precision Recall Acc

U-Net 84.81 76.24 88.83 83.53 95.43
U-Net++ 86.48 78.25 89.02 87.08 95.80
SegNet 74.63 62.50 73.88 83.59 91.21

Trans-Unet 84.66 76.09 86.04 86.88 94.98
Swin-UNet 86.11 78.05 89.46 85.79 95.49

Figure 11. A comparison of the image segmentation results of the loss and accuracy curves of deep
learning on pixel-level training and validation set of EMDS-6.

Figure 12. A comparison of the image segmentation results of the IOU curves of deep learning on
pixel-level training and validation sets of EMDS-6.
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Figure 13. Reconstruction of pixel-level segmentation results on transparent images the EMDS-6 test
set. (The figure contains the original image, ground truth image and U-net, Trans-Unet, Swin-Unet,
U-Net++, SegNet network model predicted segmentation results).

3.3.4. Experimental Environment

A comparative experiment was conducted using a local computer, with a running
memory of 16 GB. The computer used the Win10 Professional operating system equipped
with an 8 GB NVIDIA Quadro RTX 4000 GPU. In the patch-level experiment, the four CNN
network models were imported from Keras version 2.3.1, and used TensorFlow 2.0.0 as the
background. The experimental frameworks for ViT and pixel level were Pytorch 1.7.1 and
Torchvision 8.0.2. Table 8 presents the model training and prediction time, and the size of
the model during the experiment. From the perspective of model training time, the ViT
model was much lower than CNN models, where the ViT training time was 13,992 s,
and the Xception training time was the longest, 46,383 s. From the perspective of the
model size, the minimum size of the ViT model was 31.2 M, and the maximum size of
the ResNet50 model was 114 M. We calculated the times required for the five prediction
models. The fastest prediction time for Inception-V3 was 583 s, and the prediction time for
a single picture was 0.0027 s. The slowest time for ViT was 1308 s, and the prediction time
of a single image was 0.0061 s.

Table 8. A comparison of the classification results of five-fold cross-validation experiment on train
and test sets of 8 × 8 pixels patches. Train (Average training time), Test (Average test times) and
Avg.p (Single picture prediction time) (In [s]).

Model Train Test Avg.p Size (MB)

ResNet50 36,754 878 0.0041 114
Inception-V3 24,064 583 0.0027 107

VGG-16 34,736 781 0.0036 62.2
Xception 46,383 1014 0.0047 103

ViT 13,992 1308 0.0061 31.2
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3.4. In-Depth Analysis

In the predicted 215,040 patches, we compared the performance of five types of
network classification: foreground and background. From Figure 6, Inception-V3 has the
largest number of correct foregrounds under 8 × 8 pixel patches, whereas ResNet50 has
the largest number of correctly classified backgrounds. Furthermore, ViT network models
misclassified foreground patches more than CNNs models. Consequently, the number
of correctly classified foregrounds in the CNNs network was greater than that in the ViT
network. Moreover, the ability of Swin-UNet to segment the foreground outperformed most
models. Therefore, the ViT model was found as outstanding for low-transparency image
recognition. Furthermore, in [32,36,49], on other datasets, the classification performance of
the CNN model was better than that of the ViT network, and the training time of the ViT
network model was less than that of the CNN model.

We found that the segmentation effect of the pixel level was higher than that of the
patch level, but the segmentation result of the patch level can compensate for the loss of
details of pixel-level segmentation. Therefore, we combined the patch-level and pixel-level
segmentation results to obtain the optimal segmentation results. Figure 14 compares the
GT, pixel-level, patch-level, and combined segmentation results. We set the segmentation
region to a red mask and found that the combined results were significantly better than the
single pixel-level or patch-level segmentation results.

Figure 14. Valid examples in EMDS-5 that fuse pixel-level segmentation and patch-level segmentation.
From top to bottom, the images in each original image of EM, the EM represent GT image, pixel-level
segmentation result, patch-level segmentation result, and combined result, respectively. (The red part
in the figure is the segmentation result).

4. Discussion

This study investigates the patch-level and pixel-level segmentation performance of
five deep learning models on the EMDS-5 [4]. The comparison results based on the evalua-
tion indicators are listed in Tables 4, 5, 6 and 8. In addition, to verify the generalization of
the model, we used the same method to perform expansion experiments on the EMDS-6
dataset. The results are summarized in Table 4 and Figures 11–13. To improve the reliability
of the conclusion, all experimental results in this study were repeated five times, and then
averaged for the final result [50].

In the patch-level segmentation experiments, the performance indicators of the five
models were compared [49]. We found that all five deep learning models were better at
classifying transparent image backgrounds than foregrounds. We can speculate that the
foreground features of the transparent image are similar to those of the background, and all
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models had a strong ability to classify the background. Further, we compare the CNN
and ViT models among the five models [14]. We found that ResNet50 [25] model had
the highest segmentation performance; however, the ViT [31] model was better than the
CNN model in terms of training time and model convergence speed. The ViT network has
evident advantages in the time of training the model, and the time consumption is much
less than that in other models. We can speculate that the ViT model may further expand its
advantages when trained using more training data.

In the pixel-level segmentation experiment, we also conducted a comparative ex-
periment between the CNN and ViT models. The model with the highest segmentation
performance was U-Net++ [51]. Similarly, the Swin-UNet model [52], represented by the
ViT model, had a better convergence speed than the CNN model. In addition, the ac-
curacy of the Swin-UNet segmentation was better than that of U-Net, SegNet [53], and
Trans-Unet [54].

The magnitude and index system of patch-level and pixel-level segmentation are
different. Therefore, we cannot numerically compare the segmentation performance of
the two groups of experiments. However, we made a full comparison between the patch-
level and pixel-level visual segmentation results and fused the patch-level and pixel-level
segmentation results to obtain a more complete segmentation result.

In computer vision tasks, image segmentation for multi-size EMs [5,55] and for weakly
visible EMs [56,57] are introduced in recent years, where multi-scale CNN and pair-wise
CNN methods are developed. However, the transparent EM image has not been developed
and studied, so this paper used patch-level and pixel-level methods to segment transparent
images, and a total of eight CNN and two ViT models were used to test the performance
of the model. This study provides an analysis table of differences between the patch-level
and pixel-level models. Our research and conclusions significantly reduce the workload
of the researcher’s choice of experimental augmentation method. This reference is of
great significance.

In this paper, we investigate deep learning methods for analyzing transparent EM
images. In Section 2.1, we mentioned some existing techniques for analyzing transparent
objects, and these techniques also have great potential in analyzing transparent EM images.
For example, cleargrasp uses a deep convolutional network to infer surface normals, masks
and occlusion boundaries on the surface of transparent objects. These outputs are then
used to optimize the initial depth estimates of all transparent surfaces in the scene [17].
The leargrasp algorithm has great potential for transparent EM edge segmentation. In the
industrial field, optical sensors are widely used to detect transparent objects by using the
difference of light propagation rate through different media to determine transparent ob-
jects [19]. Optical sensors have potential value for transparent EM torso segmentation [20].
Meanwhile, the mean-shift algorithm and genetics algorithm also perform well in analyz-
ing transparent objects, and we can also apply it to the segmentation of transparent EM
blur and occluded locations [19,21]. The above methods of analyzing images have been
proposed with the development of image processing technology, and these methods have
the potential to contribute to the analysis of transparent EM images.

5. Conclusions and Future Work

In this study, we aimed to address the segmentation problems in transparent images
by cropping the image into patches and classifying their foreground and background.
We used CNNs and ViT deep learning methods to compare the patch-level and pixel-
level performances of the transparent image segmentation. In segmenting transparent
microorganism images, we found that the pixel-level generally outperforms the patch-level
segmentation. However, the patch-level method works better in multiobject segmentation.
Moreover, in the patch-level segmentation experiment, CNNs were better than the ViT
models, but in the pixel-level experiment, the ViT model segmentation performed better
than that of most CNNs. The smaller the patch pixel is, the more the regions perceived by
the ViT model, and the stronger the ability to combine contextual information. Furthermore,

196



Appl. Sci. 2022, 12, 9320

the loss convergence and stability of the ViT model during training were better than those
of the CNN model. In conclusion, the CNN and ViT models have more advantages in
image classification. CNN is better at extracting the local features of images, whereas ViT is
better at extracting the global features of images combined with contextual information.
The ViT model has great potential for the future.

In the future, we plan to increase the amount of data to improve the stability of the
comparisons. Meanwhile, images reconstructed by deep learning classification can be
extended to the positioning, recognition, and detection of transparent images. We will
further strengthen the applicability of these results.
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Abstract: This paper proposes a novel pixel interval down-sampling network (PID-Net) for dense
tiny object (yeast cells) counting tasks with higher accuracy. The PID-Net is an end-to-end convo-
lutional neural network (CNN) model with an encoder–decoder architecture. The pixel interval
down-sampling operations are concatenated with max-pooling operations to combine the sparse
and dense features. This addresses the limitation of contour conglutination of dense objects while
counting. The evaluation was conducted using classical segmentation metrics (the Dice, Jaccard and
Hausdorff distance) as well as counting metrics. The experimental results show that the proposed
PID-Net had the best performance and potential for dense tiny object counting tasks, which achieved
96.97% counting accuracy on the dataset with 2448 yeast cell images. By comparing with the state-of-
the-art approaches, such as Attention U-Net, Swin U-Net and Trans U-Net, the proposed PID-Net
can segment dense tiny objects with clearer boundaries and fewer incorrect debris, which shows the
great potential of PID-Net in the task of accurate counting.

Keywords: yeast counting; image segmentation; pixel interval down-sampling; tiny objects

1. Introduction

With the development of industrialization, environmental pollution has become a
vital problem to be resolved urgently. Compared with the classical physical and chemical
approaches, the novel biological methods are more efficient and transparent, causing no
secondary pollution, which has become the preference for environmental pollution. The
research of Environmental Microorganisms (EMs) is helpful to focus on the interrelationship
among microorganisms, pollutants and the environment. It is essential to use microorgan-
isms to degrade the increasingly severe and diverse environmental pollutants effectively.

Yeast is a kind of single-celled eukaryotic microorganism that is highly adaptable to
the environment. It is widely applied to produce alcohol, glycerol and organic acids, which
are closely linked to the life and production activity of humanity. Until now, yeast have
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also been used in the treatment of toxic industrial wastewater and solid waste, which plays
an important role in treating environmental pollution [1,2].

In the research of yeast applied in industrial production and environmental pollution
control, biomass is the basic evaluation method and can quantitatively consider the per-
formance of yeast in various tasks [3]. At present, there are mainly two types of counting
methods. The first is manual counting methods, such as plate counting and hemocytometry;
another is semi-automatic counting methods, such as flow cytometry [4,5].

Manual counting is straightforward and stable to use with high accuracy when the
number of cells is limited. However, when the number of cells becomes larger, it will be
time-consuming, and the accuracy will be lowered due to the subjective influence of the
operator. Semi-automatic counting is more accurate and can obtain ideal results in the
case of large biomass; however, it is not portable and requires expensive equipment [6].
Therefore, these classical methods have non-negligible limitations in practice.

Due to the rapid developments of computer vision and deep learning technologies,
computer-assisted image analysis is broadly applied in many research fields, including
histopathological image analysis [7–10], cytopathological image analysis [11–13], object de-
tection [14–16], microorganism classification [17–22], microorganism segmentation [23–26]
and microorganism counting [27,28].

However, by reviewing the works of microorganism counting from the 1980s until
now [28], we find that, in the process of image segmentation, all existing segmentation
approaches use traditional technologies, such as thresholding [29], edge detection [30] and
watershed [31]. Most of the deep-learning approaches are only applied for microorganism
classification but not for microorganism segmentation in the task of microorganism count-
ing [32]. Here, we propose a novel Pixel Interval Down-sampling Network (PID-Net) for the
yeast counting task with higher accuracy.

The PID-Net is an improved Convolutional Neural Network (CNN) based on an
encoder–decoder architecture, pixel interval down-sampling and concatenate operations.
By comparing with the traditional SegNet [33] and U-Net [34]-based object counting
algorithms, the accuracy of counting is improved. The workflow of the proposed PID-Net
counting method is shown in Figure 1.

Figure 1. The workflow diagram of the proposed yeast image counting method using PID-Net.

In Figure 1, (a) Original Dataset: The dataset contains images of yeast cells and
their ground truth (GT). The range is from 1 to 256 yeast cells in each image. (b) Data
Augmentation: Mirror and rotation operations are applied to augment the original dataset.
(c) Training Process: PID-Net is trained for image segmentation and the best model is
generated. (d) Segmentation Result: Test images are processed using the trained PID-Net
model and output the predicted segmentation results. (e) Counting Result: The number of
yeast cells is counted by using connected domain detection.

The main contributions of this paper are as follows:

• We propose PID-Net for dense tiny object counting. MaxPooling and pixel inter-
val down-sampling are concatenated as down-sampling to extract spatial local and
global features.
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• The operation of max-pooling may lose some local features of tiny objects while
segmentation, and the edge lines may not be connected after max-pooling. However,
the PID-Net can cover a more detailed region.

• The proposed PID-Net achieves better counting performance than other models on
the EM (yeast) counting task.

The paper is organized as follows: Section 2 is the related work of existing image
analysis-based microorganism counting methods. Section 3 describes the architecture of
the proposed PID-Net in detail. Section 4 consists of the experimental setting, evaluation
metrics and results. Section 5 is the conclusion of this paper.

2. Related Work

In this section, related approaches to image analysis-based microorganism counting
methods are summarized in Table 1, which consist of classical counting methods and
machine-learning-based counting methods. More detailed research can be referred to in
our survey paper [28].

Table 1. Microorganism image counting methods.

Category Subcategory Related Work

Thresholding-Based Methods [35–37]
Classical Methods Edge Detection-based Methods [38–40]

Watershed-Based Methods [41–44]

Hough Transformation [45–47]
Machine-Learning-Methods Classical Machine-Learning-Based Methods [48–51]

Deep-Learning-Based Methods [52–55]

2.1. Classical Counting Methods

Image segmentation is the most significant part in microorganism-counting task. As
shown in Table 1, the classical methods contain thresholding, edge detection and watershed
methods [56]. For thresholding approaches, the selection of threshold determines the
result of segmentation. The most used approaches are iterative thresholding and Otsu
thresholding at present. Otsu thresholding can achieve satisfactory segmentation results
for most images [57].

Edge detection approaches can extract all boundaries in an image, and then each
close region can be separated [58]. Watershed is one kind of region-based segmentation
approach, which can be calculated by iterative labeling [59]. The satisfactory segmentation
result can be received though in an image with weak edges. Hough transformation was
proposed for line or circle detection tasks in image with strong anti-noise capability and
high accuracy, which can be applied for circular microorgansim counting tasks [60].

In [35–37], various thresholding methods were applied for microorganism counting.
In [35], an adaptive thresholding was used for microorganism segmentation, and after that,
the minima function was applied to locate the center of each colony for counting. The
work [36] applied Otsu thresholding for bacteria segmentation, and the hypothesis testing
was then applied for debris erasing. In [37], the contrast-limited adaptive histogram
equalization was applied to enhance the plate contour first. Then, the Otsu threshold
was applied to detect the plate region and binarize the images automatically. Finally,
the colonies were separated and counted.

The works [38–40] used several edge detection methods for microorganism counting.
In [38], five different combination methods applying for microorganism segmentation
were compared, such as Gaussian Laplacian and Canny filters. Then, the concave surface
between the connected colonies was detected for counting. The works [39,40] used Sobel
and Laplacian filters for the edge detection of bacteria images.

The works [41–44] use watershed-based methods for microorganism counting. In [41],
watershed was applied for separation of clustered colonies of bacteria images. After
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that, the circularity ratio was calculated for colony counting. In [42], marker-controlled
watershed was applied for bacteria segmentation. Then, the number of colonies was
estimated as the ratio of cluster area to an average colony area. In [43], Otsu and adaptive
thresholding were applied for image binarization. Then, the combination method of
distance transform and watershed was applied for bacteria counting. In [44], watershed
was used for image segmentation. After that, the gray level co-occurrence matrix (GLCM)
of the image was extracted and classified using SVM.

The works [45–47] used Hough-transformation-based methods for microorganism
counting. In [45], the iterative local threshold was used for bacteria segmentation, and then
a Hough circle transformation was applied to separate clustered colonies into a single
colony. In [46], a median filter was applied for denoising. Then, the circular area was
detected using the Hough transform to obtain only the inner area of the dish. Afterward,
Gaussian adaptive thresholding was applied for bacteria segmentation. Finally, cross
correlation-based granulometry was used to count the bacteria colonies. In [47], Otsu
thresholding and a Laplacian filter were applied for edge detection. Then, a circular Hough
transform was used to detect circular bacteria colonies.

2.2. Machine-Learning-Based Counting Methods

As shown in Table 1, the machine-learning-based microorganism counting approaches
consist of machine-learning- and deep-learning-based methods. The classical machine-
learning-based approaches contain Principal Component Analysis (PCA) [61] and Support
Vector Machine (SVM) [62]. Deep-learning methods are usually based on CNN [63], Back Prop-
agation Neural Network (BPNN) [64] and Artificial Neural Network (ANN) [65] algorithms.

The works [48–51] used classical machine learning for microorganism counting. In [48],
PCA was applied for separation the bacteria with other debris. After that, the nearest neigh-
bor searching algorithm was applied for clustered colony separation. In [49], the shape
features were extracted for training, then the SVM was applied for microorganism classifi-
cation and counting after Otsu thresholding.

In [50], the histogram local equalization was applied to enhance the contours of pro-
tozoa images. Then, morphological erosion and reconstruction were used to eliminate
the flocs of the protozoa silhouette. Finally, PCA was applied to classify different pro-
tozoa, and the number of the various species of protozoa was counted. In [51], local
auto-correlational masks were used for image enhancement, and PCA was applied for
plankton counting.

The works [52–55] used deep learning for microorganism classification and counting.
In [52], the Marr–Hildreth operator and thresholding were applied for edge detection and
binarization of bacteria images. Then, ANN was designed for classification and counting.
In [53], the contrast-limited adaptive histogram equalization was applied for bacteria image
segmentation, then four convolutional and one fully connected was trained for classification
and counting. In [54], contrast limited adaptive histogram equalization was used for image
enhancement.

Then, CNN was applied for bacteria classification, and the watershed algorithm was
applied for colony separation and counting. In [55], a classification-type convolutional
neural network (cCNN) was proposed for automatic bacteria classification and counting.
First, the original images were segmented with an adaptive binary thresholding method,
and images with individual cells or cell clusters were cropped. Then, the images were
classified using cCNN. The network can output the number of bacteria in given clusters,
and the total count can be calculated.

By reviewing all related works of microorganism counting, we found that deep
learning technologies are widely applied for microorganism classification; however, few
machine-learning-based image segmentation methods are applied. Since the development
of deep learning and computer vision technologies, CNN-based image segmentation ap-
proaches have be applied for accurate microorganism segmentation, such as SegNet [33],
U-Net [34], Attention U-Net [66], Trans U-Net [67] and Swin U-Net [68]. Though the
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methods above have not been applied for microorganism-counting tasks, they have enough
potential to extract the microorganism before counting, which can be inferred with bet-
ter performance.

Since the yeast images in our dataset range from 1 to 256 yeast cells in each image,
and the boundaries of the cells are not clear, it can be inferred that the classical segmentation
methods may show poor performance in this counting task. Therefore, we propose an
encoder–decoder model that concentrates on the dense and tiny object counting task.

3. PID-Net-Based Yeast Counting Method

Although the existing image segmentation models, such as SegNet and U-Net, have
been widely applied in semantic segmentation and biomedical image segmentation, they
still cannot meet the requirements of accurate segmentation in the microorganism-counting
task. To this end, we propose PID-Net, a CNN-based on pixel interval down-sampling,
MaxPooling and concatenate operations to obtain a better performance. The process of
microorganism counting mainly contains two parts, the first is microorganism image
segmentation, whose purpose is to classify the foreground and background at the pixel-
level. The second part is microorganism counting, whose purpose is to count the number
of segmented objects after post-processing.

3.1. Basic Knowledge of SegNet

SegNet is a CNN-based image segmentation network with the structure of an encoder
and decoder. The innovation of SegNet is that the dense feature maps of high resolution
images can be calculated by the encoder, and the up-sampling operation for low-resolution
feature maps can be performed by the decoder network [33]. The structure of SegNet can
be considered as an encoder network and a corresponding decoder network. The last part
is a pixel-level classification layer.

The first 13 convolutional layers of VGG16 [69] is applied in encoder network of
SegNet, which consist of convolutional layers, pooling layers and Batch Normalization
layers. In the encoder network, two sequences, which consist of one 3 × 3 convolution
operation, followed by a Batch Normalization and a ReLU operation, are applied in each
step. After that, the feature maps are down-sampled by using a max-pooling operation
with the size of 2 × 2 and stride of 2 pixels. After pooling, the size of the feature map is
changed into half of the initial.

What is noteworthy is that the Pooling Indices are saved while pooling, which records
the initial position of the maximum value in the input feature maps. In the decoder network,
the up-sampling operation is applied for feature maps, and then the convolution operation
is performed three times to fix the detail loss while pooling. The same operation is replicated
five times to change the feature maps into the initial image size. The saved Pooling Indices
are applied while up-sampling to set the feature points into correct positions. A Softmax
layer is applied finally for feature map classification.

3.2. Basic Knowledge of U-Net

U-Net is an U-shape CNN model based on an encoder–decoder and skip connection.
U-Net is first designed for the segmentation of biomedical images. The max-pooling with
the size of 2 × 2 and stride of 2 pixels is applied for down-sampling. There are two 3 × 3
convolution operations (each followed by a ReLU) between two down-sampling operations.
The down-sampling operation repeats four times, and the number of feature map channels
is modified to 1024.

In the decoder network, the result after up-convolution operation (a 2 × 2 up-sampling
and a 2 × 2 convolution operation) is concatenated with the corresponding feature maps
of encoder, which can combine the high-level semantics with the low-level fine-grained
information of the image. After that, two 3 × 3 convolution operations (each followed by a
ReLU) are applied. The size of each feature map is changed into the size of input after four
up-sampling operations. Finally, a Sigmoid function is applied for classification.
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3.3. The Structure of PID-Net

Following the basic idea of SegNet and U-Net for image segmentation, the structure of
the proposed PID-Net is shown in Figure 2, which is an end-to-end CNN structure based
on the encoder and decoder. There are four blocks in the encoder network.

The first parts in each block are two convolution operations with a kernel size of 3 × 3
(each followed by a ReLU operation), and then the max-pooling with the size of 2 × 2
and stride of 2 pixels is applied to reduce the size of feature maps by half, followed by
a convolution and ReLU operation. The channel of feature maps is denoted as C. Pixel
interval down-sampling is applied for down-sampling, which is shown in Figure 2. Each
pixel is sampled with the pixels apart, and the size of each feature map is replaced by half.

The classical down-sampling methods, such as max-pooling (with the kernel size of 2)
will drop 3

4 data of the original image. It can retain the main information but not be fit to the
task of tiny object counting (the edge lines may be lost while max-pooling). Though there
are several learnable pooling layers that have proposed, such as Fractional pooling [70],
Stochastic pooling [71] and learned-norm pooling approaches [72]; however, they still
cannot meet the requirement of accurate segmentation for dense tiny yeast cells.

Thus, a new down-sampling method, pixel interval down-sampling, is proposed here,
which can reduce the size of feature maps without dropping data. Afterward, four pixel
interval down-sampling feature maps and the features after max-pooling are concatenated
to 5C-dimensional features. Finally, a convolutional filter with C channels is applied to
reduce 5C-dimensional features to C-dimensional features. Hereto, the initial feature maps
with size H × W and channel C are changed to feature maps with size H

2 × W
2 and channel

C. The procedure is repeated four times with output resolutions of H
16 × W

16 and channel
of 8C.

6464 I
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Figure 2. The structure of the proposed PID-Net.

In the decoder network, four blocks are applied for up-sampling. Two convolution
operations with a kernel size of 3 × 3 (each followed by a ReLU operation) are applied first.
Then, the transposed convolution operation with a kernel size of 3, a stride of 2 and padding
of 1 is applied for up-sampling. The transposed convolution operation is widely applied
in GANs to expand the size of images [73]. The count of channels after up-sampling of
the bottleneck is 512, which is calculated by using the transposed convolutional filter with
512 channels [74].

The params in the transposed convolution filter can be learned while training. After
that, the high resolution feature maps of encoder network are transformed to low-resolution
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feature maps using 2×, 4× and 8× max-pooling, which is shown in Figure 2. Then,
the feature maps after up-sampling and max-pooling are concatenated with the feature
maps generated by the corresponding layer from the encoder.

For instance, the 8× max-pooling features of the first block, 4× max-pooling of the
second block and 2× max-pooling of the third block in the encoder are concatenated with
the copied features of the fourth encoder block and the features after up-sampling (five
parts of feature maps are concatenated in the first decoder block). In the same way, there
are 4, 3 and 2 parts of features are concatenated in the second, third and fourth level of
the decoder, respectively. After the concatenated operation, two convolutions and ReLU
operations are applied to change the number of channels. The up-sampling operation is
repeated four times with output resolutions of H × W and channel of C, which has the
same size as the encoder’s input features. Finally, a Softmax layer with two output channels
is applied for feature map classification.

3.4. Counting Approach

A post-processing method is applied to eliminate the effect of noises after segmentation.
First, a morphological filter is applied to remove useless debris, which can improve the
performance of counting prominently. Then, the eight neighborhood search algorithm
is applied to count the connected regions of segmented images after denoising [75]. The
process of counting is shown in Figure 3. A binary matrix is traversed in line and a mark
matrix is applied to mark the connected domain [76]. Finally, the number of connected
domain in mark matrix is the number of yeast cells.

Figure 3. An example of the counting process based on the eight neighborhood search.

4. Experiments

4.1. Experimental Setting
4.1.1. Image Dataset

In our work, we use a yeast image dataset proposed in [77], containing 306 different
images of yeast cells and their corresponding ground truth (GT) images. All images are
resized to the resolution of 256 × 256 pixels, which are shown in Figure 4. Then, the
original 306 images are rotated (0, 90, 180 and 270 degrees) and flipped (mirror), and thus
the number of images in this dataset is augmented to eight times (2448 images).
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Figure 4. The images in yeast cell dataset. (a) The original yeast image and (b) the corresponding
ground truth images.

4.1.2. Training, Validation and Test Data Setting

The original yeast image dataset was randomly divided into training, validation and
test dataset with the ratio of 3:1:1, and then, each dataset was augmented eight times.
Therefore, there 1470 images with their GT were applied as the training dataset, 489 images
with their corresponding GT were applied for validation, and 489 original images were
applied for testing.

4.1.3. Experimental Environment

The experiment was conducted by Python 3.8.10 in Windows 10 operating system.
The experimental environment was based on Torch 1.9.0. The workstation was equipped
with Intel(R) Core(TM) i7-8700 CPU with 3.20 GHz, 16 GB RAM and NVIDIA GEFORCE
RTX 2080 8 GB.

4.1.4. Hyper Parameters

In the experiment of yeast cell counting, the purpose of image segmentation is to
determine whether a pixel is a foreground (yeast cell) or background. The last part in
the proposed PID-Net before the output is Softmax, which is applied to calculate the
classification result of feature maps. The definition of Softmax is shown as Equation (1).

Softmax(zi) =
ezi

∑C
c=1 ezc

. (1)

In Equation (1), zi is the output in the ith node, and C is the number of output nodes,
representing the number of classified categories. The classification prediction can be
converted into the probabilities by using the Softmax function, which distributes in the
range of [0, 1], and the sum of probability is 1. As the image segmentation for yeast counting
is to distinguish the foreground and the background. Hence, it is a binary classification,
Equation (1) can be rewritten as Equation (2).

Softmax(z1) =
ez1

ez1 + ez2
=

1
1 + e−(z1−z2)

= Sigmoid(β). (2)

In Equation (2), β is (z1 − z2), which means the Softmax function and the Sigmoid func-
tion are the same for binary classification (a little difference between them is, the number
of the fully connected (FC) layer of Softmax is two to distinguish two different categories;
however, the number of FC layer of Sigmoid is one, only to judge whether the single pixel
is the object to be segmented).

The probability of the pixel to be classified as 1 is:

ŷ = P(y = 1|x). (3)
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Apparently, the probability of the pixel to be classified as 0 is:

1 − ŷ = P(y = 0|x). (4)

According to the maximum likelihood formula, the joint probability can be expressed as:

P(y|x) = ŷy · (1 − ŷ)1−y. (5)

After that, log function is applied to remain the monotonicity invariance of the function:

logP(y|x) = log(ŷy · (1 − ŷ)1−y) = ylogŷ + (1 − y)log(1 − ŷ). (6)

Hereto, the loss can be expressed as −logP(y|x), and the loss function for multiple
samples can be defined as the cross-entropy loss (N is the number of categories):

Loss = −[
N

∑
i=1

y(i)logŷ(i) + (1 − y(i))log(1 − ŷ(i))]. (7)

In order to guarantee the stable and fast convergence of the proposed network, we
deploy preliminary experiments to determine the choices of hyper parameters. Adaptive
moment estimation (Adam) is compared with stochastic gradient descent (SGD) and natural
gradient descent (NGD). Adam optimizer has the smoothest loss curves and stablest
convergence, which performs best in microorganism-counting task. Adam optimizer is
applied to minimize the loss function, which can adjust the learning rate automatically by
considering the gradient momentum of the previous time steps [78].

The initial learning rate is set from 0.0001 to 0.01 in preliminary experiments. By
observing the loss curves while training, the learning rate of 0.001 can balance the speed
and stability of convergence. The batch size is set as 8 due to the limited memory size
(8 GB). The selection of the hyper parameters above are optimal in preliminary experiments,
and thus they are applied in our formal microorganism counting experiment. The epoch is
set as 100 by considering the converge speed of experimental models, the example of loss
and intersection over union (IoU) curves of models is shown in Figure 5.

Though there are 92,319,298 params to be trained in PID-Net; however, it can converge
rapidly and smoothly without over fitting. There is a jump in loss and IoU plots for all
three tested networks from 20 to 80 epochs, which is caused by the small batch size. Small
batch size may lead to huge difference between each batch, and the loss and IoU curves
may jump with convergence.

Figure 5. The IoU (top row) and loss (bottom row) curves in the training process.
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4.2. Evaluation Metrics

In the task of dense tiny object counting, the evaluation of image segmentation is
the most significant part. Hence, the widely applied segmentation evaluation metrics
Accuracy, Dice, Jaccard and Precision are employed here to evaluate the performance of
microorganism segmentation. Furthermore, the Hausdorff distance is applied to evaluate
the shape similarity between the predicted image and GT. Finally, the counting accuracy is
calculated to quantify the counting performance of the models.

Accuracy is applied to calculate the proportion of pixels that are correctly classified.
The Dice coefficient [79] is applied to measure the similarity of the predicted image and GT.
The similarity can be quantified range from 0 to 1 (1 means the predicted result coincides
exactly with the GT). Jaccard [80], also named the intersection over union (IoU), is applied
to compare the similarity and differences between the predicted image and GT image,
focusing on whether the samples’ common characteristics are consistent. Precision is
defined as the proportion of positive pixels in the pixels, which are classified as positive.

The Hausdorff distance [81] is applied to measure the Euclidean distance between the
predicted and GT images with the unit of pixels in per image. In contrast with Dice, the
Hausdorff distance focuses on the boundary distance of two objects to measure the shape
similarity; however, the Dice majors in the inner similarity. An example of the Hausdorff
distance between GT and predicted image is shown in Figure 6. The Hausdorff is the
maximum of the shortest distance between a pixel in a image and another image [82].

In the task of microorganism counting, the Hausdorff distance can be applied to
measure the shape similarity between the GT and segmentation result, showing the perfor-
mance of segmentation models. Finally, the performance of counting is measured using
counting accuracy, which is defined as the proportion of the predicted number and GT
number of yeast cell images.

Figure 6. The visualization result of the Hausdorff distance between the GT and predicted image.

The definitions of the proposed evaluation metrics are summarized in Table 2. The TP
(True Positive), TN (True Negative), FP (False Positive) and FN (False Negative) are basic
evaluation metrics, which can be applied to measure the performance of segmentation
in general. An example of a yeast cell image with its TP, TN, FP and FN is illustrated in
Figure 7 for intuitive understanding. Vpred is the foreground after segmentation by using
the model, VGT is the foreground of the GT image. Furthermore, Npred means the number of
connected regions in the predicted image, NGT means the number of connected regions in
the GT image, which indicates the number of yeast cells. In the definition of the Hausdorff
distance, sup is the supremum, and in f is the infimum.
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Table 2. The definitions of evaluation metrics. CA and HD are abbreviations of the Counting
Accuracy and Hausdorff Distance, respectively.

Metric Definition Metric Definition

Accuracy TP+TN
TP+TN+FP+FN Dice

2×|Vpred
⋂

VGT |
|Vpred |+|VGT |

Jaccard
|Vpred

⋂
VGT |

|Vpred
⋃

VGT | Precision TP
TP+FP

CA 1 − |Npred−NGT |
NGT

HD dH(X, Y) = max(supx∈Xin fy∈Yd(x, y), supy∈Yin fx∈Xd(x, y))

Figure 7. The illustration of TP, TN, FP and FN between the predicted image and GT image.

The proposed evaluation metrics, containing the Accuracy, Dice, Jaccard and Precision,
are proportional to the segmentation performance of models. The Hausdorff distance has
an inverse correlation with the segmentation performance. Counting accuracy can evaluate
the final counting results of different models.

4.3. Evaluation of Segmentation and Counting Performance

To prove the satisfactory segmentation performance of the proposed PID-Net for
dense tiny object counting, we compare different down-sampling methods to show the
advancement of our proposed method. Furthermore, several state-of-the-art approaches
are applied for comparative experiments. All of the experimental setting and evaluation
indices are same for comparative experiment. Furthermore, the same dataset is applied for
all comparative experiments, which is proposed in Section 4.1.1. The models are trained
from scratch without pre-training and fine-tuning.

4.3.1. Comparison of Different Down-Sampling Methods

In this part, we compare the effect of different down-sampling and skip connection
approaches for segmentation. In our proposed PID-Net, pixel interval down-sampling
and max-pooling operations are concatenated to combine the dense and sparse feature
maps after convolution operations. Then, in the process of hierarchy skip connection, max-
pooling is applied to combine the high-level features and low-level features directly, which
is beneficial to reduce the effect of resolution loss while up-sampling and help rebuild the
segmentation result.

To show the effectiveness and reasonability of the proposed method, we change the
approaches of down-sampling and hierarchy skip connection as PID-Net Modified-1 (PID-
Net-M1) and PID-Net Modified-2 (PID-Net-M2). In PID-Net-M1, max-pooling operations
are only applied in the process of hierarchy skip connection and not in down-sampling.
The down-sampling block of PID-Net-M1 is illustrated in Figure 8. In PID-Net-M2, all
down-sampling operations are realized using pixel interval down-sampling without max-
pooling. The segmentation evaluations and counting performance of those approaches are
shown in Table 3.

From Table 3, we find that the proposed PID-Net achieves the best counting perfor-
mance. By comparing with the PID-Net-M1 and PID-Net-M2, the average accuracy is
increased by 0.1% to 0.6%; the improvement of average Dice value is 0.1% to 1.1%; the
average Jaccard is improved by around 0.3% to 1.6%. Furthermore, the mean Hausdorff
distance of PID-Net is the shortest, which indicates the similarity between the predicted
images and GT images is the highest. Finally, the counting accuracy achieved 96.97%, which
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shows the satisfactory counting performance of the PID-Net. Hence, the segmentation and
counting performance of PID-Net is the best by referring to all evaluation metrics.

Figure 8. The down-sampling block of PID-Net and PID-Net-M1.

Table 3. The average segmentation evaluation indices of predicted images. A, D, J, P, C and H are
abbreviations of the Accuracy, Dice, Jaccard, Precision, Counting Accuracy (in %) and Hausdorff
Distance (in pixels/per image), respectively.

Methods A D J P C H

PID-Net 97.51 95.86 92.10 96.02 96.97 4.6272
PID-Net-M1 96.90 94.71 90.05 94.71 67.84 5.0110
PID-Net-M2 97.42 95.75 91.89 95.68 96.88 4.7204

4.3.2. Comparison with Other Methods

In this part, some comparative experiments are applied for the yeast cell counting task.
Some classical methods proposed in Section 2 and deep-learning-based methods proposed
in Section 3 are compared, consisting Hough transformation [83], Otsu thresholding, Water-
shed, SegNet and U-Net-based segmentation approaches. Furthermore, we conduct some
extra experiments using state-of-the-art approaches, containing Attention U-Net [66], Trans
U-Net [67] and Swin U-Net [68].

Due to the determination of k in clustering methods, such as k-means, is still an insolu-
ble problem while counting; therefore, the clustering-based approaches cannot be applied
here for dense tiny object counting. All comparative experiments have the same experi-
mental setting, which can be referred to Section 4.1 for details. After image segmentation
and object counting, the average evaluation indices are summarized in Table 4, and the
example images of segmentation are shown in Figure 9.

Table 4. The average segmentation evaluation indices of predicted images. A, D, J, P, C and H are
abbreviations of the Accuracy, Dice, Jaccard, Precision, Counting Accuracy (in %) and Hausdorff
Distance (in pixels/per image), respectively.

Methods A D J P C H

PID-Net 97.51 95.86 92.10 96.02 96.97 4.6272
SegNet 94.69 90.34 84.02 88.50 68.82 6.3604

YeaZ (in [77]) - 94.00 - - - -
U-Net 97.47 95.71 91.84 95.62 91.33 4.6666

Attention U-Net 96.62 93.36 88.96 92.67 83.44 5.1184
Trans U-Net 96.84 93.60 88.99 93.25 91.32 5.0715
Swin U-Net 96.47 92.99 88.32 92.43 91.95 5.3140

Hough 82.12 61.12 44.74 88.26 73.66 9.2486
Otsu 84.23 65.71 49.90 87.66 74.34 8.9165

Watershed 78.67 50.15 34.88 78.61 63.34 9.6873
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Figure 9. An example of segmentation images predicted by different models.

From the evaluation indices summarized in Table 4, we can find that the PID-Net
has the highest Accuracy, Dice, Jaccard, Precision and Counting Accuracy and the lowest
Hausdorff distance, which means the proposed model performs best in the task of dense
tiny object counting by comparing with other models. Even more, the Jaccard of PID-Net
is higher than the YeaZ who proposed this yeast cell dataset. In general, the approaches
based on deep learning perform better than the classical approaches.

We find that the Counting Accuracy of several methods are very low abnormally,
which may caused by the enormous difference between the GT and the predicted image.
For instance, the single yeast cell image in Figure 9 performs unsatisfactory when the
segmentation is not accurate. The segmentation results of SegNet and Attention-UNet
have a large number of False Positive pixels, and the counting approach is based on the

connected domain detection; hence, the value of
|Npred−NGT |

NGT
is much higher than normal.

From the best performance of the proposed PID-Net in the task of dense tiny object
counting, we can infer that the down-sampling and skip connection part of PID-Net, which
combines max-pooling and pixel interval down-sampling can obtain the feature maps of
dense tiny objects and reconstruct the images better.

4.4. Repeatability Tests

Five additional experiments were repeated based on the original PID-Net model for
repeatability tests. The evaluation indices are given in Table 5. From Table 5, we find that
all evaluation indices of repeated PID-Nets are approximate, which shows satisfactory and
stable counting performance for the dense tiny object counting task.

Table 5. The evaluation indices of Repeatability Tests. A, D, J, P, C and H are abbreviations of the
Accuracy, Dice, Jaccard, Precision, Counting Accuracy (in %) and Hausdorff Distance (in pixels/per
image), respectively.

Methods A D J P C H

PID-Net 97.51 95.86 92.10 96.02 96.97 4.6272
PID-Net (Re 1) 97.51 95.79 91.97 95.91 95.26 4.5865
PID-Net (Re 2) 97.33 95.59 91.62 95.70 96.25 4.7290
PID-Net (Re 3) 97.54 95.91 92.18 96.21 96.82 4.6023
PID-Net (Re 4) 97.37 95.64 91.70 95.70 95.51 4.7471
PID-Net (Re 5) 97.43 95.66 91.73 92.24 96.26 4.6395
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4.5. Computational Time

The training time, mean training time, test time and mean test time are listed in Table 6.
There are 1470 images in the training dataset and 489 images in the test dataset. The mean
training time of PID-Net model is approximately 2.9 seconds higher than the time of U-Net,
and the test time is about 0.4 seconds higher than U-Net. The memory cost of PID-Net is
about 20MB, which is about 6 MB more than the cost of U-Net model, meanwhile, the PID-
Net has better counting performance and lower memory cost than Swin-UNet (41 MB).
The counting accuracy is increased about 6%; hence, the PID-Net has satisfactory counting
performance and a tolerable computational time, which can be widely applied in accurate
dense tiny object counting tasks.

Table 6. The summary of computational time (in seconds).

Model Training Time Mean Training Time Test Time Mean Test Time

PID-Net 10,438.86 7.10 454.68 0.93
U-Net 6198.00 4.21 257.64 0.53

Swin-UNet 7884.36 5.36 319.50 0.65
Att-UNet 6983.58 4.75 296.64 0.61

4.6. Discussion

Deep learning is essentially to build a probability distribution model driven by data.
Therefore, as the deep-learning-network architecture becomes deeper, the quantity and
quality of training data will have a greater impact on the performance of the model.
However, in the imaging process of microorganism images, the amount of satisfactory data
is relatively small due to some objective reasons, such as the impurities in the acquisition
environment, uneven natural light and other adverse factors, which leads to insufficient
training and poor performance in various tasks. Though the proposed PID-Net has excellent
segmentation and counting performance for images with dense tiny objects, there still
exists some mis-segmentation, causing the decrease of counting accuracy. Several incorrect
segmentation results are shown in Figure 10.

There are three main problems for segmentation and counting, which are illustrated in
Figure 10. The blue circle refers to the situation of under segmentation—that is, the neighbor
yeast cells cannot be segmented, and the edges cannot be detected. Due to the counting
method is based on the eight neighborhood search algorithm, the situation leads to under
estimation of the real count of yeast cells. The green circle refers to a part of background is
classified as yeast cells. As shown in Figure 10, most of the images are full of dense tiny
yeast cells with irregular shapes, and the limitation of small dataset leads to inadequate
training.

Therefore, the background between yeast cells with irregular shape is easily classified
as a yeast cell, which results in over estimation of the real count of yeast cells. On the
contrary, the red circle represents the part of yeast cell is classified as background. There
are 1 to 256 yeast cells with different sizes in a single image in this dataset, and thus the
shape and size of yeast cells have a great difference. Therefore, the tiny yeast cell between
the larger cells has a great similarity with the background, which is difficult for models to
discriminate especially in a small dataset. The situation leads to under estimation of the
real count of yeast cells.
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Figure 10. An example of incorrect segmentation results using the proposed PID-Net.

The situations of adherent yeast cells and mis-segmentation lead to counting error.
Moreover, the training data is limited due to the small dataset; therefore, the models cannot
be trained perfectly. The small dataset is a limitation of the yeast counting task. However,
despite some cases of mis-segmentation, most of the yeast cells in the test dataset could be
detected and segmented with other cells. The segmented region might be small but has little
effect on the counting results calculated using the eight neighborhood search algorithm.

5. Conclusions and Future Work

In this paper, a CNN-based PID-Net was proposed for dense tiny objects (yeast)
counting task. The PID-Net is an end-to-end model based on an encoder–decoder structure,
and we proposed a new down-sampling model consisting of pixel interval down-sampling
and max-pooling, which can serve to extract the dense and sparse features in the task
of dense tiny object counting. By comparing with the proposed PID-Net and classical
U-Net-based yeast counting results, the evaluation indices of Accuracy, Dice, Jaccard,
Precision, Counting Accuracy and Hausdorff Distance of PID-Net were 97.51%, 95.86%,
92.10%, 96.02%, 96.97% and 4.6272, which are improved by 0.04%, 0.15%, 0.26%, 0.4% and
5.7%, respectively, and the Hausdorff Distance decreased by 0.0394.

Although the small image dataset resulted in some cases of mis-segmentation, the
proposed PID-Net showed a more satisfactory segmentation performance than the other
models in the task of dense tiny object counting on a small dataset.
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In the future, we plan to apply PID-Net for more dense tiny object counting tasks, such
as the streptococcus counting task and blood-cell-counting task. We will further optimize
the PID-Net for better counting performance. For instance, object separation is one of the
most significant parts in object counting; therefore, the Contour Loss [84] can be used by
referring to our work to distinguish inner texture and contour boundaries for more accurate
counting. We also consider using Knowledge Distillation [85] to reduce the memory cost of
PID-Net, which can help to deploy the model on portable equipment.
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Abbreviations

The following abbreviations are used in this manuscript:

PID-Net pixel interval down-sampling network
CNN convolutional neural network
EMs environmental microorganisms
SVM support vector machine
PCA principal-component analysis
BPNN back propagation neural network
ANN artificial neural network
ReLU rectified linear unit
Adam adaptive moment estimation
SGD stochastic gradient descent
NGD natural gradient descent
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FC fully connected
IoU intersection over union
TP true positive
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