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Preface

Over the past few decades, tremendous interest has been paid to the field of fractional calculus,

which finds wide applications in physics, biology, chemistry, finance, signal and image processing,

hydrology, non-Newtonian fluids, etc. Given that the analytical solution to fractional models is

extremely complicated in terms of transcendental functions and analytically intractable in complex

cases, numerical methods have become powerful and useful tools to handle the fractional differential

equations. This is the motivation for the Special Issue “Numerical Solution and Applications of

Fractional Differential Equations” in the Journal Fractal and Fractional.

This Special Issue received 92 submissions and produced 29 accepted and published papers,

all of which were subject to a rigorous review process. This reprint is a result of these 29 collections,

which cover the topics of analytical techniques, numerical methods and the applications for fractional

differential equations.

Regarding the analytical techniques, the separation of variables method, the Toeplitz matrix

method, the contraction mapping principle, the perturbed energy method, the Laplace-residual

power series technique and the extended direct algebraic method have been considered.

The numerical methods in the collection include the Runge–Kutta method, the finite difference

method, the finite element method, the spectral method, the local discontinuous Galerkin method,

supervised neural network procedures, the high-order θ method, matrix transfer technique, doubling

Smith method and fast method.

Finally, some interesting applications have been presented such as second-grade fluid in a

straight rectangular duct, a food supply model, anomalous transport in Comb structures, convective

heat transfer in nanofluids, fractional multinomial distribution, a piecewise continuous dynamical

system, a coronary blood flow model, asymptotic and pinning synchronization in complex dynamical

networks and image denoising.

All the guest editors of this Special Issue are grateful to the authors for their quality

contributions, to the reviewers for their valuable comments and advice, and to the administrative

staff of MDPI for their support in completing this Special Issue. Special thanks go to the Section

Managing Editor Mr. Ethan Zhang for his excellent collaboration and valuable assistance.

Libo Feng, Yang Liu, and Lin Liu

Editors

ix
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A Physical Phenomenon for the Fractional Nonlinear Mixed
Integro-Differential Equation Using a General
Discontinuous Kernel

Sharifah E. Alhazmi 1,* and Mohamed A. Abdou 2

1 Mathematics Department, Al-Qunfudah University College, Umm Al-Qura University,
Al-Qunfudhah 28821, Saudi Arabia

2 Department of Mathematics, Faculty of Education, Alexandria University, Alexandria P.O. Box 21526, Egypt
* Correspondence: sehazmi@uqu.edu.sa

Abstract: In this study, a fractional nonlinear mixed integro-differential equation (Fr-NMIDE) is
presented and has a general discontinuous kernel based on position and time space. Conditions of
the existence and uniqueness of the solution is provided through the principal form of the integral
equation, based on the Banach fixed point theorem. After applying the properties of a fractional
integral, the Fr-NMIDE conformed to the Volterra–Hammerstein integral equation (V-HIE) of the
second kind, with a general discontinuous kernel in position with the Hammerstein integral term
and a continuous kernel in time to the Volterra term. Then, using a technique of the separating
method, we obtained HIE, where its physical coefficients were variable in time. The Toeplitz matrix
method (TMM) and its schemes were used to obtain a nonlinear algebraic system by studying the
convergence of the system. The Maple 18 program was implemented to present the numerical results,
along with corresponding errors.

Keywords: fractional; integro-differential equation; Volterra–Hammerstein; discontinuous kernel;
Toeplitz matrix method

1. Introduction

As integral equations, integro-differential equations and fractional integro-differential
equations (IEs/IDEs/fIDEs) can be used to simulate a wide range of problems in the ba-
sic sciences, many scientists have focused their attention on presenting the solutions for
these systems. These equations have played a significant role in finding solutions using
diverse methods, which is in line with the rapid development in finding the answers to
diverse problems originating from the basic sciences. Currently, several studies have con-
centrated on creating more sophisticated and effective techniques for solving the IEs/IDEs,
such as the Rieman–Stieltjes integral conditions [1,2], Lerch polynomials method [3] and
Legendre–Chebyshev spectral method [4], along with the numerical observations based
on semi-analytical approaches, e.g., Adomian’s decomposition method [5] and HOBW
method [6]. The linear/nonlinear equations (IEs/IDEs/ fIDEs) have various uses in fluid
mechanics [7], Stokes flow [8], airfoil [9], quantum mechanics [10], integral models [11],
mathematical engineering [12], nuclear physics [13] and the theory of laser [14]. The or-
thogonal polynomials method is considered one of the most significant operators used
to solve various scientific problems. Alhazmi [15] used a new technique based on the
separation of variables and the orthogonal polynomials method to obtain many spectral
relationships based on the mixed integral equation using a generalized potential kernel.
Nemati et al. [16] applied the Legendre polynomials scheme for the outcomes of a second-
order two-dimensional (2D) Volterra integral model, together with a continuous kernel.
Mirzaee and Samadyar [17] discussed the convergence of 2D-orthonormal Bernstein col-
location method for solving 2D-mixed Volterra-Fredholm integral equations. Basseem

Fractal Fract. 2023, 7, 173. https://doi.org/10.3390/fractalfract7020173 https://www.mdpi.com/journal/fractalfract
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and Alalyani [18] used Chebyshev polynomials to discuss the numerical solution of the
quadratic integral equation with a logarithmic kernel. Katani [19] implemented a quadra-
ture scheme for the numerical outcomes of the second kind of Fredholm integral model.
Al-Bugami [20] used the Simpson and Trapezoidal schemes to perform numerical represen-
tations based on an integral model using 2D surface crack layers. Brezinski and Zalglia [21]
used the extrapolation approach to achieve numerical computing results based on the sec-
ond kind of nonlinear integral model that has a continuous kernel. Baksheesh [22] proposed
using the Galerkin scheme to find the approximate results based on the Volterra integral
equations of the second kind, which have discontinuous kernels. Alkan and Hatipoglu [23]
applied the sinc-collocation method for solving the Volterra-Fredholm IDEs of fractional
order. Mosa et al. [24] studied the semi-group scheme to assess uniqueness and existence
based on the partial and fractional integro models of heat performance in the Banach space
using the Adomian decomposition scheme. Bin Jebreen and Dassios [25] proposed an
efficient algorithm to find an approximate solution via the wavelet collocation method for
fractional Fredholm integro-differential equations. Akram et al. [26] interpreted the collo-
cation approach to tackle the fractional partial integro-differential equation by employing
the extended cubic B-spline Abdelkawy et al. [27] applied the Jacobi–Gauss collocation
method after using the Riemann–Liouville fractional integral and derivative fractional to
obtain the approximate solution for variable-order fractional integro-differential equations
with a weakly singular kernel.

The initial value of the Fr-NMIDE is presented as:

μ
∂αΦ(x, t)

∂tα
+ vΦ(x, t) = λ

∫
Ω

k(|x − y|)Φm(y, t)dy + g(x, t), (Φ(x, 0) = ψ(x)). (1)

Here, g(x, t) and Φ(x, t) are the known and unknown continuous functions, respec-
tively, in L2[Ω]XC[0, T].Ω is the integration domain and m = 1, 2, . . . M. In addition, μ
indicates the constant values of Equation (1) and λ and v are constants and have physical
sense. The kernel k(|x − y|), in general, has a singular term. For reference, the essential
properties and definitions have been stated using fractional calculus theory.

Definition 1. For the function f : (0, ∞) → R, the fractional Riemann–Liouville integral with
order α > 0 is shown as [28]:

Iα
0+ l(t) =

1
Γ(α)

∫ t

0
(t − s)α−1l(s)ds.

In addition, we define the Caputo derivatives of order as α > 0

Dα
0+ l(t) =

1
Γ(n − α)

∫ t

0

l(n)(s)ds
(t − s)α−n+1 , (n < α ≤ n + 1).

The time Abel kernel (t − τ)α−1, ∀t, τ ∈ [0, T], 0 ≤ τ ≤ t ≤ T < 1 satisfies the
following features: 0 ≤ t1 ≤ t2 ≤ t ≤ T < 1 for every continuous function h(t). Integrals∫ t

0
(t − τ)α−1h(τ)dτ, max

0≤t≤T

∫ t

0
(t − τ)α−1dτ,

∫ t2

t1

(t − τ)α−1h(τ)dτ,

are the continuous time function, i.e.,∣∣∣∣∫ t

0
(t − τ)α−1h(τ)dτ

∣∣∣∣ ≤ M.

In this paper, Section 2 presents the fractional definition to obtain a NMIE. Then, the
theorem-based Banach fixed point is discussed to prove the existence and uniqueness
of the solution of NMIE. Section 3 presents the convergence of the solution. Section 4
indicates the technique of separation of the variables for the Hammerstein integral model

2
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in position and its coefficients. This scheme would help researchers choose the time
known function in an easier way, enabling them to choose the necessary time to obtain the
required results. Section 5 indicates the convergence analyses of the Hammerstein integral
equation. Section 6 shows the Toeplitz matrix scheme to conform the Hammerstein integral
model of the nonlinear algebraic system (NAS). The TMM is considered the best numerical
method for solving singular integral equations, where the singular terms disappear and
we have simple integrals. Section 7 represents the NAS convergence. Section 8 provides
the convergence of the error using one of the famous theorems. Section 9 provides the
numerical solutions through Maple 18, together with the kernel of the nonlinear integral
equation that takes the logarithmic form, the Carleman function and Hilbert kernel. In
addition, the corresponding errors are computed.

2. The Solution’s Existence and Uniqueness

The fundamental Caputo fractional integral is used to find the second order NMIE as:

μΦ(x, t) +
v

Γ(α)

∫ t

0
(t − τ)α−1Φ(x, τ)dτ − λ

Γ(α)

∫ t

0

∫
Ω
(t − τ)α−1k(|x − y|)Φm(y, τ)dydτ = f (x, t),

f (x, t) =
1

Γ(α)

∫ t

0
(t − τ)α−1g(x, τ)dτ + ψ(x), 0 < α < 1.

(2)

In Equation (2), the free term f (x, t) ∈ L2(Ω)× C[0, T] and the unknown function
Φ(x, t) will be discussed in the same space, L2(Ω)× C[0, T], along with the discontinuous
kernel k|x − y| ∈ L2([Ω]× [Ω) . The discontinuous kernel of time (t − s)α−1, 0 < α < 1, is
considered in class C[0, T], where T < 1.

To prove the existence of NMIE (2) based on the unique results, the integral operator
form is given below:

ŪΦ(x, t) =
λ

μ
U2Φ(x, t)− v

μ
U1Φ(x, t) +

1
μ

f (x, t),

U1Φ(x, t) =
1

Γ(α)

∫ t

0
(t − τ)α−1Φ(x, y, τ)dτ,

U2Φ(x, t) =
1

Γ(α)

∫ t

0

∫
Ω
(t − τ)−1+αk(|y − x|)Φ(y, τ)dydτ.

(3)

The following conditions are presented as:
(i) (i-a) The position kernel k(|x − y|) satisfies

{∫
Ω

∫
Ω

k(|x − y|)2dxdy
} 1

2
dτ = C, ( C—constant ).

(i-b) Therefore, the kernel of position and time (t − τ)α−1k(|x − y|) in L2(Ω)× C[0, T]
satisfies

max
0≤t≤T

∫ t

0

{∫
Ω

∫
Ω

∣∣∣(t − τ)α−1k(|x − y|)
∣∣∣2dxdy

} 1
2
dτ =

TαC
α

(0 < α < 1).

(ii) The continuous function f (x, t) ∈ L2(Ω) × C[0, T] and its norm is shown as

‖ f (x, t)‖L2(Ω)×C[0,T] = max0≤t≤T

∣∣∣∣∫ t
0

{∫
Ω | f (x, τ)|2dx

} 1
2 dτ

∣∣∣∣ = G and G is taken as a constant.

(iii) The decreasing function Q > P, constant Q > Q1 and Φm(x, t) are used as:

(iii-a) max0≤t≤T

∣∣∣∣∫ t
0

{∫
Ω|Φm(x, τ)|2dx

} 1
2 dτ

∣∣∣∣ ≤ Q1‖Φ(x, t)‖L2(Ω)×C[0,T].

(iii-b) |Φ1
m(y, t)− Φ2

m(y, t)| ≤ N(t, x)|Φ1(x, t)− Φ2(x, t)|, |N(t, x)| = p.

3
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Theorem 1 (Banach Fixed Point [29]). Consider X = (X, d) to be a metric space, where X �=
{Φ}, Φ is a null set. Suppose X is complete and T : X → X is the X contraction, then T contains
exactly a single fixed point.

To prove this, K shows the contraction operator on B with integral form KΨ = Ψ, Ψ
presents the unique form of the solution, the general kernel H

(
|y − x|, (t − τ) = (t − τ)α−1×

k(|y − x|) satisfies in (i-b), L2(Ω)× C[0, T] is the domain of integration, with respect to
position Ω and the time t, τ ∈ [0, T], 0 ≤ τ ≤ t ≤ T < 1.

Theorem 2. Principal theorem: The NMIE (2) with the use of above conditions and the space
L2(Ω)× C[0, T] takes the form of:

|μ|Γ(α + 1) > (v + CQλ)Tα. (4)

Lemmas (1) and (2) must be proven to satisfy the above theorem.

Lemma 1. Under conditions (i) to (iii-a), the W̄ operator maps the space L2(Ω)× C[0, T] onto itself:

Proof. Equation (3) is used to prove

‖ŪΦ(x, t)‖ ≤ λ

|μ| ‖U2Φ(x, t)‖+ 1
|μ| ‖ f (x, t)‖+ |v|

|μ| ‖U1Φ(x, t)‖.

Using (i)–(iii-a) and the inequality of Cauchy–Schwarz, we have:

‖ŪΦ(x, t)‖ ≤ Q
|μ| + σ‖Φ(x, t)‖,

(
σ =

(ν + λCQ)Tα

|μ|Γ(α + 1)

)
. (5)

In the above statement, the Ū operator maps the Sr ball as:

r =
Gr(α + 1)

[|μ|Γ(α + 1)− (v + λCQ)Tα]
. (6)

As r > 0, GΓ(α + 1) > 0, therefore σ < 1. Furthermore, the inequality (5) includes the
boundedness operators U1, U2 and Ū.

Lemma 2. If (i)-(iii-b) conditions are fulfilled, then Ū operator is a contractive-based Banach space
L2(Ω)× C[0, T].

Proof. For Φ1(x, t) and Φ2(x, t) functions using L2(Ω) × C[0, T] space, Formula (3) be-
comes:

‖Ū(Φ1(x, t)− Φ2(x, t))‖ ≤ |v|
|μ| (‖U1(Φ1(x, t)− Φ2(x, t))‖+ ‖U2(Φ1(x, t)− Φ2(x, t))‖),

The conditions (i), (ii) and (iii-b) have been applied to the Cauchy–Schwarz inequal-
ity as:

‖Ū(Φ1(x, t)− Φ2(x, t))‖ ≤ σ‖Φ1(x, t)− Φ2(x, t)‖. (7)

Inequality (7) presents the operator Ū (contraction operator), which shows the conti-
nuity in the L2(Ω)× C[0, T] space.

4
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3. Convergence of the Solution

Consider the simple iteration {Φ1(x, y), . . . , Φn−1(x, t), Φn(x, t), . . .} ⊂ Φ(x, t), where
the two functions {Φn−1(x, t), Φn(x, t)} are used to satisfy

μ(Φn(x, t)− Φn−1(x, t)) + v
Γ(α)

∫ t
0 (t − τ)α−1(Φn−1(x, t)− Φn−2(x, t))dτ =

λ
Γ(α)

∫ t
0

∫
Ω(t − τ)α−1k(|x − y|)

(
Φm

n−1(y, τ)− Φm
n−2(y, τ)

)
dydτ.

(8)

Consider

Φn(x; t) =
n

∑
i=0

Ψi(x; t), (9)

where
Ψn(x, t) = Φn(x, t)− Φn−1(x, t); (n ≥ 1), Ψ0(x, t) = f (x, t).

Equation (8) is updated by using Equation (9):

μ‖Ψn(x, t)‖ ≤ v
Γ(α)

∥∥∥∥∫ t

0
(t − τ)α−1Ψn−1(x, t)dτ

∥∥∥∥+ λ

Γ(α)

∥∥∥∥∫ t

0

∫
Ω
(t − τ)α−1k(|x − y|)Ψm

n−1(y, τ)dydτ

∥∥∥∥.

Taking n = 1, the above formula becomes:

‖Ψ1(x, t)‖ ≤ σG,
(

σ =
(v + λCQ)Tα

|μ|Γ(α + 1)

)
,

and we see
‖Ψn(x, t)‖ ≤ σnG, σ < 1. (10)

Equation (10) shows the convergent sequence {Ψn(x, t)} uniformly. Moreover, it
provides the convergent solution of the sequence {Φn(x, t)}. As Ψi(x; t) is continuous and
Φ(x, t) = limn→∞ Φn(x, t) = limn→∞ ∑n

i=0 Ψi(x; t), Φ(x; t) is uniformly continuous with
an infinite {Φn(x, t)}∞

n=0 series. This proves the lemma.

4. Separation of Variables Scheme

In the problems of mathematical physics, we find that researchers are interested
in finding the unidentified potential function, which is linked to time and position. A
variety of methods can be used to obtain the unknown function. One of these methods is
time division that turns the mixed integral equation into an algebraic system of integral
equations. Researchers apply the separating variable method to solve the mixed integral
equation using the coefficients of the space functions. Moreover, these time coefficients
are in the form of an integral operator of the Volterra type (Jan [30,31]). This scheme helps
researchers to choose the time known function in an easier way, which enables them to
choose the necessary time to obtain the required results. The unidentified and known
functions Φ(x, t) and g(x, t) are shown in the separation form as:

Φ(x, t) = X(x)Y(t), g(x, t) = b(x)Y(t), Y(0) �= 0, (11)

where X(x) is an unknown function in a position that is to be determined, b(x) is the given
function in a position and Y(t) shows the known function in time.

The time function is chosen in the form of a series based on the polynomial constants.
This form helps the researcher to categorize the function of time based on the constants as
a famous function or time representation in several other forms. It is noted that time series
convergence is based on the premise of the experiment time being less than one and the
start time is not equal to zero. Assume that

Y(t) = tα
∞

∑
n=0

antn, a0 �= 0, t ∈ [0, T], T < 1. (12)

5
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Using Equations (11) and (12) in Equation (2), shown as

μX(x)− ρ(t)
∫

Ω
k(|y − x|)Xm(y)dy = H(x, t), (13)

where ⎧⎪⎪⎨⎪⎪⎩
ρ(t) = λQ(t)

∫ t
0 (t − τ)α−1Ym(τ)dτ, m = 1, 2, . . . , M,

Q(t) =
[
v
∫ t

0 (t − τ)α−1Y(τ)dτ + μΓ(α)Y(t)
]−1

,

H(x, t) = Q(t)
[
Γ(α)ψ(x) + h(x)

∫ t
0 (t − τ)α−1Y(τ)dτ

]
.

(14)

By using the updated form of Equation (13) by using Equation (14), the reader can use
the separation of time scheme for the nonlinear mixed integral model in time and position,
which leads to a nonlinear integral equation in a position with coefficients linked to t, where
t ∈ [0, T], T < 1. Moreover, Equation (13) represents that the single solution condition on
the nonlinear integral equation is an equivalence relationship between position and time,
which is given as:

‖k(|x − y|)‖ ≤ δ,

δ =

∣∣∣∣∣
[

μΓ(α)Y(t) + v
∫ t

0
(t − τ)α−1Y(τ)dτ

][
λ
∫ t

0
(t − τ)α−1Ym(τ)dτ

]−1
∣∣∣∣∣ < 1.

(15)

Equation (15) shows the relationship between the position represented in the kernel
form (which represents the properties of matter) and the time required for the continuity of
these properties, which is known under the condition that there is a single solution. It is
noted that at a certain time, an increase that exceeds the standard value of the nucleus may
occur, and this leads to instability.

5. Convergence Investigations Based on Nonlinear Integral Model

To check the nonlinear integral model (13) convergence, the solution sequence takes
the form:

X(x) = {X0(x), X1(x), . . . , Xm(x), . . . X�(x), . . .},

where ψn and ψm are two distinct arbitrary partial sums of sequence
{

Xj(x)
}

: (n > m),
and

d(ψn, ψ�) = max
n,m∈j

|Xn − X�| ≤ δd(Xn, X�−1) ≤ δ2d(Xn, X�−2) ≤ . . . ≤ δ�d(Xn, X0),

where δ is defined in the Equation (15). Finally, we have

d(ψn, ψ�) ≤
δ�

1 − δ
d(ψ1, ψ0); 0 < δ < 1. (16)

As � → ∞ and for the fixed values, d(ψ1, ψ0) must approach zero. Hence, it is
concluded that {ψn} shows a Cauchy sequence throughout the metric space, which shows
the convergent series.

6. Toeplitz Matrix Method (Abdou et al. [32])

Many numerical methods have been used to solve integral equations with continuous
or unconnected kernels. In singular integral equations, the best way to solve them is the
Toeplitz matrix method (TMM), due to the following reasons: The singular term directly
disappears, being transformed into simple integrals that can be solved quickly, and then,
forms a linear/nonlinear algebraic system of equations. The degree of convergence in the
relative error is less than in the other methods.

6
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There are some methods that give a quick approximation when studying the error,
including a circulated preconditioned iterative scheme. Xian et al. [33] considered the con-
jugate gradient technique with a circulated preconditioned scheme for a linear discretized
model. They obtained a matrix whose coefficient kept the structure of a symmetric Toeplitz-
plus-tridiagonal. They also studied linear large-scale systems with coefficient matrices
based on the non-Hermition Toeplitz and applied a product of a fast Toeplitz matrix-vector
through iterative solvers for a linear discretized model (circulant preconditioned method).
This numerical scheme provides fast results to reduce computational costs, using O

(
m3) to

O(m log m), and storage through O
(
m2) to O(m) deprived of loss compression, where m is

the number of spatial grid nodes.
For TMM, consider Ω ∈ (−1, 1), using the nonlinear integral term of (2) as:

∫ 1

−1
k(|y − x|)Xm(y)dy =

N−1

∑
�=−N

∫ (�+1)h

a=�h
k(|y − x|)Xm(y)dy

=
N−1

∑
�=−N

[A�(x)Xm(�h) + B�(x)Xm(�h + h)] + R�,(
h =

1
N

)
.

(17)

The two functions A�(x) and B�(x) are

A�(x) =
1
Δ
[(�h + h)m I�(x)− J�(x)], B�(x) =

1
Δ
[J�(x)− (�h)m I�(x)], (18)

where

Δ = hm
m

∑
ζ=1

Γ(m + 1)
Γ(ζ + 1)Γ(m − ζ + 1)

�(m−ζ), (−N ≤ � ≤ N)

and

I�(x) =
∫ (�+1)h

�h
k(|y − x|)dy, J�(x) =

∫ (�+1)h

�h
k(|y − x|)ymdy. (19)

The integral term of Equation (17) after using Equation (18) becomes:

∫ 1

−1
k(|x − y|)Xm(y)dy =

N

∑
�=−N

D�(x)Xm(�h)

D�(x) =

⎧⎪⎨⎪⎩
A−N(x) , � = −N
An(x) + Bn−1(x) , −N < � < N
BN−1(x) , � = N.

(20)

Equations (18) and (20) are used in x = jh, (−N ≤ j ≤ N), to obtain

X(jh) = Xj, A�(jh) = A�,j, B�(jh) = B�,j, D�(jh) = D�,j, H(jh, t) = Hj(t). (21)

The nonlinear integral in Equation (15) shows the NAS of a (2N + 1) system

μXj − ρ(t)
N

∑
�=−N

D�,jXm
� = Hj(t), −N ≤ �, j ≤ N. (22)

7
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The matrices Dn,� show the Toeplitz matrix as:

D�,j = Vn−� − Un,�′ V�−j = A�,j + B�−1,j, (� ≤ N, −N ≤ j),

Ul,j =

⎧⎪⎨⎪⎩
B−N−1,j� = −N

0 − N < � < N

AN,j� = N.

(23)

Equation (23) shows the matrix of two types with a (2N + 1) order, including V�−j
(Toeplitz matrix) and U�,j

, which shows the zero elements, excluding the first and last
columns or rows. The error Rn,� can be obtained based on the following formula:

R� = max
0≤j≤N

∣∣∣∣∫ �h+h

�h
y2mk(|x − y|)dy −

(
G�(x)(�h)2m + H�(x)(�h + h)2m

)∣∣∣∣
= O

(
h3m
)

, (x = jh).
(24)

7. The Nonlinear Algebraic Toeplitz Matrix System

This section provides the existence based on NAS (22) using the Banach space
�∞ × C[0, T]. The operator form is written as:

T̄Xj = TXj +
Hj

μ
, (25)

where

TXj =
ρ(t)

μ

N

∑
�=−N

D�,jXm
� ; (−M ≤ m ≤ M, 0 ≤ t ≤ T < 1). (26)

The following lemma is

Lemma 3. If the position kernel satisfies the conditions below:

(i)
(∫ �h+h

�h

∫ jh+h

jh

{
k2(|x − y|)

}
dxdy

) 1
2

≤ C,

(ii) lim
x′→x

∥∥k
(
x′, y
)
− k(x, y)

∥∥
L2

= 0 , x, x′ ∈ (−1, 1).
(27)

Then,

(a) sup
N

N

∑
j=−N

∣∣∣D�,j

∣∣∣exists,

(b)
N

lim
�′→l

sup
N

N

∑
j=−N

∣∣∣D�′ ,j − D�,j

∣∣∣ = 0.

(28)

Proof. From Equations (18) and (19), we have

|A�(x)| ≤ 1
|Δ|

[
|(�h + h)m|

∣∣∣∣∫ (�+1)h

�h
k(|y − x|)dy

∣∣∣∣+ ∣∣∣∣∫ (�+1)h

�h
k(|y − x|)ymdy

∣∣∣∣]
Applying the Cauchy–Schwarz inequality and taking the sum from � = −N to � = N,

the above inequality yields

N

∑
�=−N

|A�(x)| ≤ 1
|Δ| ‖k(|x − y|)‖

[
N

∑
�=−N

|(�h + h)m|+ ‖ym‖
]

8
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Based on Equation (27), the function continuity ym in input (−1, 1), a small constant
E1 exists, i.e., ∑N

�=−N |A�(x)| ≤ E1 , ∀N. As each value of ∑N
�=−N |A�(x)| is bounded,

take x = jh as:

sup
N

N

∑
�=−N

|A�(jh)| ≤ E1. (29)

Similarly, by taking a small value of the constant E2 for Equations (18) and (19), we have

sup
N

N

∑
n=−N

|Bn(mh)| ≤ E2. (30)

Using (29) and (30), we have

sup
N

N

∑
�=−N

∣∣∣D�,j

∣∣∣ ≤ sup
N

N

∑
�=−N

|A�(jh)|+ sup
N

N

∑
�=−N

|B�(jh)| ≤ E.

Hence, supN ∑N
�=−N

∣∣∣D�,j

∣∣∣ exists.

To prove the second equation of (28) for x, x′ ∈ (−1, 1), the Cauchy–Schwarz inequality
is applied by taking the sum from � = −N to

sup
N

N

∑
�=−N

∣∣A�

(
x′)− A�(x)

∣∣ ≤ 1
|Δ|
∥∥k
(
x′, y
)
− k(x, y)

∥∥
L2

{
sup

N

�

∑
�=−N

[|(�h + h)m|+ ‖ym‖]
}

(31)

Using x = jh, x′ = j′h and Equation (27), we obtain that as x′ → x,

lim
j′j

sup
N

N

∑
�=−N

∣∣A�

(
j′h
)
− A�(jh)

∣∣ = 0. (32)

Similarly, from (18) and (19), it is proved that

lim
j′→m

sup
N

N

∑
t=−N

∣∣B�

(
j′h
)
− B�(jh)

∣∣ = 0. (33)

Finally, we obtain

lim
m→m

sup
N

N

∑
n=−N

|Dm′n − Dmn| = 0.

Now, the principal theorem is proven based on the nonlinear algebraic systems.

Theorem 3. The NAS (22) using the Banach �∞ × C[0, T] space shows the unique form of the
solution, as follows:

sup
j

∣∣Hj(t)
∣∣ ≤ H̄ < ∞, (34)

sup
N

N

∑
�=−N

∣∣D�,J
∣∣ ≤ Ē, (35)

where H̄ and Ē are constants.

9
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The functions Xm(jh), where m = 1, 2, . . . , M for the constants Q̄ > Q̄1, Q̄ > P̄1 satisfy
the following:

sup
j
|Xm(jh)| ≤ Q1‖X‖�∞ (36)

sup
j
|Xm(jh)− Zm(jh)| ≤ P̄1‖X − Z‖�∞ (37)

where ‖X‖�∞ = supj
∣∣Xj
∣∣, X(jh) = Xj for each integer j.

The below lemmas must be proven for the above theorem.

Lemma 4. If Equations (34)–(36) are tested, then the T̄ operator is defined by using Equation (25),
which maps the �∞ × C[0, T] space onto itself.

Proof. Suppose U shows all the functions set as X =
{

Xj
}

in �∞ ×C[0, T], i.e., ‖Φ‖�∞×C[0,T]
≤ β̄, β̄ is constant and the T̄Φ operator is based on the Banach �∞ × C[0, T] space:

‖T̄X‖�∞×C[0,T] = sup
j

∣∣T̄Xj
∣∣, for all j

Using conditions (34) and (35), we have

∣∣T̄Xj
∣∣ ≤ ∣∣∣∣ρ(t)μ

∣∣∣∣Q‖X‖�∞ supj

N

∑
�=−N

∣∣∣D�,j

∣∣∣+ sup
j

∣∣∣∣ H̄μ
∣∣∣∣.

For each integer j, the above inequality is shown as:

sup
j

∣∣T̄Xj
∣∣ ≤ σ1‖X‖�∞ +

H̄
μ

,
(

σ1 =

∣∣∣∣ ρμ
∣∣∣∣Q̄Ē

)
(38)

The above inequality (38) represents that the T̄ operator maps the U set, where

β̄ =
H̄

(|μ| − |ρ|Q̄Ē)
.

Hence, σ1 < 1 have been taken, whereas T and T̄ operators are bounded.

Lemma 5. Under the conditions (34), (35) and (37), T̄ shows a contraction operator in the
�∞ × C[0, T] space

Proof. For X and Z functions in �∞ × C[0, T], Formulas (25) and (26) become:

∣∣T̄Xj − T̄Zj
∣∣ ≤ ∣∣∣∣ ρμ

∣∣∣∣ N

∑
n=−N

∣∣∣D�,j

∣∣∣ sup
j

∣∣Xj − Zj
∣∣.

Using conditions (35) and (37),

‖T̄X − T̄Z‖�∞×C[0,T] ≤ σ1‖X − Z‖�∞×C[0,T],
(

σ1 =

∣∣∣∣ ρμ
∣∣∣∣Q̄Ē

)
. (39)

The above form indicates that the T̄ operator is continuous in �∞ × C[0, T] space. T̄ shows
the contraction operator based on σ1 < 1. Hence, T̄ presents a unique fixed point with
specific solutions of the NAS using �∞ × C[0, T] space.

10
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8. The Error of the Toeplitz Matrix Method

In any practical use of the TMM, some estimation of the error size is involved. Hence,
these two definitions were used to calculate the error of the TMM.

Definition 2. A local error Rj is used as:

X(x)− Xξ(x) =
N

∑
�=−N

D�,j

[
Xm

j − Xm
j,ξ

]
+ Rj, (x = jh), (40)

where Xξ(x) shows the approximate results of (2).

In the other formula, Equation (40) is used as:

Rj =

∣∣∣∣∣
∫ 1

−1
k(|y − x|)Xm(y)dy −

N

∑
�=−N

D�,jXm
j

∣∣∣∣∣.
Definition 3. The TMM shows a convergence of r order in input (−1, 1); conversely, by taking
the large values of N, D̄ > 0 exists based on N independently, that is,

‖X(x)− XN(x)‖ ≤ D̄N−r. (41)

Now, we present the theorem, which is provided using NAS, based on Equation (22),
which has a unique solution.

Theorem 4. The error Rj is considered negligible as j → ∞

lim
j→∞

Rj = 0. (42)

Proof. Equation (40) is used as:

∣∣Rξ

∣∣ ≤ ∣∣∣Xj −
(
Xj
)

ξ

∣∣∣+ N

∑
�=−N

∣∣∣D�,j

∣∣∣ sup
j

∣∣∣∣Xm
j −

(
Xm

j

)
ξ

∣∣∣∣.
Using conditions (35) and (37), along with each integer ξ , we obtain∥∥Rξ

∥∥
�∞×C[0,T] ≤ (1 + EQ)

∥∥X − Xξ

∥∥
�∞×C[0,T]. (43)

Since
∥∥X − Xξ

∥∥
�∞×C[0,T] → 0 asξ → ∞, ∀t ∈ [0, T], then Rj → 0 .

9. Applications

For numerical results and tables, we used Maple 2022.1 software, Version 15, March
2022, Windows, 10, 8 G RAM, 64-bit. In this section, the NMIE of (1) in the following special
form was considered

∂αΦ(x, t)
∂tα

+ 0.5Φ(x, t) = g(x, t) + 0.33
∫ 1

−1
k(|y − x|)Φm(y, t)dy,

(
Φ(x, 0) = x2 (44)

The true result of Equation (44) is Φ(x, t) =
(
0.5t0.5 + 0.25t1.5 + x2)).

Example 1 (For logarithmic kernel).

k(|x − y|) = ln(|x − y|). (45)

11
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After using (17)–(19) including the famous integral reference as Gradstein et al. [34]:

∫
xm ln(a + bx)dx =

1
m + 1

[
xm+1 − (−a)m+1

bm+1

]
ln(a + bx) +

1
m + 1

m+1

∑
k=1

(−1)kxm−k+2ak−1

(m − k + 2)bk−1 , (46)

we have

AJ(�h) =
h

[Jm − (J + 1)m]

[
1

(m + 1)

[[
(J + 1)m+1 − �m+1

]
ln |(�− J − 1)h|

−
[

Jm+1 − �m+1
]

ln |(�− J)h|
]
+ (J + 1)m[(�− J − 1) ln |(�− J − 1)h| − (�− J) ln |(�− J)h|+ 1]

− 1
(m + 1)

m+1

∑
k=1

[
(J + 1)m−k+2 − Jm−k+2

]
�k−1

(m − k + 2)

⎤⎦
(47)

and

BJ(�h) =
h

[(J + 1)m − Jm]

{
1

(m + 1)

[[
(J + 1)m+1 − �m+1

]
ln |(�− J − 1)h| −

[
Jm+1 − �m+1

]
ln |(�− J)h|

]}
+

h
[(J + 1)m − Jm]

{Jm[(�− J − 1) ln |(�− J − 1)h| − (�− J) ln |(�− J)h|+ 1]

− 1
(m + 1)

m+1

∑
k=1

[
(J + 1)m−k+2 − Jm−k+2

]
�k−1

(m − k + 2)

⎫⎬⎭.

(48)

Using (47) and (48), the coefficients D�,J of the nonlinear algebraic system (22) are
presented as:

D�,J =
h

[Jm − (1 + J)m]

{
(1 + m)−1

[[
(1 + J)m+1 − �m+1

]
ln |(�− 1 − J)h| −

[
Jm+1 − �m+1

]
ln |(�− J)h|

]
+ (J + 1)m[(�− J − 1) ln |(�− J − 1)h| − (�− J) ln |(�− J − 1)h|+ 1]

− 1
(m + 1)

m+1

∑
k=1

[
(J + 1)m−k+2 − Jm−k+2

]
�k−1

(m − k + 2)

+
h

[Jm − (J − 1)m]

{
1

(1 + m)

[[
Jm+1 − �m+1

]
ln |(�− J)h| −

[
(J − 1)m+1 − �m+1

]
ln |(�− J + 1)h|

}
.

(49)

In addition,

R =

∣∣∣∣∫ a+h

a
ln
∣∣∣∣x − y

∣∣∣ϕi(y)dy − An(x)ϕi(a)− Bn(x)ϕi(a + h)
∣∣∣. (50)

The formula (50) takes the form:

R =Ch2m+1,

C =

∣∣∣∣( �2m+1

2m + 1
− �m+1

m + 1

)
ln
∣∣∣∣�h
∣∣∣∣−( �2m+1 − 1

2m + 1
− �m+1 − 1

m + 1

)
ln
∣∣∣∣h(�− 1)|

−
2m+1

∑
k=1

�k−1

(2m − k + 2)(2m + 1)
+

m+1

∑
k=1

�k−1

(m − k + 2)(m + 1)

∣∣∣∣∣.
(51)

The linear case can be obtained from Equations (47)–(51) by letting m = 1.

Example 2 (For Carleman kernel).

k(|x − y|) = |x − y|−β(0 < β < 1). (52)

12
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The significance based on the Carleman kernel was shown in the Arutiunian [35] work that presented
the plane contact problem using nonlinear plasticity theory as its first calculation. It was reduced
through the first-order Fredholm integral model with a Carleman kernel.

After using (17) to (19), we obtain

AJ(�h) =
h1−β

Jm − (1 + J)m]

⎧⎨⎩ m

∑
k=0

m!
[

Jm−k|�− J|k+1−β − (J + 1)m−k|�− J − 1|k+1−β
]

(m − k)!(1 − β)(2 − β) . . . (k + 1 − β)

+
(1 + J)m

(−β + 1)
[| �− J− 1|1−m − |�− J|1−m

]} (53)

and

BJ(�h) =
h1−β

[−Jm + (1 + J)m]

⎧⎨⎩ m

∑
k=0

m!
[

Jm−k|�− J|k+1−β − (J + 1)m−k|�− J − 1|k+1−β
]

(m − k)!(1 − β)(2 − β) . . . (k + 1 − β)

+
Jm

(1 − β)
[| �− J − 1|1−β − |�− J|1−β

]} (54)

Therefore, the Toeplitz matrix D�,J becomes:

D�,J =h1−β

{
1

[Jm − (J + 1)m]

[
m

∑
k=0

m!
[

Jm−k |�− J|k+1−β − (J + 1)m−k |�− J − 1|k+1−β
]

(m − k)!(1 − �)(2 − β) . . . (k + 1 − β)
+

(J + 1)m

(1 − β)

[
|�− J − 1|1−β − |�− J|1−β

]]

+
1

[[Jm − (J − 1)m]]

[
m

∑
k=0

m!
[
(J − 1)i−k |�− J + 1|k+1−β − Jm−k |�− J|k+1−β

]
(m − k)!(1 − β)(2 − β) . . . (k + 1 − β)

+
(J − 1)i

(1 − β)

[
|�− J|1−β − |�− J + 1|1−β

]]} (55)

The error R is shown as:

|R| ≤ Ch2m+1−β,

C =|
m

∑
k=0

m!�k+1−β
∣∣∣1 − 1

�

∣∣∣k+1−β

(m − k)!(1 − β)(2 − β) . . . (k + 1 − β)
−

2m

∑
k=0

(2m)!�k+1−β
∣∣∣1 − 1

�

∣∣∣k+1−β

(2m − k)!(1 − β)(2 − β) . . . (k + 1 − β)
.

(56)

Example 3 (Suppose the Hilbert kernel).

k(|x − y|) = cot
(∣∣∣∣ x − y

2

∣∣∣∣), ϕ(±π, t) = 0. (57)

The exact output of Equation (57) is ϕ(x, t) =
(
0.5t0.5 + 0.25t1.5) sin x.

The integral equation based on the Hilbert kernel, together with the crack problem used in
elasticity theory are discussed in [34].

∫ (n+1)h

nh
xm cot xdx =

∞

∑
s=0

(−1)s2s 2sB2s

(m + 2s)(2s)!
xm+2s (m ≥ 1, |x| < π). (58)

where Bernoulli numbers B2s is used as:

DJ,� =2
{
(�− J + 1) ln

∣∣∣∣sin
h(�− J + 1)

2

∣∣∣∣− 2(�− J) ln
∣∣∣∣sin

h(�− J)
2

∣∣∣∣+ (�− J − 1) ln
∣∣∣∣sin

h(�− J − 1)
2

∣∣∣∣}
−

∞

∑
s=0

(−1)s22sB2s

(m + 2s)(2s)!
×
{
(�− J + 1)1+2s − 2(�− J)1+2s + (�− J − 1)1+2s

}
, m = 1, 2, . . . , M.

From the above, the results of using the logarithmic function and the effect of time in
the first example, as well as the arithmetic error, are described numerically in Table 1 and

13
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Figure 1a,b in the nonlinear case (m = 2) and linear case (m = 1). In the second example,
the results of using the Carleman function over time periods for the nonlinear and linear
cases, as well as the resulting arithmetic error, were derived in Table 2 and Figure 2a,b,
respectively. While Table 3 and Figure 3a,b represent the numerical results and arithmetic
errors corresponding to the nonlinear and linear cases, respectively, for different values
of the coefficient of the Carleman function. In the third example of the Hilbert kernel, the
numerical error of the nonlinear case and the linear case has been calculated at t = 0.1 in
Figure 4a,b, respectively. While for t = 0.4 the corresponding results of errors are described
in Figure 5a,b.

(a) (b)

Figure 1. (a) Shows the corresponding error of NMIE with a logarithmic kernel at different times,
whereas (b) illustrates the corresponding error for the linear case at the same times.

(a) (b)

Figure 2. (a) Shows the error for the nonlinear case at β = 0.01 and (b) shows the corresponding error
for the linear case at β = 0.01.

(a) (b)

Figure 3. (a,b) Shows the error of Equation (44) respectively for the nonlinear and linear cases of
Carleman coefficients at t = 0.2 and N = 20.

14
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(a) (b)

Figure 4. (a,b) Shows the error of Equation (44) using the Hilbert kernel for the nonlinear and the
linear cases at time t = 0.1, N = 20.

(a) (b)

Figure 5. (a,b) Shows the error of Equation (44) with Hilbert kernel for the nonlinear and the linear
cases at time t = 0.4, N = 20.

Table 1. Solutions of the linear/nonlinear solutions of MIE (44) with a logarithmic kernel, along with
the corresponding errors using TMM.

Time Exact Solution Nonlinear Case m = 2, N = 20 Linear Case m = 1, N = 20
t ϕExact ϕNon. ENon. ϕLin. ELin.

1.0001000 1.00010270 0.269 × 10−7 1.00010561 0.567 × 10−7

t = 0.01 0.9345000 0.93450708 0.362 × 10−7 0.93450758 0.384 × 10−7

0.4012111 0.40122142 0.496 × 10−7 0.40122136 0.187 × 10−7

0.0901000 0.09010238 0.976 × 10−7 0.09010146 0.705 × 10−7

1.0100000 1.01003928 0.286 × 10−6 1.01006525 0.525 × 10−6

t = 0.1 0.9444440 0.94444790 0.324 × 10−6 0.94444837 0.392 × 10−6

0.6500000 0.65000474 0.297 × 10−6 0.65000101 0.898 × 10−6

0.5977778 0.59779381 0.160 × 10−6 0.59778257 0.172 × 10−6

t = 0.4
1.1600000 1.60004729 0.292 × 10−5 1.16000215 0.215 × 10−5

1.09444440 1.09444173 0.434 × 10−5 1.09444627 0.182 × 10−5

0.7477778 0.74772763 0.288 × 10−5 0.74779495 0.982 × 10−6

0.6977778 0.69777818 0.341 × 10−6 0.69777785 0.231 × 10−5

t = 0.8 1.640000 1.64007850 0.211 × 10−5 1.64001375 0.137 × 10−5

1.177778 1.17784366 0.588 × 10−5 1.17781185 0.340 × 10−5

0.711111 0.71115465 0.559 × 10−5 0.71118519 0.740 × 10−5
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Table 2. Describes the nonlinear and linear cases for MIE (44), with the Carleman kernel, time and
β = 0.01.

Time
Exact

Solution
Nonlinear Case m = 2, N = 20 Linear Case m = 1, N = 20

t ϕExact ϕNon. ENon. ϕLin. ELin.

t = 0.01

1.0001000 1.0001000 0.545 × 10−8 1.0001000 0.567 × 10−8

0.6945000 0.6945000 0841 × 10−8 0.6945000 0.956 × 10−8

0.0178777 0.0178777 0.708 × 10−8 0.0178777 0344 × 10−8

0.0278777 0.0278777 0.710 × 10−8 0.0278777 0.547 × 10−8

t = 0.1

1.0100000 1.0100000 0.456 × 10−7 1.0100000 0.648 × 10−7

0.9444444 0.9444448 0.465 × 10−7 0.9444447 0.375 × 10−7

0.6500000 0.6500065 0.342 × 10−7 0.6500004 0.173 × 10−7

0.2600000 0.2600008 0.179 × 10−7 0.2600008 0.160 × 10−7

t = 0.4

1.1600000 1.1600875 0.700 × 10−5 1.1600075 0.750 × 10−5

0.8000000 0.8000373 0.753 × 10−5 0.8000290 0.251 × 10−5

0.6044444 0.604439 0.194 × 10−5 0.6044499 0.244 × 10−5

0.2711111 0.2711951 0.832 × 10−5 0.2711990 0.612 × 10−5

t = 0.8

1.6400000 1.6400332 0.331 × 10−4 1.6400542 0.542 × 10−4

1.0844444 1.0849735 0.549 × 10−4 1.0849810 0.416 × 10−4

0.7300000 0.7304171 0.416 × 10−4 0.73082523 0.311 × 10−4

0.6444444 0.6443994 0.053 × 10−4 0.64440364 0.170 × 10−5

Table 3. Shows the nonlinear and linear cases for Equation (44) for different values of Carleman
coefficients at time t = 0.2, N = 20.

Carleman Coefficients Exact Solution at t = 0.2 Nonlinear Case at m = 2 Linear Case at m = 1
β ϕExact ϕNon. ENon. ϕLin. ELin.

0.0400000 0.0400099 0.519 × 10−6 0.04003999 0.199 × 10−6

β = 0.22 0.0096040 0.00960747 0.467 × 10−6 0.00965943 0.624 × 10−6

0.4000000 0.40000256 0.166 × 10−6 0.40000373 0.373 × 10−6

0.0400000 0.04000081 0.158 × 10−6 0.0400006 0.167 × 10−6

0.0400000 0.04000220 0.822 × 10−5 0.04003999 0.890 × 10−5

β = 0.32 0.0163840 0.01632257 0.798 × 10−5 0.01631233 0.466 × 10−5

0.0010240 0.00102484 0.364 × 10−5 0.00102149 0.260 × 10−5

0.0400000 0.04000523 0.220 × 10−5 0.04000061 0.111 × 10−5

β = 0.7
0.0400000 0.04030011 0.434 × 10−4 0.04000210 0.210 × 10−5

0.0010240 0.00100645 0.754 × 10−5 0.00100266 0.262 × 10−5

0.0163840 0.01638701 0.197 × 10−5 0.01638794 0.457 × 10−5

0.0400000 0.04003430 0.430 × 10−5 0.04999902 0.973 × 10−6

β = 0.8
0.0400000 0.04000037 0.375 × 10−5 0.04000021 0.219 × 10−6

0.0096040 0.00960777 0.237 × 10−5 0.00960137 0.974 × 10−6

0.0000640 0.00006437 0.243 × 10−5 0.00006407 0.292 × 10−5

0.0163840 0.016385043 0.112 × 10−5 0.01638486 0.214 × 10−5

10. Conclusions

The following conclusions were drawn:

1. In this paper, the existence of a unique solution is proven using the Banach fixed point
theorem. In addition, the reader could use the successive approximate method (Picard
method) to arrive at the same conclusion. In the homogeneous case of Equation (1),
the successive approximate method fails to prove the existence of a unique solution.
For this, we can only use the Banach fixed point theorem.
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2. If the two conditions of (i) and (ii) are not satisfied, this means that we have at least
one solution. In this case, we would use one of the following theorems: Brouwer fixed
point theorem or Schauder fixed point theorem.

3. Using TMM, we have an NAS where the coefficient of the nonlinear term is a function
of time. Hence, the existence of a unique solution for the NAS is discussed in the
space �∞ × C[0, T], T < 1.

4. The fractional nonlinear mixed integro-differential Equation (1), under certain relations
of μ and v, represents the nonlinear integral equation of the fractional phase-lag term

vΦ(x, t + δt) = g(x, t) + λ
∫

Ω
k(|x − y|)Φm(y, t)dy,

(
μ = v

(δt)α

Γ(α)

)
. (59)

The delaying or advancing of time reveals the natural phenomena, especially in
the presence of thermoelectricity and magnetic media. Some of applications of frac-
tional integro-differential equations are found in physics, chemistry, economics, and
biology [12,29]. Equation (59) explains the physical meaning of the fractional equation
of time as the first fractional approximation of the time lag equation, and this lag may
be before or after real time.

5. The variable separation technique used in Equation (11) enabled the researchers to
find the necessary time relationship between the nucleus and time, as presented
in Equation (15).

6. The significance of the logarithmic kernel was approved from its derivatives f with
these cases:

(a) ∂
∂x k(|y − x|) =

(
1

|y−x|

)
Cauchy kernel.

(b) ∂2

∂x2 k(|y − x|) =
(

1
|y−x|2

)
Strong singular kernel

(c) The Carleman function was also established as:

ln |y − x| = [(ln |y − x|)|y − x|v]︸ ︷︷ ︸
U(y,x)

|y − x|−v

where U(y, x) is a continuous function.

7. When the kernel of the equation was in the logarithmic function form k(|x − y|) =
ln(|x − y|), the relative error increased with increasing time. It was also noted that
the error in the non-linear case was slightly larger than in the linear case.

8. In Example (2), when the kernel took the Carleman function k(|x − y|) =| x−
y|−β(0 < β < 1), we noticed that the behavior of the error when increasing time was
the same as that of the logarithmic function. However, by comparison, we found that
at small times, the error in the logarithmic function was higher than in the Carleman
function. With increasing time, we find that the relative error in the Carleman function
is higher than its counterpart in the logarithmic function.

9. In Example (3), the error behavior of the Hilbert kernel k(|x − y|) = cot
(∣∣∣ x−y

2

∣∣∣) was
the same as that of the logarithmic form and Carleman function.

11. Future Work

Future work will attempt to solve Equation (1) when the coefficients of the equation
are variable. This will lead to solutions for many applications in the sciences related to
nonlinear elasticity.
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Abstract: A general system of fractional differential equations with coupled fractional Stieltjes
integrals and a Riemann–Liouville fractional integral in boundary conditions is studied in the context
of pattern formation. We need to transform the fractional differential system into the corresponding
integral operator to obtain the existence and uniqueness of solutions for the system. The contraction
mapping principle in Banach space and the alternative theorem of Leray–Schauder are applied.
Finally, we give two applications to illustrate our theoretical results.
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1. Introduction

A general system of fractional differential equations{
Dα1

0+(Dβ1
0+x(t)) + f (t, x(t), y(t)) = 0, t ∈ [0, 1],

Dα2
0+(Dβ2

0+y(t)) + g(t, x(t), y(t)) = 0, t ∈ [0, 1],
(1)

supplemented with coupled nonlocal integral boundary conditions are considered.⎧⎪⎪⎨⎪⎪⎩
Dβ1

0+x(0) = 0, x(0) = 0, x(1) = γ1 Iδ1
0+y(ξ) +

p
∑

i=1

∫ 1
0 y(τ)dHi(τ),

Dβ2
0+y(0) = 0, y(0) = 0, y(1) = γ2 Iδ2

0+x(η) +
q
∑

j=1

∫ 1
0 x(τ)dKj(τ),

(2)

where α1 is in the interval (0, 1), β1 is in the interval (1, 2), α2 is in the interval (0, 1], β2
is in the interval (1, 2], p, q ∈ N, and γ1, γ2, δ1, δ2 > 0, 0 < ξ, η < 1 Kj(t), j = 1, · · · , q,
Hi(t), i = 1, · · · , p are bounded variation functions. Both function f and function g
are nonlinear.

Coupled boundary conditions appear in the study of reaction-diffusion equations [1],
heat equations [2] and mathematical biology [3]. Boundary value problems with coupled
boundary conditions constitute a very interesting and important class of problems. Recently,
much attention has been focused on the study of the existence of solutions for boundary
value problems with coupled boundary conditions, see [4–13].

In [14], Tudorache and Luca investigated the systems of Riemann–Liouville fractional
differential equations with coupled integral boundary conditions.{

Dα
0+x(t) + f (t, x(t), y(t), Iθ1

0+x(t), Iσ1
0+y(t)) = 0, t ∈ (0, 1),

Dβ
0+y(t) + g(t, x(t), y(t), Iθ2

0+x(t), Iσ2
0+y(t)) = 0, t ∈ (0, 1),

Fractal Fract. 2022, 6, 543. https://doi.org/10.3390/fractalfract6100543 https://www.mdpi.com/journal/fractalfract
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⎧⎪⎪⎨⎪⎪⎩
x(0) = x′(0) = · · · = x(n−2)(0) = 0, Dγ0

0+x(1) =
p
∑

i=1

∫ 1
0 Dγi

0+y(t)dHi(t),

y(0) = y′(0) = · · · = y(m−2)(0) = 0, Dδ0
0+y(1) =

q
∑

i=1

∫ 1
0 Dδi

0+x(t)dKi(t),

where σ1, θ1, θ2, σ2 > 0, f and g are functions that are nonlinear. The contraction mapping
principle in Banach space, the alternative theorem of Leray–Schauder and Krasnosel’skii-
type theorem are adopted.

In [15], Bashir Ahmad and Rodica Luca considered the system of fractional integro-
differential equations{

(cDα + λcDα−1)u(t) = f (t, u(t), v(t),c Dp1 v(t), Iq1 v(t)), t ∈ (0, 1),
(cDβ + μcDβ−1)v(t) = g(t, u(t), v(t),c Dp2 u(t), Iq2 u(t)), t ∈ (0, 1),

with the coupled boundary conditions{
u(0) = u′(0) = u′′(0) = 0, u(1) =

∫ 1
0 u(s)dH1(s) +

∫ 1
0 v(s)dH2(s),

v(0) = v′(0) = v′′(0) = 0, v(1) =
∫ 1

0 u(s)dK1(s) +
∫ 1

0 v(s)dK2(s).

On the other hand, boundary value problems with Riemann–Liouville fractional
integral boundary conditions have attracted much attention.

In [16], Laadjal, M. Al-Mdallal and Jarad discussed the coupled system of fractional
Langevin equations{

cDα1(cDβ1 + λ)ψ1(t) = f (t, ψ1(t), ψ2(t)), t ∈ J, 0 < α1 ≤ 1 < β1 ≤ 2,
cDα2(cDβ2 + k)ψ2(t) = g(t, ψ1(t), ψ2(t)), t ∈ J, 0 < α2 ≤ 1 < β2 ≤ 2,

with nonlocal nonseparated boundary conditions⎧⎪⎨⎪⎩
ψ1(0) = a0, ψ2(0) = b0, ψ′

1(0) = ψ′
2(0) = 0,

ψ1(ξ) = a(cDpψ2)(μ1), ξ ∈ (0, 1], μ1 ∈ J, 0 < p < β2,
ψ2(η) = b(Iqψ1)(μ2), η ∈ (0, 1], μ2 ∈ J, q ≥ 0.

In [17], Zhang, Li and Lu considered the fractional differential system with Riemann–
Liouville fractional integral boundary conditions{

Dα1
0+u(t) = f1(t, u(t), v(t), Dρ1

0+u(t), Dρ2
0+v(t)), t ∈ (0, 1),

Dα2
0+v(t) = f2(t, u(t), v(t), Dρ1

0+u(t), Dρ2
0+v(t)), t ∈ (0, 1),{

u(0) = u′(0) = 0, v(0) = v′(0) = 0,

u(1) = γ1 Iβ1
0+u(η1), v(1) = γ2 Iβ2

0+v(η2).

However, boundary value problems with fractional Stieltjes integrals and Riemann–
Liouville fractional integrals in boundary conditions have not been discussed until now.
Now, in this paper, we shall investigate the existence and uniqueness of the solutions
for the system (1), (2). As far as the authors know, the contraction mapping principle in
Banach space and the alternative theorem of Leray–Schauder type have not been developed
for boundary value problems with fractional Stieltjes integrals and Riemann–Liouville
fractional integrals in boundary conditions, so it is interesting and important to discuss
the (1), (2).

The organization of this paper is as follows. In Section 2, we present some useful
basics definitions and lemmas. Section 3 gives the uniqueness and existence of solutions
for the system. At the end of the paper, two examples that illustrate our results are given.
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2. Preliminary

For convenience, we first present some useful basics lemmas of fractional calculus [18]
in this part.

Definition 1 ([18]). For a function k : (0,+∞) → R,

Iβ
0+k(τ) =

1
Γ(β)

∫ τ

0
(τ − s)β−1k(s)ds,

is defined as the β(β > 0) order Riemann–Liouville fractional integral of the function k.

Definition 2 ([18]). For a function k : (0,+∞) → R,

Dβ
0+k(τ) =

1
Γ(n − β)

(
d

dτ
)n
∫ τ

0
(τ − s)n−β−1k(s)ds,

is defined as the β(β > 0) order Riemann–Liouville fractional derivative of the function k, in this
place n = [β] + 1.

Lemma 1 ([18]). Assume that v ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order β > 0
that belongs to C(0, 1) ∩ L(0, 1). Then,

Iβ
0+Dβ

0+v(τ) = v(τ) + c1τβ−1 + c2τβ−2 + · · ·+ cNτβ−N ,

for some ci ∈ R, i = 1, 2, · · · , N, where N is the smallest integer greater than or equal to β.

Lemma 2 ([19]). Let T : X → X be continuous and compact. Denote M(T) = {u ∈ X : u =
mT(u) for some 0 < m < 1}. Then, one of the following conclusions is true:

(i) M(T) is an unbounded set;

(ii) there exists x ∈ X satisfying Tx = x.

We denote by

Δ1 =
Γ(β2)

Γ(β2 + δ1)
γ1ξβ2+δ1−1 +

p

∑
i=1

∫ 1

0
τβ2−1dHi(τ),

Δ2 =
Γ(β1)

Γ(β1 + δ2)
γ2ηβ1+δ2−1 +

q

∑
j=1

∫ 1

0
τβ1−1dKj(τ).

Lemma 3. Suppose x, y ∈ C[0, 1], Δ = 1 − Δ1Δ2 �= 0, β1, β2 ∈ (1, 2], α1, α2 ∈ (0, 1], p, q ∈ N,
(α1 := α1 + β1 + δ2, α2 := α2 + β2 + δ1), γ1, γ2, δ1, δ2 > 0, 0 < ξ, η < 1, Kj(t), j = 1, · · · , q,
Hi(t), i = 1, · · · , p, are bounded variation functions, h, k are continuous on the interval (0, 1),
furthermore, h, k are integrable on the interval (0, 1). Then, the functional expressions
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x(t) = − 1
Γ(α1+β1)

∫ t
0 (t − s)α1+β1−1h(s)ds

+ tβ1−1

Δ

[
1

Γ(α1+β1)

∫ 1
0 (1 − s)α1+β1−1h(s)ds − γ1

Γ(α2)

∫ ξ
0 (ξ − s)α2−1k(s)ds

− 1
Γ(α2+β2)

p
∑

i=1

∫ 1
0

(∫ τ
0 (τ − s)α2+β2−1k(s)ds

)
dHi(τ)

+Δ1

(
1

Γ(α2+β2)

∫ 1
0 (1 − s)α2+β2−1k(s)ds

− γ2
Γ(α1)

∫ η
0 (η − s)α1−1h(s)ds

− 1
Γ(α1+β1)

q
∑

j=1

∫ 1
0

(∫ τ
0 (τ − s)α1+β1−1h(s)ds

)
dKj(τ)

)]
,

(3)

y(t) =− 1
Γ(α2 + β2)

∫ t

0
(t − s)α2+β2−1k(s)ds

+
tβ2−1

Δ

[
1

Γ(α2 + β2)

∫ 1

0
(1 − s)α2+β2−1k(s)ds − γ2

Γ(α1)

∫ η

0
(η − s)α1−1h(s)ds

− 1
Γ(α1 + β1)

q

∑
j=1

∫ 1

0

(∫ τ

0
(τ − s)α1+β1−1h(s)ds

)
dKj(τ)

+ Δ2

(
1

Γ(α1 + β1)

∫ 1

0
(1 − s)α1+β1−1h(s)ds

− γ1

Γ(α2)

∫ ξ

0
(ξ − s)α2−1k(s)ds

− 1
Γ(α2 + β2)

p

∑
i=1

∫ 1

0

(∫ τ

0
(τ − s)α2+β2−1k(s)ds

)
dHi(τ)

)]
.

(4)

is the solution of the system{
Dα1

0+(Dβ1
0+x(t)) + h(t) = 0, t ∈ (0, 1),

Dα2
0+(Dβ2

0+y(t)) + k(t) = 0, t ∈ (0, 1).
(5)

Furthermore, (x(t), y(t)) satisfies the equation condition (2).

Proof. By Lemma 1, the solutions for the systems (2), (5) are give by

x(t) = −Iα1+β1
0+ h(t) + c1tβ1−1, (6)

y(t) = −Iα2+β2
0+ k(t) + d1tβ2−1, (7)

where c1, d1 ∈ R. From the boundary conditions x(1) = γ1 Iδ1
0+y(ξ) +

p
∑

i=1

∫ 1
0 y(τ)dHi(τ)

and y(1) = γ2 Iδ2
0+x(η) +

q
∑

j=1

∫ 1
0 x(τ)dKj(τ), we get

−Iα1+β1
0+ h(1) + c1 = −γ1 Iα2

0+k(ξ) + γ1d1
Γ(β2)

Γ(β2 + δ1)
ξβ2+δ1−1

+
p

∑
i=1

∫ 1

0

(
d1τβ2−1 − Iα2+β2

0+ k(τ)
)

dHi(τ),
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−Iα2+β2
0+ k(1) + d1 = −γ2 Iα1

0+h(η) + γ2c1
Γ(β1)

Γ(β1 + δ2)
ηβ1+δ2−1

+
q

∑
j=1

∫ 1

0

(
c1τβ1−1 − Iα1+β1

0+ h(τ)
)

dKj(τ).

Solving the above system, we find that

c1 =
1
Δ

(
Iα1+β1
0+ h(1)− γ1 Iα2

0+k(ξ)−
p

∑
i=1

∫ 1

0
Iα2+β2 k(τ)dHi(τ)

)

+
Δ1

Δ

(
Iα2+β2
0+ k(1)− γ2 Iα1

0+h(η)−
q

∑
j=1

∫ 1

0
Iα1+β1
0+ h(τ)dKj(τ)

)
,

d1 =
1
Δ

(
Iα2+β2
0+ k(1)− γ2 Iα1

0+h(η)−
q

∑
j=1

∫ 1

0
Iα1+β1
0+ h(τ)dKj(τ)

)

+
Δ2

Δ

(
Iα1+β1
0+ h(1)− γ1 Iα2

0+k(ξ)−
p

∑
i=1

∫ 1

0
Iα2+β2 k(τ)dHi(τ)

)
.

Substituting the values of c1, d1 in (6) and (7), we get the integral functional expres-
sions (3) and (4). The conclusion can be obtained.

The Banach space E = C[0, 1] is defined with the norm ‖ω‖ = max
0≤τ≤1

|ω(τ)|.
Let Y = E × E. So, the space Y = {(x, y) : (x, y) ∈ Y} with the norm ‖(x, y)‖Y =

‖x‖+ ‖y‖ is Banach space. The operator expression T : Y → Y is defined by T(x, y)(t) =
(T1(x, y)(t), T2(x, y)(t)), where

T1(x, y)(t) =
tβ1−1

Δ

[
− 1

Γ(α2 + β2)

p

∑
i=1

∫ 1

0

(∫ τ

0
(τ − s)α2+β2−1g(s, x(s), y(s))ds

)
dHi(τ)

− γ1

Γ(α2)

∫ ξ

0
(ξ − s)α2−1g(s, x(s), y(s))ds

+
1

Γ(α1 + β1)

∫ 1

0
(1 − s)α1+β1−1 f (s, x(s), y(s))ds

+ Δ1

(
− 1

Γ(α1 + β1)

q

∑
j=1

∫ 1

0

(∫ τ

0
(τ − s)α1+β1−1 f (s, x(s), y(s))ds

)
dKj(τ)

− γ2

Γ(α1)

∫ η

0
(η − s)α1−1 f (s, x(s), y(s))ds

+
1

Γ(α2 + β2)

∫ 1

0
(1 − s)α2+β2−1g(s, x(s), y(s))ds

)]
− 1

Γ(α1 + β1)

∫ t

0
(t − s)α1+β1−1 f (s, x(s), y(s))ds,

(8)
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T2(x, y)(t) =
tβ2−1

Δ

[
− 1

Γ(α1 + β1)

q

∑
j=1

∫ 1

0

(∫ τ

0
(τ − s)α1+β1−1 f (s, x(s), y(s))ds

)
dKj(τ)

− γ2

Γ(α1)

∫ η

0
(η − s)α1−1 f (s, x(s), y(s))ds

+
1

Γ(α2 + β2)

∫ 1

0
(1 − s)α2+β2−1g(s, x(s), y(s))ds

+ Δ2

(
− 1

Γ(α2 + β2)

p

∑
i=1

∫ 1

0

(∫ τ

0
(τ − s)α2+β2−1g(s, x(s), y(s))ds

)
dHi(τ)

− γ1

Γ(α2)

∫ ξ

0
(ξ − s)α2−1g(s, x(s), y(s))ds

+
1

Γ(α1 + β1)

∫ 1

0
(1 − s)α1+β1−1 f (s, x(s), y(s))ds

)]
− 1

Γ(α2 + β2)

∫ t

0
(t − s)α2+β2−1g(s, x(s), y(s))ds.

(9)

Note that the couple fixed point of the integral operator T happens to satisfy the
system (1) and the boundary condition (2).

3. Main Result

Now we present the main conclusions of the system (1), (2). The tools we used
include the contraction mapping principle in Banach space and the alternative theorem of
Leray–Schauder type.

We give the following notation:

M1 =
|Δ1|

|Δ|Γ(α1 + β1 + 1)

q

∑
j=1

∣∣∣∣∫ 1

0
τα1+β1 dKj(τ)

∣∣∣∣+ |Δ1|γ2ηα1

|Δ|Γ(α1 + 1)
+

1
|Δ|Γ(α1 + β1 + 1)

+
1

Γ(α1 + β1 + 1)
,

M2 =
1

|Δ|Γ(α2 + β2 + 1)

p

∑
i=1

∣∣∣∣∫ 1

0
τα2+β2 dHi(τ)

∣∣∣∣+ γ1ξα2

|Δ|Γ(α2 + 1)
+

|Δ1|
|Δ|Γ(α2 + β2 + 1)

,

M3 =
|Δ2|

|Δ|Γ(α2 + β2 + 1)

p

∑
i=1

∣∣∣∣∫ 1

0
τα2+β2 dHi(τ)

∣∣∣∣+ |Δ2|γ1ξα2

|Δ|Γ(α2 + 1)
+

1
|Δ|Γ(α2 + β2 + 1)

+
1

Γ(α2 + β2 + 1)
,

M4 =
1

|Δ|Γ(α1 + β1 + 1)

q

∑
j=1

∣∣∣∣∫ 1

0
τα1+β1 dKj(τ)

∣∣∣∣+ γ2ηα1

|Δ|Γ(α1 + 1)
+

|Δ2|
|Δ|Γ(α1 + β1 + 1)

,

M5 = M1 − 1
Γ(α1 + β1 + 1)

, M6 = M3 − 1
Γ(α2 + β2 + 1)

.

Additionally, the following assumptions hold:

Hypothesis 1 (H1). By continuity of function f , there exist real constants ai(i = 0, 1, 2)
that satisfy

| f (t, u, v)| ≤ a0 + a1|u|+ a2|v|.
By continuity of function g, there exist real constants bi(i = 0, 1, 2) that satisfy

|g(t, u, v)| ≤ b0 + b1|u|+ b2|v|

for all (t, u, v) ∈ [0, 1]× R × R.
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Hypothesis 2 (H2). There exist positive constants K that satisfy

K(|u − u|+ |v − v|) ≥ | f (t, u, v)− f (t, u, v)|,

there exist positive constants L that satisfy

L(|u − u|+ |v − v|) ≥ |g(t, u, v)− g(t, u, v)|,

for all (t, u, u), (t, u, v) ∈ [0, 1]× R × R.

Hypothesis 3 (H3). There exist positive constants F0 such that F0 = sup
t∈J

| f (t, 0, 0)|,

and there exist positive constants G0 such that G0 = sup
t∈J

|g(t, 0, 0)|.

Theorem 1. Suppose that conditions (H2) and (H3) are satisfied. Moreover,

K(M1 + M4) + L(M2 + M3) < 1,

then there is a unique solution for system (1), (2).

Proof. We consider a real constant R > 0 such that

(M1 + M4)F0 + (M2 + M3)G0

1 − [K(M1 + M4) + L(M2 + M3)]
≤ R.

Let BR = {(x, y) ∈ Y, ‖(x, y)‖Y ≤ R}. We prove that T mapping BR to BR. From (H2)
and (H3), we deduce that the following holds:

| f (t, x(t), y(t)| ≤ | f (t, 0, 0)|+ | f (t, x(t), y(t)− f (t, 0, 0)|
≤ F0 + K(|x|+ |y|)
≤ F0 + K(‖x‖+ ‖y‖)
= F0 + K‖(x, y)‖.

Similarly, we have |g(t, x(t), y(t)| ≤ G0 + L‖(x, y)‖.
For all (x, y) in BR, we obtain

|T1(x, y)(t)| ≤ tβ1−1

|Δ|

[
LR + G0

Γ(α2 + β2)

p

∑
i=1

∣∣∣∣∫ 1

0

(∫ τ

0
(τ − s)α2+β2−1ds

)
dHi(τ)

∣∣∣∣
+

γ1(LR + G0)

Γ(α2)

∫ ξ

0
(ξ − s)α2−1ds +

KR + F0

Γ(α1 + β1)

∫ 1

0
(1 − s)α1+β1−1ds

+ |Δ1|
(

KR + F0

Γ(α1 + β1)

q

∑
j=1

∣∣∣∣∫ 1

0

(∫ τ

0
(τ − s)α1+β1−1ds

)
dKj(τ)

∣∣∣∣
+

γ2(KR + F0)

Γ(α1)

∫ η

0
(η − s)α1−1ds +

LR + G0

Γ(α2 + β2)

∫ 1

0
(1 − s)α2+β2−1ds

)]
+

KR + F0

Γ(α1 + β1)

∫ t

0
(t − s)α1+β1−1ds

≤ 1
|Δ|

[
LR + G0

Γ(α2 + β2 + 1)
×

p

∑
i=1

∣∣∣∣∫ 1

0
τα2+β2 dHi(τ)

∣∣∣∣+ γ1(LR + G0)ξ
α2

Γ(α2 + 1)

+
KR + F0

Γ(α1 + β1 + 1)
+ |Δ1|

(
KR + F0

Γ(α1 + β1 + 1)

q

∑
j=1

∣∣∣∣∫ 1

0
τα1+β1 dKj(τ)

∣∣∣∣
+

γ2(KR + F0)η
α1

Γ(α1 + 1)
+

LR + G0

Γ(α2 + β2 + 1)

)]
+

KR + F0

Γ(α1 + β1 + 1)
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= (KR + F0)

( |Δ1|
|Δ|Γ(α1 + β1 + 1)

q

∑
j=1

∣∣∣∣∫ 1

0
τα1+β1 dKj(τ)

∣∣∣∣+ |Δ1|γ2ηα1

|Δ|Γ(α1 + 1)

+
1

|Δ|Γ(α1 + β1 + 1)
+

1
Γ(α1 + β1 + 1)

)
+ (LR + G0)

(
1

|Δ|Γ(α2 + β2 + 1)

p

∑
i=1

∣∣∣∣∫ 1

0
τα2+β2 dHi(τ)

∣∣∣∣
+

γ1ξα2

|Δ|Γ(α2 + 1)
+

|Δ1|
|Δ|Γ(α2 + β2 + 1)

)
= (KR + F0)M1 + (LR + G0)M2.

(10)

Let us continue with the calculations:

|T2(x, y)(t)| ≤ tβ2−1

|Δ|

[
KR+F0

Γ(α1+β1)

q
∑

j=1

∣∣∣∣∫ 1
0

(∫ τ
0 (τ − s)α1+β1−1ds

)
dKj(τ)

∣∣∣∣
+ γ2(KR+F0)

Γ(α1)

∫ η
0 (η − s)α1−1ds + LR+G0

Γ(α2+β2)

∫ 1
0 (1 − s)α2+β2−1ds

+|Δ2|
(

LR+G0
Γ(α2+β2)

p
∑

i=1

∣∣∣∣∫ 1
0

(∫ τ
0 (τ − s)α2+β2−1ds

)
dHi(τ)

∣∣∣∣
+ γ1(LR+G0)

Γ(α2)

∫ ξ
0 (ξ − s)α2−1ds + KR+F0

Γ(α1+β1)

∫ 1
0 (1 − s)α1+β1−1ds

)]
+ LR+G0

Γ(α2+β2)

∫ t
0 (t − s)α2+β2−1ds

≤ 1
|Δ|

[
KR+F0

Γ(α1+β1+1) ×
q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣+ γ2(KR+F0)η
α1

Γ(α1+1)

+ LR+G0
Γ(α2+β2+1) + |Δ2|

(
LR+G0

Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣
+ γ1(LR+G0)ξ

α2

Γ(α2+1) + KR+F0
Γ(α2+β2+1)

)]
+ LR+G0

Γ(α2+β2+1)

= (LR + G0)

(
|Δ2|

|Δ|Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣+ |Δ2|γ1ξα2

|Δ|Γ(α2+1)

+ 1
|Δ|Γ(α2+β2+1) +

1
Γ(α2+β2+1)

)
+(KR + F0)

(
1

|Δ|Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣
+ γ2ηα1

|Δ|Γ(α1+1) +
|Δ2|

|Δ|Γ(α2+β2+1)

)
= (LR + G0)M3 + (KR + F0)M4.

(11)

Consequently,

‖T(x, y)‖ ≤ (KR + F0)M1 + (LR + G0)M2 + (LR + G0)M3 + (KR + F0)M4 ≤ R.

Hence, T(BR) ⊆ R.
Now we will prove that T is a contraction operator. Choose (x, y), (x, y) in Y. For all

t ∈ [0, 1], we find
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|T1(x, y)(t)− T1(x, y)(t)| ≤ tβ1−1

|Δ|

[
L(‖x−x‖+‖y−y‖)

Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣
+ γ1L(‖x−x‖+‖y−y‖)

Γ(α2+1) ξα2

+K(‖x−x‖+‖y−y‖)
Γ(α1+β1+1)

+|Δ1|
(

K(‖x−x‖+‖y−y‖)
Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣
+ γ2K(‖x−x‖+‖y−y‖)

Γ(α1+1) ηα1

+ L(‖x−x‖+‖y−y‖)
Γ(α2+β2+1)

)]
+ K(‖x−x‖+‖y−y‖)

Γ(α1+β1+1) tα1+β1

≤ K
(

1
|Δ|Γ(α1+β1+1) +

|Δ1|
|Δ|Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣
+ |Δ1|γ2ηα1

|Δ|Γ(α1+1) +
1

Γ(α1+β1+1)

)
‖(x, y)− (x, y)‖

+L
(

1
|Δ|Γ(α2+β2+1) ×

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

+ γ1ξα2

|Δ|Γ(α2+1) +
|Δ1|

|Δ|Γ(α2+β2+1)

∣∣∣∣)‖(x, y)− (x, y)‖
= (M1K + M2L)‖(x, y)− (x, y)‖.

(12)

Let us continue with the calculations:

|T2(x, y)(t)− T2(x, y)(t)| ≤ tβ2−1

|Δ|

[
K(‖x−x‖+‖y−y‖)

Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣
+ γ2K(‖x−x‖+‖y−y‖)

Γ(α1+1) ηα1

+ L(‖x−x‖+‖y−y‖)
Γ(α2+β2+1)

+|Δ2|
(

L(‖x−x‖+‖y−y‖)
Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣
+ γ1L(‖x−x‖+‖y−y‖)

Γ(α2+1) ξα2

+K(‖x−x‖+‖y−y‖)
Γ(α1+β1+1)

)]
+ L(‖x−x‖+‖y−y‖)

Γ(α2+β2+1) tα2+β2

≤ L
(

1
|Δ|Γ(α2+β2+1) +

|Δ2|
|Δ|Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣
+ |Δ2|γ1ξα2

|Δ|Γ(α2+1) +
1

Γ(α2+β2+1)

)
‖(x, y)− (x, y)‖

+K
(

1
|Δ|Γ(α1+β1+1) ×

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

+ γ2ηα1

|Δ|Γ(α1+1) +
|Δ2|

|Δ|Γ(α2+β2+1)

∣∣∣∣)‖(x, y)− (x, y)‖
= (M1L + M2K)‖(x, y)− (x, y)‖.

(13)

Consequently,

‖T(x, y)(t)− T(x, y)(t)‖ ≤ [(M1 + M4)K + (M2 + M3)L]‖(x, y)− (x, y)‖.

Using contraction mapping principle in Banach space, there is a unique function that
satisfies Tu = u, which happens to be the solution of the system (1), (2).
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Theorem 2. Suppose that condition (H1) is satisfied. If ρ := max{M7, M8} < 1, where
M7 = a1(M1 + M4) + b1(M2 + M3) and M8 = a2(M1 + M4) + b2(M2 + M3), then at least
one couple functions (x(t), y(t)) satisfy the system (1), (2).

Proof. By continuity of functions f and g, the operators T1 and T2 are continuous, this
means the operator T is also continuous. We choose an arbitrarily bounded open subset Ω
from E. There exist K > 0 and L > 0 that satisfy | f (t, x(t), y(t)| ≤ K and |g(t, x(t), y(t)| ≤ L
for all t in the [0,1] and (x, y) in Ω. Thus, by the proof of Theorem 1, we have

|T1(x, y)(t)| ≤ KM1 + LM2, |T2(x, y)(t)| ≤ LM3 + KM4

for all t in the [0,1] and (x, y) in Ω. Then, we obtain

‖T(x, y)‖ ≤ K(M1 + M4) + L(M2 + M3), ∀(x, y) ∈ Ω.

So, we get the boundedness of T(Ω).
Take (x, y) ∈ Ω and 0 ≤ t1 < t2 ≤ 1, one has

|T1(x, y)(t2)− T1(x, y)(t1)|
≤ t

β1−1
2 −t

β1−1
1

|Δ|

[
1

Γ(α2+β2)

p
∑

i=1

∣∣∣∣∫ 1
0

(∫ τ
0 (τ − s)α2+β2−1|g(s, x(s), y(s))|ds

)
dHi(τ)

∣∣∣∣
+ γ1

Γ(α2)

∫ ξ
0 (ξ − s)α2−1|g(s, x(s), y(s))|ds

+ 1
Γ(α1+β1)

∫ 1
0 (1 − s)α1+β1−1| f (s, x(s), y(s))|ds

+|Δ1|
(

1
Γ(α1+β1)

q
∑

j=1

∣∣∣∣∫ 1
0

(∫ τ
0 (τ − s)α1+β1−1| f (s, x(s), y(s))|ds

)
dKj(τ)

∣∣∣∣
+ γ2

Γ(α1)

∫ η
0 (η − s)α1−1| f (s, x(s), y(s))|ds

+ 1
Γ(α2+β2)

∫ 1
0 (1 − s)α2+β2−1|g(s, x(s), y(s))|ds

)]
+

∣∣∣∣− 1
Γ(α1+β1)

∫ t2
0 (t2 − s)α1+β1−1 f (s, x(s), y(s))ds

+ 1
Γ(α1+β1)

∫ t1
0 (t1 − s)α1+β1−1 f (s, x(s), y(s))ds

∣∣∣∣
≤ t

β1−1
2 −t

β1−1
1

|Δ|

[
L

Γ(α2+β2)

p
∑

i=1

∣∣∣∣∫ 1
0

(∫ τ
0 (τ − s)α2+β2−1ds

)
dHi(τ)

∣∣∣∣
+ γ1L

Γ(α2)

∫ ξ
0 (ξ − s)α2−1ds + K

Γ(α1+β1)

∫ 1
0 (1 − s)α1+β1−1ds

+|Δ1|
(

K
Γ(α1+β1)

q
∑

j=1

∣∣∣∣∫ 1
0

(∫ τ
0 (τ − s)α1+β1−1ds

)
dKj(τ)

∣∣∣∣+ γ2K
Γ(α1)

∫ η
0 (η − s)α1−1ds

+ L
Γ(α2+β2)

∫ 1
0 (1 − s)α2+β2−1ds

)]
+ K

Γ(α1+β1)

∫ t1
0 [(t2 − s)α1+β1−1 − (t1 − s)α1+β1−1]ds

+ K
Γ(α1+β1)

∫ t2
t1
(t2 − s)α1+β1−1ds

≤ K
Γ(α1+β1+1) (t

α1+β1
2 − tα1+β1

1 ) + K(tβ1−1
2 − tβ1−1

1 )

(
1

|Δ|Γ(α1+β1+1)

+ |Δ1|γ2ηα1

|Δ|Γ(α1+1)

+ |Δ1|
|Δ|Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣)+ L(tβ1−1
2 − tβ1−1

1 )

×
(

γ1ξα2

|Δ|Γ(α2+1) +
|Δ1|

|Δ|Γ(α2+β2+1) +
1

|Δ|Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣)
= K

Γ(α1+β1+1) (t
α1+β1
2 − tα1+β1

1 ) + (KM5 + LM2)(t
β1−1
2 − tβ1−1

1 ).

(14)

We find result
T1(x, y)(t2) → T1(x, y)(t1) when t2 → t1, for arbitrary (x, y) ∈ Ω.
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Similarly, for (x, y) ∈ Ω, 0 ≤ t1 < t2 ≤ 1,

|T2(x, y)(t2)− T2(x, y)(t1)|

≤ L
Γ(α2 + β2 + 1)

(tα2+β2
2 − tα2+β2

1 ) + L(tβ2−1
2 − tβ2−1

1 )

(
1

|Δ|Γ(α2 + β2 + 1)

+
|Δ2|γ1ξα2

|Δ|Γ(α2 + 1)
+

|Δ2|
|Δ|Γ(α2 + β2 + 1)

p

∑
i=1

∣∣∣∣∫ 1

0
τα2+β2 dHi(τ)

∣∣∣∣)+ K(tβ2−1
2 − tβ2−1

1 )

×
(

γ2ηα1

|Δ|Γ(α1 + 1)
+

|Δ2|
|Δ|Γ(α1 + β1 + 1)

+
1

|Δ|Γ(α1 + β1 + 1)

q

∑
j=1

∣∣∣∣∫ 1

0
τα1+β1 dKj(τ)

∣∣∣∣)

=
L

Γ(α2 + β2 + 1)
(tα2+β2

2 − tα2+β2
1 ) + (LM6 + KM4)(t

β2−1
2 − tβ2−1

1 ).

(15)

So we obtain
T2(x, y)(t2) → T2(x, y)(t1) when t2 → t1, for arbitrary (x, y) ∈ Ω.
The conclusion that T : BR → BR is continuous and compact can be deduced from the

Arzela–Ascoli theorem.
Finally, we will give the fact M(T) = {(x, y) ∈ E × E : (x, y) = mT(x, y) for some

0 < m < 1} is bounded. Let (x, y) in M(T) and for any t on [0,1], we have mT(x, y) =
(mT1(x, y), mT2(x, y)).

By (H1), we have

|x(t)| ≤ |T1(x, y)(t)|
≤ 1

|Δ|

[
b0+b1‖x‖+b2‖y‖

Γ(α2+β2+1)

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣+ γ1(b0+b1‖x‖+b2‖y‖)ξα2

Γ(α2+1)

+ a0+a1‖x‖+a2‖y‖
Γ(α1+β1+1) + |Δ1|

(
a0+a1‖x‖+a2‖y‖

Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣
+ γ2(a0+a1‖x‖+a2‖y‖)ηα1

Γ(α1+1) + b0+b1‖x‖+b2‖y‖
Γ(α2+β2+1)

)]
+ a0+a1‖x‖+a2‖y‖

Γ(α1+β1+1)

= (a0 + a1‖x‖+ a2‖y‖)
(

|Δ1|
|Δ|Γ(α1+β1+1)

q
∑

j=1

∣∣∣∣∫ 1
0 τα1+β1 dKj(τ)

∣∣∣∣
+ 1

|Δ|Γ(α1+β1+1) +
|Δ1|γ2ηα1

|Δ|Γ(α1+1) +
1

Γ(α1+β1+1)

)
+(b0 + b1‖x‖+ b2‖y‖)

(
γ1ξα2

|Δ|Γ(α2+1) +
|Δ1|

|Δ|Γ(α2+β2+1)

+ 1
|Δ|Γ(α2+β2+1) ×

p
∑

i=1

∣∣∣∣∫ 1
0 τα2+β2 dHi(τ)

∣∣∣∣).

(16)

So we deduce

‖x‖ ≤ (a0 + a1‖x‖+ a2‖y‖)M1 + (b0 + b1‖x‖+ b2‖y‖)M2. (17)

Using the same proof process, we get

‖y‖ ≤ (a0 + a1‖x‖+ a2‖y‖)M4 + (b0 + b1‖x‖+ b2‖y‖)M3. (18)

By (17) and (18), we have

‖(x, y)‖ = ‖x‖+ ‖y‖ ≤ a0(M1 + M4) + b0(M2 + M3)

+

[
a1(M1 + M4) + b1(M2 + M3)

]
‖x‖+

[
a2(M1 + M4) + b2(M2 + M3)

]
‖y‖

= a0(M1 + M4) + b0(M2 + M3) + M7‖x‖+ M8‖y‖
≤ a0(M1 + M4) + b0(M2 + M3) + ρ‖(x, y)‖.
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For ρ < 1, we obtain

‖(x, y)‖ ≤ a0(M1 + M4) + b0(M2 + M3)

1 − ρ
, ∀(x, y) ∈ M(T).

Hence, we prove M(T) is a bounded set.
By using the alternative theorem of Leray–Schauder, there exists x ∈ X that sat-

isfy Tx = x, therefore, coupled function (x, y) satisfy system (1) and integral boundary
condition (2).

4. Example

Let α1 = 1
3 , H1(t) = 2t, t ∈ [0, 1], α2 = 5

6 , β1 = 5
4 , K1 = t, t ∈ [0, 1], β2 = 7

5 , p = 2,
q = 1, γ1 = 2, γ2 = 3, δ1 = 3

7 , δ2 = 8
5 , ξ = 1

5 , η = 1
3 , H2(t) = {0, t ∈ [0, 1

4 ); 3, t ∈ [ 1
4 , 1]}.

We consider the following specific fractional order systems⎧⎨⎩D
1
3
0+(D

5
4
0+x(t)) + f (t, x(t), y(t)) = 0, t ∈ [0, 1],

D
5
6
0+(D

7
5
0+y(t)) + g(t, x(t), y(t)) = 0, t ∈ [0, 1],

(19)

supplemented with the condition⎧⎨⎩D
5
4
0+x(0) = 0, x(0) = 0, x(1) = 2I

3
7
0+y( 1

5 ) + 2
∫ 1

0 y(t)dt + 3y( 1
4 ),

D
7
5
0+y(0) = 0, y(0) = 0, y(1) = 3I

8
5
0+x( 1

3 ) +
∫ 1

0 x(t)dt.
(20)

We obtain Δ ≈ −3.2945773664941695 �= 0. By calculation, we have M4 ≈ 0.3398202114
6365704, M3 ≈ 0.6299976999210883, M2 ≈ 0.5353700439729107, M1 ≈ 1.2401800473948743.

Example 1. We choose

f (t, u1, v1) =
1√

t3 + 3
+

t
8

u1 − 1
5

sin v1,

g(t, u1, v1) =
t

t2 + 12
− t

4
arctan u1 +

|v1|
15 + |v1|

,

for all t on [0,1], u1, v1 in R. Then, we get the following estimates

| f (t, u1, v1)− f (t, u2, v2)| ≤
1
5
(|u1 − u2|+ |v1 − v2|).

Thus, K = 1
5 , moreover,

|g(t, u1, v1)− g(t, u2, v2)| ≤
1
4
(|u1 − u2|+ |v1 − v2|).

Thus, L = 1
4 . Hence, K(M1 + M4) + L(M2 + M3) ≈ 0.6073419877452061 < 1. So

the condition (H2) holds, and by Theorem 1, there is a couple function (x(t), y(t)) satisfies the
systems (19) and (20).

Example 2. We choose

f (t, u, v) =
t + 1

5
− 1

t + 8
sin u +

1
12

v,

g(t, u, v) =
e−t

t2 + 3
+

5
8

arctan u +
1
6

v,
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for all t on [0,1], u1, v1 in R. Then, we get the following estimates

| f (t, u, v)| ≤ 2
5
+

1
8
|u|+ 1

12
|v|,

|g(t, u, v)| ≤ 1
3
+

5
8
|u|+ 1

6
|v|,

for all t on [0,1], u1, v1 in R. Since the assumption (H1), we get a0 = 2
5 , a1 = 1

8 , a2 = 1
12 , b0 = 1

3 ,
b1 = 5

8 and b2 = 1
6 . Thus, we obtain M7 ≈ 0.9258548722910658, M8 ≈ 0.3258946455538774,

and ρ = max{M7, M8} = M7 < 1. Hence, by Theorem 2, we conclude that problem (19) and (20)
have at least one solution (x(t), y(t)), t ∈ [0, 1].
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Abstract: We present the existence of solutions for sequential Caputo–Hadamard fractional differen-
tial equations (SC-HFDE) with fractional boundary conditions (FBCs). Known fixed-point techniques
are used to analyze the existence of the problem. In particular, the contraction mapping principle
is used to investigate the uniqueness results. Existence results are obtained via Krasnoselkii’s theo-
rem. An example is used to illustrate the results. In this way, our work generalizes several recent
interesting results.

Keywords: fractional differential equations; Caputo–Hadamard fractional derivative; fractional
boundary conditions; existence and uniqueness
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1. Introduction

The study of fractional-order calculus has been a subject of research for many years.
It began as a result of Leibniz and L’Hospital’s illustrious discourse, in which the issue
of a half derivative was first raised (see, e.g., [1–3]). Nowadays, fractional differential
equations (FDEs) have gained more popularity due to the impact of deep applications.
Some applications of FDEs are in polymer materials, fractional physics, automatic control
theory, abnormal diffusion, and in random processes (see, e.g., [1–4]).

Fractional-order models are quite useful in epidemic models to predict the spread of
diseases. In 2017, [5] a fractional order Middle East Respiratory Syndrome Corona Virus
(MERSCoV) model used an Adams-type predictor-corrector method for the numerical
solution of fractional integral equations.

Over the past 150 years, fixed-point theory (FPT) has made significant progress in
mathematical analysis. It has applications in a variety of domains, including optimization
theory, mathematical physics, topology, and approximation theory. Poincare launched the
investigation of FPT in the nineteenth century. The existence and uniqueness of differential
and integral equations solutions were established by Banach’s 1922 proof of a classical FPT.

In a Banach space of infinite dimensions, Schauder stated the first FPT called Schauder
FPT in 1930 and has several applications in game theory, economics, and engineering (see,
e.g., [6,7]).

Fractal Fract. 2022, 6, 730. https://doi.org/10.3390/fractalfract6120730 https://www.mdpi.com/journal/fractalfract
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The field of FDEs is a new branch of mathematics that is a valuable tool in modeling
many phenomena in various fields such as cancer treatment, medicine, and signal process-
ing, etc.; we refer to [2,3,8–15]. The most important definitions of fractional derivatives
(FD) and fractional integral derivatives are stated as follows:

(i) The derivative of the fractional order ν > 0 of a function g : (0, ∞) → R is given by

Dν
0+g(t) =

1
Γ(n − ν)

d
dt

n ∫ t

0

g(s)
(t − s)ν−n+1 ds,

where n = [ν] + 1, provided the right-hand side is pointwise defined on (0, ∞).
(ii) The fractional order integral of the function g ∈ L1([0, T],R+) of order ν ∈ R+ is

defined by

Iνg(t) =
1

Γ(ν)

∫ t

0
(t − s)ν−1g(s)ds,

where Γ is the Euler’s gamma function.
Recent research on the Hadamard equations has focused primarily on the core theoret-

ical areas. In particular, the existence results of the solutions are investigated in [16–18],
where the strip conditions and FPT are employed. In [19], the authors investigated the sta-
bility of Hadamard fractional systems and provide a new fractional comparison principle.
In [20], the asymptotic of higher order Caputo–Hadamard fractional equations is studied.

A few years ago, many authors studied Caputo and Riemann–Liouville FDs. More-
over, Caputo–Hadamard and Hadamard–Caputo FDs are used to prove the existence and
uniqueness results. Recently, Hadamard, Caputo–Fabrizio, Atangana–Baleanu FDs are
applied in cancer-treatment models, see [21,22].

Jessada Tariboon et al. [23] investigated the existence and uniqueness of solutions for
two sequential Caputo–Hadamard and Hadamard–Caputo FDE separated BCs as (with
δi, κi ∈ R, i = 1, 2)

CDp(HDνx)(η) = f (η, x(η)), η ∈ (a, b), HDν(CDpx)(η) = f (η, x(η)),

δ1x(a) + δ2(
HDνx)(a) = 0, δ1x(a) + δ2(

CDpx)(a) = 0,

κ1x(b) + κ2(
HDνx)(b) = 0, κ1x(b) + κ2(

CDpx)(b) = 0.

where CDp and HDν are the Caputo and Hadamard FDs of orders p and ν, respectively.
In [24], the authors took into account the second-order infinite system of DEs{

t
d2uj
dt2 +

duj
dt = f j(t, u(t)), t ∈ J := [1, q]

uj(1) = uj(q) = 0,

where u(t) = {uj(t)}∞
j=1, in Banach sequence space lp, p ≥ 1. They used the Darbo-type

FPT and the Hausdorff measure of noncompactness to prove the existence of solutions.
It should be remarked that a great amount of research on sequential fractional differ-

ential equations has been carried out by Bashir ahmad and his team, as follows. In [25], the
existence of solutions for a fully coupled Riemann–Stieltjes, integro-multipoint, boundary
value problem of Caputo-type sequential FDEs was studied using a known FPT. In [26],
some theoretical existence results on novel combined configurations of a Caputo sequen-
tial inclusion problem and the hybrid integro-differential in which the BCs appear were
established. In [27], existence and uniqueness results were established for a nonlinear se-
quential Hadamard FDE with multi-point BCs using known FPT. In [28], the existence and
uniqueness of solutions for sequential Caputo FDE equipped with integro multipoint BCs
were obtained. In their study, nonlinearity depends on the unknown function as well as its
lower order FDs. In [29], the existence of solutions for sequential FD inclusions containing
Riemann-–Liouville and Caputo-type derivatives and supplemented with generalized
fractional integral BCs were studied using a combination of different tools. The authors
in [30] investigated the existence of solutions for boundary value problems of Caputo-type
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sequential FDEs and inclusions supplemented with nonlocal integro-multipoint BCs using
tools from functional analysis. One can see [31] for some nice results on a coupled two-
parameter system of sequential fractional integro-differential equations supplemented with
nonlocal integro-multipoint BCs; see also [32].

Inspired by the above FPT and cited works, we consider the FBCs for SC-HFDE of
the form

CDν(HDν1 x)(η) = g(η, x(η)), η ∈ J := [a, b], 1 < ν, ν1 < 2 (1)

x(a) = 0, κ HDδ1 x(b) + (1 − κ) HDδ2 x(b) = δ3, δ3 ∈ R (2)

where CDν is the Caputo FD of orders ν, HDν1 is the Hadamard FD of orders ν1, HDδ1 is the
Hadamard FD of orders δ1,the HDδ2 is the Hadamard FD of orders δ2. 0 < δ1, δ2 < ν − ν1,
0 ≤ κ ≤ 1 is some constant and a continuous function g : J ×R → R.

We use the following assumptions to prove the results of SC-HFDE involving FDs.

(A1) The function g : J = [a, b]×R → R is continuous.
(A2) There exists nondecreasing functions φg(t) ∈ C([a, b],R+):

|g(t, x)| ≤ φg(t), for any x ∈ R

(A3) There exists the function ψg(t) ∈ C([a, b],R+):

|g(t, x)− g(t, x1)| ≤ ψg(t)|x − x1|, for any x, x1 ∈ R

The most important definitions of the problem (1)–(2) and lemma are stated
in [2,3,10,23].

Our contributions are as follows:

1. Generalizing the results obtained in [33], in particular in the BCs.
2. Generalizing the outcomes in [34] in the sense of the BCs and in the used techniques.

The rest of the article is organized as follows. The next section contains some auxiliary
results, Section 3 is devoted to the main contribution, Section 4 is for various applications,
and in Section 5 we conclude the work.

2. Auxiliary Results

Definition 1 ([1–3]). For at least n-times differentiable function g : [a, ∞) → R, the Caputo’s FD
(with order ν) is defined by

(CDν
0)g(t) =

1
Γ(n − ν)

∫ t

0
(t − s)n−ν−1g(n)(s)ds, for n − 1 < ν < n,

where n = [ν] + 1 and [ν] denotes the integer part of the real number ν.

Definition 2 ([1–3]). The Riemann–Liouville fractional integral (of order ν) for a function g :
[a, ∞) → R is defined as follows

(RLIν)g(t) =
1

Γ(ν)

∫ t

a

g(s)
(t − s)1−ν

ds, for ν > 0,

provided the integral exists.

Definition 3 ([1–3]). The Hadamard fractional integral of order ν is defined by

(H Jν)g(t) =
1

Γ(ν)

∫ t

b

(
log

t
s

)ν−1 g(s)
s

ds, ν > 0.

provided the integral exists.
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Definition 4 ([1–3]). The Caputo-type Hadamard FD is defined as

HDνg(t) =
1

Γ(n − ν)

∫ t

a

(
log

t
s

)n−ν−1
δn g(s)

s
ds, n − 1 < ν < n, n = [ν] + 1,

where g : [a, ∞) → R is an n-times differentiable function and δn =
(

t d
dt

)n
.

Lemma 1. The general solution of cDνx(ρ) = 0 (with ν > 0) is

x(ρ) = c0 + c1ρ + . . . + cn−1(ρ − a)n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [ν] + 1).

In view of Lemma 1, it follows that

Iν CDνx(ρ) = x(ρ) + c0 + c1(ρ − a) + . . . + cn−1(ρ − a)n−1, (3)

for i = 0, 1, 2, . . . , n − 1 (n = [ν] + 1) and some ci ∈ R.

Lemma 2. The FBCs

CDν(HDν1 x)(η) = w(η), η ∈ J := [a, b], 1 < ν, ν1 ≤ 2 (4)

κ HDδ1 x(b) + (1 − κ) HDδ2 x(b) = δ3, x(a) = 0 (5)

is equivalent to

x(η) =H Iν1(RL Iνw)(η) +
log( η

a )
ν1

λ1Γ(ν1 + 1)

(
δ3 − κ H Iν1(RL Iν−δ1 w)(b)

− (1 − κ) H Iν1(RL Iν−δ2 w)(b)
)

, η ∈ J := [a, b],
(6)

where

λ1 =
κ log( b

a )
1−δ1

Γ(2 − δ1)
+

(1 − κ) log( b
a )

1−δ2

Γ(2 − δ2)
�= 0 (7)

Proof. Taking the Riemann–Liouville fractional integral (of order q) and Hadamard frac-
tional integral (of order q1) in Equation (4), we obtain

x(η) =H Iν1(RL Iνw)(η) + c1 + c2
log( η

a )
ν1

Γ(ν1 + 1)
(8)

The first boundary condition of (5) ⇒ c1 = 0 and second boundary condition of (5) in the
above, Equation (8), we obtain

δ3 = κH Iν1(RL Iνw)(b) + c2κ
log( b

a )
1−δ1

Γ(2 − δ1)
+ (1 − κ)H Iν1(RL Iνw)(b) + c2(1 − κ)

log( b
a )

1−δ2

Γ(2 − δ2)
(9)

c2 =
1

λ1

(
δ3 − κ H Iν1(RL Iν−δ1 w)(b)− (1 − κ) H Iν1(RL Iν−δ2 w)(b)

)
(10)

Substituting constant c2 in (8), we obtain the integral Equation (6). The proof is com-
pleted.

Theorem 1 ([35] (Krasnoselskii’s FPT)). Suppose a Banach space X, select a closed, bounded,
and convex set ∅ �= B ⊂ X. Let A1 and A2 be two operators: (i) A1x + A2y ∈ B whenever
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x,y ∈ B; (ii) A1 is compact and continuous; (iii) A2 is a contraction mapping. Therefore, ∃ z ∈ B:
z = A1z + A2z.

3. Main Results

We start by defining ζ = C([a, b],R+) : [a, b] → R as the Banach space of all functions
(continuous ) with the norm ||x|| = sup{|x(t)|, t ∈ [a, b]}. Now, define the operator
Φ : C([a, b],R) → C([a, b],R) by

Φx(t) =H Iν1(RL Iν(gx))(t) +
log( t

a )
ν1

λ1Γ(ν1 + 1)

(
δ3 − κ H Iν1(RL Iν−δ1(gx))(b)

− (1 − κ) H Iν1(RL Iν−δ2(gx))(b)
)

, t ∈ J := [a, b],
(11)

where gx(t) = g(t, x(t)) and set abbreviate notation

H Iν1(RL Iν(gx))(t) =
1

Γ(ν1)Γ(ν)

∫ t

a

∫ s

a
(log

t
s
)ν1(s − σ)ν−1g(σ, x(σ))dσ

ds
s

FPT play an essential role in many interesting recent results, see, e.g., [36–38].

3.1. Uniqueness Via Contraction Mapping Principle

Theorem 2. Assume that (A1), (A3) are holds. If λ2ψ∗
g < 1, where

ψ∗
g = sup{ψg(t) : t ∈ [a, b]}

λ2 = H Iν1 (RL Iν(1))(b) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (1))(b)− (|1 − κ|) H Iν1 (RL Iν−δ2 (1))(b)

)
,

then the fractional problem (1) and (2) has a unique solution on J.

Proof. Let Br = {x ∈ C : ‖x‖ ≤ r} be a convex and closed bounded subset of C, where the
fixed constant r satisfies

r ≥ pλ2

1 − ψ∗
gλ2

(12)

where p = sup{g(t, 0) : t ∈ [a, b]}. Next, we prove that ΦBr ⊂ Br and by using the triangle
inequality |gx| ≤ |gx − g0|+ |g0|, we have

|Φx(t)| ≤ H Iν1 (RL Iν(|gx |))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (|gx |))(b)

− (|1 − κ|) H Iν1 (RL Iν−δ2 (|gx |))(b)
)

,

|Φx(t)| ≤ H Iν1 (RL Iν(|gx − g0|+ |g0|))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (|gx − g0|+ |g0|))(b)− (|1 − κ|) H Iν1 (RL Iν−δ2 (|gx − g0|+ |g0|))(b)

)
,

≤ H Iν1 (RL Iν(ψ∗
g + p))(t) +

| log( t
a )

ν1 |
|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (ψ∗

g + p))(b)

− (|1 − κ|) H Iν1 (RL Iν−δ2 (ψ∗
g + p))(b)

)
,

= ψ∗
grλ2 + pλ2

≤ r

Therefore, ΦBr ⊂ Br. Let x1, x2 ∈ Br, we have
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|Φx1(t)− Φx2(t)| ≤ H Iν1 (RL Iν(|gx1 − gx2 |))(t) +
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 (RL Iν−δ1 (|gx1 − gx2 |))(b)

− (|1 − κ|) H Iν1 (RL Iν−δ2 (|gx1 − gx2 |))(b)
)

,

≤ ψ∗
g ||x1 − x2||H Iν1 (RL Iν(1))(t) +

| log( t
a )

ν1 |
|λ1|Γ(ν1 + 1)

(
|δ3| − |κ|ψ∗

g ||x1 − x2||H Iν1 (RL Iν−δ1 (1))(b)

− (|1 − κ|)ψ∗
g ||x1 − x2||H Iν1 (RL Iν−δ2 (1))(b)

)
,

= ψ∗
gλ2||x1 − x2||,

⇒ |Φx1(t) − Φx2(t)| ≤ ψ∗
gλ2||x1 − x2||. Since ψ∗

gλ4 < 1, then the operator Φ is a
contraction. Now, the operator Φ has unique FP, which implies that problem (1)–(2) has a
unique solution on J = [a, b].

3.2. Existence via Krasnoselkii’s Theorem

Theorem 3. Suppose (A1), (A2) are satisfied. If

ψ∗
g

[
H Iν1(RL Iν(1))(b)

]
< 1, (13)

then the BVP’s (1) and (2) has at least one solution on [a, b].

Proof. Let Bσ = {x ∈ C([a, b],R) : ||x|| ≤ σ} where a constant σ satisfies σ ≥ φ∗
gλ2 and

φ∗
g = sup{φg(t) : t ∈ [a, b]}. Divide the operator Φ into the two operators Φ1 and Φ2 on

Bσ with

Φ1x(t) =
log( t

a )
ν1

λ1Γ(ν1 + 1)

(
δ3 − κ H Iν1(RL Iν−δ1(gx))(b)− (1 − κ) H Iν1(RL Iν−δ2(gx))(b)

)
,

and
Φ2x(t) = H Iν1(RL Iν(gx))(t).

The ball Bσ is a bounded, closed and convex subset of the Banach space C([a, b],R). Now,
show that Φ1x + Φ2y ∈ Bσ. Let x, y ∈ Bσ; then, we have

|Φ1x(t) + Φ2y(t)| ≤ | log( t
a )

ν1 |
|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1(RL Iν−δ1(|gx|))(b)

− (|1 − κ|) H Iν1(RL Iν−δ2(|gx|))(b)
)
+ H Iν1(RL Iν(|gy|))(t)

≤ | log( t
a )

ν1 |
|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1 φ∗

g(
RL Iν−δ1(1))(b)

− (|1 − κ|) H Iν1 φ∗
g(

RL Iν−δ2(1))(b)
)
+ H Iν1 Ψ∗(RL Iν(1))(t)

= φ∗
gλ2

≤ σ,

which implies that Φ1x + Φ2y ∈ Bσ. Next, to prove that Φ2 is a contraction mapping, for
x, y ∈ Bσ, we have

||Φ2x − Φ2y|| ≤ H Iν1(RL Iν(|gx − gy|))(b)
≤ ψ∗

g
H Iν1(RL Iν(1))(b)||x − y||,

by (A3), which is a contraction by (13).
Next, we show that the operator Φ1 is continuous and compact. By using the continuity

of g on [a, b]×R, we can conclude that Φ1 is continuous. For x ∈ Bσ,

||Φ1x|| ≤ φ∗
gλ3,
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where

λ3 =
| log( t

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1(RL Iν−δ1(1))(b)− (|1 − κ|) H Iν1(RL Iν−δ2(1))(b)

)
.

This implies that Φ1Bσ is uniformly bounded. Now, we prove that Φ1Bσ is equicontinuous.
For t1, t2 ∈ [a, b]: t1 < t2 and for x ∈ Bσ, we have

|Φ1x(t1)− Φ1x(t2)| ≤
| log( t2

a )
ν1 − log( t1

a )
ν1 |

|λ1|Γ(ν1 + 1)

(
|δ3| − |κ| H Iν1(RL Iν−δ1(|gx|))(b)

− (|1 − κ|) H Iν1(RL Iν−δ2(|gx|))(b)
)

≤ φ∗
gλ3| log(

t2

a
)ν1 − log(

t1

a
)ν1 |.

It is obvious that the above expression is independent of x and also tends to zero as t1 → t2.
Therefore Φ1Bσ is equicontinuous. Hence Φ1Bσ is relatively compact. Now, by applying
the Arzela–Ascoli theorem (see, e.g., [39]), the operator Φ1 is compact on Bσ. Thus, Φ1 and
Φ2 satisfy the assumptions of Theorem 1. By the conclusion of Theorem 1, we confirm that
the problem (1) and (2) has at least one solution on [a, b].

4. Example

We consider an example to verify the main results as follows.

Example 1. Suppose the FBCs for SC-HFDEs

CD
3
2 (HDν1 x)(η) = g(η, x(η)), η ∈ (

1
2

,
5
2
), (14)

x(
1
2
) = 0,

1
8

HD
5
2 x(

5
2
) +

7
8

HD
1
4 x(

5
2
) =

9
2

, . (15)

where ν = 3
2 , ν1 = 4

3 , a = 1
2 , b = 5

2 , δ1 = 1
2 , δ2 = 1

4 , δ3 = 3
4 and κ = 1

8 , λ1 = 1.005489449,
H I

4
3 (RL I

3
2 (1))( 5

2 ) = 0.039718, H I
4
3 (RL I1(1))( 5

2 ) = 0.1055989, H I
4
3 (RL I

5
4 (1))( 5

2 ) = 0.0821249,
(log 5)

4
3

λ1Γ( 7
3 )

= 0.519833119, and let g : ( 1
2 , 5

2 )×R → R with

g(η, x(η)) =
cos2η

4[(η − 1
2 ) + 3]

(
x2 + |x|

|x| ) +
1
7

gives, |g(η, x(η))− g(η, y(η))| ≤ ψ∗
g |x − y| and ψ∗

g = 1
3 . Thus, ψ∗

gλ4 = 0.782827602 < 1.
Hence, by Theorem 2, problem (14) and (15) with g(η, x(η)) has a unique solution on ( 1

2 , 5
2 ).

This illustrates our results.

5. Conclusions

We investigated the existence and uniqueness results for fractional boundary value
problems of SC-HFDE. Potential future works could be to develop new fractional models for
Corona Virus, and to find controlled corona-virus conditions using a numerical approach
with fractional order. Moreover, we intend to investigate our results based on other FD,
such as, e.g., Abu-Shady–Kaabar FD, Katugampola derivative, and conformable derivative.
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Abstract: In this paper, we study the initial boundary value problem for a fractional viscoelastic
equation of the Kirchhoff type. In suitable functional spaces, we define a potential well. In the
framework of the potential well theory, we obtain the global existence of solutions by using the
Galerkin approximations. Moreover, we derive the asymptotic behavior of solutions by means of
the perturbed energy method. Our main results provide sufficient conditions for the qualitative
properties of solutions in time.
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1. Introduction

In this paper, we study the following initial boundary value problem for a fractional
viscoelastic equation of the Kirchhoff type:

utt + h([u]2m)(−Δ)mu −
∫ t

0
g(t − τ)(−Δ)mu(τ)dτ

+ ut = f (u), x ∈ Ω, t > 0,
(1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (2)

u(x, t) = 0, x ∈ RN\Ω, t > 0, (3)

where

[u]m =

(∫∫
R2N

|u(x, t)− u(y, t)|2
|x − y|N+2m dxdy

) 1
2

is the Gagliardo seminorm, (−Δ)m is the fractional Laplace operator with 0 < m < 1, and
Ω ⊂ RN (N ≥ 1) is a bounded domain with a Lipschitz boundary. The unknown function
u = u(x, t) is the vertical displacement of the small-amplitude vibrating viscoelastic string

with the fractional length at position x and time t, −
∫ t

0
g(t − τ)(−Δ)mu(τ)dτ is the

viscoelastic term, ut is the weak damping term, the Kirchhoff function h(s) = 1 + sp−1 for
all s ≥ 0, p > 1, and the source term f (u) = |u|q−2u. The exponent q and the memory
kernel g will be specified later.

For the classical viscoelastic wave equation of the Kirchhoff type, Wu and Tsai [1]
studied the following equation:

utt − h(‖∇u‖2
2)Δu +

∫ t

0
g(t − τ)Δu(τ)dτ − Δut = f (u).

They obtained the local existence, global existence, asymptotic behavior, and blow-up
of solutions and provided the estimates on the decay rate of the energy function and the
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blow-up time of the solutions. Moreover, in [2], they considered the following viscoelastic
wave equation of the Kirchhoff type with nonlinear weak damping:

utt − h(‖∇u‖2
2)Δu +

∫ t

0
g(t − τ)Δu(τ)dτ + f2(ut) = f1(u).

They obtained the local existence and blow-up of solutions and also derived the
estimates of the blow-up times of the solutions.

When we examine the deep properties of real-world problems and extend them to
other studies, some concepts usually have their own limitations. In this regard, many
researchers pointed out the limitations of integer-order calculus while studying the systems
related to non-Markovian mechanisms, hereditary properties, and other factors. In this
situation, fractional calculus plays an important role, which is a generalization of classical
calculus (see [3]). In recent years, fractional partial differential equations have attracted a
great deal of attention due to their wide applicability in continuum mechanics, quantum
and statistical mechanics, population dynamics, optimal control, game theory, and so on
(see, for instance, [3–11] and the references therein). Fiscella and Valdinoci [12] proposed
a fractional stationary Kirchhoff equation which models the vibration of a string with a
fractional length by considering the nonlocal aspect of the tension. Subsequently, many
fractional Kirchhoff equations were widely studied. Autuori et al. [13] investigated

−h([u]2m)LKu = λ f (x, u) + |u|q∗−2u,

where LK is a fractional integro-differential operator, λ is a parameter, and q∗ is the crit-
ical exponent of the fractional Sobolev space Hm(RN). They proved the existence and
asymptotic behavior of nonnegative solutions. Molica Bisci and Vilasi [14] dealt with

−h([u]2m)LKu = λ f (x, u) + μg(x, u),

and derived the existence of at least three weak solutions for suitable values of the parame-
ters by the variational approach. Moreover, they provided a concrete estimate for the range
of these parameters in the autonomous case. Pucci et al. [15] investigated

h([u]pm,p)(−Δ)m
p u + V(x)|u|p−2u = λω(x)|u|q−2u − ν(x)|u|r−2u,

where (−Δ)m
p is the fractional p-Laplace operator, which may be defined along any

ϕ ∈ C∞
0 (RN) as

(−Δ)m
p ϕ(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))
|x − y|N+mp dy

for x ∈ RN and

[u]m,p =

(∫∫
R2N

|u(x)− u(y)|p
|x − y|N+mp dxdy

) 1
p
.

By using the variational approach and topological degree theory, they proved the mul-
tiplicity results depending on the parameter λ and under the suitable general integrability
properties of the ratio between some powers of the weights. Moreover, they obtained the
existence of infinitely many pairs of entire solutions by genus theory. Wang et al. [16]
studied the following fractional Kirchhoff equation involving Choquard nonlinearity and
singular nonlinearity:

(a + b([u](θ−1)p
m,p ))(−Δ)m

p u = λ
f1(x)
|u|β +

(∫
RN

f2(y)|u(y)|q
|x − y|μ dy

)
f2(x)uq−1,

where a, b, θ, λ, β, and μ are constants that meet certain conditions. They obtained the
existence and multiplicity of nonnegative solutions by using the Nehari manifold ap-
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proach combined with the Hardy–Littlehood–Sobolev inequality. Recently, Lin et al. [17]
considered the fractional evolution Kirchhoff equation of the form

utt + [u]2(θ−1)
m (−Δ)mu = f (u),

and obtained the finite time blow-up of solutions with arbitrary positive initial energy by
the concavity arguments.

Continuum mechanics attempts to describe the motions and equilibrium states of
deformable bodies. Two types of materials are usually considered in basic texts on contin-
uum mechanics: elastic materials and viscous fluids. At each material point of an elastic
material, the stress at the present time depends only on the present value of the strain. On
the other hand, for an incompressible viscous fluid, the stress at a given point is a function
of the present value of the velocity gradient at that point (plus an undetermined pressure).
Viscoelastic materials have properties between those of elastic materials and viscous fluids.
Such materials have memory, where the stress depends not only on the present values of
the strain or velocity gradient but also on the entire temporal history of motion (see [18]).
Therefore, the research on the vibration of the viscoelastic string with a fractional length
has important physical significance and scientific value. More recently, Xiang and Hu [19]
investigated the following fractional viscoelastic equation of the Kirchhoff type:

utt + h([u]2m)(−Δ)mu −
∫ t

0
g(t − τ)(−Δ)mu(τ)dτ + (−Δ)sut = λ|u|q−2u.

They proved the local and global existence of solutions by the Galerkin approximations
and obtained the blow-up of solutions by the concavity arguments. However, to the best of
our knowledge, much less effort has been devoted to similar studies.

Motivated by the above works, we would like to deal with the problems in Equa-
tions (1)–(3). In suitable functional spaces, we aim to study the global existence and
asymptotic behavior of solutions in time. First of all, compared with [19], Equation (1) is
non-degenerate due to the expression of the Kirchhoff function. Secondly, although we
also evaluate the evolutional properties of solutions, we concentrate on the relationship
between the initial data and them. In addition, our main method is the potential well theory
that is different from classical ones. In the framework of our potential well theory, it is not
necessary to introduce the Nehari functional or the Nehari manifold.

This paper is organized as follows. Section 1 is the introduction. In Section 2, we
prepare the preliminary knowledge on the functional space. Applying the idea from [20], we
define a potential well and provide its properties. Moreover, we display assumptions and
notations corresponding to the problems in Equations (1)–(3). In Section 3, we introduce our
main method in detail. In Section 4, we prove the global existence of solutions. Section 5 is
devoted to the proof of the asymptotic behavior of the solutions by means of the perturbed
energy method [21,22]. In Section 6, we summarize our main results.

2. Preliminaries

In this section, we first recall some necessary definitions and properties (see [23–25]
for further details).

Let X be the linear space of Lebesgue measurable functions from RN to R such that
the restriction to Ω of any function u in X belongs to L2(Ω) and

∫∫
Q

|u(x)− u(y)|2
|x − y|N+2m dxdy < ∞,

where Q := R2N\(CΩ × CΩ) and CΩ := RN\Ω. The space X is endowed with

‖u‖X = ‖u‖L2(Ω) +

(∫∫
Q

|u(x)− u(y)|2
|x − y|N+2m dxdy

) 1
2

.
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It is easy to check that ‖ · ‖X is a norm on X. Moreover, we introduce the following
closed linear subspace of X:

X0 = {u ∈ X|u = 0 a.e. in CΩ}.

This is a Hilbert space equipped with the inner product

(u, v)∗ := (u, v)X0 =
∫∫

Q

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2m dxdy

and the norm

‖u‖∗ := ‖u‖X0 =

(∫∫
Q

|u(x)− u(y)|2
|x − y|N+2m dxdy

) 1
2

.

Here, ‖u‖∗ is equivalent to ‖u‖X .
The embedding X0 ↪→ Lq(Ω) is continuous for any 1 ≤ q ≤ q∗ and compact for any

1 ≤ q < q∗, where

q∗ =

⎧⎨⎩
2N

N − 2m
if 2m < N,

∞ if 2m ≥ N.

In this paper, the exponent q of the source term satisfies the following assumption:

(A1) 2 < q < q∗.

Moreover, as in [26], the memory kernel g satisfies

(A2) g ∈ C1(R+) ∩ L1(R+), g(t) ≥ 0, g′(t) ≤ 0 for all t ∈ [0, ∞), and

κ := 1 −
∫ ∞

0
g(t)dt > 0.

For the sake of simplicity, we denote

‖ · ‖p := ‖ · ‖Lp(Ω), (u, v) :=
∫

Ω
uv dx,

and

(g ◦ u)(t) :=
∫ t

0
g(t − τ)‖u(t)− u(τ)‖2

∗ dτ.

Definition 1. A function u ∈ L∞(0, T; X0) with ut ∈ L∞(0, T; L2(Ω)) is called a weak solution
to Equations (1)–(3) if u(0) = u0 in X0, ut(0) = u1 in L2(Ω), and

(ut(t), w) +
∫ t

0
h(‖u(τ)‖2

∗)(u(τ), w)∗ dτ −
∫ t

0

∫ s

0
g(s − τ)(u(τ), w)∗ dτds

+ (u(t), w) = (u1, w) + (u0, w) +
∫ t

0
( f (u(τ)), w)dτ

for any w ∈ X0 and t ∈ (0, T].

We define the total energy function associated with the problems in Equations (1)–(3)
as follows:

E(t) =
1
2
‖ut(t)‖2

2 +
1

2p
‖u(t)‖2p

∗ +
1
2

(
1 −

∫ t

0
g(τ)dτ

)
‖u(t)‖2

∗

+
1
2
(g ◦ u)(t)− 1

q
‖u(t)‖q

q.
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The potential well is

W =

{
u ∈ X0

∣∣∣∣∣‖u‖∗ <

(
2q

(q − 2)κ
d
) 1

2
}

(4)

and its boundary is

∂W =

{
u ∈ X0

∣∣∣∣∣‖u‖∗ =

(
2q

(q − 2)κ
d
) 1

2
}

, (5)

where the depth of the potential well is

d =
q − 2

2q
κ

q
q−2 C

− 2q
q−2

1 . (6)

In addition, C1 is the best Sobolev constant for the embedding X0 ↪→ Lq(Ω); in other
words, we have

C1 = sup
u∈X0\{0}

‖u‖q

‖u‖∗
.

Lemma 1. Let (A1) and (A2) be fulfilled. Then, the following are true:

(i) If u ∈ W and ‖u‖∗ �= 0, then κ‖u‖2
∗ > ‖u‖q

q;
(ii) If u ∈ ∂W , then κ‖u‖2

∗ ≥ ‖u‖q
q.

Proof. (i) By u ∈ W and Equation (4), we have

‖u‖∗ <

(
2q

(q − 2)κ
d
) 1

2
.

It follows from Equation (6) that

‖u‖∗ < κ
1

q−2 C
− q

q−2
1 .

Noting that ‖u‖∗ �= 0, we have

κ‖u‖2
∗ > C

q
1‖u‖q

∗.

Hence, we obtain
κ‖u‖2

∗ > ‖u‖q
q.

(ii) By u ∈ ∂W and Equation (5), we find

‖u‖∗ =

(
2q

(q − 2)κ
d
) 1

2
.

By the similar arguments in the proof of (i), it is easy to see that κ‖u‖2
∗ ≥ ‖u‖q

q.

The main results of this paper are proven in Sections 4 and 5.

3. Methods

The potential well was first proposed by Sattinger [27] in order to study the global
existence of solutions to a nonlinear hyperbolic equation. Subsequently, it was widely
employed to analyze the qualitative properties of the solutions to evolution equations
(see, for example, [18,28–39] and the references therein), and it has now developed into a
theoretical system.
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In general, by the energy functional J(u) and the Nehari functional I(u), the classical
potential well can usually be defined by

W = {u|J(u) < d, I(u) > 0} ∪ {0}.

The critical points of J(u) are stationary solutions of the problem under consideration.
Under appropriate assumptions, J(u) satisfies the Palais–Smale condition, and the problem
under consideration admits at least a positive stationary solution whose energy d, namely
the depth of the potential well, can be defined by

d = inf
u∈N

J(u),

where the Nehari manifold is

N = {u|I(u) = 0} \ {0}.

In the present paper, we describe the potential well as a sphere (see Equation (4)) whose
radius is expressed by d (see Equation (6)). Thus, the spatial structure of the potential well
is clearer, and it is not necessary to introduce I(u) and N . As for the original definition and
calculation process of d, we refer interested readers to [20].

4. Global Existence of Solutions

Theorem 1. Let (A1) and (A2) be fulfilled. Assume that u0 ∈ W , u1 ∈ L2(Ω), and E(0) < d.
Then, Equations (1)–(3) admit a global solution u(t) ∈ W := W ∪ ∂W for all t ∈ (0, ∞).

Proof. Let {ωj}∞
j=1 be an orthogonal basis of X0 and an orthonormal basis of L2(Ω) given

by the eigenfunctions of (−Δ)m with the boundary condition in Equation (3) (see [24]
(Proposition 9) for details). Denote Wn = Span{ω1, ω2, · · · , ωn}, n = 1, 2, · · · . We seek the
approximate solutions to Equations (1)–(3), given by

un(t) =
n

∑
j=1

ξ jn(t)ωj, n = 1, 2, · · · , (7)

which satisfy

(untt(t), w) + h(‖un(t)‖2
∗)(un(t), w)∗ −

∫ t

0
g(t − τ)(un(τ), w)∗ dτ

+ (unt(t), w) = ( f (un(t)), w), t > 0,
(8)

un(0) =
n

∑
j=1

ξ jn(0)ωj → u0 in X0, (9)

unt(0) =
n

∑
j=1

ξ ′
jn(0)ωj → u1 in L2(Ω), (10)

for any w ∈ Wn. Let ξn(t) = (ξ1n(t), ξ2n(t), · · · , ξnn(t))T . Then, the vector function ξn
solves

ξ ′′
n(t) + ξ ′

n(t) + Ln(t, ξn(t)) = Fn(ξn(t)), t > 0, (11)

ξn(0) = ((u0, ω1), (u0, ω2), · · · , (u0, ωn))
T , (12)

ξ ′
n(0) = ((u1, ω1), (u1, ω2), · · · , (u1, ωn))

T , (13)

where
Ln(t, ξn(t)) = (L1n(t, ξn(t)), L2n(t, ξn(t)), · · · , Lnn(t, ξn(t)))T ,
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Lin(t, ξn(t)) =h

⎛⎝∥∥∥∥∥ n

∑
j=1

ξ jn(t)ωj

∥∥∥∥∥
2

∗

⎞⎠( n

∑
j=1

ξ jn(t)ωj, ωi

)
∗

−
∫ t

0
g(t − τ)

(
n

∑
j=1

ξ jn(τ)ωj, ωi

)
∗

dτ,

Fn(ξn(t)) = (F1n(ξn(t)), F2n(ξn(t)), · · · , Fnn(ξn(t)))T ,

Fin(ξn(t)) =

(
f

(
n

∑
j=1

ξ jn(t)ωj

)
, ωi

)
.

In terms of standard theory for ODEs, the Cauchy problem in Equations (11)–(13)
admits a solution ξn ∈ C2[0, Tn) with Tn ≤ T. In turn, this gives a solution un(t) defined
by Equation (7) and satisfying Equations (8)–(10). The following estimates will allow us to
extend the local solution to [0, T] for any T > 0.

By using w = unt(t) in Equation (8), we obtain

d
dt

(
1
2
‖unt(t)‖2

2 +
1
2
‖un(t)‖2

∗ +
1

2p
‖un(t)‖2p

∗

)
−
∫ t

0
g(t − τ)(un(τ), unt(t))∗ dτ

+ ‖unt(t)‖2
2 =

1
q

d
dt

‖un(t)‖q
q.

(14)

Note that∫ t

0
g(t − τ)(un(τ), unt(t))∗ dτ

=
∫ t

0
g(t − τ)(un(τ)− un(t), unt(t))∗ dτ +

∫ t

0
g(t − τ)(un(t), unt(t))∗ dτ

=− 1
2

∫ t

0
g(t − τ)

d
dt

‖un(τ)− un(t)‖2
∗ dτ +

1
2

∫ t

0
g(t − τ)

d
dt

‖un(t)‖2
∗ dτ

=− 1
2

d
dt

(
(g ◦ un)(t)−

∫ t

0
g(τ)dτ‖un(t)‖2

∗

)
+

1
2
(g′ ◦ un)(t)−

1
2

g(t)‖un(t)‖2
∗.

By substituting this equality into Equation (14) and integrating it with respect to t, we
deduce that

En(t) +
∫ t

0

(
‖unτ(τ)‖2

2 − 1
2
(g′ ◦ un)(τ) +

1
2

g(τ)‖un(τ)‖2
∗

)
dτ = En(0) (15)

for all t ∈ [0, T], where

En(t) =
1
2
‖unt(t)‖2

2 +
1

2p
‖un(t)‖2p

∗ +
1
2

(
1 −

∫ t

0
g(τ)dτ

)
‖un(t)‖2

∗

+
1
2
(g ◦ un)(t)−

1
q
‖un(t)‖q

q.
(16)

In light of Equations (9) and (10), we infer that En(0) < d and un(0) ∈ W for a
sufficiently large n. We now claim that

un(t) ∈ W (17)

for all t ∈ [0, T] and a sufficiently large n. Suppose that un(t) /∈ W for some 0 < t < T.
Then, there exists a time 0 < t0 < T such that un(t0) ∈ ∂W and un(t) ∈ W for all t ∈ [0, t0).
Hence, we obtain

‖un(t0)‖∗ =

(
2q

(q − 2)κ
d
) 1

2
.

51



Fractal Fract. 2022, 6, 581

Through Equation (16) and (ii) in Lemma 1, we obtain

En(t0) ≥
1
2

κ‖un(t0)‖2
∗ −

1
q
‖un(t0)‖q

q

=
q − 2

2q
κ‖un(t0)‖2

∗ +
1
q

(
κ‖un(t0)‖2

∗ − ‖un(t0)‖q
q

)
≥ q − 2

2q
κ‖un(t0)‖2

∗

=d,

which contradicts En(0) < d according to Equation (15).
From Equation (16), the assertion in Equation (17), and (i) in Lemma 1, it follows that

En(t) ≥
1
2
‖unt(t)‖2

2 +
1
2

κ‖un(t)‖2
∗ −

1
q
‖un(t)‖q

q

=
1
2
‖unt(t)‖2

2 +
q − 2

2q
κ‖un(t)‖2

∗ +
1
q

(
κ‖un(t)‖2

∗ − ‖un(t)‖q
q

)
(18)

≥1
2
‖unt(t)‖2

2 +
q − 2

2q
κ‖un(t)‖2

∗,

which, together with Equation (15), gives

1
2
‖unt(t)‖2

2 +
q − 2

2q
κ‖un(t)‖2

∗ < d

for all t ∈ [0, T]. Thus, for all t ∈ [0, T], we find

‖unt(t)‖2
2 < 2d

and
‖un(t)‖2

∗ <
2q

(q − 2)κ
d. (19)

Furthermore, we deduce from Equation (19) that

‖ f (un(t))‖r
r = ‖un(t)‖q

q ≤ C
q
1‖un(t)‖q

∗ < C
q
1

(
2q

(q − 2)κ
d
) q

2

for all t ∈ [0, T], where r =
q

q − 1
.

The above estimates mean the following:

{un} is bounded in L∞(0, T; X0),

{unt} is bounded in L∞(0, T; L2(Ω)),

{ f (un)} is bounded in L∞(0, T; Lr(Ω)).

Therefore, there exist u, χ, and a subsequence of {un}, still denoted by {un}, such that
as n → ∞, the following are true:

un ⇀ u weakly star in L∞(0, T; X0), (20)

unt ⇀ ut weakly star in L∞(0, T; L2(Ω)), (21)

f (un) ⇀ χ weakly star in L∞(0, T; Lr(Ω)).
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Thus, we have the following:

un → u in L2(0, T; L2(Ω)) and a.e. in Ω × [0, T].

In terms of [32] (Chapter 1, Lemma 1.3), we have χ = f (u).
Integrating Equation (8) with respect to t yields

(unt(t), w) +
∫ t

0
h(‖un(τ)‖2

∗)(un(τ), w)∗ dτ −
∫ t

0

∫ s

0
g(s − τ)(un(τ), w)∗ dτds

+ (un(t), w) = (unt(0), w) + (un(0), w) +
∫ t

0
( f (un(τ)), w)dτ.

Using n → ∞, we further obtain

(ut(t), w) +
∫ t

0
h(‖u(τ)‖2

∗)(u(τ), w)∗ dτ −
∫ t

0

∫ s

0
g(s − τ)(u(τ), w)∗ dτds

+ (u(t), w) = (u1, w) + (u0, w) +
∫ t

0
( f (u(τ)), w)dτ.

By virtue of Equations (9) and (10), we have u(0) = u0 in X0 and ut(0) = u1 in L2(Ω).
Therefore, u is a global solution to Equations (1)–(3). In addition, from Equation (20),
we have

‖u(t)‖∗ ≤ lim inf
n→∞

‖un(t)‖∗,

which, together with Equation (19), tells us that

‖u(t)‖∗ ≤
(

2q
(q − 2)κ

d
) 1

2
.

In other words, u(t) ∈ W for all t ∈ (0, ∞).

5. Asymptotic Behavior of the Solutions

Theorem 2. In addition to all the assumptions of Theorem 1, suppose that there exists a constant
ρ > 0 such that g′(t) ≤ −ρg(t) for all t ∈ [0, ∞). Then, we have

‖u(t)‖2
∗ + ‖ut(t)‖2

2 ≤ αe−βt, ∀t ∈ [0, ∞),

for some constants α, β > 0.

Proof. For the approximate solutions given in the proof of Theorem 1, we construct

L(t) = En(t) + εΨ(t), ∀t ∈ [0, ∞), (22)

where Ψ(t) = (un(t), unt(t)) and ε > 0 is a constant to be determined later.
We now claim that there exist two constants γi > 0 (i = 1, 2), depending on ε, such that

γ1En(t) ≤ L(t) ≤ γ2En(t), ∀t ∈ [0, ∞). (23)

Indeed, by virtue of Cauchy’s inequality, we find

|Ψ(t)| ≤ 1
2
‖un(t)‖2

2 +
1
2
‖unt(t)‖2

2,

and thus

|Ψ(t)| ≤ C2
2

2
‖un(t)‖2

∗ +
1
2
‖unt(t)‖2

2, (24)

53



Fractal Fract. 2022, 6, 581

where C2 is the best Sobolev constant for the embedding X0 ↪→ L2(Ω). By combining
Equations (24) and (18), we obtain |Ψ(t)| ≤ C1En(t) for some constant C1 > 0 independent
of n which, together with Equation (22), yields that the assertion in Equation (23) holds.

It can be said that

E′
n(t) =

1
2
(g′ ◦ un)(t)−

1
2

g(t)‖un(t)‖2
∗ − ‖unt(t)‖2

2.

Then, a direct calculation gives

L′(t) =
1
2
(g′ ◦ un)(t)−

1
2

g(t)‖un(t)‖2
∗ − ‖unt(t)‖2

2 + ε‖unt(t)‖2
2

− ε‖un(t)‖2p
∗ − ε‖un(t)‖2

∗ + ε
∫ t

0
g(t − τ)(un(τ), un(t))∗ dτ

− ε(un(t), unt(t)) + ε‖un(t)‖q
q.

(25)

For the seventh term on the right side of Equation (25), it follows from Schwarz’s
inequality and Cauchy’s inequality with ε1 > 0 that∫ t

0
g(t − τ)(un(τ), un(t))∗ dτ

=
∫ t

0
g(t − τ)‖un(t)‖2

∗ dτ +
∫ t

0
g(t − τ)(un(τ)− un(t), un(t))∗ dτ

≤
∫ t

0
g(τ)dτ‖un(t)‖2

∗ + ε1

∫ t

0
g(τ)dτ‖un(t)‖2

∗ +
1

4ε1
(g ◦ un)(t)

≤(1 − κ)‖un(t)‖2
∗ + ε1(1 − κ)‖un(t)‖2

∗ +
1

4ε1
(g ◦ un)(t).

For the eighth term on the right side of Equation (25), it follows from Cauchy’s inequality with
ε2 > 0 that

−(un(t), unt(t)) ≤ε2‖un(t)‖2
2 +

1
4ε2

‖unt(t)‖2
2

≤ε2C
2
2‖un(t)‖2

∗ +
1

4ε2
‖unt(t)‖2

2.

Hence, we have

L′(t) ≤
(

ε +
ε

4ε2
− 1
)
‖unt(t)‖2

2 − ε‖un(t)‖2p
∗

+ ε(ε1(1 − κ) + ε2C
2
2 − κ)‖un(t)‖2

∗

+

(
ε

4ε1
− ρ

2

)
(g ◦ un)(t) + ε‖un(t)‖q

q,

and so

L′(t) ≤− εηEn(t) +
(

ε +
ε

4ε2
+

εη

2
− 1
)
‖unt(t)‖2

2 + ε

(
η

2p
− 1
)
‖un(t)‖2p

∗

+ ε
(

ε1(1 − κ) + ε2C
2
2 +

η

2
− κ
)
‖un(t)‖2

∗

+

(
ε

4ε1
+

εη

2
− ρ

2

)
(g ◦ un)(t) + ε‖un(t)‖q

q −
εη

q
‖un(t)‖q

q,

(26)

where η > 0 is a constant to be determined later. It follows from Equations (15) and (18)
that

En(0) ≥
q − 2

2q
κ‖un(t)‖2

∗,
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which leads to

‖un(t)‖∗ ≤
(

2q
(q − 2)κ

En(0)
) 1

2
.

Hence, we have

‖un(t)‖q
q ≤ C

q
1‖un(t)‖q−2

∗ ‖un(t)‖2
∗ ≤ C

q
1

(
2q

(q − 2)κ
En(0)

) q−2
2
‖un(t)‖2

∗.

By substituting this inequality into Equation (26), we obtain

L′(t) ≤− εηEn(t) +
(

ε +
ε

4ε2
+

εη

2
− 1
)
‖unt(t)‖2

2 + ε

(
η

2p
− 1
)
‖un(t)‖2p

∗

+ ε

⎛⎝ε1(1 − κ) + ε2C
2
2 +

η

2
+ C

q
1

(
2q

(q − 2)κ
En(0)

) q−2
2

− κ

⎞⎠‖un(t)‖2
∗

+

(
ε

4ε1
+

εη

2
− ρ

2

)
(g ◦ un)(t).

Note that

C
q
1

(
2q

(q − 2)κ
En(0)

) q−2
2

< C
q
1

(
2q

(q − 2)κ
d
) q−2

2
= κ.

We choose a sufficiently small εi (i = 1, 2) and η such that η < 2p and

ε1(1 − κ) + ε2C
2
2 +

η

2
+ C

q
1

(
2q

(q − 2)κ
En(0)

) q−2
2

− κ ≤ 0.

Thus, for a fixed εi (i = 1, 2) and η, we can choose

ε < min
{

1
C1

,
4ε2

4ε2 + 1 + 2ηε2
,

2ρε1

1 + 2ηε1

}
such that L′(t) ≤ −εηEn(t) which, together with the second inequality in the assertion in

Equation (23), gives L′(t) ≤ − εη

γ2
L(t). Hence, there exists a constant C2 > 0 independent

of n such that
L(t) ≤ C2e−

εη
γ2

t, ∀t ∈ [0, ∞).

We further conclude from the first inequality in the assertion in Equation (23) that

En(t) ≤
C2

γ1
e−

εη
γ2

t, ∀t ∈ [0, ∞). (27)

From Equations (20) and (21), it follows that

‖u(t)‖2
∗ + ‖ut(t)‖2

2 ≤ lim inf
n→∞

(
‖un(t)‖2

∗ + ‖unt(t)‖2
2

)
,

which, combined with Equations (18) and (27), gives the conclusion of Theorem 2.

6. Conclusions

In this paper, we studied the initial boundary value problem for a fractional viscoelastic
equation of the Kirchhoff type. In the framework of the potential well theory, we established
the global existence theorem, specifically Theorem 1. Under appropriate assumptions of
the exponent of the source term and the memory kernel, it has been shown that if the
initial data u0 lies in the potential well, and the initial energy is less than the depth of the
potential well, then the initial boundary value problem admits a global solution that lies in
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the closure of the potential well. Moreover, we have established the asymptotic behavior
theorem, specifically Theorem 2. It is established that as the time variable tends toward
infinity, the norm of the solutions in the phase space decays exponentially to zero at the
same rate as the memory kernel. In light of the applications, once the initial data and
the external force are effectively controlled, the vibration of the string with a fractional
length and appropriate viscoelasticity will be stable. In this regard, the methods in [40] may
be helpful.
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Abstract: In this paper, we present the series solutions of the nonlinear time-fractional coupled
Boussinesq-Burger equations (T-FCB-BEs) using Laplace-residual power series (L-RPS) technique
in the sense of Caputo fractional derivative (C-FD). To assert the efficiency, simplicity, performance,
and reliability of our proposed method, an attractive and interesting numerical example is tested
analytically and graphically. In addition, our obtained results show that this algorithm is compatible
and accurate for investigating the fractional-order solutions of engineering and physical applications.
Finally, Mathematica software 14 is applied to compute the numerical and graphical results.

Keywords: Caputo operator; Coupled Boussinesq-Burger equation; Laplace transform (LT); residual
power series (RPS) method

1. Introduction

In the past twenty years, partial fractional differential equations (P-FDEs) have been
motivated due to their various applications in several fields of science such as fluid and layer
flows, multi-energy groups of neutron diffusion processes, neutral and multi pantograph
systems, dynamic and hyperbolic systems, statistical mechanics model, material sciences
and engineering [1–20]. These important phenomena and applications are well described
by P-FDEs. The nonlocal property is the most significant advantage of using P-FDEs in
diverse mathematical modeling.

The main advantage of using fractional derivatives with an arbitrary order is that they
are flexible more than classical derivatives and also they are not-local. The two famous and
important fractional deriavtives in applications are: The Riemann-Liouville FD (R-L-FD)
and C-FD [1–20]. The relationship between the R-L and the C-FDs are very closed since the
R-L-FD can be converted to the C-FD under some regularity assumptions of the function.
In P-FDEs, the time-fractional derivatives are commonly defined using the C-FDs. The
main reason lies in that the P-FDEs in R-L sense needs initial conditions containing the
limit values of R-L-FD at the origin of time t = 0, whose physical meanings are not very
clear. While in P-FDEs via C-FD, the initial conditions are given in integer-orders, whose
physical meanings are very clear [9–17].

In most cases, exact solutions do not exist for many Partial differential equations
(PDEs), therefore, several numerical methods are created and applied to get the approximate
series solutions for such P-FDEs such as the homotopy analysis, asymptotic and perturba-
tion methods [1–3,5], variational iteration and Adomian decomposition methods [2,4,8], LT
and differential transform techniques, RPS method [9–14] and L-RPS method [15–19].

In 1870, Boussinesq [21] introduced the Boussinesq equation to describe the motions
of waves in shallow water and then it was used in many physics and engineering wave
phenomena [22–27]. In 1915, Bateman presented Burger’s equation [28] which describes
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several phenomena in physics and engineering such as acoustic and shock waves [29],
stochastic processes [30], and gas dynamics [31–33]. There are several techniques and
methods [8,11,34–41] were applied by researchers to obtain the approximate solutions to
Burger’s equations. One of the most interesting mathematical models is the (generalized)
Boussinesq-Burger’s equation (B-BEs) which describes the propagation waves of shallow
water in the behaviors of fluids flow [3,42–46]. This equation was solved analytically and
numerically by different techniques. For example, Gupta et al. [3] obtained the soliton
solutions of B-BEs based on the optimal homotopy perturbation and asymptotic methods;
Rady and Khalfallah [45] presented the periodic wave and multiple soliton solutions for
B-BEs by applying Jacobi elliptic method; Wang et al. [46] presented type of solutions and
interaction behaviors of the solitons and Lax pair for the B-BEs; Zhang et al. [44] introduced
some new solutions of the generalized B-BEs using the modified mapping method; and
Chen and Li [43] established some new soliton solutions of soliton B-BEs by applying
Darboux transformation.

The well-known nonlinear time T-CB-BEs are given by [46–48]:

ut(x, t) + 2u(x, t)ux(x, t)− 1
2

wx(x, t) = 0,

wt(x, t)− 1
2

uxxx(x, t) + 2(u(x, t)w(x, t))x = 0,

where x is the normalized space, t is the time, u(x, t) is the horizontal velocity and w(x, t) is
the height of the water surface above the horizontal level.

Some methods were used to solve this coupled such as Lax pair and Bäcklund trans-
formation technique [46], exp-function method [47] and reduced differential transform
method [48]. Finally, the generalized T-FCB-BEs can be formulated as [49,50]:

D
β
t u(x, t) + wx(x, t) + u(x, t)ux(x, t) = 0,

D
β
t w(x, t) + (u(x, t)w(x, t))x + uxxx(x, t) = 0,

(1)

subject to:
u(x, 0) = f (x),w(x, 0) = g(x), (2)

where 0 < β � 1, x ∈ I, t � 0, f (x), g(x) are analytic functions, and u(x, t), w(x, t) are
unknown real-valued functions to be solved.

2. Materials and Methods

There are few methods were used to solve this system such as fractional decomposition
method with the definition of Caputo fractional derivative [49] and by applying first
integral method with the definitions of Riemann-Liouville fractional and local conformable
derivatives [50].

The main aim of our work is to employ L-RPS method for obtaining the fractional-
order series solutions to the T-FCB-BEs as in Equations (1) and (2). The proposed method is
a new efficient method, and it provides the solution in a rapidly convergent series which
yields the solution in a closed form. The L-RPS method combines two power full methods
(Laplace transform and RPS methods) for getting the series solution for the system of F-
PDEs. In L-RPS method, few calculations are needed to get the series coefficients compared
with RPS method since it is determined by employing the concept of limit not the fractional
derivative as in RPS technique. The methodology of our proposed method (L-RPS) will
be introduced with detail in Section 4. Mathematica software 14 is used to compute the
numerical and graphical results.

The novelty of this work is shown in the proposed method chosen to solve the target
problem. L-RPS method is a strong method that provides the solution in a rapidly conver-
gent series, and we illustrate that in the results, in which we don’t need many terms to
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get a good approximate solution. Moreover, this method does not need the linearization,
discretization, or fractional differentiation like other numerical methods.

The rest of this present paper is arranged as follows: Basic definitions and basic idea
of L-RPS method with convergence analysis are introduced in Section 3. The methodology
of the proposed method is explaining in Section 4. An attractive appliaction with graphical
results are given and discussues in Section 5 to confirm the efficiency and reliability of our
technique. Finally, Section 6 concludes the output of the whole paper.

3. Basic Concepts on Fractional and Laplace Operators

This section reviews some definitions and theorems for the fractional operators and
the LT [1–19] which are essential in constructing the L-RPS solutions for the nonlinear
T-FCB-BEs as in Equations (1) and (2).

Definition 1. The C-FD of u(x, t) of order β > 0 is defined as:

D
β
t y(x, t) = Jm−β

t Dm
t u(x, t), m − 1 < β < m, m ∈ N, x ∈ K, t > 0,

where K is a given interval and

Jβ
t u(x, t) =

⎧⎪⎨⎪⎩
1

Γ(β)

t∫
0
(t − τ)β−1u(x, t) dτ, t > τ > 0

u(x, t), β = 0,

is the time R-L fractional integral of order β > 0.

Most important and useful properties of fractional operators can be summarized as
below [1–19]:

Lemma 1. For μ > −1, c ∈ R, m − 1 < β ≤ m , and t ≥ 0, we have:

(i) D
β
t c = 0.

(ii) D
β
t tμ = Γ(μ+1)

Γ(μ+1−β)
tμ−β.

(iii) D
β
t Jβ

t u(x, t) = u(x, t).

Definition 2. Let u(x, t) be a piecewise continuous function (PCF) on K × [0, ∞) and of exponen-
tial order (EQ) δ. Then the LT of u(x, t) is given by:

U(x, s) = L[u(x, t)] :=
∞∫

0

e−stu(x, t)dt, s > δ,

and the inverse LT of U(x, s) is:

u(x, t) = L−1[U(x, s)] :=
z+i∞∫

z−i∞

estU(x, s)ds, z = Re(s) > z0.

Lemma 2. If u(x, t) and w(x, t) are PCFs on K × [0, ∞) and of EQs δ1 and δ2, respectively, where
δ1 < δ2. Considering U(x, s) = L[u(x, t)], W(x, s) = L[w(x, t)], and a, b ∈ R, then:

(i) L[au(x, t) + bw(x, t)] = aU(x, s) + bW(x, s), x ∈ K, s > δ1.
(ii) L−1[aU(x, s) + bW(x, s)] = au(x, t) + bw(x, t), x ∈ K, t ≥ 0.
(iii) lim

s→∞
sU(x, s) = u(x, 0), x ∈ K.

(iv) L
[
D

β
t u(x, t)

]
= sβU(x, s)− ∑m−1

k=0 sβ−k−1∂k
tu(x, 0), m − 1 < β ≤ m
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(v) L
[
D

nβ
t u(x, t)

]
= snβU(x, s)− ∑n−1

k=0 s(n−k)β−1D
kβ
t u(x, 0), 0 < β < 1,

where Dnβ
t = D

β
t .Dβ

t . . .Dβ
t (n -times).

Theorem 1. [15] Let u(x, t) be a PCF on K × [0, ∞) of EO δ and U(x, s) = L[u(x, t)]. Then

U(x, s) =
∞

∑
n=0

fn(x)
snβ+1 , 0 < β ≤ 1, x ∈ K, s > δ. (3)

Then fn(x) = D
nβ
t u(x, 0), n = 0, 1, 2, . . ..

The convergence conditions of the fractional expansion in Equation (3) are demon-
strated in the following theorem.

Theorem 2. [15] If
∣∣∣ s L

[
D

(n+1)β
t u(x, t)

]∣∣∣ ≤ M(x), on K × (δ, d]: 0 < β ≤ 1. Then the
reminder Rn(x, s) of the fractional expansion in Equation (3) satisfies the following inequality:

|Rn(x, s)| ≤ M(x)
s(n+1)β+1

, x ∈ K, δ < s ≤ d. (4)

4. Constructing the L-RPS Solutions for Nonlinear T-FCB-BEs

The main objective of this section is to construct a solitary solution to the nonlinear
T-FCB-BEs using the L-RPS method. This method can be applied to solve nonlinear P-FDEs,
while the LT fails to solve nonlinear equations without using power series technique. The
main idea of L-RPS method focuses on the power series method to obtain a solution to the
given nonlinear FDE in the Laplace space, and this requires an appropriate expansion that
represents the solutions in final version. Moreover, we applyin this Section a new technique
in detail to find the expansion coefficients.

Consider the nonlinear T-FCB-BEs as given in Equations (1) and (2) in Section 1. Now,
operating the LT of both equations in Equation (1) to get:

L
[
D

β
t u(x, t) ] + L[ wx(x, t)] +L[u(x, t)ux(x, t)] = 0,

L[D
β
t w(x, t)]+L[(u(x, t)w(x, t))x]+L[uxxx(x, t)] = 0.

(5)

Applying Lemma 2 and using Equation (2), then the coupled equations in Equation (1)
can be written as:

sβU(x, s)− sβ−1 f (x) + Lx[w(x, t)] + L
[
L−1[U(x, s)]

(
L−1)

x[U(x, s)]
]
= 0,

sβW(x, s)− sβ−1g(x) + Lx
[
L−1[U(x, s)]L−1[W(x, s)]

]
+ Uxxx(x, s) = 0.

(6)

From Equation (6), we obtain:

U(x, s)− f (x)
s + Wx(x,s)

sβ + 1
sβ L
[
L−1[U(x, s)]

(
L−1)

x[U(x, s)]
]
= 0

W(x, s)− g(x)
s + Uxxx(x,s)

sβ + 1
sβ Lx

[
L−1[U(x, s)]L−1[W(x, s)]

]
= 0

(7)

The system in Equation (7) represents a nonlinear system of PDEs that contains deriva-
tives relative x. Now, according to the L-RPS and using the facts: lim

s→∞
sU(x, s) = u(x, 0) and

lim
s→∞

sW(x, s) = w(x, 0), then the kth truncated series of U(x, s) and W(x, s) in Equation (7)

can be written as:

Uk(x, s) =
f (x)

s
+

k

∑
n=1

fn(x)
snβ+1 , x ∈ I, s > δ ≥ 0, (8)
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Wk(x, s) =
g(x)

s
+

k

∑
n=1

gn(x)
snβ+1 , x ∈ I, s > δ ≥ 0. (9)

In the next step, we define the Laplace-residual functions (L-RFs) of the coupled equa-
tions in Equation (7) to find the unknown coefficients of the series in Equations (8) and (9):

LRes(U(x, s)) = U(x, s)− f (x)
s + Wx(x,s)

sβ + 1
sβ L
[
L−1[U(x, s)]

(
L−1)

x[U(x, s)]
]
,

LRes(W(x, s)) = W(x, s)− g(x)
s + Uxxx(x,s)

sβ + 1
sβ Lx

[
L−1[U(x, s)]L−1[W(x, s)]

]
.

(10)

and the kth L-RFs are:

LResk(U(x, s)) = Uk(x, s)− f (x)
s + Wk x(x,s)

sβ + 1
sβ L
[
L−1[Uk(x, s)]

(
L−1)

x[Uk(x, s)]
]
,

LResk(W(x, s)) = Wk(x, s)− g(x)
s + Uk xxx(x,s)

sβ + 1
sβ Lx

[
L−1[Uk(x, s)]L−1[Wk(x, s)]

]
.

(11)

Since,
LRes(U(x, s)) = 0, LRes(W(x, s)) = 0, we have skβ+1LRes(U(x, s)) = 0, skβ+1

LRes(W(x, s)) = 0.
Therefore,

lim
s→∞

(
skβ+1LResk(U(x, s))

)
= 0, lim

s→∞

(
skβ+1LResk(U(x, s))

)
= 0 for k = 0, 1, 2, . . . (12)

To find f1(x) and g1(x) in Equation (11), we substitute U1(x, s) = f (x)
s + f1(x)

sβ+1 and

W1(x, s) = g(x)
s + g1(x)

sβ+1 in the first L-RFs to get:

LRes1(U(x, s)) = f (x)
s + f1(x)

sβ+1 − f (x)
s +

(
g(x)

s +
g1(x)

sβ+1

)
x

sβ + 1
sβ L
[

L−1
[

f (x)
s + f1(x)

sβ+1

](
L−1)

x

[
f (x)

s + f1(x)
sβ+1

]]
= 1

sβ+1 ( f1(x) + f (x) f ′(x) + g′(x)) + 1
s2β+1 ( f1(x) f ′(x) + f (x) f1

′(x) + g1
′(x))

+ 1
s3β+1

(
Γ(1+2β) f1(x) f1

′(x)
Γ(1+β)2

)
,

(13)

LRes1(W(x, s)) = g(x)
s + g1(x)

sβ+1 − g(x)
s +

(
f (x)

s +
f1(x)

sβ+1 )xxx
sβ + 1

sβ Lx

[
L−1
[

f (x)
s + f1(x)

sβ+1

]
L−1
[

g(x)
s + g1(x)

sβ+1

]]
= 1

sβ+1

(
g1(x) + g(x) f ′(x) + f (x)g′(x) + f (3)(x)

)
+ 1

s2β+1

(
g1(x) f ′(x) + f1(x)g′(x) + g(x) f1

′(x) + f (x)g1
′(x) + f1

(3)(x)
)

+ 1
s3β+1

(
Γ(1+2β)g1(x) f1

′(x)
Γ(1+β)2 + Γ(1+2β) f1(x)g1

′(x)
Γ(1+β)2

)
.

Next, by solving: lim
s→∞

sβ+1LRes1(U(x, s)) = 0, lim
s→∞

sβ+1LRes1(U(x, s)) = 0, one
can get:

f1(x) = −
(

f (x) f ′(x) + g′(x)
)
,g1(x) = −

(
g(x) f ′(x) + f (x)g′(x) + f (3)(x)

)
. (14)

Thus, the first Laplace series solution (LSS) of the system in Equations (8) and (9) can
be written as:

U1(x, s) =
f (x)

s
+

−( f (x) f ′(x) + g′(x))
sβ+1 , W1(x, s) =

g(x)
s

+
−
(

g(x) f ′(x) + f (x)g′(x) + f (3)(x)
)

sβ+1 . (15)

To find out the second LSS of system in Equations (8) and (9), substitute U2(x, s) = f (x)
s +

f1(x)
sβ+1 + f2(x)

s2β+1 and W2(x, s) = g(x)
s + g1(x)

sβ+1 + g2(x)
s2β+1 into the second L-RF LRes2(U(x, s)),

LRes2(W(x, s)) as:
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LRes2(U(x, s)) = 1
sβ+1 ( f1(x) + f (x) f ′(x) + g′(x)) + 1

s2β+1 ( f2(x) + f1(x) f ′(x) + f (x) f1
′(x) + g1

′(x))

+ 1
s3β+1

(
f2(x) f ′(x) + Γ(1+2β) f1(x) f1

′(x)
Γ2(1+β)

+ Γ(1+2β) f1(x) f1
′(x)

Γ2(1+β)
+ f (x) f2

′(x) + g2
′(x)
)

+ 1
s4β+1

(
Γ(1+3β) f2(x) f1

′(x)
Γ(1+β)Γ(1+2β)

+ Γ(1+3β) f1(x) f2
′(x)

Γ(1+β)Γ(1+2β)

)
+ 1

s5β+1

(
Γ(1+4β) f2(x) f2

′(x)
Γ2(1+2β)

)
,

(16)

LRes2(W(x, s)) = 1
sβ+1

(
g1(x) + g(x) f ′(x) + f (x)g′(x) + f (3)(x)

)
+ 1

s2β+1

(
g2(x) + g1(x) f ′(x) + f1(x)g′(x) + g(x) f1

′(x) + f (x)g1
′(x) + f1

(3)(x)
)

+ 1
s3β+1

(
g2(x) f ′(x) + f2(x)g′(x) + g(x) f2

′(x) + f (x)g2
′(x) + f2

(3)(x)

+ Γ(1+2β)g1(x) f1
′(x)

Γ2(1+β)
+ Γ(1+2β) f1(x)g1

′(x)
Γ2[1+β]

)
+ 1

s4β+1

(
Γ(1+3β)g2(x) f1

′(x)
Γ(1+β)Γ(1+2β)

+ Γ(1+3β)g1(x) f2
′(x)

Γ(1+β)Γ(1+2β)
+ Γ(1+3β) f2(x)g1

′(x)
Γ(1+β)Γ(1+2β)

+ Γ(1+3β) f1(x)g2
′(x)

Γ(1+β)Γ(1+2β)

)
+ 1

s5β+1

(
Γ(1+4β)g2(x) f2

′(x)
Γ2(1+2β)

+ Γ(1+4β) f2(x)g2
′(x)

Γ2(1+2β)

)
.

Thus, f2(x) and g2(x) can be obtained by substituting the values of f1(x) and g1(x) into
Equation (16), then multiplying both sides of the new equation by s2β+1 and taking the
limit as s → ∞ to get:

f2(x) = −( f1(x) f ′(x) + f (x) f1
′(x) + g1

′(x)),
g2(x) = −

(
g1(x) f ′(x) + f1(x)g′(x) + g(x) f1

′(x) + f (x)g1
′(x) + f1

(3)(x)
)

.
(17)

Again, to find out the second LSS of the system in Equations (8) and (9), substitute
U3(x, s) = f (x)

s + f1(x)
sβ+1 + f2(x)

s2β+1 +
f3(x)
s3β+1 and W3(x, s) = g(x)

s + g1(x)
sβ+1 + g2(x)

s2β+1 +
g3(x)
s3β+1 into the

second L-RF: LRes3(U(x, s)), LRes3(W(x, s)) to get:

LRes3(U(x, s)) = 1
sβ+1 ( f1(x) + f (x) f ′(x) + g′(x)) + 1

s2β+1 ( f2(x) + f1(x) f ′(x) + f (x) f1
′(x) + g1

′(x))

+ 1
s3β+1

(
f3(x) + f2(x) f ′(x) + f (x) f2

′(x) + g2
′(x) + Γ(1+2β) f1(x) f1

′(x)
Γ2(1+β)

)
+ 1

s4β+1

(
f3(x) f ′(x) + f (x) f3

′(x) + g3
′(x) + Γ(1+3β) f2(x) f1

′(x)
Γ(1+β)Γ(1+2β)

+ Γ(1+3β) f1(x) f2
′(x)

Γ(1+β)Γ(1+2β)

)
+ 1

s5β+1

(
Γ(1+4β) f3(x) f1

′(x)
Γ(1+β)Γ(1+3β)

+ Γ(1+4β) f1(x) f3
′(x)

Γ(1+β)Γ(1+3β)
+ Γ(1+4β) f2(x) f2

′(x)
Γ2(1+2β)

)
+ 1

s6β+1

(
Γ(1+5β) f3(x) f2

′(x)
Γ(1+2β)Γ(1+3β)

+ Γ(1+5β) f2(x) f3
′(x)

Γ(1+2β)Γ(1+3β)

)
+ 1

s7β+1

(
Γ(1+6β) f3(x) f3

′(x)
Γ2(1+3β)

)
,

(18)

LRes3(W(x, s)) = 1
sβ+1

(
g1(x) + g(x) f ′(x) + f (x)g′(x) + f (3)(x)

)
+ 1

s2β+1

(
g2(x) + g1(x) f ′(x) + f1(x)g′(x) + g(x) f1

′(x) + f (x)g1
′(x) + f1

(3)(x)
)

+ 1
s3β+1

(
g3(x) + g2(x) f ′(x) + f2(x)g′(x) + g(x) f2

′(x) + f (x)g2
′(x) + f2

(3)(x)

+ Γ(1+2β)g1(x) f1
′(x)

Γ2(1+β)
+ Γ(1+2β) f1(x)g1

′(x)
Γ2(1+β)

)
+ 1

s4β+1

(
g3(x) f ′(x) + f3(x)g′(x) + g(x) f3

′(x) + f (x)g3
′(x) + f3

(3)(x)

+ Γ(1+3β)g2(x) f1
′(x)

Γ(1+β)Γ(1+2β)
+ Γ(1+3β)g1(x) f2

′(x)
Γ(1+β)Γ(1+2β)

+ Γ(1+3β) f2(x)g1
′(x)

Γ(1+β)Γ(1+2β)

+ Γ(1+3β) f1(x)g2
′(x)

Γ(1+β)Γ(1+2β)

)
+ 1

s5β+1

(
Γ(1+4β)g3(x) f1

′(x)
Γ(1+β)Γ(1+3β)

+ Γ(1+4β)g2(x) f2
′(x)

Γ2(1+2β)
+ Γ(1+4β)g1(x) f3

′(x)
Γ(1+β)Γ(1+3β)

+ Γ(1+4β) f3(x)g1
′(x)

Γ(1+β)Γ(1+3β)
+ Γ(1+4β) f2(x)g2

′(x)
Γ2(1+2β)

+ Γ(1+4β) f1(x)g3
′(x)

Γ(1+β)Γ(1+3β)

)
+ 1

s6β+1

(
Γ(1+5β)g3(x) f2

′(x)
Γ(1+2β)Γ(1+3β)

+ Γ(1+5β)g2(x) f3
′(x)

Γ(1+2β)Γ(1+3β)
+ Γ(1+5β) f3(x)g2

′(x)
Γ(1+2β)Γ(1+3β)

+ Γ(1+5β) f2(x)g3
′(x)

Γ(1+2β)Γ(1+3β)

)
+ 1

s7β+1

(
Γ(1+6β)g3(x) f3

′(x)
Γ2(1+3β)

+ Γ(1+6β) f3(x)g3
′(x)

Γ2(1+3β)

)
Thus, f3(x) and g3(x) can be obtained by substituting the values of f1(x), f2(x), g1(x) and
g2(x) into the coupled equations in Equation (18), then multiplying both sides of the new
equations by s3β+1 and taking the limit as s → ∞ to get:
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f3(x) = −
(

f2(x) f ′(x) + f (x) f2
′(x) + g2

′(x) + Γ(1+2β) f1(x) f1
′(x)

Γ2(1+β)

)
,

g3(x) = −
(

g2(x) f ′(x) + f (x)g2
′(x) + f2(x)g′(x) + g(x) f2

′(x) + f2
(3)(x) + Γ(1+2β)g1(x) f1

′(x)
Γ2(1+β)

+ Γ(1+2β) f1(x)g1
′(x)

Γ2(1+β)

)
.

(19)

If we continue in the same manner, substituting the kth truncated series Uk(x, s), Wk(x, s)
into the kth L-RF LResk(U(x, s)), LResk(W(x, s)). By multiplying the resulting new equations
by skβ+1 and taking the limit as s → ∞ , fk+1(x), gk+1(x) for k ≥ 2, then we obtain the
following recurrence relation:

fk+1(x) = −
(
( fk(x)f(x) + gk(x))′ +

∞
∑

i+j=k

r( fi(x) f j(x))
′
Γ(1+kβ)

Γ(1+iβ)Γ(1+jβ)

)
, i, j ∈ Z+m,

where r =
{

0.5, i = j
1 i �= j

, f ork = 2, 3, 4, . . ., i + j = k.
(20)

gk+1(x) = −
(
(gk(x) f (x))′ + ( fk(x)g(x))′ + fk(x)(3) +

∞
∑

i+j=k

(gi(x) f j(x))
′
Γ(1+kβ)

Γ(1+iβ)Γ(1+jβ)

)
, i, j ∈ Z+.

Now, the series solution of the system in Equation (7) is given by:

U(x, s) = f (x)
s + −( f (x) f ′(x)+g′(x))

sβ+1 − ( f1(x) f ′(x)+ f (x) f1
′(x)+g1

′(x))
s2β+1 +

∞
∑

n=3

fn(x)
snβ+1 , x ∈ I, s > δ ≥ 0.

W(x, s) = g(x)
s − (g(x) f ′(x)+ f (x)g′(x)+ f (3)(x))

sβ+1

− (g1(x) f ′(x)+ f1(x)g′(x)+g(x) f1
′(x)+ f (x)g1

′(x)+ f1
(3)(x))

s2β+1

+
∞
∑

n=3

gn(x)
snβ+1 , x ∈ I, s > δ ≥ 0.

(21)

So, the series solution of the nonlinear T-FCB-BEs in Equations (1) and (2) can be
obtained by transforming the above solution into the original space by using the inverse LT.
Therefore, the L-RPS solution of the system in Equation (1) is given by:

(x, t) = f (x) + −( f (x) f ′(x)+g′(x))tβ

Γ(β+1) − ( f1(x) f ′(x)+ f (x) f1
′(x)+g1

′(x))t2β

Γ(2β+1) +
∞
∑

k=3

fk(x) tkβ

Γ(kβ+1) , t ≥ 0, x ∈ I.

(x, t) = g(x)+
−(g(x) f ′(x)+ f (x)g′(x)+ f (3)(x))tβ

Γ(β+1)

− (g1(x) f ′(x)+ f1(x)g′(x)+g(x) f1
′(x)+ f (x)g1

′(x)+ f1
(3)(x))t2β

Γ(2β+1)

+
∞
∑

k=3

gk(x)tkβ

Γ(kβ+1) , t ≥ 0, x ∈ I.

(22)

5. Application with Graphical Result

In this Section, we give an attractive and interesting example with incuding graphical
resukts to assert the efficiency and simplicity our proposed method in Section 4.

Application 1. Consider the following nonlinear T-FCB-BEs:

D
β
t u(x, t) + wx(x, t) + u(x, t)ux(x, t) = 0,Dβ

t w(x, t) + (u(x, t)w(x, t))x + uxxx(x, t) = 0. (23)

with the initial conditions:

u(x, 0) = 1 + tanh
( x

2

)
, w(x, 0) =

1
2
− 1

2
tanh2

( x
2

)
. (24)

Comparing Equations (23) and (24) with Equations (1) and (2), respectively, then we
find that

f (x) = 1 + tanh
( x

2

)
, and g(x) =

1
2
− 1

2
tanh2

( x
2

)
.

Therefore, according to the discussion and obtained results in Section 4, the L-RPS
solution of the system in Equation (23) is given by
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u(x, t) = f (x) + −( f (x) f ′(x)+g′(x))tβ

Γ(β+1) − ( f1(x) f ′(x)+ f (x) f1
′(x)+g1

′(x))t2β

Γ(2β+1) +
∞
∑

k=3

fk(x) tkβ

Γ(kβ+1) , t ≥ 0, x ∈ I.

w(x, t) = g(x)+
−(g(x) f ′(x)+ f (x)g′(x)+ f (3)(x))tβ

Γ(β+1)

− (g1(x) f ′(x)+ f1(x)g′(x)+g(x) f1
′(x)+ f (x)g1

′(x)+ f1
(3)(x))t2β

Γ(2β+1) +
∞
∑

k=3

gk(x)tkβ

Γ(kβ+1) , t ≥ 0, x ∈ I.

(25)

Now, Equation (20) produces the series coefficients as follow:

f0(x) = 1 + tanh
( x

2
)
.

g0(x) = 1
2 − 1

2 tanh2( x
2
)
.

f1(x) = − 1
2 sech2( x

2
)
.

g1(x) = − 1
4 sech2( x

2
)
+ 1

4 sech4( x
2
)
+ 1

2 sech2( x
2
)
tanh

( x
2
)
+ 1

4 sech2( x
2
)
tanh2( x

2
)
= 4csch3(x)sinh4( x

2
)
.

f2(x) = − 3
4 sech2( x

2
)
tanh

( x
2
)
+ 1

4 sech4( x
2
)
tanh

( x
2
)
+ 1

4 sech2( x
2
)
tanh3( x

2
)
= 8csch3(x)sinh4( x

2
)
.

g2(x) = − 1
8 sech4 ( x

2
)
− 1

8 sech6( x
2
)
− 1

2 sech2( x
2
)
tanh

( x
2
)
+ 1

2 sech4( x
2
)
tanh

( x
2
)
+ 1

4 sech2( x
2
)
tanh2( x

2
)

+ 1
8 sech4( x

2
)
tanh2( x

2
)
+ 1

2 sech2( x
2
)
tanh3( x

2
)
+ 1

4 sech2( x
2
)
tanh4( x

2
)

=
(cosh(x)−2) sinh4( x

2 )
4 .

Continue in the same manner to get:

u(x, t) = 1 + tanh
( x

2

)
− sech2( x

2
)
tβ

2 Γ(β + 1)
+

8csch3(x)sinh4( x
2
)

t2β

Γ(2β + 1)
+ · · · = 1 + tanh

⎛⎝ x − tβ

β

2

⎞⎠, (26)

w(x, t) =
1
2
− 1

2
tanh2

( x
2

)
+

4csch3(x)sinh4( x
2
)
tβ

Γ(β + 1)
+

(cos h(x)− 2) sinh4( x
2
)
t2β

4Γ(2β + 1)
+ · · ·= 1

2
− 1

2
tanh2

⎛⎝ x − tβ

β

2

⎞⎠.

Figures 1 and 2 below show the graphical results for the 5th- approximate L-RPS solutions
u5(x, t) and w5(x, t), respectively, of Equations (23) and (24) at different values of β.

Figure 1. The surface graph of the 3D plots of the 5th-approximate L-RPS solution u5(x, t) in
Equations (23) and (24) at: (a) β = 0.6 (b) β = 0.75 (c) β = 0.9.
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Figure 2. The surface graph of the 3D plots of the 5th-approximate L-RPS solution w5(x, t) in
Equations (23) and (24) at: (a) β = 0.6 (b) β = 0.75 (c) β = 0.9.

6. Conclusions

We have employed an attractive L-RPS method for solving system of nonlinear T-
FCB-BEs. The proposed method is a new efficient method, and it provides the solution
in a rapidly convergent series which yields the solution in a closed form. That is, few
calculations are needed in L-RPS method to get the series coefficients compared with
RPS method since it is determined by employing the concept of limit not the fractional
derivative as in RPS method. The L-RPS method will open the door for solving many
complicated nonlinear F-PDEs in future studies, since it can be easily employed for creating
the exact and approximate solutions of many physical and engineering phenomena depend
on F-PDEs such as the nonlinear KdV-Burger, parabolic and mKdV space-time F-PDEs.
Moreover, there is a newly proposed fractional derivative definition which is called the
“Abu-Shady-Kaabar fractional derivative” and recently introduced by Abu-Shady and
Kaabar [51]. This definition obtains the same results of C-FD in a very simple way which is
more efficient for solving many nonlinear FDEs, see, [51–53]. In the future, we attend to
solve some new attractive modeling scientific phenomena via L-RPS method using Abu-
Shady-Kaabar fractional derivative [51–54]. Mathematica software 14 is used to compute
the numerical and graphical results.
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Abstract: This article employs the Laplace residual power series approach to study nonlinear systems
of time-fractional partial differential equations with time-fractional Caputo derivative. The proposed
technique is based on a new fractional expansion of the Maclurian series, which provides a rapid
convergence series solution where the coefficients of the proposed fractional expansion are computed
with the limit concept. The nonlinear systems studied in this work are the Broer-Kaup system,
the Burgers’ system of two variables, and the Burgers’ system of three variables, which are used
in modeling various nonlinear physical applications such as shock waves, processes of the wave,
transportation of vorticity, dispersion in porous media, and hydrodynamic turbulence. The results
obtained are reliable, efficient, and accurate with minimal computations. The proposed technique is
analyzed by applying it to three attractive problems where the approximate analytical solutions are
formulated in rapid convergent fractional Maclurian formulas. The results are studied numerically
and graphically to show the performance and validity of the technique, as well as the fractional
order impact on the behavior of the solutions. Moreover, numerical comparisons are made with
other well-known methods, proving that the results obtained in the proposed technique are much
better and the most accurate. Finally, the obtained outcomes and simulation data show that the
present method provides a sound methodology and suitable tool for solving such nonlinear systems
of time-fractional partial differential equations.

Keywords: fractional differential equations; Laplace residual power series; fractional Broer-Kaup
equations; fractional Burgers’ equations

1. Introduction

Fractional-order systems have acquired a lot of attention and interest in various
engineering and scientific fields as popular mathematical models used to describe real-
world physical phenomena [1–5]. Fractional calculus provides a valuable instrument for
showing the development of complicated dynamical systems with long-term memory
impacts. In contrast to ordinary derivatives, defining fractional order derivatives of a
specific function necessitates the existence of its complete history. Such a non-local feature,
i.e., the memory consequence, has made it much more practical to explain various real-
world physical systems using fractional differential equations. Investigating dynamics,
including complexity, chaos, stability, bifurcation, and synchronization of these fractional
order systems, has recently become an interesting research field in nonlinear sciences [6–13].
In order to study the real-world physical systems’ dynamic behavior, it is essential to
determine how these solution trajectories can change over slight perturbations. Therefore,
performing and developing various numerical techniques to analyze and simulate the
systems’ nonlinear dynamics is important. Considering fractional derivatives, analytic-
numeric approaches to fractional calculus frequently depend on versions of the Riemann-
Liouville, Caputo, Grunwald-Letnikov, Riesz, or other approaches, which were discussed
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in previous studies during the past few years [14–16]. This study, however, will use
Caputo’s approach of fractional differentiation, benefiting from Caputo’s approach that
initial conditions of the fractional partial differential equations, i.e., (FPDEs) with Caputo’s
derivatives take the same conventional form as in integer order.

Differential equations (DEs) can be used for modeling many chemical, biological, and
physical phenomena. Because FPDEs have a significant impact on many applied disciplines,
particularly nonlinear ones such as fluid flow, biological diffusion of populations, dynamical
systems, control theory, electromagnetic waves, etc., there has been a growing interest in
them in recent years [17–21]. Most scientific phenomena in various disciplines such as
physics, biological systems, and engineering are nonlinear problems; therefore, it might
be challenging to find their exact solutions, e.g., physical problems are typically modeled
by utilizing higher nonlinear FPDEs, thereby finding exact solutions for these problems is
quite challenging. Thus, numerical as well as approximate methods must be employed.
Numerous useful techniques were used for solving linear and nonlinear FPDEs, including
the variational iteration technique, the Adomian decomposition technique, the homotopy
analysis technique, the homotopy perturbation technique, and the fractional residual power
series technique [22–28].

The fractional power series method (FPSM) has been employed to solve several classes
of differential and integral equations of the fractional order if the solution of the equa-
tion can be extended into a fractional power series [29]. Moreover, FPSM is a fast and
easy method utilized to determine the fractional power series solution coefficients be-
cause if we compare the computational effort required to compute the solutions of the
FPDEs in FPSM with other methods, it becomes clear that it is much less. Moreover,
the results are much better, as the speed of implementation on mathematical packages
helps to obtain the results in less time and with more accuracy, especially in non-linear
problems [30–32]. Recently, the FPSM has received the attention of many researchers,
whereby various fractional integral and differential equations were investigated success-
fully by using FPSM, involving fractional Fokker–Planck equations [33], Sawada–Kotera–
Ito, Lax, and Kaup–Kupershmidt equations [34], fractional Fredholm integrodifferential
equation of order 2β arising in natural sciences [35]. The Laplace transform (LT) technique
represents a simple technique for solving several kinds of linear differential integral and
integrodifferential equations, as well as a specific class of linear FPDEs [5]. Solving linear
DEs by LT technique involves three steps. Transforming the main DEs into the Laplace
space represents the first step of this process. Solve the new equation algebraically in the
Laplace space in the second step. The last step involves transforming back the obtained
solution in the previous step into the initial space, which solves the problem at hand [36].

Overall, there are no semi-approximate or conventional analytical methods that can
produce accurate closed-form or approximate solutions for nonlinear FPDE systems. Ac-
cordingly, there is a pressing need for efficient numerical methods so that accurate ap-
proximate solution can be found for these models for extended periods. Motivated by
the above-mentioned discussion, designing an innovative iterative algorithm to produce
analytical solutions to the nonlinear FPDE systems is the main aim of our study. The
motivation of this study is to present an analytical method called LFPSM to solve a nonlin-
ear system of FPDEs. To specify the efficacy and accuracy of this method, we apply it to
solve three nonlinear systems of FPDEs and compare the results obtained with the exact
solutions and solutions obtained by other methods. According to our best knowledge,
the proposed method has not been applied to find analytical solutions to Broer–Kaup and
Burgers’ systems of fractional orders in the literature, which intensely motivated this work.

This study primarily aims to generate accurate approximate solutions to nonlinear
FPDE systems in the Caputo sense, which are subject to proper initial conditions by using
an innovative analytical algorithm. This algorithm is called Laplace FPSM, which has been
suggested and proved in [37]. It is worth mentioning that this newly introduced method
relies on transforming the considered equation into the LT space so that a sequence of
Laplace series solutions to the new equation form is established, and then the solution to the
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considered equation can be established by utilizing the inverse LT. Without perturbation,
linearization, or discretization, this innovative method can be applied to generate the
FPS expansion solutions for both linear and nonlinear FPDEs [38,39]. Furthermore, this
technique, unlike the conventional FPSM, does not necessitate matching the corresponding
coefficients terms nor the utilization of a relation of recursion. The technique offered is
based on the limit concept for finding the variable coefficients. Unlike FPSM, which needs
numerous times to compute different fractional derivatives in the steps of the solution,
only a few computations are needed to determine the coefficients specified. Therefore,
this proposed method has the capability of yielding closed-form solutions, in addition to
accurate approximate solutions, by involving a fast convergence series.

The rest of the article is organized as follows. A review of some necessary definitions,
properties, and theorems concerning fractional calculus, Laplace transform, and Laplace
fractional expansion is presented in Section 2. The methodology for solving a system of
nonlinear time-FPDEs by Laplace FPSM is deeply investigated in Section 3. In Section 4,
the Broer-Kaup (BK) system of nonlinear time FPDEs, and two Burgers’ systems of non-
linear time FPDEs are solved to show that our approach is accurate and applicable. The
results are debated graphically and numerically in Section 5. Finally, Section 6 is lifted for
the conclusions.

2. Preliminary Concepts

This section is devoted to overviewing the essential definitions and theorems of
fractional differentiation, in addition, to giving a brief for some preliminary definitions and
necessary theorems regarding LT, which will be used in sections three and four.

Definition 1. For n ∈ N, and 𝒶 ∈ R+the time-fractional derivative in the Caputo sense for the
real-valued function U (𝓍, 𝓉) is defined as: [3]

D𝒶
𝓉 U (𝓍, 𝓉) =

⎧⎨⎩In−α
𝓉 (Dn

t U (𝓍, 𝓉)), 0 < n − 1 < 𝒶 ≤ n,

Dn
𝓉U (𝓍, 𝓉), 𝒶 = n,

where Dn
t = ∂n

∂tn , and I t is the R-L fractional integral operator and which is given by:

I𝒶
𝓉 U (𝓍, 𝓉) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(𝒶)

t∫
0

U (x,η)
(𝓉−η)1−𝒶 dη, 0 ≤ η < 𝓉,𝒶 > 0,

U (𝓍, 𝓉) 𝒶 = 0.

Consequently, for n − 1 < 𝒶 ≤ n, β > −1 and 𝓉 ≥ 0, the operators D𝒶
𝓉 and Iα

𝓉 satisfy the
following properties:

1. D𝒶
𝓉 c = 0, c ∈ R.

2. D𝒶
𝓉 𝓉

β = Γ(β+1)
Γ(β+1−𝒶)

𝓉β−𝒶.

3. D𝒶
𝓉 I𝒶

𝓉 U (𝓍, 𝓉) = U (𝓍, 𝓉).

4. I𝒶
𝓉 D

𝒶
𝓉 U (𝓍, 𝓉) = U (𝓍, 𝓉) − ∑n−1

j=0 Dj
𝓉(𝓍, 0+) 𝓉

j

j! , for U ∈ Cn[a, b], n −1 < 𝒶 ≤ n,
n ∈ N and a, b ∈ R.

Definition 2. The Laplace transformation (LT) of the piecewise continuous function U (𝓍, 𝓉) on
I × [0 , ∞) and of exponential order δ is given by: [38]

U(𝓍, s) = L[U (𝓍, 𝓉)] :=
∫ ∞

0
e−s𝓉U (𝓍, 𝓉)d𝓉, s > δ,

and the inverse LT of the transform function U(𝓍, s) is given by:

U (𝓍, 𝓉) = L−1[U(𝓍, s)] =
∫ c+i∞

c−i∞
es𝓉U(𝓍, s)ds, c = Re(s) > δ0,
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where δ0 lies in the right half plane of the absolute convergence of the Laplace integral.

Lemma 1. Let U (𝓍, 𝓉) and V(𝓍, 𝓉) be two piecewise continuous functions defined on
I × [0 , ∞) and of exponential order δ1 and δ2, respectively, where δ1 < δ2. Suppose that
U(𝓍, s) = L[U (𝓍, 𝓉)],

∨
(𝓍, s) = L[V(𝓍, 𝓉)] and {a, b} ∈ R. Then, [38]

1. L[aU (𝓍, 𝓉) + bV(𝓍, 𝓉)] = aU(𝓍, s) + b
∨
(𝓍, s),𝓍 ∈ I, s > δ1.

2. L−1[aU(𝓍, s) + bx(
∨

, s)] = aU (𝓍, 𝓉) + bV(𝓍, 𝓉), x ∈ I, 𝓉 ≥ 0.
3. L

[
ea𝓉U (𝓍, 𝓉)

]
= U(𝓍, s− a), x ∈ I, s > a + δ1.

4. lim
s→∞

sU(𝓍, s) = U (𝓍, 0), 𝓍 ∈ I.

Lemma 2. Let U (𝓍, 𝓉) be a piecewise continuous function defined on I × [0 , ∞) and of exponential
order δ, and U(𝓍, s) = L[U (𝓍, 𝓉)]. Then, [31]

1. L[IIIU (𝓍, 𝓉)] = s𝒶−1U(x𝓍, s), 𝒶 > 0.
2. L[D𝒶

𝓉 U (𝓍, 𝓉) ] = s𝒶U(𝓍, s)− ∑n−1
k=0 s𝒶−k−1Dk

t U (𝓍, 0), n − 1 < 𝒶 ≤ n.

3. L
[
D

j𝒶
𝓉 U (𝓍, 𝓉)

]
= sj𝒶U(𝓍, s) − ∑

j−1
k=0 s

(j−k)𝒶−1Dk𝒶
𝓉 U (𝓍, 0), 0 < 𝒶 ≤ 1, where

D
j𝒶
𝓉 = D𝒶

𝓉 ·D𝒶
𝓉 ···D𝒶

𝓉 (j-times).

Proof. The proof is in [38]. �

Theorem 1. Let U (𝓍, 𝓉) be a piecewise continuous function defined on I × [0 , ∞) and of expo-
nential order δ. Suppose that the function U(𝓍, s) = L[U (𝓍, 𝓉)] has the following fractional
expansion (FE): [38]

U(𝓍, s) =
∞

∑
n=0

𝒽n(𝓍)
snα+1 , x ∈ I, s > δ, 0 < 𝒶 ≤ 1.

Then, 𝒽n(𝓍) = Dn𝒶
𝓉 U (𝓍, 0).

Proof. The proof is in [38]. �

Remark 1. The inverse LT L−1[U(𝓍, s)] = U (𝓍, 𝓉), in Theorem 1 is in the following expansion
series (FSE) form:

U (𝓍, 𝓉) =
∞

∑
n=0

Dn𝒶
𝓉 U (𝓍, 0)

𝓉n𝒶

Γ(n𝒶+ 1)
, 0 < α ≤ 1, 𝓉 > 0.

Theorem 2. Let U (𝓍, 𝓉) be an exponential function of order δ defined on I × [0 , ∞),
and let U(𝓍, s) = L[U (𝓍, 𝓉)] can be represented as the FE in Theorem 1. If∣∣∣sL[D(n+1)𝒶

𝓉 U (𝓍, 𝓉)
]∣∣∣ ≤ M(𝓍), on I × (δ , γ] where 0 < 𝒶 ≤ 1, then the reminder Rn(𝓍, s)

of the FE in Theorem 1 satisfies the following inequality: [38]

|Rn(𝓍, s)| ≤ M(𝓍)

s1+(n+1)𝒶
, x ∈ I, δ < s ≤ γ

Proof. The proof is in [38]. �

Theorem 3. If 𝒶 ∈ 0, 1], ‖ Uk+1(𝓍, 𝓉) ‖≤ 𝒶 ‖ Uk(𝓍, 𝓉) ‖ gives ∀k ∈ N and 0 < t < T < 1,
then the series of numerical solutions converges to the exact solution [39].

Proof. We notice that ∀ 0 < 𝓉 < T < 1,
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‖ U (𝓍, 𝓉)− Uk(𝓍, 𝓉) ‖=

∣∣∣∣∣∣
∣∣∣∣∣∣

∞

∑
m=k+1

Um(𝓍, 𝓉)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∞

∑
m=k+1

‖ Um(𝓍, 𝓉 ‖)

≤‖ ℊ(η) ‖

∣∣∣∣∣∣
∣∣∣∣∣∣

∞

∑
m=k+1

Cm

∣∣∣∣∣∣
∣∣∣∣∣∣ = 𝒶k+1

1−𝒶 ‖ ℊ(η) ‖→ 0 as k → ∞.�

3. The Methodology of Laplace RPSM

In this part, we present the fundamental idea of the Laplace RPSM for solving the
system of time FPDEs with initial conditions. Our strategy for using the proposed scheme
is to rely on coupling the Laplace transform and the RPS approach. More precisely, consider
the system of FPDEs with the initial conditions of the form:{

D𝒶
t U(η, 𝓉) = A1[U(η, 𝓉)] +A2[U(η, 𝓉)], 0 < 𝒶 ≤ 1,

U(η, 0) = Pj(η), j = 1, 2, . . . , n ,
(1)

where A1, A2 are two linear or nonlinear operators such that
U(η, 𝓉) = (U1(η, 𝓉), U2(η, 𝓉), . . . , Un(η, 𝓉)), is the unknown vector function to be deter-
mined, and η = (η1, η2, . . . , ηm) ∈ Rm, n, m ∈ R. Here, D𝒶

t refers to the time-fractional
derivative of order 𝒶 ∈ (0, 1], in the Caputo meaning.

To build the approximate solution of (1) by using the Laplace RPSM, one can accom-
plish the following procedure:

Step 1: Taking the LT on the two sides of (1) and employing the initial data of (1), as
well as relying on Lemma 2, part (2), we get:

u(η, s) =
Pj(η)
s − 1

s𝒶 (L{A1[U(η, 𝓉)]}+ L{A2[U(η, 𝓉)]}),
where u(η, s) = L[U(η, 𝓉)](s), s > δ.

(2)

Step 2: Based on Theorem 1, we suppose that the approximate solution of the Laplace
Equation (2) has the following Laplace fractional expansions:

𝓊1(η, s) = P1(η)
s +

∞
∑

n=1

𝒽n(η)
sn𝒶+1 , η ∈ I, s > δ ≥ 0,

𝓊2(η, s) = P2(η)
s +

∞
∑

n=1

𝒽n(η)
sn𝒶+1 , η ∈ I, s > δ ≥ 0,

...

𝓊n(η, s) = Pn(η)
s +

∞
∑

n=1

𝒽n(η)
sn𝒶+1 , η ∈ I, s > δ ≥ 0,

(3)

and the k − th Laplace series solutions take the following form:

u1,k(η, s) = P1(η)
s +

k
∑

n=1

𝒽n(η)
sn𝒶+1 , η ∈ I, s > δ ≥ 0,

u2,k(η, s) = P2(η)
s +

k
∑

n=1

𝒽n(η)
sn𝒶+1 , η ∈ I, s > δ ≥ 0,

...

un,k(η, s) = Pn(η)
s +

k
∑

n=1

𝒽n(η)
sn𝒶+1 , η ∈ I, s > δ ≥ 0.

(4)

Step 3: Define the k − th Laplace fractional residual function of (2) as:

L
(

Resuk (η, s)
)
=

Pj(η)

s
− 1

s𝒶
(L{A1[U(η, 𝓉)]}+ L{A2[U(η, 𝓉)]}), (5)

and the Laplace fractional residual function of (2) can be defined as:
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lim
k→∞

L
(

Resuuuk (η, s)
)
= L(Resuuu(η, s))

=
Pj(η)
s − 1

s𝒶 (L{A1[U(η, 𝓉)]}+ L{A2[U(η, 𝓉)]}).
(6)

As in [37–39], some of the beneficial facts of Laplace residual function, which are
fundamental in constructing the approximate solution, are listed as follows:

• lim
k→∞

L
(

Resuuuk (η, s)
)
= L(Resuuu(η, s)), for η ∈ I, s > δ ≥ 0.

• L(Resuuu(η, s)) = 0, for η ∈ I, s > δ ≥ 0.
• lim

s→∞
sk𝒶+1L

(
Resuuuk (η, s)

)
= 0, for η ∈ I, s > δ ≥ 0, and k = 1, 2, 3, . . .

Step 4: The k − th Laplace fractional residual function of (5) is substituted by the k − th
Laplace series solution (4).

Step 5: By solving the system lim
s→∞

sk𝒶+1L
(

Resuuuk (η, s)
)
= 0, the unknown coefficients

𝒽k(η), for k = 1, 2, 3, . . ., easily could be founded. Then, we accumulate the received
variable coefficients in terms of the Laplace fractional expansion series (4) uj,k(η, s).

Step 6: The approximate solution Uj,k(η, 𝓉), of the main Equation (1), can be attained
by applying the inverse Laplace transform operator on both sides of the obtained Laplace
series solution.

4. Numerical Examples

In this section, we show that the Laplace RPSM is superior, efficient, and applicable,
which is achieved by testing three nonlinear time-FPDEs systems. It should be noted
here that all numerical and symbolic calculations are made using the Mathematica 12
software package.

Example 1. Consider the following Broer-Kaup system of nonlinear time-FPDEs:

∂𝒶U
∂𝓉𝒶 + U ∂U

∂x + ∂V
∂x = 0,

∂𝒶V
∂𝓉𝒶 + ∂U

∂x + ∂(UV)
∂x + ∂3U

∂x3 = 0,

subject to ICs
U (x, 0) = 1 + 2tanh(x), and V(x, 0) = 1 − 2tanh2(x),

(7)

where 𝒶 ∈ (0, 1] and (x, 𝓉) ∈ R × [0, 1]. The exact solutions when 𝒶 = 1, are
(U (x, 𝓉), V(x, 𝓉)) =

(
1 − 2tanh(𝓉− x), 1 − 2tanh2(x − 𝓉)

)
.

By applying the LT operator on (7) and using the second part of Lemma 2 and the ICs
of (7), the Laplace fractional equations are:

U(x, s) = 1+2tanh(x)
s − 1

s𝒶L
{
L−1{U} ∂

∂xL−1{U}
}
− 1

s𝒶L
{

∂
∂xL−1{∨}},∨

(x, s) = 1−2tanh2(x)
s − 1

s𝒶L
{

∂
∂xL−1{U}

}
−L ∂

∂x
{
L−1{U}L−1{∨}}

− 1
s𝒶L

{
∂3

∂x3 L−1{U}
}

,

(8)

where U(x, s) = L[U (x, 𝓉)] and
∨
(x, s) = L[V(x, 𝓉)].

According to the last discussion of the proposed method, the k − th Laplace series
solutions, Uk(x, s) and

∨
k(x, s) for (8) are expressed as:

Uk(x, s) = 1+2tanh(x)
s +

k

∑
n=1

𝒽n(x)
sn𝒶+1 ,

∨
k(x, s) = 1−2tanh2(x)

s +
k

∑
n=1

ℊn(x)
sn𝒶+1 .

(9)

Hence, the k − th Laplace fractional residual functions of (8) is defined as:
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L
(

ResUk (x, s)
)
=

k
∑

n=1

𝒽n(x)
sn𝒶+1 +

1
s𝒶L

{
L−1{Uk} ∂

∂xL−1{Uk}
}
+ 1

s𝒶L
{

∂
∂xL−1{∨k}

}
,

L
(

Res∨k (x, s)
)
=

k
∑

n=1

ℊn(x)
sn𝒶+1 +

1
s𝒶L

{
∂

∂xL−1{Uk}
}
+ L ∂

∂x
{
L−1{Uk}L−1{∨k}

}
+ 1

s𝒶L
{

∂3

∂x3 L−1{Uk}
}

.
(10)

The 1 − st Laplace fractional residual functions can be carried out by letting k = 1,
in (10):

L
(

ResU1(x, s)
)
= 𝒽1(x)

s𝒶+1 + 1
s𝒶L

{
L−1

{
1+2tanh(x)

s + 𝒽1(x)
s𝒶+1

}
∂

∂xL−1
{

1+2tanh(x)
s + 𝒽1(x)

s𝒶+1

}}
+ 1

s𝒶L
{

∂
∂xL−1

{
1−2tanh2(x)

s + ℊ1(x)
s𝒶+1

}}
= 1

s𝒶+1

(
𝒽1(x) + 2sec h2(x)

)
+ 1

s2𝒶+1

(
2𝒽1(x)sec h2(x) +ℊ′

1(x) +𝒽′
1(x) + 2𝒽′

1(x)tanh(x)
)

+ 1
s3𝒶+1 (𝒽1(x)𝒽′

1(x)) Γ(2𝒶+1)
(Γ(𝒶+1))2 ,

L
(

Res∨
1(x, s)

)
= ℊ1(x)

s𝒶+1 + 1
s𝒶L

{
∂

∂xL−1
{

1+2tanh(x)
s + 𝒽1(x)

s𝒶+1

}}
+ 1

s𝒶L ∂
∂x

{
L−1

{
1+2tanh(x)

s + 𝒽1(x)
s𝒶+1

}
L−1

{
1−2tanh2(x)

s + ℊ1(x)
s𝒶+1

}}
+ 1

s𝒶L
{

∂3

∂x3 L−1
{

1+2tanh(x)
s + 𝒽1(x)

s𝒶+1

}}
= 1

s𝒶+1

(
ℊ1(x)− 4tanh(x)sec h2(x)

)
+ 1

s2𝒶+1

(
2ℊ1(x)sec h2(x)− 4𝒽1(x)tanh(x)sec h2(x) +ℊ′

1(x) + 2ℊ′
1(x)tanh(x)

+2𝒽′
1(x)sec h2(x) +𝒽1

(3)(x)
)
+ 1

s3𝒶+1 (𝒽1(x)ℊ′
1(x) +ℊ1(x)𝒽′

1(x)) Γ(2𝒶+1)
(Γ(𝒶+1))2 .

(11)

To find the 1 − st Laplace series solution of (8), we simply take the next process
lim
s→∞

sx+1(L(ResU1(x, s)
)
, L
(

Res∨
1(x, s)

))
= (0, 0), which yields that 𝒽1(x) = −2sec h2(x)

and ℊ1(x) = 4tanh(x)sec h2(x). So, the 1 − st Laplace series solutions of (8) are:

U1(x, s) = 1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 ,∨
1(x, s) = 1−2tanh2(x)

s + 4tanh(x)sec h2(x)
s𝒶+1 .

(12)

For k = 2, in (10) the 2 − nd Laplace residual functions can be written as:
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L
(

ResU2(x, s)
)
= − 2sec h2(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

+ 1
s𝒶L

{
L−1

{
1+2tanh(x)

s − 2sec h2(x)
s𝒶+1 + 𝒽2(x)

s2𝒶+1

}
∂

∂xL−1
{

1+2tanh(x)
s − 2sec h2(x)

s𝒶+1

+𝒽2(x)
s2𝒶+1

}
+ 1

s𝒶L
{

∂
∂xL−1

{
1−2tanh2(x)

s + 4tanh(x)sec h2(x)
s𝒶+1 + ℊ2(x)

s2𝒶+1

}}
= 1

s2𝒶+1

(
𝒽2(x) + 4tanh(x)sec h2(x)

)
+ 1

s3𝒶+1 (2𝒽2(x)sec h2(x) +ℊ′
2(x) +𝒽′

2(x)

+2𝒽′
2(x)tanh(x)− 8tanh(x)sec h4(x) Γ(2𝒶+1)

(Γ(𝒶+1))2 )

+ 1
s4𝒶+1

(
4𝒽2(x)tanh(x)sec h2(x)− 2𝒽′

2(x)sec h2(x)
)

Γ(3𝒶+1)
Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1 (𝒽2(x)𝒽′

2(x)) Γ(4𝒶+1)
(Γ(2𝒶+1))2 ,

L
(

Res∨
2(x, s)

)
= 4tanh(x)sec h2(x)

s𝒶+1 + ℊ2(x)
s2𝒶+1 +

1
s𝒶L

{
∂

∂xL−1
{

1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

}}
+ 1

s𝒶L ∂
∂x

{
L−1

{
1+2tanh(x)

s − 2sec h2(x)
s𝒶+1 + 𝒽2(x)

s2𝒶+1

}
L−1

{
1−2tanh2(x)

s

+ 4tanh(x)sec h2(x)
s𝒶+1 + ℊ2(x)

s2𝒶+1

}
+ 1

s𝒶L
{

∂3

∂x3 L−1
{

1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

}}
= 1

s2𝒶+1

(
ℊ2(x)− 4sec h4(x)(cosh(2x)− 2)

)
+ 1

s3𝒶+1

(
𝒽2

(3)(x)− 4𝒽2(x)tanh(x)sec h2(x) +ℊ′
2(x) + 2ℊ′

2(x)tanh(x)

+2𝒽′
2(x)sec h2(x) + 2ℊ2(x)sec h2(x)

+

((
16 cosh(2x)sec h6(x)− 24sec h6(x)

)
Γ(2𝒶+1)
(Γ(𝒶+1))2

))
+ 1

s4𝒶+1

(
4ℊ2(x)tanh(x)sec h2(x)− 8𝒽2(x)sec h2(x) + 12𝒽2(x)sec h4(x)

−2ℊ′
2(x)sec h2(x) + 4𝒽′

2(x)tanh(x)sec h2(x)
)

Γ(3𝒶+1)
Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1 (𝒽2(x)ℊ′2(x) +ℊ2(x)𝒽′2(x)) Γ(4𝒶+1)

(Γ(2𝒶+1))2 .

(13)

To find the 2 − nd Laplace series solution of (8), we simply find out the next pro-
cess lim

s→∞
s2𝒶+1(L(ResU2(x, s)

)
, L(Resx2(x, s))

)
= (0, 0), and by solving limits, we get

𝒽2(x) = −4tanh(x)sec h2(x) and ℊ2(x) = 4sec h4(x)(cosh(2x)− 2). So, the 2 − nd
Laplace series solution of (8) could be expressed as:

U2(x, s) = 1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 − 4tanh(x)sec h2(x)
s2𝒶+1 ,∨

2(x, s) = 1−2tanh2(x)
s + 4tanh(x)sec h2(x)

s𝒶+1 + 4sec h4(x)(cosh(2x)−2)
s2𝒶+1 .

(14)

Similarly, for k = 3, we have:
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L
(

ResU3(x, s)
)
= − 2sec h2(x)

s𝒶+1 − 4tanh(x)sec h2(x)
s2𝒶+1 + 𝒽3(x)

s3𝒶+1

+ 1
s𝒶L

{
L−1

{
1+2tanh(x)

s − 2sec h2(x)
s𝒶+1 − 4tanh(x)sec h2(x)

s2𝒶+1 + 𝒽3(x)
s3𝒶+1

}
∂

∂xL−1
{

1+2tanh(x)
s

− 2sec h2(x)
s𝒶+1 − 4tanh(x)sec h2(x)

s2𝒶+1 + 𝒽3(x)
s3𝒶+1

}
}

+ 1
s𝒶L

{
∂

∂xL−1
{

1−2 tan h2(x)
s + 4tan h(x)sec h2(x)

s𝒶+1 + 4 sec h4(x)(cosh(2,x)−2)
s2𝒶+1 + ℊ3(x)

s3𝒶+1

}}
,

L
(

Res∨
3(x, s)

)
= 4tanh(x)sec h2(x)

s𝒶+1 + 4sec h4(x)(cosh(2x)−2)
s2𝒶+1 + ℊ3(x)

s3𝒶+1

+ 1
s𝒶L

{
∂

∂xL−1
{

1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 − 4tanh(x)sec h2(x)
s2𝒶+1 + 𝒽3(x)

s3𝒶+1

}}
+L ∂

∂x

{
L−1

{
1+2tanh(x)

s − 2sec h2(x)
s𝒶+1 − 4tanh(x)sec h2(x)

s2𝒶+1

+𝒽3(x)
s3𝒶+1

}
L−1

{
1−2tanh2(x)

s + 4tanh(x)sec h2(x)
s𝒶+1 + 4sec h4(x)(cosh(2x)−2)

s2𝒶+1 + ℊ3(x)
s3𝒶+1

}}
+ 1

s𝒶L
{

∂3

∂x3 L−1
{

1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 − 4tanh(x)sec h2(x)
s2𝒶+1 + 𝒽3(x)

s3𝒶+1

}}
.

(15)

By solving lim
s→∞

s3𝒶+1(L(ResU3(x, s)
)
, L
(

Res∨
3(x, s)

))
= (0, 0). It yields that:

𝒽3(x) = −4sec h4(x)(cosh(2x)− 2) and ℊ3(x) = 8sec h4(x)tanh(x)(cosh(2x)− 5). So,
the 3 − rd Laplace series solution of (8) could be written as:

U3(x, s) = 1+2tanh(x)
s − 2sec h2(x)

s𝒶+1 − 4tanh(x)sec h2(x)
s2𝒶+1 − 4sec h4(x)(cosh(2x)−2)

s3𝒶+1 ,∨
3(x, s) = 1−2tanh2(x)

s + 4tanh(x)sec h2(x)
s𝒶+1 + 4sec h4(x)(cosh(2x)−2)

s2𝒶+1

+ 8sec h4(x)tanh(x)(cosh(2x)−5)
s3𝒶+1 .

(16)

Using Mathematica, we can perform the aforesaid steps for an arbitrary k, and
using the fact lim

s→∞
sk𝒶+1(L(ResUk (x, s)

)
, L
(

Res∨k (x, s)
))

= (0, 0), one can obtain that

𝒽k(x) = (−1)k d(k)

dx(k)
(2tanh(x)) and ℊk(x) = (−1)k d(k)

dx(k)

(
−2tanh2(x)

)
. Thus, the k − th

Laplace series solution of (8) could be reformulated by the following fractional expansions:

Uk(x, s) =

(
1+2tanh(x)

s −
d

dx (2tanh(x))
s𝒶+1 +

d(2)

dx(2)
(2tanh(x))

s2𝒶+1 −
d(3)

dx(3)
(2tanh(x))

s3𝒶+1 + . . .

+(−1)k
d(k)

dx(k)
(2tanh(x))

sk𝒶+1

)
= 1+2tanh(x)

s

k
∑

n=1
(−1)n

d(n)

dx(n)
(2tanh(x))

sn𝒶+1 ,

∨
k(x, s) =

(
1−2tanh2(x)

s −
d

dx (−2tanh2(x))
s𝒶+1 +

d(2)

dx(2)
(−2tanh2(x))
s2𝒶+1 −

d(3)

dx(3)
(−2tanh2(x))
s3𝒶+1 + . . .

+(−1)k
d(k)

dx(k)
(−2tanh2(x))
sk𝒶+1

)
= 1−2tanh2(x)

s +
k
∑

n=1
(−1)n

d(n)

dx(n)
(−2tanh2(x))
sn𝒶+1 .

(17)

Finally, by applying the inverse Laplace transform for the obtained expansions (17),
we conclude that the k − th approximate solution of the time-fractional nonlinear system
(7) can be formulated as:

Uk(x, x) = 1 + 2tanh(x) +
k
∑

n=1
(−1)n d(n)

dx(n)
(2tanh(x)) xnx

Γ(n𝒶+1) ,

Vk(x, x) = 1 − 2tanh2(x) +
k
∑

n=1
(−1)n d(n)

dx(n)

(
−2tanh2(x)

)
xnx

Γ(n𝒶+1) .
(18)

When k → ∞ and 𝒶 = 1 in (18), we obtain the Maclaurin series expansions of the
closed form:
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U (x, 𝓉) = 1 + 2tanh(x) +
∞
∑

n=1
(−1)n d(n)

dx(n)
(2tanh(x)) 𝓉

n

n!

= 1

+
∞
∑

n=0
(−1)n d(n)

dx(n)
(2tanh(x)) 𝓉

n

n! = 1 +
∞
∑

n=0
(−1)n

(
d(n)

d𝓉(n)
(2tanh(x + 𝓉))|𝓉=0

)
𝓉n

n!

= 1 +
∞
∑

n=0

(
d(n)

d𝓉(n)
(2tanh(x − 𝓉))|𝓉=0

)
𝓉n

n! = 1 + 2tanh(x − 𝓉) = 1 − 2tanh(𝓉− x),

V(x, x) = 1 − 2tanh2(x) +
∞
∑

n=1
(−1)n d(n)

dx(n)

(
−2tanh2(x)

)
𝓉n

n!

= 1

+
∞
∑

n=0
(−1)n d(n)

dx(n)

(
−2tanh2(x)

)
𝓉n

n!

= 1

+
∞
∑

n=0
(−1)n

(
d(n)

d𝓉(n)

(
−2tanh2(x + 𝓉)

)
|𝓉=0

)
𝓉n

n!

= 1 +
∞
∑

n=0

(
d(n)

d𝓉(n)

(
−2tanh2(x − 𝓉)

)
|𝓉=0

)
x𝓉
n! = 1 − 2tanh2(x − 𝓉),

(19)

and which is totally in agreement with the exact solution.
Example 2. Consider the Burgers’ system of nonlinear time fractional IVP:

∂𝒶U
∂𝓉𝒶 − ∂2U

∂x2 − 2U ∂U
∂x + U ∂V

∂x + V ∂U
∂x = 0,

∂𝒶V
∂𝓉𝒶 − ∂2V

∂x2 − 2V ∂V
∂x ++U ∂V

∂x + V ∂U
∂x = 0,

subject to ICs
U (x, 0) = sin(x) and V(x, 0) = sin(x),

(20)

where 𝒶 ∈ (0, 1] and (x, 𝓉) ∈ R × [0, 1]. The exact solutions when 𝒶 = 1, is
U (x, 𝓉) = sin(x)e−x and V(x, 𝓉) = sin(x)e−x.

By taking the Laplace transform operator on both sides of (20) and using the second
part of Lemma 2 and the initial conditions of (20), the Laplace fractional equations will be:

U(x, s) = sin(x)
s + 1

s𝒶L
{

∂2

∂x2 L−1{U}
}
+ 2

s𝒶L
{
L−1{U} ∂

∂xL−1{U}
}
− 1

s𝒶L
{
L−1{U} ∂

∂xL−1{∨}}
− 1

s𝒶L
{
L−1{∨} ∂

∂xL−1{U}
}

,∨
(x, s) = sin(x)

s + 1
s𝒶L

{
∂2

∂x2 L−1{∨}}+ 2
s𝒶L

{
L−1{∨} ∂

∂xL−1{∨}}− 1
s𝒶L

{
L−1{U} ∂

∂xL−1{∨}}
− 1

s𝒶L
{
L−1{∨} ∂

∂xL−1{U}
}

,

(21)

where U(x, s) = L[U (x, 𝓉)] and
∨
(x,𝓎, s) = L[V(x, 𝓉)].

According to the last discussion of the proposed method, the k − th Laplace series
solutions, Uk(x, s) and

∨
k(x, s) for (21) are expressed as:

Uk(x, s) = sin(x)
s +

k
∑

n=1

𝒽n(x)
sn𝒶+1 ,

∨
k(x, s) = sin(x)

s +
k
∑

n=1

ℊn(x)
sn𝒶+1 .

(22)

As well we define the k − th Laplace residual functions of (21) are:
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L
(

ResUk (x, s)
)
=

k
∑

n=1

𝒽n(x)
sn𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1{Uk}
}
− 2

s𝒶L
{
L−1{Uk} ∂

∂xL−1{Uk}
}

+ 1
s𝒶L

{
L−1{Uk} ∂

∂xL−1{∨k}
}
+ 1

s𝒶L
{
L−1{∨k} ∂

∂xL−1{Uk}
}

,

L
(

Res∨k (x, s)
)
=

k
∑

n=1

ℊn(x)
sn𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1{∨k}
}
− 2

s𝒶L
{
L−1{∨k} ∂

∂xL−1{∨k}
}

+ 1
s𝒶L

{
L−1{Uk} ∂

∂xL−1{xk}
}
+ 1

s𝒶L
{
L−1{∨k} ∂

∂xL−1{Uk}
}

.

(23)

By letting k = 1, in (23), the 1 − st Laplace residual functions are:

L
(

ResU1(x, s)
)
= 𝒽1(x)

s𝒶+1 − 1
s𝒶L

{
∂2

∂x2 L−1
{

sin(x)
s + 𝒽1(x)

s𝒶+1

}}
− 2

s𝒶L
{
L−1

{
sin(x)

s + 𝒽1(x)
s𝒶+1

}
∂

∂xL−1
{

sin(x)
s + 𝒽1(x)

s𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s + 𝒽1(x)
s𝒶+1

}
∂

∂xL−1
{

sin(x)
s + ℊ1(x)

s𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s + ℊ1(x)
s𝒶+1

}
∂

∂xL−1
{

sin(x)
s + 𝒽1(x)

s𝒶+1

}}
= 1

s𝒶+1 (𝒽1(x) + sin(x)) + 1
s2𝒶+1

(
cos(x)(ℊ1(x)−𝒽1(x)) + sin(x)(ℊ′

1(x)−𝒽′
1(x))−𝒽′′

1 (x)
)

+ 1
s3𝒶+1 (𝒽1(x)ℊ′

1(x) +ℊ1(x)𝒽′
1(x)− 2𝒽1(x)𝒽′

1(x)) Γ(2𝒶+1)
(Γ(𝒶+1))2 ,

L(Resx1(x, s)) = ℊ1(x)
s𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1
{

sin(x)
s + ℊ1(x)

s𝒶+1

}}
− 2

s𝒶L
{
L−1

{
sin(x)

s + ℊ1(x)
s𝒶+1

}
∂

∂xL−1
{

sin(x)
s + g1(x)

s𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s + 𝒽1(x)
s𝒶+1

}
∂

∂xL−1
{

sin(x)
s + ℊ1(x)

s𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s + ℊ1(x)
s𝒶+1

}
∂

∂xL−1
{

sin(x)
s + 𝒽1(x)

s𝒶+1

}}
= 1

s𝒶+1 (ℊ1(x) + sin(x))

+ 1
s2𝒶+1 (cos(x)(𝒽1(x)−ℊ1(x)) + sin(x)(𝒽′

1(x)−ℊ′
1(x))−ℊ1

′′ (x))

+ 1
s3𝒶+1 (ℊ1(x)𝒽′

1(x) +𝒽1(x)ℊ′
1(x)− 2ℊ1(x)ℊ′

1(x)) Γ(2𝒶+1)
(Γ(𝒶+1))2 .

(24)

To find the 1 − st Laplace series solution of (21), we simply take the next process
lim
s→∞

s𝒶+1(L(ResU1(x, s)
)
, L
(

Res∨
1(x, s)

))
= (0, 0), which yields that 𝒽1(x) = − sin(x)

and ℊ1(x) = − sin(x). Hence, the 1 − st Laplace series solutions of (21) are:

U1(x, s) = sin(x)
s − sin(x)

s𝒶+1 ,∨
1(x, s) = sin(x)

s − sin(x)
s𝒶+1 .

(25)

By letting k = 2, in (23), the 2 − nd Laplace residual functions are:
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L
(

ResU2(x, s)
)
=− sin(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1
{

sin(x)
s − sin(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

}}
− 2

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + 𝒽2(x)

s2𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + 𝒽2(x)

s2𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + ℊ2(x)
s2𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + ℊ2(x)

s2𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

}}
= 1

s2𝒶+1 (𝒽2(x)− sin(x))

+ 1
s3𝒶+1

(
cos(x)(ℊ2(x)−𝒽2(x)) + sin(x)(ℊ′

2(x)−𝒽′
2(x))−𝒽′′

2 (x)
)

+ 1
s4𝒶+1 (cos(x)(𝒽2(x)−ℊ2(x)) + sin(x)(𝒽′

2(x)−ℊ′
2(x))) Γ(3𝒶+1)

Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1 (𝒽2(x)ℊ′

2(x) +ℊ2(x)𝒽′
2(x)− 2𝒽2(x)𝒽′

2(x)) Γ(4𝒶+1)
(Γ(2𝒶+1))2 ,

L
(

ResV2(x, s)
)
=− sin(x)

s𝒶+1 + ℊ2(x)
s2𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1
{

sin(x)
s − sin(x)

s𝒶+1 + ℊ2(x)
s2𝒶+1

}}
− 2

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + ℊ2(x)

s2𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + ℊ2(x)
s2𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + 𝒽2(x)

s2𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + ℊ2(x)
s2𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + ℊ2(x)

s2𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + 𝒽2(x)
s2𝒶+1

}}
= 1

s2𝒶+1 (ℊ2(x)− sin(x))

+ 1
s3𝒶+1

(
cos(x)(𝒽2(x)−ℊ2(x)) + sin(x)(𝒽′

2(x)−ℊ′
2(x))−ℊ′′

2 (x)
)

+ 1
s4𝒶+1 (cos(x)(ℊ2(x)−𝒽2(x)) + sin(x)(ℊ′

2(x)−𝒽′
2(x))) Γ(3𝒶+1)

Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1 (ℊ2(x)𝒽′

2(x) +𝒽2(x)ℊ′
2(x)− 2ℊ2(x)ℊ′

2(x)) Γ(4𝒶+1)
(Γ(2𝒶+1))2 .

(26)

To find the 2 − nd Laplace series solution of (21), we simply find out the next pro-
cess lim

s→∞
s2𝒶+1(L(ResU2(x, s)

)
, L
(

ResV2(x, s)
))

= (0, 0), and by solving limits, we obtain

𝒽2(x) = sin(x) and ℊ2(x) = sin(x). Hence, the 2 − nd Laplace series solutions of (21) are:

U2(x, s) = sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 ,∨

2(x, s) = sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 .

(27)

Similarly, for k = 3, we have:

L
(

ResU3(x, s)
)
=− sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

𝒽3(x)
s3𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

𝒽3(x)
s3𝒶+1

}}
− 2

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 +
𝒽3(x)
s3𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

𝒽3(x)
s3𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 +
𝒽3(x)
s3𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

ℊ3(x)
s3𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 +
ℊ3(x)
s3𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

𝒽3(x)
s3𝒶+1

}}
,

L
(

ResV3(x, s)
)
=− sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

ℊ3(x)
s3𝒶+1 − 1

s𝒶L
{

∂2

∂x2 L−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

ℊ3(x)
s3𝒶+1

}}
− 2

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 +
ℊ3(x)
s3𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

ℊ3(x)
s3𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 +
𝒽3(x)
s3𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

ℊ3(x)
s3𝒶+1

}}
+ 1

s𝒶L
{
L−1

{
sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 +
ℊ3(x)
s3𝒶+1

}
∂

∂xL−1
{

sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 +

𝒽3(x)
s3𝒶+1

}}
.

(28)

By solving lim
s→∞

s3𝒶+1(L(ResU3(x, s)
)
, L
(

ResV3(x, s)
))

= (0, 0). It yields that:

𝒽3(x) = − sin(x) and ℊ3(x) = − sin(x). Hence, the 3 − rd Laplace series solutions
of (21) are:

U3(x, s) = sin(x)
s − sin(x)

s𝒶+1 + sin(x)
s2𝒶+1 − sin(x)

s3𝒶+1 ,∨
3(x, s) = sin(x)

s − sin(x)
s𝒶+1 + sin(x)

s2𝒶+1 − sin(x)
s3𝒶+1 .

(29)
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Using Mathematica, we can process the above steps for any k, and by the
fact that lim

s→∞
sk𝒶+1(L(ResUk (x, s)

)
, L
(

ResVk (x, s)
))

= (0, 0), one can obtain that

𝒽k(x) = (−1)k sin(x) and ℊk(x) = (−1)k sin(x). Thus, the k − th Laplace series solu-
tions of (21) could be formulated on the fractional expansion:

Uk(x, s) = sin(x)
(

1
s − 1

s𝒶+1 +
1

s2𝒶+1 − 1
s3𝒶+1 + . . . + (−1)k 1

sk𝒶+1

)
= sin(x)

k
∑

n=0

(−1)n

sn𝒶+1 ,

Vk(x, s) = sin(x)
(

1
s − 1

s𝒶+1 +
1

s2𝒶+1 − 1
s3𝒶+1 + . . . + (−1)k 1

sk𝒶+1

)
= sin(x)

k
∑

n=0

(−1)n

sn𝒶+1 .
(30)

In the end, we take the inverse LT for the obtained expansions (30) to get that the
k − th approximate solutions of the nonlinear system of time-FPDEs (20) have the form:

Uk(x, 𝓉) = sin(x)
k
∑

n=0

(−1)n𝓉n𝒶

Γ(n𝒶+1) ,

∨
k(x, 𝓉) = sin(x)

k
∑

n=0

(−1)n𝓉nx

Γ(n𝒶+1) .
(31)

When k → ∞ and 𝒶 = 1 in (31), the Maclaurin series expansions of the closed forms
are: U (x, 𝓉) = sin(x)e−𝓉,

V(x, 𝓉) = sin(x)e−𝓉.
(32)

and which is totally in agreement with the exact solution.
Example 3. Consider the Burgers’ system of nonlinear time-FPDEs:

∂𝒶U
∂x𝓉 + ∂V

∂x
∂W
∂𝓎 − ∂V

∂𝓎
∂W
∂x + U = 0,

∂𝒶V
∂𝓉β + ∂U

∂x
∂W
∂𝓎 + ∂U

∂𝓎
∂W
∂x − V = 0,

∂𝒶W
∂𝓉γ + ∂U

∂x
∂V
∂𝓎 + ∂U

∂𝓎
∂V
∂x −W = 0,

subject to ICs

U (x,𝓎, 0) = ex+𝓎, V(x,𝓎, 0) = ex−𝓎 and W(x,𝓎, 0) = e−x+𝓎,

(33)

where 𝒶 ∈ (0, 1] and (x,𝓎, 𝓉) ∈ R2 × [0, 1]. The exact solutions when 𝒶 = 1, are
(U (x,𝓎, 𝓉), V(x,𝓎, 𝓉), W(x,𝓎, 𝓉)) =

(
ex+𝓎−𝓉, ex−𝓎+𝓉, e−x+𝓎+𝓉

)
.

By taking the LT operator on both sides of (33) and using the second part of Lemma 2
and the ICs of (33), the Laplace fractional equations will be:

U(x,𝓎, s) = ex+𝓎

s − 1
s𝒶L

{
DxL−1{V}D𝓎L−1{W}

}
+ 1

s𝒶L
{

D𝓎L−1{V}DxL−1{W}
}
− 1

s𝒶U,

V(x,𝓎, s) = ex−𝓎

s − 1
s𝒶L

{
DxL−1{U}D𝓎L−1{W}

}
− 1

s𝒶L
{

D𝓎L−1{U}DxL−1{W}
}
+ 1

s𝒶 V,

W(x,𝓎, s) = e−𝓎+y

s − 1
s𝒶L

{
DxL−1{U}D𝓎L−1{V}

}
− 1

s𝒶L
{

D𝓎L−1{U}DxL−1{V}
}
+ 1

s𝒶W ,

(34)

where U(x,𝓎, s) = L[U (x,𝓎, 𝓉)], V(x,𝓎, s) = L[V(x,𝓎, 𝓉)] and W(x,𝓎, s) = L[W(x,𝓎, 𝓉)].
According to the last discussion of the proposed method, the k − th Laplace series

solutions Uk(x, y, s), Vk(x,𝓎, s) and Wk(x,𝓎, s) for (34) are expressed as:

Uk(x,𝓎, s) = ex+𝓎

s +
k
∑

n=1

𝒽n(x,𝓎)
sn𝒶+1 ,

∨
k(x,𝓎, s) = ex−𝓎

s +
k
∑

n=1

ℊn(x,𝓎)
sn𝒶+1 ,

W k(x,𝓎, s) = e−𝓎+y

s +
k
∑

n=1

fn(x,𝓎)
sn𝒶+1 .

(35)

As well, the k − th Laplace fractional residual functions of (34) are defined as:
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L
(

ResUk (x,𝓎, s)
)
=

k
∑

n=1

𝒽n(x,𝓎)
sn𝒶+1 + 1

s𝒶L
{

DxL−1{Vk}D𝓎L−1{W k}
}
− 1

s𝒶L
{

D𝓎L−1{Vk}DxL−1{W k}
}
+ 1

s𝒶Uk,

L
(

ResVk (x,𝓎, s)
)
=

k
∑

n=1

ℊn(x,𝓎)
sn𝒶+1 + 1

s𝒶L
{

DxL−1{Uk}D𝓎L−1{W k}
}
+ 1

s𝒶L
{

D𝓎L−1{Uk}DxL−1{W k}
}
− 1

s𝒶 Vk,

L
(

ResW k (x,𝓎, s)
)
=

k
∑

n=1

fn(x,𝓎)
sn𝒶+1 + 1

s𝒶L
{

DxL−1{Uk}D𝓎L−1{Vk}
}
+ 1

s𝒶L
{

D𝓎L−1{Uk}DxL−1{Vk}
}
− 1

s𝒶W k.

(36)

For k = 1, in (36), the 1 − st Laplace residual functions are expressed as:

L(ResU1 (x,𝓎, s))
= 𝒽1

s𝒶+1 +
1
s𝒶 L

{
DxL−1

{
ex−𝓎

s + ℊ1
s𝒶+1

}
D𝓎L−1

{
e−x+𝓎

s + f1
s𝒶+1

}}
− 1

s𝒶 L
{

D𝓎L−1
{

ex−𝓎

s + ℊ1
s𝒶+1

}
DxL−1

{
e−x+𝓎

s + f1
s𝒶+1

}}
+ 1

s𝒶

(
ex+𝓎

s + h1
s𝒶+1

)
= 1

s𝒶+1

(
𝒽1 + ex+𝓎)+ 1

s2𝒶+1

[
ex−𝓎

(
∂ f1
∂x + ∂f1

∂𝓎

)
+ e−x+𝓎

(
∂ℊ1
∂x + ∂ℊ1

∂𝓎

)
+𝒽1

]
+ 1

s3𝒶+1

(
∂ℊ1
∂x

∂f1
∂𝓎 − ∂f1

∂x
∂ℊ1
∂𝓎

)
Γ(2𝒶+1)
(Γ(𝒶+1))2 ,

L(ResV1 (x,𝓎, s))
= ℊ1

s𝒶+1 +
1
s𝒶 L

{
DxL−1

{
ex+𝓎

s + 𝒽1
s𝒶+1

}
D𝓎L−1

{
e−x+𝓎

s + f1
s𝒶+1

}}
+ 1

s𝒶 L
{

D𝓎L−1
{

ex+𝓎

s + 𝒽1
s𝒶+1

}
DxL−1

{
e−x+𝓎

s + f1
s𝒶+1

}}
− 1

s𝒶

(
ex−𝓎

s + ℊ1
s𝒶+1

)
= 1

s𝒶+1

(
ℊ1 − ex−𝓎)+ 1

s2𝒶+1

[
ex+𝓎

(
∂f1
∂x + ∂f1

∂𝓎

)
+ e−x+𝓎

(
∂𝒽1
∂x − ∂𝒽1

∂𝓎

)
−ℊ1

]
+ 1

s3𝒶+1

(
∂ℊ1
∂x

∂f1
∂𝓎 + ∂f1

∂x
∂𝒽1
∂𝓎

)
Γ(2β+1)
(Γ(β+1))2 ,

L
(

ResW1 (x,𝓎, s)
)

=
f1(x,𝓎)
s𝒶+1 + 1

s𝒶 L
{

DxL−1
{

ex+𝓎

s + 𝒽1
s𝒶+1

}
D𝓎L−1

{
ex−𝓎

s + ℊ1
s𝒶+1

}}
+ 1

s𝒶 L
{

D𝓎L−1
{

ex+𝓎

s + 𝒽1
s𝒶+1

}
DxL−1

{
e𝓎−y

s + ℊ1
s𝒶+1

}}
− 1

s𝒶

(
e−x+𝓎

s + f1
s𝒶+1

)
= 1

s𝒶+1

(
f1 − e−x+𝓎)+ 1

s2𝒶+1

[
e𝓎+y

(
∂ℊ1
∂x + ∂ℊ1

∂𝓎

)
− ex−𝓎

(
∂𝒽1
∂x − ∂𝒽1

∂𝓎

)
+ f1

]
+ 1

s3𝒶+1

(
∂𝒽1
∂x

∂ℊ1
∂𝓎 + ∂ℊ1

∂x
∂𝒽1
∂𝓎

)
Γ(2γ+1)
(Γ(γ+1))2 .

(37)

To find the 1 − st Laplace series solution of (34), we simply take the next process
lim
s→∞

s𝒶+1(L(ResU1(x,𝓎, s)
)
, L
(

ResV1(x,𝓎, s)
)
, L
(

ResW1(x,𝓎, s)
))

= (0, 0, 0), which yields

that 𝒽1(x,𝓎) = −ex+𝓎, ℊ1(x,𝓎) = ex−𝓎 and f1(x,𝓎) = e−x+𝓎. Hence, the 1 − st Laplace
series solutions of (34) are:

U1(x,𝓎, s) = ex+𝓎

s − ex+𝓎

s𝒶+1 ,∨
1(x,𝓎, s) = ex−𝓎

s + ex−𝓎

s𝒶+1 ,
W1(x,𝓎, s) = e−x+𝓎

s + e−x+𝓎

s𝒶+1 .
(38)

For k = 2, in (36), the 2 − nd Laplace residual functions are:
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L(ResU2 (x,𝓎, s))
= − ex+𝓎

s𝒶+1 +
𝒽2

s2𝒶+1 +
1
s𝒶 L

{
DxL−1

{
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ℊ2

s2𝒶+1

}
D𝓎′L−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + f2
s2𝒶+1

}}
− 1

s𝒶 L
{

D𝓎L−1
{

ex−𝓎

s + ex−𝓎

s𝒶+1 +
ℊ2

s2𝒶+1

}
DxL−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + f2
s2𝒶+1

}}
+ 1

s𝒶

(
ex+𝓎

s − ex+𝓎

s𝒶+1 +
𝒽2

s2𝒶+1

)
= 1

s2𝒶+1

(
𝒽2 − ex+𝓎)+ 1

s3𝒶+1

[
ex−y

(
∂f2
∂x + ∂f2

∂𝓎

)
+ e−x+𝓎

(
∂ℊ2
∂x + ∂ℊ2

∂𝓎

)
+𝒽2

]
+ 1

s4𝒶+1

[
ex−𝓎

(
∂f2
∂x + ∂f2

∂𝓎

)
+ e−x+𝓎

(
∂ℊ2
∂x + ∂ℊ2

∂𝓎

)]
Γ(3𝒶+1)

Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1

(
∂g2
∂x

∂f2
∂𝓎 − ∂f2

∂x
∂ℊ2
∂𝓎

)
Γ(4𝒶+1)

(Γ(2𝒶+1))2 ,

L(ResV2 (x,𝓎, s))
= ex−𝓎

s𝒶+1 +
ℊ2

s2𝒶+1 +
1
s𝒶 L

{
DxL−1

{
ex+𝓎

s − ex+𝓎

s𝒶+1 +
𝒽2

s2𝒶+1

}
D𝓎L−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + f2
s2𝒶+1

}}
+ 1

s𝒶 L
{

D𝓎L−1
{

ex+𝓎

s − ex+𝓎

s𝒶+1 +
𝒽2

s2𝒶+1

}
DxL−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + f2
s2𝒶+1

}}
− 1

s𝒶

(
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ℊ2

s2𝒶+1

)
= 1

s2𝒶+1

(
ℊ2 − ex−𝓎)+ 1

s3𝒶+1

[
ex+𝓎

(
∂f2
∂x + ∂f2

∂𝓎

)
+ e−x+𝓎

(
∂𝒽2
∂x − ∂𝒽2

∂𝓎

)
+ g2

]
+ 1

s4𝒶+1

[
−ex+𝓎

(
∂f2
∂x + ∂f2

∂𝓎

)
+ e−x+𝓎

(
∂𝒽2
∂x − ∂𝒽2

∂𝓎

)]
Γ(3𝒶+1)

Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1

(
∂𝒽
∂x

∂f2
∂𝓎 + ∂f2

∂x
∂𝒽2
∂𝓎

)
Γ(4𝒶+1)

(Γ(2𝒶+1))2 ,

L(ResW2 (x,𝓎, s))
= e−x+𝓎

s𝒶+1 + f2
s2𝒶+1 +

1
s𝒶 L

{
DxL−1

{
ex+𝓎

s − ex+𝓎

s𝒶+1 +
𝒽2

s2𝒶+1

}
D𝓎L−1

{
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ℊ2

s2𝒶+1

}}
+ 1

s𝒶 L
{

D𝓎L−1
{

ex+𝓎

s − ex+𝓎

s𝒶+1 +
𝒽2

s2𝒶+1

}
DxL−1

{
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ℊ2

s2𝒶+1

}}
− 1

s𝒶

(
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + f2
s2𝒶+1

)
=

= 1
s2𝒶+1

(
f2 − e−x+𝓎)+ 1

s3𝒶+1

[
ex+𝓎

(
∂ℊ2
∂x + ∂ℊ2

∂𝓎

)
− ex−𝓎

(
∂𝒽2
∂x − ∂𝒽2

∂𝓎

)
+ f2

]
− 1

s4𝒶+1

[
ex+𝓎

(
∂ℊ2
∂x + ∂ℊ2

∂𝓎

)
+ ex−𝓎

(
∂𝒽2
∂x − ∂𝒽2

∂𝓎

)]
Γ(3γ+1)

Γ(2𝒶+1)Γ(𝒶+1)

+ 1
s5𝒶+1

(
∂ℊ2
∂x

∂𝒽2
∂𝓎 + ∂𝒽2

∂x
∂ℊ2
∂𝓎

)
Γ(4𝒶+1)

(Γ(2𝒶+1))2 .

(39)

To find the 2 − nd Laplace series solution of (34), we simply find out the next
process lim

s→∞
s2𝒶+1(L(ResU2(x,𝓎, s)

)
, L
(

ResV2(x,𝓎, s)
)
, L
(

ResW2(x,𝓎, s)
))

= (0, 0, 0), and

by solving limits, we get 𝒽2(x,𝓎) = ex+𝓎, ℊ2(x,𝓎) = ex−𝓎 and f2(x,𝓎) = e−x+𝓎. Hence,
the 2 − nd Laplace series solutions of (34) are:

U2(x,𝓎, s) = ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 ,∨
2(x,𝓎, s) = ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 ,

W2(x,𝓎, s) = e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 .

(40)

Similarly, for k = 3, we have:
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L
(

R, e, sU3 , (x,𝓎, s)
)

= −ex+x

sx+1 + ex+x

s2x+1 +
x3

s3x+1

+ 1
s𝒶L

{
DxL−1

{
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ℊ3

s3𝒶+1

}
D𝓎L−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + f3
s2𝒶+1

}}
− 1

s𝒶L
{

D𝓎L−1
{

ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ℊ3

s3𝒶+1

}
DxL−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + f3
s2𝒶+1

}}
+ 1

s𝒶

(
ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 +
𝒽3

sax+1

)
,

L
(

Res∨
3(x,𝓎, s)

)
= ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ℊ3

s3𝒶+1

+ 1
s𝒶L

{
D𝓎L−1

{
ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 +
𝒽3

s3𝒶+1

}
D𝓎L−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + f3
s2𝒶+1

}}
+ 1

s𝒶L
{

D𝓎L−1
{

ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 +
𝒽3

s3𝒶+1

}
DxL−1

{
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + f3
s2𝒶+1

}}
− 1

s𝒶

(
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ℊ3

s3𝒶+1

)
,

L
(

ResW3(x,𝓎, s)
)

= e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + f3
s2𝒶+1

+ 1
s𝒶L

{
DxL−1

{
ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 +
𝒽3

s3𝒶+1

}
D𝓎L−1

{
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ℊ3

s3𝒶+1

}}
+ 1

s𝒶L
{

D𝓎L−1
{

ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 +
𝒽3

s3𝒶+1

}
DxL−1

{
ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ℊ3

s3𝒶+1

}}
− 1

s𝒶

(
e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + f3
s2𝒶+1

)
.

(41)

By solving lim
s→∞

s3x+1(L(ResU3(x, x, s)
)
, L(Resx3(x, x, s)), L

(
ResW3(x, x, s)

))
= (0, 0, 0),

it yields that: x3(x, y) = −ex+y, x3(x, x) = ex−x and f3(x, x) = e−x+x. Hence, the 3 − rd
Laplace series solutions of (34) are:

U3(x,𝓎, s) = ex+𝓎

s − ex+𝓎

s𝒶+1 +
ex+𝓎

s2𝒶+1 − ex+𝓎

s3𝒶+1 ,∨
3(x,𝓎, s) = ex−𝓎

s + ex−𝓎

s𝒶+1 +
ex−𝓎

s2𝒶+1 +
ex−𝓎

s3𝒶+1 ,

W3(x,𝓎, s) = e−x+𝓎

s + e−x+𝓎

s𝒶+1 + e−x+𝓎

s2𝒶+1 + e−x+𝓎

s3𝒶+1 .

(42)

Using Mathematica, we can process the above steps for any k, and by the fact that
lim
s→∞

sk𝒶+1(L(ResUk (𝓍,𝓎, s)
)
, L
(

Res∨k (𝓍,𝓎, s)
)
, L
(

ResWk (𝓍,𝓎, s)
))

= (0, 0, 0), one can ob-

tain that 𝒽k(𝓍,𝓎) = (−1)ke𝓍+𝓎, ℊk(𝓍,𝓎) = e𝓍−𝓎 and fk(𝓍,𝓎) = e−𝓍+𝓎. Thus, the kth-
Laplace series solutions of (34) could be formulated by the fractional expansions:

Uk(𝓍,𝓎, s) = e𝓍+𝓎
(

1
s − 1

s𝒶+1 +
1

s2𝒶+1 − 1
s3𝒶+1 + . . . + (−1)k 1

sk𝒶+1

)
= e𝓍+𝓎

k
∑

n=0

(−1)n

sn𝒶+1 ,

∨k(𝓍,𝓎, s) = e𝓍−𝓎
(

1
s +

1
s𝒶+1 +

1
s2𝒶+1 +

1
s3𝒶+1 + . . . + 1

sk𝒶+1

)
= e𝓍−𝓎

k
∑

n=0

1
sn𝒶+1 ,

W k(𝓍,𝓎, s) = e−𝓍+𝓎
(

1
s +

1
s𝒶+1 +

1
s2𝒶+1 +

1
s3𝒶+1 + . . . + 1

sk𝒶+1

)
= e−𝓍+𝓎

k
∑

n=0

1
sn𝒶+1 .

(43)

In the end, we take the inverse LT for the obtained expansions (43) to conclude that the
k − th approximate solutions of the nonlinear systems of time-FPDEs (33) have the form:

Uk(𝓍,𝓎, 𝓉) = e𝓍+𝓎
k
∑

n=0

(−1)n𝓉n𝒶

Γ(n𝒶+1) ,

Vk(𝓍,𝓎, 𝓉) = e𝓍−𝓎
k
∑

n=0

𝓉n𝒶

Γ(n𝒶+1) ,

Wk(𝓍,𝓎, 𝓉) = e−𝓍+𝓎
k
∑

n=0

𝓉n𝒶

Γ(n𝒶+1) .

(44)
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When k → ∞ and 𝒶 = 1 in (44), the Maclaurin series expansions of the closed
forms are: U (𝓍,𝓎, 𝓉) = e𝓍+𝓎−𝓉,

V(𝓍,𝓎, 𝓉) = e𝓍−𝓎+𝓉,
W(𝓍,𝓎, 𝓉) = e−𝓍+𝓎+𝓉,

(45)

and which is totally in agreement with the exact solution.

5. Graphical and Numerical Results

This section deals with the validity and efficiency of the Laplace RPSM for systems of
time-FPDEs discussed in Examples 1–3 through different graphical representations and
tabulated data for the obtained approximation and exact solutions.

The absolute error functions calculated demonstrate the accuracy of the Laplace RPSM.
Tables 1–3 illustrate several values of the approximate and exact solutions as well as the
absolute errors for systems of time-FPDEs (7), (20), and (44) at selected grid points in the
domain. From the tables, the approximate solutions are harmonic with the exact solutions,
which confirms the performance and accuracy of the Laplace RPSM, whilst the accuracy is
in advance by using only a few of the Laplace RPS iterations. Further, numerical simulations
for the attained results of the problems studied are achieved at various values of 𝒶𝒶𝒶 as
illustrated in Tables 4–6.

Table 1. Numerical results for Example 1 at 𝓍 = 1, 𝒶 = 1, and n = 7.

Numerical Results of U (𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i U (𝓍𝓍𝓍,𝓉𝓉𝓉) U 7(𝓍𝓍𝓍,𝓉𝓉𝓉) |U−U 7|

0.1 2.4325957403980487 2.4325957405419616 1.439128816116408 × 10−10

0.2 2.3280735405356980 2.3280735789915883 3.845589047202225 × 10−8

0.3 2.2087355542343268 2.2087365789980504 1.024763723656008 × 10−6

0.4 2.0740991339960706 2.0741097277878920 1.059379182155595 × 10−5

0.5 1.9242343145200196 1.9242993140796738 6.499955965422188 × 10−5

0.6 1.7598979245104498 1.7601838692172310 2.859447067811161 × 10−4

0.7 1.5826252249031816 1.5836225257595018 9.973008563202157 × 10−4

0.8 1.3947506404498080 1.3976783358533416 2.927695403533548 × 10−3

0.9 1.1993359892499116 1.2068540917157446 7.518102465833065 × 10−3

Numerical Results of V(𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i V(𝓍𝓍𝓍,𝓉𝓉𝓉) V7(𝓍𝓍𝓍,𝓉𝓉𝓉) |V −V7|
0.1 −0.0261652777033167 −0.0261652782859831 5.82666359605355 × 10−10

0.2 0.11811033546448813 0.11811018874091550 1.46723572624907 × 10−7

0.3 0.26947917996491720 0.26947552093723215 3.659027685065652 × 10−6

0.4 0.42315552517444555 0.42312041684151236 3.510833293318694 × 10−5

0.5 0.57289546593185480 0.57269750532341330 1.497960608441461 × 10−4

0.6 0.71127757216235540 0.71048682802189810 7.907441404573223 × 10−4

0.7 0.83027392365325850 0.82780654822770770 2.467375425550755 × 10−3

0.8 0.92208596593223320 0.91572529863721930 6.360667295013944 × 10−3

0.9 0.98013258169487960 0.96613158040482160 1.400100129005799 × 10−3
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Table 2. Numerical results for Example 2 at x = 10, 𝒶 = 1, and n = 7.

Numerical Results of U (𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i U (𝓍𝓍𝓍,𝓉𝓉𝓉) U 7(𝓍𝓍𝓍,𝓉𝓉𝓉) Abs. Error

0.2 −0.4454068138087739 −0.4454068137749855 3.378847202029078 × 10−11

0.4 −0.3646682560957220 −0.3646682476310534 8.464668632690575 × 10−9

0.6 −0.2985651159368848 −0.2985649035620645 2.123748202298436 × 10−7

0.8 −0.2444444422138206 −0.2444423647493085 2.077464512112437 × 10−6

1 −0.2001341822594486 −0.2001220515057324 1.213075371614413 × 10−5

Numerical Results of V(𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i V(𝓍𝓍𝓍,𝓉𝓉𝓉) V7(𝓍𝓍𝓍,𝓉𝓉𝓉) Abs. Error

0.2 −0.4454068138087739 −0.4454068137749855 3.378847202029078 × 10−11

0.4 −0.3646682560957220 −0.3646682476310534 8.464668632690575 × 10−9

0.6 −0.2985651159368848 −0.2985649035620645 2.123748202298436 × 10−7

0.8 −0.2444444422138206 −0.2444423647493085 2.077464512112437 × 10−6

1 −0.2001341822594486 −0.2001220515057324 1.213075371614413 × 10−5

Table 3. Numerical results for Example 3 at different values of 𝓍,𝓎 = 0.4,𝒶 = 1, and n = 7.

Numerical Results of U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉)

𝓍𝓍𝓍i 𝓉𝓉𝓉i U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉) U 7(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉) |U−U 7|

0.5
0.3 1.8221188003905090 1.8221187965176793 3.872829834605795 × 10−9

0.6 1.3498588075760032 1.3498578473967784 9.601792247959650 × 10−7

0.9 1.0 0.9999761481976381 2.385180236186279 × 10−5

1
0.3 3.0041660239464334 3.0041660175612160 6.385217243831676 × 10−9

0.6 2.2255409284924680 2.2255393454245560 1.583067911870017 × 10−6

0.9 1.6487212707001284 1.6486819457262294 3.932497389902423 × 10−5

1.5
0.3 4.9530324243951150 4.9530324138676710 1.052744380558579 × 10−8

0.6 3.6692966676192444 3.6692940575815050 2.610037739270154 × 10−6

0.9 2.718281828459045 2.718216992538108 6.483592093697865 × 10−5

Numerical Results of VVV(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉)

𝓍𝓍𝓍i 𝓉𝓉𝓉i V(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉) V7(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉) |V −V7|

0.5
0.3 1.4918246976412703 1.4918246957811063 1.860164022815524 × 10−9

0.6 2.0137527074704766 2.0137522144484308 4.930220458554402 × 10−7

0.9 2.7182818284590450 2.7182687338653180 1.309459372711430 × 10−5

1
0.3 2.4596031111569500 2.4596031080900580 3.066891629543988 × 10−9

0.6 3.3201169227365480 3.3201161098806145 8.128559336739727 × 10−7

0.9 4.4816890703380645 4.4816674810028550 2.158933520934880 × 10−5

1.5
0.3 4.0551999668446745 4.0551999617882260 5.056448593165896 × 10−9

0.6 5.4739473917272010 5.4739460515543330 1.340172867791977 × 10−6

0.9 7.3890560989306500 7.3890205041344710 3.559479617898376 × 10−5

Numerical Results of W(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉)

𝓍𝓍𝓍i 𝓉𝓉𝓉i W(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉) W7(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉) |W −W7|

0.5
0.3 1.2214027581601699 1.2214027566371966 1.52297330302531 × 10−9

0.6 1.6487212707001282 1.6487208670478177 4.03652310465574 × 10−7

0.9 2.2255409284924674 2.2255302075458845 1.07209465829427 × 10−5

1
0.3 0.7408182206817179 0.7408182197579880 9.2372987037236 × 10−10

0.6 1.0 0.9999997551724980 2.44827502049461 × 10−7

0.9 1.3498588075760030 1.3498523049931992 6.50258280376903 × 10−6

1.5
0.3 0.4493289641172216 0.4493289635569510 5.60270607685710 × 10−10

0.6 0.6065306597126334 0.6065305112172470 1.48495386431690 × 10−7

0.9 0.8187307530779818 0.8187268090621439 3.94401583792003 × 10−6
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Table 4. Numerical results of approximated solutions, at n = 7, 𝓍 = 1, and different values of 𝒶, for
Example 1.

U 7(𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.97 𝒶𝒶𝒶 = 0.87 𝒶𝒶𝒶 = 0.77

0.15 2.3821389434357910 2.3660488221041770 2.3164985673552834 2.2494580999988480
0.30 2.2087365789980504 2.1798840419417136 2.0946691478570347 1.9890784760486064
0.45 2.0010680201298103 1.9605498108679509 1.8475490983553642 1.7270938997910783
0.60 1.7601838692172317 1.7110610843964820 1.5871611481074164 1.4930439371551603
0.75 1.4915784441913985 1.4404546365696143 1.3361912466819796 1.3308640595516880
0.90 1.2068540917157446 1.1653285241400642 1.1284934441148844 1.2968610082469043

V7(𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.97 𝒶𝒶𝒶 = 0.87 𝒶𝒶𝒶 = 0.77

0.15 0.0448459609008298 0.0663869988097889 0.129641467880782 0.2067709053195330
0.30 0.2694755209372319 0.3009312650284730 0.3825827826197465 0.4565703174103681
0.45 0.4988712398275166 0.5298370150916816 0.5914524244945669 0.6089345684206415
0.60 0.7104868280218981 0.7269468972314479 0.7268268374287052 0.6726093727343672
0.75 0.8759824453139846 0.8623611282911388 0.7744858455437431 0.7307371590702421
0.90 0.9661315804048216 0.9112450135222343 0.7596624176539246 0.9841962235906878

Table 5. Numerical results of approximated solutions, at n = 7, 𝓍 = 10, and different values of 𝒶, for
Example 2.

U 7(𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.95 𝒶𝒶𝒶 = 0.85 𝒶𝒶𝒶 = 0.75

0.2 −0.4454068138087739 −0.4366187365008558 −0.41802625689971980 −0.3985414981473607
0.4 −0.3646682560957220 −0.3565811645027616 −0.34129966933185546 −0.3275638100454310
0.6 −0.2985651159368848 −0.2934671682315440 −0.28497017140893940 −0.2786635555415501
0.8 −0.2444444422138206 −0.2429390773523567 −0.24160764152557102 −0.2420836601179408
1.0 −0.2001341822594486 −0.2021160815904085 −0.20726098237141660 −0.2132493814323069

V7(𝓍𝓍𝓍,𝓉𝓉𝓉)

𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.95 𝒶𝒶𝒶 = 0.85 𝒶𝒶𝒶 = 0.75

0.2 −0.4454068138087739 −0.4366187365008558 −0.41802625689971980 −0.3985414981473607
0.4 −0.3646682560957220 −0.3565811645027616 −0.34129966933185546 −0.3275638100454310
0.6 −0.2985651159368848 −0.2934671682315440 −0.28497017140893940 −0.2786635555415501
0.8 −0.2444444422138206 −0.2429390773523567 −0.24160764152557102 −0.2420836601179408
1.0 −0.2001341822594486 −0.2021160815904085 −0.20726098237141660 −0.2132493814323069

Table 6. Numerical results of approximated solutions, at y = 0.4 and different values of 𝓍, 𝓉, and 𝒶,
with n = 7 for Example 3.

U 7(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉)

𝓍𝓍𝓍i 𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.95 𝒶𝒶𝒶 = 0.75 𝒶𝒶𝒶 = 0.55

0.5
0.3 1.82211879651767 1.781854354922940 1.624165815324987 1.485973706352699
0.6 1.34985784739677 1.3268102019509882 1.259880792227996 1.224207523196436
0.9 0.99997614819763 1.0012559086702593 1.025844721313154 1.048930393543767

1
0.3 3.00416601756121 2.937781176251118 2.677796726870322 2.449956457364802
0.6 2.22553934542455 2.187540202138526 2.077192260692827 2.018376983245085
0.9 1.64868194572622 1.650791914038841 1.691332012464442 1.729393851319466

1.5
0.3 4.95303241386767 4.8435823139476595 4.414940422202281 4.039295323546481
0.6 3.66929405758150 3.6066440617774465 3.424711063537949 3.327741064567730
0.9 2.71821699253810 2.7216957421756143 2.788535064766180 2.851288428088421
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Table 6. Cont.

V7(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉)

𝓍𝓍𝓍i 𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.95 𝒶𝒶𝒶 = 0.75 𝒶𝒶𝒶 = 0.55

0.5
0.3 1.49182469578111 1.533776716329884 1.763906348007679 2.173624234307866
0.6 2.01375221444843 2.090517467011799 2.500822166419968 3.2070987754409066
0.9 2.71826873386532 2.836553335181282 3.463909478191494 4.5195588991940581

1
0.3 2.45960310809005 2.528770296717676 2.908189915483245 3.5837005096126577
0.6 3.32011610988061 3.446680614632507 4.123158700014978 5.2876119683057565
0.9 4.48166748100285 4.676685819188771 5.711021236474098 7.4514928912833001

1.5
0.3 4.05519996178822 4.169237376913107 4.794794572892834 5.9085232580172781
0.6 5.47394605155433 5.682615642654406 6.797939451186984 8.7177983233542732
0.9 7.38902050413447 7.710551386478182 9.415882189994994 12.285434828329576

W7(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉)

𝓍𝓍𝓍i 𝓉𝓉𝓉i 𝒶𝒶𝒶 = 1 𝒶𝒶𝒶 = 0.95 𝒶𝒶𝒶 = 0.75 𝒶𝒶𝒶 = 0.55

0.5
0.3 1.22140275663719 1.255750166014239 1.444164372663361 1.7796130062634311
0.6 1.64872086704781 1.711570940089245 2.047500015627131 2.6257503956122070
0.9 2.22553020754588 2.322373448258833 2.836009215673681 3.7003018611174463

1
0.3 0.74081821975798 0.761650976626866 0.8759299696849896 1.0793898507221418
0.6 0.99999975517249 1.038120251437302 1.2418715352399512 1.5925981196913803
0.9 1.34985230499319 1.408590699671533 1.7201265405336663 2.2443465289594501

1.5
0.3 0.44932896355695 0.46196466932427 0.5312783823751036 0.6546830382456215
0.6 0.60653051121724 0.62965176096531 0.7532331615474284 0.9659595881935124
0.9 0.81872680906215 0.85435344633685 1.0433094854190943 1.3612649808335340

Numerical comparisons are established to confirm the mathematical results for the
obtained approximate solutions supported by the results of numerical comparisons. Table 7
shows the absolute errors of the obtained approximate solutions for the system of time-
FPDEs (7) at 𝒶 = 1 with the absolute errors of the approximate solutions generated by
the MGMLFM [40], while Tables 8–10 show a comparison of the obtained approximate
solutions for the systems of time-FPDEs (7), (20) and (44), respectively with previous results
generated by the existing method as MGMLFM [40], and FNDM [41] at various values of
𝒶. As it is evident from the comparison results, the results obtained by Laplace RPSM are
close to the exact solutions faster than the mentioned methods.

Table 7. Numerical comparisons for Example 1 at 𝒶 = 1 and different values of 𝓍 and 𝓉.

|U−U 2|
𝓍𝓍𝓍 = −1 𝓍𝓍𝓍 = 0.5 𝓍𝓍𝓍 = 1

𝓉𝓉𝓉i LRPSM MGMLFM [40] LRPSM MGMLFM [40] LRPSM MGMLFM [40]

0.003 5.59911 × 10−9 4.51907 × 10−5 5.11357 × 10−9 4.53038 × 10−5 5.59013 × 10−9 3.28798 × 10−5

0.006 4.48282 × 10−8 1.79812 × 10−4 4.11223 × 10−8 1.80805 × 10−4 4.46846 × 10−8 1.2751 × 10−4

0.009 1.51413 × 10−7 4.02448 × 10−4 1.3951 × 10−7 4.05897 × 10−4 1.50686 × 10−7 2.78165 × 10−4

|V −V2|
𝓍𝓍𝓍 = −1 𝓍𝓍𝓍 = 0.5 𝓍𝓍𝓍 = 1

𝓉𝓉𝓉i LRPSM MGMLFM [40] LRPSM MGMLFM [40] LRPSM MGMLFM [40]

0.003 5.94837 × 10−9 1.3969 × 10−5 3.55919 × 10−8 2.14755 × 10−5 6.02338 × 10−9 1.25863 × 10−4

0.006 4.72882 × 10−8 5.5459 × 10−5 2.84908 × 10−7 8.62386 × 10−5 4.84885 × 10−8 4.93352 × 10−4

0.009 1.58592 × 10−7 1.23872 × 10−4 9.62139 × 10−7 1.94798 × 10−4 1.64669 × 10−7 1.08802 × 10−3
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Table 8. Numerical comparisons for Example 1 at different values of 𝓍, 𝒶, and 𝓉 for the function U .

𝒶𝒶𝒶 = 1

(𝓍𝓍𝓍,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓉𝓉𝓉i) LRPSM MGMLFM [40]

(−0.5, 0.003) 0.0710535459 0.0710535408 0.0710849
(−0.5, 0.006) 0.0663545199 0.0663544797 0.0664763

(0.5, 0.003) 1.9195090915 1.91950908636 1.91955
(0.5, 0.006) 1.9147708158 1.91477077469 1.91495

𝒶𝒶𝒶 = 0.9

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40]

(−0.5, 0.003) 0.0710535459 0.06718985810 0.0671357
(−0.5, 0.006) 0.0663545199 0.05989588986 0.0598679

(0.5, 0.003) 1.9195090915 1.91583860783 1.91561
(0.5, 0.006) 1.9147708158 1.90988083747 1.90838

𝒶𝒶𝒶 = 0.8

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40]

(−0.5, 0.003) 0.0710535459 0.06066868120 0.0600753
(−0.5, 0.006) 0.0663545199 0.04976089352 0.0489784

(0.5, 0.003) 1.9195090915 1.90995039533 1.90859
(0.5, 0.006) 1.9147708158 1.89876300851 1.8977

Table 9. Numerical comparisons for Example 2 at different values of 𝓍, 𝒶, and 𝓉 for the function U .

𝒶𝒶𝒶 = 1

(𝓍𝓍𝓍,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓉𝓉𝓉i) LRPSM MGMLFM [40]

(−10, 0.2) 0.4454068138 0.4454068137 0.4454068
(−10, 0.4) 0.3646682570 0.3646682476 0.3646684

(−5, 0.2) 0.7851007935 0.7851007935 0.7851008
(−5, 0.4) 0.6427861639 0.6427861490 0.6427865

𝒶𝒶𝒶 = 0.9

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40]

(−10, 0.2) 0.4454068138 0.42747254328 0.4274714
(−10, 0.4) 0.3646682570 0.34877861288 0.3487726

(−5, 0.2) 0.7851007935 0.75349665629 0.7534867
(−5, 0.4) 0.6427861639 0.61477525733 0.6147676

𝒶𝒶𝒶 = 0.75

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40]

(−10, 0.2) 0.4454068138 0.39855149815 0.3985421
(−10, 0.4) 0.3646682570 0.32766381008 0.3275878

(−5, 0.2) 0.7851007935 0.70250317423 0.7024943
(−5, 0.4) 0.6427861639 0.57749363947 0.5774259
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Table 10. Numerical comparisons for Example 3 at different values of 𝓍, 𝒶, and 𝓉 for the function U .

𝒶𝒶𝒶 = 1

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40] FNDM [41]

(0.5, 0.4, 0.3) 1.8221188 1.8221188 1.8221189 1.82217
(0.5, 0.4, 0.6) 1.3498588 1.3498578 1.3498715 1.35131
(0.5, 0.4, 0.9) 1.0000000 0.9999761 1.00021 1.0105

(1, 0.4, 0.3) 3.0041660 3.0041660 3.0041662 3.00424
(1, 0.4, 0.6) 2.2255400 2.2255394 2.225562 2.22793
(1, 0.4, 0.9) 1.6487200 1.6486820 1.649067 1.66603

(1.5, 0.4, 0.3) 4.9530300 4.9530324 4.9530327 4.95316
(1.5, 0.4, 0.6) 3.6693000 3.6692940 3.6693312 3.6323
(1.5, 0.4, 0.9) 2.7182800 2.7182169 2.718851 2.74682

𝒶𝒶𝒶 = 0.9

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40] FNDM [41]

(0.5, 0.4, 0.3) 1.8221188 1.7415823 1.74158 1.74178
(0.5, 0.4, 0.6) 1.3498588 1.3063222 1.3063996 1.31047
(0.5, 0.4, 0.9) 1.0000000 1.0048484 1.0058445 1.02931

(1, 0.4, 0.3) 3.0041660 2.8713838 2.871385 2.8717
(1, 0.4, 0.6) 2.2255400 2.1537611 2.1538889 2.1606
(1, 0.4, 0.9) 1.6487200 1.6567149 1.6583572 1.69705

(1.5, 0.4, 0.3) 4.9530300 4.7341116 4.7341143 4.73464
(1.5, 0.4, 0.6) 3.6693000 3.5509518 3.5511624 3.56223
(1.5, 0.4, 0.9) 2.7182800 2.7314611 2.7341689 2.79796

𝒶𝒶𝒶 = 0.75

(𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) U (𝓍𝓍𝓍,𝓎𝓎𝓎,𝓉𝓉𝓉i) LRPSM MGMLFM [40] FNDM [41]

(0.5, 0.4, 0.3) 1.8221188 1.6241658 1.6241897 1.6256
(0.5, 0.4, 0.6) 1.3498588 1.2598808 1.2607914 1.27791
(0.5, 0.4, 0.9) 1.0000000 1.0258447 1.033497 1.10414

(1, 0.4, 0.3) 3.0041660 2.6777967 2.6778362 2.68017
(1, 0.4, 0.6) 2.2255400 2.0771922 2.0786935 2.10692
(1, 0.4, 0.9) 1.6487200 1.6913320 1.7039486 1.82042

(1.5, 0.4, 0.3) 4.9530300 4.4149404 4.4150055 4.41885
(1.5, 0.4, 0.6) 3.6693000 3.4247111 3.4271863 3.47372
(1.5, 0.4, 0.9) 2.7182800 2.7885351 2.809336 3.00136

The 3D plots behavior of the approximate solutions of the time-FPDEs (7), (20), and
(44) by Laplace RPSM are shown respectively in Figures 1–3 at various values of 𝒶 which
are compared with the exact solutions on their domains. Obviously, from these figures,
it can be deduced that the geometric behaviors almost agree and strongly match each
other, particularly when the integer order derivative is considered. From these graphics,
we can conclude that the dynamic behaviors match and correspond well with each other,
specifically when the standard order derivative is considered. Moreover, Figures 4 and 5
demonstrate the behavior of the obtained Laplace RPS solutions for the systems of the
time-FPDEs (7) and (20) at various values of 𝒶 . It is observed from these figures that the
Laplace RPSM approximate solutions match with solutions at 𝒶 = 1 , and this reinforces
the effectiveness of the proposed method.
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Figure 1. 3D-Surfaces plot of the exact solution of U (𝓍, 𝓉) and V(𝓍, 𝓉), and the 7 − th approximate
solution U7(𝓍, 𝓉) and V7(𝓍, 𝓉), for IVP (7), with 𝓉 ∈ [0, 1], and 𝓍 ∈ [−2, 2], at various values
of 𝒶. (a) (U (𝓍, 𝓉), V(𝓍, 𝓉)). (b) (U7(𝓍, 𝓉), V7(𝓍, 𝓉)) : 𝒶 = 1. (c) (U7(𝓍, 𝓉), V7(𝓍, 𝓉)) : 𝒶 = 0.97.
(d) (U7(𝓍, 𝓉), V7(𝓍, 𝓉)) : 𝒶 = 0.87.

Figure 2. Cont.

93



Fractal Fract. 2022, 6, 650

Figure 2. 3D-Surfaces plot of exact solutions (U (𝓍, 𝓉), V(𝓍, 𝓉)), and the 7 − th approximate so-
lutions (U7(𝓍, 𝓉), V7(𝓍, 𝓉)), for system (20), with 𝓉 ∈ [0, 1], and 𝓍 ∈ [−10, 10], at various val-
ues of 𝒶. (a) (U (𝓍, 𝓉), V(𝓍, 𝓉)). (b) (U7(𝓍, 𝓉), V7(𝓍, 𝓉)) : 𝒶 = 1. (c) (U7(𝓍, 𝓉), V7(𝓍, 𝓉)) :
𝒶 = 0.95. (d) (U7(𝓍, 𝓉), V7(𝓍, 𝓉)) : 𝒶 = 0.85.

Figure 3. 3D-Surfaces Plot of Exact solutions of (U , V , W) the 7 − th approximate solution
(U7, V7, W7), for system (33), with 𝓉 ∈ [0, 2], and 𝓍 ∈ [0, 2] and 𝓎 = 0.4, at various values of
𝒶. (a) (U , V , W). (b) (U7, V7, W7) : 𝒶 = 1. (c) (U7, V7, W7):𝒶 = 0.8. (d) (U7, V7, W7):𝒶 = 0.6.
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Figure 4. (a) 2D-Plots of exact solutions U (𝓍,𝓉), and the 7-th approximate solutions U7 (𝓍,𝓉) and
V7 (𝓍,𝓉), for system (7), with 𝓉 ∈ [0, 0.5], and 𝓍 = 1, at various values of 𝒶. (b) 2D-Plots of exact
solutions V (𝓍,𝓉), and the 7-th approximate solutions V7 (𝓍,𝓉), for system (7), with 𝓉 ∈ [0, 0.5], and
𝓍 = 1, at various values of 𝒶.

Figure 5. Plots of exact solutions (U (𝓍,𝓉),V (𝓍,𝓉)), and the 7-th approximate solutions (U7 (𝓍,𝓉),
V7 (𝓍,𝓉)), for system (20) at various values of 𝒶. (a) 𝓉 ∈ [0, 1], and 𝓍 = 1. (b) 𝓍 ∈ [−10, 10], and 𝓉 = 1.

6. Conclusions

This investigation of time-FPDEs with initial conditions constructs a proper framework
for the mathematical modeling of several fractional problems that appear in physical and
engineering applications. The current work has introduced the analytical and approximate
solutions for known systems of nonlinear time-FPDEs via applying Laplace RPSM. Three
nonlinear time-FPDEs systems, including Broer-Kaup and Burgers’ systems, have been
investigated utilizing Caputo-time fractional derivatives. The exact and the Laplace RPS
solutions have been displayed numerically and graphically at various values of the frac-
tional order 𝒶𝒶𝒶 over (0, 1]. The analysis of simulation results revealed that the Laplace RPS
solutions are in imminent consistency with each other, as well as with the exact solutions at
integer-order of 𝒶𝒶𝒶, which confirms the performance of the proposed method. Numerical
comparisons of the obtained results with the results previously calculated by other numeri-
cal methods, such as modified generalized Mittag–Leffler function method MGMLFM [40]
and fractional natural decomposition method FNDM [41], have been achieved, which
indicates the high accuracy and effectiveness of the Laplace RPSM. Consequently, the
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analysis of attained results and their simulations confirm that the Laplace RPSM is an
easy and systematic, robust, efficient, and suitable instrument to generate analytical and
approximate solutions of several fractional physical and engineering problems with fewer
computations and iteration steps.
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Abstract: In this study, we applied the Laplace residual power series method (LRPSM) to expand the
solution of the nonlinear time-fractional coupled Hirota–Satsuma and KdV equations in the form
of a rapidly convergent series while considering Caputo fractional derivatives. We demonstrate the
applicability and accuracy of the proposed method with some examples. The numerical results and
the graphical representations reveal that the proposed method performs extremely well in terms of
efficiency and simplicity. Therefore, it can be utilized to solve more problems in the field of non-linear
fractional differential equations. To show the validity of the proposed method, we present a numerical
application, compute two kinds of errors, and sketch figures of the obtained results.

Keywords: Caputo’s fractional derivative; power series solution; Laplace residual power series
method; coupled Hirota–Satsuma and KdV equations

1. Introduction

Fractional differential equations are a generalized form of ordinary and partial differen-
tial equations [1–4]. Recently, various studies in engineering and sciences have confirmed
that the dynamics of numerous systems in nature can be described more precisely via
nonlinear fractional-order differential equations, for instance, in biology, physics, engineer-
ing, chaos theory, diffusion, electromagnetism, etc. [5–11]. Therefore, several approaches
have been established to acquire approximate and analytic solutions of fractional differen-
tial equations, including the variational iteration method [12], the differential transform
method [13–15], Laplace transforms [16,17], the fractional sub-equation method [18,19],
the homotopy perturbation method [20,21], the exponential rational function method [22],
the exponential function method [23], the extended trial equation method [24], the ARA
residual power series method [25], the double ARA–Sumudu transform [26], and the
reproducing kernel method [27], amongst others.

The power series method [28] is one of the most popular and convenient methods used
to establish analytic solutions for linear classes of differential equations. Unfortunately,
obtaining a closed-form solution for the nonlinear case is very difficult or impossible.
Therefore, the residual power series method is introduced to overcome the aforementioned
difficulty of the power series method. The residual power series method [29,30] has been
employed to gain the analytical solution of various linear and nonlinear models in different
engineering and science areas.

This article develops the residual power series method by employing the Laplace
transform (LT) [31] in its methodology. This promotion is known as the Laplace residual
power series method (LRPSM). In contrast with other power series methods, LRPSM
requires less time and simpler computation but has superior accuracy in obtaining the
solution. Moreover, the LRPSM needs no differentiation or linearization: it depends only
on applying the LT and taking the limit at infinity. Due to these advantages, various
researchers have used it to solve nonlinear fractional problems [29,30,32–34].
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In this study, the LRPSM is introduced to solve the coupled Hirota–Satsuma and KdV
(HSC–KdV) equations of the form:

Dα
τδ =

1
2

δξξξ − 3δδξ + 3(φψ)ξ ,(1)Dα
τφ = −φξξξ + 3δφξ ,(2)Dα

τψ = −ψξξξ + 3δψξ ,

where δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) are three unknown functions of the independent vari-
ables ξ and τ, and Dα

τ is the time Caputo fractional operator with 0 < α ≤ 1.
The HSC–KdV equations are of great significance due to their numerous applications

in diverse areas. For instance, the HSC–KdV equations are used to represent the dispersive
long waves in shallow water which are employed in many implementations in fluid
mechanics, including shallow-water undulations with weakly non-linear retrieve vigor,
acoustic undulations on a crystal lattice, long inner undulations in a density-stratified
ocean, and ion-acoustic undulations in a plasma [35].

The novelty of this work arises in the chosen model, which is difficult to solve by
traditional numerical methods: some authors have solved this system numerically and
obtained only the first two or three terms of the approximate solution, but not a general
term of the series solution. In contrast, the LRPSM allows us to obtain many terms of
the series solution easily, using Mathematica software. LRPS is a powerful technique for
solving fractional models, and it presents the solution in a form of a rapidly convergent
series with less effort and computation than other numerical methods. It also requires no
differentiation or linearization, only computing the limit at infinity.

The description of this article is as follows: we start in Section 2 by presenting some
fundamental concepts and preliminary results from the fractional calculus theory. In
Section 3, we assemble the algorithm of LRPSM for obtaining the solution of the HSC–KdV.
Section 4 presents some HSC–KdV problems to demonstrate the simplicity, capability, and
potentiality of LRPSM, and Section 5 concludes the paper.

2. Basic Preliminaries

This section introduces some basic notations, definitions, and theorems related to
fractional calculus which are utilized throughout this article.

2.1. Fractional Power Series

Here, we present some definitions of the Caputo fractional derivative and Laplace
transform. We also introduce some theorems related to fractional power series representations.

Definition 1. The Caputo derivative of fractional order α ∈ R+ of the function x(τ) is given by:

Dαx(τ) =

⎧⎨⎩ 1
Γ(μ−α)

τ∫
0

x(μ)(t)
(τ−t)α+1−μ dt, μ − 1 < α < μ,

x(μ)(τ) α = μ, μ ∈ N.

Definition 2 ([36]). The time Caputo derivative of fractional order α ∈ R+ of the function x(ξ, τ)
is given by:

Dα
τ x(ξ, τ) =

∂αx(ξ, τ)

∂τα
=

⎧⎪⎨⎪⎩
1

Γ(μ−α)

τ∫
0
(τ − t)μ−α−1 ∂μx(ξ,t)

∂tμ ∂t, μ − 1 < α < μ,

∂μx(ξ,τ)
∂τμ α = μ, μ ∈ N.

Definition 3 ([31]). The Laplace transform of a function x(ξ, τ) regarding the variable τ is
defined as:

L[x(ξ, τ)] = X(ξ, s) =
∞∫

0

x(ξ, τ)e−sτdτ, s > 0,
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and the inverse LT is given by:

x(ξ, τ) = L−1[X(ξ, s)] =
c+i∞∫

c−i∞

X(ξ, s)estds, c = Re(s) > 0.

Further, if L[x1(ξ, τ)] = X1(ξ, s) and L[x2(ξ, τ)] = X2(ξ, s) and considering γ1 and
γ2 are two real constants, we have the following essential properties of Laplace transform,
and its inverse [29,30]:

• L[γ1 x1(ξ, τ) + γ2 x2(ξ, τ)] = γ1X1(ξ, s) + γ2X2(ξ, s).
• L−1[γ1 X1(ξ, s) + γ2 X2(ξ, s)] = γ1x1(ξ, τ) + γ2x2(ξ, τ).

• L
[
τϑ
]
= Γ(ϑ+1)

sϑ+1 , ϑ > −1.

• L[Dα
τ x(ξ, τ)] = sαX(ξ, s)− ∑

μ−1
l=0 sα−l−1Dl

τx(ξ, τ), μ − 1 < α < μ, μ ∈ N.

Definition 4 ([29,30]). A fractional power series of two variables around τ0 = 0 is expressed as:

∞

∑
m=0

am(ξ)τ
mα = a0(ξ) + a1(ξ)τ

α + · · · , 0 ≤ μ − 1 < α < μ, τ < 0.

Theorem 1. Suppose that a function x has a FPS expansion at τ0 = 0 of the form:

x(ξ, τ) =
∞

∑
m=0

am(ξ)τ
mα, 0 ≤ τ < T, (1)

where T is the radius of convergence of the fractional power series. If Dα
τ x(ξ, τ) is continuous on

I × [0, R], then the coefficients am(ξ) can be written as:

am(ξ) =
Dmα

τ x(ξ, 0)
Γ(mα + 1)

, m = 0, 1, 2, . . . ,

where Dmα
τ = Dα

τ · Dα
τ . . . Dα

τ (m-times). For the proof, refer to [37].

Using Theorem 1, the fractional power series expansion of the x(ξ, τ) around τ = 0 is
given by:

x(ξ, τ) =
∞

∑
m=0

Dmα
τ x(ξ, 0)

Γ(mα + 1)
τmα, 0 ≤ μ − 1 < α < μ, ξ ∈ I, 0 ≤ τ < T.

2.2. Convergence Analysis of LRPSM

This section covers the conditions of convergence for the new fractional power series
in the Laplace space. It is worth mentioning here that the Laplace residual power series
approach requires the same conditions of convergence as the usual Taylor’s series.

Theorem 2 ([30]). If the function X(ξ, s) = L[x(ξ, τ)] has the fractional power series:

X(ξ, s) =
∞

∑
m=0

am(ξ)

smα+1 , 0 < α ≤ 1, s > 0. (2)

then am(ξ) = Dmα
τ x(ξ, 0), where Dmα

τ = Dα
τ · Dα

τ . . . Dα
τ (m-times). Moreover, the inverse LT of

(2) is defined by:

x(ξ, τ) =
∞

∑
m=0

Dmα
τ x(ξ, 0)

Γ(mα + 1)
τmα, 0 < α ≤ 1, τ ≥ 0.
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Theorem 3 ([30]). Suppose that: ∣∣∣sL[D(m+1)α
τ x(ξ, τ)

]∣∣∣ ≤ H

for δ1 < s ≤ δ2 and ξ ∈ I , where H = H(ξ) and 0 < α ≤ 1. Then, the remainder Rm(ξ, s) in
(2) fulfills:

|Rm(ξ, s)| ≤ H
s(m+1)α+1

, ξ ∈ I and δ1 < s ≤ δ2.

Proof of Theorem 3. First, we suppose that L[Dmα
τ x(ξ, τ)](s) is defined on I × (δ1, δ2] , for

m = 0, 1, 2 . . . , n + 1. As given, we also assume that:∣∣∣sL[D(m+1)α
τ x(ξ, τ)

]∣∣∣ ≤ H(ξ), ξ ∈ I and δ1 < s ≤ δ2. (3)

The definition of the remainder implies:

Rm(ξ, s) = X(ξ, s)−
m

∑
k=0

Dkα
τ x(ξ, 0)
skα+1 ,

thus, one can obtain:

s1+(m+1)αRm(ξ, s) = s1+(m+1)αX(ξ, s)−
m
∑

k=0
s(m+1−k)αDkα

τ x(ξ, 0)

= s
(

s(m+1)αX(ξ, s)−
m
∑

k=0
s(m+1−k)α−1Dkα

τ x(ξ, 0)
)

= sL
[

D(m+1)α
τ x(ξ, τ)

]
.

(4)

Equations (3) and (4) imply that
∣∣∣s1+(m+1)αRm(ξ, s)

∣∣∣ ≤ H(ξ).

Hence −H(x) ≤ s1+(m+1)αRm(ξ, s) ≤ H(ξ), ξ ∈ I, δ1 < s ≤ δ2.
Thus, reformulating the above equation, we can obtain the result. �

Theorem 4 ([33]). Assume that ‖xn+1(ξ, τ)‖ ≤ ε‖xn(ξ, τ)‖, ∀n ∈ N for some ε ∈ (0, 1), and
0 < τ < T < 1; then, the obtained approximate series solution converges to the exact one, where:

xn(ξ, τ) =
n

∑
m=0

Dmα
τ x(ξ, 0)

Γ(mα + 1)
τmα.

Proof of Theorem 4. Notice that, if 0 < τ < T < 1, then:

‖x(ξ, τ)− xn(ξ, τ)‖ ≤ ‖
∞
∑

m=n+1
xm(ξ, τ)‖ ≤

∞
∑

m=n+1
‖xm(ξ, τ)‖, ∀ 0 < τ < T < 1.

‖x(ξ, τ)− xn(ξ, τ)‖ ≤ ‖g(y)‖‖
∞
∑

m=n+1
εm‖ = εm+1

1−ε ‖g(y)‖ →
n→∞

0.

�

3. LRPSM Methodology

In this section, we apply the LRPSM to solve HSC–KdV equations. The main idea of
the LRPSM is to first apply the Laplace transform on the target equation and then define
the so-called Laplace residual function. Then, using some facts of the residual power
series method and taking the limit at infinity allows us to obtain the coefficients of the
series solutions.
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Now, we consider the system:

Dα
τδ = 1

2 δξξξ − 3δδξ + 3(φψ)ξ ,

Dα
τφ = −φξξξ + 3δφξ ,

Dα
τψ = −ψξξξ + 3δψξ ,

⎫⎪⎪⎬⎪⎪⎭ (5)

subject to the initial conditions (ICs):

δ(ξ, 0) = a(ξ), φ(ξ, 0) = b(ξ), ψ(ξ, 0) = c(ξ). (6)

We illustrate the steps of the LRPSM on system (5) and (6) as follows.
Step 1. Apply the Laplace transform with respect to τ to each equation in (5) to obtain

sαG(ξ, s)− sα−1δ(ξ, 0)

= 1
2

∂3

∂ξ3 G(ξ, s)− 3L
[
L−1[G(ξ, s)] ∂

∂ξ L−1[G(ξ, s)]
]

+3 ∂
∂ξ

[
L−1[Φ(ξ, s)] L−1[Ψ(ξ, s)]

]
,

sαΦ(ξ, s)− sα−1φ(ξ, 0) = − ∂3

∂ξ3 Φ(ξ, s) + 3L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Φ(ξ, s)]
]
,

sαΨ(ξ, s)− sα−1ψ(ξ, 0) = − ∂3

∂ξ3 Ψ(ξ, s) + 3L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Ψ(ξ, s)]
]
,

(7)

where G(ξ, s) = L[δ(ξ, τ)], Φ(ξ, s) = L[φ(ξ, τ)], and Ψ(ξ, s) = L[ψ(ξ, τ)].

Simplifying each Equation in (7) and employing the ICs yields:

G(ξ, s) = a(ξ)
s + 1

2sα
∂3

∂ξ3 G(ξ, s)− 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[G(ξ, s)]
]

+ 3
sα

∂
∂ξ

[
L−1[Φ(ξ, s)] · L−1[Ψ(ξ, s)]

]
,

Φ(ξ, s) = b(ξ)
s − 1

sα
∂3

∂ξ3 Φ(ξ, s) + 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Φ(ξ, s)]
]
,

Ψ(ξ, s) = c(ξ)
s − 1

sα
∂3

∂ξ3 Ψ(ξ, s) + 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Ψ(ξ, s)]
]
.

(8)

Step 2. Define the series solution of (8), as follows:

G(ξ, s) =
∞
∑

n=0

δn(ξ)
snα+1 ,

Φ(ξ, s) =
∞
∑

n=0

φn(ξ)
snα+1 ,

and:

Ψ(ξ, s) =
∞

∑
n=0

ψn(ξ)

snα+1 .

Using the fact that L[s G(ξ, s)] = δ(ξ, 0), one can identify the kth truncated solution of
(8) as:

Gk(ξ, s) = a(ξ)
s +

k
∑

n=1

δn(ξ)
snα+1 ,

Φk(ξ, s) = b(ξ)
s +

k
∑

n=1

φn(ξ)
snα+1 ,

Ψk(ξ, s) = c(ξ)
s +

k
∑

n=1

ψn(ξ)
snα+1 .

(9)
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Step 3. Define the kth Laplace residual functions of (8) as:

LReskG(ξ, s) = Gk(ξ, s)− a(ξ)
s − 1

2sα
∂3

∂ξ3 G(ξ, s)

+ 3
sα L
[
L−1[Gk(ξ, s)] · ∂

∂ξ L−1[Gk(ξ, s)]
]

− 3
sα

∂
∂ξ

[
L−1[Φk(ξ, s)] · L−1[Ψk(ξ, s)]

]
,

LReskΦ(ξ, s) = Φk(ξ, s)− b(ξ)
s + 1

sα
∂3

∂ξ3 Φk(ξ, s)

− 3
sα L
[
L−1[Gk(ξ, s)] · ∂

∂ξ L−1[Φk(ξ, s)]
]
,

LReskΨ(ξ, s) = Ψk(ξ, s)− c(ξ)
s + 3

sα
∂3

∂ξ3 Ψk(ξ, s)

− 3
sα L
[
L−1[Gk(ξ, s)] · ∂

∂ξ L−1[Ψk(ξ, s)]
]
.

(10)

Step 4. To find the first coefficients of the truncated series solution (9), we define the
first truncated solution and substitute it in the first truncated Laplace residual functions as:

LRes1G(ξ, s) = δ1(ξ)
sα+1 − 1

2sα
∂3

∂ξ3

[
a(ξ)

s + δ1(ξ)
sα+1

]
+ 3

sα L
[
L−1

[
a(ξ)

s + δ1(ξ)
sα+1

]
∂

∂ξ L−1
[

a(ξ)
s + δ1(ξ)

sα+1

]]
− 3

sα
∂

∂ξ

[
L−1

[
b(ξ)

s + φ1(ξ)
sα+1

]
L−1

[
c(ξ)

s + ψ1(ξ)
sα+1

]]
= 0,

LRes1Φ(ξ, s) = φ1(ξ)
sα+1 + 1

sα
∂3

∂ξ3

[
b(ξ)

s + φ1(ξ)
sα+1

]
− 3

sα L
[
L−1

[
a(ξ)

s + δ1(ξ)
sα+1

]
∂

∂ξ L−1
[

b(ξ)
s + φ1(ξ)

sα+1

]]
,

LRes1Ψ(ξ, s) = ψ1(ξ)
sα+1 + 1

sα
∂3

∂ξ3

[
c(ξ)

s + ψ1(ξ)
sα+1

]
− 3

sα L
[
L−1

[
a(ξ)

s + δ1(ξ)
sα+1

]
∂

∂ξ L−1
[

c(ξ)
s + ψ1(ξ)

sα+1

]]
.

(11)

Step 5. Recall the succeeding facts that appear in the LRPSM [29], as follows:

• LRes(ξ, s) = 0 and lim
k→∞

LResk(ξ, s) = LRes(ξ, s), for all s > 0.

• lim
s→∞

sLRes(ξ, s) = 0 implies that lim
s→∞

sLResk(ξ, s) = 0.

• lim
s→∞

skα+1LRes(ξ, s) = lim
s→∞

skα+1LResk(ξ, s) = 0, 0 < α ≤ 1, k = 1, 2, · · · .

Now, by multiplying each equation in (11) by sα+1 and taking the limit as s → ∞, we
obtain the first unknowns of the series solutions (9) as:

δ1(ξ) =
1
2 (δ

′′′ (ξ)− 6δ(ξ)δ′(ξ) + 6ψ(ξ)φ′(ξ) + 6φ(ξ)ψ′(ξ))

φ1(ξ) = 3δ(ξ)φ′(ξ)− φ′′′ (ξ)

ψ1(ξ) = 3δ(ξ)ψ′(ξ)− ψ′′′ (ξ)
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Repeating the previous steps, one can obtain the second series coefficients recursively,
as follows:

δ2(ξ) =
1
4 δ(6)(ξ) + 9δ(ξ)2(δ′′ (ξ) + 3ψ′(ξ)φ′′ (ξ) + 3ψ′′ (ξ)φ′(ξ))− 9

2 δ′′ (ξ)2

−9φ′′′ (ξ)δ′(ξ)ψ′(ξ)− 9ψ′′′ (ξ)δ′(ξ)φ′(ξ)

+φ(ξ)
(

3
2 ψ(4)(ξ)− 9δ′(ξ)ψ′(ξ)

)
+3δ(ξ)

(
−δ(4)(ξ) + 18δ′(ξ)ψ′(ξ)φ′(ξ) + 6δ′(ξ)2 − 3φ(4)(ξ)ψ′(ξ)

−3φ′′′ (ξ)ψ′′ (ξ)− 3ψ′′′ (ξ)φ′′ (ξ)− 3
(

ψ(4)(ξ) + ψ′(ξ)
)

φ′(ξ)

−3φ(ξ)ψ′′ (ξ))− 15
2 δ′′′ (ξ)δ′(ξ) + 3ψ′′′ (ξ)φ(4)(ξ)− 3

2 ψ(ξ)φ(4)(ξ)

+3ψ(4)(ξ)φ′′′ (ξ) + 3φ′′′ (ξ)ψ′(ξ) + 9ψ′′ (ξ)φ′′ (ξ) + 6ψ′′′ (ξ)φ′(ξ),
φ2(ξ) = − 3

2 δ′′′ (ξ)φ′(ξ)− 9δ′′ (ξ)φ′′ (ξ)− 9φ′′′ (ξ)δ′(ξ)− 6δ(ξ)φ(4)(ξ) + 9δ(ξ)2φ′′ (ξ)

+φ(6)(ξ) + 9φ(ξ)ψ′(ξ)φ′(ξ) + 9ψ(ξ)φ′(ξ)2,

ψ2(ξ) = − 3
2 δ′′′ (ξ)ψ′(ξ)− 9δ′′ (ξ)ψ′′ (ξ)− 9ψ′′′ (ξ)δ′(ξ)− 6δ(ξ)ψ(4)(ξ) + 9δ(ξ)2ψ′′ (ξ)

+ψ(6)(ξ) + 9ψ(ξ)ψ′(ξ)φ′(ξ) + 9φ(ξ)ψ′(ξ)2.

Continuing in the same manner, we can conclude the following general kth terms of
the series coefficients as:

δk(ξ) =
1
2 δ

′′′
k−1(ξ)− 3

k−1
∑

i=0

δi(ξ)δ
′
k−i−1(ξ)Γ((k−1)α+1)

Γ(i α+1)Γ((k−i−1)α+1)

+3
(

k−1
∑

i=0

φi(ξ)ψk−i(ξ)Γ((k−1)α+1)
Γ(i α+1)Γ((k−i−1)α+1)

)′
,

φk(ξ) = −φ
′′′
k−1(ξ) + 3

k−1
∑

i=0

δi(ξ)φ
′
k−i−1(ξ)Γ((k−1)α+1)

Γ(i α+1)Γ((k−i−1)α+1) ,

ψk(ξ) = −ψ
′′′
k−1(ξ) + 3

k−1
∑

i=0

δi(ξ)ψ
′
k−i−1(ξ)Γ((k−1)α+1)

Γ(i α+1)Γ((k−i−1)α+1) .

where k = 1, 2, . . . .
Thus, the kth series solution of (10) can be written as:

Gk(ξ, s) = a(ξ)
s +

k
∑

m=1

δm(ξ)
smα+1 , k = 1, 2, . . .

Φk(ξ, s) = b(ξ)
s +

k
∑

m=1

φm(ξ)
smα+1 , k = 1, 2, . . .

Ψk(ξ, s) = c(ξ)
s +

k
∑

m=1

ψm(ξ)
smα+1 . k = 1, 2, . . .

Therefore, the solution of (5) and (6) in the original space can be expressed as

δ(ξ, τ) = δ0 +
δ1(ξ)τ

α

Γ(α+1) +
δ2(ξ)τ

2α

Γ(2α+1) + · · · ,

φ(ξ, τ) = φ0 +
φ1(ξ)τ

α

Γ(α+1) +
φ2(ξ)τ

2α

Γ(2α+1) + · · · ,

ψ(ξ, τ) = ψ0 +
ψ1(ξ)τ

α

Γ(α+1) +
ψ2(ξ)τ

2α

Γ(2α+1) + · · · .

4. Numerical Application

Consider the time-fractional HSC–KdV equations:

Dα
τδ(ξ, τ) = 1

2 δξξξ(ξ, τ)− 3δ(ξ, τ)δξ(ξ, τ) + 3(φ(ξ, τ)ψ(ξ, τ))ξ ,

Dα
τφ(ξ, τ) = −φξξξ(ξ, τ) + 3δ(ξ, τ)φξ(ξ, τ),

Dα
τψ(ξ, τ) = −ψξξξ(ξ, τ) + 3δ(ξ, τ)ψξ(ξ, τ),

(12)
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subject to the ICs:
δ(ξ, 0) = 0.4933 + 0.02 tanh2(0.1 ξ),

φ(ξ, 0) = −0.0134 + 0.0134 tanh(0.1 ξ),

ψ(ξ, 0) = 1.5 + 1.5 tanh(0.1 ξ).

(13)

To obtain the solution by the LRPSM in the series form about t = 0, we first apply the
LT on both sides of Equation (12) to obtain:

L[Dα
τδ(ξ, τ)] = 1

2L
[
δξξξ(ξ, τ)

]
− 3L

[
δ(ξ, τ)δξ(ξ, τ)

]
+ 3L

[
(φ(ξ, τ)ψ(ξ, τ))ξ

]
,

L[Dα
τφ(ξ, τ)] = −L

[
φξξξ(ξ, τ)

]
+ 3L

[
δ(ξ, τ)φξ(ξ, τ)

]
,

L[Dα
t f (x, t)] = −L

[
ψξξξ(ξ, τ)

]
+ 3L

[
3δ(ξ, τ)ψξ(ξ, τ)

]
.

Using the ICs (11), we have:

G(ξ, s) = 0.4933 + 0.02 tanh2(0.1 ξ)
s + 1

2sα
∂3

∂ξ3 G(ξ, s)

− 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[G(ξ, s)]
]

+ 3
sα

∂
∂ξ

[
L−1[Φ(ξ, s)] · L−1[Ψ(ξ, s)]

]
,

Φ(ξ, s) = −0.0134 + 0.0134 tanh(0.1ξ)
s − 1

sα
∂3

∂ξ3 Φ(ξ, s)

+ 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Φ(ξ, s)]
]
,

Ψ(ξ, s) = 1.5 + 1.5 tanh(0.1 ξ)
s − 1

sα
∂3

∂ξ3 Ψ(ξ, s)

+ 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Ψ(ξ, s)]
]
.

(14)

Define the kth-truncated series of Equation (14) as:

Gk(ξ, s) = 0.4933 + 0.02 tanh2(0.1 ξ)
s +

k
∑

m=1

δm(x)
smα+1 , k = 1, 2, · · ·

Φk(ξ, s) = −0.0134 + 0.0134 tanh(0.1ξ)
s +

k
∑

m=1

φm(x)
smα+1 , k = 1, 2, · · ·

Ψk(ξ, s) = 1.5 + 1.5 tanh(0.1 ξ)
s +

k
∑

m=1

ψm(x)
smα+1 , k = 1, 2, · · · .

(15)

The kth Laplace residual function of Equation (14) is defined as:

LReskGk(ξ, s) = Gk(ξ, s)− 0.4933 + 0.02 tanh2(0.1 ξ)
s − 1

2sα
∂3

∂ξ3 G(ξ, s)

+ 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[G(ξ, s)]
]

− 3
sα

∂
∂ξ

[
L−1[Φ(ξ, s)] · L−1[Ψ(ξ, s)]

]
,

LReskΦk(ξ, s) = Φk(ξ, s) + 0.0134 + 0.0134 tanh(0.1ξ)
s + 1

sα
∂3

∂ξ3 Φ(ξ, s)

− 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Φ(ξ, s)]
]
,

LReskΨk(ξ, s) = Ψk(ξ, s)− 1.5 + 1.5 tanh(0.1 ξ)
s + 1

sα
∂3

∂ξ3 Ψ(ξ, s)

− 3
sα L
[
L−1[G(ξ, s)] · ∂

∂ξ L−1[Ψ(ξ, s)]
]
.

(16)

Hence, to obtain the values of the coefficients functions δk(x), φk(x) and
ψk(x), k = 1, 2, · · · , we substitute the kth truncated series Gk(ξ, s), Φk(ξ, s) and Ψk(ξ, s)
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in (15) into the kth Laplace residual function (14), and then multiply the obtained equation
by skα+1 and solve the recurrence relations:

lim
s→∞

skα+1LReskGk(ξ, s) = 0,

lim
s→∞

skα+1LReskΦk(ξ, s) = 0,

lim
s→∞

skα+1LReskΨk(ξ, s) = 0,

for the unknown coefficients δk(x), φk(x) and ψk(x), where k = 1, 2, · · · .
Now, following a few terms of the sequence {δk(x)}, {φk(x)} and {ψk(x)}, we obtain:

δ1(ξ) =
(
0.00598tanh(0.1ξ)− 1.30104 × 10−18)sech2(0.1ξ),

φ1(ξ) =0.00201sech2(0.1ξ),

ψ1(ξ) =0.22499sech2(0.1ξ).

δ2(ξ) = −3.53226

×10−6 sech9(0.1ξ)(59.21054sinh(0.1ξ) + 100.8182sinh(0.3ξ)

+49.60926sinh(0.5ξ) + 8.0016sinh(0.7ξ) + 1 cosh(0.1ξ)

+0.36 cosh(0.3ξ)− 0.04 cosh(0.5ξ)− 0.04 cosh(0.7ξ)),

φ2(ξ) =− 7.53842

×10−5(sinh(0.1ξ) + 1.49987sinh(0.3ξ)

+ 0.49987sinh(0.5ξ)) sech7(0.1ξ),

ψ2(ξ) =− 0.00844(sinh(0.1ξ) + 1.49987sinh(0.3ξ) + 0.49987sinh(0.5ξ))sech7(0.1ξ).

δ3(ξ) = 4.68229 × 10−6sech15(0.1ξ)(−5.77628sinh(0.1ξ)− 11.98959sinh(0.3ξ)

− 9.23265sinh(0.5ξ)− 3.59499sinh(0.7ξ)− 0.52051sinh(0.9ξ)

+ 0.08358sinh(1.1ξ) + 0.02844sinh(1.3ξ) + cosh(0.1ξ)

+ 0.43738 cosh(0.3ξ)− 0.005159 cosh(0.5ξ)− 0.070707 cosh(0.7ξ)

− 0.01788 cosh(0.9ξ)− 0.000801 cosh(1.1ξ)− 0.000378 cosh(1.3ξ)),

φ3(ξ) =− 6.22028

× 10−5sech11(0.1ξ)(0.01352sinh(0.1ξ) + 0.02301sinh(0.3ξ)

+ 0.01132sinh(0.5ξ) + 0.00183sinh(0.7ξ) + cosh(0.1ξ)

+ 0.4935 cosh(0.3ξ) + 0.06625 cosh(0.5ξ)− 0.03592 cosh(0.7ξ)

− 0.011358 cosh(0.9ξ)),

ψ3(ξ) =− 0.00696sech11(0.1ξ)(0.01352sinh(0.1ξ) + 0.02301sinh(0.3ξ)

+ 0.01132sinh(0.5ξ) + 0.00183sinh(0.7ξ) + cosh(0.1ξ)

+ 0.4935 cosh(0.3ξ) + 0.06625 cosh(0.5ξ)− 0.03592 cosh(0.7ξ)

−0.01136 cosh(0.9ξ)).
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Repeating the previous steps, one can obtain the general terms of the coefficients of
the series solution of (10) as:

δ(ξ, τ) = 0.4933 + 0.02 tanh2(0.1 ξ)

+
((0.00598tanh(0.1ξ) − 1.30104 × 10−18)sech2(0.1ξ))τα

Γ(α+1)

+ τ2α

Γ(2α+1) (−3.53226

× 10−6 sech9(0.1ξ)(59.21054sinh(0.1ξ) + 100.8182sinh(0.3ξ)

+ 49.60926sinh(0.5ξ) + 8.0016sinh(0.7ξ) + 1 cosh(0.1ξ)

+ 0.36 cosh(0.3ξ)− 0.04 cosh(0.5ξ)− 0.04 cosh(0.7ξ))) + . . . ,

φ(ξ, τ) = −0.0134 + 0.0134 tanh(0.1ξ) +
0.00201sech2(0.1ξ)τα

Γ(α+1)

+ τ2α

Γ(2α+1) (−6.22028 × 10−5sech11(0.1ξ)(0.01352sinh(0.1ξ)

+ 0.02301sinh(0.3ξ) + 0.01132sinh(0.5ξ) + 0.00183sinh(0.7ξ)

+ cosh(0.1ξ) + 0.4935 cosh(0.3ξ) + 0.06625 cosh(0.5ξ)

−0.03592 cosh(0.7ξ)− 0.011358 cosh(0.9ξ))) + . . . ,

ψ(ξ, τ) = 1.5 + 1.5 tanh(0.1 ξ) + 0.22499sech2(ξ)τα

Γ(α+1)

+ τ2α

Γ(2α+1) (−0.00844(sinh(0.1ξ) + 1.49987sinh(0.3ξ)

+ 0.49987sinh(0.5ξ))sech7(0.1ξ)) + . . . .

In Table 1, we choose some selected grid points numerically utilizing absolute and
relative errors between the accurate solution and fifth order approximation LRPSM solution
to present the correctness of the method; it is obvious that that the current work is an
uncomplicated and potent tool, and we note that as τ decreases, the error becomes smaller.

Figure 1 below, shows the graph of the exact solution and the fifth LRPSM approximate
solution of the HSC–KdV equations. The effectiveness of the proposed method is evident in
Figure 1 below, which shows the graph of the LRPSM solution that concludes with the exact
solution when α = 1. The contour plot of the fifth approximation series solution to HSC–
KdV equations is shown in Figure 2 below. Figure 3 shows the graph of the corresponding
fifth approximation LRPSM and the exact solution in a wide space. However, in Figure 4,
we have examined the effect and effect of time. Here, it is clear that when we increase
time δ(ξ, τ), the LRPSM results show a different behavior and move from the positive to
negative x-axis; in addition, φ(ξ, τ) and ψ(ξ, τ) show different behaviors at different times
and are stable in a wide space, but as we increase the time, the solution also increases. The
5th truncated series of equations, (ξ, τ), φ(ξ, τ), and ψ(ξ, τ), is plotted in Figure 5a–c for
α = 0.6, α = 0.8 and α = 1, respectively, whereas the exact solution at α = 1 is plotted in
(d). The graphics indicate consistency in the behavior of the solution at various values of α,
as well as the agreement of the exact solution with the approximate solution in Figure 5c,d.
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Table 1. The values of and and the values of the 6th approximate of the LRPSM solution for HSC–KdV
equations α = 1 at and ξ = 0.1.

τ δ(ξ,τ) δ5(ξ,τ) |δ(ξ,τ)−δ5(ξ,τ)|
∣∣∣δ(ξ,τ)−δ(ξ,τ)

δ(ξ,τ)

∣∣∣
0.0 0.504901 0.504901 0.00 0.00

0.02 0.504862 0.5049 3.80723 × 10−5 7.54112 × 10−5

0.04 0.504824 0.5049 7.62487 × 10−5 1.5114 × 10−4

0.06 0.504785 0.504899 1.14529 × 10−4 2.26886 × 10−4

0.08 0.504746 0.504899 1.52912 × 10−4 3.12948 × 10−4

0.1 0.504707 0.504899 1.91398 × 10−4 3.79225 × 10−4

τ φ(ξ,τ) φ5(ξ,τ) |φ(ξ,τ)−φ5(ξ,τ)|
∣∣∣φ(ξ,τ)−φ5(ξ,τ)

φ(ξ,τ)

∣∣∣
0.0 −0.00319464

−3.19464
−0.00319464
−3.19464

0.00 0.00

0.02 −0.00321156 −0.00321156 1.67897 × 10−5 5.22791 × 10−3

0.04 −0.00322856 −0.00322856 3.36542 × 10−5 1.04239 × 10−2

0.06 −0.00324564 −0.00324564 5.05935 × 10−5 1.55882 × 10−2

0.08 −0.00326279 −0.00326279 6.76079 × 10−5 2.07209 × 10−2

0.1 −0.00328002 −0.00328002 8.46975 × 10−5 2.58222 × 10−2

τ ψ(ξ,τ) ψ5(ξ,τ) |ψ(ξ,τ)−ψ5(ξ,τ)|
∣∣∣ψ(ξ,τ)−ψ5(ξ,τ)

ψ(ξ,τ)

∣∣∣
0.0 2.64239 2.64239 0.00 0.00

0.02 2.6435 2.64238 1.87945 × 10−3 7.33778 × 10−4

0.04 2.63859 2.64236 3.76726 × 10−3 3.42775 × 10−3

0.06 2.63668 2.64235 5.66345 × 10−3 2.34795 × 10−3

0.08 2.63476 2.64233 7.56835 × 10−3 2.87238 × 10−3

0.1 2.63283 2.64233 9.48336 × 10−3 3.63339 × 10−3

Figure 1. Cont.
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Figure 1. The exact solution and the fifth approximate LRPSM solution of HSC–KdV equations for
the functions δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) at τ ∈ [0, 2], ξ ∈ [−40, 40], and α = 1.

Figure 2. Cont.

110



Fractal Fract. 2022, 6, 694

Figure 2. The contour graph of the approximate solutions (a) δ(ξ, τ), (b) φ(ξ, τ), and (c) ψ(ξ, τ) for
HSC–KdV equation at τ ∈ [0, 4], ξ ∈ [0, 1], and α = 1.

Figure 3. The graph of the 5th LRPSM solutions δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) for HSC–KdV equations
at τ = 0.1, τ = 1, τ = 0.1, τ = 3, ξ ∈ [−30, 30], and α = 1.

111



Fractal Fract. 2022, 6, 694

Figure 4. The graph of the 5th LRPSM solutions δ(ξ, τ), φ(ξ, τ), and ψ(ξ, τ) for HSC–KdV equation
at τ = 0.1, τ = 1, τ = 2, τ = 3, ξ ∈ [−30, 30], and α = 1.

Figure 5. Cont.
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Figure 5. The 3D surface plot of the 10th approximate solutions of u1, u2, and u3 at various values of
α and t = 0.5 and ζ = 3 for the problem in Example 4.3; (a) α = 0.6, (b) α = 0.8, (c) α = 1, (d) α = 1
(exact solutions).

5. Conclusions

This paper introduces a new series solution of the coupled Hirota–Satsuma and KdV
equations and provides a general term of the solution. We applied the LRPSM to investigate
the solution and obtained a general formula of the series solution for the target equations.
We showed the efficiency and applicability of the method by introducing a numerical
application and compared our results to the exact ones in the integer case. We analyzed
the outcomes and sketched the solutions with different values for the variables and the
fractional order. In the future, we intend to solve more physical problems with the LRPSM
and compare the outcomes to those obtained by other numerical methods.

As a result of our research, we conclude the following:

• LRPSM is a powerful method for solving systems of fractional partial differential equations.
• LRPSM is a simple technique that could provide many terms of the obtained series solution.
• In comparison to other numerical methods, LRPSM needs less computation, without

requiring linearization, discretization, or differentiation.
• The only disadvantage of the presented method is the Laplace transform step in the

event that one the functions in the discussed problem is not of exponential order.
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Abstract: In this investigation, we utilize advanced versions of the Extended Direct Algebraic Method
(EDAM), namely the modified EDAM (mEDAM) and r+mEDAM, to explore families of optical soliton
solutions in the Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model (FPRKLM). Our
study stands out due to its in-depth investigation and the identification of multiple localized and
stable soliton families, illuminating their complex behavior. We offer visual validation via carefully
designed 3D graphics that capture the complex behaviors of these solitons. The implications of our
research extend to fiber optics, communication systems, and nonlinear optics, with the potential for
driving developments in optical devices and information processing technologies. This study conveys
an important contribution to the field of nonlinear optics, paving the way for future advancements
and a greater comprehension of optical solitons and their applications.

Keywords: Fractional Perturbed Radhakrishnan Kundu Lakshmanan Model; Extended Direct
Algebraic Method; Nonlinear Ordinary Differential Equation; optical soliton solutions; variable
transformation; generalized trigonometric functions

1. Introduction

Fractional Partial Differential Equations (FPDEs) have received great attention in dif-
ferent fields of science due to their ability to accurately model complex physical phenomena
[1–4]. This encourages researchers to dedicate their efforts to studying, examining, and an-
alyzing FPDEs. Researchers have used numerical and analytical techniques to understand
and analyze the behavior of FPDEs. Numerical methods are based on discretization tech-
niques that approximate the solution through iterative calculations [5–7]. These numerical
methods are powerful and widely used but often have limitations, such as computational
expenses and the inability to provide exact solutions. In contrast, analytic techniques aim
to obtain exact solutions using mathematical techniques and transformations. Researchers
often prefer closed formulas and analytical techniques that can provide greater insight
into the underlying mathematical structure of a problem. Analytic solutions provide a
comprehensive understanding of system behavior, facilitating further theoretical analysis
and investigation of physical effects. Therefore, different analytical approaches, such as
the Variational Iteration Method (VIM) [8], the Fractional Differential Transform Method
(FDTM) [9], the (G’/G)-expansion method [10], the exp-function method [11], the tan-
expansion method [12], the Adomian Decomposition Method (ADM) [13], the Laplace
Transform Method (LTM) [14] and the EDAM [15,16], etc., are introduced to tackle FPDEs.
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The EDAM is a particularly efficient and reliable approach among these analytical
techniques. The method first transforms a complex nonlinear FPDE into a Nonlinear
Ordinary Differential Equation (NODE) by fitly choosing variable transformations. Then,
using another ODE, the EDAM assumes a series-form solution. Substituting this solution
into NODE adeptly transforms the NODE into a system of algebraic equations. By solving
this system of equations skillfully, the EDAM allows us to construct different families
of soliton solutions, each with profound implications in different scientific fields. This
amazing ability of the EDAM enriches our understanding and exploration of FPDEs and
opens the door to groundbreaking discoveries and major advances in the scientific field.

Our study’s main goal is to investigate the variety of optical soliton solutions for the
FPRKLM using two upgraded versions of the EDAM, namely mEDAM and r+EDAM. The
FPRKLM is a special type of FPDE incorporating perturbations into the Radhakrishnan–
Kundu–Lakshmanan Model (RKLM), a well-known equation governing soliton dynamics.
The FPRKLM exhibits rich dynamics and can be applied to various physical systems,
such as nonlinear optics, Bose–Einstein condensation, and plasma physics. The FPRKLM
provides a valuable theoretical framework for studying wave phenomena and has practical
implications. Optical solitons, which are self-amplifying single waves, have attracted much
attention due to their potential applications in high-speed communication systems, optical
fibers, and optical signal processing. Analyzing the family of optical soliton solutions in
the FPRKLM provides important insights into the behavior and manipulation of optical
pulses and enables their advancement. With this analytical approach, we hope to decipher
the complex wave phenomena of soliton solutions and provide valuable insights into the
behavior of optical solitons in the FPRKLM. This investigation’s results are important for
understanding the FPRKLM and further developing nonlinear optics and related fields. The
proposed complex structural FPRKLM under the Kerr law nonlinearity is given by [17]:

iDα
t u + a1D2β

xxu + b1|u|2u − iδDβ
x u − iμ1Dβ

x (|u|2u)− iσuDβ
x (|u|2)− iγD3β

xxxu = 0, (1)

where 0 < α, β ≤ 1 and u represents the complex-valued wave-function in space, x,
and time, t. Dα

t u denotes the fractional time evolution of the nonlinear wave, while
Dβ

x u, D2β
xxu and D3β

xxxu denote spatial fractional derivatives. In this study, both time and
spatial fractional derivatives are defined in Caputo’s derivative sense given in (2). The
proposed model was described in terms of time-fractional derivatives in [17]. The goal of
this study is to solve the problem using a more thorough model that includes complete
fractional derivatives. As a consequence, we generalise the model from [17] by substituting
a fractional derivative, Dβ

x , for the traditional spatial derivative. The inclusion of spatial
fractional derivatives captures genuine occurrences and improves the description of the
system by taking fractional diffusion and the interaction of temporal and spatial dynamics
into consideration. It also generalises the issue, allowing for fascinating mathematical
analysis, and broadens the study’s application to complex systems with temporal and
spatial fractional dynamics. The coefficient a1 denotes Group velocity dispersion (GVD),
b1 denotes the nonlinearity coefficient, δ represents Inter-Modal Dispersion (IMD), μ1
corresponds to short-pulse self-tilt coefficient, and σ denotes higher-order dispersion. In
contrast, the coefficient γ corresponds to third-order dispersion terms.

Prior to this work, many mathematicians have studied the optical wave phenomena
of the proposed model in both integer and fractional forms for exploring optical soliton
solutions using various analytical approaches. In their work [17], Sulaiman et al. delved into
the study of dark, bright, and dark-light mixtures; single, mixed singular optical solitons;
and singular periodic wave solutions in time-fractional FPRKLM. Similarly, Saima et al.
focused on PRKLM for scattered light solitons of bright, dark, singular and dark singular
combinations using (G′/G2)-expansion and sine-Gordon expansion methods [18]. Tukur
and Hasan [19] used the extended rational sine-cosine/sinh-cosh method to tackle local M-
fractional RKL equations. Finally, Kudryashov [20] studied complex RKL equations using
the fourth-power polynomial law of nonlinearity, especially for solitary wave construction.
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The fractional derivatives presented in (1) are defined in the Caputo’s derivative sense.
The operator for this differentiation is defined as [21]

Dγ
y u(x, y) =

{ 1
Γ(1−γ)

∫ y
0

∂
∂ω z(x, ω)(ω − y)−γdω, γ ∈ (0, 1)

∂u(x,y)
∂y , γ = 1

(2)

where the function u(x, y) is fairly smooth. We rely on the application of the subsequent
two operator’s properties to convert the FPDE indicated in (1) into NODEs:

Dκ
ϕ ϕr =

Γ(1 + r)
Γ(1 + r − κ)

ϕr−κ , (3)

Dγ
ϕy[x(ϕ)] = y′

x(x(ϕ))Dγ
ϕx(ϕ), (4)

Here, we presume that x(ϕ) & y(ϕ) symbolises functions that maintain differentiability,
whereas r is a real number.

2. Method and Materials

This section outlines the EDAM’s operational procedures. Take into account the
general FPDE listed below [16]:

M(h, ∂α
t h, ∂

β
v1 h, ∂

γ
v2 h, h∂

β
v1 h, . . .) = 0, 0 < α, β, γ ≤ 1, (5)

where h = h(t, v1, v2, v3, . . . , vi).
Following these steps allows us to solve problem (5):

1. First, h(t, v1, v2, v3, . . . , vi) = H(ζ), ζ = ζ(t, v1, v2, v3, . . . , vi) (ζ can be written in many
ways) is executed to turn (5) into a NODE of the form:

T(H, H′, H′H, . . . ) = 0, (6)

where H in (6) has derivatives with respect to ζ. (6) may occasionally be integrated
once or more to obtain the integration’s constant.

2. We assume one of the following solutions for (6) based on the version of EDAM:

(a) The following series form solution is suggested by the mEDAM:

H(ζ) =
j

∑
m=−j

Cm(G(ζ))m, (7)

(b) While the r+mEDAM offers the subsequent solution:

H(ζ) =
j

∑
m=−j

Cm(r + G(ζ))m, (8)

where Cm(m = −j, . . . , 0, . . . , j) are arbitrary parameters that will be found
later and G(ϕ) satisfies the subsequent nonlinear ODE:

G′(ζ) = (c(G(ζ))2 + bG(ζ) + a)ln(μ), (9)

Here, it ought to be pointed out that μ presumes a value different from 0 and 1,
whereas a, b, and c remain constant during the investigation.

3. The positive integer symbolised as j in (7) and (8) is often referred to as the balance
number. It is calculated by applying homogeneous balancing between the greatest
nonlinear component in Equation (6) and the highest order derivative.
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4. Following that, we insert (7) or (8) into (6) or into the equation created by integrating
(6), and we then compile all of the terms of G(ζ) that are in the same order and produce
an expression in G(ζ). A system of algebraic equations in Cm(m = −j, . . . , 0, . . . , j)
and other parameters is produced by equating all the coefficients of the expression to
zero using the concept of comparison of coefficients.

5. We use the Maple programme for resolving this set of algebraic equations.
6. The next step is to determine the coefficients and extra parameters, which we then

include into Equation (7) or (8) along with the general solution of Equation (9), de-
noted as G(ζ), in order to study the optical soliton solutions for Equation (5). We may
produce several families of soliton solutions by using the general solution given in
Equation (10), as shown below.

Family 1. In the case when Q is below 0 and c is not equal to 0. the use of the general
solutions if nonlinear ODE provided in Equation (9) results into the development of the
given family of travelling soliton solutions:

G1(ζ) = − b
2c

+

√−Q tanμ

(
1/2

√
−Rζ

)
2c

,

G2(ζ) = − b
2c

−
√−Q cotμ

(
1/2

√
−Rζ

)
2c

,

G3(ζ) = − b
2c

+

√−Q
(
tanμ

(√−Qζ
)
±
(√

pq secμ

(√−Qζ
)))

2c
,

G4(ζ) = − b
2c

−
√−Q

(
cotμ

(√−Qζ
)
±
(√

pq cscμ

(√−Qζ
)))

2c
,

and

G5(ζ) = − b
2c

+

√−Q
(
tanμ

(
1/4

√−Qζ
)
− cotμ

(
1/4

√−Qζ
))

4c
.

Family 2. The generic solutions derived from Equation (9) lead to the following family of
traveling soliton solutions when Q is larger than zero and c is not equal to zero:

G6(ζ) = − b
2c

−
√

Q tanhμ

(
1/2

√
Qζ
)

2c
,

G7(ζ) = − b
2c

−
√

Q cothμ

(
1/2

√
Qζ
)

2c
,

G8(ζ) = − b
2c

−
√

Q
(
tanhμ

(√
Qζ
)
±
(√

pqsechμ

(√
Qζ
)))

2c
,

G9(ζ) = − b
2c

−
√

Q
(
cothμ

(√
Qζ
)
±
(√

pqcschμ

(√
Qζ
)))

2c
,

and

G10(ζ) = − b
2c

−
√

Q
(
tanhμ

(
1/4

√
Qζ
)
− cothμ

(
1/4

√
Qζ
))

4c
.

Family 3. The generic solutions stated in Equation (9) are applied in the case where the
product ac is higher than 0 and b is equal to 0, producing the required family of traveling
soliton solutions:

G11(ζ) =

√
a
c

tanμ

(√
acζ
)
,

G12(ζ) = −
√

a
c

cotμ

(√
acζ
)
,
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G13(ζ) =

√
a
c
(
tanμ

(
2
√

acζ
)
±
(√

pq secμ

(
2
√

acζ
)))

,

G14(ζ) = −
√

a
c

(
cotμ

(
2
√

ACζ
)
±
(√

pq cscμ

(
2
√

acζ
)))

,

and

G15(ζ) =
1
2

√
a
c
(
tanμ

(
1/2

√
acζ
)
− cotμ

(
1/2

√
acζ
))

.

Family 4. The generic solutions of (9) provide the following family of traveling soliton
solutions for ac > 0 & b = 0:

G16(ζ) = −
√

− a
c

tanhμ

(√
−acζ

)
,

G17(ζ) = −
√

− a
c

cothμ

(√
−acζ

)
,

G18(ζ) = −
√

− a
c

(
tanhμ

(
2
√
−acζ

)
±
(

i
√

pqsechA

(
2
√
−acζ

)))
,

G19(ζ) = −
√

− a
c

(
cothμ

(
2
√
−acζ

)
±
(√

pqcschμ

(
2
√
−acζ

)))
,

and

G20(ζ) = −1
2

√
− a

c

(
tanhμ

(
1/2

√
−acζ

)
+ cothμ

(
1/2

√
−acζ

))
.

Family 5. The general solutions derived from Equation (9) give birth to the following
specific family of travelling soliton solutions as follows when c equals a and b equals 0:

G21(ζ) = tanμ(aζ),

G22(ζ) = − cotμ(aζ),

G23(ζ) = tanμ(2 Aζ)±
(√

pq secμ(2 aζ)
)
,

G24(ζ) = − cotμ(2 aζ)±
(√

pq cscμ(2 aζ)
)
,

and
G25(ζ) =

1
2

tanμ(1/2 aζ)− 1/2 cotμ(1/2 aζ).

Family 6. The following family of traveling soliton solutions is produced when the general
solutions derived from Equation (9) are used in the situation when c is equal to −a and b is
equal to zero:

G26(ζ) = − tanhμ(aζ),

G27(ζ) = − cothμ(aζ),

G28(ζ) = − tanhμ(2 aζ)±
(
i
√

pqsechμ(2 aζ)
)
,

G29(ζ) = − cothμ(2 aζ)± (
√

pqcsch¯(2 aζ)),

and
G30(ζ) = −1

2
tanhμ(1/2 aζ)− 1/2 cothμ(1/2 aζ).
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Family 7. The application of the general solutions derived from Equation (9) yields the
specified family of traveling soliton solutions when Q is equal to zero:

G31(ζ) =
−2a(bζ ln(μ) + 2)

b2ζ ln(μ)
.

Family 8. The generic solutions derived from Equation (9) produce the following family of
traveling soliton solutions where b is equal to ν, a is equal to Nν (where N is a non-zero
number), and c is equal to zero:

G32(ζ) = μν ζ − N.

Family 9. The generic solutions derived from Equation (9) give rise to the specified family
of traveling soliton solutions when both b and c are equal to zero:

G33(ζ) = aζ ln(μ).

Family 10. The general solutions derived from Equation (9) result in the stated set of
traveling soliton solutions when both b and a are zero:

G34(ζ) = − 1
cζ ln(μ)

.

Family 11. The general solutions resulting from Equation (9) result in the stated family of
traveling soliton solutions when a is zero, b is not equal to zero, and c is not equal to zero:

G35(ζ) = − pb
c
(
coshμ(bζ)− sinhμ(bζ) + p

) ,

and

G36(ζ) = − b
(
coshμ(bζ) + sinhμ(bζ)

)(
c coshμ(bζ) + c sinhμ(bζ) + cq

) ,

Family 12. The general solutions derived from Equation (9) result in the following set of
traveling soliton solutions where b is equal to ν, c is equal to Nν (where N is a non-zero
number), and a is equal to zero:

G37(ζ) =
pμν ζ

p − Nqμν ζ
.

Here, p and q are both greater than zero, which are known as the deformation parame-
ters. In addition, Q is defined as b2 − 4ac. Our solutions contain generalised trigonometric
and hyperbolic functions that may be represented as follows:

sinμ(ζ) =
pμiζ − qμ−iζ

2i
, cosμ(ζ) =

pμ−iζ + qμiζ

2
,

secμ(ζ) =
1

cosμ(ζ)
, cscμ(ζ) =

1
sinμ(ζ)

,

cotμ(ζ) =
cosμ(ζ)

sinμ(ζ)
, tanμ(ζ) =

sinμ(ζ)

cosμ(ζ)
.
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Similarly,

sinhμ(ζ) =
pμζ − qμ−ζ

2
, coshμ(ζ) =

pμ−ζ + qμζ

2
,

sech¯(ı) =
1

cosh¯(ı)
, csch¯(ı) =

1
sinh¯(ı)

,

cothμ(ζ) =
coshμ(ζ)

sinhμ(ζ)
, tanhμ(ζ) =

sinhμ(ζ)

coshμ(ζ)
.

3. Results

In this section, the targeted problem is addressed with improved versions of the
EDAM. We debut with the following traveling wave transformation:

u(x, t) = U(ζ)eiθ , where

ζ = λ(
xβ

Γ(β + 1)
− c1tα

Γ(α + 1)
), and θ = − kxβ

Γ(β + 1)
+

ωtα

Γ(α + 1)
+ ϑ,

(10)

substituting (10) in (1) yields:

λ2(a1 + 3kγ)U′′ + (b1 − kμ)U3 − (ω + δk + a1k2 + γk3)U = 0, (11)

from the real part while the imaginary part gives:

λ2γU′′′ − (c1 + 2a1k + 3k2γ + δ)U′ − (2σ + 3μ)U2U′ = 0. (12)

By integrating (12) with respect to ζ once and setting constant of integration to zero,
we have:

3λ2γU′′ − 3(c1 + 2a1k + 3k2γ + δ)U − 3(2σ + 3μ)U3 = 0. (13)

(11) and (13) have the same forms under the following constraint condition:

a1 + 3kγ

3λ2 = − b1 − kμ

(2σ + 3μ)
=

ω + δk + a1k2 + γk3

3(c1 + 2a1k + 3k2γ + δ)
(14)

Solving (14) for c1 and k yields:

k = −2a1σ + 3b1γ + 3a1μ

6(σ + μ)γ
, (15)

c1 =
(ω + δk + a1k2 + γk3)γ

a1 + 3γk
− (2ka1 + δ + 3k2γ). (16)

The constraints in (14)–(16) reduces the FPRKLM to a single ODE given in (11). The
next goal is to solve (11) using the proposed versions of the EDAM for generating families
of optical soliton solutions for (1). Balancing the highest order nonlinear term U3 and
highest order derivative U′′ gives m = 1.

3.1. Application of the mEDAM

First we wish to use M to solve Equation (11). The following series-based solution for
problem (11) is obtained by inserting j = 1 in Equation (7):

U(ζ) =
1

∑
m=−1

Cm(G(ζ))m = C−1(G(ζ))−1 + C0 + C1(G(ζ))1, (17)
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where C−1, C0 & C1 are unknown constants. A system of nonlinear algebraic equations is
produced by substituting Equation (17) into Equation (11). We use the Maple software to
solve this problem, and it offers us the following two sets of solutions:

Case 1.

C1 = 0, C−1 = 2 a
√

m2

m3(b2 − 4 ac)
, C0 = −

√
m2

m3(b2 − 4 ac)
b,

λ =

√
2

ln(μ)

√
m2

m1(−b2 + 4 ac)
,

(18)

Case 2.

C1 = 2 c
√

m2

m3(b2 − 4 ac)
, C−1 = 0, C0 = −

√
m2

m3(b2 − 4 ac)
b,

λ =

√
2

ln(μ)

√
m2

m1(−b2 + 4 ac)
,

(19)

where

m1 = a1 + 3kγ

m2 = ω + δk + a1k2 + γk3

m3 = b1 − kμ

(20)

Taking Case 1 into consideration, we arrive at the following families of optical soliton
solutions:

Family 1. When Q is less than 0 and a, b, and c are all non-zero, Equations (17) and
(10), and the generic solutions obtained from Equation (9), together, give birth to a specific
family of optical soliton solutions, which may be stated as follows:

u1(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)

(
− b

2c
+

√−Q tanμ

(
1/2

√−Q(ζ)
)

2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(21)

u2(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)

(
− b

2c
−

√−Q cotμ

(
1/2

√−Q(ζ)
)

2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(22)

u3(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q
(
tanμ

(√−Q(ζ)
)
±
(√

pq secμ

(√−Q(ζ)
)))

2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(23)
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u4(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)
×(

− b
2c

−
√−Q

(
cotμ

(√−Q(ζ)
)
±
(√

pq cscμ

(√−Q(ζ)
)))

2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(24)

and

u5(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q
(
tanμ

(
1/4

√−Q(ζ)
)
− cotμ

(
1/4

√−Q(ζ)
))

4c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b).

(25)

Family 2. When Q is greater than 0 and a, b, and c are all non-zero, Equations (17) and
(10), and the generic solutions obtained from Equation (9), together, give birth to a specific
family of optical soliton solutions, which may be stated as follows:

u6(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)

(
− b

2c
−

√
Q tanhμ

(
1/2

√
Q(ζ)

)
2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(26)

u7(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)

(
− b

2c
−

√
Q cothμ

(
1/2

√
Q(ζ)

)
2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(27)

u8(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)
×⎛⎝− b

2c
−

√
Q
(

tanhμ

(√
Z(ζ)

)
±
(√

pqsechμ

(√
Q(ζ)

)))
2c

⎞⎠−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(28)

u9(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q
(
cothμ

(√
Q(ζ)

)
±
(√

pqcschμ

(√
Q(ζ)

)))
2c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b),

(29)
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and

u10(x, t) = eiθ(2 a
√

m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q
(
tanhμ

(
1/4

√
Q(ζ)

)
− cothμ

(
1/4

√
Q(ζ)

))
4c

)−1

−
√

− m2

m3(−b2 + 4 ac)
b).

(30)

Family 3. Equations (17) and (10), and the related general solutions obtained from
Equation (9), when used in conjunction, produce a particular family of optical soliton
solutions where the product ac is larger than zero and b is equal to zero, which may be
written as follows:

u11(x, t) = eiθ(

√−m2

m3

(
tanμ

(√
ac(ζ)

))−1
), (31)

u12(x, t) = eiθ(−
√−m2

m3

(
cotμ

(√
ac(ζ)

))−1
), (32)

u13(x, t) = eiθ(

√−m2

m3

(
tanμ

(
2
√

ac(ζ)
)
±
(√

pq secμ

(
2
√

ac(ζ)
)))−1

), (33)

u14(x, t) = eiθ(−
√−m2

m3

(
cotμ

(
2
√

ac(ζ)
)
±
(√

pq cscμ

(
2
√

ac(ζ)
)))−1

), (34)

and

u15(x, t) = eiθ(2
√−m2

m3

(
tanμ

(
1/2

√
ac(ζ)

)
− cotμ

(
1/2

√
ac(ζ)

))−1
). (35)

Family 4. Combining the use of Equations (17) and (10), and the related general solutions
obtained from Equation (9) results in a unique family of optical soliton solutions in the
situation when the product ac is higher than zero and b is equal to zero. These solutions
are represented as follows:

u16(x, t) = eiθ(

√
m2

m3

(
tanhμ

(√
−ac(ζ)

))−1
), (36)

u17(x, t) = eiθ(−
√

m2

m3

(
cothμ

(√
−ac(ζ)

))−1
), (37)

u18(x, t) = eiθ(−
√

m2

m3
(tanhμ

(
2
√
−ac(ζ)

)
±
(

i
√

pqsechμ

(
2
√
−ac(ζ)

))
)−1),

(38)
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u19(x, t) = eiθ(−
√

m2

m3
(cothμ

(
2
√
−ac(ζ)

)
±
(√

pqcschμ

(
2
√
−ac(ζ)

))
)−1),

(39)

and

u20(x, t) = eiθ(−
√

m2

m3
(tanhμ

(
1/2

√
−ac(ζ)

)
+ cothμ

(
1/2

√
−ac(ζ)

)
)−1).

(40)

Family 5. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to construct a specific family of optical soliton solutions where c
is equal to a and b is equal to zero. These solutions are represented as follows:

u21(x, t) = eiθ(

√−m2

m3

(
tanμ(a(ζ))

)−1
), (41)

u22(x, t) = eiθ(−
√−m2

m3

(
cotμ(a(ζ))

)−1
), (42)

u23(x, t) = eiθ(

√−m2

m3

(
tanμ(2 a(ζ))±

(√
pq secμ(2 a(ζ))

))−1
), (43)

u24(x, t) = eiθ(

√−m2

m3

(
− cotμ(2 a(ζ))∓

(√
pq cscμ(2 a(ζ))

))−1
), (44)

and

u25(x, t) = eiθ(

√−m2

m3

(
1/2 tanμ(1/2 a(ζ))− 1/2 cotμ(1/2 a(ζ))

)−1
). (45)

Family 6. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to construct a specific family of optical soliton solutions where c
is equal to −a and b is equal to zero. These solutions are represented as follows:

u26(x, t) = eiθ(−
√

m2

m3

(
tanhμ(a(ζ))

)−1
), (46)

u27(x, t) = eiθ(−
√

m2

m3

(
cothμ(a(ζ))

)−1
), (47)

u28(x, t) = eiθ(

√
m2

m3

(
− tanhμ(2 a(ζ))∓

(
i
√

pqsechμ(2 a(ζ))
))−1

), (48)
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u29(x, t) = eiθ(

√
m2

m3

(
− cothμ(2 a(ζ))∓

(√
pqcschμ(2 a(ζ))

))−1
), (49)

and

u30(x, t) = eiθ(

√
m2

m3

(
−1/2 tanhμ(1/2 a(ζ))− 1/2 cothμ(1/2 a(ζ))

)−1
). (50)

Family 7. Equations (17) and (10), and the associated general solutions derived from
Equation (9) are used to produce a specific family of optical soliton solutions in the case
where b is equal to ν, a is equal to nν (where n is a non-zero value), and c is equal to zero.
These solutions are expressed as follows:

u31(x, t) = eiθ(2 n
√

m2

m3

(
μν (ζ) − n

)−1
−
√

m2

m3
). (51)

where ζ =
√

2
ln(μ)

√
m2

m1(−b2+4 ac) (−
c1tα

Γ(α+1) +
xβ

Γ(β+1) ), & θ = − kxβ

Γ(β+1) +
ωtα

Γ(α+1) + ϑ.

Now assuming Case 2, we get the following cluster of optical soliton solutions:

Family 8. Equations (17) and (10), and the equivalent general solutions obtained from
Equation (9) when Q is less than zero and a, b, and c are all non-zero, result in a particular
family of optical soliton solutions, which may be written as follows:

u32(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b

+ 2 c
√

m2

m3(b2 − 4 ac)

(
− b

2c
+

√−Q tanμ

(
1/2

√−Q(ζ)
)

2c

)
),

(52)

u33(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b

+ 2 c
√

m2

m3(b2 − 4 ac)

(
− b

2c
−

√−Q cotμ

(
1/2

√−Q(ζ)
)

2c

)
),

(53)

u34(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b + 2 c

√
m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q
(
tanμ

(√−Q(ζ)
)
±
(√

pq secμ

(√−Q(ζ)
)))

2c

)
),

(54)

u35(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b + 2 c

√
m2

m3(b2 − 4 ac)
×(

− b
2c

−
√−Q

(
cotμ

(√−Q(ζ)
)
±
(√

pq cscμ

(√−Q(ζ)
)))

2c

)
),

(55)
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and

u36(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b + 2 c

√
m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q
(
tanμ

(
1/4

√−Q(ζ)
)
− cotμ

(
1/4

√−Q(ζ)
))

4c

)
).

(56)

Family 9. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are all applied in the case when Q is higher than zero and a, b, and c are
all non-zero, leading to a specific family of optical soliton solutions, which may be stated
as follows:

u37(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b

+ 2 c
√

m2

m3(b2 − 4 ac)

(
− b

2c
−

√
Q tanhμ

(
1/2

√
Q(ζ)

)
2c

)
),

(57)

u38(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b

+ 2 c
√

m2

m3(b2 − 4 ac)

(
− b

2c
−

√
Q cothμ

(
1/2

√
Q(ζ)

)
2c

)
),

(58)

u39(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b + 2 c

√
m2

m3(b2 − 4 ac)
×⎛⎝− b

2c
−

√
Q
(

tanhμ

(√
Z(ζ)

)
±
(√

pqsechμ

(√
Q(ζ)

)))
2c

⎞⎠),
(59)

u40(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b + 2 c

√
m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q
(
cothμ

(√
Q(ζ)

)
±
(√

pqcschμ

(√
Q(ζ)

)))
2c

)
),

(60)

and

u41(x, t) = eiθ(−
√

− m2

m3(−b2 + 4 ac)
b + 2 c

√
m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q
(
tanhμ

(
1/4

√
Q(ζ)

)
− cothμ

(
1/4

√
Q(ζ)

))
4c

)
),

(61)

Family 10. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to provide a particular family of optical soliton solutions where
the product ac is larger than zero and b is equal to zero. These solutions are represented
as follows:

u42(x, t) = eiθ(

√−m2

m3
tanμ

(√
ac(ζ)

)
), (62)
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u43(x, t) = eiθ(−
√−m2

m3
cotμ

(√
ac(ζ)

)
), (63)

u44(x, t) = eiθ(

√−m2

m3

(
tanμ

(
2
√

ac(ζ)
)
±
(√

pq secμ

(
2
√

ac(ζ)
)))

), (64)

u45(x, t) = eiθ(−
√−m2

m3

(
cotμ

(
2
√

ac(ζ)
)
±
(√

pq cscμ

(
2
√

ac(ζ)
)))

), (65)

and

u46(x, t) = eiθ(

√−m2

m3

(
tanμ

(
1/2

√
ac(ζ)

)
− cotμ

(
1/2

√
ac(ζ)

))
). (66)

Family 11. Equations (17) and (10), and the related general solutions obtained from
Equation (9) are used to provide a particular family of optical soliton solutions where
the product ac is less than zero and b is equal to zero. These solutions are represented
as follows:

u47(x, t) = eiθ(−
√

m2

m3
tanhμ

(√
−ac(ζ)

)
), (67)

u48(x, t) = eiθ(−
√

m2

m3
cothμ

(√
−ac(ζ)

)
), (68)

u49(x, t) = eiθ(−
√

m2

m3

(
tanhμ

(
2
√
−ac(ζ)

)
±
(

i
√

pqsechμ

(
2
√
−ac(ζ)

)))
), (69)

u50(x, t) = eiθ(−
√

m2

m3

(
cothμ

(
2
√
−ac(ζ)

)
±
(√

pqcschμ

(
2
√
−ac(ζ)

)))
), (70)

and

u51(x, t) = eiθ(−
√

m2

m3

(
tanhμ

(
1/2

√
−ac(ζ)

)
+ cothμ

(
1/2

√
−ac(ζ)

))
). (71)

Family 12. The use of Equations (17) and (10), and the related general solutions obtained
from Equation (9) results in a different family of optical soliton solutions in the situation
when c is equal to a and b is equal to zero. These solutions are represented as follows:

u52(x, t) = eiθ(

√−m2

m3
tanμ(a(ζ))), (72)

u53(x, t) = eiθ(−
√−m2

m3
cotμ(a(ζ))), (73)
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u54(x, t) = eiθ(

√−m2

m3

(
tanμ(2 a(ζ))±

(√
pq secμ(2 a(ζ))

))
), (74)

u55(x, t) = eiθ(

√−m2

m3

(
− cotμ(2 a(ζ))∓

(√
pq cscμ(2 a(ζ))

))
), (75)

and

u56(x, t) = eiθ(

√−m2

m3

(
1/2 tanμ(1/2 a(ζ))− 1/2 cotμ(1/2 a(ζ))

)
). (76)

Family 13. The use of Equations (17) and (10), and the related general solutions obtained
from Equation (9) results in a different family of optical soliton solutions in the situation
when c is equal to −a and b is equal to zero. These solutions are represented as follows:

u57(x, t) = eiθ(−
√

m2

m3
tanhμ(a(ζ))), (77)

u58(x, t) = eiθ(−
√

m2

m3
cothμ(a(ζ))), (78)

u59(x, t) = eiθ(

√
m2

m3

(
− tanhμ(2 a(ζ))∓

(
i
√

pqsechμ(2 a(ζ))
))
), (79)

u60(x, t) = eiθ(

√
m2

m3

(
− cothμ(2 a(ζ))∓

(√
pqcschμ(2 a(ζ))

))
), (80)

and

u61(x, t) = eiθ(

√
m2

m3

(
−1/2 tanhμ(1/2 a(ζ))− 1/2 cothμ(1/2 a(ζ))

)
). (81)

Family 14. Equations (17) and (10), and the equivalent general solutions obtained from
Equation (9) when a is equal to zero, b is not equal to zero, and c is not equal to zero,
produce a particular family of optical soliton solutions, which may be written as follows:

u62(x, t) = eiθ(−
√

m2

m3
− 2
√

m2

m3
p
(
coshμ(b(ζ))− sinhμ(b(ζ)) + p

)−1
), (82)

and

u63(x, t) = eiθ(−
√

m2

m3
− 2
√

m2

m3

coshμ(b(ζ)) + sinhμ(b(ζ))
coshμ(b(ζ)) + sinhμ(b(ζ)) + q

). (83)

Family 15. Equations (17) and (10) & the associated general solutions derived from
Equation (9) produce a particular set of optical soliton solutions in the case where b is
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equal to ν, c is equal to nν (where n is a non-zero value), and a is equal to zero. These
solutions are expressed as follows:

u64(x, t) = eiθ(−
√

m2

m3
+ 2 n

√
m2

m3
pμν (ζ)

(
p − nqμν (ζ)

)−1
). (84)

where ζ =
√

2
ln(μ)

√
m2

m1(−b2+4 ac) (
xβ

Γ(β+1) −
c1tα

Γ(α+1) ), and θ = − kxβ

Γ(β+1) +
ωtα

Γ(α+1) + ϑ.

3.2. Application of the r+mEDAM

Now we wish to address (11) using the r+mEDAM. Putting m = 1 in (8) gives the
subsequent series-based solution for (11):

U(ζ) =
1

∑
m=−1

Cm(r + G(ζ))m = C−1(r + G(ζ))−1 + C0 + C1(r + G(ζ))1. (85)

The coefficients C−1, C0, and C1 are referred to as unknown parameters. A system of
nonlinear algebraic equations is produced by putting Equation (85) into Equation (11). We
use the Maple programme to address this problem, and it offers us the following two sets
of solutions:

Case 1

C1 = 0, C−1 = 2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
,

C0 =

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr), λ =

√
2

ln(μ)

√
m2

m1(−b2 + 4 ac)

(86)

Case 2

C1 = 2 c
√

m2

m3(b2 − 4 ac)
, C−1 = 0, C0 = −

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr),

λ =

√
2

ln(μ)

√
m2

m1(−b2 + 4 ac)

(87)

In light of Case 1, we discover the families of optical soliton solutions shown below:

Family 16. Equations (85) and (10), and the related general solutions obtained from
Equation (9) together produce a particular family of optical soliton solutions in the case
when Q is less than zero and a, b, and c are all non-zero:

u65(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q tanμ

(
1/2

√−Q(ζ)
)

2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(88)

u66(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

−
√−Q cotμ

(
1/2

√−Q(ζ)
)

2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(89)
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u67(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q
(
tanμ

(√−Q(ζ)
)
±
(√

pq secμ

(√−Q(ζ)
)))

2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(90)

u68(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

−
√−Q

(
cotμ

(√−Q(ζ)
)
±
(√

pq cscμ

(√−Q(ζ)
)))

2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(91)

and

u69(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

+

√−Q
(
tanμ

(
1/4

√−Q(ζ)
)
− cotμ

(
1/4

√−Q(ζ)
))

4c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)).

(92)

Family 17. Equations (85) and (10), and the related general solutions obtained from
Equation (9) together produce a particular family of optical soliton solutions in the case
when Q is greater than zero and a, b, and c are all non-zero:

u70(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q tanhμ

(
1/2

√
Q(ζ)

)
2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(93)

u71(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q cothμ

(
1/2

√
Q(ζ)

)
2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(94)

u72(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×⎛⎝− b

2c
−

√
Q
(

tanhμ

(√
Z(ζ)

)
±
(√

pqsechμ

(√
Q(ζ)

)))
2c

⎞⎠−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(95)
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u73(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q
(
cothμ

(√
Q(ζ)

)
±
(√

pqcschμ

(√
Q(ζ)

)))
2c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)),

(96)

and

u74(x, t) = eiθ(2
(

a − rb + r2c
)√ m2

m3(b2 − 4 ac)
×(

− b
2c

−
√

Q
(
tanhμ

(
1/4

√
Q(ζ)

)
− cothμ

(
1/4

√
Q(ζ)

))
4c

)−1

+

√
− m2

m3(−b2 + 4 ac)
(b − 2 cr)).

(97)

Family 18. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions where the product ac is
larger than zero and b is equal to zero. These solutions are represented as follows:

u75(x, t) = eiθ((1 +
cr2

a
)

√−m2

m3

(
tanμ

(√
ac(ζ)

))−1 −
√

−m2c
m3a

r), (98)

u76(x, t) = eiθ(−(1 +
cr2

a
)

√−m2

m3

(
cotμ

(√
ac(ζ)

))−1 −
√

−m2c
m3a

r), (99)

u77(x, t) = eiθ(−
√

−m2c
m3a

r

(1 +
cr2

a
)

√−m2

m3

(
tanμ

(
2
√

ac(ζ)
)
±
(√

pq secμ

(
2
√

ac(ζ)
)))−1

),
(100)

u78(x, t) = eiθ(−
√

−m2c
m3a

r

− (1 +
cr2

a
)

√−m2

m3

(
cotμ

(
2
√

ac(ζ)
)
±
(√

pq cscμ

(
2
√

ac(ζ)
)))−1

),
(101)

and

u79(x, t) = eiθ(−
√

−m2c
m3a

r

2(1 +
cr2

a
)

√−m2

m3

(
tanμ

(
1/2

√
ac(ζ)

)
− cotμ

(
1/2

√
ac(ζ)

))−1
).

(102)
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Family 19. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions where ac is less than zero
and b is equal to zero. These solutions are represented as follows:

u80(x, t) = eiθ(−(1 +
cr2

a
)

√
m2

m3

(
tanhμ

(√
−ac(ζ)

))−1
−
√

−m2c
m3a

r), (103)

u81(x, t) = eiθ(−(1 +
cr2

a
)

√
m2

m3

(
cothμ

(√
−ac(ζ)

))−1
−
√

−m2c
m3a

r), (104)

u82(x, t) = eiθ(−
√

−m2c
m3a

r

− (1 +
cr2

a
)

√
m2

m3

(
tanhμ

(
2
√
−ac(ζ)

)
±
(

i
√

pqsechμ

(
2
√
−ac(ζ)

)))−1
),

(105)

u83(x, t) = eiθ(−
√

−m2c
m3a

r

− (1 +
cr2

a
)

√
m2

m3

(
cothμ

(
2
√
−ac(ζ)

)
±
(√

pqcschμ

(
2
√
−ac(ζ)

)))−1
),

(106)

and

u84(x, t) = eiθ(−
√

−m2c
m3a

r

− 2(1 +
cr2

a
)

√
m2

m3

(
tanhμ

(
1/2

√
−ac(ζ)

)
+ cothμ

(
1/2

√
−ac(ζ)

))−1
).

(107)

Family 20. Equations (85) and (10), and the related general solutions obtained from
Equation (9) are used to produce a unique family of optical soliton solutions in the sit-
uation when c is equal to a and b is equal to zero. These solutions are written as follows:

u85(x, t) = eiθ((1 + r2)

√−m2

m3

(
tanμ(a(ζ))

)−1 −
√

−m2

m3
r), (108)

u86(x, t) = eiθ(−(1 + r2)

√−m2

m3

(
cotμ(a(ζ))

)−1 −
√

−m2

m3
r), (109)

u87(x, t) = eiθ(−
√

−m2

m3
r

(1 + r2)

√−m2

m3

(
tanμ(2 a(ζ))±

(√
pq secμ(2 a(ζ))

))−1
),

(110)

u88(x, t) = eiθ(−
√

−m2

m3
r

(1 + r2)

√−m2

m3

(
− cotμ(2 a(ζ))∓

(√
pq cscμ(2 a(ζ))

))−1
),

(111)
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and

u89(x, t) = eiθ(−
√

−m2

m3
r

(1 + r2)

√−m2

m3

(
1/2 tanμ(1/2 a(ζ))− 1/2 cotμ(1/2 a(ζ))

)−1
).

(112)

Family 21. Equations (85) and (10), and the related general solutions obtained from
Equation (9) are used to produce a unique family of optical soliton solutions in the sit-
uation when c is equal to −a and b is equal to zero. These solutions are written as follows:

u90(x, t) = eiθ(−(1 − r2)

√
m2

m3

(
tanhμ(a(ζ))

)−1
+

√
m2

m3
r), (113)

u91(x, t) = eiθ(−(1 − r2)

√
m2

m3

(
cothμ(a(ζ))

)−1
+

√
m2

m3
r), (114)

u92(x, t) = eiθ(

√
m2

m3
r

+ (1 − r2)

√
m2

m3

(
− tanhμ(2 a(ζ))∓

(
i
√

pqsechμ(2 a(ζ))
))−1

),
(115)

u93(x, t) = eiθ(

√
m2

m3
r

+ (1 − r2)

√
m2

m3

(
− cothμ(2 a(ζ))∓

(√
pqcschμ(2 a(ζ))

))−1
),

(116)

and

u94(x, t) = eiθ(

√
m2

m3
r

+ (1 − r2)

√
m2

m3

(
−1/2 tanhμ(1/2 a(ζ))− 1/2 cothμ(1/2 a(ζ))

)−1
).

(117)

Family 22. Equations (85) and (10), and the associated general solutions derived from
Equation (9) produce a specific family of optical soliton solutions when b is equal to ν, a
is equal to nν (where n is a non-zero value), and c is equal to zero. These solutions are
expressed as follows:

u95(x, t) = eiθ(2 (n − r)
√

m2

m3

(
μν (ζ) − n

)−1
+

√
m2

m3
). (118)

Family 23. Equations (85) and (10), and the associated general solutions derived from
Equation (9) are used to produce a specific family of optical soliton solutions in the case
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where a is equal to zero, b is not equal to zero, and c is not equal to zero. These solutions
are expressed as follows:

u96(x, t) = eiθ(

√
− m2

m3b2 (b − 2 cr)

− 2
(
−rb + r2c

)√m2

m3

c
(
coshμ(b(ζ))− sinhμ(b(ζ)) + p

)
pb2 ),

(119)

and

u97(x, t) = eiθ(

√
− m2

m3b2 (b − 2 cr)

− 2
(
−rb + r2c

)√m2

m3

c
(
coshμ(b(ζ)) + sinhμ(b(ζ)) + q

)
b
(
coshμ(b(ζ)) + sinhμ(b(ζ))

) ).
(120)

Family 24. Equations (85) and (10), and the associated general solutions derived from
Equation (9) produce a specific family of optical soliton solutions when b is equal to ν, c
is equal to nν (where n is a non-zero value), and a is equal to zero. These solutions are
expressed as follows

u98(x, t) = eiθ(2
(
−r + r2n

)√m2

m3

(
p − nqμν (ζ)

)
p
(
μν (ζ)

) +

√
m2

m3
(1 − 2 nr)). (121)

where ζ =
√

2
ln(μ)

√
m2

m1(−b2+4 ac) (−
c1tα

Γ(α+1) +
xβ

Γ(β+1) ), & θ = − kxβ

Γ(β+1) +
ωtα

Γ(α+1) + ϑ.

Now, assuming Case 2, we obtain the subsequent families of optical soliiton solutions:

Family 25. Equations (85) and (10), and the related general solutions deriving from
Equation (9) result in a specific family of optical soliton solutions in the situation when Q
is less than zero and a, b, and c are all non-zero:

u99(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr)

+ 2 c
√

m2

m3Q

(
− b

2c
+

√−Q tanμ

(
1/2

√−Q(ζ)
)

2c

)
),

(122)

u100(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr)

+ 2 c
√

m2

m3Q

(
− b

2c
−

√−Q cotμ

(
1/2

√−Q(ζ)
)

2c

)
),

(123)

u101(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr) + 2 c

√
m2

m3Q
×(

− b
2c

+

√−Q
(
tanμ

(√−Q(ζ)
)
±
(√

pq secμ

(√−Q(ζ)
)))

2c

)
),

(124)
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u102(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr) + 2 c

√
m2

m3Q
×(

− b
2c

−
√−Q

(
cotμ

(√−Q(ζ)
)
±
(√

pq cscμ

(√−Q(ζ)
)))

2c

)
),

(125)

and

u103(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr) + 2 c

√
m2

m3(Q)
×(

− b
2c

+

√−Q
(
tanμ

(
1/4

√−Q(ζ)
)
− cotμ

(
1/4

√−Q(ζ)
))

4c

)
).

(126)

Family 26. Equations (85) and (10), and the related general solutions deriving from
Equation (9) result in a specific family of optical soliton solutions in the situation when Q
is greater than zero and a, b, and c are all non-zero:

u104(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr)

+ 2 c
√

m2

m3(Q)

(
− b

2c
−

√
Q tanhμ

(
1/2

√
Q(ζ)

)
2c

)
),

(127)

u105(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr)

+ 2 c
√

m2

m3(Q)

(
− b

2c
−

√
Q cothμ

(
1/2

√
Q(ζ)

)
2c

)
),

(128)

u106(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr) + 2 c

√
m2

m3(Q)
×⎛⎝− b

2c
−

√
Q
(

tanhμ

(√
Z(ζ)

)
±
(√

pqsechμ

(√
Q(ζ)

)))
2c

⎞⎠),
(129)

u107(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr) + 2 c

√
m2

m3(Q)
×(

− b
2c

−
√

Q
(
cothμ

(√
Q(ζ)

)
±
(√

pqcschμ

(√
Q(ζ)

)))
2c

)
),

(130)

and

u108(x, t) = eiθ(−
√

− m2

m3(−Q)
(b − 2 cr) + 2 c

√
m2

m3(Q)
×(

− b
2c

−
√

Q
(
tanhμ

(
1/4

√
Q(ζ)

)
− cothμ

(
1/4

√
Q(ζ)

))
4c

)
).

(131)

Family 27. When the product ac is larger than 0 and b is equal to 0, the application of
Equations (85) and (10), and the associated general solutions obtained from Equation (9)
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results in a different family of optical soliton solutions, which may be represented as follows:

u109(x, t) = eiθ(

√
−m2

m3
tanμ

(√
ac(ζ)

)
+

√
−m2c

m3a
r), (132)

u110(x, t) = eiθ(−
√

−m2

m3
cotμ

(√
ac(ζ)

)
+

√
−m2c

m3a
r), (133)

u111(x, t) = eiθ(

√
−m2

m3

(
tanμ

(
2
√

ac(ζ)
)
±
(√

pq secμ

(
2
√

ac(ζ)
)))

+

√
−m2c

m3a
r),

(134)

u112(x, t) = eiθ(−
√−m2

m3

(
cotμ

(
2
√

ac(ζ)
)
±
(√

pq cscμ

(
2
√

ac(ζ)
)))

+

√−m2c
m3a

r),
(135)

and

u113(x, t) = eiθ(

√
− m2

4m3

(
tanμ

(
1/2

√
ac(ζ)

)
− cotμ

(
1/2

√
ac(ζ)

))
+

√
−m2c

m3a
r).

(136)

Family 28. When the product ac is less than 0 and b is equal to 0, the application of
Equations (85) and (10), and the associated general solutions obtained from Equation (9)
results in a different family of optical soliton solutions, which may be represented as follows:

u114(x, t) = eiθ(−
√

m2

m3
tanhμ

(√
−ac(ζ)

)
+

√
−m2c

m3a
r), (137)

u115(x, t) = eiθ(−
√

m2

m3
cothμ

(√
−ac(ζ)

)
+

√
−m2c

m3a
r), (138)

u116(x, t) = eiθ(

√
−m2c

m3a
r

−
√

m2

m3

(
tanhμ

(
2
√
−ac(ζ)

)
±
(

i
√

pqsechμ

(
2
√
−ac(ζ)

)))
),

(139)

u117(x, t) = eiθ(

√
−m2c

m3a
r

−
√

m2

m3

(
cothμ

(
2
√
−ac(ζ)

)
±
(√

pqcschμ

(
2
√
−ac(ζ)

)))
),

(140)
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and

u118(x, t) = eiθ(

√
−m2c

m3a
r

−
√

m2

4m3

(
tanhμ

(
1/2

√
−ac(ζ)

)
+ cothμ

(
1/2

√
−ac(ζ)

))
).

(141)

Family 29. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions in the case when c
is equal to a and b is equal to zero. These solutions are written as follows:

u119(x, t) = eiθ(

√−m2

m3
tanμ(a(ζ)) +

√
−m2

m3
r), (142)

u120(x, t) = eiθ(−
√−m2

m3
cotμ(a(ζ)) +

√
−m2

m3
r), (143)

u121(x, t) = eiθ(

√−m2

m3

(
tanμ(2 a(ζ))±

(√
pq secμ(2 a(ζ))

))
+

√
−m2

m3
r), (144)

u122(x, t) = eiθ(

√−m2

m3
(− cotμ(2 a(ζ))

∓
(√

pq cscμ(2 a(ζ))
)
) +

√
−m2

m3
r),

(145)

and

u123(x, t) = eiθ(

√−m2

m3
(1/2 tanμ(1/2 a(ζ))

− 1/2 cotμ(1/2 a(ζ))) +
√

−m2

m3
r).

(146)

Family 30. Equations (85) and (10), and the related general solutions obtained from
Equation (9) result in a specific family of optical soliton solutions in the case when c
is equal to −a and b is equal to zero. These solutions are written as follows:

u124(x, t) = eiθ(

√
m2

m3
tanhμ(a(ζ)) +

√
m2

m3
r), (147)

u125(x, t) = eiθ(

√
m2

m3
cothμ(a(ζ)) +

√
m2

m3
r), (148)

u126(x, t) = eiθ(

√
m2

m3

(
tanhμ(2 a(ζ))±

(
i
√

pqsechμ(2 a(ζ))
))

+

√
m2

m3
r), (149)
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u127(x, t) = eiθ(−
√

m2

m3
(− cothμ(2 a(ζ))

∓
(√

pqcschμ(2 a(ζ))
)
) +

√
m2

m3
r),

(150)

and

u128(x, t) = eiθ(

√
m2

m3
(

1
2

tanhμ

(
1
2

a(ζ)
)

+
1
2

cothμ

(
1
2

a(ζ)
)
) +

√
m2

m3
r).

(151)

Family 31. Equations (85) and (10), and the related general solutions obtained from
Equation (9) are used to provide a particular family of optical soliton solutions where
a is equal to zero, b is not equal to zero, and c is not equal to zero. These solutions are
represented as follows:

u129(x, t) = eiθ(−
√

m2

m3b
(b − 2 cr)− 2

√
m2
m3

p

coshμ(b(ζ))− sinhμ(b(ζ)) + p
), (152)

and

u130(x, t) = eiθ(−
√

m2

m3b2 (b − 2 cr)

− 2

√
m2
m3

(coshμ(b(ζ)) + sinhμ(b(ζ)))

coshμ(b(ζ)) + sinhμ(b(ζ)) + q
).

(153)

Family 32. Equations (85) and (10), and the associated general solutions derived from
Equation (9) produce a specific family of optical soliton solutions when b is equal to ν, c
is equal to nν (where n is a non-zero value), and a is equal to zero. These solutions are
expressed as follows:

u131(x, t) = eiθ(−
√

m2

m3
(1 − 2 rn) + 2 n

√
m2

m3

pμν (ζ)

p − nqμν (ζ)
). (154)

where ζ =
√

2
ln(μ)

√
m2

m1(−b2+4 ac) (
xβ

Γ(β+1) −
c1tα

Γ(α+1) ), and θ = − kxβ

Γ(β+1) +
ωtα

Γ(α+1) + ϑ.

4. Discussion and Graphs

The present study used two improved versions of the EDAM approach, especially
the mEDAM and r+mEDAM, to successfully build families of optical soliton solutions
for the FPRKLM. These findings contribute to further development of the field related to
the FPRKLM and enable a deeper understanding of complex waves in nonlinear optical
systems. Our obtained results also determine the cogency of the mEDAM and r+mEDAM
approaches in obtaining analytical solutions for the FPRKLM. Both techniques offer a
systematic approach for solving complex FPDEs and provide explicit formulations for
optical soliton solutions.

By assigning different values to the model’s parameters, several figures have been
plotted to show the wave behavior of the designed optical solution. These plots represent
the relationship between wave amplitudes and spatial variables, showing the different
profiles observed in the solution. The resulting wave profiles include periodic waves, kink
waves, solitary waves, lump waves, and more. The presence of these different wave profiles
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in the optical soliton solution of the FPRKLM highlights the rich dynamics of the model.
Each profile produces a different peculiar behavior of the system and provides valuable
insight into the underlying physics. Periodic waves indicate the presence of oscillatory
motion, kink waves indicate the presence of local disturbances or sudden changes in
wave behavior, solitary waves represent self-supporting local structures, and lump waves
indicate local concentrations of energy.

The relationship between these waveform profiles and the proposed model is at-
tributed to the nonlinear terms present in the equations and the particular shape of the
fractional perturbations. These features introduce nonlinearity and complexity into the sys-
tem, leading to the emergence of various wave phenomena. The mEDAM and r+mEDAM
techniques provide powerful tools to capture and understand these phenomena, allowing
us to study the complex dynamics of the FPRKLM.

Remark 1. Figure 1 indicates a captivating M-shaped periodic wave structure in the optical
soliton solution for the FPRKLM. This wave pattern is governed by the nonlinear behaviour of the
system and the fractional perturbations it involves. The parameters in the model, such as the GVD
coefficient (a1), nonlinearity coefficient (b1), IMD δ, μ1, σ, and γ, considerably impact the wave
profile. GVD plays a role in the formation of distinctive peaks and troughs in the M-shaped pattern,
whereas the non-linearity coefficient determines soliton intensity and stability. The relationship
between fractional perturbations and σ sets forth complexities and modulations, further shaping
the M-shaped wave. Furthermore, taking into account the wave velocities (k and ω) permits for
an analysis of soliton spreading characteristics, figuring out the speed and phase that influence the
M-shaped periodic wave.

Figure 1. A three-dimensional graph of the function u4 that appears in Equation (24) for a = 2, b = 1,
c = 2, μ = e, k = 0, ω = 1, ϑ = 0, a1 = 3, b1 = 3, c1 = 0, γ = 2, δ = 2, p = 3, q = 2, α = 0.9, β = 1.

Remark 2. Figure 2 shows an asymmetric kink wave that was seen in the FPRKLM’s optical soliton
solutions. These kink waves, which are distinguished by their unique characteristics, are caused
by the existence of nonlinearity inside the model. The soliton solution generally experiences quick
transitions between stable states at these locations, causing abrupt changes or discontinuities in
the wave pattern. The development and behaviour of these asymmetric kink waves are significantly
influenced by the precise parameters regulating the FPRKLM, such as the nonlinearity coefficient
(b1). Understanding the underlying processes and how they interact with the nonlinear dynamics of
the model helps us better understand how such kink wave occurrences in optical solitons develop.

Figure 2. A three-dimensional graph of the function u52 that appears in Equation (72) for a = 3, b = 0,
c = 3, μ = e, k = 0, ω = −1, ϑ = 10, a1 = 3, b1 = 3, c1 = −4, γ = 2, δ = 2, p = 3, q = 2, α = β = 1.

142



Fractal Fract. 2023, 7, 512

Remark 3. A rogue wave seen in the optical soliton solutions of the FPRKLM is shown graphically
in Figure 3. The model’s innate nonlinearity and dispersiveness can be used to explain the appearance
of rogue waves in the data. These waves, which have amplitudes that are noticeably bigger than those
of their neighbours, result from the constructive interference of smaller waves that are modulated
and interacted with by nonlinear processes and dispersion effects. Rogue waves display variable
amplitudes during propagation as a result of the complex interaction between dispersion (a1),
nonlinear effects (b1), and the underlying dynamics of the FPRKLM system. Understanding
the processes that cause rogue waves to form and behave in the FPRKLM might help one better
understand the intricate wave phenomena brought on by nonlinear interactions and dispersion in
optical solitons.

Figure 3. A three-dimensional graph of the function u72 that appears in Equation (95) for a = 3, b = 10,
c = 3, μ = e, k = 1, ω = 1, ϑ = 0, r = 6, a1 = 3, b1 = 3, c1 = 0, γ = 2, δ = 2, p = 3, q = 2, α = 0.5,
β = 0.9.

Remark 4. The profile in Figure 4 demonstrates another rogue wave that travels smoothly until it
reaches the domain’s limit before abruptly changing in amplitude. The occurrence of smooth rogue waves
in the optical soliton solutions of the FPRKLM that undergo abrupt changes at certain domain borders
may be explained by a combination of components, including critical points, bifurcations, and nonlinear
interactions within the system. When the parameters of the FPRKLM system approach their critical
values, a transition occurs that results in rapid changes in wave behaviour and the formation of rogue
waves. The development of nonlinear interactions within the system may be aided by nonlinear effects
and instabilities, which may ultimately lead to abrupt changes in the wave profile. Through analysis and
numerical simulations, the specifics of these phenomena may be further investigated. The specifics of
these phenomena rely on the system’s characteristics and beginning circumstances.

Figure 4. A three-dimensional graph of the function u131 that appears in Equation (154) for a = 3, b = 10,
c = 3, μ = 2, k = 1, ω = 1, ϑ = 0, r = 6, a1 = 3, b1 = 3, c1 = 0, γ = 2, δ = 2, p = 3, q = 2, α = 0.5,
β = 0.9, ν = i, n = 1/12.

5. Conclusions

In the present investigation, we used the mEDAM and r+mEDAM methods to explore
optical soliton solutions in the FPRKLM. Our study was concentrated on discovering
the complex structure of the FPRKLM as well as comprehending the wave behavior of
the system via exact analytical formulations obtained by means of these sophisticated
methods. The obtained wave profiles, provided graphically, displayed a diverse range of
behaviors, which include periodic waves, lump waves, kink waves, solitary waves, and
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more, demonstrating the complex nature of the FPRKLM. The research we conducted
revealed the association between these wave profiles and the nonlinear terms and fractional
perturbation of the model, showing the efficacy of the mEDAM and r+mEDAM methods
in studying these kinds of phenomena. The novelty of our study is rooted in improving the
comprehension of non linear optical systems by offering an outline for future studies and
potential applications in this field.
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Abstract: This paper presents a new class of fractional order Runge–Kutta (FORK) methods for
numerically approximating the solution of fractional differential equations (FDEs). We construct
explicit and implicit FORK methods for FDEs by using the Caputo generalized Taylor series formula.
Due to the dependence of fractional derivatives on a fixed base point, in the proposed method, we
had to modify the right-hand side of the given equation in all steps of the FORK methods. Some
coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the
proposed method is also discussed. Numerical experiments are presented to clarify the effectiveness
and robustness of the method.

Keywords: fractional differential equations; Caputo fractional derivative; convergence analysis;
consistency; stability analysis

1. Introduction

In recent years, the numerical approximation for the solutions of FDEs has attracted
increasing attention in many fields of applied sciences and engineering [1–3]. It is common
for FDEs to be used in formulating many problems in applied mathematics. Developing
numerical methods for fractional differential problems is necessary and important because
analytic solutions are usually challenging to obtain. Moreover, it is necessary to develop
numerical methods that are highly accurate and easy to use.

It is well known that fractional derivatives have different definitions; the most common
and important ones in applications are the Riemann–Liouville and Caputo fractional
derivatives. Models describing physical phenomena usually prefer the use of the Caputo
derivative. One of the reasons is that the Riemann–Liouville derivative needs initial
conditions containing the limit values of the Rieman–Liouville fractional derivative at the
origin of time. In contrast, the initial conditions for Caputo derivatives are the same as for
integer-order differential equations. Therefore, using the Caputo derivative, there is a clear
physical interpretation of the prescribed data; see [1,4,5].

Numerous research papers have been published on numerical methods for FDEs. Many
researchers considered the trapezoidal method, predictor-corrector method, extrapolation
method, and spectral method [6–16]. Some of these methods discretize fractional derivatives
directly. As an example, the L1 formula was created by a piecewise linear interpolation
approximation for the integrand function on each small interval [17,18]. In [19], the authors
applied quadratic interpolation approximation using three points to approximate the Caputo
fractional derivative, while in [20], a technique based on the block-by-block approach was
presented. This technique became a common method for equations with integral operators.
In [21], Caputo fractional differentiation was approximated by a weighted sum of the integer
order derivatives of functions. In [22], several numerical algorithms were proposed to ap-
proximate the Caputo fractional derivatives by applying higher-order piecewise interpolation
polynomials and the Simpson method to design a higher-order algorithm.
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These methods are appropriate options if the resulting system of equations, generated
from the numerical method, is linear and well-conditioned. However, they present a high
computational cost when the problem we are solving is badly conditioned or nonlinear.
In light of the above discussion and the analysis of other methods for FDEs, despite
many papers on numerical methods for FDEs, there are still insufficient efficient numerical
approaches for such equations. Therefore, further studies are still in demand. In this case,
step-by-step methods such as the Runge–Kutta method are a good option. They are favored
due to their simplicity in both calculation and analysis.

Several authors have used Runge–Kutta methods to solve ordinary, partial differential,
and integral equations [23–30]. Lubich and others have done some fundamental works
regarding Runge–Kutta methods for Volterra integral equations [28–30]. They used the
order conditions to derive various Runge–Kutta methods.

One of the efficient implicit Runge–Kutta methods for the numerical approximation
of some linear partial differential equations is the Rosenbrock procedure. It is a class of
semi-implicit Runge–Kutta methods for the numerical solution of some stiff systems of
ODEs. In Osterman and Rochet’s papers [31,32], the authors apply the Rosenbrock methods
to solve linear partial differential equations, obtaining a sharp lower bound for the order of
convergence. They show that the order of convergence is, in general, fractional. So, for the
numerical solution of some fractional linear partial differential equations, we can construct
fractional Rosenbrock-type methods, in which a special type of fractional semi-implicit
Runge–Kutta method could be considered.

This paper introduces a new class of fractional order Runge–Kutta methods for numer-
ical approximation to the solution of FDEs. Using the Caputo generalized Taylor series for-
mula for the Caputo fractional derivative, we construct explicit and implicit FORK methods
comparable to the well-known Runge–Kutta schemes for ordinary differential equations.

The remainder of the paper is organized as follows. In Section 2, we review some
definitions and properties of fractional calculus. We propose new explicit and implicit
FORK methods for solving FDEs in Sections 3 and 4. In Section 5, the theoretical analysis of
the convergency, stability, and consistency of the proposed methods is presented. Finally, in
Section 6, some numerical examples demonstrate the effectiveness of the methods proposed.
Also, in Appendix A two Mathematica computer programming codes are given.

2. Preliminaries

This section briefly reviews the definitions of the fractional integral and Caputo frac-
tional derivative and explores some of their properties. A more comprehensive introduction
to the fractional derivatives can be found in [1,4,33].

Definition 1. The Riemann–Liouville fractional integral operator of order α > 0 for a function
f (x) ∈ L1[a, b] with a ≥ 0 is defined as

Jα
a f (x) =

1
Γ(α)

∫ x

a
(x − t)α−1 f (t)dt, x ∈ [a, b], J0

a f (x) = f (x).

where L1[a, b] = { f | f is a measurable function on [a, b] and
∫ b

a | f (x)|dx < ∞}, Γ is the
Gamma function.

Definition 2. The Caputo fractional derivatives of order α > 0 of a function f (x) ∈ L1[a, b], with
a ≥ 0, is defined as

c
aDα

x f (x) = Jn−α
a Dn f (x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(n − α)

∫ x

a
(x − t)n−α−1Dn f (t)dt, n − 1 < α < n, n ∈ N,

Dn f (x), α = n.

(1)
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Theorem 1 (Generalized Taylor formula for Caputo fractional derivative [34]). Suppose that
(c

aDα
t )

k f (x) ∈ C(a, b] for k = 0, 1, . . . , n + 1, where 0 < α � 1, then, ∀ x ∈ [a, b], there exist
ξ ∈ (a, x) such that

f (x) =
n

∑
i=0

(x − a)iα

Γ(1 + i α)
((c

aDα
t )

i f )(a) +
(x − a)(n+1)α

Γ(1 + (n + 1) α)
((c

aDα
t )

(n+1)) f )(ξ), (2)

where (c
aDα

t )
n = c

aDα
t

c
aDα

t · · · c
aDα

t︸ ︷︷ ︸
n times

.

There are also two important functions in fractional calculus. They are a direct gener-
alization of the exponential series, which play essential roles in solving the FDEs and in
stability analysis.

Definition 3. The Mittag–Leffler function is defined as

Eα(x) =
∞

∑
k=0

xk

Γ(1 + α k)
, �(α) > 0, x ∈ C.

In addition, the two-parameter Mittag–Leffler function is defined by

Eα,β(x) =
∞

∑
k=0

xk

Γ(β + α k)
, �(α) > 0, β ∈ C, x ∈ C.

We note that Eα(x) = Eα,1(x) and

E1(x) =
∞

∑
k=0

xk

Γ(1 + k)
=

∞

∑
k=0

xk

k!
= exp(x).

3. Fractional Order Runge–Kutta Methods

This section presents a new class of FORK methods for the numerical solutions of
FDEs. Consider the following FDE with 0 < α ≤ 1:⎧⎨⎩

c
t0

Dα
t y(t) = f (t, y(t)), t ∈ [t0, T],

y(t0) = y0.
(3)

where y(t) ∈ C[t0, T] and f (t, y(t)) ∈ C[t0, T] × R. t0 is called the base point of
fractional derivative.

We set tn = t0 + n h, n = 0, 1, · · · , Nm, where h = (T − t0)/Nm is the step size, N is a
positive integer (in Section 5, we prove that m ≥ 1/α). For the existence and uniqueness of
the solution of the FDE (3), we consider the following theorem [4].

Theorem 2. Let α > 0, y0 ∈ R, K > 0 and T > 0 and also let the function f : G → R be
continuous and fulfill a Lipschitz condition with respect to the second variable, i.e.,

| f (t, y1)− f (t, y2)| ≤ L|y1 − y2|

with some constant L > 0 independent of t, y1 and y2. Define

G = {(t, y) : t ∈ [0, T], |y − y0| ≤ K}, M = Sup(t,z)∈G| f (t, z)|

and

T∗ =

{
T, M = 0,
min{T, (K Γ(α + 1)/M)1/α}, else.
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Then, there exists a unique function y ∈ C[0, T∗] solving the initial-value problem (3).

In the sequel, we assume f (t, y) has continuous partial derivatives with respect to
t and y to as high an order as we want.

Now, we introduce an s-stage explicit fractional order Runge–Kutta (EFORK) method
for FDEs, which is discussed completely with s = 2 and s = 3 stages.

Definition 4. A family of s-stage EFORK methods is defined as

K1 = hα f (t, y),

K2 = hα f (t + c2h, y + a21K1),

K3 = hα f (t + c3h, y + a31K1 + a32K2),
...

Ks = hα f (t + csh, y + as1K1 + as2K2 + · · ·+ as,s−1Ks−1), (4)

with

yn+1 = yn +
s

∑
i=1

wi Ki, (5)

where the unknown coefficients
{

aij
}s,i−1

i=2,j=1 and the unknown weights {ci}s
i=2, {wi}s

i=1 has
to be determined.

To specify a particular method, one needs to provide
{

aij
}s,i−1

i=2,j=1 and {ci}s
i=2, {wi}s

i=1 ac-
cordingly. Following Butcher, [23], a method of this type is designated by the following scheme:

c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1
w1 w2 · · · ws−1 ws

We expand yn+1 in (5), in powers of hα, such that it agrees with the Taylor series
expansion of the solution of the FDE (3) in a specified number of terms (see [35]). According
to (2), the generalized Taylor formula for α ∈ (0, 1] with respect to the Caputo fractional
derivative of the function y(t) is defined as follows:

y(t) = y(t0) +
(t − t0)

α

Γ(α + 1)
c
t0

Dα
t y(t0) +

(t − t0)
2α

Γ(2α + 1)
((c

t0
Dα

t )
2y)(t0)

+
(t − t0)

3α

Γ(3α + 1)
((c

t0
Dα

t )
3y)(t0) + · · · , (6)

where using (3),

c
t0

Dα
t y(t) = f (t, y), (c

t0
Dα

t )
2 y(t) = c

t0
Dα

t f (t, y), (c
t0

Dα
t )

3 y(t) = (c
t0

Dα
t )

2 f (t, y), · · · . (7)

Now, we obtain explicit expressions for (7).
Caputo fractional derivatives of composite function f (t, y(t)) can be computed by

fractional Taylor series:
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f (t, y(t)) = f (t0, y(t0)) +
(t − t0)

α

Γ(α + 1)
f α
t (t0, y(t0)) +

(y − y0)

1!
fy(t0, y(t0))

+
(t − t0)

2α

Γ(2α + 1)
f α,α
t,t (t0, y(t0)) +

(y − y0)
2

2!
fy,y(t0, y(t0))

+
(t − t0)

α(y − y0)

Γ(α + 1)
f α,1
t,y (t0, y(t0)) +

(t − t0)
3α

Γ(3α + 1)
f α,α,α
t,t,t (t0, y(t0)) + · · · , (8)

where f α
t is the Caputo fractional derivative of f (t, y(t)) with respect to t. After inserting

y(t)− y(t0) from (6) in (8) and by using the fractional derivative of (8) for α ∈ (0, 1], we have

c
t0

Dα
t f (t, y(t)) = f α

t (t0, y(t0)) +

(
f (t0, y(t0)) +

(t − t0)
α

Γ(α + 1)
c
t0

Dα
t f (t0, y(t0)) + . . .

)
fy(t0, y(t0))

+
(t − t0)

α

Γ(α + 1)
f α,α
t,t (t0, y(t0)) +

1
2

(
Γ(2α + 1)
Γ(α + 1)3 (t − t0)

α f 2(t0, y(t0)) + . . .
)

fy,y(t0, y(t0))

+

(
Γ(2α + 1)
Γ(α + 1)3 (t − t0)

α f (t0, y(t0)) + . . .
)

f α,1
t,y (t0, y(t0))

+
(t − t0)

2α

Γ(2α + 1)
f α,α,α
t,t,t (t0, y(t0)) + · · · ,

and so

c
t0

Dα
t f (t0, y(t0)) = f α

t (t0, y(t0)) + f (t0, y(t0)) fy(t0, y(t0)). (9)

In addition,

c
t0

D2α
t f (t, y(t)) = c

t0
Dα

t f (t0, y(t0)) fy(t0, y(t0)) + f α,α
t,t (t0, y(t0))

+

(
Γ(2α + 1)
2Γ(α + 1)2 f 2(t0, y(t0)) + . . .

)
fy,y(t0, y(t0))

+

(
Γ(2α + 1)
Γ(α + 1)2 f (t0, y(t0)) + . . .

)
f α,1
t,y (t0, y(t0))

+
(t − t0)

α

Γ(α + 1)
f α,α,α
t,t,t (t0, y(t0)) + · · · ,

which yields

c
t0

D2α
t f (t0, y(t0)) = f α

t (t0, y(t0)) fy(t0, y(t0)) + f (t0, y(t0)) f 2
y (t0, y(t0)) + f α,α

t,t (t0, y(t0))

+
1
2

f 2(t0, y(t0)) fy,y(t0, y(t0)) + f (t0, y(t0)) f α,1
t,y (t0, y(t0)). (10)

In a similar manner with (9) and (10), we can obtain the higher fractional derivatives
of f (t, y(t)).

Now, by using (9) and (10), we have

c
t0

Dα
t y(t0) = f (t0, y0),

(c
t0

Dα
t )

2y(t0) = f α
t (t0, y0) + f (t0, y0) fy(t0, y0),

(c
t0

Dα
t )

3y(t0) = f α
t (t0, y(t0)) fy(t0, y(t0)) + f (t0, y(t0)) f 2

y (t0, y(t0)) + f α,α
t,t (t0, y(t0)

+
1
2

f 2(t0, y(t0)) fy,y(t0, y(t0)) + f (t0, y(t0)) f α,1
t,y (t0, y(t0)), (11)

where f α,i
t,y , i = 1, 2, · · · , represents the ith integer derivative of the function f α

t with respect
to y. As we can see from (6), in Caputo fractional derivatives ((c

t0
Dα

t )
ky)(t0), k = 0, 1, 2, · · · ,

the argument t0 in y(t0) and starting value in (c
t0

Dα
t )

k are the same.
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To construct an efficient numerical scheme, we should obtain a similar series with
the derivatives evaluated in any other point (tn > t0), such that the expansion can be
constructed independently from the starting point t0. In other words, we need

y(tn+1) = y(tn) +
hα

Γ(α + 1)
c
tn Dα

t y(tn) +
h2α

Γ(2α + 1)
((c

tn Dα
t )

2y)(tn)

+
h3α

Γ(3α + 1)
((c

tn Dα
t )

3y)(tn) + · · · , (12)

and ((c
tn

Dα
t )

iy)(tn), i = 1, 2, · · · . To do so, by using c
t0

Dα
t y(t), we obtain c

tn
Dα

t y(t) for
n = 1, 2, · · · , Nm − 1, as

c
tn Dα

t y(t) = c
t0

Dα
t y(t)− 1

Γ(1 − α)

∫ tn

t0

(t − s)−αDy(s)ds

= c
t0

Dα
t y(t)− 1

Γ(1 − α)

n−1

∑
i=0

∫ ti+1

ti

(t − s)−αDy(s)ds. (13)

By using the linear Lagrange interpolation formula for y(s) in support abscissas
{ti, ti+1}, we have

y(s) � (s − ti)

(ti+1 − ti)
yi+1 − (s − ti+1)

(ti+1 − ti)
yi

=
(s − ti)

h
yi+1 − (s − ti+1)

h
yi, s ∈ [ti, ti+1], i = 0, 1, . . . , n − 1,

where, for a sufficiently small h, we have

Dy(s) � 1
h
(yi+1 − yi), s ∈ [ti, ti+1], i = 0, 1, . . . , n − 1,

and∫ ti+1

ti

(t − s)−αDy(s)ds � (yi+1 − yi)

h(1 − α)

[
(t − ti)

1−α − (t − ti+1)
1−α
]
, i = 0, 1, · · · , n − 1.

From (13) and c
t0

Dα
t y(t) = f (t, y), we have

c
tn Dα

t y(t) = f (t, y)− 1
Γ(1 − α)

n−1

∑
i=0

(yi+1 − yi)

h(1 − α)

[
(t − ti)

1−α − (t − ti+1)
1−α
]
.

So we may write
c
tn Dα

t y(t) = Fn(t, y), n = 0, 1, 2, . . . . (14)

where F0(t, y) = f (t, y) and for n = 1, 2, 3, · · · , we have

Fn(t, y) = f (t, y)− 1
Γ(2 − α)

n−1

∑
i=0

yi+1 − yi
h

[
(t − ti)

1−α − (t − ti+1)
1−α
]
.

Clearly, Fn(t, y) is continuous and satisfies the Lipschitz condition with respect to
the second variable, due to the properties of f (t, y). In what follows, for convenience of
notation, we rename Fn(t, y) as f (t, y), i.e., in any initial points tn > t0, n = 1, 2, . . . , Nm − 1,
we consider the right terms of (14) as f (tn, yn) instead of Fn(tn, yn) in any stages.

Now, to construct FORK methods, we can use the Taylor formula (6) and (11), where
c
tn

Dα
t y(t) is defined in (14).

152



Fractal Fract. 2023, 7, 245

3.1. EFORK Method of Order 2α

Let us introduce the following EFORK method with two stages:

K1 = hα f (tn, yn),

K2 = hα f (tn + c2h, yn + a21K1),

yn+1 = yn + w1K1 + w2K2, (15)

where coefficients c2, a21 and weights w1, w2 are chosen to make the approximate value yn+1
as close as possible to the exact value y(tn+1). We expand K1 and K2 about the point (tn, yn),
where we use the Caputo Taylor formula (12) about point tn and standard integer-order
Taylor formula about yn as

K1 = hα f (tn, yn),

K2 = hα f (tn + c2h, yn + a21K1)

= hα

[
f (tn, yn) +

cα
2hα

Γ(α + 1)
f α
t + a21hα fn fy +

c2α
2 h2α

Γ(2α + 1)
f α,α
t,t +

a2
21h2α

2
f 2
n fy,y

+
cα

2 a21h2α

Γ(α + 1)
fn f α,1

t,y + · · ·
]

= hα fn + h2α

(
cα

2
Γ(α + 1)

f α
t + a21 fn fy

)
+h3α

(
c2α

2
Γ(2α + 1)

f α,α
t,t +

a2
21
2

f 2
n fy,y +

cα
2 a21

Γ(α + 1)
fn f α,1

t,y

)
+ · · · .

Substituting K1 and K2 in (15), we have

yn+1 = yn + (w1 + w2)hα fn + h2αw2

(
cα

2
Γ(α + 1)

f α
t + a21 fn fy

)
+ w2h3α

(
c2α

2
Γ(2α + 1)

f α,α
t,t +

a2
21
2

f 2
n fy,y +

cα
2 a21

Γ(α + 1)
fn f α,1

t,y

)
+ · · · (16)

Comparing (12) with (16) and matching coefficients of powers of hα, we obtain
three equations:

w1 + w2 =
1

Γ(α + 1)
,

w2
cα

2
Γ(α + 1)

=
1

Γ(2α + 1)
,

w2a21 =
1

Γ(2α + 1)
. (17)

From these equations, we see that, if cα
2 is chosen arbitrarily (nonzero), then

a21 =
cα

2
Γ(α + 1)

, w2 =
Γ(α + 1)

cα
2 Γ(2α + 1)

, w1 =
1

Γ(α + 1)
− Γ(α + 1)

cα
2 Γ(2α + 1)

. (18)

Inserting (17) and (18) in (16) we get

yn+1 = yn +
hα

Γ(α + 1)
fn +

h2α

Γ(2α + 1)
(

f α
t + fn fy

)
+

cα
2 h3α

Γ(2α + 1)

[
Γ(α + 1)

Γ(2α + 1)
f α,α
t,t +

1
2Γ(α + 1)

f 2
n fy,y +

1
Γ(α + 1)

fn f α,1
t,y

]
+ · · · . (19)
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Subtracting (19) from (12), we obtain the local truncation error Tn

Tn = y(tn+1)− yn+1 = h3α

(
1

Γ(3α + 1)
− cα

2Γ(α + 1)
(Γ(2α + 1))2

)
f α,α
t,t

+ h3α

(
2

Γ(3α + 1)
− cα

2
2Γ(α + 1)

)
f 2
n fy,y

+ h3α

(
1

Γ(3α + 1)
− cα

2
Γ(α + 1)

)
fn f α,1

t,y + · · · . (20)

We conclude that no choice of the parameter cα
2 will make the leading term of Tn vanish

for all functions f (t, y). Sometimes, the free parameters are chosen to minimize the sum of
the absolute values of the coefficients in Tn. Such a choice is called the optimal choice.

cα
2 =

(Γ(2α + 1))2

Γ(3α + 1)Γ(α + 1)
, cα

2 =
4Γ(α + 1)
Γ(3α + 1)

, or cα
2 =

Γ(α + 1)
Γ(3α + 1)

.

From (20) we have Tn
hα = (hα)2. So, we deduce that the 2-stage EFORK method (15) is

of order 2α.
Now, the two-stage EFORK method by listing the coefficients is as follows:

c2 a21
w1 w2

,

Choosing w1 = w2 yields

(
2Γ(α+1)2

Γ(2α+1)

) 1
α 2Γ(α+1)

Γ(2α+1)
1

2Γ(α+1)
1

2Γ(α+1)

.

In addition, the optimal cases of the two-stage EFORK method are

(
(Γ(2α+1))2

Γ(3α+1)Γ(α+1)

) 1
α (Γ(2α+1))2

Γ(3α+1)Γ(α+1)2

1
Γ(α+1) −

Γ(3α+1)Γ(α+1)2

Γ(2α+1)3
Γ(3α+1)Γ(α+1)2

Γ(2α+1)3

,

(
4Γ(α+1)
Γ(3α+1)

) 1
α 4

Γ(3α+1)
1

Γ(α+1) −
Γ(3α+1)

4Γ(2α+1)
Γ(3α+1)

4Γ(2α+1)

,

(
Γ(α+1)

Γ(3α+1)

) 1
α 1

Γ(3α+1)
1

Γ(α+1) −
Γ(3α+1)
Γ(2α+1)

Γ(3α+1)
Γ(2α+1)

.

3.2. EFORK Method of Order 3α

Following (4) and (5), we define a three-stage EFORK method as

K1 = hα f (tn, yn),

K2 = hα f (t+c2h, yn + a21K1),

K3 = hα f (tn + c3h, yn + a31K1 + a32K2),

yn+1 = yn + w1K1 + w2K2 + w3K3 . (21)
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where unknown parameters {ci}3
i=2, {aij}3,i−1

i=2,j=1, and {wi}3
i=1 have to be determined ac-

cordingly. By using the same procedure as we followed for the two-stage EFORK method,
expanding K1, K2 and K3, comparing with (12) and matching coefficients of powers of hα,
we obtain the following equations:

w1 + w2 + w3 =
1

Γ(α + 1)
, a21 =

cα
2

Γ(α + 1)
, w2 c2α

2 + w3 c2α
3 =

Γ(2α + 1)
Γ(3α + 1)

,

a31 + a32 =
cα

3
Γ(α + 1)

, w2 cα
2 + w3 cα

3 =
Γ(α + 1)
Γ(2α + 1)

, w3 a32 cα
2 =

Γ(α + 1)
Γ(3α + 1)

. (22)

Now, we have six equations with eight unknown parameters. According to the Butcher
tableau for the three-stage EFORK method, we have

c2 a21
c3 a31 a32

w1 w2 w3

If c2 and c3 are arbitrarily chosen, we calculate weights {wi}3
i=1 and coefficients

{aij}3,i−1
i=2,j=1 from (22) as

(
1

2α!

) 1
α 1

2(α!)2(
1

4α!

) 1
α (α!)2(2α)!+2(2α)!2−(3α)!

4(α!)2(2(2α)!2−(3α)!) − (2α)!
4(2(2α)!)−(3α)!

8(α!)2(2α)!
(3α)! − 6(α!)2

(2α)! + 1
α!

2(α!)2(4(2α)!2−(3α)!)
(2α)!(3α)! − 8(α!)2(2(2α)!2−(3α)!)

(2α)!(3α)!

As a result, we obtain Tn
hα = (hα)3. In a similar procedure to the two and three-stage

EFORK methods, we can construct s-stage EFORK methods for s > 3.
As we can see, to obtain the higher fractional order Runge–Kutta methods, we must

consider a method with additional stages. In the next section, we express implicit fractional
order Runge–Kutta (IFORK) methods with low stages and high orders.

4. IFORK Methods

We define a s-stage IFORK method by the following equations:

Ki =
1
s

hα
s

∑
k=1

f (tn + cikh, yn +
s

∑
j=1

aijKj), i = 1, 2, . . . , s (23)

and

yn+1 = yn +
s

∑
i=1

wiKi, (24)

where

cα
i1 + cα

i2 + . . . + cα
is

α!
= s(ai1 + ai2 + · · ·+ ais), i = 1, 2, · · · , s (25)

and the parameters
{

aij
}s,s

i,j=1, {wi}s
i=1 are arbitrary. We state the IFORK method by listing

the coefficients as follows:

c11 c12 · · · c1s a11 a12 · · · a1s
c21 c22 · · · c2s a21 a22 · · · a2s
...

...
...

...
...

...
...

...
cs1 cs2 · · · css as1 as2 · · · ass

w1 w2 · · · ws
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Since the functions Ki are defined by a set of s implicit equations, the derivation of the
implicit methods is complicated. Therefore, only the case s = 2 is investigated.

Consider (23)–(25) with s = 2 as

Ki =
1
2

hα[ f (tn + ci1h, yn + ai1K1 + ai2K2) + f (tn + ci2h, yn + ai1K1 + ai2K2)], i = 1, 2 (26)

yn+1 = yn + w1K1 + w2K2 (27)

where
cα

i1 + cα
i2

α!
= 2(ai1 + ai2), i = 1, 2. (28)

By using a similar procedure as we followed for the EFORK method, we expand Ki
about the point (tn, yn), where we apply the Caputo Taylor formula (12) about tn and
standard integer-order Taylor formula about yn.

Ki =
1
2

hα[2 fn +
(cα

i1 + cα
i2)h

α

α!
f α
t + 2(ai1K1 + ai2K2) fy +

(cα
i1 + cα

i2)h
2α

(2α)!
f α,α
t,t

+ (ai1K1 + ai2K2)
2 fy,y +

(cα
i1 + cα

i2)h
α

α!
(ai1K1 + ai2K2) f α,1

t,y

+
(c3α

i1 + c3α
i2 )h

3α

(3α)!
f α,α,α
t,t,t +

(c2α
i1 + c2α

i2 )h
2α

(2α)!
(ai1K1 + ai2K2) f α,α,1

t,t,y

+
(cα

i1 + cα
i2)h

α

α!
(ai1K1 + ai2K2)

2

2
f α,1,1
t,y,y +

(ai1K1 + ai2K2)
3

3
fy,y,y + · · · ], (29)

where i = 1, 2 .
Since Equation (29) are implicit, we cannot obtain the explicit forms for K1 and K2. To

determine the explicit form Ki, we consider

Ki = hα Ai + h2αBi + h3αCi + · · · , i = 1, 2 (30)

where Ai, Bi and Ci are unknowns. Substituting (30) into (29) and matching the coefficients
of powers of hα, we get

Ai = fn,

Bi =
cα

i1 + cα
i2

2(α!)
[ f α

t + f fy] =
cα

i1 + cα
i2

2(α!)
Dα f ,

Ci =

(
ai1

cα
11 + cα

12
2(α!)

+ ai2
cα

21 + cα
22

2(α!)

)
fyDα f +

c2α
i1 + c2α

i2
2(2α)!

f α,α
t,t

+
1
4

(
cα

i1 + cα
i2

α!

)2(1
2

f 2 fyy + f f α,1
t,y

)
,

... (31)

Inserting (30) and (31) into (27), we have

yn+1 = yn + hα[w1 A1 + w2 A2] + h2α[w1B1 + w2B2] + h3α[w1C1 + w2C2] + · · · . (32)

Comparing (32) with (12) and equating the coefficient of powers of hα, we can get an
IFORK method of different orders.

4.1. IFORK Method of Order 2α

To obtain an IFORK method of order 2α, we equate the coefficients of hα and h2α in (12)
and (32) correspondingly to get
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w1 + w2 =
1
α!

,

w1
cα

11 + cα
12

α!
+ w2

cα
21 + cα

22
α!

=
2

(2α)!
,

where

2(a11 + a12) =
cα

11 + cα
12

α!
, 2(a21 + a22) =

cα
21 + cα

22
α!

.

There are now six arbitrary parameters to be prescribed. If we neglect K2, i.e., if we
choose a21 = a22 = a12 = 0, w2 = 0, from the above equations, we find

w1 =
1
α!

, cα
11 + cα

12 =
2(α!)2

(2α)!
, a11 =

α!
(2α)!

.

Therefore, a one-stage IFORK method of order 2α is obtained as follows:{
K1 = 1

2 hα[ f (tn + c11h, yn + a11K1) + f (tn + c12h, yn + a11K1)],
yn+1 = yn + w1K1.

(33)

4.2. IFORK Method of Order 3α

In addition, we can get an IFORK method of order 3α with two stages (26)–(28) when
equating the coefficients of hα, h2α and h3α in (12) and (32) accordingly. In such case, we
obtain the following system of equations:

w1 + w2 =
1
α!

,

w1
cα

11 + cα
12

α!
+ w2

cα
21 + cα

22
α!

=
2

(2α)!
,

w1

(
a11

cα
11 + cα

12
α!

+ a12
cα

21 + cα
22

α!

)
+ w2

(
a21

cα
11 + cα

12
α!

+ a22
cα

21 + cα
22

α!

)
=

2
(3α)!

,

w1
c2α

11 + c2α
12

(2α)!
+ w2

c2α
21 + c2α

22
(2α)!

=
2

(3α)!
,

w1

(
cα

11 + cα
12

α!

)2

+ w2

(
cα

21 + cα
22

α!

)2

=
8

(3α)!
,

where

2(a11 + a12) =
cα

11 + cα
12

α!
, 2(a21 + a22) =

cα
21 + cα

22
α!

.

The three free parameters can be chosen so that K1 or K2 are explicit. If we want K1 to
be explicit, we choose

c11 = a11 = a12 = 0.

Thus, the IFORK method of order 3α, which is explicit in K1 is given by⎧⎪⎨⎪⎩
K1 = 1

2 hα[ f (tn, yn) + f (tn + c12h, yn)],
K2 = 1

2 hα[ f (tn + c21h, yn + a21K1 + a22K2) + f (tn + c22h, yn + a21K1 + a22K2)],
yn+1 = yn + w1K1 + w2K2 .

(34)

where the coefficients are given by

c11 c12 a11 a12
c21 c22 a21 a22

w1 w2

,
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0 0 0 0(
(2α)!(2(α!)−

√
2
√

(2α)!−2(α!)2)
(3α)!

) 1
α
(

(2α)!(2(α!)+
√

2
√

(2α)!−2(α!)2)
(3α)!

) 1
α (2α)!

(3α)!
(2α)!
(3α)!

1
α! −

(3α)!
2(2α)!2

(3α)!
2(2α)!2

5. Theoretical Analysis

To ensure that the obtained numerical solution of FORK algorithms approximates
the exact solution of FDEs correctly, we first discuss in this section the consistency of the
methods and second the convergence analysis of the FORK methods that may impose some
additional conditions under which the approximate solution, discussed in Sections 3 and 4,
converges to the exact solution of the problem.

5.1. Consistency

The EFORK and IFORK methods considered before belong to the class of methods
that are characterized by the use of yn on the computation of yn+1. This family of one-step
methods admits the following representation:

yn+1 = yn + hαΦ(tn, yn, yn+1, h), n = 0, . . . , Nm − 1, (35)

y0 = y(t0).

where Φ : [t0, T]×R2 × (0, h0] → R and for the particular case of the explicit methods we
have the representation

yn+1 = yn + hαΦ(tn, yn, h), n = 0, . . . , Nm − 1, (36)

y0 = y(t0).

with Φ : [t0, T]×R× (0, h0] → R.
We define the truncation error τn by

τn =
yn+1 − yn

hα
− Φ(tn, yn, yn+1, h). (37)

The one-step method (35) and (36) is said to be consistent with Equation (3) if

lim
h→0

τn = 0, Nm = (T − t0)/h.

Using (12) and (37), we may write

lim
h→0

τn = lim
h→0

yn+1 − yn

hα
− lim

h→0
Φ(tn, yn, yn+1, h),

=
1

Γ(α + 1)
c
tn Dα

t y(tn)− lim
h→0

Φ(tn, y(tn), y(tn+1), h),

=
1

Γ(α + 1)
Fn(tn, y(tn))− lim

h→0
Φ(tn, y(tn), y(tn + h), h).

Hence, we may conclude that the proposed one-step IFORK methods are consistent if
and only if

Φ(t, y, y, 0) =
1

Γ(α + 1)
Fn(t, y),

or briefly
Φ(t, y, y, 0) =

1
Γ(α + 1)

f (t, y).

Similarly, for explicit methods, we have

Φ(t, y, 0) =
1

Γ(α + 1)
f (t, y).
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As an example, consider the two-stage EFORK method (15) with (17),

yn+1 = yn + hα[w1 f (tn, yn) + w2 f (tn + c2h, yn + a21K1)],

where, in comparison to (36), we have

Φ(t, y, h) = [w1 f (t, y) + w2 f (t + c2h, y + a21K1)],

Hence, as h tends to 0, it yields

Φ(t, y, 0) = (w1 + w2) f (t, y),

and by using (17), we may write

Φ(t, y, 0) =
1

Γ(α + 1)
f (t, y).

Therefore, the two-stage EFORK method (15) is consistent. In addition, the three-stage
EFORK method (21) is consistent for

Φ(t, y, h) = [w1 f (t, y) + w2 f (t + c2h, y + a21K1) + w3 f (t + c3h, y + a31K1 + a32K2)],

Φ(t, y, 0) = (w1 + w2 + w3) f (t, y),

and so from (22)

Φ(t, y, 0) =
1

Γ(α + 1)
f (t, y).

Similarly, we can show the consistency of all proposed FORK methods in Sections 3 and 4.

5.2. Convergence Analysis

Here, we investigate the convergence behavior of the proposed FORK methods (with-
out loss of generality, we consider only explicit FORK methods). To do so, we express a
definition of regularity from [35].

Definition 5. A one-step method of the form (36)

yn+1 = yn + hα Φ(tn, yn, h), n = 0, 1, 2, . . . , Nm − 1, (38)

is said to be regular if the function Φ(t, y, h) is defined and continuous in the domain t ∈ [0, T],
y ∈ [0, T∗] and h ∈ [0, h0] (h0 is a positive constant) and if there exists a constant L such that

|Φ(t, y, h)− Φ(t, z, h)| ≤ L|y − z|,

for every t ∈ [0, T], y, z ∈ [0, T∗] and h ∈ [0, h0].

To discuss the convergence of the EFORK methods, first, we prove that the given
methods in Section 3 are regular. We know from Theorem 2 that f (t, y) satisfies a Lipschitz
condition with respect to the second variable. Thus,

|Φ(tn, yn, h)− Φ(tn, y∗
n, h)| = h−α

∣∣∣∣∣ s

∑
i=1

wiKi −
s

∑
i=1

wiK∗
i

∣∣∣∣∣
≤ h−α(w1|K1 − K∗

1 |+ w2|K2 − K∗
2 |+ . . . + ws|Ks − K∗

s |)
≤ w1L|yn − y∗

n|+ w2L|yn + a21K1 − y∗
n − a21K∗

1 |+ . . .

+ wsL|yn + as1K1 + as2K2 + . . . + assKs − y∗
n − as1K∗

1

− as2K∗
2 − . . . − assK∗

s |
≤ . . . ≤ L∗|yn − y∗

n|.
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Therefore, the function Φ satisfies a Lipschitz condition in y and it is also continuous;
thus, EFORK methods are regular. To establish the convergence behavior, we need the
following Lemma from [35].

Lemma 1. Let ω0, ω1, ω2, . . . be a sequence of real positive numbers that satisfy

ωn+1 ≤ (1 + ζ)ωn + μ, n = 0, 1, 2 . . .

where ζ, μ are positive constants. Then,

ωn ≤ enζω0 +

(
enζ − 1

ζ

)
μ, n = 0, 1, 2, . . . .

We now discuss the behavior of the error en = y(tn)− yn in EFORK method for the
initial-value problem (3).

Theorem 3. Consider the initial value problem (3) and let f (t, y(t)) be continuous and satisfy
a Lipschitz condition with Lipschitz constant L, and also let (c

t0
Dα

t )
(s+1)y(t) be continuous for

t ∈ [t0, T], Then, the given EFORK method in Section 3 is convergent for mα ≥ 1 if and only
if it is consistent.

Proof. Let the EFORK method be consistent, and the method can be written in the form

yn+1 = yn + hαΦ(tn, yn, h). (39)

The exact value y(tn) will satisfy

y(tn+1) = y(tn) + hαΦ(tn, y(tn), h) + Tn, (40)

where Tn is the truncation error. By subtracting (39) from (40), we have

|en+1| ≤ |en|+ hα|(Φ(tn, y(tn), h)− Φ(tn, yn, h))|+ |Tn|.

Now, from the regularity of the EFORK method, it follows that

|en+1| ≤ |en|+ hαL|y(tn)− yn|+ |Tn| ≤ (1 + hαL)|en|+ |Tn|.

By using the Lemma 1, we have

|en| ≤ (1 + hαL)n|e0|+
(

enhα L − 1
hαL

)
|Tn|,

where we assumed that the local truncation error for a sufficiently large n is constant, i.e.,
T = Tn, n = 0, 1, 2, . . . In addition, assume that e0 = 0 and |Tn| = O(hpα), p ≥ 3; therefore,

|en| ≤ O(hpα)

(
enhα L − 1

hαL

)
.

In Section 3, we assumed Nm = (T − t0)/h, so we have

|en| ≤ O(h(p−1)α)

⎛⎝ e(T−t0)
1
m Lhα− 1

m − 1
L

⎞⎠.

Thus, the EFORK methods of Sections 3.1 and 3.2 are convergent if α − 1
m ≥ 0, i.e

mα ≥ 1. Conversely, let the EFORK method be convergent. It is sufficient that we give a
limit of (39) as h tends to 0. Now, the proof of the theorem is complete.
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5.3. Stability Analysis

For the stability analysis of the proposed methods in Sections 3 and 4, we consider the FDE:

c
t0

Dα
t y(t) = λy(t), λ ∈ C, 0 < α ≤ 1,

y(t0) = y0 . (41)

According to [1], the exact solution of (41) is y(t) = Eα(λ(t − t0)
α)y0. When Re(λ) < 0,

the solution of (41) asymptotically tends to 0 as t → ∞.
We apply the two-stage EFORK method (15) to Equation (41) and obtain

K1 = hα f (tn, yn) = λhαyn,

K2 = hα f (tn + c2h, yn + a21K1) = λhα(yn + a21λhαyn)

=
[
λhα + a21(λhα)2

]
yn,

yn+1 = yn + w1K1 + w2K2 = yn +
1

2Γ(α + 1)

[
2λhα + a21(λhα)2

]
yn

=

[
1 +

λhα

Γ(α + 1)
+

a21(λhα)2

2Γ(α + 1)

]
yn =

[
1 +

λhα

Γ(α + 1)
+

cα
2(λhα)2

2(Γ(α + 1))2

]
yn

=

[
1 +

λhα

α!
+

cα
2(λhα)2

2(α!)2

]
yn.

Therefore, the growth factor for the two-stage EFORK method (15) is [35]

E(λhα) = 1 +
λhα

α!
+

cα
2(λhα)2

2(α!)2 ,

Now, consider the following definition ([35]):

Definition 6. A numerical method is called absolutely stable in the sense of Dahlquist if and only
if |E(λhα)| ≤ 1 when the method is applied with any positive step-size h to the test Equation (41).

The interval of the absolute stability of a numerical method is defined as [Re(λhα), 0)
if and only if |E(λhα)| ≤ 1. So, the two-stage method (15) is absolutely stable if

|1 + λhα

α!
+

cα
2(λhα)2

2(α!)2 | � 1 .

If λ hα < 0, we can find the interval of absolute stability as follows:

−2α!
cα

2
� λhα < 0. (42)

According to (42), the interval of absolute stability for the two-stage EFORK method (15)
depends on cα

2. For instance, if cα
2 = 2(α!)2/(2α)! , then and so the interval of absolute

stability will be

−(2α)!
α!

� λhα < 0.

In addition, for cα
2 = (Γ(2α+1))2

Γ(3α+1)Γ(α+1) , we have

−2(α!)2(3α)!
((2α)!)2 � λhα < 0.
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If we choose cα
2 = 4Γ(α+1)

Γ(3α+1) , we get

−(3α)!
2

� λhα < 0.

or, cα
2 = Γ(α+1)

Γ(3α+1) , we obtain
−2(3α)! � λhα < 0.

The graphs of E(λhα) for different two-stage EFORK methods are shown in Figures 1 and 2.
From these figures, for (λ < 0), we can find the interval of absolute stability for various α.
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Figure 1. The graph of E(λhα) for the two-stage EFORK method (15) with cα
2 = 2(α!)2

(2α)! (left), and

cα
2 = (Γ(2α+1))2

Γ(3α+1)Γ(α+1) (right).
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In addition, we apply the three-stage EFORK method (21) to Equation (41) and get

yn+1 =

[
1 +

λhα

α!
+

(λhα)2

(2α)!
+

(λhα)3

(3α)!

]
yn .

Thus, the growth factor for the three-stage EFORK method (21) is

E(λhα) = 1 +
λhα

α!
+

(λhα)2

(2α)!
+

(λhα)3

(3α)!
.

The three-stage EFORK method is absolutely stable if

|1 + λhα

α!
+

(λhα)2

(2α)!
+

(λhα)3

(3α)!
| � 1.
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The graph of E(λhα) for the three-stage EFORK method (21) is shown in Figure 3. In
this figure, we can see the interval of absolute stability for various α.
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Figure 3. The graph of E(λhα) for three-stage EFORK method (21).

Finally, we apply the IFORK method (33) to Equation (41) and get

E(λhα) = 1 +
1
α! λhα

1 − λhα α!
(2α)!

,

with the interval of absolute stability (−∞, 0), λ < 0. In a similar manner, we can obtain the
interval of absolute stability for IFORK method (34). As we can see, in implicit fractional
RK methods, the interval of absolute stability is very large, and they are stable.

6. Numerical Examples

In order to demonstrate the effectiveness and order of accuracy of the proposed
methods in Sections 3 and 4, two examples are considered. All computations have been
carried out on a Core i7 PC with Mathematica 13.2 software.

Example 1. Consider the fractional differential equation

c
0Dα

t y(t) = −y(t) +
t4−α

Γ(5 − α)
, t ∈ [0, T],

y(0) = 0,

such that the exact solution is y(t) = t4Eα,5(−tα). The approximate solutions by the two-stage
EFORK method (15), three-stage EFORK method (21), and IFORK methods (33) and (34) are
reported in Tables 1–6 (In Appendix A some Mathematica computer programming codes are pre-
sented). The computed solutions are compared with the exact solution for different values of h, α,
and T. The absolute error in time T is given by

E(h, T) = |y(tNm)− yNm |,

and the orders of the presented method are computed according to the following relation:

Log2
E(h, T)

E(h/2, T)
.
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Table 1. Two-stage method (15) for T = 1, m = 3 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/3 1/40 1.09027 × 10−2 1.1320
1/80 4.97465 × 10−3 1.0013

1/160 2.48509 × 10−3 0.9136
1/320 1.31920 × 10−3 0.8533
1/640 7.30171 × 10−4 ∗

Table 2. Two-stage method (15) for T = 1, m = 2 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 2.05503 × 10−3 1.2248
1/80 8.79256 × 10−4 1.1621

1/160 3.92907 × 10−4 1.1171
1/320 1.81137 × 10−4 1.0845
1/640 8.54183 × 10−5 ∗

Table 3. Three-stage method (21) for T = 1, m = 4 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/4 1/40 9.94252 × 10−4 0.8437
1/80 5.54011 × 10−4 0.8214

1/160 3.13499 × 10−4 0.8064
1/320 1.79258 × 10−4 0.7958
1/640 1.03255 × 10−4 ∗

Table 4. Three-stage method (21) for T = 1, m = 2 in Example 1.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 7.45694 × 10−5 1.5942
1/80 2.46986 × 10−5 1.5789

1/160 8.26771 × 10−6 1.5625
1/320 2.79911 × 10−6 1.5478
1/640 9.57367 × 10−7 ∗

Table 5. IFORK methods for T = 1, m = 2 in Example 1.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/2 1/40 1.86448 × 10−4 1.0832 3.56080 × 10−4 1.7307
1/80 8.79978 × 10−5 1.0492 1.07291 × 10−4 1.6666

1/160 4.25221 × 10−5 1.0291 3.37953 × 10−5 1.6191
1/320 2.08361 × 10−5 1.0174 1.10016 × 10−5 1.5846
1/640 1.02928 × 10−5 ∗ 3.66806 × 10−6 ∗

164



Fractal Fract. 2023, 7, 245

Table 6. IFORK methods for T = 1, m = 3 in Example 1.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/3 1/40 3.04275 × 10−4 0.9083 5.12337 × 10−3 1.4661
1/80 1.62123 × 10−4 0.8746 1.85445 × 10−3 1.3856

1/160 8.84207 × 10−5 0.8482 7.09751 × 10−4 1.2940
1/320 4.91160 × 10−5 0.8255 2.89458 × 10−4 1.2106
1/640 2.77152 × 10−5 ∗ 1.25070 × 10−4 ∗

From the Tables 1–6, we can conclude that the computed orders of truncation errors
are in good agreement with the obtained results of Sections 3 and 4. Figure 4, illustrates the
error curves of the two-stage EFORK method (15) and the three-stage EFORK method (21)
at T = 1, with α = 1/2, m = 2 and different values of N.

Example 2. Consider the following fractional differential equation from [6]:

c
0Dα

t y(t) =
2

Γ(3 − α)
t2−α − 1

Γ(2 − α)
t1−α − y(t) + t2 − t, t ∈ [0, T],

y(0) = 0,

with the exact solution y(t) = t2 − t. Again, for different values of h, α, and T, we compared, in
Tables 7–10, the obtained results by the two-stage EFORK method (15) and the three-stage EFORK
method (21) with the exact solution. In Tables 11 and 12, we report the results obtained by the
IFORK methods (33) and (34). From Tables 7–12, we can conclude that the computed orders are in
good agreement with the given results of Sections 3 and 4.
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Figure 4. The error curves of the two-stage EFORK method (15) (left), and the error curves of the
three-stage EFORK method (21) (right) for Example 1.

Table 7. Two-stage method (15) for T = 1, m = 3 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/3 1/40 1.00356 × 10−1 1.1075
1/80 4.65748 × 10−2 0.9928

1/160 2.34046 × 10−2 0.9107
1/320 1.24493 × 10−2 0.8523
1/640 6.89556 × 10−3 ∗
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Table 8. Two-stage method (15) for T = 1, m = 2 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 1.77152 × 10−2 1.2351
1/80 7.52581 × 10−3 1.1738

1/160 3.33574 × 10−3 1.1275
1/320 1.52680 × 10−3 1.0928
1/640 7.15859 × 10−4 ∗

Table 9. Three-stage method (21) for T = 1, m = 4 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/4 1/40 9.90939 × 10−3 0.8383
1/80 5.54249 × 10−3 0.8182

1/160 3.14342 × 10−3 0.8047
1/320 1.79955 × 10−3 0.7950
1/640 1.03718 × 10−3 ∗

Table 10. Three-stage method (21) for T = 1, m = 2 in Example 2.

α h E(h, T) Log2
E(h,T)

E(h/2,T)

1/2 1/40 5.79341 × 10−4 1.5592
1/80 1.96590 × 10−4 1.5566

1/160 6.68302 × 10−5 1.5475
1/320 2.28624 × 10−5 1.5374
1/640 7.87606 × 10−6 ∗

Table 11. IFORK methods for T = 1, m = 2 in Example 2.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/2 1/40 1.52888 × 10−3 1.0777 2.99223 × 10−3 1.6608
1/80 7.24362 × 10−4 1.0464 9.46328 × 10−4 1.6244

1/160 3.50728 × 10−4 1.0279 3.06932 × 10−4 1.5943
1/320 1.72002 × 10−4 1.0171 1.01649 × 10−4 1.5703
1/640 8.49858 × 10−5 ∗ 3.42297 × 10−5 ∗

Table 12. IFORK methods for T = 1, m = 3 in Example 2.

α h IFORK (33) Log2
E(h,T)

E(h/2,T) IFORK (34) Log2
E(h,T)

E(h/2,T)

1/3 1/40 2.84493 × 10−3 0.9005 4.77620 × 10−2 1.4860
1/80 1.52403 × 10−3 0.8707 1.70509 × 10−2 1.3835

1/160 8.33483 × 10−4 0.8463 6.53520 × 10−3 1.2859
1/320 4.63592 × 10−4 0.8246 2.68020 × 10−3 1.2023
1/640 2.61754 × 10−4 ∗ 1.16478 × 10−3 ∗

As we can see, the computational orders for two and three-stage EFORK methods
approach 2α and 3α for h > 0, respectively. As seen in Tables and Figures, the three-stage
EFORK method provides better results than the two-stage EFORK method. Table 13 shows
the numerical results for different values of T.
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Table 13. E(h, T) for α = 1/2, m = 2 and different values of T.

T 2-Stage-Exam.1 3-Stage-Exam.1 2-Stage-Exam.2 3-Stage-Exam.2

0.5 4.81351 × 10−6 4.20218 × 10−8 9.29068 × 10−5 5.57177 × 10−7

1.0 8.54183 × 10−5 9.57367 × 10−7 3.00335 × 10−3 7.87606 × 10−6

1.5 4.51426 × 10−4 6.00243 × 10−6 2.78127 × 10−3 3.63915 × 10−5

2 1.45778 × 10−3 2.20455 × 10−5 6.26033 × 10−3 9.38735 × 10−5

3 7.50603 × 10−3 1.37070 × 10−4 1.78449 × 10−2 3.26003 × 10−4

In addition, Tables 5, 6, 11 and 12 show that the computational order from relations (33)
and (34) of IFORK methods approach 2α and 3α for h > 0, respectively.

Figure 5, illustrates the numerical results of the two-stage EFORK method (15) and
the three-stage EFORK method (21) at T = 1 for α = 1/2, m = 2 and different values of
N. Additionally, Figure 6 illustrates the numerical results of the IFORK method (33) for
Example 1 and Example 2 at T = 1 for α = 1/2, m = 2 and different values of N.
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Figure 5. The error curves of the two-stage EFORK method (15) (left), and the three-stage EFORK
method (21) (right) in Example 2.
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Figure 6. The error curves of the IFORK method (33) in Example 1 (left), and Example 2 (right).

In addition, the numerical results for the optimal case cα
2 = (Γ(2α+1))2

Γ(3α+1)Γ(α+1) in the two-
stage EFORK method are shown in Table 14 with α = 1/2 and different values of h.
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Table 14. Optimal two-stage method (15) for T = 1, m = 2.

α h E(h, T), Example 1 E(h, T), Example 2

1/2 1/40 7.35533 × 10−4 6.12299 × 10−3

1/80 3.55401 × 10−4 2.94885 × 10−3

1/160 1.72778 × 10−4 1.43060 × 10−3

1/320 8.45336 × 10−5 6.99024 × 10−4

1/640 4.15855 × 10−5 3.43589 × 10−4

7. Conclusions

This paper introduces new efficient FORK methods for FDEs based on Caputo general-
ized Taylor formulas. The proposed methods were examined for consistency, convergence,
and stability. The interval of absolute stability of FORK methods has been determined, and
implicit fractional order RK methods were shown to be A stable. Some examples were
provided to demonstrate the effectiveness of these numerical schemes. We can obtain these
results for Riemann–Liouville and Gronwald–Letnikov fractional derivatives accordingly.
Recently, a new concept of differentiation called fractal and fractional differentiation was
suggested and numerically examined by many researchers [36,37], where the differential
operator has two orders: the first is fractional order and the second is the fractal dimen-
sion. These differential (integral) operators have not been studied intensively yet. In
future work, we will extend the presented method for fractional differential equations with
fractal–fractional derivatives.
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FDEs Fractional Differential Equations

Appendix A. Some Mathematica Codes of FORK Methods

3-stage EFORK method for Example 1.

N1 = Input[“Please Enter Nm:”];
T = Input[“Please Enter T:”];
α = Input[“Please Enter α:”];
h = T

N1
;

Do[tn = n ∗ h, {n, 0, N1}];
y0 = 0;

w1 = 8Γ[1+α]3Γ[1+2α]2−6Γ[1+α]3Γ[1+3α]+Γ[1+2α]Γ[1+3α]
Γ[1+α]Γ[1+2α]Γ[1+3α]

;

w2 =
2Γ[1+α]2(4Γ[1+2α]2−Γ[1+3α])

Γ[1+2α]Γ[1+3α]
;

w3 = − 8Γ[1+α]2(2Γ[1+2α]2−Γ[1+3α])
Γ[1+2α]Γ[1+3α]

;

a11 = 1
2∗Γ[α+1]2 ;
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a21 = Γ[1+α]2Γ[1+2α]+2Γ[1+2α]2−Γ[1+3α]
4Γ[1+α]2(2Γ[1+2α]2−Γ[1+3α])

;

a22 = − Γ[1+2α]
4(2Γ[1+2α]2−Γ[1+3α])

;

c2 =
(

1
2Γ[1+α]

)1/α
;

c3 =
(

1
4Γ[1+α]

)1/α
;

f0[t_, y_] = −y + t4−α

Γ[5−α]
;

Do[
K1 = hα fn[tn, yn];
K2 = hα fn[tn + c2 ∗ h, yn + a11 ∗ K1];
k3 = hα fn[tn + c3 ∗ h, yn + a22 ∗ K2 + a21 ∗ K1];
yn+1 = yn + w1 ∗ K1 + w2 ∗ K2 + w3 ∗ k3;
Print

[
“n=”, n, “: Explicit Error=”, Abs

[
yn+1 − tn+1

4 ∗ N[MittagLefflerE[α, 5, −tn+1
α]]
]]

;

fn+1[t_, y_] = fn[t, y]− (yn+1 − yn) ∗ (t−tn)(1−α)−(t−tn+1)(1−α)

h∗(1−α)∗Γ[1−α]
;

, {n, 0, N1 − 1}]

2-stage IFORK method for Example 1.

N1 = Input[“Please Enter Nm:”];
T = Input[“Please Enter T:”];
α = Input[“Please Enter α:”];
h = T

N1
;

Do[tn = n ∗ h, {n, 0, N1}];
y0 = 0;
w1 = 1

Γ[1+α]
− Γ[1+3α]

2Γ[1+2α]2
;

w2 = Γ[1+3α]
2Γ[1+2α]2

;

a22 = Γ[1+2α]
Γ[1+3α]

;

c21 = ( 1
Γ[1+3α]2

(2Γ[1 + α]Γ[1 + 2α]Γ[1 + 3α]

−
√

2
√

Γ[1 + 2α]2(−2Γ[1 + α]2 + Γ[1 + 2α])Γ[1 + 3α]2))1/α;
c22 = ( 1

Γ[1+3α]2
(2Γ[1 + α]Γ[1 + 2α]Γ[1 + 3α]

+
√

2
√

Γ[1 + 2α]2(−2Γ[1 + α]2 + Γ[1 + 2α])Γ[1 + 3α]2))1/α;
a21 = Γ[1+2α]

Γ[1+3α]
;

f0[t_, y_] = −y + t4−α

Γ[5−α]
;

Do[
K1 = hα fn[tn, yn];
K2 = 1

2 ∗ hα fn [tn+c21∗h,yn+a21∗K1]+ fn [tn+c22∗h,yn+a21∗K1]
1+hα∗a22

;
yn+1 = yn + w1 ∗ K1 + w2 ∗ K2;
Print

[
“n=”, n, “: Implicit Error=”, Abs

[
yn+1 − tn+1

4 ∗ N[MittagLefflerE[α, 5, −tn+1
α]]
]]

;

fn+1[t_, y_] = fn[t, y]− (yn+1 − yn) ∗ (t−tn)(1−α)−(t−tn+1)(1−α)

h∗(1−α)∗Γ[1−α]
;

, {n, 0, N1 − 1}]
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Abstract: This paper aims to numerically study the time-fractional Allen-Cahn equation, where the
time-fractional derivative is in the sense of Caputo with order α ∈ (0, 1). Considering the weak
singularity of the solution u(x, t) at the starting time, i.e., its first and/or second derivatives with
respect to time blowing-up as t → 0+ albeit the function itself being right continuous at t = 0, two
well-known difference formulas, including the nonuniform L1 formula and the nonuniform L2-1σ

formula, which are used to approximate the Caputo time-fractional derivative, respectively, and the
local discontinuous Galerkin (LDG) method is applied to discretize the spatial derivative. With the
help of discrete fractional Gronwall-type inequalities, the stability and optimal error estimates of the
fully discrete numerical schemes are demonstrated. Numerical experiments are presented to validate
the theoretical results.

Keywords: time-fractional Allen-Cahn equation; nonuniform time meshes; local discontinuous
galerkin method; stability and convergence

1. Introduction

The classical Allen-Cahn equation, originally proposed by Allen and Cahn [1] to
describe the motion of antiphase boundaries in crystalline solids, has subsequently been
used in a wide variety of problems such as vesicle membranes, nucleation of solids, and a
mixture of two incompressible fluids [2]. It has become a fundamental model equation for
diffusion interface methods in materials science to study phase transitions and interface
dynamics [3]. Since the Allen-Cahn equation is a nonlinear equation and it is not easy to
obtain its analytical solution, various numerical methods have been proposed to solve it,
for example, finite difference methods [4], finite element methods [5], local discontinuous
Galerkin (LDG) methods [6], and so on. Most of these studies focused on integer-order
phase-field models, implicitly assuming that the motion of the underlying particles is
normal diffusion and that the spatial interactions between them are local. However, in the
original formulation of the physical model [7], nonlocal interactions were part of the phase-
field model, and thus in the following decades, the phase-field model was approximated
by the local model by assuming slow spatial variations. Meanwhile, it has been reported
that the presence of nonlocal operators in time [8] or space [9] in the phase-field model may
significantly change the diffusion dynamics.

In this paper, we consider the LDG method for the following time-fractional Allen-
Cahn equation ⎧⎪⎨⎪⎩

CDα
0,tu − ε2Δu = −F′(u) =: f (u), x ∈ Ω, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω
u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

(1)

Fractal Fract. 2022, 6, 349. https://doi.org/10.3390/fractalfract6070349 https://www.mdpi.com/journal/fractalfract
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where ε is an interface width parameter and Ω = (−1, 1)d is a bounded domain of Rd

with d = 1, 2. The operator CDα
0,t denotes the Caputo-type fractional derivative of order

α ∈ (0, 1) in time, which is a typical example of nonlocal operators and defined as [10]

CDα
0,tu(x, t) =

1
Γ(1 − α)

∫ t

0
(t − s)−α ∂u

∂s
ds. (2)

The nonlinear term F(u) is the interficial (or potential) energy. To facilitate the mathematical
and numerical analysis of phase-field model, the following Ginzburg-Landau double-well
potential has often been used [11,12]

F(u) =
1
4
(1 − u2)2.

This is a relatively simple phenomenological double-well potential that is commonly used
in physical and geometrical applications. It was first shown in [13] that the time-fractional
Allen-Cahn equation satisfies the following energy law

E(u(t)) ≤ E(u0),

where E(u(t)) is the total energy defined by

E(u) :=
∫

Ω

(
ε2

2
|∇u|2 + F(u)

)
dx.

For the time-fractional Allen-Cahn Equation (1), several numerical studies have been
done. In [8], Liu et al. proposed an efficient finite-difference scheme and a Fourier spectral
scheme for the time-fractional Allen-Cahn and Cahn-Hilliard phase-field equations, but
there was no stability analysis or error estimate in this paper. In [13], Tang et al. proposed
a class of finite difference schemes for the time-fractional phase-field equation. They also
proved for the first time that the fractional phase-field model does admit an integral-type
energy dissipation law. In [14], Liu et al. considered a fast algorithm based on a two-mesh
finite element format for numerically solving the nonlinear spatial-fractional Allen-Cahn
equation with smooth and nonsmooth solutions. In [11], Du et al. first studied the well-
posedness and regularity of the time-fractional Allen-Cahn equation, and then developed
several unconditionally solvable and stable numerical schemes to solve it. In [15], Huang
and Stynes presented a numerical scheme to solve the time-fractional Allen-Cahn equation,
which is based on the Galerkin finite element method in space and the nonuniform L1
formula in time. In [16], Hou et al. constructed a first-order scheme and a (2 − α)th-
order scheme for the time-fractional Allen-Cahn equation. In [17], Jiang et al. considered
the Legendre spectral method for the time-fractional Allen-Cahn equation. In a series of
works [18–20], Liao et al. proposed several efficient finite difference schemes to solve the
time-fractional phase-field type models.

The LDG method is a special class of discontinuous Galerkin (DG) methods, intro-
duced first by Cockburn and Shu [21]. This type of method not only inherits the advantages
of DG methods, but it can easily handle meshes with hanging nodes, cells of general shape,
and different types of local spaces, so it is flexible for hp-adaptivity [22,23]. In addition,
the LDG scheme is locally solvable, i.e., the auxiliary variables of the derivatives of the
approximate solution can be eliminated locally. Therefore, we would like to extend the
LDG method to the numerical calculation of the time-fractional Allen-Cahn Equation (1)
and further enrich the numerical methods for solving such an equation. Specifically, we
construct two fully discrete numerical schemes for problem (1). For the first scheme, we
utilize the nonuniform L1 formula to compute the time-fractional derivative and apply
the LDG method to approximate the spatial derivative. With the aid of the discrete frac-
tional Gronwall inequality, we show that the constructed scheme is numerically stable and
the optimal error estimate is proved detailedly (i.e., (2 − α)th-order accurate in time and
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(k + 1)th-order accurate in space when piecewise polynomials of up to k are used). If the
solution of Equation (1) has better regularity in the time direction, we approximate the
time-fractional derivative by the nonuniform L2-1σ formula and still use the LDG method
to approach the spatial derivative. The stability and convergence analysis of the scheme
are also carefully investigated, and it is proved that this scheme can achieve second-order
accuracy in the time direction.

The rest of the paper is organized as follows. In Section 2, we will introduce some neces-
sary notations, projections, and corresponding interpolation properties. In Sections 3 and 4,
we consider the LDG method for the time-fractional Allen-Cahn Equation (1). The stability
and optimal convergence results are obtained. In Section 5, we perform some numerical
experiments to verify the theoretical statements. A brief concluding remark is given in
Section 6.

2. Preliminaries

Let us start by presenting some notations for the mesh, function space, and norm. We
also present some projections and certain corresponding interpolation properties for the
finite element spaces which will be used for the convergence analysis.

2.1. Finite Element Space and Notations

Let Th be a shape-regular subdivision of Ω with elements K, Γ denotes the union of
the boundary of elements K ∈ Th, i.e., Γ = ∪K∈Th ∂K. Let e be a face shared by the “left” and
“right” elements KL and KR. Define the normal vectors νL and νR on e pointing exterior to
KL and KR, respectively. If ϕ is a function on KL and KR, but possibly discontinuous across
e, let ϕL denote (ϕ|KL)|e and ϕR denote (ϕ|KR)|e, the left and right trace, respectively. The
associated finite element space is defined as

Vh =
{

v ∈ L2(Ω) : v|K ∈ Qk(K), ∀K ∈ Th

}
,

Σh =
{

q = (q1, · · · , qd)
T |K ∈ (L2(Ω))d : ql |K ∈ Qk(K), l = 1, · · · , d, ∀K ∈ Th

}
,

where Qk(K) denotes the space of polynomials of degrees at most k ≥ 0 defined on K. In
particular, for one-dimensional case, we have Qk(K) = P k(K).

We define the inner product over the element K by

(u, v)K =
∫

K
uvdK, 〈u, v〉∂K =

∫
∂K

uvds,

(p, q)K =
∫

K
p · qdK, 〈p, q〉∂K =

∫
∂K

p · qds,

for scalar variables u, v and vector variables p, q respectively. The inner products on Ω are
defined as

(u, v)Ω = ∑
K
(u, v)K, (p, q)Ω = ∑

K
(p, q)K.

Furthermore, the L2 norm on the domain Ω and the boundary Γ are given by

‖u‖2
Ω = (u, u)Ω, ‖u‖2

Γ = 〈u, u〉Γ,

‖p‖2
Ω = (p, p)Ω, ‖p‖2

Γ = 〈p, p〉Γ.

For any nonnegative integer m, Hm(Ω) denotes the standard Sobolev space with its associ-
ated norm ‖ · ‖m,Ω and seminorm | · |m,Ω.

2.2. Projections and Interpolation Properties

In this subsection, we follow [24] to define the projections in one- and two-dimensional
space, respectively.
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One-dimensional case. Assume that the mesh consisting of cells Kj = (xj− 1
2
, xj+ 1

2
),

for 1 ≤ j ≤ N, where −1 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1, covers Ω =[−1, 1]. Denote

xj = (xj− 1
2
+ xj+ 1

2
)/2, hj = xj+ 1

2
− xj− 1

2
, and h = max1≤j≤N hj. We assume Th is quasi-

uniform mesh in this case; namely, there exists a fixed positive constant ν independent of
h such that νh ≤ hj ≤ h for j = 1, . . . , N, as h goes to zero. We introduce the standard L2

projection of a function u ∈ L2(Ω) into the finite element space Vh, denoted by Phu, which
is a unique function in Vh satisfying∫

Kj

(
Phu − u

)
vhdx = 0, ∀vh ∈ P k(Kj), j = 1, . . . , N. (3)

For any given function u ∈ H1(Ω) and an arbitrary element Kj, the special Gauss-Radau
projection of u, denoted by P±

h u, is the unique function in Vh satisfying, for each j,∫
Kj

(
P+

h u − u
)
vhdx = 0, ∀vh ∈ P k−1(Kj), (P+

h u)+
j− 1

2
= u(x+

j− 1
2
), (4)

∫
Kj

(
P−

h u − u
)
vhdx = 0, ∀vh ∈ P k−1(Kj), (P−

h u)−
j+ 1

2
= u(x−

j+ 1
2
). (5)

Two-dimensional case. Let Th = {Kij}
j=1,...,Ny
i=1,...,Nx

denote a subdivision of Ω = (−1, 1)2

with rectangular element Kij = Ii × Jj, where Ii = (xi−1/2 − xi+1/2) and Jj = (yj−1/2, yj+1/2),
with the length hx

i = xi+1/2 − xi−1/2 and width hy
j = yj+1/2 − yj−1/2. Let hij = max{hx

i , hy
j }

and denote h = maxKij∈Th hij. We also assume Th is quasi-uniform in this case; namely,

there exists a fixed positive constant ν independent of h such that νh ≤ min{hx
i , hy

j } ≤ h for
i = 1, . . . , Nx and j = 1, . . . , Ny. Similar to the one-dimensional case, we need to introduce
a suitable projection P±

h . The projection for the scalar function is defined as

P−
h = P−

h,x × P−
h,y, (6)

where the subscripts x and y indicate that the one-dimensional projection P−
h defined

by (5) is applied with respect to the corresponding variable.
Let Ph,x and Ph,y be the standard L2 projections in the x and y directions, respec-

tively. The projection Π+
h for vector-valued function q = (q1(x, y), q2(x, y)) ∈ [H1(Ω)]2 is

defined by
Π+

h q =
(
P+

h,x × Ph,y

)
: [H1(Ω)]2 → [Qk(Ii × Jj)]

2,

which satisfies∫
Ii

∫
Jj

(
Π+

h q − q
)
· ∇wdxdy, ∀w ∈ Qk(Ii × Jj),∫

Jj

(
Π+

h q(xi−1/2, y)− q(xi−1/2, y)
)
· nw(x+i−1/2, y)dy = 0, ∀w ∈ Qk(Ii × Jj),∫

Ii

(
Π+

h q(x, yj−1/2)− q(x, yj−1/2)
)
· nw(x, y+j−1/2)dx = 0, ∀w ∈ Qk(Ii × Jj),

(7)

where n is the outward unit normal vector of the domain integrated.
Interpolation properties. The projections defined above have the following approxi-

mation properties. If u ∈ Hk+1(Ω), we have (see Lemma 2.4 in [25])

‖P±
h u − u‖Ω ≤ Chk+1‖u‖Hk+1(Ω), (8)

‖Π+
h q − q‖Ω ≤ Chk+1‖q‖Hk+1(Ω). (9)
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The projection P−
h on the Cartesian meshes has the following superconvergence

property (see Lemma 3.7 in [25]).

Lemma 1. Assume u ∈ Hk+2(Ω), q ∈ Σh, then the projection defined by (6) satisfies∣∣∣(u − P−
h u, ∇ · q)Ω − (u − P̂−

h u, q · n)Γ

∣∣∣ ≤ Chk+1‖u‖Hk+2(Ω)‖q‖Ω,

where the “hat" term is the numerical flux.

3. Nonuniform L1–LDG Scheme

In this section, Equation (1) is first transformed into a first-order system of differential
equations. Then the L1 method on nonuniform meshes is applied to the time-fractional
derivative and the spatial derivative is approximated by the LDG method, and a fully
discrete numerical scheme is obtained. The stability analysis and error estimate of the
scheme is given by choosing suitable numerical fluxes.

3.1. The Fully Discrete Numerical Scheme and Its Stability Analysis

The usual notations of the nonuniform L1 formula are introduced here. Let M be a
positive integer. Set tn = T(n/M)r for n = 0, 1, . . . , M, where the temporal mesh grading
parameter r ≥ 1 is chosen by the user. Denote τn = tn − tn−1, n = 1, . . . , M be the time
mesh sizes. It is easy to see that when r = 1, the mesh is uniform.

For n ≥ 1, we approximate the Caputo fractional derivative CDα
0,tu(x, tn) by the

well-known L1 formula [26]

CDα
0,tu(x, tn) ≈ Υα

t u(x, tn)

:=
dn,1

Γ(2 − α)
un − dn,n

Γ(2 − α)
u0 +

1
Γ(2 − α)

n−1

∑
i=1

un−i(dn,i+1 − dn,i),
(10)

where dn,i = [(tn − tn−i)
1−α − (tn − tn−i+1)

1−α]/τn−i+1 for i = 1, . . . , n. For simplicity, if
there is no confusion, we denote un = u(x, tn).

Set a(n)n−k = dn,n−k+1/Γ(2 − α) for k = 1, . . . , n and

P(n)
n−k =

1

a(k)0

⎧⎪⎨⎪⎩
1, k = n,

n

∑
j=k+1

(a(j)
j−k−1 − a(j)

j−k)P(n)
n−j, 1 ≤ k ≤ n − 1.

Therefore, the approximate scheme (10) can be written as Υα
t un =

n

∑
i=1

a(n)n−i(u
i − ui−1) for

n = 1, . . . , M. It follows from Lemma 2.1 in the literature [27] that the coefficient coefficients
{P(n)

n−k} satisfies
n

∑
k=1

P(n)
n−k ≤ (tn)

α/Γ(1 + α). (11)

Denote the truncation error Rn
1 as

Rn
1 = CDα

0,tu(x, tn)− Υα
t u(x, tn).

Lemma 2 ([26]). Assume that ‖∂lu(x, t)/∂tl‖Ω ≤ Ctl−α for l = 0, 1, 2. Then the following
identity holds

‖Rn
1‖Ω ≤ Cn− min{2−α,rα}.
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Lemma 3 ([27]). Assume that u(x, ·) ∈ C2((0, T]) and ‖∂lu(x, t)/∂tl‖Ω ≤ Ctl−α for l = 0, 1, 2.
Then the following identity holds

n

∑
j=1

P(n)
n−j|R

j
1| ≤ C

(
α−1Tα M−rα +

r2

1 − α
4r−1Tα M− min{rα,2−α}

)
, n ≥ 1. (12)

As the usual treatment, we would like to introduce the auxiliary variable p = ∇u and
consider the equivalent first-order system

CDα
0,tu − ε2∇ · p − f (u) = 0, (13a)

p −∇u = 0. (13b)

Then the weak formulation of (13) at tn can be written as

(CDα
0,tu

n, v)K + ε2(pn, ∇v)K − ε2〈pn · n, v〉∂K − ( f (un), v)K = 0, (14a)

(pn, w)K + (un, ∇ · w)K − 〈un, w · n〉∂K = 0, (14b)

where v, w are test functions.
Let (Un

h , Pn
h) ∈ (Vh, Σh) be the approximation of un and pn, respectively. Based on (14),

a fully discrete nonuniform L1–LDG method is: find (Un
h , Pn

h) ∈ (Vh, Σh) such that for all
test functions (vh, wh) ∈ (Vh, Σh),

(Υα
t Un

h , vh)K + ε2(Pn
h , ∇vh)K − ε2〈P̂n

h · n, vh〉∂K − ( f (Un
h ), vh)K = 0, (15a)

(Pn
h , wh)K + (Un

h , ∇ · wh)K − 〈Ûn
h , wh · n〉∂K = 0. (15b)

All the “hat” terms are numerical fluxes which are yet to be determined. The freedom
in choosing numerical fluxes can be utilized for designing a scheme that enjoys a certain
stability property. Here alternative flux is chosen

Ûn
h |e = Un

h,L, P̂n
h |e = Pn

h,R, (16)

or
Ûn

h |e = Un
h,R, P̂n

h |e = Pn
h,L. (17)

Summing Equation (15) over all elements yields

(Υα
t Un

h , vh)Ω + ε2(Pn
h , ∇vh)Ω − ε2〈P̂n

h · n, vh〉Γ − ( f (Un
h ), vh)Ω = 0, (18a)

(Pn
h , wh)Ω + (Un

h , ∇ · wh)Ω − 〈Ûn
h , wh · n〉Γ = 0. (18b)

Next, we study the stability of scheme (18) using the numerical flux (16). The case
of choosing numerical flux (17) is almost the same, so is omitted here. Firstly, we state a
discrete fractional Gronwall inequality and a property of the nonuniform L1 scheme.

Lemma 4 ([28]). For any finite time tM = T > 0 and a given nonnegative sequence (λl)
M−1
l=0 ,

assume that there exists a constant λ, independent of time-steps, such that λ ≥
M−1

∑
l=0

λl . Suppose

that the grid function {un|n ≥ 0} satisfies

Υα
t (u

n)2 ≤
n

∑
l=1

λn−l(ul)2 + φnun + (ψn)2, 1 ≤ n ≤ M, (19)
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where {φn, ψn|1 ≤ n ≤ M} are nonnegative sequences. If the maximum time-step τM ≤
(2Γ(2 − α)λ)−

1
α , it holds that, for 1 ≤ n ≤ M,

un ≤ 2Eα,1(2λtα
n)

(
u0 + max

1≤k≤n

k

∑
j=1

P(k)
k−jφ

j +
√

Γ(1 − α) max
1≤k≤n

{tα/2
k ψk}

)
. (20)

Lemma 5 ([29]). Let the functions un = u(x, tn) be in L2(Ω) for n = 0, 1, . . . , M. Then, one has
the following inequality

(Υα
t un, un)Ω ≥ 1

2
Υα

t ‖un‖2
Ω.

Theorem 1. The solution Un
h of the fully discrete nonuniform L1–LDG scheme (18) satisfies

‖Un
h ‖Ω ≤ 2Eα,1(4tα

n)‖U0
h‖Ω, n = 1, . . . , M.

Proof. Taking the test functions in scheme (18) as vh = Un
h and wh = ε2Pn

h , we obtain

(Υα
t Un

h , Un
h )Ω + ε2(Pn

h , ∇Un
h )Ω − ε2〈P̂n

h · n, Un
h 〉Γ +

(
(Un

h )
3 − Un

h , Un
h

)
Ω
= 0, (21a)

ε2(Pn
h , Pn

h)Ω + ε2(Un
h , ∇ · Pn

h)Ω − ε2〈Ûn
h , Pn

h · n〉Γ = 0. (21b)

Adding the two equations in (21) and using (16), we have that

(Υα
t Un

h , Un
h )Ω + ε2‖Pn

h‖2
Ω + ‖(Un

h )
2‖2

Ω = ‖Un
h ‖2

Ω, (22)

which indicates that
(Υα

t Un
h , Un

h )Ω ≤ ‖Un
h ‖2

Ω. (23)

Invoking Lemma 5, we derive that

Υα
t ‖Un

h ‖2
Ω ≤ 2‖Un

h ‖2
Ω. (24)

Therefore, applying Lemma 4 with un = ‖Un
h ‖Ω, φn = ψn = 0, λ0 = 2, and λj = 0 for

1 ≤ j ≤ M − 1, we have
‖Un

h ‖Ω ≤ 2Eα,1(4tα
n)‖U0

h‖Ω.

It completes the proof.

Remark 1.

(i) We point out that the stability analysis in Theorem 1 can be further improved by mathematical
induction. Following the discussions given in (Theorem 4.4 in [30]), we deduce that

‖Un
h ‖Ω ≤ ‖U0

h‖Ω.

(ii) It could be interesting to check the energy stability (i.e., E(Un
h ) ≤ E(U0

h) for all n ≥ 1, where

E(Un
h ) =

∫
Ω

ε2

2 |Pn
h |2 + F(Un

h )dx) of the fully discrete numerical scheme (18), although we
cannot give the theoretical analysis at present. As seen in [19], the main difficulty is to prove
the positive semi-definite of the quadratic form (Υα

t Un
h , Un

h − Un−1
h )Ω. In fact, with the help

of Lemma 3.1 in [13], we can show the energy stability for the uniform case (i.e., the L1
formula on uniform meshes for the time-fractional derivative and the LDG method for the
space approximation).

(iii) The stability mentioned in Theorem 1 is about the initial value, so we can regard this stability
as a priori stability.

3.2. Optimal Error Estimate

Suppose the exact solution u(x, t) of Equation (1) has the following smoothness properties:
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u ∈ L∞
(
(0, T]; Hk+2(Ω)

)
,
∣∣∣∂lu(x, t)/∂tl

∣∣∣ ≤ C(1 + tα−l) for 0 < t ≤ T and l = 0, 1, 2. (25)

Such a regularity assumption with respect to time t is often used, see for instance [15,19,30–39].
It implies that the solution u(x, t) likely behaves a weak singularity at the starting time t = 0,
i.e., |∂u(x, t)/∂t| and /or |∂2u(x, t)/∂t2| blow up as t → 0+ albeit u(x, t) is continuous on
[0, T]. Since it has been shown in [13] that the time-fractional Allen-Cahn Equation (1)
satisfies the maximum principle, namely,

|u(x, t)| ≤ 1 for t > 0 if |u(x, 0)| ≤ 1,

we assume that the nonlinear term f (u) satisfies

max | f ′(u)| ≤ L, (26)

where L is a positive constant. For simplicity, we denote

en
u = un − Un

h = un − Pun + Pun − Un
h = un − Pun + Pen

u, (27a)

en
p = pn − Pn

h = pn − Πpn + Πpn − Pn
h = pn − Πpn + Πen

p. (27b)

We choose the projection as follows

(P, Π) = (P−
h , P+

h ) in one dimension,

(P, Π) = (P−
h , Π+

h ) in two-dimensions,
(28)

which are defined in Section 2.2.
Subtracting (18) from (14), we have the error equation

(CDα
0,tu

n − Υα
t Un

h , vh)Ω + ε2(pn − Pn
h , ∇vh)Ω − ε2〈(pn − P̂n

h) · n, vh〉Γ

− ( f (un)− f (Un
h ), vh)Ω = 0,

(29a)

(pn − Pn
h , wh)Ω + (un − Un

h , ∇ · wh)Ω − 〈(un − Ûn
h ), wh · n〉Γ = 0. (29b)

Now we show the error estimate for Equation (29).

Theorem 2. Let un be the exact solution of Equation (1) which satisfies the smoothness assump-
tion (25), and Un

h be the numerical solution of the nonuniform L1–LDG scheme (18). If f (u)
satisfies the condition (26), then for n = 1, 2, . . . , M, the following estimate holds

‖un − Un
h ‖Ω ≤ C

(
M− min{2−α,rα} + hk+1

)
, (30)

where C is a positive constant independent of M and h.

Proof. By taking the test functions vh = Pen
u and wh = ε2Πen

p in (29) and applying (27), we
arrive at

(Υα
t Pen

u, Pen
u)Ω + ε2(Πen

p, Πen
p)Ω − ( f (un)− f (Un

h ), Pen
u)Ω = RHS, (31)

where Rn
1 = CDα

0,tu(x, tn)− Υα
t u(x, tn) and

RHS =− (Υα
t (u

n − Pun), Pen
u)Ω − (Rn

1 , Pen
u)Ω − ε2(pn − Πpn, ∇Pen

u)Ω

+ ε2〈(pn − Π̂pn) · n, Pen
u〉Γ − ε2(pn − Πpn, Πen

p)Ω − ε2(un − Pun, ∇ · Πen
p)Ω

+ ε2〈(un − P̂un), Πen
p · n〉Γ − ε2(Πen

p, ∇Pen
u)Ω + ε2〈Π̂en

p · n, Pen
u〉Γ

− ε2(Pen
u, ∇ · Πen

p)Ω + ε2〈P̂en
u, Πen

p · n〉Γ.
(32)
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Making use of flux (16) and the property of projections, it is obvious to see that

RHS =− (Υα
t (u

n − Pun), Pen
u)Ω − (Rn

1 , Pen
u)Ω − ε2(pn − Πpn, Πen

p)Ω

− ε2(un − Pun, ∇ · Πen
p)Ω + ε2〈(un − P̂un), Πen

p · n〉Γ.
(33)

By using Cauchy-Schwarz inequality and Lemma 1, RHS can be estimated as follows

|RHS| = ‖Υα
t (u

n − Pun)‖Ω‖Pen
u‖Ω + ‖Rn

1‖Ω‖Pen
u‖Ω + ε2‖pn − Πpn‖Ω‖Πen

p‖Ω

+ Chk+1‖Πen
p‖Ω

≤ Chk+1
(
‖Pen

u‖Ω + ‖Πen
p‖Ω

)
+ ‖Rn

1‖Ω‖Pen
u‖Ω,

(34)

where C is a positive constant dependent on ‖u‖L∞((0,T];Hk+2(Ω)).
Now we estimate the nonlinear term in (31). It is obvious to see that

( f (Un
h )− f (un), Pen

u)Ω

= ( f (Pun)− f (un), Pen
u)Ω − ( f (Pun)− f (Un

h ), Pen
u)Ω

=
(

f ′(ξ)(Pun − un), Pen
u
)

Ω − ( f (Pun)− f (Un
h ), Pen

u)Ω

= I + I I,

(35)

where ξ = θun + (1 − θ)Pun with 0 ≤ θ ≤ 1. Then, using the Cauchy-Schwarz inequality,
Young’s inequality, interpolation property (8), and (26), we can derive

|I| ≤ ‖ f ′‖L∞(Ω)|(Pun − un, Pen
u)Ω|

≤ C‖Pen
u‖2

Ω + Ch2k+2.
(36)

It follows from the definition of f (u) (i.e., f (u) = u − u3) that

f (u)− f (v) = f ′(u)(u − v)− (u − v)3 + 3u(u − v)2. (37)

Therefore, I I can be rewritten as

I I = −( f (Pun)− f (Un
h ), Pen

u)Ω

= −
(

f ′(Pun)(Pun − Un
h )− (Pun − Un

h )
3 + 3Pun(Pun − Un

h )
2, Pen

u

)
Ω

= −
(

f ′(Pun)Pen
u − (Pen

u)
3 + 3Pun(Pen

u)
2, Pen

u

)
Ω

=
(
(Pen

u)
3, Pen

u

)
Ω
−
(

f ′(Pun)Pen
u + 3Pun(Pen

u)
2, Pen

u

)
Ω

.

(38)

From (26) and the Cauchy-Schwarz inequality, it is obvious to see that∣∣∣( f ′(Pun)Pen
u + 3Pun(Pen

u)
2, Pen

u)Ω

∣∣∣ ≤ C‖Pen
u‖2

Ω + ‖(Pen
u)

2‖2
Ω. (39)

Combining Equations (31), (34), (36), (38) and (39), we have

(Υα
t Pen

u, Pen
u)Ω + ‖Πen

p‖2
Ω + ‖(Pen

u)
2‖2

Ω

≤ Chk+1
(
‖Pen

u‖Ω + ‖Πen
p‖Ω

)
+ ‖Rn

1‖Ω‖Pen
u‖Ω + Chk+1‖Πen

p‖Ω

+ C‖Pen
u‖2

Ω + ‖(Pen
u)

2‖2
Ω + Ch2k+2

≤ C‖Pen
u‖2

Ω + ‖Πen
p‖2

Ω + ‖(Pen
u)

2‖2
Ω + Ch2k+2 + ‖Rn

1‖Ω‖Pen
u‖Ω.

(40)

Invoking Lemma 5, one has

Υα
t ‖Pen

u‖2
Ω ≤ 2C‖Pen

u‖2
Ω + 2Ch2k+2 + 2‖Rn

1‖Ω‖Pen
u‖Ω. (41)
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Letting λ0 = 2C, λj = 0 for 1 ≤ j ≤ M − 1, un = ‖Pen
u‖Ω, φn = 2‖Rn

1‖Ω, and
ψn =

√
2Chk+1 in Lemma 4, we can obtain from (41) that

‖Pen
u‖Ω ≤ 2Eα,1(4Ctα

n)

(
2 max

1≤k≤n

k

∑
j=1

P(k)
k−j‖Rj

1‖Ω +
√

2CΓ(1 − α) max
1≤k≤n

{tα/2
k hk+1}

)
, (42)

provided that the maximum time-step τM ≤ (4CΓ(2 − α))−1/α. With the help of Lemma 3
and inequality (11), we have

‖Pen
u‖Ω ≤ C

(
M− min{rα,2−α} + hk+1

)
. (43)

By using the interpolation property (8) and the triangle inequality, the desired estimate
follows immediately.

As a conclusion of this section, we present the Algorithm 1 based on the nonuniform
L1–LDG scheme (15).

Algorithm 1 The nonuniform L1–LDG scheme for solving the time-fractional Allen-Cahn
equation.

Input: the order of time-fractional derivative α, interface width parameter ε, temporal
mesh grading parameter r.

Output: nodal values of numerical solution Un
h at tn.

1: Construct a shape-regular subdivision Th of Ω with Nx × Ny elements and define basis
functions {ϕi

K}l
i=1.

2: Give the global number and coordinates of nodes.
3: for K ∈ Th do

4: Compute the l × l mass and convection matrices A(K)
1 , A(K)

2 , and A(K)
3 on K with

components

(A(K)
1 )ij = (ϕ

j
K, ϕi

K), (A(K)
2 )ij = (ϕ

j
K, (ϕi

K)x), (A(K)
3 )ij = (ϕ

j
K, (ϕi

K)y).

Combine the boundary conditions to calculate the l × l stiffness matrices generated by
interface ∂K with entries

(A(K)
4 )ij = 〈ϕ

j
K,Rn1, ϕi

K〉, (A(K)
5 )ij = 〈ϕ

j
K,Rn2, ϕi

K〉,

(A(K)
6 )ij = 〈ϕ

j
K,L, ϕi

Kn1〉, (A(K)
7 )ij = 〈ϕ

j
K,L, ϕi

Kn2〉.

Assemble matrices A(K)
1 -A(K)

7 to A1-A7 by the global number.
5: end for

6: Construct nonuniform time meshes tn = T(n/M)r, n = 0, 1, . . . , M with time mesh
sizes τn = tn − tn−1, n = 1, 2, . . . , M.

7: Introduce a vector Wn = [Un, Pn
1 , Pn

2 ]
T with 3 l (Nx Ny) unknown coefficients (nodal

values of Un
h , Pn

1,h and Pn
2,h) as components, where Un, Pn

1 and Pn
2 are vectors consisting

of {un,i
K }l

i=1, {pn,i
1,K}l

i=1 and {pn,i
2,K}l

i=1, respectively.
8: Choose initial value W0.
9: for n = 1 do

10: Set β = Γ(2−α)
dn,1

.
11: for K ∈ Th do
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12: Calculate of the l × l matrix A(K)
8 corresponding to nonlinear term on K at the

time level tn−1 with components

(A(K)
8 )ij =

⎛⎝( l

∑
i=1

un−1,i
K ϕi

K

)2

ϕ
j
K, ϕi

K

⎞⎠,

then assemble A8 according to global number.
13: end for

14: Define a zero matrix (O)ij = 0 of size l (Nx Ny)× l (Nx Ny). Then the global stiffness
matrix and the global load vector are

A =

⎡⎣(1 − β)A1 ε2β(A2 − A4) ε2β(A3 − A5)
A2 − A6 A1 O
A2 − A7 O A1

⎤⎦
and

B =

⎡⎢⎣β
dn,n

Γ(2−α)
A1

O
O

⎤⎥⎦W0 −

⎡⎣βA8
O
O

⎤⎦W0.

15: Solve
AWn = B.

16: end for

17: for n = 2, . . . , M do

18: Set β = Γ(2−α)
dn,1

.
19: for K ∈ Th do

20: Assemble the matrices A8 and A9 associated with the nonlinear term at moments
tn−1 and tn−2, respectively. Their components on K are

(A(K)
8 )ij =

⎛⎝( l

∑
i=1

un−1,i
K ϕi

K

)2

ϕ
j
K, ϕi

K

⎞⎠, i, j = 1 . . . , l,

and

(A(K)
9 )ij =

⎛⎝( l

∑
i=1

un−2,i
K ϕi

K

)2

ϕ
j
K, ϕi

K

⎞⎠, i, j = 1 . . . , l.

21: end for

22: Assemble the global stiffness matrix and the global load vector

A =

⎡⎣(1 − β)A1 ε2β(A2 − A4) ε2β(A3 − A5)
A2 − A6 A1 O
A2 − A7 O A1

⎤⎦
and

B =
n−1

∑
s=1

⎡⎢⎣β
dn,s−dn,s+1

Γ(2−α)
A1

O
O

⎤⎥⎦Wn−s +

⎡⎢⎣β
dn,n

Γ(2−α)
A1

O
O

⎤⎥⎦W0 −

⎡⎣2βA8
O
O

⎤⎦Wn−1 +

⎡⎣βA9
O
O

⎤⎦Wn−2.

23: Solve
AWn = B.

24: end for
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From Theorem 2, it can be seen that the scheme (18) can reach the optimal convergence
order O(M−(2−α)) in the time direction when the grid parameter r ≥ (2 − α)/α. However,
the numerical solution generated by (18) will be limited to (2 − α)th-order accurate in time,
even if the solution is sufficiently smooth. Therefore, in the next section, we will study a
higher-order numerical algorithm for the time-fractional Allen-Cahn Equation (1).

4. Nonuniform L2-1σ–LDG Scheme

In the section, we propose a fully discrete nonuniform L2-1σ–LDG scheme for solving
the time-fractional Allen-Cahn Equation (1), which is based on the L2-1σ approximation in
the temporal direction and the LDG method in the spatial direction. The stability and the
convergence of the scheme are proved rigorously.

4.1. The Fully Discrete Numerical Scheme and Its Stability Analysis

The usual notations of the nonuniform L2-1σ formula are introduced here. Let M be a
positive integer. Set tn = T(n/M)r for n = 0, 1, . . . , M, where the temporal mesh grading
parameter r ≥ 1 is chosen by the user. Denote τn = tn − tn−1, n = 1, . . . , M be the time
mesh sizes. Set tn+σ = tn + στn+1, un+σ = u(x, tn+σ), and un,σ = σun+1 + (1 − σ)un for
σ ∈ [0, 1], n = 0, 1, . . . , M − 1.

The Caputo fractional derivative CDα
0,tu can be approximated at the point

tn+σ (n = 0, 1, . . . , M − 1) by the L2-1σ formula [35]

CDα
0,tu(x, tn+σ) =

1
Γ(1 − α)

∫ tn+σ

0

∂u(x, s)
∂s

ds
(tn+σ − s)α

=
1

Γ(1 − α)

n

∑
k=1

∫ tk

tk−1

∂u(x, s)
∂s

ds
(tn+σ − s)α

+
1

Γ(1 − α)

∫ tn+σ

tn

∂u(x, s)
∂s

ds
(tn+σ − s)α

≈ gn,nun+1 −
n

∑
j=0

(gn,j − gn,j−1)uj

:= �α
t un+σ.

(44)

Here g0,0 = τ−1
1 a0,0, gn,−1 = 0, and for n ≥ 1, it holds that

gn,j =

⎧⎪⎪⎨⎪⎪⎩
τ−1

j+1(an,0 − bn,0), j = 0,

τ−1
j+1(an,j + bn,j−1 − bn,j), 1 ≤ j ≤ n − 1,

τ−1
j+1(an,n + bn,n−1), j = n.

an,n =
1

Γ(1 − α)

∫ tn+σ

tn
(tn+σ − s)−αds =

σ1−α

Γ(2 − α)
τ1−α

n+1 , n ≥ 0,

an,j =
1

Γ(1 − α)

∫ tj=1

tj

(tn+σ − s)−αds, n ≥ 1, 0 ≤ j ≤ n − 1,

bn,j =
2

Γ(1 − α)(tj+2 − tj)

∫ tj+1

tj

(tn+σ − s)−α(s − tj+1/2)ds, n ≥ 1, 0 ≤ j ≤ n − 1.

Define the discrete convolution kernel An+1,σ
n+1−j = gn,j, ∇tuj+1 = uj+1 − uj for 0 ≤ j ≤ n

and 0 ≤ n ≤ M − 1. Then, the L2-1σ discretization can be rewritten as

�α
t un+σ =

n

∑
j=0

An+1,σ
n+1−j∇tuj+1, n = 0, 1, . . . , M − 1.
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By referring to [40], the discrete convolution kernel Pn+1,σ
n+1−j are defined as

Pn+1,σ
1 =

1

An+1,σ
1

, Pn+1,σ
n+1−j =

1

Aj+1,σ
1

n

∑
i=j+1

(
Ai+1,σ

i−j − Ai+1,σ
i−j+1

)
Pn+1,σ

n+1−i.

The discrete convolution kernels satisfy the following properties

n

∑
j=i

Pn+1,σ
n+1−j A

j+1,σ
j−i+1 = 1, for 0 ≤ i ≤ n ≤ M − 1, (45)

and

n

∑
j=0

Pn+1,σ
n+1−jω1+mα−α(tj+1) ≤ πAω1+mα(tn+1), for 0 ≤ n ≤ M − 1 and m = 0, 1, (46)

where ωβ(t) = tβ−1/Γ(β) and πA is a positive constant.
Let p = ∇u, then the weak form of the time-fractional Allen-Cahn Equation (1) at

tn+σ is formulated as(
(CDα

0,tu)
n+σ, v

)
Ω − ε2(∇ · pn+σ, v) + ε2(∇ · pn,σ, v) + ε2(pn,σ, ∇v)Ω

− ε2〈pn,σ · n, v〉Γ +
(

f (un,σ)− f (un+σ), v
)

Ω − ( f (un,σ), v)Ω = 0,
(47a)

(pn,σ, w)Ω + (un,σ, ∇ · w)Ω − 〈un,σ, w · n〉Γ = 0, (47b)

where v, w are test functions.
By using the LDG method presented in Section 3 for the spatial discretization and

the nonuniform L2-1σ formula to time. Then we can define the fully discrete nonuniform
L2-1σ–LDG scheme as follows: find (Un,σ

h , Pn,σ
h ) ∈ (Vh, Σh) such that for all test functions

vh ∈ Vh and wh ∈ Σh(
�α

t Un+σ
h , vh

)
Ω + ε2(Pn,σ

h , ∇vh)Ω − ε2〈P̂n,σ
h · n, vh〉Γ −

(
f (Un,σ

h ), v
)

Ω = 0, (48a)

(Pn,σ
h , wh)Ω + (Un,σ

h , ∇ · wh)Ω − 〈Ûn,σ
h , wh · n〉Γ = 0. (48b)

Here the “numerical fluxes” are chosen as (16).
To show the stability of the proposed nonuniform L2-1σ–LDG scheme, we need some

important lemmas.

Lemma 6 ([28]). For any finite time tM = T > 0 and a given nonnegative sequence (λl)
M−1
l=0 ,

assume that there exists a constant Λ, independent of time-steps, such that
M−1

∑
l=0

λl ≤ Λ. Let

σ = 1 − α/2 and suppose that the grid function {un+1|n ≥ 0} satisfies

n

∑
i=0

An+1,σ
n+1−i∇t(ui+1)2 ≤

n

∑
i=0

λn−i(ui,σ)2 + φn+1un,σ + (ψn+1)2, 0 ≤ n ≤ M − 1,

where {φn+1, ψn+1|0 ≤ n ≤ M − 1} are nonnegative sequences. If the maximum time-step
τM ≤ (2πAΓ(2 − α)Λ)−1/α, it holds that, for 0 ≤ n ≤ M − 1,

un+1 ≤ 2Eα,1(2πAΛtα
n+1)

(
u0 + max

0≤i≤n

i

∑
j=0

Pi+1,σ
i−j+1φj +

√
πAΓ(1 − α) max

0≤j≤n
{tα/2

j+1ψj+1}
)

.

Here Eα,1(z) = ∑∞
k=0

zk

Γ(kα+1) is the Mittag-Leffler function.
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Lemma 7 ([29]). Suppose σ = 1 − α/2. For any function un+1(0 ≤ n ≤ M − 1), we have the
following inequality

(�α
t un+σ, un,σ)Ω ≥ 1

2
�α

t (‖u‖2
Ω)n+σ.

Theorem 3. If the graded mesh satisfies the maximum time-step condition τM ≤ (4πAΓ(2 − α))−1/α,
then the solution Un+1

h of the fully discrete nonuniform L2-1σ–LDG scheme (48) satisfies

‖Un+1
h ‖Ω ≤ 2Eα,1(4πAtα

n+1)‖U0
h‖Ω, n = 0, 1, . . . , M − 1.

Proof. Taking the test functions (vh, wh) = (Un,σ
h , ε2Pn,σ

h ) in (48) and integrating by parts,
we get (

�α
t Un+σ

h , Un,σ
h
)

Ω + ε2‖Pn,σ
h ‖2

Ω ++
(
(Un,σ

h )3 − Un,σ
h , Un,σ

h

)
Ω
= 0.

By virtue of Lemma 7 and Cauchy-Schwarz inequality, we obtain(
�α‖Uh‖2

Ω

)n+σ
≤ 2‖Un,σ

h ‖2
Ω. (49)

Using Lemma 6, it follows from (49) that

‖Un+1
h ‖Ω ≤ 2Eα,1(4πAtα

n+1)‖U0
h‖Ω, n = 0, 1, . . . , M − 1.

The proof is completed.

4.2. Optimal Error Estimate
In this subsection, we give the optimal error estimate for the fully discrete nonuniform

L2-1σ–LDG scheme (48) of Equation (1). Suppose the exact solution u(x, t) of (1) has the
following smoothness properties

u ∈ L∞
(
(0, T]; Hk+2(Ω)

)
,
∣∣∣∂lu(x, t)/∂tl

∣∣∣ ≤ C(1 + tα−l) for 0 < t ≤ T and l = 0, 1, 2, 3. (50)

The same as the nonuniform L1–LDG scheme, we assume that the nonlinear term f (u)
satisfies the condition (26).

Lemma 8 ([33]). Suppose σ = 1 − α/2. Then for any function u(t) ∈ C3(0, T], one has

∣∣(CDα
0,tu)

n+σ − Υα
t un+σ

∣∣ ≤ Ct−α
n+σ

(
ψn+σ

u + max
1≤s≤n

{ψn,s
u }
)

for n = 0, 1, . . . , M − 1,

where

ψn+σ
u = τ3−α

n+1 tα
n+σ sup

s∈(tn ,tn+1)

|u′′′(s)| for n = 1, 2, . . . , M − 1,

ψn,1
u = τα

1 sup
s∈(0,t1)

(
s1−α|(I2,1u(s))′ − u′(s)|

)
for n = 1, 2, . . . , M − 1,

ψn,s
u = τ−α

n+1τ2
i (τi + τi+1)tα

i sup
s∈(ti−1,ti+1)

|u′′′(s)| for 2 ≤ i ≤ n ≤ M − 1,

and I2,1u(s) is the quadratic polynomial that interpolates to u(s) at the points ts−1, ts and ts+1.

Lemma 9 ([33]). Suppose that u ∈ C[0, T] ∩ C3(0, T] satisfies the condition (50). Then we have

ψn+σ
u ≤ CM− min{rα,3−α} for n = 0, 1, . . . , M − 1,

ψn,s
u ≤ CM− min{rα,3−α} for s = 1, . . . , M − 1, n ≥ 1.
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In Section 3.2, we give the convergence analysis for the nonuniform L1–LDG scheme.
The same proof idea can be extended to the nonuniform L2-1σ–LDG scheme. However,
the proof would be somewhat more complicated. Following the similar line as before, we
obtain the following error equation(

(CDα
0,tu)

n+σ −�α
t Un+σ

h , vh
)

Ω + ε2(en,σ
p , ∇vh)Ω − ε2〈ên,σ

p · n, vh〉Γ

=
(

f (un,σ)− f (Un,σ
h ), vh

)
Ω + (Rn,σ

2 , vh)Ω,
(51a)

(en,σ
p , wh)Ω + (en,σ

u , ∇ · wh)Ω − 〈ên,σ
u , wh · n〉Γ = 0, (51b)

where (vh, wh) ∈ Vh × Σh are test functions, Rn+σ
2 = ε2(∇ · pn+σ −∇ · pn,σ) + f (un+σ)−

f (un,σ), en,σ
u and en,σ

p are the errors with the decompositions

en+1
u = un+1 − Un+1

h = un+1 − Pun+1 + Pun+1 − Un+1
h = un+1 − Pun+1 + Pen+1

u , (52a)

en+1
p = pn+1 − Pn+1

h = pn+1 − Πpn+1 + Πpn+1 − Pn+1
h = pn+1 − Πpn+1 + Πen+1

p . (52b)

Here P and Π are the projections defined in (28).

Theorem 4. Assume that the solution u of the problem (1) satisfies the condition (50) and CDα
0,tu ∈

L∞((0, T]; Hk+1(Ω)). Let Un
h be the numerical solution of the fully discrete LDG scheme (48).

Suppose σ = 1 − α/2, f (u) satisfies the condition (26), and the nonuniform mesh satisfies the
maximum time-step condition τM ≤ (4πAΓ(2 − α))−1/α, then for n = 1, 2, . . . , M, the following
estimate holds

‖un − Un
h ‖ ≤ C

(
M− min{rα,2} + hk+1

)
,

where C is a positive constant independent of M and h.

Proof. Substituting (52) into (51), we deduce that

(
�α

t (Peu)
n+σ, vh

)
Ω + ε2(Πen,σ

p , ∇vh)Ω − ε2〈Π̂en,σ
p · n, vh〉Γ −

(
f (un,σ)− f (Un,σ

h ), vh
)

Ω

= −
(
�α

t (u − Pu)n+σ, vh
)

Ω − ε2(pn,σ − Πpn,σ, ∇vh)Ω

+ ε2〈(pn,σ − Π̂pn,σ) · n, vh〉Γ − (ζn+σ, vh)Ω + (Rn+σ
2 , vh)Ω,

(53a)
(Πen,σ

p , wh)Ω + (Pen,σ
u , ∇ · wh)Ω − 〈P̂en,σ

u , wh · n〉Γ

= −(pn,σ − Πpn,σ, wh)Ω − (un,σ − Pun,σ, ∇ · wh)Ω + 〈un,σ − P̂un,σ, wh · n〉Γ,
(53b)

where ζn+σ = (CDα
0,tu)

n+σ − �α
t un+σ represents truncation error. Making use of the

interpolation properties in Section 2.2, we obtain(
�α

t (Peu)
n+σ, vh

)
Ω + ε2(Πen,σ

p , ∇vh)Ω − ε2〈Π̂en,σ
p · n, vh〉Γ −

(
f (un,σ)− f (Un,σ

h ), vh
)

Ω

= −
(
�α

t (u − Pu)n+σ, vh
)

Ω − (ζn+σ, vh)Ω + (Rn+σ
2 , vh)Ω,

(54a)
(Πen,σ

p , wh)Ω + (Pen,σ
u , ∇ · wh)Ω − 〈P̂en,σ

u , wh · n〉Γ

= −(pn,σ − Πpn,σ, wh)Ω − (un,σ − Pun,σ, ∇ · wh)Ω + 〈un,σ − P̂un,σ, wh · n〉Γ.
(54b)
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Setting (vh, wh) = (Pen,σ
u , ε2Πen,σ

p ) in (54) and integrating by parts, we arrive at(
�α

t (Peu)
n+σ, Pen,σ

u
)

Ω + ε2‖Πen,σ
p ‖2

Ω −
(

f (un,σ)− f (Un,σ
h ), Pen,σ

u
)

Ω

= −
(
�α

t (u − Pu)n+σ, Pen,σ
u
)

Ω − (ζn+σ, Pen,σ
u )Ω + (Rn+σ

2 , Pen,σ
u )Ω,

− ε2(pn,σ − Πpn,σ, Πen,σ
p )Ω − ε2(un,σ − Pun,σ, ∇ · Πen,σ

p )Ω

+ ε2〈un,σ − P̂un,σ, Πen,σ
p · n〉Γ.

(55)

Applying the Cauchy-Schwarz inequality, interpolation property (9), and Lemma 1, we can
bound the right hand side of (55) by(

�α
t (Peu)

n+σ, Pen,σ
u
)

Ω + ε2‖Πen,σ
p ‖2

Ω −
(

f (un,σ)− f (Un,σ
h ), Pen,σ

u
)

Ω

≤
(
‖�α

t (u − Pu)n+σ‖Ω + ‖ζn+σ‖Ω + ‖Rn+σ
2 ‖Ω

)
‖Pen,σ

u ‖Ω

+ ε2‖pn,σ − Πpn,σ‖Ω‖Πen,σ
p ‖Ω + Chk+1‖Πen,σ

p ‖Ω

≤
(
‖�α

t (u − Pu)n+σ‖Ω + ‖ζn+σ‖Ω + ‖Rn+σ
2 ‖Ω

)
‖Pen,σ

u ‖Ω + Chk+1‖Πen,σ
p ‖Ω.

(56)

By using an analysis similar to that in (35), we can obtain the following estimate(
�α

t (Peu)
n+σ, Pen,σ

u
)

Ω ≤
(
‖�α

t (u − Pu)n+σ‖Ω + ‖ζn+σ‖Ω + ‖Rn+σ
2 ‖Ω

)
‖Pen,σ

u ‖Ω

+ C‖Pen,σ
u ‖2

Ω + Ch2k+2.
(57)

According to interpolation property (8), we can get

‖�α
t (u − Pu)n+σ‖Ω

=
∥∥�α

t (u − Pu)n+σ − (CDα
0,t(u − Pu))n+σ + (CDα

0,t(u − Pu))n+σ
∥∥

Ω

≤
∥∥−(CDα

0,tu)
n+σ +�α

t un+σ + P
(
(CDα

0,tu)
n+σ −�α

t un+σ
)∥∥

Ω

+ ‖(CDα
0,t(u − Pu))n+σ‖Ω

≤ C‖ζn+σ‖H1(Ω) + Chk+1‖(CDα
0,tu)

n+σ‖Hk+1(Ω).

(58)

Next, we estimate max
0≤n≤M−1

{
tα
n+σ‖Rn+σ

2

∥∥
Ω}. When n = 0, it follows from the assump-

tion of u that there exists a constant C such that

tα
σ‖Rn+σ

2 ‖Ω ≤ Ctα
1 ≤ CM−rα.

When n ≥ 1, applying (50) and Lemma 9 in the literature [33], we obtain

tα
n+σ‖Rn+σ

2 ‖Ω ≤ Ctα
n+στ2

n+1tα−2
n ≤ C(n + 1)rα M−rα M−2rnrα−2M−rα+2r

≤ C(n/M)2rα−2M−2,

where we have used τn+1 ≤ CTM−rnr−1 (n = 0, 1, . . . , M − 1) in the second inequality. As
a consequence,

tα
n+σ‖Rn+σ

2 ‖Ω ≤
{

CM−2, n = 1, 2, . . . , M − 1, r ≥ 1/α,
CM−2α, n = 1, 2, . . . , M − 1, 1 ≤ r < 1/α.

Combining the above two cases, we have

max
0≤n≤M−1

{
tα
n+σ‖Rn+σ

2 ‖Ω
}
≤ CM− min{rα,2}. (59)
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By using (58), (59), and Lemmas 8 and 9, we arrive at

‖�α
t (u − Pu)n+σ‖Ω + ‖ζn+σ‖Ω + ‖Rn+σ

2 ‖Ω

≤ C‖ζn+σ‖H1(Ω) + Chk+1‖(CDα
0,tu)

n+σ‖Hk+1(Ω) + t−α
n+σtα

n+σ‖Rn+σ
2 ‖Ω

≤ Ct−α
n+σ max

1≤n≤M−1

(
tα
n+σ‖ζn+σ‖H1(Ω) + tα

n+σ‖Rn+σ
2 ‖Ω

)
+ Chk+1

≤ Ct−α
n+σ

(
C max

0≤n≤M−1

{
‖ψn+σ

u ‖H1(Ω) +
{

max
1≤s≤n

‖ψn,s
u ‖H1(Ω)

}}
+ M− min{rα,2}

)
+ Chk+1

≤ Ct−α
n+σ

(
M− min{rα,3−α} + M− min{rα,2}

)
+ Chk+1

≤ Ct−α
n+σ M− min{rα,3−α} + Chk+1.

(60)

Substituting (60) into (57) and applying Lemma 7, we thus get

�α
t (‖Peu‖2

Ω)n+σ ≤
(

Ct−α
n+σ M− min{rα,3−α} + Chk+1

)
‖Pen,σ

u ‖Ω + C‖Pen,σ
u ‖2

Ω + Ch2k+2. (61)

Then, invoking Lemmas 6 and (46), one has

‖Pen+1
u ‖Ω ≤ 2Eα,1(2CπAtα

n+1)

(
max

0≤i≤n

i

∑
j=0

Pi+1,σ
i−j+12

(
Ct−α

j+σ M− min{rα,3−α} + Chk+1)
+
√

πAΓ(1 − α) max
0≤j≤n

{√
Ctα/2

j+1hk+1
})

≤ C max
0≤i≤n

i

∑
j=0

Pi+1,σ
i−j+1

(
ω1−α(tj+1)M− min{rα,2} + hk+1

)
+ Chk+1

≤ CM− min{rα,2} + Chk+1,

(62)

provided that the maximum time-step τM ≤ (4πAΓ(2 − α))−1/α. By use of the triangle
inequality, the interpolation properties (8) and (9), and utilizing (62) yields the desired
result. This completes the proof.

5. Numerical Examples

The purpose of this section is to numerically validate the accuracy and efficiency of
proposed Schemes (18) and (48) for solving the time-fractional Allen-Cahn Equation (1)
with initial singularity. All the algorithms are implemented using MATLAB R2016a, which
were run in a 3.10 GHz PC having 16GB RAM and Windows 10 operating system.

Example 1. Consider the following two-dimensional time-fractional Allen-Cahn equation with a
source term f (x, y, t)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CDα
0,tu(x, y, t)− Δu(x, y, t) = u(x, y, t)− u3(x, y, t) + f (x, y, t),

(x, y) ∈ Ω, t ∈ (0, 1
4 ],

u(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, 1

4 ],
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where 0 < α < 1, Ω = (−1, 1)× (−1, 1), and the source term is given by

f (x, y, t) =
(

Γ(α + 1) +
2t2−α

Γ(3 − α)

)
(x + 1)2(x − 1)2(y + 1)2(y − 1)2

− 4(tα + t2)(3x2 − 1)(y + 1)2(y − 1)2

− 4(tα + t2)(3y2 − 1)(x + 1)2(x − 1)2

− (tα + t2)(x + 1)2(x − 1)2(y + 1)2(y − 1)2

+
[
(tα + t2)(x + 1)2(x − 1)2(y + 1)2(y − 1)2

]3
.

The analytical solution is given by u(x, y, t) = (tα + t2)(x + 1)2(x − 1)2(y + 1)2(y − 1)2.

The purpose of Example 1 is to demonstrate the effectiveness of the nonuniform L1–
LDG scheme (18) with the numerical flux (16) for the time-fractional Allen-Cahn equation
with weak singularity solution. The L2-norm errors and convergence orders of the numeri-
cal solution Un

h at t = 1
4 are shown in Tables 1–4. From Tables 1 and 2, one can see that the

convergence orders of scheme (18) in the temporal direction are close to min{2 − α, rα}. In
Tables 3 and 4, we take r = (2 − α)/α and α = 0.4, 0.6, 0.8, and the orders of convergence
for Un

h are closed to (k + 1) in space. These numerical results coincide with Theorem 2.

Table 1. The L2-norm errors and temporal convergence orders for Example 1 using scheme (18),
M = Nx = Ny, k = 1, T = 1/4, r = 1.

α = 0.4 α = 0.6 α = 0.8

M L2-Error Order L2-Error Order L2-Error Order

20 1.7270 × 10−2 – 9.4316 × 10−3 – 3.0600 × 10−3 –
40 1.4687 × 10−2 0.2337 6.7438 × 10−3 0.4840 1.9214 × 10−3 0.6736
60 1.3176 × 10−2 0.2677 5.4723 × 10−3 0.5153 1.4451 × 10−3 0.7026
80 1.2143 × 10−2 0.2840 4.6982 × 10−3 0.5301 1.1723 × 10−3 0.7272

100 1.1372 × 10−2 0.2940 4.1657 × 10−3 0.5392 9.9365 × 10−4 0.7409

Table 2. The L2-norm errors and temporal convergence orders for Example 1 using scheme (18),
M = Nx = Ny, k = 1, T = 1/4, r = (2 − α)/α.

α = 0.4 α = 0.6 α = 0.8

M L2-Error Order L2-Error Order L2-Error Order

20 4.7878 × 10−3 – 3.2260 × 10−3 – 2.3836 × 10−3 –
40 1.5255 × 10−3 1.6501 1.0086 × 10−3 1.6773 7.4703 × 10−4 1.6739
60 7.2958 × 10−4 1.8191 4.7799 × 10−4 1.8418 4.9633 × 10−4 1.0084
80 4.2488 × 10−4 1.8794 3.0615 × 10−4 1.5486 3.6894 × 10−4 1.0310

100 2.7737 × 10−4 1.9111 2.2904 × 10−4 1.3004 2.9212 × 10−4 1.0463

Table 3. The L2-norm errors and spatial convergence orders for Example 1 using scheme (18),
M = 500, T = 1/4, r = (2 − α)/α, k = 1.

α = 0.4 α = 0.6 α = 0.8

Nx × Ny L2-Error Order L2-Error Order L2-Error Order

20 × 20 4.2289 × 10−3 – 3.1975 × 10−3 – 2.3945 × 10−3 –
40 × 40 1.3486 × 10−3 1.6488 1.0092 × 10−3 1.6637 7.4296 × 10−4 1.6884
60 × 60 6.4661 × 10−4 1.8130 4.8193 × 10−4 1.8229 3.5275 × 10−4 1.8371
80 × 80 3.7761 × 10−4 1.8697 2.8048 × 10−4 1.8816 2.0445 × 10−4 1.8960

100 × 100 2.4726 × 10−4 1.8976 1.8299 × 10−4 1.9139 1.3286 × 10−4 1.9316
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Table 4. The L2-norm errors and spatial convergence orders for Example 1 using scheme (18),
M = 1000, T = 1/4, r = (2 − α)/α, k = 2.

α = 0.4 α = 0.6 α = 0.8

Nx × Ny L2-Error Order L2-Error Order L2-Error Order

10 × 10 1.8150 × 10−2 – 1.3377 × 10−2 – 9.5653 × 10−3 –
20 × 20 2.4770 × 10−3 2.8733 1.8303 × 10−3 2.8696 1.3144 × 10−3 2.8634
30 × 30 7.5324 × 10−4 2.9360 5.5713 × 10−4 2.9335 4.0074 × 10−4 2.9295
40 × 40 3.2169 × 10−4 2.9574 2.3829 × 10−4 2.9523 1.7180 × 10−4 2.9441

Example 2. Consider the following two-dimensional time-fractional Allen-Cahn equation with a
source term f (x, y, t)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CDα
0,tu(x, y, t)− 0.1Δu(x, y, t) = u(x, y, t)− u3(x, y, t) + f (x, y, t),

(x, y) ∈ Ω, t ∈ (0, 1
4 ],

u(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, 1

4 ],

where 0 < α < 1, Ω = (−1, 1)× (−1, 1), and the source term is given by

f (x, y, t) =
(

Γ(α + 1) +
2t2−α

Γ(3 − α)

)
(x + 1)2(x − 1)2(y + 1)2(y − 1)2

− 0.4(tα + t2)(3x2 − 1)(y + 1)2(y − 1)2

− 0.4(tα + t2)(3y2 − 1)(x + 1)2(x − 1)2

− (tα + t2)(x + 1)2(x − 1)2(y + 1)2(y − 1)2

+
[
(tα + t2)(x + 1)2(x − 1)2(y + 1)2(y − 1)2

]3
.

The solution u(x, y, t) = (tα + t2)(x + 1)2(x − 1)2(y + 1)2(y − 1)2 solves this equation.

It is clear that the exact solution u of Example 2 satisfies the regularity assump-
tion (50), so we use the proposed nonuniform L2-1σ–LDG scheme (48) to solve this problem.
Tables 5 and 6 report the numerical errors and convergence orders in the temporal direction.
The data in these tables demonstrate that the temporal convergence order of the numerical
solution Un

h is min{2, rα}. In order to test the convergence order of the scheme in spatial
direction, we fix sufficiently small temporal step (M = 500 for k = 1 and M = 3000 for
k = 2) and vary the spatial step sizes. Tables 7 and 8 list the numerical results for different
values of α, where the (k + 1)-th order convergence of scheme (48) in spatial direction can
be achieved.

Table 5. The L2-norm errors and temporal convergence orders for Example 2 using scheme (48),
M = Nx = Ny, k = 1, T = 1/4, r = 1.

α = 0.4 α = 0.6 α = 0.8

M L2-Error Order L2-Error Order L2-Error Order

20 1.5147 × 10−2 – 5.3376 × 10−3 – 2.0856 × 10−3 –
40 1.1155 × 10−2 0.4413 3.4459 × 10−3 0.6313 7.5052 × 10−4 1.4745
60 9.3446 × 10−3 0.4368 2.6785 × 10−3 0.6214 5.4056 × 10−4 0.8094
80 8.2484 × 10−3 0.4338 2.2427 × 10−3 0.6172 4.2859 × 10−4 0.8068

100 7.4915 × 10−3 0.4313 1.9552 × 10−3 0.6148 3.5808 × 10−4 0.8055
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Table 6. The L2-norm errors and temporal convergence orders for Example 2 using scheme (48),
M = Nx = Ny, k = 1, T = 1/4, r = (3 − α)/α.

α = 0.4 α = 0.6 α = 0.8

M L2-Error Order L2-Error Order L2-Error Order

20 4.8695 × 10−3 – 2.5966 × 10−3 – 1.9295 × 10−3 –
40 1.4639 × 10−3 1.7340 7.5597 × 10−4 1.7802 5.4683 × 10−4 1.8190
60 6.9287 × 10−4 1.8448 3.5345 × 10−4 1.8751 2.5311 × 10−4 1.8998
80 4.0253 × 10−4 1.8878 2.0395 × 10−4 1.9114 1.4529 × 10−4 1.9296

100 2.6277 × 10−4 1.9113 1.3256 × 10−4 1.9309 9.4126 × 10−5 1.9454

Table 7. The L2-norm errors and spatial convergence orders for Example 2 using scheme (48),
M = 500, T = 1/4, r = (3 − α)/α, k = 1.

α = 0.4 α = 0.6 α = 0.8

Nx × Ny L2-Error Order L2-Error Order L2-Error Order

20 × 20 3.4951 × 10−3 – 2.5737 × 10−3 – 1.9337e-03 –
40 × 40 1.0436 × 10−3 1.7438 7.4714 × 10−4 1.7844 5.4817 × 10−4 1.8187
60 × 60 4.9189 × 10−4 1.8551 3.4871 × 10−4 1.8794 2.5370 × 10−4 1.9001
80 × 80 2.8521 × 10−4 1.8946 2.0099 × 10−4 1.9153 1.4561 × 10−4 1.9301

100 × 100 1.8614 × 10−4 1.9123 1.3053 × 10−4 1.9343 9.4320 × 10−5 1.9460

Table 8. The L2-norm errors and spatial convergence orders for Example 2 using scheme (48),
M = 3000, T = 1/4, r = (3 − α)/α, k = 2.

α = 0.4 α = 0.6 α = 0.8

Nx × Ny L2-Error Order L2-Error Order L2-Error Order

10 × 10 1.2098 × 10−2 – 7.7466 × 10−3 – 4.8298 × 10−3 –
20 × 20 1.6927 × 10−3 2.8374 1.1255 × 10−3 2.7830 7.5531 × 10−4 2.6768
30 × 30 5.1633 × 10−4 2.9283 3.4491 × 10−4 2.9169 2.3353 × 10−4 2.8950
40 × 40 2.2074 × 10−4 2.9539 1.4765 × 10−4 2.9492 1.0020 × 10−4 2.9413

6. Concluding Remarks

This paper focuses on the numerical algorithms for the time-fractional Allen-Cahn
equation with a weak singularity solution. In the time direction, it is discretized by the
nonuniform L1 scheme and the nonuniform L2-1σ scheme, respectively. In the spatial
direction, the LDG method is utilized. By the discrete fractional Gronwall-type inequalities,
the L2 stability and optimal error estimates of these two schemes are proved in detail.
Finally, the efficiency and accuracy of proposed fully discrete schemes are verified by
some numerical examples. In future work, we extend the technique of coupling the
LDG method with the nonuniform time discretization to solve the space-time fractional
phase-field model.
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Abstract: An exponential-type function was discovered to transform known difference formulas
by involving a shifted parameter θ to approximate fractional calculus operators. In contrast to the
known θ methods obtained by polynomial-type transformations, our exponential-type θ methods
take the advantage of the fact that they have no restrictions in theory on the range of θ such that the
resultant scheme is asymptotically stable. As an application to investigate the subdiffusion problem,
the second-order fractional backward difference formula is transformed, and correction terms are
designed to maintain the optimal second-order accuracy in time. The obtained exponential-type
scheme is robust in that it is accurate even for very small α and can naturally resolve the initial
singularity provided θ = − 1

2 , both of which are demonstrated rigorously. All theoretical results are
confirmed by extensive numerical tests.

Keywords: theta methods; subdiffusion problem; fractional calculus; backward difference formula;
convolution quadrature

1. Introduction

Diffusion is one of the most common phenomena of the physical world in which a
particle’s motion is Brownian and can be characterized by the classical model ∂tu − Δu = f .
It is well known that Brownian motions assume that mean-squared particle displacements
grow linearly with respect to time t, whereas an increasing list of experiments in the last
decades indicates that such growths can be sublinear or superlinear; i.e., the diffusion can
be anomalous. From a macro-perspective, the probability density function u in anomalous
diffusion obeys the equation involving a fractional order derivative [1,2]. In this work,
we concern ourselves with the subdiffusion transport mechanism (with the fractional
derivative order α ∈ (0, 1)), which has received much attention in recent years, since the
electron transport, thermal diffusion, and protein transport, among others, reveal that the
underlying stochastic process is the continuous time random walk instead of Brownian
motions [1–4]. Perhaps the simplest subdiffusion model [2,5] takes the following form:

∂α
t u(x, t)− Δu(x, t) = f (x, t), (1)

with suitable initial boundary conditions. Here, ∂α
t denotes the Caputo fractional operator [6]

of order α ∈ (0, 1):

(∂α
t φ)(t) =

1
Γ(1 − α)

∫ t

0

φ′(s)
(t − s)α

ds,

which satisfies ∂α
t φ = Dα

t (φ − φ(0)) where Dα
t is the Riemann–Louisville fractional differ-

ential operator [6].

(Dα
t φ)(t) =

1
Γ(1 − α)

d
dt

∫ t

0

φ(s)
(t − s)α

ds.
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Its integral counterpart, the Riemann-Liouville fractional integral operator [6] D−α
t φ is

defined by

(D−α
t φ)(t) =

1
Γ(α)

∫ t

0

φ(s)
(t − s)1−α

ds.

The literature on numerically exploring the fractional calculus operators is vast. The
authors of [7,8] proposed the well-known L1 method for the Caputo fractional derivative,
which is convergent of order 2 − α. Lubich [9] systematically developed the convolution
quadrature (CQ) theory for discretizing the operators Dα

t and D−α
t . The well-known

fractional linear multistep methods, which include the Grünwald formula [6] and pth-order
fractional backward difference formulas (BDF-p) as special cases, belong to such framework.
Some other difference formulas that essentially fit the framework of convolution quadrature
can be found in [10–12], to mention just a few. In [13], the authors developed the shifted
Grünwald formula to overcome the instability of the Grünwald formula when applied to
fractional advection–dispersion flow equations. Galeone and Garrappa [14] devised explicit
multistep methods for the fractional derivative and examined the stability properties in
much detail. By weighting and averaging the shifted Grünwald formula, Tian et al. [15]
proposed the weighted and shifted Grünwald difference formulas for space fractional
Riemann–Louisville derivatives. Ding et al. [16] built a second-order midpoint formula
by shifting the fractional BDF-2 and applied it to fractional cable equations. In [17], the
authors investigated shifted convolution quadrature (SCQ) methods in detail aiming to
develop θ-methods systematically, where a polynomial-type transformation strategy was
proposed to convert any known CQ method into a θ method. However, the existence of
zeros of polynomials severely restricts the choice of the parameter θ such that the method
is A-stable. In this work, we propose a novel transformation strategy by resorting to the
exponential-type function, illustrating its superiority in developing A-stable methods and
robust numerical schemes for subdiffusion problems.

Clearly, the fractional operators mentioned above involve a weak singular kernel
s−γ for some γ ∈ (0, 1), which renders numerically solving subdiffusion problems rather
difficult, since most high-order difference formulas, if directly applied to such problem on
uniform meshes, lose their deserved high accuracy [18–20]. To resolve such difficulties,
modified difference formulas by adding correction terms [21–25] or using nonuniform
meshes are developed [26,27], to mention just a few. Specifically, Yan et al. [21] developed
the modified L1 method by adding correction terms to recover the optimal convergence
order 2 − α, while Jin et al. [22] established the corrected fractional BDF-p to restore
the high accuracy. By shifting the approximation point by α

2 with respect to grid points,
Jin et al. [23] designed a two-step correction method for the fractional Crank–Nicolson
scheme and such a correction technique was further optimized by Wang et al. [24] where
only the first-step correction is needed to maintain the optimal accuracy. In particular, we
studied a general second-order difference scheme for (1) in [25], which is generated by
an SCQ difference formula with a free parameter θ ∈ (0, 1

2 ) and can preserve the high
accuracy if correction terms are added. The θ = 1

2 is excluded there for the singularity of
the corresponding transform functions involved in theoretical analysis. Indeed, the case
θ = 1

2 is of special interest since the correction terms vanish, enlightening us that a carefully
designed time-stepping method, even on uniform meshes, should automatically resolve
the singularity. A close examination, as shown in this study, indicates that the singularity
of transform functions stems from the zeros of polynomials, which can be avoided by using
the exponential-type transform functions. To sum up, the contribution of this study comes
from three aspects:

• An exponential-type transformation strategy is proposed to transfer any known pth
order (p ≤ 6) time-stepping methods into θ methods with the same accuracy.

• The robustness of numerical schemes obtained by the exponential-type transformation
strategy for a trial equation is examined theoretically and verified numerically.

• Rigorous arguments of the optimal error estimates of the transformed fractional BDF-2
are provided for the subdiffusion Problem (1).
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The rest of the article is outlined as follows. In Section 2, we first review some basic
aspects of the SCQ and then determine the stability region of θ methods when applied to a
simple differential equation. In Section 3, we propose the exponential-type transformation
to convert known stepping methods into θ methods and demonstrate its superiority over
traditional polynomial-type transformations. In Section 4, the exponentially transformed
fractional BDF-2 is applied to subdiffusion problems where correction terms are designed
to recover the optimal convergence rate, which are confirmed rigorously by theoretical
analyses. Extensive numerical tests are offered in Section 5 to verify all theoretical results.
Finally, in Section 6, we make some concluding remarks.

2. Preliminaries

2.1. Review of θ-Methods in SCQ

The construction of novel robust θ methods is based on the framework of shifted
convolution quadrature [28] for the fractional calculus, which will be introduced briefly in
this subsection.

Divide the time interval [0, T] by the following grids: 0 = t0 < t1 < · · · < tN = T with
tn = nτ and τ = T/N. Let φn be the value of a function φ(tn) for the sake of simplicity.
Given a sequence {ωj}∞

j=0, the difference formula

Dα,n
τ,θ φ := τ−α

n

∑
j=0

ωjφ
n−j (2)

represents an approximation to the Riemann–Louisville derivative (Dα
t φ)(tn−θ) if the

generating function ω(ζ) defined by ω(ζ) = ∑∞
j=0 ωjζ

j for |ζ| < 1 satisfies

(i) Stability: ωn = O(n−α−1), (ii) Consistency: τ−αeθτω(e−τ)− 1 = o(1), (3)

simultaneously.

Lemma 1 (See [28], Theorem 1). The difference Formula (2) is pth-order convergent if and only
if both the stability in (3) and the following consistent condition

Consistency of order p: τ−αeθτω(e−τ)− 1 = O(τp) (4)

are fulfilled.

It is notable that if the shift parameter θ vanishes in (2) or (4), meaning that a difference
formula Dα,n

τ φ := Dα,n
τ,0 φ is designed for Dα

t φ at the grid point tn; then, one essentially
obtains approximation methods belonging to the convolution quadrature theory, which
was partially founded in [9] for approximating fractional calculus and then extended to
more general convolution-type operators [29,30]. In previous studies, we have extended
several traditional difference formulas such as the fractional BDF-2 [31], the fractional
trapezoidal rule [17], and the fractional Adams–Moulton method [32], among others, to
their generalized versions by involving shifted parameter θ. Moreover, a conversion
strategy was proposed in [28] to transform a difference formula Dα,n

τ φ into Dα,n
τ,θ φ, which,

in the viewpoint of the generating function reconstruction, can be stated as follows:

ω(ζ) = �p(ζ)Θ(ζ; θ), Θ(ζ; θ) = γ0 + γ1(1 − ζ) + γ2(1 − ζ)2 + · · ·+ γp−1(1 − ζ)p−1, (5)

where �p(ζ) = ∑∞
j=0 �jζ

j represents the generating function with �j from the weights of
Dα,n

τ φ, which is convergent of order p. The γjs are obtained from identity ∑∞
i=0 γi(1 − ζ)i = ζθ.

Specifically, the second-, third- and fourth-order transformed generating functions take the
following forms:
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ω(ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�2(ζ)

[
(1 − θ) + θζ

]
, for 2nd-order,

�3(ζ)
[ 1

2 (1 − θ)(2 − θ) + θ(2 − θ)ζ + 1
2 θ(θ − 1)ζ2], for 3rd-order,

�4(ζ)
[ 1

6 (1 − θ)(2 − θ)(3 − θ) + 1
2 θ(2 − θ)(3 − θ)ζ

− 1
2 θ(1 − θ)(3 − θ)ζ2 + 1

6 θ(1 − θ)(2 − θ)ζ3], for 4th-order,

(6)

where �p(ζ)(p = 2, 3) stands for any generating functions in CQ that is convergent of
order p.

�2(ζ) =

{( 3
2 − 2ζ + 1

2 ζ2)α, fractional BDF-2,
(1 − ζ)α

[
1 + α

2 (1 − ζ)
]
, 2nd-order Newton-Gregory formula,

�3(ζ) =

⎧⎪⎨⎪⎩
( 11

6 − 3ζ + 3
2 ζ2 − 1

3 ζ3)α, fractional BDF-3,
(1 − ζ)α

[
1 + α

2 (1 − ζ)

+( 1
8 α2 + 5α

24 )(1 − ζ)2], 3rd-order Newton-Gregory formula,

�4(ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( 25
12 − 4ζ + 3ζ2 − 4

3 ζ3 + 1
4 ζ4)α, fractional BDF-4,

(1 − ζ)α
[
1 + α

2 (1 − ζ)

+( 1
8 α2 + 5α

24 )(1 − ζ)2

+( 1
48 α3 + 5α2

48 + α
8 )(1 − ζ)3], 4th-order Newton-Gregory formula.

(7)

We also mention that transformation (5) indicates that the function φ(t) = D0
t φ at time

tn−θ can be approximated, in accordance with (2), by formula ∑n
j=0 θjφ

n−j with the weights
{θj}∞

j=0 generated by Θ(ζ; θ), where identity �p(ζ) ≡ 1 is prescribed.

2.2. Stability Regions

Historically, Lubich [33] has proven that when using a convolution quadrature method
(with a generating function ω̃(ζ) = ∑∞

j=0 ω̃jζ
j) to solve the linear Abel integral equation

u(t) = f (t) +
λ

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, (8)

where f (t) has finite limit as t → ∞, the stability region S is precisely determined by

C \ {1/ω̃(ζ) : |ζ| ≤ 1}, (9)

if the weights ω̃n fulfill the following condition.

ω̃n =
nα−1

Γ(α)
+ πn, n ≥ 1, with

∞

∑
n=1

|πn| < ∞. (10)

Instead of (8), we concern ourselves in this work with the following fractional differ-
ential equation:

∂α
t u = λu + g(t), α ∈ (0, 1) and �(λ) < 0, (11)

where g(t) decays exponentially and partially. Resorting to any �p(ζ) in CQ, the numerical
scheme reads as follows:

n

∑
j=0

�n−j(Uj − U0) = τ
(
Un +

1
λ

gn), n ≥ n0, (12)

where τ = λτα. We next identify conditions on �j or its generating function �p(ζ) to
determine the related stability region. It is worth noting that the first few steps (n =
1, 2, · · · , n0 − 1) for (12) may need to be treated separately, e.g., by adding correction
terms [9], to retain the high accuracy in cases where high-order methods are adopted.
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Some assumptions on �p(ζ) are needed.

(A1) τ−α�p(e−τ)− 1 = O(τp),

(A2) �p(ζ) = (1 − ζ)α�(ζ), �(ζ) is nonzero and analytic for ζ ∈ {ζ : |ζ| ≤ 1}.
(13)

Note that the most well-known implicit CQ methods meet the assumptions (A1)
and (A2), e.g., the fractional BDF-p and Newton–Gregory formula, among others. The
assumption (A2) actually implies that �n = O(n−α−1).

Given �p(ζ) that fulfills (A1) and (A2), introduce the sequence {�
(−1)
j }∞

j=0 generated

by 1
�p(ζ)

. The next lemma shows that τα ∑n
j=0 �

(−1)
j φn−j is an approximation to D−α

t φ at
tn. For a better presentation, the proof of the following lemmas in this section is left in
Appendix A.

Lemma 2. Let �p(ζ) satisfy the assumptions (A1) and (A2). Then, τα ∑n
j=0 �

(−1)
j φn−j approx-

imates (D−α
t φ)(tn) with convergence order p, i.e., �

(−1)
n = O(nα−1) and τα/�p(e−τ)− 1 =

O(τp).

Lemma 3. Let �p(ζ) satisfy the assumptions (A1) and (A2). The stability region S for (12) is
determined by the following.

C \ {�p(ζ) : |ζ| ≤ 1}. (14)

3. Novel Transformation Strategy

Instead of transformation (5) in which a polynomial-type function Θ(ζ; θ) is involved,
we shall, in this section, propose a different strategy by resorting to an exponential-type
transform function and demonstrate that the new strategy is more robust by allowing a
wider range of θ to guarantee the stability of schemes in solving fractional differential
equations.

Let δ(ζ) = ∑
p
j=1

1
j (1 − ζ)j denote the generating function of backward difference

formulas (BDF) of order p ≤ 6.

Theorem 1 (Exponential-type transformation). Let θ ∈ R and assume �p(ζ) fulfills (A1) and
(A2). Define the following:

ω(ζ) = �p(ζ)eθδ(ζ), (15)

then, the difference Formula (2) with weights generated by ω(ζ) is convergent of order p.

Proof. Clearly, the function eθδ(ζ) (with respect to ζ) is analytic within the unit disc |ζ| < 1
and is k-times differentiable on the unit circle for any positive integer k; thus, its Fourier
coefficients, i.e., the en generated from eθδ(ζ) = ∑∞

n=0 enζn, decay faster than, e.g., O(n−k).
Then, the asymptotic property of ωn is fully determined by �n, which, by assumption (A2),
leads to the following.

ωn = O(n−α−1). (16)

Moreover, by the consistency condition of order p for �p(ζ) due to (A1) and that of
δ(ζ), the following holds.

τ−α�p(e−τ) = 1 + O(τp), τ−1δ(e−τ) = 1 + O(τp).

Using the Taylor expansion, one immediately obtains the following:

τ−αeθτω(e−τ) = τ−α�p(e−τ)eθτeθδ(e−τ) = 1 + O(τp), (17)

indicating that ω(ζ), as a generating function in SCQ, is consistent of order p as well. Finally,
by (16) and (17), we complete the proof of the theorem in accordance with Lemma 1.

197



Fractal Fract. 2022, 6, 417

Remark 1. In view of the fact that φ(tn−θ) = (D0
t φ)(tn−θ), Theorem 1 actually permits us to

approximate φ(tn−θ) by a discrete convolution.

φn−θ :=
n

∑
j=0

θjφ
n−j, where θj is generated by

∞

∑
j=0

θjζ
j = eθδ(ζ). (18)

As demonstrated in the arguments, θn decays faster than O(n−k) for any integer k > 0.
Indeed, since eθδ(ζ) is analytic for |ζ| < ρ for some ρ > 1, θn decays exponentially.

For the purpose of application, it is of interest to present efficient algorithms to
calculate the coefficients of ω(ζ) in (15). The next lemma offers an algorithm by which ωj
can be obtained in a recursive manner.

Lemma 4. Assume ω(ζ) takes the form
[
P(ζ)

]αeθQ(ζ) where P(ζ) and Q(ζ) are polynomials
such that ω(ζ) is analytic within the unit disc |ζ| < 1; then, we obtain the following:

ω0 =
[
P(0)

]αeθQ(0), ωn =
1

nP(0)

[
ω0Gn−1 +

n−1

∑
k=1

ωn−k
(
Gk−1 − (n − k)Pk

)]
, n ≥ 1, (19)

where Gk includes the coefficients of G(ζ) defined by G(ζ) = αP′(ζ) + θP(ζ)Q′(ζ).

Proof. Take the derivative of ω(ζ) =
[
P(ζ)

]αeθQ(ζ) with respect to ζ and multiply both
sides by P(ζ) to obtain the following.

P(ζ)ω′(ζ) = ω(ζ)G(ζ).

The Formula (19) then follows by taking the nth coefficient of both sides of the above
equality.

Remark 2. It is notable that Algorithm (19) is efficient since G(ζ) and P(ζ) have finitely many
nonzero coefficients; thus, the computing complexity to obtain {ωj}N

j=0 is of O(N).

In contrast to the polynomial-type transform function Θ(ζ; θ) in (5), the exponential
function eθδ(ζ) takes the advantage that it has no zero for any θ ∈ R, whence e−θδ(ζ)

can always be expanded into a series without limiting the range of θ. The immediate
consequence is that in designing A(ϑ)-stable schemes, the exponential-type transform
places no constraint on θ while the polynomial-type transform may limit the choice of θ
severely, particularly for high-order methods.

To be more specific, consider the following simple trial equation:

∂α
t u = λu, α ∈ (0, 1) and �(λ) < 0, (20)

with initial condition u(0) = u0. For a given generating function �p(ζ) that satisfies
the Assumptions (A1) and (A2), by adopting the polynomial-type transform (5) or the
exponential transform as in Theorem 1, one obtain the following discrete scheme:

n

∑
j=0

ωn−j(Uj − U0) = τUn−θ , n ≥ n0, (21)

where τ = λτα and Un−θ = ∑n
j=0 θn−jUj. The weights θj, depending on the choice of

transform strategies, are coefficients of Θ(ζ; θ) or eθδ(ζ), respectively.

Theorem 2. Assume that �p(ζ) satisfies (A1) and (A2). For ω(ζ) = �p(ζ)Θ(ζ; θ), the stability
region S for (21) is determined by the following:

C \ {�p(ζ) : |ζ| ≤ 1}, (22)
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provided that θ ∈ Λθ := {θ : Θ(ζ; θ) �= 0 for all |ζ| ≤ 1}. In contrast, for ω(ζ) = �p(ζ)eθδ(ζ),
stability region S is determined by (22) for any θ ∈ R.

Proof. Since Θ(ζ) or eθδ(ζ) is analytic and nonzero for |ζ| ≤ 1, 1/Θ(ζ) or e−θδ(ζ) can be
expanded at ζ = 0 with coefficients θ

(−1)
n decay exponentially. By replacing n with k in the

Equation (21) and multiplying both sides by θ
(−1)
n−k and summing k from n0 to n, we obtain

the following.
n

∑
k=n0

θ
(−1)
n−k

k

∑
j=0

ωk−j(Uj − U0) = τ
n

∑
k=n0

θ
(−1)
n−k Uk−θ . (23)

By resorting to the fact that �p(ζ) = ω(ζ) 1
Θ(ζ)

or �p(ζ) = ω(ζ)e−θδ(ζ) and Cauchy
product of series, one can obtain the following:

n

∑
k=0

�n−k(Uk − U0) = τ
(
Un +

1
λ

gn), (24)

where gn takes the following form

gn = τ−α
n0−1

∑
j=0

[ n0−1−j

∑
k=0

(
ωk − λταθk

)
θ
(−1)
n−k−j

]
Uj − τ−αU0

n0−1

∑
j=0

n0−1−j

∑
k=0

θ
(−1)
n−k−jωk,

indicating that gn decays exponentially. By comparing (24) with (12), one readily obtains
result (22) from Lemma 3.

Remark 3. Several methods can be found in the literature [34] for determining Λθ explicitly. For
example, resorting to the Schur criterion (see Schur polynomial in Appendix A, one can readily
obtain the explicit form of Λθ , as shown in Table 1. The sharpness of the constraints on θ are verified
in Example 1 of Section 5.

Table 1. Explicit form of Λθ .

Order p 2 3 4

Λθ (−∞, 1
2 ) (−∞, 1 −

√
2

2 ) (−∞, 3
2 −

√
7

2 )

4. Applications

In this section, we apply the exponential-type transformation strategy to the following
subdiffusion problem and demonstrate its advantages in developing robust numerical
schemes: ⎧⎪⎨⎪⎩

∂α
t u(x, t)− Δu(x, t) = f (x, t), (x, t) ∈ Ω × (0, T],

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],
u(x, 0) = v(x), x ∈ Ω,

(25)

where the space Ω ⊂ Rd (d = 1, 2, 3) is a bounded convex polygonal domain with the
boundary denoted by ∂Ω. The operator Δ : D(Δ) → L2(Ω) stands for the Laplacian with
D(Δ) = H1

0(Ω) ∩ H2(Ω) and f : (0, T] → L2(Ω) is a given function. The initial function v,
depending on its smoothness, belongs to D(Δ) or L2(Ω).

4.1. Formulation of Fully Discrete Scheme

In this section, we take δ(ζ) = 3
2 − 2ζ + 1

2 ζ2 and let ωj be generated by ω(ζ) =[
δ(ζ)

]αeθδ(ζ). In accordance with Theorem 1 (see also Remark 1), φn−θ and Dα,n
τ,θ φ both are

of second-order accuracy relative to their continuous counterparts. To formulate the fully
discrete scheme of the model, define the finite element space as follows:
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Vh = {χh ∈ H1
0(Ω) : χh|e is a linear polynomial function, e ∈ Th}

where Th is a shape regular and a quasi-uniform triangulation of Ω.
Let Ph : L2(Ω) → Vh and Rh : H1

0(Ω) → Vh stand for the L2(Ω) and Ritz projection,
respectively, and define Δh : Vh → Vh as the discrete Laplacian. By replacing u(t) with
w(t) + v and f (t) with g(t) + f (0) in (25), the space semi-discrete scheme then reads
as follows:

Dα
t wh(t)− Δhw(t) = gh(t) + f 0

h + Δhvh, (26)

where gh := Phg, f 0
h = Ph f (0) and vh = Rhv if v ∈ D(Δ) or vh = Phv if v ∈ L2(Ω). The

fully discrete scheme can, thus, be stated as finding Wn
h ∈ Vh such that the following is

the case.
Dα,n

τ,θ Wh − ΔhWn−θ
h = gn−θ

h + f 0
h + Δhvh, n ≥ 1, θ ∈ (−1, 1). (27)

In general cases, scheme (27) can only result in first-order convergence rates at positive
times due to the initial singularity of the solution. We propose a modified scheme, with the
motivation explained in the next section, by resorting to a single-step correction.

Dα,1
τ,θWh − ΔhW1−θ

h = (θ + 3/2)(Δhvh + f 0
h ) + g1−θ

h , n = 1,

Dα,n
τ,θ Wh − ΔhWn−θ

h = gn−θ
h + f 0

h + Δhvh, n ≥ 2.
(28)

Note that for θ = − 1
2 , the scheme (28) recovers exactly (27), indicating that (27) can

resolve the initial singularity automatically if the problem is discretized at point tn+ 1
2
.

4.2. Optimal Error Estimates

The error estimate is based on solution representation and estimates of some kernels.
Denote by φ̂ the Laplace transform of φ. Then, using the Laplace transform and its inverse
transform, we obtain the following:

wh(t) = − 1
2πi

∫
Γσ,ε

ezt[K(z)(Δhvh + fh(0)) + zK(z)ĝh(z)
]
dz, (29)

where K(z) = −z−1(zα − Δh)
−1 stands for the kernel function, and the contour (with the

direction of an increasing imaginary part) Γσ,ε is defined by the following.

Γσ,ε := {z ∈ C : |z| = ε, | arg z| ≤ σ} ∪ {z ∈ C : z = re±iσ, r ≥ ε}.

Theorem 3. For α ∈ (0, 1) and θ ∈ (−1, 1), there exist σ0 ∈ (π/2, π) and ε0 > 0, both of which
are free of α and τ such that for any σ ∈ (π/2, σ0) and any ε < ε0, the solution of (28) takes the
following form:

Wn
h = − 1

2πi

∫
Γτ

σ,ε

eztn
[
�(e−zτ)K(δτ(e−zτ))(Δhvh + f 0

h ) + τδτ(e−zτ)K(δτ(e−zτ))gh(e−zτ)
]
dz, (30)

where Γτ
σ,ε = {z ∈ Γσ,ε : |�(z)| ≤ π/τ}, δτ(ζ) = δ(ζ)/τ and �(ζ) = δ(ζ)ζ

( 1
1−ζ + θ +

1
2
)
e−θδ(ζ).

Proof. Multiply both sides of (28) by ζn and sum the index n from 1 to ∞ to yield the
following:

∞

∑
n=1

ζnDα,n
τ,θ Wh −

∞

∑
n=1

ζnΔhWn−θ
h =

∞

∑
n=1

ζngn−θ
h + ( f 0

h + Δhvh)

( ∞

∑
n=1

ζn + (θ + 1/2)ζ
)

,

which leads to the following:([
δτ(ζ)

]α − Δh
)
Wh(ζ) = gh(ζ) + ( f 0

h + Δhvh)κ(ζ),
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where κ(ζ) = ζ
( 1

1−ζ + θ + 1
2
)
e−θδ(ζ). By Lemma B.1 in [22], for fixed constant φ0 ∈ (π/2, π),

there exists σ0 ∈ (π/2, π), which depends only on φ0 for any σ ∈ (π/2, σ0) and any ε < ε0
where ε0 is small enough, δτ(e−zτ)|z∈Γτ

σ,ε
∈ Σφ0 := {z ∈ C : | arg z| < φ0, z �= 0}. By the

Cauchy integral formula, we have the expression for Wn
h by the following:

Wn
h =

1
2πi

∫
|ζ|=ε

Wh(ζ)

ζn+1 dζ
ζ=e−zτ

=====
τ

2πi

∫
Γτ

ε

eztnWh(e−zτ)dz

where Γτ
ε :=

{
z = − 1

τ ln ε + iy : y ∈ R, |y| ≤ π/τ
}

. Let L be the region enclosed by
contours Γτ

σ,ε, Γτ
ε , Γτ

± := R± iπ/τ (oriented from left to right); one can check whether
Wh(e−zτ) is analytic for z ∈ L. By using the Cauchy integral formula again and noting
that the integral values along Γτ

− and Γτ
+ are opposite, result (30) follows readily by taking

�(ζ) = τδτ(ζ)κ(ζ). The proof is completed.

Remark 4. The arguments for Theorem 3 reveal the superiority of the exponential-type transforma-
tion strategy that, for any arbitrary θ, the transform function e−θδ(ζ)|ζ=e−zτ appearing in κ(ζ) is
analytic for z ∈ L, in contrast to the polynomial-type transform function 1

1−θ+θζ |ζ=e−zτ adopted in
[25], which is singular at points z = ±π

τ ∈ L when θ = 1
2 (in which case, the Crank–Nicolson

scheme is excluded). See also [23,24] for similar situations. Therefore, the numerical scheme or
numerical analysis is robust against shifted parameter θ when the exponential-type transformation
strategy is considered. On the other hand, thanks to Theorem 1, function δτ(ζ) appearing in (30) is
independent of α, allowing us to develop robust analyses even for small α. We argue that such types
of robustness are not available for the schemes in [23–25] as δτ(ζ) in those schemes are singular at
α = 0, leading to the blow-up of constants C in their estimates. See Example 3 in Section 5.

Lemma 5. Let Γτ
σ,ε be the contour defined in Theorem 3. For given θ ∈ (−1, 1) and any z ∈ Γτ

σ,ε,
the following holds:

|�(e−zτ)− 1| ≤ Cτ2|z|2, (31)

where C is independent of τ, z, but may be dependent on θ.

Proof. Since |z|τ ≤ π/ sin σ < +∞, we only need to prove (31) for sufficiently small |z|τ.
By the expansion of �(ζ) at the point ζ = 1, we have the following: �(ζ) = 1+ c(θ)(1− ζ)2 +
(1 − ζ)3r(ζ), where r(ζ) is analytic at ζ = 1. One then immediately obtains the following:
�(e−zτ) = 1 + c(θ)τ2|z|2 + o(τ2|z|2), which completes the proof of the lemma.

Theorem 4. Suppose that uh(t) := wh(t) + vh is the solution of the space semi-discrete scheme
of (25), and Un

h := Wn
h + vh is the solution of the fully discrete scheme of (25). If f ∈ W1,∞(0, T; L2(Ω))

and
∫ t

0 (t − s)α−1‖ f ′′(x)‖ds ∈ L∞(0, T) where ‖ · ‖ denotes the L2 norm, then the following is
the case:

‖Un
h − uh(tn)‖ ≤ Cτ2

(
R(tn, v) + tα−2

n ‖ f (0)‖+ tα−1
n ‖ f ′(0)‖+

∫ tn

0
(tn − s)α−1‖ f

′′
(s)‖ds

)
, (32)

where R(tn, v) = tα−2
n ‖Δv‖ if v ∈ D(Δ) and R(tn, v) = t−2

n ‖v‖ if v ∈ L2(Ω). The constant C
is independent of τ, α, n, N and f but may depend on θ.

Proof. The technique for this theorem is quite standard and is essentially and partially
based on Lemma 5 and the following estimates on δτ(ζ), which can be found in [22].

|δτ(e−zτ)− z| ≤ Cτ2|z|3, |δα
τ(e

−zτ)− zα| ≤ Cτ2|z|2+α, C1|z| ≤ |δτ(e−zτ)| ≤ C2|z|.

We omitted the details here for reasons of space.

Remark 5. The error u − uh of the space semi-discrete scheme (26) has been well studied by
researchers and is not our main concern in this article. Interested readers can refer to [35] for more
information.
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5. Numerical Tests

Example 1. In this example, we explore the stability of the numerical scheme (21):

n

∑
j=0

ωn−j(Uj − U0) = τUn−θ , n ≥ n0,

for trial Equation (20) in which n0 = 1 and the polynomial-type transformation is adopted and
verify the sharpness of Λθ in Theorem 2. Let λ = −1, α = 0.5 and fix τ = 0.1. The exact
solution of (20) can be expressed by the Mittag–Leffler function [6] Eα(x) := ∑∞

j=0
xj

Γ(jα+1) , as
u(t) = u0Eα(λtα).

In Figure 1, we illustrate the asymptotic properties of numerical solutions obtained under
different θ for different numerical methods. The solutions in the first column are obtained under
the threshold values θ = 1

2 , 2−
√

2
2 , 3−

√
7

2 (see Table 1) where one can observe, for each case, that the
amplitude is invariant as time passes. By taking a smaller value of θ than its threshold, as shown
in the middle column of Figure 1, we obtain numerical solutions that are asymptotically stable in
contrast to the unbounded ones demonstrated in the last column in which θ exceeds the threshold
a bit.
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Figure 1. Cont.
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Figure 1. Justification of the sharpness of Theorem 2 when using the polynomial-type transform
function Θ(ζ; θ) for Example 1. (a–c): exact solution u(t) vs. numerical solution Un obtained by the
transformed 2nd-order Newton–Gregory formula. (d–f): exact solution u(t) vs. numerical solution
Un obtained by the transformed 3rd-order Newton–Gregory formula. (g–i): exact solution u(t) vs.
numerical solution Un obtained by the transformed fractional BDF-4.

Example 2. For the subdiffusion Problem (25), let T = 1. Depending on the smoothness of v, we
consider two cases:

(i) f = 0, v = sin x ∈ D(Δ), Ω = (0, π), with the exact solution u(x, t) = Eα(−tα) sin x;
(ii) f = 0, v = χ(0,1/2), Ω = (0, 1).
In Tables 2 and 3, we present the L2 error and convergence rates for different α and θ for

schemes (27) and (28), respectively. One observes that scheme (28) with correction terms results in
optimal convergence rates while scheme (27) is of first-order accuracy except for θ = −0.5, both of
which are in line with our theoretical results.

Table 2. L2 error and convergence rates at time t = 0.5 of Example 2 (i).

α θ
Corrected Scheme (28) Standard Scheme (27)

τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates

0.1

−0.9 4.33 × 10−6 3.10 × 10−6 6.92 × 10−7 1.62 × 10−7 2.09 7.50 × 10−4 3.91 × 10−4 1.96 × 10−4 9.82 × 10−5 1.00
−0.5 1.86 × 10−6 8.76 × 10−7 2.65 × 10−7 7.13 × 10−8 1.89 1.86 × 10−6 8.76 × 10−7 2.65 × 10−7 7.13 × 10−8 1.89
0.5 1.47 × 10−4 3.43 × 10−5 8.27 × 10−6 2.02 × 10−6 2.03 2.02 × 10−3 9.97 × 10−4 4.95 × 10−4 2.47 × 10−4 1.01
0.9 2.53 × 10−4 5.78 × 10−5 1.38 × 10−5 3.37 × 10−6 2.03 2.87 × 10−3 1.41 × 10−3 6.95 × 10−4 3.46 × 10−4 1.01

0.5

−0.8 1.15 × 10−4 2.49 × 10−5 5.78 × 10−6 1.39 × 10−6 2.05 3.15 × 10−3 1.60 × 10−3 8.04 × 10−4 4.03 × 10−4 1.00
−0.5 3.86 × 10−5 6.97 × 10−6 1.44 × 10−6 3.24 × 10−7 2.15 3.86 × 10−5 6.97 × 10−6 1.44 × 10−6 3.24 × 10−7 2.15

0 2.35 × 10−4 5.70 × 10−5 1.40 × 10−5 3.49 × 10−6 2.01 5.49 × 10−3 2.72 × 10−3 1.35 × 10−3 6.74 × 10−4 1.00
0.6 2.35 × 10−4 5.70 × 10−5 1.40 × 10−5 3.49 × 10−6 2.01 1.23 × 10−2 6.02 × 10−3 2.98 × 10−3 1.49 × 10−3 1.01

0.9

−0.5 2.35 × 10−4 5.70 × 10−5 1.40 × 10−5 3.49 × 10−6 2.01 3.05 × 10−4 7.23 × 10−5 1.76 × 10−5 4.35 × 10−6 2.02
−0.2 1.28 × 10−4 2.95 × 10−5 7.10 × 10−6 1.74 × 10−6 2.03 6.78 × 10−3 3.30 × 10−3 1.63 × 10−3 8.10 × 10−4 1.01
0.3 3.56 × 10−4 8.65 × 10−5 2.14 × 10−5 5.31 × 10−6 2.01 1.78 × 10−2 8.72 × 10−3 4.33 × 10−3 2.15 × 10−3 1.01
0.6 7.64 × 10−4 1.84 × 10−4 4.51 × 10−5 1.12 × 10−5 2.01 2.44 × 10−2 1.20 × 10−2 5.95 × 10−3 2.96 × 10−3 1.01
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Table 3. L2 error and convergence rates at time t = 0.5 of Example 2 (ii).

α θ
Corrected Scheme Standard Scheme

τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates

0.2

−0.5 2.68 × 10−6 7.74 × 10−7 2.03 × 10−7 5.14 × 10−8 1.98 2.68 × 10−6 7.74 × 10−7 2.03 × 10−7 5.14 × 10−8 1.98
−0.3 7.66 × 10−6 1.92 × 10−6 4.80 × 10−7 1.18 × 10−7 2.02 9.41 × 10−5 4.69 × 10−5 2.28 × 10−5 1.07 × 10−5 1.09

0 1.83 × 10−5 4.39 × 10−6 1.07 × 10−6 2.62 × 10−7 2.03 2.42 × 10−4 1.19 × 10−4 5.75 × 10−5 2.68 × 10−5 1.10
0.9 7.69 × 10−5 1.75 × 10−5 4.14 × 10−6 9.97 × 10−7 2.06 7.07 × 10−4 3.40 × 10−4 1.63 × 10−4 7.56 × 10−5 1.11

0.8

−0.5 8.79 × 10−5 2.12 × 10−5 5.20 × 10−6 1.28 × 10−6 2.03 8.79 × 10−5 2.12 × 10−5 5.20 × 10−6 1.28 × 10−6 2.03
0.1 1.99 × 10−4 4.64 × 10−5 1.12 × 10−5 2.71 × 10−6 2.04 7.59 × 10−4 3.95 × 10−4 1.95 × 10−4 9.18 × 10−5 1.09
0.5 3.28 × 10−4 7.47 × 10−5 1.77 × 10−5 4.27 × 10−6 2.05 1.36 × 10−3 6.82 × 10−4 3.31 × 10−4 1.54 × 10−4 1.10
0.7 4.11 × 10−4 9.26 × 10−5 2.18 × 10−5 5.25 × 10−6 2.06 1.68 × 10−3 8.29 × 10−4 3.99 × 10−4 1.86 × 10−4 1.10

Example 3. We illustrate the robustness of (28) when α → 0 for subdiffusion Problem (25). Let
Ω = (0, π), T = 1 and u(x, t) = (Eα(−tα) + t3) sin x such that v = sin x ∈ D(Δ). The
source term is f (x, t) =

(
6t3−α/Γ(4 − α) + t3) sin x. In Figure 2a, we illustrate the L2 error of

scheme (28) for varying α under different θ = −0.5, 0.1, 0.4, 0.8. In particular, the cases θ = 0.1
and 0.4 of the scheme in [25] are also presented. Obviously, the scheme (28) is much more robust
when α → 0 than the scheme in [25].

It may seem weird that, in (18), the term φ(tn−θ) is approximated by a nonlocal formula with
coefficients θj with j = 0, 1, · · · , n. We note that θj decays exponentially as plotted in Figure 2b,
and in application, one can adopt only the first few values; e.g., the first 50 values will be sufficient
to guarantee the accuracy.
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=0.9

(a) (b)

Figure 2. For Example 3. (a) Comparison of L2 error between our scheme and that in [25] for different
α. (b) Exponential decay of the weights |θn| defined in (18).

6. Conclusions

A novel exponential-type transformation strategy is proposed to develop robust and
accurate difference formulas for fractional derivatives by involving shifted parameter θ.
The advantages of this novel strategy over the polynomial type transform methods are
explored in detail. As an application, the well-known fractional BDF-2 is transformed
under the novel strategy and is adopted in the subdiffusion problem. Rigorous arguments
are carried out, showing that the resultant scheme can resolve the solution initial singularity
quite naturally at the special point tn+ 1

2
. The robustness for small α is also verified both

theoretically and numerically.
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Appendix A

Appendix A.1

Proof of Lemma 2. Assumption (A2) indicates that 1
�p(ζ)

= (1 − ζ)−α 1
�(ζ)

where 1
�(ζ)

is

analytic on the closed unit disc; then, clearly �
(−1)
n = O(nα−1) by the expansion of (1− ζ)−α.

On the other hand, assumption (A1) implies the following:

τα

�p(e−τ)
=

1
τ−α�p(e−τ)

= 1 + O(τp),

which concludes the proof of the lemma.

Appendix A.2

Proof of Lemma 3. (Step 1.) Since |τ−α�p(e−τ)− 1| → 0 as τ → 0, then the following is
the case: (

1 − e−τ

τ

)α[
�(e−τ)− 1

]
+

(
1 − e−τ

τ

)α

− 1 → 0,

indicating that �(1) = 1. By expanding 1
�(ζ)

at ζ = 1, one obtains the following:

1
�(ζ)

= 1 + (1 − ζ)[c1 + c2(1 − ζ) + · · · ] =: 1 + (1 − ζ)ψ(ζ), (A1)

where ψ(ζ) is analytic at 1. Hence, we have the following:

1
�p(ζ)

= (1 − ζ)−α + (1 − ζ)1−αψ(ζ),
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requiring the following:

�
(−1)
n = an +

n

∑
j=0

bn−jψj, (A2)

where ψn are the coefficients of ψ(ζ), and the following is the case.

an : = (−1)n
(−α

n

)
=

nα−1

Γ(α)
[1 + O(n−1)],

bn : = (−1)n
(

1 − α
n

)
=

nα−2

Γ(α − 1)
[1 + O(n−1)].

(A3)

Note that (A1) implies the following:

ψ(ζ) =

1
�(ζ)

− 1

1 − ζ
,

which combined with the fact that 1
�(ζ)

− 1 is analytic for |ζ| ≤ 1 leads to the analyticity
of ψ(ζ) for |ζ| ≤ 1. Hence, ψn decays exponentially, meaning that ∑∞

n=0 |ψn| < ∞. On the
other hand, using the following inequality:

∞

∑
n=0

∣∣∣∣ n

∑
j=0

bn−jψj

∣∣∣∣ ≤ ∞

∑
n=0

|bn|
∞

∑
n=0

|ψn| < ∞,

and combining (A2) and (A3), one immediately obtains the following.

∞

∑
n=0

∣∣∣∣�(−1)
n − nα−1

Γ(α)

∣∣∣∣ ≤ ∞

∑
n=0

∣∣∣∣an − nα−1

Γ(α)

∣∣∣∣+ ∞

∑
n=0

∣∣∣∣ n

∑
j=0

bn−jψj

∣∣∣∣ < ∞. (A4)

(Step 2.) Replace n in (12) with k, multiply both sides by �
(−1)
n−k and then sum k from n0

to n to obtain the following.

n

∑
k=n0

�
(−1)
n−k

k

∑
j=0

�k−j(Uj − U0) = τ
n

∑
k=n0

�
(−1)
n−k
(
Uk +

1
λ

gk). (A5)

For the left-hand side of (A5), the following holds.

n

∑
k=n0

�
(−1)
n−k

k

∑
j=0

�k−j(Uj − U0)

=
n

∑
k=0

�
(−1)
n−k

k

∑
j=0

�k−j(Uj − U0)−
n0−1

∑
k=0

�
(−1)
n−k

k

∑
j=0

�k−j(Uj − U0)

= Un − U0 −
n0−1

∑
j=0

( n0−1−j

∑
k=0

�
(−1)
n−k−j�k

)
(Uj − U0).

(A6)

For the right-hand side of (A5), we have the following.

τ
n

∑
k=n0

�
(−1)
n−k
(
Uk +

1
λ

gk) = τ
n

∑
k=0

�
(−1)
n−k Uk − τ

n0−1

∑
k=0

�
(−1)
n−k Uk + τα

n

∑
k=n0

�
(−1)
n−k gk. (A7)

Combining (A5)–(A7), one obtains the following:

Un = f n + τ
n

∑
k=0

�
(−1)
n−k Uk, (A8)
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where

f n = U0
(

1 − τ�
(−1)
n −

n0−1

∑
j=1

n0−1−j

∑
k=0

�
(−1)
n−k−j�k

)

+
n0−1

∑
j=1

Uj
( n0−1−j

∑
k=0

�
(−1)
n−k−j�k − τ�

(−1)
n−j

)
+ τα

n

∑
k=n0

�
(−1)
n−k gk.

For fixed τ > 0, since �n = O(n−α−1), �
(−1)
n = O(nα−1) and gn decays exponentially,

it holds that f n has finite limit as n → ∞. Meanwhile, by Lemma 2, (A8) actually is an
approximation to (8) with convergence order p. In accordance with (10), the estimate (A4)
indicates that stability region S is the following:

C \ {1/�
(−1)
p (ζ) : |ζ| ≤ 1} = C \ {�p(ζ) : |ζ| ≤ 1}, (A9)

which completes the proof of the lemma.

Appendix A.3. Schur Polynomial

The polynomial Φ(ζ) of order k

Φ(ζ) = ckζk + ck−1ζk−1 + · · ·+ c1ζ + c0, ck �= 0, c0 �= 0,

is said to be a Schur polynomial if its roots ζ j satisfy |ζ j| < 1, j = 1, 2, · · · , k. Given Φ(ζ),
introduce the following polynomials:

Φ0(ζ) = c∗0ζk + c∗1ζk−1 + · · ·+ c∗k−1ζ + c∗k ,

Φ1(ζ) =
1
ζ

[
Φ0(0)Φ(ζ)− Φ(0)Φ0(ζ)

]
,

where c∗j denotes the complex conjugate of cj.

Lemma A1. Φ(ζ) is a Schur polynomial if and only if |Φ0(0)| > |Φ(0)| and Φ1(ζ) is a
Schur polynomial.

To identify Λθ in Theorem 2, one merely needs to require the polynomial ζ p−1Θ(1/ζ; θ)
be a Schur polynomial, which by Lemma A1, a sequence of Schur polynomials with
decreasing degrees are obtained, leading to Λθ listed in Table 1.
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Abstract: In the current work, a fast θ scheme combined with the Legendre spectral method was
developed for solving a fractional Klein–Gordon equation (FKGE). The numerical scheme was
provided by the Legendre spectral method in the spatial direction, and for the temporal direction,
a θ scheme of order O(τ2) with a fast algorithm was taken into account. The fast algorithm could
decrease the computational cost from O(M2) to O(M log M), where M denotes the number of time
levels. In addition, correction terms could be employed to improve the convergence rate when the
solutions have weak regularity. We proved theoretically that the scheme is unconditionally stable
and obtained an error estimate. The numerical experiments demonstrated that our numerical scheme
is accurate and efficient.

Keywords: fractional Klein–Gordon equation; Legendre spectral method; θ scheme; unconditional
stability; error estimate; fast algorithm; regularity of solution

1. Introduction

Fractional differential equations (FDEs), as the evolution of integral differential equa-
tions, can more precisely describe phenomena with sophisticated dynamics [1–4]. In the
past few decades, FDEs have been investigated by a number of scholars because they
have practical applications in various fields, such as relativistic quantum mechanics [5],
hydromechanics [6], neuroscience [7], and materials science [8]. Due to it being virtu-
ally impossible to obtain an analytic solution to an FDE in most cases, many numerical
methods for solving FDEs have been developed rapidly. In particular, finite difference
methods (FDMs) [9,10], finite element methods (FEMs) [11–13], spectral methods [14–16],
and spectral element methods [17,18] have been extensively utilized.

In this article, we concentrate on the following FKGE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂αξ(x, t)

∂tα
+ ρ

∂ξ(x, t)
∂t

+ ξ(x, t) =
∂2ξ(x, t)

∂x2 + f (x, t), x ∈ (0, L), t ∈ (0, T]

ξ(x, 0) = φ(x),
∂ξ(x, 0)

∂t
= ϕ(x), x ∈ (0, L),

ξ(0, t) = 0, ξ(L, t) = 0, t ∈ [0, T],

(1)

When α = 2, (1) is a classical integer-order Klein–Gordon equation. Dα
0,tξ(t) is a

fractional derivative with respect to t in the Caputo sense, which is defined as
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Dα
0,tξ(x, t) =

∂αξ(x)
∂tα

=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(2 − α)

∫ t

0

∂2ξ(x, s)
∂s2

ds
(t − s)1−α

, 1 < α < 2

∂2ξ(x)
∂t2 . α = 2

If we set ρ = 0, then an FKGE can be obtained, and a fractional dissipative Klein–
Gordon equation can be obtained for ρ > 0 [19].

The application of FDEs has been extended to quantum mechanics, which has given
rise to fractional quantum mechanics [20,21]. Klein–Gordon equations, which are some of
the most fundamental equations in relativistic quantum mechanics, have been generalized
to FKGEs [19,22]. As a matter of fact, quite a few scholars have investigated FKGEs.
Vong et al. proposed a high-order finite difference scheme for a nonlinear FKGE, and the
convergence order of the proposed scheme was O(h4 + τ3−α) [23], where h and τ are the
spatial and temporal step sizes, respectively. Hashemizadeh et al. proposed an approach
that relied on the sparse operational matrix of the derivative to solve an FKGE, leading to
more efficient operation [19]. By combining the properties of Chebyshev approximations
with the FDM, Khadera et al. developed a method that reduced an FKGE to a system
of ODEs and then solved it using the FDM [24]. Recently, Saffarian et al. utilized the
ADI spectral element method to solve a nonlinear FKGE with a convergent order of
O(τ2 + N1−m) [25], where N is the polynomial degree and m represents the regularity
of the solution. As far as the authors’ knowledge is concerned, there have been few
reports on numerical methods utilizing fast algorithms for an FKGE. Motivated by the
above considerations, our main aim was developing a stable and fast numerical method
for FKGEs.

The structure of this paper is as follows: In Section 2, some crucial preliminaries are
provided for the subsequent analysis. In Section 3, to obtain the fully discrete scheme,
we introduce the θ scheme and the Legendre spectral method in the temporal and spa-
tial directions, respectively. Meanwhile, correction terms are considered to improve the
weak regularity of the solution. In Section 4, we attach importance to the stability anal-
ysis and the convergence analysis. To save on computational expenses for the fractional
operators, a fast algorithm is implemented in Section 5. In Section 6, several numerical ex-
periments are conducted to validate our theoretical analysis. In the final section, we present
our conclusions.

2. Preliminaries

In this section, some lemmas and definitions that were necessary for the following
analysis are presented.

The space PN(Ω) corresponds to the set of polynomials defined in the domain Ω,
encompassing polynomials with a degree lower than N. Moreover, within PN(Ω), we have
the subspace P0

N(Ω) that fulfills the boundary condition w(∂Ω) = 0 for w ∈ PN(Ω).
Let us denote π1,0

N (Ω) as the orthogonal projection operator from the Hilbert space
H1

0(Ω) to the subspace P0
N . For any w ∈ H1

0(Ω) and any v ∈ P0
N(Ω), the orthogonal

projection operator π1,0
N (Ω) exhibits the following property:

(∂xπ1,0
N w, ∂xυ) = (∂xw, ∂xυ).

Here, we make a crucial assumption that the solution to Equation (1) conforms to the
following form [11,17]:

ξ(x, t) = φ + ϕt + c2tσ2 + c3tσ3 + · · · = φ + ϕt +
n

∑
k=2

cjtσk + Φ(x, t), (2)

where σ1 = 1; σk < σk+1, k ≤ n − 1; ck ∈ H1
0(Ω) ∩ Hn(Ω); and Φ(x, t) is a function

that is sufficiently smooth with respect to both variables x and t. There exists ck �= 0 for
k = 2, 3, · · · , n.
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We define σ as:

σ =

{
σ2, ϕ = 0

1, otherwise
(3)

which describes the regularity of (2).

Lemma 1 ([14,16]). Suppose ξ ∈ H1
0(Ω) ∩ Hm(Ω); then, we have

||ξ − π1,0
N ξ|| ≤ CN−m||ξ||. (4)

Lemma 2 ([11,19]). Let ξ(t) be a continuous function with a fractional derivative of order α; then,
we have

Iα
0,tD

α
0,tξ(t) = ξ(t)−

n−1

∑
i=0

ξ(k)
tk

k!
, n − 1 < α ≤ n, n ∈ N. (5)

Lemma 3 ([11]). Suppose ξ(t) ∈ Ck[0, T] for k ∈ N+. Let ε, γ > 0 with l ≤ k and γ, γ + ε ∈
[l − 1, l]. Then, we have

Dε
0,tD

γ
0,tξ = Dε+γξ. (6)

Integrating both sides of (1) with the operator Iα−1
0,t and combining Lemmas 2 and 3,

we obtain

ξt + ρD2−α
0,t ξ + Iα−1

0,t ξ = Iα−1
0,t Δξ + ϕ + ρ[D2−α

0,t ξ]t=0 + F(x, t), (7)

where F(x, t) = Iα−1
0,t f (x, t). Under the assumption of (2), ρ[D2−α

0,t ξ]t=0 = 0.

3. Fully Discrete Scheme

Let τ be a temporal step size and tn = nτ(0 ≤ n ≤ M), M = [1/τ]. ξk � ξ(tk) = ξ(kτ).
For the discretization of fractional operators (η ∈ (0, 1)) and the first-order derivative, we
utilize the θ schemes as follows [11,12]:

Dη
0,tξ(tn−θ) = Dn,θ

τ,ηu + E(1)
n−θ = τ−η

n

∑
k=0

ω
(η)
n−k(ξ

k − ξ0) + E(1)
n−θ ,

Iη
0,tξ(tn−θ) = In,θ

τ,ηu + E(2)
N−θ = τη

n

∑
k=0

ω
(−η)
n−k (ξk − ξ0) + I(η)0,tn−θ

+ E(2)
n−θ ,

ξt(tn−θ) = ξn
τ,θ + E(3)

n−θ

=

⎧⎪⎪⎨⎪⎪⎩
ξ1 − ξ0

τ
+ E(1)

1−θ , n = 1

3 − 2θ

2τ
ξn − 2 − 2θ

τ
ξn−1 +

1 − 2θ

2τ
ξn−2 + E(3)

n−θ , n ≥ 2

(8)

where E(1)
n−θ = O(tσ−η−2

n−θ τ2), E(2)
n−θ = O(tσ+η−2

n−θ τ2), E(3)
n−θ = O(tσ−3

n−θτ2), σ = min{σ2, σ3, · · · }.
The following expression captures the relationship between the generating function ω(ξ, δ)

and its expansion coefficients ω
(δ)
k :

ω(ξ, δ) =
∞

∑
k=0

ω
(δ)
k ξk =

(1 − ξ)δ

1 − ( δ
2 − θ)(1 − ξ)

, δ ∈ (−1, 0) ∪ (0, 1),
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where θ ∈ ( δ−1
2 , 1], and the choice of θ does not affect the convergence rate. When θ = α

2 , it
simplifies to a fractional Crank–Nicolson scheme [26]. We apply the following formula to
determine expansion coefficients ω

(δ)
k :

ω
(δ)
k =

⎧⎪⎪⎨⎪⎪⎩
2/[2(1 + θ)− δ], k = 0

4V1
1 /[2(1 + θ)− δ]2, k = 1

(V1
k ω

(δ)
k−1 + V2

k ω
(δ)
k−2)/(1 + θ − δ/2)/k, k ≥ 2

(9)

where

V1
k =

δ2

2
− (θ + k +

1
2
)δ + kθ + k − 1,

V2
k = − δ2

2
+ (θ +

k − 1
2

)δ + (1 − k)θ.

The semi-discrete scheme of (7) is obtained in the temporal direction utilizing (8)
as follows:

ξn
τ,θ + ρDn,θ

τ,2−αξ + In,θ
τ,α−1ξ = In,θ

τ,α−1Δξ + ϕ + Fn−θ + En−θ , (10)

where Fn−θ = F(x, tn−θ), and En−θ is

En−θ = O(tσ+α−4
n−θ τ2) + O(tσ̃−3

n−θτ2). (11)

The Legendre spectral method is applied for the discretization in the spatial direction
and used to find Z ∈ P0

N(Ω) for ∀ζ ∈ P0
N(Ω), such that

(Zn
τ,θ , ζ) + (ρDn,θ

τ,2−αZ, ζ) + (In,θ
τ,α−1Z, ζ) = (In,θ

τ,α−1ΔZ, ζ) + (ϕ, ζ) + (Fn−θ , ζ),

with Z0 = π1,0
N ξ0.

(12)

We see from the truncation errors in (8) that if σ < 3, then the convergence order
in the temporal direction is lower than O(τ2). Generally, the solutions of FKGEs have
weak regularity. To improve the convergence rate, correction terms are added to the
approximation formulas as follows [17,27,28]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dδ
0,tξ(tn−θ) ≈ Dn,θ

τ,δ ξ + τ−δ
m

∑
j=1

w(δ)
n,j (ξ

j − ξ0),

Iδ
0,tξ(tn−θ) ≈ In,θ

τ,δ ξ + τδ
m

∑
j=1

w(−δ)
n,j (ξ j − ξ0),

ξt(tn−θ) ≈ ξn
τ,θ + τ−1

m

∑
j=1

w(1)
n,j (ξ

j − ξ0),

(13)

where w(δ)
n,j , w(−δ)

n,j , and w(1)
n,j are starting weights, and they can be derived by solving a

linear system of equations. Take an example for calculating w(−δ)
n,j in (13). Iδ

0,tξ(tn−θ) =

In,θ
τ,δ ξ + τδ ∑m

j=1 w(−δ)
n,j (ξ j − ξ0) is exact for ξ(t) = tσr (σr < 2 − δ). Then, it can be solved

through the following linear system:

m

∑
j=1

w(−δ)
n,j tσr

j = τ−δ Γ(σr + 1)
Γ(σr + 1 + δ)

tσr+δ
n−θ −

n

∑
k=1

ω
(−δ)
n−k tσr

k . (14)
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4. Stability and Convergence Analysis

Lemma 4 ([11]). For any vector (ξ1, .., ξM) ∈ RM with M ≥ 1, ω
(δ)
k is defined in (8) (δ ∈

(−1, 0) ∪ (0, 1)) and θ ∈ ( δ−1
2 , 1]. Thus, we have

M

∑
k=1

k

∑
i=1

ω
(δ)
k−iξ

iξk ≥ 0. (15)

Lemma 5 ([11]). For any vector (ξ1, ..., ξM) ∈ RM with M ≥ 2, ξ0 = 0 and ξ
j
τ,θ are defined

in (8), and we have
M

∑
j=1

ξ jξ
j
τ,θ ≥ 1

4τ
(ξM)2 − 1

2τ
(ξ1)2 (16)

with θ ∈ [0, 1].

Theorem 1. The scheme in (12) is unconditionally stable, and we have the following estimate:

||ZM|| ≤ C(||φ||+ ||�φ||+ ||ϕ||+ max
0≤j≤M

||Fj||). (17)

Proof. Z0 is the proper approximation of φ that satisfies ||Z0|| ≤ ||φ|| and ||∇Z0|| ≤ ||∇φ||.
Defining Λn � Zn − Z0 and considering (8), we can obtain

Zn
τ,θ = Λn

τ,θ ,

Dn,θ
τ,αZ = Dn,θ

τ,αΛ,

In,θ
τ,α Z = In,θ

τ,αΛ + Iα
0,tn−θ

Z0,

In,θ
τ,α∇Z = In,θ

τ,α∇Λ + Iα
0,tn−θ

∇Z0.

(18)

Replacing ζ with Λn in (12) and using (18), we obtain

(Λn
τ,θ , Λn) + (ρDn,θ

τ,2−αΛ, Λn) + (In,θ
τ,α−1Λ, Λn) + (In,θ

τ,α−1∇Λ, ∇Λn)

= (ϕ, Λn) + (Fn−θ , Λn)− (Iα−1
0,tn−θ

Z0, Λn)− (Iα−1
0,tn−θ

∇Z0, ∇Λn).
(19)

By substituting n with j and taking the summation of both sides for j ranging from 1
to M (M ≥ 2), we can derive

M

∑
j=1

(Λj
τ,θ , Λj) +

M

∑
j=1

(ρDj,θ
τ,2−αΛ, Λj) +

M

∑
j=1

(I j,θ
τ,α−1Λ, Λj) +

M

∑
j=1

(I j,θ
τ,α−1∇Λ, ∇Λj)

=
M

∑
j=1

(ϕ, Λj) +
M

∑
j=1

(Fj−θ , Λj)−
M

∑
j=1

(Iα−1
0,tj−θ

Z0, Λj)−
M

∑
j=1

(Iα−1
0,tj−θ

∇Z0, ∇Λj).

(20)

Combining Lemmas 4 and 5, we derive the following inequality:

M

∑
j=1

(Λj
τ,θ , Λj) ≥ 1

4τ
||ΛM||2 − 1

2τ
||Λ1||2,

M

∑
j=1

(ρDj,θ
τ,2−αΛ, Λj) = τα−2

∫ 1

0
ρ

M

∑
j=1

Λj
j

∑
k=1

ω
(2−α)
j−k Λkdx ≥ 0,

M

∑
j=1

(I j,θ
τ,α−1Λ, Λj) = τα−1

∫ 1

0

M

∑
j=1

Λj
j

∑
k=1

ω
(1−α)
j−k Λkdx ≥ 0,

M

∑
j=1

(I j,θ
τ,α−1∇Λ, ∇Λj) = τα−1

∫ 1

0

M

∑
j=1

∇Λj
j

∑
k=1

ω
(1−α)
j−k ∇Λkdx ≥ 0,

(21)
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M

∑
j=1

(ϕ, Λj) ≤ 1
2

M

∑
j=1

(||ϕ||2 + ||Λj||2) = M
2
||ϕ||2 + 1

2

M

∑
j=1

||Λj||2, (22)

M

∑
j=1

(Fj−θ , Λj) ≤1
2

M

∑
j=1

(||Fj−θ ||2 + ||Λj||2)

≤1
2

M

∑
j=1

||Λj||2 + C
M

∑
j=1

(||Fj||2 + ||Fj−1||2)

≤1
2

M

∑
j=1

||Λj||2 + C
M

∑
j=0

||Fj||2,

(23)

M

∑
j=1

(Iα−1
0,tj−θ

Z0, Λj) =
M

∑
j=1

(Iα−1
0,tj−θ

1)(Z0, Λj) ≤ 1
Γ(α)

M

∑
j=1

|(Z0, Λj)|

≤ M
2Γ(α)

||Z0||2 + 1
2Γ(α)

M

∑
j=1

||Λj||2

≤ M
2Γ(α)

||φ||2 + 1
2Γ(α)

M

∑
j=1

||Λj||2.

(24)

Let ΔN be the operator from P0
N into P0

N , such that

(ΔNΨ, υ) = −(∇Ψ, ∇υ), ∀Ψ, υ ∈ P0
N . (25)

For a properly defined Z0, it holds that ||ΔN Z0|| ≤ ||Δφ||; thus, we have the follow-
ing inequality:

−
M

∑
j=1

(Iα−1
0,tj−θ

∇Z0, ∇Λj) =
M

∑
j=1

tα−1
j−θ

Γ(α)
(ΔN Z0, Λj) ≤ 1

Γ(α)

M

∑
j=1

(ΔN Z0, Λj)

≤ M
2Γ(α)

||ΔN Z0||2 + 1
2Γ(α)

M

∑
j=1

||Λj||2

≤ M
2Γ(α)

||Δφ||2 + 1
2Γ(α)

M

∑
j=1

||Λj||2.

(26)

Combining (20)–(26) and ignoring the non-negative terms, we obtain

||ΛM||2 ≤2||Λ1||2 + 4τ

(
1 +

1
Γ(α)

) M

∑
j=1

||Λj||2 + CtM||φ||2

+
2tM
Γ(α)

||Δφ||2 + 2tM||ϕ||2 + Cτ
M

∑
j=0

||Fj||2.

(27)

For Λ1, let n = 1 and θ = 1
2 in (20); then, we obtain

τ−1(Λ1 − Λ0, Λ1) + (ρτα−2ω
(2−α)
0 Λ1, Λ1) + (τα−1ω

(1−α)
0 Λ1, Λ1)

+(τα−1ω
(1−α)
0 ∇Λ1, ∇Λ1) = (ϕ, Λ1) + (F

1
2 , Λ1)−

tα−1
1
2

Γ(α)
(Z0, Λ1) +

tα−1
1
2

Γ(α)
(ΔN Z0, Λ1).

(28)
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Similarly, for n = 1, we have the following inequality:(
1
τ
− 1 − 1

Γ(α)

)
||Λ1||2 ≤ 1

2
||ϕ||2 + 1

2Γ(α)
||φ||2 + 1

2Γ(α)
||Δφ||2 + C(||F0||2 + ||F1||2). (29)

So, if τ ≤ 1
1+ 1

Γ(α)
, we can derive

||Λ1||2 ≤ C(||φ||2 + ||Δφ||2 + ||ϕ||2 + τ||F0||2 + τ||F1||2). (30)

By employing Grönwall’s inequality, we can deduce

||ΛM||2 ≤ C(||φ||2 + ||Δφ||2 + ||ϕ||2 + τ
M

∑
j=0

||Fj||2), (31)

where C represents a constant that does not depend on the variables n, τ, and N.
Finally, using the triangular inequality ||ZM|| ≤ ||ΛM||+ ||Z0||, we derive Theorem 1.

Next, we discuss the convergence of (12).

Theorem 2. Suppose that ξ and Z are solutions of (1) and (12), respectively, where ξ ∈ H1([0, 1])×
(Hm(Ω) × H1

0(Ω)), m > 1, ξ0 = π1,0
N ξ0. Then, for a small enough τ, we have the follow-

ing estimate:

||Zn − ξn|| ≤ C̃τ2 + Cτσ̃− 1
2 + Cτσ+α− 3

2 + CN−m.

Proof. Defining ξn − Zn = (ξn − π1,0
N ξn) + (π1,0

N ξn − Zn) � χn + rn and noting that
χ0 = r0 = 0, we integrate both sides of (7) with ζ ∈ P0

N to obtain

(ξn
τ,θ , ζ) + (ρDn,θ

τ,2−αξ, ζ) + (In,θ
τ,α−1ξ, ζ) + (In,θ

τ,α−1∇ξ, ∇ζ)

=(ϕ, ζ) + (Fn−θ , ζ) + (En−θ , ζ).
(32)

Subtracting (12) from (32) and setting ζ to rn, we substitute n with j and sum j from 1
to n (n ≥ 2):

n

∑
j=1

(rj
τ,θ , rj) +

n

∑
j=1

(ρDj,θ
τ,2−αr, rj) +

n

∑
j=1

(I j,θ
τ,α−1r, rj) +

n

∑
j=1

(I j,θ
τ,α−1∇r, ∇rj)

=−
n

∑
j=1

(χ
j
τ,θ , rj)−

n

∑
j=1

(ρDj,θ
τ,2−αχ, rj)−

n

∑
j=1

(I j,θ
τ,α−1χ, rj) +

n

∑
j=1

(Ej−θ , rj).
(33)

Utilizing Lemmas 4 and 5, we obtain the following inequalities:

n

∑
j=1

(rj, rj) ≥ 1
4τ

||rn||2 − 1
2τ

||r1||2, n ≥ 2

n

∑
j=1

(ρDj,θ
τ,2−αr, rj) ≥ 0,

n

∑
j=1

(I j,θ
τ,α−1r, rj) ≥ 0, n ≥ 1

n

∑
j=1

(I j,θ
τ,α−1∇r, ∇rj) ≥ 0. n ≥ 1

(34)

Combining this with (2), we derive

χ(t) = (φ − Π1,0
N φ) + (ϕ − Π1,0

N ϕ)t +
n

∑
j=2

(cj − Π1,0
N cj)t

σj + (Φ − Π1,0
N Φ). (35)
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Thus, we know ||χt||+ ||ρD2−α
0,t χ||+ ||Iα−1

0,t χ|| ≤ CN−m according to (4). Moreover,
we have

χn
τ,θ − χt(tn−θ) = O(tσ̃−3

n−θτ2),

Dn,θ
τ,2−αχ − D2−α

0,t χ(tn−θ) = O(tσ+α−4
n−θ τ2),

In,θ
τ,α−1χ − Iα−1

0,t χtn−θ
= O(tσ+α−3

n−θ τ2).

(36)

Taking into account the fact that

τ
n

∑
j=1

tk
j−θ =

⎧⎪⎨⎪⎩
O(τ1+s). k < −1

O(log n), k = −1

O(1), k > −1

(37)

and combining (36) and (37), we obtain

τ
n

∑
j=1

||χj
τ,θ − χt(tj−θ)||2

≤Ẽ(3)
n−θ � Cτ5

n

∑
j=1

t2σ−6
j−θ =

⎧⎪⎪⎨⎪⎪⎩
O(τ2σ−1). σ < 2.5

O(τ4 log n), σ = 2.5

O(τ4), σ > 2.5

(38)

τ
n

∑
j=1

||Dj,θ
τ,2−αχ − D2−α

0,t χ(tj−θ)||2

≤Ẽ(1)
n−θ � Cτ5

n

∑
j=1

t2σ+2α−8
j−θ =

⎧⎪⎪⎨⎪⎪⎩
O(τ2σ+2α−3), σ < −α + 3.5

O(τ4 log n), σ = −α + 3.5

O(τ4), σ > −α + 3.5

(39)

τ
n

∑
j=1

||I j,θ
τ,α−1χ − Iα−1

0,t χ(tj−θ)||2

≤Ẽ(2)
n−θ � Cτ5

n

∑
j=1

t2σ+2α−6
j−θ =

⎧⎪⎪⎨⎪⎪⎩
O(τ2σ+2α−1), σ < −α + 2.5

O(τ4 log n), σ = −α + 2.5

O(τ4), σ > −α + 2.5

(40)

By multiplying both sides of Equation (33) by τ, we can obtain

τ
n

∑
j=1

(ρDj,θ
τ,2−αχ, rj) ≤ Cτ

n

∑
j=1

||Dj,θ
τ,2−αχ||2 + τ

2

n

∑
j=1

||rj||2

≤τ

2

n

∑
j=1

||rj||2 + Cτ
n

∑
j=1

(||Dj,θ
τ,2−αχ − D2−α

0,t χ(tj−θ)||2 + ||D2−α
0,t χ(tj−θ)||2) (41)

≤Ẽ(1)
n−θ + CN−2m +

τ

2

n

∑
j=1

||rj||2,
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τ
n

∑
j=1

(I j,θ
τ,α−1χ, rj) ≤ τ

2

n

∑
j=1

||I j,θ
τ,α−1χ||2 + τ

2

n

∑
j=1

||rj||2

≤τ
n

∑
j=1

(||I j,θ
τ,α−1χ − Iα−1

0,t χ(tj−θ)||2 + ||Iα−1
0,t χ(tj−θ)||2) +

τ

2

n

∑
j=1

||rj||2 (42)

≤Ẽ(2)
n−θ + CN−2m +

τ

2

n

∑
j=1

||rj||2,

τ
n

∑
j=1

(χ
j
τ,θ , rj) ≤ τ

2

n

∑
j=1

||χj
τ,θ ||2 +

τ

2

n

∑
j=1

||rj||2

≤τ
n

∑
j=1

(||χj
τ,θ − χt(tj−θ)||2 + ||χt(tj−θ)||2) +

τ

2

n

∑
j=1

||rj||2 (43)

≤Ẽ(3)
n−θ + CN−2m +

τ

2

n

∑
j=1

||rj||2,

τ
n

∑
j=1

(Ej−θ , rj) ≤ Ẽ(1)
n−θ + Ẽ(3)

n−θ +
τ

2

n

∑
j=1

||rj||2. (44)

Combining (34) and (41)–(44), for n ≥ 2, we obtain

1
4
||rn||2 ≤ 1

2
||r1||2 + Ẽ(1)

n−θ + Ẽ(2)
n−θ + Ẽ(3)

n−θ + 2τ
n

∑
j=1

||rj||2 + CN−2m. (45)

Similarly, let n = 1 and θ = 1
2 ; thus, we can easily obtain the following inequality:

||r1||2 ≤ Ẽ(1)
1
2

+ Ẽ(2)
1
2

+ Ẽ(3)
1
2

+ CN−2m. (46)

We derive the following inequality using Grönwall’s inequality:

||rn||2 ≤ C̃τ4 + Cτ2σ−1 + Cτ2σ+2α−3 + CN−2m, (47)

where C is independent of n and τ. C̃ is defined by

C̃ =

{
O(
√

log n), σ = 2.5, and σ = −α + 3.5

O(1). else
(48)

Finally, we can prove Theorem 2 by applying the triangle inequality and utilizing
Equation (4).

5. Fast Algorithm

The expansion coefficients ω
(δ)
n (δ ∈ (−1, 0) ∪ (0, 1)) in (9) can be represented as

integrals by [11,29,30]

τ−δ
∞

∑
n=0

ω
(δ)
n ξn =τ−δω(ξ, δ) = F−δ

(
1 − ξ

τ

)
κ(ξ, θ)

=
κ(ξ, θ)

2πi

∫
c

(
1 − ξ

τ
− λ

)−1
Fδ(λ)dλ,

(49)

where
κ(ξ, θ) =

1
1 − ( δ

2 − θ)(1 − ξ)
. (50)
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If we define
∞

∑
n=0

e(κ)n (z)ξn � κ(ξ, θ)(1 − ξ − z)−1, (51)

then

ω
(δ)
n =

τ1+δ

2πi

∫
c

e(κ)n (τλ)Fδ(λ)dλ, (52)

where Fδ(λ) = λδ. From (51), we can derive

e(κ)n (z) =

[
(1 − z)−n−1 −

( −δ + 2θ

2 − δ + 2θ

)n+1
]

/
[

1 +
1
2
(−δ + 2θ)z

]
, (53)

and so we can rewrite e(κ)n as

e(κ)n (z) = r1(z)nq1(z)− r2(z)nq2(z) = e(1)n (z)− e(2)n (z), (54)

where r1(z) = (1 − z)−1, r2(z) = −δ+2θ
2−δ+2θ , and

q1(z) = (1 − z)−1
[

1 +
1
2
(−δ + 2θ)z

]−1
,

q2(z) =
−δ + 2θ

2 − δ + 2θ

[
1 +

1
2
(−δ + 2θ)z

]−1
,

(55)

The key to the fast algorithm is that we divide the time domain into a series of fast
growing intervals,

Il = [Bl−1τ, (2Bl − 2)τ], (56)

where B is a basis chosen satisfying B ∈ N+, B > 1, and Il is overlapping.
In Equation (49), we select a Talbot contour Γ as our chosen path of integration [31].

Then, we can obtain

ω
(δ)
n ≈ τδ+1

K

∑
j=−K

w(l)
j [e(1)n (τλ

(l)
j )− e(2)n (τλ

(l)
j )]Fδ(λ

(l)
j ), nτ ∈ Il , (57)

where w(l)
j and λ

(l)
j are

w(l)
j = − i

2(K + 1)
�′(ϑj), λ

(l)
j = �(ϑj), ϑj =

jπ
K + 1

. (58)

To demonstrate the effectiveness of the approximation, we subtract (57) from (9) and
obtain the absolute value, which represents the absolute approximation error. Setting B = 5,
Il(l = 1, 2, 3, 4, 5), and K = 10 and 30, we plot the absolute approximation error in Figure 1.

Figure 1 shows that the approximate effect of the first few weights is poor, so in the
calculation process, we calculate the first few weights by (9) and find that the approximate
effect of K = 30 is generally better than that of K = 10, which will be verified in Example 4.
Referring to [32], we determine L and obtain n = b0 > b1 > · · · > bL−1 > bL = 0.
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Figure 1. (a) Absolute error for ω
(0.3)
n with τ = 10−3, (b) absolute error for ω

(−0.3)
n with τ = 10−3.

Now, we rewrite (8) as

Dn,θ
τ,ηξ = τ−ηω

(η)
0 (ξn − ξ0) + τ−η

L

∑
l=1

bl−1−1

∑
k=bl

ω
(η)
n−k(ξ

k − ξ0),

In,θ
τ,ηξ = τηω

(−η)
0 (ξn − ξ0) + τη

L

∑
l=1

bl−1−1

∑
k=bl

ω
(−η)
n−k (ξk − ξ0).

(59)

We define u(l)
n,δ as

u(l)
n,δ =

⎧⎪⎪⎨⎪⎪⎩
τ−δω

(δ)
0 (ξn − ξ0), l = 0

τ−δ
bl−1−1

∑
k=bl

ω
(δ)
n−k(ξ

k − ξ0). l = 1, 2, · · · , L
(60)

Then, utilizing (57), (60), and the definitions for e(i)n (z)(i = 1, 2), we obtain (for l > 0)

u(l)
n,δ ≈

K

∑
j=−K

w(l)
j

[
τ

bl−1−1

∑
k=bl

e(κ)n−k(τλ
(l)
j )(ξk − ξ0)

]
Fδ(λ

(l)
j )

=
K

∑
j=−K

w(l)
j τ

[
bl−1−1

∑
k=bl

e(1)n−k(τλ
(l)
j )(ξk − ξ0)−

bl−1−1

∑
k=bl

e(2)n−k(τλ
(l)
j )(ξk − ξ0)

]
Fδ(λ

(l)
j )

=
K

∑
j=−K

w(l)
j

[
rn−(bl−1−1)

1 (τλ
(l)
j )v(1)j − rn−(bl−1−1)

2 (τλ
(l)
j )v(2)j

]
Fδ(λ

(l)
j )

(61)

where v(i)j (i = 1, 2) is as follows

v(i)j = v(i)j (bl , bl−1, λ
(l)
j ) = τ

bl−1−1

∑
k=bl

e(i)
(bl−1−1)−k(τλ

(l)
j )(ξk − ξ0). (62)

We notice that v(i)j (bl , bl−1, λ
(l)
j ) has a recursive structure, which can be utilized to

enhance the computation speed:

v(i)j (bl , bs, λ
(l)
j ) =τ

bm−1

∑
k=bl

e(i)
(bs−1)−k(τλ

(l)
j )(uk − u0) + v(i)j (bm, bs, λ

(l)
j )

=ri(τλ
(l)
j )bs−bm v(i)j (bl , bm, λ

(l)
j ) + v(i)j (bm, bs, λ

(l)
j ).

(63)
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The first few weights are not described well by (57) (refer to Figure 1). Thus, for
l = 0, 1, 2, · · · , k, we calculate the weights according to (9), and for l = k + 1, · · · , L, we
calculate the weights according to (57). Combining (59)–(61), we can obtain

Dn,θ
τ,ηξ =

k

∑
l=0

u(l)
n,η +

L

∑
l=k+1

u(l)
n,η

≈
k

∑
l=0

u(l)
n,η +

L

∑
l=k+1

K

∑
j=−K

w(l)
j

[
rn−(bl−1−1)

1 (τλ
(l)
j )v(1)j − rn−(bl−1−1)

2 (τλ
(l)
j )v(2)j

]
Fη(λ

(l)
j ).

In,θ
τ,ηξ =

k

∑
l=0

u(l)
n,−η +

L

∑
l=k+1

u(l)
n,−η

≈
k

∑
l=0

u(l)
n,−η +

L

∑
l=k+1

K

∑
j=−K

w(l)
j

[
rn−(bl−1−1)

1 (τλ
(l)
j )v(1)j − rn−(bl−1−1)

2 (τλ
(l)
j )v(2)j

]
F−η(λ

(l)
j ).

(64)

Below are listed the steps for implementing the fast algorithm:

1. Input parameters B, K, λ
(l)
j , w(l)

j , ϑj.

2. Compute bl and obtain n = b0 > b1 > · · · > bL−1 > bL = 0.
3. For l = 0, 1, 2, · · · , k, compute the weights using (9), and calculate the weights us-

ing (57) for l = k + 1, · · · , L.
4. From step 3, compute (64).

6. Numerical Examples

In this section, we provide four examples of solving an FKGE utilizing our proposed
scheme, and the results verify our theoretical analysis and the effectiveness of our method.
The basis function was chosen as ψ(x) = Lj(x) − Lj+2(x), j = 0, 1, · · · , N for ∀vk

N ∈
P0

N , vk
N = ∑N−2

j=0 v̂k
Nψj(x), where v̂k

N is the frequency coefficient. The codes were developed
in MATLAB 2022a and executed on a Windows 10 operating system. The computer used
for running these codes had a processor speed of 2.60 GHz and 8 GB of RAM.

Example 1. Let ρ = 1 in (1). We considered the following fractional dissipative Klein–Gordon
equation with homogeneous initial condition φ(x) = 0, ϕ(x) = 0:

∂αξ(x, t)
∂tα

+
∂ξ(x, t)

∂t
+ ξ(x, t) =

∂2ξ(x, t)
∂x2 + f (x, t). (65)

Assuming that the exact solution of Equation (65) is ξ(x, t) = t4 sin(πx), the corresponding
forcing term is given by

f (x, t) =
[

Γ(5)
Γ(5 − α)

t4−α + 4t3 + (1 + π2)t4
]

sin(πx).

For N = 100, the results are presented in Tables 1–3. It can be observed that our
numerical scheme exhibited second-order convergence accuracy in the temporal direction,
which aligned with the theoretical expectations.

Table 1. The L2 error and L∞ error at α = 1.5, θ = 0.3, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 5.044987 × 10−3 8.532442 × 10−4 0.306217
2−7 1.280432 × 10−3 1.98 2.165557 × 10−4 1.98 0.766249
2−8 3.225111 × 10−4 1.99 5.454538 × 10−5 1.99 3.059746
2−9 8.092851 × 10−5 1.99 1.368721 × 10−5 1.99 15.242314
2−10 2.026974 × 10−5 2.00 3.428163 × 10−6 2.00 78.373508
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Table 2. Temporal convergence rates at α = 1.2, θ = 0.5, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 6.613273 × 10−3 1.118484 × 10−3 0.279892
2−7 1.674942 × 10−3 1.98 2.832782 × 10−4 1.98 0.749574
2−8 4.214538 × 10−4 1.99 7.127927 × 10−5 1.99 3.058692
2−9 1.057042 × 10−4 2.00 1.787745 × 10−5 2.00 14.168706
2−10 2.646869 × 10−5 2.00 4.476574 × 10−6 2.00 78.849718

Table 3. The L2 error and L∞ error at α = 1.8, θ = 0.8, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 1.584784 × 10−2 2.680300 × 10−3 0.267496
2−7 4.066127 × 10−3 1.96 6.876924 × 10−4 1.96 0.729302
2−8 1.029638 × 10−3 1.98 1.741398 × 10−4 1.98 3.289171
2−9 2.590520 × 10−4 1.99 4.381272 × 10−5 1.99 14.103777
2−10 6.496853 × 10−5 2.00 1.098794 × 10−5 2.00 77.813919

To analyze the spatial accuracy, we set τ = 0.001 to eliminate temporal direction errors.
In Figure 2, it can be observed that when α = 1.8 and θ = 0.3, the error exhibited an
exponential decrease. This behavior confirmed the spectral accuracy of the method, which
in turn confirmed the validity of our theoretical analysis.
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Figure 2. α = 1.8, θ = 0.8 for Example 1 at T = 1.

Example 2. Let ρ = 0 in (1). We investigated the fractional linear Klein–Gordon equation with
the non-homogeneous initial conditions φ(x) = sin(πx), ϕ(x) = 0,

∂αξ(x, t)
∂tα

+ ξ(x, t) =
∂2ξ(x, t)

∂x2 + f (x, t). (66)

Assuming that the exact solution of Equation (66) is ξ(x, t) = (t4 + 1) sin(πx), the corre-
sponding forcing term is

f (x, t) =
[

Γ(5)
Γ(5 − α)

t4−α +
1

Γ(1 − α)
t−α + (t4 + 1)(1 + π2)

]
sin(πx).

For N = 100, the results are illustrated in Tables 4–6. Notably, even when considering
non-homogeneous initial conditions, it was evident that our numerical scheme remained
applicable. The results indicated the adaptability and flexibility of our method.
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Table 4. The L2 error and L∞ error at α = 1.5, θ = 0.9, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 1.637673 × 10−2 2.769750 × 10−3 0.271781
2−7 4.181892 × 10−3 1.97 7.072714 × 10−4 1.97 0.695502
2−8 1.056485 × 10−3 1.98 1.786803 × 10−4 1.98 2.756914
2−9 2.655010 × 10−4 1.99 4.490342 × 10−5 1.99 12.633774
2−10 6.654790 × 10−5 2.00 1.125506 × 10−5 2.00 59.670061

Table 5. The L2 error and L∞ error at α = 1.2, θ = 0.7, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 1.012134 × 10−2 1.711793 × 10−3 0.275343
2−7 2.568689 × 10−3 1.98 4.344350 × 10−4 1.98 0.765448
2−8 6.469977 × 10−4 1.99 1.094249 × 10−4 1.99 2.744447
2−9 1.623546 × 10−4 1.99 2.745857 × 10−5 1.99 13.364513
2−10 4.066441 × 10−5 2.00 6.877456 × 10−6 2.00 60.118435

Table 6. The L2 error and L∞ error at α = 1.8, θ = 0.3, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 6.314916 × 10−3 1.068024 × 10−3 0.273913
2−7 1.612247 × 10−3 1.97 2.726746 × 10−4 1.97 0.709604
2−8 4.072641 × 10−4 1.99 6.887941 × 10−5 1.99 2.833458
2−9 1.023419 × 10−4 1.99 1.730879 × 10−5 1.99 12.073551
2−10 2.565123 × 10−5 2.00 4.338319 × 10−6 2.00 58.882522

Example 3. Let ρ = 1 in (1). The non-smooth solution ξ(x, t) = (t4 + tmin{2−α,α−1}) sin(πx)
was considered, with the corresponding forcing term

f (x, t) =
[

Γ(min{3 − α, α})
Γ(min{3 − 2α, 0}) tmin{2−2α,−1} +

Γ(5)
Γ(5 − α)

t4−α + 4t3+

min{2 − α, α − 1}tmin{1−α,α−2} + (t4 + tmin{2−α,α−1})(1 + π2)

]
sin(πx).

Assuming N = 100, it is worth mentioning that due to the weak regularity of the
solution, it was not possible to achieve the optimal convergence rate of O(τ2). Referring
to Table 7, we can observe that the inclusion of correction terms led to an improved
convergence rate. This result serves as evidence for the efficiency of our method.

Table 7. Temporal convergence rates at T = 1.

(α, θ) τ Direct Method Rate Correction Rate

(1.2, 0.1) 2−4 1.154038 × 10−3 4.645596 × 10−4

2−5 3.103449 × 10−4 1.89 1.184401 × 10−4 1.97
2−6 8.260221 × 10−5 1.91 2.815017 × 10−5 2.07
2−7 2.255211 × 10−5 1.87 7.023850 × 10−6 2.00

(1.8, 0.3) 2−4 1.538917 × 10−2 1.124338 × 10−2

2−5 4.237714 × 10−3 1.86 2.942242 × 10−3 1.93
2−6 1.171468 × 10−3 1.85 7.246667 × 10−4 2.02
2−7 3.333848 × 10−4 1.81 1.757115 × 10−4 2.04

(1.5, 0) 2−4 1.457736 × 10−3 5.482971 × 10−4

2−5 4.355394 × 10−4 1.74 1.518084 × 10−4 1.85
2−6 1.323356 × 10−4 1.72 3.868906 × 10−5 1.97
2−7 4.106669 × 10−5 1.69 9.639184e × 10−6 2.00
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Example 4. Let ρ = 0 in (1). We utilized the fast algorithm to solve the Equation (66). Assuming
that the exact solution of Equation (66) is ξ(x, t) = t4 sin(πx), the corresponding forcing term is

f (x, t) =
[

Γ(5)
Γ(5 − α)

t4−α + (1 + π2)t4
]

sin(πx).

We set B = 5 and N = 100. To simplify the notation, we denoted the approximation of
Equation (57) with 2K + 1 points as FastK. We had two sets of solutions: ZS, which were
obtained using the direct method, and ZF, which was obtained using the fast algorithm.
We set θ = 1−α

2 and defined the pointwise error as

e(α, M) = max
t=t0,··· ,tM ,x=x1,··· ,xN

|ZS − ZF|. (67)

According to Table 8, it is evident that the fast algorithm significantly accelerated the
computation process. Moreover, our approach not only attained exceptional precision, but
also effectively reduced the computational cost. For example, for K = 30, the pointwise
error was around 10−15, which was close to the machine accuracy. Figure 3a displays
the exact solutions for M = 1000, α = 1.8. Figure 3b shows the numerical solutions for
the given parameters: M = 1000, α = 1.8, and K = 30. Furthermore, in order to obtain
the error contour plot shown in Figure 4a, we subtracted the corresponding solutions
from Figure 3a,b. In Figure 4b, it is evident that the computational complexity of the fast
algorithm was O(M log M), while the direct method had a computational complexity of
O(M2). This result in Figure 4 aligned with the theoretical expectations and confirmed that
the algorithms’ performances matched the expected efficiencies.

(a) (b)

Figure 3. (a) Exact solution, (b) numerical solution.
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Figure 4. (a) Error contour, (b) computational complexity.
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Table 8. Pointwise error with θ = 1−α
2 .

α M Direct Method Fast10 e(α, M) Fast30 e(α, M)

1.8 1 × 103 56.29 s 6.96 s 2.11210 × 10−8 16.08 s 3.16414 × 10−15

2 × 103 307.52 s 18.44 s 2.22114 × 10−8 42.53 s 7.16094 × 10−14

3 × 103 909.11 s 36.25 s 5.83438 × 10−8 84.64 s 1.33227 × 10−15

1.5 1 × 103 57.41 s 6.51 s 3.94038 × 10−7 16.55 s 5.62052 × 10−16

2 × 103 310.38 s 18.48 s 4.21263 × 10−7 44.76 s 2.57572 × 10−14

3 × 103 998.17 s 37.36 s 3.67259 × 10−7 87.23 s 1.52101 × 10−14

1.2 1 × 103 57.25 s 6.94 s 2.54602 × 10−7 16.55 s 1.85407 × 10−14

2 × 103 308.97 s 18.45 s 5.35331 × 10−7 44.76 s 7.86038 × 10−14

3 × 103 1014.26 s 35.09 s 7.14741 × 10−8 83.61 s 5.17364 × 10−14

7. Conclusions

In this study, we developed a stable and efficient numerical method to solve an FKGE.
A stability analysis and the convergence of the discrete scheme were provided in our
method. Considering the weak regularity of the solutions, we improved the convergence
order by incorporating correction terms into our approach. To optimize the computational
complexity, we implemented a fast algorithm, which significantly reduced the runtime
required for solving an FKGE. This allowed for quicker computations without sacrificing
accuracy. We note the method can be extended to higher-dimensional cases.
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Abstract: In this study, we present an innovative approach involving a spectral collocation algorithm
to effectively obtain numerical solutions of the nonlinear time-fractional generalized Kawahara equa-
tion (NTFGKE). We introduce a new set of orthogonal polynomials (OPs) referred to as “Eighth-kind
Chebyshev polynomials (CPs)”. These polynomials are special kinds of generalized Gegenbauer
polynomials. To achieve the proposed numerical approximations, we first derive some new the-
oretical results for eighth-kind CPs, and after that, we employ the spectral collocation technique
and incorporate the shifted eighth-kind CPs as fundamental functions. This method facilitates the
transformation of the equation and its inherent conditions into a set of nonlinear algebraic equations.
By harnessing Newton’s method, we obtain the necessary semi-analytical solutions. Rigorous analysis
is dedicated to evaluating convergence and errors. The effectiveness and reliability of our approach
are validated through a series of numerical experiments accompanied by comparative assessments.
By undertaking these steps, we seek to communicate our findings comprehensively while ensuring
the method’s applicability and precision are demonstrated.

Keywords: time-fractional Kawahara equation; generalized Gegenbauer polynomials; Chebyshev
polynomials; collocation method; connection formulas; convergence analysis

MSC: 65M60; 11B39; 40A05; 34A08

1. Introduction

The presence of CPs is widely recognized in the realm of numerical analysis, a fact
well-documented by notable mathematicians and numerical analysts across various refer-
ences such as [1–3]. This observation, sometimes attributed to Philip Davis but collectively
acknowledged, underscores the significance of CPs in this field. Their influence is pervasive,
consistently emerging in modern advancements encompassing function approximation,
integral estimation, and the application of spectral methods to diverse differential equa-
tions (DEs).

Various kinds of CPs are explored within the research landscape. Noteworthy attention
is directed toward both the first and second kinds, as evidenced in studies such as [4,5].
Similarly, investigations delve into the third and fourth kinds, as exemplified in research
such as [6–8]. In the context of numerical solutions for specific fractional differential
equations (FDEs), Abd-Elhameed and Youssri have ventured into utilizing the fifth and
sixth types of CPs [9,10]. A continuation of this exploration can be observed through their
subsequent works, including [11–13], where fifth-kind CPs are harnessed for addressing
more intricate partial DEs. Additionally, their application extends to the realm of sixth-kind
CPs, effectively addressing advanced partial DE [14,15].
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Further substantiating the versatility of CPs, other researchers have utilized fifth-kind
CPs for diverse DE types [16–19], while a distinct focus is placed on the sixth-kind CPs by
researchers, as highlighted in [20–22]. These endeavors collectively underscore the diverse
utility and applicability of CPs within the landscape of differential equations research.

A wide array of applications arises for OPs characterized by their trigonometric
representation. These find utility in diverse domains, including signal analysis through
Fourier series expansions, approximating and interpolating periodic functions, as well as
tackling DEs with periodic boundary conditions. Their pertinence is particularly marked
in numerical algorithms such as the spectral method, which effectively leverages these
polynomials to achieve precise function approximations. This multifaceted significance
elucidates the overarching importance of CPs in various contexts, thereby prompting
further exploration and analysis of distinct CPs kinds.

In a compelling Ph.D. dissertation by Masjed-Jamei [23], an extended Sturm–Liouville
problem is ingeniously applied to symmetric functions, ushering in a symmetrical class
defined by four parameters. This work elucidates the fundamental attributes of these
polynomials, including their compliance with a three-term recurrence relation, their or-
thogonality, and several other notable formulae. The principal advantage of introducing
this specific class of OPs lies in its capacity to generalize several noteworthy, established
classes of OPs. Furthermore, some lesser-known OPs are revealed as specific instances of
this introduced class. Notably, the widely recognized four categories of CPs emerge as
special cases within this broader generalized class. Additionally, the exploration yields
two new OPs classes that can be derived from this encompassing generalized category.
This insightful investigation thus contributes to both the enhancement of existing OPs
knowledge and the introduction of novel variants.

A commonly employed technique for solving DEs or approximating functions is the
conventional collocation method. This method belongs to the spectral method family, which
is renowned for its exceptional accuracy and swift convergence rates. Within the spectral
collocation framework, the domain undergoes discretization into a set of collocation points,
often termed grid points. These specific points are selected meticulously, guided by criteria
such as the extrema of certain functions or the roots of OPs. To enhance precision around
regions of interest and accurately capture boundary conditions, these points are usually
distributed non-uniformly. After identifying the collocation points, polynomial interpo-
lation is conducted based on this configuration to approximate the unknown function or
solve the differential equation.

OPs, including CPs, Legendre polynomials, or Jacobi polynomials, are commonly
chosen for this interpolation, depending on the specific scenario. The primary advantage of
the collocation approach is its versatility, making it applicable to a wide array of differential
equation types. Notable instances of its application include ordinary DEs, as demonstrated
in contributions such as [24], partial DEs showcased in [25,26], and FDEs illustrated through
references such as [27,28].

For further insights into spectral methods, consider exploring contributions such as [29–31],
which further enrich the understanding of this approach’s applications and potential.

The use of FDEs in place of classical ones has become increasingly popular in recent
years [32–34]. This is because these equations can describe many phenomena in different
disciplines of science. More specifically, these equations aid in analyzing signals character-
ized by non-integer power-law traits, such as fractal time series and self-similar signals.
In addition, they can model processes such as chemical reactions, heat transfer, and fluid
flow. For some theoretical aspects of FDEs, one can refer to [35,36], while some practical
applications of FDEs can be found in [37,38]. In the past years, many studies have been
published on numerical methods for time and space FDEs; for example, see [39–41]. For
some numerical algorithms that are employed to handle various types of FDEs, one can
consult [42–46].

The evolution of wave packets in dispersive media is described by the Kawahara
equation, a nonlinear partial differential equation. As a generalization of the widely
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used Korteweg-de Vries equation, which is used to simulate shallow water waves, Toshio
Kawahara first proposed it in 1972. The Kawahara equation is given by:

ut + α u ux + β uxxx + γ uxxxxx = 0,

where u = u(x, t) represents the dependent variable (usually the amplitude of a wave
packet), t is the time variable, and x is the spatial variable. The subscripts denote partial
derivatives with respect to the corresponding variables, and α, β, and γ are constants that
determine the behavior of the equation. The convective term u ux, dispersive term uxxx,
and higher-order dispersion term uxxxxx are the three terms included in the Kawahara equa-
tion. The dispersive term accounts for wave dispersion, the higher-order dispersion term
captures extra dispersion effects that emerge in specific media, and the convective term de-
scribes the advection of the wave packet by its own velocity. The authors of [47] have found
an explicit solution for the time-fractional generalized dissipative Kawahara equation.
In [48], they have conversed about the concepts and uses of Caputo time-fractional nonlin-
ear equations: both their theory and how they are used. Additionally, Refs. [49,50] have
examined the Lie symmetry analysis and conservation regulations for the time fractional
simplified modified Kawahara equation and the time fractional generalized fifth-order
KdV equation.

The primary goals of this research are to solve the Kawahara time fractional equation
and examine the performance of the CPs of the eighth-kind spectral approach as a numerical
solution technique. We aim to create a mathematical framework for the NTFGKE, which
entails comprehending the physical events covered by the equation and constructing the
necessary mathematical equations. In addition, we aim to validate the numerical results of
the spectral approach.

Some advantages of the proposed method, as far as we are aware, include the following:

• By choosing eighth-kind CPs and their shifted ones as basis functions and taking a few
terms of the retained modes, it is possible to produce approximations with excellent
precision. Less calculation is required. In addition, the resulting errors are small.

• Eighth-kind CPs and their shifted counterparts are not as widely used as other kinds of
CPs. Therefore, we are motivated to investigate relevant theoretical results concerned
with them.

We point out here that the novelty of the contribution in this paper can be listed
as follows:

• Some important formulas concerning eighth-kind CPs and their shifted ones are
derived.

• This basis is used for the first time in the numerical treatment of the NTFGKE.

Here is how the paper is divided: Some fractional calculus concepts and an overview
of CPs of the eighth kind are introduced as useful mathematical tools in Section 2. In
Section 3, we develop a few other new formulas related to CPs of the eighth kind. The
primary focus of the main part of this article is on developing a collocation procedure
for dealing with the NTFGKE, which is covered in Section 4. We examine, in detail, the
truncation error and the rate of convergence of the expansion coefficients in Section 5. Some
illustrative examples are given in Section 6. Section 7 provides some closing thoughts.

2. Some Relationships and Preliminary Information

The purpose of this section is to present the definition of fractional Caputo derivatives
and to recall some of the important properties they satisfy. A few properties and relations
associated with eighth-kind CPs are given.
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2.1. Caputo Definition of the Fractional Derivative

Definition 1. Caputo defined the fractional-order derivative as ([51]):

dα ξ(s)
d sα

=
1

Γ(p − α)

∫ s

0
(s − t)p−α−1ξ(p)(t)dt, α, s > 0, p − 1 � α < p, p ∈ Z+.

The following property is satisfied by the operator dα

d sα for p − 1 � α < p, p ∈ N,

dα sp

d sα
=

{
0, if p ∈ N0 and p < �α�,

Γ(p+1)
Γ(p−α+1) sp−α, if p ∈ N0 and p ≥ �α�,

where N0 = {0, 1, 2, . . .}, Γ(·) is the gamma function [52] and the notation �α� represents
the ceiling function.

2.2. An Account of the CPs of Eighth-Kind and Their Shifted Ones

We account here for the eighth kind of CPs. In addition, we will develop some
important formulas for these polynomials that will be useful in the sequel.

The generalized Gegenbauer polynomials G(λ,μ)
n (ξ) are OPS on [−1, 1] in regard to:

w(ξ) = (1 − ξ2)λ− 1
2 |ξ|2 μ. In fact, these polynomials can be defined as (see, [53,54])

G(λ,μ)
n (ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(λ + μ) k
2(

μ + 1
2

)
k
2

P(
λ− 1

2 ,μ− 1
2 )

k
2

(
2ξ2 − 1

)
, if k even,

(λ + μ) k+1
2(

μ + 1
2

)
k+1

2

ξP(
λ− 1

2 ,μ+ 1
2 )

k−1
2

(
2ξ2 − 1

)
, if k odd,

(1)

where P(γ,δ)
k (ξ) are the classical Jacobi polynomials, and (z)k is the Pochhammer symbol;

that is (z)k =
Γ(z + k)

Γ(z)
.

Remark 1. Many celebrated OPs may be extracted from the generalized polynomials G(λ,μ)
n (ξ) as

particular ones. The Gegenbauer polynomials that include the first and second kinds of CPs are also
special ones of G(λ,μ)

n (ξ). In addition, the fifth and sixth kinds of CPs are specific polynomials of
G(λ,μ)

n (ξ).

Now, we will consider eighth-kind CPs, which will be denoted by Ek(ξ). The sequence
{Ek(ξ)}k≥0, k ≥ 0 is a sequence of OP on [−1, 1] that is orthogonal regarding the weight

function w(ξ) = ξ4
√

1 − ξ2. In other words, Ek(ξ) = G(2,1)
k (ξ). Thus, from (1), they can be

represented as

Ek(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3) k

2
( 5

2 ) k
2

P(
1
2 , 3

2 )
k
2

(
2ξ2 − 1

)
, if k even,

(3) k+1
2

( 5
2 ) k+1

2

x P(
1
2 , 5

2 )
k−1

2

(
2ξ2 − 1

)
, if k odd,

(2)

with the orthogonality relation:∫ 1

−1
ξ4
√

1 − ξ2 E�(ξ) Em(ξ) dξ = h� δ�,m, (3)
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where

h� =
9 π

128

⎧⎪⎪⎨⎪⎪⎩
(�+ 2) (�+ 4)

(�+ 3)2 , � even,

(�+ 1) (�+ 5)
(�+ 2) (�+ 4)

, � odd,

and δn,m is the Kronecker delta function.
Among the pivotal formulas of Ej(ξ) are the analytic formulas and their inversions.

The following two lemmas give these results.

Lemma 1. For every non-negative integer �, the polynomials E�(ξ) can be expressed as:

E2 �(ξ) =
�

∑
m=0

(−1)m(3)2�−m

(�− m)!m!
( 5

2
)
�−m

ξ2�−2m, (4)

E2 �+1(ξ) =
�

∑
m=0

(−1)m(3)1+2�−m

(�− m)!m!
( 5

2
)

1+�−m

ξ2�−2m+1. (5)

Proof. The proof is direct from (2).

Lemma 2. The inversion formulas to (4) and (5) are given by

ξ2 � =
�

∑
m=0

(3 + 2�− 2m) �!
( 5

2
)
�

m! (3)2�−m+1
E2 �−2m(ξ), � ≥ 0,

ξ2 �+1 =2
�

∑
m=0

(2 + �− m) �!
( 5

2
)
�+1

m! (3)2+2�−m
E2 �−2m+1(ξ), � ≥ 0.

Proof. The proof is analogous to the one presented for the inversion of the CPs of the fifth
kind in [55].

3. Some Important Formulas Related to Ek(ξ) and Their Shifted Ones

This section is interested in deriving some important formulas concerning eighth-
kind CPs. We will derive the connection formula between E�(ξ) and second-kind CPs
U�(ξ). This formula will be the key to obtaining a trigonometric representation of E�(ξ). In
addition, the expressions for the derivatives of U�(ξ) are found.

3.1. Some Formulas Concerned with E�(ξ)

The following theorem displays the connection formula between eighth- and first-kind
CPs, which will be useful in the sequel.

Theorem 1. The polynomials E�(ξ) can be written as combinations of second-kind CPs U�(ξ) as

E2 �(ξ) =
3

2(2 �+ 3)

�

∑
m=0

(−1)m (m + 1) (2 �− m + 2)U2 �−2 m(ξ), � ≥ 0, (6)

E2 �+1(ξ) =
3

(2�+ 3) (2�+ 5)

�

∑
m=0

(−1)m (m + 1) (−2 �+ m − 3) (−�+ m − 1)U2 �−2 m+1(ξ), � ≥ 0. (7)

Proof. The power form representation in (5), along with the inversion formula

ξ2j+1 =
(2j + 1)!

22j

j

∑
r=0

(1 + j − r)
r!(2j − r + 2)!

U2j−2r+1(ξ), j ≥ 0,
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yields the following formula

E2�+1(ξ) = 3
�

∑
m=0

(−1)m (2�− m + 3)!
m! (3 + 2�− 2m)(5 + 2�− 2m)

�−m

∑
s=0

1 + �− m − s
s!(2 + 2�− s − 2m)!

U2�−2s−2m+1(ξ),

which can be transformed again into

E2�+1(ξ) = 3
�

∑
m=0

(1 + �− m)
m

∑
p=0

(−1)p(3 + 2�− p)!
(3 + 2�− 2p)(5 + 2�− 2p)p!(2 + 2�− p − m)!(m − p)!

U2�−2m+1(ξ). (8)

Now, setting

Mm,� =
m

∑
p=0

(−1)p(3 + 2�− p)!
(3 + 2�− 2p)(5 + 2�− 2p)p!(2 + 2�− p − m)!(m − p)!

,

so it is not difficult based on Zeilberger’s algorithm (see, [56]) that Mm,� meets the first-order
recurrence relation:

(3 + 2�− m)(1 + m)Mm−1,� + (4 + 2�− m)m Mm,� = 0, M0,� = 1,

which can be quickly solved to give

Mm,� =
(−1)1+m(1 + m)(−3 − 2�+ m)

(3 + 2�)(5 + 2�)
.

Now, Formula (8) turns into Formula (7). Formula (6) can be similarly obtained.

Corollary 1. It is possible to represent E�(ξ) in the following trigonometric expressions:

E2 �(cos(ϑ)) =
1

8 (2 �+ 3)

[
3 csc(ϑ) sec3(ϑ) ((�+ 2) sin(2 ϑ (�+ 1)) + (�+ 1) sin(2 ϑ (�+ 2)))

]
, (9)

E2 �+1(cos(ϑ)) =
1

16 (2 �+ 3) (2 �+ 5)

[
3 csc(ϑ) sec4(ϑ) ((�+ 3) (2 �+ 5) sin(2 ϑ (�+ 1))

+(�+ 1) (4 (�+ 3) sin(2 ϑ (�+ 2)) + (2 �+ 3) sin(2 ϑ(�+ 3))))].
(10)

Proof. Formulas (9) and (10) are consequences of the connections between Formulas (6) and (7),
and the trigonometric representation of U�(ξ).

The theorem that follows demonstrates the inverse formulas for Formulas (6) and (7).

Theorem 2. The polynomials U�(ξ) have the following connection with the polynomials E�(ξ)

U2�(ξ) =
2�+ 3

3(�+ 1)
E2�(ξ) +

(2 �+ 1)2

3 �(�+ 1)
E2�−2(ξ) +

2 �− 1
3 �

E2�−4(ξ),

U2�+1(ξ) =
2�+ 5

3(�+ 1)
E2�+1(ξ) +

4
3

E2�−1(ξ) +
2 �− 1

3 (�+ 1)
E2�−3(ξ).

Proof. In a similar manner to the proof of Theorem 1.

Here, we prove a significant theorem, in which we represent the qth-derivative of
Ek(ξ) as combinations of their original ones.

Theorem 3. The qth-derivative of Ej(ξ) can be expressed as

dq Ej(ξ)

d ξq =
j−q

∑
�=0

Aq
�,j E�(ξ),
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where

Aq
�,j = (�+ 3)

1
2 (j−�−q)

∑
r=0

(−1)r εj,q,� (3)j−r (j − q − 2 r + 1)q

⌊
1
2 (j − q − 2r)

⌋
!
( 5

2
)
 1

2 (j−q−2r+1)!
r!
( 5

2
)⌊

j+1
2

⌋
−r

Γ
(
−r +

⌊
j
2

⌋
+ 1
) (

1
2 (j − �− q − 2r)

)
! (3) 1

2 (j+�−q−2r+2)

, (11)

and

εj,q,� =

{
1, if (j − �− q) even
0, otherwise.

Proof. The proof can be found using the results of Lemmas 1 and 2 after some algebraic
computations.

3.2. Shifted Eighth-Kind CPs

For our present purposes, it is useful to define the shifted CPs of eighth-kind ES,n(ξ)
that can be defined on [0, 1] by

ES,n(ξ) = En(2 ξ − 1).

From (3), it is easy to see that the polynomials ES,n(ξ), i ≥ 0 are orthogonal on [0, 1], in
the sense that ∫ 1

0
ES,n(ξ) ES,m(ξ)w(ξ) dξ = ĥn δn,m, (12)

where w(ξ) = (1 − 2 ξ)4
√

ξ (1 − ξ) and ĥn = 1
4 hn.

Remark 2. Starting from a certain formula of Ek(ξ), we can deduce their counterparts for the
shifted CPs. In the following, we present some of these useful formulas.

Corollary 2. For every non-negative integer j, the polynomials ES,j(ξ) are linked with the polyno-
mials of the shifted second-kind CPs (U∗

j (ξ)) as

ES,2 �(ξ) =
3

2(2 �+ 3)

�

∑
m=0

(−1)m (m + 1) (2 �− m + 2)U∗
2 �−2 m(ξ), (13)

ES,2 �+1(ξ) =
3

(2�+ 3) (2�+ 5)

�

∑
m=0

(−1)m (m + 1) (−2 �+ m − 3) (−�+ m − 1)U∗
2 �−2 m+1(ξ). (14)

Proof. When ξ is changed to (2ξ − 1), it follows directly from Theorem 1.

Corollary 3. The polynomials U∗
j (ξ) are linked with ES,j(ξ) by

U∗
2�(ξ) =

2�+ 3
3(�+ 1)

ES,2�(ξ) +
(2 �+ 1)2

3 �(�+ 1)
ES,2�−2(ξ) +

2 �− 1
3 �

ES,2�−4(ξ),

U∗
2�+1(ξ) =

2�+ 5
3(�+ 1)

ES,2�+1(ξ) +
4
3

ES,2�−1(ξ) +
2 �− 1

3 (�+ 1)
ES,2�−3(ξ).

Proof. It follows from Theorem 2 by changing ξ to (2ξ − 1).

Theorem 4. The power form representation of the polynomial ES,i(ξ) is given as follows

ES,i(ξ) =
i

∑
p=0

gp,i ξ p, (15)

where
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gp,i =
3

(2p + 1)!
×⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

i
2

∑
j=
⌊

p+1
2

⌋
(−1)

i
2 22 p−2

(
i
2 − j + 1

)(
i
2 + j + 2

)
Γ
(

i+3
2

)
(−1)j+p (2j + p + 1)!

Γ
(

i+1
2 + 2

)
(2 j − p)!

, if i even,

i−1
2

∑
j= p

2 !

(−1)
i+1

2 (j + 1) 22 p−3 (i − 2 j + 1)
(

i+5
2 + j

)
Γ
(

i
2 + 1

)
(−1)j+p (2 j + p + 2)!

Γ
(

i
2 + 3

)
(2 j − p + 1)!

, if i odd.

(16)

Proof. The proof can proceed if we start with the connection formulas of Corollary 2 along
with the power form of U∗

j (ξ) given by

U∗
j (ξ) =

j

∑
r=0

(−1)r22(j−r)(2j − r + 1)!
(2j − 2r + 1)!r!

ξ j−r.

Theorem 5. The inversion formula to the power form representation of the polynomial ES,i(ξ) is
given as follows

ξm =
m

∑
r=0

Hr,m ES,r(ξ),

where

Hr,m =
1
3

23−2m (r + 3) (2m + 1)!⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 m−r
2 !

∑
�=0

(r + 3) (2 �+ r + 1)2 (�+ r)!
�! Γ(3 − �) (�+ r + 3)! (−2 �+ m − r)! (2 �+ m + r + 2)!

, if r even,

 1
2 (m−r+1)!

∑
�=0

(r + 2) (r + 4) (2 �+ r + 1) (�+ r)!
�! Γ(3 − �) (�+ r + 3)! (−2 �+ m − r)! (2 �+ m + r + 2)!

, if r odd.

Proof. The proof can proceed if we start with the inversion formula of U∗
j (ξ) together with

the connection formulas of Corollary 3.

Theorem 6. The qth-derivative of ES,j(ξ) can be expressed as

dq ES,j(ξ)

d ξq =
j−q

∑
�=0

Aq
�,j ES,�(ξ),

where Aq
�,j,q = 2q Aq

�,j,q, and Aq
�,j is given in (11).

Proof. It follows from Theorem 3 by changing ξ to (2ξ − 1).

Now, we give an approximation for the fractional derivatives of the shifted polynomi-
als ES,j(t).

Theorem 7. In the case of 0 < α < 1, the following approximation holds

dα ES,j(t)
d tα

≈
N
∑
s=0

Ds,j ES,s(t),
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where

Ds,j =
j

∑
r=0

Γ(r + 1) gr,j ρs

Γ(r + 1 − α)
,

where gr,j are given as in (16), and ρs is given by

ρs =
1
ĥs

s

∑
p=0

gp,s

(
β

(
p + r − α +

3
2

,
3
2

)
− 8 β

(
p + r − α +

5
2

,
3
2

)
+ 24 β

(
p + r − α +

7
2

,
3
2

)
−32 β

(
p + r − α +

9
2

,
3
2

)
+ 16 β

(
p + r − α +

11
2

,
3
2

))
,

and β(x, y) = Γ(x) Γ(y)
Γ(x+y) is the well-known Beta function [52].

Proof. The application of the operator dα

d tα to ES,j(t), defined in (15), enables us to receive
the following relation

dα ES,j(t)
d tα

=
j

∑
r=0

gr,j
Γ(r + 1)

Γ(r + 1 − α)
tr−α. (17)

In terms of ES,j(t), tr−α can be approximated as

tr−α ≈
N
∑
s=0

ρs ES,s(t), (18)

where ρs is determined by means of the orthogonality relation of ES,j(t) defined in (12)
as follows

ρs =
1
ĥs

∫ 1

0
tr−α ES,s(t)w(t) dt.

The result of Theorem 7 is obtained by substituting Equation (18) into Equation (17).

4. A Collocation Approach for the NTFGKE

This section is confined to presenting a collocation algorithm for handling the NTFGKE
based on employing eighth-kind CPs as basis functions.

Consider the following the NTFGKE [57]:

∂α u(ξ, t)
∂ tα

− ∂5 u(ξ, t)
∂ ξ5 +

∂3 u(ξ, t)
∂ ξ3 + u(ξ, t)

∂ u(ξ, t)
∂ ξ

+ g1(ξ, t)
∂ u(ξ, t)

∂ ξ
+ g2(ξ, t) u(ξ, t) = g3(ξ, t), 0 ≤ ξ, t ≤ 1,

(19)

governed by the initial and boundary conditions

u(ξ, 0) = 0,

u(0, t) =
∂ u(0, t)

∂ ξ
= 0,

u(1, t) =
∂ u(1, t)

∂ ξ
=

∂2 u(1, t)
∂ ξ2 = 0,

(20)

where 0 < α ≤ 1 and g1(ξ, t), g2(ξ, t), and g3(ξ, t) are continuous functions.
Now, one may set

PN = span{ES,i(ξ) ES,j(t) : 0 ≤ i, j ≤ N},
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consequently, any function uN (ξ, t) ∈ PN can be represented as

uN (ξ, t) =
N
∑
i=0

N
∑
j=0

cij ES,i(ξ) ES,j(t). (21)

We can write the residual R(ξ, t) of Equation (19) as

R(ξ, t) =
∂α uN (ξ, t)

∂ tα
− ∂5 uN (ξ, t)

∂ ξ5 +
∂3 uN (ξ, t)

∂ ξ3 + uN (ξ, t)
∂ uN (ξ, t)

∂ ξ
+ g1

N (ξ, t)
∂ uN (ξ, t)

∂ ξ

+ g2
N (ξ, t) uN (ξ, t)− g3

N (ξ, t).
(22)

The expressions of the partial derivatives ∂α uN (ξ,t)
∂ tα , ∂ uN (ξ,t)

∂ ξ , ∂3 uN (ξ,t)
∂ ξ3 , and ∂5 uN (ξ,t)

∂ ξ5 in
terms of the proposed basis functions are now provided so that the collocation method can

be used. In addition, the expressions for the nonlinear terms uN (ξ, t) ∂ uN (ξ,t)
∂ξ , g1

N (ξ, t) ∂ uN (ξ,t)
∂ ξ ,

and g2
N (ξ, t) uN (ξ, t) are also provided.

Thanks to (21), along with Theorem 7, we can write ∂α uN(ξ,t)
∂ tα as

∂α uN (ξ, t)
∂ tα

≈
N
∑
i=0

N
∑
j=0

N
∑
s=0

cij Ds,j ES,i(ξ) ES,s(t). (23)

Further, the following partial derivatives can be obtained after using (21) and Theorem 6
to give

∂ uN (ξ, t)
∂ ξ

=
N
∑
i=0

N
∑
j=0

i−1

∑
�=0

cij A1
�,i ES,�(ξ) ES,j(t),

∂3 uN (ξ, t)
∂ ξ3 =

N
∑
i=0

N
∑
j=0

i−3

∑
�=0

cij A3
�,i ES,�(ξ) ES,j(t),

∂5 uN (ξ, t)
∂ ξ5 =

N
∑
i=0

N
∑
j=0

i−5

∑
�=0

cij A5
�,i ES,�(ξ) ES,j(t).

Furthermore, the nonlinear terms can be written as

uN (ξ, t)
∂ uN (ξ, t)

∂ξ
=

N
∑

m=0

N
∑
n=0

N
∑
i=0

N
∑
j=0

i−1

∑
�=0

cmn cij ES,m(ξ) ES,n(t)A1
�,i ES,�(ξ) ES,j(t),

g1
N (ξ, t)

∂ uN (ξ, t)
∂ ξ

=
N
∑

m=0

N
∑
n=0

N
∑
i=0

N
∑
j=0

i−1

∑
�=0

a1
mn cij ES,m(ξ) ES,n(t)A1

�,i ES,�(ξ) ES,j(t),

g2
N (ξ, t) uN (ξ, t) =

N
∑

m=0

N
∑
n=0

N
∑
i=0

N
∑
j=0

a2
mn cij ES,m(ξ) ES,n(t) ES,i(ξ) ES,j(t).

Further, g3(ξ, t) can be expressed as:

g3
N (ξ, t) =

N
∑

m=0

N
∑
n=0

a3
mn ES,m(ξ) ES,n(t), (24)

where {ar
mn, r = 1, 2, 3} is computed from the following relation

ar
mn =

1
ĥm ĥn

∫ 1

0

∫ 1

0
gr(ξ, t) ES,m(ξ) ES,n(t) ŵ(ξ, t) dξ dt,

and ŵ(ξ, t) = w(ξ)w(t).
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Thanks to relations (23) and (24), the residual R(ξ, t) in (22) can be obtained.
Now, to get the expansion coefficients cij, we apply the spectral collocation method by

forcing the residual R(ξ, t) to be zero at some collocation points (ξi, tj), as follows

R(ξi, tj) = 0, 1 ≤ i ≤ N − 4, 1 ≤ j ≤ N .

Moreover, we get the following initial and boundary conditions

N
∑
i=0

N
∑
j=0

cij ES,i(ξi) ES,j(0) = 0, 1 ≤ i ≤ N + 1,

N
∑
i=0

N
∑
j=0

cij ES,i(0) ES,j(tj) = 0, 1 ≤ j ≤ N ,

N
∑
i=0

N
∑
j=0

cij
∂ ES,i(0)

∂ ξ
ES,j(tj) = 0, 1 ≤ j ≤ N ,

N
∑
i=0

N
∑
j=0

cij ES,i(1) ES,j(tj) = 0, 1 ≤ j ≤ N ,

N
∑
i=0

N
∑
j=0

cij
∂ ES,i(1)

∂ ξ
ES,j(tj) = 0, 1 ≤ j ≤ N ,

N
∑
i=0

N
∑
j=0

cij
∂2 ES,i(1)

∂ ξ2 ES,j(tj) = 0, 1 ≤ j ≤ N ,

where {(ξi, tj) : i, j = 1, 2, 3, . . . ,N + 1} represents the initial known zeros of ES,i(ξ) and
ES,j(t), respectively. Therefore, we get (N + 1)× (N + 1) as a nonlinear system of equations
that can be solved through a suitable numerical solver, such as Newton’s iterative method.

Remark 3. For the case α = 1, the NTFGKE becomes

∂ u(ξ, t)
∂ t

− ∂5 u(ξ, t)
∂ ξ5 +

∂3 u(ξ, t)
∂ ξ3 + u(ξ, t)

∂ u(ξ, t)
∂ ξ

+ g1(ξ, t)
∂ u(ξ, t)

∂ ξ
+ g2(ξ, t) u(ξ, t) = g3(ξ, t), 0 ≤ ξ, t ≤ 1.

To solve this problem, the first term ∂ u(ξ,t)
∂ t can be approximated as:

∂ uN (ξ, t)
∂ ξ

=
N
∑
i=0

N
∑
j=0

i−1

∑
�=0

cij A1
�,i ES,�(ξ) ES,j(t),

and hence, we used similar steps as those given in Section 4 to get (N + 1)2, a nonlinear algebraic
system of equations in the unknown expansion coefficients cij that can be solved using Newton’s
iterative method.

5. Error Analysis of the Proposed Chebyshev Expansion

Convergence analysis of the proposed Chebyshev expansion is the main focus of
this section.

Lemma 3. For any positive number, the following inequality holds:

|ES,�(ξ)| ≤ (�+ 1)3, ∀ ξ ∈ [0, 1]. (25)

Proof. Consider the following two cases to prove inequality (25):
The first case: � = 2 j:
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Using Formula (13) together with the simple inequality |U∗
j (ξ)| ≤ j + 1, we get

|ES,�(ξ)| ≤
3

2(2 j + 3)

j

∑
m=0

(m + 1) (2 j − m + 2) (2 j − 2 m + 1)

=
3 (j + 1)2 (j + 2)2

4( 2j + 3)

≤ (2 j + 1)3 = (�+ 1)3.

The second case: � = 2 j + 1:
Using Formula (14) and the inequality

∣∣∣U∗
j (ξ)

∣∣∣ ≤ j + 1, yields

|ES,�(ξ)| ≤ 3
(2 j + 3)(2 j + 5)

j

∑
m=0

(m + 1) (−2 j + m − 3) (−j + m − 1) (2 j − 2 m + 2)

=
1
5
(j + 1) (j + 2) (j + 3)

< (2 j + 2)3 = (�+ 1)3.

Based on those cases, the following estimate is valid for every � ≥ 0.

|ES,�(ξ)| ≤ (�+ 1)3, ∀ ξ ∈ [0, 1].

Lemma 3 is now proven.

Theorem 8. Consider a function f (ξ) ∈ L2
ω(ξ)[0, 1] with f (ξ) that has a bounded fifth derivative

can be expanded as an infinite series of the shifted eighth kind of CPs as

f (ξ) =
∞

∑
i=0

bi ES,i(ξ). (26)

The series in (26) converges uniformly to f (ξ). Moreover, The expansion coefficients bi are
estimated as follows:

|bi| �
1
i5

, ∀ i > 4, (27)

and the notation a � ā implies the existence of a positive constant n independent of N and of any
function with a ≤ n ā.

Proof. With the aid of (12), we have

bi =
1
ĥi

∫ 1

0
f (ξ) ES,i(ξ) (1 − 2 ξ)4

√
ξ (1 − ξ) dξ.

The last formula transforms into the following one after using the substitution
ξ = 1

2 (1 + cos ϑ), into

bi =
1

4 ĥi

∫ π

0
f
(

1
2
(1 + cos ϑ)

)
ES,i

(
1
2
(1 + cos ϑ)

)
cos4 ϑ sin2 ϑ dϑ

=
1
hi

∫ π

0
f
(

1
2
(1 + cos ϑ)

)
Ei(cos ϑ) cos4 ϑ sin2 ϑ dϑ.

(28)

Now, consider the following two cases to prove Inequality (27):
Case 1: i even:
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Based on Corollary 1, Equation (28) can be converted into

bi =
4 (i + 3)

3 π (i + 2) (i + 4)

∫ π

0
f
(

1
2
(1 + cos ϑ)

)
× sin(2 ϑ) [ (i + 4) sin(ϑ (i + 2)) + (i + 2) sin(ϑ (i + 4)) ] dϑ.

Integration of the right-hand side of the last equation by parts yields

bi =
(i + 3)

6 π (i + 2) (i + 4)

∫ π

0
f ′
(

1
2
(1 + cos ϑ)

) [
(i + 4)

i
cos(ϑ (i − 1))− 4

i
cos(ϑ (i + 1))

−2 cos(ϑ (i + 3))− 2
(i + 6)

cos(ϑ (i + 5)) +
(i + 2)
(i + 6)

cos(ϑ (i + 7))
]

dϑ.
(29)

Similarly, if we integrate the right-hand side of Equation (29), again by parts, four
times, we get

bi =
(i + 3)

1536 π (i + 2) (i + 4)

∫ π

0
f (5)
(

1
2
(1 + cos ϑ)

)
Δi(ϑ) dϑ. (30)

where

Δi(ϑ) =
(i + 4)
(i − 4)5

cos(ϑ (i − 5))− 4 (i + 6)
(i − 2)3 (i − 4) (i + 1)

cos(ϑ (i − 3))

+
4 (i + 18)

(i − 3)2 (i)2 (i + 3)
cos(ϑ (i − 1))

+
2 (−2880 − 5318 i − 3001i2 − 528 i3 − 35 i4 + 2 i5)

(i − 2)9
cos(ϑ (i + 1))

+
372960 + 509208 i + 239649 i2 + 50713 i3 + 3921 i4 − 356 i5 − 90 i6 − 5 i7

(i − 1)9 (i + 4)(i + 6)
cos(ϑ (i + 3))

+
−483840 − 189504 i + 118560 i2 + 103550 i3 + 31971 i4 + 5007 i5 + 364 i6 + i7 − i8

(i)9(i + 4) (i + 6)2 cos(ϑ (i + 5))

+
−21168 − 8640 i − 621 i2 + 307 i3 + 68 i4 + 4 i5

(i + 3)7 (i + 6)
cos(ϑ (i + 7))

− 2 (30 + 15 i + 2 i2)
(i + 5)4 (i + 6) (i + 10)

cos(ϑ (i + 9))

+
(i + 2)
(i + 6)5

cos(ϑ (i + 11)).

Note that the notation (z)r represents the well-known Pochhammer symbol.
If we take the absolute value for Equation (30) and use the hypothesis of the theorem,

we get the following estimation

|bi| �
1
i5

, ∀ i > 4.

Case 2: i odd:
In virtue of Corollary 1, Equation (28) turns into
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bi =
4

3 π (i + 1) (i + 5)

∫ π

0
f
(

1
2
(1 + cos ϑ)

)
sin(ϑ)

× [(i + 4) (i + 5) sin(ϑ (i + 1)) + 2 (i + 1) (i + 5) sin(ϑ (i + 3)) + (i + 1) (i + 2) sin(ϑ (i + 5)) ] dϑ

=
2

3 π (i + 1) (i + 5)

∫ π

0
f
(

1
2
(1 + cos ϑ)

)
× [(i + 4) (i + 5) cos(i ϑ) + (i − 2) (i + 5) cos(ϑ (i + 2))− (i + 1) (i + 8) cos(ϑ (i + 4))

− (i + 1) (i + 2) cos(ϑ (i + 6)) ] dϑ.

(31)

On the right-hand side of (31), we can use integration by parts to write

bi =
1

6 π (i + 1) (i + 5)

∫ π

0
f ′
(

1
2
(1 + cos ϑ)

)
×
[
(i + 4) (i + 5)

i
cos(ϑ (i − 1))

− 8 (i + 1) (i + 5)
i (i + 2)

cos(ϑ (i + 1))− 2 (−12 + 14 i + 9 i2 + i3)
(i + 2) (i + 4)

cos(ϑ (i + 3))

+
8 (i + 1) (i + 5)
(i + 4) (i + 6)

cos(ϑ (i + 5)) +
(i + 1) (i + 2)

(i + 6)
cos(ϑ (i + 7))

]
dϑ.

Integrating again by parts four times and using the hypothesis of the theorem after
taking the absolute value, one has

|bi| �
1
i5

, ∀ i > 4.

Finally, Cases 1 and 2 enable us to write

|bi| �
1
i5

, ∀ i > 4.

With this, Theorem 8 is fully proven.

Theorem 9. Any function u(ξ, t) = g1(ξ) g2(t) ∈ PN , with g1(ξ) and g2(t) that has a bounded
fifth derivative can be expanded as:

u(ξ, t) =
∞

∑
i=0

∞

∑
j=0

cij ES,i(ξ) ES,j(t). (32)

The aforementioned series is uniformly convergent. Moreover, the expansion coefficients
in (32) satisfy:

|cij| �
1

i5 j5
, ∀ i, j > 4.

Proof. The orthogonality relation of ES,i(ξ) allows one to get

cij =
1

ĥi ĥj

∫ 1

0

∫ 1

0
u(ξ, t) ES,i(ξ) ES,i(t) ŵ(ξ, t) dξ dt.

By the hypotheses of Theorem 9, we get

cij =
1
ĥi

(∫ 1

0
(1 − 2 ξ)4

√
ξ (1 − ξ) g1(ξ) ES,i(ξ)d ξ

)
× 1

ĥj

(∫ 1

0
(1 − 2 t)4

√
t (1 − t) g2(t) ES,j(t)d t

)
.
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With the aid of the two substitutions, ξ = 1
2 (1 + cos φ) and t = 1

2 (1 + cos ψ), the last
equation transforms into

cij =
1
hi

∫ π

0
g1

(
1
2
(1 + cos φ)

)
Ei(cos φ) cos4 φ sin2 φ dφ

× 1
hi

∫ π

0
g2

(
1
2
(1 + cos ψ)

)
Ei(cos ψ) cos4 ψ sin2 ψ dψ.

Now, we consider the four cases:

(i) If i, j even
(ii) If i, j odd
(iii) If i even, j odd
(iv) If i odd, j even

Imitating similar steps as given in Theorem 8 in the previous four cases, we get the
following result

|cij| �
1

i5 j5
, ∀ i, j > 4.

Remark 4. The following inequalities can be easily obtained after imitating similar steps as in
Theorems 8 and 9

|ci0| �
1
i5

, |ci1| �
1
i5

, |ci2| �
1
i5

, |ci3| �
1
i5

, |ci4| �
1
i5

, ∀ i > 4, (33)

and
|c0j| �

1
j5

, |c1j| �
1
j5

, |c2j| �
1
j5

, |c3j| �
1
j5

, |c4j| �
1
j5

, ∀ j > 4. (34)

Theorem 10. If u(ξ, t) fulfills the assumptions of Theorem 9, and if uN (ξ, t) =
N
∑
i=0

N
∑
j=0

cij ES,i(ξ)

ES,j(t), then the next truncation error estimate applies

|u(ξ, t)− uN (ξ, t)| � 1
N .

Proof. The truncation error can be expressed as:

|u(ξ, t)− uN (ξ, t)| =
∣∣∣∣∣ ∞

∑
i=0

∞

∑
j=0

cij ES,i(ξ) ES,j(t)−
N
∑
i=0

N
∑
j=0

cij ES,i(ξ) ES,j(t)

∣∣∣∣∣
≤

∞

∑
j=N+1

(
∣∣c0j| |ES,0(ξ)|+ |c1j| |ES,1(ξ)|+ |c2j| |ES,2(ξ)|+ |c3j| |ES,3(ξ)|+ |c4j| |ES,4(ξ)|

)
|ES,j(t)|

+
∞

∑
i=N+1

( |ci0| |ES,0(t)|+ |ci1| |ES,1(t)|+ |ci2| |ES,2(t)|+ |ci3| |ES,3(t)|+ |ci4| |ES,4(t)| ) |ES,i(ξ)|

+
N
∑
i=5

∞

∑
j=N+1

|cij| |ES,i(ξ)| |ES,j(t)|+
∞

∑
i=N+1

∞

∑
j=5

|cij| |ES,i(ξ)| |ES,j(t)|.

(35)

Inserting Equations (33) and (34) into Equation (35) and using Lemma 3 along with
the following approximation

b

∑
i=a+1

f (i) ≤
∫ b

ξ=a
f (ξ) dξ,
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where f is the decreasing function and the inequality:

(i + 1)3

i5
<

i + 5
i (i2 − 1)

, ∀ i > 1,

one has
|u(ξ, t)− uN (ξ, t)| � 1

N .

With this, the theorem is proven.

Theorem 11. If u(ξ, t) fulfills the assumptions of Theorem 9, then the following estimation applies:

‖u(ξ, t)− uN (ξ, t)‖ � 1
N 4 . (36)

Proof. We have

‖u(ξ, t)− uN (ξ, t)‖ŵ(ξ,t) =

∥∥∥∥∥ ∞

∑
i=0

∞

∑
j=0

cij ES,i(ξ) ES,j(t)−
N
∑
i=0

N
∑
j=0

cij ES,i(ξ) ES,j(t)

∥∥∥∥∥
ŵ(ξ,t)

≤
∞

∑
j=N+1

[
|c0j| ‖ES,0(ξ)‖w(ξ) + |c1j| ‖ES,1(ξ)‖w(ξ) + |c2j| ‖ES,2(ξ)‖w(ξ)

+ |c3j| ‖ES,3(ξ)‖w(ξ) + |c4j| ‖ES,4(ξ)‖w(ξ)

]
‖ES,j(t)‖w(t)

+
∞

∑
i=N+1

[
|ci0| ‖ES,0(t)‖w(t) + |ci1| ‖ES,1(t)‖w(t) + |ci2| ‖ES,2(t)‖w(t)

+ |ci3| ‖ES,3(t)‖w(t) + |ci4| ‖ES,4(t)‖w(t)

]
‖ES,i(ξ)‖w(ξ)

+
N
∑
i=5

∞

∑
j=N+1

|cij| ‖ES,i(ξ)‖w(ξ) ‖ES,j(t)‖w(t) +
∞

∑
i=N+1

∞

∑
j=5

|cij| ‖ES,i(ξ)‖w(ξ) ‖ES,j(t)‖w(t).

With the aid of Theorem 9, Remark 4, and the following inequalities

‖ES,i(ξ)‖w(ξ) � 1,

‖ES,j(t)‖w(t) � 1,
∞

∑
i=N+1

1
i5

<
1

N 4 , ∀N > 1,

N
∑
i=5

1
i5

<
1

1024
, ∀N > 1,

we get the desired result (36).

6. Illustrative Examples

This section is devoted to testing the performance of our proposed collocation algo-
rithm for treating the NTFGKE. Some test problems are solved, and some comparisons are
presented to check the applicability and accuracy of our proposed scheme.

Example 1 ([57]). Consider the following NTFGKE:

∂α u(ξ, t)
∂ tα

− ∂5 u(ξ, t)
∂ ξ5 +

∂3 u(ξ, t)
∂ ξ3 + u(ξ, t)

∂ u(ξ, t)
∂ξ

+ (ξ2 t + 1)
∂ u(ξ, t)

∂ ξ
+ (ξ − t) u(ξ, t) = f (ξ, t), 0 ≤ ξ, t ≤ 1,
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governed by (20), and f (ξ, t) is determined in such a way that the exact solution is u(ξ, t) =

t1+α ξ2 ( ξ3

6 − ξ2

2 + ξ
2 − 1

6 ).
Table 1 presents a comparison of the maximum absolute errors between our method for N = 16

and the method in [57] at different values of ξ when 0 < t < 1. This shows the accuracy of our
method. Figures 1 and 2 show the absolute error and approximate solution at different values of α
for N = 16. It can be seen that the approximate solutions are quite close to the precise ones.

Table 1. Comparison of maximum absolute errors for 0 < t < 1 of Example 1.

α = 0.7 α = 0.8 α = 0.9

(ξ, t) Method in [57] Our Method Method in [57] Our Method Method in [57] Our Method

(0.1,t) 6.36 × 10−6 1.79779 × 10−7 5.66 × 10−6 8.27396 × 10−8 4.92 × 10−6 2.77861 × 10−8

(0.2,t) 1.79 × 10−5 5.05091 × 10−7 1.59 × 10−5 2.32469 × 10−7 1.38 × 10−5 7.80755 × 10−8

(0.3,t) 2.70 × 10−5 7.61411 × 10−7 2.41 × 10−5 3.50467 × 10−7 2.09 × 10−5 1.17721 × 10−7

(0.4,t) 3.03 × 10−5 8.52535 × 10−7 2.70 × 10−5 3.92451 × 10−7 2.34 × 10−5 1.31845 × 10−7

(0.5,t) 2.74 × 10−5 7.71003 × 10−7 2.44 × 10−5 3.54962 × 10−7 2.12 × 10−5 1.19275 × 10−7

(0.6,t) 2.02 × 10−5 5.68544 × 10−7 1.80 × 10−5 2.61787 × 10−7 1.56 × 10−5 8.79863 × 10−8

(0.7,t) 1.16 × 10−5 3.26528 × 10−7 1.03 × 10−5 1.50372 × 10−7 8.99 × 10−6 5.05521 × 10−8

(0.8,t) 4.50 × 10−5 1.26388 × 10−7 4.00 × 10−6 5.82133 × 10−8 3.48 × 10−6 1.95751 × 10−8

(0.9,t) 7.12 × 10−7 1.99959 × 10−8 6.34 × 10−7 9.21185 × 10−9 5.51 × 10−7 3.09816 × 10−9

Figure 1. The absolute error and approximate solution at α = 0.95 and N = 16 of Example 1.

Figure 2. The absolute error and approximate solution at α = 0.85 and N = 16 of Example 1.
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Example 2. Consider the following NTFGKE:

∂α u(ξ, t)
∂ tα

− ∂5 u(ξ, t)
∂ ξ5 +

∂3 u(ξ, t)
∂ ξ3 + u(ξ, t)

∂ u(ξ, t)
∂ξ

+ g1(ξ, t)
∂ u(ξ, t)

∂ ξ
+ g2(ξ, t) u(ξ, t) = f (ξ, t), 0 ≤ ξ, t ≤ 1,

(37)

governed by (20), and f (ξ, t) is determined in such a way that the exact solution is u(ξ, t) =
1

12 t1+α ξ2 (ξ4 − 2 ξ3 + 2 ξ − 1).
Equation (37) is solved in two cases corresponding to g1(ξ, t) = 1, g2(ξ, t) = 0 and

g1(ξ, t) = 0, g2(ξ, t) = 1.
Case 1: At g1(ξ, t) = 1 and g2(ξ, t) = 0. Table 2 presents a comparison of the maximum

absolute errors between our method for N = 16 and the method in [57] at different values of x when
0 < t < 1. This shows the accuracy of our method. Further, Figure 3 illustrates the absolute error
at different values of α for N = 16.

Case 2: At g1(ξ, t) = 0 and g2(ξ, t) = 1. Table 3 presents the absolute errors at different
values of α for N = 16. Figure 4 illustrates the absolute errors at different values of t at α = 0.95
and N = 16. Figure 5 presents a comparison between the approximate solution and exact solution
at α = 0.9 and N = 16. It can be seen that the approximate solutions are quite near the precise one.

Table 2. Comparison of the maximum absolute errors for 0 < t < 1 of Example 2.

α = 0.7 α = 0.8 α = 0.9

(ξ, t) Method in [57] Our Method Method in [57] Our Method Method in [57] Our Method

(0.1,t) 7.73 × 10−6 9.87464 × 10−8 7.98 × 10−6 4.53983 × 10−8 8.26 × 10−6 1.52193 × 10−8

(0.2,t) 1.57 × 10−5 3.02778 × 10−7 1.66 × 10−5 1.39255 × 10−7 1.75 × 10−5 4.67136 × 10−8

(0.3,t) 1.95 × 10−5 4.94641 × 10−7 2.10 × 10−5 2.27577 × 10−7 2.26 × 10−5 7.63871 × 10−8

(0.4,t) 2.17 × 10−5 5.96617 × 10−7 2.12 × 10−5 2.74586 × 10−7 2.32 × 10−5 9.22166 × 10−8

(0.5,t) 2.09 × 10−5 5.78239 × 10−7 1.86 × 10−5 2.66211 × 10−7 2.00 × 10−5 8.94498 × 10−8

(0.6,t) 1.64 × 10−5 4.54913 × 10−7 1.46 × 10−5 2.09494 × 10−7 1.44 × 10−5 7.04262 × 10−8

(0.7,t) 1.00 × 10−5 2.77641 × 10−7 8.90 × 10−6 1.27891 × 10−7 8.20 × 10−6 4.30125 × 10−8

(0.8,t) 4.10 × 10−6 1.13802 × 10−7 3.64 × 10−6 5.24341 × 10−8 3.18 × 10−6 1.76417 × 10−8

(0.9,t) 6.83 × 10−7 1.90093 × 10−8 6.07 × 10−7 8.75887 × 10−9 5.27 × 10−7 2.94852 × 10−9

Figure 3. The absolute error at different values of α for N = 16 of Example 2.
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Table 3. The absolute errors of Example 2.

(ξ, t) α = 0.7 α = 0.8 α = 0.9

(0.1,0.1) 6.7009 × 10−10 3.0066 × 10−10 9.7494 × 10−11

(0.2,0.2) 8.6369 × 10−9 3.9652 × 10−9 1.3290 × 10−9

(0.3,0.3) 5.0761 × 10−8 2.3250 × 10−8 7.7603 × 10−9

(0.4,0.4) 3.8968 × 10−7 1.7890 × 10−7 5.9890 × 10−8

(0.5,0.5) 1.0161 × 10−7 6.8746 × 10−10 3.3123 × 10−10

(0.6,0.6) 4.5491 × 10−7 2.0949 × 10−7 7.0426 × 10−8

(0.7,0.7) 6.9537 × 10−8 3.2057 × 10−8 1.0794 × 10−8

(0.8,0.8) 1.3930 × 10−8 6.4078 × 10−9 2.1507 × 10−9

(0.9,0.9) 1.4303 × 10−9 6.6288 × 10−10 2.2524 × 10−10

Figure 4. The absolute errors at α = 0.95 and N = 16 of Example 2.

Figure 5. The exact and approximate solutions at α = 0.9 and N = 16 of Example 2.

Example 3. Consider the following NTFGKE:

∂α u(ξ, t)
∂ tα

− ∂5 u(ξ, t)
∂ ξ5 +

∂3 u(ξ, t)
∂ ξ3 + u(ξ, t)

∂ u(ξ, t)
∂ξ

+ u(ξ, t) = f (ξ, t), 0 ≤ ξ, t ≤ 1,

governed by (20), and f (ξ, t) is chosen such that the exact solution is u(ξ, t) = ξ2 (ξ4 − 2 ξ3 +
2 ξ − 1) sin(2 π α t).

Figure 6 illustrates the log10(maximum absolute error) at different values of α and N .
Table 4 presents the absolute errors at different values of ξ and t when α = 0.5 and N = 16.
Further, Figure 7 illustrates the absolute error at different values of α for N = 16.
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Figure 6. log10(maximum absolute error) of Example 3.

Table 4. The absolute errors of Example 3.

α = 0.5

ξ t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

0.1 1.04387 × 10−15 1.87784 × 10−15 9.42649 × 10−15 3.48593 × 10−15 3.20794 × 10−15

0.2 3.25868 × 10−15 5.905 × 10−15 2.94209 × 10−14 1.08559 × 10−14 1.01308 × 10−14

0.3 5.53897 × 10−15 1.00753 × 10−14 4.99947 × 10−14 1.84436 × 10−14 1.73177 × 10−14

0.4 7.12798 × 10−15 1.29688 × 10−14 6.42751 × 10−14 2.36755 × 10−14 2.27804 × 10−14

0.5 7.57207 × 10−15 1.38153 × 10−14 6.82648 × 10−14 2.49592 × 10−14 2.70079 × 10−14

0.6 6.74114 × 10−15 1.24518 × 10−14 6.08194 × 10−14 2.12469 × 10−14 3.71213 × 10−14

0.7 4.87804 × 10−15 9.14546 × 10−15 4.40481 × 10−14 1.12098 × 10−14 9.80414 × 10−14

0.8 2.48412 × 10−15 5.04371 × 10−15 2.24369 × 10−14 2.37137 × 10−15 2.0929 × 10−13

0.9 3.85813 × 10−16 1.75576 × 10−15 4.00461 × 10−15 2.10747 × 10−14 4.78838 × 10−13

Figure 7. The absolute error at different values of α for N = 16 of Example 3.

7. Concluding Remarks

To summarize the principal findings of our study, we present the following insights:
Our research encompasses the introduction, implementation, and thorough investigation
of a spectral collocation methodology tailored to address the NTFGKE. An in-depth ex-
ploration and analysis of convergence are undertaken. Additionally, the outcomes of our
work are substantiated through diverse numerical test scenarios. We anticipate that this
approach will find application in upcoming endeavors aimed at addressing even more
intricate models within the realm of partial differential equations.

In conclusion, the effective utilization of eighth-kind CPs in conjunction with the
collocation method is demonstrated through our application to solve the NTFGKE. This
showcases the prowess of our spectral approach, affirming its potential for tackling complex
mathematical challenges.
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Abstract: The Riesz space-fractional derivative is discretized by the Fourier pseudo-spectral (FPS)
method. The Riesz space-fractional nonlinear Klein–Gordon–Zakharov (KGZ) and Klein–Gordon–
Schrödinger (KGS) equations are transformed into two infinite-dimensional Hamiltonian systems,
which are discretized by the FPS method. Two finite-dimensional Hamiltonian systems are thus
obtained and solved by the second-order average vector field (AVF) method. The energy conservation
property of these new discrete schemes of the fractional KGZ and KGS equations is proven. These
schemes are applied to simulate the evolution of two fractional differential equations. Numerical
results show that these schemes can simulate the evolution of these fractional differential equations
well and maintain the energy-preserving property.

Keywords: AVF method; Riesz space-fractional KGZ equation; Riesz space-fractional KGS equation;
FPS method

AMS Subject Classification: 37K05; 65M20; 65M70

1. Introduction

Fractional differential equations can better describe the behavior of physical phenom-
ena than integral differential equations. Many scholars have taken great interest in studying
fractional differential equations and the theory of the fractional derivative. In general, fac-
tional differential equations can not have an exact solution. Numerical simulations for
fractional nonlinear differential equations have become very important. Many different
numerical methods have been to proposed to solve fractional nonlinear partial differential
equations (PDEs) [1–4]. In this paper, we numerically investigate the following Riesz space
fractional KGZ and KGS equations by the energy preserving method.

The space fractional KGZ equation can be written as [5–8]⎧⎨⎩
∂2u(x,t)

∂t2 − ∂αu(x,t)
∂|x|α + u(x, t) + m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0,

∂2m(x,t)
∂t2 − ∂2m(x,t)

∂x2 − ∂2(|u(x,t)|2)
∂x2 = 0,

(1)

which describes the propagation of Langmuir waves in plasma physics. Suppose the finite
domain space Ω = (a, b)× (0, T) with the initial conditions u(x, 0) = u0(x), ut(x, 0) = u1x,
m(x, 0) = m0(x), mt(x, 0) = m1(x), x ∈ [a, b] and the boundary conditions u(a, t) =

u(b, t) = 0, m(a, t) = m(b, t) = 0, t ∈ [0, T], where ∂αu(x,t)
∂|x|α is the Riesz space fractional

derivative with 1 ≤ α ≤ 2.
The KGZ equation can have the following invariant energy conservation

E(t) =
∫
[|ut|2 + | ∂

α
2 u

∂|x| α
2
|2 + |u|2 + m|u|2 + 1

2
v2 +

1
2
|u|4 + 1

2
m2]dx = E(0), (2)
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where ∂v(x,t)
∂x = − ∂m(x,t)

∂t . When α = 2, the Riesz space fractional KGZ equation becomes
the classical KGZ equation [9–11]. Ma et al. proposed a multi-scale integrator method to
solve the KGZ equation [12]. Wang et al. solved the KGZ equation based on the lattice
Boltzmann model [13]. Mei et al. proposed the Galerkin finite element method to solve the
KGZ equation [14]. A lot of work has also been conducted on the Riesz space fractional
KGZ equation [8,15]. Macias et al. proposed an energy conserving scheme to solve the
fractional KGZ equation [15–19].

The fractional KGS equation can be written in the following form:{
i ft − β

2 (−Δ)
α
2 f + α1 f h = 0,

htt − γhxx + m2h − α1| f |2 = 0,
(3)

where i =
√
−1. The initial conditions are f (x, 0) = f0(x), ht(x, 0) = h1(x), x ∈ R, and

the boundary conditions are f (x, t) = h(x, t) = 0, x ∈ R ∈ Ω, Ω = (xL, xR), t ∈ [0, T]. The
complex function f (x, t) is the complex neutron field and the real function h(x, t) is the
meson field. The variables α1 and β are the coupled constants.

The fractional KGS equation also has invariant energy conservation:

Ẽ(t) =
∫ +∞

−∞
h2

t + γh2
x + m2h2 + β|(−Δ)

α
4 f |2 − 2α1| f |2hdx = Ẽ(0). (4)

When α = 2 and β = γ = 1, Equation (3) is the classical coupled KGS equation. In
quantum field theory, the coupled KGS equation is a mathematical model for the interaction
of a conservation complex neutron field and a real meson field. Regarding the coupled
KGS equation, many important conclusions have been obtained. Ohta et al. analyzed the
stability of the coupled KGS equation [20]. Guo et al. investigated the global well-posedness
of the KGS equation [21]. Kong et al. proposed a symplectic method to solve the coupled
KGS equation [22]. The fractional KGS equation is an extension of the classical coupled
KGS equation. Wang et al. proposed to solve the Riesz space fractional KGS equation using
the difference method and the spectral method [23,24].

Recently, energy preserving methods have become important numerical methods
in simulating energy conservation nonlinear PDEs, and they are structure-preserving
numerical methods. Many different energy preserving methods have been derived, such as
the discrete gradient method [25,26], the discrete variational derivative method [27] and
the Hamiltonian boundary value method [28]. The AVF method, which is a kind of discrete
gradient method, has been widely used to solve energy conservation integral PDEs and
has achieved great success [29,30]. However, few people have applied the AVF method
to solve energy conservation fractional PDEs. In this paper, we apply the AVF method to
solve Riesz space fractional KGZ and KGS equations.

The rest of the paper is organized as follows. In Section 2, the definition and properties
of the Riesz fractional derivative are given. The Riesz fractional derivative is discretized by
the FPS method. In Section 3, the infinite Hamiltonian symplectic structures of the Riesz
space fractional KGZ and KGS equations are obtained. These Hamiltonian systems are
discretized by the FPS method and the second-order AVF method. Two energy preserving
schemes of the Riesz space fractional KGZ and KGS equations are thus obtained. At last,
numerical experiments confirm the advantage of the energy preserving schemes of the
Riesz space fractional KGZ and KGS equations in simulating solitary wave behavior and
preserving the energy conservation property of the equations. The new energy preserving
schemes are superior to the existing second-order energy preserving schemes.
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2. Discretization of the Riesz Space Fractional Derivative

Definition 1. When n − 1 ≤ α ≤ n, n is a positive integer, the Riesz space fractional derivative
with α order can be defined as [2]

∂αu(x, t)
∂|x|α =

−1
2cos(πα

2 )Γ(n − α)

∂n

∂xn

∫ +∞

−∞

u(ξ, t)
|x − ξ|α+1−n dξ, (5)

where Γ(.) is the Gamma function. ∂α
|x| is denoted as the α order derivative of u(x, t) at (x, t).

Lemma 1. In the infinite domain interval (−∞ < x < ∞), the function u(x, t) is equivalent to

∂αu(x, t)
∂|x|α =

−1
2cos(πα

2 )Γ(n − α)

∂n

∂xn

∫ +∞

−∞

u(ξ, t)
|x − ξ|α+1−n dξ = −(−�)

α
2 u(x, t), (6)

where n − 1 < α < n.

In the infinite domain interval (−∞ < x < ∞), the fractional Laplace operator is
defined as

−(−�)
α
2 u(x, t) = −F−1|x|αFu(x, t), (7)

where F and F−1 are represented as the Fourier transformation and the Fourier inverse
transform of u(x, t), and we can obtain

−(−�)
α
2 u(x, t) = − 1

2π

+∞∫
−∞

e−ixξ |x|α
∫ +∞

−∞
eiξηu(η, t)dηdξ. (8)

On the other hand, in the finite domain interval Ω = (a, b), the Fourier series can be
defined as

−(−�)
α
2 u(x, t) = − ∑

l∈Z
|vl |αûleivl(x−a), (9)

where νl =
2lπ
b−a , and the coefficients of the Fourier series are

ûl =
1

b − a

∫
Ω

u(x, t)e−ivl(x−a)dx. (10)

We apply the FPS method to discrete the α order Riesz space fractional derivative.
Suppose the space integral interval is Ω = [a, b], the interval Ω is divided into N equal
parts. N is an even number. The space step length is h1 = b−a

N . Take xj = a + jh1, where
j = 0, 1, · · · , N − 1 are the space Fourier collocation points. INu(x, t) is the approximation
of u(x, t), we have

(INu)(x, t) = uN(x, t) =
N/2

∑
k=−N/2

ũkeikμ(x−a), (11)

where ũk, μ = 2π
b−a and

ũk =
1

Nck

N−1

∑
j=0

u(xj, t)e−ikμ(xj−a), μ =
2π

b − a
, |k| < N/2, ck = 1, k = ±N/2ck = 2. (12)

When |k| < N/2, ck = 1, and when k = ±N/2, ck = 2.
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We can obtain

−(−�)
α
2 INu(xj, t) = −

N/2

∑
k=−N/2

|kμ|αũkeikμ(xj−a). (13)

The α order derivative of the approximation function INu(x, t) can be denoted as

∂α INu(xj, t)
∂|x|α = −(−�)

α
2 INu(xj, t)

= −
N/2

∑
k=−N/2

|kμ|α( 1
Nck

N−1

∑
l=0

ule−ikμ(xl−a))eikμ(xj−a)

=
N−1

∑
l=0

ul(−
N/2

∑
k=−N/2

1
Nck

|kμ|αeikμ(xj−xl)

= (Dα
2U)j, (14)

where Dα
2 is N × N matrix, U = (U0, U1, · · · , UN−1) and the coefficients of the matrix Dα

2
are

(Dα
2)j,l = −

N/2

∑
k=−N/2

1
Nck

|kμ|αeikμ(xj−xl). (15)

3. Energy Preserving Method of Fractional KGZ and KGS Equations

In this section, we first give the Hamiltonian structures of the Riesz space fractional
KGZ and KGS equations. Then, the space fractional derivatives of these two equations
are discretized by the FPS method. The AVF method is applied to solve the semi-discrete
fractional KGZ and KGS equations.

3.1. Energy Preserving Method of the Fractional KGZ Equation

Let w(x, t) = ut(x, t), −2qxx(x, t) = mt(x, t), then the space fractional KGZ Equation (1)
is equivalent to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = w,
mt = −2qxx,
wt =

∂αu
∂|x|α − u − mu − |u|2u,

qt = − 1
2 m − 1

2 |u|2.

(16)

Equation (16) can be expressed by the following infinite dimensional Hamiltonian
system

dz

dt
= J

δH(z)

δz
, J =

(
O I

−I O

)
, I =

(
1 0
0 1

)
, (17)

where z = (u, m, w, q)T , O is 2× 2 zero matrix, I is 2× 2 unite matrix and the corresponding
Hamiltonian energy function is

H(z) =
∫
[
1
2

w2 + (qx)
2 +

1
2
| ∂

α
2 u

∂|x| α
2
|2 + 1

2
|u|2 + 1

2
m|u|2 + 1

4
|u|4 + 1

4
m2]dx. (18)

The second-order partial derivative qxx of Equation (16) can be approximated by the
FPS method [31,32]. Suppose INq(x, t) is the FPS approximation of the function q(x, t).
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The values of the derivatives d
dx INq(x, t) and d2

dx2 IN p(x, t) at the collocation points xj are
obtained in terms of the value of qj, i.e.,

d
dx

INq(x, t)|x=xj =
N−1

∑
l=0

ql
dgl(xj)

dx
= (D1Q)j, (19)

d2

dx2 INq(x, t)|x=xj =
N−1

∑
l=0

ql
d2gl(xj)

dx2 = (D2Q)j, (20)

The function gl(x) is the trigonometric polynomial explicitly given by

gl(x) =
1
N

N/2

∑
k=−N/2

1
ck

expikμ(x−xl), (21)

where ck = 1 (|k| �= N/2), c−N/2 = cN/2 = 2, μ = 2π
L and

(D2)i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

μ2(−1)i+j+1 1

sin2(μ
xi−xj

2 )
, i �= j,

− μ2 N2 + 2
12

, i = j.

(22)

Based on the above FPS method, we can obtain the semi-discrete system of the space
fractional KGZ equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt uj = wj,
d
dt mj = −2(D2Q)j,
d
dt wj = (Dα

2U)j − uj − mjuj − |uj|2uj,
d
dt qj = − 1

2 mj − 1
2 |uj|2,

(23)

where j = 0, 1, · · · , N − 1.
Equation (23) can be written as the following semi-discrete Hamiltonian system

dZ

dt
= Ĵ∇ZH(Z), Ĵ =

⎛⎜⎜⎝
0 0 IN 0

0 0 0 IN

−IN 0 0 0

0 −IN 0 0

⎞⎟⎟⎠, (24)

where Z = (UT , MT , WT , QT), M = (m0, m1, · · · , mN−1)
T , W = (w0, w1, · · · , wN−1)

T ,
Q = (q0, q1, · · · , qN−1)

T . 0 and IN are the N × N zeros matrix and unite matrix. The
corresponding Hamiltonian function is

H(Z) = −QTD2Q − 1
2

UTDα
2U +

N−1

∑
j=0

[
1
2

w2
j +

1
2
|uj|2 +

1
2

mj|uj|2 +
1
4
|uj|4 +

1
4

m2
j ]. (25)

The semi-discrete Hamiltonian system (24) is solved by the following second-order
AVF method

Zn+1 − Zn

τ
= Ĵ

∫ 1

0
∇H((1 − ξ)Zn + ξZn+1)dξ. (26)
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Equation (26) is equivalent to the following equations

un+1
j − un

j

τ
=
∫ 1

0
((1 − ξ)wn

j + ξwn+1
j )dξ, (27)

mn+1
j − mn

j

τ
=− 2

∫ 1

0
((1 − ξ)(D2Qn)j + ξ(D2Qn+1)j)dξ, (28)

wn+1
j − wn

j

τ
=
∫ 1

0
[((1 − ξ)(Dα

2Un)j + ξ
(

Dα
2Un+1

)
j
)− ((1 − ξ)un

j + ξun+1
j )]dξ

−
∫ 1

0

(
(1 − ξ)mn

j

)
+ ξmn+1

j

)(
(1 − ξ)un

j + ξun+1
j

)
dξ

−
∫ 1

0

∣∣∣((1 − ξ)un
j + ξun+1

j

)∣∣∣2((1 − ξ)un
j + ξun+1

j

)
dξ, (29)

qn+1
j − qn

j

τ
=− 1

2

∫ 1

0
(((1 − ξ)mn

j + ξmn+1
j ) +

∣∣∣((1 − ξ)un
j + ξun+1

j )
∣∣∣2)dξ. (30)

From Equations (27)–(30), the auxiliary variables w, q can be deleted. We can obtain

un+1
j − 2un

j + un−1
j

τ2 = (Dα
2

Un+1 + Un

4
)

j
−

un+1
j + un

j

4
−

mn+1
j + mn

j

4
un

j −
2mn+1

j + mn
j

12
(un+1

j − un
j )

−
∣∣∣∣16 (un+1

j )
2
+

1
6
(un

j )
2 +

1
6

un+1
j un

j

∣∣∣∣un
j −
∣∣∣∣18 (un+1

j )
2
+

1
24

(un
j )

2 +
1
12

un+1
j un

j

∣∣∣∣
(un+1

j − un
j ) + (Dα

2
Un + Un−1

4
)

j
−

un
j + un−1

j

4
−

mn
j + mn−1

j

4
un−1

j

−
2mn

j + mn−1
j

12
(un

j − un−1
j )−

∣∣∣∣16 (un
j )

2 +
1
6
(un−1

j )
2
+

1
6

un
j un−1

j

∣∣∣∣un−1
j −∣∣∣∣18 (un

j )
2 +

1
24

(un−1
j )

2
+

1
12

un
j un−1

j

∣∣∣∣(un
j − un−1

j ), (31)

mn+1
j − 2mn

j + mn−1
j

τ2 =(D2
Mn+1 + 2Mn + Mn−1

4
)

j
+

N

∑
l=1

dj,l(

∣∣∣∣16 (un+1
j )

2
+

1
6
(un

j )
2 +

1
6

un+1
j un

j

∣∣∣∣
+

∣∣∣∣16 (un
j )

2 +
1
6
(un−1

j )
2
+

1
6

un
j un−1

j

∣∣∣∣). (32)

Theorem 1. The semi-discrete scheme (26) can preserve the discrete energy conservation of the
finite dimensional Hamiltonian system

H(Zn+1) = H(Zn). (33)

Proof. From Equation (26), we can obtain that

(
∫ 1

0
∇H((1 − ξ)Zn + ξZn+1)dξ)T Zn+1 − Zn

τ

= (
∫ 1

0
∇H((1 − ξ)Zn + ξZn+1)dξ)TJ

∫ 1

0
∇H((1 − ξ)Zn + ξZn+1)dξ, (34)

where J is the skew symmetric matrix. We can find that

1
τ

∫ 1

0
(Zn − Zn+1)T∇H((1 − ξ)Zn + ξZn+1)dξ = 0. (35)
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From the basic theorem of the integral theory, we can get

1
τ
(H(Zn+1)− H(Zn)) = 0. (36)

The proof of the theorem is completed.

3.2. Energy Preserving Method of the Fractional KGS Equation

Suppose f (x, t) = p(x, t) + r(x, t)i, p(x, t) = p, r(x, t) = r, then Equation (3) can be
written as the following differential equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

rt = − β
2 (−�)

α
2 p + α1hp,

pt =
β
2 (−�)

α
2 r − α1hr,

vt =
γ
2 hxx − m2

2 h + α1
2 (p2 + r2),

ht = 2v.

(37)

Equation (37) can be transformed into the following infinite dimensional Hamilto-
nian system

dz̃

dt
= J̃

δH(z̃)

δz̃
, (38)

where z̃ = (r, p, v, h)T ,

J̃ =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠, (39)

and the corresponding Hamiltonian energy function is

H(z̃) =
∫

β

4
(−(−�)

α
4 p)2 − (−�)

α
4 r)2)− γ

4
(hx)

2 − 1
4

m2h2 +
α1

2
h(p2 + r2)− v2dx. (40)

Equation (37) is discretized by the FPS method, and we can obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt rj =

β
2 (D

α
2p)j + α1hj pj,

d
dt pj = − β

2 (D
α
2r)j − α1hjrj,

d
dt vj =

γ
2 (D2h)j − m2

2 hj +
α1
2 (p2

j + r2
j ),

d
dt hj = 2vj.

(41)

Equation (41) can be transformed into the finite dimensional Hamiltonian system

dZ̃

dt
= S∇z H(Z̃), (42)

where Z̃ = (r0, · · · , rN−1, p0, · · · , pN−1, v0, · · · , vN−1, h0, · · · , hN−1)
T and

S =

⎛⎜⎜⎝
0 IN 0 0

−IN 0 0 0

0 0 0 IN
0 0 −IN 0

⎞⎟⎟⎠. (43)

H(Z̃) =
β

4
(pTDα

2p + rTDα
2r) +

γ

4
(hTD2h +

N−1

∑
j=0

[
α1

2
hj(p2

j + r2
j )−

1
4

m2h2
j − v2

j ]. (44)
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The semi-discrete Hamiltonian system (42) is solved by the second order AVF method,
and we can get

Z̃n+1 − Z̃n

τ
= S

∫ 1

0
∇Z̃ H((1 − ξ)Z̃n + ξZ̃n+1)dξ. (45)

Equation (45) is equivalent to the following schemes

rn+1
j − rn

j

τ
=

β

2
(Dα

2
pn+1 + pn

2
)j + α1(

1
3

hn+1
j pn+1

j +
1
6

hn+1
j pn

j +
1
6

hn
j pn+1

j +
1
3

hn
j pn

j ), (46)

pn+1
j − pn

j

τ
= − β

2
(Dα

2
rn+1 + rn

2
)j − α1(

1
3

hn+1
j rn+1

j +
1
6

hn+1
j rn

j +
1
6

hn
j rn+1

j +
1
3

hn
j rn

j ), (47)

vn+1
j − vn

j

τ
=

γ

2
(D2

hn+1 + hn

2
)j −

m2

2
(

hn+1
j + hn

j

2
) +

α1

6
(pn+1

j pn+1
j + pn+1

j pn
j + pn

j pn
j

+ rn+1
j rn+1

j + rn+1
j rn

j + rn
j rn

j ), (48)

hn+1
j − hn

j

τ
=2

vn+1
j + vn

j

2
. (49)

According to the above Theorem 1, schemes (46)–(49) can also preserve the discrete
Hamiltonian energy of the Riesz space fractional KGS equation exactly.

4. Numerical Simulation

4.1. Numerical Simulation of the Fractional KGZ Equation

In this section, we test the following discrete Hamiltonian energy errors

Errorn
H = | H(Zn)− H(Z0)

H(Z0)
|, (50)

by schemes (31) and (32), where

H(Zn) =− (Qn)TD2Qn − 1
2
(Un)TDα

2Un +
N−1

∑
j=0

[
1
2
(wn

j )
2 +

1
2
|un

j |2 +
1
2

mn
j |u2

j |2+

1
4
|u2

j |4 +
1
4
(mn

j )
2], (51)

and H(Z0) is the discrete Hamiltonian energy at t = 0.
The two level initial conditions can be taken as follows [16]:⎧⎨⎩ u0 =

√
10−

√
2

2 sech(
√

1+
√

5
2 x) exp(i

√
2

1+
√

5
x),

m0 = −2sech2(
√

1+
√

5
2 x),

(52)

and ⎧⎨⎩ u1 =
√

10−
√

2
2 (tanh x − 1)sech(

√
1+

√
5

2 x) exp(i
√

2
1+

√
5

x),

m1 = −4sech2(
√

1+
√

5
2 x) tanh(

√
1+

√
5

2 x).
(53)

Figure 1 gives the numerical solution of the KGZ equation with α = 2, t ∈ [0, 10].
Figure 2 gives the numerical solution of the Riesz space fractional KGZ equation with
α = 1.7, t ∈ [0, 16]. These numerical results are consistent with the existing numerical
results [16]. From Figures 1 and 2, we can see that the new scheme can simulate the
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evolution of solitary waves of the Riesz space fractional KGZ equation well. The numerical
solutions and the numerical schemes are stable. Figure 3 shows the energy error of the Riesz
space fractional KGZ equation with (a): α = 2, (b): α = 1.7 at t ∈ [0, 20]. The energy error
is up to 10−13, which can neglected. It is obvious that the new scheme can well preserve
the discrete energy of the fractional KGZ equation.

(a) (b)

Figure 1. Evolution of solitary waves (a) u(x, t) and (b) m(x, t) at α = 2, t ∈ [0, 10].

(a) (b)

Figure 2. Evolution of solitary waves (a) u(x, t) and (b) m(x, t) at α = 1.7, t ∈ [0, 16].

(a) (b)

Figure 3. Energy error of fractional KGZ equation: (a) α = 2, (b) α = 1.7 at t ∈ [0, 20].

4.2. Numerical Simulation of the Fractional KGS Equation

We apply schemes (46)–(49) to simulate the Riesz space fractional KGS equation. The
discrete Hamiltonian energy errors can be defined as

Errorn
H = | H(Z̃n)− H(Z̃0)

H(Z̃0)
|, (54)
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where

H(Z̃n) =
β

4
((pn)TDα

2pn + (rn)TDα
2rn) +

γ

4
(hn)TD2hn

+
N−1

∑
j=0

[
α1

2
hn

j ((pn
j )

2 + (rn
j )

2)− 1
4

m2(hn
j )

2 − (vn
j )

2] (55)

and H(Z̃0) is the discrete Hamiltonian energy at t = 0.
The parameter variables are taken as υ = 0.8, x0 = 10. First, we consider the evolution

of single solitary waves. The initial condition of single solitary wave is taken as follows⎧⎨⎩ f0 = f (x − x0, 0, v) = 3
√

2
4(1−υ2)

sech2( 1
2
√

1−υ2 (x − x0) exp(iυx),

h0 = h(x − x0, 0, v) = 3
4(1−υ2)

sech2( 1
2
√

1−υ2 (x − x0).
(56)

Figure 4 shows the numerical solution of a single solitary wave of the KGS equation at
α = 2, t ∈ [0, 20]. Figure 5 shows the numerical solution of solitary waves f (x, t) and h(x, t)
of the Riesz space fractional KGS equation at α = 1.2, t ∈ [0, 20]. From Figures 4 and 5, we
can see that the new scheme of the Riesz space fractional KGS equation can also simulate
the evolution of a solitary wave of the equation well. The numerical solutions and the
numerical schemes are stable. Figure 6 shows the energy error of the Riesz space fractional
KGS equation. The error can be neglected. The new scheme of the equation can also well
preserve the discrete energy of the equation.

(a) (b)

Figure 4. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 2, t ∈ [0, 20].

(a) (b)

Figure 5. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 1.2, t ∈ [0, 20].
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(a) (b)

Figure 6. Energy error of the fractional KGS equation: (a) α = 2, (b) α = 1.2 at t ∈ [0, 20].

Then, we consider the evolution of two solitary waves with the following initial
conditions {

f0 = f (x − x0, 0, v) + f (x + x0, 0, −v),
h0 = h(x − x0, 0, v) + h(x + x0, 0, −v).

(57)

Figure 7 shows the numerical solutions of two solitary waves of the KGS equation at
α = 2, t ∈ [0, 30]. Figure 8 shows numerical solutions of two solitary waves of the Riesz
space fractional KGS equation at α = 1.6, t ∈ [0, 30]. The numerical results are consistent
with the existing results [23]. From Figures 7 and 8, we can see that the new scheme of the
Riesz space fractional KGS equation can also simulate the evolution of multiple solitary
waves of the equation well. The numerical solutions and the numerical schemes are stable.
Figure 9 shows the energy error of the Riesz space fractional KGS equation. The error can
be neglected. The new scheme of the Riesz space fractional KGS equation can also preserve
the discrete energy of the equation well.

(a) (b)

Figure 7. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 2, t ∈ [0, 30].

(a) (b)

Figure 8. Evolution of solitary waves (a) f (x, t) and (b) h(x, t) at α = 1.6, t ∈ [0, 30].
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(a) (b)

Figure 9. Energy errors of the fractional KGS equations: (a) α = 2, (b) α = 1.6 at t ∈ [0, 30].

5. Conclusions

In this paper, two new energy preserving schemes for the Riesz space fractional KGZ
and KGS equations are proposed based on the FPS method and the AVF method. The en-
ergy conservation property is proven. Numerical results show that these new schemes
can simulate the evolution behavior of the solitary waves of these fractional differential
equations well and preserve the discrete energy conservation property. The existing energy
conserving schemes of the space fractional KGZ and KGS equations are in general of second-
order accuracy. However, these energy conservation schemes based on the second-order
AVF method can be easily extended to high-order energy preserving schemes. In future
work, we will construct high-order energy preserving schemes for fractional differential
equations based on the high-order AVF method and analyze the convergence and stability
of these new energy-preserving schemes.
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Abstract: The fuzzy fractional differential equation explains more complex real-world phenomena
than the fractional differential equation does. Therefore, numerous techniques have been timely
derived to solve various fractional time-dependent models. In this paper, we develop two compact
finite difference schemes and employ the resulting schemes to obtain a certain solution for the
fuzzy time-fractional convection–diffusion equation. Then, by making use of the Caputo fractional
derivative, we provide new fuzzy analysis relying on the concept of fuzzy numbers. Further, we
approximate the time-fractional derivative by using a fuzzy Caputo generalized Hukuhara derivative
under the double-parametric form of fuzzy numbers. Furthermore, we introduce new computational
techniques, based on fuzzy double-parametric form, to shift the given problem from one fuzzy
domain to another crisp domain. Moreover, we discuss some stability and error analysis for the
proposed techniques by using the Fourier method. Over and above, we derive several numerical
experiments to illustrate reliability and feasibility of our proposed approach. It was found that the
fuzzy fourth-order compact implicit scheme produces slightly better results than the fourth-order
compact FTCS scheme. Furthermore, the proposed methods were found to be feasible, appropriate,
and accurate, as demonstrated by a comparison of analytical and numerical solutions at various
fuzzy values.

Keywords: fuzzy time-fractional equation; convection–diffusion equation; fuzzy Caputo gH-derivative;
finite difference methods; implicit scheme method; brownian motion

1. Introduction

In recent years, the study of solving fractional partial differential equations has at-
tracted the attention of many researchers. This can be appraised through a large num-
ber of research articles dealing with such equations in several scientific databases. The
time-fractional convection–diffusion equation (TFCDE) differs from the integer convection–
diffusion equation in the sense that time-fractional derivative can be replaced by a fractional
derivative to describe both the movement and speed of particles that are inconsistent with
the classical Brownian motion type [1–5]. The exact solutions are often unobtainable using
analytical methods. Thus, mathematicians have resorted to using numerical methods to pro-
vide solutions for the governing equations. Several finite difference methods discussed by
many authors [6–8] are considered to be one of the most essential numerical techniques for
solving the time-fractional convection–diffusion equations. The high-order compact finite
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difference methods are usually preferred due to their high computational efficiency and ac-
curacy. Lately, a number of research articles have been published regarding high-order com-
pact finite difference schemes to solve the time-fractional convection–diffusion equations.

Gao and Sun [9] developed two different three-point combined compact alternating-
direction implicit schemes CC–ADI to solve time-fractional convection–diffusion in the
sense of the Riemann–Liouville fractional derivative. The CC–ADI is a combination of com-
pact and alternating-direction implicit schemes that yield a high-order accuracy numerical
solution. Several numerical examples are carried out to demonstrate the efficiency of the
proposed schemes. The unconditional stabilities of the proposed schemes were proven with
the Fourier method. Later, Fazio et al. [10] developed an implicit scheme of non-uniform
grids to solve the time-fractional convection–diffusion equation. A spatial non-uniform
net was utilized in order to increase the accuracy of the Caputo fractional derivative. The
stability analysis of the proposed method showed that the method is unconditionally stable.
Several numerical examples were reported to show that the finite difference method is
more accurate for the non-uniform grid than the uniform mesh, and the stability is better
in the non-uniform mesh than the uniform mesh.

Very recently, Sweilam et al. [11] used the compact finite difference method to obtain
a numerical solution for the stochastic fractional convection–diffusion equation. The
fractional derivative was approximated by the Caputo definition, and the stability and
consistency of the presented method were discussed. Two experiments were also presented
to examine the performance of the proposed method. It was found that all of the results
obtained are compatible with the analytical exact solutions. Li et al. [12] used a fourth-order
compact scheme for solving a fluid dynamic problem, groundwater pollution modeled
by two-dimensional TFCDE. The time-fractional derivatives of the considered equation
ere approximated by Caputo fractional derivative and fourth-order accuracy compact
finite difference discretization that was applied to the spatial derivatives. The solvability,
convergence, and stability of the proposed scheme were studied on the basis of the von
Neumann method. It was further established that the introduced method has unique
solvability and convergence with order O

(
τ2−α + h1

4 + h2
4).

In the mainstream investigation of the processes modelled by fractional partial dif-
ferential equations, the variables and parameters are defined exactly, but these quantities
(variables and parameters) may be uncertain and vague due to measurement errors that
occur in the real experiments and that lead to fuzzy fractional partial differential equations.

Senol et al. [13] developed the perturbation–iteration algorithm (PIA) for solving fuzzy
time-fractional partial differential equations with a generalized Hukuhara derivative. The
fuzzy time-fractional derivative was approximated by the use of the Caputo definition. The
convergence analysis of the proposed method was discussed and showed that the proposed
approach gives a fast convergence rate and high accuracy when compared with the exact
analytical solutions of the crisp problem. Shah et al. [14] presented analytical solutions of
fuzzy time-fractional partial differential equations under certain conditions. The Laplace
transform was used to compute series-type solutions for the considered equations under
the fuzzy concept. Some examples were solved to illustrate the feasibility of the proposed
method. Recently, two finite difference methods that are implicit backward time center
space (BTCS) and implicit schemes were developed by the authors in [15] to solve the fuzzy
time-fractional convection–diffusion equation (FTFCDE).

Based on the literature, it seems, as far as we know, that limited research has been done
in the field of fuzzy time-fractional convection–diffusion equations by using classical and
compact finite difference methods. Our motivation in this article is to examine the solution
of the fuzzy time-fractional convection–diffusion equation. In this research article, we will
develop and implement compact finite difference methods, in particular the fourth-order
compact Crank–Nicholson and the fourth-order forward time center space schemes to
obtain an approximate solution for the time-fractional convection–diffusion equation in the
double-parametric form of a fuzzy number.
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2. Preliminaries and Fundamental Definitions

In this section, the main definitions and theorems that are utilized later in this article
are considered as follows:

Definition 1 [16]. Let RF denote the set of fuzzy subsets of the real axis and u : R → [0, 1]
satisfies the following properties:

1. u is upper semi-continuous on R,
2. u is fuzzy convex,
3. u is normal,
4. Closure of {x ∈ R|u(x) > 0} is compact,

Then, by RF we denote the space of fuzzy numbers for every 0 < r ≤ 1.

Denote by u(r) =
{

xεRn ...u(x) ≥ r
}

= u(r)− u(r). Then, from Definition 1, it follows

that the r − level set u(r) is a closed interval for all r, 0 ≤ r ≤ 1. For arbitrary u, v ∈ RF
and k ∈ R, the addition and scalar multiplication are defined by (u ⊕ v)(r) = u(r) + v(r),
(k # u)(r) = [ku(r), ku(r)], respectively.

Definition 2 [16]. The Hausdorff distance between the fuzzy numbers is defined by
d : RF ×RF → R+ ∪ {0} as d(u, v) = suprε[0,1] Max {|u(r)− v(r)|, |u(r)− v(r)|}. The
r − level representation of the fuzzy-valued function f : [a, b] → RF is given by
(x; r) = [ f (x; r), f (x; r)],x ∈ [a, b], 0 ≤ r ≤ 1.

Definition 3 [17]. Let u, v ∈ RF and there exist w ∈ RF such that u = v + w. Then, w is
called the Hukuhara difference of u and v , and it is denoted by u $ v, fora ≤ x and 0 < α ≤ 1.

Definition 4 [18]. The generalized Hukuhara difference (gH-differentiable for short) of two fuzzy
numbers u, v ∈ RF , gH- difference for short) is w ∈ RF defined by

u $gH v = w ⇔
{

(i) u = v + w
or (ii) v = u + (−1)w

.

Definition 5 [19]. The gH-differentiable of a fuzzy-valued function f (a, b) → RF at x0 is
defined by (

f ′
)

gH(x0) =
lim
h→0

f (x0 + h)$ gH f (x0)

h
.

If ( f ′)gH(x0)εRF, we say that f is gH-differentiable at x0. In addition, we say that f is
[(i)− gH]-differentiable at x0 if:

5. ( f ′)gH(x0; r) = [( f )
′
(x0; r) ,

(
f )

′
(x0; r)

]
, r ∈ [0, 1], and that f is [(ii)− gH]-differentiable

at x0 if

6. ( f ′)gH(x0; r) = [( f )
′
(x0; r) ,

(
f )

′
(x0; r)

]
, r ∈ [0, 1].

Definition 6 [19]. We say that a point x0 ∈ (a, b) is a switching point for the differentiability
of f if, in any neighborhoodV of x0 , there exists points x1 < x0 < x2 such that: Type (I): at x1
(i) holds while (ii) does not hold and, at x2 , (ii) holds and (i) does not hold, Type (II): at x1 (ii) holds
while (i) does not hold and, at x2 , (i) holds and (ii) does not hold.

Definition 7 [20]. The fractional derivative was defined as follows

c
0Dα

t f (t) =
1

Γ(1 − α)

∫ t

0

∂
∂t f (ξ)
(t − ξ)α ∂ξ, 0 < α < 1.
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The time-fractional derivative term is approximated as [21]

∂αu(x, t)
∂αt

=
Δt−α

Γ(2 − α) ∑n
j=1 bj

(
un+1−j

i − un−j
i

)
,

where bj = (j + 1)1−α − (j)1−α , j = 0, 1, 2, . . ..

Definition 8 [22]. The fuzzy fractional Caputo gH- derivative of a fuzzy valued function f (t; r)
based on (i) and (ii) of gH-differentiable function f is defined as follows:

7. (c
gH Dα

t f (t; r) =
[

c
0Dα

t f (t; r), c
0Dα

t f (t; r)
]

, 0 ≤ r ≤ 1,

8. (c
gH Dα

t f (t; r) =
[

c
0Dα

t f (t; r), c
0Dα

t f (t; r)
]

, 0 ≤ r ≤ 1,

where c
0Dα

t f (t; r) = 1
Γ(1−α)

∫ t
0

∂
∂t f (ξ;r)
(t−ξ)α ∂ξ and c

0Dα
t f (t; r) = 1

Γ(1−α)

∫ t
0

∂
∂t f (ξ;r)
(t−ξ)α ∂ξ.

Definition 9 [15]. (The double-parametric form of fuzzy numbers) Using the single-parametric
form, we write Ũ = [u(r), u(r)] , which may be written as a crisp number using the double-
parametric form as

Ũ(r, β) = β[u(r)− u(r)] + u(r),where r and β ∈ [0, 1].

3. High-Order Compact Finite Difference Method in Fuzzy Environment

Let un
i indicate the approximation value of u at (xi, tn). Based on the Taylor series

expansions un
i+1and un

i+1 , u can be expanded about (xi, tn) to derive the fuzzy high-order
compact finite difference scheme for the spatial derivatives.

∼
u

n
i+1 =

∼
u

n
i + h

(
∂
∼
u

∂x

)n

i
+ h2

2

(
∂2∼u
∂x2

)n

i
+ h3

6

(
∂3∼u
∂x3

)n

i
+ · · ·

∼
u

n
i−1 =

∼
u

n
i − h

(
∂
∼
u

∂x

)n

i
+ h2

2

(
∂2∼u
∂x2

)n

i
− h3

6

(
∂3∼u
∂x3

)n

i
+ ...

⎫⎬⎭. (1)

The first derivatives of un
i+1 and un

i−1 are(
∂
∼
u

∂x

)n

i+1
=
(

∂
∼
u

∂x

)n

i
+ h
(

∂2∼u
∂x2

)n

i
+ h2

2

(
∂3∼u
∂x3

)n

i
+ h3

6

(
∂4∼u
∂x4

)n

i
+ · · ·(

∂
∼
u

∂x

)n

i−1
=
(

∂
∼
u

∂x

)n

i
− h
(

∂2∼u
∂x2

)n

i
+ h2

2

(
∂3∼u
∂x3

)n

i
− h3

6

(
∂4∼u
∂x4

)n

i
+ ...

⎫⎪⎬⎪⎭. (2)

The second derivatives of un
i+1 and un

i−1 are(
∂2∼u
∂x2

)n

i+1
=
(

∂2∼u
∂x2

)n

i
+ h
(

∂3∼u
∂x3

)n

i
+ h2

2

(
∂4∼u
∂x4

)n

i
+ h3

6

(
∂5∼u
∂x5

)n

i
+ · · ·(

∂2∼u
∂x2

)n

i−1
=
(

∂2∼u
∂x2

)n

i
− h
(

∂3∼u
∂x3

)n

i
+ h2

2

(
∂4∼u
∂x4

)n

i
− h3

6

(
∂5∼u
∂x5

)n

i
+ ...

⎫⎪⎬⎪⎭. (3)

From Equations (1)–(3), the first and second partial derivatives are approximated
to give (

∂u
∂x

)n

i
=

δx/2h(
1 + 1

6 δ2x

)un
i +

h4

180

(
∂5u
∂x5

)n

i
+ O

(
h5
)

, (4)

(
∂2u
∂x2

)n

i
=

δ2
x/h2(

1 + 1
12 δ2x

)un
i +

h4

240

(
∂6u
∂x6

)n

i
+ O

(
h6
)

, (5)

where δx = ũn
i+1 − un

i−1 and δ2
x = ũn

i+1 − 2ũn
i + ũn

i−1 for 0 ≤ i ≤ M, 0 ≤ n ≤ N.
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By taking into account the average function that mentioned in [23], we assume that

1(
1 + 1

6 δ2x

) ũn
i =

1
6
(
ũn

i+1 + 4ũn
i + ũn

i−1
)
, 1 ≤ i ≤ M − 1, (6)

1(
1 + 1

12 δ2x

) ũn
i =

1
12
(
ũn

i+1 + 10ũn
i + ũn

i−1
)
, 1 ≤ i ≤ M − 1. (7)

4. Time Fractional Convection–Diffusion Equation in Fuzzy Environment

A fuzzy fractional convection–diffusion equation is used to describe both the speed
and movement of particles that are incompatible with the classical Brownian motion pattern.
The fuzzy fractional convection–diffusion equation can be used for modelling some physical
problems such as groundwater hydrology and gas transport through heterogeneous soil.
The applications also exist in aerodynamics and other fields [24–27].

Let us now consider the general formula of the fuzzy time-fractional convection–
diffusion equation involving the boundary and initial conditions [28]

∂α ũ(x,t,α)
∂αt = −ṽ(x) ∂ũ(x,t)

∂x − D̃(x) ∂2ũ(x,t)
∂x2 + q̃(x, t) , 0 < x < l, t < 0,

ũ(x, 0) = f̃ (x), ũ(0, t) = g̃(0, t), ũ(l, t) = z̃ (l, t),
(8)

where ũ(x, t, α) is the density of a quantity such as fuzzy energy; the fuzzy mass

of crisp variables x, t, and α is an arbitrary order such that ∂αŨ(x,t,α)
∂αt denotes the fuzzy

time-fractional generalized Hukuhara derivative (gH-derivative) of order α; ṽ(x) is the
average velocity of a fuzzy quantity; D̃(x) is the diffusivity coefficient; q̃(x, t) is a function
for the uncertainty crisp variable x; t, ũ(0, t) and ũ(l, t) are the fuzzy boundary conditions
involving g̃ , z̃ is defined as a fuzzy convex number; and ũ(x, 0) is the fuzzy initial condition.

In Equation (8), the fuzzy functions f̃ (x), ṽ(x), D̃(x), and q̃(x) are defined as fol-
lows [29]: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

D̃(x) = θ̃1s1(x)
q̃(x) = θ̃2s2(x)
f̃ (x) = θ̃3s3(x)
ṽ(x) = θ̃4s4(x)

(9)

where s1(x), s2(x), s3(x) and s4(x) are the crisp (classical) functions of the classical variable
x where θ̃1, θ̃2, θ̃3 and θ̃4 are introduced as the fuzzy convex numbers. The fuzzy time-
fractional convection–diffusion equation is defuzzified based on the double-parametric
approach of fuzzy numbers as [14]:

[ũ(x, t)]r = u(x, t; r), u(x, t; r), (10)[
∂αũ(x, t, α)

∂αt

]
r
=

∂αu(x, t, α; r)
∂αt

,
∂αu(x, t, α; r)

∂αt
, (11)[

∂ũ(x, t)
∂x

]
r
=

∂u(x, t; r)
∂x

,
∂u(x, t; r)

∂x
(12)

[
∂2ũ(x, t)

∂x2

]
r
=

∂2u(x, t; r)
∂x2 ,

∂2u(x, t; r)
∂x2 , (13)

[ṽ(x)]r = v(x; r), v(x; r) (14)[
D̃(x)

]
r
= D(x; r), D(x; r) (15)

[q̃(x)]r = q(x; r), q(x; r) (16)

[ũ(x, 0)]r = u(x, 0; r), u(x, 0; r) (17)
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[ũ(0, t)]r = u(0, t; r), u(0, t; r) (18)

[ũ(l, t)]r = u(l, t; r), u(l, t; r), (19)[
f̃ (x)

]
r
= f (x; r), f (x; r), (20){

[g̃]r = g(r), g(r),
[z̃]r = z(r), z(r),

(21)

such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
[D(x)]r =

[
θ(r)1, θ1(r)

]
s1(x)

[q̃(x)]r =
[
θ(r)2, θ2(r)

]
s2(x)[

f̃ (x)
]

r
=
[
θ(r)3, θ3(r)

]
s3(x)

[v(x)]r =
[
θ(r)4, θ4(r)

]
s4(x)

. (22)

By employing the fuzzy extension principle, the membership function is defined
as [10] {

u(x, t; r) = min{ũ(μ̃(r), t))|μ̃(r) ∈ ũ(x, t; r)},
u(x, t; r) = max{ũ(μ̃(r), t)|μ̃(r) ∈ ũ(x, t; r)}.

(23)

Now, for 0〈x〉l, t > 0 and r ∈ [0, 1], Equation (8) is rewritten to yield the general
equation of the fuzzy time-fractional convection–diffusion equation⎧⎪⎨⎪⎩

∂αu(x,t,α)
∂αt = −[θ(r)4]s4(x) ∂u(x,t;r)

∂x + [θ(r)1]s1(x) ∂2u(x,t;r)
∂x2 + [θ(r)2]s2(x),

u(x, 0; r) = θ(r)3s3(x),
u(0, t; r) = g(r), u(l, t; r) = z(r),

(24)

⎧⎪⎨⎪⎩
∂αu(x,t,α)

∂αt = −
[
θ4(r)

]
s4(x) ∂u(x,t;r)

∂x +
[
θ1(r)

]
s1(x) ∂2u(x,t;r)

∂x2 +
[
θ2(r)

]
s2(x),

u(x, 0; r) = θ3(r)3s3(x),
u(0, t; r) = g(r), u(l, t; r) = z(r).

(25)

Equations (24) and (25) present the lower and upper bounds of the general formula of
the fuzzy time-fractional convection–diffusion equation. Now, for defuzzification, Equa-
tion (8), based on the double-parametric form of the fuzzy numbers, as per the singular-
parametric form, may be expressed as[

∂αu(x,t,α;r)
∂αt , ∂αu(x,t,α;r)

∂αt

]
= −[ v(x, r), v(x, r)]

[
∂ui,n(x,t;r)

∂x , ∂ui,n(x,t;r)
∂x

]
+
[

D(x, r), D(x, r)
][ ∂2ui,n(x,t;r)

∂x2 , ∂2ui,n(x,t;r)
∂x2

]
+
[

q(x, t; r), q(x, t; r)
]
,

(26)

subject to the fuzzy boundary and initial conditions

[ u(x, 0; r), u(x, 0; r)] =
[

f (x, t; r), f (x, t; r)
]
, [ u(0, t; r), u(0, t; r)] =

[
g(0, t; r), g(0, t; r)

]
and [ u(l, t; r), u(l, t; r)] = [z(l, t; r), z(l, t; r)].

Now, via the double-parametric form (see, e.g., [14]), we rewrite Equation (26) as:{
β
(

∂αu(x,t,α;r)
∂αt − ∂αu(x,t,α;r)

∂αt

)
+ ∂αu(x,t,α;r)

∂αt

}
= −{β(v(x, r)− v(x, r)) + v(x, r)}

{
β
(

∂ui,n(x,t;r)
∂x − ∂ui,n(x,t;r)

∂x

)
+

∂ui,n(x,t;r)
∂x

}
+{β(D(x, r)− D(x, r)) + D(x, r)}

{
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
+{β(q(x, t; r)− q(x, t; r)) + q(x, t; r)},

(27)
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subjected to fuzzy initial and boundary conditions

{ β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)} =
{

β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

{ β (u(0, t; r)− u(0, t; r)) + u(0, t; r)} =
{

β
(

g(x; r)− g(x; r)
)
+ g(x; r)

}
,

and
{ β (u(l, t; r)− u(l, t; r)) + u(l, t; r)} = { β (z(x; r)− z(x; r)) + z(x; r)},

where β ∈ [0, 1]. Now we donate

∂α ũ(x,t;r,β)
∂αt =

{
β
(

∂αu(x,t,α;r)
∂αt − ∂αu(x,t,α;r)

∂αt

)
+ ∂αu(x,t,α;r)

∂αt

}
ṽ(x) ∂ũ(x,t;r,β)

∂x = { β (v(x, r)− v(x, r)) + v(x, r)}
{

β
(

∂ui,n(x,t;r)
∂x − ∂ui,n(x,t;r)

∂x

)
+

∂ui,n(x,t;r)
∂x

}
,

ã(x) ∂2ũ(x,t;r,β)
∂x2 =

{
β
(

D(x, r)− D(x, r)
)
+ D(x, r)

} {
β

(
∂2ui,n(x,t;r)

∂x2 − ∂2ui,n(x,t;r)
∂x2

)
+

∂2ui,n(x,t;r)
∂x2

}
,

q̃(x, t; r, β) =
{

β
(

q(x, t; r)− q(x, t; r)
)
+ q(x, t; r)

}
,

ũ(x, 0; r, β) = { β (u(x, 0; r)− u(x, 0; r)) + u(x, 0; r)},
f̃ (x; r, β) =

{
β
(

f (x; r)− f (x; r)
)
+ f (x; r)

}
,

ũ(0, t; r, β) = { β (u(0, t; r)− u(0, t; r)) + u(0, t; r)},
g̃(x; r, β) =

{
β
(

g(x; r)− g(x; r)
)
+ g(x; r)

}
,

ũ(l, t; r, β) = { β (u(l, t; r)− u(l, t; r)) + u(l, t; r)},
z̃(x; r, β) = { β (z(x; r)− z(x; r)) + z(x; r)}.

Substituting these equations into Equation (26) reveals

∂α ũ(x,t,α,β)
∂αt = −ṽ(x) ∂ũ(x,t,β)

∂x + ã(x) ∂2ũ(x,t,β)
∂x2 + b̃(x, t, β) , 0 < x < l, 0 < β < l, t < 0,

ũ(x, 0, β) = f̃ (x, r, β), ũ(0, t, β) = g̃ , ũ(l, t, β) = z̃.
(28)

To obtain the lower and upper solutions of equation (28) in the single parametric form,
assume β = 0 and β = 1, respectively, to obtain

ũ(x, t; r, 0) = u(x, t; r) and ũ(x, t; r, 1) = u(x, t; r).

5. The Fuzzy Fourth-Order Compact Implicit Scheme Method for the Solution
of FTFCDE

In this section, the fourth-order compact implicit scheme method is developed and ap-
plied to a double-parametric form of fuzzy numbers, utilizing fourth-order approximation
at time level n + 1

2 . In addition, the first- and second-order space derivatives, along with a
fuzzy Caputo gH-derivative formula, are discretized to approximate the time-fractional
derivative to solve the fuzzy time-fractional convection–diffusion equation.

To obtain an approximate solution to the fuzzy time-fractional convection–diffusion
equation based on the fuzzy fourth-order compact implicit scheme method, the fuzzy
Caputo gH- derivative formula has been applied to approximate the fuzzy time-fractional
derivative given in Equation (8). The first and second space partial derivatives are, respec-
tively, approximated by using Equations (4) and (5) as

Δt−α

Γ(2 − α)
[ũi,n+1 − ũi,n +

n

∑
j=1

bj
(
ũi,n+1−j − ũi,n−j

)
] = −ṽ(x, r)

δx
2h(

1 + 1
6 δ2x

) + D̃(x, r)
δ2

x
h2(

1 + 1
12 δ2x

) + q̃(x, r). (29)
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Hence, from Equations (6), (7) and (29) can be simplified to give

Δt−α

Γ(2−α)
× 3

12 ((
∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 )− (

∼
u

n
i+1 + 6

∼
u

n
i +

∼
u

n
i−1)

+
n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )])

= −∼
v(x, r)

∼
u

i+1,n+ 1
2
−∼

u
i−1,n+ 1

2
2h +

∼
D(x, r)

∼
u

i+1,n+ 1
2
−2

∼
u

i,n+ 1
2
+

∼
u

2
i−1,n+ 1

2

h2

+

(
∼
q

n+ 1
2

i+1 + 6
∼
q

n+ 1
2

i +
∼
q

n+ 1
2

i−1

)
(30)

Δt−α

Γ(2−α)
× 3

12 ((
∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 )− (

∼
u

n
i+1 + 6

∼
u

n
i +

∼
u

n
i−1)

+
n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )])

= −∼
v(x, t, r) 1

2 ×
[∼

ui+1,n+1−
∼
ui−1,n+1

2h +
∼
ui+1,n−

∼
ui−1,n

2h

]
+

∼
a(x, t, r) 1

2

[∼
ui+1,n+1−2

∼
ui,n+1+

∼
ui−1,n+1

h2 +
∼
ui+1,n−2

∼
ui,n+

∼
ui−1,n

h2

]
+

∼
b(x, t, r).

(31)

Therefore, we have

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 6

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= −
∼
v(x,r)ΔtαΓ(2−α)

h [3
∼
ui+1,n+1 − 3

∼
ui−1,n+1 + 3

∼
ui+1,n − 3

∼
ui−1,n]

+
∼
a(x,r)ΔtαΓ(2−α)

h2 [6
∼
ui+1,n+1 − 12

∼
ui,n+1 + 6

∼
ui−1,n+1 + 6

∼
ui+1,n − 12

∼
ui,n + 6

∼
ui−1,n]

+12ΔtαΓ(2 − α)[(
∼
b

n+1

i+1 + 6
∼
b

n+1

i +
∼
b

n+1

i−1 )].

(32)

Now, assume p̃1(r) =
ṽ(x,t;r) Γ(2−α) Δtα

h , p̃2(r) =
D̃(x,t;r) Γ(2−α) Δtα

h2 . Then, in view of
Equation (32) we derive

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 6

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= [−3
∼
p1

∼
ui+1,n+1 + 3

∼
p1

∼
ui−1,n+1 − 3

∼
p1

∼
ui+1,n + 3

∼
p1

∼
ui−1,n]

+[6
∼
p2

∼
ui+1,n+1 − 12

∼
p2

∼
ui,n+1 + 6

∼
p2

∼
ui−1,n+1 + 6

∼
p2

∼
ui+1,n − ∼

p212
∼
ui,n + 6

∼
p2

∼
ui−1,n]

+12ΔtαΓ(2 − α)[(
∼
b

n+1

i+1 + 6
∼
b

n+1

i +
∼
b

n+1

i−1 )]

(33)

Thus, we simplify Equation (33) to obtain a general formula for the fourth-order
compact implicit scheme method of the FTFCDE as follows(

1 + 3
∼
p1 − 6

∼
p2

) ∼
u

n+1
i+1 +

(
6 + 12

∼
p2

)∼
u

n+1
i +

(
1 − 3

∼
p1 − 6

∼
p2

)∼
u

n+1
i−1

=
(

1 − 3
∼
p1 + 6

∼
p2

)∼
u

n
i+1 +

(
6 − 12

∼
p2

)∼
u

n
i +
(

1 + 3
∼
p1 + 6

∼
p2

)∼
u

n
i−1

−
n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1

)]
+12ΔtαΓ(2 − α)

[(
∼
q

n+1
i+1 + 6

∼
q

n+1
i +

∼
q

n+1
i−1

)
.

(34)

6. The Fuzzy Fourth-Order FTCS Method for the Solution of FTFCDE

In this section, the fourth-order FTCS method is developed and applied to the double-
parametric form of fuzzy numbers implementing the fourth-order approximation at time
level n. The, we discretize the first- and second-order space derivatives and the fuzzy
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Caputo gH-derivative formula to approximate the time-fractional derivative that gives rise
to the solution of the fuzzy time-fractional convection–diffusion equation.

To obtain an approximate solution to the fuzzy time-fractional convection–diffusion
equation based on fuzzy fourth-order compact FTCS method, the fuzzy Caputo gH-
derivative formula has been applied to approximate the fuzzy time-fractional derivative
Equation (8). The first- and second-space partial derivatives are therefore approximated by
Equation (5) to yield

Δt−α

Γ(2−α)
[ũi,n+1 − ũi,n +

n
∑

j=1
bj
(
ũi,n+1−j − ũi,n−j

)
]

= −ṽ(x, r)
δx
2h

(1+ 1
6 δ2x)

+ D̃(x, r)
δ2x
h2

(1+ 1
12 δ2x)

+ q̃(x, r).
(35)

Hence, simplifying Equation (35) reveals

Δt−α

Γ(2−α)
× 3

12 ((
∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 )− (

∼
u

n
i+1 + 6

∼
u

n
i +

∼
u

n
i−1)

+
n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )])

= −∼
v(x, r)

∼
ui+1,n−

∼
ui−1,n

2h +
∼
D(x, r)

∼
ui+1,n−2

∼
ui,n+

∼
ui−1,n

h2 + (
∼
q

n
i+1 + 6

∼
q

n
i +

∼
q

n
i−1)

(36)

Therefore, we have obtained

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 6

∼
u

n
i − ∼

u
n
i−1 + ∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= −
∼
v(x,r)ΔtαΓ(2−α)

h [6
∼
ui+1,n − 6

∼
ui−1,n]

+
∼
D(x,r)ΔtαΓ(2−α)

h2 [12
∼
ui+1,n − 24

∼
ui,n + 12

∼
ui−1,n] + 12ΔtαΓ(2 − α)[(

∼
q

n
i+1 + 6

∼
q

n
i +

∼
q

n
i−1)].

(37)

Now, let p̃1(r) = ṽ(x,r) ΔtαΓ(2−α)
h , p̃2(r) = D̃(x,r)ΔtαΓ(2−α)

h2 . Then, from Equation (37)
we write

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 6

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

= [−6
∼
p1

∼
ui+1,n + 6

∼
p1

∼
ui−1,n] + [12

∼
p2

∼
ui+1,n − 24

∼
p2

∼
ui,n + 12

∼
p2

∼
ui−1,n]

+12ΔtαΓ(2 − α)[(
∼
q

n
i+1 + 6

∼
q

n
i +

∼
q

n
i−1)]

(38)

By simplifying Equation (38), we obtain the general formula for the fourth-order
compact FTCS of the FTFCDE in the form

∼
u

n+1
i+1 + 6

∼
u

n+1
i +

∼
u

n+1

i−1

= (1 − 6
∼
p1 + 12

∼
p2)

∼
u

n
i+1 + (6 − 24

∼
p2)

∼
u

n
i + (1 + 6

∼
p1 + 12

∼
p2)

∼
u

n
i−1

−
n
∑

j=1
bj[(

∼
u

n+1−j
i+1 + 6

∼
u

n+1−j
i +

∼
u

n+1−j
i−1 )− (

∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1 )]

+12ΔtαΓ(2 − α)[(
∼
b

n

i+1 + 6
∼
b

n

i +
∼
b

n

i−1)]

(39)

7. The Truncation Error Analysis

In this section, the truncation error of Equation (34) is considered by employing the
Taylor series expansion to give
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∼
T
(

xi, tn+ 1
2

)
= 1

Γ(2−α)Δtα

n
∑

j=0
bj

(
∼
u

n+1−j
i − ∼

u
n−j
i

)
+ δx/2h

(1+ 1
6 δ2x)

un+ 1
2

i − δ2
x/h2

(1+ 1
12 δ2)

∼
u

n+ 1
2

i

= 1
Γ(2−α)Δtα

n
∑

j=0
bj

(
∼
u

n+1−j
i − ∼

u
n−j
i

)
− ∂α∼u

∂αt

∣∣∣n+ 1
2

i
+ δx/2h

(1+ 1
6 δ2x)

un+ 1
2

i − ∂
∼
u

∂x

∣∣∣n+ 1
2

i
+ ∂2∼u

∂2x

∣∣∣n+ 1
2

i
− δ2

x/h2

(1+ 1
12 δ2x)

∼
u

n+ 1
2

i

= 1
Γ(2−α)Δtα

n
∑

j=0
bj

(
∼
u

n+1−j
i − ∼

u
n−j
i

)
− ∂α∼u

∂α

∣∣∣n+ 1
2

i
+ h4

180

(
∂5u
∂x5

)n

i
+ h4

240

(
∂6∼u
∂x6

)n+ 1
2

i
Ii

= O(Δt)2−α + O
(
h4)+ O

(
h4) = (Δt)2−α + O

(
h4)

(40)

It is not of place to mention here that we have to take into consideration that the trunca-
tion error for the second-order implicit scheme method of Equation (14) is
O(Δt)2−α + O

(
h2).

8. Stability Analysis

The Fourier method is used in this section to examine the stability of the presented
method for the fuzzy time-fractional convection–diffusion equation. First, suppose that
the discretization of the initial condition tends to the fuzzy error ε̃0

i . Assume ũ0
i = ´̃u0

i − ε̃0
i ,

ũn
i , and ´̃un

i are the numerical fuzzy solutions of the fourth-order compact formula in
Equation (14). Let [ũn

i+1(x, t; α)]r = β[u (r)− u (r)] + u(r)], where r, β ∈ [0, 1]. Then, we
define the fuzzy error bound as

[ε̃n
i ]r =

[
´̃un
i − ũn

i

]
r

, n = 1, 2, 3, . . . . . . , X × M; i = 1, 2, 3, . . . . . . ; X − 1. (41)

Then, by making use of the presented approach of [30], Equation (14) can be read as(
1 + 3

∼
p1 − 6

∼
p2

) ∼
u

n+1
i+1 +

(
6 + 12

∼
p2

)∼
u

n+1
i +

(
1 − 3

∼
p1 − 6

∼
p2

)∼
u

n+1
i−1

=
(

1 − 3
∼
p1 + 6

∼
p2 − b1

)∼
u

n
i+1 +

(
6 − 12

∼
p2 − 6b1

)∼
u

n
i +
(

1 + 3
∼
p1 + 6

∼
p2 − b1

)∼
u

n
i−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
u

n−j
i+1 + 6

∼
u

n−j
i +

∼
u

n−j
i−1

)
+ bn

(
∼
u

0
i+1 + 6

∼
u

0
i +

∼
u

0
i−1.
) (42)

The error bound of Equation (42) therefore has the form(
1 + 3

∼
p1 − 6

∼
p2

) ∼
ε

n+1
i+1 +

(
6 + 12

∼
p2

)∼
ε

n+1
i +

(
1 − 3

∼
p1 − 6

∼
p2

)∼
ε

n+1
i−1

=
(

1 − 3
∼
p1 + 6

∼
p2 − b1

)∼
ε

n
i+1 +

(
6 − 12

∼
p2 − 6b1

)∼
ε

n
i +
(

1 + 3
∼
p1 + 6

∼
p2 − b1

)∼
ε

n
i−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
ε

n−j
i+1 + 6

∼
ε

n−j
i +

∼
ε

n−j
i−1

)
+ bn

(
∼
ε

0
i+1 + 6

∼
ε

0
i +

∼
ε

0
i−1

)
,

(43)

provided that ε̃n
0 = ε̃n

X = 0, n = 1, 2, . . . ., T × M.
Let ε̃n

i = [ε̃n
1, ε̃n

2, . . . . . . , ε̃n
X−1]. Then, the fuzzy norm is introduced as

‖ε̃n‖2 =
√

∑X−1
i=1 h

∣∣ε̃n
i

∣∣2
Then, it yields

‖ε̃n‖2
2 = ∑X−1

i=1 h |ε̃n
i |2. (44)

Suppose that ε̃n
i can be expressed in the form

ε̃n
i = λ̃n e

√−θi , where θ̃i = qih. (45)
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Then, substituting Equation (45) into Equation (43) implies(
1 + 3

∼
p1 − 6

∼
p2

) ∼
λ

n+1
e
√−θi +

(
1 − 3

∼
p1 − 6

∼
p2

)∼
λ

n+1
e
√

−θi−1

=
(

1 − 3
∼
p1 + 6

∼
p2 − b1

)∼
λ

n
e
√

−θi+1 +
(

6 − 12
∼
p2 − 6b1

)∼
λ

n
e
√−θi

+
(

1 + 3
∼
p1 + 6

∼
p2 − b1

)∼
λ

n
e
√

−θi−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
λ

n−j
e
√

−θi+1 +
∼
λ

n−j
e
√−θi +

∼
λ

n−j
e
√

−θi−1

)
+bn

(∼
λ

0
e
√

−θi+1 + 6
∼
λ

0
e
√−θi +

∼
λ

0
e
√

−θi−1

)
(46)

Divide Equation (46) by e
√
−θi to have

[
(

6 + 12
∼
p2

)
+

(
e
√−θi + e−

√−θi
)
− 6

∼
p2

(
e
√−θi + e−

√−θi
)
]
∼
λ

n+1

=
[(

6 − 12
∼
p2 − 6b1

)
+ (1 − b1)

(
e
√−θi + e−

√−θi
)
+ 6

∼
p2

(
e
√−θi + e−

√−θi
)]∼

λ
n

−
n−1
∑

j=1

(
bj+1 − bj

)[
6 +
(

e
√−θi + e−

√−θi
)]∼

λ
n−j

+ bn

[
6 +
(

e
√−θi + e−

√−θi
)]∼

λ
0

(47)

Then, simplify Equation (47) to write

λ̃n+1 =

[
8−8b1−4 sin2( θ

2 )+4b1 sin2( θ
2 )−24p̃2 sin2( θ

2 )
8−4 sin2( θ

2 )+24p̃2 sin2( θ
2 )

]
λ̃n

− ∑n−1
j=1 (bj+1−bj)(8−4 sin2( θ

2 )) λ̃n−j+bn(8−4 sin2( θ
2 ))λ̃0

8−4 sin2( θ
2 )+48p̃2 sin2( θ

2 )+12
√
−1 p̃1sin θ

.
(48)

Proposition 1. Let λ̃n be the fuzzy numerical solution for Equation (48). Then, we have∣∣∣λ̃n
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣ .

Proof. From Equation (48), we, for n = 0 , write

∣∣∣λ̃1
∣∣∣ =
⎛⎝8 − 4 sin2

(
θ
2

)
− 24p̃2 sin2

(
θ
2

)
8 − 4 sin2

(
θ
2

)
+ 24p̃2 sin2

(
θ
2

)
⎞⎠∣∣∣λ̃0

∣∣∣.
Hence, it follows ∣∣∣λ̃1

∣∣∣ ≤ ∣∣∣λ̃0
∣∣∣ .

Now, assume that ∣∣∣λ̃m
∣∣∣ ≤ ∣∣∣λ̃0

∣∣∣, m = 1, 2 , 3 , . . . , n − 1.

Therefore, by [30], we state that the standard coefficient bj = (j + 1)1−α − (j)1−α,
j = 1, 2, 3, . . . , satisfies

9. bj > 0, j = 1, 2, ...
10. bj > bj+1, j = 1, 2, . . . .

Hence, in view of Equation (48) and the above statement, we obtain

λ̃n+1 ≤
[

8−8b1−4 sin2( θ
2 )+4b1 sin2( θ

2 )−24p̃2 sin2( θ
2 )

8−4 sin2( θ
2 )+24p̃2 sin2( θ

2 )

]∣∣∣λ̃n
∣∣∣−

∑n−1
j=1 (bj+1−bj)(8−4 sin2( θ

2 )) |λ̃n−j|+bn(8−4 sin2( θ
2 ))|λ̃0|

8−4 sin2( θ
2 )+24p̃2 sin2( θ

2 ).
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Thus, we write

λ̃n+1 ≤

⎡⎣8 − 8b1 − 4 sin2
(

θ
2

)
+ 4b1 sin2

(
θ
2

)
− 24p̃2 sin2

(
θ
2

)
−
[
(bn − b1)

(
8 − 4 sin2

(
θ
2

))]
+ 8bn − 4bn sin2

(
θ
2

)
8 − 4 sin2

(
θ
2

)
+ 24p̃2 sin2

(
θ
2

)
⎤⎦∣∣∣λ̃0

∣∣∣
That is,

λ̃n+1 ≤

⎡⎣8 − 4 sin2
(

θ
2

)
− 24p̃2 sin2

(
θ
2

)
8 − 4 sin2

(
θ
2

)
+ 24p̃2 sin2

(
θ
2

)
⎤⎦∣∣∣λ̃0

∣∣∣ ≤ ∣∣∣λ̃0
∣∣∣.

Theorem 1. The fourth-order compact implicit scheme method Equation (34) is unconditionally stable.

Proof. From Proposition 1 and the formula of Equation (44), it can be easily shown that

‖ε̃n‖2 ≤ ‖ε̃0‖2 , n = 1, 2, 3, . . . . . . , N − 1

This means that the fourth-order compact implicit scheme method Equation (14) is
unconditionally stable. On the other hand, using the same approach, it is easy to show that
the fourth-order compact FTCS scheme Equation (39) is conditionally stable, i.e., there are
stability conditions for the time step.

9. Numerical Experiments

Consider the one-dimensional time-fractional convection–diffusion equation [28]

∂αũ(x, t, α)

∂tα
= −∂ũ(x, t; r, β)

∂x
+

∂2ũ(x, , t; r, β)

∂x2 , 0 < x < L, t < 0, (49)

subject to the fuzzy boundary conditions ũ(0, t) = ũ(1, t) = 0 and the fuzzy initial condition

ũ(x, 0) = k̃e−x, 0 < x < 1 (50)

According to the r-cut approach, the double-parametric is defined as follows

k̃(r, β) = ((β(0.2 − 0.2r)) + 0.1r − 0.1).

It is clear that the time-fractional derivative ∂α ũ(x,t)
∂tα and the second-order space deriva-

tive ∂2ũ(x,t)
∂x2 follow the (i) case of generalized differentiability defined in Definition 5. It

can be noted from [28] that the analytical solution of Equation (34), which is illustrated in
Figures 1 and 2, can be defined by

ũ(x, t, α; r, β) = ∑∞
n=0

2n tnα

Ґ(nα + 1)
k̃(r, β)e−x. (51)
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Figure 1. The analytical solution of Equation (49) at r = 0.6 and β = 0.4.

 
Figure 2. The fuzzy analytical solution of Equation (49) at r = 0.6 and β = 0.6.

The fuzzy absolute error for the numerical solution of Equation (49) can be determined as[
Ẽ
]

r
=
∣∣∣Ũ(x, t; r, β)− ũ(x, t; r, β)

∣∣∣ = { [E]r = |U(x, t; r, β)− u(x, t; r, β)|[
E
]

r =
∣∣U(x, t; r, β)− u(x, t; r, β)

∣∣ (52)

At h = Δx = 0.6 and Δtα = 0.01, and based on the use of Wolfram Mathematica
software, we obtain the following numerical results:

Figures 1–4 and Tables 1 and 2 demonstrated that the fourth-order compact implicit
scheme and fourth-order compact explicit FTCS scheme have a good agreement with the
exact solution at x = 5.4, t = 0.005 and for all r, β ∈ [0, 1]. Additionally, the numerical
solutions to the proposed schemes take on the shape of a triangular fuzzy number, which
satisfies the fuzzy number properties of the double-parametric form of fuzzy numbers. The
fourth-order compact implicit scheme was more accurate than the fourth-order compact
explicit FTCS scheme. Furthermore, the double-parametric form was established to be
a general and efficient method for converting a fuzzy equation to a crisp equation, as it
reduces computational costs and produces more accurate results than the single-parametric
form. In Figure 3, we see that the numerical result for the proposed methods is the more
accurate solutions at points that are close to the inflection point (β = 0.5). The reason for
using a small time step (Δt = 0.001) is that the compact FTCS method is conditionally stable,
which means that choosing the value of (Δt and Δx) must be under the stability conditions
for the compact FTCS method. However, the compact implicit scheme method handles this
problem since it is unconditionally stable (as shown in Section 8), which means that we can
use any value of Δt and Δx.
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(a) (b) 

Figure 3. Numerical solution of Equation (49) followed by using (a) fourth-order compact FTCS and
(b) fourth-order compact implicit scheme at t = 0.005 and x = 5.4 for all r, β ∈ [0, 1].

Figure 4. Exact and presented methods of the solution of Equation (49) at α = 0.5, x = 5.4, t = 0.005
and for all r, β ∈ [0, 1].

Table 1. Numerical solution of Equation (49) followed by fourth-order compact FTCS and fourth-
order compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Fourth Order Compact FTCS Fourth Order Compact Implicit Scheme

β r ~
u (0.9,0.5;r,β) Ẽ (0.9,0.5;r,β)

~
u (0.9,0.5;r,β)

~
E (0.9,0.5;r,β)

Lower
Solution

When
β = 0

0 −0.0005217566 1.20685 × 10−5 −0.0005274596 6.36552 × 10−6

0.2 −0.0004174053 9.65483 × 10−6 −0.0004219677 5.09242 × 10−6

0.4 −0.0003130539 7.24112 × 10−6 −0.0003164758 3.81931 × 10−6

0.6 −0.0002087026 4.82742 × 10−6 −0.0002109838 2.54621 × 10−6

0.8 −0.0001043513 2.41371 × 10−6 −0.0001054919 1.27310 × 10−6

1 0 0 0 0

Upper
Solution

When
β = 1

0 0.0005217566 1.20685 × 10−5 0.0005274596 6.36552 × 10−6

0.2 0.0004174053 9.65483 × 10−6 0.0004219677 5.09242 × 10−6

0.4 0.0003130539 7.24112 × 10−6 0.0003164758 3.81931 × 10−6

0.6 0.0002087026 4.82742 × 10−6 0.0002109838 2.54621 × 10−6

0.8 0.0001043513 2.41371 × 10−6 0.0001054919 1.27310 × 10−6

1 0 0 0 0
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Table 2. Numerical solution of Equation (49) by using fourth-order compact FTCS and fourth-order
compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Fourth-Order Compact FTCS Fourth-Order Compact Implicit Scheme

β r ~
u (0.9,0.5;r,β) Ẽ (0.9,0.5;r,β)

~
u (0.9,0.5;r,β)

~
E (0.9,0.5;r,β)

β = 0.4

0 −0.0001043513 2.41371 × 10−6 −0.0001054919 1.2731 × 10−6

0.2 −0.0000834811 1.93097 × 10−6 −0.0000843935 1.01848 × 10−6

0.4 −0.0000626108 1.44822 × 10−6 −0.0000632952 7.63863 × 10−7

0.6 −0.0000417405 9.65483 × 10−7 −0.0000421968 5.09242 × 10−7

0.8 −0.0000208703 4.82742 × 10−7 −0.0000210984 2.54621 × 10−7

1 0 0 0 0

β = 0.6

0 0.0001043513 2.41371 × 10−6 0.0001054919 1.2731 × 10−6

0.2 0.0000834811 1.93097 × 10−6 0.0000843935 1.01848 × 10−6

0.4 0.0000626108 1.44822 × 10−6 0.0000632952 7.63863 × 10−7

0.6 0.0000417405 9.65483 × 10−7 0.0000421968 5.09242 × 10−7

0.8 0.0000208703 4.82742 × 10−7 0.0000210984 2.54621 × 10−7

1 0 0 0 0

Figure 5 and Tables 3 and 4 demonstrate that the second-order implicit scheme and the
fourth-order compact implicit scheme have a good agreement with the analytical solution
at x = 5.4, t = 0.005 and for all r, β ∈ [0, 1]. The fourth-order compact implicit scheme was
more accurate than the second-order classical implicit scheme and thus satisfies and agrees
with the theoretical aspects in Section 4.

Figure 5. The numerical and exact solution of Equation (14) followed by second-order implicit scheme
and fourth-order compact implicit scheme at = 5.4, β = 0 and 1, t = 0.005 for all r ∈ [0, 1].

279



Fractal Fract. 2023, 7, 47

Table 3. Numerical solution of Equation (14) by using second-order implicit scheme and fourth-order
compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Second-Order Classical Implicit
Scheme

Fourth-Order Compact Implicit Scheme

β r ~
u (5.4,0.5;r,β) Ẽ (5.4,0.5;r,β) ũ (5.4,0.5;r,β)

~
E (5.4,0.5;r,β)

Lower
Solution

When
β = 0

0 −0.0005055836 2.82415 × 10−5 −0.0005274596 6.36552 × 10−6

0.2 −0.0004044669 2.25932 × 10−5 −0.0004219677 5.09242 × 10−6

0.4 −0.0003033501 1.69449 × 10−5 −0.0003164758 3.81931 × 10−6

0.6 −0.0002022334 1.12966 × 10−5 −0.0002109838 2.54621 × 10−6

0.8 −0.0001011167 5.64831 × 10−6 −0.0001054919 1.27310 × 10−6

1 0 0 0 0

Upper
Solution

When
β = 1

0 0.0005055836 2.82415 × 10−5 0.0005274596 6.36552 × 10−6

0.2 0.0004044669 2.25932 × 10−5 0.0004219677 5.09242 × 10−6

0.4 0.0003033501 1.69449 × 10−5 0.0003164758 3.81931 × 10−6

0.6 0.0002022334 1.12966 × 10−5 0.0002109838 2.54621 × 10−6

0.8 0.0001011167 5.64831 × 10−6 0.0001054919 1.27310 × 10−6

1 0 0 0 0

Table 4. Numerical solution of Equation (14) by using second-order implicit scheme and fourth-order
compact implicit scheme at x = 5.4 and t = 0.005 for all r, β ∈ [0, 1].

Second-Order Classical Implicit
Scheme

Fourth-Order Compact Implicit Scheme

β r ~
u (5.4,0.5;r,β)

~
E (5.4,0.5;r,β)

~
u (5.4,0.5;r,β)

~
E (5.4,0.5;r,β)

Lower
Solution

When
β = 0.4

0 −0.0001011167 5.64831 × 10−5 −0.0001054919 1.2731 × 10−6

0.2 −0.0000808933 4.51865 × 10−5 −0.0000843935 1.01848 × 10−6

0.4 −0.0000606700 3.38899 × 10−5 −0.0000632952 7.63863 × 10−7

0.6 −0.00004044669 2.25932 × 10−6 −0.0000421968 5.09242 × 10−7

0.8 −0.0000202233 1.12966 × 10−6 −0.0000210984 2.54621 × 10−7

1 0 0 0 0

Upper
Solution

When
β = 0.6

0 0.0001011167 5.64831 × 10−5 0.0001054919 1.2731 × 10−6

0.2 0.0000808933 4.51865 × 10−5 0.0000843935 1.01848 × 10−6

0.4 0.0000606700 3.38899 × 10−5 0.0000632952 7.63863 × 10−7

0.6 0.00004044669 2.25932 × 10−6 0.0000421968 5.09242 × 10−7

0.8 0.0000202233 1.12966 × 10−6 0.0000210984 2.54621 × 10−7

1 0 0 0 0

10. Conclusions

Two fourth-order compact finite difference methods for solving a fuzzy time-fractional
convection–diffusion equation were developed and implemented in our work. Based
on the approach of the double-parametric form of fuzzy number concepts combined
with the properties of the fractional derivative of Caputo sense, the considered equation
was transferred from the fuzzy domain to the crisp domain with more generalization.
The results obtained using the presented methods satisfy the properties of the fuzzy
numbers achieving a triangular shape. Furthermore, the stability analysis is illustrated,
following from the proof of the stability theorem of the presented schemes under the
double-parametric form of fuzzy numbers and has accuracy of order O

(
Δt2−α + Δx4). A

comparison of numerical and exact solutions for the considered examples at various values
of the fuzzy level sets reveals that the fourth-order compact implicit scheme produces
slightly better results than the fourth-order compact FTCS scheme. The proposed methods
for solving the fuzzy time-fractional convection–diffusion equation were found to be
feasible, appropriate, and accurate, as demonstrated by a comparison of analytical and
numerical solutions at various fuzzy values.
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However, in this paper, the authors focused on the solution of fuzzy linear time-
fractional convection–diffusion by assuming the solutions are smooth. In future work,
the authors plan to discuss the solution of non-linear fuzzy time-fractional convection–
diffusion under the reasonable assumptions of the non-smooth solutions as discussed
in [31,32]. Furthermore, the authors plan to develop finite difference and finite elements
methods to solve the fuzzy linear and nonlinear fuzzy time-fractional convection–diffusion
under nonhomogeneous boundary conditions [33,34].
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Abstract: In this paper, an implicit difference scheme is proposed and analyzed for a class of nonlinear
fourth-order equations with the multi-term Riemann–Liouvile (R–L) fractional integral kernels. For
the nonlinear convection term, we handle implicitly and attain a system of nonlinear algebraic
equations by using the Galerkin method based on piecewise linear test functions. The Riemann–
Liouvile fractional integral terms are treated by convolution quadrature. In order to obtain a fully
discrete method, the standard central difference approximation is used to discretize the spatial
derivative. The stability and convergence are rigorously proved by the discrete energy method. In
addition, the existence and uniqueness of numerical solutions for nonlinear systems are proved
strictly. Additionally, we introduce and compare the Besse relaxation algorithm, the Newton iterative
method, and the linearized iterative algorithm for solving the nonlinear systems. Numerical results
confirm the theoretical analysis and show the effectiveness of the method.

Keywords: fourth-order nonlinear equation; multi-term kernels; finite difference method;
stability; convergence

1. Introduction

Partial integro-differential equations (PIDEs) have been applied widely in physical
models, chemistry and biology [1–4]. Additionally, the fractional reaction–subdiffusion
equation is believed to provide a powerful tool for the modeling plenty of natural phe-
nomena in physics, biology, and chemistry [5–7]. Many numerical methods have been
extensively studied. In [8], Sanz-Serna was the first to propose the difference scheme for non-
linear integro-differential equations; then, Lopez-Marcos [9] made a direct extension and
considered the difference method for a class of nonlinear partial integro differential equa-
tions. Tang [10] considered a finite difference scheme for nonlinear PIDEs, approximated
the differential term using the Crank–Nicolson scheme, and dealt with the integral term
with the product trapezoidal method. Fairweather and Pani [11] used the backward Euler–
Galerkin method for some partial integral differentials and derived the prior error estimates.
Xu [12–14] also completed a series of studies for nonlinear integro-differential equations. A
class of fractional convection–diffusion equations with variable coefficients are solved with
the Sinc–Legendre collocation method [15], and nonlinear fractional convection–diffusion
equations are solved using the homotopy analysis method [16]. For more development of
numerical methods and analysis of the fractional reaction–subdiffusion equations, we refer
the readers to [17–19].

Fractal Fract. 2022, 6, 443. https://doi.org/10.3390/fractalfract6080443 https://www.mdpi.com/journal/fractalfract
283



Fractal Fract. 2022, 6, 443

This paper is devoted to the study of an implicit difference scheme for the nonlinear
fourth-order equation with the multi-term Riemann–Liouvile fractional integral kernels

ut(x, t) + u(x, t)ux(x, t)− L1u(x, t) + L2u(x, t) = f (x, t), (1)

0 < t ≤ T, 0 < x < L,

the initial condition and the boundary value conditions are

u(x, 0) = u0(x), 0 ≤ x ≤ L, (2)

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, 0 < t ≤ T, (3)

respectively, where f (x, t) and u0(x) are the given smooth functions. Additionally, the L1u
and L2u are defined by

L1u(x, t) = uxx(x, t) + Iα1 uxx(x, t), 0 < α1 < 1, (4)

L2u(x, t) = uxxxx(x, t) + Iα2 uxxxx(x, t), 0 < α2 < 1, (5)

where for γ = α1, α2, 0 < γ < 1, Iγ denote the R–L fractional integral operator [2]
defined by

Iγ ϕ(t) =
∫ t

0
β(t − s)ϕ(s)ds =

1
Γ(γ)

∫ t

0
(t − s)γ−1 ϕ(s)ds, t > 0. (6)

For the fourth-order nonlinear partial differential equations, many scholars have
carried out extensive research [9,20–23]. In the paper, we propose the backward Euler
scheme and convolution quadrature finite difference method for (1)–(3). The nonlinear
convective term in our equation deals with Galerkin method, which attains an advantage
over the scheme in [23]. We also introduce and compare three nonlinear iterative methods,
including the Besse relaxation algorithm, the Newton iterative method, and the linearized
iterative algorithm, to solve the nonlinear systems. We also discuss the advantages and
disadvantages of three kinds of methods. The existence and uniqueness of numerical
solutions for nonlinear systems are proved strictly. The stability and convergence are
rigorously proved by the discrete energy method.

The outline of the paper is as follows. In Section 2, the backward Euler implicit
difference scheme is derived. In Section 3, it is proved that the stability of the difference
scheme under the L2 and H1 norms. In particular, the existence of the backward Euler
implicit difference scheme is proved by the Leray–Schauder Theorem. In the Section 4,
convergence is proved, and the uniqueness of solution is also proved. The numerical
examples are given to check our analysis in Section 5. Finally, this paper ends with a brief
conclusion in Section 6.

2. The Construction of the Fully Discrete Scheme

Let J be a positive integer, define the space-step size h := L
J , and xj := jh (0 ≤ j ≤ J)

is the mesh points. For a positive integer N, we introduce the time-step size k := T
N , the

nodes tn := nk (0 ≤ n ≤ N), and the intermediate nodes tn− 1
2

:= tn − 1
2 (1 ≤ n ≤ N).

Additionally, we define the following grid functions:

Un
j := u(xj, tn), f n

j := f (xj, tn), 0 ≤ j ≤ J, 0 ≤ n ≤ N.

Giving grid function U = {Un
j |0 ≤ j ≤ J, 0 ≤ n ≤ N}. Some notations are defined

as follows
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δtUn
j =

1
k
(Un

j − Un−1
j ), δxUn

j =
1
h
(Un

j − Un
j−1); (7)

ΔUn
j = Un

j+1 − Un
j−1, Δ+Un

j = Un
j+1 − Un

j ;

Δ−Un
j = Un

j − Un
j−1, ΔxUn

j =
1

2h
(Un

j+1 − Un
j−1);

∇Un
j =

1
3
(Un

j+1 + Un
j + Un

j−1), δ2
xUn

j =
1
h
(δxUn

j+1 − δxUn
j );

δ4
xUn

j =
1
h2 (δ

2
xUn

j+1 − 2δ2
xUn

j + δ2
xUn

j−1).

To construct the scheme fully, we first introduce the first-order quadrature rule [20,21]
to approximate the R–L fractional integral Iγ ϕ(t)

Iγ ϕ(tn) ≈ q̂γ
n(ϕ) = kγ

n

∑
p=1

ω
γ
n−p ϕp = kγ

n−1

∑
p=0

ω
γ
p ϕn−p, (8)

by the generating power series (δ(ζ))−γ = (1 − ζ)−γ, the quadrature weights ω
γ
p can be

attained by

∞

∑
p=0

ω
γ
p ζ p = (1 − ζ)−γ. (9)

Further, the quadrature weights ω
γ
p can be computed by

ω
γ
0 = 1, ω

γ
p =

γ(γ + 1) · · · (γ + p − 1)
p!

, p = 1, 2, · · · . (10)

Let E(ϕ)(tn) = Iγ ϕ(tn)− q̂γ
n(ϕ), we can obtain the quadrature error in the next lemma.

Lemma 1 ([3,14]). Let ϕ(t) be a real and continuously differentiable function in 0 < t ≤ T, and
ϕt(t) is continuous and integrable for 0 < t ≤ T. Then, based on the Equation (9), the error of the
convolution quadrature is bounded by

|E(ϕ)(tn)| ≤ Cktγ−1
n |ϕ(0)|+ Ck

∫ tn−1

0
(tn − s)γ−1|ϕt(s)|ds

+Ckγ
∫ tn

tn−1

|ϕt(s)|ds,

where the constant C does not rely on k .

Lemma 2. Let u(x, t) ∈ C4,2
x,t ([0, L]× (0, T]), for 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N; it holds that

|(R1)
n
j | = |Iα1 uxx(xj, tn)− q̂α1

n (δ2
xUj)| ≤ C(kα1 nα1−1 + h2).

Proof. By using the Taylor expansion with integral remainder [24–26], we obtain

∂2u
∂x2 (xj, tn) = δ2

xUn
j − 1

6
h2
∫ 1

0
[
∂4u
∂x4 (xj + sh, tn) (11)

+
∂4u
∂x4 (xj − sh, tn)](1 − s)3ds, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,
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by triangle inequality, we obtain

|(R1)
n
j | = |Iα1 uxx(xj, tn)− q̂α1

n (δ2
xUj)|

≤ |Iα1 uxx(xj, tn)− q̂α1
n (uxx(xj, ·))|

+|q̂α1
n (uxx(xj, ·))− q̂α1

n (δ2
xUj)|, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

Since q̂α1
n (1) = kα1

n−1
∑

p=0
ωα1

p = 1
Γ(α1)

∫ tn
0 (tn − s)α1−1 · 1ds = t

α1
n

Γ(α1+1) , then

|(R1)
n
j | ≤ q̂α1

n (1)
h2

6
|
∫ 1

0
[
∂4U
∂x4 (xj + sh, tn−i)

+
∂4U
∂x4 (xj − sh, tn−i)](1 − s)3ds|+ |Iα1 uxx(xj, tn)− q̂α1

n (uxx(xj, ·))|,

≤ Ch2 tα1
n

Γ(α1 + 1)
, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

By Lemma 1, we obtain

|Iα1 uxx(xj, tn)− q̂α1
n (uxx(xj, ·))| ≤ Cnα1−1kα1 , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

The proof is finished.

Lemma 3. Let u(x, t) ∈ C6,2
x,t ([0, L]× (0, T]), for 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N, we know

|(R2)
n
j | = |Iα2 uxxxx(xi, tn)− q̂α2

n (δ4
xUj)| ≤ C(nα2−1kα2 + h2).

Proof. By using the Taylor expansion with integral remainder, we have

∂4u
∂x4 (xj, tn) = δ4

xUn
j − 1

6
h2
∫ 1

0
[
∂6u
∂x6 (xj + sh, tn) (12)

+
∂6u
∂x6 (xj − sh, tn)](1 − s)3ds, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

Similarly to Lemma 2, we can complete the proof of the Lemma 3.

We now derive the backward Euler implicit difference scheme for the problem (1)–(3).
Considering (1) at the point (xj, tn), we obtain

ut(xj, tn) + u(xj, tn)ux(xj, tn)− L1u(xj, tn) + L2u(xj, tn) (13)

= f (xj, tn), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

Next, we discretize the (13) one by one. First, from Lemmas 2 and 3, we obtain{
Iα1 uxx(xj, tn) = q̂α1

n (δ2
xUj) + (R1)

n
j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,

Iα2 uxxxx(xj, tn) = q̂α2
n (δ4

xUj) + (R2)
n
j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,

(14)

and {
uxx(xj, tn) = δ2

xUn
j + (R3)

n
j ,

uxxxx(xj, tn) = δ4
xUn

j + (R4)
n
j ,

where {
(R3)

n
j = − 1

6 h2
∫ 1

0 [
∂4u
∂x4 (xj + sh, tn) +

∂4u
∂x4 (xj − sh, tn)](1 − s)3ds,

(R4)
n
j = − 1

6 h2
∫ 1

0 [
∂6u
∂x6 (xj + sh, tn) +

∂6u
∂x6 (xj − sh, tn)](1 − s)3ds.
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Thus, we have

L1u(xj, tn) = uxx(xj, tn) + Iα1 uxx(xj, tn) (15)

= δ2
xUn

j + q̂α1
n (δ2

xUj) + (R1)
n
j + (R3)

n
j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,

and

L2u(xj, tn) = uxxxx(xj, tn) + Iα2 uxxxx(xj, tn) (16)

= δ4
xUn

j + q̂α2
n (δ4

xUj) + (R2)
n
j + (R4)

n
j .

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

Second, for the nonlinear convection term uux, we discretize it by the Galerkin method
with piecewise linear test functions

u(xj, tn)ux(xj, tn) =
Un

j+1 + Un
j + Un

j−1

3

Un
j+1 − Un

j−1

2h
+ (R5)

n
j (17)

=
1

6h
(Un

j ΔUn
j + Δ(Un

j )
2) + O(h2),

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

Third, for ut(xj, tn), we have

ut(xj, tn) = δtUn
j + (R6)

n
j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N, (18)

where

(R6)
n
j = −k

∫ 1

0

∂2u
∂t2 (xj, tn−1 + sk)sds.

Substituting (14)–(18) into (13), we obtain

δtUn
j +

1
6h

(Un
j ΔUn

j + Δ(Un
j )

2)− kα1
n

∑
p=1

ωα1
n−pδ2

xUp
j (19)

+kα2
n

∑
p=1

ωα2
n−pδ4

xUp
j − δ2

xUn
j + δ4

xUn
j = f n

j + Rn
j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,

in which

Rn
j = (R1)

n
j − (R2)

n
j − (R3)

n
j − (R4)

n
j − (R5)

n
j − (R6)

n
j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

By Lemmas 1–3, there is a constant C independent of h and k, which satisfies

|Rn
j | ≤ C(nα1−1kα1 + nα2−1kα2 + h2), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N. (20)

The following initial and boundary value conditions can be attained

Un
0 = Un

J = 0, δ2
xUn

0 = δ2
xUn

J = O(h2), 1 ≤ n ≤ N. (21)

U0
j = u0(xj), 0 ≤ j ≤ J.
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Omitting the small terms in (19) and (21), and replacing Un
j with its numerical ap-

proximation un
j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N, we obtain the backward Euler implicit

difference scheme⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δtun
j +

1
6h (u

n
j Δun

j + Δ(un
j )

2)− L1un
j + L2un

j = f n
j ,

un
0 = un

J = 0, δ2
xun

0 = δ2
xun

J = 0,

u0
j = u0(xj),

(22)

and

L1un
j = δ2

xun
j + q̂α1

n (δ2
xuj), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,

L2un
j = δ4

xun
j + q̂α2

n (δ4
xuj), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,

where

δ4
xun

j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−2δ2
xun

1 + δ2
xun

2 )/h2, j = 1, 1 ≤ n ≤ N,

(δ2
xun

j−1 − 2δ2
xun

j + δ2
xun

j+1)/h2, 2 ≤ j ≤ J − 2, 1 ≤ n ≤ N,

(δ2
xun

J−2 − 2δ2
xun

J−1)/h2, j = J − 1, 1 ≤ n ≤ N.

3. Existence and Stability

In this section, we analyze the L2 stability, L∞ stability, and existence of the backward
Euler implicit difference scheme (22).

Firstly, we shall introduce some notations and lemmas that will be used for the proof of
the stability. Let Vh = {s|s = (s0, s1, . . . , sJ), s0 = sJ = 0}. For any grid functions s, g ∈ Vh,
we denote

〈s, g〉 = h
J−1

∑
j=1

sjgj, ||s||∞ = max
1≤j≤J−1

{|sj|}, ‖s‖ =
√

〈s, s〉. (23)

Lemma 4 ([27,28]). For any function s defined on Vh, we obtain

||s||∞ ≤
√

L
2

||δxs||.

Lemma 5 ([9,29]). Let s, g ∈ Vh; then

〈δ2
xs, g〉 = −

J−1

∑
j=0

h(δxsj+1)(δxgj+1).

Lemma 6 ([24,25,30]). For any s, g ∈ Vh, such that δ2
xs0 = δ2

xsJ = 0; then, we have

〈δ4
xs, g〉 =

J−1

∑
j=1

h(δ2
xsj)(δ

2
xgj).

Lemma 7 ([31]). Let β(t) = tα−1/Γ(α) be defined in Equation (6); β(t) ∈ L1,loc(0, ∞) is a
positive type if and only if

Re(β̂(t)) ≥ 0, f or t ∈ C, Re(t) > 0,
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where Re denotes the real part, β̂ denotes the Laplace transform of β(t).

Lemma 8 ([24,25]). If {b0, b1, . . . , bn, . . .} is a real-valued sequence such that b̂(z) =
∞
∑

n=0
bnzn

is analytic in D = {z ∈ C : |z| ≤ 1}, then for any positive integer N and any (V1, V2, . . .,
VN) ∈ RN,

N

∑
n=1

(
n

∑
p=1

bn−pVp)Vn ≥ 0,

if and only if

Reb̂(z) ≥ 0, f or z ∈ D.

It is noticed that the generating function (9) satisfies the condition of Lemma 8.

3.1. Stability

Theorem 1. (L2-stability) Assume that {un
j |1 ≤ j ≤ J − 1, 1 ≤ n ≤ N} is the solution of the

backward Euler implicit difference scheme (22). We can obtain

‖un‖ ≤ ‖u0‖+ 2k
n

∑
i=1

‖ f i‖, 1 ≤ n ≤ N.

Proof. Taking the inner product of (22) with un, for 1 ≤ n ≤ N, we obtain the following formula

〈δtun, un〉+ 1
6h

〈unΔun + Δ(un)2, un〉 − kα1
n

∑
p=1

ωα1
n−p〈δ2

xup, un〉 (24)

− 〈δ2
xun, un〉+ kα2

n

∑
p=1

ωα2
n−p〈δ4

xup, un〉+ 〈δ4
xun, un〉 = 〈 f n, un〉.

From [9,22,32], we have

〈unΔun + Δ(un)2, un〉 = 0,

then for N ≥ 1, (24) can be rearranged

2k
N

∑
n=1

〈δtun, un〉 − 2kα1+1
N

∑
n=1

n

∑
p=1

ω
α1
n−p〈δ2

xup, un〉 (25)

−2k
N

∑
n=1

〈δ2
xun, un〉+ 2k

N

∑
n=1

〈δ4
xun, un〉

+2kα2+1
N

∑
n=1

n

∑
p=1

ωα2
n−p〈δ4

xun, un〉 = 2k
N

∑
n=1

〈 f n, un〉, 1 ≤ n ≤ N.

Next, we estimate the terms in (25) one by one. First, it is clear that

〈δtun, un〉 =
1
2k

〈un − un−1, un − un−1 + un + un−1〉

≥ 1
2k

(‖un‖2 − ‖un−1‖2),

we arrive at

2k
N

∑
n=1

〈δtun, un〉 ≥ ‖uN‖2 − ‖u0‖2. (26)
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Second, utilizing Lemmas 4, 5, 7, and 8, we have

−2k
N

∑
n=1

〈δ2
xun, un〉 − 2kα1+1

N

∑
n=1

n

∑
p=1

ωα1
n−p〈δ2

xup, un〉 (27)

= 2k
N

∑
n=1

h
J−1

∑
j=1

(δxun
j )(δxun

j ) + 2kα1+1
N

∑
n=1

n

∑
p=1

ωα1
n−ph

J−1

∑
j=1

(δxup
j )(δxun

j )

= 2kh
N

∑
n=1

J−1

∑
j=1

(δxun
j )(δxun

j ) + 2kα1+1h
J−1

∑
j=1

[
N

∑
n=1

(
n

∑
p=1

ωα1
n−pδxup

j )δxun
j ]

≥ 0, 1 ≤ n ≤ N.

Additionally,

2k
N

∑
n=1

〈δ4
xun, un〉+ 2kα2+1

N

∑
n=1

n

∑
p=1

ωα2
n−p〈δ4

xup, un〉 (28)

= 2k
N

∑
n=1

J−1

∑
j=1

h(δ2
xun

j )(δ
2
xun

j ) + 2kα2+1
N

∑
n=1

n

∑
p=1

ωα2
n−p

J−1

∑
j=1

h(δ2
xup

j )(δ
2
xun

j )

= 2k
N

∑
n=1

J−1

∑
j=1

h(δ2
xun

j )(δ
2
xun

j ) + 2kα2+1h
J−1

∑
j=1

[
N

∑
n=1

(
n

∑
p=1

ωα2
n−pδ2

xup
j )δ

2
xun

j

≥ 0, 1 ≤ n ≤ N.

Substituting (26)–(28) into (25), and using the Cauchy–Schwarz inequality, we have

‖uN‖2 ≤ ‖u0‖2 + 2k
N

∑
n=1

‖ f n‖‖un‖. (29)

Taking ‖uM‖ = max
0≤n≤N

‖un‖, we obtain

‖uN‖ ≤ ‖uM‖ ≤ ‖u0‖+ 2k
M

∑
i=1

‖ f i‖ ≤ ‖u0‖+ 2k
N

∑
i=1

‖ f i‖. (30)

The proof of the Theorem 1 is finished.

Theorem 2. (H1-stability)Assume that {un
j |1 ≤ j ≤ J − 1, 1 ≤ n ≤ N} is the solution of the

backward Euler implicit difference scheme (22). Then, it holds that

|un|1 ≤ |u0|1 + 2k
N

∑
n=1

| f n|1, 1 ≤ n ≤ N.

Proof. Taking the inner product of (22) with −2kδ2
xun, for 1 ≤ n ≤ N, we have

− 2k〈δtun, δ2
xun〉 − k

3h
〈unΔun + Δ(un)2, δ2

xun〉 (31)

+ 2k1+α1
n

∑
p=1

ωα1
n−p〈δ2

xup, δ2
xun〉+ 2k〈δ2

xun, δ2
xun〉

− 2k1+α2
n

∑
p=1

ωα2
n−p〈δ4

xup, δ2
xun〉 − 2k〈δ4

xun, δ2
xun〉 = −2k〈 f n, δ2

xun〉.
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Since

−〈unΔun + Δ(un)2, δ2
xun〉 = 〈δx(unΔun + Δ(unun)), δxun〉

=
J−1
∑

j=1
hδx(un

j Δun
j + Δ(un

j un
j ))δxun

j

=
J−1
∑

j=1
hδx(un

j (u
n
j+1 − un

j−1) + (un
j+1un

j+1 − un
j−1un

j−1))δxun
j

=
J−1
∑

j=1
hδx((un

j + un
j+1)u

n
j+1 − (un

j + un
j−1)u

n
j−1)δxun

j

=
J−1
∑

j=1
hδx(un

j + un
j+1)δxun

j+1δxun
j −

J−1
∑

j=1
hδx(un

j + un
j−1)δxun

j−1δxun
j

=
J−1
∑

j=1
hδx(un

j + un
j+1)δxun

j+1δxun
j −

J−2
∑

j=0
hδx(un

j + un
j+1)δxun

j+1δxun
j

= hδx(un
J−1 + un

J )δxun
J δxun

J−1 − hδx(un
0 + un

1 )δxun
1 δxun

0
= 0.

Then, we have

− k
3h

〈unΔun + Δ(un)2, δ2
xun〉 = 0.

For N ≥ 1, (31) can be rearranged

− 2k
N

∑
n=1

〈δtun, δ2
xun〉+ 2k1+α1

N

∑
n=1

n

∑
p=1

ωα1
n−p〈δ2

xup, δ2
xun〉 (32)

+ 2k
N

∑
n=1

〈δ2
xun, δ2

xun〉 − 2k1+α2
N

∑
n=1

n

∑
p=1

ωα2
n−p〈δ4

xup, δ2
xun〉

− 2k
N

∑
n=1

〈δ4
xun, δ2

xun〉 = −2k
N

∑
n=1

〈 f n, δ2
xun〉, 1 ≤ n ≤ N.

Since

−〈δtun, δ2
xun〉 ≥ 1

2k
(|un|21 − |un−1|21),

then

−2k
N

∑
n=1

〈δtun, δ2
xun〉 ≥ |uN |21 − |u0|21. (33)

By Lemma 8, we have

2k
N

∑
n=1

〈δ2
xun, δ2

xun〉+ 2kα1+1
N

∑
n=1

n

∑
p=1

ωα1
n−p〈δ2

xup, δ2
xun〉 (34)

≥ 0, 1 ≤ n ≤ N.
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Further, by Lemmas 4, 5, 7, and 8, we have

−2k
N

∑
n=1

〈δ4
xun, δ2

xun〉 − 2kα2+1
N

∑
n=1

n

∑
p=1

ωα2
n−p〈δ4

xup, δ2
xun〉 (35)

= 2k
N

∑
n=1

J−1

∑
j=0

h(δ3
xun

j )(δ
3
xun

j ) + 2kα2+1
N

∑
n=1

n

∑
p=1

ωα2
n−p

J−1

∑
j=0

h(δ3
xup

j )(δ
3
xun

j )

= 2k
N

∑
n=1

J−1

∑
j=0

h(δ3
xun

j )(δ
3
xun

j ) + 2kα2+1h
J−1

∑
j=0

[
N

∑
n=1

(
n

∑
p=1

ωα2
n−pδ3

xup
j )δ

3
xun

j

≥ 0, 1 ≤ n ≤ N.

Substituting (33)–(35) into (32), and using the Cauchy–Schwarz inequality, we have

|uN |21 ≤ |u0|21 + 2k
N

∑
n=1

| f n|1|un|1. (36)

Similarly to Equation (30), we finish the proof of the Theorem 2.

3.2. Existence

Next, we will use the Leray–Schauder Theorem [33] to prove the existence of numerical
solutions for the scheme (22).

Theorem 3. Giving two positive integers J, N, and u0 ∈ RJ−1, the Equation (22) has a solution
un for 1 ≤ n ≤ N.

Proof. We can employ the mathematical induction to prove the Theorem 3. Since u0 ∈ RJ−1,
for given um, 1 ≤ m ≤ n − 1, we will prove that Equation (22) has a solution for un.

At the beginning, we define the mapping X : RJ−1 → RJ−1 by

X(v) := − k
6h

(vΔv + Δ(v)2) + kδ2
xv + kα1+1ωα1

0 δ2
xv − kα2+1ωα2

0 δ4
xv − kδ4

xv.

Then, un is a solution of (22) if and only if

un = X(un) + f̃ ,

in which

f̃ = un−1 + kα1+1
n−1

∑
p=1

ωα1
n−pδ2

xup − kα2+1
n−1

∑
p=1

ωα2
n−pδ4

xup + k f n.

Next, we need to prove that the mapping G(·) = X(·) + f̃ has a fixed point. We
consider an open ball L = A(0, r) in RJ−1 endowed with the norm ‖ · ‖ in (23). Suppose
that for λ > 1 and un in the boundary of L,

λun = G(un) = X(un) + f̃ . (37)

Since 〈vΔv + Δ(v)2, v〉 = 0, using Lemmas 5 and 6, we obtain

〈X(un), un〉 ≤ 0.

Taking the inner product of (37) with un, we have

λ‖un‖2 ≤ 〈 f̃ , un〉 ≤ ‖ f̃ ‖‖un‖ ≤ 1
2
(‖ f̃ ‖2 + ‖un‖2).
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Thus,

λ ≤ 1
2
‖ f̃ ‖2 + ‖un‖2

‖un‖2 =
1
2
(
‖ f̃ ‖2

‖un‖2 + 1) ≤ ‖ f̃ ‖2

2r2 +
1
2

.

It is noted that the above inequality contradicts with hypothesis λ > 1 for large r.
Hence, (37) has no solution on ∂L. By the Leray–Schauder Theorem [33], there is a fixed
point of G in the closure of L. The proof of existence Theorem is finished.

4. Uniqueness and Convergence

4.1. Convergence

Let

en
j = Un

j − un
j , 0 ≤ j ≤ J, 1 ≤ n ≤ N.

Subtracting (22) from (19), we obtain the following error equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δten
j +

1
6h (e

n
j Δen

j + Δ(en
j )

2)− L1en
j + L2en

j = (R1)
n
j − (R2)

n
j

−(R3)
n
j − (R4)

n
j − (R5)

n
j − (R6)

n
j − 1

6h ((R7)
n
j + (R8)

n
j ),

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N

en
0 = en

J = 0, 1 ≤ n ≤ N,

e0
j = 0, 0 ≤ j ≤ J,

(38)

where {
(R7)

n
j = Un

j Δen
j + Δ(en

j Un
j ),

(R8)
n
j = en

j ΔUn
j + Δ(en

j Un
j ).

(39)

To complete the proof of convergence, we provide the following Lemmas.

Lemma 9 ([34]). (Discrete Gronwall’s inequality) If An is a non-negative real sequence and satisfies

An ≤ c̃n +
n−1

∑
m=0

d̃m Am, n ≥ 0,

where c̃n is non-descending and non-negative sequence, d̃m ≥ 0, then it holds that

An ≤ c̃nexp(
n−1

∑
m=0

d̃m), n ≥ 0.

Lemma 10. For ∀s, g ∈ Vh, it holds that

(i) 〈gΔs, g〉+ 〈Δ(g)2, s〉 = 0;

(ii) 〈gΔg, s〉+ 〈Δ(gs), g〉 = 0.
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Proof. (i) By the definition of 〈·, ·〉, we have

〈gΔs, g〉+ 〈Δ(g)2, s〉

= h
J−1

∑
j=1

gj(sj+1 − sj−1)gj + h
J−1

∑
j=1

(gj+1gj+1 − gj−1gj−1)sj

= h
J

∑
j=2

gj−1sjgj−1 − h
J−1

∑
j=1

gjsj−1gj + h
J

∑
j=2

gjgjsj−1

−h
J−1

∑
j=1

gj+1gj+1sj

= hgJ−1sJ gJ−1 − hg0s1g0 + hgJsJ−1gJ − hg1s0g1

= 0.

The proof of (ii) are similar to (i). Thus, Lemma 10 is proved.

Lemma 11. When U0 = UJ = 0 and e0 = eJ = 0, then it holds that

k
N

∑
n=1

(‖(R1)
n
j ‖+ ‖(R2)

n
j ‖+ ‖(R3)

n
j ‖+ ‖(R4)

n
j ‖+ ‖(R5)

n
j )‖

+‖(R6)
n
j ‖) ≤ C(T)(k + h2).

Proof. Utilizing the conditions U0 = UJ = 0 and e0 = eJ = 0.
Firstly, by (15), Lemmas 1 and 2, we have

k
N

∑
n=1

‖(R1)
n
j ‖+ k

N

∑
n=1

‖(R3)
n
j ‖ (40)

≤ k
N

∑
n=1

√√√√J−1

∑
j=1

h[C(nα1−1kα1 + h2)]2

≤ Ck
N

∑
n=1

(kα1 nα1−1 + h2) ≤ Ck(
N

∑
n=1

tα1−1
n k) + C(Nk)h2

≤ Ck(
∫ tN

t0

sα1−1ds) + C(T)h2 ≤ Ck(
Tα1

α1
) + C(T)h2 ≤ C(T)(k + h2).

Secondly,

k
N

∑
n=1

‖(R5)
n
j ‖ = k

N

∑
n=1

√√√√J−1

∑
j=1

h((R5)
n
j )

2 ≤ k
N

∑
n=1

√√√√J−1

∑
j=1

h(Ch2)2 (41)

≤ C(T)h2.

Thirdly,

k
N

∑
n=1

‖(R6)
n
j ‖ = k

N

∑
n=1

√√√√J−1

∑
j=1

h((R6)
n
j )

2 ≤ k
N

∑
n=1

√√√√J−1

∑
j=1

h(Ck)2 ≤ C(T)k. (42)
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Finally, by (16), Lemmas 1 and 3, we have

k
N

∑
n=1

‖(R2)
n
j ‖+ k

N

∑
n=1

‖(R4)
n
j ‖ (43)

≤ k
N

∑
n=1

√√√√J−1

∑
j=1

h[C(nα2−1kα2 + h2)]2

≤ Ck(
∫ tN

t0

sα1−1ds) + C(T)h2

Ck(
Tα2

α2
) + C(T)h2 ≤ C(T)(k + h2).

Combining (40)–(43), we have

k
N

∑
n=1

(‖(R1)
n
j ‖+ ‖(R2)

n
j ‖+ ‖(R3)

n
j ‖+ ‖(R4)

n
j ‖+ ‖(R5)

n
j ‖ (44)

+‖(R6)
n
j ‖) ≤ C(T)(k + h2).

Therefore, we are done with this proof.

Lemma 12. Set ĉ0 := max
(x,t)∈[0,L]×(0,T]

{|u(x, t)|, |ux(x, t)|}, for U0 = UJ = 0, e0 = eJ = 0,

1 ≤ n ≤ N, we have

|〈(R8)
n, en〉| ≤ 3ĉ0h‖en‖2.

Proof. By Lemma 10, for ∀s, g ∈ Vh, it holds that

〈Δ(gs), s〉 = 1
2
〈sj+1Δ+g + sj−1Δ−g, s〉,

then, we obtain

〈Δ(enUn), en〉 = 1
2
〈en

j+1Δ+Un + en
j−1Δ−Un, en〉, 1 ≤ n ≤ N. (45)

Utilizing the boundary conditions U0 = UJ = 0, e0 = eJ = 0 and using the Cauchy–
Schwarz inequality, we obtain

|〈en
j+1Δ+Un, en〉| ≤ ‖Δ+Un‖∞|〈en

j+1, en〉|

= ‖Δ+Un‖∞|
J−1

∑
j=1

hen
j+1en

j |

≤ ‖Δ+Un‖∞

J−1

∑
j=1

h
2
((en

j+1)
2 + (en

j )
2)

=
1
2
‖Δ+Un‖∞(

J−1

∑
j=1

h(en
j+1)

2 + ‖en‖2)

≤ 1
2
‖Δ+U∞‖∞(

J

∑
j=2

h(en
j )

2 + ‖en‖2)

≤ ‖Δ+Un‖∞‖en‖2, 1 ≤ n ≤ N.

Additionally, we can get

|〈en
j−1Δ−Un, en〉| ≤ ‖Δ−Un‖∞‖en‖2, 1 ≤ n ≤ N.
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Thus, we obtain

|〈(R8)
n, en〉| = |〈enΔUn + Δ(enUn), en〉|

= |〈enΔUn, en〉+ 1
2
〈en

j+1Δ+Un + en
j−1Δ−Un, en〉|

≤ ‖ΔUn‖∞‖en‖2 +
1
2
(‖Δ+Un‖∞ + ‖Δ−Un‖∞)‖en‖2

≤ 3c̃0h‖en‖2, 1 ≤ n ≤ N.

The proof is proved.

Theorem 4. (L2-convergence) Suppose that the problem (1)–(3) has smooth solution u(x, t) ∈
C4,2

x,t ([0, L]× (0, T]), {un
j |0 ≤ j ≤ J, 1 ≤ n ≤ N} is the solution of difference scheme (22). We

can obtain

max
1≤n≤N

‖Un − un‖ ≤ C(T)(k + h2).

Proof. Taking the inner product of the (38) with en, summing up for n from 1 to N, utilizing
(26) and Lemma 8, and noting

〈enΔen + Δ(en)2, en〉 = 0

we can obtain

‖eN‖2 ≤ ‖e0‖2 + 2k
N

∑
n=1

〈Rn
1 − Rn

2 − Rn
3 − Rn

4 (46)

−Rn
5 − Rn

6 − 1
6h

(Rn
7 + Rn

8 ), en〉, 1 ≤ n ≤ N.

It is noted that when e0 = 0, we have

‖eN‖2 ≤ 2k
N

∑
n=1

(‖Rn
1‖+ ‖Rn

2‖+ ‖Rn
3‖+ ‖Rn

4‖+ ‖Rn
5‖ (47)

+‖Rn
6‖en‖ − 2k

N

∑
n=1

〈 1
6h

(Rn
7 + Rn

8 ), en〉, 1 ≤ n ≤ N.

Since

〈Rn
7 , en〉 = 〈UnΔen + Δ(enUn), en〉

=
J−1
∑

j=1
h(Un

j Δen
j + Δ(en

j Un
j ))e

n
j

=
J−1
∑

j=1
h(Un

j (e
n
j+1 − en

j−1) + (en
j+1Un

j+1 − en
j−1Un

j−1))e
n
j

=
J−1
∑

j=1
h((Un

j + Un
j+1)e

n
j+1 − (Un

j + Un
j−1)e

n
j−1)e

n
j

=
J−1
∑

j=1
h(Un

j + Un
j+1)e

n
j+1en

j −
J−1
∑

j=1
h(Un

j + Un
j−1)e

n
j−1en

j

=
J−1
∑

j=1
h(Un

j + Un
j+1)e

n
j+1en

j −
J−2
∑

j=0
h(Un

j + Un
j+1)e

n
j+1en

j

= h(Un
J−1 + Un

J )e
n
J en

J−1 − h(Un
0 + Un

1 )e
n
1 en

0
= 0, 1 ≤ n ≤ N.

(48)
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Combining (48), Lemma 12 and inequality (40), (47) can be written as

‖eN‖2 ≤ 2k
N

∑
n=1

(‖Rn
1‖+ ‖Rn

2‖+ ‖Rn
3‖

+‖Rn
4‖+ ‖Rn

5‖+ ‖Rn
6‖)‖en‖+ ĉ0k

N

∑
n=1

‖en‖2, 1 ≤ n ≤ N.

Taking appropriate M such that ‖eM‖ = max
0≤n≤N

‖en‖ and using Lemma 11, we obtain

‖eN‖ ≤ ‖eM‖ (49)

≤ 2k
N

∑
n=1

(‖Rn
1‖+ ‖Rn

2‖+ ‖Rn
3‖+ ‖Rn

4‖+ ‖Rn
5‖+ ‖Rn

6‖) + ĉ0k
N

∑
n=1

‖en‖

≤ C(T)(k + h2) + ĉ0k
N

∑
n=1

‖en‖.

Further

(1 − ĉ0k)‖eN‖ ≤ C(T)(k + h2) + ĉ0k
N−1

∑
n=0

‖en‖. (50)

Using discrete Gronwall inequality, for k < ĉ0
2 , we obtain

‖eN‖ ≤ 2 exp{2ĉ0Nk}C(T)(k + h2) ≤ C(T)(k + h2).

4.2. Uniqueness

Theorem 5. Under the assumptions in Theorem 4—for h is small enough and k = o(h
3
4 )—then

the difference scheme (22) has a unique solution.

Proof. Set un ∈ Rn−1 and vn ∈ Rn−1, 0 ≤ n ≤ N to be the solutions of (22). Since u0 = v0,
we assume um = vm for 0 ≤ m ≤ n − 1. Next, we need to prove un = vn.

First, using (22), we have

δt(un
j − vn

j )− δ2
x(u

n
j − vn

j ) + δ4
x(u

n
j − vn

j ) +
1

6h
(un

j Δun
j (51)

+Δ(un
j )

2 − vn
j Δvn

j − Δ(vn
j )

2)

= kα1
n

∑
p=1

ωα1
n−pδ2

x(u
p
j − vp

j )− kα2
n

∑
p=1

ωα2
n−pδ4

x(u
p
j − vp

j ).

Second, taking the inner product of (51) with un − vn, and using Lemmas 5, 6, and 8,
we obtain

1
2k

(‖un − vn‖2 − ‖un−1 − vn−1‖2)

≤ − 1
6h

〈unΔun + Δ(un)2 − vnΔvn − Δ(vn)2, un − vn〉

= − 1
6h

〈unΔ(un − vn) + (un − vn)Δvn + Δ(un − vn)(un + vn), un − vn〉.

297



Fractal Fract. 2022, 6, 443

Since

〈unΔ(un − vn) + (un − vn)Δvn + Δ(un − vn)(un + vn), un − vn〉
= 〈(un − vn)Δvn + Δ(vn(un − vn)), un − vn〉.

Then,

‖un − vn‖2 ≤ ‖un−1 − vn−1‖2 (52)

− k
3h

〈(un − vn)Δvn + Δ(vn(un − vn)), un − vn〉

≤ k
3h

|〈(un − vn)Δvn + Δ(vn(un − vn)), un − vn〉|.

Further, we have

|〈(un − vn)Δvn + Δ(vn(un − vn)), un − vn〉| (53)

≤ ‖Δvn‖∞‖un − vn‖2 +
1
2
(‖Δ+vn‖∞ + ‖Δ−vn‖∞)‖un − vn‖2.

Rearranging, we have

‖Δvn‖∞ = max
1≤j≤J−1

{|un
j+1 − vn

j−1|} (54)

≤ max
1≤j≤J−1

{|vn
j+1 − Vn

j+1|+ |Vn
j+1 − Vn

j−1|+ |Vn
j−1 − vn

j−1|}

≤ 2‖Vn − vn‖∞ + Ch ≤ 2h− 1
2 ‖Vn − vn‖+ Ch

≤ Ch− 1
2 (k + h2) + Ch.

Additionally,

|〈(un − vn)Δvn + Δ(vn(un − vn)), un − vn〉| (55)

≤ C[h− 1
2 (k + h2) + h]‖un − vn‖2.

Thus, we ottain

‖un − vn‖ ≤ C(k2h− 3
2 + kh

1
2 + k)‖un − vn‖. (56)

Using inequality (56), we have ‖un − vn‖2 = 0 for k = o(h
3
4 ) as h → 0 and finish

the proof.

5. Numerical Results

In this section, we solve this problem (1)–(3) with L = T = 1 by difference scheme (22).
We provide three iterative methods [32,35,36]: the Besse relaxtion algorithm (Besse), the
Newton iterative method (Newton), and the linearized iterative algorithm (linearized), to
solve the nonlinear system (22). Let MaxStep = 300 and eps = 1.0 × 10−5 and

E(h, k) =

√√√√h
J−1

∑
j=1

(UN
j − uN

j )
2,

ratex = log2(
E(2h, k)
E(h, k)

), ratet = log2(
E(h, 2k)
E(h, k)

).
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Example 1. In the first example, we consider the initial condition ϕ(x) = sin πx, the source term

f (x, t) = sin2πx(− 2αtα−1

Γ(α + 1)
− 2(α + 1)tα

Γ(α + 2)
)

+πsin4πx(1 − 2tα

Γ(α + 1)
− tα+1

Γ(α + 2)
)2

+4π2sin2πx(
tα1

Γ(α1 + 1)
− 2tα1+α

Γ(α + α1 + 1)
− tα1+α+1

Γ(α + α1 + 2)
)

+16π4sin2πx(
tα2

Γ(α2 + 1)
− 2tα2+α

Γ(α + α2 + 1)
− tα2+α+1

Γ(α + α2 + 2)
)

(16π4sin2πx + 4π2sin2πx)(1 − 2tα

Γ(α + 1)
− tα+1

Γ(α + 2)
).

and the exact solution is

u(x, t) = sin 2πx(1 − 2tα

Γ(α + 1)
− tα+1

Γ(α + 2)
),

where α, 0 < α < 1 is the regular parameter.

Table 1 lists the L2 norm errors; the corresponding spatial convergence rate; and the
total number of iterations of our scheme under different parameters α1 and α2, respectively.
Taking the temporal step k = 1/1024 and α = 0.50, we can know from Table 1 that the
spatial convergence order is about order 2. Through comparison, it can be seen that the
numerical results of the three iterative methods have a small gap in the spatial direction.

Fix the spatial step h = 1/J = 1024 and α = 0.50. Table 2 shows that the temporal
convergence order is about order one. Through the comparison of three iteration methods,
we can find that the temporal convergence order of the Basse relaxation algorithm is not
very stable. In addition, the total number of iterations of the linear iterative algorithm is
less than the Newton iterative method.

Taking α = 0.5 fixed, Figure 1 shows the spatial convergence order for N = 1024,
and Figure 2 shows the convergence order in the time direction for J = 1024. It can be
seen that the numerical results of the convergence order are in good agreement with the
theoretical analysis.

α α

α α

α α

α α

α α

α α

Figure 1. The error and convergence orders in space with α = 0.50 and k = 1/1024, for Example 1.
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α α

α α

α α

α α

α α

α α

Figure 2. The error and convergence orders in time with α = 0.50 and h = 1/1024, for Example 1.

Table 1. The errors and convergence rates when k = 1/1024 and α = 0.50, for Example 1.

Methods α1, α2 J Error ratex Iterative

Besse

16 2.3245 × 10−2 − −
α1 = 0.30 32 1.1700 × 10−2 0.9904 −
α2 = 0.70 64 5.7776 × 10−3 1.0179 −

128 2.7732 × 10−3 1.0589 −
16 2.1483 × 10−2 − −

α1 = 0.35 32 1.0779 × 10−2 0.9950 −
α2 = 0.65 64 5.3063 × 10−3 1.0224 −

128 2.5347 × 10−3 1.0659 −
16 1.8288 × 10−2 − −

α1 = 0.75 32 9.1218 × 10−3 1.0035 −
α2 = 0.55 64 4.4609 × 10−3 1.0320 −

128 2.1079 × 10−3 1.0816 −

Newton

16 2.3456 × 10−2 − 46
α1 = 0.30 32 1.1747 × 10−2 0.9977 87
α2 = 0.70 64 5.7882 × 10−3 1.0211 155

128 2.7753 × 10−3 1.0605 259

16 2.1633 × 10−2 − 46
α1 = 0.35 32 1.0811 × 10−2 1.0007 87
α2 = 0.65 64 5.3130 × 10−3 1.0249 155

128 2.5358 × 10−3 1.0671 259

16 1.8353 × 10−2 − 45
α1 = 0.75 32 9.1346 × 10−3 1.0066 86
α2 = 0.55 64 4.4631 × 10−3 1.0333 154

128 2.1078 × 10−3 1.0823 259
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Table 1. Cont.

Methods α1, α2 J Error ratex Iterative

Linearized

16 2.3455 × 10−2 − 46
α1 = 0.30 32 1.1747 × 10−2 0.9976 87
α2 = 0.70 64 5.7879 × 10−3 1.0212 154

128 2.7751 × 10−3 1.0605 259

16 2.1632 × 10−2 − 46
α1 = 0.35 32 1.0812 × 10−2 1.0006 87
α2 = 0.65 64 5.3132 × 10−3 1.0250 154

128 2.5357 × 10−3 1.0672 259

16 1.8353 × 10−2 − 45
α1 = 0.75 32 9.1347 × 10−3 1.0066 86
α2 = 0.55 64 4.4626 × 10−3 1.0335 153

128 2.1077 × 10−3 1.0822 259

Table 2. The errors and convergence rates when h = 1/1024 and α = 0.50, for Example 1.

Methods α1, α2 N Error ratet Iterative

Besse

16 2.3245 × 10−2 − −
α1 = 0.30 32 1.1700 × 10−2 0.9904 −
α2 = 0.70 64 5.7776 × 10−3 1.0179 −

128 2.7732 × 10−3 1.0589 −
16 2.1483 × 10−2 − −

α1 = 0.35 32 1.0779 × 10−2 0.9950 −
α2 = 0.65 64 5.3063 × 10−3 1.0224 −

128 2.5347 × 10−3 1.0659 −
16 1.8288 × 10−2 − −

α1 = 0.75 32 9.1218 × 10−3 1.0035 −
α2 = 0.55 64 4.4609 × 10−3 1.0320 −

128 2.1079 × 10−3 1.0816 −

Newton

16 2.3456 × 10−2 − 46
α1 = 0.30 32 1.1747 × 10−2 0.9977 87
α2 = 0.70 64 5.7882 × 10−3 1.0211 155

128 2.7753 × 10−3 1.0605 259

16 2.1633 × 10−2 − 46
α1 = 0.35 32 1.0811 × 10−2 1.0007 87
α2 = 0.65 64 5.3130 × 10−3 1.0249 155

128 2.5358 × 10−3 1.0671 259

16 1.8353 × 10−2 − 45
α1 = 0.75 32 9.1346 × 10−3 1.0066 86
α2 = 0.55 64 4.4631 × 10−3 1.0333 154

128 2.1078 × 10−3 1.0823 259
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Table 2. Cont.

Methods α1, α2 N Error ratet Iterative

Linearized

16 2.3455 × 10−2 − 46
α1 = 0.30 32 1.1747 × 10−2 0.9976 87
α2 = 0.70 64 5.7879 × 10−3 1.0212 154

128 2.7751 × 10−3 1.0605 259

16 2.1632 × 10−2 − 46
α1 = 0.35 32 1.0812 × 10−2 1.0006 87
α2 = 0.65 64 5.3132 × 10−3 1.0250 154

128 2.5357 × 10−3 1.0672 259

16 1.8353 × 10−2 − 45
α1 = 0.75 32 9.1347 × 10−3 1.0066 86
α2 = 0.55 64 4.4626 × 10−3 1.0335 153

128 2.1077 × 10−3 1.0822 259

Example 2. In the second Example, we take the exact solution

u(x, t) = sin πx
2tα

Γ(α + 1)
, 0 < α < 1.

Correspondingly, the initial condition is u0(x) = 0 and the inhomogeneous term is

f (x, t) =

sin πx
2αtα−1

Γ(α + 1)
+ 2π sin 2πx(

tα

Γ(α + 1)
)2 +

2π2 sin(πx)tα+α1

Γ(α + α1 + 1)

+
2π4 sin(πx)tα+α2

Γ(α + α2 + 1)
+ (π4 sin πx + π2 sin πx)

2tα

Γ(α + 1)
.

It can be seen from Tables 3 and 4 that the spatial convergence order is about order
two and the temporal convergence order is about order one, respectively. It can be seen
that the numerical results are the same as Example 1 and the convergence order is in good
agreement with the theoretical analysis.

Table 3. The errors and convergence rates when k = 1/1024 and α = 0.50, for Example 2.

Methods α1, α2 J Error ratex Iterative

Besse

α1 = 0.30 16 9.6163 × 10−3 − −
α2 = 0.70 32 2.2743 × 10−3 2.092 −

64 4.4453 × 10−4 2.423 −
α1 = 0.35 16 9.7560 × 10−3 − −
α2 = 0.65 32 2.3922 × 10−3 2.073 −

64 5.5698 × 10−4 2.315 −

Newton

α1 = 0.30 16 9.6292 × 10−3 − 2048
α2 = 0.70 32 2.2840 × 10−3 2.076 2048

64 4.5341 × 10−4 2.333 2048

α1 = 0.35 16 9.6486 × 10−3 − 2048
α2 = 0.65 32 2.3005 × 10−3 2.068 2048

64 4.6915 × 10−4 2.294 2048
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Table 3. Cont.

Methods α1, α2 J Error ratex Iterative

Linearized

α1 = 0.30 16 9.6291 × 10−3 − 2048
α2 = 0.70 32 2.2839 × 10−3 2.076 2048

64 4.5330 × 10−4 2.333 2048

α1 = 0.35 16 9.6484 × 10−3 − 2048
α2 = 0.65 32 2.3004 × 10−3 2.068 2048

64 4.6904 × 10−4 2.294 2048

Table 4. The errors and convergence rates when h = 1/1024 and α = 0.50, for Example 2.

Methods α1, α2 N Error ratet Iterative

Besse

α1 = 0.30 16 1.2909 × 10−2 − −
α2 = 0.70 32 6.4875 × 10−3 0.993 −

64 3.2196 × 10−3 1.011 −
α1 = 0.35 16 1.1689 × 10−2 − −
α2 = 0.65 32 5.8697 × 10−3 0.994 −

64 2.9127 × 10−3 1.011 −

Newton

α1 = 0.30 16 1.2818 × 10−2 − 62
α2 = 0.70 32 6.4717 × 10−3 0.986 109

64 3.2142 × 10−3 1.010 192

α1 = 0.35 16 1.1588 × 10−2 − 62
α2 = 0.65 32 5.8495 × 10−3 0.986 110

64 2.9036 × 10−3 1.011 192

Linearized

α1 = 0.30 16 1.2813 × 10−2 − 48
α2 = 0.70 32 6.4754 × 10−3 0.985 96

64 3.2101 × 10−3 1.012 192

α1 = 0.35 16 1.1580 × 10−2 − 48
α2 = 0.65 32 5.8529 × 10−3 0.984 96

64 2.9054 × 10−3 1.010 192

6. Concluding Remarks

In this paper, we propose an implicit difference scheme for a class of nonlinear fourth-
order equations with the multi-term Riemann–Liouvile fractional integral kernels. For
the nonlinear convection term, we use the Galerkin method based on piecewise linear
test functions. The Riemann–Liouvile fractional integral terms are treated by convolution
quadrature. The standard central difference approximation is used to discretize the spatial
derivative. The stability and convergence are rigorously proved by the discrete energy
method. The existence and uniqueness of the numerical solutions for nonlinear systems
are proved strictly. Lastly, we introduce and compare three iterative methods for solving
the nonlinear systems.
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Abstract: Distributed-order, space-fractional diffusion equations are used to describe physical pro-
cesses that lack power-law scaling. A fourth-order-accurate, A-stable time-stepping method was
developed, analyzed, and implemented to solve inhomogeneous parabolic problems having Riesz-
space-fractional, distributed-order derivatives. The considered problem was transformed into a
multi-term, space-fractional problem using Simpson’s three-eighths rule. The method is based on
an approximation of matrix exponential functions using fourth-order diagonal Padé approximation.
The Gaussian quadrature approach is used to approximate the integral matrix exponential function,
along with the inhomogeneous term. Partial fraction splitting is used to address the issues regarding
stability and computational efficiency. Convergence of the method was proved analytically and
demonstrated through numerical experiments. CPU time was recorded in these experiments to show
the computational efficiency of the method.

Keywords: distributed-order; Riesz-space-fractional diffusion; Padé approximation; splitting technique

1. Introduction

Complex processes which obey a mixture of power laws and flexible variations in
space are modeled by distributed-order, space-fractional differential equations. Distributed-
order, space-fractional differential equations are used to model the phenomena where
the order of differentiation varies in a given range [1,2]. Due to their nonlocal properties,
the distributed-order differentials can model more complex dynamical systems than the
fractional-order or classical models.

Consider the following two-dimensional Riesz-space, distributed-order, fractional,
inhomogeneous diffusion equation:

∂u
∂t

= Kx

2∫
1

P(α)
∂αu

∂|x|α dα + Ky

2∫
1

Q(β)
∂βu

∂|y|β dβ + f (x, y, t), (x, y, t) ∈ Ω × (0, T], (1)

with initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

and boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω,
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where Ω = (a, b)× (c, d). The coefficients P and Q are non-negative functions defined on
(1, 2], that are not identically zero and satisfy

0 <

2∫
1

P(α)dα < ∞, 0 <

2∫
1

Q(β)dβ < ∞.

The inhomogeneous source term f is assumed to be sufficiently smooth. The distributed-
order, space-fractional derivative terms are approximated using Simpson’s three-eighth
rule. For any 1 < αi ≤ 2, the two-sided, Riesz-space-fractional derivative operator ∂αi

∂|x|αi on
a finite interval (a, b) is given by

∂αi

∂|x|αi
= − 1

2 cos παi
2

[
aDαi

x + xDαi
b
]
, 1 < αi ≤ 2, (2)

where aDαi
x is the left Riemann–Liouville and xDαi

b is the right Riemann–Liouville fractional
derivatives, which are, respectively,

aDαi
x u(x, y, t) =

1
Γ(2 − αi)

∂2

∂x2

∫ x

a
(x − χ)1−αi u(χ, y, t) dχ,

xDαi
b u(x, y, t) =

1
Γ(2 − αi)

∂2

∂x2

∫ b

x
(χ − x)1−αi u(χ, y, t) dχ.

The Riesz-space-fractional derivative operator ∂
βj

∂|y|βj
on (c, d) is defined similarly.

A recent review article [3] provided a state-of-the-art introduction to the mathematics
of distributed-order fractional calculus, along with analytical and numerical methods.
An extensive overview of the applications of distributed-order fractional calculus with
applications to viscoelasticity, transport processes, and control theory have been discussed.

Anomalous diffusion phenomena take place in many complex systems, such as subsur-
face flows, human tissues, viscoelastic material, and plasma. In such systems, the diffusion
is slower or faster than normal, the probability density function is not anymore Gaussian,
and the mean-square displacement is not linear in time; see, for example, [4] and references
therein. As such, the predictions obtained through integer-order local models do not match
the collected data and observed behaviors. Riesz-space-fractional diffusion equations
provide a powerful mathematical tool for modeling such phenomena. In these models,
the diffusion rate depends on the global state of the field. In particular, the order of the
Riesz fractional derivatives identifies the power-law scaling of the physical process.

Many physical processes, however, lack power-law scaling and cannot be character-
ized by specific scaling exponents. Among these processes are several cases of accelerating
super diffusion [5–7]. These processes can easily be described by Riesz-space distributed-
order fractional diffusion equations.

There are many applications of the distributed-order fractional operators. For example,
applications to fields such as viscoelasticity, transport processes, and control theory were
discussed by Ding et al. in [3], and Patnaik et al. [8] discussed applications of variable- and
distributed-order fractional operators to the dynamic analysis of nonlinear oscillators.

Analytical solutions for some problems were constructed by Caputo [5] and Sokolov et al. [6].
The well-posedness of particular classes of such problems were studied by Jia et al. [9].
Numerical solutions for distributed-order space-fractional models on bounded domains are
in high demand, since analytical solutions are not in general available. Wang et al. [2] de-
veloped a second-order-accurate, implicit numerical method for one- and two-dimensional
Riesz-space, distributed-order fractional advection–dispersion equations. Their method
is based on use of a midpoint quadrature rule for the Riesz space distributed-order term.
Li et al. [10] proposed an unconditionally stable second-order Crank–Nicolson method for
a one-dimensional Riesz space distributed-order diffusion equation. The method is based
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on midpoint quadrature and the finite volume method. For the two-dimensional Riesz-
space, distributed-order advection–diffusion equation, a Crank–Nicolson ADI, Galerkin–
Legendre spectral method was developed by Zhang et al. [11]. Jia and Wang [12] designed
a fast finite difference method for distributed-order, space-fractional partial differential
equations on convex domains. Qiao et al. [13] analyzed the velocity distributions of the
distributed/variable-order fractional Maxwell governing equations under specific condi-
tions, and discussed the effects of different parameters on the solution.

The time-stepping methods mentioned in all the above-mentioned references are of
second order. The purpose of this work was to develop a computationally efficient, strongly
stable, fourth-order time-stepping method that is suitable for solving problems such as
(1). The numerical method is obtained by first applying the three-eighth Simpson’s rule
to the distributed-order space-fractional derivative term. Then, the multi-term fractional
derivative equation is discretized in space by using the fractional centered-difference
formulas introduced by Ortigueira [14]. The exact solution of the resulting semi-discretized
system is written using the Duhamel’s principle [15]. This exact solution involves a matrix
exponential function and the integral of a matrix exponential function, along with the
inhomogeneous term. Matrix exponential functions are approximated by diagonal (2,2)-
Padé approximation. The rationale behind using a diagonal (2,2)-Padé approximation is
that only one algebraic system needs to be solved at each time step. Therefore, we can
implement this fourth-order method with the same computational complexity as a first-
order method. We utilize an approach with a class of single-step, fully discrete numerical
methods developed by Brenner et al. [16], and the same approach is summarized in the
book by Thomée [15].

The paper is organized as follows. The Riesz-space distributed-order fractional deriva-
tive discretization is presented in Section 2. In Section 3, the time-stepping method is
developed, and an implementation algorithm is provided. The convergence theorem of the
numerical method is given in Section 4. Numerical experiments are shown in Section 5.
Solution profiles and convergence tables, along with CPU times, are also given in the same
section. Finally, some concluding remarks are included in Section 6.

2. Distributed-Order Space-Fractional Derivative Approximation

Let 1 = α0 < α1 < · · · < αN1 = 2 and 1 = β0 < β1 < · · · < βN2 = 2 be uniform
discretizations of the interval [1, 2]. Let Δα = 1/N1 and Δβ = 1/N2. By applying the
fourth-order Simpson’s three-eighths rule to the distributed terms, we obtain

∫ 2

1
P(α)

∂αu
∂|x|α dα =

N1

∑
i=1

aiP(αi)
∂αi u

∂|x|αi
+ O((Δα)4), (3)

∫ 2

1
Q(β)

∂βu
∂|x|β dβ =

N2

∑
j=1

bjQ(β j)
∂β j u

∂|x|β j
+ O((Δβ)4), (4)

where ai and bj are the coefficients of Simpson’s three-eighths rule.
To approximate the Riesz derivatives in the right-hand sides of (3) and (4), we use the

fractional centered-difference introduced by Ortigueira [14]. We consider xm = a + mhx,
m = 0, 1, . . . , M with hx = (b − a)/M as the spatial mesh points. Suppose u(x) to be
a sufficiently smooth function defined for −∞ < x < ∞. Then, for i = 1, 2, · · · , N1,
we have

dαi

d|x|αi
u(x) = − 1

2 cos παi
2

[
−∞Dαi

x + xDαi
∞
]
u(x, t) =

−1
hαi

x
Δαi

hx
u(x) + O(h2), (5)

where

Δαi
h u(x) =

∞

∑
j=−∞

g(αi)
j u(x − jhx), (6)
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g(αi)
j =

(−1)j Γ(1 + αi)

Γ(αi/2 − j + 1) Γ(αi/2 + j + 1)
, j = 0, ±1, ±2, . . . .

If u(x) vanishes outside the interval (a, b) and um = u(xm) for m = 1, . . . , M − 1, then
we have

Δαi
h v(xm) =

[
g(αi)

m−1u1 + · · ·+ g(αi)
0 um + · · ·+ g(αi)

M−m−1uM−1

]
.

We can write this system of equations as:

Δαi
hx

u

hαi
x

= G(αi)
x u,

with

G(αi)
x =

1
hαi

x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(αi)
0 g(αi)

1 g(αi)
2 . . . g(αi)

M−4 g(αi)
M−3 g(αi)

M−2

g(αi)
1 g(αi)

0 g(αi)
1 . . . g(αi)

M−5 g(αi)
M−4 g(αi)

M−3

g(αi)
2 g(αi)

1 g(αi)
0 g(αi)

1 g(αi)
2 . . . g(αi)

M−4
...

. . . . . . . . . . . . . . .
...

g(αi)
M−4 . . . g(αi)

2 g(αi)
1 g(αi)

0 g(αi)
1 g(αi)

2

g(αi)
M−3 g(αi)

M−4 . . . g(αi)
2 g(αi)

1 g(αi)
0 g(αi)

1

g(αi)
M−2 g(αi)

M−3 g(αi)
M−4 . . . g(αi)

2 g(αi)
1 g(αi)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
...

uM−3
uM−2
uM−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, for each αi, we have the space-fractional derivative approximations

dαi

d|x|αi
≈ −Gαi

x . (7)

Similarly, by considering the spatial nodes: yn = c + nhy, n = 0, 1, . . . , N with
hy = (c − d)/N, we obtain the following approximation:

dβ j

d|y|β j
≈ −G

β j
y . (8)

Using the approximations (7) and (8), the distributed-order terms can be approxi-
mated as

∫ 2

1
P(α)

∂α

∂|x|α dα ≈
N1

∑
i=1

−aiP(αi)G
αi
x = Gα

x ,
∫ 2

1
Q(β)

∂β

∂|y|β dβ ≈
N2

∑
j=1

−bjQ(β j)G
β j
y = Gβ

y . (9)

By applying the Riesz derivative approximation to Equation (1), the following semi-
discrete system is obtained:

du

dt
+ Au = f(t), (10)

where A = KxGα
x ⊗ I + I ⊗ KyGβ

y is an (M − 1)(N − 1) × (M − 1)(N − 1) matrix, I is
the (M − 1)(N − 1)× (M − 1)(N − 1) identity matrix and u is the (M − 1)(N − 1)× 1
vector that consists of columns of the matrix [ui,j], where ui,j = u(xi, yj)| 1 ≤ i ≤ M − 1,
1 ≤ j ≤ N − 1. The inhomogeneous term f(t) = [ f1, . . . , fM−1]

T is an (M − 1)(N − 1)× 1
vector, with f j = [ f (x1, yj, t), f (x2, yj, t), · · · , f (xM−1, yj, t)]T , j = 1, 2, · · · N − 1.
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3. Time-Stepping Method

We consider the following abstract initial value problem:

ut + Au = f (t), t ∈ (0, T] = J, (11)

u(0) = u0,

to develop the numerical method and to discuss the convergence analysis that works with-
out dependence on the spatial mesh size; see Thomée [15] [Ch. 3, 7–9]. Using Duhamel’s
principle [15], the exact solution of (11) is written as:

u(t) = e−tAu0 +
∫ t

0
e−(t−s)A f (s)ds, (12)

where the matrix exponential function e−tA is the solution which corresponds to the
homogeneous problem having f ≡ 0. First, we replace the variable t by the shifted value
t + k, and then we use the following change in variable s − t = kτ and write the exact
solution (12) as:

u(t + k) = e−kAu(t) + k
∫ 1

0
e−k(1−τ)A f (t + kτ) dτ, (13)

and setup the following recurrence formula as

u(tn+1) = e−kAu(tn) + k
∫ 1

0
e−kA(1−τ) f (tn + τk) dτ, (14)

where k, with 0 < k ≤ k0 for some k0, is the temporal step size, and temporal mesh points
are given by tn = nk with 0 ≤ n ≤ n̄ =

[
T
k

]
.

Our fourth-order A-stable method is based on the following method from [15]:

vn+1 ≈ r(kA)vn + k
m̃

∑
i=1

Pi(kA) f (tn + τik), n ≥ 0, v0 = v. (15)

where r(z) and {Pi(z)}m̃
i=1 are the rational approximations of e−kA and e−kA(1−τi), respec-

tively. These rational approximations are uniformly bounded on the spectrum of kA in k
and h, where h represents the spatial discretization step size. The real numbers {τi}m̃

i=1 are
the m̃ Gaussian quadrature points in the interval [0, 1]. Our aim is to obtain a procedure
which admits an optimal order-error estimate ‖vn − u(tn)‖ = O(hα + kq), with spatial
discretization order α. The real number q > 0 is determined by the properties of the rational
functions r(z) and Pi(z), for i = 1, 2, . . . , m̃.

The time-stepping method (15) is accurate for order q if it satisfies some equivalent
conditions given in [15]. The reader may consult chapter 9 of [15] to fill in various details
omitted here for brevity. The accuracy of the time-stepping method (15) is defined in the
following definition.

Definition 1 ([15] (Ch. 9)). The time discretization method (15) is said to be accurate for order q
if the solution of (11) satisfies (15) with an error of order O

(
kq+1), as k → 0 for any choice of linear

operator A and a smooth function f on R.

The following Lemma describes the accuracy of the method (15) and establishes some
equivalent relations which are then used in the proof of the main results.

Lemma 1 ([15] (Lemma 8.1)). The time discretization method (15) is accurate for order q if and
only if

r(λ) = e−λ + O(λq+1), λ → 0, (16)
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and for 0 ≤ l ≤ q,

m̃

∑
i=1

τl
i Pi(λ) =

l!
(−λ)l+1

(
e−λ −

l

∑
j=0

(−λ)j

j!

)
+ O(λq−l), λ → 0, (17)

or equivalently
m̃

∑
i=1

τl
i Pi(λ) =

1∫
0

sle−λ(1−s)ds + O(λq−l), λ → 0. (18)

A computationally efficient method can be developed by considering r(λ) and {Pi(λ)}m̃
i=1

such that they have the same denominator (the same poles). Let

r(λ) =
N (λ)

D(λ)
and Pi(λ) =

Ni(λ)

D(λ)
, i = 1, 2, · · · , m̃ (19)

be bounded on the spectrum of kA, uniformly in h and k. The method (15) is approxi-
mated as:

vn+1 ≈ N (kA)

D(kA)
vn + k

m̃

∑
i=1

Ni(kA)

D(kA)
f (tn + τik), n ≥ 0, v0 = v. (20)

For the case when m̃ = q, we can achieve the conditions of Lemma 1 by choosing
a rational function r(λ) which satisfies (16) and by selecting the distinct real numbers as
Gaussian quadrature points {τi}m̃

i=1. Then, we solve the system of equations [15]

q

∑
i=1

τl
i Pi(λ) =

l!
(−λ)l+1

(
e−λ −

l

∑
j=0

(−λ)j

j!

)
, l = 0, 1, · · · q − 1, (21)

to find Pi(λ). The system given in (21) is of Vandermonde type, and its determinant is not
zero. The rational functions {Pi(λ)}q

i=1 are obtained as linear combinations of the terms on
the right-hand side of (21). Additionally, if r(λ) is bounded for large λ, then the right-hand
sides of (21) are small for large λ, and the numerator polynomials of Pi(λ) would be of a
smaller degree than their denominator polynomials for each i.

A fourth-order, A-stable method is developed by considering r(λ) = R2,2(λ), where

R2,2(λ) =
1 − 1

2 λ + 1
12 λ2

1 + 1
2 λ + 1

12 λ2
= 1 +

−λ

1 + 1
2 λ + 1

12 λ2
, (22)

is the fourth-order, A-acceptable (2,2)-Padé approximation of e−λ. By replacing the matrix
exponential e−kA by rational (2,2)-Padé approximation R2,2(kA) and taking the Gaussian
quadrature points τ1 = 3−

√
3

6 , τ2 = 3+
√

3
6 , the system (21) can be written as:

P1(λ) + P2(λ) = − 1
λ
(R2,2(λ)− 1),

τ1P1(λ) + τ2P2(λ) =
1

λ2 (R2,2(λ)− 1 + λ),

which results in

P1(λ) =
1 −

√
3

6 λ

2(1 + 1
2 λ + 1

12 λ2)
, P2(λ) =

1 +
√

3
6 λ

2(1 + 1
2 λ + 1

12 λ2)
.

Using these rational approximations, the method (15) is written as

vn+1 ≈ R2,2(kA)un + kP1(kA) f (tn + τ1k) + kP2(kA) f (tn + τ2k). (23)
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The above-mentioned method (23) is of fourth-order accuracy of Lemma 1 [15] (Ch. 9),
under the assumption that initial data have sufficient regularity.

3.1. Computationally Efficient Version of the Method

In order to implement the methods, it is required to compute matrix exponential
functions, which would be computationally expensive and compromise the computational
efficiency of the time-stepping methods. Another challenge is to invert higher-degree
matrix polynomials which can cause computational difficulties due to the ill-conditioning
of the spatial discretization matrix A. Use of the splitting technique not only resolves
this but also results in a highly efficient method; see Khaliq, Twizell, and Voss [17] and
references therein. We can write:

R2,2(λ) = 1 + 2�
(

w
λ − z

)
and the corresponding {Pi(λ)}2

i=1 takes the form:

Pi(λ) = 2�
(

wi
λ − z

)
, i = 1, 2,

where c is the non real pole of R2,2 and the Pi with corresponding weights w and wi,
respectively. All the poles and corresponding weights were computed using MAPLE 11.

3.2. Algorithm

Solve (kA − zI)y = wun +
2
∑

j=1
kwj f

(
tn + τjk

)
for y, and then compute un+1 = un +

2�(y), n = 0, 1, · · · , where �(y) = Real(y). The poles and corresponding weights are:

z = −3.0 − 1.73205080757 i,

ω = −6.0 + 10.3923048454 i,

ω1 = −0.86602540378 + 3.23205080757 i,

ω2 = 0.86602540378 + 0.23205080757 i.

4. Convergence Analysis

We present convergence in the Hilbert space case assuming A is a self-adjoint operator.
We followed the approach of Brenner et al. described in [16], which is also summarized
in [15] (Ch. 9]). In this analysis, we used the spaces Ḣs = D(As/2), as defined in [15] by
the norm

|u|s = (Asu, u)1/2 = ‖As/2u‖ =

(
N

∑
j=1

λs
j (u, φj)

2

)1/2

,

where {φj}N
j=1 are orthonormal eigenfunctions of A with corresponding positive eigenval-

ues {λj}N
j=1. We assume f ∈ Ḣs to have sufficient regularity and also use the concept that

the operator Ek = r(kA) is said to be stable in H if ‖En
k ‖ ≤ C for n ≥ 1, 0 < k ≤ k̄, nk ≤ t̄;

see [15].

Theorem 1. Let A be a self-adjoint operator defined on the Hilbert space H; the solution operator
Ek = r(kA) is stable in H; and the time discretization method (15) is accurate for order q = 2m,
where m is a positive integer. Suppose f (l)(t) ∈ Ḣ2q−2l for l < q, t ≥ 0. Then, there exists
a constant C = C(t) such that

‖vn − u(tn)‖ ≤ Ckq
(

t−q
n ‖v‖+ tn

q−1

∑
l=0

Sl +
∫ tn

0
‖ f (q)‖ds

)
, 0 ≤ n ≤ n̄, 0 ≤ k ≤ k̄, (24)
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where Sl = sup
s≤tn

| f l(c)|2q−2l .

Proof. By letting

Rk f (t) =
s

∑
i=0

Pi(kA) f (tn + kτi),

we can write method (15) as

vn = rn(kA)v + k
n−1

∑
j=0

rn−1−j(kA)Rk f (tj), for n = 1, 2, · · · (25)

By denoting E(t) = e−tA, we write the exact solution, (14), of Equation (11) as:

u(tn) = E(tn)v + k
n−1

∑
j=0

E(tn−1−j)Ik f (tj), (26)

where

Ik f (tj) =
∫ 1

0
E(k − sk) f (tj + sk)ds.

For n ≥ 0, the error En = vn − u(tn) can be written as:

En = rn(kA)v − E(tn)v + k
n−1

∑
j=0

(
rn−1−j

m (kA)Rk f (tj)− E(tn−1−j)Ik f (tj)
)

= En
0 + En

m, (27)

where the error En
0 corresponds to the homogeneous equation and En

m is the error due to
the inhomogeneous part of the method. The error En

0 is approximated by the established
result in [15] (Theorem 7.2) as:

‖En
0 ‖ = ‖

(
rn−2

m (kA)r2
s (kA)− E(tn)

)
‖ ≤ Ckqt−q

n ‖v‖. (28)

By adding and subtracting rn−1−j
m (kA)Ik f (tj) in the error term En

m and rearranging
the terms, we get

En
m = k

n−1

∑
j=0

(
rn−1−j

m (kA)− E(tn−1−j)
)
Ik f (tj) + k

n−1

∑
j=0

rn−1−j
m (kA)(Rk − Ik) f (tj)

= En
m1 + En

m2. (29)

Using the change of variable tj + sk = t, we can write

1∫
0

f (tj + sk)ds =
1
k

tj+1∫
tj

f (t)dt

and

n−1

∑
j=0

1∫
0

f (tj + sk)ds =
1
k

tn∫
0

f (t)dt

Additionally, using the facts:

max
0≤s≤1

E(k − sk) = max
0<s≤1

e−(1−s)k = I, at s=1, (30)
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E(s − sk) commutes with rn(kA)− E(tn) and r(kA) is a q-th order approximation of E(t) =
e−kA. We get the following estimate:

‖En
m1‖ ≤ k

n−1

∑
j=0

‖
(

rn−1−j
m (kA)− E(tn−1−j)

)
Ik f (tj)‖

≤ k
n−1

∑
j=0

1∫
0

‖E(k − sk)
(

rn−1−j
m (kA)− E(tn−1−j)

)
f (tj + sk)‖ds

≤ kq+1
n−1

∑
j=0

1∫
0

| f (tj + sk)|2qds = Ckq
tn∫

0

| f (t)|2qdt, (31)

which is bounded by the right-hand side of (24). Using Taylor-series expansions of f (tj + sk)
and f (tj + sk) and the approach given in [15] (Theorem 8.1), an estimate for En

m2 can be
obtained as follows:

‖En
m2‖ ≤

n−1

∑
j=2

Ckq+1
q−1

∑
l=0

| f (l)(tj)|2q−2l + Ckq
n−1

∑
j=2

∫ tj+1

tj

‖ f (q)‖ds. (32)

Since the right-hand side of (31) is bounded by the right-hand side of (32),

‖En
m‖ ≤

n−1

∑
j=0

Ckq+1
q−1

∑
l=0

| f (l)(tj)|2q−2l + Ckq
n−1

∑
j=0

∫ tj+1

tj

‖ f (q)‖ds (33)

≤ Ckqtn

q−1

∑
l=0

Sl + Ckq
∫ tn

0
‖ f (q)‖ds, (34)

where Sl = sup
s≤tn

| f (l)(s)|2q−2l , and (28) together with (34), completes the proof.

5. Numerical Experiments

In this section, we present the solutions of two test problems and discuss the results
obtained. The errors between the consecutive solutions were calculated by decreasing the
time step size by half. The following formula was used to calculate the rate of convergence:

r = ln
Error(2k)
Error(k)

,

where Error(k) denotes the error between the consecutive solutions corresponding to the
numbers of time steps k and 2k, respectively. The error(k) are computed by using the
in f norm. The rate of convergence of the method is computed using this approach when
an analytical solution of the problem is not available.

5.1. Example 1

First we consider the following problem with f (x, t) = 0; see [10]:

∂u
∂t

=

2∫
1

KxP(α)
∂αu

∂|x|α dα, (x, t) ∈ (0, 1)× [0, T], (35)

with homogeneous Dirichlet boundary condition

u(0, t) = 0, u(1, t) = 0, > 0 (36)
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and initial condition
u(x, 0) = δ(α − 0.5), x ∈ (0, 1), (37)

where P(α) = lα−2K[A1δ(α − δ1) + A2δ(α − δ2)] with dimensionless constants l and K.
Additionally, 0 < δ1 < δ2 ≤ 2, A1 > 0, A2 > 0.

Figure 1 displays the numerical solution u(x, t) at different times, which decays with
time. Figure 2 illustrates the impacts of δ1 and δ2 on the diffusion behavior of u(x, t). As the
values of δ1 and δ2 increase, the amplitude decreases and more diffusive behavior appears
in the profiles. Figure 3 shows how different values of l affect the numerical solution u(x, t).
It is evident that the amplitude of the solution increases as the value of l increases. Figure 4
shows the time evolution graphs of u(x, t) at t = 0.1 and at t = 1, respectively. Table 1
shows the error and convergence rate of the time-stepping method. A column of CPU time
is also included in this table to show the computational efficiency of the method.

Figure 1. Example 1: Numerical solutions at different values of t using h = k = 1/200, l = 2, K = 1,
A1 = A2 = 1, δ1 = 1.255, and δ2 = 1.75.

Figure 2. Example 1: Numerical solutions using for different values of δ1 and δ2 using h = k = 1/200,
l = 2, K = 1, and A1 = A2 = 1.
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Figure 3. Example 1: Numerical solutions at t = 1 using δ1 = 1.255 and δ2 = 1.755 with h = k =

1/200, K = 1, and A1 = A2 = 1 for different values of l.
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Figure 4. Time evolution graph of Example 1 at t = 0.1 LEFT and t = 1 RIGHT, using δ1 = 1.255 and
δ2 = 1.755 with h = k = 1/200, l = 2, K = 1, and A1 = A2 = 1.

Table 1. Example 1: Convergence results for the time-stepping method.

Δt Error Order CPU Time

0.04000 0.0218
0.02000 2.6347 × 10−9 0.0132
0.01000 1.6361 × 10−10 4.009 0.0177
0.00500 1.0219 × 10−11 4.001 0.0337
0.00250 6.4051 × 10−13 3.996 0.1029
0.00125 3.8032 × 10−14 4.074 0.1542

5.2. Example 2

Here we consider the two-dimensional problem on the rectangular domain Ω =
(0, 1)× (0, 1) [1]:

∂u
∂t

=

2∫
1

KxP(α)
∂αu

∂|x|α dα +

2∫
1

KyQ(β)
∂βu

∂|y|β dβ + f (x, y, t), (x, y, t) ∈ Ω × [0, T], (38)
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with the homogeneous Dirichlet boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω, (39)

and the initial condition

u(x, y, 0) = u0(x, y) = x2(1 − x)2y2(1 − y)2, (x, y) ∈ Ω, (40)

where P(α) = Q(α) = −2Γ(5 − α) cos( απ
2 ) are non-negative functions and the inhomoge-

neous term is

f (x, y, t) = etx2(1 − x)2y2(1 − y)2

− etx2(1 − x)2[R(x) + R(1 − x)]

− ety2(1 − y)2[R(y) + R(1 − y)]

with

R(r) = Γ(5)R1(r)− 2Γ(4)R2(r) + Γ(3)R3(r),

R1(r) =
1

ln r
(r3 − r2),

R2(r) =
1

ln r
(3r2 − 2r) +

1
(ln r)2 (r − r2),

R3(r) =
1

ln r
(6r − 2) +

1
(ln r)2 (3 − 5r) +

2
(ln r)3 (r − 1).

The exact solution of this problem is given as: u(x, y, t) = etx2(1 − x)2y2(1 − y)2.
Figure 5 shows the graph’s exact and numerical solution of the problem (38). Conver-

gence results along with CPU times are given in Table 2.
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Figure 5. Exact and numerical solutions of Example 2 with Δx = 0.04 and Δy = 0.02.

Table 2. Example 2: Convergence results for the time-stepping method.

Δt Error Order CPU Time

0.02500 6.1233 × 10−4 0.1087
0.01250 4.1451 × 10−5 3.736 0.1243
0.00625 2.9543 × 10−6 3.811 0.2656
0.00313 2.0695 × 10−7 3.836 0.4343
0.00156 1.2276 × 10−8 4.075 1.2353
0.00078 7.2832 × 10−10 4.075 2.1253
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6. Conclusions

By synthesizing diverse ideas, we developed an implementation strategy to numeri-
cally solve the Riesz distributed-order, space-fractional, inhomogeneous diffusion equa-
tions. A fourth-order A-stable method was developed using a diagonal (2,2)-Padé approx-
imation of a matrix exponential function. Use of the partial fraction splitting makes the
method more efficient, stable, and accurate. It can also be noted that we can implement this
fourth-order method with the same computational complexity as a first-order method.
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Abstract: A weak singularity in the solution of time-fractional differential equations can degrade the
accuracy of numerical methods when employing a uniform mesh, especially with schemes involving
the Caputo derivative (order α,), where time accuracy is of the order (2 − α) or (1 + α). To deal
with this problem, we present a second-order numerical scheme for nonlinear time–space fractional
reaction–diffusion equations. For spatial resolution, we employ a matrix transfer technique. Using
graded meshes in time, we improve the convergence rate of the algorithm. Furthermore, some sharp
error estimates that give an optimal second-order rate of convergence are presented and proven. We
discuss the stability properties of the numerical scheme and elaborate on several empirical examples
that corroborate our theoretical observations.

Keywords: predictor-corrector scheme; Caputo fractional derivative; nonlinear time–space fractional
equation; matrix transfer; graded meshes

1. Introduction

The last decade has witnessed tremendous developments in practical methods to
solve fractional differential equations. These problems are of particular importance because
they can provide a better model for understanding complex phenomena such as memory-
dependent processes [1–3], material properties [4], diffusion in media with memory [5,6],
groundwater modeling [7,8], and control theory [9]. Recently, many researchers have
adopted fractional-order models to predict and gain insight into the evolution of the
COVID-19 pandemic. This is possible due to the memory/hereditary properties inherent
in the fractional-order derivatives, cf. [10–14].

We study a nonlinear time–space fractional reaction–diffusion problem in the form

cDα
0,tu = −κ(−Δ)

β
2 u(x, t) + g(u), in Ω × (0, T),

u(x, 0) = ϕ(x), x ∈ Ω ⊂ R,

u(x, t)|∂Ω = 0

(1)

where Ω is bounded in R, ∂Ω denotes the boundary of Ω, κ is the diffusion coefficient,

(−Δ)
β
2 denotes the Laplacian of a fractional order β, 1 < β ≤ 2, and g(u) is a sufficiently

smooth function. The α-order Caputo derivative, 0 < α ≤ 1, cDα
0,tu, in variable t, is adopted

here and defined as

cDα
0,tu(x, t) =

1
Γ(1 − α)

∫ t

0
(t − s)−α ∂u(x, s)

∂s
ds.
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The operator (−Δ)
β
2 is taken here as the spectral Laplacian of a fractional order

β, 1 < β ≤ 2 given by

(−Δ)
β
2 u(x) =

∞

∑
k=1

ckλ
β
2
k φk(x).

where λk and φk(x) are the eigenvalues and eigenfunctions of the Laplace operator −Δ on
Ω, respectively, and ck are Fourier coefficients of u (in {φk(x)}) (see [15]).

Several numerical methods for solving Problem (1) or some of its counterparts have
been developed and investigated by authors based on the uniform discretization of the
Caputo derivative (see, for example, [16–23]). In most cases, the derived schemes were
either (2 − α) or (1 + α) accurate in time. This somewhat reduced order of convergence is
to be expected due to a singular kernel (t − s)−α embedded in the time derivative. This, in
turn, has motivated the research question of how to improve the order beyond (2 − α) and
(1 + α). The natural choice is to use nonuniform time meshes.

Brunner [24] made use of meshes that are graded in order to improve the accuracy of
the approximation to a Volterra integral equation of the second kind with a weakly singular
kernel employing collocation methods. Zhang et al. [25] developed a numerical method for
a linear counterpart of (1) based on the nonuniform discretization of the Caputo derivative
and the compact difference method for spatial discretization. Their theoretical analysis
and numerical examples showed the efficiency of their methods. Lyu and Vong [26] pro-
posed a high-order method to resolve a time-fractional Benjamin–Bona–Mahony equation
over a nonuniform temporal mesh. Stynes et al. [27] investigated the stability and error
analysis of a finite difference scheme using a uniform mesh and meshes graded in time.
Liao et al. [28] investigated the convergence and stability of an L1 technique to solve
linear reaction–subdiffusion equations with the Caputo derivative. Kopteva [29] discussed
the error analysis of the L1 method for a fractional-order parabolic problem in two and
three dimensions using both uniform and graded meshes. Wang and Zhou [30] proved
the convergence of the corrected k-step backward difference formula without imposing
further regularity assumptions on the solution of the semilinear subdiffusion equation.
Mustapha [31] developed an L1 scheme for subdiffusion equations with Riemann–Liouville
time-fractional derivatives on nonuniform time intervals. He used the regularity of the solu-
tion and the properties of the nonuniform mesh to obtain a second-order accurate scheme.

In this present study, we propose a predictor–corrector numerical scheme for solving
(1) based on time-graded meshes. The scheme is similar to the one given in [18]. We then
explore the regularity properties of the solution and some of the properties of the meshes
to derive a scheme that is second-order accurate in time.

The remaining sections are organized as follows. Section 2 briefly discusses the spatial
discretization method, and thereafter we derive the time-stepping scheme for the solution
of (3). In Section 3, we discuss the error analysis and stability of the scheme. In Section 4,
we give some numerical examples to illustrate the convergence of the scheme. Finally,
in Section 5 there are concluding remarks.

2. Numerical Scheme

2.1. Matrix Transfer Technique for Spatial Discretizations

Let M be given and we denote by xj, for 0 ≤ j ≤ M, a 1D uniform grid point of size h.
It was shown in [32] that

(−Δ)
β
2 u(x) ≈ A

β
2 u(x) (2)

where

A =
1
h2

⎡⎢⎢⎢⎢⎣
2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

. . . . . . . . .
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2

⎤⎥⎥⎥⎥⎦, u(x) =

⎡⎢⎢⎢⎢⎢⎣
u(x1)
u(x2)

...
u(xM−2)
u(xM−1)

⎤⎥⎥⎥⎥⎥⎦,
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then, the error in (2) is of order 2. This approximation can be thought of as transferring the

matrix approximation of −Δ to approximate (−Δ)
β
2 . Applying this technique to (1), we

obtain a system of nonlinear time-fractional differential equations in the form

cDα
0,tu + A

β
2 u = g(u),

u(0) = u0,
(3)

where u and g(u) are the vectors that denote the nodal values of u and g, respectively,
and we have chosen κ = 1, without any loss of generality. In addition, we write u and g(u)
instead of u and g(u) to denote the vectors of the node values. Consequently, the major
concern of this paper is the accurate time discretization of Problem (3).

2.2. Time Discretizations

In this section, the second-order time-stepping scheme over time-graded meshes is
considered for solving the semi-discrete problem (3). Furthermore, the stability results
are developed. We use the time-graded mesh having subintervals In = [tn, tn+1], n =
0, · · · , N − 1, with 0 = t0 < · · · < tN = T. This has the following grid points:

tn = (nτ)γ, 0 ≤ n ≤ N, for γ ≥ 1, with τ =
T1/γ

N
.

Let τn = tn+1 − tn denote the stepsize of the n-th subinterval In. The following
properties (see [24,33]) hold for n ≥ 1,

tn+1 ≤ 2γtn, (4)

γτt1−1/γ
n ≤ τn ≤ γτt1−1/γ

n+1 , (5)

τn − τn−1 ≤ Cγτ2 min{1, t1−2/γ
n+1 } (6)

τn ≤ τmax ≤ γT/N. (7)

where
τmax = max

1≤j≤n−1
τj

We note that Equation (3) can be reformulated in the form of the Volterra integral equation

u(t)− u0 =
1

Γ(α)

∫ t

0
(t − s)α−1

(
−A

β
2 u(s) + g(u(s))

)
ds

= 0Iα
t g(u(t))− A

β
2 0Iα

t u(t),

(8)

where

aIα
t w(t) =

1
Γ(α)

∫ t

a
(t − s)α−1w(s) ds,

aIα
t g(w(t)) =

1
Γ(α)

∫ t

a
(t − s)α−1g(w(s)) ds.

Now, let un := u(tn) and g(un) := g(u(tn)). Estimating t = tn and tn+1, we obtain the
difference in successive terms as

u(tn+1)− u(tn) =
[

0Iα
tn+1

g(un+1)− 0Iα
tn g(un)

]
− A

β
2

[
0Iα

tn+1
u(tn+1)− 0Iα

tn u(tn)
]

= tnIα
tn+1

g(un+1) − A
β
2 tnIα

tn+1
u(tn+1) +Qe

n,u +Qe
n,g,

where
Qe

n,u = −A
β
2 0Iα

tn [u(tn+1)− u(tn)] (9)
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Qe
n,g = 0Iα

tn

[
g(un+1)− g(un)

]
(10)

That is,

u(tn+1)− u(tn) = − 1
Γ(α)

A
β
2

∫ tn+1

tn
(tn+1 − s)α−1u(s) ds +

1
Γ(α)

∫ tn+1

tn
(tn+1 − s)α−1g(u(s)) ds

+He
n, (11)

where
He

n = Qe
n,u +Qe

n,g.

If we replace u(s) and g(u) with linear interpolants over the interval In, that is,

u(s) ≈ un + (s − tn)
un+1 − un

τn
, s ∈ [tn, tn+1],

and

g(u(s)) ≈ g(un) + (s − tn)
g(un+1)− g(un)

τn
, s ∈ [tn, tn+1].

We obtain

un+1 − un =
−ατα

n
Γ(α + 2)

A
β
2 un − τα

n
Γ(α + 2)

A
β
2 un+1 +

ατα
n

Γ(α + 2)
gn +

τα
n

Γ(α + 2)
gn+1 +He

n. (12)

At a glance, we see that (12) is an implicit scheme. In order to reduce the computation
burden, we thus go back to (11) and approximate the nonlinear function, g(u), on the
interval [tn, tn+1] by a constant polynomial to obtain the following predictor–corrector
scheme after some simplifications:⎧⎪⎪⎨⎪⎪⎩

(
Γ(α + 2)I+ τα

n A
β
2

)
up

n+1 =
[(

Γ(α + 2)I− ατα
n A

β
2

)
un + τα

n (α + 1)g(un) + Γ(α + 2)He
n

]
(

Γ(α + 2)I+ τα
n A

β
2

)
un+1 =

[(
Γ(α + 2)I− ατα

n A
β
2

)
un + τα

n

(
α g(un) + g(up

n+1)
)
+ Γ(α + 2)He

n

]
.

(13)

where I is the identity matrix.
Using linear approximations for both u(t) and g(u(t)) in Equations (9) and (10),

the history term He
n is approximated as

He
n ≈ Ha

n =
n

∑
j=0

aj,n

(
− A

β
2 uj + g(uj)

)
, (14)

where

aj,n =
1

Γ(α + 2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ−1
0

(
−τα

n+1,0(τn+1,1 − ατ0) + τ1+α
n+1,1 + τn,1τα

n,0 − ατ0τα
n,0 − τ1+α

n,1

)
, j = 0,

τ−1
j−1

(
τ1+α

n+1,j−1 − τ1+α
n,j−1

)
+ τ−1

j

(
τ1+α

n+1,j+1 − τ1+α
n,j+1

)
−τα

n+1,j

(
τ−1

j−1τn+1,j−1 + τ−1
j τn+1,j+1

)
1 ≤ j ≤ n − 1,

+τα
n,j

(
τ−1

j−1τn,j−1 + τ−1
j τn,j+1

)
,

τ−1
n−1

(
τ1+α

n+1,n−1 − τn+1,n−1τα
n − τ1+α

n−1 − ατn−1τα
n

)
, j = n.

τn,j = tn − tj.

3. Error and Stability Analysis

Here, we carry out the error analysis and discuss the stability property of the proposed
scheme (13). For the error analysis, it is assumed that u, the solution to (1), satisfies
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||u(t)||1 ≤ M and ||u(�)(t)||1 ≤ Mtσ+α/2−�, � = 1, 2, 3, (15)

with the regularity parameter σ ∈ (0, 1) to be determined from the error analysis. This is
in line with the published results [27,30,31,33,34]. The constant M is positive, � denotes
the partial derivative of an appropriate order of u with respect to t, and || · ||� is the
Sobolev norm on H�(Ω). Of course, this reduces to the L2 norm whenever � = 0. The
stability analysis of this article considers the initial data perturbations, i.e., the sensitivity
of the numerical solutions to the small changes in the initial data. Function g(u) and its
derivatives with respect to u, g(r)(u) for r = 1, 2, are assumed to be Lipschitz in the time
domain Ω × [0, T].

3.1. Error Analysis

Lemma 1. Given any positive sequence {aj} and for γ ≥ 1, we have

n−1

∑
j=2

aj

∣∣∣∣∣ τ3
j

τ3
j−1

Lj−1,n − Lj,n+1

∣∣∣∣∣ ≤ Cτtα−1/γ
n

n−1
max
j=2

(ajτ
2
j ),

where

Lj,n =
1

2Γ(α)

∫ tj+1

tj

(s − tj)(tj+1 − s)(tn − s)α−1 ds.

Proof. Cf. [31].

Lemma 2. For 1 ≤ n ≤ N, γ >
2

σ + α/2 + 1
and τ is sufficiently small,

∣∣∣∣∣
∣∣∣∣∣ 1
Γ(α)

n−1

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
E1,u(s) ds

∣∣∣∣∣
∣∣∣∣∣
1

≤ Cτ2tσ+3α/2−2/γ
n ,

where

E1,u(s) =
1
2

∫ s

tj

(w − s)2u′′′(w)dw −
(s − tj)

2τj

∫ tj+1

tj

(w − tj)
2u′′′(w)dw.

Proof. Let

I1,u =
1

Γ(α)

n−1

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
E1,u(s) ds

||I1,u||1 =

∣∣∣∣∣
∣∣∣∣∣ 1
Γ(α)

n−1

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
E1,u(s) ds

∣∣∣∣∣
∣∣∣∣∣
1

≤ 2
Γ(α)

n−1

∑
j=0

∫ tj+1

tj

(tn − s)α−1||E1,u(s)||1 ds.

For n = 1, s ∈ (t0, t1)

||E1,u(s)||1 ≤ 1
2

∫ s

0
(w − s)2||u′′′(w)||1 dw +

s
t1

∫ t1

0
w2||u′′′(w)||1 dw

≤ M
∫ s

0
w2wσ+ α

2 −3 +
M
2t1

s
∫ t1

0
w2wσ+ α

2 −3 dw

≤ C max{sσ+ α
2 , stσ+ α

2 −1
1 }.

Noting that

tn − s = nγ
(

t1 − s
nγ

)
≥ nγ(t1 − s),
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we obtain∫ t1

0
(tn − s)α−1||E1,u(s)||1 ds ≤ Cnγ(α−1)

∫ t1

0
(t1 − s)α−1 max{sσ+ α

2 , stσ+ α
2 −1

1 } ds

≤ Ctα−1
n

T1−α

Nγ(1−α)

∫ t1

0
(t1 − s)α−1 max{sσ+ α

2 , stσ+ α
2 −1

1 } ds

≤ Ctα−1
n τγ(1−α)

∫ t1

0
(t1 − s)α−1 max{sσ+ α

2 , stσ+ α
2 −1

1 } ds

≤ Ctα−1
n τγ(1−α)tσ+ 3α

2
1 = Ctα−1

n τ2t
σ+ α

2 − 2
γ +1

1

≤ Cτ2t
σ+ 3α

2 − 2
γ

n , for γ ≥ 2
(σ + α

2 + 1)
.

Let s ∈ (tj, tj+1), j ≥ 1 and n ≥ 2,

||I1,u||1 ≤ 2
Γ(α)

{∫ t1

0
(tn − s)α−1||E1,u(s)||1 ds +

n−1

∑
j=1

∫ tj+1

tj

(tn − s)α−1||E1,u(s)||1 ds

}
.

For s ∈ (tj, tj+1) and j ≥ 1

||E1,u(s)||1 =
1
2

∫ s

tj

(w − s)2||u′′′(w)||1 dw +
(s − tj)

2τj

∫ tj+1

tj

(w − tj)
2||u′′′(w)||1 dw

≤ Cτ2
j

∫ tj+1

tj

||u′′′(w)||1 dw

≤ Cτ3t3−3/γ
j+1 sσ+α/2−3.

Therefore,

2
Γ(α)

n−1

∑
j=1

∫ tj+1

tj

(tn − s)α−1||E1,u(s)||1 ds ≤ Cτ3
n−1

∑
j=1

t3−3/γ
j+1

∫ tj+1

tj

(tn − s)α−1sσ+ α
2 −3 ds

≤ Cτ3t3−3/γ
n

∫ tn

t1

(tn − s)α−1sσ+ α
2 −3 ds

≤ Cτ3t
σ+ 3α

2 − 3
γ

n .

Hence, the following bound is obtained

||I1,u||1 ≤ Cτ2t
σ+ 3α

2 − 2
γ

n , γ >
2

σ + α
2 + 1

Lemma 3. Assume 1 ≤ n ≤ N and let τ be sufficiently small,∣∣∣∣∣
∣∣∣∣∣n−1

∑
j=0

u′′(tj)
(

Lj,n − Lj,n+1
)∣∣∣∣∣
∣∣∣∣∣
1

≤ Cτ2t
σ+ 3α

2 − 2
γ

n ,

holds if γ > max

{
2

σ + α
2 + 1

,
2

σ + 3α
2 − 3

}
.

Proof. We begin by letting
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I2,u =
n−1

∑
j=0

u′′(tj)
[

Lj,n − Lj,n+1
]

= −
n−1

∑
j=1

[
u′′(tj+1)− u′′(tj)

]
Lj,n + u′′(t0)

[
L0,n − L0,n+1

]
−

n−1

∑
j=1

u′′(tj+1)

(
τ3

j+1

τ3
j

− 1

)
Lj,n

+
n−1

∑
j=2

u′′(tj)

[
τ3

j

τ3
j−1

Lj−1,n − Lj,n+1

]
− u′′(t1)L1,n+1 + u′′(tn)

τ3
n

τ3
n−1

Ln−1,n

= −η1 − η2 + η3 − η4,

where

η1 =
n−1

∑
j=1

[u′′(tj+1)− u′′(tj)]Lj,n,

η2 =
n−1

∑
j=1

u′′(tj+1)

(
τ3

j+1

τ3
j

− 1

)
Lj,n,

η3 =
n−1

∑
j=2

u′′(tj)

[
τ3

j

τ3
j−1

Lj−1,n − Lj,n+1

]
,

η4 = u′′(t0)[L0,n+1 − L0,n] + u′′(t1)L1,n+1 − u′′(tn)
τ3

n

τ3
n−1

Ln−1,n.

For η1, we have

||η1||1 ≤ C
n−1

∑
j=1

τ2
j

∫ tj+1

tj

||u′′′(w)||1 dw
∫ tj+1

tj

(tn − s)α−1 ds

≤ C
n−1

∑
j=1

τ2
j tσ+α/2−2

j+1

∫ tj+1

tj

(tn − s)α−1 ds

≤ Cτ2
∫ tn

t1

(tn − s)α−1sσ+α/2−2/γ ds

≤ Cτ2t
σ+ 3α

2 − 2
γ

n , holds if γ >
2

σ + α
2 + 1

.

Noting that

τ3
j+1

τ3
j

− 1 =
τ3

j+1 − τ3
j

τ3
j

≤ Cτ−1
j (τj+1 − τj) ≤ Cτ2τ−1

j t1−2/γ
j+2 .

Therefore,

||η2||1 ≤ Cτ2
n−1

∑
j=1

τ−1
j t1−2/γ

j+2 ||u′′(tj+1)||1τ2
j

∫ tj+1

tj

(tn − s)α−1 ds

≤ Cτ2
n−1

∑
j=1

τjt
1−2/γ
j+2 ||u′′(tj+1)||1

∫ tj+1

tj

(tn − s)α−1 ds

≤ Cτ3
n−1

∑
j=1

t1−1/γ
j+1 t1−2/γ

j+2 tσ+α/2−2
j+1

∫ tj+1

tj

(tn − s)α−1 ds

≤ Cτ3 n−1
max
j=1

(
t1−2/γ

j+2

) ∫ tn

t1

sσ+α/2−1/γ−1(tn − s)α−1 ds

≤ Cτ3 n−1
max
j=1

(
t1−2/γ

j+2

)
tσ+3α/2−1/γ−1
n .
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Next, we bound η3 using Lemma 1.

||η3||1 ≤ C
n−1

∑
j=2

tσ+α/2−2
j

∣∣∣∣∣ τ3
j

τ3
j−1

Lj−1,n − Lj,n+1

∣∣∣∣∣
≤ Cτtα−1/γ

n
n−1
max
j=2

(
tσ+α/2−2

j τ2
j

)
≤ Cτ3tα+2−3/γ

n
n−1
max
j=2

(
tσ+α/2−2

j

)
.

To estimate ||η4||1, we begin with the bound

||u′′(t0)[L0,n+1 − L0,n]||1 =

∣∣∣∣∣∣∣∣ 1
2Γ(α)

u′′(t0)
∫ t1

0
s(t1 − s)[(tn+1 − s)α−1 − (tn − s)α−1]ds

∣∣∣∣∣∣∣∣
1

≤ Cτ2
1

∫ t1

0
(tn − s)α−1||u′′(t0)||1 ds

≤ Cτ2
∫ tn

0
sσ+α/2−2/γ(tn − s)α−1 ds

≤ Cτ2tσ+3α/2−2/γ
n .

In addition,

||u′′(t1)L1,n+1||1 ≤ Cτ2
1 tσ+σ/2−2

1

∫ t2

t1

(tn+1 − s)α−1 ds

≤ Cτ2
∫ t2

t1

sσ+α/2−2/γ(tn − s)α−1 ds

≤ Cτ2tσ+3α/2−2/γ
n .

Hence, we obtain∣∣∣∣∣
∣∣∣∣∣ τ3

n

τ3
n−1

u′′(tn)Ln−1,n

∣∣∣∣∣
∣∣∣∣∣
1

≤ C
τ3

n
τn−1

||u′′(tn)||1
∫ tn

tn−1

(tn − s)α−1 ds

≤ Cτ2t3
n+1t1/γ−1

n−1 tσ+α/2−2−3/γ
n

∫ tn

tn−1

(tn − s)α−1 ds

≤ Cτ2t3
n+1

∫ tn

tn−1

sσ+α/2−2/γ−3(tn − s)α−1 ds

≤ Cτ2tσ+3α/2−2/γ−3
n t3

n+1

≤ Cτ2tσ+3α/2−2/γ
n+1 , for γ >

2
σ + 3α/2 − 3

.

Thus, for γ >
2

σ + 3α/2 − 3
, we obtain

||η4||1 ≤ Cτ2tσ+3α/2−2/γ
n+1 .

Combining all the bounds, we finally obtain

||I2,u||1 ≤ ||η1||1 + ||η2||1 + ||η3||1 + ||η4||1
≤ Cτ2tσ+3α/2−2/γ

n+1 + Cτ3tσ+3α/2−1/γ−1
n

n−1
max
j=1

(
t1−2/γ

j+1

)
+ Cτ3tα+2−3/γ

n
n−1
max
j=2

(
tσ+α/2−2

j

)
≤ Cτ2tσ+3α/2−2/γ

n+1 , for γ > max
{

2
σ + α/2 + 1

,
2

σ + 3α/2 − 3

}
,
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with σ + 3α/2 > 3 and τ is sufficiently small.

Lemma 4. For 1 ≤ n ≤ N, γ > max
{

2
σ + α/2 + 1

,
2

σ + 3α/2 − 3

}
and for a sufficiently

small τ, the following error bound arises

||Qe
n,u −Qa

n,u||1 ≤ Cτ2tσ+3α/2−2/γ
n+1 ,

where Qe
n,u is given by (9) and

Qa
n,u =

1
Γ(α)

n

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
ũ(s) ds

with
ũ(s) = uj + (s − tj)

uj+1 − uj

τj
.

Proof. We begin the proof by observing that

Qe
n,u −Qa

n,u =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
(u − ũ)(s) ds,

Now, u(s)− ũ(s) = E1,u(s) + E2,u(s), where

E1,u(s) =
1
2

∫ s

tj

(w − s)2u′′′(w)dw −
(s − tj)

2τj

∫ tj+1

tj

(w − tj)
2u′′′(w)dw

and
E2,u(s) =

1
2
(s − tj)(s − tj+1)u′′(tj).

Then,
||Qe

n,u −Qa
n,u||1 ≤ ||I1,u||1 + ||I2,u||1

To complete the proof, we use the results in Lemmas 2 and 3.

Lemma 5. Let g(r)(u) be Lipschitz in u for r = 0, 1, 2. Then, for 1 ≤ n ≤ N,

γ > max
{

2
σ + α/2 + 1

,
2

σ + 3α/2 − 3

}
with σ + 3α/2 > 3 and for a sufficiently small τ,

we have
||Qe

n,g −Qa
n,g||1 ≤ Cτ2tσ+3α/2−2/γ

n+1 ,

where Qe
n,g is given by (10) and

Qa
n,g =

1
Γ(α)

n

∑
j=0

∫ tj+1

tj

[(tn+1 − s)α−1 − (tn − s)α−1]g̃2(u)(s) ds

with

g̃2(u(s)) = g(uj) + (s − tj)
g(uj+1)− g(uj)

τj
.

Proof.

Qe
n,g −Qa

n,g =
1

Γ(α)

n

∑
j=0

∫ tj+1

tj

[(tn+1 − s)α−1 − (tn − s)α−1](g(u)− g̃2(u))(s) ds,
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Let
g(u(s))− g̃2(u(s)) = E1,g(s) + E2,g(s) + E3,g(s),

where

E1,g(s) =

[
u(s)− u(tj)−

s − tj

τj

(
u(tj+1)− u(tj)

)]
g′(u(tj))

E2,g(s) =
1
2

[(
u(s)− u(tj)

)2 −
s − tj

τj

(
u(tj+1)− u(tj)

)2
]

g′′(u(tj))

E3,g(s) =
1
2

∫ u(s)

u(tj)
(u(s)− u(w))2g′′′(u(w)) du(w)−

s − tj

2τj

∫ u(tj+1)

u(tj)
(u(w)− u(tj))

2g′′′(u(tj))du(w).

Thus, we have

||E1,g(s)||1 ≤ (u(s)− ũ(s))||g′(u(tj))||1 ≤ M||u(s)− ũ(s)||1

and

||E2,g||1 ≤ 1
2

∣∣∣∣∣
∣∣∣∣∣(u(s)− u(tj)

)2 −
s − tj

τj

(
u(tj+1)− u(tj)

)2

∣∣∣∣∣
∣∣∣∣∣
1

||g′′(u(tj))||1

≤ max

{
||u(s)− u(tj)||1,

s − tj

τj
||u(tj+1)− u(tj)||1

}
||u(s)− ũ(s)||1||g′′(u(tj))||1

≤ max

{∫ s

tj

||u′(w)||1 dw,
s − tj

τj

∫ tj+1

tj

||u′(w)||1 dw

}
||u(s)− ũ(s)||1||g′′(u(tj))||1

≤ Mτjt
σ+α/2−1
j+1 ||u(s)− ũ(s)||1

≤ Mτtσ+α/2−1/γ
j+1 ||u(s)− ũ(s)||1.

Moreover,

||E3,g(s)||1 ≤ M1

∣∣∣∣∣
∣∣∣∣∣
∫ u(s)

u(tj)
(u(s)− u(w))2 du(w)

∣∣∣∣∣
∣∣∣∣∣
1

+ M2
s − tj

2τj

∣∣∣∣∣
∣∣∣∣∣
∫ u(tj+1)

u(tj)

(
u(w)− u(tj)

)2 du(w)

∣∣∣∣∣
∣∣∣∣∣
1

≤ M

[
(s − tj)

3s3σ+3α/2−3 +
s − tj

τj
τ3t3σ+3α/2−3/γ

j+1

]

≤ C max

{
(s − tj)

3s3σ+3α/2−3,
s − tj

τj
τ3t3σ+3α/2−3/γ

j+1

}

Therefore,
||Qe

n,g − Qa
n,g||1 ≤ ||I1,g||1 + ||I2,g||1 + ||I3,g||1 (16)

where the terms in the RHS are estimated as

||I1,g||1 ≤ 1
Γ(α)

n−1

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
||E1,g(s)||1 ds

≤ Cτ2tσ+3α/2−2/γ
n+1 , for γ > max

{
2

σ + α/2 + 1
,

2
σ + 3α/2 − 3

}
,
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||I2,g||1 ≤ 1
Γ(α)

n−1

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
||E2,g||1 ds

≤ Cτ
n−1

∑
j=0

tσ+α/2−1/γ
j+1

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
||u(s)− ũ(s)||1 ds

≤ Cτtσ+α/2−1/γ
n

n−1

∑
j=0

∫ tj+1

tj

[
(tn+1 − s)α−1 − (tn − s)α−1

]
||u(s)− ũ(s)||1 ds, for γ >

1
σ + α/2

≤ Cτtσ+α/2−1/γ
n τ2tσ+3α/2−2/γ

n ,

= Cτ3t2σ+2α−3/γ
n , for γ > max

{
1

σ + α/2
,

2
σ + α/2 + 1

,
2

σ + 3α/2 − 3

}
and

||I3,g||1 ≤ 2
Γ(α)

n−1

∑
j=0

∫ tj+1

tj

(tn − s)α−1||E3,g||1 ds

≤ C
n−1

∑
j=0

∫ tj+1

tj

(tn − s)α−1 max

{
(s − tj)

3s3σ+3α/2−3,
s − tj

2τj
τ3t3σ+3α/2−3/γ

j+1

}

≤ Cτ3
n−1

∑
j=0

∫ tj+1

tj

(tn − s)α−1s3σ+3α/2−3/γ ds

≤ Cτ3t3σ+3α/2−3/γ
n .

The proof is completed using the estimates for ||I1,g||1, ||I2,g||1 and ||I3,g||1 in Equation (16),
where for a sufficiently small τ, the τ3 terms are assumed to be negligible.

Lemma 6. Assume the conditions given in Lemma 5. Then, for a sufficiently small τ, the error
bound ∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn
(tn+1 − s)α−1(g(u)− g̃1(u))(s) ds

∣∣∣∣∣∣∣∣
1
≤ Cτtσ+α−1/γ

n+1

holds uniformly on [tn, tn+1].

Proof. Noting that

g(u(s))− g̃1(u(tn)) = (u(s)− u(tn))g′(u(tn)) +
∫ u(s)

u(tn)
(u(s)− u(w))g′′(u(w))du(w)

and
||u(s)− u(tn)||1 = ||

∫ s

tn
u′(w) dw||1 ≤ (s − tn)sσ+α/2−1,

we have ∣∣∣∣∣∣∣∣ 1
Γ(α)

∫ tn+1

tn
(tn+1 − s)α−1(g(u)− g̃1(u))(s) ds

∣∣∣∣∣∣∣∣
1
≤ ||I1,g1 ||1 + ||I2,g1 ||1,

where

||I1,g1 ||1 ≤
∫ tn+1

tn
(tn+1 − s)α−1||u(s)− u(tn)||1||g′(u(tn))||1 ds

≤ C
∫ tn+1

tn
(tn+1 − s)α−1(s − tn)sσ+α/2−1 ds

≤ Cτt1−1/γ
n+1

∫ tn+1

tn
(tn+1 − s)α−1sσ+α/2−1 ds

≤ Cτtσ+3α/2−1/γ
n+1 .
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Furthermore,

||I2,g1 ||1 ≤ 1
Γ(α)

∫ tn+1

tn
(tn+1 − s)α−1||

∫ u(s)

u(tn)
(u(s)− u(w))g′′(u(w)) du(w)||1 ds

≤ C
∫ tn+1

tn
(tn+1 − s)α−1(s − tn)

2s2σ+α−2 ds

≤ Cτ2
n

∫ tn+1

tn
(tn+1 − s)α−1s2σ+α−2 ds

≤ Cτ2t2σ+2α−2/γ
n+1 .

We complete the proof using the bounds for ||I1,g1 ||1 and ||I2,g1 ||1.

Lemma 7. Assume the conditions of Lemma 5. Then, τ is sufficiently small and we have the
estimate ∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ tn+1

tn
(tn+1 − s)α−1(g(u)− g̃2(u))(s) ds

∣∣∣∣∣∣∣∣
1
≤ Cτ2tσ+3α/2−2/γ

n+1 ,

for

γ > max
{

2
σ + α/2 + 1

,
2

σ + 3α/2 − 3

}
with σ + 3α/2 > 3.

Proof. The proof follows from Lemma 5 and is omitted.

Theorem 1. Assume the conditions in Lemmas 4–7. Then, the error bounds

||up
n+1 − u(tn+1)||1 ≤ Cτ and ||un+1 − u(tn+1)||1 ≤ Cτ2

hold uniformly on 0 ≤ tn ≤ T, for a sufficiently small τ, where u, up are the solutions obtained
from the predictor and corrector schemes in (13).

Proof. Noting that A
β
2 is symmetric, positive definite, and using the error bounds obtained

in Lemmas 4–7, we obtain∣∣∣∣∣∣u(tn+1)− up
n+1

∣∣∣∣∣∣ ≤ ||u(tn)− un||+
∣∣∣∣∣∣∣∣ 1

Γ(α)
A

β
2

∫ tn+1

tn
(tn+1 − s)α−1(u − ũ)(s) ds

∣∣∣∣∣∣∣∣
1

+

∣∣∣∣∣∣∣∣ 1
Γ(α)

∫ tn+1

tn
(tn+1 − s)α−1(g(u)− g̃1(u))(s) ds

∣∣∣∣∣∣∣∣
1
+
∣∣∣∣Qe

n,u −Qa
n,u
∣∣∣∣

1

+
∣∣∣∣∣∣Qe

n,g −Qa
n,g

∣∣∣∣∣∣
1

≤ ||u(tn)− un||+ Cτ2tσ+3α/2−2/γ
n+1 + Cτtσ+α−1/γ

n+1

≤ ||u(tn)− un||+ Cτtσ+α−1/γ
n+1

Similarly,

||u(tn+1)− un+1|| ≤ ||u(tn)− un||+ Cτ2tσ+3α/2−2/γ
n+1 .

The proof is completed through mathematical induction.

3.2. Stability Analysis

Definition 1. The scheme given by (13) is said to be stable if there is K > 0, independent of τ and
n, so that

||un − ûn|| ≤ K||u0 − û0||, n = 1, 2, · · · , M.
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where un and ûn satisfy (13) with the initial data u0 and û0.

Lemma 8. If 0 < α ≤ 1 and tj = (jτ)γ, j = 0, 1, . . . , n, γ ≥ 1 and τ = T1/γ

N . Then, the
following estimate holds

aj,n ≤ Kα

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τn
τ0
(tn+1 − t0)

α, j = 0,

τn
τj−1

(tn+1 − tj−1)
α, 1 ≤ j ≤ n − 1,

τα
n−1, j = n,

where

Kα = max
{

α + 1
Γ(α + 2)

,
2(α + 1)
Γ(α + 2)

, 2α+1 − α + 1
}

.

Proof. For j = 0, we have

τ0Γ(α + 2)a0,n = (tn+1 − t1)
α+1 − (tn − t1)

α+1 + (tn − t0)
α[(tn − (α + 1)t1]

− (tn+1 − t0)
α[(tn+1 − (α + 1)t1]

≤ (tn+1 − t1)
α+1 − (tn − t1)

α+1

With ξ ∈ (tn, tn+1) and using the MVT, we have

τ0Γ(α + 2)a0,n ≤ (α + 1)τn(ξ − t1)
α

which implies

a0,n ≤ (α + 1)
Γ(α + 2)

τn

τ0
(tn+1 − t1)

α.

For 1 ≤ j ≤ n − 1,

Γ(α + 2)aj,n =
1

τj−1
[(tn+1 − tj−1)

α+1 − (tn − tj−1)
α+1 + (tn − tj)

α(tn − tj−1)

− (tn+1 − tj)
α(tn+1 − tj − 1)] +

1
τj
[(tn+1 − tj+1)

α+1 − (tn − tj+1)
α+1

+ (tn − tj)
α(tn − tj+1)− (tn+1 − tj)

α(tn+1 − tj+1)]

≤ 1
τj−1

[(tn+1 − tj−1)
α+1 − (tn − tj−1)

α+1 + (tn+1 − tj+1)
α+1 − (tn − tj+1)

α].

Again, applying the MVT, we have

aj,n ≤ 2(α + 1)
Γ(α + 2)

τn

τj−1
(tn+1 − tj−1)

α

For j = n,

τn−1Γ(α + 2)an,n = (τn + τn−1)
α+1 − τα+1

n−1 − τα
n [τn + (α + 1)τn−1]

= τα+1
n−1 [

α(α + 1)
2!

(
τn−1

τn
)1−α +

(α − 1)α(α + 1)
3!

(
τn−1

τn
)2−α + · · · − 1]

≤ τα+1
n−1 [

α(α + 1)
2!

+
(α − 1)α(α + 1)

3!
+ · · · − 1]

= (2α+1 − α − 2)τα+1
n−1 ,
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where we have used the generalized binomial theorem to arrive at the last inequality and
the fact that τj is non-decreasing.

Therefore, an,n ≤ Kατα
n−1.

Lemma 9. Assume that 0 < α ≤ 1 and

aj,n = Kα
τn

τj−1
(tn+1 − tj−1)

α, (j = 1, 2, · · · , n − 1),

and
a0,n = Kα

τn

τ0
(tn+1 − t1)

α

for tj = (jτ)γ, j = 0, 1, . . . , n, n = 1, 2, . . . , M. Let g0 be a positive number and assume the
sequence {ψj} satisfies ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψ0 ≤ g0,

ψn ≤
n−1

∑
j=0

aj,nψj + C0g0,

Then,
ψn ≤ C0g0, n = 1, 2, · · · , M.

Proof. The proof uses a modification of that of [35] (Lemma 3.3).

Theorem 2. Suppose that uj (j = 1, 2, · · · , N) (3) due to Scheme (13) and where g(u) is Lipschitz
in Ω × (0, T] (with respect to u). Then, (13) is stable.

Proof. We start by considering a history-term perturbation in the form

∼
H

a

n =
n−1

∑
j=0

aj,n

(
− A

β
2
∼
uj + g(uj +

∼
uj)− g(uj)

)
+ an,n

(
− A

β
2
∼
un + g(un +

∼
un)− g(un)

)
.

By using the positive definiteness of A
β
2 , the fact that g(u) is Lipschitz continuous,

and Lemma 8, we obtain

||
∼
H

a

n|| ≤ K

(
n−1

∑
j=0

aj,n||
∼
uj||+ τα

n ||
∼
un||
)

.

Here, K is assumed to be a positive constant. The perturbation of Equation (13) works
out to be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼
u

p
n+1 =

(
Γ(α + 2)I+ τα

n A
β
2

)−1[(
Γ(α + 2)I− ατα

n A
β
2

)∼
un + τα

n (α + 1)(g(un +
∼
un)− g(un))

]
+
(

Γ(α + 2)I+ τα
n A

β
2

)−1
[

Γ(α + 2)
∼
H

a

n

]
,

∼
un+1 =

(
Γ(α + 2)I+ τα

n A
β
2

)−1[(
Γ(α + 2)I− ατα

n A
β
2

)∼
un + τα

n α(g(un +
∼
un)− g(un))

]
,

+
(

Γ(α + 2)I+ τα
n A

β
2

)−1
[

τα
n (g(up

n+1 +
∼
u

p
n+1)− g(up

n+1)) + Γ(α + 2)
∼
H

a

n

]
.

By the positive definiteness of A
β
2 , it follows that 0 < C < 1, where

C =

∥∥∥∥(Γ(α + 2)I+ τα
n A

β
2

)−1(
Γ(α + 2)I− ατα

n A
β
2

)∥∥∥∥.
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Therefore,⎧⎪⎪⎨⎪⎪⎩
||∼up

n+1|| ≤ C ||∼un||+ K1

(
τα

max||
∼
un||+ τα

max||
∼
un||+ ∑n−1

j=0 aj,n||
∼
uj||
)

,

||∼un+1|| ≤ C ||∼un||+ K2

(
τα

max(||
∼
un||+ ||∼up

n+1||) + τα
max||

∼
un||+ ∑n−1

j=0 aj,n||
∼
uj||
)

,

where C, K1, K2 are constants, with τmax = max
{

τj
}n

j=0. We show the remaining part by
employing induction. For n = 0 and a sufficiently small τmax, it follows that

||∼up
1 || ≤ ||∼u0|| and ||∼u1|| ≤ ||∼u0||.

Suppose that
||∼uj|| ≤ ||∼u0||, j = 1, 2, · · · , n.

We consider j = n + 1, for
∼
u

p
n+1, that is,

||∼up
n+1|| ≤ C ||∼un||+ K1

(
τα

max||
∼
un||+ τα

max||
∼
un||+

n−1

∑
j=0

aj,n||
∼
uj||
)

≤ C0 ||
∼
un||+ K1

n−1

∑
j=0

aj,n||
∼
uj||

≤ ||∼u0||,

where 0 < C0 = C + 2K1τα
max < 1 for a sufficiently small τmax, where Lemma 9 has

been used.
We have

||∼un+1|| ≤ C ||∼un||+ K2

(
τα

max(||
∼
un||+ ||∼up

n+1||) + τα
max||

∼
un||+

n−1

∑
j=0

aj,n||
∼
uj||
)

≤ C1 ||
∼
un||+ K2

n−1

∑
j=0

aj,n||
∼
uj||

≤ ||∼u0||,

where 0 < C1 = C + 3K2τα
max < 1. This completes the proof.

4. Numerical Illustrations

Here, we corroborate the analysis through the empirical study of the convergence rate
for different test problems. For the examples that we consider in this section, the conver-
gence rate (CR) is given by

CR = log2

(
Error M

2
/ErrorM

)
,

where

ErrorM =

∣∣∣∣∣∣∣∣uM − u M
2

∣∣∣∣∣∣∣∣
and uM is the vector of the solution with M mesh points. The numerical examples are the
same as those given in Biala and Khaliq [18] and the results for γ = 1 can be found there.

Example 1. We consider

cDα
0,tu = −(−Δ)

β
2 u + g(u), t ∈ (0, 1], x ∈ [0, 1]

ϕ(x) = x2(1 − x)2.
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As the initial data ϕ(x) ∈ C∞(Ω) ∩ H1
0(Ω), the regularity property in (15) holds true for

any σ ∈ Iσ =
(

0,
α

4

)
. Consider the problem g(u) = 0, whose solution can be seen to be

u(x, t) =
∞

∑
n=1

4
(
−12 + n2π2)(−1 + (−1)n)

n5π5 Eα(−(nπ)βtα) sin(nπx),

Here, Eα is the one-parameter Mittag–Leffler function. Tables 1 and 2 show the error
and the convergence rates when g(u) = 0 and g(u) = u2, respectively, using the L2 norm.
We used a small step size of dx = 0.001 so that the error in time is dominant. By Theorem 1,
we expect to have O(τ2) convergence for

γ > max
(

2
σ + α/2 + 1

,
2

σ + 3α/2 − 3

)
= max

(
8

3α− + 4
,

8
7α− − 12

)
.

In fact, the second term in the maximum function is not necessary since 0 < α ≤ 1.

In order not to pepper the text with so many tables with different values of γ >
8

3α− + 4
,

we show the results for only two values of γ (one that is slightly greater than
8

3α− + 4
and another that is slightly lower) to validate our theoretical order of convergence. We

observe that with γ =
8

3α + 5
, the O(τ3/2+ε) for some ε ∈ (0, 1/2) is achieved. However,

for γ =
8

3α + 3
, the O(τ2) is obtained, which corroborates our theoretical analysis. These

observations are further depicted in Figures 1 and 2, where we fit a linear line for the
logarithm (base 10) of M−1 and the corresponding errors. The values of the slope in these
figures that depict the rates of convergence for different values of α and γ further support
our theoretical observations.

Figure 1. Log-log error plots for Example 1 with g(u) = 0, showing the rate of convergence of
the scheme.
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Figure 2. Log -log error plots for Example 1 with g(u) = u2, showing the rate of convergence of
the scheme.

Table 1. g(u) = 0 with β = 1.2.

α = 0.4 α = 0.8

γ = 8
3α+5 γ = 8

3α+3 γ = 8
3α+5 γ = 8

3α+3

M Error CR Error CR Error CR Error CR

10 1.324 × 10−3 4.925 × 10−4 1.094 × 10−3 9.290 × 10−4

20 3.884 × 10−4 1.7690 1.214 × 10−4 2.0201 2.896 × 10−4 1.9167 2.340 × 10−4 1.9891
40 1.143 × 10−4 1.7648 2.990 × 10−5 2.0217 7.657 × 10−5 1.9194 5.854 × 10−5 1.9989
80 3.367 × 10−5 1.7629 7.328 × 10−6 2.0287 2.021 × 10−5 1.9216 1.459 × 10−5 2.0046

160 9.889 × 10−6 1.7677 1.751 × 10−6 2.0656 5.300 × 10−6 1.9311 3.599 × 10−6 2.0193
320 2.859 × 10−6 1.7901 3.707 × 10−7 2.2394 1.354 × 10−6 1.9684 8.518 × 10−7 2.0792

Table 2. g(u) = u2 with β = 1.6.

α = 0.3 α = 0.7

γ = 8
3α+5 γ = 8

3α+3 γ = 8
3α+5 γ = 8

3α+3

M Error CR Error CR Error CR Error CR

10 9.400 × 10−4 2.356 × 10−4 6.739 × 10−4 3.985 × 10−4

20 2.804 × 10−4 1.7450 5.495 × 10−5 2.1002 1.854 × 10−4 1.8621 1.009 × 10−4 1.9823
40 8.348 × 10−5 1.7482 1.259 × 10−5 2.1258 5.089 × 10−5 1.8649 2.523 × 10−5 1.9991
80 2.454 × 10−5 1.7664 2.655 × 10−6 2.2456 1.398 × 10−5 1.8638 6.285 × 10−6 2.0051

160 6.914 × 10−6 1.8276 3.816 × 10−7 2.7986 3.839 × 10−6 1.8646 1.564 × 10−6 2.0071
320 1.709 × 10−6 2.0161 9.071 × 10−8 2.0728 1.052 × 10−6 1.8676 3.885 × 10−7 2.0090

Example 2. Let us consider a two-dimensional time–space reaction–diffusion problem of frac-
tional order

cDα
0,tu = −(−Δ)

β
2 u + g(u), t ∈ (0, 1], (x, y) ∈ [0, 1]× [0, 1]

u(x, y, 0) = xy(1 − x)(1 − y)
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with a Dirichlet homogeneous boundary condition. We first solve the problem when g(u) = 0. The
solution in this case is given in Yang et al. [36], by

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

Eα

(
−λ

β
2
n,mtα

)
cn,mφn,m(x, y).

λn,m = (n2 + m2)π2,

φn,m(x, y) = 2 sin(nπx) sin(nπy),

cn,m =
∫ 1

0

∫ 1

0
uv(1 − u)(1 − v) φn,m(u, v) du dv.

A space-step size of dx = 0.008 (for CPU memory constraints) is used in this problem.
Similar to the 1D problem, the results here (see Tables 3 and 4) show that the O(τ2) order

of convergence is achieved when γ >
8

3α− + 4
. Figure 3 shows the exact and numerical

solutions with β = 1.4 and α = 0.2.

Figure 3. Plots of exact (left) and numerical solutions (right) with β = 1.4 and α = 0.2.

Table 3. g(u) = 0 with β = 1.4.

α = 0.2 α = 0.6

γ = 8
3α+5 γ = 8

3α+3 γ = 8
3α+5 γ = 8

3α+3

M Error CR Error CR Error CR Error CR

10 1.369 × 10−2 3.031 × 10−3 1.316 × 10−2 6.117 × 10−3

20 4.178 × 10−3 1.7126 6.349 × 10−4 2.2554 3.441 × 10−3 1.9352 1.368 × 10−3 2.1609
40 1.270 × 10−3 1.7176 1.299 × 10−4 2.2886 9.647 × 10−4 1.8346 3.370 × 10−4 2.0209
80 3.804 × 10−4 1.7395 1.953 × 10−5 2.7343 2.666 × 10−4 1.8556 7.703 × 10−5 2.1293

160 1.076 × 10−4 1.8225 6.519 × 10−6 1.5829 6.912 × 10−5 1.9473 1.234 × 10−5 2.6424

Table 4. g(u) = u3 with β = 1.8.

α = 0.5 α = 0.9

γ = 8
3α+5 γ = 8

3α+3 γ = 8
3α+5 γ = 8

3α+3

M Error CR Error CR Error CR Error CR

10 1.049 × 10−2 6.170 × 10−3 5.917 × 10−3 2.970 × 10−2

20 2.962 × 10−3 1.8250 6.315 × 10−4 3.2883 1.551 × 10−3 1.9312 1.697 × 10−3 4.1296
40 8.509 × 10−4 1.7993 1.549 × 10−4 2.0278 4.060 × 10−4 1.9341 8.376 × 10−5 4.3404
80 2.454 × 10−4 1.7937 3.790 × 10−5 2.0307 1.047 × 10−4 1.9556 1.807 × 10−5 2.2127

160 7.107 × 10−5 1.7880 9.292 × 10−6 2.0244 2.690 × 10−5 1.9600 4.539 × 10−6 1.9933
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5. Conclusions

In this work, we developed a numerical scheme over time-graded meshes for nonlin-
ear time–space fractional reaction–diffusion equations. The analysis uses the regularity
properties of the solutions of the proposed equations and an O(τ2) order of convergence
is achieved. The regularity properties of the solution to this class of problem are used to
improve the convergence properties of the proposed numerical scheme on time-graded
meshes. The stability results are discussed and proved. Furthermore, the sharp error esti-
mates for an optimal O(τ2) rate of convergence are proved. Some examples are provided
to demonstrate the efficiency and accuracy of our proposed scheme across different values
of the fractional order α.
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Abstract: The implicit difference approach is used to discretize a class of generalized fractional
diffusion equations into a series of linear equations. By rearranging the equations as the matrix form,
the separable forcing term and the coefficient matrices are shown to be low-ranked and of nonsingular
M-matrix structure, respectively. A low-ranked doubling Smith method with determined optimally
iterative parameters is presented for solving the corresponding matrix equation. In comparison to
the existing Krylov solver with Fast Fourier Transform (FFT) for the sequence Toeplitz linear system,
numerical examples demonstrate that the proposed method is more effective on CPU time for solving
large-scale problems.

Keywords: generalized fractional diffusion equation; doubling Smith method; large-scale Sylvester
equation; M-matrix

1. Introduction

Consider a class of generalized fractional diffusion equations (GFDE)

C
0 Dγ,λ(t)

t u(x, t) = κ [paDα
xu(x, t) + (1 − p)xDα

b u(x, t)] + f (x, t), (x, t) ∈ (a, b)× (0, T) (1)

with the initial values u(x, 0) = φ(x), x ∈ [a, b] and zero boundary conditions u(a, t) =
u(b, t) = 0, t ∈ [0, T], where the parameters α ∈ (1, 2], γ ∈ (0, 1), p ∈ [0, 1], and λ(t) > 0
are the weighting function for t ∈ [0, T] with λ′(t) ≤ 0. This equation arises from the
continuous time random walks (CTRWs) model, with some complicated power-law waiting
time distributions WTDs [1–3]. The weight function λ(t) are of significant importance
in the CTRW model, where biological particles have a finite lifespan. In such cases, it is
more reasonable to employ the tempered power-law waiting time distribution, e−btt−γ,
instead of the divergent power-law distribution, t−γ. This selection allows the model
to describe the gradual transitions from subdiffusion to normal diffusion and, finally, to
superdiffusion. These characteristics of the model have numerous potential applications
in physical, biological, and chemical processes. For further details, please refer to [4,5].
The desired function u(x, t) represents the concentration of a particle plume undergoing
anomalous diffusion with a diffusion coefficient κ ∈ (0,+∞), and the forcing function
f (x, t) denotes the source or sink term. Throughout the paper, we assume that the function
f (x, t) is separable (or decoupled) with respect to x on [a, b] and t on [0, T], that is,

f (x, t) =
l

∑
i=1

fsi (x) fti (t) for all (x, t) ∈ [a, b]× [0, T].

The GFDE (1) reduces to the space fractional diffusion equation (SFDE) when γ =
λ(t) = 1. Robust numerical schemes for SFDE have been studied extensively, as outlined
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in [6–10] and references therein. For GFDE, the time fractional derivative is the γ-order
generalized Caputo fractional derivative [1,11], defined as

C
0 Dγ,λ(t)

t u(x, t) =
1

Γ(1 − γ)

∫ t

0

λ(t − η)

(t − η)γ

∂u(x, η)

∂η
dη,

while the left-handed and the right-handed space fractional derivatives are the α-order
Riemann–Liouville (R-L) fractional derivatives of the form [12]

xL
Dα

xu(x, t) =
1

Γ(2 − α)

∂2

∂x2

∫ x

xL

u(ξ, t)
(x − ξ)α−1 dξ,

xDα
xR

u(x, t) =
1

Γ(2 − α)

∂2

∂x2

∫ xR

x

u(ξ, t)
(ξ − x)α−1 dξ.

There are various ways to solve mathematical models that involve fractional order
derivatives. One such approach is to use cubic splines, which are useful in modeling
anomalous diffusion. In this technique, piece-wise polynomial functions are used to
interpolate the data points, allowing for the diffusion coefficient to vary with time or
space [13]. Another approach is to adapt the finite element method to include fractional
order derivatives, which has been applied to determine the rheological properties of
biomaterials that exhibit fractal structures. This method has been useful in studying the
viscoelastic behavior of collagen and elastin [14]. The Galerkin method is yet another
technique used to obtain numerical solutions for fractional differential equations. This
method approximates the solution as a linear combination of basis functions and derives a
system of algebraic equations, which can then be numerically solved using the Galerkin
orthogonality [15].

To obtain an unconditionally stable difference scheme, the implicit difference scheme
can be developed for Equation (1), which inherits (2 − γ)-order temporal and 2-order
spatial convergence [11]. The corresponding Toeplitz linear system is then solved efficiently
by using preconditioned Krylov subspace solvers with fast Fourier transformation (FFT),
costing about O(ns log(ns)) flops and O(ns) memory for each temporal node, where ns
is the number of spatial nodes. However, the derivation of the entire nt temporal nodes
requires about O(ntns log(ns)) flops, which is not suitable for large-scale computations.

In this paper, we observe that the discretized coefficient matrices in the linear system
are the nonsingular Toeplitz M-matrix, fitting well with the frame of the M-matrix Sylvester
equation. This allows us to present a doubling Smith method [16,17] to deal with GFDE (1).
The main contributions of this paper include the following aspects:

• The transformation of the linear systems corresponding to the GFDE (1) into a low-
ranked matrix equation is explained in detail.

• The low-ranked doubling Smith method with two optimal parameters is proposed
under the separable forcing function.

• Numerical results demonstrate that, for large-scale problems, the low-ranked doubling
Smith method equipped with truncation and compression is faster than the sequential
Krylov solver (Bi-CGSTA) [18] with FFT for solving Equation (1).

Some notations and definitions are required in this paper. Let L1(R) be the set of all
integrable functions in real space. Symbols R2 and Rn×n are the real plane and the n × n
real matrices, respectively. For matrices A, B ∈ Rn×n, we write A ≥ B(A > B) if their
respective elements satisfy aij ≥ bij(aij > bij) for all i, j. A real square matrix A is called a
Z-matrix if all its off-diagonal elements are nonpositive. It is clear that any Z-matrix A can
be written as sI − B with B ≥ 0. A Z-matrix A = sI − B with B ≥ 0 is called an M-matrix if
s ≥ ρ(B), where ρ(·) denotes the spectral radius. It is called a singular M-matrix if s = ρ(B)
and a nonsingular M-matrix if s > ρ(B). The (non)symmetric Toeplitz matrix is denoted
by Toep(c, r) with vectors c and r being its first column and row, respectively. The matrix
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A ∈ Rn×n is numerically low-ranked if there is a constant cτ independent of n such that
rankτ(A) ≤ cτ .

The following results about M-matrix are well known (see [19] (Section 3.5), [20] (Lem.
2.2) for an example).

Lemma 1. For a Z-matrix A, the following statements are equivalent:
(a) A is a nonsingular M-matrix.
(b) A is nonsingular and satisfies A−1 ≥ 0.
(c) Av > 0 for some vector v > 0.
(d) All eigenvalues of A have positive real parts.

Lemma 2. Suppose that A is an M-matrix and B is a Z-matrix.
(a) If B ≥ A, then B is an M-matrix. Particularly, γI + A is an M-matrix for γ ≥ 0 and a
nonsingular M-matrix for γ > 0.
(b) The one with the smallest absolute value among all eigenvalues of A, denoted by λA

1 , is nonnega-
tive, and λA

1 ≤ maxi Aii.

2. Implicit Difference Scheme and the Linear Systems

We will construct an implicit difference scheme for temporal and spatial discretization
by using the generalized Caputo fractional derivative [1] for the temporal direction and the
second-order WSGD [21–23] spatial discretization for the spatial direction.

2.1. Temporal and Spatial Discretization

We first introduce the temporal discretization of the function u(x, t) on the rectangle
area Rec = {(x, t) : a ≤ x ≤ b, 0 ≤ t ≤ T} ∈ R2 with the discretized mesh mh × mτ =
{xi × tj : xi = a + ih, tj = jτ, 0 ≤ i ≤ ns, 0 ≤ j ≤ nt, h = (b − a)/ns, τ = T/nt}.

Define the linear interpolation

Π1,su(·, t) = u(·, ts+1)
t − ts

τ
+ u(·, ts)

ts+1 − t
τ

over the time interval (ti, tj) with 0 ≤ j ≤ nt − 1. Then, at the time tj+1, one has

C
0 Dγ,λ(t)

t u(·, t)|t=tj+1 = τ1−γ

Γ(2−γ) ∑
j
s=0[λj−s+1/2aj−s + (λj−s − λj−s+1)bj−s]ut,s + Rj

1 + Rj
2,

where
λs = λ(ts), ut,s =

u(·,ts+1)−u(·,ts)
τ ,

ai = (i + 1)1−γ − i1−γ,
bi =

1
2−γ [(i + 1)2−γ − i2−γ]− 1

2 [(i + 1)1−γ + i1−γ],

with i ≥ 1 and Rj
1 and Rj

2 being residuals defined in [1]. The following Lemma concludes
the truncation error of the above discretized scheme [1] (Lem. 4.1).

Lemma 3. Let γ ∈ (0, 1), λ(t) > 0, λ′(t) ≤ 0, and λ(t), u(·, t) ∈ C2[0, tj+1]. Then,

C
0 Dγ,λ(t)

t u(·, tj+1) = Δγ,λ(t)
0,tj+1

uj+1 + O(τ2−γ)

with

Δγ,λ(t)
0,tj+1

uj+1 =
j

∑
s=0

cj−s(us+1 − us) (2)

and

ck =
τ−γ

Γ(2 − γ)
[λk+1/2ak + (λk − λk+1)bk]
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for k ≥ 0. Furthermore, elements in sequences {ak}, {bk}, and {ck} are all decreasing with respect
to k, i.e., ⎧⎪⎪⎨⎪⎪⎩

a0 > a1 > ... > ak >
1−γ

(k+1)γ ,
b0 > b1 > ... > bk > 0,
c0 > c1 > ... > ck >

λ(tk+1/2)

Γ(1−γ)tγ
k+1

.
(3)

We next consider the spatial discretization. Let Ln+α(R) = {u|u ∈ L1(R),
∫ +∞
−∞ (1 +

k)n+α|û(k)|dk < ∞} with û(k) =
∫ +∞
−∞ eikxu(x)dx being the Fourier transformation of u(x).

Here, i represents the imaginary unit. The spatial WSGD discretized format for the R–L
fractional derivative is summarized in the following lemma, as proposed in [11] (Lem. 2.3);
see also in [21–23] .

Lemma 4. Let u(x, ·) ∈ L2+α(R). Then, for some fixed space step-length h, one has

aDα
xu(x, ·) = δα

x,+u(x, ·) + O(h2), xDα
b u(x, ·) = δα

x,−u(x, ·) + O(h2),

where

δα
x,+u(x, ·) =

1
hα

[[ x−a
h ]]

∑
k=0

w(α)
k u(x − (k − 1)h, ·)),

δα
x,−u(x, ·) =

1
hα

[[ b−x
h ]]

∑
k=0

w(α)
k u(x + (k − 1)h, ·))

are difference operators with [[·]] being the floor function and

w(α)
0 = κ1g(α)0 , w(α)

1 = κ1g(α)1 + κ0g(α)0 , w(α)
k = κ1g(α)k + κ0g(α)k−1 + κ−1g(α)k−2, (k ≥ 2).

Here, κ1 = α2+3α+2
12 , κ0 = 4−α2

6 , κ−1 = α2−3α+2
12 , and g(α)k = (−1)k

(
α
k

)
. Furthermore, for

α ∈ (1, 2), the sequence {w(α)
k } satisfies

w(α)
0 > 0, w(α)

1 < 0, w(α)
k > 0, (k ≥ 3),

∑∞
k=0 w(α)

k = 0, ∑n
k=0 w(α)

k < 0, (n > 1).
(4)

2.2. Derivation of the Sequence of Linear Systems

By employing the above implicit difference scheme, we can obtain a sequence of
discretized linear systems. In fact, for i = 1, ..., ns − 1 and j = 0, 1, ..., nt − 1, the GFDE (1) at
the grid point (xi, tj) is

C
0 Dγ,λ(t)

t u(xi, tj) = κ [paDα
xu(x, t) + (1 − p)xDα

b u(x, t)](xi ,tj)
+ f (xi, tj). (5)

Recalling Lemmas 3 and 4, Equation (5) can be rewritten as

Δγ,λ(t)
0,tj+1

uj+1
i = κ · δα

h uj+1
i + f j+1

i + Rj+1
i ,

where uj
i = u(xi, tj), f j

i = f (xi, tj),

δα
h uj+1

i =
1
hα

[p
i+1

∑
k=0

w(α)
k uj+1

i−k+1 + (1 − p)
ns−i+1

∑
k=0

w(α)
k uj+1

i+k−1], (6)
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and Rj+1
i is the error. We then omit the error and arrive at the implicit difference scheme

Δγ,λ(t)
0,tj+1

uj+1
i = κ · δα

h uj+1
i + f j+1

i , 1 ≤ i ≤ ns − 1, 0 ≤ j ≤ nt − 1 (7)

with the initial condition u0
i = φ(xi) for 0 ≤ i ≤ ns and the zero boundary conditions

uj
0 = 0, uj

ns = 0 for 0 ≤ j ≤ nt.
Before we proceed with the derivation of the linear system, we show that the implicit

difference scheme presented in Equation (7) is stable. In fact, by setting ξ
j
i = κ for all i and

j in [11] (Thm 2.2), one has the following stability theorem.

Theorem 1. By defining ‖ f j+1‖2 = h ∑ns−1
i=1 f 2(xi, tj+1), the implicit difference scheme (7) is

unconditionally stable, and there exists a constant c such that a priori estimate is

‖uj+1‖ ≤ ‖u0‖2 +
Γ(1 − γ)Tγ

2cκ ln 2λ(T)
max

0≤j≤nt−1
‖ f j+1‖2,

where uj+1 = [uj+1
1 , uj+1

2 , ..., uj+1
ns−1]

(, u0 = [u0
1, u0

2, ..., u0
ns−1]

(.

According to [11] (Thm 2.3), the implicit difference scheme (7) exhibits a 2-γ order
of convergence in time and a quadratic order of convergence in space variables when the
solution of the GFDE (1) is sufficiently smooth.

Theorem 2. Suppose that utrue(x, t) ∈ C4,2
x,t ([a, b]× [0, T]) is the solution of GFDE (1) and uj

i
derives from the implicit difference scheme (7). Define

Ej
i = utrue(xi, tj)− uj

i , 1 ≤ i ≤ ns − 1, 0 ≤ j ≤ nt − 1.

Then, there exists a constant c̃ such that for j ≤ nt − 1,

‖Ej‖ ≤ c̃(τ2−γ + h2).

Now, we construct the Toeplitz matrix

Wα = Toep([w(α)
1 , ..., w(α)

ns−1], [w
(α)
1 , w(α)

0 ,

ns−3︷ ︸︸ ︷
0, ..., 0]) ∈ R(ns−1)×(ns−1)

and set
B = − κ

hα
(pWα + (1 − p)W(

α ). (8)

Then, for each temporal node j (0 ≤ j ≤ nt − 1), Equation (7) with 1 ≤ i ≤ ns − 1 are
equivalent to the linear system

(c0 Ins−1 + B)uj+1 = cju0 +
j

∑
k=1

(ck−1 − ck)uj+1−k + f j+1 (9)

with uj = [uj
1, ..., uj

ns−1]
( and f j = [ f j

1, ..., f j
ns−1]

(. It is clear that the fast Fourier transform
(FFT) method is well-suited for the linear system sequence (7), and the computational
complexity for solving the j-th equation is O((ns − 1) log(ns − 1)) [24] (Chap. 3). As a
result, the total computational cost for the entire sequence of linear systems in Equation (9)
is about O(nt(ns − 1) log(ns − 1)) flops.

3. Low-Ranked Matrix Equation and Doubling Smith Method

In this section, we will further transform the sequence of linear systems (9) into
a low-ranked matrix equation via the separable forcing function f (x, t), which is then
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efficiently solved by the presented doubling Smith method, equipped with two determined
optimal parameters.

3.1. Matrix Equation with Structured Coefficients

To construct the matrix equation, we rewrite the linear systems (9) into⎡⎢⎢⎢⎢⎢⎣
−c0 Ins−1 c0 Ins−1
−c1 Ins−1 (c1 − c0)Ins−1 c0 Ins−1
−c2 Ins−1 (c2 − c1)Ins−1 (c1 − c0)Ins−1 c0 Ins−1

...
...

. . . . . .
−cnt−1 Ins−1 (cnt−1 − cnt−2)Ins−1 · · · (c1 − c0)Ins−1 c0 Ins−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
u0

u1

u2

...
unt

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
B

B
. . .

B

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u1

u2

...
unt

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f 1

f 2

...
f nt

⎤⎥⎥⎥⎦. (10)

By setting the Toeplitz matrix

A = Toep([c0,

nt−1︷ ︸︸ ︷
0, ..., 0], [c0, c1 − c0, c2 − c1, ..., cnt−1 − cnt−2]) ∈ Rnt×nt , (11)

the linear system (10) is the one-shot equation of the scale nt(ns − 1)× nt(ns − 1), i.e.,

(A( ⊗ Ins−1 + Int ⊗ B)u = f + c ⊗ u0,

where f = ( f 1(, f 2(, ..., f nt()( ∈ R(ns−1)nt is the forcing term, c = (c0, c1, ..., cnt−1)
( ∈ Rnt

is the constant vector, and u = (u1(, u2(, ..., unt()( ∈ R(ns−1)nt is the desired unknown
vector.

Furthermore, by rearranging vectors ui and f i as matrices U = [u1, u2, ..., unt ] ∈
R(ns−1)×nt and F = [ f 1 + c0u0, f 2 + c1u0, ..., f nt + cnt−1u0] ∈ R(ns−1)×nt , respectively, we
arrive at the Sylvester matrix equation

UA + BU = F, (12)

with F being the constant term.

Remark 1. When the forcing function f (x, t) is separable, the constant matrix F in (12) is a
product of two low-rank factors, i.e.,

F = FsF(
t = [Fs1, u0][Ft1, c](,

where Fs1 ∈ R(ns−1)×r f (r f ) ns) and Ft1 ∈ Rnt×r f (r f ) nt) are discretized spatial and time
matrices from f (x, t).

The following theorem states the nice property of matrices A and B, which also
contributes to the motivation of developing the doubling Smith method with the optimal
parameters.

Theorem 3. Let λ(t) ∈ C2[0, T] be the weight function satisfying λ(t) > 0 and λ′(t) ≤ 0 for all
t ∈ [0, T]. Let {w(α)

k } be the sequence generated by the WSGD format in Lemma 4. Then, matrices
A given in (11) and B given in (8) are both nonsingular M-matrices.
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Proof. Let 1 = (1, 1, ..., 1)( be a vector with all its elements equal to 1. According to
Equation (3) and the assumption that the weight function λ(t) is positive, we can conclude
that the minimum value of the sequence ck is greater than zero. As a result, we have

A1 = (cnt−1, cnt−2, ..., c1, c0)
( >

λ(nt − 1/2)
Γ(1 − γ)tγ

nt

1 > 0,

and A is a nonsingular M-matrix based on Lemma 1.
Moreover, from ∑∞

i=0 w(α)
i = 0 in Equation (4), we can derive that ∑∞

i=ns
w(α)

i =

− ∑ns−1
i=0 w(α)

i > 0, which implies that ∑ns−1
i=1 w(α)

i = −(w(α)
0 + ∑∞

i=ns
w(α)

i ) < 0. Therefore,

Wα1 = [∑1
i=0 w(α)

i , ∑2
i=0 w(α)

i , ..., ∑ns−2
i=0 w(α)

i , ∑ns−1
i=1 w(α)

i ]( < 0,
W(

α 1 = [∑ns−1
i=1 w(α)

i , ∑ns−2
i=0 w(α)

i , ..., ∑2
i=0 w(α)

i , ∑1
i=0 w(α)

i ]( < 0.

Since κ, hα, and p in (8) are all positive, we can find a vector 1 such that B1 > 0, and B is a
nonsingular M-matrix via Lemma 1.

3.2. Doubling Smith Method with the Optimal Parameters

To develop the doubling Smith method, we first use the generalized Cayley trans-
form [17,20,25] (Section 2) to convert the Sylvester Equation (12) to the Stein equation. By
introducing two positive parameters μ and ν, Equation (12) can be rewritten as

(B − νIns−1)U(A − μInt)− (B + μIns−1)U(A + νInt) = −(μ + ν)F,

or the corresponding Stein equation

B̃UÃ − U + F̃ = 0, (13)

where
Ã = (A − μInt)(A + νInt)

−1, B̃ = (B − νIns−1)(B + μIns−1)
−1

and F̃ = (μ + ν)(B + μIns−1)
−1F(A + νInt)

−1. As A and B are nonsingular M-matrices,
Lemma 2 implies that Ã and B̃ are non-positive matrices when

μ ≥ max
1≤i≤nt

Aii and ν ≥ max
1≤i≤ns−1

Bii.

We can rewrite the Stein equation as U = S(U) = B̃UÃ + F̃ and substitute U = S(U)
into the right-hand side. This gives the equation U = S2(U) = S(B̃UÃ + F̃) = B̃2UÃ2 +
B̃F̃Ã + F̃. By repeatedly substituting U = S2(U) for the right-hand side of itself, we can
derive the k-th iteration in the form

U = B̃2k
UÃ2k

+
2k−1

∑
i=0

B̃i F̃Ãi,

which contributes to the doubling Smith (DS) iteration

Ãk+1 = Ã2
k , B̃k+1 = B̃2

k , Ũk+1 = Ũk + B̃kŨk Ãk, (k ≥ 0) (14)

where Ã0 = Ã, B̃0 = B̃, and Ũ0 = F̃.
The following theorem describes how the convergence rate of the DS iteration is

a function of the Cayley parameters (μ, ν) and can attain the optimal by using the M-
matrix property.
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Theorem 4. Let the sequence {Ũk} be generated by the DS iteration. Assume that Ũ∞ =

∑∞
i=0 B̃i F̃Ãi is the solution of the Stein Equation (13). Then,

lim supk→∞ ‖Ũ∞ − Ũk‖1/2k ≤ ρ(Ã)ρ(B̃). (15)

Furthermore, ρ(Ã)ρ(B̃) will arrive at the minimal value when

(μ∗, ν∗) = (max
i

Aii, max
i

Bii) = (c0, −κw(α)
1 /hα), (16)

where c0 is given in (11) and κ, w(α)
1 , hα are given in (8).

Proof. The DS iteration (14) yields that the error at the k-th iteration is Ũ∞ − Ũk =

∑∞
i=2k B̃i F̃Ãi = B̃2k

Ũ∞ Ã2k
and then the inequality (15) holds true. To ensure that the DS

converges as fast as possible, one needs to select appropriate values for μ and ν to minimize
the convergence rate.

We first consider ρ(Ã). Since all eigenvalues of A are the same and equal to c0, let
Av = c0v with v be the corresponding eigenvector. Then, we have

Ãv = (A − μInt)(A + νInt)
−1v =

c0 − μ

c0 + ν
v,

which implies that

ρ(Ã) =
μ − c0

c0 + ν
.

On the other hand, let B = sI − NB with s > 0 and NB ≥ 0 be irreducible. According
to the Perron–Frobenius theorem [19] (Thm. 2.7), there exists a positive vector u such that
NBu = ρ(NB)u. Therefore, the minimal eigenvalue of B, i.e., λB

min = s − ρ(NB), is positive,
and this leads to

B̃u = (B − νIns−1)(B + μIns−1)
−1u =

λB
min − ν

λB
min + μ

u.

Since B̃ = (B − νIns−1)(B + μIns−1)
−1 is non-positive and irreducible for ν ≥ maxi Bii

and μ > 0 (see Lemma 2), it follows from the Perron–Frobenius theorem again that

ρ(B̃) = ρ(−B̃) =
ν − λB

min
λB

min + μ
.

Construct the functions

g1(μ) =
μ − c0

λB
min + μ

and g2(ν) =
ν − λB

min
c0 + ν

.

They are obviously monotonically increasing with respect to μ ∈ [μ∗,+∞) and ν ∈
[ν∗,+∞), respectively. Then, ρ(Ã)ρ(B̃) = g1(μ) · g2(ν) achieves the minimal value at
(μ∗, ν∗).

For the large-scale Equation (12) with separable F = FsF(
t , the DS method (14) can be

further organized as the following low-ranked version [16,17] (Alg. 1){
Ũk+1 = G̃k+1T̃k+1H̃(

k+1, T̃k+1 =
[

T̃k 0
0 T̃k

]
,

G̃k+1 = [G̃k, B̃kG̃k], H̃k+1 = [H̃k, Ã(
k H̃k]

(17)

with G̃0 = Fs, H̃0 = Ft, T̃0 = I. Then, the solution Ũ∞ is numerically low-ranked. If
FFT is still used for coping with the Toeplitz system and the number of the DS iteration
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is not large (in a sense of 2k = O(1)), the entire complexity is expected to be reduced to
O((ns − 1) log(ns − 1)).

4. Numerical Examples

In this section, we will illustrate the effectiveness of the low-ranked DS method in
computing the solution of large-scale GFDE using the implicit difference scheme. We
compare the DS method with the Bi-CGSTAB solver [18] (Alg. 3.6.3) (referred to as “ST”),
which is used to solve the sequence of Toeplitz linear systems (9) at each temporal node.
The same solver is also used to construct Ã and B̃ in (13) for the DS method. Additionally,
both algorithms employ the Gohber–Semecul formula [24,26] to solve their respective
Toeplitz systems, and the algorithm terminates when the relative residual of the Toeplitz
system is less than 10−14.

In the DS method, we use the technique of truncation and compression of the economic
QR decomposition [25] (Section 2.2) (see also in [16,17] with a tolerance of 10−30) to reduce
the columns of G̃k and H̃k as much as possible. We also set the upper bound of the
truncated maximal number of columns to 103. The DS method stops either when the
number of iterations exceeds six or when the low-ranked residual form [16,17] of the Stein
Equation (13) is less than 10−11. We implemented both algorithms using MATLAB 2019a
on a 64-bit PC with a 3.0 GHz Intel Core i5 processor and 32G RAM, with the machine error
eps = 2.22 × 10−16.

To assess the accuracy of both algorithms, we calculate their errors as

Err = max
0≤j≤nt

‖uj − uj
true‖∞

and record the convergent rate as

Rate = logh1/h2
(Errh1 /Errh2),

where h1 and h2 are different step-lengths in two consecutively temporal nodes.

Example 1. Consider the GFDE (1) with the diffusion coefficient κ = 1 and p = 1. The weight
function is λ(t) = e−t, and the forcing function on the RHS of GFDE is

f (x, t) =
−t1−γe−t

Γ(2 − γ)
x3(1 − x)− 6e−t

Γ(4 − α)
x3−α +

24e−t

Γ(5 − α)
x4−α.

The initial-boundary value conditions for this problem are u(x, 0) = x3(1 − x) and u(0, t) =
u(1, t) = 0. It is not difficult to see the exact solution function of this problem is u(x, t) =
e−tx3(1 − x) (see Appendix A).

To test the numerical performance of the two algorithms, we take γ = 0.2 and test the
values of α at 1.1, 1.5, and 1.9. The obtained results are listed in Table 1, where the column
labeled “h” indicates the spatial step-length (corresponding to the number of nodes ns).
The columns “CPU_ST” and “CPU_DS” represent the elapsed CPU time for the sequence
solver with the Bi-CGSTAB method (abbreviated as “ST”) and our DS method, respectively.
The letters “It.” behind “CPU_DS” represent the required number of the DS iteration. The
columns labeled “Err_ST” and “Err_DS” represent the calculated errors of the ST method
and our DS method, respectively, after termination. As both algorithms reach similar
error levels, we only report the convergent rate of the DS method at various scales in the
“Rate_DS” column.
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Table 1. Numerical performances of two different methods when γ = 0.2 in Example 1.

γ = 0.2 h CPU_ST CPU_DS (It.) Rate_DS Err_ST Err_DS

1/2048 4.27 2.31 (5) — 1.38×10−7 1.38×10−7

1/4096 17.00 3.83 (5) 2.005 3.44×10−8 3.44×10−8

α = 1.1 1/8192 116.52 8.02 (5) 2.006 8.57×10−9 8.57×10−9

1/16,384 792.30 15.54 (6) 2.008 2.13×10−9 2.13×10−9

1/32,768 5805.97 111.84 (6) 2.004 5.31×10−10 5.31×10−10

1/2048 4.32 2.34 (5) — 9.71×10−8 9.71×10−8

1/4096 16.62 3.79 (5) 2.005 2.42×10−8 2.42×10−8

α = 1.5 1/8192 120.03 8.19 (5) 2.133 6.03×10−9 5.52×10−9

1/16,384 789.31 15.55 (5) 2.005 1.30×10−9 1.37×10−9

1/32,768 5830.86 38.36 (5) 1.186 3.64×10−10 6.02×10−10

1/2048 4.28 0.73 (4) — 5.81×10−8 5.62×10−8

1/4096 15.93 3.57 (4) 2.001 1.45×10−8 1.41×10−8

α = 1.9 1/8192 117.38 8.04(5) 1.827 3.62×10−9 3.96×10−9

1/16,384 786.57 15.12 (5) 1.281 8.41×10−10 1.71×10−9

1/32,768 5838.16 431.24 (6) 1.039 2.95×10−10 8.32×10−10

We can see from Table 1 that both methods efficiently compute the solution for various
values of α with errors ranging from O(10−7) to O(10−10). Our DS method requires only
4–5 iterations for middle-scale problems (ns = 2048, 4098, 8192) and 5–6 iterations for
large-scale problems (ns = 16,384 to 32,768) to achieve the prescribed residual level of the
Stein equation, resulting in similar error levels as the ST method. Although the Rate_DS
column shows that the convergence rate gradually decreases with increasing scale, the DS
method still requires less CPU time than the ST method for all different α, especially at
ns = 32,768. At this scale, the DS method takes only 1/14 of the CPU time required by the
ST method to obtain a solution of almost the same order O(10−10).

We also carried out further numerical experiments to validate the efficacy of our DS
method, with the aim of comparing the error surfaces of the DS and ST methods, and
observe any differences in their respective performances. Figure 1 presents the results of
our experiments. The figure displays the error surfaces of the DS and ST methods, labeled
as “D” and “S” respectively, at specific values of γ = 0.3 and ns = 2048. The variables t and
s in Figure 1 represent the discretized temporal and spatial values, respectively, within the
interval [0, 1] in the error functions. Our analysis of the figure revealed that the error surface
of the DS method encompasses that of the ST method, but the errors for both methods are
at the level of O(10−8), which is a relatively low level of error. This result reinforces the
effectiveness and reliability of our proposed DS method.

D —

S—

(a) α = 1.1.

Figure 1. Cont.
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D —

S —

(b) α =1.5.

D —

S —

(c) α = 1.9.

Figure 1. Error surfaces calculated by the DS method (D) and the ST method (S) at ns = 2048 and
γ = 0.3 in Example 1. The subplots from top to bottom correspond to different α.

We subsequently increase the value of γ for different α and compare the numerical
performance of the DS method with that of the ST method. The obtained results are listed
in Table 2. We can see that for different α, the DS method requires 6 iterations to reach the
prescribed residual level. For middle-scale problems (ns = 2048, 4098), the ST method is
faster than the DS method in terms of CPU time. However, with increasing scale (from
ns = 8192 to 32,768), the DS method gradually becomes faster than the ST method, albeit
sacrificing some accuracy. In particular, at the scale of ns = 32,768, the DS method takes
only about 1/14 of the CPU time required by the ST method to obtain a solution of the
order O(10−10), indicating that the DS method is more suitable for dealing with large-scale
problems. Furthermore, we conducted numerical experiments with a value of γ = 0.9. The
results, as shown in Table 3, indicate that while the DS method may sacrifice some accuracy,
it still outperforms the ST method in terms of CPU time when ns is no less than 8192.
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Table 2. Numerical performances of two different methods when γ = 0.5 in Example 1.

γ = 0.5 h CPU_ST CPU_DS (It.) Rate_DS Err_ST Err_DS

1/2048 4.14 25.21(6) — 7.48×10−8 7.52×10−8

1/4096 15.88 42.74 (6) 2.023 1.33×10−8 1.85×10−7

α = 1.1 1/8192 117.33 99.25 (6) 2.088 2.24×10−9 4.35×10−9

1/16,384 803.19 197.31 (6) 1.957 6.27×10−10 1.12×10−9

1/32,768 5568.40 420.32 (6) 1.559 2.02×10−10 3.80×10−10

1/2048 5.14 24.69 (6) — 5.96×10−8 6.13×10−8

1/4096 16.12 43.80 (6) 2.120 1.17×10−8 1.41×10−8

α = 1.5 1/8192 117.78 98.53 (6) 2.010 1.83×10−9 3.50×10−9

1/16,384 798.62 198.50 (6) 1.845 1.27×10−10 9.74×10−10

1/32,768 5584.45 420.80 (6) 1.633 3.11×10−11 3.14×10−10

1/2048 6.39 29.16 (6) — 3.83×10−8 3.96×10−8

1/4096 16.36 44.39 (6) 2.150 8.00×10−9 8.92×10−9

α = 1.9 1/8192 118.96 99.52 (6) 2.066 1.31×10−9 2.13×10−9

1/16,384 792.86 194.41 (6) 1.115 5.71×10−10 9.83×10−10

1/32,768 5544.37 429.55 (6) 0.916 9.34×10−11 5.21×10−10

Table 3. Numerical performances of two different methods when γ = 0.9 in Example 1.

γ = 0.9 h CPU_ST CPU_DS (It.) Rate_DS Err_ST Err_DS

1/2048 4.72 25.73(6) — 2.34×10−6 9.64×10−6

1/4096 16.49 45.68 (6) 1.072 1.12×10−6 4.75×10−6

α = 1.1 1/8192 125.95 112.17 (6) 0.911 5.32×10−7 2.43×10−6

1/16,384 857.63 226.60 (6) 1.029 2.50×10−7 1.19×10−6

1/32,768 5416.31 405.57 (6) 0.523 1.05×10−7 8.30×10−7

1/2048 5.03 29.10 (6) — 1.16×10−6 9.84×10−6

1/4096 20.55 45.28 (6) 0.922 5.61×10−7 5.19×10−6

α = 1.5 1/8192 122.46 100.14 (6) 0.805 2.67×10−7 2.97×10−6

1/16,384 802.23 196.10 (6) 1.137 1.26×10−7 1.35×10−6

1/32,768 5496.12 428.64 (6) 0.537 9.42×10−8 9.32×10−7

1/2048 4.32 24.58 (6) — 6.31×10−7 4.26×10−6

1/4096 16.36 42.56 (6) 0.696 3.06×10−7 2.63×10−6

α = 1.9 1/8192 121.83 98.89 (6) 0.772 1.46×10−7 1.54×10−7

1/16,384 803.47 194.59 (6) 0.874 6.91×10−8 8.42×10−7

1/32,768 5521.86 435.56 (6) 0.573 4.75×10−8 5.66×10−7

Example 2. Consider the GFDE (1) with the diffusion coefficient κ = 5 and the weight function
λ(t) = e−bt with b ≥ 0 [11]. The source term is

f (x, t) =
10t3−γe−bt

Γ(4 − γ)
x2(1 − x)2 − 25g(t)

{ Γ(3)
Γ(3 − α)

[px2−α + (1 − p)(1 − x)2−α]

−2
Γ(4)

Γ(4 − α)
[px3−α + (1 − p)(1 − x)3−α] +

Γ(5)
Γ(5 − α)

[px4−α + (1 − p)(1 − x)4−α]
}

.

The corresponding initial-boundary value conditions are u(x, 0) = 5g(0)x2(1 − x)2,
u(0, t) = u(1, t) = 0. It can be verified that the exact solution function is u(x, t) =
5g(t)x2(1 − x)2 ( see Appendix A) with

g(t) = 1 +
2 − (2 + 2bt + b2t2)e−bt

b3 .

We chose values of p = 0.4 and γ = 0.2 and implemented both algorithms for the
discretized Stein equation from Example 2. The results obtained are displayed in Table 4,
which demonstrates that both methods are capable of efficiently computing the solution
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with an error range of approximately between O(10−7) to O(10−9) for different values of α.
With the exception of when h = 1/2048 and α = 1.1, our DS method required six iterations
to achieve the desired residual level. In addition, for α = 1.1, the DS method was less
time-consuming than the ST method but achieved almost the same level of accuracy. For
cases where α = 1.5 and 1.9, our DS method took more CPU time to compute the solution
for middle-scale cases where ns was 2048 and 4098. However, as the scale increased, the DS
method required less CPU time than the ST method, with only a slight decrease in accuracy.

Table 4. Numerical performances of two different methods when γ = 0.2, p = 0.4 in Example 2.

γ = 0.2, p = 0.4 h CPU_ST CPU_DS (It.) Rate_DS Err_ST Err_DS

1/2048 4.43 2.23 (5) — 6.59×10−7 6.59×10−7

1/4096 16.62 14.57 (6) 1.9872 1.66×10−7 1.66×10−7

α = 1.1 1/8192 121.85 32.28 (6) 1.9912 4.16×10−8 4.16×10−8

1/16,384 779.27 64.17 (6) 1.9938 1.04×10−8 1.04×10−8

1/32,768 5579.25 521.88 (6) 1.9956 2.62×10−9 2.62×10−9

1/2048 4.16 23.58 (6) — 2.99×10−7 2.99×10−7

1/4096 15.86 44.47 (6) 1.9929 7.76×10−8 7.75×10−8

α = 1.5 1/8192 127.21 103.13 (6) 1.7647 2.00×10−8 2.28×10−8

1/16,384 791.21 221.25 (6) 1.3760 5.14×10−9 8.78×10−9

1/32,768 5742.21 532.20 (6) 1.1816 1.31×10−9 3.86×10−9

1/2048 6.14 19.69 (6) — 2.94×10−7 2.94×10−7

1/4096 16.72 37.14 (6) 1.9582 7.23×10−8 7.53×10−8

α = 1.9 1/8192 120.83 83.25 (6) 1.8630 1.83×10−8 2.07×10−8

1/16,384 795.98 169.03 (6) 1.4210 2.94×10−9 5.73×10−9

1/32,768 5813.56 478.80 (6) 0.4961 1.05×10−9 4.07×10−9

Additionally, we generated error surfaces for both methods and denoted them as “D”
for the DS method and “S” for the ST method. These surfaces were plotted at γ = 0.4 and
ns = 2048, and the results are shown in Figure 2. The figure indicates that the error surface
of the DS method covers that of the ST method, while both methods have similar error
levels of approximately O(10−7).

(a) α = 1.1.
Figure 2. Cont.
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D —

S —

(b) α =1.5.

D —

S —

(c) α = 1.9.

Figure 2. Error surfaces calculated by the DS method (D) and the ST method (S) at ns = 2048 and
γ = 0.4 in Example 2. The subplots from top to bottom correspond to different α.

We also raised the parameter γ to 0.5 and executed both algorithms once more. Table 5
illustrates the results, indicating that our DS method produces similar error levels to the ST
method. Moreover, when ns = 8192, our DS method performs better than the ST method
in terms of CPU time. This tendency becomes increasingly apparent as the scale increases,
demonstrating that the complexity of the DS method is roughly O((ns − 1) log(ns − 1))
and that it is more suitable for larger-scale problems. In Table 6, we resumed conducting
numerical experiments with γ = 0.9 and similarly found that while the DS method may
compromise some accuracy, it still outperforms the ST method in terms of CPU time when
ns > 8192.
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Table 5. Numerical performances of two different methods when γ = 0.5, p = 0.4 in Example 2.

γ = 0.5, p = 0.4 h CPU_ST CPU_DS (It.) Rate_DS Err_ST Err_DS

1/2048 4.41 30.12 (6) — 6.41×10−7 6.41×10−7

1/4096 16.82 55.45 (6) 1.9579 1.60×10−7 1.65×10−7

α = 1.1 1/8192 122.68 111.99 (6) 1.8652 4.00×10−8 4.53×10−8

1/16,384 739.46 246.17 (6) 1.8234 9.95×10−9 1.28×10−8

1/32,768 5954.71 520.47 (6) 1.7597 2.47×10−9 3.78×10−9

1/2048 4.16 28.98 (6) — 2.98×10−7 2.98×10−7

1/4096 15.77 55.01 (6) 1.9428 7.72×10−8 7.76×10−8

α = 1.5 1/8192 117.98 101.78 (6) 1.8448 1.99×10−8 2.16×10−8

1/16,384 785.39 246.42 (6) 1.5690 5.10×10−9 7.28×10−9

1/32,768 5744.93 536.89.26 (6) 1.5721 1.29×10−9 2.45×10−9

1/2048 4.38 29.96 (6) — 3.01×10−7 3.01×10−7

1/4096 16.74 55.44 (6) 2.005 7.46×10−8 7.53×10−8

α = 1.9 1/8192 118.82 103.35 (6) 1.8423 1.89×10−8 2.10×10−8

1/16,384 810.04 246.57 (6) 1.3030 4.14×10−9 8.53×10−9

1/32,768 5816.90 550.72 (6) 0.0051 1.96×10−9 8.50×10−9

Table 6. Numerical performances of two different methods when γ = 0.9, p = 0.4 in Example 2.

γ = 0.9, p = 0.4 h CPU_ST CPU_DS (It.) Rate_DS Err_ST Err_DS

1/2048 4.53 29.75 (6) — 3.78×10−6 4.08×10−6

1/4096 17.29 54.29 (6) 1.0213 1.72×10−6 2.01×10−6

α = 1.1 1/8192 126.29 128.06 (6) 0.9368 7.94×10−7 1.05×10−6

1/16,384 814.66 243.67 (6) 0.7124 3.68×10−7 6.42×10−7

1/32,768 6043.21 518.66 (6) 0.6225 1.53 ×10−7 4.17 ×10−7

1/2048 4.31 29.78 (6) — 9.72×10−7 1.23×10−6

1/4096 16.45 54.31 (6) 1.0105 4.07×10−7 6.12×10−7

α = 1.5 1/8192 122.19 124.77 (6) 0.7416 1.79×10−7 3.66×10−7

1/16,384 802.35 243.98 (6) 0.8936 8.06×10−8 1.97×10−7

1/32,768 5804.55 522.53 (6) 0.9970 3.90×10−8 9.88×10−8

1/2048 4.52 29.63 (6) — 5.79×10−7 9.54×10−7

1/4096 17.44 54.40 (6) 1.0121 2.11×10−7 4.73×10−7

α = 1.9 1/8192 124.43 123.46 (6) 0.6425 8.37×10−8 3.03×10−7

1/16,384 810.55 244.26 (6) 0.8508 3.46×10−8 1.68×10−7

1/32,768 5978.33 562.76 (6) 0.5979 1.41×10−8 1.11×10−7

5. Conclusions

We have presented a doubling Smith iteration method for solving discretized Stein
equations arising from a class of generalized fractional diffusion equations (GFDEs). The
method takes advantage of the implicit difference scheme, resulting in coefficient matrices
with nonsingular M-matrix structures. The two optimal parameters are then determined
based on this property, and the separable forcing term of the GFDE contributes to the
low-ranked version of the doubling Smith method. Numerical experiments demonstrate
that our method outperforms the ST method with the Bi-CGSTAB solver in terms of CPU
time, particularly as the scale increases, although it sacrifices some accuracy. However,
our approach is limited to GFDEs with the case of λ(t) = 1. It may not be appropriate for
solving other types of fractional diffusion equations. Additionally, if the coefficient matrices
do not have nonsingular M-matrix structures, the optimal parameters in the presented
doubling Smith method may not be determined. As future work, we plan to explore
the applicability of the low-ranked doubling Smith methods for solving other large-scale
GFDEs. In addition, it should be noted that the GFDE discussed in this paper is limited
to zero boundary conditions. It is important to acknowledge that previous studies have
shown that the shifted Grunwald–Letnikov formula requires modification when dealing
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with absorbing boundary conditions. Researchers have explored this area in depth, as
evidenced by works such as [27–29]. As such, it would be beneficial for future research to
focus on extending the technique of the classical method of manufactured solutions [30–33]
to convert non-zero boundary conditions into zero ones. This would allow the GFDE
to be applied to a wider range of problems, improving its practicality and usefulness in
real-world scenarios.
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Appendix A. Validation of True Solutions in Example 1 and 2

Example A1. For the solution u(x, t) = e−tx3(1 − x), the γ-order generalized Caputo fractional
derivative on the left of GFDE (1) is

C
0 Dγ,λ(t)

t u(x, t) =
1

Γ(1 − γ)

∫ t

0

λ(t − η)

(t − η)γ

∂u(x, η)

∂η
dη

=
−1

Γ(1 − γ)

∫ t

0

e−(t−η)

(t − η)γ
e−η x3(1 − x)dη

=
−t1−γe−t

Γ(2 − γ)
x3(1 − x).

The α-order Riemann–Liouville (R-L) fractional derivative on the right of GFDE (1) is

0Dα
xu(x, t) =

1
Γ(2 − α)

∂2

∂x2

∫ x

0

u(ξ, t)
(x − ξ)α−1 dξ

=
e−t

Γ(2 − α)

∂2

∂x2

∫ x

0

ξ3 − ξ4

(x − ξ)α−1 dξ

=
e−t

Γ(2 − α)

∂2

∂x2

( 6
Π5

i=2(i − α)
x5−α − 24

Π6
i=2(i − α)

x6−α
)

=
6e−t

Γ(4 − α)
x3−α − 24e−t

Γ(5 − α)
x4−α.

Then, the GFDE (1) with κ = 1 , p = 1, and λ(t) = e−t holds true when the forcing
function is

f (x, t) =
−t1−γe−t

Γ(2 − γ)
x3(1 − x)− 6e−t

Γ(4 − α)
x3−α +

24e−t

Γ(5 − α)
x4−α.

Example A2. For the solution function u(x, t) = 5g(t)x2(1 − x)2, the γ-order generalized
Caputo fractional derivative on the left of GFDE (1) is

C
0 Dγ,λ(t)

t u(x, t) =
1

Γ(1 − γ)

∫ t

0

λ(t − η)

(t − η)γ

∂u(x, η)

∂η
dη

=
1

Γ(1 − γ
)
∫ t

0
(t − η)−γe−b(t−η)[5x2(1 − x)2η2e−bη ]dη

=
10t3−γe−bt

Γ(4 − γ)
x2(1 − x)2.
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The α-order Riemann–Liouville (R-L) fractional derivatives on the right of GFDE (1)
are

0Dα
xu(x, t) =

1
Γ(2 − α)

∂2

∂x2

∫ x

0

u(ξ, t)
(x − ξ)α−1 dξ

=
5g(t)

Γ(2 − α)

∂2

∂x2

∫ x

0

ξ2(1 − ξ)2

(x − ξ)α−1 dξ

=
5g(t)

Γ(2 − α)

∂2

∂x2

( 2
Π4

i=2(i − α)
x4−α − 12

Π5
i=2(i − α)

x5−α +
24

Π6
i=2(i − α)

x6−α
)

= 5g(t)[
Γ(3)

Γ(3 − α)
x2−α − 2Γ(4)

Γ(4 − α)
x3−α +

Γ(5)
Γ(5 − α)

x4−α]

and

xDα
1 u(x, t) =

1
Γ(2 − α)

∂2

∂x2

∫ 1

x

u(ξ, t)
(ξ − x)α−1 dξ

=
5g(t)

Γ(2 − α)

∂2

∂x2

∫ 1

x

ξ2(1 − ξ)2

(ξ − x)α−1 dξ

=
5g(t)

Γ(2 − α)

∂2

∂x2

( 2
Π4

i=2(i − α)
(1 − x)4−α − 12

Π5
i=2(i − α)

(1 − x)5−α

+
24

Π6
i=2(i − α)

(1 − x)6−α
)

= 5g(t)[
Γ(3)

Γ(3 − α)
(1 − x)2−α − 2Γ(4)

Γ(4 − α)
(1 − x)3−α +

Γ(5)
Γ(5 − α)

(1 − x)4−α].

Then, the GFDE (1) with κ = 5 and λ(t) = e−bt holds true when the forcing function
is

f (x, t) =
10t3−γe−bt

Γ(4 − γ)
x2(1 − x)2 − 25g(t)

{ Γ(3)
Γ(3 − α)

[px2−α + (1 − p)(1 − x)2−α]

−2
Γ(4)

Γ(4 − α)
[px3−α + (1 − p)(1 − x)3−α] +

Γ(5)
Γ(5 − α)

[px4−α + (1 − p)(1 − x)4−α]
}

.
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Abstract: In this paper, the numerical method for a multiterm time-fractional reaction–diffusion equa-
tion with classical Robin boundary conditions is considered. The full discrete scheme is constructed
with the L1-finite difference method, which entails using the L1 scheme on graded meshes for the
temporal discretisation of each Caputo fractional derivative and using the finite difference method
on uniform meshes for spatial discretisation. By dealing with the discretisation of Robin boundary
conditions carefully, sharp error analysis at each time level is proven. Additionally, numerical results
that can confirm the sharpness of the error estimates are presented.

Keywords: multi-term time-fractional; local error analysis; Robin boundary conditions

1. Introduction

In recent years, fractional calculus, which is considered to be a generalisation of
classical derivatives and integrals to non-integer order, has become a powerful modelling
tool that is more flexible and precise for describing physical problems than integer calculus.
The fractional system has been widely used in engineering, physical science, chemical
science, biology, and a variety of other subjects, for which it has gradually become an
essential component. For more details on fractional calculus, see [1–5].

At present, it is not generalised enough to consider a numerical solution of the initial
boundary value problem with only the time fractional derivative term with the order
α ∈ (0, 1), such as in [6]. On this basis, more attention is being paid to the summation form
of the time fractional derivative with the order

0 < αL < . . . < α2 < α1 < 1.

where L is a positive integer. At the initial time, the typical solutions of such problems
have a key factor that must be considered (as in [6]); this factor is weak singularity which
significantly complicates analysis. Now, many time-fractional initial-boundary value
problems with Robin boundary conditions are widely used in the research fields of heat
equation, biomathematics, and so on [7–9]. That is the main reason why this type of
boundary condition is considered in this paper.

The problem that we study in the spatial domain is Ω := (0, 1)2 with closure Ω̄ =
[0, 1]2. Define the boundary as ∂Ω = Ω̄ \ Ω. Set Q = Ω × (0, T] and Q̄ = Ω̄ × [0, T] where
T > 0 be fixed.

Based on the above description, the purpose of this paper is to propose the following
multiterm time-fractional reaction–diffusion problem numerically.

L

∑
l=1

ql D
αl
t u(x, y, t)− Δu(x, y, t) + c(x, y)u(x, y, t) = F(x, y, t) for (x, y, t) ∈ Q, (1a)
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with the initial condition

u(x, y, 0) = u0(x, y) for (x, y) ∈ Ω, (1b)

and Robin boundary conditions

σu(x, y, t) +
∂

∂n
u(x, y, t) = g(x, y, t) for (x, y, t) ∈ ∂Ω, 0 < t ≤ T. (1c)

where ql and σ are given positive constants, g and u0 are sufficiently smooth in their
respective domains, F ∈ C1(Q̄), and c ∈ C1(Q̄) with c ≥ c0 > 0. u0 ∈ C1(Ω̄) with
σu0 + (∂/∂n)u0 = 0 on ∂Ω. Dαl

t u(x, y, t) is defined as the temporal Caputo fractional
derivative of order αl of u by

Dαl
t u(x, y, t) :=

1
Γ(1 − αl)

∫ t

0
(t − s)−αl

∂

∂s
u(x, y, s) ds.

For ([10] Lemma 2.2) and ([11] Section 6), (1) has unique solution which satisfies the
following regularity with weak initial singularity∣∣∣∣ ∂η

∂xη u(x, y, t)
∣∣∣∣+ ∣∣∣∣ ∂η

∂yη u(x, y, t)
∣∣∣∣ ≤ C for η = 0, 1, 2, 3, 4, (2)∣∣∣∣ ∂ν

∂tν
u(x, y, t)

∣∣∣∣ ≤ C(1 + tα1−ν) for ν = 0, 1, 2, (3)

where C is some fixed constant.
In recent years, the introduction of the classic L1 scheme to the discrete Caputo

derivative has received widespread attention [12,13]. To recover the convergence rate,
researchers have used the L1 scheme on graded meshes [6,11,14]. Analysis of the local
convergence rate is mathematically interesting [15,16], as the local convergence rate on
every time node is sharper than the global one. This method has wide applicability. When
considering practical problems such as [17–19], it can be combined with the finite difference
and finite element methods in the space direction [6,20].

To avoid discrete errors at the boundary, Dirichlet boundary conditions are usually
considered in the local error analysis because the boundary values are known. For Robin
boundary conditions, to ensure global accuracy, we need to find a suitable boundary
discretisation method. One of the novelties of this paper is mitigation of the difficulty
caused by Robin boundary conditions in the discretisation process. At present, there
are many papers consider global convergence of the time fractional problem with Robin
boundary conditions [10,21,22]; But no local in time error analysis for multi-term time-
fractional problems with Robin boundary conditions has been considered. This is our
motivation for completing this paper. The highlights of this paper can be summarized as
the following:

• By using the L1-finite difference method to solve (1a), we have propose a discrete
scheme at the boundary which can match the second-order central difference scheme
at interior points.

• When considering local errors, Dirichlet boundary conditions are usually consid-
ered [20,23,24]. In this paper, the boundary conditions are extended to Robin boundary
conditions.

The outline of the paper is as follows. In Section 2, the L1-finite difference method that
will be used to solve (1) is described. In Section 3, the local error of the L1-finite difference
method is analysed. Then, in Section 4, numerical examples are given to verify the local
error results.
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Notation: throughout the paper, C is used as a generic constant to solve (1) numerically,
and may take a different value each time it appears. Meanwhile, it is related to the
information of the problem (1) but is independent of (x, y, t) and of any mesh.

2. L1-Finite Difference Method for (1)

We shall consider the L1-finite difference method for construction of the fully discrete
scheme for the problem (1). At the boundary and inner points, the discrete scheme which
can match each other’s accuracy is constructed.

Let M and N be positive integers. Set tm = T(m/M)r for m = 0, 1, . . . , M, and denote
the time step τm = tm − tm−1 for m = 1, 2, . . . , M. The mesh grading r ≥ 1 will be chosen
later. Set the spatial step as h = 1/N. We divide Ω̄ into (N − 1)× (N − 1) intervals; the
mesh point is (xi, yj) with xi = ih and yj = jh, where (0 ≤ i, j ≤ N). Let

Ω̄h = {(xi, yj)|0 ≤ i, j ≤ N}, Ωh = Ω̄h ∩ Ω, ∂Ωh = Ω̄h ∩ ∂Ω.

Let (i, j) ∈ Ω̄h represent (xi, yj) ∈ Ω̄h to simplify the notation. Similarly, set (i, j) ∈ Ωh
and let (i, j) ∈ ∂Ωh represent (xi, yj) ∈ Ωh and (xi, yj) ∈ ∂Ωh, respectively. Thus, our mesh is

{(xi, yj, tm) : i, j = 0, 1, . . . , N and m = 1, 2, . . . , M}.

At each mesh point (xi, yj, tm), the computed approximation to the analytical solu-
tion u will be denoted by um

i,j. Define the grid functions

ci,j = c(xi, yj), (c1)i,j =
∂

∂x
c(xi, yj), (c2)i,j =

∂

∂y
c(xi, yj),

Fm
i,j = F(xi, yj, tm), (F1)

m
i,j =

∂

∂x
F(xi, yj, tm), (F2)

m
i,j =

∂

∂y
F(xi, yj, tm).

where (i, j) ∈ Ω̄h, m = 1, 2, . . . , M.
The Caputo fractional derivative Dα

t u can be expressed as

Dα
t u(x, y, t) :=

1
Γ(1 − α)

m−1

∑
k=0

∫ tk+1

s=tk

(t − s)−α ∂

∂s
u(x, y, s) ds.

The L1 scheme, which is used to approximate the Caputo fractional derivative to
obtain the discretisation of each time-fractional term ql D

αl
t u(xi, yj, tm).

ql D
αl
Mum

i,j : =
ql

Γ(1 − αl)

m−1

∑
k=0

uk+1
i,j − uk

i,j

τk+1

∫ tk+1

s=tk

(tm − s)−αl ds

=
ql

Γ(2 − αl)

m−1

∑
k=0

uk+1
i,j − uk

i,j

τk+1

[
(tm − tk)

1−αl − (tm − tk+1)
1−αl
]

for l = 1, 2, . . . , L.
In ([20] Lemma 4), the truncation error has the following estimate∣∣∣∣∣ L

∑
l=1

ql D
αl
Mum

i,j −
L

∑
l=1

ql D
αl
t u(xi, yj, tm)

∣∣∣∣∣ ≤ Cm−min{2−α1,r(α1+1)}. (4)

For any grid function v = {vi,j|0 ≤ i, j ≤ N}, the spatial difference operators are
defined as follows:

δxvi,j =
1
h
(vi,j − vi−1,j), δyvi,j =

1
h
(vi,j − vi,j−1), 1 ≤ i, j ≤ N,

and
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δ2
xvi,j =

1
h
(
δxvi+1,j − δxvi,j

)
, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N,

δ2
yvi,j =

1
h
(
δyvi,j+1 − δyvi,j

)
, 1 ≤ i ≤ N, 0 ≤ j ≤ N − 1.

We discrete the initial condition (1b) in a standard way: for i, j ∈ Ω̄h, set u0
i,j =

u0(xi, yj). In the following three subsections, we will discretise (1a) and (1c) on inner points,
boundary points, and corner points separately.

2.1. Inner Points

In (i, j) ∈ Ωh, the diffusion term Δu ≡ (∂/∂x)2u + (∂/∂y)2u in (1a) is approximated
by a standard second-order discretisation

Δu(xi, yj, tm) ≈ δ2
xum

i,j + δ2
yum

i,j. (5)

Then, the truncation error has the following estimate∣∣∣∣δ2
xu(xi, yj, tm)−

∂2

∂x2 u(xi, yj, tm)

∣∣∣∣+ ∣∣∣∣δ2
yu(xi, yj, tm)−

∂2

∂y2 u(xi, yj, tm)

∣∣∣∣ ≤ Ch2. (6)

In summary, we can approximate (1) on (i, j) ∈ Ωh with the discrete problem

L

∑
l=1

ql D
αl
Mum

i,j − δ2
xum

i,j − δ2
yum

i,j + ci,jum
i,j = Fm

i,j , for 1 ≤ m ≤ M. (7)

2.2. Boundary Points

For brevity, we set

g1(x, y, t) :=
J

∑
l=1

ql D
αl
t g(x, y, t)− ∂2

∂y2 g(x, y, t) + c(x, y)g(x, y, t) +
∂

∂x
F(x, y, t),

g2(x, y, t) :=
J

∑
l=1

ql D
αl
t g(x, y, t)− ∂2

∂x2 g(x, y, t) + c(x, y)g(x, y, t) +
∂

∂y
F(x, y, t),

p1(x, y, t) := u(x, y, t)
∂

∂x
c(x, y) + σc(x, y)u(x, y, t),

p2(x, y, t) := u(x, y, t)
∂

∂y
c(x, y) + σc(x, y)u(x, y, t),

q1(x, y, t) :=
2
h
(δxu(x, y, t)− σu(x, y, t) + g(x, y, t)),

q2(x, y, t) :=
2
h
(δyu(x, y, t)− σu(x, y, t) + g(x, y, t)),

and

δb
xu(x, y, t) := q1(x, y, t)− h

3

(
σ

J

∑
l=1

ql D
αl
Mu(x, y, t)

+ p1(x, y, t)− σδ2
yu(x, y, t)− g1(x, y, t)

)
,

δb
yu(x, y, t) := q2(x, y, t)− h

3

(
σ

J

∑
l=1

ql D
αl
Mu(x, y, t)

+ p2(x, y, t)− σδ2
xu(x, y, t)− g2(x, y, t)

)
.
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Then, define grid functions

(g1)
m
i,j = g1(xi, yj, tm), δb

xum
i,j := δb

xu(xi, yj, tm), (p1)
m
i,j = p1(xi, yj, tm),

(g2)
m
i,j = g2(xi, yj, tm), δb

yum
i,j := δb

yu(xi, yj, tm), (p2)
m
i,j = p2(xi, yj, tm),

(q1)
m
i,j = p1(xi, yj, tm), (q2)

m
i,j = q2(xi, yj, tm).

Lemma 1. Assume u(·, ·, tm) ∈ C2(Ω̄) for every tm; then, there exists a constant C such that∣∣∣∣δb
xu(0, yj, tm)−

∂2

∂x2 u(0, yj, tm)

∣∣∣∣ ≤ Ch2 + Chm−min{2−α1,r(α1+1)}. (8)

Proof. For boundary points (0, yj, tm), where j = 1, . . . , N − 1 and m = 1, . . . , M. (1a) and
(1c) at point (0, yj, tm) is

L

∑
l=1

ql D
αl
t u(0, yj, tm)− Δu(0, yj, tm) + c(0, yj)u(0, yj, tm) = F(0, yj, tm), (9)

σu(0, yj, tm)−
∂

∂x
u(0, yj, tm) = g(0, yj, tm). (10)

By Taylor expansion of u(h, yj, tm) at point (0, yj, tm)

u(h, yj, tm) = u(0, yj, tm) + h
∂

∂x
u(0, yj, tm) +

h2

2
∂2

∂x2 u(0, yj, tm) +
h3

6
∂3

∂x3 u(0, yj, tm) + Ch4,

using (10), we have

∂2

∂x2 u(0, yj, tm) = q1(0, yj, tm)−
h
3

∂3

∂x3 u(0, yj, tm)− Ch2. (11)

Differentiating (9) with respect to x, (∂3/∂x3)u can be expressed as

∂3

∂x3 u(0, yj, tm) =
L

∑
l=1

ql D
αl
t

∂

∂x
u(0, yj, tm)−

∂

∂x
∂2

∂y2 u(0, yj, tm) (12)

+u(0, yj, tm)
∂

∂x
c(0, yj) + c(0, yj)

∂

∂x
u(0, yj, tm)−

∂

∂x
F(0, yj, tm).

Furthermore, in view of (10), we obtain

∂3

∂x3 u(0, yj, tm) = σ
J

∑
l=1

ql D
αl
t u(0, yj, tm)− σ

∂2

∂y2 u(0, yj, tm) + p1(0, yj)− g1(0, yj, tm). (13)

So, substituting (13) into (11) to replace (∂3/∂x3)u yields

∂2

∂x2 u(0, yj, tm) =q1(0, yj, tm)−
h
3

(
σ

J

∑
l=1

ql D
αl
t u(0, yj, tm)− σ

∂2

∂y2 u(0, yj, tm) (14)

+ p1(0, yj, tm)− g1(0, yj, tm)

)
− Ch2.
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Adding (σh/3)(∑J
l=1 ql D

αl
Mu(0, yj, tm)) to the right-hand side and subtract it. Then, by trun-

cation error (4), we have

∂2

∂x2 u(0, yj, tm) =q1(0, yj, tm)−
h
3

(
σ

J

∑
l=1

ql D
αl
Mu(0, yj, tm)− σ

∂2

∂y2 u(0, yj, tm)

+ p1(0, yj)− g1(0, yj, tm)

)
− Ch2 − Chm−min{2−α1,r(α1+1)}.

For 1 ≤ j ≤ N − 1, 1 ≤ m ≤ M, we can approximate (1) on boundary point (0, yj, tm)
by the discrete problem

L

∑
l=1

ql D
αl
Mum

0,j − δb
xum

0,j − δ2
yum

0,j + c0,jum
0,j = Fm

0,j (15)

The other corner points can be treated similarly.

2.3. Corner Points

For convenience, we introduce the following functions

δc
xu(x, y, t) :=

1
1 − σh

3

[
q1(x, y, t)− h

3

(
σ

J

∑
l=1

ql D
αl
Mu(x, y, t) + p1(x, y, t)− g1(x, y, t)

)]

δc
yu(x, y, t) :=

1
1 − σh

3

[
q2(x, y, t)− h

3

(
σ

J

∑
l=1

ql D
αl
Mu(x, y, t) + p2(x, y, t)− g2(x, y, t)

)]
and grid functions

δc
xum

i,j = δc
xu(xi, yj, tm), δc

yum
i,j = δc

yu(xi, yj, tm)

Lemma 2. Assume u(·, ·, tm) ∈ C2(Ω̄) for fixed tm; then, there exists a constant C such that∣∣∣∣δc
xu(0, 0, tm)−

∂2

∂x2 u(0, 0, tm)

∣∣∣∣+ ∣∣∣∣δc
yu(0, 0, tm)−

∂2

∂y2 u(0, 0, tm)

∣∣∣∣
≤ Ch2 + Chm−min{2−α1,r(α1+1)}. (16)

Proof. For corner point (0, 0, tm), where m = 1, . . . , M (1a) and (1c) at point (0, 0, tm) are

L

∑
l=1

ql D
αl
t u(0, 0, tm)−Δu(0, 0, tm) + c(0, 0)u(0, 0, tm) = F(0, 0, tm), (17)

σu(0, 0, tm)−
∂

∂x
u(0, 0, tm) = g(0, 0, tm), σu(0, 0, tm)−

∂

∂y
u(0, 0, tm) = g(0, 0, tm). (18)

Similarly, by the Taylor expansion of u(h, 0, tm) at point (0, 0, tm) and u(0, h, tm) at point
(0, 0, tm)

u(h, 0, tm) = u(0, 0, tm) + h
∂

∂x
u(0, 0, tm) +

h2

2
∂2

∂x2 u(0, 0, tm) +
h3

6
∂3

∂x3 u(0, 0, tm) + Ch4,

u(0, h, tm) = u(0, 0, tm) + h
∂

∂y
u(0, 0, tm) +

h2

2
∂2

∂y2 u(0, 0, tm) +
h3

6
∂3

∂y3 u(0, 0, tm) + Ch4.
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Combining the above two equations and boundary conditions (18), we have

∂2

∂x2 u(0, 0, tm) +
∂2

∂y2 u(0, 0, tm) = q1(0, 0, tm) + q2(0, 0, tm)

− h
3

∂3

∂x3 u(0, 0, tm)−
h
3

∂3

∂y3 u(0, 0, tm)− Ch2. (19)

Differentiating (17) with respect to x and y, respectively, we can express (∂3/∂x3)u +
(∂3/∂y3)u at (0, 0, tm) as

∂3

∂x3 u(0, 0, tm) +
∂3

∂y3 u(0, 0, tm) = 2σ
J

∑
l=1

ql D
αl
t u(0, 0, tm) + p1(0, 0, tm) + p2(0, 0, tm)

− σ
∂2

∂y2 u(0, 0, tm)− σ
∂2

∂x2 u(0, 0, tm)− g1(0, 0, tm)− g2(0, 0, tm), (20)

where we can apply (20) into the right-hand side of (19); thus, we have

∂2

∂x2 u(0, 0, tm) +
∂2

∂y2 u(0, 0, tm) = q1(0, 0, tm) + q2(0, 0, tm) (21)

− h
3

(
2σ

J

∑
l=1

ql D
αl
t u(0, 0, tm)− σ

∂2

∂y2 u(0, 0, tm)− σ
∂2

∂x2 u(0, 0, tm)

+ p1(0, 0, tm) + p2(0, 0, tm)− g1(0, 0, tm)− g2(0, 0, tm)

)
− Ch2.

That means

∂2

∂x2 u(0, 0, tm) +
∂2

∂y2 u(0, 0, tm) =
1

1 − σh
3

[
q1(0, 0, tm) + q2(0, 0, tm)

− h
3

(
2σ

J

∑
l=1

ql D
αl
t u(0, 0, tm) + p1(0, 0, tm) + p2(0, 0, tm) (22)

− g1(0, 0, tm)− g2(0, 0, tm)

)]
− Ch2.

Add (2σh/(3 − σh))(∑J
l=1 ql D

αl
Mu(0, yj, tm)) to the right-hand side and subtract it. Then,

by truncation error (4), we have

∂2

∂x2 u(0, 0, tm) +
∂2

∂y2 u(0, 0, tm) =
1

1 − σh
3

[
q1(0, 0, tm) + q2(0, 0, tm)

− h
3

(
2σ

J

∑
l=1

ql D
αl
Mu(0, 0, tm) + p1(0, 0, tm) + p2(0, 0, tm)

− g1(0, 0, tm)− g2(0, 0, tm)

)]
− Ch2 − Chm−min{2−α1,r(α1+1)}.

We can approximate (1) on corner point (0, 0, tm) with the discrete problem

L

∑
l=1

ql D
αl
Mum

0,0 − δc
xum

0,0 − δc
yum

0,0 + c0,0um
0,0 = Fm

0,0 for 1 ≤ j ≤ N − 1, 1 ≤ m ≤ M. (23)

The other corner points can be treated similarly.
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3. Error Analysis

The local error analysis of problem (1) is studied in this section. The discrete scheme is
the same as in Section 2. Let

Em :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M−r tα1−1

m if 1 ≤ r < 2 − α1,

Mα1−2 tα1−1
m [1 + ln(tm/t1)] if r = 2 − α1,

Mα1−2 tα1−(2−α1)/r
m if r > 2 − α1.

From ([20] Theorem 3), we obtain the next result, which will be used.

Lemma 3.

(i) If the mesh function {Vm}M
m=0 satisfies V0 = 0 and

L

∑
l=1

ql D
αl
M|Vm| ≤ Cm− min{2−α1, r(α1+1)} for m = 1, 2, . . . , M, (24)

for some C > 0, then |Vm| ≤ CEm for m = 1, 2, . . . , M.
(ii) If the mesh function {Vm}M

m=0 satisfies V0 = 0 and

L

∑
l=1

ql D
αl
M|Vm| ≤ C for m = 1, 2, . . . , M, (25)

for some C > 0, then |Vm| ≤ C for m = 1, 2, . . . , M.

Now, we provide the main result of this paper. For grid function {vm
i,j}, set ‖vm‖∞,Ω̄ =

max(i,j)∈Ω̄h
|vm

i,j|.

Theorem 1. The solution {um
i,j} of the L1-finite difference scheme satisfies

max
(xi ,yj ,tm)∈Q̄

|u(xi, yj, tm)− um
i,j| ≤ C

(
h2 + Em

)
(26)

for some constant C independent of the mesh.

Proof. Set em
i,j := u(xi, yj, tm)− um

i,j, where (i, j, m) ∈ Q̄. Set (i∗, j∗) ∈ Ω̄h such that |em
i∗ ,j∗ | =

max
(i,j)∈Ω̄

|em
i,j|. Suppose that em

i∗ ,j∗ ≥ 0 (the case em
i∗ ,j∗ ≤ 0 can be proved similarly).

If (i∗, j∗) ∈ Ωh, by (1a) and (7) we obtain the error equation

L

∑
l=1

ql D
αl
Mem

i,j − δ2
xem

i,j − δ2
yem

i,j + c(xi, yj)em
i,j

= (
L

∑
l=1

ql D
αl
M −

L

∑
l=1

ql D
αl
t )u(xi, yj, tm) + (δ2

x − ∂2

∂x2 )u(xi, yj, tm) (27)

+ (δ2
y − ∂2

∂y2 )u(xi, yj, tm)

= Ri,j
t + Ri,j

x + Ri,j
y .
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As a result of |em
i∗ ,j∗ | = max

(i,j)∈Ω̄
|em

i,j| and em
i∗ ,j∗ ≥ 0, we have −δ2

xem
i∗ ,j∗ − δ2

yem
i∗ ,j∗ > 0.

Combine this with c ≥ c0 > 0, we have

L

∑
l=1

ql D
αl
Mem

i∗ ,j∗ ≤ Ri,j
t + Ri,j

x + Ri,j
y ≤ C

(
m−min{2−α1,r(α1+1)} + h2

)
. (28)

If i∗ = 0 and j∗ = 1, . . . , N − 1. Applying (1a) into (15) leads to the error equation

(1 +
σh
3
)

L

∑
l=1

ql D
αl
Mem

0,j −
2
h

δxem
1,j − (1 +

σh
3
)δ2

yem
0,j +

[
c0,j +

h
3

(
6σ

h2 + (c1)0,j + σc0,j

)]
em

0,j

= (
L

∑
l=1

ql D
αl
M −

L

∑
l=1

ql D
αl
t )u(0, yj, tm) + (δb

x − ∂2

∂x2 )u(0, yj, tm) + (δ2
y − ∂2

∂y2 )u(0, yj, tm)

= R0,j
t + R0,j

x + R0,j
y . (29)

It is easy to obtain − 2
h δxem

1,j∗ − (1 + σh
3 )δ2

yem
0,j∗ > 0. When h is small enough, (c0,j +

h
3 (

6σ
h2 +

(c1)0,j + σc0,j)) > 0. Compared to the time direction truncation error Cm−min{2−α1,r(α1+1)},
we can omit the higher order truncation error Chm−min{2−α1,r(α1+1)} caused by boundary
discretisation. Then, we have

L

∑
l=1

ql D
αl
Mem

i∗ ,j∗ ≤ (1 +
σh
3
)

L

∑
l=1

ql D
αl
Mem

i∗ ,j∗

≤ R0,j
t + R0,j

x + R0,j
y ≤ C

(
m−min{2−α1,r(α1+1)} + h2

)
. (30)

If i∗ = j∗ = 0. By (1a) into (23), the error equation is

(1 +
2hσ

3 − σh
)

L

∑
l=1

ql D
αl
Men

0,0 − 1
1 − σh

3

(
2
h

δxem
1,0 +

2
h

δyem
0,1)

+
1

1 − σh
3

[
h
3

(
(c1)0,0 + (c2)0,0 − 2σh

3
c(x0, y0)

)
+ 2σ

]
em

0,0 + c0,0em
0,0 (31)

= (
L

∑
l=1

ql D
αl
M −

L

∑
l=1

ql D
αl
t )u(0, 0, tm) + (δc

x − ∂2

∂x2 )u(0, 0, tm) + (δc
y − ∂2

∂y2 )u(0, 0, tm)

= R0,0
t + R0,0

x + R0,0
y .

Then, we have − 2
h δxem

1,0 − 2
h δxem

0,1 > 0. When h is small enough, we have c(0, 0)−
1

1− σh
3

(
(c1)0,0 + (c2)0,0 + 2σ − σh

3 c(x0, y0)
)
. Similarly, omitting higher order error caused by

Chm−min{2−α1,r(α1+1)}, we have

L

∑
l=1

ql D
αl
Mem

i∗ ,j∗ ≤ R0,0
t + R0,0

x + R0,0
y ≤ C

(
m−min{2−α1,r(α1+1)} + h2

)
. (32)

For other corner points, we shall obtain similar results.
For l = 1, . . . , L, rewrite the discretization of each Caputo derivative as

Dαl
Mum

i,j =
dl

m,1

Γ(2 − αl)
um

i,j −
dl

m,m

Γ(2 − αl)
u0

i,j +
1

Γ(2 − αl)

m−1

∑
k=1

um−k
i,j

[
dl

m,k+1 − dl
m,k

]
where

dl
m,k :=

(tm − tm−k)
1−αl − (tm − tm−k+1)

1−αl

τm−k+1
.
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The mean value theorem gives (1 − αl)(tm − tm−k)
−αl ≤ dl

m,k ≤ (1 − αl)(tm − tm−k+1)
−αl

and hence dl
m,k − dl

m,k+1 ≥ 0. Then,

Dαl
Mem

i∗ ,j∗ = dαl
m,mem

i∗ ,j∗ −
m−1

∑
k=0

(dαl
m,k − dαl

m,k+1)e
k
i∗ ,j∗ .

≥ dαl
m,m‖em‖∞,Ω̄h

−
m−1

∑
k=0

(dαl
m,k − dαl

m,k+1)‖ek‖∞,Ω̄h

= Dαl
M‖em‖∞,Ω̄h

.

By (28), (30) and (32), we have

L

∑
l=1

ql D
αl
M‖em‖∞,Ω̄h

≤ C
(

m−min{2−α1,r(α1+1)} + h2
)

. (33)

Note that ∑J
l=1 ql D

αl
M is associated with an M-matrix, so we can deal separately with

the terms m−min{2−α1,r(α1+1)} and h2. This means for m = 1, . . . , M,

‖u(xi, yj, tm)− um
i,j‖∞,Ω̄h

≤ C
(

h2 + Em
)

.

Then, we finish the proof.

Remark 1. From (26), we can obtain the following global error results

max
m=1,...M

‖u(xi, yj, tm)− um
i,j‖∞,Ω̄h

≤ C max
m=1,...M

(
h2 + Em

)
≤ C

(
h2 + M− min{2−α1,rα1}

)
. (34)

4. Numerical Results

In order to prove the validity of the numerical scheme, two numerical examples are
introduced. One example has a known solution, the other is unknown.

We use the full discrete scheme in Section 2 to discretize 1. In the following examples,
we set mesh parameters r = (2 − α1)/0.9, L = 2 and 0 < α2 < α1 < 1. Let the space
interval N equals to the time interval M such that the error in the time direction dominates
the space error. On this basis, we shall check the sharpness of Theorem (1).

Example 1.

Dα1
t u + Dα2

t u − ∂2u
∂x2 − ∂2u

∂y2 + (1 + x + y)u = f (x, y, t) for (x, y, t) ∈ [0, 2]× [0, 2]× (0, 1],

u(x, y, 0) = (
1
3

x3 − x2 +
1
3

x +
1
3
)(

1
3

y3 − y2 +
1
3

y +
1
3
) for (x, y) ∈ [0, 2]× [0, 2],

u(0, y, t)− ∂u
∂x

(0, y, t) = 0, u(2, y, t) +
∂u
∂x

(2, y, t) = 0 for y ∈ [0, 2] t ∈ (0, 1].

u(x, 0, t)− ∂u
∂y

(x, 0, t) = 0, u(x, 2, t) +
∂u
∂y

(x, 2, t) = 0 for x ∈ [0, 2] t ∈ (0, 1].

(35)

The exact solution is u(x, y, t) = (1+ tα1 + t3)( 1
3 x3 − x2 + 1

3 x + 1
3 )(

1
3 y3 − y2 + 1

3 y + 1
3 ).

The right-hand-side function f (x, y, t) can be computed from (35).
In Table 1, the table contains the global error, and local error is defined as

errorM,N
G := max

i,j∈Ω̄
1≤m≤M

|um
i,j − u(xi, yj, tm)|, errorM,N

L := max
i,j∈Ω̄

�M/10�≤m≤N

|um
i,j − u(xi, yj, tm)|
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Then, we can compute the rate of convergence

rateM,N
G = log2

(
errorM,N

G

error2M,2N
G

)
, rateM,N

L = log2

(
errorM,N

L

error2M,2N
L

)
.

Table 1. Example 1 with α2 = 0.1 and r = (2 − α1)/α1.

Global Error Rate Local Error Rate

α1 = 0.4

M = 64 9.1820 × 10−4 0.509 3.4584 × 10−5 1.551
M = 128 6.4522 × 10−4 0.567 1.1802 × 10−5 1.568
M = 256 4.3544 × 10−4 0.612 3.9795 × 10−6 1.579
M = 512 2.8472 × 10−4 1.3317 × 10−6

α1 = 0.6

M = 64 4.6098 × 10−4 0.806 8.7567 × 10−5 1.377
M = 128 2.6355 × 10−4 0.860 3.3700 × 10−5 1.387
M = 256 1.4514 × 10−4 0.887 1.2876 × 10−5 1.393
M = 512 7.8446 × 10−5 4.9017 × 10−6

α1 = 0.8

M = 64 2.2223 × 10−4 0.852 2.1862 × 10−4 1.190
M = 128 1.2316 × 10−4 0.903 9.5808 × 10−5 1.195
M = 256 6.5823 × 10−5 0.943 4.1826 × 10−5 1.198
M = 512 3.4215 × 10−5 1.8230 × 10−5

Example 2.

Dα1
t u + Dα2

t u − ∂2u
∂x2 − ∂2u

∂y2 + (1 + x + y)u = 0 for (x, y,t) ∈ [0, 2]× [0, 2]× (0, 1],

u(x, y, 0) = (
1
3

x3 − x2 +
1
3

x +
1
3
)(

1
3

y3 − y2 +
1
3

y +
1
3
) for (x, y) ∈ [0, 2]× [0, 2],

u(0, y, t)− ∂u
∂x

(0, y, t) = 0, u(2, y, t) +
∂u
∂x

(2, y, t) = 0 for y ∈ [0, 2] t ∈ (0, 1].

u(x, 0, t)− ∂u
∂y

(x, 0, t) = 0, u(x, 2, t) +
∂u
∂y

(x, 2, t) = 0 for x ∈ [0, 2] t ∈ (0, 1].

(36)

In this example, the exact solution is unknown, and we can use the two-mesh principle
in [25] to check the convergence rate. Let um

i,j be the numerical solution computed on
the mesh {(xi, yj, tm)} for i, j = 0, . . . , N, m = 0, . . . , M. The second mesh is defined
as {(xi/2, yj/2, tm/2)} for i, j = 0, . . . , 2N, m = 0, . . . , 2M, where xi+1/2 := 1

2 (xi+1 + xi),
yy+1/2 := 1

2 (yj+1 + yj) and tm+1/2 := 1
2 (tm+1 + tm). Then, compute a new approximation

ûm
i,j using the same scheme as um

i,j.
Now the maximum two-mesh differences are defined by

errorM,N
G := max

i,j∈Ω̄
1≤m≤M

|um
i,j − ûm

i,j|, errorM,N
L := max

i,j∈Ω̄
�9M/10�≤m≤M

|um
i,j − ûm

i,j|

and they are used to compute the global and local rate of convergence rates

rateM,N
G = log2

(
errorM,N

G

error2M,2N
G

)
, rateM,N

L = log2

(
errorM,N

L

error2M,2N
L

)
.

In each Tables 1 and 2, let r = (2− α1)/0.9 and α2 = 0.1. The global convergence rate is
bigger than α1. The convergence rate ‖em

i,j‖ ≤ M−min{2−α1,rα1} can be found in other papers
that only focus on global errors [26,27]. When the parameters r and a1 are selected the
same as in this paper, the convergence rate can be seen to be the same. The most important
conclusion of this paper is the convergence rate of local errors. We can see that the rate of
convergence is (2 − α1). It is obvious that the local convergence rate in every time step is
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sharper than the global convergence rate. All these experimental results demonstrate the
sharpness of our theoretical analysis.

Table 2. Example 2 with α2 = 0.1 and r = (2 − α1)/0.9.

Global Error Rate Local Error Rate

α1 = 0.4

M = 32 6.6148 × 10−3 0.220 1.1175 × 10−4 1.683
M = 64 5.6762 × 10−3 0.374 3.4786 × 10−5 1.637

M = 128 4.4626 × 10−3 0.453 1.1178 × 10−5 1.568
M = 256 3.2585 × 10−3 3.7696 × 10−6

α1 = 0.6

M = 32 5.3413 × 10−3 0.662 4.0714 × 10−4 1.248
M = 64 3.3751 × 10−3 0.762 1.7139 × 10−4 1.391

M = 128 1.9889 × 10−3 0.751 6.5340 × 10−5 1.310
M = 256 1.1813 × 10−3 2.6352 × 10−5

α1 = 0.8

M = 32 3.7397 × 10−3 0.802 1.6129 × 10−3 1.175
M = 64 2.1438 × 10−3 0.877 7.1399 × 10−4 1.073

M = 128 1.1668 × 10−3 0.942 3.3927 × 10−4 1.163
M = 256 6.0732 × 10−4 1.5143 × 10−4

5. Discussion

In this paper, we have presented a fully discrete scheme for multiple time-fractional
reaction diffusion equations by using the L1 scheme in time and finite difference method
in space. To the best of our knowledge, the Robin boundary conditions have not been
explored much in this regard. For this type of boundary conditions, we have constructed
a discrete scheme of (1) at the boundary points which can match the convergence rate of
the inner points. Based on the fully discrete scheme, a detailed local error analysis for
(1) is presented. The convergence rate of each time node is proven, and two numerical
examples are used to verify the theoretical results. In our future work, we will consider
some methods with higher convergence rates in time and consider methods such as the
mixed finite element method in space.
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Abstract: An oscillating second-grade fluid through a rectangular cross duct is studied. A traditional
integer time derivative in the kinematic tensors is substituted by a fractional operator that considers
the memory characteristics. To treat the fractional governing equation, an analytical method was
obtained. To analyze the impact of the parameters more intuitively, the difference method was
applied to determine the numerical expression and draw with the help of computer simulation. To
reduce the cost of the amount of computation and storage, a fast scheme was proposed, one which can
greatly improve the calculation speed. To verify the correctness of the difference scheme, the contrast
between the numerical expression and the exact expression—constructed by introducing a source
term—was given and the superiority of the fast scheme is discussed. Furthermore, the influences of
the involved parameters, including the parameter of retardation time, fractional parameter, magnetic
parameter, and oscillatory frequency parameter, on the distributions of velocity and shear force at the
wall surface with oscillatory flow are analyzed in detail.

Keywords: second-grade fluid; rectangular duct; constitution relationship; fractional derivative;
fast algorithms

1. Introduction

The flow of fluid has widespread applications, including in aerospace, biomedicine,
oil exploitation etc. The classical fluid model is the Newtonian fluid in which the stress
tensor and the kinematic tensor have a linear relationship. It has a limitation in so far
that it can only describe most pure liquids such as water and alcohol. In addition to the
fluids listed, most fluids are non-Newtonian whose characteristics have many properties
that different from those of Newtonian ones [1]. Studying the flow mechanism has great
significance. There are many types of non-Newtonian fluids and this paper studies the
second-grade fluid [2–4], in which the shear force is characterized by the stretching tensor
and the Rivlin–Ericksen tensors.

Due to the special description of the constitution relationship, the second-grade fluid
has its own unique properties. In order to better discover its flow mechanism, the usual
method is to consider the flow through simple models. The common categories for this
include the flow on semi-infinite plates [5,6], two parallel infinitely long plates [7], the
flow in pipes or ducts [8], or the flow in a circular tube [9]. Non-Newtonian fluids in
rectangular channels have gained special interest for the engineering applications such as
in magnetohydrodynamic generators and marine mechanical equipment, interest which
has helped us to study the flow characteristics in depth [10]. Studying second-grade fluid in
a rectangular cross duct has important research significance and application value. Erdoğan
and İmrak [11] were the first scholars to study the unsteady motion of second-grade fluid
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through a rectangular cross duct with the influences of the side walls. It has been further
studied by many scholars. Considering heat transfer with relaxation time, Alamri et al. [12]
analyzed particle diffusion in the flow of second-grade fluid and discussed the effects of the
involved parameters on the profile graphically. Bernard [13] studied a three-dimensional
second-grade fluid with a tangential boundary condition in a polyhedron. By comparing
with the stress of the Newtonian fluid at the initial time, Erdoğan and İmrak [14] considered
the motion properties of second-grade fluid driven by the impulsive motion or sudden
pressure gradient. The comparison of the stress at the start time between the Newtonian
fluid and the second-grade fluid was discussed. Furthermore, the influence of the magnetic
field has important research significance. It has been applied to the Maxwell fluid [15],
Oldroyd-B fluid [16] et al., but it has fewer studies on the second-grade fluid.

Besides, many situations consider the steady-state motion of the second-grade fluid
for simplicity. However, for the practical situation, the velocity field produced by the flow
should vary with time due to the complexity of the fluid flow. The unsteady state has more
research significance for the second-grade fluid with the condition that the time derivative
in the constitutional relationship is integral to considering the local characteristics. With
further research, it has been found that the fractional model has gained support for its
memory characteristic [17]. At present, the fractional operators have been applied in
many viscoelastic fluids, such as the Maxwell model [18], Oldroyd-B model [19], Burgers’
model [20] et al. For the fractional second-grade fluid, the constitution relationship has
a similar form with the viscoelastic fluid, namely, they all have the fractional material
derivative term. The application of fractional operator on the motion of second-grade
fluid has been analyzed by Tan and Xu [21], Bazhlekova et al. [22], Kan and Wang [23],
Li et al. [24] et al. For flow driven by a special form of oscillatory pressure, it has been
widely applied in the motions in an isosceles right triangle tube with Maxwell fluid [25], in
a straight rectangular duct with the second-grade fluid [26], in a cylindrical domain with
the Oldroyd-B fluid [27], and in cylindrical domains with the fractional Burgers fluid [28].
To the best of the authors’ knowledge, the two-dimensional flow of second-grade fluid in
rectangular ducts driven by oscillatory pressure and considering a magnetic field has not
been considered in the literature so far.

There are many methods to solve the governing equation [29–31]. For the treatment of
the fractional second-grade fluid, the traditional method is to apply the integral transform
method to obtain an analytical solution [27,32,33], with the paradox that the principle of
causality causing the initial conditions is a non-rigorous enforcement. In other words,
these treatments for the start-up flow proposed by Christov [34,35] are incorrect. There
are many numerical methods [36] that can solve the fractional governing equation and the
numerical difference method has been applied to solve the corresponding mathematical
problem correctly.

The governing equation subject to the fractional second-grade constitutive relationship
is solved numerically. The difference is that the integer term has mature calculation meth-
ods, while the key is to treat the fractional derivative. The classical method is to choose the
L1 scheme [37] to approximate it, though it is limited by the huge amount of computation
and storage required for long-term numerical simulation, since the Caputo derivative
depends on historical information. This is an urgent problem to be solved at present. Using
exponential functions to approximate the Abel kernel function of Caputo derivatives, the
fast algorithm [38] has been developed. The main idea is to reduce the number of iterations
by constructing a recurrent relationship. At each time step, the convolution containing
the exponential kernel is calculated in O(1) time. Then the computational amount O

(
N2)

and storage O(N) for the direct L1-algorithm reduces to O(N log2 N) and O(log2 N) for
the fast algorithm, respectively. This has been applied to treat fractional diffusion models [39],
multi-term fractional sub-diffusion models [40], wave models [41] and the variable co-
efficient fractional diffusion wave models [42]. According to the numerical results, the
analyses are discussed and are detailed by graphical illustration.
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The paper’s outline is given as follows. The derivation of the mathematical model
of the second-grade fluid over a rectangular duct with an infinite length and which is
caused by a various pressure gradient is given in Section 2. The exact expression for
describing the second-grade fluid is deduced in Section 3. Section 4 gives the numerical
difference scheme of the formulated governing equation and the analyses of the solvability,
stability and convergence are proven in Section 5. Section 6 gives the fast evolution of the
difference scheme. Section 7 gives the comparison between the numerical expression and
the exact expression. Furthermore, the influences of the relevant parameters on the transfer
mechanism of the velocity field and the shear force at the wall surface are also analyzed.
The conclusions are summarized in Section 8.

2. The Derivation of the Mathematical Model

Consider the motions of an incompressible second-grade fluid. The laminar flow in a
straight duct with infinite length and the rectangular cross-section is considered and the
flow is controlled by pressure gradient with time/space oscillations. As shown in Figure 1,
the width and height of the rectangular section are 2a and 2b. The center in the cross-section
is defined as the origin and the boundaries along x direction and y direction are at the
positions x = ±a and y = ±b while z ∈ [0,+∞) along z direction. For simplicity, the body
forces are neglected in this paper.

Figure 1. The motion of second-grade fluid in a rectangular cross duct.

The continuity equation is given as

∇ · V = 0, (1)

where ∇ denotes the gradient operator.
As a development, for the fractional second-grade fluid when considering the memory

characteristics [21], the stress tensor τ has the following expression

τ = μA1 + α1 A2 + α2 A2
1, (2)

where μ refers to the dynamic viscosity, α1 and α2 denote the material moduli, A1 and A2
are the kinematic tensors with the expression as

A1 = ∇V + (∇V)T and A2 = Dα
t A1 + A1∇V + (∇V)T A1, (3)

where Dα
t denotes the Riemann–Liouville’s fractional operator of order α (0 < a < 1) [43],

the definition for a function f (t) defined on [t1, t2] is given as

Dα
t f (t) =

d
dt

(
1

Γ(1 − α)

∫ t

t1

f (ξ)
(t − ξ)α dξ

)
. (4)
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For considering the Clausius–Duhem inequality and assuming that the minimum
at equilibrium for the Helmholtz free energy is [44,45], the material constants satisfy the
following restrictions

μ ≥ 0, α1 ≥ 0 and α1 + α2 = 0. (5)

Applying the periodic pressure gradient into the z-direction, the motion of second-
grade fluid in the direction is parallel to the axial coordinate with an oscillating form. The
velocity field is assumed as

V = [0, 0, w(x, y, t)]T , (6)

where w(x, y, t) refers to the velocity in the z-direction. For this consideration, it is sim-
ple to find that the continuity Equation (1) automatically satisfies consideration of the
velocity field (6).

Considering the effect of an electromagnetic field, the motion equation for describing
the second-grade fluid is denoted as follows

ρDtV = −∇p +∇ · τ − σ0B2
0V, (7)

where V corresponds to the velocity vector, ρ refers to the fluid density, p denotes the
hydrostatic pressure, the operator Dt refers to the material derivative, σ0 refers to electrical
conductivity and B0 is the magnetic field.

Combining the expansion of Equation (2) (see the Appendix A) with Equation (7), the
fractional governing equation can be derived as

∂w
∂t

= ν(1 + λDα
t )

(
∂2w
∂x2 +

∂2w
∂y2

)
− Mw − 1

ρ

∂p
∂z

, (8)

where ν = μ
ρ denotes the kinematic viscosity, λ = α1

μ refers to the retardation time, M =
σ0B2

0
ρ

corresponds to the magnetic parameter.
The initial conditions are

w(x, y, 0) = 0, (9)

and the boundary conditions regardless of slip are given as

w(±a, y, t) = w(x, ±b, t) = 0. (10)

The initial boundary conditions of (9) and (10) are the Dirichlet type based on the
physical backgrounds considering a laminar flow in a straight duct with infinite length and
rectangular cross-section. When the boundary conditions change to Neumann, Robin or
some other kind of initial boundary conditions, the physical meaning of this paper changes.
However, the treatment process of the fractional governing equation with the difference
method and the fast algorithm is also applicable. The only difference is the boundary
discretization is slightly different.

Theorem 1. [43] Assume a positive α satisfies 0 ≤ n − 1 < α < n. Suppose the function f (t) in
region [t1, t2] has n − 1 continuous bounded derivative for every t2 > t1, then

Dα
t f (t) = CDα

t f (t) +
n−1

∑
j=1

f (j)(t1)(t − t1)
j−α

Γ(1 + j − α)
, t1 ≤ t ≤ t2, (11)

where CDα
t f (t) refers to the Caputo’s fractional derivative [43].

Through Theorem 1, we have Dα
t f (t) = CDα

t f (t) with the condition that second-grade
fluid flowing along a straight rectangular duct is subjected to the zero initial condition. In
the following discussions, we are able to substitute the Riemann–Liouville derivative with
Caputo’s derivative.
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3. Analytical Solution

In this part, we try to obtain the analytical solution of (8)–(10). Firstly, we consider the
equation:

∂u
∂t

= ν

(
∂2u
∂x2 +

∂2u
∂y2

)
− Mu, (12)

u(±1, y, t, τ) = u(x, ±1, t, τ) = 0. (13)

To simplify the calculation, we introduce u(x, y, t, τ) = h(x + 1, y + 1, t, τ), after which
it becomes:

∂h
∂t

= ν

(
∂2h
∂x2 +

∂2h
∂y2

)
− Mh, (14)

h(0, y, t, τ) = h(x, 0, t, τ) = h(2, y, t, τ) = h(x, 2, t, τ) = 0 (15)

The solution of (14)–(15) is obtained by separation of variables. Defining
h(x, y, t, τ) = T(t, τ)Φ(x, y) and the operator Δ = ∂2

∂x2 +
∂2

∂y2 , yields:

Φ
∂T
∂t

= νTΔΦ − MTΦ, (16)

Φ(0, y) = Φ(x, 0) = Φ(2, y) = Φ(x, 2) = 0 (17)

Denote
ΔΦ = η · Φ. (18)

It can be deduced immediately that

∂T
∂t

= (νη − M)T (19)

Equation (18) is a Helmholtz equation and the solution with the boundary conditions
(17) can be obtained: Φn,m = sin

( nπ
2 x
)

sin
(mπ

2 y
)
, where n, m ∈ N. It can then be deduced

that η can only be discrete values with the value η = − n2+m2

4 π2. It is simple to determine
the solution to Equation (19) as T = B(τ)e(νη−M)t, where B(τ) is an arbitrary function. The
solution of h(x, y, t, τ) has the following form

h(x, y, t, τ) =
+∞

∑
n=1

+∞

∑
m=1

Bn,m(τ)e−(vπ2 n2+m2
4 +M)t sin

(nπ

2
x
)

sin
(mπ

2
y
)

, (20)

and then

u(x, y, t, τ) =
+∞

∑
n=1

+∞

∑
m=1

Bn,m(τ)e−(vπ2 n2+m2
4 +M)t sin

(nπ

2
(x + 1)

)
sin
(mπ

2
(y + 1)

)
(21)

Denote 1
ρ

∂p
∂z = g(t). Equation (8) can be expressed as:

∂w
∂t

= ν(1 + λDα
t )

(
∂2w
∂x2 +

∂2w
∂y2

)
− Mw − g(t). (22)

Suppose there is a function u(x, y, t, τ) satisfying w(x, y, t) =
∫ t

0 u(x, y, t, τ)dτ. Substi-
tuting this expression into (21), yields

u(x, y, t, t) +
∫ t

0
∂u(x,y,t,τ)

∂t dτ =
∫ t

0 (νΔu(x, y, t, τ)− Mu(x, y, t, τ))dτ

+ νλ
Γ(1−α)

d
dt

∫ t
0 (t − ξ)−α∫ ξ

0 Δu(x, y, ξ, τ)dτdξ − g(t).
(23)
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From Equation (12), Equation (23) can be reduced as:

νλ

Γ(1 − α)

d
dt

∫ t

0
(t − ξ)−α

∫ ξ

0
Δu(x, y, ξ, τ)dτdξ − u(x, y, t, t) = g(t). (24)

Substituting the solution (21) into Equation (24), yields[
− νλ

Γ(1−α)

+∞
∑

n=1

+∞
∑

m=1

(
n2+m2

4 π2
)

d
dt

∫ t
0 (t − ξ)−α∫ ξ

0 Bn,m(τ)dτe−(vπ2 n2+m2
4 +M)ξdξ

−
+∞
∑

n=1

+∞
∑

m=1
Bn,m(t)e−(vπ2 n2+m2

4 +M)t
]
· sin

( nπ
2 (x + 1)

)
sin
(mπ

2 (y + 1)
)
= g(t).

(25)

Perform the inner product with sin
( n0π

2 (x + 1)
)

sin
(m0π

2 (y + 1)
)

on both sides of
Equation (25) and integral interval chosen as [−1, 1]× [−1, 1]. Then for the left side of the
Equation (25), we have:

+∞
∑

n=1

+∞
∑

m=1
Cn,m(t)

∫ 1
−1

∫ 1
−1 sin

( nπ
2 (x + 1)

)
sin
(mπ

2 (y + 1)
)

sin
( n0π

2 (x + 1)
)

sin
(m0π

2 (y + 1)
)
dxdy

=
+∞
∑

n=1

+∞
∑

m=1

Cn,m(t)
4

∫ 1
−1

[
cos
(
(n−n0)π

2 (x + 1)
)
− cos

(
(n+n0)π

2 (x + 1)
)]

dx

·
∫ 1
−1

[
cos
(
(m−m0)π

2 (y + 1)
)
− cos

(
(m+m0)π

2 (y + 1)
)]

dy
= Cn0,m0(t)

(26)

where

Cn,m(t) = −νλπ2(n2 + m2)
4Γ(1 − α)

d
dt

∫ t

0
(t − ξ)−α

∫ ξ

0
Bn,m(τ)dτe−(vπ2 n2+m2

4 +M)ξdξ − Bn,m(t)e−(vπ2 n2+m2
4 +M)t

For the right-hand component of Equation (25), the integral is zero when n0 and m0
are even. Set n0 = 2k1 − 1, m0 = 2k2 − 1, where k1 and k2 are positive integers. Then we
have the following integral formula:

∫ 1

−1

∫ 1

−1
sin
(
(2k1 − 1)π

2
(x + 1)

)
sin
(
(2k2 − 1)π

2
(y + 1)

)
dxdy =

16
(2k1 − 1)(2k2 − 1)π2 . (27)

By a combination of Equations (26) and (27), the following equation can be obtained:

C(1)
n,m

Γ(1 − α)

d
dt

∫ t

0
(t − ξ)−α

∫ ξ

0
Bn,m(τ)dτe−C(2)

n,mξdξ − Bn,m(t)e−C(2)
n,mt = C(3)

n,mg(t), (28)

where n = 2k1 − 1, m = 2k2 − 1, C(1)
n,m = −

(
n2+m2

4 π2
)

νλ, C(2)
n,m = vπ2 n2+m2

4 + M and

C(3)
n,m = 16

nmπ2 .

Denote ξ = t − γ, Equation (28) can be rewritten as:

C(1)
n,m

Γ(1−α)

(∫ t
0 γ−αBn,m(t − γ)eC(2)

n,m(γ−t)dγ − C(2)
n,m
∫ t

0 γ−α
∫ t−γ

0 Bn,m(τ)dτeC(2)
n,m(γ−t)dγ

)
−Bn,m(t)e−C(2)

n,mt = C(3)
n,mg(t).

(29)

Denote t = 0, we have the relationship:

Bn,m(0) = −C(3)
n,mg(0). (30)

Multiplying the left and right sides of (29) by eC(2)
n,mt and taking the derivative of t, yields:
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C(1)
n,m

Γ(1−α)

(
t−αBn,m(0)eC(2)

n,mt +
∫ t

0 γ−αBn,m
′(t − γ)eC(2)

n,mγdγ − C(2)
n,m
∫ t

0 γ−αBn,m(t − γ)eC(2)
n,mγdγ

)
− dBn,m(t)

dt = eC(2)
n,mtC(3)

n,m

(
C(2)

n,mg(t) + g′(t)
)

.
(31)

Resort to variable γ = t − ξ and multiply both sides of Equation (31) by e−C(2)
n,mt,

we have:

C(1)
n,m

Γ(1−α)

∫ t
0 (t − ξ)−α dBn,m(ξ)e−C(2)n,mξ

dξ dξ − dBn,m(t)e−C(2)n,mt

dt − C(2)
n,mBn,m(t)e−C(2)

n,mt

= C(3)
n,m

(
C(2)

n,mg(t) + g′(t)
)
− C(1)

n,m
Γ(1−α)

t−αBn,m(0).
(32)

Denoting An,m(t) = Bn,m(t)e−C(2)
n,mt and according to (30), we have

C(1)
n,m

dα+1 An,m

dtα+1 − dAn,m

dt
− C(2)

n,m An,m = C(3)
n,m

(
C(2)

n,mg(t) + g′(t)
)
− C(1)

n,m An,m(0)
Γ(1 − α)

t−α, (33)

where n = 2k1 − 1, m = 2k2 − 1 and An,m(0) = −C(3)
n,mg(0). The analytical solution can be

obtained by referring to [46].
Then the solution to Equation (20) can be obtained as:

w(x, y, t) =
+∞

∑
n = 1

n = 2k1 − 1

+∞

∑
m = 1

m = 2k2 − 1

∫ t

0
Bn,m(τ)dτ · e−(vπ2 n2+m2

4 +M)t sin
(nπ

2
(x + 1)

)
sin
(mπ

2
(y + 1)

)
, (34)

where Bn,m(t) = eC(2)
n,mt An,m(t) and An,m(t) refers to the solution of (33).

4. Numerical Discretization Method

Numerical Scheme

Firstly, we divide the spatial region [−a, a]× [−b, b] with the uniform mesh points
xi = −a + ihx, i = 0, 1, · · · , Mx, yj = −b + jhy, j = 0, 1, · · · , My, in which hx = 2a/Mx,
hy = 2b/My. For the time region [0, T], we take tn = nτ with time step τ = T/N for
n = 0, 1, · · · N. Define Ωh ≡

{(
xi, yj

)∣∣0 ≤ i ≤ Mx, 0 ≤ j ≤ My
}

and Ωτ ≡ {tn|0 ≤ n ≤ N }.

For a net function w =
{

wn
i,j

∣∣0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 0 ≤ n ≤ N
}

defined on an
interval Ωh × Ωτ , denote the following symbols for simplicity:

∇twn
i,j =

wn
i,j − wn−1

i,j

τ
, δxwn

i,j =
wn

i,j − wn
i−1,j

hx
, δywn

i,j =
wn

i,j − wn
i,j−1

hy
,

δ2
xwn

i,j =
wn

i+1,j − 2wn
i,j + wn

i−1,j

h2
x

, δ2
ywn

i,j =
wn

i,j+1 − 2wn
i,j + wn

i,j−1

h2
x

Furthermore, the exact solution is defined as Wn
i,j = w

(
xi, yj, tn

)
for simplicity. Ap-

plying the L1-scheme [37] for discretizing the fractional derivative, at the mesh points(
xi, yj, tn

)
, we have:

∂αWn
i,j

∂tα
=

τ−α

Γ(2 − α)

(
c0Wn

i,j −
n−1

∑
k=1

(cn−k−1 − cn−k)Wk
i,j − cn−1W0

i,j

)
+ (R1)

n
i,j (35)

where ck = (k + 1)1−α − k1−α and
∣∣∣(R1)

n
i,j

∣∣∣ ≤ Cτ2−α.
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At the mesh points
(
xi, yj, tn

)
, the backward difference method is applied to discretize

the time derivative of order one

∂Wn
i,j

∂t
= ∇tWn

i,j + O(τ) (36)

Use of the central difference scheme yields the discretization schemes for the second
order space derivatives

∂2Wn
i,j

∂x2 = δ2
xWn

i,j + O
(

h2
x

)
and

∂2Wn
i,j

∂y2 = δ2
yWn

i,j + O
(

h2
y

)
(37)

Combining (35) and (37), we have the difference schemes for the mixed derivatives of
time and space:

∂α

∂tα

∂2

∂x2 Wn
i,j =

τ−α

Γ(2 − α)

(
c0δ2

xWn
i,j −

n−1

∑
k=1

(cn−k−1 − cn−k)δ
2
xWk

i,j − cn−1δ2
xW0

i,j

)
+ (R2)

n
i,j, (38)

∂α

∂tα

∂2

∂y2 Wn
i,j =

τ−α

Γ(2 − α)

(
c0δ2

yWn
i,j −

n−1

∑
k=1

(cn−k−1 − cn−k)δ
2
yWk

i,j − cn−1δ2
yW0

i,j

)
+ (R3)

n
i,j, (39)

where
∣∣∣(R2)

n
i,j

∣∣∣ ≤ C
(
τ2−α + h2

x
)

and
∣∣∣(R3)

n
i,j

∣∣∣ ≤ C
(

τ2−α + h2
y

)
.

Denote the discretization scheme for − 1
ρ

∂p
∂z at the points

(
xi, yj, tn

)
as gn

i,j. Through
the difference schemes (35)–(39), we have the final discretization scheme for the
governing Equation (8)

∇tWn
i,j + MWn

i.j − νδ2
xWn

i,j − νδ2
yWn

i,j

= νλ τ−α

Γ(2−α)

(
c0δ2

xWn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xWk

i,j − cn−1δ2
xW0

i,j

)
+νλ τ−α

Γ(2−α)

(
c0δ2

yWn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
yWk

i,j − cn−1δ2
yW0

i,j

)
+ gn

i,j + Rn
i,j,

(40)

where
∣∣∣Rn

i,j

∣∣∣ ≤ C
(

τ + h2
x + h2

y

)
.

Substituting Wn
i,j with wn

i,j, we have the numerical difference scheme of Equation (8)

∇twn
i,j + Mwn

i.j − νδ2
xwn

i,j − νδ2
ywn

i,j

= νλ τ−α

Γ(2−α)

(
c0δ2

xwn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xwk

i,j − cn−1δ2
xw0

i,j

)
+νλ τ−α

Γ(2−α)

(
c0δ2

ywn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
ywk

i,j − cn−1δ2
yw0

i,j

)
+ gn

i,j.

(41)

By merging the terms at the same time layer, making the left side the n-th time layer,
and the right side the time layer with the order less than n, Equation (41) can be rewritten
in another form:(

1
τ + M

)
wn

i,j − ν
h2

x
(r1 + 1)

(
wn

i+1,j − 2wn
i,j + wn

i−1,j

)
− ν

h2
y
(r1 + 1)

(
wn

i,j+1 − 2wn
i,j + wn

i.j−1

)
= 1

τ wn−1
i,j − νr1

[
n−1
∑

k=1
(cn−k−1 − cn−k)

(
δ2

xwk
i,j + δ2

ywk
i,j

)
+ cn−1

(
δ2

xw0
i,j + δ2

yw0
i,j

)]
+ gn

i,j,
(42)

where r1 = λτ−α

Γ(2−α)
and gn

i,j = − 1
ρ

∂p(xi ,yj ,tn)
∂z .
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In what follows, the symbol E denotes the unit matrix which may be with a different
order in various sections. Considering the zero-boundary conditions, the discretization
scheme (42) can be rewritten in a matrix form:(

1
τ + M

)
Ewn − ν(r1+1)

h2
x

E ⊗ K1wn − ν(r1+1)
h2

y
K2 ⊗ Ewn

= 1
τ Ewn−1 − νr1

[
n−1
∑

k=1
(cn−k−1 − cn−k)(E ⊗ K1 + K2 ⊗ E)wk + cn−1(E ⊗ K1 + K2 ⊗ E)w0

]
+ gn,

where the symbol ⊗ denotes the Kronecker product [47],

K1 =

⎛⎜⎜⎜⎝
−2 1
1 −2 1

. . . . . . . . .
1 −2 1

⎞⎟⎟⎟⎠
(Mx−1)×(Mx−1)

, K2 =

⎛⎜⎜⎜⎝
−2 1
1 −2 1

. . . . . . . . .
1 −2 1

⎞⎟⎟⎟⎠
(My−1)×(My−1)

,

wn =
(

wn
1,1, wn

2,1, . . . , wn
Mx−1,1, wn

1,2, wn
2,2, . . . , wn

Mx−1,2, . . . , wn
1,My−1, wn

2,My−1, . . . , wn
Mx−1,My−1

)T
,

gn =
(

gn
1,1, gn

2,1, . . . , gn
Mx−1,1, gn

1,2, gn
2,2, . . . , gn

Mx−1,2, . . . , gn
1,My−1, gn

2,My−1, . . . , gn
Mx−1,My−1

)T
.

The initial condition can be discretized as w0
i,j = 0 and the boundary conditions are

discretized as wn
0,j = wn

Mx ,j = wn
i,0 = wn

i,My
= 0. The above numerical method can be

applied to widespread situations, for example, the dynamics in porous media for solving
Richards’ equation [48]. For this equation, the treating method mentioned above can be
similarly applied.

Besides the velocity distribution, the shear force is another important quantity to
analyze. We consider the shear force τxz for xz-direction at the wall surface (x = 0), and the
difference scheme is given as:

τxz = (μ + α1Dα
t )

∂w
∂x

∣∣∣
x=0

≈
[
μ + α1τ−α

Γ(2−α)

]wn
1,j−wn

0,j
hx

− α1τ−α

Γ(2−α)

n−1
∑

k=1
(cn−k−1 − cn−k)

wk
1,j−wk

0,j
hx

− α1τ−αcn−1
Γ(2−α)

w0
1,j−w0

0,j
hx

.

Due to the symmetry of the velocity in the x- and y-directions, we deduce the shear
force along the yz-direction at the wall surface y = 0 to be the same as the xz-direction.

5. Feasibility Analysis

Denote Vh = {v|v} is a net function on Ωh × Ωτ , vn
i,j = 0 when i = 0 and Mx or j = 0

and My. For wn, vn ∈ Vh, we denote the discrete inner products and norms:

(wn, vn) = hxhy

Mx−1

∑
i=1

My−1

∑
i=1

wn
i,jv

n
i,j and ‖ wn ‖2 = (wn, wn). (43)

Lemma 1. [49] The matrix A ⊗ B is symmetric positive definite with the condition that both
A ∈ Rn×n and B ∈ Rn×n satisfy symmetric positive definite. For ∀0 �= v ∈ Rn2

, it holds that:

vT(A ⊗ B)v > 0. (44)

381



Fractal Fract. 2022, 6, 666

Lemma 2. [50] For all A and B, (A ⊗ B)T = AT ⊗ BT .

Lemma 3. For w, v ∈ Ωh × Ωτ , it is straightforward to check that
(

δ2
xwk, vk

)
= −

(
δxwk, δxvk

)
with the zero-boundary conditions by applying integration by parts.

Lemma 4. [37] For the symbols cj in (35), define the vector S = [S1, S2, . . . , SN ]
T and constant P,

it holds that:

τ−α

Γ(2 − α)

N

∑
k=1

[
c0Sk −

k−1

∑
j=1

(
ck−j−1 − ck−j

)
Sj − ck−1P

]
Sk ≥ T−α

2Γ(1 − α)

N

∑
k=1

S2
k − T1−α

2τΓ(2 − α)
P2

5.1. Solvability

Theorem 2. Denote wn
i,j as the numerical solution of Equations (8)–(10) for i = 0, 1, · · · , Mx,

j = 0, 1, · · · , My and n = 0, 1, · · · N, then (42) is uniquely solvable.

Proof. Denote the coefficient matrix G =
(

1
τ + M

)
E − ν(r1+1)

h2
x

E ⊗ K1 − ν(r1+1)
h2

y
K2 ⊗ E.

Firstly, using Lemma 3, we have:

GT =

(
1
τ
+ M

)
ET − ν(r1 + 1)

h2
x

ET ⊗ KT
1 − ν(r1 + 1)

h2
y

KT
2 ⊗ ET = G

Furthermore, the matrix G can simply be verified as strictly diagonally dominant. Then,
the matrix G is positive definite. Therefore, the numerical difference scheme has a unique
solution. �

5.2. Stability

Theorem 3. The scheme (41) possesses unconditional stability, which satisfies:

‖wN
i,j‖

2 ≤ T
2M

max
1≤n≤N

‖gn
i,j‖2

Proof. Multiplying both sides of Equation (41) by τhxhywn
i,j, and summing i, j, n from 1 to

Mx − 1, 1 to My − 1, 1 to N, respectively, we derive the following equation:

τhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j∇twn
i,j + Mτhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
wn

i,jw
n
i.j − ντhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j

(
δ2

xwn
i,j − δ2

ywn
i,j

)
− νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δ2

xwn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xwk

i,j − cn−1δ2
xw0

i,j

)
wn

i,j

− νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δ2

ywn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
ywk

i,j − cn−1δ2
yw0

i,j

)
wn

i,j

= τhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,jg
n
i,j.

By applying the inequation a(a − b) ≥ 1
2
(
a2 − b2) and considering the zero initial

condition, the first term satisfies:

τhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j∇twn
i,j ≥ 1

2 hxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1

[(
wn

i,j

)2
−
(

wn−1
i,j

)2
]

= 1
2 hxhy

Mx−1
∑

i=1

My−1

∑
i=1

[(
wN

i,j

)2
−
(

w0
i,j

)2
]
= 1

2

(
‖wN‖2 − ‖w0‖2

)
= 1

2‖wN‖2.
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Considering the relationship between the norm and inner product, the second term
yields

Mτhxhy

Mx−1

∑
i=1

My−1

∑
i=1

N

∑
n=1

wn
i,jw

n
i.j = Mτ

N

∑
n=1

(
wn

i,j, wn
i,j

)
= Mτ

N

∑
n=1

‖wn‖2

By using the Lemma 3, for the third term, we have

−ντhxhy
Mx−1

∑
i=1

My−1

∑
i=1

N
∑

n=1
wn

i,j

(
δ2

xwn
i,j + δ2

ywn
i,j

)
= ντhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
δxwn

i,jδxwn
i,j + ντhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1
δywn

i,jδywn
i,j

= ντ
N
∑

n=1
‖δxwn‖2 + ντ‖δywn‖2 ≥ 0

By applying Lemma 4, the fourth term satisfies:

− νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δ2

xwn
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xwk

i,j − cn−1δ2
xw0

i,j

)
wn

i,j

= νλτ−α

Γ(2−α)
τhxhy

Mx−1
∑

i=1

My−1

∑
i=1

N
∑

n=1

(
c0δxwn

i,j −
n−1
∑

k=1
(cn−k−1 − cn−k)δxwk

i,j − cn−1δxw0
i,j

)
δxwn

i,j

≥ νλτhxhy
Mx−1

∑
i=1

My−1

∑
i=1

[
T−α

2Γ(1−α)

N
∑

n=1

(
δxwn

i,j

)2
− T1−α

2τΓ(2−α)

(
δxw0

i,j

)2
]

= νλτT−α

2Γ(1−α)

N
∑

n=1
‖δxwn‖2 − νλT1−α

2Γ(2−α)
‖δxw0‖2 ≥ 0.

Similarly, for the fifth term, it satisfies

− νλτ−α

Γ(2 − α)
τhxhy

Mx−1

∑
i=1

My−1

∑
i=1

N

∑
n=1

(
c0δ2

ywn
i,j −

n−1

∑
k=1

(cn−k−1 − cn−k)δ
2
ywk

i,j − cn−1δ2
yw0

i,j

)
wn

i,j ≥ 0.

By using the Cauchy–Schwartz inequality, the last term changes as:

τhxhy

Mx−1

∑
i=1

My−1

∑
i=1

N

∑
n=1

wn
i,jg

n
i,j = τ

N

∑
n=1

(
wn

i,j, gn
i,j

)
≤ Mτ

N

∑
n=1

‖wn‖2 +
τ

4M

N

∑
n=1

‖gn‖2.

As a conclusion, we deduce:

‖wN‖2 ≤ τ

2M

N

∑
n=1

‖gn‖2 ≤ T
2M

max
1≤n≤N

‖gn‖2.

�

5.3. Convergence

Define the error en
i,j = wn

i,j − w
(
xi, yj, tn

)
. Taking the difference between the

Equations (40) and (41), we deduce that the error satisfies:

∇ten
i,j + Men

i.j − νδ2
xen

i,j − νδ2
yen

i,j

= νλ τ−α

Γ(2−α)

(
c0δ2

xen
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
xek

i,j − cn−1δ2
xe0

i,j

)
+νλ τ−α

Γ(2−α)

(
c0δ2

yen
i,j −

n−1
∑

k=1
(cn−k−1 − cn−k)δ

2
yek

i,j − cn−1δ2
ye0

i,j

)
+ O

(
τ + h2

x + h2
y

)
.

(45)
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Theorem 4. The scheme (41) is convergent with the following form:

‖eN‖2 ≤ T
2M

(
τ + h2

x + h2
y

)2
. (46)

Proof. Similar to the proof of the stability, substituting the source term with the error, we
have:

‖eN‖2 ≤ τ

2M

N

∑
n=1

(
τ + h2

x + h2
y

)2
=

T
2M

(
τ + h2

x + h2
y

)2
. (47)

�

6. Acceleration of the Fractional Derivative

The traditional treating method for the fractional derivative is to use the L1 scheme
with an expensive cost of computation and storage due to the non-locality that the fractional
derivative contains. The difference scheme at t = tn contains a summation of all values
from zero to the current time and the total cost at every spatial point is O

(
N2). To reduce

the computational and storage cost, a fast algorithm [38] is applied. Here we summarized
the main idea of the fast algorithm.

The definition of Caputo’s fractional derivative of order 0 < α < 1 can be expressed as
the summation of two terms, a local part Cl(tn) and a history part Ch(tn):

CDα
t w(t)

∣∣
t=tn

= 1
Γ(1−α)

∫ tn
0 (tn − s)−α ∂w(s)

∂s ds

= 1
Γ(1−α)

∫ tn
tn−1

1
(tn−s)α

∂w(s)
∂s ds + 1

Γ(1−α)

∫ tn−1
0

1
(tn−s)α

∂w(s)
∂s ds

:= Cl(tn) + Ch(tn).

(48)

For the local portion, we approximate ∂w(s)
∂s by w(tn)−w(tn−1)

τ , yields

Cl(tn) ≈
w(tn)− w(tn−1)

τΓ(1 − α)

∫ tn

tn−1

ds
(tn − s)α =

w(tn)− w(tn−1)

ταΓ(2 − α)
. (49)

We employ the integration by parts for the history part

Ch(tn) =
1

Γ(1 − α)

[
w(tn−1)

τα
− w(t0)

tα
n

− α
∫ tn−1

0

w(s)

(tn − s)α+1 ds

]
. (50)

Treating the kernel 1
tα+1 in the convolution integral is the key. Referring to [38], for any

time interval [τ, T], the kernel 1
tα+1 can be approached by an efficient sum-of-exponentials

approximation with a prescribed absolute error ε. Specifically speaking, there are real
positive numbers wl and sl (l = 1, · · · , Nexp) such that∣∣∣∣∣ 1

tα+1 −
Nexp

∑
l=1

ωl e−sl t

∣∣∣∣∣ ≤ ε, for any t ∈ [τ, T], (51)

where Nexp is of the order

Nexp = O
(

log
1
ε

(
log log

1
ε
+ log

T
σ

)
+ log

1
σ

(
log log

1
ε
+ log

1
σ

))
. (52)

Equation (4) is the main idea for the fast algorithm. The sum-of-exponentials approxi-
mation for the kernel 1

tβ can also be generalized for the order 0 < α < 2 [38,51].
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We substitute the kernel 1
tα+1 via the formular (51) to approximate the history portion as:

Ch(tn) ≈
1

Γ(1 − α)

[
w(tn−1)

τα
− w(t0)

tα
n

− α

Nexp

∑
l=1

wlWhis,l(tn)

]
, (53)

where Whis,l(tn) =
∫ tn−1

0 e−(tn−t)sl w(t)dt.

The function Whis,l(tn) is calculated for n = 1, 2, · · · , N and the following recurrent
relationship is derived

Whist,l(tn) = e−sl τWhist,l(tn−1) +
∫ tn−1

tn−2

e−sl(tn−τ)w(τ)dτ, Whist,l(t0) = 0. (54)

The integral in (54) could be rewritten as:

∫ tn−1

tn−2

e−sl(tn−τ)w(τ)dτ ≈ e−slτ

s2
l τ

[(
e−slτ − 1 + slτ

)
wn−1 +

(
1 − e−sl τ − e−sl τslτ

)
wn−2

]
. (55)

To compute Whis,i(tn), as Equation (55) indicates, Whis,i(tn−1) is already computed
and stored and the cost is needed by only O(1) at each step. As (6.4) indicates, the cost
to evaluate the fractional derivative is needed O

(
Nexp

)
at each time step. That is to say, a

reduction from O(N) to O(log N) or O
(

log2 N
)

.
As a summation, the fast evolution of the Caputo’s fractional derivative at t = tn is

given as:

FDα
t w(x, y, tn) =

Wn − Wn−1

ταΓ(2 − α)
+

1
Γ(1 − α)

[
Wn−1

τα
− W0

tα
n

− α

Nexp

∑
l=1

ωlWhist,l(tn)

]
+ R1, (56)

where |R1| ≤ C
(
τ2−α + ε

)
and the recurrence relation satisfies (6.7) and (6.8).

Combining (56) and (37), we have:

∂α

∂tα

∂2

∂x2 wn
i,j =

δ2
xwn

i,j − δ2
xwn−1

i,j

ταΓ(2 − α)
+

1
Γ(1 − α)

[
δ2

xwn−1
i,j

τα
−

δ2
xw0

i,j

tα
n

− α

Nexp

∑
l=1

ωlδ
2
xwhist,l(tn)

]
, (57)

∂α

∂tα

∂2

∂y2 wn
i,j =

δ2
ywn

i,j − δ2
ywn−1

i,j

ταΓ(2 − α)
+

1
Γ(1 − α)

[
δ2

ywn−1
i,j

τα
−

δ2
yw0

i,j

tα
n

− α

Nexp

∑
l=1

ωlδ
2
ywhist,l(tn)

]
, (58)

where δ2
xwhist,l(tn) = e−slτδ2

xwhist,l(tn−1) +
∫ tn−1

tn−2
e−sl(tn−τ)δ2

xw(τ)dτ, δ2
xwhist,l(t0) = 0,∫ tn−1

tn−2
e−sl(tn−τ)δ2

xw(τ)dτ ≈ e−siτ

s2
i τ

[
(e−siτ − 1 + siτ)δ

2
xwn−1 + (1 − e−siτ − e−siτsiτ)δ

2
xwn−2],

δ2
ywhist,l(tn) = e−slτδ2

ywhist,l(tn−1) +
∫ tn−1

tn−2
e−sl(tn−τ)δ2

yw(τ)dτ, δ2
ywhist,l(t0) = 0,∫ tn−1

tn−2
e−sl(tn−τ)δ2

yw(τ)dτ ≈ e−siτ

s2
i τ

[
(e−siτ − 1 + siτ)δ

2
ywn−1 + (1 − e−siτ − e−siτsiτ)δ

2
ywn−2

]
.

By a combination, we deduce the final difference scheme:(
1
τ + M

)
wn

i,j −
νr2
h2

x

(
wn

i+1,j − 2wn
i,j + wn

i−1,j

)
− νr2

h2
y

(
wn

i,j+1 − 2wn
i,j + wn

i,j−1

)
= 1

τ wn−1
i,j + νλ

τα

(
1

Γ(1−α)
− 1

Γ(2−α)

)(
δ2

xwn−1
i,j + δ2

ywn−1
i,j

)
− νλ

Γ(1−α)tα
n

(
δ2

xw0
i,j + δ2

yw0
i,j

)
− νλα

Γ(1−α)

Nexp

∑
l=1

ωl

[
δ2

xwhist,l(tn) + δ2
ywhist,l(tn)

]
+ gn

i,j,

(59)

where r2 = λ
ταΓ(2−α)

+ 1.
The discretization scheme (59) can be rewritten in a matrix form:
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[(
1
τ + M

)
E − νr2

h2
x

E ⊗ K1 − νr2
h2

y
K2 ⊗ E

]
wn

=
[

1
τ E + νλ

τα

(
1

Γ(1−α)
− 1

Γ(2−α)

)
(E ⊗ K1 + K2 ⊗ E)

]
wn−1 + gn

− νλ
Γ(1−α)tα

n
(E ⊗ K1 + K2 ⊗ E)w0 − ανλ

Γ(1−α)

Nexp

∑
l=1

ωl

[
δ2

xwhist,l(tn) + δ2
ywhist,l(tn)

]
.

(60)

7. Results and Discussion

Example 1. (Verification of the discretization scheme).

The governing equation is solved numerically that the fractional derivative is dis-
cretized by the traditional L1 difference method and the fast algorithm. How to verify the
correctness of the difference method is the key. As Section 3 indicates, the exact solution is
complicated. As a modification, a source term is introduced and the governing equation
changes as:

∂w
∂t

= ν

(
1 + λ

Dα

Dtα

)(
∂2w
∂x2 +

∂2w
∂y2

)
− Mw + f (x, y, t), (61)

with the initial distribution and the boundary distributions:

w(x, y, 0) = 0, (62)

w(±1, y, t) = w(x, ±1, t) = 0. (63)

Define an exact solution for (61)–(63) as: w(x, y, t) = (x − 1)2(x + 1)2(y − 1)2(y + 1)2t2,
the expression of the source term can be deduced:

f (x, y, t) = (x − 1)2(x + 1)2(y − 1)2(y + 1)2t(2 + Mt)
−4νt2

(
2λ

Γ(3−α)
t−α + 1

)[(
3x2 − 1

)
(y − 1)2(y + 1)2 +

(
3y2 − 1

)
(x − 1)2(x + 1)2

]
.

(64)

Figure 2 presents the three-dimensional comparison behavior between the numerical
and exact expressions. Obviously, the distribution of the numerical solution is basically
the same as that of the exact solution, showing a bell-shaped curve that is high in the
middle and low at both ends. Tables 1 and 2 show the maximum error with the form
E
(
hx, hy, τ

)
= max

0≤i≤Mx ,0≤j≤My

∣∣∣en
i,j

∣∣∣, the convergence order for space with rs = log2
E(hx ,hy ,τ)

E(hx/2,hy/2,τ)
,

for time with rt = log2
E(hx ,hy ,τ)

E(hx ,hy ,τ/2)
and the computational time between the classical dif-

ference scheme and the fast scheme. The two tables show that the error is very small
when verifying the accuracy of the numerical scheme and the accuracy is O

(
h2

x + h2
y + τ

)
,

which is consistent with the analysis in the convergence in Theorem 3. Furthermore, the
computational time indicates that the superiority of the fast scheme is that it can greatly
reduce the calculation time without affecting the total accuracy.
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Figure 2. The three-dimensional comparison of velocity distributions for α = 0.5, M = 0.5
and λ = 0.1.

Table 1. The error and convergence order for space and the comparison of computational time
between the finite difference scheme and the fast scheme when α = 0.5, M = 1, ν = 1 and λ = 0.1.

Normal L1 Method Fast Algorithm

τ=1/20000 Error Order Time (s) Error Order TIME (s)

hx = hy = 1/22 1.4745 × 10−1 1.4745 × 10−1 6.58

hx = hy = 1/23 3.6738 × 10−2 2.00 317.32 3.6738 × 10−2 2.00 8.78

hx = hy = 1/24 9.1903 × 10−3 2.00 2737.48 9.1903 × 10−3 2.00 14.61

hx = hy = 1/25 2.3032 × 10−3 2.00 16,424.92 2.3032 × 10−3 2.00 43.06

hx = hy = 1/26 5.8123 × 10−4 1.99 59,840.35 5.8123 × 10−4 1.99 185.47

Table 2. The error and convergence order for time and the comparison of computational time between
the finite difference scheme and the fast scheme when α = 0.5, M = 1, ν = 1 and λ = 0.1.

Normal Scheme Fast Scheme

hx=hy=1/640 Error Order Time (s) Error Order Time (s)

τ = 1/22 3.9307 × 10−2 2749.74 3.9307 × 10−2 6.83

τ = 1/23 1.9424 × 10−2 1.02 2851.14 1.9424 × 10−2 1.02 14.90

τ = 1/24 9.5638 × 10−3 1.02 3057.22 9.5638 × 10−3 1.02 33.67

τ = 1/25 4.7173 × 10−3 1.02 3579.91 4.7173 × 10−3 1.02 70.72

τ = 1/26 2.3347 × 10−3 1.01 4622.72 2.3347 × 10−3 1.01 147.05

Example 2. The effects of the dynamic parameters on the distributions of velocity and shear force
subject to various pressure with cosine forms.

Figures 3–5 show the distribution of the velocity and shear force at x = 0 (wall surface)
with oscillating pressure gradient versus time with the form − 1

ρ
∂p
∂z = cos(t + 1) when we

choose ν = 1. The influences of the retardation time parameter on the velocity distributions
and the distribution of shear force at the wall are shown in Figure 3. For λ = 0, the
influences of the retardation time disappear. With the appearance of the retardation time
parameter, the big difference is that the overall distribution becomes lower with the physical,
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meaning that the retardation time parameter reflects a relaxation characteristic in slowing
down the velocity propagation and decreasing the magnitude of the shear force at the
wall. It can be concluded that a bigger the retardation time parameter corresponds to a
larger the relaxation characteristic. The magnetic parameter has important impacts on
the distributions of velocity and the shear force. The parameter M = 0 indicates that
the influence of the magnetic parameter is not considered. As shown in Figure 4, the
consideration of the magnetic field makes the distribution at a fixed position smaller, and
the value of the distribution becomes smaller when the magnetic parameter becomes bigger.
The fractional parameter makes the velocity transport consider the memory characteristic.
Figure 5 shows that the value of the distribution becomes smaller with an increase of
fractional parameter.

Figure 3. The influences of retardation time parameters on the velocity distribution and the shear
force τxz at the wall surface for α = 0.5, M = 1 and − 1

ρ
∂p
∂z = cos(wt + 1).

Figure 4. The influences of magnetic parameter on the velocity distribution and the shear force τxz at
the wall surface for α = 0.5, λ = 0.1 and − 1

ρ
∂p
∂z = cos(wt + 1).

The oscillatory frequency has important impacts on velocity distributions and the
shear force distributions. Consider − 1

ρ
∂p
∂z = cos(wt + 1), the three-dimensional velocity

distributions and shear force distributions versus y and t with the effects of frequency are
exhibited in Figures 6 and 7, respectively. For w = 0, the pressure is constant and the
time parameter (for t > 0) has no effects on the distributions. For w �= 0, the distributions
present as an oscillatory form and the bigger the frequency parameter is, the stronger
the oscillatory character of the distributions will be. To discuss the effects of the various
pressures with the space oscillatory flow, we consider − 1

ρ
∂p
∂z = cos(wz + 1) with different

w. The effects of frequency parameter on the velocity distributions and the shear force
distributions versus x and z are respectively exhibited in Figures 8 and 9. Similarly, the
distribution curve shows that the distribution exhibits as a normal form for w = 0. For
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w �= 0, the distribution presents as an oscillatory form. Finally, the bigger the frequency
parameter, the stronger is the oscillation of the distribution curve.

Figure 5. The influences of fractional parameter on the velocity distribution and the shear force τxz at
the wall surface for M = 1, λ = 0.1 and − 1

ρ
∂p
∂z = cos(wt + 1).

 

Figure 6. The three-dimensional distribution for velocity field versus y and t with various
oscillatory pressure with cosine form versus time − 1

ρ
∂p
∂z = cos(wt + 1) for different w = 0, 1, 2, 3 for

α = 0.5, λ = 0.1 and M = 0.1.
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Figure 7. The three-dimensional distribution for shear force versus y and t with various
oscillatory pressure with cosine form versus time − 1

ρ
∂p
∂z = cos(wt + 1) for different w = 0, 1, 2, 3

for α = 0.5, λ = 0.1 and M = 1.
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Figure 8. The three-dimensional distribution for velocity versus y and z with various oscillatory
pressure with cosine form versus space − 1

ρ
∂p
∂z = cos(wz + 1) for different w = 0, 1, 2, 3 for α = 0.5,

λ = 0.1 and M = 1.

391



Fractal Fract. 2022, 6, 666

Figure 9. The three-dimensional distribution for shear force versus y and z with various
oscillatory pressure with cosine form versus space − 1

ρ
∂p
∂z = cos(wz + 1) for different w = 0, 1, 2, 3 for

α = 0.5, λ = 0.1 and M = 1.

8. Conclusions

This paper considered the motion of fractional second-grade fluid in a straight rect-
angular duct. Both the analytical solution and the numerical solution were obtained. For
faster computation, a fast scheme was proposed. Two examples were given. One illustrated
the accuracy of the numerical solution and the advantage of the fast scheme. The other
discussed the impacts of the involved parameters on the velocity distributions and the
shear force at the wall surface. The results show that the retardation time parameter plays
a role in a relaxation characteristic. The magnetic parameter and fractional parameter with
the memory characteristic made the distribution of velocity and shear force become slower.
The oscillation of the pressure versus space and time made the distribution present as an
oscillatory form and for a larger frequency parameter, the oscillation of the distribution
was stronger.
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Appendix A

The expanded form of (3) is given as:

A1 = ∇V + (∇V)T =

⎡⎢⎣ 0 0 0
0 0 0

∂w
∂x

∂w
∂y 0

⎤⎥⎦+

⎡⎢⎣0 0 ∂w
∂x

0 0 ∂w
∂y

0 0 0

⎤⎥⎦ =

⎡⎢⎣ 0 0 ∂w
∂x

0 0 ∂w
∂y

∂w
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∂w
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t A1 + A1∇V + (∇V)T A1
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)2
0

0 0 0
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∂x

)2
∂w
∂x

∂w
∂y 0

∂w
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(
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0 0 0

⎤⎥⎥⎥⎦

=

⎛⎜⎜⎜⎝
2
(

∂w
∂x

)2
2 ∂w

∂x
∂w
∂y Dα

t
∂w
∂x

2 ∂w
∂x

∂w
∂y 2

(
∂w
∂y

)2
Dα

t
∂w
∂y

Dα
t

∂w
∂x Dα

t
∂w
∂y 0

⎞⎟⎟⎟⎠.

Then the expression for the shear force is obtained

τ = μA1 + α1 A2 + α2 A2
1

=

⎛⎜⎜⎜⎜⎝
α1

(
∂w
∂x

)2
α1

∂w
∂x

∂w
∂y (μ + α1Dα

t )
∂w
∂x

α1
∂w
∂x

∂w
∂y α1

(
∂w
∂y

)2
(μ + α1Dα

t )
∂w
∂y

(μ + α1Dα
t )

∂w
∂x (μ + α1Dα

t )
∂w
∂y α2

[(
∂w
∂x

)2
+
(

∂w
∂y

)2
]
⎞⎟⎟⎟⎟⎠
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Abstract: In this paper, the mixed convective heat transfer mechanism of nanofluids is investigated.
Based on the Buongiorno model, we develop a novel Cattaneo–Buongiorno model that reflects the
non-local properties as well as Brownian motion and thermophoresis diffusion. Due to the highly
non-linear character of the equations, the finite difference method is employed to numerically solve
the governing equations. The effectiveness of the numerical method and the convergence order are
presented. The results show that the rise in the fractional parameter δ enhances the energy transfer
process of nanofluids, while the fractional parameter γ has the opposite effect. In addition, the effects
of Brownian motion and thermophoresis diffusion parameters are also discussed. We infer that the
flow and heat transfer mechanism of the viscoelastic nanofluids can be more clearly revealed by
controlling the parameters in the Cattaneo–Buongiorno model.

Keywords: nanofluids; Brownian motion and thermophoresis; fractional derivative; mixed convection

1. Introduction

Compared with natural convection and forced convection, mixed convection is more
common and significant in all areas of life, industry, and scientific research, and it holds
great prospects for research, such as nuclear reactors, electronic cooling technology, and
other industrial processes. More and more researchers are involved in the research of
mixed convection. Fan et al. [1] analyzed the laminar mixed convective heat transfer
in a level channel of nanofluids. Abu-Nada and Chamkha [2] numerically simulated a
stable laminar mixed convective flow of a water–CuO nanofluid in a lid-driven cavity
with wavy wall. Aaiza et al. [3] studied the energy transfer of the mixed convective
unsteady magnetohydrodynamic (MHD) flow of nanofluids in saturated porous media
channels. Aman et al. [4] analyzed the MHD mixed convection Poiseuille flow of gold
nanoparticles, taking into account the effects of thermal radiation, chemical reaction, and
thermal diffusion. Chakravarty et al. [5] employed the Darcy–Brinkman–Forchheimer
model for numerical simulation to study the mixed convection heat transfer of fluids.
Khanafer and Vafai [6] studied the double-diffusion mixed convective flow in a lid-driven
vessel filled with a liquid-saturated porous medium. Moolya and Anbalgan [7] numerically
investigated and optimized the influence of vital parameters on double-diffusion mixed
convection. In addition, the stability of mixed convection under different specific conditions
was also verified [8,9].

Recently, nanofluids have been widely used to improve various heat transfer properties
based on their superior characteristics [10–12], such as macro and micro heat exchangers,
aerospace applications, electronic equipment cooling, and other heat transfer enhancement
fields. Choi first proposed the concept of the nanofluids [13]. Subsequently, Xuan et al. [14]
refined the theory of thermal conductivity of nanofluids. In particular, for complex nanoflu-
ids, it is vital to introduce the improved constitution equation to describe the heat transfer
phenomena. In 2006, the Buongiorno model was proposed [15], which concluded that
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Brownian motion and thermophoresis are the significant slip mechanisms for nanofluids,
and explained the principles of the Brownian and thermophoresis diffusion. Since then,
the model has been broadly applied by researchers, and the research on the nanofluids
made great progress. Ahmed et al. [16] used the Buongiorno model to study the flow of
nanofluids in a heat-generated porous medium-filled wavy enclosures. Bansch et al. [17]
applied the Buongiorno model to analyze the existence of steady-state problem solutions of
convection transfer of nanofluids. Sohail et al. [18] numerically calculated the flow of fluid
on a stretched sheet applying the Buongiorno model. However, the heat and mass diffusion
in the model adopts the classical Fourier and Fick’s laws, ignoring thermal relaxation and
mass relaxation effects. In subsequent studies, scholars made different improvements to
the model. Rana et al. [19] employed the modified Buongiorno model to study 3D flow and
heat transfer of nanoliquids. Puneeth et al. [20] applied the modified Buongiorno model to
study the jet flow of ternary nanofluids. It is worth noting that traditional constitutive rela-
tions cannot be used to describe the special properties of nanofluids, and fractional calculus
theory is widely applied because of its non-locality and long memory characteristics [21,22].
Aman et al. [23] researched the heat and mass transfer of graphene nanofluids through
a vertical plate by fractional derivative. Zhao et al. [24] first introduced fractional order
into boundary layer equations to study the heat transfer of unstable natural convection
boundary layers. Chen et al. [25] discussed the boundary layer flow of fractional viscoelas-
tic MHD fluids on a stretched thin plate. Liu et al. [26] introduced fractional derivatives
to describe heat conduction in the Cattaneo–Christov model. Cao et al. [27] applied the
fractional Maxwell model to analyze the flow and heat of nanofluids on a moving plate.
Zhao et al. [28] described the unsteady Marangoni convection of fractional Maxwell fluids.
Recently, the double fractional Maxwell model was widely studied by researchers [29–32].
The results display that the double fractional Maxwell model is more flexible and accurate
in explaining the flow of viscoelastic fluids.

In recent years, researchers applied fractional calculus theory to the Buongiorno model
and made different improvements and revisions. Shen et al. [33] introduced the Cattaneo
thermal conductivity model with time fractional derivative in the Buongiorno model to de-
scribe the abnormal heat transfer of nanofluids. After that, Zhang et al. [34] introduced the
spatial fractional derivative based on the improved Buongiorno model to characterize the
non-local behavior of nanofluids. To the best of our knowledge, the fractional constitutive
model is more effective and reliable to describe the flow and heat transfer phenomena of
the viscoelastic nanofluids. The Cattaneo thermal conductivity model with double time
fractional derivatives is introduced to modify the Buongiorno model.

Based on the above discussions, in this paper, a generalized Cattaneo–Buongiorno
constitutive model is proposed to explore the heat and mass transfer of nanofluids in mixed
convection. The governing equations are resolved by the finite difference method. The
accuracy of the numerical algorithm is verified. In addition, the effects of diverse important
parameters on heat transfer and mass transfer are depicted graphically and analyzed.

2. Mathematical Formulation

We propose a generalized Cattaneo–Buongiorno constitutive model, defined as follows:

q + λδ
2

∂δq
∂tδ

= −Kλ
γ
2

∂γ−1

∂tγ−1

(
∂T
∂y

)
+ hp · jp, 0 ≤ δ ≤ γ ≤ 1 (1)

where q is the heat flux, λ2 = k/K is the temperature relaxation time, k is the thermal
conductivity, δ and γ are the fractional parameters, and ∂δ/∂tδ and ∂γ−1/∂tγ−1 are the
Caputo’s fractional derivatives. Subscripts n f and p represent nanofluids and nanosolids,
respectively, hp = cpT is the specific enthalpy, and jp is the diffusion mass flux, which is
expressed as [27]:

jp = jp,B + jp,T = −ρpDB∇C − ρpDT
∇T
T0

, (2)
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where ρp is the mass density, and DB and DT express the Brownian diffusion coeffi-
cient and thermophoresis diffusion coefficient, respectively. T is the nanofluids tempera-
ture. The fractional Maxwell model is introduced as the constitution relationship of the
viscoelastic nanofluids [29].

Consider mixed convection of fractional Maxwell nanofluids between two infinitely
long parallel plates, which is caused by the temperature difference. The distance between
the two parallel plates is d, and the system of rectangular coordinates (x, y) is selected. The
x-axis is parallel to the flow direction of the fluid, and the y-axis is perpendicular to the flow
direction of the fluid. A geometry image of the system is shown in Figure 1. The equations
of the velocity, temperature, and concentration fields can be expressed as:

ρn f
∂u
∂t

= −∇p +∇ · τ + ρn f g, (3)

(
ρcp
)

n f
∂T
∂t

= −∇ · q + hp∇ · jp, (4)

∂C
∂t

= − 1
ρp

∇ · jp − kr(C − C0), (5)

with the boundary and initial conditions:

t = 0 : u = 0, T = T0, C = C0; y = 0 : u = 0, T = T0, C = C0; y = d : u = 0, T = Tw, C = Cw, (6)

where ρn f is the density of nanofluids and ∇p is the pressure gradient, expressed as
∇p = ∂p/∂x = −ρ∞g. By invoking Boussinesq approximation, we have
ρ∞ − ρn f = ρn f βn f (T − T0). (ρβ)n f is the thermal expansion coefficient, g is the gravi-
tational acceleration,

(
ρcp
)

n f is the capacitance, and kr is the chemical reaction parameter.

Figure 1. Geometric sketch.

The fractional Maxwell model of nanofluids [29] is substituted into the momentum
Equation (3). The generalized Cattaneo–Buongiorno constitutive Equation (1) is substituted
into energy Equation (4) and concentration Equation (5). The governing equations of
nanofluids mixed convection model can be expressed as follows:(

λ
1−β
1

∂1−β

∂t1−β
+ λ

1+α−β
1

∂1+α−β

∂t1+α−β

)(
∂u
∂t

− (βT)n f g(T − T0)

)
= υ

∂2u
∂y2 , (7)

(
λ

1−γ
2

∂1−γ

∂t1−γ
+ λ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

)
∂T
∂t

=
k(

ρcp
)

n f

∂2T
∂y2 + σλ

1−γ
2

∂1−γ

∂t1−γ

(
DB

∂C
∂y

∂T
∂y

+
DT

T0

(
∂T
∂y

)2
)
−σλ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

(
DBT

∂2C
∂y2 +

DT T
T0

∂2T
∂y2

)
, (8)

∂C
∂t

= DB
∂2C
∂y2 +

DT
T0

∂2T
∂y2 − kr(C − C0), (9)

where α and β are the fractional parameters of shear stress and shear strain, respectively.
σ = (ρc)P is the heat capacity and υ = μ/ρ is the kinematic viscosity of nanofluids.
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By introducing the following dimensionless variables:

u∗ =
u

U0
, x∗ =

x
d

, y∗ =
y
d

, t∗ =
tU0

d
, λ1

∗ =
λ1U0

d
,

λ∗
2 =

λ2U0

d
, T∗ =

T − T0

Tw − T0
, C∗ =

C − C0

Cw − C0
, kr

∗ =
krd
U0

,

the dimensionless governing equations can be written as (ignoring symbols ∗ for calcu-
lation convenience):(

λ
1−β
1

∂1−β

∂t1−β
+ λ

1+α−β
1

∂1+α−β

∂t1+α−β

)(
Re

∂u
∂t

− GrT
)
=

∂2u
∂y2 , (10)

(
λ

1−γ
2

∂1−γ

∂t1−γ
+ λ

1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

)
∂T
∂t

=
1

Re · Pr
∂2T
∂y2 + λ

1−γ
2

∂1−γ

∂t1−γ

(
Nb
Re

∂C
∂y

∂T
∂y

+
Nt
Re

(
∂T
∂y

)2
)

− λ
1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

(
Nb
Re

T
∂2C
∂y2 +

Nt
Re

T
∂2T
∂y2

)
, (11)

∂C
∂t

=
1

Re · Ln
∂2C
∂y2 +

1
Re · Ln

Nt
Nb

∂2T
∂y2 − krC, (12)

where Re is the Reynolds number, Gr is the thermal Grashof number, αm is the thermal
diffusion coefficient of nanofluids, Pr is the generalized Prandtl number, Nt is the ther-
mophoresis parameter, Nb is the Brownian motion parameter, and Ln is the Lewis number.
Their expressions are as follows:

Re =
ρU0d

μ
, Gr =

g(βT)n f (Tw − T0)d2

U0υ
, αm =

k
(ρcp)n f

, Pr =
υ

αm
, Nt =

σDT(Tw − T0)

T0υ
, Nb =

σDB(Cw − C0)

υ
, Ln =

υ

DB
.

The initial and boundary conditions are:

t = 0 : u = 0, T = 0, C = 0; y = 0 : u = 0, T = 0, C = 0; y = 1 : u = 0, T = 1, C = 1. (13)

3. Numerical Technique

The finite difference method is applied to solve the dimensionless Equations (10)–(12). De-
note xi = iΔx(i = 0, 1, 2, · · · , M), yj = jΔy(j = 0, 1, 2, · · · , N), tk = kΔt(k = 0, 1, 2, · · · , L),
where Δx = Xmax/M and Δy = Ymax/N are the space steps, and Δt is the time step. The
time fractional derivative is worked out by employing the L1 algorithm.

First, the L1 algorithm is imported as (0 < α < 1) [35]:

∂α f (tk)
∂tα = Δt−α

Γ(2−α)

k−1
∑

s=0
αs[ f (tk−s)− f (tk−s−1)] + O(Δt2−α)

= Δt−α

Γ(2−α)

[
f (tk)− αk−1 f (t0)−

k−1
∑

s=1
(αs−1 − αs) f (tk−s)

]
+ O(Δt2−α),

(14)

where αs = (s + 1)1−α − s1−α, s = 0, 1, 2, . . . , R
Second, the integer order discretization in the system of control equations is as follows:

∂u
∂t

∣∣∣∣
t=tk

=
uk

i,j − uk−1
i,j

Δt
+ O(Δt), (15)

∂2u
∂y2

∣∣∣∣
t=tk

=
uk

i,j+1 − 2uk
i,j + uk

i,j−1

Δy2 + O(Δy2), (16)

∂C
∂y

∂T
∂y

∣∣∣∣
t=tk

=
Ck−1

i,j − Ck−1
i,j−1

Δy

Tk
i,j − Tk

i,j−1

Δy
+ O(Δt + Δy), (17)

(
∂T
∂y

)2
∣∣∣∣∣
t=tk

=
Tk−1

i,j − Tk−1
i.j−1

Δy

Tk
i,j − Tk

i,j−1

Δy
+ O(Δt + Δy), (18)

400



Fractal Fract. 2022, 6, 584

T
∂2C
∂y2

∣∣∣∣
t=tk

= Tk
i,j

Ck−1
i,j+1 − 2Ck−1

i,j + Ck−1
i,j−1

Δy2 + O(Δt + Δy2), (19)

T
∂2T
∂y2

∣∣∣∣
t=tk

= Tk−1
i,j

Tk
i,j+1 − 2Tk

i,j + Tk
i,j−1

Δy2 + O(Δt + Δy2). (20)

Third, we disperse time fractional derivatives at
(
xi, yj, tk

)
(0 < α < 1) as follows:

∂α

∂tα

(
∂u
∂t

)∣∣∣∣
t=tk

=
Δt−1−α

Γ(2 − α)

(
uk

i,j − uk−1
i,j −

k−1

∑
s=1

(αs−1 − αs)
(

uk−s
i,j − uk−s−1

i,j

))
+ O(Δt), (21)

∂αT
∂tα

∣∣∣∣
t=tk

=
Δt−α

Γ(2 − α)

(
Tk

i,j −
k−1

∑
s=1

(αs−1 − αs)Tk−s
i,j

)
+ O

(
Δt2−α

)
, (22)

∂α

∂tα

(
∂C
∂y

∂T
∂y

)∣∣∣∣
t=tk

=
Δt−α

Γ(2 − α)Δy2

((
Ck−1

i,j − Ck−1
i,j−1

)(
Tk

i,j − Tk
i,j−1

)
−

k−1

∑
s=1

(αs−1 − αs)
(

Ck−s−1
i,j − Ck−s−1

i,j−1

)(
Tk−s

i,j − Tk−s
i,j−1

))
+ O(Δt + Δy), (23)

∂α

∂tα

(
T

∂2C
∂y2

)∣∣∣∣
t=tk

=
Δt−α

Γ(2 − α)Δy2

(
Tk

i,j

(
Ck−1

i.j+1 − 2Ck−1
i,j + Ck−1

i,j−1

)
−

k−1

∑
s=1

(αs−1 − αs)Tk−s
i,j

(
Ck−s−1

i,j+1 − 2Ck−s−1
i,j + Ck−s−1

i,j−1

))
+ O(Δt + Δy2). (24)

Then, the results of the iterative Equations of (10)–(12) are:

− r8uk
i,j−1 + (r6 + r7 + 2r8)uk

i,j − r8uk
i,j+1 = (r6 + r7)uk−1

i,j + r6 A1 + r7 A2 + r6r10

(
Tk

i,j − A3

)
+ r7r10

(
Tk

i,j − A4

)
+ Rk

1i,j, (25)(
−r3 + r1r4

(
Ck−1

i,j − Ck−1
i,j−1

)
+ r1r5

(
Tk−1

i,j − Tk−1
i,j−1

)
+ r2r5Tk−1

i,j

)
Tk

i,j−1 +
(
−r3 + r2r5Tk−1

i,j

)
Tk

i,j+1

+
(

r1 + r2 + 2r3 − r1r4

(
Ck−1

i,j − Ck−1
i,j−1

)
− r1r5

(
Tk−1

i,j − Tk−1
i,j−1

)
+ r2r4

(
Ck−1

i,j+1 − 2Ck−1
i,j + Ck−1

i,j−1

)
− 2r2r5Tk−1

i,j

)
Tk

i,j

= (r1 + r2)Tk−1
i,j + r1B1 + r2B2 − r1r4B3 − r1r5B4 + r2r4B5 + r2r5B6 + Rk

2i,j,

(26)

− r9Ck
i,j−1 + (1 + 2r9 + krΔt)Ck

i,j − r9Ck
i,j+1 = Ck−1

i,j + r9
Nt
Nb

(
Tk

i,j+1 − 2Tk
i,j + Tk

i,j−1

)
+ Rk

3i,j. (27)

where |R1| ≤ C(Δt + Δy2), |R2| ≤ C(Δt + Δy), |R3| ≤ C(Δt + Δy2) and

r1 =
λ

1−γ
2 Δt−(1−γ)

Γ(2 − (1 − γ))
, r2 =

λ
1+δ−γ
2 Δt−(1+δ−γ)

Γ(2 − (1 + δ − γ))
, r3 =

Δt
Re · PrΔy2 ,

r4 =
Nb
Re

Δt
Δy2 , r5 =

Nt
Re

Δt
Δy2 , r6 =

λ
1−β
1 Δt−(1−β)

Γ(2 − (1 − β))
, r7 =

λ
1+α−β
1 Δt−(1+α−β)

Γ(2 − (1 + α − β))
,

r8 =
Δt

Re · Δy2 , r9 =
Δt

Re · LnΔy2 , r10 =
GrΔt

Re
,

A1 =
k−1

∑
s=1

[(1 − β)s−1 − (1 − β)s]
(

uk−s
i,j − uk−s−1

i,j

)
,

A2 =
k−1

∑
s=1

[(1 + α − β)s−1 − (1 + α − β)s]
(

uk−s
i,j − uk−s−1

i,j

)
,

A3 =
k−1

∑
s=1

[(1 − β)s−1 − (1 − β)s]T
k−s
i,j ,

A4 =
k−1

∑
s=1

[(1 + α − β)s−1 − (1 + α − β)s]T
k−s
i,j ,

B1 =
k−1

∑
s=1

[(1 − γ)s−1 − (1 − γ)s](T
k−s
i,j − Tk−s−1

i,j ),

B2 =
k−1

∑
s=1

[(1 + δ − γ)s−1 − (1 + δ − γ)s](T
k−s
i,j − Tk−s−1

i,j ),
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B3 =
k−1

∑
s=1

[(1 − γ)s−1 − (1 − γ)s]
(

Ck−s−1
i,j − Ck−s−1

i,j−1

)
(Tk−s

i,j − Tk−s
i,j−1),

B4 =
k−1

∑
s=1

[(1 − γ)s−1 − (1 − γ)s]
(

Tk−s−1
i,j − Tk−s−1

i,j−1

)
(Tk−s

i,j − Tk−s
i,j−1),

B5 =
k−1

∑
s=1

[(1 + δ − γ)s−1 − (1 + δ − γ)s]T
k−s
i,j

(
Ck−s−1

i,j+1 − 2Ck−s−1
i,j + Ck−s−1

i,j−1

)
,

B6 =
k−1

∑
s=1

[(1 + δ − γ)s−1 − (1 + δ − γ)s]T
k−s−1
i,j

(
Tk−s

i,j+1 − 2Tk−s
i,j + Tk−s

i,j−1

)
.

The initial and boundary conditions of the discrete scheme are:

t = 0 : u = 0, T = 0, C = 0; y = 0 : u = 0, T = 0, C = 0; y = N : u = 0, T = 1, C = 1. (28)

4. Validation of the Numerical Method

To examine the validity of the numerical method, the source terms f1(x, y, t), f2(x, y, t), and
f3(x, y, t) are introduced into the governing equations. The expressions of the source terms are ob-
tained in the governing equations through the analytical solutions. Next, a set of numerical solutions
are acquired by the numerical method for comparison with the analytical solutions. As follows:(

λ
1−β
1

∂1−β

∂t1−β
+ λ

1+α−β
1

∂1+α−β

∂t1+α−β

)(
Re

∂u
∂t

− GrT
)
=

∂2u
∂y2 + f1(y, t), (29)

(
λ

1−γ
2

∂1−γ

∂t1−γ + λ
1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

)
∂T
∂t = 1

Re·Pr
∂2T
∂y2 + λ

1−γ
2

∂1−γ

∂t1−γ

(
Nb
Re

∂C
∂y

∂T
∂y + Nt

Re

(
∂T
∂y

)2
)

−λ
1+δ−γ
2

∂1+δ−γ

∂t1+δ−γ

(
Nb
Re T ∂2C

∂y2 + Nt
Re T ∂2T

∂y2

)
+ f2(y, t),

(30)

∂C
∂t

=
1

Re · Ln
∂2C
∂y2 +

1
Re · Ln

Nt
Nb

∂2T
∂y2 − krC + f3(y, t), (31)

with the new initial and boundary conditions:

t = 0 : u = 0, T = 0, C = 0; y = 0 : u = 0, T = 0, C = 0; y = 1 : u = 0, T = 0, C = 0. (32)

where

f1(y, t) = − 2λ
1−β
1 y2(y−1)2(t1+βGrΓ(1+β)−tβReΓ(2+β))

Γ(1+β)Γ(2+β)

− 2λ
1+α−β
1 y2(y−1)2(t1−α+βGrΓ(1−α+β)−t−α+βReΓ(2−α+β))

Γ(1−α+β)Γ(2−α+β)

−2(1 − y)2t2 + 8y(1 − y)t2 − 2y2t2,

(33)

f2(y, t) = 2λ
1−γ
2 tγy2(y−1)2

Γ(1+γ)
+

2λ
1+δ−γ
2 t−δ+γy2(y−1)2

Γ(1−δ+γ)
− 2(1−y)2t2−8y(1−y)t2+2y2t2

Re·Pr

− 96λ
1−γ
2 t3+γy2(2y2−3y+1)2

(Nb+Nt)
Re·Γ(4+γ)

+
48λ

1+δ−γ
2 t3−δ+γy2(y−1)2(6y2 Nb+6y2 Nt−6yNb−6yNt+Nb+Nt)

Re·Γ(4−δ+γ)
,

(34)

f3(y, t) = 2y2(1 − y)2t − (2 − 12y + 12y2)t2(1 + Nt/Nb)
Re · Ln

+ Kr · y2(1 − y)2t2. (35)

The following analytical solutions are obtained:

u(y, t) = T(y, t) = C(y, t) = y2(1 − y)2t2. (36)

In Figure 2, the velocity, temperature, and concentration distributions of nanofluids along
t direction are given by numerical and analytical solutions, respectively. It can be seen that the
arithmetic solutions coincide well with the analytical solutions, which shows the correctness of the
numerical algorithm. To examine the convergence order of the numerical method, Tables 1–3 give
the L2 error, the L∞ error, and the convergence order of the momentum, energy, and concentration
equations for different time steps Δt. The convergence order can reach the first order, as we expected.
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Figure 2. Comparisons between the analytical solutions and numerical solutions of t.

Table 1. The truncation error and convergence order of velocity u with Δy = 0.01.

Δt L2 Error Order L∞ Error Order

0.1 3.0723 × 10−3 - 4.4143 × 10−3 -
0.05 1.5496 × 10−3 0.9874 2.2262 × 10−3 0.9876

0.025 7.7837 × 10−4 0.9934 1.1181 × 10−3 0.9935
0.0125 3.9022 × 10−4 0.9962 5.6051 × 10−4 0.9962

Table 2. The truncation error and convergence order of temperature T with Δy = 0.01.

Δt L2 Error Order L∞ Error Order

0.1 1.8800 × 10−3 - 2.7568 × 10−3 -
0.05 9.6757 × 10−4 0.9583 1.4177 × 10−3 0.9594

0.025 4.9147 × 10−4 0.9773 7.1997 × 10−4 0.9775
0.0125 2.4796 × 10−4 0.9870 3.6353 × 10−4 0.9859

Table 3. The truncation error and convergence order of concentration C with Δy = 0.01.

Δt L2 Error Order L∞ Error Order

0.1 4.0470 × 10−4 - 5.4928 × 10−4 -
0.05 1.8991 × 10−4 1.0915 2.5773 × 10−4 1.0917

0.025 9.1774 × 10−5 1.0492 1.2564 × 10−4 1.0366
0.0125 4.5249 × 10−5 1.0202 6.3692 × 10−5 0.9801

5. Results and Discussion

The governing Equations (10)–(12) with conditions (13) are resolved by the finite difference
method. The space and time steps are Δy = 0.01, Δt = 0.02, respectively. In this section, we mainly
discuss the influence of fractional parameters, Brownian parameters, and thermophoresis parameters
on the temperature and concentration of the nanofluids.

5.1. Effects of the Fractional Parameters on the Temperature Field
Figure 3 describes the relationship between fractional parameters δ and γ and the temperature

of nanofluids in the y direction. Particularly, the temperature distributions under different fractional
order parameter δ when γ = 0.9 are shown in Figure 3a. With the increase in δ in the same location,
the temperature profile rises uniformly, which means that the heat transfer process of the nanofluids
is enhanced with the augment in the fractional parameter δ. Figure 3b gives the temperature
distributions under different fractional order parameter γ when δ = 0.1. The results manifest that the
greater the fractional parameter γ, the lower the temperature of the nanofluids. It follows that the
nanofluids heat transfer process is weakened with the growth of fractional parameter γ.
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(a) (b) 

Figure 3. Temperature distributions with respect to y: (a) for different δ; (b) for different γ.

Figure 4 shows the effect of different fractional order parameters δ and γ on the temperature of
nanofluids in the t direction. Figure 4a reveals that with the passage of time, the temperature always
first elevates to a peak, then decreases, and finally reaches a stable value. Figure 4b describes the
temperature distributions when γ = 1, 0.9, 0.8, 0.7. There is a peak in temperature as the fractional
parameter γ decreases. A smaller γ corresponds to a higher temperature peak. Similarly, for each
value of γ, the temperature eventually reaches a stable level and does not change any more.

(a) (b) 

Figure 4. Temperature distributions with respect to t: (a) for different δ; (b) for different γ.

5.2. Effects of the Fractional Parameters on the Concentration Field
Figure 5 describes the influence of different fractional parameters δ and γ on the concentration

of nanofluids in the y direction. The result from Figure 5a shows that the concentration of nanofluids
presents a downward trend with the enlargement of fractional parameter δ; that is, the distribution
of nanoparticles becomes more sparse in the same region of y. This is mainly because the increase
in the temperature reduces the concentration of nanoparticles in the flow region. When δ = 0.1,
the concentration distributions for different parameter γ are given in Figure 5b. As the fractional
parameter γ decreases, the concentration presents a downward trend. Overall, the above results
demonstrate that the fractional parameters δ and γ affect the movement of nanoparticles by changing
the temperature, and then affect the mass transfer process of nanofluids.
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(a) (b) 

Figure 5. Concentration distributions with respect to y: (a) for different δ; (b) for different γ.

The influence of different fractional order parameters δ and γ on concentration distribution in
the t direction is shown in Figure 6. As can be seen in Figure 6a, with the rise in parameter δ, the peak
value of concentration distribution decreases, but eventually tends to be stable. Figure 6b shows the
concentration distributions under different fractional parameter γ. The peak of the concentration
rises as the value of γ increases. It is because the increase in temperature difference of nanofluids
leads to the enhancement of the thermophoresis of nanoparticles and the nanoparticles quickly shift
from the higher temperature district to the lower temperature district, making the concentration of
the nanoparticles decrease and reach the stable state more rapidly.

(a) (b) 

Figure 6. Concentration distributions with respect to t: (a) for different δ; (b) for different γ.

5.3. Effects of Nb and Nt
Figure 7 describes the temperature and concentration distributions with different Brownian

motion parameter Nb. Figure 7a displays that the temperature change rate increases with the
rise in Nb. Physically, the adding of Brownian motion contributes to the efficient movement of
nanoparticles between plates, thus, improving the heat transfer efficiency of nanofluids. Different
from the temperature, the concentration gradually descends with larger Nb. The performances of
different thermophoresis parameter Nt on temperature and concentration distributions are shown in
Figure 8. The temperature presents an upward trend with the augment of Nt, which is due to the
effect of heat capacity of nanoparticles. However, the improvement in the thermophoresis results in
a decrease in concentration, which is consistent with the results [36]. Therefore, the enhancement
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of Brownian diffusion and thermophoresis promotes the heat transfer of nanofluids, which plays a
crucial part in the diffusion process of nanoparticles.

(a) (b) 

Figure 7. Effects of Nb: (a) on temperature distributions; (b) on concentration distributions.

(a) (b) 

Figure 8. Effects of Nt: (a) on temperature distributions; (b) on concentration distributions.

6. Conclusions

In this paper, we investigate the mixed convection of fractional nanofluids considering Brownian
motion and thermophoresis. The arithmetic solutions of the fractional equations are obtained
by employing the finite difference method. The effects of fractional order parameters, Brownian
motion parameters, and thermophoresis parameters on the temperature and concentration are
discussed. The consequences manifest that the rise in fractional parameter δ enhances the energy
transfer process of nanofluids, while the augment of fractional parameter γ weakens the heat transfer.
However, the opposite effects are found in the concentration distribution. In fact, the change in
temperature affects the effective movement of nanoparticles, which is also an important reason for
the increase and decrease in concentration. In addition, the enhancement of Brownian diffusion and
thermophoresis promotes the heat transfer of nanofluids, which plays a crucial part in the diffusion
process of nanoparticles.
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Nomenclature

q Heat flux
k Thermal conductivity
K Permeability
hp Specific enthalpy
T Nanofluids temperature
jp Diffusion mass flux
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coefficient
E Shear modulus
p Pressure
g Gravitational acceleration
kr Chemical reaction parameter
Re Reynolds number
Gr Grashof number
Pr Generalized Prandtl number
Nt Thermophoresis parameter
Nb Brownian motion parameter
Ln Lewis number
Greek Symbols

α, β, δ, γ Time fractional derivative parameters
τ Shear stress
ε Shear strain
μ Dynamic viscosity
λ1 Relaxation time
λ2 Temperature relaxation time
ρp Mass density
ρn f Density of the nanofluids
(ρβ)n f Thermal expansion coefficient
(ρcp)n f Capacitance

σ Heat capacity of nanoparticle materials
υ Kinematic viscosity
Γ Gamma function
Subscripts

n f Nanofluids
p Nanoparticles
ω Wall condition
Superscript

∗ Dimensionless form
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Abstract: Recent studies have demonstrated the benefits of using fractional derivatives to simulate a
blood pressure profile. In this work we propose to combine a one-dimensional model of coronary
blood flow with fractional-order Windkessel boundary conditions. This allows us to obtain a greater
variety of blood pressure profiles for better model personalization An algorithm of parameter identi-
fication is described, which is used to fit the measured mean value of arterial pressure and estimate
the fractional flow reserve (FFR) for a given patient. The proposed framework is used to investigate
sensitivity of mean blood pressure and fractional flow reserve to fractional order. We demonstrate
that the fractional derivative order significantly affects the fractional flow reserve (FFR), which is
used as an indicator of stenosis significance.

Keywords: fractional derivative; parameter estimation; coronary hemodynamic; blood flow model;
mean arterial pressure; fractional flow reserve

1. Introduction

Atherosclerotic diseases of coronary vessels are the main reason for myocardial is-
chemia frequently resulting in disability or death. These diseases are mainly caused by
blockages due to an abnormal narrowing in a blood vessel—stenosis [1]. The choice of
medical treatment involves evaluation of stenosis significance, which may require invasive
measurements. To assess the severity of each stenosis case, clinicians use various hemody-
namic indices. The most popular and well-developed index is the fractional flow reserve
(FFR), which is a ratio between mean pressure distal (downstream) to stenosis and mean
aortic pressure during artificially induced hyperemia [2,3]. Stenoses with values of FFR
below 0.8 are considered to be significant and should be surgically treated.

Measuring FFR involves expensive pressure sensors and specialized equipment. Some
patients have multiple stenoses with complicated interactions. These problems led to the
development of coronary blood flow models capable of estimating FFR from coronary
computed tomography angiography (CCTA) and patient’s data (age, heart rate, stroke
volume, blood pressure, etc.). Some of these models are based on solving three-dimensional
Navier–Stokes equations [4], but in this work, we concentrate on one-dimensional (1D)
models of blood flow [5–8]. The 1D approach is less time-consuming, and it was shown that
3D and 1D FFR calculations demonstrate similar results [9].
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One-dimensional models with fractional derivatives can provide a compromise be-
tween accuracy and computational cost. Fractional-order models extend the concept of
differentiability and incorporate nonlocal and memory effects using a small amount of
parameters. This feature can be used to describe complex flows over different space and
time scales without splitting the problem into smaller subproblems. Fractional-order mod-
els have been proposed in hemodynamic applications. Some examples are the model of
blood flow in viscoelastic vessels [10,11] and the model of heat and mass transfer through
an arterial segment, which takes into account the interaction with a magnetic field [12].
Fractional derivatives are used to obtain a more realistic prediction of pulse wave forms,
which involves the development of parameter identification procedures [13,14]. The latter
task has become especially relevant in recent years with the development of computer
technology and increasing interest in inverse problems.

In order to extract the patient-specific data of coronary arteries, CCTA images are
used. However, there is no geometry data for arteries of systemic circles beyond coronary
vessels which can be accounted for in the model. One approach to resolving this issue
is to simulate the whole systemic circle with some averaged parameters [8]. This is a
physiologically based approach, and it requires a lot of computational resources and
includes many parameters that are difficult to estimate. Another option is to impose
pressure-derived boundary conditions directly on the inlet of coronary arteries [9], which
represents the impact of smaller arteries and microcirculation. This approach simplifies the
model but makes it difficult to investigate the effect of various heart conditions on coronary
blood flow. Another approach is to take into account the impact of smaller arteries and
microcirculation using a submodel coupled with the blood flow model in coronary arteries.
A popular choice is Windkessel-type models which are based on the representation of
blood vessels (or the whole systemic circulation) as elastic reservoirs with resistance [5].
This leads to small amount (from 2 to 4) of parameters to describe the influence of systemic
circulation. An alternative option, similar to the one we use in this work, is to include a
part of the aorta in the model and impose a boundary condition on the end of ascending
aorta [15]. This approach allows us to use cardiac output as an inlet boundary condition
and calculate pressure in the aorta.

Boundary conditions in blood flow models usually imitate the impact of smaller
arteries and microcirculation. A porous media-based approach was previously used to
simulate microcirculation [16], and fractional derivatives were used to describe flow in
porous media [17]. Fractional derivatives were also used to simulate blood flow in capillary
vessels [18].

We describe the flow in the systemic circle and microcirculation using Windkessel-
type boundary conditions that utilize fractional derivatives. Fractional derivatives have
already been used in Windkessel models to simulate hypertensive and normal blood
pressure profiles [14]. We propose to couple the Windkessel fractional derivative model
with a 1D coronary blood flow model to obtain a greater variety of aortic pressure profiles.
We demonstrate that the resulting shape of the aortic pressure profile allows for better
personalization of the model and affects the calculated FFR as well as the patient’s diagnosis.

2. Materials and Methods

2.1. Coronary Blood Flow Model

We simulated coronary blood flow and calculated the FFR with a 1D hemodynamic
model [19,20]. This model is based on the flow of incompressible viscous fluid through
a network of one-dimensional elastic tubes. The conditions for mass and momentum
conservation within the network are expressed as a system of hyperbolic equations for
each tube:

∂A
∂t

+
∂Au
∂x

= 0, (1)

∂u
∂t

+
∂

∂x

(
u2

2
+

P
ρ

)
= −8πμ

u
A

, (2)
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where t is time, x is the coordinate along the vessel (tube), A = A(x, t) is the cross-sectional
area, u = u(x, t) is the velocity averaged over the cross-section, P = P(x, t) is the blood
pressure, ρ = 1.06 g/cm3 is the blood density, and μ = 4 cP is the blood viscosity. The
right-hand side of Equation (2) represents friction force. An additional relation between the
blood pressure and cross-sectional area of the vessel wall is required to close the system:

P(A) = ρwc2 f(A), f(A) =

⎧⎨⎩exp
(

A
A0

− 1
)
− 1, A

A0
≥ 1

ln A
A0

, A
A0

< 1,
(3)

where ρw = 1.1 g/cm3 is the blood vessel wall density, A0 is the cross-sectional area of the
unstressed vessel, and c is elasticity index. The physiological meaning of c is the pulse wave
velocity or velocity of small disturbances propagated in the vessel wall [21]. Equation (3)
is an analytical approximation of the pressure–area curves obtained in experimental stud-
ies [22].

The computational domain consists of the aortic root, aorta, left coronary artery (with
branches), and right coronary artery (with branches). The diameters, lengths, and topology
of vessels can be extracted from CCTA scans. A simplified version of arterial network is
presented in Figure 1. We simulated stenosis as a separate segment with decreased diameter.

Figure 1. A simplified network of major coronary arteries. Segment 6 represents 66% stenosis. The
model parameters for each segment are presented in Table A1 in Appendix A. We impose cardiac
output function (Figure 2) on the inlet of segment 1. On the terminal ends of segments 4, 7, and 8, we
impose hydraulic resistance and outflow pressure (6). Boundary condition on the terminal end of the
aorta (segment 2) involves a 2-element Windkessel model (7) .

One-dimensional vessels are connected to each other in junction points to create an
arterial structure. The conditions of mass conservation and total pressure continuity are
imposed at the junction points:

∑
i

Qi = 0, (4)

ρu2
i

2
+ Pi =

ρu2
j

2
+ Pj, i �= j. (5)

Equation (4) represents an algebraic sum of influxes and effluxes, where i is the index
of a vessel connected to a junction. ui, uj and Pi, and Pj in (5) are the velocities and blood
pressures of vessels with indices i and j near the junction point.
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Figure 2. Cardiac output function.

On the inlet of the aorta (segment 1 on Figure 1), we set cardiac the output as a periodic
time function Q(t) (Figure 2). The shape of the cardiac output was proposed in [23]. It can
be adjusted according to the patient’s heart rate (HR), stroke volume (SV), or other data
(peak-to-mean flow ratio, QT-interval).

On the outlet of coronary arteries (segments 4,7,8 on Figure 1), we impose a pressure
drop condition:

Pk − Pout = RkQk, (6)

where k is the index of a segment, Pk is the blood pressure at the boundary point, Qk
is the blood flux at the boundary point, and Rk is the hydraulic resistance, Pout is the
outflow pressure. Outflow pressure can be described as a value of blood pressure at which
the microcirculation between arteries and veins stops. It ranges between 20 and 60 mm
Hg [5] and can be adjusted according to the patient’s data. Resistances Rk are distributed
according to empiric Murray’s law through an algorithm described in [24]. Resistances
increase during the systolic phase to simulate contractions of myocardium tissue that
hinder coronary blood flow [19].

The boundary condition on the outlet of the aorta (segment 2 on Figure 1) differs from
boundary condition on the terminal coronary arteries (6) since the former one represents
the whole systemic circle as well as microcirculation. In order to describe the behavior of
the microcirculation vessels, the two-element Windkessel model [25] is extensively used:

Qa(t) =
Pa(t)− Pout

Ra
+ C

dPa

dt
, (7)

where Qa and Pa are the blood flow and pressure in the aorta, and Ra is the hydraulic
resistance of the systemic circle and microcirculation. In (7), compliance C is introduced.
which represents the ability of blood vessels to distend and store blood volume. Larger
values of C correspond to greater vessel elasticity. Compliance C can be adjusted according
to patient’s systolic and diastolic blood pressures, and resistance Ra can be derived from
the systemic vascular resistance—the ratio between mean blood pressure and cardiac
output [24]. The elastic index c from (3), on the other hand, increases with the rigidity of
the vessels and, thus, has a different physiological interpretation.

We solve the hyperbolic system (1) and (2) inside each vessel numerically with the
help of an explicit grid-characteristic method [26], which is monotone and first-order
accurate. Compatibility conditions imposed on junctions with Equations (4) and (5) and
boundary points with conditions (6) and (7) form the system of nonlinear equations which
is solved with the Newton method. Compatibility conditions are discretized implicitly with
a first-order approximation. Discretizations and convergence studies are presented in [27].

The described model can be used to calculate FFR at any point of the coronary arteries.
We calculate FFR as a ratio between mean pressure in the coronary artery distal to steno-
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sis (Ph
dist) and mean aortic pressure (Ph

aortic) during vasodilation of the coronary vessels
(hyperemia) [2]:

FFR =
Ph

dist

Ph
aortic

. (8)

Hyperemia is simulated by decreasing terminal resistances Rk by 70% [28]. FFR values
below 0.8 are considered to be significant. This means that the coronary vessel has an
abnormal narrowing (stenosis) that should be surgically treated.

By adjusting C and Pout in (6) and (7), we can reproduce patient’s systolic and diastolic
blood pressures. However, the range of possible blood profiles is quite limited. To improve
the mathematical model, additional elements can be introduced into the arterial structure
and the Windkessel model [8]. Instead, in this paper, we propose to use the fractional time
derivative in Equation (7).

2.2. Fractional-Order Boundary Conditions

We impose boundary condition on the terminal end of the aorta using the fractional-
order Windkessel model, which can be written as follows:

Qa(t) =
Pa(t)− Pout

Ra
+ CαDα

t Pa(t), (9)

where Dα
t is a fractional differentiation operator; α is a fractional differentiation order,

which is assumed to be between 0 and 2 in this work; and Cα is a pseudo-compliance
(pseudo-capacitance). Fractional differentiation order α determines the relative degree of
interaction between the capacitance of the microvasculature vessels, elastic compliance of
the vessels, and the dissipation forces inside them. This, in turn, defines the physiological
meaning of Cα.

Windkessel models with fractional derivatives were extensively studied before [13,29].
However, combining a one-dimensional hemodynamic model with the fractional-order
Windkessel boundary condition is a new approach that allows us to represent a greater
variety of storage and dissipation effects that can be represented with a single additional
parameter α.

A large number of different definitions have been proposed for the fractional differen-
tiation operator Dα

t [30]. We use the Caputo fractional derivative in this work:

Dα
t P(t) =

1
Γ(�α� − α)

t∫
0

P(�α�)(t′)
(t − t′)1+α−�α� dt′, (10)

where Γ is a gamma function, �α� is a ceiling of α (smallest integer greater than α), and
P(�α�)(t′) is a derivative with an integer order �α�. There are many other definitions of the
fractional derivative: the Atangana–Baleanu fractional integral [31], Riemann–Liouville
fractional derivative [32], Riesz derivative [33], etc. The choice of the Caputo fractional
derivative is due to its simplicity in representation (relative to other fractional derivatives)
and availability of well-studied numerical methods with approximation estimates for
various problems. Another useful representation derived in [34] can be obtained using
integration by parts in (10):

Dα
t P(t) =

1
Γ(−α)

t∫
0

P(t′)
(t − t′)1+α

dt′. (11)

This representation is valid for 0 < α < 2. We use it to approximate the integral in (11) with
a trapezoidal rule. For the interval [0, t] with a grid {tn = nτ : n = 0, 1, 2, .., N}, assuming
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a constant time-step τ and P(0) = 0, P′(0) = 0, numerical approximation of Dα
τ PN can be

expressed as

Dα
τ PN =

τ−α

Γ(2 − α)

N

∑
n=0

an,N PN−n, (12)

where coefficients an,N are

an,N =

⎧⎪⎨⎪⎩
1, n = 0,
(n + 1)1−α − 2n1−α + (n − 1)1−α, 0 < n < N,
(1 − α)N−α − N1−α + (N − 1)1−α, n = N.

The error and stability analysis of this numerical approximation was described in
detail in [30,35]. It was demonstrated that the order of approximation error is O(τ2−α).

We use an explicit approximation scheme for (9) with the discretization of fractional
derivative described above. This allows us to determine the blood pressure PN at the
terminal end of the aorta from the values of pressure and flux at the previous time steps.
Then, we calculate the outflow QN at the terminal end of the aorta using compatibility
conditions (1) and (2) and wall-state Equation (3).

2.3. Model Personalization

One of the most important problems in patient-specific blood flow modeling is to
identify the parameters of the model. Diameters, lengths, and overall arterial structure
can be extracted from CCTA images with the help of segmentation and skeletonization
algorithms [36]. Parameter c in (3) represents the pulse wave velocity and can be estimated
from the patient’s age, blood pressure, heart rate, and stroke volume with the help of
machine learning methods [20]. Terminal resistances Rk, Ra in (6), (7) and (9) are calculated
from systemic vascular resistance (the ratio between mean pressure and cardiac output)
and the diameters of the terminal arteries [24].

Outflow pressure Pout and compliance C in (7) are estimated to reproduce measured
systolic and diastolic blood pressure. A number of algorithms for Pout and C estimation
are presented in [25]. The following procedure to estimate these parameters is used in this
work. We calculate initial value of C as a ratio between stroke volume and pulse pressure
(PP = Psys − Pdia) and the initial value of Pout as 50% of diastolic pressure. After this, C
and Pout are iteratively adjusted until the measured diastolic and systolic blood pressures
match:

Pi+1
out = Pi

out
Ptrue

sys + Ptrue
dia

Pi
sys + Pi

dia
, Ci+1 = Ci Ptrue

sys − Ptrue
dia

Pi
sys − Pi

dia
. (13)

Adjustment of Cα in (9) is performed using the same procedure, but initial estimation
is usually less precise since the dimension and interpretation of Cα changes with α.

Unfortunately, relying solely on systolic and diastolic pressures may produce incorrect
diagnostic outcomes. For example, the hemodynamic significance of stenosis may vary for
the same values of systolic and diastolic pressures. In order to obtain more accurate esti-
mates, additional available information about the pressure profile, such as mean pressure,
must be taken into account.

We propose to estimate an additional parameter, fractional derivative order α, based
on the value of the mean pressure Pmean. To do this, we first iteratively adjust α to match
the mean pressure and then adjust Cα and Pout for each α to match the systolic and diastolic
blood pressures. After this, we calculate Pmean and compare it with the measured mean
pressure. If the calculated mean pressure is higher than the measured one, the order α
should be decreased, and vice-versa. As we will see from the results, the relationship
between α and Pmean is very close to linear. Therefore, in most situations, it is sufficient to
perform two preliminary calculations for α = 1 and α = 1.5 or α = 0.5 to estimate α, which
provides the appropriate value for the mean pressure.

The procedure of parameter identification described above is summarized on Figure 3.
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Figure 3. Parameter identification procedure.

2.4. Patient Data

We tested the parameter identification procedure (Figure 3) on a publicly available
dataset [5]. This dataset contains data from ten patients, including the geometry of arterial
networks and the location stenoses in various coronary vessels. We kept the numeration
of patients from [5] but we excluded Patient 9 from our study since the measurement of
mean pressure is unavailable. As a result, our study included nine patients (Table 1 with 13
stenoses).

Table 1. Characteristics of the patient dataset (mean ± standard deviation). Details are presented
in [5]. θ = Pmean−Pdia

Psys−Pdia
is a measure of blood profile thickness

Characteristic Value

Number of patients 9
Number of males 5
Heart rate, bpm 69 ± 14

Systolic pressure Psys, mm Hg 141 ± 23
Diastolic pressure Pdia, mm Hg 73 ± 8
Mean pressure Pmean, mm Hg 103 ± 11

BMI, kg/m2 29 ± 4
θ 0.45 ± 0.10
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Figure 4 presents examples of two patient-specific structures for Patient 1 and Patient 4.
Table 2 presents patient metadata as well as measured FFR values. These two patients were
chosen based on the value θ, which is the measure of the blood profile thickness:

θ =
Pmean − Pdia
Psys − Pdia

. (14)

The average value of θ across all nine patients is θave = 0.45. Patient 1 has the lowest
value θ1 = 0.36, and Patient 4 has the closest to the average value θ4 = 0.44. As a result,
Patient 1 has the thinnest blood pressure profile and Patient 4 has the most typical profile.

Figure 4. Patient-specific network of coronary arteries: (a) patient 1 with 70% stenosis (segment
5) and (b) patient 4 with prolonged 50–60% stenosis (segment 5). Parameters of each segment are
presented in Tables A2 and A3.

Table 2. Characteristics of Patient 1 and Patient 4. Stroke volume (SV) was estimated from patient
age and BMI values presented in [5].

Patient 1 Patient 4

Age, years 80 68
HR, bpm 67 88
SV, mL 82 70

Psys, mm Hg 174 130
Pdia, mm Hg 76 66

Pmean, mm Hg 111 94
Stenosis location LAD LAD
Stenosis degree 70% 60%
FFR measured 0.89 0.82

3. Results

3.1. Blood Pressure and FFR Sensitivity to Order α

The proposed model was applied to calculate the blood pressure profiles for various
fractional differentiation orders α in a simplified network of coronary arteries (Figure 1).
We also calculated the FFR for 66% of the stenoses for various α.

First, we calculated aortic blood pressure for α = 1.0 and adjusted the model param-
eters to acquire the physiological systolic (125 mm Hg) and diastolic (75 mm Hg) blood
pressures. Then, we performed calculations for other values of α with the same set of model
parameters. The value of compliance C remains constant for various α. This is technically
incorrect since the physiological meaning and dimensional formula for C depend on α,
but it helps us to explore changes in pressure profiles with the change of α (Figure 5a).

Second, we adjusted C and Pout for each order α to obtain the same values of systolic
and diastolic blood pressures (Figure 5b). As α decreases, the pressure peak shifts to the
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left, and the pressure profile becomes thinner. This results in a drop in mean pressure.
Conversely, as α increases, the profile peak shifts to the right, the profile becomes thicker,
and the mean pressure grows.

Figure 5. Aortic blood pressure for various orders α. (a) All parameters, except for α, are fixed.
(b) Model parameters were adjusted to yield the same values of the systolic and diastolic blood
pressure.

Systolic and diastolic blood pressures are one of the most commonly available patient-
specific parameters. All blood profiles on Figure 5b have the same systolic and diastolic
blood pressures, but the mean pressures are different for each α. If the mean pressure
is available for a given patient, we can use it to select an appropriate α and calculate
FFR. Figure 6 demonstrates how the calculated mean pressure and FFR depend on α,
assuming that the systolic and diastolic blood pressures are the same (125/75 mm Hg). The
relationship between mean pressure and α is very close to linear within the considered
interval (from 0.25 to 1.5). Therefore, this simplifies the process of α identification from
patient’s mean pressure: if we calculate the mean pressures for any two values of α, we can
derive an appropriate α for a given mean pressure value using linear interpolation.

At the same time, FFR drops with increasing α (Figure 6b). This relation resembles
exponential decay. For 0 < α < 1, FFR drops rapidly from 0.95 (α = 0.25) to 0.78 (α = 1.0).
The threshold between the significant and insignificant lesions is 0.8, so the choice of α
affects the diagnostic outcome. For 1 < α < 2, FFR is almost constant.

Figure 6. Mean pressure and FFR for a simplified network of coronary arteries. (a) Mean pressure
and α. (b) FFR and α. The horizontal red line corresponds to FFR = 0.8—threshold value between
significant (FFR < 0.8) and insignificant (FFR > 0.8) stenoses .

3.2. Patient-Specific Calculations

In this section, we describe applying a parameter estimation algorithm (Figure 3)
to estimate FFR for nine patients (Table 1). We start with two examples: Patient 1 and
Patient 4.
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Patient 1 had stenosis in the left anterior descending artery (LAD) with a corresponding
measured FFR value of 0.89 and a mean aortic pressure of 111 mm Hg. Blood flow calcula-
tions for α = 1 (utilizing boundary condition (7)) yielded FFRα=1 = 0.83 and Pα=1

mean = 119
mm Hg. Then, we applied the proposed model with fractional-order Windkessel boundary
conditions (9) with the parameter identification procedure to fit the given systolic, diastolic,
and mean pressures. As a result, the following estimates were obtained: Pα=0.56

mean = 111
mm Hg was achieved for α = 0.56, and the resulting FFR was FFRα=0.56 = 0.87. The
error in FFR estimation was significantly reduced after applying optimization of α for
mean pressure.

Patient 4 had stenosis in the LAD with a corresponding measured FFR value of 0.82
and a mean aortic pressure of 94 mm Hg. Blood flow calculations for α = 1 (utilizing
boundary condition (7)) yielded FFRα=1 = 0.82 and Pα=1

mean = 94 mm Hg. No further
optimization was required in this case since the calculated mean pressure matched the
measured mean pressure with good accuracy. The calculated FFR value also matched the
measured one.

FFR estimations for other patients are presented in Table 3. The original approach to
estimate FFR involves a boundary condition (7) without fractional derivative. We ignored
the measured mean pressure and adjusted our model to achieve the measured systolic and
diastolic blood pressures. The fractional-order approach involves adjusting the fractional
derivative order to obtain measured mean pressure. The RMSE for the original approach
was 0.05, and the RMSE for the fractional order approach was 0.04. The RMSE was mainly
defined by large errors in the FFR estimations of patients 6, 8, and 10. We assumed that
stenosis degree and length were not identified properly for these patients. The FFR estima-
tion was improved for patients with a “thin” blood profile (θ < 0.4), including Patient 1,
Patient 5, and Patient 7. Patients 2, 3, 4, and 6 had am optimal fractional order αopt close to
1.0 (or equal to 1.0), so FFR estimations for both approaches were similar. The FFR estima-
tions for patient 6 were less precise for the fractional order approach, but the difference was
very small. Patients 8 and 10 had an optimal fractional order αopt > 1.0, and the FFR esti-
mation was similar for both approaches. This is due to the fact that FFR is almost constant
for α > 1.0 (Figure 6).

Table 3. FFR estimations for the patient dataset. Patient data: Pmean is the measured mean pressure,
mm Hg; θ is a measure of the pressure profile thickness (14); Loc. is a location of stenosis; FFR is
the invasively measured FFR. The original approach for FFR estimation (order α = 1.0): FFRα=1 is
the calculated FFR value with a boundary condition (7); Pest

mean is the calculated mean pressure with
order α = 1. The fractional derivative approach (order α = αopt) involves adjusting order α so that
the calculated mean pressure matches the measured one: FFRα=αopt is the calculated FFR value with
the boundary condition (9), and fractional order α = αopt; αopt is the optimal fractional order. Patient
9 was excluded due to the absence of a mean pressure measurement.

Patient Data Order α = 1.0 Order α = αopt
№ Pmean θ Loc. FFR FFRα=1 Pest

mean FFRαopt αopt

1 111 0.36 LAD 0.89 0.83 118 0.87 0.56
2 83 0.46 LAD 0.86 0.87 83 0.87 1.0
3 125 0.40 RCA 0.88 0.89 125 0.89 1.0
4 94 0.44 LAD 0.82 0.82 94 0.82 1.0
5 99 0.39 LAD 0.82 0.8 102 0.82 0.82
6 99 0.40 LADp 0.9 0.98 101 0.98 0.91

LADd 0.82 0.87 0.88
DA 0.81 0.84 0.85

7 98 0.37 LAD 0.75 0.68 102 0.71 0.78
LCx 0.84 0.82 0.85

8 110 0.51 LAD 0.88 0.92 107 0.92 1.3
LCx 0.89 0.97 0.96

10 108 0.51 LAD 0.72 0.81 90 0.8 1.85
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Results of the FFR estimation showed that the fractional-order approach provided
benefits for a certain group of patients (patients 1, 5, and 7) with a thin blood pressure profile.
These patients may have a common cardiovascular pathology. According to [14], low
fractional orders can be used to simulate the blood profiles of patients with hypertension.
Patients 1, 5, and 7 have a BMI > 30 kg/m2 which is a good predictor of hypertension.
However, their blood pressure levels are not the highest in the dataset. We need a larger
sample of patients to make further conclusions.

4. Discussion

We proposed coupling the well-established one-dimensional hemodynamic model of
coronary blood flow with a fractional-order boundary condition, as well as a procedure
for estimating its parameters. The fractional derivative can be a useful tool for more
accurate modeling of the pressure profile. The actual blood pressure profiles depend on
many factors, such as age, height, weight, medical history, and artery elasticity. The most
commonly available characteristics of blood pressure profiles are systolic and diastolic
blood pressures. Unfortunately, relying solely on these two values alone may produce
incorrect diagnostic outcomes. For example, the hemodynamic significance of stenosis may
vary for the same systolic and diastolic blood pressures. This fact has motivated researchers
to look for new tools to model blood pressure profiles.

We used the fractional derivative order to match calculated mean blood pressure with
the measured one. Adjusting mean pressure can be performed in other ways: introducing
a larger Windkessel model, expanding the arterial network, etc. The fractional-derivative
Windkessel model is a good compromise: we introduced a very small amount of new
parameters (1–2) and gained the ability to simulate a whole spectrum of dissipative and
storage mechanisms with the help of fractional order α. Our approach does require addi-
tional information on the blood pressure profile. These data can be obtained with simple
noninvasive procedures. Unfortunately, in many cases, these data are unavailable, and all
the pressure profile information is reduced to systolic and diastolic pressure values. This
was the case for Patient 9 who was excluded from our study.

The proposed approach has a number of shortcomings that need to be resolved in
the future. First, in some cases, the only data available regarding a patient’s pressure
profile were systolic and diastolic blood pressures. Identifying the fractional derivative
order α in this case would require a completely different approach that can be based on
other data, such as patient medical history. Second, calculating fractional derivatives
calls for significant computational resources. This negates one of the main advantages
of one-dimensional blood flow models—computational efficiency. Instead of the basic
approach presented in this work, new efficient numerical approximations can be used.
Third, the proposed approach should be tested on a larger number of patients with a wide
range of FFR values. The FFR is nearly constant for fractional differentiation orders α > 1,
so for some patients, its adjustment will be useless.

Further research will focus on integrating more efficient approaches to identify model
parameters and to approximate a fractional derivative. Other areas of work include col-
laborating with clinicians to find effective methods for pulse wave assessment and further
validation on a larger amount of patients. The proposed approach has great potential to
provide an alternative means to simulating arterial stiffness and pulse waves.
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Abbreviations

The following abbreviations are used in this manuscript:

CCTA coronary computed tomography angiography
DA diagonal artery
FFR fractional flow reserve
HR heart rate
LCA left coronary artery
LCx left circumflex artery
LAD left anterior descending artery
LADd distal part of the left anterior descending artery
LADp proximal part of the left anterior descending artery
RCA right coronary artery
RMSE root mean square error
SV stroke volume

Appendix A

Table A1. Parameters of the vessels for simplified structure (Figure 1).

Segment № Length, cm Diameter, mm c, m/s

1 3.2 22.0 7.5
2 5.0 25.0 7.5
3 1.3 3.9 9.0
4 6.0 2.8 9.0
5 3.0 3.0 9.0
6 0.7 0.9 9.0
7 4.0 0.3 9.0
8 7.5 3.0 9.0

Table A2. Parameters of the vessels for Patient 1 (Figure 4).

Segment № Length, cm Diameter, mm c, m/s

1 3.1 21.0 9.7
2 5.0 23.0 9.7
3 1.3 3.9 11.6
4 2.3 2.3 11.6
5 1.1 0.7 11.6
6 1.0 2.6 11.6
7 2.7 1.4 11.6
8 3.9 1.9 11.6
9 2.1 3.1 11.6
10 1.8 2.0 11.6
11 6.8 2.0 11.6
12 7.6 1.4 11.6
13 4.6 1.7 11.6
14 1.1 1.3 11.6
15 7.5 1.3 11.6
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Table A3. Parameters of the vessels for Patient 4 (Figure 4).

Segment № Length, cm Diameter, mm c, m/s

1 2.9 21.0 8.8
2 5.0 22.0 8.8
3 0.6 2.4 10.6
4 0.9 3.0 10.6
5 2.3 1.3 10.6
6 2.2 2.0 10.6
7 9.7 1.9 10.6
8 2.8 1.3 10.6
9 4.7 1.8 10.6
10 3.0 3.0 10.6
11 6.5 2.2 10.6
12 9.4 2.8 10.6
13 1.2 1.6 10.6
14 4.6 1.3 10.6
15 9.9 1.7 10.6
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Abstract: A comb structure consists of a one-dimensional backbone with lateral branches. These
structures have widespread application in medicine and biology. Such a structure promotes an
anomalous diffusion process along the backbone (x-direction), along with classical diffusion along
the branches (y-direction). In this work, we propose a distributed-order time- and space-fractional
diffusion-wave equation to model a comb structure in the more general setting. The distributed-order
time- and space-fractional diffusion-wave equation is firstly formulated to study the anomalous
diffusion in the comb model subject to an irregular convex domain with the motivation that the
time-fractional derivative considers the memory characteristic and the space one with the variable
diffusion coefficient possesses the nonlocal characteristic. The finite element method is applied to
obtain the numerical solution. The stability and convergence of the numerical discretization scheme
are derived and analyzed. Two numerical examples of relevance to the comb model are given to
verify the correctness of the numerical method. Moreover, the influence of the involved parameters
on the three-dimensional and axial projection drawing particle distribution subject to an elliptical
domain are analyzed, and the physical meanings are interpreted in detail.

Keywords: distributed-order fractional derivative; anomalous diffusion; comb model; constitutive
relationship

PACS: 26A33; 65M12; 65M60; 35R11; 74Q15

1. Introduction

A comb model is used to study anomalous diffusion in a medium of a specific
structure [1]. Systematic research on this class of models is of great theoretical signif-
icance and application to comb structures such as dendritic spines [2] that arise in
medicine and biology. An example of an experimental setup to probe the dynamics of
actin polymerization is given in Figure 1a. The image at the top gives the optical micro-
graph of the microfluidics structure, and the image at the bottom is of the microfluidic
micrographs fluorescently labeled, polymerized actin filaments [3]. Figure 1b presents
the electron tomogram of a spiny dendrite [4]. From the two practical problems, it is
easily seen that the particle transport is not random but in the form of a comb, and this
specific structure is named a comb model [5]. Comb models are a powerful tool for
studying many other diffusion phenomena, such as the diffusion of cancer cells [6], the
fractal glioma development under RF electric field treatment [7] and the diffusion of
percolation clusters [8]. For this study, we assume for all the practical problems that
the transport of particles in a comb form can be simplified to the structure exhibited
in Figure 2. As the figure shows, the comb model contains a straight backbone on the
x-axis with the lateral branches attached perpendicularly to the backbone, which plays

Fractal Fract. 2023, 7, 239. https://doi.org/10.3390/fractalfract7030239 https://www.mdpi.com/journal/fractalfract
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the role of traps [8]. Through the special structure of the comb model, the diffusion
process along the x-direction only happens on the x-axis and the transport between
any different fingers must take place through the backbone. As is well known, one of
the most striking characteristics for the classical normal diffusion is the linear growth
with time of the second moment of the particle positions. For the special structure
of the comb model, one important pattern of diffusion can be deduced, whereby the
subdiffusion with exponent 1/2 arises subject to the classical Fick’s constitution model
with a linear form [9]

�J(x, y, t) =
(

− kxδ(y)
∂u(x, y, t)

∂x
, −ky

∂u(x, y, t)
∂y

)
, (1)

where�J(x, y, t) refers to the diffusion flux vector, u(x, y, t) denotes the distribution function
at the special positions (x, y) and time t, kxδ(y) indicates the diffusion coefficient along the
x-direction while ky is the diffusion coefficient along the y-direction, δ(y) refers to the Dirac
delta function which reflects the special structure of the comb model.

(a) (b)

Figure 1. (a) Optical micrograph of a segment of the microfluidics comb-like structures (on top).
On the bottom: microfluidic micrographs of fluorescently labeled, polymerized actin filaments in
a comb-like structure [4]. (b) One of the examples of a physical environment suitable for the comb
model. Electron tomogram of a spiny dendrite. Image taken from Internet (http://www.cacr.caltech.
edu/projects/ldviz/results/levelsets/, accessed on 1 July 2013).

Figure 2. The schematic of a comb model.

Due to the geometrical structure and the non-uniformity of the medium transmission,
the classical Fick’s law in conventional diffusion with the paradox of an infinite transport
velocity [10,11] is no longer applicable. In order to study the transmission mechanism of
the concentration field for the anomalous diffusion in the comb model, three modifications
for the Fick’s model are presented. The first is the introduction of the relaxation parameter
ξ and the second considers the time-fractional derivatives with the motivation that the
relaxation parameter makes the transport process attach a finite transport velocity, while
the time-fractional derivative takes the memory characteristic of the transport process into
account. Furthermore, as discussed in [12], due to the special structure of the comb model,
the highly inhomogeneous characteristic happens along the x-axis, and this characteristic
can be reflected by the space-fractional derivative [13]. Thus, as the third modification,
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the second space-integer derivative is modified to a space-fractional derivative with vari-
able coefficients, which considers a left and right nonlocal characteristic. Based on the
time-fractional Cattaneo model [14] and the two-dimensional space-fractional constitutive
model [15], the following time- and space-fractional Cattaneo constitution relationship
with variable diffusion coefficients is formulated

�J(x, y, t) + ξ
∂�J(x, y, t)

∂t

=RL
0 D1−α

t

(
− δ(y)

(
d+(x, y)LDγ

x u(x, y, t)− d−(x, y)xDγ
Ru(x, y, t)

)
, −e(x, y)

∂u(x, y, t)
∂y

)
, (2)

where δ(y)d+(x, y) and δ(y)d−(x, y) represent the left and right variable diffusion coeffi-
cient along the x-direction, respectively; e(x, y) refers to the variable diffusion coefficient
along the y-direction; RL

0 D1−α
t refers to time-fractional derivative of order 1 − α (0 < α < 1)

with the Riemann–Liouville definition; LDγ
x and xDγ

R, respectively, denote the left and right
Riemann–Liouville space-fractional derivatives of order γ (0 < γ < 1). The definitions are,
respectively, given by

RL
0 D1−α

t u(x, y, t) =
1

Γ(α)
∂

∂t

∫ t

0

1

(t − τ)1−α
u(x, y, τ)dτ,

LDγ
x u(x, y, t) =

1
Γ(1 − γ)

∂

∂x

∫ x

L

1
(x − s)γ u(s, y, t)ds,

xDγ
Ru(x, y, t) =

−1
Γ(1 − γ)

∂

∂x

∫ R

x

1
(s − x)γ u(s, y, t)ds,

where the symbol Γ(·) refers to the Euler gamma function, L and R refer to the left and
right boundaries along the x-direction.

By combining the constitutive relation (2) with the following mass conservation equation

∂u(x, y, t)
∂t

+∇ ·�J(x, y, t) = 0, (3)

we obtain the time- and space-fractional Cattaneo governing equation

ξ
∂1+αu(x, y, t)

∂t1+α
+

∂αu(x, y, t)
∂tα

=
∂

∂x

[
δ(y)

(
d+(x, y)LDγ

x u(x, y, t)− d−(x, y)xDγ
Ru(x, y, t)

)]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
, (4)

where the symbols ∂αu(x,y,t)
∂tα dα and ∂1+αu(x,y,t)

∂t1+α denote the Caputo fractional derivative oper-
ators of order α and 1 + α, respectively, in which the definitions are given as

∂αu(x, y, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

1
(t − τ)α

∂u(x, y, τ)

∂τ
dτ,

∂1+αu(x, y, t)
∂t1+α

=
1

Γ(1 − α)

∫ t

0

1
(t − τ)α

∂2u(x, y, τ)

∂τ2 dτ.

As a generalization of the integer derivative, the fractional operator considers the
memory and nonlocal characteristics and has important applications in a variety of fields.
For the fractional governing Equation (4), a limitation is that it is suitable for describing
the probability density distribution of a very narrow class of diffusion processes because
it is characterized by a unique time-fractional exponent [16]. Motivated by this idea, by
integrating the fractional-order derivatives with respect to the order of differentiation, a
distribution-order operator was proposed by Caputo [17]. The governing equation with
the distributed-order operator exhibits memory and nonlocal effects over various time-
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fractional scales and becomes a powerful tool to describe transport phenomena in complex
heterogeneous media. However, as far as we are aware, the distributed-order time and
space diffusion-wave equation has not been considered to study the anomalous diffusion
in the comb model.

Motivated by the above discussions, as an original contribution to the literature, we
discuss and analyze the following distributed-order time- and space-fractional diffusion-
wave equation to study the anomalous diffusion in the comb model

ξ
∫ 2

1
ϕ1(β)

∂βu(x, y, t)
∂tβ

dβ +
∫ 1

0
ϕ0(α)

∂αu(x, y, t)
∂tα

dα (5)

=
∂

∂x

[
δ(y)

(
d+(x, y)LDγ

x u(x, y, t)− d−(x, y)x Dγ
Ru(x, y, t)

)]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
+ f (x, y, t),

where ϕ1(β) and ϕ0(α) denote weight functions and β ∈ (1, 2), ϕ1(β) ≥ 0, ϕ1(β) �≡ 0,
0 <

∫ 2
1 ϕ1(β)dβ < ∞, α ∈ (0, 1), ϕ0(α) ≥ 0, ϕ0(α) �≡ 0, 0 <

∫ 1
0 ϕ0(α)dα < ∞ and f (x, y, t)

is a source term.
As Ref. [6] indicated, the diffusion in the comb model, which is described by the Fick’s

model, is an example of a subdiffusive one-dimensional medium where a continuous-time
random walk takes place along the backbone while the diffusion along the y direction has a
traps effect. The classical Fick’s model possesses the local characteristic, and the fractional
derivative is proposed, considering the memory and nonlocal characteristics. For a further
development, the distributed-order time-fractional derivative is proposed by integrating the
fractional-order derivatives. In conclusion, Equation (5) is a development to describe the
continuous-time random walk, considering various memory and nonlocal characteristics.

The anomalous diffusion in the comb model has been applied to many different
fields in medicine and biology. In some applications of the comb model treating with the
numerical method, the infinite regions are approximated by the rectangular domains with
large sides [18]. However, by extending the computational modeling to irregular domains,
we can broaden the potential applicability of the comb model. Based on these discussions,
in this paper, the initial and boundary conditions are given by

u(x, y, 0) = φ0(x, y), ut(x, y, 0) = φ1(x, y), (x, y) ∈ Ω, (6)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T], (7)

respectively, where Ω is an irregular convex domain.
The new governing Equation (5) is a generalization and development of the classical

model to study the anomalous diffusion in the comb model. By choosing ϕ0(α)=δ(α − α0),
ϕ1(β)=δ(β − α0 − 1), d+(x, y)=d−(x, y) = kx, e(x, y) = ky, γ = 1 and f (x, y, t) = 0,
Equation (5) reduces to the time-fractional Cattaneo governing equation [14]

ξ
∂α0+1u(x, y, t)

∂tα0+1 +
∂α0 u(x, y, t)

∂tα0
= kxδ(y)

∂2u(x, y, t)
∂x2 + ky

∂2u(x, y, t)
∂y2 .

For the choice ϕ0(α)=δ(α − α0), ξ = 0, d+(x, y)= kx, d−(x, y) = 0, e(x, y) = ky and
f (x, y, t) = 0, Equation (5) reduces to the time- and space-fractional governing equation
[19]

∂α0 u(x, y, t)
∂tα0

= kxδ(y)
∂γ+1u(x, y, t)

∂xγ+1 + ky
∂2u(x, y, t)

∂y2 .

Finally, by choosing ξ = 0, ϕ0(α)=δ(α − 1), d+(x, y)=d−(x, y) = kx, e(x, y) = ky,
γ = 1 and f (x, y, t) = 0, we obtain the anomalous diffusion based on the classical Fick’s
model [2]

∂u(x, y, t)
∂t

= kxδ(y)
∂2u(x, y, t)

∂x2 + ky
∂2u(x, y, t)

∂y2 .
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The study of distributed-order time- and space-fractional diffusion-wave equations is
of great significance to further improve and predict the anomalous diffusion phenomena in
the comb-like structures.

2. The Structure of the Paper

In this paper, the two-dimensional irregular convex domain is defined as Ω =
{(x, y)|xL(y) ≤ x ≤ xR(y), yD(x) ≤ y ≤ yU(x)}, where xL(y), xR(y), yD(x), yU(x) are the
left, right, lower and upper boundaries of Ω, respectively. Denote xmin = min

(x,y)∈Ω
xL(y),

xmax = max
(x,y)∈Ω

xR(y), ymin = min
(x,y)∈Ω

yD(x), ymax = max
(x,y)∈Ω

yU(x). Then, the inner product

is defined as

(u, v)Ω =
∫ ymax

ymin

∫ xR(y)

xL(y)
u(x, y)v(x, y)dxdy =

∫ xmax

xmin

∫ yU(x)

yD(x)
u(x, y)v(x, y)dxdy,

and the L2-norm is given as ||u||L2(Ω) =
(
(u, u)Ω

)1/2.
The fractional derivative space in one dimension was firstly established by Roop and

Ervin [20] and then developed further by Bu et al. [21,22], Yang et al. [23], Hao et al. [24] and
Wang et al. [25,26]. Due to the special form of the governing equation with a space-fractional
derivative of order γ in x and the integer derivative in y, some new definitions and lemmas of
the fractional derivative spaces are defined.

Definition 1. The definitions for the left (right) fractional derivative space with semi-norm and
norm are, respectively, given as

|u|
Jγ,1
L (Ω)

=

(
||LDγ

x u||2L2(Ω)
+

∣∣∣∣∣∣∣∣ ∂u
∂y

∣∣∣∣∣∣∣∣2
L2(Ω)

)1/2

, |u|
Jγ,1
R (Ω)

=

(
||x Dγ

Ru||2L2(Ω)
+

∣∣∣∣∣∣∣∣ ∂u
∂y

∣∣∣∣∣∣∣∣2
L2(Ω)

)1/2

,

||u||
Jγ,1
L (Ω)

=

(
||u||2L2(Ω)

+ |u|2
Jγ,1
L (Ω)

)1/2

, ||u||
Jγ,1
R (Ω)

=

(
||u||2L2(Ω)

+ |u|2
Jγ,1
R (Ω)

)1/2

,

where Jγ,1
L (Ω) (Jγ,1

R (Ω)) denotes the closure of C∞(Ω) with respect to || · ||Jγ,1
L (Ω)

(|| · ||Jγ,1
R (Ω)

).

Definition 2. The fractional Sobolev space with the semi-norm and norm of order μ are, respectively,
defined as

|u|Hμ(Ω) = || |ξ|μF (û)(ξ)||L2(R2),

||u||Hμ(Ω) =

(
||u||2L2(Ω) + |u|2Hμ(Ω)

)1/2

,

where F (û)(ξ) is the Fourier transformation of the function û, and û is the zero extension of the
function u outside of Ω, Hμ(Ω) denotes the closure of C∞(Ω) with respect to || · ||Hμ(Ω).

Definition 3. For the symmetric fractional derivative space, when γ �= 1/2, we define the semi-
norm and norm

|u|Jγ,1
S (Ω)

=

(
|(LDγ

x u, xDγ
Ru)Ω|+

∣∣∣∣(∂u
∂y

,
∂u
∂y

)
Ω

∣∣∣∣
)1/2

,

||u||Jγ,1
S (Ω)

=

(
||u||2L2(Ω) + |u|2

Jγ,1
S (Ω)

)1/2

,

where Jγ,1
S (Ω) denotes the closure of C∞(Ω) with respect to || · ||Jγ,1

S (Ω)
.
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We denote Jγ,1
L,0 (Ω), Jγ,1

R,0(Ω), Hγ
0 (Ω), H1

0(Ω) and Jγ,1
S,0 (Ω) as the closure of C∞

0 (Ω) with
respect to || · ||Jγ,1

L (Ω)
, || · ||Jγ,1

R (Ω)
, || · ||Hγ(Ω), || · ||H1(Ω) and || · ||Jγ,1

S (Ω)
, respectively, where

C∞
0 (Ω) is the space of smooth functions with compact support in Ω. Based on the above

definitions, some useful and important lemmas are introduced.

Lemma 1. For u(x, y), v(x, y) ∈ Jγ,1
L,0 (Ω)

⋂
Jγ,1
R,0(Ω) (0 < γ < 1), we have(

LDγ
x u(x, y),

∂v(x, y)
∂x

)
= −

(
LD(γ+1)/2

x u(x, y), xD(γ+1)/2
R v(x, y)

)
, (8)

(
xDγ

Ru(x, y),
∂v(x, y)

∂x

)
= −

(
xD(γ+1)/2

R u(x, y), LD(γ+1)/2
x v(x, y)

)
. (9)

Proof. See [27].

Lemma 2. For u ∈ Hγ
0 (Ω) and 0 < γ < (γ + 1)/2, then

||u||L2(Ω) ≤ C2||LDγ
x u||L2(Ω) ≤ C1||LD(γ+1)/2

x u||L2(Ω), (10)

||u||L2(Ω) ≤ C4||xDγ
Ru||L2(Ω) ≤ C3||xD(γ+1)/2

R u||L2(Ω). (11)

For u ∈ H1
0(Ω), we have

||u||L2(Ω) ≤ C5

∣∣∣∣∣∣∣∣∂u
∂y

∣∣∣∣∣∣∣∣
L2(Ω)

, (12)

where C1, C2, C3, C4 and C5 are positive constants independent of u.

Proof. The proof of this Lemma follows that given in [28].

Lemma 3. For u(x, y) ∈ Jγ,1
L,0 (Ω) ∩ Jγ,1

R,0(Ω), we have

(
LD(γ+1)/2

x u, xD(γ+1)/2
R u

)
= cos

(
π(γ + 1)/2

)∣∣∣∣∣∣∣∣LD(γ+1)/2
x û

∣∣∣∣∣∣∣∣2
L2(R2)

, (13)

(
∂u
∂y

,
∂u
∂y

)
=

∣∣∣∣∣∣∣∣∂u
∂y

∣∣∣∣∣∣∣∣2
L2(R2)

. (14)

Proof. Similar to the derivation process in [27], we can obtain the results immediately.

Lemma 4. If u > 0, γ �= n − 1/2, n ∈ N, then Jγ,1
L,0 (Ω), Jγ,1

R,0(Ω), Jγ,1
S,0 (Ω), Hγ

0 (Ω) and H1
0(Ω)

are equivalent with equivalent norms and semi-norms.

Proof. The proof of this lemma can be found in [28].

3. Derivation of the Finite Element Scheme for the Comb Model

3.1. Finite Element Fully Variational Formulation

In the following section, for the sake of simplicity, denote d1(x, y) = δ(y)d+(x, y),
d2(x, y) = δ(y)d−(x, y). Due to the irregular shape of the solution domain, the traditional
rectangular mesh cannot be used. The finite element method is applied to obtain the
solution of the governing Equation (5), subject to the initial conditions (6) and irregular
boundary conditions (7).
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Firstly, in the governing Equation (5), the distributed-order time-fractional derivatives
are discretized using the mid-point quadrature rule [29]

∫ 2

1
ϕ1(β)

∂β

∂tβ

(
∂2u
∂x2

)
dβ =

M1

∑
i=0

ω
(1)
i

∂βi

∂tβi

(
∂2u
∂x2

)
+ O(h2

β),

∫ 1

0
ϕ0(α)

∂α+1

∂tα+1 dα =
M2

∑
i=0

ω
(2)
i

∂αi+1u
∂tαi+1 + O(h2

α),

where ω
(1)
i = hβ ϕ1(αi), ω

(2)
i = hα ϕ0(αi), hα = 1

M2+1 and hβ = 1
M1+1 are fractional parame-

ter steps and αi =
ihα+(i+1)hα

2 for i = 0, 1, . . . , M2, βi =
ihβ+(i+1)hβ

2 for i = 0, 1, . . . , M1.
Let τ = T/N be the time step and tk = kτ (k = 0, 1, . . . , N) where N is a positive

integer. Denote uk−1/2 = uk+uk−1

2 for k = 1, . . . , N. For u(x, y, t) ∈ C(Ω × [0, T]), denote

uk = uk(·) = u(·, tk). We introduce ∇tuk−1/2 = uk−uk−1

τ . At t = tk−1/2, the L2-scheme [30] to
approximate the fractional derivative of order βi (1 < βi < 2) with the Caputo definition is
given as

∂βi uk−1/2

∂tβi
=

τ1−βi

Γ(3 − βi)

[
a(βi)

0 ∇tuk−1/2 −
k−1

∑
j=1

(a(βi)
k−1−j − a(βi)

k−j )∇tuj−1/2 − a(βi)
k−1u0

t

]
+ Rk,βi

0

=∇(βi)
t uk−1/2 + Rk,βi

0 , (15)

where a(βi)
j = (j + 1)2−βi − j2−βi , j = 0, 1, 2, ..., k − 1, |Rk,βi

0 | ≤ C(τ3−βi ).

Lemma 5. For the above a(βi)
j , define vector S = [S1, S2, S3, ..., SN ]

T and constant P, it holds that

2τ1−βi

Γ(3 − βi)

N

∑
k=1

[
a(βi)

0 Sk −
k−1

∑
j=1

(a(βi)
k−j−1 − a(βi)

k−j )Sj − a(βi)
k−1P

]
Sk ≥ T1−βi

Γ(2 − βi)

N

∑
k=1

S2
k − T2−βi

τΓ(3 − βi)
P2.

Proof. See [30].

The time Caputo fractional derivative of order αi (0 < αi < 1) is discretized by using
the L1-scheme [30], and the scheme at t = tk−1/2 is given as

∂αi uk−1/2

∂tαi
=

τ1−αi

2Γ(2 − αi)

k

∑
j=1

b(αi)
k−j∇tuj−1/2 +

τ1−αi

2Γ(2 − αi)

k−1

∑
j=1

b(αi)
k−j−1∇tuj−1/2 + Rk,αi

1

=∇(αi)
t uk− 1

2 + Rk,αi
1 , (16)

where b(αi)
j = (j + 1)1−αi − j1−αi , j = 0, 1, 2, ..., k − 1, |Rk,αi

1 | ≤ C(τ2−αi ).

Lemma 6. For the above b(αi)
j , choosing any positive integer M and vector [v1, v2, v3, ..., vM] ∈

RM, we have

M

∑
k=1

k

∑
j=1

b(αi)
k−j (vj, vk) +

M

∑
k=1

k−1

∑
j=1

b(αi)
k−j−1(vj, vk) ≥ 0.

Proof. See [31].
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At time t = tk−1/2, the semi-discrete scheme for the governing Equation (5) is given
as follows:

ξ
M1

∑
i=0

ω
(1)
i ∇(βi)

t uk−1/2 +
1
2

M2

∑
i=0

ω
(2)
i ∇(αi)

t uk−1/2

=
∂

∂x

[
d1(x, y)LDγ

x uk−1/2 − d2(x, y)xDγ
Ruk−1/2

]
+ e(x, y)

∂2uk−1/2

∂y2 + f k−1/2.

(17)

Define V = Hγ
0 (Ω) ∩ H1

0(Ω) to be the numerical solution space. In this work, we
choose to use triangular elements to mesh Ω. Because the domain is irregularly shaped, we
refer to this throughout this paper as an unstructured mesh. Denote {Γh} as a family of
unstructured triangulations of domain Ω, where h is the maximum diameter of any triangle
in Γh. Then, we obtain the conforming finite element subspace Vh ∈ V as

Vh = {vh|vh ∈ C(Ω) ∩ V, vh|K is linear for all K ∈ Γh and vh|∂Ω = 0}.

Assume that uk
h is the approximation of u(x, y, t) at time t = tk. We can derive the

fully discrete formulation of (5)–(7): find uk
h ∈ Vh, for any k = 0, 1, . . . , N, such that

ξ
M1

∑
i=0

ω
(1)
i τ1−βi

Γ(3 − βi)

[
aβi

0 (∇tuk−1/2
h , vh)−

k−1

∑
j=1

(a(βi)
k−1−j − a(βi)

k−j )(∇tu
j−1/2
h , vh)− a(βi)

k−1

(
(u0

h)t, vh

)]

+
1
2

M2

∑
i=0

ω
(2)
i τ1−αi

Γ(2 − αi)

k

∑
j=1

b(αi)
k−j (∇tu

j−1/2
h , vh) +

1
2

M2

∑
i=0

ω
(2)
i τ1−αi

Γ(2 − αi)

k−1

∑
j=1

b(αi)
k−j−1(∇tu

j−1/2
h , vh)

=− B(uk−1/2
h , vh)+( f k−1/2, vh), (18)

with the initial conditions and boundary conditions given by

u0
h = u0h, uk

h|(∂Ω) = 0, (19)

where u0h ∈ Vh is a reasonable approximation for u0. The expression for B(u, v) is given as

B(u, v) =
(

d1(x, y)LDγ
x u,

∂v
∂x

)
−
(

d2(x, y)xDγ
Ru,

∂v
∂x

)
+

(
e(x, y)

∂u
∂y

,
∂v
∂y

)
. (20)

3.2. Implementation of Finite Element Method with an Unstructured Mesh

In this section, we provide details of the implementation of the finite element method
with an unstructured mesh. Firstly, we use the software Gmsh [32] to partition the convex
domain Ω with unstructured triangular elements. For every triangular element ep, define
Ne as total number of the triangles and NP is the number of elements. Using piecewise
linear polynomials on every triangular element ep, for each time step, we can write uk

h in

the form uk
h =

NP
∑

n=1
uk

n ϕn(x, y), where ϕn(x, y) is the basis function and uk
n is the unknown

to be solved for. Denote ϕn(xm, ym) = δnm (n, m = 1, 2, . . . , Np), where δnm refers to
the Kronecker delta function, vh = ϕm(x, y), the mass matrix M = (ϕn, ϕm)Np×Np

, the

stiffness matrix A = B(ϕn, ϕm)Np×Np
, Fk = (Fk

1 , Fk
2 , . . . , Fk

Np
)T where Fk

m =
( f k+ f k−1

2 , ϕm
)
,

432



Fractal Fract. 2023, 7, 239

ω0
m =

(
(u0

h)t,ϕm
)
, Uk =

[
uk

1, uk
2, . . . , uk

Np

]T , W0 =
[
ω0

1, ω0
2, . . . , ω0

Np

]T , then we can rewrite
(18) in matrix forms as follows

[(
2ξ

M1

∑
i=0

ωi a
(βi)
0 + 2

M2

∑
i=0

rib
(αi)
0
)

M + τA
]

Uk

=

[(
2ξ

M1

∑
i=0

ωi a
(βi)
0 + 2

M2

∑
i=0

rib
(αi)
0
)

M + τA
]

Uk−1 + 2ξτ
M1

∑
i=0

ωi a
(βi)
k−1W0 + 2τFk

+2ξ
M1

∑
i=0

ωi

k−1

∑
j=1

(a(βi)
k−1−j − a(βi)

k−j )

[
MUj − MUj−1

]
− 2

M2

∑
i=0

ri

k−1

∑
j=1

(b(αi)
k−j + b(αi)

k−j−1)

[
MUj − MUj−1

]
,

where ωi =
ω
(1)
i τ1−βi

Γ(3−βi)
, ri =

ω
(2)
i τ1−αi

2Γ(2−αi)
.

The critical point to obtain the solution is to approximate the first and the second
terms of B(ϕn, ϕm). By applying the Gauss quadrature [23], we obtain(

d1(x, y)LDγ
x ϕn,

∂ϕm

∂x

)
= ∑

E∈Γh

∫
E

d1(x, y)LDγ
x ϕn

∂ϕm

∂x
dxdy

≈ ∑
E∈Γh

∑
(xci ,yci)∈GE

λid1(x, y)LDγ
x ϕn|(xci ,yci)

∂ϕm

∂x

∣∣∣∣
(xci ,yci)

,

(
d2(x, y)RDγ

x ϕn,
∂ϕm

∂x

)
= ∑

E∈Γh

∫
E

d2(x, y)xDγ
R ϕn

∂ϕm

∂x
dxdy

≈ ∑
E∈Γh

∑
(xci ,yci)∈GE

κid2(x, y)xDγ
R ϕn|(xci ,yci)

∂ϕm

∂x

∣∣∣∣
(xci ,yci)

,

where GE is the set of Gauss points in a certain element E and λi, κi are the weight
coefficients corresponding to the Gauss points (xci, yci). In this article, we used four Gauss
points in each triangle.

Remark 1. I would be precise on the number of Gauss points used and the accuracy of the approxi-
mation used.

In this paper, we use four Gauss points in every triangle.
The detailed computation process can be summarized in Algorithm 1.

Algorithm 1 Calculate (d1(x, y)LDγ
x ϕn, ∂ϕm

∂x ) and (d2(x, y)RDγ
x ϕn, ∂ϕm

∂x ) using finite element
method on an unstructured mesh

1: By using the software Gmsh, partition the convex domain Ω with unstructured trian-
gular elements ep and save the information for node number Ne, coordinates (x, y) and
element number NP;

2: for p = 1, 2, · · · , Ne do
3: For each triangle element ep, find the Gauss points (xi, yi) and corresponding weights

ωi;
4: for j = 1, 2, · · · , Np do
5: Find the support domain Ωej and construct the support domain Ωn

Lx and Ωn
xR;

6: Use the line y = yi to insert Ωej , find the intersection points and save the coordi-
nates (xk, yk);

7: Apply piecewise linear polynomials on ep and calculate the piecewise continuous
function ϕn(x, yc);

8: Calculate LD̃α
x ϕn

∣∣∣
(xi ,yi)

, xD̃α
R ϕn

∣∣∣
(xi ,yi)

.

9: end for
10: Calculate

(
d1(x, y)LDγ

x ϕn, ∂ϕm
∂x
)

and
(
d2(x, y)RDγ

x ϕn, ∂ϕm
∂x
)

11: end for
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4. Stability and Convergence

In this section, we analyze the stability and convergence of the discrete scheme on the
irregular convex domain. In the following section, for the sake of simplicity, we consider the
constant diffusion coefficient case d1(x, y) = d2(x, y) = e(x, y) = 1. Denote (·, ·) = (·, ·)Ω,
|| · ||0 = || · ||L2(Ω). Prior to presenting the numerical analysis, we firstly give the definitions
of the semi-norm | · |(γ,1) and norm || · ||(γ,1)

|u|(γ,1) =

(∣∣∣∣LD(γ+1)/2
x u

∣∣∣∣2
0 +

∣∣∣∣∣∣∣∣∂u
∂y

∣∣∣∣∣∣∣∣2
0

)1/2

, (21)

||u||(γ,1) =
(
||u||20 + |u|2(γ,1)

)1/2. (22)

In what follows, the constant C may be different in various sections.

4.1. Stability

Lemma 7. For any u ∈ V, the semi-norm |u|(γ,1) and norm ||u||(γ,1) are equivalent and there
exists positive constants C1 and C2 independent of u, such that

C1||u||(γ,1) ≤ |u|(γ,1) ≤ ||u||(γ,1) ≤ C2|u|H1(Ω).

Proof. From Lemma 2, we immediately have

||u||0 ≤ C||LD(γ+1)/2
x u||0 ≤ C|u|(γ,1).

By applying Lemma 2 and the Definitions (21) and (22), we have

||u||(γ,1) = C2(||u||20 + |u|2(γ,1))
1/2 ≤ C2|u|(γ,1) ≤ C|u|Jγ,1

L (Ω)
≤ C2|u|H1(Ω).

By using Lemma 4 and applying the definitions of the norm and semi-norm, we have

||u||(γ,1) =
(
||u||20 + |u|2(γ,1)

)1/2 ≥
(
|u|2(γ,1)

)1/2
= |u|(γ,1). (23)

The proof is completed.

Lemma 8. For any u, v ∈ Hγ
0 (Ω) ∩ H1

0(Ω), there exists constants C1 and C2 such that the
function B(u, v) satisfies |B(u, v)| ≤ C1||u||(γ,1)||v||(γ,1) and B(u, u) ≥ C2||u||2(γ,1).

Proof. Firstly, by using Lemma 1, Lemma 4 and Lemma 7, the Definitions (21) and (22) and
applying the Cauchy–Schwartz inequality, namely (u, v) ≤ ||u||0||v||0, we have

|B(u, v)| ≤
[∣∣(LD(γ+1)/2

x u,x D(γ+1)/2
R v)

∣∣+ ∣∣(x D(γ+1)/2
R u,L D(γ+1)/2

x v)
∣∣+ ∣∣( ∂u

∂y
,

∂v
∂y
)∣∣]

≤
[∣∣∣∣LD(γ+1)/2

x u
∣∣∣∣

0

∣∣∣∣x D(γ+1)/2
R v

∣∣∣∣
0 +
∣∣∣∣x D(γ+1)/2

R u
∣∣∣∣

0

∣∣∣∣LD(γ+1)/2
x v

∣∣∣∣
0 +

∣∣∣∣∣∣∣∣ ∂u
∂y

∣∣∣∣∣∣∣∣
0

∣∣∣∣∣∣∣∣ ∂v
∂y

∣∣∣∣∣∣∣∣
0

]

≤C
(
|u|(γ,1)|v|(γ,1) + |u|(γ,1)|v|(γ,1) + |u|(γ,1)|v|(γ,1)

)
≤ C||u||(γ,1)||v||(γ,1),

B(u, u) ≥
[∣∣∣∣(LD(γ+1)/2

x u, x D(γ+1)/2
R u)

∣∣∣∣+ ∣∣∣∣(x D(γ+1)/2
R u, LD(γ+1)/2

x u)
∣∣∣∣+ ∣∣∣∣( ∂u

∂y
,

∂u
∂y

)∣∣∣∣
]

≥ C

[∣∣∣∣(LD(γ+1)/2
x u, x D(γ+1)/2

R u)
∣∣∣∣+ ∣∣∣∣( ∂u

∂y
,

∂u
∂y

)∣∣∣∣
]
≥ C|u|2H1(Ω)

≥ C||u||2(γ,1).
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Theorem 1. (Stability) The fully discrete scheme (18) is unconditionally stable and it holds that

||uN
h ||(γ,1) ≤ C

[
max

1≤k≤N
|| f k−1/2||20 + ||φ1||21 + ||φ0||(γ,1)

]
.

Proof. Denote vh = ∇tuk−1/2
h . By multiplying 2τ with each item and summing k from 1 to

N, the discrete scheme (18) changes as

2τξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t uk−1/2

h , ∇tuk−1/2
h ) + 2τ

N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t uk−1/2
h , ∇tuk−1/2

h

)

+2τ
N

∑
k=1

B
(
uk−1/2

h , ∇tuk−1/2
h

)
− 2τ

N

∑
k=1

(
f k−1/2, ∇tuk−1/2

h
)
= 0. (24)

For the first term with the initial condition (u0
h)t = φ1, by using Lemma 5, we have

2τξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t uk−1/2

h , ∇tuk−1/2
h ) ≥ 2τξa1

N

∑
k=1

∣∣∣∣∇tuk−1/2
h

∣∣∣∣2
0 − ξa2||φ1||20, (25)

where a1 =
M1
∑

i=0

ω
(1)
i T1−βi

2Γ(2−βi)
, a2 =

M1
∑

i=0

ω
(1)
i T2−βi

Γ(3−βi)
.

By applying Lemma 6, we have

2τ
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t uk−1/2
h , ∇tuk−1/2

h

)
≥ 0. (26)

Define a symmetrical and continuous function

B0(u, v) =
∣∣∣∣(LD(γ+1)/2

x u,x D(γ+1)/2
R v

)∣∣∣∣+ ∣∣∣∣(xD(γ+1)/2
R u,L D(γ+1)/2

x v
)∣∣∣∣+ ∣∣∣∣(∂u

∂y
,

∂v
∂y

)∣∣∣∣, (27)

then we have B(u, v) ≤ CB0(u, v). For the newly defined function B0
(
uk−1/2

h ,∇tuk−1/2
h

)
,

we have B0
(
uk−1/2

h , ∇tuk−1/2
h

)
= 1

2τ

[
B0
(
uk

h, uk
h
)
− B0

(
uk−1

h , uk−1
h
)]

[21,22]. Perform the

summation of k from 1 to N, and we derive the following inequality

2τ
N

∑
k=1

B
(
uk−1/2

h , ∇tuk−1/2
h

)
≤ 2τC

N

∑
k=1

B0
(
uk−1/2

h , ∇tuk−1/2
h

)
=2τC

N

∑
k=1

1
2τ

[
B
(
uk

h, uk
h
)
− B
(
uk−1

h , uk−1
h
)]

= C
(

B(uN
h , uN

h )− B(u0
h, u0

h)
)
. (28)

By using the important inequality 2ab ≤ a2

2ε + 2εb2, the fifth item changes as

N

∑
k=1

2τ
(

f k−1/2, ∇tuk−1/2
h

)
≤

N

∑
k=1

τ

[
|| f k−1/2||20

2a1ξ
+ 2a1ξ

∣∣∣∣∇tuk−1/2
h

∣∣∣∣2
0

]

≤ T
2a1ξ

max
1≤k≤N

|| f k−1/2||20 + 2a1ξ
N

∑
k=1

τ
∣∣∣∣∇tuk−1/2

h

∣∣∣∣2
0. (29)

Then, by using the inequality of (25)–(29), Equation (24) changes as

B(uN
h , uN

h ) ≤ C

[
T

2a1ξ
max

1≤k≤N
|| f k−1/2||20 + a2ξ||φ1||20 + B(u0

h, u0
h)

]
.
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Applying Lemma 8, we have

||uN
h ||2(γ,1) ≤ C

[
max

1≤k≤N
|| f k−1/2||20 + ||φ1||20 + ||φ0||(γ,1)

]
.

Therefore, the scheme is unconditionally stable.

4.2. Convergence

Prior to providing the convergence of the discrete scheme, we first give an approxi-
mation property. Define the interpolation operator Ih: Hs+1(Ω) → Vh, for any u ∈ Hμ(Ω),
1 < μ ≤ s + 1, there exists a constant C depending only on Ω such that [28]

||u − Ihu||H1(Ω) ≤ Chμ−1||u||Hμ(Ω). (30)

For any u ∈ V and vh ∈ Vh, we define a projection operator Ph: V → Vh possessing
the following property

B(Phu, vh) = B(u, vh). (31)

Then, we have the following lemma.

Lemma 9. If u ∈ Hμ(Ω) ∩ V, 1 < μ ≤ s + 1, there exists a constant C independent of h and u
such that

||Phu − u||(γ,1) ≤ Chμ−1||u||μ. (32)

Proof. Because

||Phu − u||2(γ,1) ≤ CB(Phu − u, Phu − u) ≤ CB(Phu − u, Ihu − u),

and

B(Phu − u, Ihu − u) ≤ C||Phu − u||(γ,1)||Ihu − u||(γ,1).

Using the approximation properties, we have

||Phu − u||(γ,1) ≤ C||Ihu − u||(γ,1) ≤ C||Ihu − u||H1(Ω) ≤ Chμ−1||u||μ.

Theorem 2. (Convergence) Assume that uN = u(x, y, tN) is the exact solution with u, ∂αi u
∂tαi , ∂βi u

∂tβi
∈

L∞(Hμ(Ω); 0, T), 1 < μ ≤ s + 1, then the numerical solution uN
h satisfies

||un
h − u(tn)||2(γ,1) ≤Cτ2 min{|3−βi |,|2−αi |}

+Ch2(μ−1)

[
||uN ||2μ + ||ϕ||2μ + ||φ||2μ + max

1≤k≤N

∣∣∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣∣∣2
μ

+ max
1≤k≤N

∣∣∣∣∣∣∣∣ ∂αi uk−1/2

∂tαi

∣∣∣∣∣∣∣∣2
μ

]
.

Proof. Let en = un
h − u(tn), then the newly defined en satisfies

ξ
M1

∑
i=0

ω
(1)
i (∇(βi)

t ek−1/2, vh) + ξ
M1

∑
i=0

ω
(1)
i (Rβi ,k

0 , vh) +
M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2 − αi)

k

∑
j=1

b(αi)
k−j (∇tej−1/2, vh)

+
M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2 − αi)

k−1

∑
j=1

b(αi)
k−j−1(∇tej−1/2, vh) +

M2

∑
i=0

ω
(2)
i (Rαi ,k

1 , vh) + B(ek−1/2, vh) = 0. (33)
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Define en = ρn + θn, where ρn = Phu(tn)− u(tn) and θn = un
h − Phu(tn). Then, for any vh,

by using the Definition (31), we have

B(ρk−1/2, vh) = B
(

Phu(tk−1/2)− u(tk−1/2), vh

)
= 0.

In addition, choosing the interpolations as the initial values of u0
h at time t0, i.e.,

u0
h = Ihφ0, we obtain

B(θ0, θ0) ≤ CB0(θ
0, θ0) ≤ C

[
||u(t0)− u0

h||2(γ,1) + ||Phu(t0)− u(t0)||2(γ,1)

]
≤ Ch2(μ−1)||φ0||2μ.

Similarly, choosing (u0
h)t = Ihφ1, the norm ||(θ0

h)t||20 satisfies the following relationship

||(θ0
h)t||20 ≤ C||(u(t0)− u0

h)t||2(γ,1) + ||(Phu(t0)− u(t0))t||2(γ,1) ≤ Ch2(μ−1)||φ1||2μ.

Defining vh = ∇tθ
k−1/2 and summing k from 1 to N, Equation (33) can be rewritten as

ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t θk−1/2, ∇tθ

k−1/2) +
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t θk−1/2, ∇tθ
k−1/2

)
+

N

∑
k=1

B(θk−1/2, ∇tθ
k−1/2)

=− ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t ρk−1/2, ∇tθ

k−1/2)−
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t ρj−1/2, ∇tθ
k−1/2

)

−
N

∑
k=1

ξ
M1

∑
i=0

ω
(1)
i (Rβi ,k

0 , ∇tθ
k−1/2)−

N

∑
k=1

M2

∑
i=0

ω
(2)
i (Rαi ,k

1 , ∇tθ
k−1/2).

Note that ||·||0 ≤ ||·||(γ,1). By applying Lemma 9, the norm ||∇(βi)
t ρk−1/2||20 can be

estimated as ∣∣∣∣∣∣∇(βi)
t ρk−1/2

∣∣∣∣∣∣2
0
=
∣∣∣∣∣∣∇(βi)

t ρk−1/2 − ∂βi ρk−1/2

∂tβi
+

∂βi ρk−1/2

∂tβi

∣∣∣∣∣∣2
0

≤
∣∣∣∣∣∣∇(βi)

t ρk−1/2 − ∂βi ρk−1/2

∂tβi

∣∣∣∣∣∣2
0
+
∣∣∣∣∂βi ρk−1/2

∂tβi

∣∣∣∣2
0

=
∣∣∣∣Rβi ,k

0 ||20 + || ∂βi

∂tβi
[Phu(tk−1/2)− u(tk−1/2)]

∣∣∣∣2
0

≤ Cτ2(3−βi) + Ch2(μ−1)
∣∣∣∣∣∣∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
μ

.

Similarly, we derive

∣∣∣∣∣∣∇(αi)
t ρk−1/2

∣∣∣∣∣∣2
0
≤ Cτ2(2−αi) + Ch2(μ−1)

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
μ

.

By applying the inequality in Lemma 9, the norms ||ρN ||2(γ,1) and ||ρ0||2(γ,1) satisfy

||ρN ||2(γ,1) = ||Phu(tN)− u(tN)||2(γ,1) ≤ Ch2(μ−1)||uN ||2μ,

||ρ0||2(γ,1) = ||Phu(t0)− u(t0)||2(γ,1) ≤ Ch2(μ−1)||u0||2μ.

By using Lemma 5 and the initial condition (θ0
h)t = φ1, the following inequality holds

ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t θk−1/2, ∇tθ

k−1/2) ≥ a1ξ
N

∑
k=1

||∇tθ
k−1/2||20 − ξa2

2τ
||(θ0

h)t||20. (34)
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Applying Lemma 6, we have the following inequality

N

∑
k=1

M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2 − αi)

k

∑
j=1

b(αi )
k−j (∇tθ

j−1/2, ∇tθ
k−1/2) +

N

∑
k=1

M2

∑
i=0

ω
(2)
i τ1−αi

2Γ(2 − αi)

k−1

∑
j=1

b(αi )
k−j−1(∇tθ

j−1/2, ∇tθ
k−1/2) ≥ 0. (35)

Applying the mid-point formula, we have the result

N

∑
k=1

B
(
θk−1/2, ∇tθ

k−1/2) ≥ C
N

∑
k=1

B0
(
θk−1/2, ∇tθ

k−1/2) = C
1

2τ

[
B0
(
θN , θN)− B0

(
θ0, θ0)]. (36)

By using the important inequality −ab ≤ εa2 + b2/(4ε), we have

− ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

(∇(βi)
t ρk−1/2, ∇tθ

k−1/2)

≤ξ
M1

∑
i=0

ω
(1)
i

N

∑
k=1

χ1

[
Cτ2(3−βi) + Ch2(μ−1)

∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
μ

]
+ ξ

M1

∑
i=0

ω
(1)
i

N

∑
k=1

1
4χ1

||∇tθ
k−1/2||20 (37)

≤NC
[

τ2(3−βi) + h2(μ−1) max
1≤k≤N

∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
μ

]
+ ξ

M1

∑
i=0

ω
(1)
i

N

∑
k=1

1
4χ1

||∇tθ
k−1/2||20,

−
N

∑
k=1

M2

∑
i=0

ω
(2)
i

(
∇(αi)

t ρj−1/2, ∇tθ
k−1/2

)

≤
M2

∑
i=0

ω
(2)
i

N

∑
k=1

χ2

(
Cτ2(2−αi) + Ch2(μ−1)

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
μ

)
+

N

∑
k=1

M2

∑
i=0

ω
(2)
i

4χ2
||∇tθ

k−1/2||20

≤NC
(

τ2(2−αi) + h2(μ−1) max
1≤k≤N

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
μ

)
+

N

∑
k=1

M2

∑
i=0

ω
(2)
i

4χ2
||∇tθ

k−1/2||20, (38)

where χ1 = a3
a1

, χ2 = a4
ξa1

, a3 =
M1
∑

i=0
ω
(1)
i and a4 =

M2
∑

i=0
ω
(2)
i .

Similarly,

−
N

∑
k=1

ξ
M1

∑
i=0

ω
(1)
i (Rβi ,k

0 , ∇tθ
k−1/2) ≤ NCτ2(3−βi) + ξ

N

∑
k=1

M1

∑
i=0

ω
(1)
i

1
4χ3

||∇tθ
k−1/2||20, (39)

−
N

∑
k=1

M2

∑
i=0

(Rαi ,k
1 , ∇tθ

k−1/2) ≤ NCτ2(2−αi) +
M2

∑
i=0

N

∑
k=1

ω
(2)
i

1
4χ4

||∇tθ
k−1/2||20, (40)

where χ3 = a3
a1

and χ4 = a4
ξa1

.
By using the inequalities (34)–(40), we obtain

1
2τ

[B(θN , θN)− B(θ0, θ0)] ≤ NC
[

τ2(3−βi) + h2(μ−1) max
1≤k≤N

∣∣∣∣∣∣∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
μ

]
+NC

(
τ2(2−αi) + h2(μ−1) max

1≤k≤N

∣∣∣∣∣∣∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
μ

)
+

ξa2

2τ
Ch2(μ−1)||φ1||2μ.

By utilizing Lemma 8, the above equation changes as

||θN ||2(γ,1) ≤Cτ2 min{|3−βi |,|2−αi |} + Ch2(μ−1)
[

max
1≤k≤N

∣∣∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣∣∣2
μ
+ max

1≤k≤N

∣∣∣∣∣∣ ∂αi uk−1/2

∂tαi

∣∣∣∣∣∣2
μ
+ ||φ0||2μ + ||φ1||2μ

]
.
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The simplified form is given as

||uN
h − u(tN)||2(γ,1) ≤ ||ρN ||2(γ,1) + ||θN ||2(γ,1) ≤ Cτ2 min{|3−βi |,|2−αi |}

+ Ch2(μ−1)
[

||uN ||2μ + ||φ0||2μ + ||φ1||2μ + max
1≤k≤N

∣∣∣∣ ∂βi uk−1/2

∂tβi

∣∣∣∣2
μ
+ max

1≤k≤N

∣∣∣∣ ∂αi uk−1/2

∂tαi

∣∣∣∣2
μ

]
.

The proof is completed.

Remark 2. By using the triangular linear basis function, i.e., s = 1, it can be concluded from
Theorem 2 that the error satisfies

||un
h − u(tn)||(γ,1) ≤ C(τmin{3−βi ,2−αi} + h).

5. Numerical Examples

In this section, we present two numerical examples: one is in a rectangular domain
with the main purpose to demonstrate the effectiveness of our theoretical analysis, and
the other is in an elliptical domain for analyzing the effects of different parameters on the
particle distributions. In the mid-point quadrature rule [29], we choose M1 = 9, M2 = 9.

Example 1. Firstly, we consider the following two-dimensional distributed-order time- and space-
fractional diffusion-wave equation on a rectangular domain

ξ
∫ 2

1
ϕ1(β)

∂βu(x, y, t)
∂tβ

dβ +
∫ 1

0
ϕ0(α)

∂αu(x, y, t)
∂tα

dα

=
∂

∂x

[
d1(x, y)

∂γu(x, y, t)
∂xγ

− d2(x, y)
∂γu(x, y, t)

∂(−x)γ

]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
+ f (x, y, t),

subject to

u(x, y, 0) =x2(1 − x)2y2(1 − y)2, ut(x, y, 0) = 0, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T],

where Ω = (0, 1) × (0, 1). The exact solution of this problem is given by u(x, y, t) =
(t2 + 1)x2(1 − x)2y2(1 − y)2.

In Table 1, we take the special case with ξ = 1, γ = 0.8, d1(x, y) = d2(x, y) = e(x, y) =
x2 + y2 to compute the Hγ error, L2 error and convergence order of h with τ = 1

1000 at
t = 1 with different weight coefficients ϕ1(β) = wi(β) and ϕ0(α) = ri(α), i = 1, 2, 3, which
are given by w1(β) = 0.5δ(β − 1.5) + 0.5δ(β − 1.8), r1(α) = 0.5δ(α − 0.5) + 0.5δ(α − 0.8),
w2(β) = 2−β

2 , r2(α) = 1−α
2 , w3(β) = β2/2, r3(α) = α2/2. By examining the spatial

convergence orders shown in Table 1, we notice that the expected convergence orders
proved in Theorem 2 are obtained. With a different choice of the weight coefficient, the
numerical solutions are in agreement with the theoretical analysis which indicates the
validity of the proposed method.

Example 2. In this example, we consider the following two-dimensional distributed-order time-

and space-fractional diffusion-wave equation on an elliptical domain Ω = {(x, y)| x2

R2
a
+ y2

R2
b
< 1}

ξ
∫ 2

1
ϕ1(β)

∂βu(x, y, t)
∂tβ

dβ +
∫ 1

0
ϕ0(α)

∂αu(x, y, t)
∂tα

dα

=
∂

∂x

[
d1(x, y)

∂γu(x, y, t)
∂xγ

− d2(x, y)
∂γu(x, y, t)

∂(−x)γ

]
+

∂

∂y

[
e(x, y)

∂u(x, y, t)
∂y

]
+ f (x, y, t),
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Table 1. The Hγ error, L2 error and convergence order of h with τ = 1
1000 at t = 1 for the case ξ = 1,

γ = 0.8, d1(x, y) = d2(x, y) = e(x, y) = x2 + y2 with different ϕ1(β) and ϕ0(α).

h Hγ Error Order L2 Error Order

w1(β)
r1(α)

3.1123 × 10−1 5.6929 × 10−3 - 3.7301 × 10−4 -
1.6759 × 10−1 3.0879 × 10−3 0.99 1.1009 × 10−4 1.97
8.6682 × 10−2 1.5643 × 10−3 1.03 2.7245 × 10−5 2.12
4.3719 × 10−2 7.5272 × 10−4 1.07 6.3251 × 10−6 2.13

w2(β)
r2(α)

3.1123 × 10−1 5.6922 × 10−3 - 3.8367 × 10−4 -
1.6759 × 10−1 3.0878 × 10−3 0.99 1.1271 × 10−4 1.98
8.6682 × 10−2 1.5642 × 10−3 1.03 2.8032 × 10−5 2.11
4.3719 × 10−2 7.5270 × 10−4 1.07 6.5047 × 10−6 2.13

w3(β)
r3(α)

3.1123 × 10−1 5.6972 × 10−3 - 3.7652 × 10−4 -
1.6759 × 10−1 3.0889 × 10−3 0.99 1.1075 × 10−4 1.97
8.6682 × 10−2 1.5645 × 10−3 1.03 2.7391 × 10−5 2.12
4.3719 × 10−2 7.5275 × 10−4 1.07 6.3932 × 10−6 2.13

subject to

u(x, y, 0) =
1

100

(
x2

R2
a
+

y2

R2
b
− 1

)2

, ut(x, y, 0) = 0, (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T],

where T = 1. The exact solution of this problem is given by u(x, y, t) = t2+1
100

(
x2

R2
a
+ y2

R2
b
− 1
)2

.

In the following discussions, for the sake of simplicity, all the numerical results listed
in the tables and figures are evaluated at Ra = 0.5, Rb = 1. In Table 2, the Hγ error, L2
error and convergence order of h with τ = 1

1000 at t = 1 with different ϕ1(β) = wi(β),
ϕ0(α) = ri(α), i = 1, 2 are presented, where w1(β) = δ(β − 1.8), r1(α) = δ(α − 0.8),
w2(β) = 2−β

2 , r2(α) =
1−α

2 . The linear triangular elements are applied for this numerical
example to verify the theoretical analysis. As we can see, the Hγ spatial convergence
order is close to 1 while the L2 spatial convergence order is close to 2, which coincide with
the theoretical analysis in Theorem 2. Through the above analysis, we see that our finite
element algorithm also works well for an elliptical domain.

The solution behaviors with the effects of the different involved parameters, such as the
relaxation parameter and the weight coefficient, are highlighted by graphical illustrations
and analyzed in detail. We choose ξ = 1, f (x, y, t) = 0, d1(x, y) = 1−x

2 δ(y), d2(x, y) =
1+x

2 δ(y), e(x, y) = x2 + y2 + 1, t = 1 to observe the behaviors of the temporal evolution
of the particle distribution, with the effect of the weight coefficients as shown in Figure

3. We use the exponential function with the form δ(x) ≈ 1
2
√

πσ
e−

x2
4σ to approximate the

Dirac delta function in the numerical simulation. Similar to [16], the weight coefficients are
chosen as the power-law form with ϕ1(β) = nβn−1, ϕ0(α) = nαn−1 where n = 1/2, 1, 3. We
observe that the impacts of the weight coefficients are significant on the solution behaviors.
For n = 1/2, the weight coefficient is monotonically decreasing with the increase of β while
monotonically increasing with the increase of α, and at this stage, the distribution presents
as a diffusion form. For n = 1, the weight coefficient is constant which means that the
weight for every fractional parameter is equal and the wave characteristic appears. With
the increase of n, for n = 3, the weight coefficient is monotonically increasing with the
increase of β and the decrease of α. As shown in Figure 3, the wave characteristic of the
distribution becomes stronger.
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Table 2. The Hγ error, L2 error and convergence order of h with τ = 1
1000 at t = 1 for the case ξ = 1,

γ = 0.8, d1(x, y) = d2(x, y) = e(x, y) = x2 + y2 with different ϕ1(β) and ϕ0(α).

h Hγ Error Order L2 Error Order

w1(β)
r1(α)

3.0312 × 10−1 1.3401 × 10−2 – 8.9386 × 10−4 –
1.8428 × 10−1 6.7962 × 10−3 1.36 2.2350 × 10−4 2.79
8.3913 × 10−2 3.4331 × 10−3 0.87 5.3636 × 10−5 1.81
4.5308 × 10−2 1.6953 × 10−3 1.14 1.2951 × 10−5 2.31

w2(β)
r2(α)

3.0312 × 10−1 1.3252 × 10−2 – 1.0536 × 10−3 –
1.8428 × 10−1 6.7495 × 10−3 1.36 2.5810 × 10−4 2.83
8.3913 × 0−2 3.4048 × 10−3 0.87 6.3027 × 10−5 1.79
4.5308 × 10−2 1.6816 × 10−3 1.14 1.5874 × 10−5 2.24

Figure 3. The three-dimensional and axial projection drawing particle distribution when n = 1/2,
n = 1 and n = 3.

Figure 4 presents the influence of parameter ξ on the particle distributions for t = 1,
f (x, y, t) = 0, d1(x, y) = 1−x

2 δ(y), d2(x, y) = 1+x
2 δ(y), e(x, y) = x2 + y2 + 1, ϕ1(β) = 1 and

ϕ0(α) = 1. As the relaxation parameter increases from ξ = 0 to ξ = 1, the central region
of the particle distribution begins to cave inward, which indicates that the distributions
have a wave characteristic. The larger the relaxation parameter is, the stronger the wave
characteristic will be. The reason is that the relaxation parameter is added on the distributed-
order time-fractional derivative of order (1, 2), which possesses the wave characteristics.
With an increase in the relaxation parameter, the fractional derivative of order (1, 2) with
the wave characteristic plays a greater role in the particles’ transport.
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Figure 4. The three-dimensional and axial projection drawing particle distribution when ξ = 0,
ξ = 1/2 and ξ = 1.

6. Conclusions

In this paper, we presented an original distributed-order time- and space-fractional
diffusion-wave equation to analyze the anomalous diffusion in comb structures. The
solution of the governing equation was obtained using the finite element method for the
case where the coefficients are taken as constant. Two examples were given: one was in a
rectangular domain and the other one was in an elliptical domain. In the two examples,
the Hγ error, L2 error and convergence order of h with τ = 1

1000 at t = 1 subject to different
weight coefficients showed that the results demonstrated the effectiveness of the numerical
method. For the elliptical domain, the influence of the involved parameters, such as the
relaxation parameter and the weight coefficient on the particle distribution, were analyzed,
and the physical meaning of the diffusion-wave characteristics was discussed in detail.
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Abstract: This work presents the numerical performances of the fractional kind of food supply (FKFS)
model. The fractional kinds of the derivatives have been used to acquire the accurate and realistic
solutions of the FKFS model. The FKFSM system contains three types, special kind of the predator
L(x), top-predator M(x) and prey populations N(x). The numerical solutions of three different cases
of the FKFS model are provided through the stochastic procedures of the scaled conjugate gradient
neural networks (SCGNNs). The data selection for the FKFS model is chosen as 82%, for training and
9% for both testing and authorization. The precision of the designed SCGNNs is provided through
the achieved and Adam solutions. To rationality, competence, constancy, and correctness is approved
by using the stochastic SCGNNs along with the simulations of the regression actions, mean square
error, correlation performances, error histograms values and state transition measures.

Keywords: fractional order; food supply model; scaled conjugate gradient; artificial neural networks;
numerical solutions; Adam method

1. Introduction

There are various mathematical models that designate the natural phenomena based
on the prey-predator investigations along with the collaborations of different species [1,2].
The functional response term in the prey-predator modelling has an important role to
present that most of the prey affects the predators with the use of time. There are nu-
merous functional responses species that have been reported in the literature, such as a
ratio-dependent [3–5], Beddington–DeAngelis [6–8] and the Holling phase I to III [9,10].
One of the important models is food supply (FS), which is applied in the association of
multiple prey or predators. The updated form of the FS system together with common
qualitative investigations and numerous communications is presented in [11–13]. The
mathematical modelling has an important role to present the dynamics of the nonlinear
differential systems, e.g., SITR based coronavirus [14], dengue virus [15] and nervous
stomach system [16].

In the FS chain, the role of the “Allee effects” is very important. The Allee effects
defined in 1930 after the name by the famous scientist Allee. These effects allocate the
progress to reduce the growing rate by using the small quantity of public. The Allee effects
appear in the fishery, vertebrates, invertebrates, and plants. The Allee effects occasionally
indicate the negative influences in the dispensation of population dynamics based on the
fishery. The “Allee effects” have been divided into multiplication and addition [17–20].
Initially, Singh et al. described the double shape of “Allee effects” with the improved
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Gower-Leslie system based on the prey predator, in which prey population shows the
various junction associated with the suitable parameters. Vinoth et al. [21] formulated a
mathematical model to investigate the dynamical FS system using the “Allee effect” based
on the addition [22].

The aim of this work is to provide the numerical performances of the fractional kind
of food supply (FKFS) model by using the stochastic procedures of the scaled conjugate
gradient neural networks (SCGNNs). The stochastic solvers have been used to exploit
the variety of applications in recent years. Few of them are the nonlinear dynamics of the
coronavirus models [23], functional form of the singular models [24], the infectious-based
HIV models [25], functional for of the delay differential system [26] and nonlinear model of
the smoking [27]. The idea to implement the fraction kinds of the derivatives is to perform
the accurate and realistic solutions. In fractional order models, the minute particulars based
on the superfast transition and super slow evolution are examined that provides more
detail of the dynamics of the system by using the fractional calculus, which is not easy to
interpret by using the integer order counterparts. Additionally, the system dynamics for
the index is performed by using the fractional calculus. The fractional order derivatives
show much better performance as compared to the integer order with the availability of
the situation. The fractional kind of the derivatives have been applied to authenticate the
performance of the system using the applications of the real-world applications [28,29].
Moreover, the fractional derivatives have been extensively investigated to solve the number
of applications based on the control networks, engineering, physical and mathematical
systems. The implementation of the fractional calculus is performed broadly over the last
30 years by using the substantial operators, such as Weyl-Riesz [30], Caputo [31], Riemann-
Liouville [32], Erdlyi-Kober [33], and Grnwald-Letnikov [34]. All these operators have their
own worth and significance. However, the most widely definition of the Caputo derivative
that works to solve homogeneous initial conditions as well as non-homogeneous initial
conditions. The Caputo derivatives are considered easy to implement as compared to the
other definitions. Bases on this fractional order applications, the authors are interested to
develop the FKFS model and provide the numerical performances through the SCGNNs.

The remaining structure of the paper is given as: The FKFS system is constructed in
the Section 2. The designed methodology based on the stochastic SCGNNs procedures is
provided in the Section 3. The simulations of the results are provided in the Section 4. The
concluding notes are given in the Section 5.

2. Mathematical FKFS System with Insights

In this section, the communication model is provided based on the two or more prey
and predators. A differential FKFS system using the analysis of mutual qualitative along
with the multiple relationships is given in [35,36]. Few researchers presented the multiple
trophic-level of food supply systems through the structure of logistic prey L(x), Holling
type or Lotka–Volterra predator M(x) and top-predator N(x) [37–43]. The mathematical
form of the three species based on the FS system is presented as [44]:⎧⎪⎪⎨⎪⎪⎩

dL(x)
dx = a0L(x)− ρ0L(x)M(x)

L(x)+d0
− k1

k2+L(x) − b0L2(x), L0 = i1,
dM(x)

dx = ρ1L(x)M(x)
L(x)+d1

− a1M(x)− ρ2 M(x)N(x)
M(x)+d2

, M0 = i2,
dN(x)

dx = c3N2(x)− ρ3 N2(x)
M(x)+d3

, M0 = i3,

(1)

where prey L(x) and species M(x) indicate the Volterra scheme that presents the population
of the predator to decrease exponentially in the prey absence. The relationship of the species
N(x) and the prey M(x) is provided by using the Leslie–Gower approach that represents
the predator population reduces per capita accessibility [45,46]. a0 and c3 are the growth
rates of L(x) and N(x), the environmental protection factors for L(x) are d0 and d1, while the
reduction per capita of M(x) is υ2

2 described in d2, the term a1 shows the values of the M(x),
which reduces the nonappearance of L(x), b0 provides the competition strength for L(x), the
residual lessens for N(x) based on the food shortage M(x) is signified by d3, the maximum
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presentations through the lessening of per capita of L(x) is represented by ρ0, ρ1, ρ2 and ρ3,
the hyperbolic k1

k2+L(x) function shows the addictive form of the Allee effects, while k1 and
k2 are the constant values of the Allee effects. If k1 < k2, then it means a weak Allee effect;
otherwise k2 < k1, shows a strong Allee effect, the initial conditions are represented by i1, i2
and i3. The mathematical form of the FKFS system is given as:⎧⎪⎪⎨⎪⎪⎩

dLυ(x)
dxυ = a0L(x)− ρ0L(x)M(x)

L(x)+d0
− k1

k2+L(x) − b0L2(x), L0 = i1,
dυ M(x)

dxυ = ρ1L(x)M(x)
L(x)+d1

− a1M(x)− ρ2 M(x)N(x)
M(x)+d2

, M0 = i2,
dυ N(x)

dxυ = c3N2(x)− ρ3 N2(x)
M(x)+d3

, M0 = i3.

(2)

where υ shows the fractional order Caputo derivative to solve the fractional FS model given
in Equation (2). The values of the fractional order derivative υ are taken between 0 and 1
to present the behavior of the fractional FS model. The fractional kinds of the derivative
in the FS system (2) are incoroprated to observe the minute particulars, i.e., superslow
evolution and superfast transients that is not easy to interpret by using the integer order
counterparts as shown in the system (1). In recent few years, the fractional calculus have
been implemented in various submission, such as anomalous heat transfer [47], pine
wilt disease model with convex rate [48], patterns of the spatiotemporal using the systems
based on the Belousov–Zhabotinskii reaction [49], quantitative approximation of soil animal
substance content using the visible/near infrared spectrometry [50], predator-prey model
with herd performance [51], Hepatitis B virus mathematical model [52] and biological
based population growing model using the carrying volume [53].

The novel features of the proposed SCGNNs for solving the mathematical FKFS system
are defined as:

• The construction of the FKFS system is presented to examine the realistic and accurate
performances of the model.

• The stochastic procedures have not been implemented before to solve the mathematical
FKFS system.

• The stochastic computing SCGNNs have been applied to perform the mathematical
simulations of the FKFS system using the fractional order derivatives derivative
between 0 and 1.

• The accurateness of the stochastic computing SCGNNs scheme is observed through
the comparison of the obtained and reference solutions.

• The performances of the absolute error (AE) in good measures indicate the accuracy
and competence of the stochastic computing SCGNNs for solving the mathematical
FKFS system.

• The performances based on the STs, EHs, correlation, MSE and regression approve
the dependability, consistency, and reliability of the stochastic computing SCGNNs
scheme for solving the FKFS system.

3. Designed SCGNNs Procedure

This section of the study provides the procedure of the stochastic computing SCGNNs
scheme for the mathematical form of the FKFS system as defined in the set of system (1).
The workflow diagram is provided in Figure 1 for the mathematical FKFS model using
the computing SCGNNs scheme based on the three blocks, the mathematical model,
designed methodology and results performances. The design performances are given
in two measures.

(i) The significant procedures based on the SCGNNs are provided.
(ii) The implementation process through the designed SCGNNs for the mathematical

FKFS model.
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Figure 1. Workflow of the SCGNNs construction to solve the FKFS model.
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The significant procedures regarding to the generalization have been provided by
using the Adam scheme, while the numerical procedures are implemented with the default
parameter setting to generate the model dataset. The hidden neurons have been selected
15 in this study along with the data selection for the FKFS model as 82%, for training and
9% for both testing and authorization. The artificial intelligence abilities based supervised
learning SCGNNs have been performed with best cooperation in the indices, including
complexity, premature convergence, overfitting and underfitting cases. Additionally, these
parameters of the networks are set after exhaustive simulation studies, experience, knowl-
edge and care and small variations in these setting results in degraded performance of
the networks.

The second phase of the stochastic SCGNNs is expressed by using the generic percep-
tion based on the solo neuron model as presented in Figure 2. The Figure 2a shows the
single layered neural network structure, while the designed layer construction, a single
input layer vector having 15 hidden numbers of neurons in the hidden layer along with the
three outcomes in the outer layer as described in Figure 2b for solving the mathematical
FKFS model. The stochastic based SCGNNs are applied by using the ‘Matlab’ software
(nftool command) for the appropriate sections of hidden neurons, testing statistics, learn-
ing methods and verification statics. Whereas the implementation performances of the
SCGNNs scheme to solve the mathematical FKFS model along with the parameter setting
is provided in Table 1. The networks training is performed using the proposed stochastic
SCGNNs scheme, where the backpropagation is oppressed to improve the Jacobian ‘JB’ for
the performance, i.e., MSE, to adjust the weight vectors along with the bias variables of
B. The variation or modification of the decision variables with the use of scale conjugate
gradient is given as:

J J = JB × JB,
Je = JB × e,

dB = −(J J+I×mu)
Je ,

where e indicates the error, and I is the identity vector. The SCGNNs scheme’s parameter
setting is provided in Table 1 along with the slight disparity/change/modification may
result in poor performance, i.e., premature convergence. Therefore, these settings will
be unified with extensive attention, after directing thorough the numerical investigation
and understanding.

Table 1. Parameter setting to execute the SCGNNs procedure.

Index Settings

Hidden neurons 15

Fitness goal (MSE) 0

Maximum performances of mu 1010

Decreeing performances of mu 0.1

Increasing performances of mu 10

Adaptive parameter, i.e., mu 5 × 10−3

Authentication fail amount 6

Maximum Learning Epochs 600

Minimum gradient values 10−6

Training data 80%

Validation data 9%

Testing data 9%

Selection of samples Randomly
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Table 1. Cont.

Index Settings

Hidden, output and layers Single

Dataset generation solver Adam scheme

Execution of Adam solver and stoppage criteria Default

x 1

x 

x k

x 2

(a) 

(b) 

Figure 2. Generic and specific ANNs structure to solve the FKFS model. (a) Generic structure of
single neuron; (b) Designed layer structure, a single input layer vector having 15 hidden numbers of
neurons in the hidden layer along with the three outcomes in the outer layer.

4. Results of the FKFS Model

Three fractional order cases of the model have been presented by using the designed
SCGNNs operator. The mathematical descriptions of these operators are given as:

Case 1: The updated form of Equation (2) based on the FKFS model by taking υ = 0.5,
a0 = 1.5, a1 = 1, b0 = 0.06, ρ0 = 1, ρ1 = 2, ρ2 = 0.405, ρ3 = 1, c3 = 1.5, k1 = k2 = 0.1,
d0 = 10, d1 = 10, d2 = 10, d3 = 20 and i1 = i2 = i3 = 1.2 is shown as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d0.5L(x)
dx0.5 = 1.5L(x)− L(x)M(x)

L(x)+10 − 0.1
0.1+L(x) − 0.06L2(x), L0 = 1.2,

d0.5 M(x)
dx0.5 = 2L(x)M(x)

L(x)+10 − M(x)− 0.405M(x)N(x)
M(x)+10 , M0 = 1.2,

d0.5 N(x)
dx0.5 = 1.5N2(x)− N2(x)

M(x)+20 , N0 = 1.2.

(3)

450



Fractal Fract. 2022, 6, 333

Case 2: The updated form of Equation (2) based on the FKFS model by taking υ = 0.7,
a0 = 1.5, a1 = 1, b0 = 0.06, ρ0 = 1, ρ1 = 2, ρ2 = 0.405, ρ3 = 1, c3 = 1.5, k1 = k2 = 0.1,
d0 = 10, d1 = 10, d2 = 10, d3 = 20 and i1 = i2 = i3 = 1.2 is shown as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d0.7L(x)
dx0.7 = 1.5L(x)− L(x)M(x)

L(x)+10 − 0.1
0.1+L(x) − 0.06L2(x), L0 = 1.2,

d0.7 M(x)
dx0.7 = 2L(x)M(x)

L(x)+10 − M(x)− 0.405M(x)N(x)
M(x)+10 , M0 = 1.2,

d0.7 N(x)
dx0.7 = 1.5N2(x)− N2(x)

M(x)+20 , N0 = 1.2.

(4)

Case 3: The updated form of Equation (2) based on the FKFS model by taking υ = 0.9,
a0 = 1.5, a1 = 1, b0 = 0.06, ρ0 = 1, ρ1 = 2, ρ2 = 0.405, ρ3 = 1, c3 = 1.5, k1 = k2 = 0.1,
d0 = 10, d1 = 10, d2 = 10, d3 = 20 and i1 = i2 = i3 = 1.2 is shown as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d0.9L(x)
dx0.9 = 1.5L(x)− L(x)M(x)

L(x)+10 − 0.1
0.1+L(x) − 0.06L2(x), L0 = 1.2,

d0.9 M(x)
dx0.9 = 2L(x)M(x)

L(x)+10 − M(x)− 0.405M(x)N(x)
M(x)+10 , M0 = 1.2,

d0.9 N(x)
dx0.9 = 1.5N2(x)− N2(x)

M(x)+20 , N0 = 1.2.

(5)

Figures 3–7 illustrate the stochastic SCGNNs procedures for the FKFS mathematical
system. Figure 3 shows the values of the STs along with the best performances of the
FKFS mathematical system. The STs and MSE results based on the authentication, train-
ing and best curve measures have been demonstrated in Figure 3 using the stochastic
SCGNNs procedures for the FKFS mathematical system. The obtained best measures of
the FKFS model have been illustrated at iterations 81, 27 and 17 that have been performed
as 7.58035 × 10−10, 1.72965 × 10 −9 and 4.49765 × 10−11. The second half of the Figure 3
shows the gradient values using the SCGNNs scheme for the FKFS mathematical system.
The performances of the gradient are found as 9.35 × 10−8, 9.61 × 10−8 and 6.57 × 10−8.
These depictions indicate the correctness and the convergence of the SCGNNs scheme
for the FKFS mathematical system. The result assessments based on the training targets,
training outputs, validations targets, validation outputs, test targets, test outputs, errors
and fitness curves are illustrated in the 1st half of the Figure 4. While the EHs based on
the training, validation, test and zero error have been drawn in the 2nd half of the Figure 4
for the FKFS mathematical system. The EHs performances are provided as 1.68 × 10−5,
5.79 × 10−6 and 1.05 × 10−7 for the FKFS mathematical system. Figure 5 represents the
correlation performances based on the training, validation and testing in the mathematical
form of the FKFS system. It is seen that the correlation measures are authenticated as 1 in
the mathematical form of the FKFS system. These measures indicate the correctness of the
stochastic SCGNNs procedure for the mathematical form of the FKFS model. The MSE
convergence measures indicate the complexity values, training performances, validation
measures, iterations, testing, and backpropagation are authenticated in Table 2 based on
the mathematical form of the FKFS model.

Table 2. SCGNNs procedures for the mathematical form of the FKFS model.

Case
MSE

Epoch Performance Gradient Mu Time
Test Train Validation

1 3.56 × 10−10 2.42 × 10−9 7.58 × 10−10 81 2.42 × 10−9 9.35 × 10−8 1 × 10−10 02
2 2.57 × 10−9 1.20 × 10−9 1.72 × 10−9 27 1.20 × 10−9 9.61 × 10−8 1 × 10−10 01
3 3.28 × 10−11 1.11 × 10−11 4.49 × 10−11 17 1.11 × 10−11 6.57 × 10−8 1 × 10−12 01
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(a) 

 

(d)

(b) (e) 

 

(c) 

 

(f) 

 

Figure 3. MSE and STs for the mathematical form of the FKFS model. (a) MSE for C-1; (b) MSE for
C-2; (c) MSE for C-3; (d) EHs for C-1; (e) EHs for C-2; (f) EHs for C-3.
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

 

Figure 4. Results valuations and EHs for the mathematical form of the FKFS model. (a) Result
measures for C-1; (b) Result measures for C-2; (c) Result measures for C-3; (d) EHs for C-1; (e) EHs
for C-2; (f) EHs for C-3.

453



Fractal Fract. 2022, 6, 333

  
(a) (b) 

 

(c) 

Figure 5. Regression performances for the mathematical form of the FKFS model. (a) Regression for
C-1; (b) Regression for C-2; (c) Regression for C-3.
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(a) (b) 

 
(c) 

Figure 6. Results overlapping for the mathematical form of the FKFS model. (a) Results of the logistic
prey L(x); (b) Results of the Holling type M(x); (c) Results for the top-predator N(x).

Figures 6 and 7 indicate the comparative investigations based on the comparison
of the solutions and AE performances to solve the FKFS system. Figure 6 shows the
correctness of the SCGNNs scheme through the overlapping of the results for each class
of the mathematical FKFS system. The AE values for each class of the mathematical FKFS
system using the SCGNNs scheme are provided in Figure 7. The AE measures for the
logistic prey L(x) are calculated as 10−5 to 10−6, 10−4 to 10−7 and 10−5 to 10−7 for 1st, 2nd
and 3rd case of the mathematical FKFS system. The AE performances of the Holling type or
Lotka–Volterra predator M(x) lie as 10−4 to 10−6, 10−4 to 10−5 and 10−5 to 10−8 for 1st, 2nd
and 3rd case of the nonlinear FKFS system. The values of the AE for top-predator N(x) are
calculated as 10−4 to 10−6, 10−5 to 10−6 and 10−5 to 10−8 for 1st, 2nd and 3rd case of the
nonlinear FKFS system. These illustrations based on the AE authenticate the correctness of
the stochastic SCGNNs LMB-NNs to solve the nonlinear FKFS system.
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(a) (b) 

 
(c) 

Figure 7. AE for the mathematical form of the FKFS model. (a) AE for the logistic prey L(x); (b) AE
for the Holling type M(x); (c) AE for the top-predator N(x).

5. Conclusions

The motive of this work is to perform the solutions of the fractional food supply model.
The fractional derivatives have been used to provide the realistic and accurate solutions
of the food supply mathematical model. The fractional food supply mathematical system
contains three categories, special kind of the predator L(x), top-predator M(x) and prey
populations N(x). The efficient numerical performances of three different variations of the
fractional food supply mathematical system have been provided by using the stochastic
procedures based on the scaled conjugate gradient neural network scheme. The selection of
the data for fractional food supply mathematical system is selected as 82%, for training and
9% for both testing and authorization along with the 15 numbers of neurons. The precision
and accuracy of the designed SCGNNs have been provided through the achievements and
reference solutions. The AE values have been calculated as 10−6 to 10−8, which shows the
exactness of the scaled conjugate gradient neural network scheme for solving the fraction
food supply system. The rationality, competence, constancy, and correctness has been
approved by using the stochastic SCGNNs along with the simulations of the regression
actions, mean square error, correlation performances, error histograms values and state
transition measures. It is also observed that by taking the fractional order values close to 1,
the solutions are performed better as compared to other values. These observations have
been provided in the AE graphs to solve the model.
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In upcoming studies, the proposed SCGNNs scheme have been implemented to
present the solutions of the lonngren-wave systems, fluid dynamical models and fractional
kinds of systems.
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A Finite-State Stationary Process with Long-Range Dependence
and Fractional Multinomial Distribution

Jeonghwa Lee

Department of Statistics, Truman State University, Kirksville, MO 63501, USA; jlee@truman.edu

Abstract: We propose a discrete-time, finite-state stationary process that can possess long-range
dependence. Among the interesting features of this process is that each state can have different
long-term dependency, i.e., the indicator sequence can have a different Hurst index for different
states. Furthermore, inter-arrival time for each state follows heavy tail distribution, with different
states showing different tail behavior. A possible application of this process is to model over-
dispersed multinomial distribution. In particular, we define a fractional multinomial distribution
from our model.

Keywords: long-range dependence; Hurst index; over-dispersed multinomial distribution

1. Introduction

Long-range dependence (LRD) refers to a phenomenon where correlation decays
slowly with the time lag in a stationary process in a way that the correlation function is no
longer summable. This phenomenon was first observed by Hurst [1,2] and since then it
has been observed in many fields such as economics, hydrology, internet traffic, queueing
networks, etc. [3–6]. In a second order stationary process, LRD can be measured by the
Hurst index H [7,8],

H = inf{h : lim sup
n→∞

n−2h+1
n

∑
k=1

cov(X1, Xk) < ∞}.

Note that H ∈ (0, 1), and if H ∈ (1/2, 1), the process possesses a long-memory
property.

Among the well-known stochastic processes that are stationary and possess long-
range dependence are fractional Gaussian noise (FGN) [9] and fractional autoregressive
integrated moving average processes (FARIMA) [10,11].

Fractional Gaussian noise Xj is a mean-zero, stationary Gaussian process with covari-
ance function:

γ(j) := cov(X0, Xj) =
var(X0)

2
(|j + 1|2H − 2|j|2H + |j − 1|2H)

where H ∈ (0, 1) is the Hurst parameter. The covariance function obeys the power law
with exponent 2H − 2 for large lag,

γ(j) ∼ var(X0)H(2H − 1)j2H−2 as j → ∞.

If H ∈ (1/2, 1), then the covariance function decreases slowly with the power law,
and ∑j γ(j) = ∞, i.e., it has the long-memory property.

A FARIMA(p, d, q) process {Xt} is the solution of:

φ(B)�dXt = θ(B)εt,
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where p, q are positive integers, d is real, B is the backward shift, BXt = Xt−1, and the
fractional-differencing operator �d, autoregressive operator φ, and moving average opera-
tor θ are, respectively,

�d = (1 − B)d =
∞

∑
k=1

d(d − 1) · · · (d + 1 − k)
k!

(−B)k,

φ(B) = 1 − φ1B − φ2B2 · · · − φpBp,

θ(B) = 1 − θ1B − θ2B2 · · · − θqBq.

where {εt} is the white-noise process, which consists of iid random variables with the finite
second moment. Here, the parameter d manages the long-term dependence structure, and
by its relation to the Hurst index, H = d + 1/2, d ∈ (0, 1/2) corresponds to the long-range
dependence in the FARIMA process.

Another class of stationary processes that can possess long-range dependence is from
the countable-state Markov process [12]. In a stationary, positive recurrent, irreducible,
aperiodic Markov chain, the indicator sequence of visits to a certain state is long-range
dependent if and only if return time to the state has an infinite second moment, and this is
possible only when the Markov chain has infinite state space. Moreover, if one state has
the infinite second moment of return time, then all the other states also have the infinite
second moment of return time, and all the states have the same rate of dependency; that is,
the indicator sequence of each state is long-range dependence with the same Hurst index.

In this paper, we develop a discrete-time finite-state stationary process that can possess
long-range dependence. We define a stationary process {Xi, i ∈ N} where the number of
possible outcomes of Xi is finite, S = {0, 1, · · · , m} for any m ∈ N, and for k = 1, 2, · · · , m,

cov(I{Xi=k}, I{Xj=k}) = c′k|i − j|2Hk−2, (1)

for any i, j ∈ N, i �= j, and some constants c′k ∈ R+, Hk ∈ (0, 1). This leads to:

cov(Xi, Xj) ∼ c′k′ |i − j|2Hk′−2 as |i − j| → ∞, (2)

where k′ = argmaxk{Hk; k = 1, · · · , m}. If Hk′ = max{Hk; k = 1, · · · , m} ∈ (1/2, 1),
(1.2) implies that as n → ∞, ∑n

i=1 cov(X1, Xi) diverges with the rate of |n|2Hk′−1, and
the process is said to have long-memory with Hurst parameter Hk′ . Furthermore, from
(1.1), for k = {1, · · · , m}, the process {I{Xi=k}; i = 1, 2, · · · } is long-range dependence if
Hk ∈ (1/2, 1). In particular, if Hi �= Hj, then the states “i” and “j” produce different levels
of dependence. For example, if Hi < 1/2 < Hj, then the state “j” produces a long-memory
counting process whereas state “i” produces a short-memory process.

A possible application of our stochastic process is to model the over-dispersed multi-
nomial distribution. In the multinomial distribution, there are n trials, each trial results in
one of the finite outcomes, and the outcomes of the trials are independent and identically
distributed. When applying the multinomial model to real data, it is often observed that
the variance is larger than what it is assumed to be, which is called over-dispersion, due
to the violation of the assumption that trials are independent and have identical distribu-
tion [13,14], and there have been several ways to model an overdispersed multinomial
distribution [15–18].

Our stochastic process provides a new method to model an over-dispersed multi-
nomial distribution by introducing dependency among trials. In particular, the variance
of the number of a certain outcomes among n trials is asymptotically proportional to the
fractional exponent of n, from which we define:

Yk :=
n

∑
i=1

I{Xi=k} for k = 1, 2, · · · , m,
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and call the distribution of (Y1, Y2, · · · , Ym) the fractional multinomial distribution.
The work in this paper is an extension of the earlier work of the generalized Bernoulli

process [19], and the process in this paper is reduced to the generalized Bernoulli process if
there are only two states in the possible outcomes of Xi, e.g., S = {0, 1}.

In Section 2, a finite state stationary process that can possess long-range dependence
is developed. In Section 3, the properties of our model are investigated with regard to
tail behavior and moments of inter-arrival time of a certain state “k”, and conditional
probability of observing a state “k” given the past observations in the process. In Section 4,
the fractional multinomial distribution is defined, followed by the conclusions in Section 5.
Some proofs of propositions and theorems are in Section 6.

Throughout this paper, {i, i0, i1, · · · }, {i′, i′0, i′1, · · · } ⊂ N, with i0 < i1 < i2 < · · · , and
i′0 < i′1 < i′2 < · · · . For any set A = {i0, i1, · · · , in}, |A| = n + 1, the number of elements in
the set A, and for the empty set, we define |∅| = 0.

2. Finite-State Stationary Process with Long-Range Dependence

We define the stationary process {Xi, i ∈ N} where the set of possible outcomes of Xi
is finite, S = {0, 1, · · · , m}, for m ∈ N, with the probability that we observe a state “k” at
time i is P(Xi = k) = pk > 0, for k = 0, 1, · · · , m, and ∑m

k=0 pk = 1.
For any set A = {i0, i1, · · · , in} ⊂ N, define the operator:

L∗
H,p,c(A) := p ∏

j=1,··· ,n
(p + c|ij − ij−1|2H−2).

If A = ∅, define L∗
H,p,c(A) := 1, and if A = {i0}, L∗

H,p,c(A) := p.
Let H = (H1, H2, · · · , Hm), p = (p1, p2, · · · , pm), c = (c1, c2, · · · , cm) be vectors of

length m, and H, p, c ∈ (0, 1)m. We are now ready to define the following operators.

Definition 1. Let A0, A1, · · · , Am ⊂ N be pairwise disjoint, and A0 = n′ > 0. Define,

L∗
H,p,c(A1, A2, · · · , Am) := ∏

k=1,···m
L∗

Hk ,pk ,ck
(Ak),

and,

D∗
H,p,c(A1, A2, · · · , Am; A0) :=

n′

∑
�=0

(−1)� ∑
|B|=�
B⊂A0

∑
Bi⊂B

Bi∩Bj=∅
∪Bi=B

L∗
H,p,c(A1 ∪ B1, A2 ∪ B2, · · · , Am ∪ Bm).

For ease of notation, we denote D∗
H,p,c, L∗

H,p,c, and L∗
Hk ,pk ,ck

by D∗, L∗, L∗
k , respectively.

Note that if A0 = {i0},

D∗(A1, A2, · · · , Am; A0) = ∏
k=1,··· ,m

L∗
k (Ak)

(
1 −

m

∑
k′=1

L∗
k′(Ak′ ∪ {i0})

L∗
k′(Ak′)

)
. (3)

For any pairwise disjoint sets A0, A1, · · · Am ⊂ N, if D∗(A1, A2, · · · , Am; A0) > 0, then
{Xi; i ∈ N} is well defined stationary process with the following probabilities:

P(∩i∈Ak{Xi = k}) = L∗
k (Ak), for k = 1, · · · , m, (4)

P(∩k=1,··· ,m ∩i∈Ak {Xi = k}) = ∏
k=1,··· ,m

L∗
k (Ak), (5)

P(∩k=0,··· ,m ∩i∈Ak {Xi = k}) = D∗(A1, A2, · · · , Am; A0). (6)
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In particular, if the stationary process with the probability above is well defined, then,
for k, k′ = 1, · · · , m, we have:

P(Xi = k, Xj = k) = pk(pk + ck|j − i|2Hk−2),

P(Xi = k, Xj = k′) = pk pk′ ,

P(Xi = 0, Xj = 0) = 1 − 2 ∑
k=1,··· ,m

P(Xi = k) + ∑
k,k′=1,··· ,m

P(Xi = k, Xj = k′)

= 1 − 2
m

∑
k=1

pk +
m

∑
k=1

pk(p1 + p2 + · · ·+ pm + ck|i − j|2Hk−2)

= p2
0 +

m

∑
k=1

pkck|i − j|2Hk−2,

P(Xi = k, Xj = 0) = P(Xi = 0, Xj = k) = pk(1 − p1 − p2 − · · · − pm − ck|i − j|2Hk−2)

= pk(p0 − ck|i − j|2Hk−2).

As a result, for i �= j, i, j ∈ N, k �= k′, k, k′ ∈ {1, 2, · · · , m},

cov(I{Xi=k}, I{Xj=k}) = pkck|i − j|2Hk−2, (7)

cov(I{Xi=k}, I{Xj=k′}) = 0, (8)

cov(I{Xi=0}, I{Xj=0}) =
m

∑
k=1

pkck|i − j|2Hk−2, (9)

cov(I{Xi=k}, I{Xj=0}) = −pkck|i − j|2Hk−2. (10)

Note that ({I{Xi=1}}i∈N, {I{Xi=2}}i∈N, · · · , {I{Xi=m}}i∈N) are m generalized Bernoulli
processes with Hurst parameter, H1, H2, · · · , Hm, respectively (see [19]). However, they are
not independent, since for � �= k, � ∈ {1, 2, · · · , m},

P({I{Xi=�} = 1} ∩ {I{Xi=k} = 1}) = 0 �= P(I{Xi=�} = 1)P(I{Xi=k} = 1) = p�pk.

Further, we have,

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

= ∑
k,k′

kk′P(I{Xi=k} = 1, I{Xj=k′} = 1)− ∑
k,k′

kk′pk pk′

= ∑
k=1,··· ,m

k2 pkck|i − j|2Hk−2.

Therefore, the process {Xi}i∈N possesses long-range dependence if min{H1, · · · , Hk} > 1/2.

All the results that appear in this paper are valid regardless of how the finite-state
space of Xi is defined. More specifically, given that: D∗(A1, A2, · · · , Am; A0) > 0 for any
pairwise disjoint sets A0, A1, · · · Am ⊂ N, we can define probability (4)–(6) with any state
space S = {s0, s1, s2, · · · , sm} ⊂ R for any m ∈ N in the following way.

P(∩i∈Ak{Xi = sk}) = L∗
k (Ak), for k = 1, · · · , m,

P(∩k=1,··· ,m ∩i∈Ak {Xi = sk}) = ∏
k=1,··· ,m

L∗
k (Ak),

P(∩k=0,··· ,m ∩i∈Ak {Xi = sk}) = D∗(A1, A2, · · · , Am; A0).
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Note that the only difference is that the space “k” is replaced by “sk”. As a result,
we can obtain the same results as (7)–(10), except that I{Xi=k} is replaced by I{Xi=sk}, and
we get:

cov(Xi, Xj) = cov(Xi − s0, Xj − s0)

= ∑
k,k′=1,··· ,m

sks′kP(I{Xi=sk} = 1, I{Xj=s′k} = 1)− ∑
k,k′=1,··· ,m

sks′k pk pk′

= ∑
k=1,··· ,m

(sk − s0)
2 pkck|i − j|2Hk−2.

In a similar way, all the results in this paper can be easily transfered to any finite-state
space S ⊂ R. For the sake of simplicity, we assume S = {0, 1, · · · , m}, m ∈ N, without loss
of generality, and define S0 := {1, · · · , m}.

Now, we will give a restriction on the parameter values, {Hk, pk, ck; k ∈ S0}, which will
make D∗(A1, A2, · · · , Am; A0) > 0 for any pairwise disjoint sets A0, · · · Am ⊂ N; therefore,
the process {Xi} is well-defined with the probability (4)–(6).

ASSUMPTIONS:
(A.1) ck, Hk, pk ∈ (0, 1) for k ∈ S0.
(A.2) For any i0 < i1 < i2, i0, i1, i2 ∈ N,

m

∑
k=1

(pk + ck|i1 − i0|2Hk−2)(pk + ck|i2 − i1|2Hk−2)

pk + ck|i2 − i0|2Hk−2 < 1. (11)

For the rest of the paper, it is assumed that ASSUMPTIONS (A.1, A.2) hold.

Remark 1. (a). (11) holds if,

m

∑
k=1

(pk + ck)(pk + ck)

pk + ck22Hk−2 < 1,

since,
(pk + ck|i1 − i0|2Hk−2)(pk + ck|i2 − i1|2Hk−2)

(pk + ck|i2 − i0|2Hk−2)

is maximized when i2 − i0 = 2, i1 − i0 = 1, as it was seen in Lemma 2.1 of [19].
(b). If (i1 − i0)/(i2 − i0) → 0, (i2 − i1)/(i2 − i0) → 1 with i2 − i0 → ∞ in (11), then we have:

m

∑
k=1

pk + ck|i1 − i0|2Hk−2 < 1, (12)

and this, together with (11), implies that for any set {Ak, i′k} ⊂ N,

m

∑
k=1

L∗
k (Ak ∪ {i′k})

L∗
k (Ak)

< 1.

This means that for any A0 = {i0} ⊂ N, D∗(A1, A2, · · · , Am; A0) > 0 by (3).
(c). From (12), ∑m

k=1 ck < 1 − ∑m
k=1 pk = p0.

(d). If m = 1, (11) is reduced to (2.7) in the Lemma 2.1 in [19].

Now we are ready to show that {Xi, i ∈ N} is well defined with probability (4)–(6).

Proposition 1. For any disjoint sets A0, A1, A2, · · · , Am ⊂ N, A0 �= ∅,

D∗(A1, A2, · · · , Am; A0) > 0.
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The next theorem shows that the stochastic process {Xi, i ∈ N} defined with proba-
bility (4)–(6) is stationary, and it has long-range dependence if max{Hk, k ∈ S0} > 1/2.
Furthermore, the indicator sequence of each state is stationary, and has long-range depen-
dence if its Hurst exponent is greater than 1/2.

Theorem 1. {Xi, i ∈ N} is a stationary process with the following properties.
i.

P(Xi = k) = pk, for k ∈ S0.

ii.
cov(I{Xi=k}, I{Xj=k}) = pkck|i − j|2Hk−2, for k ∈ S0,

and
cov(I{Xi=0}, I{Xj=0}) ∼ pk′ck′ |i − j|2Hk′−2, as |i − j| → ∞

where k′ = argmaxk Hk.
iii.

cov(Xi, Xj) =
m

∑
k=1

k2 pkck|i − j|2Hk−2, for i �= j.

Proof. By Proposition 1, {Xi} is a well-defined stationary process with probability (4)–(6).
The other results follow by (7)–(10).

3. Tail Behavior of Inter-Arrival Time and Other Properties

For k ∈ S0, {I{Xi=k}}i∈N is a stationary process in which the event {Xi = k} is
recurrent, persistent, and aperiodic (here, we follow the terminology and definition in [20]).
We define a random variable Ti

kk as the inter-arrival time between the i-th “k” from the
previous “k”, i.e.,

Ti
kk := inf{i > 0 : Xi+Ti−1

kk
= k},

with T0
kk := 0. Since {I{Xi=k}}i∈N is GBP with parameters (Hk, pk, ck) for k ∈ S0, T2

kk, T3
kk, · · ·

are iid (see page 9 [21]). Therefore, we will denote the inter-arrival time between two consec-
utive observations of k as Tkk. The next Lemma is directly obtained from Theorem 3.6 in [21].

Lemma 1. For k ∈ S0, the inter-arrival time for state k, Tkk, satisfies the following.
i. Tkk has a mean of 1/pk. It has an infinite second moment if Hk ∈ (1/2, 1).
ii.

P(Tkk > t) = t2Hk−3Lk(t),

where Lk is a slowly varying function that depends on the parameter Hk, pk, ck.

The first result i in Lemma 1 is similar to Lemma 1 in [22]. However, here, we have a
finite-state stationary process, whereas countable-state space Markov chain was assumed
in [22]. Now, we investigate the conditional probabilities and the uniqueness of our process.

Theorem 2. Let A0, A1, · · · , Am be disjoint subsets of N. For any � ∈ S0 such that max A� >
max A0, and for i′ /∈ ∪m

k=0 Ak such that i′ > max A�, the conditional probability satisfies
the following:

P(Xi′ = �| ∩k=0,··· ,m ∩i∈Ak{Xi = k}) = p� + c�|i′ − max A�|2H�−2.

If there has been no interruption of “0" after the last observation of “�", then the chance to
observe “�" depends on the distance between the current time and the last time of observation of “�",
regardless of how other states appeared in the past. This can be considered as a generalized Markov
property. Moreover, this chance to observe “�” decreases as the distance increases, following the
power law with exponent 2H� − 2.
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Proof. The result follows from the fact that:

P({Xi′ = �} ∩i∈Ak
k∈S0

{Xi = k}) = P(∩i∈Ak ,k∈S0{Xi = k})× (p� + c�|i′ − max A�|2H�−2),

since there is no i ∈ A0 between i′ and max A�.

In a countable state space Markov chain, long-range dependence is possible only when
it has infinite state space, and additionally if it is stationary, positive recurrent, irreducible,
aperiodic Markov chain, then each state should have the same long-term memory, i.e.,
sequence indicators have the same Hurst exponent for all states [22]. By relaxing the
Markov property, long-range dependence was made possible in a finite-state stationary
process, also with different Hurst parameter for different states.

Theorem 3. Let A0, A1, · · · , Am be disjoint subsets of N. For � ∈ S0 such that max A� <
max A0, and i′1, i′2, i′3 /∈ ∪m

k=0 Ak such that i′1, i′2, i′3 > max A0, and i′2 > i′3, the conditional
probability satisfies the following:
a.

p� + c�|i′1 − max A�|2H�−2 > P(Xi′1
= �| ∩i∈Ak ,k∈S0 {Xi = k}).

b.
P(Xi′2

= �| ∩i∈Ak ,k∈S0 {Xi = k})
P(Xi′3

= �| ∩i∈Ak ,k∈S0 {Xi = k}) >
p� + c�|i′2 − max A�|2H�−2

p� + c�|i′3 − max A�|2H�−2.

Theorem 4. A stationary process with (4)–(6) is the unique stationary process that satisfies
i. for k ∈ S:

P(Xi = k) = pk, where pk > 0 and
m

∑
k=0

pk = 1,

ii. for k ∈ S0 and any i, j ∈ N, i �= j,

cov(I{Xi=k}, I{Xj=k}) = c′k|i − j|2Hk−2,

for some constants c′k ∈ R+, Hk ∈ (0, 1),
iii. for any sets, A ⊂ S0 and {ik; k ∈ A} ⊂ N,

P(∩k∈A{Xik = k}) = ∏
k∈A

pk,

iv. for � ∈ S0, there is a function h�(·) such that,

P(Xi′ = �| ∩i∈Ak ,k∈S0 {Xi = k}) = h�(i′ − max A�)

for disjoint subsets, A0, A1, · · · , Am, {i′} ⊂ N, such that A� �= ∅, i′ > max A�, and max A� >
max A0 (A0 can be the empty set).

Proof. Let X∗ be a stationary process that satisfies i–iv. By i, ii,

P(X∗
i0 = k, X∗

i1 = k) = cov(I{X∗
i0
=k}, I{X∗

i1
=k}) + p2

k = c′k|i0 − i1|2Hk−2 + p2
k ,

which results in:

hk(i0 − i1) = P(X∗
i1 = k|X∗

i0 = k) = pk + (c′k/pk)|i0 − i1|2Hk−2.
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Therefore, by iv,

P(X∗
i0 = k, X∗

i1 = k, X∗
i2 = k, · · · , X∗

in = k) = pk

n

∏
j=1

hk(ij − ij−1)

= L∗
k ({i0, i2, · · · , in}),

where L∗
k = L∗

Hk ,pk ,c′k/pk
. Furthermore, by applying iii, iv to X∗,

P(∩i∈Ak ,k∈S0{Xi = k}) = ∏
k=1,··· ,m

L∗
k (Ak).

This implies that X∗ satisfies (4)–(6) with ck = c′k/pk for k ∈ S0.

4. Fractional Multinomial Distribution

In this section, we define a fractional multinomial distribution that can serve as an
over-dispersed multinomial distribution.

Note that ∑n
i=1 I{Xi=k} has mean npk for k ∈ S. Further, as n → ∞,

var
( n

∑
i=1

I{Xi=k}
)
∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(pk(1 − pk) +

c′k
2Hk − 1

)n Hk ∈ (0, 1/2),

c′knln n Hk = 1/2,

c′k
2Hk − 1

|n|2Hk , Hk ∈ (1/2, 1),

for k ∈ S0, and,

var
( n

∑
i=1

I{Xi=0}
)
∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(pk′(1 − pk′) +

c′k′
2Hk′ − 1

)n Hk′ ∈ (0, 1/2),

c′k′nln n Hk′ = 1/2,

c′k′
2Hk′ − 1

|n|2Hk′ , Hk′ ∈ (1/2, 1),

where k′ = argmaxk{Hk; k ∈ S0}, and c′k = pkck. It also has the following covariance.

cov
( n

∑
i=1

I{Xi=k},
n

∑
i=1

I{Xi=k′}
)
= −npk pk′ ,

cov
( n

∑
i=1

I{Xi=0},
n

∑
i=1

I{Xi=k}
)
= −np0 pk − ∑

i �=j
i,j=1,··· ,n

c′k|i − j|2Hk−2,

for k, k′ ∈ S0.
We define Yk := ∑n

i=1 I{Xi=k}, for k ∈ S, and a fixed n, and call its distribution fractional
multinomial distribution with parameters n, p, H, c.

If c = 0, (Y0, Y1, Y2, · · · , Ym) follows a multinomial distribution with parameters n, p,
and E(Yk) = npk, var(Yk) = npk(1 − pk), cov(Yk, Yk′) = −npk pk′ , for k, k′ ∈ S, k �= k′, and
p0 = 1 − ∑m

i=1 pi.
If c �= 0, (Y0, Y1, · · · , Ym) can serve as over-dispersed multinomial random variables

with:
E(Yk) = npk, Var(Yk) = npk(1 − pk)(1 + ψn,k),
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where the over-dispersion parameter ψn,k is as follows.

ψn,k ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c
(1 − pk)(2Hk − 1)

if Hk ∈ (0, 1/2),

c ln n
1 − pk

− 1 if Hk = 1/2,

cn2Hk−1

(1 − pk)2Hk − 1
− 1 if Hk ∈ (1/2, 1),

for k ∈ S0, and,

ψn,0 ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c
(1 − pk′)(2Hk′ − 1)

if Hk′ ∈ (0, 1/2),

c ln n
1 − pk′

− 1 if Hk′ = 1/2,

cn2Hk′−1

(1 − pk′)2Hk′ − 1
− 1 if Hk′ ∈ (1/2, 1),

where k′ = argmaxk{Hk; k ∈ S0}, as n → ∞. If Hk ∈ (0, 1/2), the over-dispersion parameter
ψn,k remains stable as n increases, whereas if Hk ∈ (1/2, 1) the over-dispersed parameter
ψn,k increases with the rate of fractional exponent of n, n2Hk−1.

5. Conclusions

A new method for modeling long-range dependence in discrete-time finite-state
stationary process was proposed. This model allows different states to have different Hurst
indices except that for the base state “0“, the Hurst exponent is the maximum Hurst index
of all other states. Inter-arrival time for each state follows a heavy tail distribution, and its
tail behavior is different for different states. The other interesting feature of this process is
that the conditional probability to observe a state “k” (k is not the base state “0”) depends
on the Hurst index Hk and the time difference between the last observation of “k” and the
current time, no matter how other states appeared in the past, given that there was no base
state observed since the last observation of “k”. From the stationary process developed in
this paper, we defined a fractional multinomial distribution that can express a wide range
of over-dispersed multinomial distributions; each state can have a different over-dispersion
parameter that can behave as an asymptotically constant or grow with a fractional exponent
of the number of trials.

6. Proofs

Lemma 2. For any {a0, a1, · · · , an, a′0, a′1, · · · , a′n} ⊂ R+ that satisfies a0 − ∑
j
i=1 ai > 0, a′0 −

∑
j
i=1 a′i > 0 for j = 1, 2, · · · , n,

i. if,
a0

a′0
≥ a1

a′1
≥ · · · ≥ an

a′n
,

then,
a0 − a1 − a2 − · · · − an

a′0 − a′1 − a′2 − · · · − a′n
≥ a0

a′0
.

ii. If,
a0

a′0
<

a1

a′1
≤ · · · ≤ an

a′n
,

then,
a0 − a1 − a2 − · · · − an

a′0 − a′1 − a′2 − · · · − a′n
≤ a0

a′0
.
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iii. For any {a0, a1, · · · , an, a′0, a′1, · · · , a′n} ⊂ R+,

max
i

ai
a′i

≥ a1 + a2 + · · ·+ an

a′1 + a′2 + · · ·+ a′n
≥ min

i

ai
a′i

.

Proof. i and ii were proved in Lemma 5.2 in [19].
For iii, define bj such that,

aj

a′j
= bj.

Then,
a1 + a2 + · · ·+ an

a′1 + a′2 + · · ·+ a′n
=

b1a′1 + b2a′2 + · · ·+ bna′n
a′1 + a′2 + · · ·+ a′n

which is weighted average of {bj, j = 1, · · · , n}.

To ease our notation, we will denote:

L∗(A1, A2, · · · , Ak−1, Ak ∪ {i}, Ak+1, · · · , Am)

by,
L∗(· · · , Ak ∪ {i}, · · · ),

and,

L∗(· · · , Ak ∪ {i}, Ak′ ∪ {j}, · · · ) = L∗(A∗
1, A∗

2, · · · , A∗
m)

where, if k �= k′,

A∗
i =

⎧⎪⎨⎪⎩
Ai if i �= k, k,′

Ai ∪ {i} if i = k,

Ai ∪ {j} if i = k′,

and if k = k′,

A∗
i =

{
Ai if i �= k,

Ai ∪ {i∪} if i = k.

D∗(· · · , Ak ∪ {i}, · · · ) and D∗(· · · , Ak ∪ {i}, Ak′ ∪ {j}, · · · ) are also defined in a similar way.

Lemma 3. For any disjoint sets A1, · · · , Am, {i0, i1} ⊂ N,
i.

D∗(A1, A2, · · · , Am; {i0}) > 0

ii.
D∗(A1, A2, · · · , Am; {i0, i1}) > 0

Proof. i.

D∗(A1, A2, · · · , Am; {i0}) =
m

∏
k=1

L∗
k (Ak)

(
1 −

m

∑
k′=1

L∗
k′(Ak′ ∪ {i0})

L∗
k′(Ak′)

)
=

m

∏
k=1

L∗
k (Ak)

(
1 −

m

∑
k′=1

L∗
k′({i1,k′ , i2,k′ , i0})
L∗

k′({i1,k′ , i2,k′ })

)
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where i1,k′ , i2,k′ ∈ Ak′ are two closest elements to i0 among Ak′ such that if min Ak′ < i0 <
max Ak′ , then i1,k′ < i0 < i2,k′ , if i0 > max Ak′ , then i1,k′ < i2,k′ < i0, if i0 < min Ak′ , then
i0 < i1,k′ < i2,k′ , and if Ak′ = ∅, then i1,k′ = i2,k′ = ∅. Therefore,

L∗
k′({i1,k′ , i2,k′ , i0})
L∗

k′({i1,k′ , i2,k′ })

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(pk′ + ck′ |i1,k′ − i0|2Hk′−2)(pk′ + ck′ |i0 − i2,k′ |2Hk′−2)

pk′ + ck′ |i1,k′ − i2,k′ |2Hk′−2 if min Ak′ < i0 < max Ak′ ,

pk′ + ck′ | max Ak′ − i0|2Hk′−2 if i0 > max Ak′ ,

pk′ + ck′ | min Ak′ − i0|2Hk′−2 if i0 < min Ak′ ,

pk′ if Ak′ = ∅.

By (11), ∑m
k′=1

L∗
k′ ({i1,k′ ,i2,k′ ,i0})
L∗

k′ ({i1,k′ ,i2,k′ })
< 1, and the result is derived.

ii. Since,

D∗(A1, A2, · · · , Am; {i0, i1}) = D∗(A1, A2, · · · , Am; {i0})−
m

∑
k=1

D∗(· · · , Ak ∪ {i1}, · · · ; {i0}),

it is sufficient if we show:

L∗(A1, A2, · · · , Am)− ∑m
k=1 L∗(· · · , Ak ∪ {i0}, · · · )

∑m
k′=1 L∗(· · · , Ak′ ∪ {i1}, · · · )− ∑m

k,k′=1 L∗(· · · , Ak ∪ {i0}, Ak′ ∪ {i1}, · · · ) > 1.

Note that:

L∗(A1, A2, · · · , Am)

∑m
k′=1 L∗(· · · , Ak′ ∪ {i1}, · · · ) =

1

∑m
k′=1

L∗
k′ ({i1,k′ ,i2,k′ ,i0})
L∗

k′ ({i1,k′ ,i2,k′ })

,

which is non-increasing as set Ak increases for k = 1, · · · , m. That is,

L∗(A1, A2, · · · , Am)

∑m
k′=1 L∗(· · · , Ak′ ∪ {i1}, · · · ) ≤ L∗(A′

1, A′
2, · · · , A′

m)

∑m
k′=1 L∗(· · · , A′

k′ ∪ {i1}, · · · )

for any sets Ak ⊆ A′
k, k = 1, 2, · · · , m. Therefore,

L∗(A1, A2, · · · , Am)

∑m
k′=1 L∗(· · · , Ak′ ∪ {i1}, · · · ) >

∑m
k=1 L∗(· · · , Ak ∪ {i0}, · · · )

∑m
k,k′=1 L∗(· · · , Ak ∪ {i0}, Ak′ ∪ {i1}, · · · )

by iii of Lemma 2. By i of Lemma 2 combined with the fact that:

1

∑m
k′=1

L∗
k′ ({i1,k′ ,i2,k′ ,i0})
L∗

k′ ({i1,k′ ,i2,k′ })

> 1

from (11), the result is derived.

Note that for any disjoint sets A1, A2, · · · , Am, {i0, i1, · · · , in}

D∗(A1, A2, · · · , Am; {i0, i1, · · · , in}) = D∗(A1, A2, · · · , Am; {i0, i1, · · · , in−1})
− D∗(A1 ∪ {in}, A2, · · · , Am; {i0, i1, · · · , in−1})
− D∗(A1, A2 ∪ {in}, · · · , Am; {i0, i1, · · · , in−1})
. . .

− D∗(A1, A2, · · · , Am ∪ {in}; {i0, i1, · · · , in−1}).
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Let us denote:

m

∑
k=1

D∗(A1, · · · , Ak−1, Ak ∪ {in}, Ak+1 · · · , Am; {i0, i1, · · · , in−1})

by:
m

∑
k=1

D∗(· · · , Ak ∪ {in}, · · · ; {i0, i1, · · · , in−1}).

Proof of Proposition 1. We will show by mathematical induction that {Xi1 , · · · , Xin} is a
random vector with probability (4)–(6) for any n and any {i1, i2, · · · , in} ⊂ N. For n = 1,
it is trivial. For n = 2, it is proved by Lemma 3. Let us assume that {Xi1 , · · · , Xin′−1

} is a
random vector with probability (4)–(6) for any {i1, i2, · · · , in′−1} ⊂ N. We will prove that
{Xi1 , · · · , Xin′ } is a random vector for any {i1, i2, · · · , in′ } ⊂ N.

Without loss of generality, fix a set {i1, i2, · · · , in′ } ⊂ N. To prove that {Xi1 , · · · , Xin′ }
is a random vector with probability (4)–(6), we need to show that D∗(A1, · · · , Am; A0) > 0
for any pairwise disjoint sets, A0, · · · , Am, such that ∪m

k=0 Ak = {i1, · · · , in′ }. If |A0| = 0 or
1, then the result follows from the definition of D∗ and Lemma 3, respectively. Therefore,
we assume that |A0| ≥ 2, A0 = {i′0, i′1, · · · , i′n0

}, and max A0 = i′n0
. Let A′

0 = A0/{i′n0
}. We

will first show that for any such sets,

D∗(A1, · · · , Am; A′
0)

∑m
�=1 D∗(· · · , A� ∪ {i′n0

}, · · · ; A′
0)

> 1. (13)

(13) is equivalent to D∗(A1, · · · , Am; A0) > 0.
For fixed � ∈ {1, 2, · · · , m}, define the following vectors of length m − 1,

H� = (H1, · · · , H�−1, H�+1, · · · , Hm),

p� = (p1, · · · , p�−1, p�+1, · · · , pm),

c� = (c1, · · · , c�−1, c�+1, · · · , cm).

We also define:

D∗
(−�)(· · · , A�−1, A�+1, · · · ; A0) := D∗

H� ,p� ,c�(A1, · · · , A�−1, A�+1, · · · , Am; A0).

Since {Xi; i ∈ ∪m
k=1 Ak ∪ A′

0} is a random vector with (4)–(6), D∗(· · · , A�, · · · ; A′
0) > 0,

and it can be written as:

D∗(· · · , A�, , · · · ; A′
0) = P

(
∩i∈A′

0
{Xi = 0} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�
{Xi = �}

)
(14)
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= P
(
∩i∈A′

0
{Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�
{Xi = �}

)
− P
(
∩i∈A′

0/{i′0} {Xi ∈ {0, �}} ∩ i∈Ak
k=1,··· ,m

k �=�

{Xi = k} ∩i∈A�∪{i′0} {Xi = �}
)

− P
(
∩i∈A′

0/{i′0,i′1} {Xi ∈ {0, �}} ∩ i∈Ak
k=1,··· ,m

k �=�

{Xi = k} ∩i∈A�∪{i′1} {Xi = �} ∩ {Xi′0
= 0}

)
− P
(
∩i∈A′

0/{i′0,i′1,i′2} {Xi ∈ {0, �}} ∩ i∈Ak
k=1,··· ,m

k �=�

{Xi = k} ∩i∈A�∪{i′2} {Xi = �} ∩i∈{i′0,i′1} {Xi = 0}
)

...

− P
(
∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�∪{i′n0−1} {Xi = �} ∩i∈A′
0/{i′n0−1} {Xi = 0}

)
.

Note that:

P
(
∩i∈A′

0
{Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�
{Xi = �}

)
(15)

= P
(
∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�
{Xi = �}

)
− P
(
∩i∈A′

0
{Xi ∈ {1, · · · , �− 1, �+ 1, · · · , m}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�
{Xi = �}

)
= L∗

� (A�)D
∗
(−�)(· · · , A�−1, A�+1, · · · ; A′

0),

and:

P
(
∩i∈{i′j+1,··· ,i′n0−1} {Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k}

∩i∈A�∪{i′j} {Xi = �} ∩i∈{i′0,··· ,i′j−1} {Xi = 0}
)

= P
(
∩i∈A′

0/{i′j} {Xi ∈ {0, �}} ∩ i∈Ak
k=1,··· ,m

k �=�

{Xi = k} ∩i∈A�∪{i′j} {Xi = �}
)

− ∑
i∗∈A′

0,i∗<i′j

P
(
∩i∈A′

0/{i′j ,i
∗} {Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�∪{i′j ,i
∗} {Xi = �}

)
+ ∑

i∗ ,i∗∗∈A′
0,

i∗<i∗∗<i′j

P
(
∩i∈A′

0/{i′j ,i
∗ ,i∗∗} {Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�∪{i′j ,i
∗ ,i∗∗} {Xi = �}

)

...

(−1)jP
(
∩i∈A′

0/{i′j ,i
′
0,i′1,··· ,i′j−1} {Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�∪{i′j ,i
′
0,i′1,··· ,i′j−1} {Xi = �}

)
= ∑

C∩D=∅
C=∅ or max C<i′j

C∪D=A′
0/{i′j}

(−1)|C|L∗
� (A� ∪ {i′j} ∪ C)D∗

(−�)(· · · , A�−1, A�+1, · · · ; D) (16)

where |∅| = 0. Therefore, by (14)–(16),
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D∗(· · · , A�, · · · ; A′
0) = L∗

� (A�)D
∗
(−�)(· · · , A�−1, A�+1, · · · ; A′

0) (17)

+
n0−1

∑
j=0

∑
C∩D=∅

C=∅ or max C<i′j
C∪D=A′

0/{i′j}

(−1)|C|+1L∗
� (A� ∪ {i′j} ∪ C)D∗

(−�)(· · · , A�−1, A�+1, · · · ; D).

(17) can also be derived by the definition of L∗
� , D∗, without using probability for {Xi; i ∈

∪m
k=1 Ak ∪ A′

0}. In the same way, using the definition of L∗
� , D∗,

D∗(· · · , A� ∪ {i′n0
}, · · · ; A′

0) = L∗
� (A� ∪ {i′n0

})D∗
(−�)(· · · , A�−1, A�+1, · · · ; A′

0) (18)

+
n0−1

∑
j=0

∑
C∩D=∅

C=∅ or max C<i′j
C∪D=A′

0/{i′j}

(−1)|C|+1L∗
� (A� ∪ {i′n0

, i′j} ∪ C)D∗
(−�)(· · · , A�−1, A�+1, · · · ; D).

Note that, for j = 0, 1, · · · , n0 − 1,

gH,p,c(A1, · · · , A� ∪ {i′n0
}, · · · , Am; A′

0; i′j) :=

∑
C∩D=∅

C=∅ or max C<i′j
C∪D=A′

0/{i′j}

(−1)|C|+1L∗
� (A� ∪ {i′n0

, i′j} ∪ C)D∗
(−�)(· · · , A�−1, A�+1, · · · ; D) < 0,

since we have:

gH,p,c(A1, · · · , A�, · · · , Am; A′
0; i′j) =

− P
(
∩i∈{i′j+1,··· ,i′n0−1} {Xi ∈ {0, �}} ∩ i∈Ak

k=1,··· ,m
k �=�

{Xi = k} ∩i∈A�∪{i′j} {Xi = �}

∩i∈{i′0,··· ,i′j−1} {Xi = 0}
)
< 0

by (16), and:

fH� ,p� ,c�(A�; i′j; i′n0
) :=

gH,p,c(A1, · · · , A�, · · · , Am; A′
0; i′j)

gH,p,c(A1, · · · , A� ∪ {i′n0
}, · · · , Am; A′

0; i′j)
> 1. (19)

The last inequality is due to the fact that:

gH,p,c(A1, · · · , A�, · · · , Am; A′
0; i′j)

gH,p,c(A1, · · · , A� ∪ {i′n0
}, · · · , Am; A′

0; i′j)

=

∑n0−1
j=0 ∑ C⊆A′

0/{i′j}
C=∅ or max C<i′j

(−1)|C|+1L∗
� (A� ∪ {i′j} ∪ C)

∑n0−1
j=0 ∑ C⊆A′

0/{i′j}
C=∅ or max C<i′j

(−1)|C|+1L∗
� (A� ∪ {i′n0

, i′j} ∪ C)
,
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and for any set C such that max C < i′j or C = ∅,

L∗
� (A� ∪ {i′j} ∪ C)

L∗
� (A� ∪ {i′n0

, i′j} ∪ C)
=

L∗
� (A� ∪ {i′j})

L∗
� (A� ∪ {i′n0

, i′j})
> 1

by (11). More specifically,

fH� ,p� ,c�(A�; i′j; i′n0
) =

L∗
� (A� ∪ {i′j} ∪ C)

L∗
� (A� ∪ {i′n0

, i′j} ∪ C)
=

L∗
� (i�,j,1, i�,j,2)

L∗
� (i�,j,1, i�,j,2, i′n0

)
(20)

where i�,j,1, i�,j,2 are the two closest elements to i′n0
among A� ∪ {i′j}. That is, i�,j,1, i�,j,2 ∈

A� ∪ {i′j} are two closest elements to i′n0
such that if min A� ∪ {i′j} < i′n0

< max A�, then
i�,j,1 < i′n0

< i�,j,2, and if i′n0
> max A� ∪ {i′j}, then i�,j,1 < i�,j,2 < i′n0

.

L∗
� ({i�,j,1, i�,j,2})

L∗
� ({i�,j,1, i�,j,2, in′ })

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p� + c�|i�,j,1 − i�,j,2|2H�−2

(p� + c�|i�,j,1 − in′ |2H�−2)(p� + c�|in′ − i�,j,2|2H�−2)
if min A� ∪ {i′j} < in′ < max A�,

1
p� + c�|i�,j,2 − in′ |2H�−2 if in′ > max A� ∪ {i′j},

which is non-increasing as j increases since i′j < i′n0
. Therefore, fH� ,p� ,c�(A�; i′j; i′n0

) is non-
increasing as j increases. Also, for fixed j, C such that max C < i′j or C = ∅,

L∗
� (A� ∪ {i′n0

, i′j} ∪ C)

L∗
� (A� ∪ {i′j} ∪ C)

≥
L∗
� (A� ∪ {i′n0

})
L∗
� (A�)

(21)

by the fact that L∗
� (A∪{i})
L∗
� (A)

is non-decreasing as the set A increases.
Combining the above facts with (17) and (18), and by i of Lemma 2,

L∗
� (A�)

L∗
� (A� ∪ {i′n0

}) ≤ D∗(· · · , A�, · · · ; A′
0)

D∗(· · · , A� ∪ {i′n0
}, · · · ; A′

0)
.

Therefore,

D∗(A1, · · · , Am; A′
0)

∑m
�=1 D∗(· · · , A� ∪ {i′n0

}, · · · ; A′
0)

≥ 1

∑m
�=1

L∗
� (A�∪{i′n0})

L∗
� (A�)

> 1,

which proves (13) and,
D∗(A1, · · · , Am; A0) > 0.

Proof of Theorem 3. a. Let A0 = {i0, i1, · · · , in}. Note that:

P(Xi′1
= �| ∩k=0,··· ,m ∩i∈Ak{Xi = k}) = D∗(· · · , A� ∪ {i′1}, · · · ; A0)

D∗(A1, · · · , Am; A0)
=

L∗
� (A� ∪ {i′1})D∗

(−�)(· · · , A�−1, A�+1, · · · ; A0) + ∑n
j=0 gH,p,c(· · · , A� ∪ {i′1}, · · · ; A0; ij)

L∗
� (A�)D

∗
(−�)

(· · · , A�−1, A�+1, · · · ; A0) + ∑n
j=0 gH,p,c(A1, · · · , Am; A0; ij)

.

Since,
gH,p,c(A1, · · · , A� ∪ {i′1}, · · · , Am; A0; ij)

gH,p,c(A1, · · · , Am; A0; ij)
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is non-decreasing as j increases, and by (19) and (20):

L∗
� (A� ∪ {i′1})

L∗
� (A�)

≤
gH,p,c(A1, · · · , A� ∪ {i′1}, · · · , Am; A0; ij)

gH,p,c(A1, · · · , A�, · · · , Am; A0; ij)
,

the result follows by ii of Lemma 2.
b.

P(Xi′2
= �| ∩k=0,··· ,m ∩i∈Ak{Xi = k})

P(Xi′3
= �| ∩k=0,··· ,m ∩i∈Ak{Xi = k}) =

D∗(· · · , A� ∪ {i′2}, · · · ; A0)

D∗(· · · , A� ∪ {i′3}, · · · ; A0)
=

L∗
� (A� ∪ {i′2})D∗

(−�)(· · · , A�−1, A�+1, · · · ; A0) + ∑n
j=0 gH,p,c(· · · , A� ∪ {i′2}, · · · , ; A0; ij)

L∗
� (A� ∪ {i′3})D∗

(−�)
(· · · , A�−1, A�+1, · · · ; A0) + ∑n

j=0 gH,p,c(· · · , A� ∪ {i′3}, · · · ; A0; ij)
.

For fixed j, C such that max C < ij,

L∗
� (A� ∪ {i′2, ij} ∪ C)

L∗
� (A� ∪ {i′3, ij} ∪ C)

≤ L∗
� (A� ∪ {i′2})

L∗
� (A� ∪ {i′3})

,

and,
L∗
� (A� ∪ {i′2, ij} ∪ C)

L∗
� (A� ∪ {i′3, ij} ∪ C)

is non-increasing as j increases. Therefore, the result follows by i of Lemma 2.
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Abstract: In this paper, it is shown that a class of discrete Piece Wise Continuous (PWC) systems
with Caputo-type delta fractional difference may not have solutions. To overcome this obstacle, the
discontinuous problem is restarted as a continuous fractional problem. First, the single-valued PWC
problem is transformed into a set-valued one via Filippov’s theory, after which Cellina’s theorem
allows the restart of the problem into a single-valued continuous one. A numerical example is
proposed and analyzed.

Keywords: Caputo-type delta fractional difference; Cellina’s theorem; discrete PWC system; discrete
fractional PWC systems

1. Introduction

PWC real-valued functions f : D ⊆ R×Rn → Rn are time-continuous but discontin-
uous with respect to the state variable, x, are defined in a finite domain D of an (n + 1)-
dimensional (t, x) space, where D consists of a finite number of domains, Di, i = 1, 2, ..., k,
in each of which f is continuous up to the boundary of the domains. We denote by M
the discontinuity set containing the boundary points. The considered discontinuity is of
the jump type when in the points of M, the function jumps (switches) and left-hand and
right-hand limits exist and are different. Inside the domains, f is continuous [1].

Throughout the paper, discontinuity is considered only with respect to the state variable.
Dynamical systems modeled by this kind of PWC functions appear in many different

branches of engineering and applied sciences, such as dry friction, impacting machines,
systems oscillating due to earthquakes, impacts in mechanical devices, power circuits,
forced vibrations, elasto-plasticity, switching in electronic circuits, uncertain systems and
many others (see, e.g., [2–6] and their references). The vast majority of such systems are
defined by time-continuous Initial Value Problems (IVPs), modeled by ODEs of integer
order. The numerical integration of such IVPs is a difficult task for which only special
difference methods can be used (see, e.g., [4]). While the standard methods for continuous
systems rely heavily on linearization, in the case of PWC systems modeled by ODEs,
they do not require linearization in general. Another difficulty is that the underlying
IVP might not even admit solutions (see, e.g., [7]). Further, the PWC systems could have
trajectories colliding with the discontinuity surfaces, thereby generating a new kind of
bifurcation [8–10]. To overcome the problem of having no solutions, tools of differential
inclusions of integer order can provide a possible resolution (see, e.g., the method proposed
in [11–14]), where the discontinuous single-valued IVP is transformed to a set-valued IVP.
Next, to obtain a numerical solution, either special numerical schemes for differential
inclusions [15–18] can be utilized or, via the selection theory, continuous or even smooth
approximations in the neighborhood of discontinuity can be adopted [19–21].

On the other side, the main existing definitions of fractional order derivatives are based
on the formulae presented by Caputo, Riemann–Liouville and Grünwald–Letnikov [22–25].
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However, the number of proposed definitions based on these derivatives became huge
such that it represents an obstacle to the diffusion of fractional calculus in Science and
Engineering [26]. For practical applications, due to the considerable advantage of allowing
the coupling of differential equations with classical initial conditions as for differential
equations of integer order, compared to other non-integer derivatives, the Caputo derivative
is one of the most commonly used derivatives for solving fractional differential equations.

Equally interestingly, PWC systems modeled by Fractional Differential Equations
(FDEs) can be approached numerically via fractional differential inclusions [27]. Once
the set-valued IVP is transformed into a single-valued IVP, it can be numerically inte-
grated using one of the existing schemes for FDEs, such as the Adams–Bashforth–Moulton
method [28] (for fractional differential inclusions, see [29–33] and references therein).

In recent years, discrete fractional calculus has gained considerable interest, and
now the study of ordinary difference equations is widespread. However, the theory of
fractional difference equations, a very new area for scientists, is still evolving [34]. The left
and right Caputo fractional sums and differences, as well as their properties with relation
to Riemann–Liouville differences, are studied in [34] (an early paper on the theory of
fractional finite difference equations), initial value problems in discrete fractional calculus
are analyzed in [34–39], with existence results for nonlinear fractional difference equations
presented in [34,36,38,40–42]. For further reading of qualitative properties of fractional
difference equations, see [35,43–45], and for applications of discrete fractional calculus,
see [46,47].

Compared to PWC systems modeled by FDEs, which represent the subject of several
works, there are no results on discrete PWC systems modeled by fractional differences.
Therefore, we are motivated to propose a new class of fractional discrete PWC systems
modeled by Caputo delta differences. The existence of the solutions of the underlying IVPs
is also studied. Moreover, because the continuity is considered as a required property for
the existence of the solutions of fractional difference equations (see, e.g., [36,48]), in this pa-
per, the continuous approximation of the PWC function is proposed. One of the significant
advantages of the considered Caputo fractional difference operator over the other fractional
difference operators is that it includes traditional initial and boundary conditions in formu-
lating the problem. In addition, another advantage is the fact that the Caputo fractional
difference for a constant is zero. Because the systems modeled by the considered class of
discrete PWC problems might have no solutions, continuous approximation is proposed.

This paper is structured as follows: Section 2 presents the class of fractional discrete
PWC systems, modeled by Caputo-type delta fractional difference, and the existence of the
solutions. Section 3 deals with the approximation of the PWC function. While in Section 4,
some representative numerical simulations underline the theoretical results. In the end, we
give our conclusions.

2. PWC Systems Modeled with Caputo-Type Delta Fractional Difference Equations

In this paper, the considered systems are time-independent, i.e., autonomous systems.
Let us first consider a PWC system modeled by the following FDE [11]{

Dq
∗x = 2 − 3 sgn(x),

x(0) = x0,
(1)

where Dq
∗ is Caputo’s derivative with starting point 0, q ∈ (0, 1), and the right-hand side is

a jumping PWC function.

Proposition 1. The IVP (1) has no classical solutions.

Proof. In this case, D1 := D− = (−∞, 0) and D2 := D+ = (0, ∞) and M = {0}. Since
Dq

∗(0) = 0 �= 2 = 2 − 3 sgn(0), x(t) = 0 is not a solution. Therefore, there are no
solutions starting from x(0) = 0. Further, if one chooses x0 ∈ D+, there exists a solution
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x(t) = x0 − tq/Γ(1 + q), but this is defined only on [0, T′) with T′ = (x0Γ(1 + q))1/q and,
because it tends to the line x = 0, cannot be extended onto larger intervals larger than
[0, T′). Similarly, for x0 ∈ D−, the solution x(t) = x0 + 5tq/Γ(q + 1) exists but, again,
only a finite interval [0, T′′), with T′′ = (x0Γ(1 + q)/5)1/q. In both cases, the obtained
solutions tend to the line x = 0 but, as seen above, they hold at points A(T′, 0) and B(T′′, 0),
respectively, and cannot extend along this line (see Figure 1a, where q = 0.8 and x′

0 = 0.2,
x′′

0 = −0.3).

Figure 1. Equation (1); (a) Solutions for q = 0.8, and x′
0 = 0.2 (blue) and x′′

0 = −0.3 (red). The solu-
tions are defined only for t ∈ [0, T′) and t ∈ [0, T′′), respectively; (b) Incorrect solution obtained by
solving numerically the not-approximated PWC problem.

Note that running this equation for some numerical scheme (such as an Adams–
Bashforth–Moulton scheme for FDEs [28]), one can obtain a numerical result, but due
to Proposition 1, this does not represent the correct numerical solution. For example,
for q = 0.8, Figure 1b presents the “solution” for x0 = 0. Due to the finite precision in
which computers perform calculations (see Section 2.1), the utilized numerical method can
pass through points A and B, i.e., at these points, x(t) is not (exactly) zero and, therefore,
one obtains a wrong solution.

To overcome this obstacle, the problem has to be restarted as a differential inclusion
and next as a continuous problem, which admits solutions (see details in [11–14]).

To introduce the class of discrete PWC fractional systems, some basic notions necessary
to introduce the class of fractional PWC systems are presented next.

Denote by Nc = {c, c + 1, c + 2, . . .} and Nd
c = {c, c + 1, c + 2, . . . , d}, for any real

numbers c and d such that d − c ∈ N1.

Definition 1. The Euler gamma function is defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt, �(z) > 0.

Using its reduction formula, the Euler gamma function can also be extended to the half-plane
�(z) < 0 except for z ∈ {· · · , −2, −1, 0}.

Definition 2. Assume u : Nb
a → R and N ∈ N1. The first-order forward difference of u is defined by

Δu(t) = u(t + 1)− u(t), t ∈ Nb−1
a ,
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and the Nth-order forward difference of u is defined recursively by

ΔNu(t) = Δ
(

ΔN−1u(t)
)

, t ∈ Nb−N
a .

Finally, Δ0 denotes the identity operator.

Definition 3. Let u : Na → R and q > 0. The qth-order delta fractional sum of u based on a is
given by

Δ−q
a u(t) =

1
Γ(q)

t−q

∑
s=a

Γ(t − s)
Γ(t − s − q + 1)

u(s), t ∈ Na+q.

Definition 4. Let u : Na → R, q > 0, and q /∈ N1. The qth-order Caputo delta fractional
difference of u based on a is given by

Δq
a∗u(t) = Δ−(N−q)

a

(
ΔNu(t)

)
, t ∈ Na+N−q,

where N = [q] + 1. If q = N ∈ N1, then

Δq
a∗u(t) = ΔNu(t), t ∈ Na.

Consider now the class of fractional PWC systems with Caputo-type delta fractional
difference, modeled by the following IVP{

Δq
∗x(n) = f (x(n + q − 1)), n ∈ N1−q,

x(0) = x0,
(2)

where N1−q = {1 − q, 2 − q, 3 − q, · · · }, Δq
∗ represents the qth fractional Caputo-like differ-

ence in the usual case of a zero starting point a = 0, with q ∈ (0, 1) [34] and f is a jump
discontinuous scalar function of the following form

f (x) =

{
f1(x), x ∈ (−∞, a],
f2(x), x ∈ (a, ∞).

(3)

Function f1,2 is continuous in its domain, with f1(a) �= f2(a).
If the solution of the fractional IVP (2) exists, it can be found with the following

integral [34,41] (see [38] for ∇q difference equations)

x(n) = x(0) +
1

Γ(q)

n−q

∑
r=1−q

Γ(n − r)
Γ(n − r − q + 1)

f (x(r + q − 1)), n ∈ N0. (4)

To obtain a convenable numerical form, consider in (4) the following substitution
r + q = s. Then, a convenient iterative numerical form of the sum of Equation (4) is given by

x(n) = x(0) +
1

Γ(q)

n

∑
s=1

Γ(n − s + q)
Γ(n − s + 1)

f (x(s − 1)), n ∈ N0. (5)

The example considered in this paper is a fractional order variant of the model pre-
sented in [49], with the right-hand side

f (x) =

{
m − px2, x ∈ (−∞, 0],
1 − px2, x ∈ (0, ∞),

(6)
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with D1 := D− = (−∞, 0] and D2 := D+ = (0, ∞), p is a real parameter, m ∈ (0, 1) and
M = {0}. For all considered m values, function f has a jump discontinuity at x = 0,
f1(0) = m �= 1 = f2(0).

The PWC (2) becomes

Δq
∗x(n) =

{
m − px(n + q − 1)2, x(n + q − 1) ∈ (−∞, 0],
1 − px(n + q − 1)2, x(n + q − 1) ∈ (0, ∞),

x(0) = x0, n ∈ N1−q.
(7)

Like in the case of the time-continuous PWC system (1), if one considers x0 = 0 ∈ D−,
one can see that, in this case, Equation (2) is not verified because Δq

∗(0) = 0 �= 1 = 1 − p × 0.
For other values of x0 �= 0, it is possible that after some iterations, the solution reaches the
line x = 0, which cannot be the solution (see the case of system (1)).

The same situation can happen in the case of the general IVP (2) with f given by (3):
it is possible that, for some x0, the orbit crosses the line x = a, which does not verify the
equation. Therefore, one can be deduced that the IVP (2) with f given by (3) might have
no solutions.

Remark 1. It is possible that, for some set of parameters and x0 and q, the orbit does not cross line
x = a and remains in the same domain of x0 (either D− or D+) when the IVP admits solutions (see
the example in Figure 4d, Section 4).

2.1. Computational Approach

Theoretically, it has been shown that it is possible that the solution to IVP (2) with
f given by (3) can reach line x = 0, i.e., x(n) becomes 0, where the problem has no
solution. However, a numerical method of calculation is an approximation that can be
stable (meaning that it tends to reduce rounding errors) or unstable (meaning that rounding
errors are magnified); therefore, very often, there are both stable and unstable solutions
for a problem [50]. Further, in computer hardware, a value is not necessarily exactly
computed, and the loss in precision could sometimes be inevitable. Moreover, considering
any numeric representation that is limited to finite precision, for example, operating a
decimal at 100,000,000 digits, which will be able to distinguish between the values that
differ in their hundred millionth decimal places, there would still be an infinite number
of values that would not be able to be exactly represented. In other words, considering
the Pigeon Hole Principle, or Dirichlet drawer principle, a simple yet powerful idea in
mathematics, which says that if you have n items to put into m containers where n > m, then
at least one container must have more than one item [51–53]. Hence, if you have an N-bit
representation of numbers, then at most 2N different numbers can be represented, and other
numbers cannot exactly exist within that system. Therefore, it is easy to understand that
the numerical schemes, such as integral (5), will not precisely meet the zero value, where
x(n) = 0 cannot be a solution. Namely it will either exceed the discontinuity or return to a
previous value.

Remark 2.

(i) Similar situations can arise in integer-order discrete systems, such as the system in [49],
defined by the following IVP{

x(n + 1) = f (x(n)), n ∈ N,
x(0) = x0,

where f is some PWC function defined by (3);
(ii) There are PWC systems with jump discontinuity, for which f is not defined at x = a (see,

e.g., [54]). In these cases, after some number of iterations, n = k, in the internal representation,
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as shown above, it is possible for x(k) to enter a sufficiently small neighborhood of a, where
x(k) cannot be determined, and the software considers an unpredictable value for x(k).

Concluding, to overcome this inconvenience, the continuous (even smooth) approxi-
mation of the PWC problem is proposed so that the underlying problem admits a solution.

3. Continuous Approximation of Map f

In this section, it is briefly shown how the PWC function, f , defined by (3), can be con-
tinuously approximated using Filippov’s approach [1,19,20] (details on the approximation
algorithm can be found in [11,14]).

The PWC function f is transformed into a set-valued map F : R ⇒ R via the Filippov
regularization [1], which is a map from R to the set of subsets of R. F can be defined in
several ways. One of the simplest forms of F is defined as follows

F(x) =
⋂
ε>0

⋂
μ(M)=0

conv( f (y ∈ R \ {0} : |y − x| ≤ ε)), (8)

where ε is the radius of the ball centered on x. At the points where f is continuous, F(x)
consists of one single point, i.e., F(x) = { f (x)}, while at the points x ∈ M, F(x) is given
by (8). The set-valued function F defined by (8) has values in the convex subsets of R.

To justify the use of the Filippov regularization in physical systems, the value of ε
must be chosen to be small enough so that the motion of the physical systems approaches a
certain solution (ideally, it coincides with the solution if ε → 0).

In the sketch in Figure 2a, the graph of a set-valued function F is plotted, while in
Figure 2b, the closure of the convex hull is plotted in blue. The values of F(x) for x = x1 and
x = x3 are segments, while at x = x2, F(x2) is a single point (see Condition γ in [1] p. 68).

Figure 2. (a) Sketch of a set-valued function F; (b) The convex hull of F (blue plot) and the values of
F at points x1, x2 and x3.

For function f given by (6), with the discontinuity set M = {0} and for m = 0.6
and p = 1.5, the graph is presented in Figure 3a. Consider a ε-neighborhood of x = 0.
For clarity of the graphical exposition, the ray of the neighborhood is considered as ε = 0.1
(Figure 3b). The set-valued map F : R ⇒ R defined with (8) is

F(x) =

⎧⎨⎩
f1(x), x < 0,
[A

′
,B

′
], x = 0,

f2(x), x > 0,
(9)

where A′ and B′ are the endpoints of the vertical segment at x = 0. Points A and B are the
intersections of the graph of f with the lines x = −ε and x = ε.
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Figure 3. (a) Graph of the discontinuous function f for m = 0.6 and p = 1.5; (b) The underlying
set-valued function F (green plot) defined on the neighborhood [−ε, ε] (yellow) together with a
continuous selection g connecting points A and B (red); (c) The graph of the obtained smooth
function f̃ : R → R.

With the Filippov regularization, the fractional discrete difference (2) is restarted as a
set-valued fractional discrete difference (inclusion){

Δq
∗x(n) ∈ F(x(n + q − 1)), for almost all n ∈ N1−q,

x(0) = x0,
(10)

which is identical to (2) for those values of x for which F(x) = { f (x)}. For x = 0, points
A and B (Figure 3b) become A′(0, m) and B′(0, 1), respectively, and, for x = 0, system (7)
transforms into the fractional differential inclusion, Δq

∗(0) ∈ [m, 1], i.e., Δq
∗(0) could take

every value within the line [m, 1].
Solutions to the set-valued IVP (10) (absolutely continuous functions satisfying (10)

for almost all n ∈ N1−q) are not considered here (see, e.g., [1]).

Definition 5. A single-valued function h : R → R is called the approximation (selection) of the
set-valued function F if h(x) ∈ F(x), for all x ∈ R.

Definition 6. As set-valued function F : R ⇒ R is upper semicontinuous at x0 ∈ R, if for any
open set B containing F(x0), there exists a neighborhood A of x0 such that F(A) ∈ B.

It is said that F is upper semicontinuous if it is so at every x0 ∈ R.

Remark 3. A set-valued function satisfies a property if and only if its graph satisfies it (i.e.,
symmetric interpretation of a set-valued function as a graph [19]). Therefore, a set-valued function
is said to be closed if and only if its graph is closed. Further, a set-valued function F : R ⇒ R whose
graph is closed is upper semicontinuous [19] p. 42.
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Finding the approximations, which are locally Lipschitz, is allowed by the Approxi-
mate Selection Theorem (Cellina’s Theorem), whose proof presents an explicit way (see [19]
p. 84 and [20] p. 358) to construct the approximation.

It is easy to see that the function defined by (9) has a closed graph and, therefore, it
is upper semicontinuous and admits a continuous (even smooth) selection g (Figure 2b,
red plot).

Theorem 1 ([21] (see also [19])). Let F : X ⇒ Y be an upper semicontinuous function from a
compact metric space X to a Banach space Y. If the values of F are nonempty and convex, then for
every ε > 0 there exists a locally Lipschitz single-valued map g : X → Y such that

Graph(g) ⊂ B(Graph(F), ε),

and for every x ∈ X, g(x) belongs to the convex hull of the image of F.

Next, the main result can be presented

Theorem 2. The set-valued map F : R ⇒ R, defined by (9), admits a locally Lipschitz selection
g : [−ε, ε] → R.

Proof. From Remark 3 it follows that F defined by (9) is upper semicontinuous, nonempty
and convex. Therefore, Theorem 2 applies.

One of the simplest continuous approximations of the discontinuous function f (6) is
the cubic polynomial (There exists an infinity of smooth functions to approximate the PWC
function f ).

g(x) = c1x3 + c2x2 + c3x + c4, ci, ∈ R, i = 1, 2, 3, 4.

The approximated function (2) becomes

f̃ (x) =

⎧⎨⎩
m − px2, x < −ε,
g(x), x ∈ [−ε, ε],
1 − px2, x > ε.

Since f1 and f2 in (6) are smooth, to define g as connecting points A and B, the follow-
ing “gluing” conditions are to be set

f̃ (−ε) = g(−ε),
f̃ (ε) = g(ε),
f̃
′
(−ε − 0) = g

′
(−ε + 0),

f̃
′
(ε + 0) = g

′
(ε + 0),

which represents a system with unknown ci, i = 1, 2, 3, 4. f̃
′
(±ε ± 0) and g

′
(±ε ± 0) are

lateral limits of the derivatives f̃ and g at ±ε. Note that the last two equations represent
the smoothness conditions on points A and B.

Solving the system, one obtains

c1 =
m − 1

4ε3 ,

c2 = −p,

c3 = −3m − 3
4ε

,

c4 =
m + 1

2
.
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Finally, the obtained smooth discrete fractional system is

Δq
∗x(n) = f̃ (x(n)) :=

⎧⎨⎩
m − px(n + q − 1)2, x(n) < −ε,
g(x(n + q − 1)), x(n) ∈ [−ε, ε],
1 − px(n + q − 1)2, x(n) > ε,

x(0) = x0, n ∈ N1−q.

(11)

The existence of the following numerical integral

x(n) = x(0) +
1

Γ(q)

n

∑
s=1

Γ(n − s + q)
Γ(n − s + 1)

f̃ (x(s − 1)), n ∈ N0, (12)

is ensured by the smoothness of the right-hand side of (11) [41,42,55].
To computationally implement integral (12), the entire orbit history (main characteris-

tic of fractional systems) must be taken into account. Therefore, a modality is inside the
cycle that calculates the sum, every step x(s − 1) is tested for which the domain belongs.

4. Dynamics of the Approximated Fractional System (11)

Before studying the dynamics of fractional system (11), recall the following important
result regarding continuous and discrete fractional systems [56,57].

Theorem 3. Autonomous, continuous-time and discrete fractional systems cannot admit non-
constant exact periodic solutions.

Proof. This result regarding continuous fractional systems modeled by fractional order
differential equations is proven in [56], while for discrete fractional systems, it is proven
in [57].

Remark 4. Due to Theorem 3, periodicity cannot be considered in continuous or discrete fractional
systems. Therefore, notions of stable cycles, bifurcation and even chaos (where unstable periodic
orbits form the skeleton of chaotic dynamics) represent a delicate problem. Thus, following the
definition given by, e.g., Wiggins in [58]: a non-constant solution x(t) of a system is periodic
if there exists T > 0 such that x(t) = x(t + T), for all t ∈ R, it follows that even using some
asymptotic approach, one cannot obtain periodic orbits in fractional systems. Instead, one can
consider numerically periodic orbits in the sense that the trajectory, from the numerical point of
view, up to some small error, can be considered in the state phase as a closed orbit. However, there
are particular cases when one can talk about periodicity in the case of continuous fractional systems
when the lower terminal of the fractional derivative is ±∞ (see, e.g., [59]). Further, in the case of
discrete fractional systems, there could exist S-asymptotically periodic orbits [57].

To obtain the numerical results in this section, a Matlab code has been written.
Consider first the not approximated system (7) with parameters m = 0.92, p = 1.556

and q = 0.6. Applying the integral, one obtains the chaotic orbit presented in Figure 4a.
The value of the orbits close to 0 is plotted in red. As can be seen, integral (5) gives a
numerical result (orbit), and x(n) is close to 0 (see Section 2.1) at the n0 ≈ 1200th iteration.
However, as shown in Section 2, the result is not correct.

If one considers the approximated fractional system (11), with ε = 10−3 and the
same parameters m = 0.92, p = 1.556 and q = 0.6, the obtained correct chaotic orbit is
presented in Figure 4b. Note that the approximation is performed only in a relatively large
neighborhood of the discontinuity. As can be seen in the images, as expected, the differences
between the non-approximated and approximated cases appear only after the intersection
with the line x = 0 and within the neighborhood of the ray ε, respectively (see the vertical
dotted red line at n0 in Figure 4a,b). Because, in the approximated case where the code also
considers the function g, once the orbit enters the neighborhood after n > n0, the orbits
are different.
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A numerically periodic orbit (Remark 4) can be obtained for q = 0.6, p = 1.2 and
m = 0.92, with ε = 10−3 (Figure 4c).

An example of when the orbit remains within one of the domains D− or D+, is
presented in Figure 4d, where the numerically periodic orbit, obtained for q = 0.6, p = 0.9,
m = 0.92, ε = 10−3 and x0 ∈ D+, remains in D+, while a numerically periodic orbit that
visits both D− and D+, obtained for ε = 65 × 10−4 and q = 0.71, is presented in Figure 4e.
While the orbit in Figure 4d is not related to discontinuity x = 0 in the case presented in
Figure 4e, although the orbit does not seem to depend on the discontinuity, the transient
somehow meets the neighborhood of the discontinuity (red point).

Intensive numerical tests show that the smallest neighborhood size where the orbits
could be identified is of order ε = 10−3.

Figure 4. Orbits of the fractional systems (7) and (11); (a) Orbit of the fractional PWC (7) q = 0.6,
m = 0.92 and p = 1.556, without approximation; (b) Orbit of the continuous fractional system (11)
with q = 0.6, m = 0.92, p = 1.556 and ε = 10−3; (c) Numerically periodic orbit of the continuous
fractional system (11) with q = 0.6, m = 0.92, p = 1.2 and ε = 10−3 situated in D+; (e) Numerically
periodic orbit of the continuous fractional system (11) with q = 0.7, m = 0.95, p = 1.556 and ε = 65−4.
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5. Conclusions

In this paper, it is shown that the fractional PWC systems (7) might have no solutions.
Even if the use of the numerical integral (5) could offer a numerical solution, this could be
incorrect. This characteristic is also explained computationally. A possible solution is to
use the Cellina theorem, which allows the restarting of the PWC problem as a continuous
one, where integral (5) can be applied.
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Abstract: This paper is concerned with the asymptotic and pinning synchronization of fractional-
order nonidentical complex dynamical networks with uncertain parameters (FONCDNUP). First of
all, some synchronization criteria of FONCDNUP are proposed by using the stability of fractional-
order dynamical systems and inequality theory. Moreover, a novel controller is derived by using the
Lyapunov direct method and the differential inclusion theory. Next, based on the Lyapunov stability
theory and pinning control techniques, a new group of sufficient conditions to assure the synchro-
nization for FONCDNUP are obtained by adding controllers to the sub-nodes of networks. At last,
two numerical simulations are utilized to illustrate the validity and rationality of the acquired results.

Keywords: pinning synchronization; nonidentical networks; uncertain parameters

1. Introduction

As is known to all, complex networks cover almost everywhere and have been rapidly
growing with a wide range of applications. Over the past few decades, several results on
the dynamical behavior of complex dynamical networks have been published, such as
chaos [1], bifurcation [2], stability [3], and dissipativity [4].

Fractional-order derivatives, as a generalization of integer-order derivatives, can de-
scribe natural phenomena more easily. Moreover, fractional-order derivatives have more
advantages than integer-order derivatives in terms of memory and genetic properties. Ad-
ditionally, they have a wide range of promising applications in secure communications [5],
viscoelastic systems [6], power systems [7], robotics [8], and heat conduction [9]. Further-
more, real-world models can be better portrayed by fractional-order derivatives, such as
hydrodynamics [10] and biological models [11]. It is necessary to introduce fractional-order
derivatives in complex networks. Additionally, fractional-order complex networks (FOCN)
can be seen as an important stretch of traditional integer-order complex networks, which
have excellent modeling capabilities and are well suited to assist people in physics, engi-
neering, and interdisciplinary areas to simulate a variety of materials and systems with
longtime memory and genetic properties [12–14]. It is worth noting that dynamical charac-
teristics such as the synchronization of FOCN occupy an important position in applications
and are gradually gaining attention. Therefore, theoretical and applied studies of FOCN
are very important and interesting [15].

Dynamical phenomena in complex networks have been broadly studied, among which
the synchronization is one of the most critical dynamic activities in complex networks. In
reality, synchronization as a kind of basic natural activity has been extensively studied in
different fields. The synchronization of FOCN as an interesting and essential dynamical
behavior has been studied by a large amount of scholars and has a wide range of research
in unmanned ground vehicles [16], cryptography [17], and image encryption [18]. Hence,
there has been a great deal of research on synchronization [19,20]. The synchronization of
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FOCN by specific control strategies is an increasingly important issue in control of FOCN.
Many strategies have been proposed for synchronous control [21,22], and they are widely
applied in different areas. However, because the FOCN is made up of many nodes, these
effective control strategies are difficult and costly to implement as they require moment
by moment control of the entire node. They require constant activation of control inputs,
which can result in wasted energy. Therefore, pinning control is no doubt a more efficient
control method because pinning control synchronizes the network by controlling a small
portion of the nodes instead of all of them [23].

Most of the models studied in the current works have the same parameters. However,
due to the complexity of the real world, the parameters of the drive and response systems
are hardly identical. Therefore, considering that, a nonidentical network with different
parameters for the driving system and the response system is more realistic [24].

In reality, the presence of parameter uncertainty is inevitable. This is why we cannot
always obtain the precise values of the parameters used in modeling the real system.
Additionally, there may be unknown topology and modeling errors. Uncertain parameters
can result in the negative dynamic behavior of the system, such as decreased performance,
prolonged synchronization time, and even the destabilization of the trajectory. Therefore, it
is important to consider the effects of parameter uncertainty on the system. Incorporating
parameter uncertainty into the network model is essential.

For instance [25], the authors utilized the comparison theorem and Lyapunov method
to derive conditions for the synchronization of the FOCN with multiple time delays and
parameter uncertainty. Additionally, in the literature [26], they employed the homogeneous
embryonic principle and inequality techniques to establish two criteria—one indepen-
dent of time delay and one dependent on time delay—in order to ensure the accuracy of
the conclusions. Apart from that, in [27], the authors obtained conditions for achieving
projection synchronization by modeling fractional-order T-S fuzzy neural networks with un-
certain parameters and applying system stability theory and matrix inequality techniques.
In the [28], a new sliding-mode surface controller on nonidentical networks was designed.
In Ref. [29], some sufficient conditions were derived to achieve the synchronization of the
global Mittag–Leffler projection of the processing model using the Lyapunov method and
the Razumikhin technique to converge the states to a specified sliding surface for sliding
motion. In Ref. [30], the synchronization of the FOCN with delays under adaptive control
was achieved using inequality theory and the comparison principle of linear fractional
equations with delays. In order to achieve asymptotic synchronization of uncertain FOCN,
an adaptive pinning controller was designed in the paper [31]. In Ref. [32], it was demon-
strated that the uncertain fractional-order T-S fuzzy complex networks were stable under
the designed controller, reducing the impact of coupled time-varying and uncertainty
perturbations on the tracking error. However, there is a scarcity of relevant studies on the
pinning synchronization of FOCN with parameter uncertainty, making it a worthwhile
area for exploration.

Motivated by the above discussions, this paper mainly considers the asymptotic and
pinning synchronization of FONCDNUP. The main contributions are as follows:

(1) By employing stability and the inequality theory of fractional dynamical systems,
a new criterion for the synchronization of FONCDNUP is discovered.

(2) By utilizing the Lyapunov direct method and pinning control theory, a novel
pinning controller is designed.

(3) Since there is limited research on pinning control in FOCN with parameter uncer-
tainty, the previous studies are extended.

The remainder of the paper is organized as follows: Section 2 provides the prelim-
inaries; Section 3 presents some sufficient conditions for the asymptotic and pinning
synchronization of FOCN with uncertain parameters; the effectiveness of the obtained
results is verified through simulations in Section 4; and finally, Section 5 concludes the
paper and offers prospects for future research.

494



Fractal Fract. 2023, 7, 571

2. Preliminaries

Definition 1 ([33]). The function ˜̄h(t) with α-order fractional integral is defined as

Iα
t

˜̄h(t) =
1

Γ(α)

∫ t

t0

(t − s)α−1 ˜̄h(s)ds, (1)

where α > 0, t0 is the initial time, and t ≥ t0, Γ(·) is the Euler gamma function.

Definition 2 ([33]). The function ˜̄h(t) with α-order Caputo derivative of fractional is defined as follows:

C
t0

Dα
t

˜̄h(t) =
1

Γ(k̂ − α)

∫ t

t0

(t − υ)k̂−α−1 ˜̄h(t)(k̂)(υ)dυ, (2)

where k̂ − 1 < α < k̂, k̂ ∈ Z+, and t0 is the initial time. And in particular, when 0 < α < 1,

C
t0

Dα
t

˜̄h(t) =
1

Γ(1 − α)

∫ t

t0

(t − υ)−α ˜̄h′
(t)(υ)dυ. (3)

Lemma 1 ([34]). For all 0 < α < 1, if ˜̄h(t) ∈ C1([t,+∞),R), then

C
t0

Dα
t | ˜̄h(t)| ≤ sign( ˜̄h(t))C

t0
Dα

t
˜̄h(t), (4)

where t ≥ t0, and t0 is the initial time.

Lemma 2 ([35]). P ∈ Rn×n is a positive-definite matrix, and ∀ vectors �, s ∈ Rn, the below
inequality holds true:

�(s ≤ 1
2

�(P� +
1
2

s(P−1s. (5)

Assumption 1. The activation functions ˜̄hi(·); for all i = 1, 2, · · ·, n, it satisfies the Lipschitz
conditions if a positive matrix L = diag(l1, l2, · · · , ln) exists such that

| ˜̄hi(t, s)− ˜̄hp(t, �)| ≤ Li|s − �|, (6)

for all �, s ∈ Rn.

3. Main Results

In this section, one can obtain some results on asymptotic and pinning synchronization
of FOCN with uncertain parameters by means of Lyapunov theory and inequality theory,
and some controllers are designed to ensure that synchronization is realizable.

3.1. Asymptotic Synchronization for FONCDNUP

In this segment, the work synchronizes the system (7) and system (8) by an appropriate
controller. Then, one will consider the below FONCDNUP: the drive system is described as

c
t0

Dα
t �i(t) = A0�i(t) + B0h̄(�i(t)) + c

N

∑
j=1

dijΛ�j(t), (7)

and the response system is described as

c
t0

Dα
t si(t) = (E0 + ΔE(t))si(t) + (G0 + ΔG(t))h̄(si(t)) + c

N

∑
j=1

dijΛsj(t) + ui(t), (8)

where 0 < α < 1, i = 1, 2, · · · , n; �i(t) and si(t) are the state of the i-node, A0 and E0 are
constant matrices, h̄(�i(t)), and h̄(si(t)) indicate the continuous nonlinear functions. B0
and G0 stand for the weight matrices. Λ = diag(ε1, ε2, · · · , εn) > 0 is the internal coupling
matrix. (dij)n×n is the outer coupling matrix, and if it has a linkage in the node i to j, dij �= 0;
otherwise dij = 0. ΔE(t) and ΔG(t) are the parametric uncertainties.
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The vector of synchronization error (sync-error) is defined as

ei(t) = si(t)− �i(t). (9)

Based on (7) and (8), the sync-error system is as follows:

c
t0

Dα
t ei(t) =c

t0
Dα

t si(t)−c
t0

Dα
t �i(t)

=(E0 + ΔE(t))si(t) + (G0 + ΔG(t))h̄(si(t))

−B0h̄(�i(t))− A0�i(t) + c
N

∑
j=1

dijΛei(t) + ui(t),

(10)

where i = 1, 2, · · · , n.
In order to obtain the main results, one makes the following assumption.

Assumption 2. The parametric uncertainties ΔE(t), ΔG(t), ΔD(t), and ΔQ(t) are the following forms:

ΔE(t) = MeF(t)He,

ΔG(t) = MgF(t)Hg,

ΔD(t) = MdF(t)Hd,

ΔQ(t) = MqF(t)Hq,

where Me, Mg, He, Hg, Hd, Hq, Md, and Mq are the diagonal matrices with appropriate dimensions.
And the uncertain matrix F(t) can satisfy F((t)F(t) ≤ I, where I is the identity matrix.

Theorem 1. Under the Assumptions 1 and 2, and scalar 0 < α < 1, FONCDNUP can achieve
asymptotic synchronization, if the following inequalities hold:

(i) Υ̂ < 0,

(ii) ui(t) = −(E0 + ΔE(t)− A0)�i(t)− (G0 + ΔG(t))h̄(�i(t)) + B0h̄(�i(t)− δiei(t),

and Υ̂ = E0 +
1
2 Me M(

e + 1
2 H(

e He + LG0 + L 1
2 Mg M(

g + L 1
2 H(

g Hg + ∑N
j=1 dijΛ − δi.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1

|ei(t)|, (11)

then, taking the fractional derivative of V(t) by Lemma 1, we can obtain

c
t0

Dα
t V(t) =c

t0
Dα

t

n

∑
i=1

|ei(t)|

≤
n

∑
i=1

sign((ei(t))c
t0

Dα
t ei(t)

≤
n

∑
i=1

sign((ei(t))[(E0 + ΔE(t))si(t)− A0�i(t)− B0h̄(�i(t))

+ (G0 + ΔG(t))h̄(si(t) + c
N

∑
j=1

dijΛei(t) + ui(t)]

≤
n

∑
i=1

sign((ei(t))[(E0 + ΔE(t))si(t)− A0�i(t)]

+
n

∑
i=1

sign((ei(t)[(G0 + ΔG(t))h̄(si(t))− B0h̄(�i(t))]

+
n

∑
i=1

sign((ei(t))c
N

∑
j=1

dijΛei(t) +
n

∑
i=1

sign((ei(t))ui(t).

(12)
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It follows from Lemma 2 and Assumption 2 that

W1 =
n

∑
i=1

sign((ei(t)(E0 + ΔE(t))si(t)− A0�i(t)

≤
n

∑
F=1

|(E0 + ΔE(t))si(t) + (E0 + ΔE(t)))�i(t)

− (E0 + ΔE(t))�i(t)− A0�i(t)|

≤
n

∑
i=1

|(E0 + ΔE(t))ei(t) + (E0 − A0 + ΔE(t))�i(t)|

≤
n

∑
i=1

|(E0 + MeF(t)He)ei(t) + (E0 + MeF(t)He − A0)�i(t)|

≤
n

∑
i=1

|(E0 +
1
2

Me M(
e +

1
2

H(
e He)ei(t)

+ (E0 +
1
2

Me M(
e +

1
2

H(
e He − A0)�i(t)|.

(13)

Using Assumption 1, one has

W2 =
n

∑
i=1

sign((ei(t)[(G0 + ΔG(t))h̄(si(t))− B0h̄(�i(t))]

≤
n

∑
i=1

|(G0 + ΔG(t))h̄(si(t))− B0h̄(�i(t))|

≤
n

∑
i=1

(G0 + ΔG(t))h̄(si(t)) + (G0 + ΔG(t))h̄(�i(t)

− (G0 + ΔG(t))h̄(�i(t))− B0h̄(�i(t)

≤
n

∑
i=1

|(G0 + ΔG(t))Lei(t) + (G0 + ΔG(t))h̄(�i(t))− B0h̄(�i(t))

≤
n

∑
i=1

|(G0 + MgF(t)Hg)Lei(t) + (G0 + MgF(t)Hg)h̄(�i(t))− B0h̄(�i(t)

≤
n

∑
i=1

|(G0 +
1
2

Mg M(
g +

1
2

H(
g Hg)Lei(t)− B0h̄(�i(t)

+ (G0 +
1
2

Mg M(
g +

1
2

H(
g Hg)h̄(�i(t))|.

(14)

Similarly, one can obtain the following formula:

W3 =
n

∑
i=1

sign((ei(t))c
N

∑
j=1

dijΛei(t)

≤
n

∑
i=1

|c
N

∑
j=1

dijΛei(t)|

≤ c
n

∑
i=1

N

∑
j=1

dijΛ|ei(t)|.

(15)
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Adding the controller ui(t) to (12), we obtain

W4 =
n

∑
i=1

sign((ei(t))ui(t)

≤
n

∑
i=1

sign((ei(t))[−(E0 + ΔE(t)− A0)�i(t)− δiei(t)

− (G0 + ΔG(t))h̄(�i(t)) + B0h̄(�i(t)]

≤
n

∑
i=1

| − (E0 + ΔE(t)− A0)�i(t)− δiei(t)

− (G0 + ΔG(t))h̄(�i(t)) + B0h̄(�i(t)|

≤
n

∑
i=1

| − (E0 +
1
2

Me M(
e +

1
2

H(
e He)�i(t) + B0h̄(�i(t)

− (G0 +
1
2

Mg M(
g +

1
2

H(
g Hg)h̄(�i(t))− δiei(t) + A0�i(t)|.

(16)

By adding (13)–(16) to (12), one can obtain

c
t0

Dα
t V(t) ≤W1 + W2 + W3 + W4

≤
n

∑
i=1

|(E0 +
1
2

Me M(
e +

1
2

H(
e He)ei(t)E0�i(t)− A0�i(t)

+ (
1
2

Me M(
e +

1
2

H(
e He)�i(t) +

1
2

Mg M(
g Lei(t)

+ G0Lei(t) +
1
2

H(
g HgLei(t) +

1
2

H(
g Hgh̄(�i(t))

+ (G0 +
1
2

Mg M(
g )h̄(�i(t))− B0h̄(�i(t)) + A0�i(t)

− (E0 +
1
2

Me M(
e +

1
2

H(
e He)�i(t) +

N

∑
j=1

dijΛei(t)

− (G0 +
1
2

Mg M(
g +

1
2

H(
g Hg)h̄(�i(t))− δiei(t) + B0h̄(�i(t)|

≤
n

∑
i=1

[E0 +
1
2

Me M(
e +

1
2

H(
e He + LG0 + L

1
2

Mg M(
g

+ L
1
2

H(
g Hg +

N

∑
j=1

dijΛ − δi]|ei(t)|

≤
n

∑
i=1

Υ̂|ei(t)|.

(17)

When Υ̂ < 0, the c
t0

Dα
t V(t) ≤ 0, which means the FONCDNUP can achieve asymptot-

ical synchronization under the controller.

3.2. Pinning Synchronization for FOCDNUP

In this subsection, we explore the pinning synchronization of the following fractional-
order complex dynamical networks with uncertain parameters (FOCDNUP): the drive
system is described as

c
t0

Dα
t �̃i(t) = (D + ΔD(t))�̃i(t) + (Q + ΔQ(t))g(�̃i(t)) + c

N

∑
j=1

dijΛ�̃j(t), (18)
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and the response system is described as

c
t0

Dα
t s̃i(t) = (D + ΔD(t))s̃i(t) + (Q + ΔQ(t))g(s̃i(t)) + c

N

∑
j=1

dijΛs̃j(t) + ũi(t), (19)

where 0 < α < 1, i = 1, 2, · · · , n, �̃i(t) and s̃i(t) are the state of the i-node, D and is the real
constant matrix, and Q indicate the weight matrix. g(�̃i(t)) and g(s̃i(t)) show the continu-
ous nonlinear functions. Λ̃ = diag(ε̃1, ε̃2, · · · , ε̃n) > 0 is the internal coupling matrix of the
networks. (d̃ij)n×n is the outer coupling matrix, and if they have a linkage in the node i to j,
d̃ij �= 0 ; otherwise, d̃ij = 0. ΔD(t) and ΔQ(t) are the parametric uncertainties.

The sync-error vector is defined as

êi(t) = s̃i(t)− �̃i(t). (20)

Based on (18) and (19), the sync-error system is expressed as

c
t0Dα

t êi(t) = (D + ΔD(t))êi(t) + (Q + ΔQ(t))g(êi(t)) + c̃
N

∑
j=1

d̃ijΛ̃êi(t) + ũi(t). (21)

Then, the pinning controller of FOCDNUP is described as

ũi(t) =
{ −δ̃i êi(t), i = 1, 2, · · · , m

0, i = m + 1, m + 2, · · · , n.
(22)

Synchronizing the FOCDNUP by the pinning controller is the next task.

Theorem 2. Under Assumptions 1 and 2, and scalar 0 < α < 1, the FOCDNUP can achieve
synchronization under the pinning controller, if the following inequalities hold:

D +
1
2

Md M(
d +

1
2

H(
d Hd + LQ +

1
2

LMq M(
q +

1
2

LH(
q Hq + c̃

N

∑
j=1

d̃ijΛ̃ −
m

∑
i=1

δ̃i < 0.

Proof. Construct the following Lyapunov function:

V(t) =
n

∑
i=1

|êi(t)|, (23)

then, taking the fractional derivative of V(t) by Lemma 1, one can obtain

c
t0

Dα
t V(t) =c

t0
Dα

t

n

∑
i=1

|êi(t)|

≤
n

∑
i=1

sign((êi(t))c
t0

Dα
t êi(t)

≤
n

∑
i=1

sign((êi(t))[(D + ΔD(t))êi(t) + (Q + ΔQ(t))g(êi(t))

+ c
N

∑
j=1

d̃ijΛ̃êi(t) + ũi(t)]

≤
n

∑
i=1

sign((êi(t))(D + ΔD(t))êi(t)

+
n

∑
i=1

sign((êi(t))(Q + ΔQ(t))g(êi(t))

+
n

∑
i=1

sign((êi(t))(c̃
N

∑
j=1

d̃ijΛ̃êi(t) + ũi(t)).

(24)
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It follows from Lemma 2 and Assumption 2 that

V1 =
n

∑
i=1

sign((êi(t))(D + ΔD(t))êi(t)

≤
n

∑
i=1

|(D + ΔD(t))êi(t)|

≤
n

∑
i=1

|(D + MdF(t)Hd)êi(t)|

≤
n

∑
i=1

|D +
1
2

Md M(
d +

1
2

H(
d Hdêi(t)|.

(25)

Using Assumption 1, one obtains

V2 =
n

∑
i=1

sign((êi(t))(Q + ΔQ(t))g(êi(t))

≤
n

∑
i=1

|Q + ΔQ(t))Lêi(t)|

≤
n

∑
i=1

|(Q + MqF(t)Hq)Lêi(t)|

≤
n

∑
i=1

|(Q +
1
2

Mq M(
q +

1
2

H(
q Hq)Lêi(t)|.

(26)

Adding the pinning controller ũi(t) to (24), one has

V3 =
n

∑
i=1

sign((êi(t))(c̃
N

∑
j=1

dijΛ̃êi(t) + ũi(t))

≤
n

∑
i=1

|c̃
N

∑
j=1

d̃ijΛ̃êi(t)| −
m

∑
i=1

δ̃i|êi(t)|.
(27)

By adding (25)–(27) to (24), we have

c
t0

Dα
t V(t) =V1 + V2 + V3

≤
n

∑
i=1

|D +
1
2

Md M(
d +

1
2

H(
d Hdêi(t) + c̃

N

∑
j=1

d̃ijΛ̃êi(t)− δ̃i êi(t)

+ (Q +
1
2

Mq M(
q +

1
2

H(
q Hq)Lêi(t)|

≤
n

∑
i=1

[D +
1
2

Md M(
d +

1
2

H(
d Hd + LQ +

1
2

LMq M(
q

+
1
2

LH(
q Hq + c̃

N

∑
j=1

d̃ijΛ̃ −
m

∑
i=1

δ̃i]|êi(t)|.

(28)

If D + 1
2 Md M(

d + 1
2 H(

d Hd + LQ + 1
2 LMq M(

q + 1
2 LH(

q Hq + c̃ ∑N
j=1 d̃ijΛ̃ − ∑m

i=1 δ̃i < 0,
the FOCDNUP is pinning synchronization under the controller.

4. Numerical Simulation

In this section, the viability and validity of the approaches are verified by two
numerical instances.
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Example 1. Suppose that the below FONCDNUP is made up of n nodes and it is given in the
following way:

c
t0

Dα
t �i(t) = A0�i(t) + B0h̄(�i(t)) + c

N

∑
j=1

dijΛ�j(t), (29)

and

c
t0

Dα
t si(t) = (E0 + ΔE(t))si(t) + (G0 + ΔG(t))h̄(si(t)) + c

N

∑
j=1

dijΛsj(t) + ui(t). (30)

The controller is

ui(t) = −(E0 + ΔE(t)− A0)�i(t)− (G0 + ΔG(t))h̄(�i(t)) + B0h̄(�i(t)− δiei(t). (31)

Considering the 10 nodes of FONCDNUP, where δ = 20, �i(t) = [�i1, �i2, �i3, �i4]
(,

si(t) = [si1, si2, si3, si4]
(, i = 1, 2, · · · , 10, c is the coupling coefficient, which represents

the degree of connection between each node, and c = 0.01, a = 0.25, b = 8.1; and the
nonlinear functions can be expressed h̄(�i(t)) = [a ∗ tanh(�i1(t)), a ∗ tanh(�i2(t)), a ∗
tanh(�i3(t)), a ∗ tanh(�i4(t))](; h̄(si(t)) = [b ∗ tanh(si1(t)), b ∗ tanh(si2(t)), b ∗ tanh(si3(t)),
b ∗ tanh(si4(t))](.

The weight matrices and the parametric matrices are

A0 =

⎛⎜⎜⎜⎝
−18.058 0 0 0

0 −1.256 0 0
0 0 −10.847 0
0 0 0 −1.865

⎞⎟⎟⎟⎠, B0 =

⎛⎜⎜⎜⎝
10.8 0 5.5 0.18

0 −1.55 0.01 0.05
15.3 1 −10 0
2.5 0 0 −2.815

⎞⎟⎟⎟⎠.

E0 =

⎛⎜⎜⎜⎝
−20.204 0 0 0

0 −4.15 0 0
0 0 −5.357 0
0 0 0 −1.613

⎞⎟⎟⎟⎠, G0 =

⎛⎜⎜⎜⎝
−1.048 0.015 0.05 0.6
−0.01 0.85 0 1.47

0 −1.3 −4.25 −1.45
0.86 0 3 −1.45

⎞⎟⎟⎟⎠.

The internal coupling matrix can be shown as

Λ =

⎛⎜⎜⎝
0.25 0 0 0

0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

⎞⎟⎟⎠.

The outer coupling matrix can be indicated by

(dij)n×n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.1 0 1.15 0 2.05 −2 1.02 −1 0.22 −2.15
−2.1 −1.15 0 −0.12 0.21 −0.45 0 1.5 0.1 −3.3

0 −1 −3.1 0 1 −1.5 0 −1.25 −1.15 1.02
2.5 0 1.5 −2.2 1.5 0 −1.5 0 −2.03 0.5
0 −1 0 1 −2.35 −1.25 −1.5 3.01 0.5 −1.1

−1.01 0 2 −2.1 1.05 −1.5 0 0.1 −1 0
0.5 0 −1 2.1 0 1.5 −1.5 −0.5 1.01 1.45

−2.03 0.1 −1.01 1.2 −1.5 0 −1.2 −1.25 2.35 −0.2
1 −2.51 0 1.5 −1 0.2 0.5 1.06 −1.15 −1.25

1.5 −3.13 0.5 −0.5 0 −1.15 3 0 0.2 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The parameter uncertainties matrices can be shown in terms of

Me =

⎛⎜⎜⎝
0.1 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.3

⎞⎟⎟⎠, He =

⎛⎜⎜⎝
0.2 0 0 0
0 0.1 0 0
0 0 0.2 0
0 0 0 0.5

⎞⎟⎟⎠,

Fe(t) =

⎛⎜⎜⎝
cos(�1(t)) 0 0 0

0 cos(�2(t)) 0 0
0 0 cos(�3(t)) 0
0 0 0 cos(�4(t))

⎞⎟⎟⎠,

and

Mg =

⎛⎜⎜⎝
1 0 0 0
0 0.9 0 0
0 0 1 0
0 0 0 0.3

⎞⎟⎟⎠, Hg =

⎛⎜⎜⎝
1 0 0 0
0 0.9 0 0
0 0 0.8 0
0 0 0 1

⎞⎟⎟⎠,

Fg(t) =

⎛⎜⎜⎝
0.41 cos(s1(t)) 0 0 0

0 cos(s2(t)) 0 0
0 0 0.3 cos(s3(t)) 0
0 0 0 0.13 cos(s4(t))

⎞⎟⎟⎠.

We choose the appropriate initial values. Then, using the MATLAB R2020a, the Ad-
mas–Bashforth–Moulton predictor corrector method is employed for numerical simulation.
If the previous parameter matrix changes, it will extend our control time. Figures 1–4 show
the trajectories of sync−error (9) (ei1, ei2, ei3, ei4) without control, respectively. We can
observe that the (29) and the (30) without control is unsynchronized. Figures 5–8 reflect
the trajectories of sync−error 9 (ei1, ei2, ei3, ei4) under control, respectively. Figure 9 shows
the trajectories of total sync−error systems (9) not under control. Figure 10 shows the
trajectories of total sync−error systems (9) under the control. From the simulation results
and graphs, it can be obtained that the error system is actuated to the point of initial. Clearly,
(29) and (30) can achieve asymptotic synchronization. This shows the effectiveness and
feasibility of Theorem 1.
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Figure 1. Time behaviors of sync−error trajectories ei1(i = 1, 2, · · · , 10) without controller.
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Figure 2. Time behaviors of sync−error trajectories ei2(i = 1, 2, · · · , 10) without controller.
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Figure 3. Time behaviors of sync−error trajectories ei3(i = 1, 2, · · · , 10) without controller.
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Figure 4. Time behaviors of sync−error trajectories ei4(i = 1, 2, · · · , 10) without controller.
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Figure 5. Time behaviors of sync−error trajectories ei1(i = 1, 2, · · · , 10) with controller.
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Figure 6. Time behaviors of sync−error trajectories ei2(i = 1, 2, · · · , 10) with controller.
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Figure 7. Time behaviors of sync−error trajectories ei3(i = 1, 2, · · · , 10) with controller.
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Figure 8. Time behaviors of sync−error trajectories ei4(i = 1, 2, · · · , 10) with controller.
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Figure 9. Time behaviors of sync−error trajectories eij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4) without controller.
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Figure 10. Time behaviors of sync−error trajectories eij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4) with controller.
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Example 2. Supposed that the below FOCDNUP is made up of n nodes and it is given in the
following way:

c
t0

Dα
t �̃i(t) = (D + ΔD(t))�̃i(t) + (Q + ΔB(t))g(�̃i(t)) + c̃

N

∑
j=1

d̃ijΛ̃x̃j(t), (32)

and

c
t0

Dα
t s̃i(t) = (D0 + ΔD(t))s̃i(t) + (Q + ΔQ(t))g(s̃i(t)) + c̃

N

∑
j=1

d̃ijΛ̃ỹj(t) + ũi(t). (33)

The 10 nodes of FOCDNUP are considered, where δ = 15, �̃i(t) = [�̃i1, �̃i2, �̃i3, �̃i4]
(,

s̃i(t) = [s̃i1, s̃i2, s̃i3, s̃i4, ]( i = 1, 2, · · · , 10, c = 5, â = 0.01, b̂ = 0.01; and the nonlinear func-
tions can be expressed as: g(�̃i(t)) = [â ∗ tanh(�̃i1(t)), â ∗ tanh(�̃i2(t)), â ∗ tanh(�̃i3(t)),
â ∗ tanh(�̃i4(t))](; g(s̃i(t)) = [b̂ ∗ tanh(s̃i1(t)), b̂ ∗ tanh(s̃i2(t)), b̂ ∗ tanh(s̃i3(t)),
b̂ ∗ tanh(s̃i4(t))](.

The first five nodes are added to the controller, namely,

ũi(t) =
{ −15êi(t), i = 1, 2, 3, 4, 5

0, i = 6, 7, 8, 9, 10.
(34)

The weight matrices and parametric matrices are

D =

⎛⎜⎜⎝
−3.54 0 0 0

0 −2.96 0 0
0 0 −5.07 0
0 0 0 −2.93

⎞⎟⎟⎠, Q =

⎛⎜⎜⎝
−15.5 0.05 5.1 0

70 0 −15.01 35
60.1 −10.1 −8.25 15.5
−0.1 −0.03 30.01 −0.35

⎞⎟⎟⎠.

And the inner coupling matrices can be expressed in terms of

Λ̃ =

⎛⎜⎜⎝
0.25 0 0 0

0 0.25 0 0
0 0 0.25 0
0 0 0 0.25

⎞⎟⎟⎠.

The outer coupling matrix can be indicated by

(d̃ij)n×n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 1 0 0 0 0 0 0
0 −2 1 0 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 0 1 −3 0 0 0 1 0
1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 −2 0 0
1 0 1 0 0 0 0 0 −2 0
0 0 1 0 0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The matrices of parameter uncertainties are

Md =

⎛⎜⎜⎝
1 0 0 0
0 0.81 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠, Hd =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0.8 0
0 0 0 0.3

⎞⎟⎟⎠,

Fd(t) =

⎛⎜⎜⎝
0.41 cos(�̃1(t)) 0 0 0

0 cos(�̃2(t)) 0 0
0 0 0.3 cos(�̃3(t)) 0
0 0 0 0.13 cos(�̃4(t))

⎞⎟⎟⎠,

and

Mq =

⎛⎜⎜⎝
0.1 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.15

⎞⎟⎟⎠, Hq =

⎛⎜⎜⎝
0.2 0 0 0
0 0.1 0 0
0 0 0.2 0
0 0 0 1

⎞⎟⎟⎠,

Fq(t) =

⎛⎜⎜⎝
cos(s̃1(t)) 0 0 0

0 cos(s̃2(t)) 0 0
0 0 cos(s̃3(t)) 0
0 0 0 cos(s̃4(t))

⎞⎟⎟⎠.

We choose the appropriate initial values and use the same MATLAB and methods
as in Example 1. Figures 11–14 show the trajectories of sync−error (20) (êi1, êi2, êi3, êi4)
not under control, respectively. We can observe that (32) and (33) not under control are
unsynchronized. Figures 15–18 reflect the trajectories of sync−error (20) (êi1, êi2, êi3, êi4)
under control, respectively. Figure 19 shows the trajectories of total sync−error systems
(20) not under control. Figure 20 shows the trajectories of total sync−error systems (20)
under the control. From the simulation results and graphs, it can be obtained that the error
system is actuated to the point of initial; it is clear that (32) and (33) can achieve asymptotic
synchronization. This shows the effectiveness and feasibility of Theorem 2.
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Figure 11. Time behaviors of pinning sync−error trajectories êi1(i = 1, 2, · · · , 10) without controller.
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Figure 12. Time behaviors of pinning sync−error trajectories êi2(i = 1, 2, · · · , 10) without controller.
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Figure 13. Time behaviors of pinning sync−error trajectories êi3(i = 1, 2, · · · , 10) without controller.

Figure 14. Time behaviors of pinning sync−error trajectories êi4(i = 1, 2, · · · , 10) without controller.
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Figure 15. Time behaviors of pinning sync−error trajectories êi1(i = 1, 2, · · · , 10) with controller.
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Figure 16. Time behaviors of pinning sync−error trajectories êi2(i = 1, 2, · · · , 10) with controller.
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Figure 17. Time behaviors of pinning sync−error trajectories êi3(i = 1, 2, · · · , 10) with controller.
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Figure 18. Time behaviors of pinning sync−error trajectories êi4(i = 1, 2, · · · , 10) with controller.
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Figure 19. Time behaviors of pinning sync−error trajectories êij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4)
without controller.
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Figure 20. Time behaviors of pinning sync−error trajectories êij(i = 1, 2, · · · , 10; j = 1, 2, 3, 4)
with controller.
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5. Conclusions

The asymptotic synchronization of FONCDNUP was studied via a novel control.
Several sufficient conditions were derived for ensuring the asymptotic synchronization of
FONCDNUP, utilizing fractional differential theory, differential inclusion theory, and the
Lyapunov method. The pinning synchronization of FOCDNUP was investigated, where
Parameter uncertainties were introduced to the networks. Instead of adding controllers to
all nodes, controllers were only added to the first five nodes, reducing costs and enhancing
efficiency. Finally, two numerical instances were also presented to demonstrate the effec-
tiveness of the proposed approaches. However, this paper does not consider time delays
or extending pinning control to fractional nonidentical complex networks. In the future,
the inclusion of time-varying delays in FONCDNUP will be considered, along with the
exploration of pinning control for non-identical networks, which presents an interesting
and challenging area.
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Abstract: A Geiger-mode avalanche photodiode (GM-APD) laser radar range image has much noise
when the signal-to-background ratios (SBRs) are low, making it difficult to recover the real target
scene. In this paper, based on the GM-APD lidar denoising model of fractional-order total variation
(FOTV), the spatial relationship and similarity relationship between pixels are obtained by using a
spatial kernel function and range kernel function to optimize the fractional differential operator, and
a new FOTV GM-APD lidar range-image denoising algorithm is designed. The lost information and
range anomalous noise are suppressed while the target details and contour information are preserved.
The Monte Carlo simulation and experimental results show that, under the same SBRs and statistical
frame number, the proposed algorithm improves the target restoration degree by at least 5.11% and
the peak signal-to-noise ratio (PSNR) by at least 24.6%. The proposed approach can accomplish the
denoising of GM-APD lidar range images when SBRs are low.

Keywords: GM-APD lidar; FOTV; range-image denoising; spatial kernel function; kernel of the range

1. Introduction

Lidar has been widely used in terrain mapping, forestry exploration, autonomous
driving, military defense, and other fields due to its high resolution, strong anti-interference
ability, and fast response speed [1–4]. Geiger-mode avalanche photodiode (GM-APD) laser
radar can detect single-photon echo signals and remote weak signals [5–9]. However, due
to the single-photon detection system of GM-APD, the detection cycle has detection dead
time, and the acquired range image loses information. Moreover, under the condition of low
SBRs (the ratios of the photon of the target signal received to the photon of the background
noise in the gate), the target signal acquired is effortlessly submerged in noise, resulting
in a giant variety of range anomalous noise. Therefore, in order to improve these range
images to be high quality, it is urgent that an effective range-image denoising algorithm be
developed.

The existing GM-APD range-image denoising techniques are mainly divided into local
filter denoising and global filter denoising. Local filter denoising is widely used in the
denoising of GM-APD lidar range images due to its advantages of having a simple principle,
low computation requirements, and low resource consumption. References [10,11] used
the extended median filter to filter the noise in a range image. This simple method can
effortlessly achieve an appropriate suppression impact on the non-linear noise in a range
image; however, it will damage the part of the target and will not maintain the details
of the target. Reference [12] proposed an Improved Donut Filter algorithm (IDF), but

Fractal Fract. 2023, 7, 674. https://doi.org/10.3390/fractalfract7090674 https://www.mdpi.com/journal/fractalfract
513



Fractal Fract. 2023, 7, 674

the algorithm sacrifices a part of its target detail protection ability to improve its noise
suppression ability. Reference [13] proposed a 2D dual-threshold denoising algorithm with
the advantages of neighborhood smoothing and threshold segmentation. Compared with
the global filtering algorithm, this algorithm has a poor smoothing effect on the whole
target. The local filtering method only carries out denoising based on the relationship
between sub-pixels and adjacent pixels and does not consider the similarity of image
texture and details; thus, it often produces a local smoothing effect, resulting in the obvious
deviation of the recovered target range information. Global filtering usually uses the spatial
relationship between pixels within the whole image and the similarity of pixel values to
realize range-image denoising. Compared with local filtering, global filtering can obtain a
smoother target range image. Reference [14] proposed a non-local probabilistic statistical
filtering algorithm (NLPS) that can maintain the true value of the range for the lidar range
image, and a denoising study was carried out. However, the edge-preserving effect of
this algorithm needs to be improved when there is a low SBR. Reference [15] proposed an
image reconstruction algorithm based on total variation and Discrete Cosine Transform
(DCT), and the effective Alternating Direction Method of Multipliers (ADMM) was used to
resolve the issue. This method achieves range-image reconstruction from the perspective
of global smoothing. Reference [16] proposed a range-image restoration algorithm based
on non-local correlation. By constructing an energy equation with a regular term of non-
local spatial correlation between pixels, this algorithm uses the ADMM to find a solution
iteratively that achieves range-image restoration under sparse photons. This algorithm can
suppress noise while preserving the integrity of image edges, but it is easy to over-smooth
the noise and destroy target details. Reference [17] proposed an intensity guidance method
to estimate range images by using the temporal and spatial correlation of reflected signals.
This method utilized the sharp edges and detailed information of intensity images to
achieve background noise suppression with higher complexity, but unfortunately, it also
has a higher calculation cost.

In recent years, GM-APD lidar range-image denoising algorithms have mostly been
used to construct energy variance with a regular term, the denoising problem has been
transformed into an optimization problem, and the numerical solution method has been
used for finding an iterative solution. The global filtering method has been used to achieve
range-image denoising, but with this method, it is difficult to balance range-image noise
removal while preserving the target details and edges. The fractional differential operator
takes extra neighborhood information into account and can linearly enhance the intermedi-
ate frequency signal in the image, non-linearly retain the low-frequency signal, and at the
same time, can better retain detailed information while suppressing the noise in the range
image. Currently, fractional-order image denoising models can be primarily classified into
two categories: fractional-order denoising models based on partial differential equations
and fractional-order denoising models based on masks. Most researchers predominantly
apply fractional-order denoising models to grayscale image denoising, aiming to enhance
the details and edge information of the images [18]. However, there is limited research on
the application of these models to range images.

Fractional-order denoising models based on masks are predominantly constructed by
deriving eight directionally overlaid mask templates from the G-L definition and combining
them with other theories to create improved fractional-order models. Huang et al. [19]
explored the feasibility of applying a 3 × 3 fractional-order mask template to denoise range
images. The experimental results show that the fractional-order integral denoising operator
can successfully manage noise in range images while maintaining features and edge
information, demonstrating good denoising performance for range images. However, due
to the fact that the photon signals reflected by GM-APD laser radar targets originate from
emitted short-pulse lasers and are constrained by technological barriers in the preparation
of GM-APD array detectors, the imaging resolution of GM-APD is relatively low. As a result,
the obtained signals exhibit strong consistency in both temporal and spatial distributions.
When using the fractional-order denoising model based on masks for denoising range
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images, the lack of additional image neighborhood information leads to limited prior
information during range-image denoising, resulting in insufficient availability of high-
quality range images. The fractional-order denoising algorithm based on partial differential
equations follows a similar process to a physical phenomenon known as heat diffusion.
The 3 × 3 mask proposed by Wang et al. [20], which incorporates eight directions, exhibits
limited capability in utilizing neighborhood pixel information. To address this limitation,
we introduce a 5 × 5 mask extended to include sixteen directions, enabling comprehensive
utilization of effective pixel information within the neighborhood. This extension aims
to mitigate noise interference and enhance the quality of depth images when statistical
frames are scarce. Finally, simulation and imaging experiments are conducted to validate
the effectiveness of our algorithm. Xie et al. [21], based on the idea of fractional-order
partial differential equation image denoising, first utilized the fractional-order whole
version regularization denoising algorithm to denoise range images. However, immediately
making use of the fractional-order whole variation regularization denoising mannequin
to range images with a massive quantity of noise would excessively set up connections
between pixels, thereby increasing the impact of noise on the current pixel. To address this
problem, a preprocessing step was designed to identify the noise points by considering
adjacent pixels, and only the noise points in the range image are denoised in fractional
order. Although this algorithm achieved excellent denoising results for range images, the
introduced preprocessing step increased the overall complexity and computation time of
the algorithm, making it not an end-to-end range-image denoising algorithm. Therefore, a
denoising method suitable for GM-APD lidar range images is proposed in this paper based
totally on the fractional-order whole variant denoising method.

In order to achieve the denoising of GM-APD lidar range images with a low SBR, a
FOTV-based denoising model of GM-APD lidar was constructed by introducing fractional
differential operators. Secondly, the spatial relationship and similarity relationship between
pixels were obtained by using a spatial kernel function and a range kernel function. The
fractional differential operator was optimized, the FOTV model was improved, and the
split Bregman algorithm was used for range-image denoising, which suppressed the noise
of lost information and abnormal range values while preserving the target details and
contour information. Finally, Monte Carlo simulation experiments were carried out on the
algorithms proposed, including a bilateral filtering algorithm (BF), total variation denoising
algorithm (TV), and fractional-order total variation denoising algorithm (FOTV), to verify
their effectiveness under different SBRs and different statistical frames. Additionally, a GM-
APD lidar system was built for outdoor experiments. The experimental outcomes exhibit
that the denoising overall performance of the algorithm proposed is better in contrast with
that of the different algorithms.

2. Algorithm Principle

A fractional differential operator is a global operator. Using an FOTV model to
denoise range images can balance each frequency component in a range image, improve the
accuracy of range-image reconstruction, and retain the edge details of the image. However,
for the range anomalous noise and lost information generated by GM-APD lidar, it is
impossible to calibrate the noise because of the small diffusion coefficient of the fractional-
order total variation differential equation at the range mutation point. In this paper, the
spatial proximity and pixel value similarity between pixels are introduced to optimize the
fractional-order differential operator, reduce the impact of noise on the target echo data,
and realize the accurate denoising of a range image with a low SBR. The flow diagram of
the algorithm in this paper is shown in Figure 1.
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Figure 1. Algorithm principle diagram.

2.1. Range-Image Extraction

In order to extract a GM-APD range image, the maximum likelihood estimation
approach is utilized in this research to estimate the range parameters pixel by pixel. The
method is divided into three steps. The first step is to build the impulse response function
of the GM-APD, the second step is to build the logarithmic likelihood function related
to the arrival time of the signal photons, and the third step is to search and solve for the
likelihood function within the whole range gate to obtain the target range information.

According to [22], the output model of a pulsed laser is as follows:

f (t) =
t

τ2 exp(−(t/τ)), (1)

where f (t) represents the laser pulse waveform, and τ represents the laser pulse width.
Without considering the noise photons caused by background light and the detector

dark count rate, the expression of the impulse response function (IRF) of GM-APD is as
follows:

f (t0|t) =
t − t0

τ2 exp(−((t − t0)/τ)), (2)

where f (t0|t) is the impulse response function of GM-APD, and t0 is the flight time of the
target photon to be estimated. The relationship between the flight time of the target photon
and the target range is:

z =
ct0

2
, (3)

where z is the target range, and c is the speed of light.
In a single pixel, the logarithmic likelihood function of a depth zi,j related to the photon

time of flight ti,j is:

LZ

(
zi,j;
{

ti,j
}

ti,j∈Ui,j

)
= ∑ti,j∈Ui,j

log
[

f
(

ti,j −
2zi,j

c

)]
, (4)

where Ui,j is the set of flight times within a single pixel gate.

516



Fractal Fract. 2023, 7, 674

In the range parameter z, which ranges from the time interval at the beginning of the
gating to bins − 1 time interval (bins = T

Δ , where T is the gating length, and Δ is the mini-
mum time resolution of the count), the last time interval is discarded because the number
of untriggered times accumulates at the last time interval. At this time, the corresponding
likelihood function under different parameters can be obtained, and the estimated echo
position zpos can be obtained by determining the parameter value corresponding to the
maximum value of the likelihood function.

zpos = argmaxz(LZ). (5)

The above process is repeated, and maximum likelihood estimation is carried out pixel
by pixel to extract the 3D range image g.

2.2. Definition of Fractional Differential Operator and Its Effect on Image Signals

Let the function f (x) be defined by the interval [a, b], and n − 1 ≤ v < n, where n is a
positive integer, then [23]

GL
v Dv

x f (x) = lim
h→0

∑[ x−v
h ]

k=0 (−1)k
(

v
k

)
f (x − kh), v > 0, (6)

where
(

v
k

)
= Γ(v+1)

Γ(k+1)Γ(v−k+1) , [·] represents the integer operation, and h represents the

differential step size.
In order to define the discrete derivative, according to the G-L definition, on the

interval [a, t], use the same partition h = 1 , so m =
[ t−a

h
]
= [t − a], and the discrete form is

expressed as:

Dv
t (t) = f (t) + (−1)−1·(v)· f (t − 1) + (−1)2·

(
v(v − 1)

2

)
· f (t − 2) + · · ·+ (−1)j· Γ(v + 1)

Γ(j + 1)Γ(v − j + 1)
· f (t − j). (7)

Extend the above concepts to the functions of the two variables

Dv
x(x, y) = lim

N→∞

[
∑N−1

j=0 (−1)i· Γ(v + 1)
Γ(i + 1)Γ(v − i + 1)

· f (x − i, y)
]

, (8)

Dv
y(x, y) = lim

N→∞

[
∑N−1

j=0 (−1)j· Γ(v + 1)
Γ(j + 1)Γ(v − j + 1)

· f (x, y − j)
]

, (9)

N is the number of terms of the polynomial. From Equations (3) and (4), the fractional
differential coefficient wv

m of order v can be written:

wv
m = (−1)m· Γ(v + 1)

Γ(m + 1)Γ(v − m + 1)
. (10)

The edge information and detailed information of the range image are generally
sub-high-frequency or high-frequency information, and the smooth region is generally
low-frequency information. Next, the influence of the frequency response of the fractional
differential operator on the range image is analyzed.

Given that the general real number v ∈ R+ is a derivative of f (t) ∈ L2(R), it can be
expressed as:

Dv f (t) =
dv f (t)

dtv . (11)

According to the Fourier formula, the form of Dv f (t) in the Fourier transform domain
can be obtained via:

Dv f (t) =
∫

R
(i2πwr)

vF(wr)expi2πwrtdwr. (12)
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On the basis of signal processing, the form of the derivative of the signal in the
frequency domain is obtained. The Fourier transformation process is defined as follows:

DvF(wr) = (iwr)
vF(wr), (13)

Dv f (t) FT⇔ D̂v f (wr) = (iwr)
v f̂ (wr) = |wr|vexp[iθv(wr)] f̂ (wr) = |wr|vexp

[
vπi

2
sgn(wr)

]
f̂ (wr), (14)

where Dv represents the differential operator of order v, wr represents the angular frequency,

(iwr)
v = |wr|vexp

[
vπi

2 sgn(wr)
]

is a filter, and sgn(·) is a sign function.
Amplitude–frequency characteristic curves of different orders are drawn [24], as

shown in Figure 2.

Figure 2. Fractional differential magnitude–frequency response.

Generally, the region of w > 1 is the edge and detailed part of the image. Figure 2
illustrates how the fractional differential operator contributes to the enhancement of the
signal in the high-frequency region, and with the increase in the fractional order, the
non-linear enhancement ability of the fractional differential operator is stronger; so, the
fractional differential can enhance the edge information of the image. In addition, the
region of 0 < w < 1 is generally the smooth region of the image. The fractional order has
a weaker weakening effect on the image than the integer order, so the amplitude of the
smooth region can be kept unchanged, which indicates that fractional-order differentiation
can protect the information of the smooth region from the influence of the filter while
denoising.

In the GM-APD lidar range image, the edge and noise manifest as locally discontin-
uous points, with adjacent pixels corresponding to noise and edge exhibiting significant
variations in depth values, representing high-frequency components of the image. The
edges possess order and directionality, displaying a strong correlation with neighboring
pixels, whereas the noise signal is characterized by randomness and lacks correlation with
nearby pixels. Generally, low-frequency regions in the image correspond to smooth areas of
the target object. In signal and image processing, leveraging the correlation among adjacent
pixels can help mitigate the impact of noise. By constructing a differential operator based
on this concept, it becomes possible to effectively handle image noise while preserving edge
details. Optimal results can be achieved by adjusting the order of fractional differentiation,
thereby enhancing the performance and quality of GM-APD lidar range images.
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2.3. FOTV Denoising Model

The FOTV denoising model is [25] represented as:

min
u∈BV

‖Dvu‖1 +
λ

2
‖u − g‖2

2, (15)

where u is the range image to be denoised, and g is the input range image containing noise⎧⎪⎨⎪⎩
‖Dvu‖1 = ∑i,j

∣∣∣(Dvu)i,j

∣∣∣,∣∣∣(Dvu)i,j

∣∣∣ = √((Dv
1u
)

i,j

)2
+
((

Dv
2u
)

i,j

)2
,

(16)

where ‖Dvu‖1 is the fractional-order variational regular term (FOTV) and (Dvu)i,j is the
fractional-order differential operator.

According to the G-L definition, the discrete fractional differential operator is defined
as follows:

(Dvu)i,j =
(
(Dv

1u)i,j, (Dv
2u)i,j

)
, i = 1, 2, . . . , N , j = 1, 2, . . . , N, (17)

Here,

Dv
1(x, y) = ∑N−1

j=0 (−1)i· Γ(v + 1)
Γ(i + 1)Γ(v − i + 1)

· f (x − i, y), (18)

Dv
2(x, y) = ∑N−1

j=0 (−1)j· Γ(v + 1)
Γ(j + 1)Γ(v − j + 1)

· f (x, y − j), (19)

where N ≥ 3 is an integer and Γ represents the Gamma function. Operator D can be
realized in the following form:

(Dv
1u)(; , j) = B × u(; , j), 1 ≤ j ≤ N, (20)

Here, the matrix is

B =

⎡⎢⎢⎢⎣
wv

0 0 · · · 0
wv

1 wv
0 · · · 0

...
...

. . .
...

wv
m wv

m−1 · · · wv
0

⎤⎥⎥⎥⎦, (21)

where wv
k = (−1)k Γ(v+1)

Γ(k+1)Γ(v−k+1) , and Dv
2 is the same.

When the order v is not an integer, B is a lower triangular matrix. As can be seen
from the above equation, the fractional derivative of the k point is calculated by using all
of the points preceding k. Obviously, the fractional derivative is regarded as a worldwide
operator.

2.4. Solution to the FOTV Denoising Model

The solution to the FOTV denoising model usually optimizes the objective function by
using the iterative algorithm, among which the split Bregman algorithm is an effective way
to solve for the TV regularization model containing an L1 norm. The convex optimization
model with L1 norm regularization makes it difficult to obtain the optimal solution using
traditional algorithms. In the calculation process of the split Bregman algorithm, the
regularization parameter is fixed as a constant so as to reduce the amount of memory, thus
improving the calculation accuracy and convergence speed [26–28].

By introducing the auxiliary variable z, the original denoising problem is transformed
into:

min
u,z

(
‖ z‖ 1 +

λ

2
‖u − g‖ 2

2

)
, s.t. Dvu = z, (22)
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z and λ
2 ‖u − g‖ 2

2 are convex functions and differentiable. As a result, the constraint
problem can be recast as an unconstrained optimization problem.

min
u,z

(
‖ z‖ 1 +

λ

2
‖u − g‖ 2

2 +
γ

2
‖z − Dvu‖ 2

2

)
, (23)

where γ is the penalty function. Since there are two variables, an auxiliary variable b is
introduced to fix the problem.⎧⎪⎨⎪⎩

(
uk+1, zk+1

)
= argmin

u,z

(
‖ z‖ 1 +

λ
2 ‖u − g‖ 2

2 +
γ
2

∥∥∥z−Dvu − bk
∥∥∥ 2

2

)
,

bk+1 = bk + γλ
(

Dvuk+1 − zk+1
)

.
(24)

Since the sub-problem needs to solve for both u and z at the same time, the calculation
is complicated, which can be decomposed into:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u

(
λ
2 ‖u − g‖ 2

2 +
γ
2

∥∥∥zk −Dvu − bk
∥∥∥ 2

2

)
,

zk+1 = argmin
z

(
‖ z‖ 1 +

γ
2

∥∥∥z−Dvuk+1 − bk
∥∥∥ 2

2

)
,

bk+1 = bk + γλ
(

Dvuk+1 − zk+1
)

.

(25)

If ‖uk+1−uk‖
‖uk‖ ≥ ε, the iteration ends, and the range image after denoising is output as

u = uk+1; otherwise, the iteration continues until convergence.
The pseudo-code of the range-image denoising algorithm based on FOTV is shown in

Algorithm 1.

Algorithm 1 Range-Image Denoising Algorithm Based on G-L Fractional-Order Total Variation

1. Initialize the system: k = 0, u0 = g, z0 = 0, b0 = 0
2. The value of the given parameter: γ, λ

3. Calculation Dv

4. For k = 0, 1, 2, . . . :

uk+1 �argmin
u

(
λ
2 ‖u − g‖ 2

2 +
γ
2

∥∥∥zk −Dvu − bk
∥∥∥ 2

2

)
zk+1 �argmin

z

(
‖ z‖ 1 +

γ
2

∥∥∥z−Dvuk+1 − bk
∥∥∥ 2

2

)
bk+1 = bk + γλ

(
Dvuk+1 − zk+1

)
If ‖uk+1−uk‖

‖uk‖ ≥ ε

u = uk+1
Else

k = k + 1
To step 4

End
End

2.5. Fractional-Order Total Variational Range-Image Denoising Algorithm Based on Spatial Kernel
Function and Range Kernel Function

In this paper, a novel fractional-order range-image denoising algorithm is proposed.
This algorithm introduces range kernel functions and spatial kernel functions to capture
the relationships between pixel values and the spatial distribution of pixels, optimizing the
fractional-order operator and enabling end-to-end range-image denoising.

Due to the fact that the target usually converges at multiple pixels on the detector focal
plane, the accuracy of denoising can be improved by leading a fractional-order operator to
establish a relationship between the pixels. However, when the target range image contains
a large amount of noise, establishing the connection with any other pixel will also quickly

520



Fractal Fract. 2023, 7, 674

boost the current pixel’s susceptibility to noise. By using the variational method, the partial
differential Equation (15) is derived as follows:

−Dv·
(

Dvu
|Dvu|

)
+ λ(u − g) = 0, (26)

where Dv is the fractional difference operator, and 1
|Dvu| is the diffusion coefficient. As can

be seen from the above equation, for noise points with lost information and abnormal range
values, the diffusion coefficient is small due to the large value of |Dvu|, and the FOTV
denoising algorithm cannot remove the noise at this time. Therefore, in order to suppress
the anomalous noise in the range image, this paper introduces a spatial kernel function
to obtain the spatial relationship between pixels, introduces a range kernel function to
obtain the pixel value similarity relationship between pixels, and reconstructs the fractional
differential operator [29].

The inclusion of fractional differential operators expands the penalty term to infinite
dimensions. Therefore, it is necessary for the spatial kernel function and range kernel
function introduced in this paper to correspond with the dimension of fractional differential
operators Dv

1 and Dv
2.

The spatial kernel function describes the spatial range between the neighborhood pixel
and the current pixel, which is usually an attenuation function for the spatial range. In this
paper, a Gaussian function is selected as its attenuation function. The weights of the spatial
kernel function at (x, y) are extended to an infinite number of dimensions in both the x and
y directions, respectively.

The weight of the spatial kernel function ws1(x, y) at (x, y) in the x direction is defined
as follows:

ws1(x, y) = exp

(
−|i − x|2

2σ2
s

)
, i = 1, 2, · · · , N, (27)

The weight of the spatial kernel function ws2(x, y) at (x, y) in the y direction is defined
as follows:

ws2(x, y) = exp

(
−|j − y|2

2σ2
s

)
, j = 1, 2, · · · , N, (28)

where σs is the variance in the spatial kernel function. N is the total number of pixels in the
x or y direction of the range image.

The range kernel function describes the degree of correlation between pixel values
of other pixels in the image and the current pixel. In this paper, a Gaussian function is
selected to represent the similarity relationship between pixel values. The weights of the
range kernel function at (x, y) are extended to an infinite number of dimensions in both the
x and y directions, respectively.

The weight of the range kernel function wr1(x, y) at (x, y) in the x direction is defined
as follows.

wr1(x, y) = exp

(
− (g(i, y)− g(x, y))2

2σ2
r

)
, i = 1, 2, · · · , N, (29)

The weight of range kernel function wr2(x, y) at (x, y) in the y direction is defined as
follows.

wr2(x, y) = exp

(
− (g(x, j)− g(x, y))2

2σ2
r

)
, j = 1, 2, · · · , N, (30)

where σr is the variance in the spatial kernel function. N is the total number of pixels in the
x or y direction of the range image.

Due to the limited detection field of GM-APD LiDAR systems compared to target
size, resulting images exhibit high spatial sampling of targets and contain rich spatial
distribution information, enabling the depiction of edge and detail features. This paper
introduces a value kernel function to accurately capture correlations between all image

521



Fractal Fract. 2023, 7, 674

pixels for improved target spatial distribution analysis. In addition, as the global total
variation filtering method may excessively smooth the range image and overlook its details,
a spatial kernel function is introduced to utilize the spatial relationship between pixels and
preserve these details. Moreover, for signal points triggered by noise in the range image,
the spatial kernel function can restrict the use of surrounding pixels that affect such points
to prevent excessive noise signals from affecting them.

The inclusion of fractional differential operators expands the penalty term to infinite
dimensions. By combining Equations (18) and (19), the values of Equations (27)–(30) range
from 0 to 1, exhibiting a consistent order of magnitude and allowing for multiplication; the
new fractional differential operator is:

Dv
1′u(x, y) = ∑N−1

i=0 (−1)iCv
i ux−i,yws1(x−i,y)wr1(x−i,y)

∑x=M
x=1 ∑N−1

i=0 (−1)iCv
i ux−i,yws1(x−i,y)wr1(x−i,y)

,

Dv
2′u(x, y) = ∑N−1

i=0 (−1)iCv
i ux,y−iws2(x,y−i)wr2(x,y−i)

∑
y=M
y=1 ∑N−1

i=0 (−1)iCv
i ux,y−iws2(x,y−i)wr2(x,y−i)

,
(31)

where M is the number of rows (columns) of the GM-APD focal plane array.
If w′v

i = (−1)iCv
i ws(x − 1, y)wr(x − k, y), Equation (31) can be written as follows:

(Δv
1u)′ ≈ u·B′, Δv

2u ≈ B′T ·u, (32)

The form of matrix B′ is as follows:

B′ =

⎡⎢⎢⎢⎣
w′v

0 0 · · · 0
w′v

1 w′v
0 · · · 0

...
...

. . .
...

w′v
m w′v

m−1 · · · w′v
0

⎤⎥⎥⎥⎦. (33)

Multiplying the spatial kernel function with the range kernel function is a compromise
that combines the spatial proximity and pixel value similarity of an image. It simulta-
neously considers spatial information and pixel value similarity, achieving the goal of
edge-preserving denoising. The optimization method proposed in this paper takes into
account the spatial distribution relationship, which allows for better noise filtering in
the image.

In the first step, the median filtering algorithm is used for preprocessing; in the second
step, the fractional difference operator combined with the spatial kernel function and range
kernel function is constructed; in the third step, the fractional-order total variation model is
based on the spatial kernel function and range kernel function; and in the fourth step, the
split Bregman algorithm is used to solve the problem. The pseudo-code of the range-image
denoising algorithm is shown in Algorithm 2.
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Algorithm 2 FOTV Based on Spatial Kernel Function and Range Kernel Function

1. Median filtering: g′ = med f ilt(g, [3, 3])
2. Initialization: k = 0, u0 = g, z0 = 0, b0 = 0
3. The value of the given parameter: γ, μ, σs, σr
4. Calculation ws, wr, B′
5. For k = 0, 1, 2, . . . :

uk+1 �argmin
u

(
λ
2 ‖u − g‖ 2

2 +
γ
2

∥∥∥zk −∇B′u − bk
∥∥∥ 2

2

)
zk+1 �argmin

z

(
‖ z‖ 1 +

γ
2

∥∥∥z−∇B′uk+1 − bk
∥∥∥ 2

2

)
bk+1 = bk + γλ

(
∇B′uk+1 − zk+1

)
If ‖uk+1−uk‖

‖uk‖ ≥ ε

u = uk+1
Else

k = k + 1
To step 5

End
End

3. Evaluation Index and Simulation Verification

3.1. Evaluation Index

K, the target recovering degree, was adopted in this study [30] as an objective evalua-
tion indicator. The PSNR was used to evaluate the denoising performance of the algorithm
cited in this paper and the range image of the algorithm proposed. K is shown as follows:

f (x) =
{

1, |d − ds| < db,
0, |d − ds| ≥ db,

(34)

K =
m
n

, (35)

where d is the target reconstruction range value, ds is the target standard range value, db is
the target allowable error range value, n is the total pixel number of the target, and m is the
pixel number of the target acceptable error range value. The K value represents the degree
of target restoration.

The peak signal-to-noise ratio is as follows:

PSNR = 10log10

⎛⎜⎝ 2552 × M × N

∑i,j

(
(u)i,j − ( f )i,j

)2

⎞⎟⎠, (36)

where f is the observation range image, u is the range image after noise removal, and M
and N are the number of rows and columns in the image, respectively.

3.2. Simulation Analysis

The Monte Carlo method was adopted to simulate and verify the GM-APD lidar
range-image denoising performance of the algorithm proposed. The range image of the
simulated target is shown in Figure 3. The laser single-pulse energy was set as 1.25 × 10−9 J,
the laser wavelength as 1064 nm, the laser pulse width as 5 ns, the detector array as 64 × 64,
the detector time resolution as 1 ns, the round-trip atmospheric attenuation coefficient as
0.8 × 0.8, the target diffuse reflection coefficient as 0.3, the receiving transmittance as 90%,
and the transmitting transmittance as 80%. The range gate was set as 200 m, and the target
was 60 m inside the range gate. The TV, FOTV, and BF algorithms, as well as the method
proposed in this research, were utilized to process the simulation range image utilizing
various SBRs and various frames. The simulation experiment was performed 1000 times in
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each example, and the mean value was computed to assess the outcomes using the target
reduction degree and peak signal-to-noise ratio [31].

Figure 3. Simulated vehicle range image.

3.2.1. Fractional-Order Selection

To investigate how the fractional order affects the denoising effectiveness of low SBR
simulation data, the fractional orders were set to 0.1, 0.3, 0.5, 0.7, 1, 1.2, 1.5, 1.8, and 2, and
20 statistical frames were needed to obtain an SBR equal to 0.3. The Monte Carlo repeated
experiments were conducted 1000 times. The range-image quality was assessed using the
average values of the target reduction degrees and PSNRs. The valuation indices K and
PSNR of different orders are shown in Table 1.

Table 1. Evaluation indices K and PSNR of different orders.

Order 0.1 0.3 0.5 0.7 0.9 1 1.2 1.5 1.8 2

K 0.6379 0.6592 0.6607 0.6738 0.6666 0.6700 0.6549 0.6527 0.6431 0.6388
PSNR 11.7418 11.9555 11.9501 12.063 11.9396 11.9394 11.4947 11.5250 11.5547 11.5779

The data in Table 1 indicates that when the fractional order is 0.7 with a low SBR, the
values of K and PSNR are the largest, and the denoising effect is the best.

3.2.2. Simulation Analysis of Range Images with Different SBRs under 20 Frames

In order to verify the denoising performance of the algorithm proposed in this paper
with the same frame number as that used in Section 3.2.1 but with different SBRs, the SBRs
were set to 0.3, 0.4, 0.5, 0.6, and 0.7. The K and PSNR were used to assess the denoising
performance. The single Monte Carlo simulation results of 20 frames with different SBRs
are shown in Figure 4.

As can be seen in Figure 4, when the SBR is equal to 0.3, there is a large amount of
noise at the target position in the range image when processed by the TV, FOTV, and BF
algorithms, and the integrity and contour information of the target is poor. The algorithm
proposed in this paper filters out most of the noise at the target position and can roughly
identify the contour information of the target, but the interior of the target is incomplete.
When the SBR is equal to 0.4, the range image processed by the TV, FOTV, and BF algorithms
has a complete target that is roughly recovered, but there is still noise, and the smoothness
of the range image is poor. This algorithm not only recovers the complete target precisely
compared with the others but also shows few differences with the standard image and has
a good denoising effect. When the SBR = 0.8, the range image target processed by the TV,
FOTV, and BF algorithms is complete and smooth, but there is still a small amount of noise.
This algorithm still ensures a good denoising effect.
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Figure 4. Denoising results of different signal-to-background ratio range images in 20 frames.

In order to verify the stability of the denoising performance of the algorithm proposed
with the same frame number and different SBRs, Monte Carlo experiments were conducted
1000 times on the TV, FOTV, and BF algorithms alongside the algorithm proposed in this
paper. The K, PSNR, and SSIM were used to evaluate the range image processed by each
algorithm. The average values of each index are shown in Table 2.
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Table 2. Denoising results of different signal-to-background ratios at frame 20.

SBRS TV FOTV BF Proposed

SBR = 0.3
K 0.5589 K 0.4757 K 0.6154 K 0.6738

PSNR 11.3933 PSNR 11.3409 PSNR 10.7250 PSNR 12.0630

SBR = 0.4
K 0.8342 K 0.7958 K 0.8405 K 0.9549

PSNR 15.5224 PSNR 15.4328 PSNR 14.5584 PSNR 20.6488

SBR = 0.5
K 0.9350 K 0.9199 K 0.9361 K 0.9865

PSNR 19.6460 PSNR 19.5210 PSNR 18.5497 PSNR 26.0541

SBR = 0.6
K 0.9747 K 0.9651 K 0.9750 K 0.9929

PSNR 23.8157 PSNR 23.6289 PSNR 22.6735 PSNR 29.0068

SBR = 0.7
K 0.9900 K 0.9822 K 0.9902 K 0.9947

PSNR 28.0463 PSNR 27.6851 PSNR 26.8942 PSNR 30.5839

According to the above data, K and PSNR curves under different signal-to-background
ratios under 20 frames are drawn, as shown in Figure 5.

Figure 5. K of different SBRs when the number of frames is 20.

As is discernible from Figures 5 and 6, the increase in the SBR, K, and PSNR of each
algorithm is improved to varying degrees, and the K and PSNR of the algorithm proposed
are superior to those of the comparison algorithms in regard to the SBRs. When the SBR
is 0.4, the K value of the TV, FOTV, and BF algorithms is less than 85%, and the PSNR is
less than 16, while the target K value of the algorithm in this paper reaches 95.49%, and the
PSNR value reaches 20.6488. It is proved that the algorithm proposed has good denoising
performance. When the SBR is 0.5, the K value of the algorithm proposed reaches 0.9865,
which is at least 5.11% higher than that of the other algorithms, and the PSNR value reaches
26.0541, which is at least 24.6% higher than that of the other algorithms.

The fractional-order derivative is a global operator with long memory, which distin-
guishes it from integer-order derivatives. When the depth image of a target contains a
large amount of noise, establishing connections between pixels can increase the influence
of noise on the current pixel. TV’s results are better than FOTV’s results.
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Figure 6. PSNR of different SBRs when the number of frames is 20.

3.2.3. Simulation Analysis of Range Image with Different Frame Numbers When SBR Is 0.5

In order to verify the influence of different statistical frames on the denoising per-
formance of the algorithm proposed, the simulation data from when the SBR = 0.5 were
selected to discuss the processing results of the TV, FOTV, and BF algorithms and the
algorithm proposed in this paper when the frame numbers were 20, 25, 30, 35, 40, 45, and
50. The single Monte Carlo simulation results when the SBR is equal to 0.5 with different
frame numbers are shown in Table 3.

Table 3. Denoising results of different frames when SBR = 0.5.

Frames TV FOTV BF Proposed

20
K 0.5589 K 0.4757 K 0.6154 K 0.6738

PSNR 11.3933 PSNR 11.3409 PSNR 10.7250 PSNR 12.0630

25
K 0.6648 K 0.5867 K 0.6958 K 0.8198

PSNR 12.5166 PSNR 12.4527 PSNR 11.7458 PSNR 14.6361

30
K 0.7469 K 0.6841 K 0.7634 K 0.9018

PSNR 13.7025 PSNR 13.6282 PSNR 12.8409 PSNR 17.2648

35
K 0.8067 K 0.7586 K 0.8157 K 0.9439

PSNR 14.8628 PSNR 14.7775 PSNR 13.9279 PSNR 19.6990

40
K 0.8525 K 0.8179 K 0.8576 K 0.9645

PSNR 16.0490 PSNR 15.9514 PSNR 15.0531 PSNR 21.6841

45
K 0.8864 K 0.8600 K 0.8897 K 0.9760

PSNR 17.2072 PSNR 17.1003 PSNR 16.1692 PSNR 23.3974

50
K 0.9126 K 0.8921 K 0.9148 K 0.9827

PSNR 18.3680 PSNR 18.2520 PSNR 17.2977 PSNR 24.9162

From Figures 7 and 8, it can be seen that the K and PSNRs of each algorithm are
improved to varying degrees with the increase in the statistical frame number. When the
statistical frame number was 25, the K of the TV, FOTV, and BF algorithms did not exceed
70%. In contrast, the K of the algorithm proposed reached 0.8198, which indicates a better
denoising of the range image. When the quantity of image frames is 35, compared with the
other comparison algorithms, the K and PSNR of the algorithm proposed are improved by
at least 13.58% and 24.55%.
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Figure 7. K of different frames when SBR = 0.5.

Figure 8. PSNR of different frames when SBR = 0.5.

4. Experimental Verification

4.1. Experimental System Construction

A 64 × 64 array GM-APD was selected as the detector of the system when building
the laser radar system with a separate transmitter and receiver, as shown in Figure 9. The
transmit–receive field of view was 0.9◦ × 0.9◦, and a 1064 nm fiber laser was selected as the
laser source, of which the pulse laser output energy was set to 110 uJ with a 10 ns pulse
width and 15 kHz repetition frequency.
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Figure 9. System diagram.

4.2. Experimental Data Processing and Analysis

Imaging experiments were conducted on residential buildings with a range of 446.1 m
to 463.2 m under strong sunlight to verify the denoising performance of the algorithm
proposed. The scenario of the target area is shown in Figure 10. In order to obtain the
ideal range image, the same target region was detected and imaged by the peak-picking
method at night. A total of 5000 frames were used for the multi-frame statistics. The image
obtained was taken as the ideal range image of the target, as shown in Figure 11.

Figure 10. Target scene.

Figure 11. Ideal target range image.

In the daytime imaging experiment, the SBR was equal to 0.8. In the case of 100 frames,
the TV denoising, FOTV denoising, and BF denoising algorithms, as well as the algorithm
proposed in this paper, were used to denoise the range image obtained by the maximum
likelihood estimation method. Figures 12–15 show the result after denoising.
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Figure 12. TV.

Figure 13. FOTV.

Figure 14. BF.
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Figure 15. Proposed algorithm.

The denoising algorithm designed in this paper can denoise the target range image
better than the contrast method and produce a smoother target region. Various indicators
were used to evaluate the reconstructed range image quality, the data results are shown in
Table 4.

Table 4. Range image reconstruction results.

Evaluation
Metric

TV Denoising
FOTV

Denoising
BF Denoising Proposed

K 0.8270 0.7828 0.8885 0.9283
PSNR 4.6869 4.6866 4.6871 4.6969

The denoising method proposed in this paper improves the target restoration degree
by at least 4.29%, and the PSNR is 4.6969, both of which are better than those of the
comparison algorithms. For GM-APD range images, the method provided in this paper’s
denoising performance has been successfully verified as good.

In order to verify the advancement of our algorithm, our algorithm is compared
with [21] in the case of 100 frames, and the SBR is 0.8. Figure 16 shows the denoised results.
The comparative data between [21] and the algorithm proposed are presented in Table 5.

Figure 16. Algorithm [21].
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Table 5. Range image reconstruction results.

Evaluation Metric [21] Proposed

K 0.8965 0.9283
PSNR 4.4421 4.6969

Both K and PSNR of the proposed algorithm are superior to the comparison algorithm,
which can verify the advancement of the proposed algorithm.

5. Discussion

In order to achieve the denoising of GM-APD lidar range images with a low SBR, a
fractional-order total variational GM-APD lidar range-image denoising method based on a
spatial kernel function and range kernel function was proposed. The simulation results
show that when the SBR is equal to 0.4, and the statistical frame number is 20, compared
with BF denoising, FOTV denoising, and TV denoising, the K and PSNR of the algorithm
proposed here are improved by at least 11.98% and 24.83%, respectively. The experimental
results show that when the SBR is 0.8 and the statistical frame number is 100, the K of
the algorithm proposed increases by at least 0.2% compared with that obtained via BF
denoising, FOTV denoising, and TV denoising. It can be seen that the denoising method
proposed in this paper has a good image denoising effect under the condition of a low SBR.
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