
mdpi.com/journal/systems

Special Issue Reprint

Advancements in the 
Practical Applications  
of Agents, Multi-Agent 
Systems and Simulating 
Complex Systems

Edited by 
Philippe Mathieu, Juan M. Corchado, Alfonso González-Briones  
and Fernando De la Prieta Pintado



Advancements in the Practical
Applications of Agents, Multi-Agent
Systems and Simulating
Complex Systems





Advancements in the Practical
Applications of Agents, Multi-Agent
Systems and Simulating
Complex Systems

Editors

Philippe Mathieu

Juan M. Corchado

Alfonso González-Briones
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Preface

The relationship between individuality and aggregation is an important topic in complex

systems science, as both aspects are facets of emergence. This problem has generally been addressed

by adopting a classical individual- versus population-level approach in which boundaries emerge in

segregated communities. More specifically, boundaries delimiting and interconnecting aggregates are

at play. It is, therefore, crucial to define the properties of complex systems correctly, such as generic

agent-based models, with which to simulate communities situated in grid- and scale-free network

environments. To do this, complexities may be resolved through simulation, modeling and analysis

techniques, which help provide confidence regarding the behavior of such systems, especially of

those operating in dynamic environments or under unexpected constraints. Moreover, modeling and

simulation help reduce the risks and costs involved in the design and development of validation tests.

Understanding the emergent behaviors of complex systems, and ensuring their correct

performance in different environments, will allow for their evolution, as well as that of the

methodologies integrated in them.

Although various methodologies are being used for the development of Complex Systems

Simulation, one of the most widely adopted approaches is based on the agent paradigm, which

may be used to create simulations for dynamic continuous time systems and discrete event systems.

Agent-based systems may be applied in all sorts of areas, including home automation, industry, smart

cities and automotive sectors.

This Special Issue invited researchers to submit original, quality studies regarding the domain

of Complex Systems Simulation and urged them to address its main sub-disciplines.

Philippe Mathieu, Juan M. Corchado, Alfonso González-Briones, and Fernando De la Prieta

Pintado

Editors
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Introduction

This Editorial summarizes the content of the Special Issue entitled Advancements in
The Practical Applications of Agents, Multi-Agent Systems and Simulating Complex Systems,
published in the “Complex Systems” section of Systems (ISSN 2079-8954).

Complex systems have played a fundamental role in the simulation, modeling, and
analysis of information in dynamic environments and under unexpected constraints [1–3].
These agent-based systems have evolved significantly throughout history, providing in-
creasingly sophisticated solutions to address the complex challenges encountered across
multiple fields. The history of complex systems dates back to early research in systems
theory and cybernetics in the 1940s [4]. These disciplines laid the foundation for under-
standing and addressing problems involving complex and emergent interactions between
multiple components. As computer technology advanced, the first agent-based modeling
and simulation approaches emerged, allowing complex systems to be represented through
the interaction of multiple autonomous entities [5,6].

At the heart of complex systems are agents, which can be individuals, organizations,
robots, or any entity with the ability to make decisions and respond to its environment.
These agents interact with each other and with their environment, generating emergent
patterns and collective behaviors that cannot be attributed solely to the individual char-
acteristics of the agents. Agent-based systems technology has been advancing rapidly,
enabling greater sophistication in the representation and simulation of complex systems [7].
The importance of complex systems lies in their ability to address real-world problems in a
wide range of disciplines, including economics, biology, ecology, logistics, and supply chain
management, among others. These systems can model and simulate complex phenomena
such as crowd behavior, traffic flow, the spread of disease, climate change, and the evolution
of ecosystems [8–10].

The simulation and modeling of complex systems offer several significant advantages.
First, they enable the evaluation of different scenarios and strategies without incurring
the costs and risks associated with real-world implementation. This is especially valuable
when dealing with unpredictable or highly complex environments wherein it is difficult to
obtain empirical data or conduct controlled experiments [11]. Complex systems provide
a deeper understanding of the underlying mechanisms and interactions that shape the
system being studied. This helps to identify emerging patterns, hotspots, and non-intuitive
behaviors, which in turn can guide decision-making and strategic planning. By better
understanding complex systems, it is possible to reduce the risks and costs associated with
the design and development of real-world validation tests [12–14].

Systems 2023, 11, 525. https://doi.org/10.3390/systems11100525 https://www.mdpi.com/journal/systems
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An Overview of Published Articles

This Special Issue consists of fifteen practical papers covering key topics in the field
of multi-agent systems and complex systems. These articles, presented during the 20th
International Conference on Practical Applications of Agents and Multi-Agent Systems
(PAAMS’22) (https://www.paams.net, 6 September 2023), are noteworthy for their highly
innovative results and trends [15]. The conference was held in L’Aquila, Italy, and it was
organized by the University of L’Aquila (Italy), Umeå University (Sweden), the University
of Lille (France), and the University of Salamanca (Spain)

The first three articles address the relevance of using multi-agent systems for the
analysis of information. Such an analysis is carried out through the application of natural
language processing techniques. These articles aimed to understand public opinion, detect
false information, or identify accounts that provide misleading information. Guzmán
Rincon et al. (Contribution 1) present a mathematical model to simulate scenarios of
disinformation propagation in social networks caused by bots, trolls, and others. The
authors carried out simulations related to the increase in the rate of the activation and
deactivation of disinformation agents and the disinformation caused by this mechanism. Ye
et al. (Contribution 2) explored the specific attributes of individuals and opinion network
nodes by incorporating parameters such as individual conformity and the strength of
individual online relationships for the purpose of identifying an online opinion polarization
of a group. Through simulations, the authors found that individual conformity and the
difference in environmental attitude greatly influence the trajectory of opinion polarization
events. Similarly, the analysis of shared beliefs, opinions, and views in groups is a topic
of great interest that has been debated in sociology, political science, communication, and
organizational science. Koponen (Contribution 3) performed an analysis of consensus
group formation through an agent-based model. Agents’ views were described as complex,
and they have extensive structures, similar to semantic networks, i.e., belief networks. In the
agent-based model presented by the author, the agents’ interactions and their participation
in the sharing of their views depend on the similarity of the agents’ belief webs; the higher
the similarity, the more likely the interaction and the sharing of webs of belief elements.

In the areas of economics, finance, and e-commerce, complex systems have also had
a major impact. Zhao et al. (Contribution 4) present an agent-based model created using
empirical data from a number of cities as sample data to simulate the evolutionary trajec-
tory of eco-protection and high-quality development under different policy scenarios, such
as green innovation, ecological constraints on the environment, ecological compensation,
etc. The model shows how, depending on the existing development model, the economic
development of cities will be subject to different degrees of ecological and resource con-
straints and that different policy scenarios significantly affect the evolutionary trends of
economic development. Other authors, such as Bae et al. (Contribution 5), introduce
a formalism or multi-resolution translational discrete event system specification (MRT-
DEVS) intended to facilitate the implementation of simulations and reduce simulation
execution costs. MRT-DEVS embeds state and event translation functions into the model’s
specifications so that it enables multi-resolution modeling with less complex mechanisms
in terms of operations. Wang et al. (Contribution 6) studied the product encroachment
behavior of composite e-commerce platforms with double-differentiated multi-product
competition and constructed a game model of product innovation by an independent seller
and product encroachment by the platform owner. Using multi-agent simulation, the au-
thors simulated the bounded rational decision-making and interaction process of multiple
agents in multiple periods and analyzed the influence of the main parameters. Moreover,
Castañón-Puga et al. (Contribution 7) illustrate how earned value management (EVM) is
an efficient method for measuring a project’s performance by comparing actual progress
against planned activities, thus facilitating the formulation of more accurate predicted
estimations using an agent-based simulation model.

Researchers have also focused on applying complex system algorithms to facilitate
problem solving in the field of transport. Karalakou et al. (Contribution 8) propose the

2
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design of autonomous vehicles using deep reinforcement learning and the combination
between various reward components that are able to gradually learn effective policies
in environments with different levels of difficulty, especially when all the proposed re-
ward components are appropriately combined. Spanoudakis et al. (Contribution 9) have
designed an open system for the V2G/G2V power transfer problem domain using an
agent-based architecture involving flexible microservices that are interconnected via an
IoT platform. Gómez Vilchez et al. (Contribution 10) describe a simulation model that
facilitates the analysis of potential emission penalties in the broader context of the financial
position of original equipment manufacturers. Through their simulation, the authors aim
to understand the channels through which money flows (e.g., to promote R&D in cleaner
vehicles and to finance zero-emission powertrain sales) between market players.

On the other hand, agent systems have demonstrated successful performance in the
application of Cartesian genetic programming to solve a series of use cases, such as complete
enumeration in local agent decisions. In this context, Bremer et al. (Contribution 11)
present the adaptation of a distributed optimization heuristic protocol for Cartesian genetic
programming and an extension using CMA-ES (Covariant Matrix Adaption Evolution
Strategy) to improve local agent decisions. By decomposing the evolution on an algorithmic
level, it becomes possible to distribute the nodes and regard the evolution process as a
parallel, asynchronous execution of an individual coordinate’s descent.

Atrazhev et al. (Contribution 12) address the issue of choosing an appropriate reward
function in multi-agent reinforcement learning. Among the traditional approaches to
employing joint rewards for team performance, this one is questioned because of its lack of
theoretical support. Thus, the authors explore the impact of changing the reward function
from joint to individual on learning centralized–decentralized execution algorithms in a
level-based foraging environment. The results show that different algorithms are affected
differently, with value factorization and proximal policy optimization (PPO)-based methods
taking advantage of the increased variance to achieve better performance. This study sheds
light on the importance of considering the choice of a reward function and its impact on
multi-agent reinforcement learning systems.

Within the area of optimization, Pincheira et al. (Contribution 13) present a frame-
work for evaluating the infrastructure costs and benefits of blockchain applications. The
framework includes a taxonomy that classifies relevant transactions, a model to evaluate
the infrastructure costs and application benefits using public or private blockchains, and
guidance on how to use the model. Another research work focusing on optimization comes
in the form of the paper by Esmaelii et al. (Contribution 14). The authors of this paper
introduce an agent-based collaborative technique for finding near-optimal values for any
arbitrary set of hyperparameters (or decision variables) in a machine learning model (or
a blackbox function optimization problem). The developed method forms a hierarchical
agent-based architecture for the distribution of the searching operations at different dimen-
sions and employs a cooperative searching procedure based on an adaptive width-based
random sampling technique to locate the optima.

Finally, within this Special Issue, Roussel et al. (Contribution 15) address the issue
of conflicting bundle allocation and weighted directed acyclic graphs. The authors pro-
pose several models for novel resource allocation problems where agents express their
preferences over conflicting bundles of items as edge-weighted on a directed acyclic graph
(directed path allocation problem, or DPAP), particularizing conflicts on vertices (V-DPAP)
and conflicts on resources (R-DPAP). The multi-agent system proposed by the authors al-
lows for the search of path allocation. Conflicting bundle allocation and weighted directed
acyclic graphs are also commonly simulated using complex systems.

Conclusions

This Special Issue showcases a variety of research papers on practical approaches to
the use of complex systems and complementary agent-based AI models, facilitating the
parallel use of data treatment and knowledge processing algorithms.

3
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Abstract: Social networks have become the scenario with the greatest potential for the circulation
of disinformation, hence there is a growing interest in understanding how this type of information
is spread, especially in relation to the mechanisms used by disinformation agents such as bots and
trolls, among others. In this scenario, the potential of bots to facilitate the spread of disinformation
is recognised, however, the analysis of how they do this is still in its initial stages. Taking into
consideration what was previously stated, this paper aimed to model and simulate scenarios of disin-
formation propagation in social networks caused by bots based on the dynamics of this mechanism
documented in the literature. For achieving the purpose, System dynamics was used as the main
modelling technique. The results present a mathematical model, as far as disinformation by this
mechanism is concerned, and the simulations carried out against the increase in the rate of activation
and deactivation of bots. Thus, the preponderant role of social networks in controlling disinformation
through this mechanism, and the potential of bots to affect citizens, is recognised.

Keywords: disinformation; social networks; bots; model

1. Introduction

The academic community has shown widespread interest in understanding how
disinformation spreads in virtual media, including social networks, e.g., [1–7], due to the
potential of disinformation to trigger various problems for governments, citizens, and
other social actors [2]. Thus, the state approach has attributed multiple consequences to
disinformation on social networks, such as: the polarisation of citizens’ opinions [4], the
destruction of the credibility of traditional media [8], the mobility of citizens to prevent the
development of public policies [9], among others.

Recently, the spread of misinformation has been growing exponentially [1] as a result
of the massive use of social networks. An example of this was the case of COVID-19, when
the Russian media RT and Sputnik accused NATO and the United States of America of
creating the virus in order to destabilise the Chinese economy, and this information was
widely spread on social networks such as Facebook, Twitter and Tik Tok [3,10], or, in the
case of the vaccines developed for COVID-19, where the anti-vaccine movement sought to
attribute effects such as autism and possible genetic malformations to their use, triggering
mistrust on the part of the population and preventing the control of the virus and the
mitigation of its transmission [11]. In view of these examples, one of the main problems
for social actors, in particular states, as well as the academic community, is the lack of
awareness of the existence of this type of information and the lack of understanding of the
strategies used by the disinformation agent to ensure the propagation of misinformation
on social networks [12–14].
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This article focuses on the second problem area. Thus, it is evident from the literature
that disinformation can be propagated by the direct intervention of individuals either
consciously or unconsciously, as well as by automated accounts known as bots [15]. These
bots are present in all social networks, however, in some of them their presence is more
noticeable. An example of this is Twitter, where, given the importance of this network in
issues related to politics, it has been estimated that between 9% and 15% of active accounts
are bots [15–18].

Due to the proliferation of bots used in social networks to misinform and the interest
in this mechanism, the literature has focused on establishing the role of bots in the spread
of misinformation, with a focus on describing case studies, e.g., [15,18–24], however, the
development of models to understand the patterns of propagation of disinformation
caused by this mechanism is still in its beginnings, with most of the advances being
generalist and not specialised in bots such as the works of Lazer et al. [24], Shao et al. [25];
Vosoughi et al. [26] and Shao et al. [27]. The limited amount of work is due to the difficulty
of finding the initial sources of disinformation [4], as well as the absence of robust and
easily accessible tools for identifying bots, and thus correctly identifying their activities [15].

In this context, the aim of this article was to model and simulate scenarios of disin-
formation propagation in social networks caused by bots based on the dynamics of this
mechanism documented in the literature. This will strengthen the understanding of the
phenomenon of disinformation through bots by making it possible to establish patterns of
behaviour in the system and to evaluate the effects of the various decisions made by the
actors involved in disinformation, especially in relation to social network policies.

It is important to highlight that, although there is no unified meaning of disinforma-
tion due to the large number of definitions and intermediate terms found in the literature,
particularly in the literature from Anglo-Saxon countries, (e.g., fake news, misinformation,
etc.), this work assumes disinformation to be any deviant information that is intended to
distort and mislead a target audience in a predetermined way [3,28]. In this way, disinfor-
mation refers to a wide range of content, including fake news, misinformation, misleading
content, hate speech and deliberate misreporting, among others [29–31]. Additionally,
disinformation is not only about the message itself, but as a practice it has the potential to
discredit the messenger and true information due to its close relationship with multiple
social sectors, especially politics.

This article is structured in five main sections. The first one broadens the concep-
tualisation of bots and their features; the second one establishes the behaviour of the
disinformation caused by this mechanism in social networks and introduces the diagram
of causal loops with their respective dynamic hypotheses; the third section shows the
methodology used while the fourth section describes the results with emphasis on the
mathematical model developed and the simulations defined in the methodology; finally,
the fifth section presents the conclusions of the study.

2. Theoretical Framework and Dynamic Model

2.1. What Are the Bots?

The use of the word bots corresponds to an abbreviation of the Anglicism “software
robot” [15], which has permeated the disinformation literature, including that of Latin
American origin. Thus, the bots as machines are usually automated to some degree, either
independently or with human intervention. The bots as machines are put at the service
of external agents, in this case diplomacy. In this sense, this type of software can be
categorised as either beneficial or malicious [32]. In the case of those that are beneficial,
they are programmed by companies to improve the attention and service provided to their
customers [33], or as in the case of the social network Twitter, some are used to inform the
time, as documented by Yang et al. [32], or to support the raising of charitable resources [34].

For those called malicious, in some cases they oversee malware distribution or spam
generation, but in social networks they have another purpose, which is to automatically
produce content and interact with humans on social networks, trying to emulate them and
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possibly alter their behaviour [35–37]. According to the Academic Society for Managment
and Communication [38] these bots have three strategies for influencing the behaviour of
online users on social networks:

• Smoke screening: bots use context-related hashtags on social networks to distract
online users from the main point of debate in a discussion.

• Misdirecting: the use of hashtags related to the topic of discussion to talk about
other non-corresponding plots to divert the attention of the target audience from
the disinformation.

• Astroturfing: the bot tries to influence public opinion, e.g., in a political debate, by
creating the impression that a large majority is in favour of a certain position.

Although the strategies described above are the basis of the strategies used by the
malicious bots, it is necessary to recognise that, along with the emergence of new technolo-
gies, these tend to evolve and new strategies emerge, which is why a general view of the
behaviour of the system generated by this type of software is required, rather than the
study of each of the strategies themselves.

2.2. Disinformation, Bots and Causal Loop Diagrams

Disinformation as a social phenomenon that occurs in social networks is not the result
of chance, but of a strategic analysis developed by the disinforming agent, as related by
Guzmán and Rodríguez-Canovas [2]. Therefore, the disinforming agent seeks to attract
the largest possible target population in order to convert it into a population susceptible to
being disinformed [39], which is where the various mechanisms for disinformation, such
as bots, emerge [5]. With the linking of the population susceptible to disinformation, we
proceed to the propagation of the message [40] to consolidate the disinformed population,
which for the purposes of this study will be understood as the individual or subject who
was exposed to the message of the disinforming agent.

Considering the above as a basis, the role of bots as a mechanism for spreading
disinformation begins with their activation, where the disinformation agent establishes
how many he or she wishes to have, however, maintaining a fixed number over time is
difficult, given the detection mechanisms that social networks have to eliminate or block
this type of account [16,41]. However, the interaction of these fake accounts is usually done
with publications based on powerful hashtags, comments and by sharing content, being
standardised in terms of the number of characters when providing a machine, as well as in
the frequency and time of publications [42]. In view of the number of the target population,
which will become a susceptible and post-informed population, bots are characterised by
making exclusive use of the organic reach of the account, so that as the number of followers
grows, this reach tends to decrease, requiring a greater number of bots to impact a greater
number of the population [2]. Figure 1 shows the causal loop diagram that represents the
behaviour of the studied phenomenon.

Finally, it should be noted that the spread of disinformation is like the way a disease
is spread, where there is a population of infected people (bots), who seek to spread the
disinformation message in a susceptible population, hence the previous models devel-
oped are based on the SIR model (Susceptible—Infected—Recovered), e.g., [43,44]. Thus,
previous studies have sought to complement the SIR model by analysing specific disinfor-
mation mechanisms, as well as models that integrate several of these mechanisms, (e.g.,
bots, trolls, paid outreach, etc.). These models include the SIRaRu model, which allowed
us to understand the behaviour of disinformation in homogeneous and heterogeneous
communities [45], the SEIR model (Susceptible—Exposed—Infectious—Recovered), the
SIR model for dynamic and complex social networks [46], among others. Hence, the model
presented here both in Figure 1 and in the subsequent sections is based on the SIR model.
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Figure 1. Diagram of causal loops. Note: B represents the balance loops of the system and R
represents the reinforcement loops.

3. Methodology

The aim of this article was to model and simulate scenarios of disinformation prop-
agation in social networks caused by bots based on the dynamics of this mechanism
documented in the literature, so the main technique used for the development of the model
was System Dynamics, considering Bala et al. [47] and Bianchi [48] as theoretical references.
In this sense, the choice of modelling technique is based on the complexity of the disinfor-
mation caused by bots, in which various elements are involved and whose behaviour is
characterised by a non-linear, multicausal and time lagged behaviour [47]. The model is
based on the existing literature on the problem under study, for which the steps established
by Bala et al. [47] were followed and summarised below:

• Construction of the flow diagram and levels of the model: this corresponds to the
physical structure of the system in a defined period and allows the generation of the
model’s patterns. In this step, the variables that allow the system’s behaviour to be
represented are defined.

• The writing of differential equations: they represent the causes and effects of the
system and allow its operationalisation.

• Parameter estimation: they assign the values of the variables that make it possible to
simulate and obtain the system’s behaviour. For the present work, this stage was based
on multiple sources, especially the study developed by Himelein-Wachowiak et al. [15].

• The testing of the internal consistency of the model: this corresponds to the evaluation
of the behaviours generated by the model and which, for the present case, is based on
the theory exposed in Section 2.2.

With the proposed model, we proceeded to develop the simulations presented in
Table 1, for which modifications were made to the parameters established in the initial
model (Table 2); it should be noted that in the execution of the simulations, only the
parameter indicated in Table 1 was modified, and the other parameters retained their initial
values. The description of the modified parameters is presented in Table 2.

Table 1. Computer simulations.

Code Simulation Modified Parameters

Sim—1 Reference simulation NA
Sim—2 Increased activation rate TAB = 0.8
Sim—3 Increased deactivation rate TDB = 0.1
Sim—4 Beginning of disinformation RD = 30
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Table 2. Variables required for model development and initial parameters.

Variables Conceptualización Unidades Parámetro Inicial

PobOt
Target population: a population with specific characteristics that was

defined by the agent to be susceptible to disinformation People 1,000,000

PobSt
Susceptible population: the population that is subscribed to one of

the disinformation agent’s accounts. People 0

PobDt
Disinformed population: the population that visualised or had some

contact with the disinforming message. People 0

Botst
Bots: number of bots in the social network used by the

disinformation agent at a given time. Bots 5

BotsDt
Deactivated bots: corresponds to the number of bots that were

deactivated by the algorithm or social network staff. Bots 0

TCpobC Target population growth rate: is the ratio of growth of the
population PobO for a specified t. % 0.1%

AO
Organic reach: percentage of publications viewed by the Bots
through the distribution of the algorithm. This rate is defined

according to the number of PobSt contacted.
%

GRAPH (TIME)
(0, 0.0017), (10001, 0.0004),
(100001, 0.00015), (300000,
0.00015), (400000, 0.00015),
(500000, 0.00015), (600000,
0.00015), (700000, 0.00015),
(800000, 0.00015), (1000000,

0.00015), (10000001, 0.00008)

TEC Effective contact rate: defined as the percentage of people who
subscribe to the disinformation agent’s account. % 0.01%

RD
Disinformation delay: This corresponds to the initial t at which

message starts its propagation. This lag was developed by using the
delay function.

Days 90

TAB Bot activation rate: the percentage of bots that are activated in each t. % 50%

METB Goal bots: number of bots that the uninformed agent wishes to
have active. Bots 300

TDB Bot deactivation rate: the percentage of bots that are deactivated by
the social network at a given t. % 1.973%

RTDB
Delay deactivation of bots: This corresponds to the initial t at which
the deactivation of the bots is initiated. This lag was developed by

using the delay function
Days 98

The analyses of the simulations were carried out descriptively, and in order to deter-
mine the existence of statistically significant differences in the behaviour of the system, the
medians of the PobD level were compared (see Table 2). The Kolmogorov-Smirnov statistic
was applied to check whether the data fit a normal distribution (p-value > 0.05), and it was
found that the data did not follow a normal distribution. Thus, to establish the difference in
averages between the behaviour of the system with the initial parameters and the modified
parameters, the Wilcoxon test was used, considering this difference with a p-value < 0.05.

Finally, the computational work on the model and the simulations were implemented
in Stella Architect software version 1.9.5. The following model settings were considered:
ti = 0, t f = 360, Δt = 4, where t represents time in days; additionally, Euler was used as
the integration method. SPSS software version 25 was used for the statistical analyses.

4. Results

The results are presented in two sections. The first one describes the model proposed
with the capacity to replicate the behaviour of the system based on the evidence from
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the literature review; and the second one describes the simulations obtained and the
corresponding statistical analyses.

4.1. Model

Figure 2 represents the flow and level diagram [1], which is based on the SIR model.
Thus, it consisted of five level variables, five flow variables and 10 auxiliary variables. The
green section represents the process of disinformation of the target population, and the
blue section how the activation and deactivation of bots behaves.

Figure 2. Diagram of flows and levels of disinformation in social networks by means of bots.

The proposed model explains the behaviour of the phenomenon studied here, as long
as the following assumptions are met:

• Between the moment of the constitution of the population susceptible to disinforma-
tion (PobS) and the beginning of the spread of disinformation there is a delay.

• There is a limited number of bots that the disinformation agent wishes to place on the
social network.

• The existence of a delay for the deactivation of bots.

Under the technical conditions of non-negativity of the level variables, (i.e., their
domain is restricted to 0 or positive numbers) and that t = 0, 1, 2 . . . , 360, the system was
represented by the following differential equations.

Target population:

PobOt = [PobOt−1 + (PobOt−1 × TCpobC)− (PobOt−1 × AO× TEC× Bots)] dt (1)

Susceptible population:

PobSt = [PobSt−1 + (PobOt−1 × AO× TEC)− (PobSt−1 × f (Xt, Xt−τ , dt; t ≥ t0))] dt (2)

where:
Xt = [PobSt−1 × Bots× AO] dt (3)

Misinformed population:

PobDt = [PobDt−1 + (PobSt−1 × f (Xt, Xt−τ , dt; t ≥ t0))] dt (4)
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Bots:

Botst =

[
Botst−1 +

(
Botst−1 × TAB× METB− Bots

METB

)
− (Botst−1 × f (Y, Yt−τ , dt; t ≥ t0))

]
dt (5)

where:
Yt = [Botst−1 × TDB× RTDB] dt (6)

Deactivated bots:

Botst = [Botst−1 + (Botst−1 × f (Y, Yt−τ , dt; t ≥ t0))] dt (7)

Table 2 presents the description of the variables and the initial parameters for the
operationalisation of the model. Because of the generalist nature of the proposed model,
which is applicable to any social network, the initial parameters are susceptible to modifi-
cation. In this particular case, those of Twitter were used, so parameters such as organic
reach, paid reach, effective contact rate, among others, must be modified for its use in other
social networks.

4.2. Simulations

Compared to the results obtained in SIM-1, it was found that under the initial pa-
rameters for t = 360 PobO increased by 230,000 people, with 159,000 being effectively
uninformed, which represented 15.9% of the initial PobO. On the other hand, for t = 90,
period in which the disinformation of PobS begins, this was close to 28,200 people, increas-
ing until t = 111, after this day the PobS begins to decrease until it reaches the value of 0.
In the case of the bots for t = 133 the highest number of activated automata was 54.8 ≈ 55
and for t = 360 the number of deactivated bots was 158. Figure 3 shows the behaviour of
the system for SIM-1.

Figure 3. Results SIM-1. Note: (a) behaviours for the levels of the disinformation process and
(b) behaviour of the activation and deactivation of bots.

The results for SIM-2 show that with a higher activation rate bot, the PobO for t = 360
would be equal to 1,150,000 people, with PobD being 228,000, which represented an increase
of 43.39% compared to SIM-1. For the bots in this simulation for t = 132 the highest number
of activated automata would be reached with a total of 81.2 ≈ 82. Similarly, due to the
increase in the activation rate for t = 360, a total of 238 bots would have been deactivated,
showing an increase of 50.63% in relation to SIM-1. On the other hand, a comparison
between the PobD between SIM-1 and SIM-2 showed statistically significant differences
with z = −16.42, p-value = 0.00 . Figure 4 shows the behaviour of the system for SIM-2.

For SIM-3, which sought to simulate a higher rate of bots’ deactivation by social net-
works, a change in system behaviour was evident (see Figure 5). Thus, the disinformation
target population PobO for t = 360 would be equal to 1,260,000 people with a total of
109,000 people being disinformed, decreasing the PobD by 31.44 % in relation to SIM-1.
Similarly, in the case of the susceptible population, there are two peaks at t = 107 and
t = 360 (see Figure 5a), correlated with the number of active bots (see Figure 5b). Regarding
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the PobD level between SIM-3 and SIM-1, it was determined that there are statistically
significant differences with z = −14.00 p-value = 0.00 .

Figure 4. Results SIM-2. Note: (a) behaviours for the levels of the disinformation process and
(b) behaviour of the activation and deactivation of bots.

Figure 5. Results SIM-3. Note: (a) behaviours for the levels of the disinformation process and
(b) behaviour of the activation and deactivation of bots.

Now, in the case that disinformation starts to circulate at t = 30, it was observed
that the target population of disinformation PobO for t = 360 would be equal to 1,240,000,
being similar to the behaviour derived from SIM-1. For the population that managed to
be uninformed, it was determined that for t = 360 the PobD was 145,000. Similarly, in the
case of bots, and due to the ability of social networks to deactivate them, after t = 170 the
number of active automatons tends to stabilise. Thus, for t = 360 a total of 23.3 ≈ 24 active
bots and 147 deactivated bots were evident. On the other hand, the comparison between
the PobD between SIM-1 and SIM-2 established statistically significant differences with
z = −14.66, p-value = 0.00 . Figure 6 shows the behaviour of the system for SIM-4.

Figure 6. Results SIM-4. Note: (a) behaviours for the levels of the disinformation process and
(b) behaviour of the activation and deactivation of bots.

5. Conclusions

The objective of this study, which was to model and simulate scenarios of the prop-
agation of disinformation in social networks caused by bots based on the dynamics of
this mechanism documented in the literature, was achieved. The model presented has
the capacity to replicate the behaviour of the system, being consistent with the dynamic
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hypotheses set out in Figure 1, complementing previous studies such as those developed
by de Lazer et al. [24], Shao et al. [25]; Vosoughi et al. [26] and Shao et al. [27], in relation to
the use of bots as a mechanism to propagate false information.

This model allows actors involved in disinformation to analyse in a more objective
way the behavioural patterns of disinformation caused by bots for decision making, based
on three assumptions. The first one relates to the delay in the start of disinformation; the
second one to the limited number of bots that the disinformation agent can put in place;
and the third one to the limitations of social network systems to detect and deactivate
automated accounts.

With that said, the simulations developed clarify that the system of disinformation
using bots is susceptible to policies that are conducive to better detection, blocking and
elimination of these types of accounts. In this sense, the uninformed population is smaller,
hence the responsibility of social networks to design better detection mechanisms and of
citizens to report these types of accounts, to increase the effective rate of deactivation of
bots. However, if the disinformation agent starts its activity early, the impact over time will
not be on the amount of the disinformed population, but on the number of bots required to
achieve its purpose, since the number of bots tends to stabilise over time.

From the proposed model and the simulations developed, it is necessary to recognise
the role of bots in aggravating existing social problems as a result of the propagation of false
information, hence the need to delve deeper into various analyses such as the evolution of
this type of mechanism, the new technologies they incorporate to circumvent the security
systems of social networks, the use of artificial intelligence in these, among other aspects.
On the other hand, it is necessary to urge the academic community to make use of the
model, to complement it and, above all, to eliminate the current barriers to the study of
disinformation, such as the difficulties of access to declassified information that would
allow the model to be operationalised under conditions different from those expressed in
this article and which are based on secondary data from other studies.
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Abstract: At present, the polarization of online public opinion is becoming more frequent, and
individuals actively participate in attitude interactions more and more frequently. Thus, online views
have become the dominant force in current public opinion. However, the rapid fermentation of polar-
ized public opinion makes it very easy for actual topic views to go to extremes. Significantly, negative
information seriously affects the healthy development of the social opinion ecology. Therefore, it is
beneficial to maintain national credibility, social peace, and stability by exploring the communication
structure of online public opinions, analyzing the logical model of extreme public attitudes, and
guiding the communication of public opinions in a timely and reasonable manner. Starting from the
J–A model and BA network, this paper explores the specific attributes of individuals and opinion
network nodes. By incorporating parameters such as individual conformity and the strength of
individual online relationships, we established a model of online group attitude polarization, then
conducted simulation experiments on the phenomenon of online opinion polarization. Through
simulations, we found that individual conformity and the difference in environmental attitude greatly
influence the direction of opinion polarization events. In addition, crowd mentality makes individuals
spontaneously choose the side of a particular, extreme view, which makes it easier for polarization to
form and reach its peak.

Keywords: online public opinion; group polarization; influencing factors; power relations

1. Introduction

In recent years, with the rapid development of China’s self-media platforms, the
polarization of online public opinion has become more frequent, for example, the Tesla
car brake failure incident, the self-explosion “0 sugar” incident in Genki Forest, and the
China Express blind box pet incident, all of which have aroused widespread social concern.
It can be noted that in the process of spreading online opinions, due to the reduction of
transmission cost, the amount of information received by individuals increases. At the same
time, information homogenization and fragmentation are serious, which makes it difficult
for individuals to maintain a neutral and objective attitude toward their actual output. As a
result, the information views of the surrounding environment tend to be consistent and
then become a driver of polarizing events in online public opinion. In fact, in the process of
information sharing and decision making, individuals’ actual behaviors are generated by
their objective cognition together with psychological activities. Consequently, it is very easy
to collide with the surrounding environment and group views. Furthermore, the original
decision is biased, leading to different degrees of polarization. Moreover, individuals have
differences in age, occupation, family, education level and other various aspects. These
differences make them have various sensitivities to the polarization of public opinion and
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fluctuations of their own opinions and attitudes, resulting in a complex trend of public
opinion polarization events.

Existing studies on opinion polarization usually use a relatively small and simple
network structure to analyze changes in the attitudinal values of social groups and focus on
the influence of individual heterogeneity on the connections between individuals. In fact,
the polarization process of individual attitudes relies on a complex network structure in
which complex mechanisms of opinion polarization arise.

Distinguishing from existing research tools, this paper considers the heterogeneity
properties of nodes and defines them specifically based on the J–A model, as well as the
threshold changes between individuals, adding parameters such as individual consistency
and strength of network relationships, forming a complex network structure of the group,
and using its basic characteristics of growth and preferential attachment, the BA scale-free
network is selected for the study, which can be used to investigate the sensitivity problem
of the model correction.

We denote the number of edges formed by individuals and their neighbors as ‘degree’
(P) and use the BA scale-free network to present the power law of the distribution of
complex networks. After matching the degree, relationship strength, and attitude values
with the relevant data, it is confirmed that the group communication behavior between
individuals will make the opposing parties continuously reinforce their own views, and
the trend of bifurcation of online opinions is obvious.

Further, we try to put the connections between nodes into the set network model,
fully discuss the relationship between the polarization process of individual attitudes
and the complex network structure, and comprehensively consider the network public
opinion propagation mechanism and polarization prediction laws. Based on the opinion
polarization model of the BA network, we simulated the collision process of individual
opinions on the network and predicted the values of public attitudes after more than
400 collisions. In the evolutionary process, it was found that most individuals would
actively choose extreme views to battle in the evolution of time. Moreover, when they
are in a network group with the same interests as their own, they will keep looking for
similar views to their own in the mutual communication with members to reinforce their
original ideas.

In terms of social organization, the negative impact of public opinion polarization
reversal will intensify contradictions in a disguised way. This makes the output effect of
superimposed views one-sided and extreme, with less output space for the positive and
effective viewpoint information. Based on the BA network’s opinion polarization model,
this paper predicts the trend of public attitudes toward online events. In general, it is con-
ducive to control and govern online opinion polarization events by clearly understanding
the dynamics and process of online opinion polarization, simulating public opinion and
attitude, and controlling the heat of online public opinion in a timely fashion.

2. Literature Review

2.1. Literature Review Based on J–A Model

The J–A model refers to a new social attitude judgment model proposed by Jager
and Amblard [1], which shows that the subject’s attitude structure determines the oc-
currence of assimilation and alienation effects, which in turn lead to the phenomenon
of consensus and polarization. Since then, there have been many studies related to the
J–A model. Barash et al. [2] found that the complex infection model could produce highly
nonlinear infection diffusion dynamics, and its critical mass had potential practical sig-
nificance for the prediction of the early stage of transmission activities. Li and Tang [3]
proposed the threshold model of group behavior and considered group spatial factors
and the strength of social influence relationships among individuals. Based on the group
polarization effect, Gabbay et al. [4] added a new explanation, that was, the interaction
between individuals with the same interests will trigger the change of attitude to extremes
in disguise. Chen et al. [5] used the J–A model to study the rumor diffusion process with
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the consideration of individual heterogeneity. Subsequently, they took the imported food
safety issue as an example during the COVID-19 pandemic and testified to the efficiency of
the proposed model.

From the above analysis, it can be seen that the existing literature uses a relatively
small and simple network structure to analyze the changes in social group attitude value,
which is different from the structure in complex social networks. In addition, many articles
do not give node heterogeneity attributes and do not consider the change of threshold
between individuals, which is also far from reality. Based on this, this paper integrates the
parameters such as individual conformity and network individual relationship strength into
the classical J–A model, which makes the model well adapted to complex, real-world events.

2.2. Literature Review of BA Models

The BA model, or scale-free model, was proposed by Barabasi and Albert in 1999 [6].
They pointed out that the network produced by the BA model had the characteristic of no
scale, and the distribution of its network degree values followed a power-law distribution,
which was closer to most actual networks. Liu et al. [7] conducted further research and
found that the BA model could only generate a network model in which the distribution
of degrees follows a power index of 3, while the value in the actual network was usually
between 1 and 3. Chen et al. [8] explored a multi-dimensional public opinion process based
on a complex network dynamics model in the context of derived topics, and they found that
information intensity was the most important influence factor. Zhou et al. [9] found that the
network generated by the BA model did not have obvious small-world characteristics, while
the actual network usually had both unscale and small-world characteristics. In addition,
a large number of scholars have found that the BA model is prone to isolated nodes in
the application process and has the characteristics of only “first rich” and not “later rich”,
which are not in line with the evolutionary characteristics of the actual network.

Combined with existing research, we find that most scholars focus on the interac-
tion between nodes, emphasizing that the heterogeneous characteristics of individuals
themselves will affect the connections between individuals. However, we notice that the
connections between nodes are not only related to the properties of the nodes but also the
network structure. Taking the BA model as the background, the model degree distribution
is generally similar to the power-law distribution, and the connection between nodes has
the characteristics of merit. This study will try to give a specific definition of the node’s
own attributes according to the characteristics of the actual network and emphasize the
node characteristics in the network background in order to improve the adaptability of the
model in the existing research.

2.3. The Prediction Law of Online Public Opinion Dissemination and Polarization

More and more people have been connected to the world through digital technology
in recent years. As a result, public opinion can spread quickly. It is difficult for the public
to identify and judge what they want from a large amount of data. At present, more
scholars have already conducted in-depth studies on social network structures and the
phenomenon of opinion polarization. For example, Wang [10] dissected the dynamic
relationship between the factors influencing group attitudes. Chen et al. [11] analyzed
the panic emotion propagation process and further identified the emergence process of
group panic buying behavior under the COVID-19 pandemic. Wang et al. [12] considered
the components of group polarization formation of online public opinion, quantitatively
analyzed the mechanism of public opinion polarization dynamics and regulation strategies,
and strongly argued the relevance of the main factors of public opinion development
through an example simulation. Zhang et al. [13] proposed the intertextual characteristics
of the process of generation, diffusion, and polarization in self-media online public opinion.
Hatton [14] proposed that preference and significance are related to different individual-
level characteristics through the analysis of the European Social Survey and European
barometer data. Heizler and Israeli [15] proposed that the tragedy of a specific individual

21



Systems 2022, 10, 46

is more likely to cause the polarization of public opinion than the tragedy of a group.
Blake et al. [16] believe that the neutrality and polarization of people’s views vary according
to sociodemographic characteristics, including age, gender, and education.

The above-mentioned literature has summarized the general law of the polarization
phenomenon of online public opinion groups. However, the influencing factors and
network structure in the polarization process are seldom analyzed. Based on this, this paper
relies on a specific network structure to study the complexity of the polarization mechanism
and the process of individual attitude polarization. By fully discussing the relationship
between the two, we can understand the communication mechanism of network public
opinion and the law of polarization prediction.

3. A Novel Public Opinion Polarization Model Based on BA Network

3.1. Basic J–A Model

Much of the existing research is discussed based on the D–W or J–A models. Both
originate from social judgment theory. Social judgment theory analyzes the phenomenon
of how an individual’s position changes when confronted with different points of view. It
is founded on the idea that a person’s attitude changes depending on the information that
causes the change. If the positive information is close to the individual’s initial position,
then the information is within the individual’s range of acceptance. The view is that the
individual is likely to move to the advocated position. That is, individuals are more likely
to assimilate similar information. We brought this perspective to the J–A model as an
example and obtained the following conclusions.

Individual i and individual j interact with information. The attitude values are based
on the distance between them. The rule of attitude value change is related to the difference
between the two attitude values. Individuals tend to prefer information close to themselves
and reject information farther away, although the quality of attitudes affects the degree of
individual interaction. The specific rules are as follows [1].

I f
∣∣xi − xj

∣∣ < uidxi = μ·
(

xj − xi
)

(1)

I f
∣∣xi − xj

∣∣ > tidxi = μ·
(

xi − xj
)

(2)

where ui is the threshold when individual i decides to accept the message, ti is the threshold
when individual i rejects the message, and μ is the intensity of the control influence.

3.2. Improved Ideas

The J–A model provides a theoretical basis for information exchange simulation.
However, the model does not consider factors such as environmental climate, individual
affinity, and individual subordination. This deviates from the actual situation. For example,
when the individual’s herding is strong, the individual will move towards the stronger
party. If the individual’s herding is weak, they will adjust and move in a specific direction
according to their own and the environmental attitude value. Obviously, the J–A model
does not consider the population characteristics and individual attributes, and it does not
have practical application value.

At the same time, we assigned the corresponding initial network structure, which
aims to meet the environmental conditions in the process of individual interaction. Society
is intricate and complex, with varying views on opinion events. In existing studies, small-
world networks and BA scale-free networks (from now on referred to as BA networks) are
often invoked to simulate realistic social networks to restore real individual attitudinal
interaction processes. Small-world networks are derived from the regular network model,
in which N nodes relate to probability p on broken edges. Its “degree” distribution is in
line with normal distribution. The BA network has a power-law distribution of degrees
characterized by a growth mechanism and meritocratic connectivity. The BA network
grows while the nodes move to the nodes with a higher degree. In general, both network

22



Systems 2022, 10, 46

structures are closer to reality, and both preserve the diversity in real networks. They both
guarantee faster convergence of the algorithm and meet the requirements of the model.

Based on the above considerations, the network group attitude polarization model
is improved based on the J–A model. For the attributes of individuals and networks,
parameters such as individual followership and strength of personal network relationships
are added to the J–A model. The model can be adapted for actual complex events. Moreover,
in real society, the network distribution law is mostly reflected in the power-law distribution,
and the BA network is used as the agent adjacency model. In addition, we set the effect
interval parameters d1 and d2 to illustrate the positive or negative effects of relationship
strength distribution and followership parameters on group attitude polarization.

3.3. Methodology
3.3.1. J–A Model

The J–A model refers to the new model of social attitude judgment proposed by Jager
and Amblard. The main conclusions of the J–A model are as follows: first, the attitude
structure of the subject determines the inevitability of its assimilation effect and alienation
effect; second, the assimilation effect and the alienation effect have a counter-effect, which
will lead to the subject reaching consensus, polarization, and other phenomena. The core
idea of the J–A model is based on the theory of social judgment, whereby a person’s attitude
changes depending on the location of the persuasive information he receives. For example,
commentators will be more inclined to make statements with similar views. The idea of
this study is to explore the polarization of network public opinion, and the idea is to create
a model adapted to different group characteristics and individual attributes, specifically by
integrating parameters such as individual conformity and network individual relationship
strength into the classical J–A model, so that the model is more suitable for complex, real-
world events. The method of model simulation can more intuitively see the assimilation
and alienation effects that occur in individual attitudes and the final polarization results.

3.3.2. BA Network

The BA network refers to the scaleless network proposed by Barabasi and Albert
that follows power-law distribution. The BA network is based on the growth mechanism
and the preferential connection; that is, the size of the BA network shows an increasing
trend, and the network nodes will be connected to the nodes with higher proximity. In this
study, under the rules of individual attitude interaction, the corresponding initial network
structure is assigned to meet the simulation environment. Compared with the intricate
interactive networks in reality, the BA network not only retains the diversity of the actual
network but also standardizes and simplifies the individual interaction process.

3.3.3. Multi-Agent System

A multi-agent system is a collection of multiple agents that coordinate and serve each
other to complete a task together. Its goal is to build large, complex systems into small, easily
managed systems that communicate and coordinate with each other and has wide uses in
many fields such as platform management [17], the effect of policy implementation [18,19],
and so on. A multi-agent system has the following characteristics: first, each agent is
independent, autonomous, and can solve a given sub-problem and affect the environment
in a specific way; second, agents communicate and coordinate with each other.

The reason why a multi-agent system is selected for this study is precisely because it is
suitable for complex and open distributed systems and meets the setting conditions of this paper.

3.4. The Novel Public Opinion Polarization Model
3.4.1. Model Construction

The individuals and connections between the individuals form a population-complex
network structure. We define the parameters and features in the network. The model
parameters are shown in Table 1 as follows.
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Table 1. Model parameters.

Parameters Definition

Pi Degree
kij Strength of relationship between individuals
Xi(t) Individual attitude value
Si(t) Environmental attitude value
Ci The clustering coefficient of individuals
C The clustering coefficient of the network
Mi Impact threshold
d1 Assimilation effect interval
d2 Exclusion effect interval
β Assimilation degree coefficient
γ Exclusion degree coefficient
L Average distance length

(1) Degree (Pi)

The number of edges formed by individuals and their neighbors is called the degree.
The size of the degree reflects the number of individuals in the nearby area. The higher the
number of nearby individuals, the higher the importance of individuals. In social relation-
ships, the higher the importance of the individual, the higher the level of information, with
considerable power of speech and definition.

(2) Strength of relationship (kij)

The strength of the relationship describes the closeness of the relationship between
individual i and individual j. The model assigns a value to k by a random function. The
k-value reflects the extent to which individuals influence each other. The range of the
k-value is between integers 1 and 4. The strength of the relationship increases sequentially
as the value increases.

(3) Individual attitude value (Xi(t))

The individual attitude value is a quantitative indicator of the individual’s attitude at
the moment t. Si(t) is the average of all individual attitude values near individual i at the
moment, also known as the integrated environmental attitude value. The expression for
Si(t) is as follows.

Si(t) =
n

∑
j=1

2kij − 1
4(n− 1)

Xj(t) (3)

where Si
+(t) is the summation of positive attitude values, and Si(t) is the summation of

negative attitude values. The distribution of Xi(t) conforms to the Gaussian distribution.

(4) The clustering coefficient of individuals (Ci)

The clustering coefficient of individuals is the ratio of the actual number of edges
formed by individual i and neighboring individuals to the maximum number of possible
edges. The maximum number of possible sides is (n2 − n)/2. Ci reflects the aggregation of
individuals. In general, individuals tend to build groups with a high degree of collection.
The expression is as follows.

Ci =
2n

n(n− 1)
(4)

(5) The clustering coefficient of the network (C)

The clustering coefficient of the network C is the average of the clustering coefficients
of all individuals in the network, which quantifies the degree of individual aggregation.
The expression is as follows.

C =
1

n− 2

n

∑
i=1

Ci (5)
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(6) Impact threshold (Mi)

The impact threshold Mi determines whether an individual’s attitude has changed,
directly responding to the level of information in the neighborhood. If Mi ≥ 1, the individual
attitude value has changed. Otherwise, the individual does not change. α is the adjustment
parameter. The expressions are as follows.

I f Si(t) ≥ 0 Mi = αS+
i (t) + Ci (6)

I f Si(t) < 0 Mi = αS−i (t) + Ci (7)

The interpretation of Mi is as follows. According to the rule, whether an individual’s
attitude value changes depends on its subordination and the degree of environmental influ-
ence. There are three main scenarios. In the first case, the individual is highly submissive,
entirely influenced by the environment. The individual will always follow the environment
and adjust their attitude. In the second case, the environment around the individual is
unbalanced, and there will be a view recognized and dominated by more individuals. In
this case, the individual will also favor the strong side. In the third case, the individual’s
subordination combined with the environment drives the individual to move towards a
particular side of the camp.

(7) Effect interval parameters (d1/d2)

Effect interval parameters specify the range of individual attitude value changes. If
the distance between Xi(t) and Si(t) is less than d1, the individual does not follow the rule
of exclusion. Otherwise, individuals do not follow the rules of assimilation.

(8) Assimilation/exclusion degree coefficient (β/γ)

The assimilation/exclusion degree coefficient is the degree of control over the value of
individual attitude change. β is the degree coefficient of the assimilation rule, and γ is the
degree coefficient of the exclusion rule: both range between 0 and 1.

(9) Average distance length (L)

The average distance length is the average number of distances between individuals
in the network [20]. The distance between individuals is the sum of the edges connecting
both. The maximum distance is the diameter of the network. The L-value reflects the ability
and efficiency of information transfer between individuals. Let the path length between
individual i and individual j be lij. The expression of lij is as follows.

L =
2

n(n− 2)

n−1

∑
i=1

n−1

∑
j=i+1

lij (8)

3.4.2. Simulation Process

To reveal the mechanism of individual attitude polarization, we established a social
networking platform. Research has shown that most complex, real-world networks exhibit
power-law distribution, which indicates that most individuals have a small degree, and
only a few offer a large degree. Barabasi and Albert proposed BA scale-free networks to
study this class of networks that exhibit power-law distributions. The basis of the network
is Growth and Preferential attachment. Growth means that the complex network structure
will continue to expand. Preferential attachment means that the additional individuals are
more inclined to connect with individuals of a higher degree. The specific construction
method is as follows.

Step1. Growth: We randomly construct the initial network containing m0 individuals.
Next, we constantly increase the number of individuals, and individuals are randomly
connected to the original model.

Step2. Preferential attachment: The probability (πi) that an individual is connected
to the network is positively correlated with the degree (pi) of nearby individuals. The
expression is as follows [6].
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πi =
n

∑
j=1

pi
pj

(9)

BA scale-free networks conform to the characteristics of self-organization, synchroniza-
tion, and emergence mechanisms in actual society. Therefore, we choose the BA scale-free
network to study and make corrections for issues such as model sensitivity.

3.4.3. Interaction Rules

In individual interaction, the impact threshold Mi is calculated by first considering
the environmental attitude value, relationship strength, and clustering coefficient. Next, a
judgment is made: if Mi ≥ 1, the interaction takes place; otherwise, the individual attitude
value does not change in any way.

We set the effect interval d1/d2 as the discriminate condition. A discussion of the
interaction process follows.

(1) Assimilation rules

If the distance between Xi(t) and Si(t) is less than d1, it is considered that assimilation
of individual and environmental attitudes occurs. The rules of attitude value evolution
follow the following rules.

Xi(t + 1) = (1− β)Xi(t) + βSi(t) (10)

(2) Exclusionary rule

If the distance between Xi(t) and Si(t) is greater than d2, the individual and the envi-
ronmental attitude values are considered in exclusion. The rules of attitude value evolution
follow the following rules.

Xi(t + 1) = (1− γ)Xi(t) + γSi(t) (11)

(3) Neutrality rules

If none of the above conditions are met, the individual is considered not to make
any changes.

The following flow chart (shown in Figure 1) outlines the discriminatory process of
the polarization model.

Figure 1. Network population attitude polarization model discrimination process.
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4. Experiment Simulation

Because the BA network can present the social network well, this paper defines the BA
network as the basis of evolution. By setting different parameter values, this paper makes
an intensive study of the evolution process. First, this paper sets the scale of network nodes
as 100 and takes d1 = 0.3, d2 = 0.7, β = 0.1, γ = 0.2. Through practical operations, this paper
finds that after 400 interactions, the individual’s attitude will tend to polarize with the
surrounding environment, and their attitude value will gradually shift to the two extreme
directions of −1 and 1. However, some individuals will still maintain their original attitude.
Furthermore, some individuals will constantly adjust their attitude value in the range of
−1 to 1 to achieve a balanced state by adapting to the external environment. Specifically, in
the process of attitude evolution, the quantitative distribution of different attitude values
under different interaction times is shown in Figure 2 below:

 
(a) (b) 

 
(c) (d) 

Figure 2. Quantitative distribution of attitude values under different interaction times.

In the initial state, time = 0: the individual attitude value distribution diagram is
shown in Figure 2. The abscissa in the diagram represents the individual attitude value,
and the ordinate represents the number of individuals corresponding to the attitude value.
The simulation results show that in the initial state, the individual attitude value is relatively
scattered and evenly distributed. In the initial state, individuals in the group hold their
views on events, and there is no clear view of which is right or wrong, or there is a relatively
unified opinion. Everyone makes judgments and forms attitude values purely through
their views on events. Therefore, in the early stage of event development, there will be no
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obvious extreme phenomenon in the attitude value of the group towards an event. With
continuous interaction between individuals, when the time is 50, 100, and 400, the attitude
value of individuals begins to show a differentiation trend. The specific simulation results
are shown in Figure 2.

The number of individuals with a neutral view decreases, while the number of indi-
viduals close to 1 and −1 attitude values increases. These changes can obviously show a
polarization phenomenon. In the process of increasing the number of interactions, it can be
found from the four simulation results that the attitude distribution diagram presented in
Figure 2 has been relatively stable. Even a few individuals did not change their attitude
values. This paper lists two reasons:

(1) The low conformity of individuals leads to the failure to reach the threshold of R > 1
set by the model. Therefore, the attitude value of other individuals has not influenced
them, so their attitude value has been maintained as their initial attitude value.

(2) Due to the network structure, the gap between the positive and negative sides is very
close, making it difficult for the individual to make a choice under the influence of
this evenly matched environment. As a result, a few individuals remain neutral from
beginning to end, so they never change their attitude value.

In a real event, after each event is polarized, some people will always define the
event according to their judgment to maintain their original point of view. Similarly, some
individuals will hold a wait-and-see attitude because they cannot understand the truth
of the event. However, as the simulation results show, driven by herd mentality, most
individuals actively choose an extreme point of view to stand in line, which shows that
most individuals show a phenomenon of joining the powerful party to seek security in the
face of group events to avoid isolation.

5. An Empirical Case

In this paper, the public opinion polarization model based on the BA network is
used to predict the trends in public attitudes towards network events. Based on the 4.1
simulation study, this paper selects the network event of “Hua Chenyu and Zhang Bichen
having children unmarried” as a research sample to predict the attitude of online groups.
The original data of the case sample is shown in Table 2.

Table 2. Case Sample Public Raw Attitude Values.

Interval Count Interval Count Interval Count Interval Count

(−1.0,−0.9] 972 (−0.5,−0.4] 488 (0.0,0.1] 551 (0.5,0.6] 549
(−0.9,−0.8] 633 (−0.4,−0.3] 538 (0.1,0.2] 680 (0.6,0.7] 1399
(−0.8,−0.7] 608 (−0.3,−0.2] 521 (0.2,0.3] 541 (0.7,0.8] 768
(−0.7,−0.6] 514 (−0.2,−0.1] 507 (0.3,0.4] 658 (0.8,0.9] 849
(−0.6,−0.5] 519 (−0.1,0.0] 1511 (0.4,0.5] 690 (0.9,1.0] 3083

Data source: Zhang Bichen’s long article posted on Weibo at 17:51 on 22 January 2021.

On 21 January 2021, an unknown netizen broke the news on the Internet: a top male
star in the entertainment industry married and had children, the woman was also an
insider, and the child was registered when he was one year old. Another netizen revealed
that the male star was Hua. On the same day, Hua’s cousin posted a denial. At 17:45
on 22 January 2021, Hua admitted to having a child with Zhang. At 17:51, Zhang also
confirmed this by posting a long article on Weibo under his real name.

The incident of “Hua and Zhang having a child out of wedlock” caused an uproar
on the Internet. With the continuous revelation of news related to the incident, netizens
had a heated discussion, and the public view gradually became distinct and polarized.
In this paper, the BA network simulates the state of a real social network, and we use
the polarization model of public opinion to simulate and predict the evolution of this
event. Through web crawlers, this article obtained the original data set of public attitudes
under Zhang’s long post on Weibo at 17:51 on 22 January 2021. In this paper, Python
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NLP natural language processing and machine learning are used to obtain 16,579 valid
data, thereby determining the size of the instance network nodes. According to the actual
situation of the case, this paper determines that the assimilation degree coefficient is 0.005,
the repulsion degree coefficient is 0.01, the assimilation effect band distance is 0.3, and
the repulsion effect band distance is 0.7. Based on existing stop word rules and machine
learning recognition methods, this article assigns a positive or negative attitude value to the
initial valid comment. With the soaring heat of the incident, the matter has aroused heated
discussion among the public. In the environment of constantly revising the direction of
public opinion, the views of network individuals collide, resulting in different degrees of
change in their attitudes. This article regards this transformation as a process of individual
interaction. Based on the polarization model of public opinion based on the BA network,
this paper simulates the process of the collision of individual views on a network and
predicts the value of public attitude after the occurrence of 10, 50, 100, and 400 such
situations. The forecast statistics are shown in Table 3.

Table 3. Polarization predictions of public attitude values after interaction.

Time

Attitude Value
(−1.0,−0.9] (−0.1,0.0] (0.0,0.1] (0.9,1.0]

10 1570 972 1113 3477
50 2926 976 1152 4121

100 3058 965 1154 4230
400 3071 913 954 4269

We captured 16,579 valid comments from Zhang’s statement at 17:51 on 22 January 2021.
Figure 3 is valid comments from eight hours after the long article was published. This
paper uses certain rules to assign different attitude values to different comments, and the
distribution of individual attitude values is shown in Figure 3. The original public attitude
value from the case sample was analyzed as follows: 2062 people held a neutral attitude
towards the incident, and 4055 people held an absolute positive or negative attitude. At this
time, the distribution of public attitude values was relatively even. Network individuals
expressed their opinions on the event, and there was no obvious polarization tendency in
network public opinion and no clear and unified view. For the incident, many network
users still held a wait-and-see attitude and looked forward to the follow-up development
of the event; at the same time, there were also a considerable number of netizens who held
a “blessing” support attitude or a “not optimistic” opposition attitude.

Based on the model above, the prediction results of the attitude value distribution of
the sample dataset after different interactions are shown in Figure 4. After 5 h, 1 day, 2 days,
and 8 days of simulated interaction, the polarization trend of public attitudes gradually
became obvious, and the number of neutral network individuals began to decrease. From
the forecast results, it can be seen that from the beginning of Zhang’s statement at 17:51
on 22 January 2021 to 8 days after the statement was released, the proportion of network
users with an absolute positive or absolute negative attitude rose from 24.46% to 44.27%,
while the proportion of neutral internet users decreased from only 12.44% to 11.26%.
Obviously, the proportion of network individuals who show an absolute attitude has
increased significantly, and the polarization trend of network public opinion has become
more and more obvious, while the numbers of netizens who indicate a neutral attitude
has remained at a low level, and the range of changes is small. With the clarity of the
incident, the views of netizens have become more distinct. However, there are still some
who hold a neutral attitude, such as “eating melons”, and do not express personal views
with a clear attitude.
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Figure 3. Distribution of public raw attitude values.

  
(a) (b) 

 
(c) (d) 

Figure 4. Prediction of attitude value distribution under different interactions.

From the prediction results of attitude value distribution, it was found that with
the continuous occurrence of interaction, the growth rate of the proportion of network
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individuals with an absolute attitude is from fast to slow, while the proportion of someone
with a neutral attitude does not change much. From the simulated interaction results of the
four time nodes of 5 h, 1 day, 2 days, and 8 days, it can be seen that from the beginning of
Zhang’s long article at 17:51 on 22 January 2021 to one day after the incident, the growth
rate of the proportion of users who showed an absolute attitude increased from 24.45%
to 39.64%, and after the incident, the growth rate slowed down from 39.64% to 0.71%.
In summary, after one day of simulated interaction, the trend of the attitude distribution
map stabilized.

Individuals participating in the evolution of network public opinion have the charac-
teristics of subjective judgment and labeling processing, as well as passive acceptance and
loss of subjectivity. There are countless exchanges of opinions between individuals, which
eventually form group behavior, and individual behavior is affected by group behavior. The
phenomenon of polarization of online groups mostly occurs in the field of opinions, and
the result is mostly that the views are further differentiated and opposed, and the opposing
parties continue to strengthen their views in the group discussion, and it is obvious that
they cannot merge. At the same time, when a person is in a network group with similar
interests or views as a link, he will exchange common ideas and understandings with other
members of the group or constantly look for views like his, trying to obtain psychological
comfort and strengthen his original concepts.

6. Conclusions

6.1. Summary

In order to explore the propagation structure of online public opinion and analyze the
logic of extreme public opinion in the social context of the big data era and the developed
self-media network, we constructed a BA network model, simulated and analyzed the trend
of public attitudes toward online events and the polarization mechanism of individual
attitudes, verified the propagation mechanism and polarization prediction law of online
public opinion through experiments, confirmed the validity of the BA model, and obtained
the following conclusions through simulation experiments.

(1) Individuals’ attitudes toward public opinion are related to their surroundings. When
an individual’s attitude changes toward an event, it is often due to the influence of
other perspectives in communicating with other individuals. Through the J–A model,
we can understand that the value of an individual’s attitude at a particular moment
depends on their attitude and the surrounding environment at the last moment. Based
on this principle, we investigated the specific changes in attitude values.

(2) The discrimination of attitudinal values depends on distance. Based on the difference
in attitude values, the model specifies interaction rules to determine the attitude
preference for the next moment. However, there are different positive effects between
two individuals. The degree of influence is also inconsistent between individuals. It
is worth discussing in what form the surrounding environment impacts the individ-
ual. The J–A model provides an idea. We consider parameters such as individual
followership, the strength of network relationships, etc., and assign the correspond-
ing values by specific rules. To obtain the final polarization algorithm, we need to
combine the law of related network distribution and choose the BA network as the
agent adjacency model.

(3) The group communication behavior between individuals makes the opposing sides
continuously reinforce their views and gradually form the polarization of online
opinions. The evolutionary results show that there is a clear polarization phenomenon
at the beginning of the evolutionary stage. As the polarization process proceeds, the
fluctuations level off, and the level of inter-individual following is low. It fails to reach
the influence threshold, causing the attitudes of several individuals to stay in the initial
state. Moreover, the difference in network structure makes the change of individuals
always within a local interval, even when some individuals have difficulty making
a choice and remain neutral. With the deepening of polarization, the proportion of
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network individuals with absolute attitudes increases significantly, and the trend
of polarization of double-linked opinions becomes more and more obvious. On the
other hand, the proportion of Internet individuals who expressed neutral attitudes
remained low and slightly changed. With the development of the event, the Internet
users’ ideas about the event become more and more distinct. Based on the results
of this simulation, we give policy recommendations and discuss the problems in the
experimental process in the following sections.

6.2. Policy Recommendations

With the prevalence of the trend of network intelligence and the expansion of network
coverage, the predicament of information blocking has changed, and human networked
society has risen rapidly. At the same time, a large amount of true and false information
causes confusion, and false information spreads to the public, misleading moral values,
laying down hidden danger for the maintenance of a harmonious environment for online
public opinion. The government should take timely measures for the real-time, changing,
networked environment to create a just and harmonious network environment for citizens
and eradicate some unsettling hidden social dangers. To better cope with the polarization
of network public opinion, this paper puts forward the following suggestions:

(1) Improve the public opinion monitoring mechanism and build a harmonious net-
work order

Internet public opinion is easy to use to guide the views of the masses, and if it is
not properly supervised, it is easy to mislead the masses. Even the evolution of online
public opinion may cause the masses to fall into a vicious circle of emotional or even group
polarization. At the same time, freedom of speech on the Internet promotes the interaction
of people’s information and the collision of thinking and produces a situation in which false
information and misinformation affect the emotions and thoughts of viewers to achieve
the publisher’s personal, bad goals. Therefore, the normality of online public opinion
requires the cooperation of a strong monitoring mechanism to ensure the safety and order
of cyberspace to some extent.

Although there are some online information reporting platforms, the government’s
use of them is inefficient, and even the processing and feedback of reporting information is
not timely. The government should further improve the monitoring mechanism of network
public opinion, not only relying on computer keyword recognition and big data processing
technology but also mobilizing social forces to help network monitoring. Reporting infor-
mation is more accurate than keyword recognition technology. Only by screening false
information and reasonably guiding the direction of public opinion can some netizens who
have difficulty judging information be protected and not misled or suffer some losses due
to being deceived. The government actively participates in the governance of cyberspace.
It will contribute to the harmonious co-construction and sharing of the network.

(2) Rebuild the accountability mechanism for public opinion and crackdown on on-
line anomie

Every occurrence of online public opinion polarization is a test of the government’s
credibility. Whether the government’s accountability mechanism is sound and whether
other aftermath measures are appropriate and timely will affect the government’s image.
As a public servant of the people, the government should actively investigate disharmo-
nious factors or improper regulation by the government itself after the negative impact of
online public opinion and safeguard the legitimate interests of the people. Only in this way
can the credibility of the government be maintained.

The reconstruction of the network public opinion accountability mechanism is a
necessary part of the government’s governance of the network environment. Relevant
government departments can start by conducting satisfaction surveys on network individ-
uals related to the governance of the network environment. Through this post-mortem
investigation, the government can clarify its image positioning in the eyes of the public and
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understand its own problems. Only when the crisis is handled properly and the masses are
satisfied will the negative influence of online public opinion be weakened, and the rebound
will be avoided. At the same time, relevant government departments should also be held
accountable for illegal acts that maliciously affect public order and damage the interests
of others. Only by thoroughly cracking down on online anomie can we give a warning to
criminals and, at the same time, put an end to attempts to conduct anomie because of luck.

(3) Guide netizens’ values and transmit positive energy of public opinion

Internet public opinion has both positive and negative effects, and in the contemporary
era, when the Internet closely links everyone, positive and negative emotions are more likely
to spread and affect the public. Therefore, it is particularly important to guide netizens’
values in a timely and positive manner and transmit positive energy of public opinion.

For different network groups, different measures should be taken to guide and pass
on the “right medicine”. Neutral internet users with many fans and high membership
levels not only have a stable stance but also have a relatively large fan base, a high degree
of activity, and a strong potential to control public opinion. Therefore, such network users
can be used as a key group for public opinion dissemination guidance and polarization
intervention, and the background of social platforms should increase efforts to maintain key
groups, promote content that is conducive to guiding the development of netizens’ values in
a positive direction, and transmit positive public opinion. For some network users who pay
less attention to hot events because their sources of information are relatively closed and
single and passive, they can push comprehensive information to this group in a targeted
manner, which helps the group form an objective and comprehensive understanding
of hot events. At the same time, increasing the frequency of pushing positive content
to enhance the positive experience of network users helps to transmit positive public
opinion. In addition to paying attention to the above two parts of network users, high-
impact and highly active groups can be found through background big data, and advanced
technology can be used to seize the opportunity of positive information exposure and play
and enhance leadership.

(4) Enhance the image of the government and maximize the interests of society

Internet public opinion is usually inextricably linked to civil rights, people’s livelihood,
and real society and the problems it exposes or the focus of discussion are related to this.
Therefore, the government plays an important role in the management of network public
opinion, which is conducive to enhancing the image and playing a more decisive role in
maximizing the interests of society.

The government can use advanced technology and big data platforms to strengthen
the management of the two major sources of information dissemination, official media
and self-media. First, to standardize the operation and management mechanism of official
media, we should put social benefits in the first place, standardize and restrain professional
journalists, and correct the one-sided pursuit of traffic realization by some bad official
media; at the same time, increase support for official media in terms of policies, funds
and talent introduction. Second, through the public or industry associations to regulate
the development of self-media in the right direction, guide them to carry out activities to
produce and disseminate positive energy information, and create a positive atmosphere of
public opinion and emotion among the public.

The government focuses on governing online public opinion to further consolidate its
position and enhance its image. At the same time, in the process of standardization and
guidance, the interests of all parties maximize social interests after the game.

This paper discusses the extreme model of public opinion based on the BA network,
enriches the theory and method of polarization of online group attitudes, and predicts
the network public opinion of hot events through empirical analysis, providing practical
guidance for the intervention and guidance of network public opinion, which is of great
significance for promoting the modernization of national governance capabilities.
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6.3. Limitations and Future Research Directions

The present study has limitations in some respects. First, the model is a poor fit for
the phenomenon of group attitude reversal. Internet public opinion changes rapidly, and
as events develop, the final direction may not always be consistent with the initial state.
People’s attitudes will undergo drastic shifts in the process, which is often difficult to
simulate by polarization models. Later, we will enrich and extend the model to address the
conditions and trends of public opinion reversal. Second, the example simulation process
includes only one public opinion event with a small sample size. This study can conduct
practical simulation experiments by collecting different events and a larger sample size.
By simulating multiple occasions, we can effectively improve the model’s generalizability.
Third, there is some bias in analyzing attitude values during the experiment. This study
uses a machine-learning algorithm to assign attitude values to event comments. It is crucial
to extract group attitudes from the text effectively. The algorithm’s limitations primar-
ily influence the encoding operation of the training set. If the algorithm can accurately
extract attitude values from buzzwords, expressions, and punctuation, the error of the
model will be significantly reduced. There is still room for improvement in the example
algorithm piece.

Author Contributions: Conceptualization, T.C.; data curation, R.Z.; formal analysis, Y.Z.; software,
W.D.; visualization, Y.Y. (Yuanyuan Yu); writing—original draft, Y.Y. (Yuanjian Ye). All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Zhejiang Provincial Natural Science Foundation of
China (Grant No. LY22G010003), the 2020 National Innovation and Entrepreneurship Training
Program (No.202010353008), the 2020 Science and Technology Innovation Activity Program for
College Students and New Seedling Talent Program of Zhejiang Province (No.2021R408050), and
the 2019 University-level College Student Innovation and Entrepreneurship Project of Zhejiang
Gongshang University (No.CX202002021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jager, W.; Amblard, F. Uniformity, bipolarization and pluriformity captured as generic stylized behavior with an agent-based
simulation model of attitude change. Comput. Math. Organ. Theory 2005, 10, 295–303. [CrossRef]

2. Barash, V.; Cameron, C.; Macy, M. Critical phenomena in complex contagions. Soc. Netw. 2012, 34, 451–461. [CrossRef]
3. Li, Z.; Tang, X. Threshold model of collective action. J. Syst. Sci. Math. Sci. 2014, 34, 550.
4. Gabbay, M.; Kelly, Z.; Reedy, J.; Gastil, J. Frame-induced group polarization in small discussion networks. Soc. Psychol. Q. 2018,

81, 248–271. [CrossRef]
5. Chen, T.; Rong, J.; Yang, J.; Cong, G. Modeling Rumor Diffusion Process with the Consideration of Individual Heterogeneity: Take

the Imported Food Safety Issue as an Example during the COVID-19 Pandemic. Front. Public Health 2022, 10, 781691. [CrossRef]
[PubMed]

6. Barabasi, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef] [PubMed]
7. Tao, L.; Zhong, C.; Chen, X. Overview of Rehydration Network Theory and Application Research. Syst. Eng. 2005, 23, 1–7.
8. Chen, T.; Yin, X.; Yang, J.; Cong, G.; Li, G. Modeling Multi-Dimensional Public Opinion Process Based on Complex Network

Dynamics Model in the Context of Derived Topics. Axioms 2021, 10, 270. [CrossRef]
9. Zhou, T.; Bai, W.J.; Wang, B.H.; Liu, Z.J.; Yan, G. A brief review of complex networks. Physics 2005, 34, 31–36.
10. Wang, G. Dynamic Model and Simulation Analysis of Group Polarization of Online Public Opinion. J. Intell. 2012, 3, 20–24.
11. Chen, T.; Jin, Y.; Yang, J.; Cong, G. Identifying emergence process of group panic buying behavior under the COVID-19 pandemic.

J. Retail. Consum. Serv. 2022, 67, 102970. [CrossRef]
12. Wang, F.; Zhang, S.; Wei, Y. Simulation of the Dynamics of Group Polarization Phenomenon in Online Public Opinion and

Strategies for Regulating It. Police Technol. 2017, 4, 37–40.

34



Systems 2022, 10, 46

13. Zhang, J.; Zhang, Y.; Zhao, F. Inter textuality: An Energy Logic Model for the Generation, Diffusion and Polarization ofSelf-media
Network Public Opinion. Inf. Sci. 2020, 38, 3–9.

14. Hatton, T.J. Public opinion on immigration in Europe: Preference and salience. Eur. J. Political Econ. 2021, 66, 101969. [CrossRef]
15. Heizler, O.; Israeli, O. The identifiable victim effect and public opinion to ward immigration; a natural experiment study. J. Behav.

Exp. Econ. 2021, 93, 101713. [CrossRef]
16. Blake, K.D.; Gaysynsky, A.; Mayne, R.G.; Seidenberg, A.B.; Kaufman, A.; D’Angelo, H.; Roditis, M.; Vollinger, R.E., Jr. US public

opinion to ward policy restrictions to limit tobacco product placement and advertising at point-of-sale and on social media. Prev.
Med. 2022, 155, 106930. [CrossRef] [PubMed]

17. Chen, T.; Peng, L.; Yang, J.; Cong, G.; Li, G. Evolutionary Game of Multi-Subjects in Live Streaming and Governance Strategies
Based on Social Preference Theory during the COVID-19 Pandemic. Mathematics 2021, 9, 2743. [CrossRef]

18. Chen, T.; Qiu, Y.; Wang, B.; Yang, J. Analysis of Effects on the Dual Circulation Promotion Policy for Cross-Border E-Commerce
B2B Export Trade Based on System Dynamics during COVID-19. Systems 2022, 10, 13. [CrossRef]

19. Chen, T.; Peng, L.; Yin, X.; Jing, B.; Yang, J.; Cong, G.; Li, G. A policy category analysis model for tourism promotion in china
during the COVID-19 pandemic based on data mining and binary regression. Risk Manag. Healthc. Policy 2020, 13, 3211. [CrossRef]
[PubMed]

20. Fang, J.; Wang, X.; Zheng, Z.; Bi, Q.; Di, Z.R.; Xiang, L. New Interdisciplinary Science: Network Science. Prog. Phys. 2007, 27, 239.

35





Citation: Koponen, I.T. Agent-Based

Modeling of Consensus Group

Formation with Complex Webs of

Beliefs. Systems 2022, 10, 212.

https://doi.org/10.3390/

systems10060212

Academic Editors: Philippe Mathieu,

Juan M. Corchado, Alfonso

González-Briones and Fernando De

la Prieta

Received: 11 October 2022

Accepted: 8 November 2022

Published: 9 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Agent-Based Modeling of Consensus Group Formation with
Complex Webs of Beliefs

Ismo T. Koponen

Department of Physics, University of Helsinki, 00014 Helsinki, Finland; ismo.koponen@helsinki.fi

Abstract: Formation of consensus groups with shared opinions or views is a common feature of
human social life and also a well-known phenomenon in cases when views are complex, as in the case
of the formation of scholarly disciplines. In such cases, shared views are not simple sets of opinions
but rather complex webs of beliefs (WoBs). Here, we approach such consensus group formation
through the agent-based model (ABM). Agents’ views are described as complex, extensive web-like
structures resembling semantic networks, i.e., webs of beliefs. In the ABM introduced here, the agents’
interactions and participation in sharing their views are dependent on the similarity of the agents’
webs of beliefs; the greater the similarity, the more likely the interaction and sharing of elements
of WoBs. In interactions, the WoBs are altered when agents seek consensus and consensus groups
are formed. The consensus group formation depends on the agents’ sensitivity to the similarity of
their WoBs. If their sensitivity is low, only one large and diffuse group is formed, while with high
sensitivity, many separated and segregated consensus groups emerge. To conclude, we discuss how
such results resemble the formation of disciplinary, scholarly consensus groups.

Keywords: consensus groups; agent-based model; web of beliefs

1. Introduction

The formation of groups with shared beliefs, opinions, and views has been and contin-
ues to be a topic of great interest, discussed in sociology, political science, communication,
and organizational science, as well as studies focusing on structure of science (see, e.g., [1–5]
for the diversity of topics and areas of studies). In all these cases, one key issue is to un-
derstand the dynamics which drive the segregation and consolidation of groups, even
in conditions where communication and sharing of beliefs is common and frequent (for
reviews, see [3–5]).

The computational modeling of opinion group formation [5–7], the formation of collab-
orative groups and collective decision making [2,8,9], as well as disciplinary fragmentation
and progress in science [10], has shed light on the social dynamics behind group formation,
segregation, and consolidation, often revealing the unexpectedly simple but self-reinforcing
interactions behind such complex phenomena. Consequently, consensus group formation
and opinion adoption, and their change and evolution, have been modeled using a variety
of idealized models, many of them founded on one or another theoretical view about social
influence and interaction or social learning, some of them being computational renderings
of empirical findings. The models of opinion dynamics are as diverse as are the their
theoretical underpinnings and intended scopes of applications. However, many of the
models of opinion dynamics, where formation of consensus groups is of interest, can be
classified in three groups [3]: (1) models of assimilative social influence; (2) models with
similarity biased influence, and; (3) models with repulsive influence. In addition, it is possi-
ble to recognize models that are hybrids of these three classes [3]. Different well-known
models in each class, their theoretical background and motivation, and most well-known
computational implementations and empirical applications and justification (when it exists)
are reviewed in detail elsewhere [3–5], and therefore we provide here only a brief summary
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of the most important aspects of models with similarity bias to the extent needed to put in
perspective the model introduced here.

Models with similarity bias do not assume a structurally fixed connection between
agents, but instead, agents can interact if they have sufficiently similar opinions (or beliefs)
or if they are sufficiently similar regarding some other pertinent feature. If the similarity
(opinions or other preferred feature) is too distant, interactions are no longer possible.
Such a threshold of interaction can be interpreted as a confidence to interact and modify
one’s opinion and can be assumed to arise from a variety of psychological or sociological
reasons [3–5]. Therefore, many similarity bias models are referred to as bounded confidence
models [11,12] owing to the existence of a kind of a confidence threshold to interact. These
models typically give rise to persistent opinion clusters, where agents are similar and
dissimilar to agents in other clusters. In these models, the cluster formation is an outcome
of similarity bias homophily; the more stringent the threshold for required similarity, the
more numerous are the segregated non-interacting clusters. In most bounded confidence
models, the threshold is sharp and deterministic, and stochastic variation is included by
adding a stochastic noise [11,12]. Interestingly, the addition of noise may fundamentally
affect the consensus cluster formation [3–5]. The role of noise and its non-trivial effects
in deterministically thresholded bounded confidence models suggests that to model the
bounded regions of interactions due to similarity bias, genuinely stochastic and probabilistic
rules to decide whether or not the interactions happen are sometimes preferable [13,14].
Finally, important and interesting recent generalizations of bounded confidence models are
models where opinions or beliefs are multidimensional [15–17], or in one way or another,
more complex structures of beliefs and related opinion elements [2,7,9,18]. Such models
allow more realistic modeling of complex opinions, give rise to richer dynamics than one-
dimensional bounded confidence models, and, moreover, the emerging clusters of opinions
are in these cases more diverse than those found in one-dimensional models.

Paralleling the above briefly summarized recent generalizations of similarity-biased
models of consensus formation, the agent-based model (ABM) proposed here is meant
to be another step towards generalizations applicable to model complex sets of beliefs,
where interactions between agents and dynamics of the change in beliefs are modeled as
a genuine stochastic process. The model, however, adopts the simple view where agents
modify their views by acquiring and accommodating their sets of views present in to a
collection of all agents; no new elements emerge.

The ABM proposed here, given its restriction to describe the creation of new elements
of opinion beliefs, and instead describing the evolution of consensus groups with complex
sets of beliefs, has two possible areas of applications. One area of interest is the formation
of disciplinary scholarly groups and schools, along with their characteristic ways of using
scientific terms and forming various research programs [19–22]. Research fields always
contain disciplinary groups where key scientific terms differ, and the same terms may
be used differently in discussing and framing the key problems within the field [21,22].
In this case, within the established paradigms of research, new disciplinary groups are
often formed within the existing fields. Such strong disciplinary fragmentation seems to be
particularly apparent and typical in the human and behavioral sciences [23–25]. Another
situation of interest, where the creation and generation of new knowledge is not necessarily
of primary interest, but where differing disciplinary views about thematic topics can be
recognized, is related to the disciplinary views of science education scholars [26,27] as well
as science students, where student groups may have consensus views that differ from those
of other student groups views, even when they have used the same study materials [28,29].
To address situations in which the knowledge or meaning structures of interest are complex
systems of terms, concepts, or conceptions characteristic of the disciplinary group, it seems
appropriate to use the expression “webs of beliefs” (compare e.g., ref. [30]), to be referred
to briefly as WoBs in what follows. In this study, we approach such a disciplinary group
formation through convergence and consolidation of WoBs, where the dynamics are driven
by similarity and consensus seeking, without posing explicit bounds of confidence to
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constrain interactions (as in so-called bounded confidence models, [1–3]). In the ABM
presented here, agents possess generic WoBs in the form of a complex network. Agents
compare their WoBs and exchange bits and pieces of them, guided by similarity-seeking
dynamics (i.e., homophily). The comparison-triggered adjustment of WoBs leads to their
convergence but also divergence, and thus to the formation of segregated disciplinary
consensus groups. The model is highly idealized, generic, and simple, but as discussed
in the final section, it has features that resemble the real situations of disciplinary group
formation. Thus, the model presented here is a first attempt towards agent-based modeling
of consensus group formation where views and opinions are complex webs of beliefs.

2. Materials and Methods

The computational model presented here is an agent-based multi-optional model for
the formation, consolidation, and segregation of consensus groups based on agents’ webs
of beliefs (WoBs). The dynamics of the model are driven by agents’ repeated comparison
of their WoBs, guided by the utility of adjusting the WoB for better mutual similarity. We
describe first the constructions of agents’ WoBs, second the multi-state probabilistic model
of selection of partners for comparison, and third, update dynamics for the change in WoBs.
Simulations are carried out using an event-based roulette-wheel method [31,32]. Symbols
and their meaning in the study are summarized in Table 1.

Table 1. Summary of symbols and abbreviations used recurrently in the text and figures. In the
sub-indexes, ξ and γ refer to a pair of agents, Ens. avrg. denotes ensemble averages, and Dim[{ · }]
refers to a dimension of set.

Symbol/Abbreviation Symbol/Abbreviation

{e} Set of edges (E = Dim[{e}]) P± Prob. to add/delete elements
{v} Set of vertexes (V = Dim[{v}]) β Sensitivity to similarity
Pξγ Probability of interaction β∗ Confidence to add/delete
Sξγ Similarity function N Ens. avrg. of cluster number
SE Similarity, edges R Ens. avrg. of relat. occupancy
SV Weighted adjac. matrix S Ens. avrg. of similarity
Δ± Utility to add/delete elements H Entropy of cluster distribution

2.1. Model of Webs of Beliefs (WoBs)

The WoBs of interest, which mimic real scholarly conceptual or semantic structures,
can be characterized as complex in the sense that they consist of several elements (vertexes
or nodes) connected (by edges or links) in complex ways to their other elements. Such
WoBs have a distribution of vertexes with broad difference in their connectivity; some
vertexes have a high connectivity, while many are loosely connected (see e.g., [28,29,33,34]).
Consequently, appropriate WoBs can be characterized as sparse complex networks with
about 100 vertexes, with low average degrees of about 3 or 4 but with very few nodes
having larger degrees up to 10.

Generic initial WoBs of agents are obtained by sampling a larger template network
with desired properties, generated by a generative model previously introduced to produce
networks with broad distributions of connectivities of vertexes [35]. In constructing the
generic networks, they are pruned by removing auxiliary vertexes possessing only one
edge, so that to only two cores (nodes with at least two edges) are taken into account. The
template network has approximately 200 vertexes (i.e., nodes) and 400 edges (i.e., links),
with the degrees (i.e., number of attached links) of the vertexes distributed according
to inverse power law, with an inverse power close to 3.0 (see Appendix A for details of
rationalization of this choice). With these parameters, the average degree of vertexes is
about 3 to 4, with very few vertexes having a degree of about 8 to 12. From the template
networks, a set of initial edges E0 = 120± 20 are drawn at random, and connected networks
(discarding unconnected parts) are formed to serve as individual WoBs for each agent.
With these choices, WoBs contain about 40–100 vertexes (in some rare cases only about 20)

39



Systems 2022, 10, 212

and are always sub-networks of the template. The WoBs thus obtained from the template
are stochastically generated and have in each case a slightly different detailed structure.
The details of the generative model, briefly summarized in Appendix A, are reported
elsewhere [35] and are of no further interest here.

2.2. Interaction Dynamics of Agents

The interaction between agents in the agent-based model (ABM) introduced here
comprises N agents, where one agent ξ selects an agent γ to interact among N − 1 other
agents. The selection is based on the similarity Sξγ of lexicons between the agents. The
probability Pξγ that agent ξ selects agent γ is assumed to follow the (Gibbs-like) probability
distribution (compare with refs. [36–38])

Pξγ =
Sξγ exp

[
β Sξγ

]
∑i �=ξ Sξi exp

[
β Sξi

] , ξ �= γ (1)

where β is a parameter related to the sensitivity to similarity, with β < 1 (here, in practice
β ≈ 1) indicating low sensitivity (i.e., high noise or randomness) and β � 1 high sensitivity
(i.e., low noise or randomness). The prefactors in Equation (1) ensure that at the limit
β → 0, the decision probabilities attain values corresponding to the ordinary rational,
non-probabilistic choice (for details, see [37,38]).

The similarity of the agents is defined simply as the ratio of the number of shared
elements (vertexes and edges) to all elements. Denoting the set of elements as {X} = {v}
for vertexes and {X} = {e}, the similarity of agents ξ and γ based on either edges or
vertexes is given simply as a ratio of non-shared to shared elements,

Sξγ [X] =
Dim[ {X}ξ ∩ {X}γ ]

Dim[ {X}ξ ∪ {X}γ ]
, (2)

where X denotes either edges (e) or vertexes (v) and Dim[ ·] means dimension (number of
elements) in a given set. In defining the similarity, we chose to keep it symmetric and as
simple as possible, although more elaborate definitions are possible, for example, taking
into account the role of asymmetry and different number of non-shared elements. However,
the definition of similarity is always a matter of choice, and no unambiguous definition
seems to be possible because choices need to be made about what features are taken into
account in similarity, as discussed in detail in, e.g., ref. [39].

We assume that both vertex and edge similarities need to have high values for a high
similarity, and thus, in the effective similarity used in simulations, the effective similarity is
taken as a geometric mean of vertex and edge similarities.

Sξγ =
√

Sξγ [e] Sξγ [v] (3)

This choice of defining the similarity is a trade-off between simplicity and taking
enough detail into account to characterize the WoBs. Here, given the generic nature of the
WoBs, a simple symmetric similarity Sξγ = Sγξ based on the counting of elements and
constrained in the range of values from zero to one is satisfactory for the present purposes.
In fact, we tried out more elaborated similarity definitions, but in the present ABM, they
had little effect on the final results.

The selection criterion in Equation (1) with similarity defined as in Equation (2) prefers
similar agents (i.e., homophilic preference) and, in that sense, it closely resembles the
selection criteria in bounded confidence models and their variants [1,3], where homophilic
cut-off criterion constrains the possibility of interactions. The present model, however,
belongs to a class of probabilistic similarity-biased models [3,13], where no interaction
possibilities are ruled out a priori, but partners with high similarity are prioritized.
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2.3. Updating the WoBs

In the interaction events, agents update their WoBs, seeking to improve their consensus.
When agent ξ has decided on the partner γ it will interact with, the update of WoBs for
optimized communication takes place in two steps. First, agents ξ and γ pick out a common
vertex, which is a center element in their interaction (i.e., shared term or concept for their
belief). Second, they check the neighborhood of that selected vertex and check the number
of available new edges to neighborhood vertexes their partner possesses but the agent itself
does not yet possess (i.e., possible new elements and connections the agent can acquire
to adopt a new edge and possibly a new vertex connected to it). Both agents have then
two choices of how to increase mutual similarity: either to add a new edge, or to delete
an edge not possessed by the interaction partner. The decision to add or delete an edge is
made on the basis of the utilities, based on the changes in the similarity, which are taken to
be changes in similarity by addition or deletion of an edge or a vertex (contained in the
neighborhood of the common vertex). The advantage of such a simplified procedure is
that utilities of addition can be estimated through changes in similarities, when number
of elements for one agent changes while remaining intact for the other agent. Now, four
possibilities are available, either agent γ changes its WoB or agent ξ does, but only one
event happens at a time. In both cases, however, the changes are computable as a difference
Δ±[X] = S[X± 1]− S[X] for addition (+) and deletion (−), respectively, where indexes
referring to agents are dropped because of symmetry in regard to the agents. For faster
computation, the differences are approximated by the first linear terms, which are obtained
through direct calculation, in the form

Δ+[X] = (1− S[X]) Dim[ {X}ξ ∪ {X}γ ]−1 (4)

Δ−[X] = S[X] Max[1, Dim[{X}C
ξ ] + Dim[{X}C

γ ]]
−1 (5)

where X denotes either vertexes or edges and notation {·}C complements of sets. Note that
in all expressions containing S and Δ± or related to them, indexes referring to agents are
dropped in what follows. In Equation (5), the minimum value allowed in the denominator
is 1, in order to prevent division by zero (this occurs rarely and has no consequences on
results). In case only an edge is added/deleted but no new vertex becomes added/deleted,
utilities are simply for edges (X = e). In the case that the added/deleted edge contains a
new vertex, the effective utility Δ± corresponding to addition (+) or deletion (−) of a vertex
and its neighborhood is taken to be the geometric average of utilities for X = e and X = v.

Δ± =
√

Δ±[e] Δ±[v] (6)

Probabilities of addition and deletion are then given as

P± = Z−1 Δ± exp[ β∗ Δ±] (7)

where parameter β∗ has the role of confidence of the decision to add or delete on the basis
of utility. The factor Z = Δ− exp[ β∗ Δ−] + Δ+ exp[ β∗ Δ+] is the normalization factor. The
rationalization to include prefactors is similar to the case of probability in Equation (1)
selecting the partner for interactions. The choice is always between addition and deletion;
staying intact (which is not counted as an event) is not included. This is related to the
choice that simulations are event-driven; only events that make a difference (i.e., change
the state of the agent) are taken into account. Note that in each interaction event, only one
outcome of the four possibilities is allowed.

2.4. Simulations

Simulations of the ABM are based on the probabilities of selection Pξγ in Equation (1)
an P± in Equation (7), with each event of an agents’ interaction consisting of both updates.
Simulations are event-based, consisting of sequences of events τ = 1, 2, . . . τMAX events. At
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each instant, when the value of τ increases by 1, it is decided: (1) which agents are going
to interact and (2) whether an edge (and possibly, a vertex) is added or deleted. Each of
the event selections is carried out by the roulette-wheel method [31,32]. In the roulette-
wheel method, a discrete set of N possible events k with probabilities pk is arranged with
cumulative probability

Φk =
k

∑
i=1

pi/
N

∑
i=1

pi . (8)

The event k is selected if a random number 0 < r < 1 falls in the slot Φk−1 < r < Φk.
In case (1), the probabilities pk are given by Pξγ in Equation (1), while in case (2), one has
only two probabilities pk = P± defined by Equation (7). The roulette-wheel method is thus
entirely event-based, where the occurrence of events is predicted on the basis of cumulative
distribution. Consequently, there are no constant time-like intervals between events. All
simulations are carried out for N = 25 agents, with τMAX = 50 · 103 events, corresponding
to about 30 updates for each edge in a set of WoBs of 25 agents. However, only a fraction,
usually about 2–3%, eventually leads to addition or deletion of and edge, since after the
onset of formation of consensus groups, many neighborhoods are already identical. In
practice, this means from 40 to 60 changes per agent in the course of simulations, and as
is seen, a stabilized situation is reached well before τMAX is reached. In the simulations,
only one affinity distribution is used, corresponding to an inverse power of 2.9, close to
the marginal value of 3 (see Appendix A for details). The simulations are repeated for the
ensemble of 36 = 6 × 6 different initial states, sampled for six different initial templates
and each six times for different initial WoBs. Simulations and numerical computations are
realized using Mathematica [40].

2.5. Representation of Data

The simulations track the evolution of agents’ WoBs, and on that basis, agents’ similar-
ities based on shared edges and vertexes are the outcome of the simulations. The agents
are classified in clusters according to the effective similarity S =

√
SE SV and geometric

average of size
√

E V, where E = Dim[{e}] and V = Dim[{v}]. In finding the clusters, we
use Mathematica’s [40] DBSCAN algorithm, which partitions the datasets into clusters using
density-based classification with noise [41]. DBSCAN proved to be a reliable and fast method
for finding clusters not constrained by a prefixed number of clusters for the data generated
by simulations. When clusters are detected, the number of clusters N and agents in a given
cluster are counted to obtain the relative occupancy R as the average value of the fraction
of agents that belongs to a given cluster.

In addition to cluster statistics condensed in average values N and r and their standard
deviations, the Shannon entropy H of cluster distribution is calculated, given by

H = −∑
i,j

pij log[pij] (9)

where pij �= 0 is the probability density of agents with discretized values of similarity and
size, (S,

√
E V). The entropy H is useful to monitor the consolidation of the cluster distribu-

tion.
In what follows, cluster formation, consolidation, and segregation are monitored by

using the quantites N, R, S, and H. Of these, N, R, and H are of the greatest interest, because
owing to the choice of simulation parameters to maintain average similarity close to a
constant, similarity S is always nearly the same in the stabilized states, and thus, contains
little information about the differences of cluster distributions in the stabilized state.

3. Results

The simulations are carried out for 25 agents, which possess different but partially
overlapping WoBs about E0 ± ΔE0 (here E0 = 120 and ΔE0 = 20) edges, which are randomly
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selected parts of the same template network consisting of 200 vertexes (i.e., nodes) and
400 edges (i.e., links). However, only 2-core (i.e., each vertex has at least two edges attached)
and fully connected WoBs are included as initial states, and thus the initial number of
vertexes V0 in the WoBs, when pruned to connected networks, varies roughly from 40 to
100 (with a few exceptional cases of 20 to fewer than 40 vertexes). The parameter affecting
mostly the evolution of WoBs during the simulations is the sensitivity β to similarity of
partners (i.e., sensitivity to homophily). Note that simulations are carried out for this
parameter in the range from 10 to 300, but results are reported for scaled values β → β/10
to allow easy presentation in logarithmic scale. The parameters E0 and ΔE0 are the next
most important in affecting the outcome of simulations. The effect of these parameters is
tested by keeping ratio E0/ΔE0 fixed and changing the absolute values by ±%20 by scaling
them with a factor of η = 0.8 and 1.2.

In simulations with unfolding interaction events τ, the agent selects another agent to
compare and adjust its WoB to better match the other agent’s WoB. The selection probability
of the agent to interact depends on the similarity between the agents and the agent’s
sensitivity β to similarity in that selection. In comparison events of WoBs, interacting
agents either adopt or delete an edge to increase their mutual similarity.

In Figure 1, examples of initial and final WoBs are shown. In all cases, the number of
vertexes V (and edges) increase because the utility function favors the addition of edges
and vertexes, thus favoring the growth of WoBs. However, initial and resulting final WoBs
may have quite different sizes. Note that the initial WoBs are always 2-core networks, but
during their evolution, singly connected vertexes may appear. In the final state ensemble,
averaged values characterizing WoBs are not changing anymore, although slight changes
in details of the structure may take place.

Figure 1. Three examples of agents’ webs of beliefs (WoBs) (a–c) are shown for initial WoBs (at left),
which in interaction events evolve to the final WoBs (at right). In all cases, WoBs are projected on a
common aggregated template (with unconnected vertexes shown).

The dynamic changes in WoBs, driven by the similarity bias of interactions, eventually
leads to a formation of consensus clusters. In Figure 2, an example of a similarity cluster in
the initial stage is shown, and then in the stabilized final stage for agents making confident
choices of interaction partners with β = 30 (recall that this is a scaled value β/10). The
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stabilization of the cluster distributions with β = 30, as shown in Figure 2b, is obtained
with about 30,000 interaction events in a group of 25 agents, each of them possessing about
100 edges on average (originating from a sampled set 120 edges on average). Roughly,
this means that agents need about 10 interaction events for each edge if they are to reach
consensus states. Note that in what follows, we report interaction events τ scaled by a
factor of 1000.

Figure 2. An example of formation of consensus clusters in the case of highly confident agents with
β = 30 (with scaled β, see main text). In (a,b), the horizontal axis shows the average size

√
E V

normalized to maximum
√

E0 V0, and the vertical axis shows the effective similarity S. In (c,d), the
horizontal axis shows the similarity of vertexes SV , while the vertical axis shows the similarity of
edges SE. The similarities shown are aggregated over the last few stable ensembles corresponding to
the range 45 < τ < 50.

In Figure 2a,b, clusters are shown as a density plot of effective similarity S versus
the (geometric) average size

√
E V of the WoB, normalized to a maximum

√
E0 V0, with

both values discretized into bins of 0.01 ranging from 0 to 1. It is seen how the initial
diffuse cluster (Figure 2a) segregates and consolidates to several smaller ones; in practice,
six separate clusters (Figure 3a), as resolved by DBSCAN. In the case shown in Figure 2b,
the DBSCAN routine finds seven or eight clusters (depending on parameters), but due to
thresholding, which ignores very low-populated clusters, six remain to be counted as
significant clusters. In Figure 2a, DBSCAN detects two clusters. In Figure 2c,d, the same
case is shown, but now as a density plot of edge similarity SE and vertex similarity SV
of the WoB. The similarities and sizes shown in Figure 2 are aggregated over the last few
stable ensembles corresponding to the range 45 < τ < 50.
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Figure 3. Average number of clusters N (a–d), relative occupancy R (e–h) and similarity S (i–l) of
clusters, and entropy H (m–p) of cluster distribution for different strengths of sensitivity β to similarity
(scaled by a factor of 10) from low (β = 1) to high (β = 30) sensitivity as a function of update events
τ (scaled by a factor of 1000). Average values are given in black data points, and gray borders denote
the standard deviations. Thin lines (not well-visible) are exponential fits to average values.

In reading the relevant information from Figure 2, it should be noted that while the
high-similarity groups are clearly seen, so are the groups where agents are dissimilar (one
agent can well belong to both groups, since similarity is a pairwise property). Therefore, we
see not only groups where similarity has increased but also groups where it has decreased.
Such behavior is a natural hallmark of the segregation of consensus groups.

Consensus cluster formation proceeds gradually from the diffuse initial state to a
stabilized final state, depending on the number of interaction events. Figure 3 shows the dy-
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namics of cluster formation as it is monitored through number of clusters N (Figure 3a–d),
relative occupancy (average fraction of agents in a cluster) R (Figure 3e–h), and average
similarity S (Figure 3i–l) of clusters, as well as through entropy H of cluster distribution
(Figure 3m–p). Results are shown for different strengths of sensitivity to similarity β (scaled
by a factor of 10) from high (β = 30) and to low sensitivity (β = 3) as a function of update
events τ (scaled by a factor of 1000). For β ≤ 3 and β ≥ 30, results remain essentially the
same as for the corresponding limiting values shown in Figure 3. In all cases, dynamic
behavior can be fitted to an exponentially decaying function (exponential fits are shown in
Figure 3 but are barely visible).

The average number N of consensus clusters in the final, stabilized state (Figure 3a–d)
depends on the sensitivity β of agents to similarity in making choices to interact with other
agents. For high-sensitivity β = 30 (scaled), the number of clusters in stabilized state is on
average about six (see Figure 3a), but fluctuations as measured by the standard deviation of
the ensemble averages are large. The relative occupation R of clusters shown in Figure 3e
is on average about 0.30, corresponding to six or seven agents in a cluster. Increasing
the level of sensitivity by increasing values of β does not change the situation, and thus
results for β = 30 appear to represent the most extreme segregation found in the group
of 25 agents. As seen later, changing the number of edges and vertexes in initial WoBs
about by ±20% also leaves the number of clusters in this case nearly intact. When the
sensitivity to similarity in making choices becomes smaller, and values of β are reduced
(Figure 3b–d), the number of clusters decreases steadily, reaching the lowest attainable
values of about two clusters on average for β = 3. Additional reduction in β appears not to
lead to a definite monocluster situation, although single clusters become more abundant.
As is seen from Figure 3f–h, the relative occupancy R of clusters follows roughly inversely
the behavior of the average number of clusters, so that the product N × R remains roughly
a constant, indicating relatively uniform distribution of agents in different clusters. In all
cases, the similarity S (Figure 3i–l) has nearly the same average value, owing to the choice
of parameter β∗ = 10.0 controlling the ratio of utility of addition to deletion. The larger the
value of β∗, the larger the bias towards addition, and thus growth of clusters. The choice
to keep the bias from growth moderate, and average similarity close to a constant value,
makes the interpretation of consensus cluster formation easier and rules out the possibility
that the formation of high-similarity clusters is mainly due to bias towards systematically
higher average similarities.

The entropy H of the cluster distribution (Figure 3m–p) relaxes considerably more
slowly to a stable value in comparison with cluster number N and relative occupancy R.
This indicates that consolidation of clusters and segregation of clusters occurs only partly
simultaneously, and within the clusters, WoBs continue to evolve more similarly, as also
indicated by the slow convergence of similarity S; clusters consolidate without further
segregation.

The stabilized, final values of cluster number N, entropy H, and the average occupancy
R as a function of the sensitivity β is shown in Figure 4 for a range of values from β = 1 to
β = 30, on a (natural) log-scale. It is now seen (Figure 4a) that if the sensitivity to similarity
is high enough (β > 10), cluster formation takes place, and in the group of 25 agents about
6–7 are formed, with roughly equal numbers of 5–6 agents (R ≈ 0.3) in a cluster (Figure 3c),
with entropy H ≈ 3.5, which roughly corresponds to cases such as the one shown in
Figure 2b. However, in all cases, variations around mean values are large, as indicated
by the error bars showing the standard deviation of values. In all cases, a transition to
single cluster takes place around the value β ≈ 5. After the transition, only two clusters are
obtained on average, with high entropy (H ≈ 5.5), roughly corresponding to two large and
diffuse clusters of similar type as an initial cluster, shown in Figure 2a.

The results in Figure 4 show that the high sensitivity of agents to similarity in selecting
similar partners (i.e., strong homophily) for interaction and for updating their WoBs invari-
ably leads to the formation of segregated consensus groups. In addition to parameter β
regulating the sensitivity to similarity , the parameter β∗ for regulating agents’ confidence
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in decisions to add or delete edges affects the dynamics. Here, the value β∗ = 10.0 is chosen
to maintain the average similarity in stabilized stage nearly a constant. Parameter β∗ regu-
lates mainly the number of events needed for the relaxation and progress in harvesting new
vertexes and edges. At low values of β∗/E0 < 1, there is no average growth in similarity, at
high values of beta β∗/E0 >> 1 in the region of a confident decision to add or delete, the
growth is maximal, constrained only by the new options allowed for the addition of edges
within the consensus clusters. In particular, β∗ has no effect on the transition from single to
multiple clusters.
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Figure 4. Average number of clusters N (a), relative occupancy R (b), and entropy H (c) for different
values of parameter β (scaled) on (natural) logarithmic scale. Results are for clusters in the final
stabilized region of the formation of consensus clusters. Error bars correspond to standard deviations.

Finally, the effect of the initial number of edges E0 in WoBs and their variation ΔE0
is checked by changing their absolute values by ±%20, scaling both values by a factor
of η = 0.8 and 1.2 but keeping the ratio E0/ΔE0 fixed. Figure 5 shows the evolution of
cluster number N (Figure 5a–c), occupancy R (Figure 5d–f), and entropy H (Figure 5g–i)
for the altered configurations with high sensitivity β (the most interesting case with a high
number of clusters) for values η = 1.2 (the upper row) and η = 0.8 to be compared with
the results shown in Figure 3, corresponding to η = 1.0 (reproduced in the middle row).
The evolution of similarity is essentially similar to the results shown in Figure 4 and is
thus omitted in Figure 5. As can be seen from the results, the increase in size of the WoB
corresponding to factor η = 1.2 slightly increases the number of clusters, but relaxation to
steady state then requires more interaction events. This is as expected, because agents now
have more choices available (i.e., more edges and vertexes) to change their WoBs, and thus
more comparison events are needed to reach consensus. When the initial WoBs are smaller,
corresponding to the choice η = 0.8, the number of consensus clusters is slightly smaller
than for η = 1.0, and the events needed for relaxation are fewer. Qualitatively, for other
values of β, the results remain essentially similar to the cases shown in Figure 3.
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Figure 5. Average number of clusters N (a–c), relative occupancy R (d–f), and entropy H (g–i), for
different values of parameter β (scaled with N0 = 100). Results are for clusters in the final stabilized
region of the formation of consensus clusters. A transition from multiple clusters to a single large
cluster takes place around β = 0.20.

4. Discussion

In many respects, the ABM presented here describing the formation of consensus
clusters resembles the so-called bounded confidence models (see e.g., [1–3,5] but differs
from those models in two important ways. First, the ABM model describes the space
of states of the agents (i.e., opinion-like states) as complex networks (WoBs) of elements
related to each other, mimicking conceptual or semantic networks, not as discrete sets of
choices or fixed to a few choices as in most bounded confidence models. To extend the
applicability of consensus formation models provides understanding of not only choices
of existing opinions (e.g., as in political or consumer choices) but allow the evolution of
opinions. It is important to find ways to use flexible, dynamic, and changing states of
agents, and furthermore, allow these states to be affected by choices that the agents make
during the course of the unfolding interaction events. Such features provide a more realistic
basis to model the formation of consensus groups in comparison with traditional models
of predetermined fixed choices between different opinion states. Second, the ABM model
introduced here does not assume a fixed bounded confidence criterion for the realization
of the interactions. Instead, decisions to interact are made stochastically on the basis of
utility-type evaluations of the prospect of increasing similarity. Therefore, there is no sharp
exclusion of interactions, but instead, bias for similarity (homophily). In this respect, the
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WoBs introduced here parallel some other recent attempts to extend the consensus and
opinion formation models [7,13].

Another set of models that resemble the ABM presented here are the so-called epis-
temic landscape models, which have found several potential applications in describing the
formation and segregation of collaborative or consensus groups. The epistemic landscape
models assume a fixed landscape of “knowledge” that agents explore [42,43] or closely re-
lated structures of fixed ground truths [10] or epistemic landscapes with agents sensing the
distance from the ground truths or the gradients toward them. Such models assume a fixed,
pre-existing landscapes of “knowledge” to be explored by agents, and thus the outcomes
of the exploration are more or less predetermined by the structure of the landscape and
its gradients [10,42,43]. The epistemic landscape models have turned out to be relevant to
discussions of division of labor and how the ability of agents affects their collaboration, but
such models do not easily yield to situations where dynamic changes in the landscape or
the problem space are of interest.

The present ABM has two major limitations. First, the WoBs utilized in it are always
substructures of more extensive templates. Although individual agents’ WoBs evolve,
no new elements or connections are created, and WoBs will always remain as partial
structures of the initial template. This, however, may not be a severe restriction in cases of
intended applications where the targeted area of knowledge is opinions, views or belief of
existing knowledge (i.e., discovery and creation of new knowledge is not in focus). Second,
the WoBs and their update rules do not take into account the coherence of elements in
the WoBs, nor requirements of coherence when elements are added or deleted. In some
recent ABM approaches, the structure and coherence of agents’ opinions (or beliefs) are
taken into account, allowing more realistic description of complex opinion and belief
systems [7,44,45]. The inclusion of coherence of belief elements as part of ABM is, however,
not unproblematic; diverse opinions exist regarding how to implement that notion as part of
the idea of network-like knowledge. In some views, cognitive dissonance is important [46],
and such aspects have been successfully implemented in ABM, where a model of cognitive
(or conceptual) structures co-evolves with structural agents’ interactions [44]. In the present
model, the coherence of belief systems arises from its dovetailed network structure, which
is also a form of coherence of knowledge (see e.g., [47]). In that picture, adoption or deletion
of nodes depends on their neighborhoods, where changes take place, always requiring
the network to remain connected, but dissonant aspects of coherence are not taken into
account. A lack of attention on dissonant connection is a clear restriction of the ABM
introduced here.

Recent extensions of ABM have also included many other complex relevant features,
for example: opinion dynamics making a separation between private and public opinions
and the role of social hierarchies in interactions [48]; prior beliefs and knowledge-making
decisions to adopt new beliefs [14,49]; and collective cognitive alignment, when group
members perceive and recall the information they receive in aligned ways [50]. In addition
to such features, it is possible to imagine many other socially important aspects the future
ABM should take into account, for example, trust and its effects on social interactions [51].
While it is unreasonable to assume that at present any ABM can meet such diverse re-
quirements, it is useful to keep in mind that omitting such features unavoidably limits the
applicability of any suggested model, but in different ways.

In the current simple and idealized model presented here, many advanced and com-
plex features are omitted. The goal of the model is to take a moderate further step to use
more complex belief systems in similarity-biased models to show that even in the case of
WoB-like structures, robust consensus clusters are formed; segregation and formation of
consensus groups may well arise from the distribution of continuously evolving systems de-
scribing complex WoBs. Moreover, the dynamics of the formation of disciplinary consensus
groups based on WoBs need not be overly complex; simple reinforcing similarity-seeking
dynamics may clarify many empirically found features of how disciplinary groups and
their boundaries are formed.
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The most obvious areas of applications of the present model are found at least in three
special cases. First, in disputes regarding how to frame and understand the meaning of
abstract words or terms central to given scientific paradigms, where paradigms have their
own specialized lexicons. Different ways of using scientific terms and framing problems
are an interesting area of applications related to the social nature of science, the role of
scientific discourse, and the argumentation and agreement of truth of scientific claims, as
discussed extensively in the philosophy of science [19–22], as well as finding a tenable
grounding on empirical research about scientific activity and formation of disciplinary
groups [23,24,52,53]. Second, the ABM presented here may find applications in making
sense of the formation of disciplinary groups in scholarly disputes about a given pre-
existing corpus of study, for example, in disputes in the humanistic sciences about how
to interpret the work of some renowned but difficult to follow scholar (e.g., Hegel, Kant
or Wittgenstein), where the amount of interpretative literature with differing and even
opposing views may be extensive and exceed the amount of original work. Third, and
perhaps with the most foreseeable practical utility, to describe group formation in learning
situations, where a group of students tries to make sense of a limited amount of sources
about a given topic; in the simplest case, using a single textbook (see e.g., [28,29,35]. In
such cases, due to sharing of views and opinions about same sources, one can nevertheless
assume formation of different groups of consolidated views.

The possibility to connect the results of the current ABM more securely to existing
empirical findings is not, however, straightforward. The ABM provides some insight
structure and formation of discourse groups in learning and teaching, where groups of the
size from three to about five to six students appear to perform the best [54–57], but in larger
groups the phenomenon of isolation emerges [58,59]. While many unrelated factors (e.g.,
teaching arrangements and designs) affect group sizes, it is a plausible assumption that at
least in the case of discourse groups, shared meanings of key terms and concepts is also a
factor affecting group stability and how the number of students in a group evolves. For
example, the isolation and break-up of small isolated groups from larger ones may well
be a phenomenon related to similarity bias. In the case of scholarly disciplinary groups,
empirical evidence of group sizes is more elusive and unclear. Scientometric analyses of
the number of co-authors in publications provide some information, showing that small
co-author groups are the most common, signaled as a fat-tailed distribution of number
of authors [60,61]. This notion is supported also by results based on the size of scholarly
groups that introduce (and thus use) new concepts, in which case small groups are also
the most active [62,63]. Interestingly, reminiscent formation of disciplinary groups are
found within focused research areas [64], as well as in case of non-scientific but organized
beliefs groups (i.e., religion), [65]. In all these cases, however, the assumption that similarity
bias guiding the formation of groups is a factor affecting the formation, segregation, and
consolidation of groups is only tentative, although plausible. Without better knowledge of
how, for example, that the changes in shared vocabulary or lexicons used by groups are
correlated with group formation it is difficult to make more conclusive inferences on, or to
propose more specific empirically testable hypotheses.

Nevertheless, due to the obvious tentativeness and generic nature of the results
presented in this study, the present ABM model, where similarity is monitored through
WoBs and where changes in WoBs are the basis of group formation dynamics, suggests
that in future, more detailed studies, paying attention to correlations between consensus
group formation and changes in WoBs or related structures may provide essentially new
important insights on group dynamics. In that, ABM may also significantly guide designs
of empirical research.

5. Conclusions

We presented an agent-based model (ABM) of the formation of consensus clusters
when the agents possess a complex network of knowledge or belief elements, which form a
web of beliefs (WoBs). The WoBs affect the ways they can communicate with each other,
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and they are dynamically changed as an outcome of the interactions. The ABM takes
into account dynamic changes in WoBs due to the sharing of their elements in events of
interactions (i.e., communication). The dynamics are driven and constrained by similarity
evaluations between agents (i.e., homophilic dynamics), evaluated on the basis of the
similarity of WoBs.

The results of the model show that a group of agents, if their sensitivity to similarity
is sufficiently high, will eventually form consensus groups, where agents have more or
less similar WoBs. If the sensitivity to similarity is low, no segregation takes place, and
agents remain in one or two large and diffuse groups. The main message of the ABM
and its results is that even in the case of complex webs of beliefs, which are allowed to
change dynamically in interactions between agents, a very simple dynamic is enough to
produce segregation and consolidation of consensus groups in the presence of sensitivity
to similarity (as described by webs of beliefs).

The simple and idealized agent-based model presented here is one step towards a
better understanding of such complex situations and may also help to construct empirical
settings of investigations to resolve the auxiliary features from the core features in driving
consensus formation.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Open access funding provided by University of Helsinki.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABM Agent-Based Modeling
WoB Web of Belief
DBSCAN Density-Based Scanning of Clusters

Appendix A. Generation of Template WoBs

Many real networks have nodes that have a relatively broad distribution of degrees
(number of links or edges attached to them), so that in this sense, they can be characterized
as complex. In extreme cases, such degree distributions are heavy-tailed distributions,
heavy tails referring to a form of the trailing edge of a distribution that decays considerably
more slowly than a normal distribution and where trailing edges resemble to some degree
the inverse power-law-type distribution given as P(d) ∝ d−λ, with a power λ′ ∈ ]1, 3].
However, heavy-tailed distributions are seldom a genuinely inverse power-law [66]. For
practical reasons, however, it is useful to consider the networks with heavy-tailed distribu-
tions using the model of inverse power-laws, because many essential characteristics of the
networks are captured by that class of distributions [67]. At the limit λ → 3, distributions
will have well-defined first and second moments and are thus only moderately heavy-tailed.
It is this type of distribution obtained at the limit λ → 3 that we are interested here.

The networks used as templates for WoBs are generated using for affinities πk a
distribution

P(πk) = P0 [1− (λ− 1)Λπk]
−1/(λ−1) , (A1)

where λ ∈ ]1, 3[ and Λ > 0. The parameter λ determines the inverse power of the re-
sulting degree distribution of the network, while Λ controls the cut-off of affinities, and
πk < Λ(λ− 1). The affinity distribution can be derived in several ways and by using
several parameterizations [35,68,69].
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In simulations, we always use the same distributions of the affinities, but the template
networks obtained from the affinity distribution are stochastically generated by using the
IGraph package [70], which provides functionality for generating efficiently affinity-based
networks simply by providing the probabilities πk for the routine IGStaticFittnessGame.
The output of the routine is a network with a predetermined number of edges, linked
according to the probabilities πk drawn from distribution P(πk) in Equation (A1).

The resulting WoBs of interest, which contain 100–200 vertexes, are networks having
vertexes with an average degree of about three and containing only a few nodes with
degrees up to 10 or slightly more. Most of the applications we are interested in typically
have such distribution connections between their elements, which might be concepts,
words, or terms (see the main text).
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Abstract: The high-quality economic and social development of the Yellow River Basin is a combined
system comprising the coordinated development of “economy–resources–environment–society”,
with resources and the ecological environment bearing capacity as the constraints, and green innova-
tive development as the driving force. Based on the systematic analysis of the structural dimensions
of the composite system, this paper uses the balanced indicators and their coordinated development
effectiveness to describe the development quality of the macro-composite system. In order to reveal
the mechanism of the evolutionary path of the macro system, the resource- and environment-bearing
capacity, regional high-quality development potential, regional innovation capacity, and high-quality
development guarantee capacity are adopted as the main attributes and decision-making basis of
the autonomous agents. The simulation results show that, under the existing development model,
the economic development of all of the provinces in the Yellow River Basin will be constrained by
resources and the environment. However, different policy scenarios significantly affect the evolu-
tionary trends of economic development, resource consumption, and the environmental pollution
situation. The mechanisms to overcome the bottleneck of the resource and ecological constraints
are different for these policies, and the effects of the same policy in different provinces are also not
the same.

Keywords: eco-conservation; high-quality development; agent-based model (ABM); composite
system; balanced indicators

1. Introduction

With the increasing concern of humans regarding the issue of sustainable development,
an increasing number of studies are exploring the path of sustainable economic develop-
ment from the perspective of a complex eco-economic system (Sun et al., 2018) [1]. As
economic development leads to a large concentration of the regional population, materials,
and energy, and a high level of the consumption of resources, the ecological relationship
becomes imbalanced; this reduces the ecological function of the natural system. Mean-
while, strict ecological constraints and the maintenance of ecological functions necessarily
require constraints on economic growth, thus weakening the economic function of the
system, which indicates a conflict between the two. At the same time, the improvement
of the ecological function can improve the livelihoods and physical and mental health
of watershed residents, which is conducive to the attraction of capital, talent, and other
economic development factors, and has an important role in promoting the full exploitation
of the economic function. Therefore, the two are unified, and there is a complex non-linear
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relationship between economic development and ecological and environmental protection
that is antagonistic.

The Yellow River Basin is an important core area in China for food production, energy-
rich areas, and raw chemical materials; it is an important industrial base, and serves
multiple ecological functions as an important ecological resource protection area. In terms
of economic and social development and ecological security, it occupies an important
position. However, due to various factors, such as its history and natural conditions, the
economic and social development of the Yellow River Basin is relatively lagging, and the
ecological environment of the basin shows strong vulnerability. With increasing human
economic activities, the shortage of water resources, water environment pollution, and the
over-utilization of water resources in the Yellow River Basin are becoming more serious.
The unbalanced development of the provinces and regions in the Yellow River Basin
and the inadequate development of the nine provinces in the upper and middle reaches
are becoming increasingly prominent. Based on multi-agent modeling technology, this
paper constructs a computational, experimental model for high-quality economic and
social development in each province and region of the Yellow River Basin, combines
multi-dimensional equilibrium indicators of the composite system with the attributes and
behaviors of the agents, contrasts and analyzes the evolutionary paths of eco-conservation
and high-quality development in each province and city of the Yellow River Basin through
evolutionary simulation analysis under multiple scenarios, and explores the systematic
optimization schemes of policy strategies such as green innovation, regulatory constraints,
ecological compensation, and upstream and downstream linkages.

The remainder of this paper is organized as follows: Section 2 reviews the relevant lit-
erature, Section 3 presents an analysis of the subsystem components from a complex system
perspective and the basis for measuring the effectiveness of the coordinated development
of complex systems, Section 4 describes the construction and rules of the agent-based
model (ABM), Section 5 analyzes the simulation results in terms of different scenarios, and
Section 6 presents the discussion and conclusions of this paper.

2. Literature Review

Since General Secretary Xi Jinping’s speech at the symposium on the eco-conservation
and high-quality development of the Yellow River Basin in 2019, there has been an in-
creasing amount of academic research on this topic (Ma et al.; Shi; Ren and Zhang) [2–4].
It is believed that synergistic development is the optimal solution to achieve ecological
and social sustainability in the Yellow River Basin (Wang and Li) [5], and the “ecological
priority” policy should be used as a guide to promote eco-conservation and high-quality
development in the Yellow River Basin (Geng et al.) [6].

Research on the coordination relationship between two or more subsystems from
the perspective of a composite system of the economy, society, resources, ecology, and
the environment has become the basic framework for sustainable development issues
(Fang et al.) [7]. Because of the complex non-linear coupling relationships among the sub-
systems, the process of coordinated development in composite systems is also the process
of system coupling evolution (Sun et al.) [8]. The theory of the coordinated development of
complex systems has been widely applied to the human environment (Srinivasan et al.) [9],
the economic resource environment (Ma et al.) [10], the economic and social environment
(Bastianoni et al.) [11], social ecology (Estoque and Murayama) [12], the urban environment
(Li et al.) [13], and the climate economic environment (Aldieri and Vinci) [14]. Conceptual
analysis and relationship analysis in the framework of the coordinated development of
complex systems enrich the theoretical connotations of sustainable economic and social
development. On the methodological side, environmental Kuznets curves (Zhao et al.) [15],
coupled coordination models (Xing et al.) [16], gray models (GM) (Shi et al.) [17], autore-
gressive moving averages (ARMA) (Han et al.) [18], and machine learning algorithms
(Li et al.) [19], etc., have been used for the analysis, evaluation, and prediction of compos-
ite systems.
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In multi-objective complex systems, subsystems cooperate synergistically to transi-
tion from a disordered non-equilibrium state to a dynamic equilibrium state with certain
functional and self-organizing structural mechanisms, which is a basic requirement for
the coordinated development of complex systems (Turner) [20]. Based on complex system
theory, synergy theory, and the idea of ecological civilization and green development in
the “new normal” period, Zhao and Zhang divided the three regional unit subsystems in
the spatial dimension into five subsystems: economic growth, social development, envi-
ronmental quality, ecological health, and governance regulation [21]. They constructed a
coordinated ecological development system composed of multiple interacting subsystems
based on the state indicators and sequential parameters of each subsystem. Deng et al.
used the gray water footprint and bearing capacity coefficients to predict the coupled
evolution of the water environment and socioeconomic system under different scenarios
in the Yangtze River Economic Zone based on physical and statistical models, and they
accordingly proposed policy recommendations for the coordinated and sustainable devel-
opment of the regional ecological environment and socio-economy [22]. In order to further
clarify the mechanisms by which to achieve the performance goals, Kaplan and Norton
proposed and enriched the balanced scorecard theory, and viewed it as a comprehensive
strategic management and implementation tool for the translation of strategic goals into
action [23–25]. However, the balanced scorecard neither establishes a causal relationship
between indicators nor takes into account the time delay in the causal relationship; it is a
diagnostic control system rather than an interactive control system (Ahn) [26].

As a bottom-up modeling approach, the multi-agent modeling technique offers the
possibility to reveal the non-linear relationship between the global state of a complex
system and the interaction of local constituent elements. Compared with modeling ap-
proaches based on system effects (such as System Dynamics (SD)) or process-oriented
modeling approaches (such as Discrete-Event Simulation (DES)), ABM has unique research
paradigm advantages, from individual behavior to macro “emergence”. It can better reflect
the evolution mechanism and process of the complex system of the Yellow River Basin
under resource and environmental constraints. Specifically, SD simulates the evolution of
system development through the causal relationship between system elements. It is diffi-
cult to reflect the impact mechanism of environmental changes on the micro-individuals
constituting the system, nor can it reflect the individual heterogeneity and the “emergence”
of individual behavior response and individual interaction changes at the system level.
Although DES has a high efficiency, reflecting the response of specific environment change,
it is not suitable for a composite system because of its poor scalability and low coupling be-
tween modules. On the other hand, ABM reflects the differences of resource endowments in
different regions through individual attributes such as environmental carrying capacity and
innovation ability. It also reflects the heterogeneity of policy responses through individual
behavior rules, and reflects the relationship between the upstream and downstream of the
Yellow River Basin through individual interaction rules. When micro-adjustments of local
agents accumulate to a certain extent, it will in turn restrict and affect the macro system
environment, causing the agent to be in a dynamically changing environment and generate
new evolution and learning momentum [27–29]. This will eventually lead to the appear-
ance of deeper complex structural characteristics in the system. Therefore, ABM is suitable
to simulate the evolutionary process deeply, and to reveal the micro-mechanism of the
development of the Yellow River Basin. Multi-agent modeling technology is widely used
in the study of the complex system evolution path. For example, Zhang et al. integrates
the macro-factors (investment volatility) and micro-factors (individual behaviours) into a
single analytical model, and simulates the evolutionary path of residential photovoltaic
industry from the perspective of consumer behaviors [30]. Macal and North describe the
following three elements as the basis of an agent-based model [31]:

(1) a set of agents, including their attributes and behaviors;
(2) a set of agent relationships, i.e., an underlying topology of connections that determines

which agents interact with each other;
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(3) the agents’ environment, with which they can also interact.

In this paper, the Yellow River Basin’s eco-conservation and high-quality development
system is regarded as a composite system of economy–resources–environment–society.
Potential, regional innovation ability, and high-quality development guarantee ability, etc.,
are the attributes and decision-making basis of the basin’s constituent units. Based on
multi-agent modeling technology, the economic development, resource consumption, and
ecological environment development of the Yellow River Basin provinces under different
policy scenarios are simulated, including their trends and evolution. Compared with
existing studies, this study combines empirical data with simulation methods to reproduce
the microscopic dynamics of the macro-level state changes of composite systems through
virtual–real linkage, and visualizes the policy design by comparing and analyzing the
intrinsic mechanisms and laws of the system’s evolution under different scenarios.

3. Analysis of the Composite System

This study focuses on the measurement of the state of high-quality development in the
Yellow River Basin by constructing a balanced framework and tracking the evolutionary
characteristics of key indicators across regions within the basin under different policy
scenarios. To this end, based on complex systems theory and from the perspective of
the complex multi-factors affecting the level of industrial water resource utilization, this
paper builds a conceptual model of the economy–resource–environment–society complex
system, incorporating economic development and natural resource development and
utilization, including water resources, into the research scope. Due to the materiality of
human life and the diversity of activities, it is difficult to objectively distinguish between
resources, the environment, the economy, and society, which have formed a coupled
and complex relationship of interaction, interconnection, and mutual influence among
themselves and their subsystems and elements. In this context, the indicators are screened
and theoretically analyzed using the theory of the human–earth relationship, based on
relevant domestic and international literature on the design of economic, social, natural
resource, and environmental indicators.

The relationship between subsystems in the composite system of eco-conservation
and high-quality development in the Yellow River Basin is formed by the development of
three levels of systematic coupling: (1) the coupling within a single subsystem develops
in a coordinated manner, (2) the coupling between the two subsystems develops in a
coordinated manner, and (3) the coupling between the systems develops in a coordinated
manner. The three levels of the system constitute a complex system with their characteristics,
structure, and function through various types of influence mechanisms, such as mutual
influence, interdependence, and interaction, and this complex system—along with its
characteristics, structure, and function—can be expressed using the following equation:

MCS ∈ {S1, S2, S3, S4, Rel , Rst, Ob}, Si ∈ {Ei, Ci, Fi}, i = 1, 2, 3, 4 (1)

Here, SI represents the ith subsystem, and Ei, Ci, and Fi refer to the characteristics,
structure, and function of the subsystems. Rel denotes the coupling relation of mutual
influence, interdependence, and interaction in the system coupling, which is called the sys-
tem coupling set. It includes not only the internal coupling relation of the four subsystems
but also the coupling relations between subsystems. Rst is a set of constraints faced by the
subsystems, and Ob refers to the goals to be achieved by each subsystem. The coupling
structure of the resources–environment–economy–society system in the Yellow River Basin
is shown in Figure 1.
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Figure 1. Coupled structure of the resource–environment–economy–society system in the Yellow
River Basin.

The concepts of the four subsystems of the economy, society, resources, and the
environment are separately extrapolated and defined, and the concepts of the economy
(gross regional product, economic structure, etc.), society (employed population, education
expenditure, science, and technology investment; the share of cultural and recreational
expenditure in consumption expenditure; per capita disposable income, etc.), resources
(water resources, land resources, forest coverage, ecological adaptability, etc.), and the
environment (industrial waste gas in relative emissions of pollutants, wastewater emissions,
energy consumption per unit of gross regional product, etc.) are clarified. The specific
index system of each subsystem is selected to reflect both the basic characteristics and
comprehensive effects of each subsystem, and to include the key variables that affect the
change in the state of each decision unit. This paper evaluates the relative effectiveness of
decision-making units (DMUs) with multiple inputs and outputs using Data Envelopment
Analysis (DEA) measures. Because the C2R model is an ideal and effective method to
study “production sectors” with multiple inputs, especially “production sectors” with
multiple outputs that are “scale-efficient” and “technically efficient” at the same time, the
C2R model cannot simply evaluate the technical validity between sectors; the C2GS2 model
compensates for the shortcomings of the C2R model, and is an ideal method to study the
relative technical validity between production sectors. Therefore, in this paper, the C2R
model is used to analyze the comprehensive effect of the decision unit, and the C2GS2

model is used to analyze its specific technical effect. Taking the coupling relationship
between subsystem A and subsystem B as an example, the coordinated development
effectiveness function of both, based on the C2R model, is

Ze(A/B) = min(θe(A/B) )

s.t.

⎧⎪⎨
⎪⎩

∑n
j=1 xAjγA/Bj + s− = xA0θe(A/B)

∑n
j=1 yBjγA/Bj − s+ = yB0

∀γA/Bj ≥ 0, j = 1, 2, . . . , n; s+ ≥ 0; s− ≥ 0

(2)

where Ze(A/B) denotes the coordination development effectiveness of subsystem A on
subsystem B; the denominator is the input of subsystem A; the numerator is the output of
subsystem B; n is the number of decision units; x and y are the input and output quantities
of the subsystem, respectively; and s− and s+ are slack variables.

Similarly, the coordination validity function of subsystem A and subsystem B based
on the C2GS2 model is
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Xe(A/B) = min(σe(A/B) )

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
j=1 xAjγA/Bj + s− = xA0σe(A/B)

∑n
j=1 yBjγA/Bj − s+ = yB0

∑n
j=1 γA/Bj = 1
∀γA/Bj ≥ 0, j = 1, 2, . . . , n; s+ ≥ 0; s− ≥ 0

(3)

The developmental validity of subsystem A for subsystem B is calculated by the
following equation:

Fe(A/B) = Ze(A/B)/ Xe(A/B) (4)

As a result, the coordination validity, development validity, and coordinated devel-
opment validity of the four subsystems of resources, ecology, the environment, and the
economy, as well as society, are expressed as follows:

Xe(1, 2, . . . , k) =
∑4

i=1 Xe
(
i/ik−1

)
× Xek−1

(
i/ik−1

)
∑4

i=1 Xek−1
(
ik−1

) (5)

Ze(1, 2, . . . , k) =
∑4

i=1 Ze
(
i/ik−1

)
× Zek−1

(
i/ik−1

)
∑4

i=1 Zek−1
(
ik−1

) (6)

Fe(1, 2, . . . , k) = Ze(1, 2, . . . , k)/ Xe(1, 2, . . . , k) (7)

Here, Xe, Ze, and Fe refer, respectively, to the coordination validity, coordinated de-
velopment validity, and development validity of the four subsystems; k = 4, ik−1 refers
to the set of different forms of any other k − 1 subsystems except a single subsystem i.
The formula Zek−1

(
ik−1

)
refers to the coordinated development among k − 1 subsystems,

and the formula Zek−1
(
i/ik−1

)
refers to the coordinated development validity of any other

k − 1 subsystems.

4. Construction of the Agent-Based Model

In order to further study the dynamic process and evolutionary law of the synergistic
evolution of the subsystems in the Yellow River Basin at different scales, and to reveal
the influence mechanisms of policy scenarios such as innovation policy, environmental
regulation, and ecological compensation on the high-quality economic and social develop-
ment of the provinces and regions in the Yellow River Basin and the evolutionary law of
the synergistic development of the composite system, this section summarizes the factors
affecting the effectiveness of the coordinated development of the Yellow River Basin into
four dimensions, namely the resource and environmental bearing capacity of the basin,
the guaranteed capacity of high-quality development, the potential for the high-quality
development of the region, and the innovation development capacity of the region. The
interaction mechanism between the behavioral results of the agents and the coordinated
development states of the system is shown in Figure 2.

In this work, we used the sample data of each province, region, and prefecture-
level city in the Yellow River Basin from 2010 to 2018 as training data to construct an
experimental model and compute a multi-agent framework for high-quality development
in the Yellow River Basin. The data were mainly derived from the China Statistical Yearbook,
China Environmental Statistical Yearbook, China Industrial Enterprise Database, China
Industrial Enterprise Pollution Emission Database, China Ecological and Environmental
Status Bulletin, China Water Resources Statistical Yearbook, China Water Resources Bulletin,
and China City Statistical Yearbook, etc. The model is mainly composed of two parts: the
agent and the spatial grid. The agent is mainly a virtual individual reflecting the economic
and social characteristics and behaviors of each region. In addition to the spatial grid’s
need for the representation of its own assigned spatial environmental characteristics, it also
stores a wide range of policy and statistical information which is needed for computation.
In the process of a specific operation, the agent will make subjective decisions based on
spatial attribute information provided by the grid, and the results of the agent’s behavior
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will be reflected in the changes in various indicators and affect the overall coordinated
development status and environmental layout of the watershed.
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Figure 2. Interaction mechanism between balanced indicators and agents.

4.1. Agent Properties and Evolutionary Rules

Agent resource and environment bearing capacity includes natural resource variables
(water resources, land resources, forest cover, ecological adaptability, etc.), the population
bearing capacity, and environmental resource variables (including the relative emissions
of pollutants in industrial waste gas, wastewater emissions, etc.). The resource and en-
vironmental bearing capacity is a key constraint for the high-quality development of the
Yellow River Basin. Because the system model estimates the future environmental bearing
capacity, the traditional method of calculating the regional resource and environmental
bearing capacity is not applicable. Here, we use the resource and environmental capacity
to measure the size of the regional resource environmental bearing capacity. The functional
relationship is

Bt = fb

(
Soui

t, Pept, Envj
t

)
(8)

where Bt is the resource bearing capacity of the region in year t, Soui
t is the stock of natural

resources of category i in year t, Pept is the total population in year t, and Envj
t is the stock

of environmental resources of category j in year t. The values of the above variables are all
relative values, with 2018 as the base period.

Agent development potential is the way in which the factor capacity of a region’s
high-quality development is quantified, including the regional GDP, energy consumption
per unit of output value, and pollutant emissions per unit of output value, etc. The function
relationship is

Gt = fg

(
Gdpi

t, Engi
t, Poli

t

)
(9)

Here, Gt is the comprehensive evaluation result of the region’s high-quality devel-
opment potential in year t. Gdpi

t, Engi
t, and Poli

t are the gross regional product, energy
consumption per unit of output value, and pollutant emission per unit of output value of
the industry category i in year t, respectively, and the values are taken as relative values
with 2018 as the base period.

Agent innovation capability is a characterization of the level of science and technology
development and innovation capacity of a region, including the level of science and
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technology (scientific and technological talent, R&D institutions, number of patents, etc.),
labor force, and investable R&D funds, etc. The functional relationship is

Nt = fn(Tect, Labt, Fint) (10)

where Nt is the innovation development capacity of the region in year t; Tect, Labt, and
Fint are the science and technology level, labor force, and investable R&D funds of the
region in year t, respectively, and the values are taken as relative values, with 2018 as the
base period. The investable R&D capital is related to the total regional GDP and R&D
investment strength.

Fint = ∑ Gdpi
t × σt (11)

where σt is the share of R&D investment in GDP in year t; due to the uncertainty of research
development and innovation activities, the following conditions need to be satisfied in
order for R&D investment to drive the progress of science and technology:

1− e−θw×Fint ≥ u (0, 1) (12)

θw is the speed control parameter of scientific and technological progress, and u is
randomly distributed within (0, 1), reflecting the uncertainty of innovation activities. If the
above conditions are satisfied, this indicates that the innovation activity of R&D investment
has achieved specific results and the level of science and technology has been improved:

Tect= Tect−1 + θe1 × u(0, 1)× (Tecmax − Tect−1) (13)

Gdpi
t = Gdpi

t−1 + θe2 × u(0, 1)× (1− ρt)× (Gdpmax − Gdpt−1) (14)

Engi
t = Engi

t−1 − θe3 × u(0, 1)× ρt × (Engt−1 − Engmin) (15)

Poli
t = Poli

t−1 − θe4 × u(0, 1)× ρt × (Polt−1 − Polmin) (16)

θe1, θe2, θe3, and θe4 are the control parameters of the change rate of the technology level,
regional GDP, energy consumption per unit of output value, and pollutant emission per
unit of output value, respectively. Tecmax and Gdpmax are the limit values of the maximum
growth rate of the technology level and regional GDP, respectively (only the contribution
of technological progress is considered for regional GDP in the forecast year). Engmin and
Polmin are the limit values of the reduction rate of energy consumption per unit of output
value and the pollutant emission per unit of output value. ρt denotes the importance of
R&D activities for environmental performance, respectively, and is related to the industrial
policy of the region.

Energy consumption per unit of output value and pollutant emissions per unit of
output value change the environmental resource variables, and the functional relationship
is expressed as

Envj
t = fe

(
∑(Gdpi

t × Engi
t), ∑(Gdpi

t × Poli
t)
)

(17)

The labor force variable is related to regional economic development and livability (a
function of resource and environmental bearing capacity). It causes regional population
changes, and the changes in the population variables and environmental resource variables
change the regional resource and environmental bearing capacity. It is assumed that when
the regional resource and environmental bearing capacity reach a threshold value that can
be sustained, the regional environment deteriorates, the labor force is lost, and the rate of
scientific and technological progress, θw, decreases.

Agent development security capacity is used to consider the degree of government,
society, and public support for the region’s high-quality development, including infrastruc-
ture construction, the service guarantee, information sharing, and environmental protection
and governance, etc.; it has a functional relationship with parameter ρt, which improves
environmental performance:

ρt = fv
(
Vg, Vs, Vp, Vc

)
(18)
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Vg, Vs, Vp, and Vc represent the degree of government, society, public participation,
and support for the development and the degree of improvement in related policies.

Regarding the rules of agent evolution, based on the empirical data analysis, a proba-
bilistic language set is used to express the empirical rules of the historical dataset. Specif-
ically, the language set S = {s0 : low, s1 : lower, s2 : average, s3 : higher, s4 : high} is
used to describe the data of various indicators affecting total factor productivity and re-
gional policy information data, etc., for each year from 2010 to 2018, and is categorized
into the regional resource and environmental bearing capacity, high-quality development
guarantee capacity, regional high-quality development potential, and regional innovation
development capacity in four dimensions. The comprehensive evaluation results of each
dimension are expressed in a probabilistic language set, as follows:

Xt,i =
{

sα

(
p(α)

)∣∣∣sα ∈ S, 0 ≤ p(α) ≤ 1, α = 0, 1, 2 . . . , τ, ∑τ

α=0 p(α) = 1
}

(19)

where Xt,i represents the comprehensive evaluation results of each dimension index in year

t, respectively, and sα

(
p(α)

)
is the probability language variable, which is the probability

p(α) related to the language term sα.
The evolution rules of each year in the historical data are expressed as Xt−1,i → Xt,i ;

in other words, based on the comprehensive evaluation results of the historical data, the
equilibrium relationship between the development of the four dimensions of the year
(such as the expected development level based on the current situation of high-quality
development supportability) is predicted. Based on the evaluation results of each factor in
the above period, the possibility of approaching the previous evaluation results is found
from the historical dataset. The distance measurement method of the rule reference was
adopted from Yu et al. (2018):

Suppose that hs(p) =
{

sα

(
p(α)

)∣∣∣α = 0, 1, . . . , τ
}

and h′s(p) =
{

s′β
(

p(β)
)∣∣∣= 0, 1, . . . , τ′

}
are two probabilistic linguistic sets; then, the distance between them is defined as

d( hs(p), h′s(p)) =

{
1
2

(
1
τ ∑
(sα(p(α)))

min(sα(p(α)))∈hs(p)

(∣∣∣ f ∗(sα)p(α) − f ∗
(

s′β
)

p(β)
∣∣∣)r

+ 1
τ′ ∑

(s′β(p(β)))

min(s′β(p(β)))∈h′s(p)

(∣∣∣ f ∗
(

s′β
)

p(β) − f ∗(sα)p(α)
∣∣∣)r

⎞
⎠
⎫⎬
⎭

1
r (20)

where f ∗ is a semantic scale function that can be defined as

f (sα) =
α

τ
(α = 0, 1, . . . , τ) (21)

When r = 1, Formula (18) can be simplified as the Hamming–Hausdorff distance.
Regarding the quantitative methods for interaction of spatial lattices, according to

Tobler’s (1970) first law of geography, similar areas in space have a higher interaction
intensity. Distance is an important factor in the interaction of the ecological environment in
the upper and lower reaches of the Yellow River Basin. The ecological environment in the
upper reaches of the Yellow River Basin has distance decay characteristics. Referring to
the distance decay estimation method in geography, the influence of distance on spatial
interaction is represented by the Wilson maximum entropy model, as follows:

Gij = AiPiBjPj f
(
dij
)

(22)

Here, Gij is the degree of ecological impact between region i and region j, Pi and
Pj reflect the sizes of the two regions, Ai and Bj are the normalized factors of regional
scale, and the distance decay function f

(
dij
)

represents the function with distance d as the
independent variable to describe the influence of distance factors. This model adopts the
following exponential distance decay function:

f (d) = e−γd(γ > 0) (23)
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where γ is the distance decay function factor.

4.2. Parameter Setting

In this study, the public parameters required for the system simulation and the attribute
parameters of each region are set based on the training of sample data, and the values of
each parameter are first standardized in the specific application. For the change speed
parameters, such as the speed of technological progress, the level of science and technology,
GDP, the energy consumption per unit of output value, and the pollutant emission per
unit of output value, the system adopts the method of multiple simulation training and
comparison with adjustment.

The system’s main variables and their initial assignment rules are shown in Table 1.

Table 1. Main variables and initial assignment rules for computational experiments.

Variable/Parameter Assignment Interval Meaning Assignment Rule

T 50 Simulation cycle Fixed value

θw 0.01 Speed control parameter of scientific and
technological progress Training value

θe1 0.01 Speed control parameter of technical improvement Training value

θe2 0.01 Control parameter of GDP growth rate Training value

θe3 0.01 Speed control parameter for energy consumption
reduction per unit output value Training value

θe4 0.01 Control parameter of pollutant reduction rate per
unit output value Training value

γ 5 Distance decay function factor Training value

σt 0.05 The proportion of R&D investment in GDP Empirical value

Gdpmax 0.2 The maximum growth rate of GDP Empirical value

Engmin 0.2 Maximum reduction rate of energy consumption per
unit output value Empirical value

Polmin 0.2 Maximum reduction rate of pollutant discharge per
unit output value Empirical value

Tecmax 0.2 Maximum speed of technical improvement Empirical value

The specific attribute parameter settings affect the simulation results of the system,
such that the correspondence with the empirical results is considered in the parameter
settings as much as possible, and the universality and representativeness are considered.
Because the detailed design and parameter setting affect the research results, research
based on a multi-agent model should pay attention to the “virtual-reality linkage”. That is,
through the comparison of simulation results and real data, the rationality of the model
should be tested. This method is good at comparing and analyzing the results of system
evolution under different scenarios. As the change of parameters means the change of
the environment, it is convenient to visually analyze the impact differences of different
policies for the same object under the same rules. Because of the complexity and uncertainty
of the evolutionary path of the actual system, the multi-agent model in this paper may
not accurately predict the future. It is simplified to the above attributes and behavior
rules. The results of the simulation experiments are only used for the comparison of
different scenarios.

5. Simulation of High-Quality Development Evolution under Different Scenarios

In order to compare the evolution paths of eco-conservation and high-quality devel-
opment in the Yellow River Basin under different scenarios, the following scenarios were
designed for comparative experiments:
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• O: The economic development model without policy instrument intervention. Accord-
ing to the profit-maximization principle, industries conduct their economic activities,
and R&D investments are focused on improving production efficiency and reducing
production costs.

• I: Economic policy development model related to green innovation. This promotes the
high-quality development of green innovation through economic incentives.

• I_EN: The combined development model of green innovation with no different ecologi-
cal environment constraints throughout the whole basin. On the one hand, it promotes
green innovation through economic incentives and other means, and on the other
hand, it adopts indiscriminate ecological and environmental protection constraints in
all provinces in the Yellow River Basin.

• I_ED: A combined development model of green innovation and differentiated ecologi-
cal and environmental constraints in the upper, middle, and lower reaches. On the one
hand, green innovation is promoted through economic incentives and other means.
On the other hand, differentiated ecological and environmental protection constraints
are applied to the provinces in the upper, middle, and lower reaches of the Yellow
River Basin, with the lower reaches being compensated according to the ecological
and environmental level of the upper reaches.

The computational experiment platform of the proposed model was developed with
Delphi Xe 11.1, and Oracle 11g was adopted as the database tool. Based on the powerful
PASCAL language, Delphi has a good database interface and a friendly visual program-
ming environment. Its convenient modular design is flexible for function expansion and
policy scenario setting. The initial values of the system evolution simulation are based on
2018 data, and the evolution statistics of each region’s economy, society, resources, and
environment under different scenarios are obtained after calculation experiments. The year
is taken as the simulation evolution cycle, and the evolution cycle is set to 50 years. In
order to eliminate the influence of random factors on the evolution results, each scenario
is simulated 100 times, and the average value of multiple simulations is taken as the final
evolution result.

5.1. Analysis of the Evolution Path of the Economic Development Trend in the Yellow River Basin
under Different Scenarios

Taking 2018 as the base period, the evolution paths of each province in the Yellow
River Basin under different development modes are simulated individually. The evolution
trends of economic development in each province under different scenarios in 50 cycles are
shown in Figure 3.

 

(a) Qinghai 

 

 
(b) Sichuan 

Figure 3. Cont.
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(c) Gansu 

 
(d) Ningxia 

 
(e) Inner Mongolia 

  
(f) Shaanxi 

 
(g) Shanxi 

 
(h) Henan 

 
(i) Shandong 

Year

Figure 3. Evolutionary trends of the economic development in the provinces of the Yellow River
Basin under different scenarios.
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As seen in Figure 3, the economic development trend of each province in the Yellow
River basin varies over 50 years under different scenarios. However, in general, scenario
I_ED (the green innovation and differentiated ecological and environmental constraints
model for the upper, middle, and lower reaches) has a more significant advantage for
GDP per capita growth in the middle and late stages of the simulated evolution, except for
Qinghai Province in the upper reaches.

In particular, scenario O (the crude development model without ecological constraints)
prevails in the early stage of simulation evolution, but the overall economic growth under
this development model shows an apparently inverted “U” shape, which is unsustainable
in the long term.

Scenario I (the green innovation development model with economic incentives) has
different evolutionary paths in different provinces, among which Qinghai, Sichuan, and In-
ner Mongolia show a slow upward trend; Shanxi and Shaanxi have no apparent fluctuation,
and Ningxia, Gansu, Henan, and Shandong show an inverted “U”-type trend. Although the
long-term trend is better than the extensive development model, it still shows a downward
trend in the middle and late stages; it also highlights the importance of increasing the
support for science and technology innovation in Qinghai, Sichuan, and Inner Mongolia to
promote local economic development.

Scenario I_EN (the green innovation with basin-wide undifferentiated ecological and
environmental constraint model) evolves similarly to green innovation scenario I in most
provinces. However, in the Qinghai, Sichuan, Shaanxi, and Shanxi provinces, their GDP
per capita growth is significantly better than in scenario I in the middle and late stages of
the simulated evolution, reflecting the effect of ecological and environmental protection in
the promotion of economic growth in the region.

Under scenario I_ED, although all of the provinces achieve higher GDP per capita
growth than other scenarios in the late stage of simulation evolution, the evolutionary
paths of all of the provinces are not consistent, among which Qinghai, Sichuan, and Inner
Mongolia show an overall upward trend. However, Qinghai is the only province with
better GDP per capita growth than I_ED under scenario I_EN. Gansu, Shaanxi, and Shanxi
show a “U” shape, while Henan and Shandong show a moderately inverted “U” shape. It
can be seen that in order to achieve high-quality development in the Yellow River Basin,
economic policies should be formulated not only by distinguishing among the geographical
characteristics of the upper, middle, and lower reaches but also by taking into account the
resource endowment and ecological environment characteristics of different regions, and
by formulating differentiated policy strategies.

5.2. Scenario-Based Comparative Analysis of the Development of the Yellow River Basin by Province

The simulation of the 50-year evolution of each province in the Yellow River Basin
under different scenarios shows that the combination of the scenarios of innovation policies
and eco-conservation policies has long-term effects on economic development, resource
consumption, and the environment in each province, and the results of the scenarios
vary greatly among provinces. The economic growth, resource consumption, ecological
environment, and impact on the lower reaches’ ecological environment in each province
under scenario O (the crude development model without ecological constraints) are shown
in Table 2, and the “mean ranking” refers to the comparison of the annual mean values of
the corresponding dimensions under scenario O, scenario I, scenario I_EN, and scenario
I_ED. The results are shown in Table 2, where economic growth refers to the average
annual increase in GDP per capita, which is a positive indicator, and “1” indicates the best;
resource consumption, ecological environment, and the lower reaches’ impact are negative
indicators, and “1” again indicates the best.
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Table 2. Comparative ranking of the development of each dimension under scenario O in the Yellow
River Basin provinces.

Province

Economic
Growth

Resources
Consumption

Ecology
Environment

Impact
Lower Reaches

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Qinghai 11,650.25 4 16,460.93 4 140,490.11 4 7356.87 4
Sichuan 170,335.71 4 85,103.21 4 10,430,415 4 66,880.01 4
Gansu 21,328.36 3 19,184.24 4 2,128,716.6 4 49,712.45 4

Ningxia 8929.3 2 15,311.95 4 1,009,006.5 4 52,867.58 4
Inner-

Mongolia 59,270.51 4 66,669.79 4 2,942,370.4 4 153,081.69 4

Shaanxi 80,319.17 4 41,108.57 4 4,578,867.4 4 157,932.48 4
Shanxi 51,381.14 4 60,608.01 4 4,287,611.2 4 224,095.52 4
Henan 141,309.92 2 66,852.93 4 5,981,967.5 4 297,824.63 4

Shandong 223,396.87 1 111,192.29 4 17,217,165 4 - -
Note: The color block, from light to dark, indicates the sorting results from the best to the worst.

As can be seen from Table 2, except for the four data on economic growth, the provinces
in the Yellow River Basin ranked first in the bottom in terms of resource consumption,
ecological environment, and impact on the lower reaches under scenario O. This indicates
that although the crude development model is beneficial to the economic growth of the
region in individual provinces, at the expense of the ecological environment, this devel-
opment model will also have a significant impact on the ecological environment of the
lower reaches.

As shown in Table 3, green innovation has significant effects on the reduction of
resource consumption, optimizing the ecological environment and reducing the impact
of environmental pollution in the region on the lower reaches, especially in terms of the
reduction of resource consumption. The Gansu, Inner Mongolia, Shaanxi, and Shanxi
provinces reach the optimal resource consumption under this scenario; in terms of the
ecological environment and impact on the lower reaches, this scenario is significantly
better than scenario O of the crude development model. In terms of economic growth, the
Shandong, Henan, and Ningxia provinces lag behind the crude development scenario O.

Table 3. Comparative ranking of the development of each dimension under Scenario I in the Yellow
River Basin provinces.

Province

Economic
Growth

Resources
Consumption

Ecology
Environment

Impact
Lower Reaches

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Qinghai 15,450.36 3 11,799.64 2 75,008.79 3 3926.87 3
Sichuan 219,439.4 3 54,970.65 2 6,135,319.7 3 36,179.37 3
Gansu 22,694.15 2 8846.17 1 1,013,780.4 3 22,271.67 3

Ningxia 8869.36 3 10,245.05 2 469,406.02 3 24,594.85 3
Inner-

Mongolia 71,990.12 3 35,578.52 1 1,709,489.1 3 89,057.09 3

Shaanxi 102,047.13 3 17,895.28 1 2,537,886 3 84,071.45 3
Shanxi 62,569.09 2 28,929.15 1 2,030,434.5 3 106,122.33 3
Henan 136,472.67 3 36,077.92 2 4,254,877.6 3 211,837.88 3

Shandong 201,533.46 3 61,046.84 3 14,936,784 2 - -
Note: The color block, from light to dark, indicates the sorting results from the best to the worst.
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As seen in Table 4, the inclusion of strict ecological and environmental constraints does
not always have a negative impact on the economy. In terms of the average annual growth
value of the economy over 50 years, Inner Mongolia and Shaanxi achieve optimal economic
growth under the scenario with the inclusion of strict environmental constraints; the
resource consumption under this scenario is much better than that of the crude development
scenario O. Compared with green innovation scenario I, scenario I_EN, with the dual
combination of green innovation and ecological and environmental protection, is slightly
better; moreover, this scenario is significantly better than both scenario O and scenario I in
terms of the ecological environment and the impact on the lower reaches.

Table 4. Comparative ranking of the development of each dimension under Scenario I_EN in the
Yellow River Basin provinces.

Province

Economic
Growth

Resources
Consumption

Ecology
Environment

Impact
Lower Reaches

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Qinghai 18,451.96 2 9064.92 1 56,192.16 2 2937.88 2
Sichuan 258,358.59 2 53,122.8 1 4,010,785.9 2 21,964.45 2
Gansu 20,989.1 4 9271 2 593,202.26 2 13,340.78 2

Ningxia 8324.35 4 7876.64 1 243,600.44 2 12,763.61 2
Inner-

Mongolia 94,928.05 1 44,085.16 2 787,153.95 1 40,579.8 1

Shaanxi 108,755.5 1 20,922.59 2 1,349,889.5 1 39,129.28 1
Shanxi 57,418.3 3 38,773.23 2 1,095,447.9 1 57,254.48 1
Henan 115,455.25 4 35,022.77 1 3,056,135.4 1 152,156.02 1

Shandong 172,713.63 4 46,903.43 1 12,232,450 1 - -
Note: The color block, from light to dark, indicates the sorting results from the best to the worst.

As shown in Table 5, the implementation of the segmented control ecological and
environmental protection strategy in the Yellow River Basin is much better than other
scenarios in terms of economic growth, but it is significantly inferior to scenario I and
scenario I_EN in terms of reducing resource consumption; in terms of the ecological
environment and impact on the lower reaches, this scenario is significantly better than
scenario O and scenario I, but not significantly different from scenario I_EN. It can be
seen that the implementation of the segmented control of the Yellow River basin-wide
ecological and environmental protection strategy can better guarantee long-term economic
growth, but under the existing technical level and green innovation conditions, most of
the provinces will be limited by the resource bearing capacity. Therefore, it is necessary to
vigorously develop green industries and new industries while protecting the ecological
environment throughout the region in order to achieve the comprehensive, high-quality
development of industry, technology, ecology, the environment, and society by changing
the existing industrial structure.
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Table 5. Comparative ranking of the development of each dimension under scenario I_ED in the
Yellow River Basin provinces.

Province

Economic
Growth

Resources
Consumption

Ecology
Environment

Impact
Lower Reaches

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Periodic
Mean

Mean
Sort

Qinghai 19,018.51 1 12,941.77 3 32,695.17 1 1712.49 1
Sichuan 342,864 1 61,524.9 3 3,088,360.3 1 21,516.52 1
Gansu 40,393.65 1 12,357.85 3 436,312.02 1 9024.54 1

Ningxia 13,645.62 1 11,461.19 3 176,289.76 1 9236.82 1
Inner-

Mongolia 88,228.44 2 52,568.74 3 817,342.66 2 42,530.06 2

Shaanxi 108,517.61 2 29,579.6 3 1,430,490.5 2 49,998.64 2
Shanxi 69,682.36 1 40,420.05 3 1,412,879.9 2 73,845.33 2
Henan 156,672.64 1 38,999.83 3 4,162,523.9 2 207,239.86 2

Shandong 217,203.87 2 48,659.22 2 15,923,150 3 - -
Note: The color block, from light to dark, indicates the sorting results from the best to the worst.

5.3. Comparative Analysis of the Overall Evolutionary Trends in the Yellow River Basin under
Different Scenarios

The key to the global governance of the Yellow River Basin is to change the traditional
situation of “governing the Yellow River in nine provinces and managing each section”.
According to the analysis of the above provinces’ development status and evolution process,
each province’s development stages and work priorities are different. The evolution trends
of economic development in the upper, middle, and lower reaches, and the whole Yellow
River Basin under different scenarios are shown in Figure 4.

 

(a) Upper reaches (b) Middle reaches 

(c) Lower reaches (d) Total basin 

Figure 4. Simulation of the evolution of the overall economic development of the Yellow River Basin
under different scenarios.
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As seen in Figure 4, from the long-term evolutionary trend, scenario I_ED (green
innovation with differentiated ecological and environmental constraint patterns in the
upper, middle, and lower reaches) is optimal in terms of the overall economic development
of the Yellow River Basin, with the exception of the lower reaches, for which scenario
I_EN (green innovation with basin-wide undifferentiated ecological and environmental
constraint model) is significantly better than scenario I (green innovation development
model with economic incentives). In the context of green innovation, the strict ecological
and environmental protection has a positive effect on the economic development of the
Yellow River Basin, especially from a basin-wide perspective. The phased-control eco-
logical and environmental protection strategy is far superior to other scenarios in terms
of economic development. As the high-quality development of the middle and upper
reaches of the Yellow River Basin is constrained by the business environment, human living
environment, salary and benefits, and development space, it faces enormous competitive
pressure regarding green innovation. Further analysis of the overall resource consumption
in the Yellow River Basin under different scenarios is shown in Figure 5.

(a) Upper reaches (b) Middle reaches

(c) Lower reaches (d) Total basin

Figure 5. Simulation of the evolution of the overall resource consumption in the Yellow River Basin
under different scenarios.

As shown in Figure 5, green innovation can better reduce resource consumption in
the Yellow River Basin, and, overall, the effect of resource consumption reduction under
the scenario without adding strict ecological and environmental constraints is generally
better than that of scenario I_ED with the segmented control of region-wide ecological
and environmental constraints; specifically, under scenario I_ED (the green innovation
and differentiated ecological and environmental constraints model for upper, middle, and
lower reaches), because the regions in the middle and upper reaches of the Yellow River
Basin enforce stricter ecological and environmental constraints than the lower reaches,
which reduces the regional green innovation capacity to a certain extent, in the long run,
the middle and upper reaches can better reduce their resource consumption under scenario
I (the green innovation development model with economic incentives) regarding green
innovation. Meanwhile, for the lower reaches of the Yellow River Basin, under scenario
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I_EN (the green innovation with basin-wide undifferentiated ecological and environmental
constraints model), and according to Figure 5c, it can be seen that the unified strict ecological
and environmental constraints in the upper and lower reaches constrain economic growth;
therefore, the resource consumption under this scenario is optimal. Further analysis of the
resource consumption per unit of GDP under different scenarios is shown in Figure 6.

 

(a) Upper reaches (b) Middle reaches

(c) Lower reaches (d) Total basin

Figure 6. Simulation of the evolution of the resource consumption per unit of GDP in the Yellow
River Basin under different scenarios.

As seen in Figure 6, overall, the three scenarios with the inclusion of green innovation
have similar effects on the reduction of the resource consumption per unit of GDP in the
Yellow River Basin. However, scenario I_ED (green innovation and differentiated ecological
and environmental constraints model for upper, middle, and lower reaches) is optimal in
the upper and lower reaches, while scenario I (the green innovation development model
with economic incentives) is optimal in the middle reaches. Further analysis of the overall
ecological environment in the Yellow River basin under different scenarios is shown in
Figure 7.

As seen in Figure 7, overall, scenario I_EN (the green innovation with basin-wide
undifferentiated ecological constraint model) and scenario I_ED (the green innovation
and differentiated ecological and environmental constraints model for upper, middle,
and lower reaches) are optimal in terms of ecological and environmental protection in
the Yellow River basin; specifically, under scenario I_ED, the upper reaches adopt more
stringent ecological environment constraints than the middle and lower reaches, such that
the ecological environment of the upper reaches is the best under this scenario. Further
analysis of the pollution emissions per unit of GDP under different scenarios is shown in
Figure 8.
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(a) Upper reaches (b) Middle reaches

(c) Lower reaches (d) Total basin

Figure 7. Simulation of the evolution of the overall ecological situation in the Yellow River basin
under different scenarios.

(a) Upper reaches (b) Middle reaches

(c) Lower reaches (d) Total basin

Figure 8. Simulation of the evolution of the pollution emissions per unit of GDP in the Yellow River
Basin under different scenarios.
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As shown in Figure 8, overall, scenario I_ED (the green innovation and differential
ecological and environmental constraint model for upper, middle, and lower reaches) has
the best effect on the reduction of pollution emissions per unit of GDP, especially in the up-
per reaches of the Yellow River Basin, where the pollution emissions per unit of GDP under
scenario I_ED are significantly better than those in other scenarios. Combining economic
development, resource consumption, and the ecological environment, the implementation
of segmented-control ecological and environmental constraint strategies for the upper,
middle, and lower reaches of the Yellow River basin, and the appropriate strengthening of
ecological and environmental protection in the middle and upper reaches, are important in
order to promote the overall high-quality development of the Yellow River Basin.

5.4. Policy Implications of the Research Results

The simulation results show that under the existing development model, the economic
development of all of the provinces in the Yellow River Basin will be subject to different
degrees of resource and ecological constraints, and different policy scenarios significantly
affect the evolutionary trends of the economic development, resource consumption, and
environmental pollution in each province in the Yellow River Basin, showing different
mechanisms to approach the bottleneck of resource and ecological constraints. The effects of
the same policy scenario in different provinces also vary. The following policy implications
are based on the research results.

(i) Green innovation economic incentive policies have significant effects on the re-
duction of resource consumption, the optimization of the ecological environment, and the
reduction of the lower reaches’ impact of environmental pollution in the region, especially
reducing resource consumption and the ecological environment. However, from the per-
spective of promoting economic growth, the Shandong, Henan, and Ningxia provinces are
generally seen to lag behind the crude development model under a single green innovation
incentive model (see Table 3).

(ii) Strict ecological constraints do not always harm the economy. From the economic
growth trends simulated over 50 years of evolution, Inner Mongolia and Shaanxi instead
achieve optimal economic growth under the scenario that imposes strict environmental
constraints; at the same time, resource consumption under this scenario is much better
than under the crude development model, and a comparison with the green innovation
economic incentive scenario reveals that the scenario with a dual combination of green
innovation and ecological and environmental protection yields better results in terms
of the promotion of economic development and the reduction of resource consumption.
This scenario is also significantly better than the crude development model and the green
innovation incentive model in terms of the ecological environment and the impact on the
lower reaches (see Table 4).

(iii) The implementation of the segmented-control ecological and environmental pro-
tection strategy has a much better impact on economic growth than other scenarios, but
in terms of the reduction of resource consumption, this scenario is significantly inferior to
the green innovation incentive scenario and the combined innovation and environmen-
tal constraint scenario; in terms of ecological environment and the impact on the lower
reaches, this scenario is significantly better than the crude development model and the
green innovation incentive scenario, but is not significantly different from the combined
innovation and environmental constraint scenario. The difference between this scenario
and the combined innovation and environmental constraint scenario is not significant
(see Table 5). It can be seen that the implementation of a segmented-control strategy for
ecological and environmental protection across the Yellow River Basin can better guarantee
long-term economic growth. Because the high-quality development of the middle and
upper reaches of the Yellow River Basin is constrained by the business environment, human
living environment, salary and welfare, development space, and other conditions, and
faces huge competitive pressure regarding green innovation, implementing a synergistic
development model with upper and lower reach linkages, complementary advantages,
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and a reasonable division of labor can not only achieve sustainable economic growth but
also reduce resource consumption and environmental pollution more efficiently. In the
long term, this could better promote the high-quality development of the whole Yellow
River Basin.

6. Conclusions and Discussion

Based on an agent-based model, this study took the empirical data of 115 prefecture-
level cities in nine provinces and regions of the Yellow River Basin from 2010 to 2018 as
a sample, and took the coordinated development of economy–resources–environment–
society as the goal, constructing 115 agent models with different attributes, constraints,
behavior rules, interaction rules, and autonomous response capabilities. It used computa-
tional experiment methods derived from the social sciences to simulate the evolutionary
path of eco-protection and high-quality development under different policy scenarios,
such as green innovation, ecological environment constraints, ecological compensation,
and so on. The simulation results show that under the existing development model, the
economic development of all of the provinces in the Yellow River Basin will be subject to
different degrees of resource and ecological constraints, and different policy scenarios sig-
nificantly affect the evolutionary trends of economic development, resource consumption,
and environmental pollution in each province in the Yellow River Basin, showing different
mechanisms to approach the bottleneck of resource and ecological constraints.

Existing research on the high-quality development of the Yellow River Basin is mostly
based on the evaluation of multiple indicators. These studies mostly use empirical data
to carry out the comparative analysis of different temporal and spatial dimensions, and
rarely involve the prediction of future evolution trends under different scenarios. With the
combination of empirical research with the SD method, Jiang et al. (2021) [32] simulated
the dynamic process of system development. Jiang’s model was based on the indicators of
the evaluation system and the causal relationship between the indicators. The advantages
of such a method come from the intuitive modeling method; the easy-to-understand,
clear causal relationship between the variables; and the ease of reflection of the error of
simulation by comparing the simulation results of each index with empirical data. However,
the research objects and conclusions of such methods remain at the macro level, which is
difficult to reveal the microdrivers of variant changes, and it is also difficult to reflect the
impact of individual heterogeneity, individual decision-making uncertainty and individual
interaction on the macro level of the system.

On the other hand, from the perspective of scenario analysis, Jiang’s model simu-
lated the evolution results under three different scenarios, including economic growth
priority, environmental protection, and equal emphasis on economic development and
environmental protection. The above scenarios are essentially one or more dimensions that
constitute the evaluation system, and the simulation results only reflect the linkage and
coupling relationship between the dimensions. Our model benefits from the flexibility of
multi-agent attributes and behavior rules. It focuses on the possible policy scenarios of
high-quality development in the Yellow River Basin, and explores the optimization space
of policy design, which can more deeply reveal the action mechanism and macro-level
effect of a specific policy. Compared with existing research, the proposed model reveals the
microdrivers of the macro changes. Its outstanding advantage is that it is convenient for
researchers to analyze the motivation at the micro level and observe the overall emergence
at the macro level. In this way, it is possible to visually simulate the development and
evolution of a complex system under different scenarios, based on empirical data and
with computers as tools. The virtual–real linkage provides a guarantee for the reliability
of research. Researchers can verify and adjust the attributes or rules of agents at any
time by comparing the simulation results with empirical data. This helps the constructed
artificial system to map the real system well, on the one hand, and provides more abundant
scenarios than the real system, on the other hand.
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Scenario modeling and evolutionary simulation based on multiple agents are very
effective tools in bottom-up research; however, there may be limitations in the modeling
process, which should be continuously improved and expanded in future research. In this
paper, 115 prefecture-level cities were used as agents for simulation. The study did not
consider the behavioral characteristics and interactions of more micro-level individuals,
such as different industries, specific enterprises, residents, and so on. In the future, the
interaction research of agents at different levels should be strengthened. In addition, this
study took language probability as the basis of agent decision-making. It did not consider
the mutation problem of the agent itself. In the future, it will be necessary to enrich the
agent rule-learning algorithms, such as the genetic algorithm, particle swarm optimization,
and ant colony algorithm, etc. In addition, it is also important to strengthen the integration
of different models, consider the complexity of interaction between agents, and expand the
scope of application of the model.
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Abstract: Multi-resolution modeling (MRM) has been considered as an ideal form of simulation
to acquire low-resolution scalability as well as high-resolution modeled details. Although both
practical and theoretical interests exist in MRM, actual implementations were quite different in
terms of cases and methods. Specifically, MRM implementations range from parameter-based
interoperation to model exchanges with different resolutions, yet it is difficult to observe a method
that focuses on both of these aspects. To this end, this paper introduces a formalism or multi-
resolution translational Discrete Event System Specification (MRT-DEVS). Focusing on the practical
perspective, MRT-DEVS intends to ease the implementation’s difficulty and reduce the simulation’s
execution costs. Specifically, MRT-DEVS embeds state and event translation functions into the model’s
specifications so that it enables MRM with less complex mechanisms in terms of operations. Using
the provided case study and a reduction to other MRM methods, the theoretical soundness of the
proposed method is supported. Moreover, we discussed the pros and the cons of the proposed
method from various MRM perspectives. We expect that with all the provided information, MRMS
users would consider the proposed method as a practical option to implement their models.

Keywords: modeling and simulation; practical formal method; multi-resolution; discrete event
system specification

1. Introduction

This paper introduces a formalism for multi-resolution translational discrete event
system specification (MRT-DEVS) to enable MRMs with less complex mechanisms with
respect to operations. The proposed method is based on discrete event system specification
(DEVS) formalism [1]. The previous DEVS-based formalisms are solid and sound, with
complete expressions in MRM scenarios. However, we note that their hidden challenge is
the difficulty that field engineers face when implementing multi-resolution (MR) models by
following such formalisms. For example, MR modeling with previous formalisms requires
components for different resolution models and resolution conversions, which eventu-
ally increases the total implementation’s complexity. The proposed MRT-DEVS intends
to ease the implementation difficulty by relaxing an assumption of the DEVS. Specifi-
cally, MRT-DEVS absorbs the resolution conversion into the models for each resolution,
and the state information is converted within the model, which does not require additional
models for the conversion’s purpose. This reduces the practical implementation burden,
but relaxing the assumption can cause a trade-off relationship, which is investigated from
various perspectives.

The utility of simulation often originates from the emergence of target systems that
is difficult to anticipate before the execution of actual system operations as well as the
comprehensive description of systems. To embody these two aspects, simulation prac-
tices need to be comprehensive for the expression and scalable for the emergence [2,3].
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For example, if only a handful of objects are involved in a simulation, the complexity that
lies in the system would be difficult to observe in emergent phenomena. On the other
hand, to simulate many objects, the descriptions of the objects may be over-abstracted
and even simplified, which would fail to deliver a comprehensive description. Therefore,
the objectives of comprehensive expression and scaled emergence result in a dilemma [4,5]
when we assume limited resource in modelers, computing resources, available data, etc.

To confront this dilemma, researchers proposed a form of multi-resolution model-
ing (MRM) that describes a target system with different resolution components; thus,
the model’s details can change according to their compositions [6–8]. This approach can
resolve the dilemma by implementing a high-resolution model for completeness and a
low-resolution model for scalability [9]. Moreover, the resolution levels of model com-
ponents change during simulation executions using internal or external triggers (e.g.,
events coming from external or inner states) through an arbiter that is implemented by
users [10,11]. Ideally, MRM simulations may execute the modeled details with accelerated
or simplified behaviors that intervene in periods. This ideal framework has drawn inter-
est from practitioners and researchers; thus, works related to the MRM approach have
been published.

Although both practical and theoretical interests exist in MRM, actual implementations
were quite different in terms of cases and methods. The implementation of MRM ranges
from a parameter-based interoperation to model exchanges among different resolutions.
In particular, model exchange has been conducted in rather complex ways because the
objects and the associated information, such as model states, should be properly converted
with respect to a new resolution. In this conversion process, an ad hoc approach is often
applied due to its lower development costs [12–15]. However, we argue that the conversion
should be rather disciplined so that the developed models can be maintainable, flexible,
and transparent. A number of proposals have followed such a suggestion, especially the
formalism-based method: MRM formalisms [10,11] generally specify models for different
resolutions and require an additional model to deal with the conversion process.

After introducing the MRT-DEVS formalism, we argues its expression in two ways:
First, we show an illustrative example with a dynamic resolution-change sequence to
demonstrate how MRT-DEVS models MR scenarios; second, we reduce MRT-DEVS for-
malism to previous MRM formalisms so that MRT-DEVS can convey the same amount
of information that was expressed in previous formalisms. Lastly, we discuss trade-off
relationships in MRT-DEVS.

2. Previous Research

This section provides a survey of the previous research studies on MRM. Specifically,
we examine how MRM works, particularly in MRM applications and methods.

2.1. Multi-Resolution Modeling Applications

Before diving into the survey, we intend to begin with a formal definition of MRM.
In modeling and simulation (M&S), the resolution of a model refers to the level of an
abstraction of a target system, which could differ according to the objective of simulations
performed with the model. For example, when we simulate a squad-level engagement, its
objectives could vary with respect to the modeler’s interests: For instance, one may have
an interest in either squad maneuver tactics or individual engagement tactics in the squad.
In this sense, the model’s resolution has become a frequent topic in discussions among
M&S experts [16–18].

MRM, as a concept extended from model resolution, describes a target system as a set
of models with different resolution levels. More formally, MRM was defined as “building
a single model with alternative user models that have different levels of resolution for the same
phenomena” [19,20]. To meet the potential capability expected from the definition, many
MRM research studies have been conducted and developed in various domains.
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Rauscher et al. conducted a large number of aqua planet experiments using the
multi-resolution model for predication across diffirent scales of hydrostatic dynamical
cores [21]. Jeschke and Uhrmacher applied MRM methods to develop a molecular crowding
simulation model in which a combination of individual and lattice-population-based
algorithms were used to manage macromolecular crowding phenomena [22]. Tan et al.
dealt with MRM problems, such as aggregation and disaggregation among federates of
different resolution levels, in a high level architecture (HLA) environment [23]. Zeigler and
Kim proposed an efficient approach for MRM, particularly for UAV-based service systems
using DEVS-based system entity structures (SESs) [24].

Although MRM is used to capture various aspects of a target system, there is another
method used for applying MRM, such as securing simulation efficiency. Yoon et al. [25]
developed grid models of focused ultrasound propagation, and they assessed their compu-
tational efficiency by various combinations of resolution grid settings. Ringler et al. [26]
proposed an MRM method for the global ocean system, and the simulation based on the
proposed method was efficiently evaluated by using MRM concepts. Choi et al. [27]
applied an MRM method to improve simulation execution speeds while reducing errors
and increasing future model reuses.

2.2. Multi-Resolution Modeling Methods

Although MRM applications are widespread, many researchers have shown an interest
in using different methods to develop MR models efficiently. In MRM contexts, maintaining
the consistency between different levels of resolution models is important, because models
of various resolution levels have to be exchanged during the simulation’s execution [28–30].
Consistency maintenance is mainly about current model information, such as the model’s
states and external inputs to the model, and the conversion process on this information is
referred to as state and event translation in this paper.

Although a number of ways to realize MRM exist, we focus on the formalism-based
methods. Considering the importance of consistency maintenance in MRM, we also argue
that a method for MRM should provide a clear view of the conversion process so that users
can understand how it works and eventually manipulate it for what they want to develop.
Among M&S formalisms, DEVS is often considered as one of the remarkable candidates
because of its systematic modeling capability. Hence, a number of MRM methods have
been based on DEVS [11,31–33], and the proposed method is another variant of DEVS.

Among past DEVS variants, we focused on Baohong’s [11] and Hong’s [33] studies
because their approaches are similar to ours. Baohong proposed a formal specification for
MRM based on DEVS. To this end, he proposed a concept of an MR model family (MF)
where different resolution models and their relations are involved. Technically, he made
two efforts for his proposed MRM formalism: (1) he introduced a set of model resolutions
(γ) and the associated functions (ψ, π, and χ) for embedding model resolutions into his
work; (2) he adapted the specifications from dynamic structure DEVS [34] for describing
more resolution changes via a change in model structure.

Hong also proposed a formalism for MR modeling and simulation, and it focused
on the method of implementing MR simulations with existing models (e.g., federates in
HLA) and not methods for specifying the actual MR model. In any case, the main body of
her formalism was formed using a structure similar to Baohong’s, yet Hong introduced
a concept of resolution-conversion protocols (using CR and YR) that enables triggering a
model’s resolution changes from its inner components.

Although it is obvious that the above-mentioned MRM methods provide sound
theoretical frameworks for MRM, two drawbacks cause hesitency in their applications in
actual model development. The first is that their formalisms possess structure that is too
and have too many elements that should be specified by users. This trait may oppose the
direction of DEVS because DEVS has become one of the most popular formalisms in M&S
due to its simple and explicit expression. The second drawback is that according to their
complex structure, its simulation would be inefficiently executed. Moreover, in handling
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resolution changes, they introduced additional components, such as a converter (χ) or
additional event exchange protocols (CR and YR), and these efforts require more costs,
including incresaed simulation time and resource usage.

To tackle these problems, this paper proposes an MRM formalism. The proposed
method is an extension of DEVS formalism, but the modification is minimized to convey
the easy modeling resulting from DEVS. Moreover, the proposed method hides most of the
converter and event-exchange protocols for model resolution changes, which were enabled
by releasing modular characteristics in DEVS. Through this improvement, the cost of MRM
development and its simulation in practice would be reduced. The details on the pros and
the cons of the proposed method are discussed in a later section.

3. Multi-Resolution Translational DEVS Formalism

This section introduces the proposed formalism, MR translational discrete event
system specification formalism (MRT-DEVS), with resepct to two aspects: the first is the
definition and semantics of the formalism; the second is the operation of the specified MR
system following the MRT-DEVS formalism.

3.1. Specification of MRT-DEVS Formalism

In this section, we introduce the specifications of the MRT-DEVS formalism, which
extends the DEVS formalism with a minimal variation in order to enable MR model-
ing. MRT-DEVS consists of two definitions: the atomic model and the coupled model.
Equations (1) and (2) define the atomic model and the coupled model, respectively.

AM =< X, Y, SM, SR, δext, δint, δres, λ, ta >

X and Y are sets of input and output events

SM and SR are sets of model and resolution states

δext : Q× X → SM, external transition function

where Q = {(s, e)|s ∈ SM, 0 ≤ e ≤ ta(s)}
δint : SM → SM, internal transition function

δres : SM × SR → SR, resolution transition function

λ : SM → Y, output function

ta : SM → R+, time advance function

(1)

Equation (1) enumerates the atomic model tuple. In detail, X is a set of input events, Y
is a set of output event, and SM and SR are sets of state variables representing the model
and the resolution states, respectively. δext is the external transition function that determines
the next SM with the current SM and the input event instance; δint is the internal transition
function that determines the next SM with the current SM; δres is the resolution transition
function that determines the next SR with the current SR and the current SM; λ is the output
function to generate an output event instance based on the model state SM; ta specifies the
lifespan of a model state (i.e., next time advance time), tadv ∈ [0.∞), by depending on SM.

Compared to the original DEVS formalism, the atomic model of MRT-DEVS adds SR
and δres, which are the resolution state and resolution transition function. This formal-
ism design intends to minimize the modifications of potentially existing atomic models,
and particularly, the formalism limits alterations on existing transition functions of δext and
δint because these are often considered as key features for modeling discrete-event systems.
For example, the proposed formalism minimizes the modification on DEVS by adding two
tuple elements regarding the model’s resolution to the DEVS atomic model.
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CM =< X, Y, M, SR, RMS, δres, δstrans, δetrans >

X and Y are sets of input and output events

M is a set of model components

SR is a set of resolution states

RMS ⊆ SR × Σr(r ∈ SR), resolution model structure

where Σr = {Mr, EICr, EOCr, ICr, Selectr},

coupling relations at model resolution state (r)

δres : SR ×∪m∈Σr .Mr m.S → SR,

resolution transition function

δstrans : SR ×∪m∈Σr .Mr m.S → ∪m∈Σr .Mr m.S,

state translation function

δetrans : SR × X → m.X, where m ∈ Σr.Mr

event translation function

(2)

Equation (2) enumerates the coupled model tuple: X is the input events, Y is the
output events, and M is a set of model components, which are identical to the DEVS
coupled model. To embed the model resolution concept in the coupled model, MRT-DEVS
introduces a resolution state (SR) and the associated transition functions (i.e., δres, δstrans,
and δetrans), which are not allowed in the classic DEVS coupled model. Moreover, MRT-
DEVS holds a resolution model set (RMS), which is defined as a set of activated models
and their coupling relations for a certain resolution state. Specifically, at a certain resolution
state denoted by SR, RMS becomes a tuple of the coupling information according to the
resolution state, Σr. In this paper, Σr consists of activated models (Mr) and a union set of
external input couplings, EICr; external output couplings, EOCr; internal couplings, ICr;
and a tie-breaking function, Selectr, in the classic DEVS coupled model. We denote this
union of coupling information as Σ by following the notation of the DS-DEVS [34].

MRT-DEVS proposes a transition function, δres, for SR. By definition, δres accesses
information from two separate sources: the specifying model’s resolution state, SR, and the
union of the currently activated model’s state, ∪m∈Σr .Mr m.S. Here, it should be noted that
we are suggesting that a coupled model accesses the states of its components. This has
been regarded as a violation of the black-box assumption, or modular modeling, which has
been prohibited in DEVS. We will return to this discussion in later sections in this paper.
If we accept the definition of RMS, the definition of δres becomes trivial because it changes
the resolution state’s information, SR, by the state of the child models that is affected by
input events or the expiration time.

While accepting the definition of δres requires the read privilege of the child models,
or components, the state translation function of δstrans requires writing privileges. δstrans is
the function to change the state information in the activated models at a certain resolution
state r (Σr.Mr). Previous approaches used event messages to change the state information
of the activated models, but we note that this increases modeling and simulation costs,
such as increased message passing counts and the modeling concerns for handling them.
Specifically, Lee and Kim [35] identified that message passing is the most influent factor
for simulation overheads. Hence, we relaxed the black-box model assumption to alter
the state information of the child models directly. The justification for this assumption
violation will follow in the Discussion section. The main role of this state translation is
data aggregation and disaggregation because of resolution changes. For instance, a low-
resolution model will generate a set of state information for a high-resolution model through
data disaggregation, and data aggregation denotes the scenario from a high resolution to a
low resolution. Eventually, every piece of information is stored as state information; thus,
data aggregation/disaggregation can be realized by manipulating state information.

Finally, MRT-DEVS requires a function for event translation, δetrans, between resolution
changes. An event from the outside model assumes a certain resolution of a receiver model,
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but the receiver model might change its resolution by alternatively using a different set of
RMS. Therefore, the outside event needs to be adjusted by the activated model resolution
that is determined by SR. As a notation, δetrans accepts SR and the input event from the
outside X, which is indifferent to the resolution state of the receiver model, and δetrans turns
the input event into inputs of the activated components, which is called an event translation
adjusted to fit the model of a certain resolution, SR. In previous MR methods, this was
implemented as another converter model, and this method requires exchanges of event
messages as well as the resolution setting message. Therefore, we removed the converter
model by violating the black-box model assumption; more specifically, we replaced the
converter model with a function of the coupled model.

3.2. Operation of MRT-DEVS Formalisms

Once we define the MRT-DEVS formalism, it is important to understand how the
specified models work (i.e., their operational procedures). The proposed MRT-DEVS
defines the resolution’s state transition in both atomic and coupled models; thus, this paper
introduces the operation of both models in turn.

Algorithm 1 illustrates the operation flow of the atomic model in MRT-DEVS in
contrast to the classic DEVS ( additional parts for MRT-DEVS are presented in bold in
Algorithm 1). In the classic DEVS, the atomic model is introduced for modeling behav-
iors in discrete event systems. Once users design atomic models, the DEVS simulation
algorithm supports the simulation of system behaviors with resepct to a discrete event
system. For example, setting up the last event time (tl) and next event time (tn) is essential
in discrete event simulation.

Algorithm 1 Simulation Algorithm for MRT-DEVS Atomic Models

Require: parent {parent model},
tl {last event time},
tn {next event time}

1: while not at the end of simulation do
2: if receiving an initialization message at time t then
3: tl = t - e {e: elapsed time}
4: tn = tl + ta(SM) {SM: model state}
5: else if receiving a state transition event at time t then
6: y = λ(SM)
7: send an output event to parent (y, t)
8: SM = δint(SM)
9: SR = δres(SM , SR) {SR: resolution state}

10: tl = t
11: tn = tl + ta(SM)
12: else if receiving an input event x at time t then
13: e = t− tl
14: SM = δint(SM, e, x)
15: SR = δres(SM , SR)
16: tl = t
17: tn = tl + ta(SM)
18: end if
19: end while

As Algorithm 1 shows, the simulation algorithm for the DEVS atomic model handles
events, or messages, from two perspectives. In one case, it involves receiving a state
transition message from the parent model where the atomic model is involved. In this
case, the atomic model generates an output event based on its current state (λ), changes
its model state (δint), and sets up a time duration for staying in the changed state (time
advance, ta). In the other case, it receives an input event from the outside. In this case,
the atomic model changes its state depending on the current state and the input event (δext),
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and similarly to the previous case, it updates the time duration for the new state with its
time advance function.

As mentioned above, the proposed MRT-DEVS atomic model does not alter the classic
one much and introduces resolution states (SR) and the associated transition function (δres).
Similarly, the simulation algorithm for the MRT-DEVS adds calling the resolution state-
transition function after the model’s state transitions (δint (line 9) and δext (line 15), which
are marked in bold in Algorithm 1) into the classic state.

Algorithm 2 illustrates the simulation algorithm of the coupled model in MRT-DEVS,
which is also based on DEVS (additional parts are marked in bold). In DEVS, the coupled
model is for reflecting the structure of a target system. However, the simulation algorithm
for the coupled model coordinates the simulation’s execution within it and its components;
specifically, it helps synchronize simulation times and manage event exchanges among the
coupled model and its components.

Setting aside the initialization, the simulation algorithm of the DEVS-coupled model
considers three event cases (refer to Algorithm 2). The first case is when the coupled model
receives a state transition event, which means any component of the coupled model is
ready to change its state (either or both of its model and resolution states). In this case,
the simulation algorithm sends a state transition event to an imminent child, m∗, and its
time advance is identical to its next event time, tn, and the imminent child, if it is an atomic
model, changes its state following a case in which it receives a state transition message in
Algorithm 1. Then, the time information, such as tl and tn, is updated by considering the
results of the state transition.

Second, when the associated coupled model obtains an input event, x, the simulation
algorithm finds a set of models, Mreceiving, that is related with the input event. To this
discovery, the coupling information takes the role of condition (Σr). Then, the simulation
algorithm requests every model in Mreceiving to handle the input event (refer to when
receiving an input event case in Algorithm 1). Considering the result of the followed state
transitions, the simulation algorithm update its time information.

Lastly, when the coupled model receives an output event, y, generated from its
components, the simulation algorithm defines Mreceiving of the output event using coupling
relations. Similarly, output event y is forwarded to every model in Mreceiving. Specifically,
in a case in which the parent model is identified as a receiving model (i.e., the parent model
is included in Mreceiving), the simulation algorithm sends y as an output event of the parent
model; otherwise, it sends y as an input event of the component models. Then, an update
of the time information follows.

Based on the above explanation, the modifications for the simulation algorithm for the
MRT-DEVS-coupled model are conducted in three parts: resolution transition function (δres),
state translation function (δstrans), and event translation function (δevent). Similarly to the
MRT-DEVS atomic model case, the resolution transition function calls after resolution
state transitions of the components. Specifically, such transitions can occur in the above
three cases (i.e., when the cases of receiving a state transition (lines 11–14), an input event
(lines 23–26), and an output event (lines 38–41) cases in Algorithm 2). After the reso-
lution state function, the state translation function always follows to update it and the
component’s states (including model and resolution states). However, the event transla-
tion function is called only when an input event is forwarded to components (line 19 in
Algorithm 2). Through the event translation function, the input event is transformed
into a new form of an input event that is more proper to the resolution state of the
receiving component.

The operation flows of MRT-DEVS modify the simulation algorithms of the classic
DEVS by adding several function calls for handling state and event conversions due to
resolution changes. With such a small modification, MRT-DEVS can not only help enable
MR modeling for discrete event simulations but can also aid many users by facilitating
easy modeling with DEVS semantics.
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Algorithm 2 Simulation Algorithm for the MRT-DEVS-Coupled Model

Require: parent, tl ,tn
1: while not at the end of simulation do
2: if receiving an initialization message at time t then
3: for m in M {M: children components} do
4: send initialization message to m
5: end for
6: tl = max{tlm|m ∈ M}
7: tn = min{tnm|m ∈ M}
8: m∗ = argminm∈M{tlm} {m∗: imminent child}
9: else if receiving a state transition event at time t then

10: send state transition event to m∗
11: if m* changed its resolution state then
12: SR = δres(SR,∪m∈Σr .Mr m.S)
13: ∪m∈Σr .Mr m.S =

δstrans(SR,∪m∈Σr .Mr m.S)
14: end if
15: tl = t , tn = min{tnm|m ∈ M}
16: m∗ = argminm∈M{tlm}
17: else if receiving an input event x at time t then
18: define mreceiving {mreceiving: models receiving x} according to coupling relations

(Σr)
19: m.x = δetrans(SR, x)
20: for m in mreceiving do
21: send an input event to m (m.x,t)
22: end for
23: if m* changed its resolution state then
24: SR = δres(SR,∪m∈Σr .Mr m.S)
25: ∪m∈Σr .Mr m.S =

δstrans(SR,∪m∈Σr .Mr m.S)
26: end if
27: tl = t , tn = min{tnm|m ∈ M}
28: m∗ = argminm∈M{tlm}
29: else if receiving an output event y from m ∈ M at time t then
30: define mreceiving according to coupling relations (Σr)
31: for m in mreceiving do
32: if m is parent then
33: send an output event to parent (y,t)
34: else
35: send an input event to m (y,t)
36: end if
37: end for
38: if m* changed its resolution state then
39: SR = δres(SR,∪m∈Σr .Mr m.S)
40: ∪m∈Σr .Mr m.S =

δstrans(SR,∪m∈Σr .Mr m.S)
41: end if
42: tl = t , tn = min{tnm|m ∈ M}
43: m∗ = argminm∈M{tlm}
44: end if
45: end while

4. Case Study

This section presents a case study utilizing a model developed by the proposed MRT-
DEVS. By examining this case study, we provide an example of the MRT-DEVS and address
the way MRM is properly realized with its semantics.
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4.1. Illustrative Example in MRT-DEVS

The example model used in the case study describes a squad-level engagement.
Figure 1 shows the structure of the squad-level engagement model. The proposed MRT-
DEVS primarily follows DEVS semantics, so the example model has a hierarchical structure:
The highest level model consists of blue and red force models. Each force involves a
commander and multiple squad models. The command model controls its subordinate
squad models, such as in terms of squad maneuver, detection, and engagement. While
the number of the subordinate squad models can be determined by users, the case study
has two and three squad models in blue and red forces, respectively (see the numbers on
the edges in Figure 1). By their combat circumstances, squad models are described at two
resolution levels: one is at low-resolution level modeling with respect to squad maneu-
ver and detection. At the row-resolution level, the squad behavior model (dark gray in
Figure 1) is the only active component in the squad model; the other resolution level is the
high-resolution modeling of squad engagement. At the high-resolution level, three squad
member models (light gray Figure 1) are activated in the squad model. The resolution
changes in the squad model are triggered by the detection of enemy forces. Squad behavior
and squad member models are developed by the MRT-DEVS atomic model; others are
developed by the coupled model.

Figure 1. Model structure of a squad-level engagement model in the case study: blue and red squad
models hold high- and low-resolution components, and their activation would be followed by the
coupling relations of the resolution state (Σr, r ∈ SR).

Using the above example model, we designed a simulation scenario about an engage-
ment between blue and red forces. The following is a brief illustration of the simulation
scenario: (a) Three squads of red force and two squads of blue force are deployed to the
north and south of a battlefield, respectively; (b) the squad models of the two forces ap-
proach each other, and they are at the squad level (i.e., low-resolution level, LR); (c) when
they detect each other, each squad model turns into three squad member models, which
are at the high-resolution level, HR, and they enter a firefight; (d) when the firefight ends,
the remaining squad member models assemble into their squad models, and they continue
to march as a low-resolution model. Figure 2 presents snapshots of the simulation’s execu-
tion following the scenario, and they highlight two resolution changes in the squad models,
which occur when each force recognizes its enemy (from low-resolution to high-resolution)
and when they no longer detect an enemy after a gunfight (from HR to LR).
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Figure 2. Screenshots of the simulation execution of the case study, particularly about resolution
changes: (a,b) when an enemy has been detected (from low-resolution to high-resolution) and
(c,d) when an engagement ends (from HR to LR).

4.2. Progress of Model Resolution Changes

Although we illustrated an example of MRM and the way MRM is specified via the
proposed method, this subsection focuses on how resolution changes in MRM are real-
ized through MRT-DEVS’s semantics. In the above simulation scenario, the squad model
changes its resolution level due to the detection of the enemy. For an improved understand-
ing of this changing process, Figure 3 presents the structure of the blue squad model as an
example. The blue squad model was developed based on the coupled model, and it has
two resolution states (SR): “Aggregated (as a low-resolution level)” and “Disaggregated
(as a high-resolution level)”. According to the resolution states, the RMS of the squad
model was also specified (refer to the model diagram in Figure 3): (a) For the “Aggregated”
state, the squad behavior model is set for activation, and its input and output events are
connected with those of the squad models, which are specified in ΣAggregated. (b) For the
“Disaggregated” state, three squad member models are set for activation, and their input
and output events are connected with those of the squad models as well (ΣDisaggregated).
In particular, before being forwarded to squad members, an input event named “damage”
with resepct to the squad model is transformed by the event translation function (δetrans).
Specifically, in the case study, the “damage” event of the squad model would be distributed
into “damage” events of the three squad member models. We note that such event transla-
tions have relatively lower costs in the model development than previous methods that
use a converter model (e.g., when taking an event, the converter model requires another
simulation loop in the DEVS simulation algorithm [1].
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Figure 3. Resolution-level changes in the blue squad model: when the squad model detects an
enemy force, its resolution state changes from the “Aggregated” state with the low-resolution model
(i.e., squad behavior model) to the “Disaggregated” state with a high-resolution model (i.e., squad
member models).

Based on the above specifications of the squad model, we examine detailed procedures
of its resolution changes in the case study. The right side of Figure 3 illustrates setting
the initial resolution state and changing the resolution state of the squad model (coupled
model, CM). Following the simulation scenario, the squad model conducts maneuver and
scouting operations, so its initial resolution state is at a low-level resolution according to the
model’s specifications. More specifically, the resolution state of the squad model (SR) is set
as “Aggregated”, and the associated RMS (ΣAggregated), which includes a squad behavior
model (low-resolution component, LR), is also activated. While conducting operations,
the squad model changes its resolution state when it detects an enemy squad. When the
enemy is detected, the squad model is still at the low-resolution level: The detection of
the enemy is determined by the external transition function (δext) of the squad behavior
model. After detecting an enemy, the squad behavior model changes its resolution state to
“Contact”. When the component model changes its resolution state, the resolution transition
function (δres) of its coupled model is also conducted (refer to line 26 of Algorithm 2). Hence,
the squad model also changes its resolution state from “Aggregated” to “Disaggregated” for
a gunfight against the detected enemy. After its resolution state changes, the associated RMS
(ΣDisaggregated), which includes three squad member models (high-resolution component,
HR), is activated; otherwise, the RMS of “Aggregate” state (ΣAggregated) is deactivated.
During resolution level changes, some states of the low resolution model need to be
transferred to those of high-resolution models. For example, in the case study, the HP state
of the squad’s behavior (LR) should be translated into the HP state of squad members
(HR), and this translation is conducted by the state transition function (δstrans) of the squad
model (CM). After exisitng at high-resolution states, the two forces fall into an engagement.
During the engagement, damage from the enemy would come to the squad model as its
input event. This damage input is translated by the event translation function (δetrans) of
the squad model before it reaches the squad members. The translation result represents,
for example, the damage of each squad members, so a squad member that receives too
much damage would die. After all squad members of one force have died, the remaining
squad changes its resolution state from “Disaggregated” to “Aggregated” to carry on the
maneuver and scout operations, and similar operations would follow.

5. Discussion

MRT-DEVS shares a theoretical background with the classic DEVS formalism, yet as
we mentioned before, it relaxes a black box assumption of DEVS to achieve lower costs in
MRMS. From various perspectives, including the relaxation, this section investigates strong
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and weak points of the MRT-DEVS. Before diving into details, we analyze the functional
analogy of MRT-DEVS, which was conducted by comparing the expressiveness power of
MRT-DEVS with previous studies, such as Baohong’s [11] and Hong’s [33] studies.

Table 1 presents the relationships between the features of multi-resolution modeling
(MRM) and the elements of the associated formalisms, including previous (Baohong’s and
Hong’s) and the proposed one (MRT-DVEVS). Table 1 shows that the elements of MRT-
DEVS have more matched elements compared to past MRM methods, which demonstrates
two benefits of the proposed method: The first benefit, conservatively, is that the proposed
MRT-DEVS is reducible to past MRM methods, which means that the proposed method is
theoretically sufficient for MRM as previous ones provide; the second benefit is that both
previous methods fail to match some parts of the MRM’s features (e.g., the model state
translation function in Hong’s and the resolution change event structure in Baohong’s),
and the proposed method, however, covers it. As such, the proposed method has a larger
coverage on MRM features, so we argue that from this point of view, the proposed method
provides more applicabilities in MRMS.

Table 1. Relations between the features of multi-resolution modeling (MRM) and the elements from
the associated formalisms (previous (Baohong’s and Hong’s) and proposed ones (MRT-DVEVS)).

MRM Features Baohong’s Hong’s MRT-DEVS

Resolution State γ r SR

Resolution Model Family Mk RMi RMS

Model Structure Function/Info Mψ ψ, ρ δres

Model State Translation Function π - δstrans

Event Conversion Function π MREI δetrans

Resolution Change Event Structure - CR, YR (Embedded in simulation algorithm)
Resolution Change Controller χ MRCI (Embedded in simulation algorithm)

Let us address the details of the efficiency of the MRT-DEVS using the case study.
We argue that the contribution of this research is in providing an option for MRM from a
practical perspective, and this practicality comes from the ease in MRM development and
lower costs for simulation executions. Having said that, we note that it is difficult, or even
infeasible, to quantitatively compare the efficiency of the proposed method due to the
following reasons: (1) The ease of the model’s development is difficult to measure and even
strongly dependent on modelers, which means that it cannot be appropriately used as a
performance measure for the comparison; (2) to quantitatively compare the efficiency of the
proposed method, comparison targets are required (i.e., the implementations of Baohong’s
and Hong’s idea). However, to the best of our knowledge, their implementations are not
available to the public.

As such, we rather provide another method to prove our outperformance by using
an abstract comparison. Specifically, for the ease of model developments, we consider a
practical problem in MRM development practices: In recent practices, MRM users should
consider not only MRM for their target systems but also for handling resolution changes
(e.g., as the resolution converter). This means that there is a high hurdle in MR’s model
development. However, at this point, the proposed method helps the modelers to focus
only on modeling itself, setting aside additional MR considerations.

For the simulation’s efficiency, we can analyze their simulation efficiencies at an
abstract level and eventually compare their expected performance. the main feature of
the proposed method is embedding state and event translation functions into the coupled
model, so the resolution conversion process is performed within the simulation algorithm
(Algorithm 2). Due to embedded MR functions, modelers eventually use less efforts in MR
modeling. Specifically, compared to past methods that adapt these translation functions at
another component (e.g., implementing a converter model), the proposed method permit
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disregarding the details of the resolution’s change. Developing the converter model may not
require a heavy cost, but establishing and maintaining connections between the converter
model with other models (e.g., responding to the resolution changes) definitely require
heavy costs; the converter model should take a role for transferring all input/output events
associated with the entire model’s components during the simulation, so its connection
structure becomes complex and requires expensive costs. More specifically, considering the
method of DEVS simulation execution [1], such translations through a converter model are
implemented by additional event handling and state transitions of a DEVS atomic model,
which was identified as a critical factor for delaying DEVS simulation execution times
in various studies [35–39]. In contrast, the proposed MRT-DEVSs permit event and state
translations by functions in the coupled model. Such treatments require no extra event
exchanges and, thus, generate no negative effects with respect to the simulation algorithm,
which eventually lessens costs in both model development and simulation execution.

Having said that, we also admitted that the proposed method involves a potential
shortcoming induced by removing the black-box assumption. The black box assumption,
or modularity, enables the construction of a structured model by an integration of a number
of small blocks (which are DEVS atomic and coupled models). Such a trait makes it
easier to not only develop a complex model but also maintains the developed model, such
as reuses in another model development [5]. Due to the loss of the modular property,
the proposed method holds a limitation on the development of simulation models across
various domain systems in which a number of model reuses can happen. Nonetheless, we
still hold that it cannot induce much damage on MRMS. As we have argued thoruhgout
this paper, increasing the practicality of MRMS is the important motivation of this study.
The importance of the model’s reusability in modeling and simulation has been discussed
in M&S communities [5,40], yet its practical examples over various domains are rarely
observed. Still, we observe that there is a trade-off relationship between efficiency and
model reuses in MRMS, and we note that the proposed method offers a practical option
that is worthy of consideration for MRMS users.

6. Conclusions

Multi-resolution modeling and simulation (MRMS) is a useful option for gleaning
insights with respect to target systems from various resolution levels. Many methods have
been developed to support MRMS, but contrary to their theoretical completeness, their
practical usages are rarely observed. We see that this distance is derived from inefficiencies,
such as such indigestible model specifications and expensive simulation costs. The pro-
posed MRT-DEVS tackles such inefficiencies by embedding state and event translation
functions into the model’s specification. The provided case study illustrates how the pro-
posed method is applied to MRM and the detailed procedures of resolution changes via
the suggested model specifications. Moreover, by engaging in discussions on the proposed
method, we offered more considerations about MRMS to users. With all the provided infor-
mation, we expect that MRMS users would consider the proposed method as a practical
option to implement their models.
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Abstract: An in-depth study of the product encroachment behavior on the composite e-commerce
platform is of great significance to standardize the platform economy. This paper studies product
encroachment behavior of composite e-commerce platforms with double-differentiated multi-product
competition and constructs a game model of product innovation by an independent seller and
product encroachment by the platform owner. Using multi-agent simulation, we simulate the
bounded rational decision-making and interaction process of multiple agents in multiple periods
and analyze the main parameters’ influence. Results indicate the following: (1) In dual-differentiated
multi-product competition, the third-party seller is more willing to invest in innovating high-quality
category P, and the profit-driven platform owner only encroaches on the new variants of category P.
(2) The larger consumers’ platform owner preference can encourage the third-party seller to innovate
high-quality new products. The increase in vertical differentiation of categories can enhance the third-
party seller’s innovation motivation for the traffic-attracting category. (3) A reasonable commission
rate set by the platform owner can ensure the variety of variants of various categories, thereby
expanding the sales scope of the composite e-commerce platform. Diseconomies of scale of category
diversity management costs hinder the growth of product variety in the online marketplace.

Keywords: composite e-commerce platform; dual differentiated; product innovation; product en-
croachment; multi-agent simulation

1. Introduction

In the context of the COVID-19 pandemic, online marketplaces are becoming more
popular [1], and a series of issues related to the development of the e-commerce ecosystem
are constantly emerging. At present, e-commerce platforms are increasingly not only
trading places between customers and third-party sellers, but the platform owners also
usually act as prevailing sellers in their own platforms. For example, JD, Dangdang.com,
and Amazon are all composite e-commerce platforms [2]. Generally speaking, the types
of products available on the composite e-commerce platform will be far more than that
in the physical store. For example, there are more than 8000 digital cameras displayed
and sold on Amazon, while a Walmart physical store can only display around 30 kinds
of products. Excluding products with high sales volumes, most varieties are “long tail”
products with relatively low sales volumes. For the platform owner, it may be uneconomical
to sell varieties with a low sales volume; accordingly, for example, Amazon will leave
up to 93% of categories to its independent third-party sellers for sale. However, with the
rapid development of third-party sellers, these product categories that help third-party
sellers achieve revenue will attract high attention from platform owners. In order to
expand product categories and create higher revenue, platform owners will encroach on

Systems 2022, 10, 215. https://doi.org/10.3390/systems10060215 https://www.mdpi.com/journal/systems
95



Systems 2022, 10, 215

the product space of third-party sellers, and procure and sell products directly. Statistics
show that Amazon enters three percent of third-party sellers’ product space over a ten-
month period. Platform owners have an information advantage: they are actually closely
observing category sales and perform category evaluation of third-party sellers. Profit
drives them to encroach on the third-party sellers’ successful categories with “blockbuster”
sales. Platform owners also have advantages in product display. For example, Amazon
exhibits “Similar Items to Consider” ads directly above an item’s shopping cart link, thereby
promoting its own products before consumers add third-party sellers’ products to their
shopping carts. Because of the dominant market position of the platform owner, this kind
of category encroachment often damages the market position of the independent third-
party sellers or even makes them exit the market. Therefore, understanding the category
encroachment behavior of the platform owner and making strategic adjustments is often
key to the survival of third-party sellers. In addition to responding to the encroachment by
adjusting pricing [3,4] and marketing [5] strategies, third-party sellers should continue to
bring innovative products, create a particularity that is distinguishable from other similar
products to attract customers, and strive for the favorable position of market competition
based on product differences. However, the platform owner is not at complete liberty to take
any action he desires—generally speaking, the platform owner usually carefully balances
the short-term profit encroachment affords them and the damage to product innovation
incurred by independent sellers due to his excessive encroachment [6]. The latter usually
compromises the diversity of products and thus the health of the entire platform.

In addition, with the improvement of economic level, consumers’ pursuit of product
quality and variety is increasing. In order to cater to more consumer segments, there is
an increasing variety of products on the platform. Statistics show that from May 2015
to May 2016, taking shoes, clothing, and jewelry as an example, Amazon’s self-operated
product variety increased by 83%, and third-party sellers’ product variety increased by
84%. At present, product vertical and horizontal differentiation strategies are often used
as an important means for sellers to segment and expand the market. Vertical differenti-
ation mainly refers to the difference in product quality, while horizontal differentiation
refers to the difference in product color, size, taste, and other aspects. For example, the
Philips portable battery has 10,000 mah and 20,000 mah battery capacities and comes in a
variety of color variations, such as pure black and blue–black. From the core level of the
product, the main goal of product innovation is to realize multiple differentiation through
technological innovation and product serialization, which is also an effective way to cope
with competition [7].

In view of this, this paper takes dual-differentiated multi-product competition as
the starting point and constructs a multi-period game model of product innovation by
an independent seller and product encroachment by the platform owner. Based on this,
the optimal product innovation decision of the third-party seller and the optimal product
encroachment decision of the platform owner are discussed. Furthermore, this paper
combines analysis and multi-agent simulation. By simulating the heuristic process of
some bounded rational decision-making of merchants, in addition to the analytical results,
many emergent results can be produced [8–10]. Additionally, the influence of the main
parameters on both players’ decision-making and profit is analyzed. Specifically, this paper
aims to answer the following questions: (1) What is the optimal horizontal differentiation
innovation decision of the third-party seller for categories with different qualities in the face
of possible product encroachment behavior of the platform owner? (2) What is the platform
owner’s optimal product encroachment decision for the third-party seller’s innovative
products? (3) What is the evolution law of the optimal decision-making of both players
under the competitive interaction of multiple periods? (4) How do the main parameters
affect the evolution results?
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2. Literature Review

On a composite e-commerce platform, the platform owner is both an athlete and
a referee and has a wealth of information; third-party sellers, meanwhile, enjoy unique
category innovation, and operation and management capabilities. The key to the healthy
development of e-commerce platforms depends on the perfect integration of multiple
participants [11]. Parker and Van Alstyne [12] studied the motivation of platform owners
to encroach on the product space of more successful third-party sellers, while Gawer
and Henderson [13] found that platform owners may also worry about the deterioration
of the health of the platform ecosystem and its long-term interests and choose to avoid
direct competition with complementary third-party sellers, or only compete with those
with service problems in order to maintain a good “fair” reputation without harming
third-party sellers and richness of categories. A very representative recent study comes
from Zhu and Liu [14]. They used empirical methods to systematically test Amazon’s
category encroachment behavior against third-party sellers and explore the significance
of influencing factors such as price, variety, commission fees, distribution costs, demand
levels, customer reviews, and seller size. They found that third-party sellers should focus
on less prominent products or on categories that require extensive platform-side investment
to be successful, and suggested maintaining the ability to develop new products. Consistent
with Zhu and Liu, Li et al. [15] found that with the development of the platform, due to the
risk of developing new categories and the expectation to free ride on the platform owner’s
best-selling products, third-party sellers that originally focused on “niche products” may
also encroach on the platform owner’s product range. They used empirical methods to
study the encroachment strategies of third-party sellers on platform products and found
that third-party sellers will choose products that have a low price, high demand, low
return rate, low operating cost, abundant supply sources, uniqueness, and high exposure.
Moreover, encroachment by large third-party sellers will reduce the sales of the platform
owner but increase the sales of the entire platform. The above representative works are all
based on empirical or case analysis methods. Other studies on the category encroachment
of composite e-commerce platforms have adopted the method of game analysis. There are
relatively few such studies, which we discuss below.

The seed paper for analytical analysis comes from the research of Jiang et al. [6].
They examined product information disclosure to model Amazon’s product encroachment
behavior against independent third-party sellers and constructed a two-period game model.
Jiang et al. obtained the judgment conditions for “long-tail” and “short-tail” products,
identified the conditions for achieving pool equilibrium and separation equilibrium in
“middle-tail” products, and explained the internal relationship between Amazon’s product
encroachment, product demand, and platform commission fees. Hagiu et al. [16] studied
the competition–cooperation model of the coexistence of platform self-operated sales and
third-party seller sales from the perspective of consumer surplus. They concluded that
consumers can benefit from the platform’s dual role and pointed out that the platform’s self-
interested purpose and category copycat behavior may bring about inefficiencies. Etro [17]
modeled and compared the various sales models existing on the Amazon platform, namely
the private label sales model, first party sales model, and third-party seller sales model. The
conclusion shows that when third-party sellers have the characteristics of lower customer
conversion rate, higher distribution cost, and lower market voice, or when the product
has the characteristics of low value-added and high-demand elasticity, the platform owner
tends to encroach on the market space of third-party sellers. In addition, Etro introduced the
third-party seller’s product innovation and the platform’s category copycat behavior into
the game model, and identified the third-party seller’s optimal innovation investment level
and the platform’s optimal copycat probability. The above studies on product encroachment
ideally assume that the third-party seller sells a single category or the categories sold are
independent and unrelated, and when the platform side encroaches, the third-party seller
immediately exits the market. None of them takes into account the fact that multiple
products continue to coexist and differentiated competition occurs after the platform owner
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encroaches. Feng et al. [18] discussed the behavior of third-party sellers encroaching on the
platform owner’s market share and assumed the coexistence and competition of multiple
product categories after the encroachment. However, they only considered the vertical
differentiation of categories, not the horizontal differentiation of categories. Moreover, they
focused on the impact of two-way network externalities and did not combine the issue of
category encroachment with that of category innovation.

With the increasing competition, product innovation and the introduction of differ-
entiated products have become an important way for enterprises to cope with invasion
challenges and gain competitive advantages. Wu and Lai [19] constructed a horizontal
differentiation competition model and explored pricing and product launching strategies in
a multistage game between two asymmetric firms. Yi and Chen [20] constructed a duopolis-
tic competition game model consisting of a large manufacturer and a small manufacturer
with imitation function and studied the product quality attributes decision-making of both
manufacturers. Baron [21] studied the product positioning and innovation strategies of
two competing firms under the coexistence of innovative products and initial products.
He concluded that the incumbent firm would offer an additional product to forestall entry
by narrowing the quality gap. Based on the following product encroachment and manu-
facturers’ R&D modes (in-house R&D versus outsourcing R&D), Li et al. [22] constructed
game models under oligopoly and oligopolistic competition, respectively, and discussed
the influence of product encroachment on innovation quality. The above studies on product
innovation strategies in the face of encroachment threat only study from one dimension of
product horizontal and vertical differentiation and fail to consider the coexistence of the
multiple differentiation of categories.

The direct source of the dual-differentiated product competition model in this paper
is the research of Zhang et al. [23], who introduced the competition of dual-differentiated
products (different product models exist and each model has multiple variants); however,
they took horizontal and vertical differentiation as a given condition and considered the
impact on information disclosure strategies of the intermediary and competitive sellers
without paying attention to the product encroachment and innovation. In addition, many
scholars have studied the differentiation strategy of dual-differentiated products. Shang-
guan et al. [24] studied the two-dimensional product differentiation design and pricing
strategies of a manufacturer. Jalali et al. [25] studied the optimal product development
strategy (platform-based versus independent development) and the product differentiation
strategy (horizontally versus vertically differentiated products) of a monopolistic manufac-
turer for quality and feature-sensitive customers, and emphasized the impact of operational
cost parameters on the optimal differentiation strategy. Tian et al. [26] considered both
the horizontal differentiation of channels and the vertical differentiation of products and
analyzed the influence of consumer free-riding behavior on the optimal differentiation
strategy. Lv [27] examined a two-dimensional differentiation model of both vertical product
preferences and horizontal coupon preferences and investigated how couponing affects
firms’ promotion strategies and profits. Although these papers studied product differen-
tiation decisions in different scenarios, they did not include product encroachment and
product innovation under encroachment.

To highlight the contributions of this study, we contrast our study with other related
works (as shown in Table 1). It can be concluded that this paper is different from existing
literatures in the following three aspects: (1) Most analytical studies on the category en-
croachment of composite e-commerce platforms assume that third-party sellers withdraw
from the market after the platform owner’s category encroachment occurs, but this is not
realistic. Moreover, only the assumption of a single category is made or only the vertical
differentiation of categories is considered—the horizontal differentiation and the coexis-
tence of multiple product variants are not considered. This paper considers two vertically
differentiated categories with multiple variants, and multiple product variants continue
to coexist after the platform owner’s product encroachment. In addition, most of studies
are based on single-stage and two-stage game analysis. This paper combines multi-agent
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simulation to simulate and observe the emergent results of multi-period competition and
evolution, which is a new manifestation of the computing-driven supply chain in category
encroachment analysis, and provides new ideas for research on e-commerce platform
ecosystem-related issues. (2) Most studies on category innovation strategies under the
threat of encroachment only study from one dimension of product horizontal and vertical
differentiation. From the above background, it can be seen that vertical and horizontal
differentiation of categories are prominent in real life. Therefore, it is necessary to study
product encroachment and innovation strategies considering the dual differentiation of
categories. (3) By reviewing the literature in the field of category dual-differentiation, it is
found that some scholars take category dual-differentiation as a given condition to study
the impact on pricing [28], information disclosure, and other strategies, while others are
concerned about products themselves and focus on the product differentiation strategy.
However, there is no research that combines the competition of multiple differentiated
products with product invasion and product innovation. This paper introduces the dual-
differentiated multi-product competition into the encroachment problem and considers
both the product innovation behavior of the independent seller and the product encroach-
ment behavior of the platform owner. This paper not only analyzes the impact of category
differentiation on both players’ decision-making, but also studies the optimal horizontal
differentiation strategy of both players for different quality categories, which has theoreti-
cal significance for regulating category encroachment behavior on composite e-commerce
platforms. The research results of this paper have theoretical significance for regulating
product encroachment behavior on composite e-commerce platforms.

Table 1. Comparative summary of related studies.

References
Category En-
croachment

Category
Innovation

Vertical Dif-
ferentiation

Horizontal
Differentia-

tion

Multi-
Period

Game
Analysis Multi-Agent

Gawer and
Henderson [13]

√

Zhu and Liu [14]
√

Li et al. [15]
√

Parker and
Van Alstyne [12]

√ √

Jiang et al. [6]
√ √

Hagiu et al. [16]
√ √ √

Etro [17]
√ √ √

Feng et al. [18]
√ √ √

Wu and Lai [19]
√ √ √ √ √

Yi and Chen [20]
√ √ √ √

Baron [21]
√ √ √ √

Li et al. [22]
√ √ √ √

Zhang et al. [23]
√ √ √

Feng et al. [28]
√ √ √

Shangguan
et al. [24]

√ √ √

Jalali et al. [25]
√ √ √ √

Tian et al. [26]
√ √ √

Lv [27]
√ √ √

This study
√ √ √ √ √ √ √

3. Model Formulation

3.1. Problem Description and Basic Assumptions

Consider a composite e-commerce platform that includes a platform owner (seller 1)
and an independent third-party seller (seller 3). They can sell both of the two vertically
differentiated categories at the same time: one is a high-quality profitable product (category
P), and the other is a low-quality traffic-attracting product (category F). Each category has
multiple variants, such as different colors or sizes, etc. The third-party seller can develop
new variants to obtain horizontal differentiation advantages of categories, and the platform
owner can increase revenue by copycat third-party innovative products.
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This study can be regarded as examining a multi-period problem in which both types
of sellers need to decide their retail prices and marketing efforts of the two categories in
each period. In order to expand their market share, the third-party seller may invest in
innovating category variants. The number of variants affects customer demand and incurs
the cost of product diversification. In addition, the third-party seller understands that
the platform owner may encroach when new variants are launched and needs to decide
whether to invest in innovating products and how much to invest in the current period,
and then puts new variants into the market in the next period. After observing the category
innovation of the third-party seller, the platform owner decides whether to copycat new
products in the same period. At the same time, each consumer has a potential demand for
one unit of the product in each period.

In this paper, a multi-period game model is constructed, as shown in Figure 1. The
game sequence is as follows: in period 0, the platform owner and the third-party seller aim
to maximize their respective profits and decide their retail prices and marketing efforts
of categories. After that, according to the prediction of the encroachment behavior of the
platform owner, the third-party seller decides whether to invest in innovation and how
many variants to innovate. Finally, consumers make their purchase in this period. In
period 1, the product innovation of the third-party seller is declared a success or failure.
At the same time, the platform owner chooses whether to encroach or not. Then, both
players decide on category prices and marketing efforts at the same time. Subsequently, the
third-party seller, based on the prediction of the platform owner’s encroachment behavior
and the current category diversity situation, decides whether to continue to invest in
innovation and how many variants to develop; finally, consumers make their purchase in
this period. Next, the actions of period 1 are repeated for each period.

Figure 1. Decision sequence.

The assumptions of this paper are as follows: (1) Consumers’ willingness θ to pay
for categories is heterogeneous. Let θ follow a uniform distribution in the interval [0, θ+]
and, without loss of generality, normalize [0, θ+] to [0, 1]. (2) The category quality is an
exogenous variable. The quality ratio of category P to category F is αq:q (α > 1). α reflects
the degree of vertical differentiation between the two categories. The larger the value of
α is, the higher the consumer’s valuation of category P is and vice versa. (3) Consumers
have a higher quality estimate δ (δ > 1) of the platform’s self-operated products, but
consumers’ valuation of the platform self-operated low-quality category F is lower than the
valuation of the independent seller’s high-quality category P; that is, α > δ. (4) In order to
promote the category and increase the willingness to pay of consumers, sellers implement a

marketing effort level of e(t)ij > 0 and a resulting marketing cost of 1
2 e(t)ij

2
(i = 1, 3; j = F,P) [5]

in period t. (5) Both types of sellers face diseconomies of scale in the management of
product diversity [29]. The management cost of each category is a quadratic function of the
number of the category variants; therefore, the category management cost per period is
β
2 n(t)

ij

2
(i = 1, 3; j = F,P), where β (β > 0) is the diseconomies of scale coefficient, n(t)

ij represents

the number of variants of seller i’s category j in period t, and n(0)
ij = 0. (6) The platform

charges commission based on the sales of the third-party seller, and the commission rate is
r (0 < r < 1).
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Information such as product price, quality, marketing level, and seller type obtained by
consumers through the platform search engine affects consumers’ purchasing decisions [30].
In addition, considering that the horizontal differentiation of categories also has a positive
impact on consumer demand, the utility that consumers obtain from purchasing category j
(j = F,P) from seller i (i = 1, 3) in period t is:

U(t)
ij =

⎧⎨
⎩θδqj − p(t)

1j + e(t)1j + n(t)
1j (i = 1)

θqj − p(t)
3j + e(t)3j + n(t)

3j (i = 3)
(1)

where qj represents the quality of category j, and p(t)
ij represents the retail price of seller i’s

category j in period t.
Consumers choose to buy a product that can afford them the maximum utility in each

period, that is, max(U(t)
ij , 0). The market segmentation of consumers is shown in Figure 2.

Figure 2. Consumer market segmentation.

Let θ(t)3F , θ(t)1F , θ(t)3P , and θ
(t)
1P be the indifference points of consumer purchase utility in

each period, and satisfy 0 ≤ θ
(t)
3F ≤ θ

(t)
1F ≤ θ

(t)
3P ≤ θ

(t)
1P ≤ 1. Among them, θ(t)3F represents the

indifference threshold between consumers buying 3F-type and not buying; θ(t)1F represents
the indifference threshold between consumers purchasing 1F-type and purchasing 3F-type;
θ
(t)
3P represents the indifference threshold between consumers purchasing 3P-type and pur-

chasing 1F-type; θ(t)1P represents the indifference threshold between consumers purchasing
1P-type and purchasing 3P-type. Based on this, the indifference point of the utility of
consumers buying different categories from different sellers needs to satisfy the following:

θ
(t)
3F q− p(t)

3F + e(t)3F + n(t)
3F = 0 (2)

θ
(t)
1F q− p(t)

3F + e(t)3F + n(t)
3F = θ

(t)
1Fδq− p(t)

1F + e(t)1F + n(t)
1F (3)

θ
(t)
3Pδq− p(t)

1F + e(t)1F + n(t)
1F = θ

(t)
3Pαq− p(t)

3P + e(t)3P + n(t)
3P (4)

θ
(t)
1Pαq− p(t)

3P + e(t)3P + n(t)
3P = θ

(t)
1Pδαq− p(t)

1P + e(t)1P + n(t)
1P (5)

From the above, the following can be solved:

θ
(t)
3F =

p(t)
3F − e(t)3F − n(t)

3F
q

(6)

θ
(t)
1F =

p(t)
1F − p(t)

3F − e(t)1F + e(t)3F − n(t)
1F + n(t)

3F
q(−1 + δ)

(7)

θ
(t)
3P =

p(t)
3P − p(t)

1F − e(t)3P + e(t)1F − n(t)
3P + n(t)

1F
q(α− δ)

(8)

θ
(t)
1P =

p(t)
1P − p(t)

3P − e(t)1P + e(t)3P − n(t)
1P + n(t)

3P
αq(−1 + δ)

(9)
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Therefore, the profit functions of the third-party seller and the platform owner in
period t are:

π
(t)
3 = (1− r)((θ(t)1F − θ

(t)
3F )p

(t)
3F + (θ

(t)
1P − θ

(t)
3P )p

(t)
3P )− ∑

j=F,P
(

e(t)3j

2

2
+

β

2
n(t)

3j

2
) (10)

π
(t)
1 = r((θ(t)1F − θ

(t)
3F )p

(t)
3F + (θ

(t)
1P − θ

(t)
3P )p

(t)
3P ) + (θ

(t)
3P − θ

(t)
1F )p

(t)
1F + (1− θ

(t)
1P )p

(t)
1P − ∑

j=F,P
(

e(t)1j

2

2
+

β

2
n(t)

1j

2
) (11)

3.2. Multi-Category Innovation and Encroachment Decision Analysis

Assuming that the innovation success probability ρ increases with the increase in the
innovation investment of the third-party seller, and the innovation investment amount is a
convex function of the innovation success probability [17], thus the innovation investment
of the third-party seller in period t is:

I(t) =
1 + γ

1 + σ
ρ(t+1)1+σ

(12)

where γ represents the marginal cost of innovation investment and σ represents the sensi-
tivity of product innovation success to investment.

When the third-party seller’s product innovation is successful in period t + 1 and the

platform owner encroaches, that means n(t)
3F and n(t)

3P will increase by Δn(t+1)
F

′
and Δn(t+1)

P

′
,

respectively, and n(t)
1F and n(t)

1P will do the same. Thus, the demand of each category of each
seller is as follows:

D(t+1)
3F

′
=

p(t+1)
1F

′
− p(t+1)

3F

′
− e(t+1)

1F

′
+ e(t+1)

3F

′
− n(t)

1F + n(t)
3F

q(−1 + δ)
− p(t+1)

3F

′
− e(t+1)

3F

′
− n(t)

3F − Δn(t+1)
F

′

q
(13)

D(t+1)
3P

′
=

p(t+1)
1P

′
−p(t+1)

3P

′
−e(t+1)

1P

′
+e(t+1)

3P

′
−n(t)

1P+n(t)
3P

qα(−1+δ)

−−p(t+1)
1F

′
+p(t+1)

3P

′
−e(t+1)

3P

′
+e(t+1)

1F

′
+n(t)

1F+Δn(t+1)
F

′
−n(t)

3P−Δn(t+1)
P

′

q(α−δ)

(14)

D(t+1)
1F

′
=

−p(t+1)
1F

′
+p(t+1)

3P

′
−e(t+1)

3P

′
+e(t+1)

1F

′
+n(t)

1F+Δn(t+1)
F

′
−n(t)

3P−Δn(t+1)
P

′

q(α−δ)

−p(t+1)
1F

′
−p(t+1)

3F

′
−e(t+1)

1F

′
+e(t+1)

3F

′
−n(t)

1F+n(t)
3F

q(−1+δ)

(15)

D(t+1)
1P

′
= 1− p(t+1)

1P

′
− p(t+1)

3P

′
− e(t+1)

1P

′
+ e(t+1)

3P

′
− n(t)

1P + n(t)
3P

qα(−1 + δ)
(16)

where p(t+1)
ij

′
and e(t+1)

ij

′
represent the retail price and the marketing effort of ij-type when

the platform owner encroaches in period t + 1, respectively.
At this time, the optimization problem of the third-party seller and the platform owner

selling two categories is:

max
p(t+1)

3j

′
,e(t+1)

3j

′
,Δn(t+1)

j

′
π
(t+1)
3(I,E) = ∑

j=F,P
((1− r)(D(t+1)

3j

′
p(t+1)

3j

′
)− e(t+1)

3j

′2

2 − β
2 (n

(t)
3j + Δn(t+1)

j

′
)

2
)

s.t. e(t+1)
3j

′
≥ 0, Δn(t+1)

j

′
≥ 0

(17)
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max
p(t+1)

1j

′
,e(t+1)

1j

′
π
(t+1)
1(I,E) = ∑

j=F,P
(rD(t+1)

3j

′
p(t+1)

3j

′
+ D(t+1)

1j

′
p(t+1)

1j

′
− e(t+1)

1j

′2

2 − β
2 (n

(t)
1j + Δn(t+1)

j

′
)

2
)

s.t. e(t+1)
1j

′
≥ 0

(18)

where (I,E) represents the situation in which the third-party seller’s product innovation is
successful and the platform owner encroaches.

The innovation marginal profit of each seller is:

Δπ
(t+1)
i(I,E) = π

(t+1)
i(I,E) − π

(t)
i (19)

When the third-party seller’s product innovation is successful in period t + 1 and the

platform owner does not encroach, that means n(t)
3F and n(t)

3P will increase by Δn(t+1)
F

′
and

Δn(t+1)
P

′
, respectively, and n(t)

1F and n(t)
1P will keep unchanged. Thus, the demand of each

category of each seller is as follows:

D(t+1)
3F

′′
=

p(t+1)
1F

′′ − p(t+1)
3F

′′ − e(t+1)
1F

′′
+ e(t+1)

3F
′′ − n(t)

1F + n(t)
3F + Δn(t+1)

3F
′′

q(−1 + δ)
− p(t+1)

3F
′′ − e(t+1)

3F
′′ − n(t)

3F − Δn(t+1)
3F

′′

q
(20)

D(t+1)
3P

′′
=

p(t+1)
1P

′′ −p(t+1)
3P

′′ −e(t+1)
1P

′′
+e(t+1)

3P
′′ −n(t)

1P+n(t)
3P+Δn(t+1)

3P
′′

qα(−1+δ)

−−p(t+1)
1F

′′
+p(t+1)

3P
′′ −e(t+1)

3P
′′
+e(t+1)

1F
′′
+n(t)

1F−n(t)
3P−Δn(t+1)

3P
′′

q(α−δ)

(21)

D(t+1)
1F

′′
=

−p(t+1)
1F

′′
+p(t+1)

3P
′′ −e(t+1)

3P
′′
+e(t+1)

1F
′′
+n(t)

1F−n(t)
3P−Δn(t+1)

3P
′′

q(α−δ)

−p(t+1)
1F

′′ −p(t+1)
3F

′′ −e(t+1)
1F

′′
+e(t+1)

3F
′′ −n(t)

1F+n(t)
3F+Δn(t+1)

3F
′′

q(−1+δ)

(22)

D(t+1)
1P

′′
= 1− p(t+1)

1P
′′ − p(t+1)

3P
′′ − e(t+1)

1P
′′
+ e(t+1)

3P
′′ − n(t)

1P + n(t)
3P + Δn(t+1)

3P
′′

qα(−1 + δ)
(23)

where p(t+1)
ij

′′
and e(t+1)

ij
′′

represent the retail price and the marketing effort of ij-type when
the platform owner does not encroach in period t + 1, respectively.

At this time, the optimization problem of the third-party seller and the platform owner
selling two categories is:

max
p(t+1)

3j
′′

,e(t+1)
3j

′′
,Δn(t+1)

3j
′′
π
(t+1)
3(I,N)

= ∑
j=F,P

((1− r)(D(t+1)
3j

′′
p(t+1)

3j
′′
)− e(t+1)

3j
′′ 2

2 − β
2 (n

(t)
3j + Δn(t+1)

j
′′
)

2
)

s.t. e(t+1)
3j

′′ ≥ 0, Δn(t+1)
3j

′′ ≥ 0

(24)

max
p(t+1)

1j
′′

,e(t+1)
1j

′′
π
(t+1)
1(I,N)

= ∑
j=F,P

(rD(t+1)
3j

′′
p(t+1)

3j
′′
+ D(t+1)

1j
′′

p(t+1)
1j

′′ − e(t+1)
1j

′′ 2

2 − β
2 n(t)

1j

2
)

s.t. e(t+1)
1j

′′ ≥ 0

(25)

where (I,N) represents the situation in which the third-party seller’s production innovation
is successful and the platform owner does not encroach.

The innovation marginal profit of each seller is:

Δπ
(t+1)
i(I,N)

= π
(t+1)
i(I,N)

− π
(t)
i (26)

Therefore, the expected marginal profit of product innovation of the third-party seller
in period t + 1 is:

E(Δπ
(t+1)
3 ) = ρ(t+1)

[
f(t+1)Δπ

(t+1)
3(I,E) + (1− f(t+1))Δπ

(t+1)
3(I,N)

]
− 1 + γ

1 + σ
ρ(t+1)1+σ

(27)
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where f(t+1) represents the product encroachment probability of the platform owner in
period t + 1.

The expected marginal profit of product innovation of the third-party seller is equal to
the probability of success of innovation multiplied by the weighted average of the marginal
profits of innovation under the condition of platform encroachment and non-encroachment,
minus the innovation investment amount.

In order to obtain the maximum expected marginal profit for the third-party seller, let
∂E(Δπ

(t+1)
3 )

∂ρ(t+1) = 0, and the optimal success probability of innovation in period t + 1 is:

ρ(t+1) = min{max

⎧⎪⎨
⎪⎩
⎡
⎣ f(t+1)Δπ

(t+1)
3(I,E) + (1− f(t+1))Δπ

(t+1)
3(I,N)

1 + γ

⎤
⎦

1
σ

, 0

⎫⎪⎬
⎪⎭, 1} ∈ [0, 1] (28)

The expected profit change brought about by the successful product innovation for
the platform owner in period t + 1 is:

E(Δπ
(t+1)
1 ) = ρ(t+1)

[
f(t+1)Δπ

(t+1)
1(I,E) + (1− f(t+1))Δπ

(t+1)
1(I,N)

]
(29)

The expected profit change of the platform owner is equal to the probability of success
of innovation multiplied by the weighted average of profit changes under encroachment

and non-encroachment conditions. Let ∂E(Δπ
(t+1)
1 )

∂f(t+1) = 0, and the optimal encroachment
probability of platform owner in period t + 1 is:

f(t+1) = min{max[
Δπ

(t+1)
1(I,N)

(1 + σ)(Δπ
(t+1)
i(I,N)

− Δπ
(t+1)
1(I,E))

+
σΔπ

(t+1)
3(I,N)

(1 + σ)(Δπ
(t+1)
3(I,N)

− Δπ
(t+1)
3(I,E))

, 0], 1} ∈ [0, 1] (30)

Therefore, the number of variants for each category of the third-party seller and the
platform owner in period t + 1 are the cumulation of increments for each period:

n(t+1)
3j =

t+1

∑
t=0

ρ(t+1)(f(t+1)Δn(t+1)
j

′
+ (1− f(t+1))Δn(t+1)

3j
′′
) (31)

n(t+1)
1j =

t+1

∑
t=0

ρ(t+1)f(t+1)Δn(t+1)
j

′
(32)

3.3. Multi-Agent Simulation Model Establishment

Based on the above strategy, this paper establishes a multi-agent simulation model
based on a genetic algorithm (GA) and observes the emergent results of multiple periods
of competition and evolution by simulating the heuristic process of some bounded rational
decision-making of merchants. As a parallel algorithm, GA has been used for seeking
the global optimum and widely applied to solve the game equilibrium solution [8,9]. The
complex constraints and objective functions are only used to check the feasibility and
quality of the GA solution. In view of the short-term decision-making with the goal of
maximizing the respective profits of both sellers in this paper, it can be regarded as a dual-
objective optimization problem. Therefore, this paper uses GA to determine the optimal
category retail price and marketing efforts in each period and nests GA into the game model
of third-party seller category innovation and platform category encroachment to solve
the optimal pricing, marketing, and innovation decisions under different encroachment
situations of the platform.

This paper uses multi-agent simulation to dynamically simulate the decision-making
and interaction process of each agent in multiple periods. The multi-period, multi-product
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innovation and encroachment decision-making process of a composite e-commerce plat-
form ecosystem is shown in Figure 3. The process can be expressed as the following steps:

Step 0: Enter the number of variants for each category of each seller in the initial state,
n(0)

ij = 0 (i = 1, 3; j = F,P).
Step 1: Based on Equations (6)–(9), update the demand function of each category of

each seller.
Step 2: Use GA to determine p(t)

ij and e(t)ij according to the following sub-steps.
Step 2-1: Initialize the population, set the variable range, and generate individual

genes according to the variable range.
Step 2-2: Determine the fitness function [31] and calculate the fitness of each individual.
Step 2-3: Use the roulette wheel method to select the parents. Select excellent individ-

uals with large fitness values for chromosome cross-combination and mutation.
Step 2-4: Repeat Step 2-2 to Step 2-3 until the number of iterations is reached, then

jump out of the loop.
Step 2-5: Select the individual with the largest fitness as the optimal solution.
Step 3: Calculate f(t+1) and ρ(t+1) according to the following sub-steps.
Step 3-1: Based on Equations (13)–(16) and (20)–(23), update the demand function in

the case of platform encroachment and non-encroachment.
Step 3-2: Use GA to determine the optimal strategies under different encroachment

situations. Use Equations (19) and (26) to calculate Δπ
(t+1)
i(I,E) and Δπ

(t+1)
i(I,N)

.
Step 3-3: Use Equation (30) to calculate the platform owner’s optimal encroachment

probability of innovative products in period t + 1.
Step 3-4: Use Equation (28) to calculate the optimal probability of successful innovation

of the third-party seller in period t + 1.
Step 4: Determine whether the probability of successful innovation in period t + 1 is

equal to 0. If ρ(t+1) = 0, it means that the third-party seller fails to innovate and no longer
invests in innovation; if ρ(t+1) > 0, it means that the third-party seller can still successfully
innovate new products, and it does not achieve an equilibrium yet.

Step 5: Based on Equations (31) and (32), update the number of product variants of
each category of each party in period t + 1 and use it as the input for the next cycle. If Step
5 determines that the third-party seller’s product innovation success probability decreases
to 0, the iteration ends.

 

Figure 3. Schematic diagram of multi-period, multi-product innovation-and-encroachment decision-
making process of composite e-commerce platform ecosystem.

105



Systems 2022, 10, 215

4. Model Simulation and Analysis

This paper conducts multi-agent simulation experiments on Anylogic 8.7.5 software
(Software Source: Russian XJ Technolegic) to explore the evolution law of the optimal
decision-making of the composite e-commerce platform system and analyzes the influence
of category vertical differentiation, consumer channel preference, scale diseconomies, and
platform commission rate on equilibrium decision-making. The model parameters and
variables are configured as shown in Table 2.

Table 2. Model parameters and variable value settings.

PARAM, VAR Meaning Value Assignment Rules

θ+
Scope of consumers’ quality assessment of

categories 100 Constant

qF Quality of Category F 1000 Constant

α Category vertical differentiation 2.0, 2.1, 2.2, etc. Constant, set according to the
experimental situation

δ
Platform owner operated channel preference of

customers 1.5, 1.6, 1.7, etc. Constant, set according to the
experimental situation

β
Diseconomies of scale in product management

costs 0.8, 1.0, 1.2, etc. Constant, set according to the
experimental situation

r The commission rate charged by the platform 0.4, 0.5, 0.6, etc. Constant, set according to the
experimental situation

σ
Sensitivity of product innovation success to

investment 0.3 Constant

γ Marginal cost of product innovation investment 70 Constant

p(t)
ij

Retail price of category j of seller i [0, 1500] Automatically adjust settings
from GA training results

e(t)ij
Marketing efforts of category j by seller i [0, 100] Automatically adjust settings

from GA training results

n(t)
ij

The number of variants of seller i’s category j Initial value n(0)
ij = 0

Automatically adjust settings
from GA training results

4.1. Changes in Multi-Period Equilibrium Decision

When t = 1, the third-party seller develops new products successfully, and the platform
owner implements the encroachment strategy. After that, the changes in the equilibrium
decision of both sellers are shown in Figures 4–7.

(a) (b) 

Figure 4. Number of sub-variants of each category of each seller during multiple periods (a) number
of sub-variants of category F of each seller during multiple periods and (b) number of sub-variants of
category P of each seller during multiple periods.
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(a) (b) 

(c) (d) 

Figure 5. Retail price for each category of each seller during multiple periods: (a) retail price for
3F-type during multiple periods, (b) retail price for 3P-type during multiple periods, (c) retail price
for 1F-type during multiple periods, and (d) retail price for 1P-type during multiple periods.

(a) (b) 

Figure 6. Cont.
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(c) (d) 

Figure 6. Marketing effort level of each category by each seller during multiple periods: (a) marketing
effort level of 3F-type during multiple periods; (b) marketing effort level of 3P-type during multiple
periods; (c) marketing effort level of 1F-type during multiple periods; and (d) marketing effort level
of 1P-type during multiple periods.

(a) (b) 

Figure 7. Profit of each seller during multiple periods: (a) profit of the third-party seller during
multiple periods and (b) profit of the platform owner during multiple periods.

It can be seen from Figure 4 that the number of innovated variants of 3P-type is
much higher than that of 3F-type, and the platform owner only encroaches on category
P, not category F. Figure 4 shows that the independent seller will innovate variants for
both categories at the same time, but the platform owner almost only copycats high-end
category variants. The independent seller consistently develops and maintains more
product variants to stay competitive and strives to survive in the category P market.

It can be seen from Figure 5 that the prices of both categories of the third-party seller
increase; the price of the platform owner’s category F decreases, while the price of the
platform owner’s category P increases. As the third-party seller continues to innovate
category variants, the retail price of his products will increase. The price of 1P-type that
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the platform owner constantly copycats will also increase, but the price of 1F-type that
the platform owner chooses not to copycat will decrease as the competitiveness of the
independent seller increases.

Figure 6 shows that with the passage of time, compared with the platform owner, the
third-party seller has the motivation to improve marketing efforts. Although the marketing
effort level of the platform owner will gradually decrease while the marketing effort level of
the independent seller gradually increases, since the independent seller has more products
to sell, the marketing effort level will actually be lower than that of the platform owner; on
the contrary, the platform owner needs to maintain a higher marketing effort level because
of fewer product variants.

It can be seen from Figure 7 that the profits of both the third-party seller and the
platform owner increase. Although the platform owner may encroach on the innovative
products, the increase in product diversity meets more consumer demand, and there are
more innovative products in the high-end market, increasing profits for both sellers.

4.2. Influence of δ and α

Figures 8–11 show the influence of the consumers’ platform owner preference δ and
the category vertical differentiation degree α on the equilibrium decision-making of both
sellers (taking t = 20 as an example).

 

(a) (b) 

Figure 8. The variation in the number of variants of each category of each seller with δ and α: (a) the
variation in the number of variants of category F of each seller with δ and α, and (b) the variation in
the number of variants of category P of each seller with δ and α.

It can be seen from Figure 8 that the number of innovative variants of 3F-type is
positively correlated with α; in contrast, the number of innovative variants of 3P-type
and the number of copycat variants of 1P-type are negatively correlated with α. For the
category F, when the quality difference between it and the category P is large, the third-
party seller will usually increase the number of variants of the category F to make up for
the lack of quality value identification. On the contrary, when the quality of the category
P is significantly different from that of the category F, both types of sellers perceive less
necessity to maintain a high volume of variants in the category P.

109



Systems 2022, 10, 215

 
(a) 

 
(b) (c) 

Figure 9. The variation in retail price of types 1P, 3P, and 3F with δ and α: (a) the variation in retail
price of 1P-type with δ and α, (b) the variation in retail price of 3P-type with δ and α, and (c) the
variation in retail price of 3F-type with δ and α.

In addition, it can be seen from Figure 8 that for the category F, if consumers’ platform
owner preference is high, the number of variants of 3F-type will be reduced. This is because
the platform owner has no new variant of the category F, there is less competition, and the
third-party seller will reduce variants to accommodate the actual reduction in demand. For
the category P, if consumers’ platform owner preference is high, it will cause the third-party
seller and the platform owner to increase variants of the category P at the same time. This
is because there is a strong competitive relationship at this time, and both types of sellers
take the decision to actively expand the number of category variants.
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(a) 

 
(b) (c) 

Figure 10. The variation in marketing effort level of types 1P, 3F, and 3P with δ and α: (a) the variation
in marketing effort level of 1P-type with δ and α, (b) the variation in marketing effort level of 3F-type
with δ and α, and (c) the variation in marketing effort level of 3P-type with δ and α.

(a) (b) 

Figure 11. The variation of profit of each seller with δ and α: (a) the variation of profit of the
third-party seller with δ and α, and (b) the variation of profit of the platform owner with δ and α.
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For the 1P-type, when the quality difference between category P and category F
increases, or consumers’ platform owner preference increases, the price of 1P-type will
increase almost linearly (see Figure 9a). For the 3P-type, when the quality gap between the
category P and the category F increases, the price of 3P-type will monotonically increase.
In addition, when consumers’ platform owner preference increases, at first the third-party
seller can free ride the rapid rise in the pricing of 1P-type and increase the price of his own
category P. However, as consumers’ platform owner preference exceeds the “free-riding
window”, the pricing of 3P-type will fall. Therefore, it can be seen from Figure 9b that the
retail price of 3P-type first increases and then decreases with the increase in δ.

It can be seen from Figure 9c that the retail price of 3F-type also first increases and
then decreases with the increase in δ. This is because the high-end category whose price
starts to fall will form a crowding-out effect on the low-end category. In addition, when
δ approaches 1.0, it can be seen from Figure 9c that the price of 3F-type will gradually
decrease as the quality of the category P greatly exceeds that of the category F. However,
when δ is at a high level, we can see that the price of 3F-type may not decrease as α increases.
The independent seller also has the potential to increase 3F-type pricing by innovating
more variants that create value for consumers. This is not surprising, as the platform owner
actually does not encroach innovative variants of category F.

For the 1P-type, if consumers’ platform owner preference is high, the platform owner
sees no need to provide more marketing efforts for his products. Therefore, the market-
ing effort level of 1P-type decreases monotonically with δ (see Figure 10a). In addition,
Figure 10a shows that when δ approaches 1.0, as the quality gap between the category P
and the category F increases, the platform owner reduces the marketing effort level due
to the reduction of copycat. However, when δ is at a high level, the platform owner pro-
motes the third-party seller to innovate high-quality category variants through enhanced
marketing efforts as α increases.

It can be seen from Figure 10b that the marketing effort level of 3F-type first increases
and then decreases with the increase in δ. This is because when δ increases, the third-party
seller will increase his marketing efforts for category F at first; however, if δ is larger, the
third-party seller will shift more marketing efforts to category P with more innovative
variants. In addition, Figure 10b shows that when δ approaches 1.0, the marketing effort
level of 3F-type decreases as α increases. However, when δ is at a high level, the third-party
seller will provide more marketing efforts for the increased number of 3F-type’s innovative
variants as α increases.

It can be seen from Figure 10c that the marketing effort level of 3P-type increases
monotonically with δ when α ≤ 2.4. For the 3P-type, when α is small, the third-party seller
will provide more marketing efforts for the increased number of innovative variants as
δ increases. However, Figure 10c shows that the effect of δ on the marketing effort level
of 3P exhibits a positive N-shaped characteristic of “increase first, then decrease and then
increase” when α > 2.4. This is because the increasing δ has to some extent discouraged the
marketing enthusiasm of the third-party seller, but with the decline of the platform owner’s
marketing efforts, the third-party seller will seize this opportunity to promote his products.
In addition, Figure 10c shows that when δ approaches 1.0, the third-party seller attracts
consumers by increasing the marketing effort level as α increases; when δ is at a high level,
the third-party seller reduces marketing investment due to the weakening competition in
the high-end market as α increases.

It can be seen from Figure 11 that the third-party seller’s profit first increases and
then decreases with the increase in δ, and the platform’s profit increases monotonically
with δ. This is because increasing δ is conducive to promoting the horizontal innovation of
category P, and the third-party seller can benefit more from free rides at first. However, as
δ exceeds the “free-riding window”, the 3P-type’s actual demand and retail price decrease,
resulting in lower profits for the third-party seller, while the platform owner’s profit will
increase monotonously. In addition, when α increases, the market demand and pricing of
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category P increase, and since the marginal profit of category P is higher, the profits of both
sellers increase monotonously with α (see Figure 11).

4.3. Influence of β and r

Figures 12–15 show the influence of diseconomies of scale β and commission rate r on
the equilibrium decision-making of both sellers (taking t = 20 as an example).

(a) (b) 

Figure 12. The variation in the number of variants of each category of each seller with β and r:
(a) the variation in the number of variants of category F of each seller with β and r, and (b) the
variation in the number of variants of category P of each seller with β and r.

(a) 

Figure 13. Cont.
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(b) (c) 

Figure 13. The variation in retail price of types 1P, 3P, and 3F with β and r: (a) the variation in retail
price of 1P-type with β and r, (b) the variation in retail price of 3P-type with β and r; and (c) the
variation in retail price of 3F-type with β and r.

(a) 

 
(b) (c) 

Figure 14. The variation in marketing effort level of types 3P, 3F, and 1P with β and r: (a) the variation
in marketing effort level of 3P-type with β and r, (b) the variation in marketing effort level of 3F-type
with β and r, and (c) the variation in marketing effort level of 1P-type with β and r.
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(a) (b) 

Figure 15. The variation of profit of each seller with β and r: (a) the variation of profit of the
third-party seller with β and r, and (b) the variation of profit of the platform owner with β and r.

As can be seen from Figure 12, the number of innovative variants of 3F-type first
increases and then decreases with the increase in r, the number of innovative variants of
3P-type is negatively correlated with r, and the number of copycat variants of 1P-type
is negatively correlated with r. When the commission rate is quite low, the third-party
seller does not innovate variants of category F and can gain more profits by innovating
variants of category P; as r increases, the third-party seller starts expecting to increase
profits by innovating lower-end products that the platform owner will not encroach on;
however, when the r is quite high, the third-party seller is even forced to leave the platform,
naturally reducing the investment in innovation. For the platform owner, when r is small,
the platform owner is willing to directly benefit from his own business, resulting in an
increase in the number of copycat variants. On the contrary, when r is large, the shared
revenue (commission fee) is more important to the platform owner and the platform owner
will reduce the encroachment of innovative products. In addition, Figure 12 shows that the
higher the diseconomies of scale, the fewer the category variants in the online marketplace.

When β increases, the number of variants of category P decreases, and the price
consumers are willing to pay for it decreases (see Figure 13a,b). It can be seen from
Figure 13c that the retail price of 3F increases monotonically with β when r ≤ 0.5 and
decreases monotonically with β when r > 0.5. This is because when r is small, the third-
party seller hardly innovates new variants of category F. If β increases, the competitive
pressure from category P decreases, which increases the retail price of category F. How-
ever, when r is large, the third-party seller innovates variants of category F. If β increases,
the innovative variants of category F reduce, resulting in a lower retail price. More-
over, the 3P-type with a significantly lower retail price also has a crowding-out effect on
low-end 3F-type.

In addition, it can be seen from Figure 13 that the retail price of all categories is
proportional to r. This is because the larger r is, the more the platform owner relies on
shared revenue. In order to prevent the excessive decline of shared revenue, the platform
owner pushes the third-party seller to set higher retail prices by actively raising the prices
of self-operated products.

When β increases, the innovation investment of the third-party seller in category P
decreases, and naturally, the marketing efforts on category P also decrease (see Figure 14a).
It can be seen from Figure 14b that the marketing effort level of 3F-type increases monotoni-
cally with β when r ≤ 0.5 and decreases monotonically with β when r > 0.5. As mentioned
earlier, when r is small, the third-party seller hardly innovates new variants of category
F. If β increases, the third-party seller will expand the low-end market by increasing his
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marketing efforts to 3F-type. However, when r is large, the third-party seller innovates
variants of category F. If β increases, the third-party seller reduces marketing efforts for
category F with fewer innovative variants.

It can be seen from Figure 14c that the marketing effort level of 1P-type decreases
monotonically with β when r ≤ 0.5 and increases monotonically with β when r > 0.5. This
is because when r is small, if β increases, the platform owner reduces the marketing effort
level due to the reduction of copycat. However, when r is large, if β increases, the platform
owner will motivate the third-party seller to be innovative by improving marketing efforts.
In addition, it can be seen from Figure 14 that the marketing effort level of the above types
varies with r in the same way as the number of variants with r.

It can be seen from Figure 15 that the third-party seller’s profit and the platform
owner’s profit decrease monotonically with β. This is because when β increases, the
horizontal innovation of each category decreases, resulting in lower profits for both sellers.
In addition, Figure 15 shows that the third-party seller’s profit decreases monotonically
with r, while the platform owner’s profit increases monotonically with r. For the third-party
seller, when r increases, although the retail price of the category increases, the horizontal
innovation degree of category P with higher marginal profit decreases, and the commission
paid increases. Therefore, the overall profit of the third-party seller decreases. For the
platform owner, when r increases, the commission charged increases, and the retail price of
1P-type increases. Therefore, the profit of the platform owner increases.

4.4. Managerial Insights

The following managerial insights based on the research results:
From the perspective of third-party sellers, third-party sellers must be wary of the

platform owner’s product encroachment, which leads to a reduction in the differentiation
of the category, reducing their innovation margin profit. Therefore, in order to avoid the
excessive decline of the innovation marginal profit caused by the platform owner’s product
encroachment, firstly, third-party sellers should adjust the innovation investment amount
in each period according to the possible product encroachment behavior of the platform
owner and increase the retail price and marketing effort level of innovative products.
Secondly, as the platform owner focuses on the profitable category, third-party sellers can
sell a variety of vertically differentiated categories at the same time. While competing
fiercely with the platform owner in the high-end market, third-party sellers can also gain
some profits by expanding their share of the low-end market. Thirdly, third-party sellers
can also expand the vertical differentiation between the traffic-attracting category and
the profitable category by improving the level of production technology and adding new
variations of the traffic-attracting category to attract more consumers.

From the perspective of the platform owner, firstly, because the platform owner has a
dominant market position, entering the third-party product market can bring more profits
for himself. Therefore, the platform owner can choose to encroach on some products with
high prices and deep product lines. Secondly, when considering whether to encroach
on new products, the platform owner should not only weigh self-operated income and
shared income, but also balance short-term profit through encroachment and damage
to independent sellers’ product innovation caused by excessive encroachment. To be
precise, the platform’s selective encroachment on new products can improve its own
revenue while alleviating the inhibitory effect on the continuity of third-party sellers’
category innovation. In addition, in order to avoid third-party sellers being forced out
of the market by the platform owner’s product encroachment, the platform owner can
appropriately raise the retail prices of self-operated products and reduce marketing efforts
to ease market competition. Thirdly, the platform owner can also improve consumers’
platform owner preference by ensuring the high quality of platform services, thereby
encouraging third-party sellers to invest in research and development of high-quality new
products. Furthermore, the platform owner should set a reasonable commission rate to
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ensure the variety of variations of various categories, thereby expanding the sales scope of
the composite e-commerce platform.

5. Conclusions

This paper studies product encroachment by the e-commerce platform owner on
independent third-party sellers’ innovative products. The applied model considers the
dual differentiation of categories and combines the method of multi-agent simulation to
conduct a competitive dynamic simulation study. The following conclusions are obtained:
(1) In the case where multiple categories are sold at the same time, the third-party seller
will innovate variants for both the traffic-attracting category and the profitable category
at the same time and invest more funds in innovative R&D of high-quality category
P, and the profit-driven platform owner will only encroach on the new variants of the
profitable category. (2) Consumers’ platform owner preference and category vertical
differentiation describe consumers’ valuation of different categories, both of which affect
the intensity of competition between categories and consumers’ purchasing utility, thereby
affecting the equilibrium decision-making of the third-party seller and the platform owner.
When the categories of the platform owner have a greater valuation advantage, the third-
party seller has a stronger incentive to innovate variants of category P, and the platform
owner has a stronger incentive to encroach. When the valuation advantage of the high-
quality category is obvious, the motivation of the third-party seller to innovate variants
of category F increases. (3) The commission rate and diseconomies of scale directly affect
the distribution of shared income and the marginal profit of category innovation, thus
affecting the equilibrium decision-making of the third-party seller and the platform owner.
If the commission rate is low, the third-party seller will invest in innovating variants
of category P. If the commission rate is high, although the platform owner has a weak
incentive to encroach, the third-party seller has little investment in product innovation.
The diseconomies of scale of category diversity management costs hinder the growth of
product variety in the online marketplace.

The research in this paper can be extended in the following directions: Firstly, the
composite e-commerce platform model considered in this paper is relatively simple, with
only the platform owner and one third-party seller. In the future, it can be extended
to study the case of multiple independent sellers. Secondly, this paper assumes that
consumers are rational and seek to maximize utility and does not consider consumers’
strategic behaviors. Future studies should explore whether strategic consumers will guide
the product innovation behavior of independent sellers and the product encroachment
behavior of the platform owner through their own first-period purchases. Finally, this
paper integrates product encroachment and product innovation and drives the platform
owner’s product encroachment with high profit. In the future, product encroachment can
also be studied with the goal of regulating product quality.
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Abstract: Agile project management (APM) can be defined as an iterative approach that promotes
satisfying customer requirements, adjusts to change, and develops a working product in rapidly
changing environments. Managers usually apply agile management as the project management
approach in projects requiring extraordinary speed and flexibility in their processes. Earned value
management (EVM) is a fundamental part of project management to establish practical measures.
Often, managers use a task board to visually represent the work on a project and the path to
completion. Still, managing an agile project can be a challenging endeavor. In this paper, we propose
an agent-based model describing the management of tasks within a project using earned value
assessment and a task board. Our model illustrates how EVM yields an efficient method to measure
a project’s performance by comparing actual progress against planned activities, thus facilitating
the formulation of more accurate predicted estimations. As proof of concept, we leverage our
implementation to calculate EVM performance indexes according to a performance measurement
baseline (PMB) in a task board fashion.

Keywords: agile development; earned value management; task board; agent-based simulation

1. Introduction

Agile project management (APM) can be defined as an iterative approach that pro-
motes satisfying customer requirements, adjusts to change, and develops a working product
in rapidly changing environments [1]. Applying agile management as the project man-
agement approach requires extraordinary speed and flexibility in your processes and
the formation of dedicated teams willing to adapt to changes, according to the Project
Management Institute (PMI) [2]. Such a management approach is not only suitable for
software development [3], but it has also been expanded to other environments, such as
manufacturing, education, and health care, among others within the guide’s scope [4].

In the manufacturing sector, there is much interest in understanding the determinants
of effective agile project management to save time and energy in a context where customer
requirements are broader, and new proposals for technological innovation are appearing [5,6].
For example, there is the proposal of a matrix that suggests agile practices based on the
objectives and priority principles for complex project teams [5]. In addition, a scheme has
been elaborated with the necessary actions to increase the probability of success in each of
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the phases of agile projects (planning, implementation, and closure) in a cycle of continuous
improvement [6].

The earned value management (EVM) [7] is considered a fundamental part of the
project management body of knowledge (PMBOK) [2] to establish practical measures. Over
the last four decades, project management professionals have used this method to measure
performance and assess the status of a project [8]. Still, managing an agile project can be
a challenging endeavor. Often, managers use a task board to visually represent the work
on a project and the path to completion. The route includes pending, in-progress, and
completed tasks performed by teams. For example, the “Kanban” methodology uses a
task board to distribute assignments and activities as a fundamental part of a production
process [9].

Implementing agile project management can be a complex, time-demanding undertak-
ing, taking into consideration that different mechanisms influence the project’s performance.
For example, cultural agency theory [10] proposes that operative play rules, individual
traits, and cultural matters interact dynamically to produce emergent behaviors in the
production system. From this theory, we could see EVM and a task board as the agency’s
operative system. Such an approach could be a critical step for a comprehensive under-
standing of the agile process rules and development. This allows a constant evaluation of
the intermediate results and allows adjustments if the users and the interested parties want
them. This way, the entire project team, including stakeholders, continuously improves
the product. This methodology allows for immediate product modifications as previously
unknown requirements are discovered [1].

Therefore, we propose an agent-based model describing the management of tasks
within a project using a task board. The model’s purpose is to illustrate how the participants
in a project complete the tasks represented on the board. We consider the EVM approach to
asses performance and control the work completion level compared to the set plan. In this
study, we first explicitly identify the problem that motivated this work. Second, we describe
the proposed model and briefly discuss the model’s benefits and limitations. Finally, we
provide a set of conclusions and identify needs for future work and developments.

2. Problem Statement

According to the PMI [2], project management is the application of knowledge, skills,
tools, and techniques to project activities to achieve the expected results. Generally speak-
ing, traditional project management has been oriented to projects whose phases were
programmable, with predictable endings; tasks, times, and deadlines were clearly estab-
lished and defined with technical prescriptions. That is, the tasks that make them up were
explicitly defined during the project planning process [11].

However, changes in technology, business, economics, and stakeholder expectations
imply that project management considers a static component (pre-plannable) and a dynamic
component (unpredictable and not initially programmable). Considering this dichotomy,
organizations require flexibility to adopt different methodologies and techniques in project
execution [12].

In addition, project management involves carrying out a set of functions performed
by groups that interact reciprocally and configure an organizational system that must be
appropriately coordinated. For the PMI, stakeholders are people and organizations that
actively participate and whose interests may be affected due to the project execution [2].
According to the methodology of stakeholders, there are four main processes in project
management: planning, design, execution and control, and closure. This study focuses on
the execution and control phase, where the promoters and executors participate most in
developing the activities planned through the task board [13].

Using this conceptual framework, it is possible to evaluate the elements involved in the
planning and development of organizational projects with the help of models. Therefore,
we propose developing an agent-based model to explore different scenarios that seek to
manage the increasing complexity of the systems to be designed and implemented as an
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alternative solution to specific problems in project management. The EVM technique is
used to compute the performance and control the level of work achieved compared to
the plan [14], addressing the following questions: How do employee conditions affect the
performance of an agile project? Do the number of employees and the number of tasks
each simultaneously affect cost performance? Does the likelihood of employees performing
their tasks faster or slower cause convenient advances or inconvenient delays affecting cost
performance? Under what circumstances do projects become so unpredictable that they
could be considered complex?

3. Methodology

Social simulation has been gaining ground in the social sciences as a way of approach-
ing the complexity of social systems. Computational social science has now incorporated
data science into its arsenal of techniques but has also included alternative methods, such
as agent-based modeling, from the outset. Agent-based modeling (ABM) is a method
of computational modeling and simulation to study complex systems’ organization and
dynamics.

We consider that project management is complex for several reasons: first, because
it is a process where humans make decisions (not as rational as one would expect); sec-
ond, because there are structural constraints that condition their behavior; and finally,
because social processes affect the culture of organizations. Consequently, we regard
earned value management as a model that reduces the issue’s complexity to create the
illusion of simplicity due to focusing on optimizing performance and costs.

We based the methodology’s sequence on the well-known social simulation approach
in which the procedure selected and represented real-life targets in a simplified way through
a model executed and outputs data [15]. In this work, we use an agent-based system to
approach the EVM agency as an operating system (structure and imperatives for decisions,
operative intentions, etc.) and simulate hypothetical scenarios from an exploratory and
illustrative point of interest in cultural agency theory [10].

3.1. Modeling and Simulation Method

The following is a brief description of the adopted modeling and simulation easyABMS
methodology [16]. In this process, all steps can go back to the previous step, so the analyst
and modeler can generate multiple approaches til the objective. We finalize with results
analysis, as seen in Figure 1.

Figure 1. The adopted modeling and simulation process based on easyABMS methodology [16].

• System analysis. In this activity, we establish the aim of the model based on the
research questions. The result is an analysis statement. In our case, it is a narrative
document based on the ODD protocol that defines the purpose and details of the
model we built.
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• Conceptual modeling of the system. In this activity, we analyze the problem domain’s
language to make a first approximation. The result is a conceptual system model. We
use the Unified Modeling Language (UML) to represent the abstractions produced in
the analysis of the problem language.

• Simulation design. In this activity, we design the simulation. The result is a simu-
lation model based on a specific framework or tool. We use the Netlogo tool as the
technological basis for the design.

• Simulation Code Generation. In this activity, we write a computer executable code
that implements the designed model in the selected tool. The result is a simulation
code. The generated code is written in Logo for Netlogo and implements the simulator
design.

• Simulation Setup. In this activity, we configure the experiment in the simulator. Using
input data, we specify simulation scenarios. We used Netlogo’s BehaviorSpace tool to
experiment with a dataset based on a typical software project management template
with 61 core tasks and a max of seven employees. This experimentation consisted of
2100 runs resulting from the combination of input variables and their possible valid
values.

• Simulation execution. In this activity, we ran the experiment within the pre-set
parameters. We obtained simulation results. The data obtained are the product of
each “tick” (the discrete-time in Netlogo) and the states of all the input variables,
agents, and earned value management metrics produced in each of the 2100 runs. The
resulting data give us system state information in the entire parameter space.

• Simulation Results Analysis. In this activity, we analyze the results to contribute
to the clarification of the proposed research questions. We use the resulting data to
generate a simulation analysis report. We performed the following: (a) a t-Student test
to compare dissimilarities in the results of simple scenario simulations between our
prototype and tools suggested by PMI to analyze the EVM in hypothetical projects; (b)
a sensitivity assessment to support the interpretation; (c) an explanation of simulation
model outcomes and an active nonlinear test to examine the necessary considerations
in the simulation structure and thereby begin to approach complexity.

3.2. Model Description

To formalize the proposed model, we followed the “S1: ODD Guidance and Checklists,”
proposed in [17], which provides guidance and checklists for writing “Overview, Design
Concepts, Details” protocol (ODD) descriptions of agent-based or other simulation models.
It is based on the ODD version published in earlier versions [18,19].

3.3. Model Validation

To validate the proposed model, firstly, we compared the results of simple scenario
simulations between our prototype and tools suggested by PMI to analyze the EVM in
hypothetical projects. For example, The Earned Value Management Calculator [20] or EVM
Worksheet Package [21] could help compare results. Further, we applied a sensitivity assess-
ment to support the interpretation and explanation of simulation model outcomes. Finally,
we executed nonlinear active tests (ANTs) [22] to examine the necessary considerations in
the simulation structure and thereby begin to approach complexity.

4. Results

Earned value management is founded on a set of metrics focused on evaluating the
progress of a project from a cost and schedule standpoint. Figure A2 in the Appendix A.3.3
shows graphically how a project can be evaluated in execution time and how these metrics
characterize its development. The cost performance index (CPI) and schedule performance
index (SPI) metrics measure project performance. For example, the cost performance index
(CPI) depends on comparing whether the actual cost (AC) corresponds to the estimated
cost (EC). The earned value (EV) metric measures whether the project has economic gains
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or losses. The model shows the behavior of these metrics during an artificial execution of a
project (either using data obtained from a data file or artificially generated). We describe
full EVM metrics in Table A4 in Appendix A.3.3.

The concept of EVM is introduced in the model, which is simulated through a spatial
model of agents developed in the Netlogo programming environment [23]. A complete,
detailed model description, following the ODD [17–19], is provided in Appendix A.

4.1. Netlogo Prototype

As a result of the agent-oriented analysis and design process, we produced an agent-
oriented model in NetLogo based on our core code [24]. Figure 2 shows an EVM model
NetLogo prototype screenshot. The NetLogo prototype used in this paper is available
in [25] and can be downloaded directly from the repository online.

Figure 2. Earned value management (EVM) model in NetLogo.

First, the EVM model illustrates a set of tasks (backlog) in a task board (a Kanban task
board style) at the top of the visual area of the simulator. The board has three columns,
where each column denotes the status of the task: “To-do,” “In progress,” and “Done” tags.
Then, we represent employees in the workspace at the bottom of the visual simulation area.
A graphic link connects employees with assigned tasks. They take assignments from the
“To-do” column to process the jobs (“In progress” cue) and transfer the finished task mark
to the “Done” column. Finally, on the left are input controls to initialize different simulation
scenarios, and on the right are additional output controls. The outputs show the results of
the EVM in a dynamic way that reacts to the simulation process in real-time.
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We designed the interface so the user can see how the variables behave in the form
of a dashboard while the model simulates the initially configured scenario. Although
the interface can display these inputs and outputs, the Netlogo tool can export a log file
for better results processing. For example, Figure 3 plots the most significant inputs and
outputs for EVM. These are the reproduction of the “Burndown,” “Earned Value,” and
“Performance” charts shown in Figure 2 from a log file.

(a) The burndown chart. (b) The earned value chart. (c) The performance chart

Figure 3. The plots are the most significant inputs and outputs for EVM. (a) The burndown chart,
where tasks go through the to-do, in-progress, and done states during project execution. (b) The
earned value chart compares the planned and actual costs. (c) The CPI and SPI chart depicts
performance.

In Figure 3a, we show the burndown chart where tasks go through the to-do, in-
progress, and done states during project execution. The prototype interface provides this
standard visualization of task execution. In Figure 3b, we show the earned value chart
that we used to compare the planned and actual costs. The prototype interface also offers
this standard visualization of EVM. In Figure 3c, we show The CPI and SPI chart to depict
performance. The interface shows the visualization of these metrics too. In this case, we are
interested in showing the behavior of the CPI for the scope of this paper.

4.2. Model Validation

To validate the model, we tested with 2100 simulations. We established a fixed set
of input tasks based on a typical planning template for a software development project.
The template supplied 61 tasks with estimated costs and team members. Based on the
information from this simple case study, we adjusted the values of the input variables
in suitable ranges to calculate a proper sample of tests. This configuration helped us to
observe the behavior of the cost performance index (CPI) and the project’s final cost under
different conditions. Table 1 shows the input variables of the experiment and their value
ranges.

Table 1. Validation settings. (See the Table A3 in the Appendix A to set up the variables description.)

Variable/Metric Type Values Range

number-of-tasks input 61
employees-number input 1–7
probability-of-delay input 0.0–0.9
probability-of-advance input 0.0–0.9
assigned-tasks-employee input 1–3
step output 1–n
CPI output 0–n

The experiment produced much information, but the most relevant is the final state of
the variables at the end of each simulation. We obtained a total of 2100 final results. Table 2
shows the statistical description of the data obtained during this process.
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Firstly, we used the EVM Calculator (“EVM Calculator V2” MS Excel file), download-
able from the PMI website, to calculate the performance indexes and other EVM metrics
using the same simulated data scenarios [6]. Appendix A.3.3 of Appendix A describes
the EVM main variables and performance and estimations formulas. We planned an ex-
ploratory experiment focused on planned value, actual cost, and earned value, and the
scheduled performance index (SPI) and cost performance index (CPI) EVM metrics to
compare similarities. Table 2 shows a t-Student test result. Practically, the results are very
identical.

Table 2. CPI t-Test: Two-Sample Assuming Unequal Variances.

CPI-Netlogo Sample CPI-EVM Calculator Tool Sample

Mean 2.75497723 2.754977232
Variance 14.5634324 14.56343242
Observations 2100 2100
Hypothesized mean difference 0
df 160
t stat 0
P(T <= t) one-tail 0.5
t critical one-tail 1.6544329
P(T <= t) two-tail 1
t critical two-tail 1.97490156

Subsequently, we performed a sensitivity analysis to understand how the outputs
change over the full range of possible inputs. We show the basic statistic dataset description
in Table A5 in Appendix B, and we define the requirements verification in Table A6. In
Table A7, we observe that 85% of “CPI” cases are within the range of 0.0961164439425309
to 3.5 (about 1880 of the 2100 tests).

In Figure 4, we depict the result of a detailed sensitivity analysis. We display a range
of possible output values associated with each set of inputs. In our case, we analyze the
possible combinations between the number of employees, the number of tasks each worker
could perform simultaneously, the possibility of advancing the work, and the possibility of
being delayed.

Figure 4. CPI sensitivity analysis results. The output plots.
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Table 3 shows the results of the sensitivity analysis of the CPI concerning the number of
employees and the tasks assigned to the employee. It shows that the number of employees
and the number of tasks do not impact the cost performance index (CPI). The table shows
high values in all cases without much variation.

Table 3. CPI sensitivity analysis results. The employees’ number versus the assigned tasks to an
employee. The darker color in the table means a higher CPI value.

Assigned-Tasks-Employee 1 2 3
Employees-Number

1 1.616634 1.633812 1.616834
2 1.633606 1.614470 1.628857
3 1.623663 1.637134 1.629288
4 1.625330 1.617751 1.602271
5 1.628319 1.573290 1.607234
6 1.616457 1.640380 1.613923
7 1.624135 1.612656 1.590358

Table 4 shows the results of the sensitivity analysis of the CPI concerning the number
of employees and the probability of advancing. It shows that the number of employees and
the advancement also affect the cost performance index (CPI). The table shows high CPI
values when the probability is high and low values when the probability is low but does
not vary much with the number of employees involved.

Table 4. CPI sensitivity analysis results. The employees’ number versus the probability of advance.
The darker color in the table means a higher CPI value.

Probability-of-Advance 0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000 0.900000
Employees-Number

1 0.548008 0.609541 0.685730 0.783219 0.915103 1.106740 1.377564 1.846275 2.740608 5.611477
2 0.550267 0.607176 0.685457 0.787587 0.913403 1.104403 1.372748 1.817562 2.782771 5.635066
3 0.550096 0.612313 0.685667 0.787730 0.910915 1.101636 1.378627 1.841838 2.756855 5.674607
4 0.551275 0.609906 0.689134 0.788121 0.916298 1.103034 1.365377 1.839154 2.807393 5.481482
5 0.549912 0.610428 0.685860 0.779776 0.913223 1.111374 1.368596 1.828576 2.770266 5.411466
6 0.550164 0.610680 0.686776 0.785780 0.921015 1.104609 1.365208 1.859988 2.772758 5.578888
7 0.548133 0.611021 0.686966 0.785835 0.923714 1.109246 1.376516 1.819473 2.795025 5.434565

Table 5 shows the results of the sensitivity analysis of the CPI concerning the number
of employees and the probability of delay. It shows that the number of employees and the
delay also affect the cost performance index (CPI). The table shows high CPI values when
the probability is low and low values when the probability is high but does not vary much
with the number of employees involved.

Table 5. CPI sensitivity analysis results. The employees’ number versus the probability of delay in
task execution. The darker color in the table means a higher CPI value.

Probability-of-Delay 0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000 0.900000
Employees-Number

1 2.923209 2.697309 2.356683 2.081919 1.788999 1.462714 1.165987 0.881181 0.575454 0.290812
2 2.986358 2.658718 2.394938 2.021872 1.749269 1.494834 1.172753 0.885583 0.597050 0.295065
3 2.993954 2.679616 2.397810 2.044512 1.760310 1.498649 1.168188 0.878099 0.584551 0.294594
4 2.953739 2.633249 2.347091 2.043536 1.743552 1.478904 1.176356 0.892230 0.587110 0.295405
5 2.950445 2.638388 2.290606 2.013881 1.761984 1.465932 1.158620 0.873110 0.583534 0.292974
6 3.003698 2.675100 2.340356 2.055888 1.762180 1.451223 1.187985 0.892449 0.576981 0.290005
7 2.896081 2.611585 2.321156 2.056459 1.793138 1.491311 1.171935 0.872740 0.581986 0.294104
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Table 6 shows the results of the sensitivity analysis of the CPI concerning the number
of tasks assigned to an employee simultaneously and the probability of performing tasks
quickly. It shows that the number of tasks and the progress also affect the cost performance
index (CPI). The table shows high CPI values when the probability is high and low values
when the probability is low but does not vary much with the number of tasks involved.

Table 6. CPI sensitivity analysis results. The assigned tasks to employees versus the probability of
advance in task execution. The darker color in the table means a higher CPI value.

Probability-of-Advance 0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000 0.900000
Assigned-Tasks-Employee

1 0.550079 0.610386 0.686651 0.785175 0.915242 1.107459 1.374933 1.840992 2.750297 5.618992
2 0.549219 0.610502 0.688131 0.786606 0.916836 1.103004 1.370400 1.834234 2.794441 5.531616
3 0.549782 0.609569 0.684757 0.784525 0.916638 1.107127 1.370940 1.833146 2.780553 5.489771

Table 7 shows the results of the sensitivity analysis of the CPI concerning the number
of tasks assigned to an employee simultaneously and the probability of being late in
performing the tasks. It shows that the number of tasks and the delay also affect the cost
performance index (CPI). The table shows low CPI values when the probability is high and
high values when the probability is low but does not vary much with the number of tasks
involved.

Table 7. CPI sensitivity analysis results. The assigned tasks to employees versus the probability of
delay in task execution. The darker color in the table means a higher CPI value.

Probability-of-Delay 0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000 0.900000
Assigned-Tasks-Employee

1 2.978426 2.663062 2.362711 2.046665 1.772522 1.479867 1.173713 0.888923 0.580200 0.294114
2 2.988602 2.658812 2.314510 2.069138 1.740356 1.477683 1.173824 0.882516 0.585297 0.294250
3 2.907608 2.646968 2.372195 2.020511 1.784022 1.475407 1.167531 0.875158 0.585931 0.291476

Table 8 shows the results of the sensitivity analysis of the CPI concerning the prob-
ability of being ahead of schedule and the probability of being late in performing the
tasks. It shows that overtaking and delay affect the cost performance index (CPI). The table
shows that, when the probability of advancing is high and the probability of delay is low,
then performance increases. Conversely, when the probability of advance is low and the
probability of delay is high, then performance drops. There is a strong relationship between
these two input variables and the output variable CPI.

Table 8. CPI sensitivity analysis results. The probability of delay versus the probability of advance in
task execution. The darker color in the table means a higher CPI value.

Probability-of-Advance 0.000000 0.100000 0.200000 0.300000 0.400000 0.500000 0.600000 0.700000 0.800000 0.900000
Probability-of-Delay

0.000000 1.000000 1.108873 1.250670 1.424626 1.662969 2.030450 2.467776 3.331564 5.110659 10.194536
0.100000 0.901227 0.991782 1.126371 1.282113 1.493521 1.806010 2.257168 3.012464 4.621043 9.071108
0.200000 0.801303 0.891224 0.996478 1.148412 1.339701 1.606832 1.991850 2.699662 4.007647 8.014947
0.300000 0.697102 0.779057 0.873445 0.999431 1.166258 1.405789 1.750664 2.314024 3.465186 7.003424
0.400000 0.602836 0.666494 0.746477 0.857062 1.000851 1.202470 1.490557 1.995534 3.001171 6.092882
0.500000 0.497076 0.552568 0.622811 0.714094 0.830579 1.004919 1.256750 1.665710 2.559082 5.072936
0.600000 0.397853 0.445080 0.499436 0.571599 0.666491 0.806707 1.009625 1.332263 1.995027 3.992812
0.700000 0.301044 0.331156 0.373308 0.426633 0.499541 0.596892 0.754331 1.003200 1.497278 3.038604
0.800000 0.198708 0.224264 0.250335 0.287390 0.335720 0.399535 0.495143 0.672126 0.993766 1.981109
0.900000 0.099786 0.111024 0.125797 0.142994 0.166754 0.199028 0.247045 0.334692 0.500109 1.005570

Finally, we tested the model’s structure and robustness using the nonlinear search
algorithm, designed to break the model’s implications actively (active nonlinear tests
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(ANTs) [22]). BehaviorSearch is a software tool (included in the latest Netlogo versions) to
help automate the exploration of agent-based models (ABMs) by using genetic algorithms
and other heuristic techniques to search the parameter space [26].

We aim to explore the necessary reflections in the simulation structure and thereby
begin to approach complexity. So, we configure the tool and search in the CPI param-
eter space to identify the max fitness of employees-number, assigned-tasks-employee,
probability-of-delay, and probability-of-advance combinations using the 2100 tests’ results
dataset (we want to maximize the CPI-related space parameters that influence the project
performance). In the same way, to compare, we configure the tool and search in the “step”
parameter space to identify the min fitness of employees-number, assigned-tasks-employee,
probability-of-delay, and probability-of-advance combinations (we want to minimize the
“step”-related space parameters that influence the project duration). Table 9 shows an
assortment of fitnesses in the search parameter space related to “CPI” in comparison with
Table 10, which shows a similar fitness in the search parameter space related to “step”
(project duration).

Table 9. “CPI” active nonlinear tests final bests fitness.

Search-Number Evaluation Employees-Number Assigned-Tasks-Employee Probability-of-Delay Probability-of-Advance Num-Replicates Best-Fitness-so-Far

1 500 6 2 0.2 0.9 10 8.125806944
2 500 5 1 0.2 0.9 10 7.92122959
3 500 3 1 0 0.6 10 2.571417207
4 500 3 2 0 0.9 10 10.18728451
5 500 4 1 0 0.9 10 10.35474418
6 500 1 3 0.4 0.9 10 5.902861442
7 500 1 2 0 0.8 10 5.015753468
8 500 7 3 0.3 0.9 10 6.719011184
9 500 5 3 0 0.9 10 10.22730573

10 500 3 1 0.3 0.9 10 6.764397903

Table 10. “step” active nonlinear tests final bests fitness.

Search-Number Evaluation Employees-Number Assigned-Tasks-Employee Probability-of-Delay Probability-of-Advance Num-Replicates Best-Fitness-so-Far

1 500 7 2 0 0.7 10 163
2 500 6 2 0.2 0.1 10 223.6
3 500 4 3 0 0.9 10 180
4 500 5 2 0 0.6 10 198
5 500 7 3 0 0.1 10 146
6 500 6 3 0 0.2 10 155
7 500 6 3 0 0.3 10 155
8 500 5 3 0 0.1 10 163
9 500 6 2 0.1 0.7 10 197.5

10 490 6 3 0 0.5 10 155

The model could describe the project duration linearly, but the CPI shows uncertain
behavior. In the case of the search parameter space related to “CPI,” the model is very
predictable when the probability of delay and advance is close to 0. However, when close
to 1, the sequence and time of execution could vary away from the estimation. We consider
complexity to hide behind the tasks executed by agents that express a probability of delay
or advance in an active project. In other words, the project execution could leave us in
a different final stage, starting from the same initial project parameter values that are a
feature of complex systems behavior.

5. Discussion

The objective of this research was to create an agent-based model that allows the
exploration of different explanation alternatives to specific problems in agile project man-
agement through earned value management. Therefore, we presented a model of EVM
where employees work on a task backlog in a characteristic project execution process to
approach the agile development process. The to-do jobs are visually represented in a typical
task board to show how the task path to completion happens. At this level of representation,
the results show that the model behaves as expected: the model simulates the employees
attending tasks, and the EVM metrics show the assessment.
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Further to this first approach, studies related to the dynamism of project management,
which seek to explain behavior and results using the fundamentals of complexity theory,
are becoming more frequent [27,28]. In this context, project management gains importance
among the complex sciences by studying the relevant variables involved [27,28]. Regarding
the multidisciplinary character of project management, research in innovation and technol-
ogy management that considers the different theoretical frameworks is perhaps the most
influential emerging discipline [29,30].

So, to overcome the limitations of traditional project management, the cultural agency
theory would allow the representation of the internal and external factors involved during
the development of stakeholder scenarios [31]. This theory’s holistic perspective considers
the cultural, personality, and operational systems. In a business context, the cultural
system integrates values and beliefs (knowledge management and market orientation);
the personality system considers cognitive capabilities (goals, ideology, self-schema); and
the operating system integrates structural components (operational performance and self-
organization) [10].

Therefore, we could go beyond a simple system design where the EVM performance
result could hide the causes linearly [32]. So, we could represent the EVM as an operational
subsystem according to Yolles’s cultural agency theory [33–35] in a complex system context.
From this point of view, the EVM agency could establish the gameplay rules for the other
agents in the system that constrains or motivates their behavior. Within these conditions,
other stakeholder agents should negotiate and develop agreements to self-organize and
accomplish their goals.

How do the agents’ conditions affect the design of complex production systems? As a
result of our experience modeling EVM and operating different scenario simulations, we
observed that EVM, as an agency in a complex production system, concerns the operative
game rules where other agencies should persist. In this circumstance, the play rules
determine the other agents’ behavior (for example, employees), execute assigned jobs,
and earn value for the project following the production constraint. So, different initial
conditions pre-determine the whole system’s behavior; thus, making real-time corrections
would help the project to succeed.

Beyond this embryonic project management representation, we consider that there are
several advantages to using this prototype for more elaborated modeling:

1. We provide a simulation tool to explore the relationship between task planned and
performance conditions and the effect in the EVM metrics observations. Additionally,
the model shows a typical task board tool to visualize the job backlog processing as
most managers used to. This experimentation could help EVM learners and managers
explore scenarios to understand how the metrics perform in different conditions.

2. The model is inspired by agency theory, specifically by Yolles’s cultural agency theory.
Under this theoretical perspective, the model could have sense in the rationale of
complexity. As the theory proposed, we can consider new features to add individual
behavior and cultural factors.

3. We defined the model according to the ODD protocol. The ODD is a protocol recom-
mended by the social simulation scientific community to overview the model and
describe design concepts and implementation details to communicate agent-based
models.

4. We programmed an agent-based model in a freely available tool. Netlogo is friendly
for unskilled programmers and easily adaptable for new purposes.

5. The PMI considers the EVM a standard in project management.

However, we consider that the most significant weaknesses of this proposed model
are as follows:

1. The tool has limitations to building high-performance simulations.
2. The implicit systematic EVM limitations to assess other aspects of agile development

management.
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3. It is limited to the execution and control processes of the tasks where the promoting
and executing agents have direct participation.

Nevertheless, the current proposed model may only be able to answer some of the
questions it could raise, and future expansion of the model could prove helpful.

6. Conclusions

The proposed model is a valuable tool for quantifying the operating system in project
management. In particular, it makes it possible to quantify earned value management.
Future research could propose a model that considers the sequentially of tasks, the organi-
zation of these tasks in work subteams, and the inclusion of the underlying systems of the
cultural agency theory: the cultural system and the personality system [10]. In the cultural
system, variables could be included at the organizational level (practices, corporate policies,
and managerial leadership), and in the personality system, variables at the team level
would be included (skills, coordination, cooperation, communication, cognition, leadership,
and internal conditions) [36].
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Appendix A. The Earned Value Management Model

In this appendix, we described the earned value management [7] model according
to the ODD [17–19]. We followed “S1: ODD Guidance and Checklists” for guidance and
checklists for writing ODD descriptions of simulation models, based on the ODD version
published in [17].

Appendix A.1. Overview

Appendix A.1.1. Purpose and Patterns

This model illustrates how EVM provides an approach to measure a project’s per-
formance. Our model’s instance performs a project execution and calculates the EVM
performance indexes according to a performance measurement baseline (PMB), as detailed
below.

Appendix A.1.2. Entities, State Variables, and Scales
Entities

We include the following entities in the model: agents representing employees (i.e.,
developers, architects, stakeholders, etc.), tasks, and the global environment representing
the workspace (i.e., physical or virtual spaces).

The following entities are included in the model:

1. The employee-agent, representing the developers (i.e., team leaders, team members,
architects, and stakeholders);

2. The task-agent, representing the tasks (i.e., the work breakdown structure and tasks);
3. The employee-task-link, representing the employee-task assignations (i.e., the tasks

backlog);
4. The global environment, representing the task board and the workspace (i.e., the

Kan-ban board).

State Variables

An observer is an individual that commands global variables and submodels. Therefore,
observer state variables are global variables that may alter over time. In Table A1 we show
the entities’ state variables.

Table A1. Entities’ state variables

Entity Variable Name Variable Type Meaning

Task

status Integer The task status
task-number Integer The task number
task-description String The task description
priority Integer The task priority
planned-start String A planned task start date
planned-finish String A planned task finish date
planned-hours Integer Planned task execution hours
complete-hours Integer Complete task execution planned hours
actual-hours Integer Real/actual task execution hours

Employee
employee-number Integer The employee ID number
status Integer The employee status
role String The employee role

Scales

Our model’s temporal scale is set as hours because for project duration we often
counted working hours. So, a tick in this agent-based model (ABM) means an hour. We set
up the simulation time as long as the work breakdown structure (WBS) requires because the
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term of most projects is different, and simulating according to the backlog retrieved from
the WBS can adequately contain the usual operations of a short project-based organization.

In Table A2, we show the environmental scales.

Table A2. Scales.

Scale Values Meaning

Grid 16 × 32 The task board and color tags.
Grid 16 × 32 The workspace and employees.
Ticks 0–n The working hours

Appendix A.1.3. Process Overview and Scheduling

First, we create a random task backlog according to the maximum number of jobs
specified in the initial configuration. We also indicate how many workers will form the
work team. Finally, we indicate how many tasks we will delay and how many will be
advanced.

The workers then process the tasks. First, each worker chooses tasks from the backlog
and moves the task to the in-progress column. Tasks can last in this state depending on the
time specified in each task. We could delay some tasks or complete them early. Eventually,
the tasks are tagged again with a done mark when the employee entirely performs them.

We continue processing the tasks in a loop until all jobs in the backlog have passed the
done state on the board.

Figure A1 shows the process of executing the tasks.

Figure A1. The employee processing the chosen tasks.

Each tick represents a unit of time in the schedule. Each task has an estimated time to
complete and a real completed time.

In this model, tasks have no predecessors, and the hourly cost is the tick cost. So, the
project’s total cost is equal to the total sum of the planned hours of the tasks or the total
sum of ticks.

Appendix A.2. Design Concepts

Appendix A.2.1. Basic Principles

This model addresses a classic problem of project management (PM). This problem
involves the risk of delay in execution and cost and schedule estimation failure. There is
an extensive literature on earned value management to handle project behavior, mainly
founded on cost levels and performance metrics. Our model executes a task board with
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workers assigned to complete a task backlog, where workers may delay or advance task
execution. We calculate performance using the earned value management approach, basing
our model design on five fundamental ideas:

• A task backlog: a task backlog (to-do column) requires individuals to complete it.
• A task board: task states are portrayed on a task board to visualize the project’s

advancement.
• Players: players must take as many tasks as permitted from the “to-do” queue and de-

liver them to the “done” cue in the panel. While a player is working on an assignment,
he must keep the assignment tag in the “in-progress” column.

• A cost and schedule: the task has a planned cost in hours and start–finish time, but
the worker could delay or advance in completing the job, or environmental situations
could increase and decrease the final cost.

• Performance metrics: the earned value management metrics estimate the project
performance.

Appendix A.2.2. Emergence

The key outcomes of the model are earned value management impacts—mainly how
suitable the entire system is; these outcomes emerge from how the task executions respond
to delays and advance probabilities in tasks, backlog size, players number, and tasks
assigned per person.

Appendix A.2.3. Adaptation

The project management behavior of employee agents is to re-estimate the task cost or
schedule: the employee characterizes the decision to reduce or increase the actual hours
(actual cost) in contrast with planned hours (planned cost) by the probability of affecting
each task. Each decision (conscious or unconscious, rational or emotional) directly impacts
the project performance (cost or schedule performance).

Appendix A.2.4. Objectives

The objective measure used by project managers to decide whether to take course-
correcting action on a project is the cost–schedule performance ratio. Workers reduce their
chances of failing to perform or estimate a task if they are motivated. However, the project
manager can take analytical actions, such as increasing the number of workers, the number
of assignments per person, etc. The project course will immediately reflect any manager’s
activity on the fly in the earned value management metrics observation.

Appendix A.2.5. Prediction

The project managers can observe project course predictions by cost and schedule to
finish estimations beyond the cost–schedule performance ratio. For example, earned value
management metrics figure the cost performance index at conclusion (CPIAC) or time
estimate at completion (EACt) to help managers to have a future idea about the project.

Appendix A.2.6. Stochasticity

We used stochasticity in two ways. First, we initialize the model stochastically to
establish the planned cost and duration task randomly. These initialization methods are
stochastic so that the model can be assumed unsegregated at the start of a simulation and
that each model run produces different results. Second, when an employee decides to delay
or advance in task execution, its choice of the new cost or duration is stochastic. The latest
actual cost of finish when the employee performs is stochastic because modeling the details
of the decision is unnecessary for this model.
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Appendix A.2.7. Collectives

Our model encompass two types of collective groups of tasks that affect the employees
and are likewise powerfully affected by the individuals. Such groups are represented as
model entities, with state variables and behaviors. These task and employee group entities
have their state variables defined above at entities, state variables, and scales, naturally.
Our model includes these groups due to employees having several cooperative behaviors,
making decisions critical to the project’s performance that depend on their collective choices.
Tasks may clearly have diverse connections, establishing key constraints to the project’s
performance. We have found that it is much easier to model cooperative behavior and
linkage conditions as collective entity behaviors than individual entity behaviors.

Appendix A.2.8. Observation

The model aims to study how potential management alternatives affect project be-
havior. One measure of simulated project management is the probability of failure within
certain conditions. We can estimate this probability of failure as the fraction of replicate
simulations in which employees never completed some task at the end. Arbitrary observa-
tion decisions are how many tasks or workers or how long are the delays that we execute.
Here, we estimate the project performance as the fraction of 100 replicate simulations with
a probability of high cost and schedule delays so high that the performance index is so low
that the project never ends.

Appendix A.3. Details

Appendix A.3.1. Initialization

We initialize the state variable of each individual (planned-hours, probability-of-delay,
probability-of-advance, etc.) from probability distributions that describe its variability. We
randomly select the estimated scheduled hours from the following set of possible values: 1,
2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and 233. The values match the first ten numbers in the series
of Fibonacci, which mimics an agile Fibonacci estimation (AFE) method. AFE refers to a
way of quantifying the effort needed to complete a development task.

Appendix A.3.2. Input Data

In this model, we do not use input data files from external sources by default (tasks
and assignments to employees). Instead, we generate observer-predetermined task sets
with random estimates for each simulation. But the model has an example of loading data
from a file. The data file could be a set of tasks from an existing or fictitious source in an
excel file in CSV format. In Table A3 we show the initialization setup variables.

Table A3. Setup variables.

Input Variable Data Type Values

employees-number Integer 0–100
number-of-tasks Integer 1–n
probability-of-delay Integer 0–1
probability-of-advance Integer 0–1
assigned-tasks-employee Integer 0–3

Appendix A.3.3. Submodels
Earned Value Management

In earned value management, unlike in traditional management, there are three data
sources: planned value (PV), earned value (EV), and actual cost (AC). Figure A2 shows the
graphic performance report and Table A4 shows the metrics description and calculations.

The PV is the budget (or planned) value of work scheduled, the EV is the “earned
value” of the physical work completed, and the AC is the actual value of work achieved.
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The tasks state determines PV, EV, and AC values and is the core of EVM performance
indexes and estimations.

Figure A2. The earned value management (EVM) graphic performance report.

Table A4. Earned value management metrics description.

EVM Metric Calculation and Description

Planned Value, PV The budget (or planned) value of work scheduled
Earned Value, EV The “earned value” of the physical work completed
Actual Cost (AC) The actual value of work completed
Budget at Completion, BAC PV% = PV / BAC

EV% = EV / BAC
AC% = AC / BAC

Schedule Variance, SV SV = EV – PV
SV% = SV / PV

Cost Variance, CV CV = EV – AC
CV% = CV / EV

Schedule Performance Index, SPI SPI = EV / PV
Cost Performance Index, CPI CPI = EV /AC
To Complete Performance Index, TCPI TCPI = (BAC – EV) / (BAC – AC)
Estimate at Completion, EAC EAC = BAC – SV

EAC = BAC / CPI
EAC = BAC / (CPI * SPI)
EAC = AC + new estimate of remaining work

Estimate to Complete, ETC ETC = EAC – AC
Variance at Completion, VAC VAC = BAC – EAC

VAC% = VAC / BAC
Cost Performance Index at Conclusion, CPIAC CPIAC = BAC / EAC
Time Estimate at EACt = (BAC / SPI) / (BAC / PMB
Completion, EACt Duration) = PMB duration / SPI
Time Variance at VACt = PMB duration – EACt
Completion, VACt VACt% = VACt / PMB duration
Time Schedule Performance SPIACt = PMB duration / EACt
Index at Conclusion, SPIACt
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Appendix B. Sensitivity Assessment

Table A5. Data description.

Variable Mean SD Median MAD Min Max n

employees.number 4 2.00047636061173 4 2.9652 1 7 2100
assigned.tasks.employee 2 0.81669105433311 2 1.4826 1 3 2100
probability.of.delay 0.45 0.287296544411313 0.45 0.37065 0 0.9 2100
probability.of.advance 0.45 0.287296544411313 0.45 0.37065 0 0.9 2100
step 1116.98571428571 1603.01591793252 581 471.4668 146 15,980 2100
AC 2469.54904761905 2817.20670248899 1532 1245.384 125 15,939 2100
PV 1532 0 1532 0 1532 1532 2100
EV 1532 0 1532 0 1532 1532 2100
SV 0 0 0 0 0 0 2100
SPI 1 0 1 0 1 1 2100
CV −937.549047619048 2817.20670248899 0 1245.384 −14,407 1407 2100
CPI 1.61839999350462 1.86235517369687 1 0.814674377613205 0.0961164439425309 12.256 2100

Table A6. Requirements verification.

Requirement Specification
Number of Traces

Where Requirement
Is True

Total Number
of Traces

Percent of Cases Where
the Requirement Is True

out of Total Cases
Assessment

employees.number >= 1 Always True 2100 2100 1 Requirement Is Met in ALL cases
employees.number <= 7 Always True 2100 2100 1 Requirement is Met in ALL cases
assigned.tasks.employee >= 1 Always True 2100 2100 1 Requirement is Met in ALL cases
assigned.tasks.employee <= 3 Always True 2100 2100 1 Requirement is Met in ALL cases
probability.of.delay >= 0 Always True 2100 2100 1 Requirement is Met in ALL cases
probability.of.delay <1 Always True 2100 2100 1 Requirement is Met in ALL cases
probability.of.advance >= 0 Always True 2100 2100 1 Requirement is Met in ALL cases
probability.of.advance <1 Always True 2100 2100 1 Requirement is Met in ALL cases

Table A7. Percent of “CPI” Cases within Range 0.0961164439425309 to 3.5 = 89.5238095238095,
n = 1880.

Condition
Number of Traces

Where Condition Is True
Total Number

of Traces

Likelihood That Condition
Appears Alongside “CPI” within
Range 0.0961164439425309 to 3.5

Likelihood That “CPI” within
Range 0.0961164439425309

to 3.5 Contains the Condition
Sensitivity Assessment

employees.number >= 0 1880 2100 0.895238095238095 1 0.944723618090452
assigned.tasks.employee >= 0 1880 2100 0.895238095238095 1 0.944723618090452
probability.of.delay >= 0 1880 2100 0.895238095238095 1 0.944723618090452
probability.of.advance >= 0 1880 2100 0.895238095238095 1 0.944723618090452
employees.number >0 1880 2100 0.895238095238095 1 0.944723618090452
assigned.tasks.employee >0 1880 2100 0.895238095238095 1 0.944723618090452
probability.of.delay >0 1713 1890 0.906349206349206 0.911170212765957 0.908753315649867
probability.of.advance >0 1670 1890 0.883597883597884 0.888297872340426 0.885941644562334
employees.number == 0 0 0 NA 0 NA
assigned.tasks.employee == 0 0 0 NA 0 NA
probability.of.delay == 0 167 210 0.795238095238095 0.0888297872340426 0.159808612440191
probability.of.advance == 0 210 210 1 0.111702127659574 0.200956937799043
employees.number <0 0 0 NA 0 NA
assigned.tasks.employee <0 0 0 NA 0 NA
probability.of.delay <0 0 0 NA 0 NA
probability.of.advance <0 0 0 NA 0 NA
employees.number <= 0 0 0 NA 0 NA
assigned.tasks.employee <= 0 0 0 NA 0 NA
probability.of.delay <= 0 167 210 0.795238095238095 0.0888297872340426 0.159808612440191
probability.of.advance <= 0 210 210 1 0.111702127659574 0.200956937799043
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Table A8. Sensitivity Assessment. Percent of “step” Cases within Range 146 to 2720 = 92.0476190476191,
n = 1933.

Condition
Number of Traces
Where Condition

Is True

Total Number
of Traces

Likelihood That Condition
Appears Alongside “Step”
within Range 146 to 2720

Likelihood That “Step”
within Range 146 to 2720
Contains the Condition

Sensitivity Assessment

employees.number >= 0 1933 2100 0.92047619047619 1 0.958591619142078
assigned.tasks.employee >= 0 1933 2100 0.92047619047619 1 0.958591619142078
probability.of.delay >= 0 1933 2100 0.92047619047619 1 0.958591619142078
probability.of.advance >= 0 1933 2100 0.92047619047619 1 0.958591619142078
employees.number >0 1933 2100 0.92047619047619 1 0.958591619142078
assigned.tasks.employee >0 1933 2100 0.92047619047619 1 0.958591619142078
probability.of.delay >0 1723 1890 0.911640211640212 0.891360579410243 0.901386345801726
probability.of.advance >0 1741 1890 0.921164021164021 0.900672529746508 0.910803034266283
employees.number == 0 0 0 NA 0 NA
assigned.tasks.employee == 0 0 0 NA 0 NA
probability.of.delay == 0 210 210 1 0.108639420589757 0.195986934204386
probability.of.advance == 0 192 210 0.914285714285714 0.099327470253492 0.179188054129725
employees.number <0 0 0 NA 0 NA
assigned.tasks.employee <0 0 0 NA 0 NA
probability.of.delay <0 0 0 NA 0 NA
probability.of.advance <0 0 0 NA 0 NA
employees.number <= 0 0 0 NA 0 NA
assigned.tasks.employee <= 0 0 0 NA 0 NA
probability.of.delay <= 0 210 210 1 0.108639420589757 0.195986934204386
probability.of.advance <= 0 192 210 0.914285714285714 0.099327470253492 0.179188054129725
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Abstract: Lane-free traffic is a novel research domain, in which vehicles no longer adhere to the
notion of lanes, and consider the whole lateral space within the road boundaries. This constitutes an
entirely different problem domain for autonomous driving compared to lane-based traffic, as there is
no leader vehicle or lane-changing operation. Therefore, the observations of the vehicles need to prop-
erly accommodate the lane-free environment without carrying over bias from lane-based approaches.
The recent successes of deep reinforcement learning (DRL) for lane-based approaches, along with
emerging work for lane-free traffic environments, render DRL for lane-free traffic an interesting
endeavor to investigate. In this paper, we provide an extensive look at the DRL formulation, focusing
on the reward function of a lane-free autonomous driving agent. Our main interest is designing
an effective reward function, as the reward model is crucial in determining the overall efficiency of
the resulting policy. Specifically, we construct different components of reward functions tied to the
environment at various levels of information. Then, we combine and collate the aforementioned
components, and focus on attaining a reward function that results in a policy that manages to both
reduce the collisions among vehicles and address their requirement of maintaining a desired speed.
Additionally, we employ two popular DRL algorithms—namely, deep Q-networks (enhanced with
some commonly used extensions), and deep deterministic policy gradient (DDPG), which results
in better policies. Our experiments provide a thorough investigative study on the effectiveness
of different combinations among the various reward components we propose, and confirm that
our DRL-employing autonomous vehicle is able to gradually learn effective policies in environ-
ments with varying levels of difficulty, especially when all of the proposed rewards components are
properly combined.

Keywords: deep reinforcement learning; lane-free traffic; autonomous driving

1. Introduction

Applications of reinforcement learning (RL) in the field of autonomous driving have
been gaining momentum in recent years [1] due to advancements in Deep RL [2,3], giving
rise to novel techniques [4]. The fact that deep reinforcement learning (DRL) can handle
high dimensional state and action spaces makes it suitable for controlling autonomous
vehicles. Another important reason for this momentum is increasing interest in autonomous
vehicles (AVs), as the current and projected technological advancements in the automotive
industry can enable such methodologies in the real world [5,6]. As a result, novel traffic
flow research endeavors have already emerged, such as TrafficFluid [7], which primarily
targets traffic environments with 100% penetration of AVs (no human drivers). Trafficfluid
examines traffic environments with two fundamental principles:
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• (i) Lane-free vehicle movement, meaning that AVs under this paradigm do not consider
lane-keeping, but are rather free to be located anywhere laterally. Lanes emerged to
simplify human driving, and when only automated vehicles exist, they may no longer
be required, given the observational capabilities of an AV compared to that of a human
driver. The renunciation of the lane principle enables higher utilization of the available
road capacity, and the lane-changing task is an operation that is no longer needed. AVs’
lateral positions can be regulated gradually in order to overtake, and in this manner,
an AV can also accommodate upstream traffic via the second principle examined
under the lane-free paradigm—that is,

• (ii) Nudging, where vehicles may adjust their behavior so as to assist vehicles on the
back that attempt to overtake. In lane-based traffic, this would involve a lane-change
operation, and as such, nudging could not actually be considered in conventional
traffic. In contrast, in lane-free settings, a vehicle can provide the necessary space for
receding vehicles just by leaning towards an appropriate lateral direction.

In the context of lane-free driving, multiple vehicle-movement strategies have already
been proposed [7–10]. To be more specific, existing studies have focused on optimal
control methods that involve model predictive control [9]. In addition, the application of
a movement strategy based on heuristic rules that incorporates the notion of “forces” [7],
along with an extension on this endeavor [11], provides empirical insight on the benefits
of lane-free traffic. Moreover, authors of [10] have designed a two dimensional cruise
controller that specifically addresses lane-free traffic environments, and the authors of [12]
incorporated these controllers in a quite challenging roundabout scenario, and provided
an experimental microscopic study. Finally, ref. [8] investigated the utilization of the max-
plus algorithm, and constructed a dynamic graph structure of the vehicles, considering
communication among vehicles as well.

However, to the best of our knowledge, while there is an abundance of (deep) RL appli-
cations for conventional (lane-based) traffic environments [1,4,5], so far only two papers in
the literature [13,14] tackle the problem of lane-free traffic with RL techniques. We believe
that (deep) RL could be a valuable asset for managing this novel challenging domain, as it
is capable of solving complex and multi-dimensional tasks with lower prior knowledge
because of its ability to learn different levels of abstractions from data. Furthermore, (deep)
RL provides policies that automatically adjust to the environment, and thus there is no
need for either a centralized authority or explicit communication among vehicles. The
efficiency of RL heavily relies on the design of the Markov decision process, and especially
on the reward function guiding the agent’s learning. The reward design is crucial and
determines the overall efficiency of the resulting policy. This is evident in DRL studies
related to AVs [5].

Against this background, in this work we tackle the problem of designing an RL agent
that learns a vehicle-movement strategy in lane-free traffic environments. To this end, we
establish a Markov decision process (MDP) for lane-free autonomous driving, given a single
agent environment populated with other vehicles adopting a rule-based lane-free driving
strategy [7], primarily focusing on the design of the reward function. Given the nature of
the DRL algorithms, their ability to properly learn only with delayed rewards and obtain a
(near-) optimal policy is uncertain, so we propose a set of different reward components,
ranging from delayed rewards to more elaborate and therefore, more informative regarding
the problem’s objectives. The learning objectives in our environment are twofold, as they
address: (i) safety, i.e., collision avoidance among vehicles; and (ii) desired speed, i.e., that
our agent attempts to maintain a specific speed of choice.

In a nutshell, the main contributions of this work are the following:

• We constructed different components of reward functions specifically tied to a the
lane-free traffic environment at various levels of information;

• We then combined and collated the aforementioned components, in order to attain an
efficient reward function;
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• We experimentally investigated the effectiveness of different combinations of the various
reward components we propose, using the deep deterministic policy gradient algorithm;

• We confirmed experimentally that our DRL-employing autonomous vehicle is able to
gradually learn effective policies;

• Finally, we conducted a comparative experimental study between several well-
established deep Q-network variants, and the deep deterministic policy gradient algorithm.

This paper constitutes an extension of our work in [13], appearing in the Proceedings
of the 20th International Conference on Practical Applications of Agents and Multi-Agent Systems
(PAAMS 2022). Several contributions are distinct in this paper, compared to those already
in [13], namely:

• We put forward a novel reward component that can guide the vehicle in a lateral
placement appropriate for overtaking, along with a related experimental evaluation;

• We showcase experimentally that the inclusion of this new component in the reward
function yields superior results, especially for high traffic densities;

• Our experimental evaluation was under more intense traffic conditions than those
examined in [13], with various densities of nearby vehicles;

• As mentioned above, we conducted a comparative study between DDPG and DQN
variants, the results of which point to DDPG exhibiting superior performance, and
as such constituting a suitable choice for training an agent via DRL in this complex,
continuous domain.

The rest of this paper is structured as follows: In Section 2, we discuss the relevant
background and related work, and in Section 3 we present the proposed approach in detail.
Then, in Section 4 we provide a detailed experimental evaluation. Finally, in Section 5 we
summarize our study and discuss future work.

2. Background and Related Work

In this section, we discuss the theoretical background of this work and provide further
information about related work.

2.1. Markov Decision Process

A Markov decision process (MDP) [15] is a mathematical framework that completely
describes the environment in a reinforcement learning problem, and they are fundamental
for decision-making problems. An MDP can be defined by the 5-tuple:

(S, A, P, R, γ)

where S describes the state space, A denotes the action space, P describes the transition
model, R refers to the reward model, and γ is the discount factor.

2.2. Deep Q-Networks and Extensions

A deep Q-network (DQN) [2] adopts the Q-learning algorithm [16–18] for function
approximation using neural networks, utilizes convolutional neural networks to obtain
a graphical representation of the input state for an environment, and produces a vector
of Q-values associated with each possible action. The concepts of target network and
experience replay, formally introduced in [2], are the primary methods that enable the use
of deep learning for approximating Q functions, resolving the issues of network stability.
The Q-network is updated according to the following loss function:

L(θt) = E(st ,at ,rt ,st+1)
[(yDQN

t −Q(st, at; θt))
2] (1)

where yDQN
t = rt +γ maxa′ Q(st+1, a′; θ−) refers to the Q-network’s target value at iteration

t, and θt and θ− are the network’s parameters at iteration t and at a previous iteration,
respectively—the latter being the target network’s parameters.
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The main idea of experience replay is to store the agent’s experiences (the tuples
(St, At, Rt, St+1)) in a buffer. Then, in each training step, a batch of experiences is uniformly
sampled from the buffer and fed to the network for training. Experience replay ensures
that old experiences are not disregarded in later iterations, and removes the correlations in
the data sequences, feeding the network with independent data. This is suitable for DQN,
since it is an off-policy method.

A well-known pathology of Q-learning, and consequently of DQN, is overestimation
occurring from the use of the max operator in the Bellman equation to compute Q-values.
The double deep Q-networks (DDQN) [19] algorithm addresses this issue by decomposing
the maximizing operation in the target into action selection and evaluation. The idea behind
the DDQN is that of double Q-learning [20], which includes two Q-functions. One function
selects the optimal action, and the other estimates the value function. As a consequence,
double DQN can offer faster training with better rewards across many domains, as evident
by the results in [20]. Specifically, DDQN uses (as in vanilla DQN) the target network as
the second action-value function, but it selects the next maximizing action according to the
current network, while utilizing the target Q-network to calculate its value. The update is
similar to DQN’s, but the target yDQN

t is replaced with:

yDDQN
t = rt + γQ(st+1, arg maxa′Q(st+1, a′; θt), θ−) (2)

Prioritized experience replay (PER) [21] is an additional DQN extension that focuses
on prioritizing the experiences that contain more “important” information than others.
Each experience is stored with an additional priority value, so that experiences with higher
priority have a higher sampling probability and therefore, have the chance to remain longer
in the buffer than others. As importance measure, the temporal difference (TD) error [18],
can be used. It is expected that if the TD error is high (in absolute value), the agent can
learn more from the corresponding experience because the agent behaved better or worse
than expected.

The dueling network architecture (DNA) [22] decouples the value and advantage
function [23], which leads to improved performance. In detail, it is constructed with two
streams, one of them providing an estimate of the value function, and the other stream
producing an estimate of the advantage function. There is a common feature learning
module which is then separated to produce the two different mentioned outputs that are
then combined appropriately in order to compute the state–action value function Q.

2.3. Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) [24] is an off-policy, actor–critic algorithm
that utilizes the deterministic policy gradient (DPG) [25] and the DQN architectures, and it
overcomes the restriction of discrete actions.

It uses experience replay, just like a DQN, and target networks to compute the target
y in the temporal difference error. To be more specific, target networks are two separate
networks which are copies of the actor and critic network and are updated in a slow pace,
in order to track the learned networks. The update for the critic is given by the standard
DQN update by taking targets yDDPG

t to be:

yDDPG
t = rt + γQ(st+1, μ(st+1; θμ−); θQ−) (3)

where Q(s, a; θQ−) and μ(s; θμ−) refer to the target networks for the critic and actor, re-
spectively. The differentiating factor in the critic network architecture, with respect to
DQN, is that the network contains the action vector as an input and has a single output
approximating the corresponding Q-value. Moreover, the policy (actor network) in DDPG
is updated using the sampled policy gradient, given a minibatch of transitions [25]:

∇θμ J ≈ 1
N ∑

i
∇aQ(s, a; θQ)|s=si ,a=μ(st ;θμ)∇θμ μ(s; θμ)|s=si (4)
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where μ(s; θμ) refers to the actor network with parameters θμ, and N is the size of the
sampled minibatch from the buffer. DDPG also introduces the notion of soft target updates
to improve upon learning stability, meaning that the network parameters of the actor
(θμ) and critic (θQ) are updated in every iteration through a temperature parameter τ as:
θ− = τθ + (1− τ)θ−, with τ � 1.

2.4. Related Work

Under the lane-free traffic paradigm, multiple vehicle-movement strategies [7–10] have
already been proposed, with approaches stemming from control theory, optimal control,
and multi-agent decision making. In more detail, the authors of [7,11] introduced and then
enhanced a lane-free vehicle-movement strategy based on heuristic rules that involve the
notion of “forces” being applied to vehicles, in the sense that vehicles “push” one another
so as to overtake, or in general to react appropriately. Then, reference [9] introduced
a policy for lane-free vehicles based on optimal control methods and utilizing a model
predictive control paradigm, where each vehicle optimizes its behavior for a specified
future horizon, considering the trajectories of nearby vehicles as well. Furthermore, the
authors of [10] designed a two-dimensional cruise controller for lane-free traffic, with more
emphasis on control theory. They provided a mathematical framework for the controller
design considering a continuous-time dynamical system for the kinetic motion and control
of vehicles. Then, the authors of [12] incorporated a variation of this controller that is
appropriate for discrete-time dynamical systems. The authors apply this in a challenging
lane-free roundabout scenario populated with vehicles following different routing schemes
within the roundabout. Finally, the authors of [8] tackled the problem with the use of the
max-plus algorithm. The authors constructed a dynamic graph structure of the vehicles,
considering communication among vehicles as well, and provided an extension in [26] for
a novel dynamic discretization procedure and an updated formulation of the problem.

To the best of our knowledge, besides the conference paper [13] we extend herein,
there is only one work in the literature that has tackled lane-free traffic using RL: In [14],
the authors introduced a novel vehicle-movement strategy for lane-free environments
that also incorporates DDPG for a learning agent in a lane-free environment. This agent
learns to maintain an appropriate gap with a single vehicle downstream1 [14], and other
operations are handled by different mechanisms based on the notion of repulsive forces
and nudging, similarly to [7]. Notably, the overall implementation differed significantly
with respect to our work, since the underlying endeavor was evidently quite distinct.
The goal of this work was to investigate the use of RL for the task of lane-free driving,
its potential, and limitations in this environment, by exclusively utilizing a relevant and
well-studied DRL algorithm. Instead, the RL agent in [14] is part of a system composed of
different controlling components. As such, in that case the learning task involves a specific
longitudinal operation, where the agent also needs to learn to act in accordance with the
other mechanisms.

Finally, there are several papers that report reward-function design for (deep or not,
single- or multi-agent) RL techniques for lane-based traffic.

In the related literature, it is common to have a reward function form that contains
multiple reward components (tied to different objectives), similarly to our approach. Re-
garding the total reward function that the agent receives, it is usually a simple weighted
sum of the different reward components—whereas we employ a reciprocal form. In [27,28],
the authors tackle a single-agent lane-based environment in a multi-lane highway using RL.
These two approaches differ significantly in their MDP formulation and the RL algorithm
of choice. However, they both contain a reward function comprised of several terms in an
additive form. This aspect is apparent in multiagent RL applications as well. For instance,
in [29], the authors examine a multiagent roundabout environment using the A3C method
with parameter sharing among different learning agents. There, the agents likewise receive
a reward as a sum of different reward terms tied to collision avoidance, maintaining an op-
erational speed and terminal conditions. Finally, ref. [30] examines a signalized intersection
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environment with multiple vehicles learning to operate using the Q-learning algorithm in
order to derive an efficient policy. Again, we observe the summation of different terms that
form the total reward value that each agent receives.

3. Our Approach

In this section, we first present in detail the lane-free traffic environment we consider,
and then the various features of the MDP formulation—specifically, the state representation,
and the action space, and the different components proposed for the reward function design.

3.1. The Lane-Free Traffic Environment

Regarding the training environment, we consider a ring-road traffic scenario populated
with numerous automated vehicles applying the lane-free driving behavior, as outlined
in [7]. Our agent is an additional vehicle that adopts the proposed MDP formulation (more
details in the next subsections), learning a policy through observation of the environment.
The agent’s observational capabilities include the positions (x, y) and speeds (vx, vy) of
nearby vehicles, and its own position and speed. Both the position and speed are observed
as 2-dimensional vectors, consisting of the associated longitudinal (x axis) and lateral
(y axis) values. All the surrounding vehicles share the same dimensions and movement
dynamics. Each vehicle initially adopts a random desired speed vd, within a specified range
([vd,min, vd,max]). Our agent controls two (continuous) variables, namely, the longitudinal
and lateral acceleration values (ax, ay) in m/s2, and determines the gas/break through ax,
and left/right steering through ay.

Figure 1 depicts the traffic environment. A highway was used to simulate the scenario
for the examined ring road, by having vehicles at the end-point of the highway being
placed at the starting point appropriately. Vehicles’ observations were adjusted accordingly
so that they observed a ring-road; e.g., vehicles towards the end of the highway observed
vehicles in front, located after the highway’s starting point.

As mentioned, other vehicles follow the lane-free vehicle-movement strategy in [7],
which does not involve learning; i.e., other agents follow deterministic behavior with
respect to their own surroundings. In addition, we disable the notion of nudging for other
vehicles, since when enabled, other vehicles move aside whenever we attempt an overtake
maneuver, meaning that the agent would learn a very aggressive driving policy.

Figure 1. Indicative image from the lane-free traffic environment. The DRL agent is marked
with green.

3.2. State Space

The state space describes the environment of the agent and must contain adequate
information for choosing the appropriate action. Thus, the observations should contain
information about both the state of the agent in the environment and the surrounding
vehicles. More specifically, in regard to the state of the agent, it was deemed necessary to
store its lateral position y, and both its longitudinal and lateral speed vx, vy. Considering
that the surrounding vehicles comprise the agent’s environment, we have to include them
as well. In particular, in standard lane-based environments, the state space can be defined
in a straightforward manner, as an agent can be trained by utilizing information about the
front and back vehicles on its lane and accounting for two more vehicles in each adjacent
lane, in case a lane-changing movement is required as well. On the contrary, in a lane-free
environment, we do not have such lane structures, and as a consequence, the number of
the surrounding vehicles in the two-dimensional space we consider varied.
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However, our state needs to include information about only a predefined number
of vehicles, since the MDP formulation cannot handle state vectors with varying sizes.
As such, only the n closest neighboring vehicles are considered in the state space, and
“placeholder” vehicles appearing far away may be included on the occasions wherein the
number of vehicles is less than n.

We store information about the speed of the surrounding vehicles, both longitudinal
and lateral. Additionally, intending to have a sufficient state representation, we include
information regarding the distances of the agent from the cars within the aforementioned
perimeter using a range of d meters. In this work, these above-mentioned distances are
referred to as dxj and dyj and result from the distance of the agent’s center and that of each
neighboring vehicle j, as shown in Figure 2. Moreover, the desired speed vd is also included
within the state space. Summarizing, the state information is a vector with the form:

s = [y, vx, vy, vd,∪n
j=1[dxj, dyj, vx,j, vy,j]]

t (5)

Figure 2. Observed information of surrounding vehicles.

3.3. Action Space

The primary objective of this work was to obtain an optimal policy that generates
the appropriate high-level driving behavior for the agent to move efficiently in a lane-
free environment. Hence, the suggested action space consisted of two principal actions:
one concerning the car’s longitudinal movement by addressing braking and accelerating
commands, and one relevant to the lateral movement through acceleration commands for
acceleration towards the left or right.

Moreover, in the context of this work, we investigated both a continuous and a discrete
action space. Specifically, DQN and its extensions generate state-action values for each
action; thus, we had to use an appropriate set of discrete actions. A discrete action space
consists of a finite set of distinct actions [18]. In detail, at each time-step t, the agent can
perform one of nine possible actions:

• a0: zero acceleration in both axes;
• a1: longitudinal acceleration;
• a2: longitudinal deceleration;
• a3: lateral acceleration towards the left;
• a4: lateral acceleration towards the right;
• a5: combination of a1 and a3;
• a6: combination of a2 and a3;
• a7: combination of a1 and a4;
• a8: combination of a2 and a4.

On the other hand, the DDPG method is developed for environments with continuous
action spaces. Therefore, when DDPG is adopted, the action space is a vector a ∈ R2 that
controls the vehicle via specifying its longitudinal and lateral acceleration.

145



Systems 2023, 11, 134

3.4. Reward Function Design

The design of the reward function is critical for the performance of (deep) RL algo-
rithms. This is indeed pivotal for enabling DRL controlled autonomous vehicles, since the
reward function should represent the desired driving behavior of our agent. It is worth
noting that finding an appropriate reward function for this problem proved to be quite
arduous due to the novel traffic environment. As also stated earlier, to the best of our
knowledge, there is only limited amount of lane-free research using DRL, and related
work in the literature is typically based on the existence of driving lanes (see Section 2.4),
which constitutes a different problem altogether. For this reason, a reward function was
constructed specifically for lane-free environments.

Several components of reward functions were investigated in order to explore their
mechanisms of influence, and to find the most effective form that combines them. Before
presenting the various components, we first determine the agent’s objectives within the
lane-free traffic environment.

The designed reward function should combine the two objectives of the problem
at hand, that is, (a) maintaining the desired speed vd and (b) avoiding collisions with
other vehicles. All of the presented reward components attempt to tackle these two ob-
jectives. Some are more targeted only toward the end goal and do not provide the agent
with information for intermediate states, (i.e., provide delayed rewards); others are more
elaborate and informative, and consequently tend to better guide the agent towards the
aforementioned goals. Naturally, the more informative rewards aid in the learning process
for the baseline algorithms examined. We also observed a strong influence on the results
(see Section 4.3). Of course, such informative rewards arguably add bias to the optimization
procedure and provide more specific solutions compared to delayed rewards. This bias
can potentially limit the agent’s capability to explore the whole solution space and obtain
a (near-) optimal policy for the problem at hand. Still, whether only delayed rewards are
adequate depends on the algorithm of choice and its ability to harness the whole solution
space for a specific problem.

3.4.1. Longitudinal Target

Regarding the desired speed objective, we utilize a linear function that focuses on
maintaining the desired speed. In detail, the function is linear with respect to the current
longitudinal speed vx and calculates a reward based on the deviation from the desired
speed vd of the agent at that specific time step. To achieve this, the following mathematical
formula is used:

cx =
|vx − vd|

vd
(6)

It is evident that this function tends to be minimized at 0 whenever we approach the
respective goal. As such, the form of the total reward rx is a reciprocal function that contains
a weighted form of cx in the denominator. Our choice for a reciprocal form is consistent
across the subsequent reward components and their combinations, as was selected after
preliminary empirical investigation among different reward function forms. We found
that a reciprocal form yields superior results, especially when multiple components are
combined, compared to, e.g., a linear combination of reward.

rx =
εr

εr + wx · cx
(7)

where rx is the total “longitudinal” (i.e., x-movement-axis-specific) reward at any time-step
t, and εr is a parameter that allows the reward to be maximized at 1 whenever cx tends
to 0. Moreover, wx is a weighting coefficient that quantifies the normalized cost cx, and
its use serves to combine cx with the other components that we subsequently introduce,
i.e., balancing multiple objectives appropriately and combining them in a unified reward

146



Systems 2023, 11, 134

function (as we showcase later in Section 3.4.6). We chose a small value for εr, specifically,
εr = 0.1, so as to make the minimum reward close to 0 when cx is maximized.

3.4.2. Overtake Motivation Term

In our preliminary experiments, we determined that the agent tends to get stuck
behind slower vehicles, as that is deemed a “safer” action. However, this behavior is
not ideal, as it usually leads to a greater deviation from the desired speed. To address
this particular problem, we include a function that motivates the agent to overtake its
surrounding vehicles.

In detail, a positive (and constant) reward term ro is attributed whenever the agent
overtakes one of its neighboring vehicles. However, this reward is received only in cases
where there are no collisions.

rx,o =

{
rx + ro, ro > 0 if agent does not collide & overtakes a vehicle;
rx otherwise

(8)

where rx denotes the reward function regarding the desired speed objective, as described
in Equation (7).

3.4.3. Collision Avoidance Term

Concerning the collision elimination objective, our first step was to incorporate colli-
sions into the reward function. In this light, we examined numerous components, the first
of which was a “simpler” reward, by incorporating the training objective directly into the
reward, aiming to “punish” the agent whenever a collision occurs.

This is exclusively based on the collisions between our agent and its surrounding
vehicles. Specifically, a negative constant reward value rc is received whenever a collision
occurs. Essentially, provided the reward rx according to the longitudinal target, the reward
rx,c that the agent receives is calculated as:

rx,c =

{
rx + rc, rc < 0 if agent is involved in a collision;
rx otherwise

(9)

However, this imposes the issue of delayed (negative) rewards, which can inhibit
learning. In our domain of interest especially, the agent can be in many situations where
a collision is inevitable, even many time-steps before the collision actually occurs. This
depends on the speed of our agent, along with the speed deviation and distance from the
colliding vehicle.

3.4.4. Potential Fields

To tackle the problem of delayed rewards, we also employ an additional, more informa-
tive reward component, one that “quantifies” the danger of a collision between two vehicles.
The use of ellipsoid fields has been already utilized for lane-free autonomous driving as a
measurement of the probability of a collision with another vehicle [8,9]. Provided a pair of
vehicles, the form of the ellipsoid functions evaluates the danger of collision, taking into
account the longitudinal and lateral distances, along with the respective longitudinal and
lateral speeds of the vehicles and their deviations.

Given our agent and a neighboring vehicle j, with longitudinal and lateral distances
dxj, dyj, and longitudinal and lateral speed deviations dvx,j, dvy,j, the form of the ellipsoid
functions is as follows:

c f ,j = Ec(dxj, dyj) + Eb(dxj, dyj, dvx,j, dvy,j). (10)

where both Ec(dxj, dyj) and Eb(dxj, dyj, dvx,j, dvy,j) have an ellipsoid function and capture
a critical and broad region, respectively, and c f ,j is a cost that quantifies the danger of
collision between our agent and neighbor j.
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The particular ellipsoid form was influenced by [31] and is the following:

E(dx, dy) =
m f((

|dx |
a

)px
+
( |dy |

b

)py
+ 1

)pt
(11)

where dx and dy are longitudinal and lateral distances; and a and b are regulation pa-
rameters for the range of the field for the two dimensions, x and y, respectively. The
exponents marked as px, py, and pt shape the ellipse; and lastly, the parameter m f defines
the magnitude when the distances are close to 0.

Essentially, the critical region is based only on the distance between the two vehicles
(agent and neighbor j), and the broad region stretches appropriately according to the
speed deviations, so as to properly inform the system on the danger of a collision from a
greater distance, and consequently, the agent has more time to respond appropriately. The
interested reader may refer to [8] for more information on these functions.

Moreover, we also need to accumulate the corresponding values for all neighboring
agents, i.e., c f ,all = ∑j c f ,j for each neighboring vehicle j within the state observation at a
given time-step t. Finally, we want the associated cost to be upper-bounded, so we have:

c f = min{c f ,all , 1} (12)

We know that each ellipsoid function is bounded within [0, m f ], where m f is a tuning
parameter. As such, each cost c f ,j is bounded within [0, 2m f ]. Therefore, m is set accordingly
(m f = 0.5), so as to normalize all c f ,j values to [0, 1]. Thus, considering the form of the
reward rx corresponding to the longitudinal target of desired speed (Equation (7)), the total
reward rx, f that incorporates the use of (potential) fields follows the reciprocal form as well,
which contains the related cost terms:

rx, f =
εr

εr + wx · cx + w f · c f
(13)

Notice that rx, f = rx whenever there is no captured danger with neighboring vehicles; i.e.,
the ellipsoid function for each neighbor j returns c f ,j = 0.

3.4.5. Incorporating a Lateral Movement Target with Construction of Overtaking Zones

During the experimental evaluation of the aforementioned methods, we noticed that
even though a significant number of collisions were avoided, there were still some occur-
rences where the agent could not learn to react properly, specifically in highly populated
environments. Therefore, in order to further reduce the number of collisions, we con-
structed a method that translates the notion of the longitudinal target (see Section 3.4.1) to
the lateral movement. In particular, we examined a reciprocal form for the lateral compo-
nent, by calculating the associated cost as the normalized deviation of the agent’s lateral
position y from its desired lateral position yd:

cy =
|y− yd|

wr
(14)

where y is our agent’s lateral position at the time, yd describes the agent’s desired lateral
position, and wr is the width of the road, so that the cost cy is also bounded within [0, 1].
Considering that the vehicle always lies within the road boundaries, the deviation from the
desired (lateral) position cannot exceed the width of the road.

As we discuss later in this Section, to acquire an appropriate desired lateral position
yd, we devised a method that identifies available lateral zones to move towards, evaluates
them, and returns an appropriate lateral point for the vehicle.

Similarly to Equation (7), this cost function tends to be minimized at 0 whenever
we approach the respective goal. As such, the form of the total reward rx,y has again a
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reciprocal function that contains a weighted sum of cy and cx in the denominator to balance
the longitudinal target as well.

rx,y =
εr

εr + wx · cx + wy · cy
(15)

where εr is a parameter that allows the reward to be maximized at 1 whenever the weighted
sum of costs tends to 0. We chose a small value for εr, specifically, εr = 0.1, so as to make
the minimum reward be close to 0 when cx, cy are maximized.

As mentioned earlier, we constructed an algorithm that estimates an appropriate
desired lateral position yd for the agent to occupy. This serves to provide information for
the agent so as to avoid collisions with vehicles downstream, especially if an overtaking
maneuver is taking place (when vehicle(s) downstream drive slower). For this computation,
the space downstream of the vehicle is partitioned (with respect to the y axis) into zones, as
illustrated in Figure 3. These zones reflect potential regions that the vehicle may choose to
drive towards. Naturally, the lateral space occupied by vehicles in front is discarded, as
illustrated in Figure 3. For the remaining zones, we also dismiss ones that our vehicle does
not actually fit, e.g., the zone in red in the figure. When more than one zone is available, we
simply select the one closer to our agent, since it will result in a more gradual maneuver.
The desired lateral position yd will be the center point of the chosen zone (the potential
choices for yd are evident in the figure with dashed lines).

Figure 3. Zone-selection process.

The observation range is dynamic for this process, adapting to the longitudinal speed
of our agent, and the range is selected through a timegap value tg. This dictates a longi-
tudinal distance do downstream of our agent through its longitudinal speed vx—i.e., we
scan until reaching the longitudinal distance do for vehicles, in order to determine yd. This
distance is calculated as: do = vx · tg. If vehicles are observed within the specified distance
do, the entire road is considered as a single zone; therefore, yd is the center of the entire
road’s width.

Note that we may also be unable to determine an available zone if vehicles downstream
completely block any overtaking maneuver. In that case, it is evident that the methodology
outlined above is not appropriate. When a zone cannot be determined due to heavy traffic,
then the agent is in any case not able to overtake and is forced to remain behind the vehicles
in front. Therefore, the desired speed vd of the agent is adjusted according to the slowest
vehicle blocking its way, and the desired lateral position yd is set behind the fastest blocking
vehicle in front. Consequently, the agent will be able to overtake sooner, and with the
adjustment in the desired speed, it will not have any motivation to overtake unless it is
actually feasible, i.e., without causing a collision.
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3.4.6. Combining Components into a Single Reward Function

All of the aforementioned reward components can be combined into a single reward
function of the form:

rx,y, f ,c,o =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εr

εr + wx · cx + wy · cy + w f · c f
+ rc if agent is involved in a collision

εr

εr + wx · cx + wy · cy + w f · c f
+ ro if agent does not collide & overtakes a vehicle;

εr

εr + wx · cx + wy · cy + w f · c f
otherwise

(16)

where the coefficients wx, wy, w f and reward terms rc, ro are appropriately tuned in order to
balance all the different components or choose to completely neglect certain components by
simply setting the associated coefficient to 0. Thereby, we can directly examine all different
combinations of components with this reward form by setting the coefficients accordingly.

As is evident in the following results, each reward component within the final re-
ward function results in an additional improvement to the policy of the agent, without
causing deterioration of the overall efficiency. The use of potential fields and then the
lateral zones’ reward components provided the most significant efficiency improvements,
and the resulting policies containing these managed to tackle both objectives and with
consistent performance, even in environments with varying levels of difficulty, as discussed
in Section 4.3.

4. Experimental Evaluation

In this section, we present: our experimental results through a comparative study
of the different reward functions that we propose; various parameter settings that aim to
showcase trade-offs between the two objectives; and a comparison between the examined
DRL algorithms, namely, DDPG and DQN.

4.1. RL Algorithms’ Setup

First, we specify some technical aspects of the proposed implementation. Regarding
the DQN algorithm and its extensions, we employed the Adam [32] optimization method to
update the weight coefficients of the network at each learning step. The ε-greedy policy [18]
was employed for action selection, in order to balance exploration and exploitation during
training, with ε decreasing linearly from 1 (100% exploration) to 0.1 (10% exploration)
over the first 200 episodes, and fixed to 0.1 thereafter. We utilized DQN and its extension
with a deep neural network of 128 neurons in the first hidden layer and 64 in the second
hidden layer using a rectified linear unit (ReLU) activation function. The network outputs
9 elements that correspond to the estimated Q-value of each available action.

In the setup for the DDPG algorithm, we also used Adam to train both the actor and
the critic. Furthermore, we chose to use the Ornstein–Uhlenbeck process to add noise (as
an exploration term) to the action output, as employed in the original paper [24]. The actor
network employed in the DDPG implementation contained 256 neurons in the first hidden
layer, 128 in the second hidden layer, and 2 in the output layer. Again, ReLU activation
function was used for all hidden layers, and the output used the hyperbolic tangent (tanH)
activation function, so as to provide a vector of continuous values within the range [−1, 1].
Similarly, the critic network contained 256 neurons in the first hidden layer, 128 in the
second hidden layer, and 1 neuron in the output layer, including a ReLU activation function
for all hidden layers and a linear activation unit in the output layer.

Training scenarios included a total of 625 episodes for all experiments. We have
empirically examined different parameter tunings concerning the learning rate, discount
factor, and the number of training episodes for both DQN and DDPG, with the purpose
of finding the configurations that optimize the agent’s behavior. We provide the values
of the various parameters in Table 1. Finally, the obtained results were acquired using a
system running Ubuntu 20.04 LTS with an AMD Ryzen 7 2700X CPU, an NVIDIA GeForce

150



Systems 2023, 11, 134

RTX 2080 SUPER GPU, and 16 GB RAM. Each episode simulated 200 s on a ring-road with
many vehicles. With the system configuration above, each episode required on average
30 s approximately. This execution time included the computational time for training the
neural networks at every time-step, meaning that even real-time training would be feasible
for a DRL lane-free agent.

Table 1. Hyper-parameters for RL algorithms.

Parameter Value Parameter Value

Learning rate used by
Adam α

0.001 Mini-Batch size 64

Discount factor
(DQN) 0.98 Discount factor

(DDPG) 0.98

Replay Memory size
(DQN) 50,000 Replay Memory size

(DDPG) 100,000

Soft update
parameter (DDPG) 0.001 Number of episodes

for training N 625

4.2. Simulation Setup

The proposed implementation heavily relies on neural network architectures, since all
DRL methods incorporate them for function approximation. As such, in the context of this
work, we utilized:

• TensorFlow [33]: An open-source platform used for numerical computation, machine
learning, and artificial intelligence applications, which was developed by Google. It
supports commonly used languages, such as Python and R, and also makes developing
neural networks faster and easier.

• Keras [34]: A high level, open-source software library for implementing neural net-
works. In addition, Keras facilitates multiple backend neural network computations,
while providing a Python frontend and being complementary to the TensorFlow library.

We trained and evaluated all methods on a lane-free extension of the Flow [35] sim-
ulation tool, as described in [8]. Moreover, to facilitate the experiments, we utilized the
Keras-RL library [36]. The Keras-RL library implements some of the most widely used deep
reinforcement learning algorithms in Python and seamlessly integrates with Tensorflow
and Keras. However, technical adjustments and modifications were necessary to make this
library compatible with our problem and environment, as it did not conform to a standard
Gym environment setup.

The lane-free driving agent was examined in a highway environment with the specified
parameter choices of Table 2, whereas in Table 3, we provide the parameter settings related
to the MDP formulation and specifically the reward components. Regarding the lane-free
environment, we examined a ring-road with a width of 10.2 m, which is equivalent to a
conventional 3-lane highway. The road’s length and vehicles’ dimensions were selected
in order to allow a more straightforward assessment of our methods. The choices for
the weighting coefficients and related reward terms were selected after a meticulous
experimental investigation.
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Table 2. Simulation parameters.

Parameter Value

Highway length 500 m
Highway width 10.2 m
Vehicles’ length 3.5 m
Vehicles’ width 1.8 m

Types of vehicles 2
Num. of vehicles 35

Agent’s length 3.2 m
Agent’s width 1.6 m

Episode Time Length 200 s
Time-Interval 0.25 s

Table 3. Parameter choices related to the MDP formulation.

Parameter Value

timegap tg 0.7
agent’s desired speed vd 20 m/s

other vehicles’ desired speed 18 m/s to 22 m/s
num. of vehicles in state n 5

longitudinal observation distance d 80 m
wy 0.65
w f 1

wx (for RFs with lateral target) 0.35
wx (for RFs without lateral target) 0.65

kr 0.5
rc −2.5
ro 2
ev 0.4

4.3. Results and Analysis

The effectiveness of all reward functions was evaluated based on three metrics. These
were: the average reward value, the speed deviation from the desired speed (for each step,
we measured the deviation of the current longitudinal speed from the desired one (vx − vd),
in m/s), and of course, the average number of collisions. All results were averaged from
10 different runs.

We typically demonstrate in all figures the designed agent’s average reward and speed
deviation, and the average number of collisions for each episode. In the examined reward
functions, the longitudinal target reward (Section 3.4.1) was always employed, whereas
other components associated with the collision-avoidance objective were evaluated for
many different combinations, in order to provide an ablation study, i.e., show how each
component affects the agent. To be exact, for each of the tested reward functions, we
employed Equation (16) while assigning the values of Table 3 to the corresponding weights
when the equated components were used. Otherwise, we set them to 0. We refer the reader
to Table 4 for a complete list of all different reward functions examined, including the
associated equations stemming from the general reward function (Equation (16)) and the
subsections relevant to their descriptions. The constant reward terms rc, ro were of course
not always added, but were according to Equation (16).

In Section 4.3.1, we first demonstrate the performance of our reward functions that do
not involve the lateral target component, namely, the “Fields RF”, the “Collision Avoidance
RF”, the “Overtake and Avoid Collision RF”, the “Fields and Avoid Collision RF”, and the
“Fields, Overtake and Avoid Collision RF” functions. Next, in Section 4.3.2, we introduce
the concept of the zones component (with the use of lateral targets) to our experimental
procedure, by comparing the “Fields, Overtake and Avoid Collision RF” to the “Fields,
Zones, Overtake and Avoid Collision RF” and the “Zones, Overtake and Avoid Colli-
sion RF”. In addition, to collate our two most efficient reward functions, we examine, in
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Section 4.3.3, their behavior in more complex and demanding lane-free environments with
higher traffic densities.

The evaluation described above was conducted using the DDPG algorithm. This
was done since extensive empirical testing, along with the results of the comparative
evaluation of DRL algorithms presented in Section 4.3.4, suggest that DDPG is a suitable
DRL algorithm for this complex continuous domain (and indeed, exhibits the best overall
performance when compared to DQN and its extensions).

Table 4. All reward functions.

Function Label Equation Component(s) Description

Collision Avoidance RF εr
εr + wx ·cx

+ rc Section 3.4.3
Overtake and Avoid Collision

RF
εr

εr + wx ·cx
+ rc + ro Sections 3.4.2 and 3.4.3

Fields RF εr
εr + wx ·cx + w f ·c f

Section 3.4.4
Fields and Avoid Collision RF εr

εr + wx ·cx + w f ·c f
+ rc Sections 3.4.3 and 3.4.4

Fields, Overtake and Avoid
Collision RF

εr
εr + wx ·cx + w f ·c f

+ rc + ro Sections 3.4.2–3.4.4

Zones, Overtake and Avoid
Collision RF

εr
εr + wx ·cx + wy ·cy

+ rc + ro Sections 3.4.2, 3.4.3 and 3.4.5

Fields, Zones, Overtake and
Avoid Collision RF

εr
εr + wx ·cx + wy ·cy + w f ·c f

+

rc + ro
Sections 3.4.2–3.4.5

4.3.1. Evaluation of the Reward Function Components

We refer to the reward associated with the collision avoidance term (Equation (9)) as
“Collision Avoidance RF”, and the addition of the overtaking motivation (Equation (8))
as “Overtake and Avoid Collision RF”. Furthermore, the use of the fields (Equation (13))
for that objective are labeled as “Fields RF”, and “Fields and Avoid Collision RF” when
combined with the collision avoidance term. Finally, the assembly of the collision avoidance
term, the overtaking motivation, and the potential fields components in a single reward
function is referred to as “Fields, Overtake and Avoid Collision RF”, whereas in our
previous work [13] it was presented as the “All-Components RF”. All of the aforementioned
functions demonstrate how the agent’s policy has improved over time.

As is evident in Figures 4–6, the “Collision Avoidance RF” managed to maintain a
longitudinal speed close to the desired one. Still, it did not manage to decrease the number
of collisions sufficiently. Moreover, we see that the addition of the overtaking component
in “Overtake and Avoid Collision RF” achieved a longitudinal speed slightly closer to
the desired one, though the collision number was still relatively high. On the contrary,
according to the same figures, the “Fields RF” exhibited similar behavior to the previously
mentioned reward functions, but with slight improvement in collision occurrences. Finally,
both the “Fields and Avoid Collisions RF” and the “Fields, Overtake and Avoid Collision
RF” performed slightly worse in terms of speed deviations. However, they obtained
significantly better results in terms of collision avoidance (“Collision Avoidance RF”,
“Fields RF” and “Overtake and Avoid Collision RF” performed 3.5-, 2.7- and 3.5-times
worse with respect to collision avoidance when compared to “Fields, Overtake and Avoid
Collision RF”), thereby balancing the two objectives much better. On closer inspection
though, the “Fields, Overtake and Avoid Collision RF” managed to maintain a smaller
speed deviation and fewer collisions, thus making it the reward function of choice for a
more effective policy overall.

153



Systems 2023, 11, 134

Figure 4. Reward over time for different reward functions.

Figure 5. Collisions over time for different reward functions.

Figure 6. Speed deviation over time for different reward functions.
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To further demonstrate this point, we present in Table 5 a detailed comparison between
these five reward functions. The reported results were averaged from the last 50 episodes
of each variant. The learned policy had converged in all cases, as shown in Figures 4–6.

Table 5. Comparing the different reward functions.

Reward Function
Collision

Avoidance RF
Fields RF

Fields & Avoid
Collision RF

Overtake & Avoid
Collision RF

Fields, Overtake &
Avoid Collision RF

Collisions 2.256 1.761 0.726 2.293 0.649
Speed Dev. (m/s) −0.135 −0.323 −0.698 −0.058 −0.613

Evidently, higher rewards do not coincide with fewer collisions, meaning that the
reward metric should not be taken at face value when we compare different reward
functions. This is particularly noticeable in the case of the ”Fields, Overtake and Avoid
Collision RF“ and the ”Fields and Avoid Collisions RF”, where there is a reduced reward
over episodes, but when observing each objective, they clearly exhibit the best performances.
This was expected, since the examined reward functions have different forms. In Table 5,
we can also observe the effect of the “Overtake” component. Its influence on the final policy
is apparent only when combined with “Fields and Avoid Collisions RF”, i.e., forming the
“Fields, Overtake and Avoid Collision RF”.

Policies resulting from different parameter tunings that give more priority to terms
related to collision avoidance (rc, w f ) do in fact further decrease collision occurrences, but
we always observed a very simplistic behavior where the learned agent just followed the
speed of a slower moving vehicle in front; i.e., it was too defensive and never attempted
overtake. Such policies did not exhibit intelligent lateral movement, and therefore were
of no particular interest given that we were training an agent to operate in lane-free
environments. Therefore, these types of parameter tunings that mainly prioritized collision
avoidance were neglected.

For the subsequent experiments, we mostly refrain from commenting on the av-
erage reward gained and mainly focus on the results regarding the two objectives of
interest—namely, collision avoidance and maintaining a desired speed. Nevertheless, we
still demonstrate them, so as to also present the general learning improvement over episodes
across all experiments.

As discussed in the related conference paper [13], the most promising reward function
form was at this point the “Fields, Overtake and Avoid Collision RF”. Here, we further
investigate the influence of the additional component presented, namely, the lateral target
component that makes use of the zone selection technique, as presented in Section 3.4.5. As
we discuss below, the inclusion of the “Zones” component in the reward provided us with
marginal improvement with respect to the collision-avoidance objective, at the expense of
the desired speed task. However, its contribution regarding collision avoidance was much
more evident when investigating intensified traffic conditions with more surrounding
lane-free vehicles (see Section 4.3.3).

4.3.2. Evaluation of the Zone Selection Reward Component

In particular, we present in Figures 7–9 a detailed comparison between: the “Fields,
Overtake and Avoid Collision RF” and the “Fields, Zones, Overtake and Avoid Collision
RF” in Equation (16). Additionally, we further highlight the impacts of potential fields on
the designed reward functions by including one more variant of the reward function for
comparison. Accordingly, we present results for another variation titled “Zones, Overtake
and Avoid Collision RF” that lacks the field’s related reward component.
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Figure 7. Reward over time for different reward functions: evaluation of the zone selection
reward component.

Figure 8. Collisions over time for different reward functions: evaluation of the zone selection
reward component.

Figure 9. Speed Deviation over time for different reward functions: evaluation of the zone selection
reward component.
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In Table 6, we provide a closer look at the comparison between these 3 reward functions.
The reported results were averaged from the last 50 episodes of each variant. The learned
policy converged in all cases. Here, we observe that just the addition of the lateral target
component improved the performance notably, as it managed to moderately mitigate
collision occurrences, at a marginal expense to the desired speed objective. However, this
deviation from the desired speed in the experiments is to be expected. Maintaining the
desired speed throughout an episode is not realistic, since slower downstream traffic will,
at least partially, slow down an agent. Still, the use of lateral zones is beneficial only when
combined with the fields component; otherwise, we can see that the agent performs worse
with respect to the collision-avoidance task, while obtaining quite similar speed deviations.

In general, the use of lateral zones provides important information to the agent
that is combined with the overtaking task but can undermine safety. In preliminary
work with different parameter tunings, we observed that the bias of this information
caused notable performance regression regarding collisions. This occurred when the zones-
related component was given more priority, especially in environments with higher vehicle
densities. In practice, the selected parameter tuning should not allow for domination of the
fields reward by the lateral zones’ reward component.

Table 6. Comparing the different reward functions: the effect of the “Zones” reward component.

Reward Function
Fields, Zones, Overtake
& Avoid Collision RF

Fields, Overtake &
Avoid Collision RF

Zones, Overtake &
Avoid Collision RF

Collisions 0.449 0.649 1.282
Speed Dev. (m/s) −0.723 −0.613 −0.403

Throughout our experiments, it was obvious that the two objectives were countering
each other. A vehicle operating at a slower speed is more conservative, whereas a vehicle
wishing to maintain a higher speed than its neighbors needs to overtake in a safe man-
ner, and consequently has to learn a more complex policy that performs such elaborate
maneuvering. Specifically, we do note that the experiments with the smallest speed devia-
tions were those with the highest numbers of collisions, and on the other hand, those that
showcased small numbers of collisions deviated the most from the desired speed.

In addition, according to the results presented in Table 6, it is evident that “Fields,
Overtake and Avoid Collision RF” and the “Fields, Zones, Overtake and Avoid Collision
RF” result in quite similar policies in the training environment, despite the fact that the
second one is much more informative.

4.3.3. Evaluation for Different Traffic Densities

Thus, to perform a more comprehensive and thorough comparison, we decided to
test the 2 most promising reward functions in more complex and demanding lane-free
environments. We chose to run both “Fields, Overtake and Avoid Collision RF” and the
“Fields, Zones, Overtake and Avoid Collision RF”, using a set of different traffic densities.
Specifically, in Figures 10–12 we illustrate the results of running the reciprocal RF using
densities equal to 70, 90, and even 120 veh/km (vehicles per kilometer). Meanwhile, in
Figures 13–15, we demonstrate the corresponding outcomes when running the “Fields,
Overtake and Avoid Collision RF” for the same set of traffic densities.
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Figure 10. Reward over time for the Fields, Overtake and Avoid Collision RF for different
traffic densities.

Figure 11. Collisions over time for the Fields, Overtake and Avoid Collision RF for different
traffic densities.

Figure 12. Speed Deviation over time for the Fields, Overtake and Avoid Collision RF for different
traffic densities.

158



Systems 2023, 11, 134

We observe that when using the “Fields, Overtake and Avoid Collision RF”, the agent
tends to handle the surrounding traffic quite well. In detail, it is noticed that the number
of collisions decreased dramatically with the passage of the episodes, and in all cases, at
the end of the training, it approached or fell below one on average. At the same time, the
collisions and the deviation in the agent’s speed from the desired one scaled according to
the density of the surrounding vehicles. However, this behavior is to be expected, since
in denser traffic environments, vehicles tend to operate at lower speeds and overtake less
frequently, as the danger of collision is more present.

Figure 13. Reward over time for the Fields, Zones, Overtake and Avoid Collision RF for
different densities.

Figure 14. Collisions over time for the Fields, Zones, Overtake and Avoid Collision RF for
different densities.
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Figure 15. Speed deviation over time for the Fields, Zones, Overtake and Avoid Collision RF for
different densities.

Similarly, according to the results presented in Figures 13–15, we note the impact of
the “Zones” reward component Section 3.4.5 in our problem, as it managed to boost the
agent’s performance, especially when compared, in denser traffic, to a reward function
that incorporated the same other components, namely, the “Fields, Overtake, and Avoid
Collision RF”. In particular, while the speed objective did not showcase any significant de-
viation between the two variants, the difference was quite noticeable in collision avoidance,
where the increase was substantially mitigated, resulting in more robust agent policies
with respect to the traffic densities. Again, we emphasize that this benefit of the lateral
zones is evident only when combined with the other components, and especially with
the fields-related reward. Without the use of fields, the other reward components cannot
adequately tackle the collision-avoidance task, especially in demanding environments with
heavy traffic.

In addition, a more direct comparison of the behavior of the two reward functions is
found in Table 7. The numerical results presented confirm that both of the compared reward
functions achieve consistent performance, regardless of the difficulty of the environment.
Nevertheless, they also confirm the superiority of the “Fields, Zones, Overtake and Avoid
Collision RF”, since even in environments with higher densities, the agent mitigated both
of the training objectives simultaneously, and by the end, the number of collisions was
much lower and close to 0.5.

Table 7. Evaluating the efficiency of the “Zones” reward component under different traffic densities.

Reward Function Fields, Zones, Overtake & Avoid Collision RF Fields, Overtake & Avoid Collision RF
Density 70 90 120 70 90 120

Collisions 0.449 0.508 0.591 0.649 0.771 1.066
Speed Dev. (m/s) −0.723 −0.998 −1.718 −0.613 −0.956 −1.715

4.3.4. Comparison of Different DRL Algorithms

Finally, we provide a set of experiments that compared different DRL algorithms in
Figures 16–18. We employed the “Fields, Zones, Overtake and Avoid Collision RF”, using
DQN, double DQN (DDQN), DDQN with dueling architectures (DNA), and DDQN with
prioritized experience replay (PER), and compare their performances to that of DDPG.

It is apparent for all five methods that the learning process attempts to guide the
agent to the expected behavior. However, DDPG clearly exhibited the best performance,
as it is the only method that resulted in a number of collisions under 0.5 on average while
managing to preserve a speed that was close to the desired one. Upon closer examination,
by observing the averaged results extracted from the last episodes of each variant, as
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presented in Table 8, DQN, DDQN, DNA, and PER resulted in smaller speed deviations,
yet they caused significantly higher numbers of collisions. All DQN-related methods
exhibited quite similar behavior in our lane-free environment, as visible in the related
figures. Only the PER variant exhibited a notable deviation within the learning curves.
Evidently, when utilizing PER memory, i.e., using the TD error to influence the probability
of sampling, the agent results temporarily in a worse policy around training episodes
≈[50–150]. This was apparent for multiple random seeds. Still, the collision avoidance
metric under PER is still 76% worse compared to the DDPG at the end of training.

Figure 16. Reward over time for the Fields, Zones, Overtake and Avoid Collision RF with different
DRL algorithms.

Figure 17. Collisions over time for the Fields, Zones, Overtake and Avoid Collision RF with different
DRL algorithms.
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Figure 18. Speed deviation over time for the “Fields, Zones, Overtake and Avoid Collision RF” with
different DRL algorithms.

Table 8. Comparing different DRL Algorithms with the “Fields, Zones, Overtake and Avoid
Collision RF”.

DRL Algorithms DDPG DQN DDQN DNA PER

Collisions 0.449 0.952 1.094 1.04 0.792
Speed Dev. (m/s) −0.723 −0.471 −0.483 −0.496 −0.617

It is apparent that DDPG tackles the problem at hand more efficiently, as it is a method
that was designed for continuous action spaces. Meanwhile, DQN requires discretizing
the action space, which may not lead to the ideal solution. Moreover, we attribute the
improved performance to the complexity of the reward function and training environment,
as DDPG typically tends to outperform DQN.

Summarizing, as mentioned already, to the best of our knowledge, this is one of the
earliest endeavors to introduce the concept of deep reinforcement learning to the lane-
free environment. Thus, the main focus here was not to deploy a “perfect” policy that
eliminates collisions, but to examine the limitations and potential of DRL in a novel and
evidently quite challenging domain. In this approach, the MDP formulation places the
agent in a populated traffic environment, where the agent directly controls its acceleration
values. This constitutes a low-level operation that renders the task of learning a driving
policy much more difficult, since it forces the agent to learn to act in the 2-dimensional
space, where speed and position change according to the underlying dynamics, and more
importantly, without any fall-back mechanism or underlying control structures that address
safety or stability. That is in contrast to other related approaches that do manage to provide
experimental results [14] with zero collisions and smaller speed deviations. However, there,
the focus is quite different, since the RL agent acts in a hybrid environment alongside a
rule-based approach (see Section 2.4).

We tackled a very important problem, that of reward function design, which is key
for the construction of effective and efficient DRL algorithms for this domain. These
DRL algorithms can then be extended considering realistic hard constraints and fallback
mechanisms, which are necessary for a real-world deployment. The proper employment
of such constraints and mechanisms is even more crucial for algorithms that rely on deep
learning (and machine learning in general), where explainability endeavors are still not
mature enough [37]. As such, for a more realistic scenario, one should also design and
incorporate underlying mechanisms that explicitly address safety and comfort, where the
RL agent will then learn to act in compliance with the regulatory control structures.
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5. Conclusions and Future Work

The main objective of this paper was the extensive design of reward functions for deep
RL methods for autonomous vehicles in lane-free traffic environments. We formulated
this particular autonomous driving problem as an MDP and introduced a set of reward
components at various levels of information, which we subsequently combined to formulate
different reward functions in order to tackle two key objectives in this domain: collision
avoidance and targeting a specific speed of interest. We then thoroughly tested those
reward functions for environments with varying difficulties, using a set of both discrete
and continuous deep reinforcement learning algorithms.2

We performed a quantitative comparison of all the proposed reward variants and
different DRL methods, in order to evaluate their respective performances, and provided
insights for the employment of RL in the lane-free traffic domain. Our experiments verify
that, given the appropriate reward function design, DRL can indeed be used for the effective
training of autonomous vehicles operating in a lane-free traffic environment.

In essence, our work introduces the concept of deep reinforcement learning for lane-
free traffic and opens up several avenues for future work in this domain. To begin, we aim
to extend this work to even more complex lane-free traffic settings, such as on-ramp traffic
environments under the lane-free paradigm. There, vehicles entering from the on-ramp
need to appropriately merge onto the highway, and vehicles located in the main highway
can potentially accommodate the merging operation. The incorporation of a learning-based
approach in this setting, where strategic decision-making is important, constitutes an
interesting future endeavor.

Moreover, different RL algorithms can be employed as learning methods for the
problem at hand, such as PPO [38], which is a continuous, on-policy algorithm that has
been shown empirically to provide better convergence and a better performance rate than
most DRL algorithms. An additional potential technique to be examined is that of NAF [39],
which can be described as dqn for continuous control tasks, and according to the authors
outperformed DDPG on the majority of tasks [39].

Furthermore, one could consider adopting other noteworthy advancements from
the DRL literature [3], such as the utilization of a different parameterizations of the state-
action value function, similar to the one suggested by the authors. Another interesting
endeavor would be to utilize DRL techniques that explicitly tackle multi-objective problems.
Specifically, in [40], the authors proposed a method that could be effective for challenging
problems, such as lane-free traffic, whose objectives can not be easily expressed using a
scalar reward function, due to the complexity of the environment.

The proposed MDP formulation can also be paired with other methods that do not
necessarily involve learning, such as Monte Carlo tree search (MCTS) [41]. MCTS could
potentially be an alternative solution based on planning to the problem of autonomous
driving in a lane-free traffic environment, using the proposed reward functions. We expect
that delayed rewards will provide better policies in terms of the overall performance,
at the expense of the required computational effort. A different future consideration is
to address the multi-agent aspect of this problem, considering a lane-free environment
consisting of multiple vehicles that learn a policy simultaneously using the proposed
learning behaviors [4].

Finally, we believe that the incorporation of “safety modules” that regulate the agent’s
behavior can result in a better balance between the collision avoidance and maintaining
desired speed objectives. In our view, there are two candidate methodologies to achieve
this: One is the incorporation of novel safe RL techniques that consider a set of “safe” states
in the MDP formulation in which the agent is allowed to be, and utilizing optimization
techniques to guarantee a safe policy [42,43]. Alternatively, one can consider adopting
(and adapting) the responsibility-sensitive safety [44] model, which proposes a specific set
of rules for autonomous vehicles that ensures safety. Regardless of methodology chosen,
adding such safety modules to this novel deep RL for lane-free driving paradigm is essential
for its eventual employment in real-world lane-free traffic.
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Notes

1 Downstream vehicles refer to the vehicles located in front of the agent.
2 Videos showcasing a trained agent with “Fields, Overtake and Avoid Collision RF” marked as “All-Components RF” can be

found at: https://bit.ly/3O0LjJW.
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Abstract: In this paper, we aimed to demonstrate how to engineer Internet of Things (IoT)-based
open multiagent systems (MASs). Specifically, we put forward an IoT/MAS architectural framework,
along with a case study within the important and challenging-to-engineer vehicle-to-grid (V2G)
and grid-to-vehicle (G2V) energy transfer problem domain. The proposed solution addresses the
important non-functional requirement of scalability. To this end, we employed an open multiagent
systems architecture, arranging agents as modular microservices that were interconnected via a
multi-protocol Internet of Things platform. Our approach allows agents to view, offer, interconnect,
and re-use their various strategies, mechanisms, or other algorithms as modular smart grid services,
thus enabling their seamless integration into our MAS architecture, and enabling the solution of
the challenging V2G/G2V problem. At the same time, our IoT-based implementation offers both
direct applicability in real-world settings and advanced analytics capabilities via enabling digital
twin models for smart grid ecosystems. We have described our MAS/IoT-based architecture in detail;
validated its applicability via simulation experiments involving large numbers of heterogeneous
agents, operating and interacting towards effective V2G/G2V; and studied the performance of various
electric vehicle charging scheduling and V2G/G2V-incentivising electricity pricing algorithms. To
engineer our solution, we used ASEME, a state-of-the-art methodology for multiagent systems
using the Internet of Things. Our solution can be employed for the implementation of real-world
prototypes to deliver large-scale V2G/G2V services, as well as for the testing of various schemes in
simulation mode.

Keywords: internet of things (IoT); open multiagent systems; smart grid; engineering multiagent
systems (EMASs); digital twin

1. Introduction

The smart grid [1] constitutes an important emerging application domain for artificial
intelligence and multiagent systems (MAS). In the smart grid, energy and information both
flow over electricity distribution and transmission networks in all possible directions. As
such, buildings, as well as electric vehicles (EVs), become active energy consumers and/or
producers, and the need for their effective integration into the system arises. Not only
is the smart grid an electricity network with diverse consumers and producers, it is also
a dynamic marketplace where heterogeneous devices appear and need to connect and
interoperate [2,3]. To date, several smart grid-related business models and information
system architectures have been proposed, but they do not always adhere to particular
standards [4]. This is not surprising, given the fact that energy markets can differ in scale,
i.e., they can be global, regional, or isolated; that they may be regulated or owned by a
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public authorities or the private sector; that they can involve renewable energy sources
or non-renewable sources; and finally that they can allow for dynamic pricing based on
demand and offers.

As such, energy markets can be naturally viewed as open multiagent systems [5–7]:
Participants are agents that can freely enter or exit the system at any time and who are
(proactively) setting and pursuing their own (presumably diverse) agendas, goals, and
business models. They are able to compete, adapt, or react to their ever-changing, dynamic
environment [8]. Moreover, they are socially able: they can negotiate, argue, and partner
with others in coalitions [9].

Currently, the Internet of Things (IoT) offers a networking layer that interconnects
distributed resources, such as charging controllers, power meters, various sensors and
actuators, and processing and decision-support services [3,10]. Given this state of affairs,
heterogeneous resources are rendered interoperable by the IoT, since they are henceforth
able to exchange information and also reconfigure the parameters that are crucial for their
operation [11]. Thus, the actual deployment of such approaches is now possible.

An IoT-enabled smart grid digital twin can represent the running states of the multi-
tude of underlying interconnected physical devices (e.g., smart meters, controllers, energy
storage devices), and has the ability to continuously collect the respective sensor measure-
ments. The actual per-device grid state can thus be made available to the operators in
real-time [12,13]. This monitoring capability can be further expanded with predictive main-
tenance techniques, allowing for the detection of malfunctions even before they occur [14].
At the same time, having access to historical per-device measurements allows the post-hoc
analysis and/or training of machine-learning models [13]. To this end, agents can enable
the digital twins of (cyber-) physical objects by being able to represent all (physical) assets
of the smart grid domain. Agents can also represent classes of producers/consumers or
even prosumers (i.e., entities that can be both consumers or producers). Electric vehicles,
in particular, act as consumers while charging, but can also be producers if they provide
energy from their batteries back to the Grid.

However, existing smart grid approaches do not provide functional open prototypes
offering features such as the above, nor do they adequately exploit existing engineering
MAS research paradigms. This is especially true for our particular domain of focus in
this paper, the vehicle-to-grid (V2G)/grid-to-vehicle (G2V) problem. Regardless of this,
there is a real need for diverse agents representing stakeholders in an open system to be
equipped with predefined protocols which they can use in order to interact [7]. Importantly,
stakeholders also need to be able to enrich such protocols with their own goals and/or
algorithms.

The objective of our work in this paper was to fulfil such requirements in the V2G/G2V
domain, contributing a novel IoT-based open MAS architecture designed to meet the
aforementioned objectives. The innovative aspects of our work are, on the one hand, the
fact that by employing our architecture, according to their particular goals, the various
stakeholders are able to develop new agents, or to re-use existing ones, as they see fit, to
cover their needs. Moreover, on the other hand, by employing an IoT platform that supports
multiple application-layer protocols, we ensure that new, diverse agents can connect to the
system to offer their services and to exchange energy, given pricing mechanisms that are
possibly dynamic—i.e., designed to adapt and fluctuate so as to promote system stability
and reliability in a game-theoretic manner [15].

In particular, our system employs SYNAISTHISI, a research-oriented IoT platform
deployed in docker containers, which allows agents to connect and communicate using the
Message Queuing Telemetry Transport (MQTT) publish/subscribe protocol [16], among
others. We demonstrate the validity of the approach via simulation experiments involving
three different charging scheduling algorithms and two dynamic pricing mechanisms
proposed in the recent V2G/G2V research literature.

In this paper we extend upon a recent study presented at the 20th International Con-
ference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2022) [17] in
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three ways. First, we emphasize the engineering aspect of the development of this system.
We describe the application of the agent systems engineering methodology (ASEME) [18]
and provide insights on the agents’ architecture, as well as the interaction protocols that
they use. The ASEME methodology was selected as it has been used in the past for
IoT-based MAS development [19] and is also referred to in surveys of this application
domain [20–22]. Second, we show explicitly how agents enable the digital twins of vehicles
and other stakeholders in the smart grid domain. Third, we conduct and document more
experiments, and compare the performances of two different dynamic pricing mechanisms.

The rest of this paper is structured as follows. Section 2 presents the necessary back-
ground and discusses related work. Section 3 then puts forward our V2G/G2V-specific
MAS-based architecture and offers a detailed description of the roles of the various agents,
and a presentation of their interactions. Following that, in Section 4 we discuss our sys-
tem’s development process in detail. In particular, we present the IoT communications
infrastructure; the ASEME-based statechart description of the inter-agent protocols and
intra-agent control models dictating the agents’ interactions and behaviour respectively;
and the various V2G/G2V agent strategies currently incorporated in our framework. In
Section 5 we conduct a thorough experimental evaluation of our architectural framework,
verifying its applicability within realistic use-case scenarios of interest. In Section 6 we
discuss the benefits arising for various stakeholders from its potential adoption and real-
world integration, also focusing on the digital twin for the smart grid. Finally, Section 7
concludes this paper, and outlines directions for future work.

2. Background

In this section, we provide the necessary background for our work in this study. This
includes the concept of a smart grid and the V2G/G2V problem in particular, for which we
provide an overview of previous works and the motivations for our own. We then discuss
the simulators, the IoT technology, and the SYNAISTHISI platform that we employed.
Subsequently, we focus on the method used for engineering IoT-enabled MASs.

2.1. Smart Grids and the V2G/G2V Problem

As EVs further penetrate energy markets globally, electricity demand patterns are
subject to change at levels that might become disruptive to the stability and the reliability
of the current electricity grids [23]. A way to mitigate this risk is by introducing “smart
charging”, or grid-to-vehicle (G2V) capabilities, according to which the charging of EVs can
be delayed and can take place at later time intervals than immediately after connecting to a
charger [24], seeking, e.g., those with more renewable production, with less demand from
other EVs, or with better pricing. In the opposite direction to that of G2V, vehicle-to-Grid
(V2G) approaches can benefit from the capability of EV batteries to store energy, and thus
coordinate their discharging to support situations of energy supply shortage [25].

Since the smart grid consists of multiple individual and economically minded entities,
it is natural to model it as a MAS [26]. MASs provide a number of benefits in contrast to their
centralized counterparts, such as faster computation times and scalability, since processing
is performed in a decentralized fashion, and private data are not required to be shared.To
date, many simulation tools and prototypes have been proposed that put forward V2G
capabilities. Such approaches may either analyze low-level technical details regarding the
operation of EVs, or are integrated into environments that include the respective individual
stakeholders. We now proceed to briefly review several representative such systems.

The study presented in [27] introduced EVLibSim, a Java-based simulator of the oper-
ation of charging stations. This tool offers a user interface (UI) that can be used to manage
charging stations. Its capabilities include the creation, modification, and monitoring of
charging stations given the application of particular scheduling algorithms. In addition
to being used by domain experts to test potential scenarios of use, it focuses on charging
stations only, without incorporating different types of stakeholders.
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The work presented in [28] involved describing a MAS that supports the decision-
making of EV drivers in regard to locating charging stations and charging opportunities in
the city of Valencia. This system incorporates multimodal information from various sources,
such as traffic monitoring systems, social networks, and pricing, in order to optimize the
placement of charging stations. Such approaches are valuable during the design of charging
infrastructure, but do not help in deciding what will happen next, after the infrastructure is
deployed and becomes operational.

The survey presented in [8] involved a large-scale literature analysis of the MAS-
based control of smart grids, providing information regarding the related technologies and
standards, and the application of intelligent agents commercial projects. The authors in [29]
proposed coalition formation techniques for EVs, providing services related to V2G and
demand-side management. An MAS architecture was designed, and the implementation of
simulations was performed, using the Java Agent Development Framework (JADE [30] 1).
In that study, different kinds of intelligent agents were considered, i.e., EVs, aggregators that
form EV coalitions, and a transmission system operator that acts as a mediator and regulator.
Coalitions were formed with the objective of reaching minimum energy requirements for
participating in the regulation market. However, this approach did not allow for more
sophisticated selection processes, making it difficult to scale, and the presented evaluation
involved only five EVs.

Another approach based on the use of JADE for the coordination of EV battery charging
is that of [31]. In that study, individual EV driver preferences were taken into account, such
as their willingness for V2G participation and the vehicle’s charging availability. It was
shown via experiments that the proposed MAS managed to satisfy EV owners’ charging
preferences individually, even in emergency conditions.

2.2. Frameworks and IoT-Based Real-World Trials

In recent years, great progress has been achieved with respect to the delivery of real-
world trials that offer V2G/G2V and which might incorporate simulators as well. To begin,
XBOS-V [32] is a software-based open platform that can be utilized for controlling the
charging of EVs connected to small buildings. The implementation of the standardized
communication method for V2G, ISO 151182, provides the connection specifications for
chargers and EVs. Relevant approaches are the open charge point interface (OCPI), the
open charge point protocol (OCPP), and the open smart charging protocol (OSCP ) [33].
OpenV2G [34] provides the required modules to implement the V2G public key infras-
tructure, e.g., to guarantee security for the EV and charging station connections, and also
to allow for simulations to be executed. Another approach, the grid-integrated electric
mobility model (GEM) [35], simulates both electricity and mobility aspects. However, this
approach only allows for analysis to be conducted at a higher level, without referring to
charging station recommenders, for example, and other particular stakeholders. Another
tool that can be used to manage the charging of batteries is ACN-Sim [36], which can be
utilized by individual end-users but not by large-scale grid operators.

Regarding the IoT domain, SYNAISTHISI is a research-oriented platform composed of
open-source frameworks that can host dockerized services and can also act as a translator
between various application-layer protocols [16]. Service dockerization allows scalable
deployments to occur independently of the underlying operating systems of the hosts.
Furthermore, the platform’s support for multiple protocols enables the orchestration of
heterogeneous agents and services that may follow different implementation paths. Fur-
thermore, the platform offers user authentication and authorization and restricts access to
private and sensitive channels for the exchange of information, and also supports semantic
annotations of exchanged information and available services.

2.3. Engineering MASs

The fields of agent-oriented software engineering and multiagent systems engineering
have produced a wealth of abstractions, methods, and techniques for developing MASs. A
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survey of this field is outside of the scope of this paper; however, the motivation for our
choice of method was based on surveys in the field and in the selected platform (IoT).

In the development of our system, we followed the approach laid out by ASEME,
the Agent Systems Engineering MEthodology [18]. ASEME can be naturally used in the
design and modeling of IoT-based MAS systems, as well as in ambient intelligence applica-
tions [19–22]. It builds on statecharts and, more broadly, the unified modeling language
(UML [37]) in order to perform system analysis and design models. It is agent-architecture-
and agent-mental-model-independent, allowing the designer to select the architecture type
and the mental attributes of the agent, thus supporting heterogeneous agent architectures.
Moreover, ASEME puts forward a modular agent design approach and uses the so-called
intra-agent and inter-agent control concepts. The former is implemented to coordinate the
different modules that implement the agent’s capabilities, thus determining its behavior,
whereas the latter allows for the control of the society of agents by defining the protocols
that govern its coordination.

Importantly, in agent communication, there typically exist predefined message se-
quences that can be applied in several situations that share the same communication pattern
regardless of the application domain [30]. Such message sequences are defined as protocols.

ASEME uses two relatively common abstractions for modeling agents: capability
and functionality. Busetta et al. [38] view capability as “a cluster of plans, beliefs, events
and scoping rules over them”. Braubach et al. [39] extended this idea and proposed that
capabilities can contain sub-capabilities and have at most one parent capability. They
defined the agent concept as an extension of the capability concept, aggregating capabilities.
In the Prometheus methodology [40], each functionality identified in the analysis phase
ends up being mapped to a capability in the design phase. In the agent modeling language
(AML) [41], capability is a concept used to model an abstraction of a behavior in terms
of its inputs, outputs, pre-conditions, and post-conditions. The behavior is the software
component, and its capabilities are the signatures of the methods that the behavior realizes,
accompanied by the method’s pre-conditions and post-conditions. This approach is similar
to that of service-oriented architectures, and thus considers the agent as an aggregation of
services.

In ASEME, the agent coordinates its capabilities in the intra-agent control model.
Capabilities are themselves decomposed to simple activities. For instance, one capability
of a personal assistant agent is the ability to locate an appropriate charging station for its
user’s car. This task can be decomposed to specific activities, e.g., one activity is finding out
which charging stations are in the user’s vicinity, which charging sockets are available at
each of them, and their free slots. Another activity is ranking the available slots according
to the user’s preferences. After identifying the activities associated with a capability, the
next step is to connect them to a specific functionality , i.e., a specific method, algorithm,
technology, or technique. This is an important managerial task as each activity can be
connected to different functionalities. For example, the decision-making activity of ranking
the available charging slots may be connected to an argumentation theory, implying an
argumentation-based method, or to a utility function, implying a multi-criteria decision
analysis method.

The inter-agent control model defines the capability of an agent to participate as a role
in a specific protocol. ASEME allows the seamless integration of the inter-agent control
model in the intra-agent control model as they follow the same formalism—i.e., state-
charts [42]. The statecharts formalism does not exhibit the limitations (limited scalability,
explosion of states) posed by other formalisms such as Petri-nets [43]. Therefore, in this
study, we used the statechart formalism to define our open protocols and design patterns.
Finally, ASEME automatically generates portions of the agent code or provides guidelines
for the programmers to transform their design models into implementation models.
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3. System Architecture

In this section, we provide an overview of the architecture of our system. First, we
provide an overview of the application domain and identify the stakeholders. Then, we
perform an analysis of the problem domain and identify the agents. Finally, we focus on
defining their interactions. We use the ASEME System Actors Goals (SAG) model to depict
the agents and their goals.

3.1. Overview of the Application Domain

We are interested in the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) energy transfer
problem domain. The first activity proposed in the ASEME methodology is to identify
the stakeholders and their goals. After studying the related literature, we focused on the
following smart grid stakeholder types [44–46]:

• Electric vehicle (EV) owners, who are usually also the drivers of EVs. To effectively
use their EVs, they need to book a place for charging them at appropriate stations,
and they pay for such a service. They might even be interested in charging them at a
lower price if the charging station could discharge their EV batteries to contribute to
the network when prices are high, i.e., acting as prosumers. Here, we consider owners
of both battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV).

• Charging station owners buy energy from producers to charge electric vehicles. In
some cases they can utilize (partially) charged EVs by employing them as energy
producers when network prices are high and then recharge the EVs later at a better
rate.

• Electricity producers are typical (possibly renewable) energy producers. They sell
power to the network at rates that are usually based on supply and demand. To
compute the latter, they depend on electricity imbalance indicators, which are usually
monitored by the global network operator.

• Electricity consumers are typical households, industries, and other buildings and their
corresponding infrastructure.

• Station recommender service providers represent groups of stations and act as me-
diators between EVs and charging stations. EV owners depend on them to find
stations that suit their schedule and preferences, and stations use them to reach out to
customers. The represented groups of stations may belong at the same firm or may
operate in the same region.

• Electricity imbalance providers can be network operators or government agencies that
monitor the grid balance and calculate/predict the periods of electricity shortage and
surplus.

• Mechanism designers are intermediate trusted third parties responsible for calculating
dynamic prices and managing the various payments between the stakeholders listed
above.

3.2. The Agent-Based Approach

Since these diverse stakeholders have their own goals and business needs, they can all
be represented by software agents in a system aiming to automate their function, and this
system can be a digital twin, allowing for their simulation and study. Agents are a suitable
paradigm, as they have the following capabilities [47]:

• They are autonomous , meaning they can operate without the direct control of humans,
and with at least some control over their own actions, their internal state, and resource
consumption;

• social, They are able to interact with other agents—including humans—and can choose
their collaborators;

• They are reactive, perceiving and responding in a timely fashion to changes in the
environment, according to their goals; and

• They are proactive, exhibiting goal-directed behavior by taking the initiative, being
purposeful, and not simply acting in response to changes in the environment.
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Thus, autonomous agents can represent stakeholders without direct intervention, with
agents being able to locate their best collaborators and take initiative in constant pursuit of
their goals. This can be achieved by adopting different software implementations that put
forward heterogeneous strategies, for example, some charging stations may strive to charge
EVs as soon as they are connected, whereas others might behave in a different manner and
choose to manage demand congestion [48]. Note, however, that modeling the low-level
power grid details, such as feeders or distribution-line constraints, lies beyond the scope of
our work.

Special attention needs to be paid to the station recommender stakeholder, whose
main goal is to bring together charging stations and EV owners. Such tasks are typically
undertaken by “middle” agents. The “middle” agent can have different roles in a multiagent
system (MAS) [49], such as that of a matchmaker (who brings service providers in contact
with service requesters, who then communicate to make the transaction), a broker or
facilitator (who facilitates the transaction), or a mediator (a combination of the previous
two, who brokers the transaction but also brings the buyer in contact with the seller). In
our case, we use the latter approach, since the charging station agent may need to negotiate
the charging details directly with the EV agent.

Taking these into account, we present the specific cooperation protocols and the high-
level architecture that can be used to deliver a MAS V2G/G2V framework. Our approach
can be used to investigate and evaluate different implementations and strategies that agents
may incorporate in a real-world setting. The protocols we put forward are open, as they
can be easily extended and tailored to capture a plethora of real-world cases. In contrast to
previous studies, detailed descriptions and semantic schemes for each service are provided,
which enable the functionalities that agents would request in such settings.

By incorporating our framework, algorithms of the designers’ choosing can be tested
and compared, e.g., methods that generate recommendations for charging and that cal-
culate charging schedules for large numbers of EVs, or alternative pricing schemes that
might induce different effects in real-world use cases. The applicability of our approach
is illustrated below by implementing a functional prototype that adopts the proposed
architecture, and by using it to execute simulations of use-cases to demonstrate its overall
functionality. An important feature of our implementation is that agents come as modular
components, and thus can be easily augmented or even replaced with approaches that
nevertheless follow the protocols that we have defined.

Our architecture assumes that agents exist within a microgrid infrastructure that can
be linked to other segments of the smart grid via distribution and transmission networks.
A microgrid can import power when its local generation falls short, and can export surplus
energy to the grid for added producer profits, according to any energy market regulations
in effect [2]. Figure 1 provides an overview of the agents and their interactions.

Specifically, the types of agents considered in the system include multiple (a) electric
vehicle agents (EV), (b) charging station agents (CS), (c) electricity producing agents (EP),
and (d) electricity-consuming agents (EC). We also assume the existence of a regulatory
service, which may be for-profit private service, consisting of the following agents: a
service aggregator or (i) a station recommender (SR), (ii) an electricity imbalance (EI) for
load monitoring, and (iii) a mechanism design (MD) for the generation of electricity prices.

Figure 2 depicts these agents as actors with goals in the form of the System Actors Goals
(SAG) model of ASEME. The SAG model for the requirements analysis phase includes a
graph with actors and their goals. The goal of one actor (the owner of the goal) may depend
on another actor (collaborator) to be realized. In the figure, we can see the actors represented
as cyan circles and the goals as yellow rounded rectangles. The dependencies are shown as
arrows directed from the owner to the goal and from the goal to the collaborator(s). In the
analysis phase, the particular goals are analyzed and represented by capabilities.
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Figure 1. High-level overview of the V2G/G2V stakeholders and their interactions.

Figure 2. The System Actors Goals model of ASEME.

EV agents typically optimize utility functions that are set by the owner of each vehicle.
Examples of utility functions include ones that guarantee that the EV will constantly have
enough charge in the battery to perform its next trip, or to achieve this with the minimum
cost possible, etc. The EV agent can monitor driving behavior and extract the underlying
models to predict probable future activities and corresponding needs.

EVs may also communicate with a charging station to schedule a charging session
or seek profit by participating in V2G and engage in negotiations with charging stations.
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Such an agent might also consist of submodules, such as components for driver preference
elicitation that monitor the typical habits and behavior of the driver, and possibly even
forecast future preferences, or interoperable user interfaces, attainable either via a mobile
device or the dashboard of the vehicle, which can be utilized by humans to operate respec-
tive procedures and monitor their conduct, for example, payments and negotiations, or
simply to browse and select recommendations.

Furthermore, EV agents can adopt alternative tactics to automatically decide upon a
charging schedule based on the defined preferences of each driver, such as cost reductions,
faster access, preferred charging networks, location-based choices, and so on. An EV agent
typically communicates with a SR agent with the aim of acquiring recommendations and
with CS agents to reserve charging slots.

Subsequently, the CS Agents regulate the physical access points (e.g., connectors, park-
ing spaces) through which EVs can connect to the grid, and may also earn revenue by
charging their batteries. They communicate with EV agents regarding existing charging
agreements and modify certain parameters to accommodate the charging of extra vehicles,
in order to improve the utilization of the station infrastructure and generate increased prof-
its. A CS Agent may encompass a charging scheduling module responsible for scheduling
charging/discharging activities over a predetermined timeframe, a negotiation decision-
making module for negotiating, a pricing module that calculates costs and payments, and
a preference elicitation module that monitors the usage of charging slots and adjusts prices
based on the station owner’s needs. A CS Agent communicates with SR, MD, EI, and
EV agents.

The SR agent notifies EVs with recommendations regarding a subset of the available
CS and charging slots that match the most with their preferences, according to, e.g., the
charging duration and the driving distance. This agent can be also augmented to take into
account various grid constraints, for example, to help avoid herding effects. It consists of a
recommendations engine module that generates charging station recommendations, an EV
repository module that stores information about the past EV behavior in order to utilize
it for future recommendations, and a charging station repository of all the CSs that have
registered with the service. It communicates with the CS and EV agents.

The EI agent aggregates data from the EP, CS, and EC agents regarding their future
anticipated energy consumption/production profiles, and calculates the periods during
which electricity is in a state of shortage or surplus. In turn, it communicates the levels
of energy imbalance with every interested party, in order for them to plan and optimize
consumption and production. It includes a constraint extraction module that may incor-
porate different measures and methods relevant in such a scenario, e.g., monitoring any
technical or practical limitations of V2G applicability, power flows, etc. It also calculates
electricity imbalances over a planning horizon. Additional repositories may contain the
stations, producers, and consumers that participate in the scheme.

The MD agent corresponds to an intermediate trusted third-party entity, which under-
takes to calculate dynamic prices and to manage the payments of the various contributor
types. Its goal is to assign appropriate and perhaps even personalized rates for energy
consumption and production by CS, EC, and EP agents. It can put forward pricing mecha-
nisms in order to incentivize agents to be truthful regarding their statements of expected
values, as well as their actual behavior.

Finally, the EP and EC agents forecast and periodically report their expected produc-
tion and consumption levels, respectively, accompanied by confidence values for these
forecasts. EP and EC agents also exchange information with the EI and MD agents. User
interfaces can be considered important submodules, since they are required by every agent
type in order to provide monitoring capabilities to the operators if fully autonomous
operation is enabled, or to allow human intervention in other operation modes (e.g., semi-
automatic or manual).
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3.3. Agent Interactions

Figure 3 illustrates the agent types and the protocols that they use to enable cooper-
ation. Note that the high-level goals shown in Figure 2 have been elaborated to reflect
specific interactions, which are labeled with an identifier so that we can easily refer to them.
Briefly, the cooperation protocols dictating agent interactions are as follows:

CP1 Charging Recommendation: Initiated by an EV for the scheduling of a charging
session. The EV submits its preference and current location to the SR and receives a
list of recommended CSs, along with the available time slots.

CP2 Charging Station Reservation: Following CP1, the EV uses CP2 to reserve the selected
charging slot at the respective CS.

CP3 Negotiation: An optional protocol, which may be initiated after CP2, whenever either
the CS or the EV, for whatever reason, needs to reschedule a charging session that has
been reserved.

CP4 Charging Station Registration: This interaction is used to register new CSs into the
system. According to it, the CS informs the MD, EI, and SR agents about the required
specifications.

CP5 Authenticate Recommendation: After CP2, the CS asks the SR for validation that in
fact the SR was the one that proposed the particular matchmaking between the EV
and the CS.

CP6 Electricity Prices: This follows CP7 and involves the MD calculating updated prices
and submit the new values to every CS.

CP7 Electricity Imbalance: This immediately follows CP10 or CP8. In the case that the
expected production or consumption levels change, the EI must broadcast the updated
values to the MD and every CS.

CP8 Charging Station Update Schedule: After CP5, the CS makes a reservation of the
requested time slot and notifies the EI and the MD accordingly.

CP9 Producer Consumer Registration: Registers new producers and consumers. New
stakeholders must inform EI and MD about their types.

CP10 Update Expected Production/Consumption: This is initiated periodically (e.g., at the
beginning of each day). In this step, every producer and consumer agent informs the
EI and MD agents regarding the coming day’s expected production and consumption
levels.

CP11 Update Energy Profile Confidence: This is initiated periodically (e.g., at the beginning
of each day). In this step, every producer and consumer agent informs the EI and MD
agents regarding the confidence that accompanies the forecasts described in CP10.

CP12 Update Station Availability: Following CP2, this interaction is used by the CSs to
update their information for the SR regarding available charging slots after new
reservations.
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Figure 3. The proposed architecture. (*) denotes agent types with multiple instances. Arrows start
from the agent that initiates the interaction and point to the receiver agents.

4. System Development

In the following, we first discuss the communications and deployment infrastructure.
This enables the reader to understand the terminology behind the agent communication
protocol definitions that are subsequently presented, using the language of statecharts.
Then, we discuss the development of the agent models. We give an example in each case.
Finally, we briefly describe the implemented strategies for the mechanism design agent
and for the charging schedulers.

4.1. Communication Using the IoT Platform

Here, we describe the IoT platform that is used for agent communications and the
incorporated cooperation protocols. Our implementation is based on the SYNAISTHISI
platform [16], but any other solution that would offer the desirable features that we analyze
below could be incorporated as well. We chose this particular platform for a number of
reasons. First, it is offered with a non-commercial license and is mainly oriented towards
research. By design, end-users are allowed to onboard new software services of their
own and can be combined into more complex application designs. Furthermore, from
a technical perspective, the platform supports widely used application-layer protocols
(MQTT3, HTTP/REST4, etc.), along with translations of messages from one protocol to
another. Importantly, the platform is deployed in docker containers, making it portable,
interoperable with other software, as well as being scalable for large-scale deployments.
Finally, to secure real-world deployments, user authentication and authorization processes
are integrated in order to prevent unauthorized access to private information, such as
locations, schedules, or other personal data that might be required to be shared for the
purposes of V2G/G2V operations.

According to the modular service design paradigm, the interconnection among ser-
vices is performed via an exchange of messages, for which we utilize the MQTT publish/-
subscribe application-layer protocol in our design. A service can subscribe to topics to
receive messages or publish to topics that other services have subscribed to in order to send
information and commands. To access or transmit data through specific topics, however,
the service owner must possess the necessary privileges, which can be managed through
the platform’s graphical user interface (GUI). The same applies to the deployment and the
execution monitoring of deployed services.

Mobile assets such as EVs that need to exchange messages are required to have wireless
internet connections. For immobile objects, such as charging stations, supervisory control
and data acquisition (SCADA) systems, etc., appropriate connectors can be interfaced with
the platform, using either wireless or wired internet connections. The platform’s broker is
responsible for notifying subscribers when a message is published.
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4.2. Agent Interaction Protocols

The MAS cooperation protocols are defined here using the ASEME inter-agent control
(EAC) model. To illustrate the process, we present the charging recommendation protocol
(denoted as CP1 in Figure 3) defining the relevant interaction between an electric vehicle
agent (EV) and a station recommender agent (SR) in Figure 4. The protocol is defined
as a statechart (following the semantics of Harel [42] and the graphical model syntax of
the ASEME statechart editor [19,50]) with the AND-state CP1_ChargingRecommendation as
the root.

AND-states (depicted with a light blue color in the figure) contain OR states, and being
in an AND-state entails being in all its OR-states simultaneously, implying that the latter
are executed in parallel. OR-states (with yellow-colored labels) contain other sub-states,
only one of which can be entered at any time. Basic states (shown in green) are where agent
activities are executed. START-states show the beginning of the execution (black dots) and
END-states show where execution ends (black dots within a circle). Transitions among
states occur (i) when the activity of the source state is finalized and there is no event on the
arrow, or (ii) when the event on the arrow takes place.

Returning to Figure 4, the two OR-states in the AND-state represent the participating
agents—i.e., EV and SR. According to this protocol, the EV first enters the SendRecom-
mendationRequest state and the SR enters the ReceiveRecommendationRequest state. The EV
prepares its request by filling in the preferences and location data structures and publishes
it to the broker. Via the latter action, the publish (“EV/+/RequestChargingRecommendations”,
[preferences, location]) event takes place and the EV transitions to the ReceiveRecommendations
state to wait for the SR’s results. The ‘+’ sign is replaced by the agent’s ID, as each agent
has its own topic for publishing requests.

Figure 4. The charging recommendation protocol (CP1).

The broker receives the event and generates the relevant notification for the SR. The
SR receives the event and enters the CalculateRecommendations state to find the best options
for the EV. As soon as it completes this process, it enters the SendRecommendations state,
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where it sends its reply by publishing a message to the appropriate topic. The EV is notified
and the protocol is finished for both agents.

All the protocols shown in Figure 3 are defined using the ASEME EAC model. This
allows the development of the protocols independently of the agents’ development. The
protocols are reusable modules and the agent developers can use them in order to ensure
the agent’s flawless participation in the open MAS.

4.3. Agent Model

The agent’s are modeled using the intra-agent control (IAC) model in ASEME, which
is represented by a statechart as well. Thus, it is very easy for an agent to integrate into its
model the capability of participating in an interaction protocol. The orthogonal component
of the assumed role in the EAC model is inserted as in the IAC model.

To illustrate this process, we depict the IAC model for the EV agent in Figure 5 (we do
not provide the transition expressions so as not to visually clutter the diagram). Note that
to simplify representation, we show the protocol roles that the agent realizes as basic states.
These can be expanded to the relevant OR-states in the respective protocols. For example,
the CP1_ChargingRecommendation:EV BASIC-state must be replaced by the EV OR-state of
Figure 45.

At the beginning of its operation, the agent enters the Init state and is initialized. Then,
the Negotiate and Reserve orthogonal components follow (Figure 5). Arriving at the Reserve
component, it then transitions to the DecideNextAction basic state. There, the agent decides
the charging preferences and the desired location.

Figure 5. The intra-agent model of the electric vehicle agent.
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Then, the EV agent has three different choices to make: (a) it monitors and predicts the
battery state and driver preferences so as to autonomously decide if and how the charging
will be arranged; (b) it receives required information from predefined datasets6; and (c) it
may prompt the user via a GUI for charging preferences and manual protocol initiation.
These three possibilities correspond to different implementations of the DecideNextAction
state activity.

Whenever the agent decides to arrange a forthcoming charging process, it enters the
CP1_ ChargingRecommendation:EV state, then the RecommendationSelection state (to select the
best offer), and finally the CP2_ChargingStationReservation:EV to reserve the selected slot.
Then, it returns to the DecideNextAction state, from which it will have to transit in order
to make a new reservation or to negotiate a change in an existing arrangement using the
CP3_Negotiation:Init state.

As the negotiation protocol (CP3) can be initiated by both parties (EV or CS), the roles
it defines are that of the initiator (Init) and that of the responder (Resp). As the reader
can see, the EV can act either as an initiator (entering the CP3_Negotiation:Init state) or as
responder (entering the CP3_Negotiation:Resp state). The latter merely sends a proposal,
and if the CS agent replies, the rest of the negotiation process will be taken care of by
the NegotiationProtocol:resp state (using the responder role of the respective protocol) at the
Negotiate component. This is always executed in parallel to the Reserve component, as a CS
agent could itself initiate a negotiation at any time.

4.4. Scenario Demonstration

Herein we present one system use-case scenario. In this scenario, an EV makes a
reservation at a CS after receiving recommendations from the SR. In more detail, the agent
interactions required for an EV to reserve a charging slot are depicted in the UML sequence
diagram shown in Figure 6, which has been slightly simplified for ease of exposition. Note
that these interactions require the execution of several protocols (in particular, CP1, CP2,
CP5, CP6, CP7, CP8, and CP12), which are already provided in our implementation.

EVEV CSCSSRSR

CP1  Charging Recommendation

CP5 Authenticate Recommendation

recommendation authenticated

reservation outcome

EIEI MDMD

electricity prices

electricity imbalance electricity imbalance

updated schedule

CP8 Charging Station Update Schedule

updated schedule

CP7 Electricity Imbalance

CP12 Update Station Availability CP6 Electricity Prices

charging recommendations

CP2 Charging Station Reservation

Figure 6. Agent interactions involved in reserving a charging slot.
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The execution of this scenario is initiated when the EV agent sends a CP1 Charging
Recommendation message, with its preferences and its location, to the SR. Then, the SR
responds with the charging recommendations, which contain a list of the best-matched
charging stations that are available for charging and that match the EV’s preferences. The
EV agent selects one charging station from the recommendations list and informs the CS of
its selection by sending a tuple with the recommendation that was chosen and information
about its battery state and the desired preferences, using CP2 Charging Station Reservation.

Once the CS agent has this information, it submits a CP5 Authenticate Recommendation
to the SR in order to validate that the recommendation the EV selected is genuine. The SR
checks the recommendations that it provided and responds accordingly to the CS agent;
if the recommendation is valid, it notifies the CS agent that the recommendation has been
authenticated.

Then, the CS calculates its new energy needs by performing a CP8 Charging Station Up-
date Schedule, and sends the updated schedule to the EI and MD. Simultaneously, a reservation
outcome is sent from the CS to the EV agent with the reservation information, the charging
schedule, and the buy and sell prices for each time interval of the charging session.

The new reservation induces changes in the CS energy needs; thus, it sends a Charging
Station Update Schedule to the EI and MD with the new consumption and production
information. Then, the EI and MD respond with a schedule update outcome regarding their
ability to record that CS’s change.

The SR responds to the CS with an acknowledgment availability update outcome. After-
wards, the EI calculates the CP7 Electricity Imbalance for the time intervals that changed,
and broadcasts an electricity imbalance with the updates to all CSs and the MD.

In turn, the CS informs the SR with a CP12 Update Station Availability about its new
availability for charging slots. Finally, the MD executes the CP6 Electricity Prices protocol
to calculate prices by taking into account the updated imbalance, and announces them to
all CSs.

4.5. Implemented Agent Strategies

To validate the applicability of our framework, it was necessary to test the incorpora-
tion of different agent strategies and compare their effects on the ecosystem’s behavior via
simulations. For this purpose, we implemented two pricing algorithms that could have
been used by an MD agent in the real world in order to test if and how they affected the
stability of the grid, i.e., whether they led to more balanced production and consumption.
We also implemented three charging scheduling approaches that were able to determine
when and how much energy was exchanged between the CS and EV agents.

4.5.1. Electricity Price Calculation Algorithms Implemented by the Mechanism
Design Agent

(A) NRG-Coin pricing algorithm: A mechanism inspired by [51], which aims to
incentivize the participants to balance supply and demand. For its implementation, we
used the parameter values as presented in [52]. In more detail, let the aggregate supply and
demand at each time interval t be St, and Dt and the individual agent i’s desirable amounts
of energy for selling and buying be si

t and di
t. The closer Dt and St are, the better prices are

offered for buying and selling. The price for selling energy is:

Psell
t (si

t, St, Dt) = (0.1 · si
t) +

0.2 · si
t

e(
St−Dt

Dt
)2

and the price for buying energy is:

Pbuy
t (di

t, St, Dt) =
(0.65 · Dt) · di

t
Dt + St
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(B) Adaptive pricing algorithm: This is a pricing mechanism proposed by [53]. Ac-
cording to this mechanism, one estimates the evaluation of energy with respect to the cost
induced by the EV agents by calculating an α̂ value:

α̂ =
∑N

t=2
Pbuy

1 −Pbuy
t

2·(di′
1 −di′

t )

N − 1

where N is the number of time intervals in the planning horizon, and di′
t is the demand

of EV agent i during the interval t. The mechanism can adjust prices to motivate agents
to charge their EVs when there is an energy surplus on the grid. Buying prices for the
intervals t ∈ {1, . . . , T} are given by:

P̂buy
1 − 2 · α̂ · (S1 − D1) = . . . = P̂buy

T − 2 · α̂ · (ST − DT)

Note that adaptive pricing does not determine prices for selling energy back to the
grid—i.e., it does not support V2G activities.

4.5.2. Charging Scheduling Approaches

We now shift our focus to agent (EV) charging scheduling strategies, i.e., strategies
tofordeciding the time intervals at which to charge the vehicles’ batteries7. Specifically,
the different charging scheduling methods that we tested in our simulations were the
following:

(A) First slot: According to this method, EVs choose to charge their batteries immedi-
ately after they connect to a charger, regardless of how cheap or expensive electricity is at
that particular time instant.

(B) Lowest Prices: In this case, EVs attempt to reduce overall costs by taking into
account prices during the whole period that they are connected to a charger and end up
selecting the intervals for which energy prices are the lowest.

(C) V2G : According to this approach, EVs are allowed to discharge their batteries and
provide energy back to the grid considering high price time intervals, and select to charge
it back at intervals with lower prices within the period of their connection to a charger.
For this purpose and inspired by [26,57], we used linear programming to minimize an
objective function representing charging costs in the presence of constraints regarding the
EV preferences and charging specifications.

The cost function that is minimized is:

min
T

∑
t

CG2V
t + Cdeg

t − IV2G
t (1)

subject to:
CG2V

t = dG2V
t ∗ PG2V

max ∗ pbuy
t ∗ dt (2)

Cdeg
t = f deg ∗ dV2G

t ∗ PV2G
max ∗ dt (3)

IV2G
t = dV2G

t ∗ PV2G
max ∗ psell

t ∗ dt (4)

dG2V
t + dV2G

t ≤ 1, dG2V
t , dV2G

t ∈ [0, 1] (5)

T

∑
t

dG2V
t ∗ PG2V

max ∗ dt− dV2G
t ∗ PV2G

max ∗ dt = Eneed (6)
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k

∑
t

dG2V
t ∗ PG2V

max ∗ dt− dV2G
t ∗ PV2G

max ∗ dt + Einit ≤ cmax, k ∈ [1, T] (7)

k

∑
t
(dG2V

t ∗ PG2V
max ∗ dt− dV2G

t ∗ PV2G
max ∗ dt) + Einit ≥ cmin, k ∈ [1, T] (8)

where t is the charging interval of the charging period, CG2V
t is the cost of charging, Cdeg

t is
the battery degradation cost, and IV2G

t is the profit earned by selling energy to the grid. dG2V
t

and dV2G
t are decision variables for G2V and V2G in our optimization problem and they can

take values between zero and one, and intermediate values are assigned when it is optimal
to charge or discharge at a fraction of the max charging (PG2V

max ) or discharging (PV2G
max ) power;

pbuy
t and psell

t are the buying and selling prices of energy. f deg is a degradation factor, based
on the method presented in [58], which is used to evaluate the degradation cost Cdeg

t , and
dt is the duration of each time interval.

The constraints in expressions (5)–(8) must be satisfied during the EV scheduling
optimization process. In (5), it is guaranteed that an EV will charge, discharge, or stay
idle in each time interval. It can charge and then discharge in the same interval but this
is unusual, because there must be a selling price greater than the buying price within
the same interval. Constraint (6) states that at the end of the charging session the EV
battery must be charged at the desired capacity Eneed that the owner has set as a target.
In constraints (7) and (8), we limit the allowable range of the battery charging state to be
between the minimum (cmin) and the maximum (cmax) capacity by adding the net energy
that has been received up to the end of each time interval, plus the initial amount of energy
already stored in the battery.

5. Experimental Evaluation

In this section, we present four use-cases that showcase the real-world applicability
of our solution. Through these use-cases, we evaluate and compare the implemented
strategies that we discussed previously. The programming language that we chose to use
was Python, and the datasets we utilized originated from a collection of real data from
a number of publicly available online resources8; The simulation time horizon for each
use-case was ten days The experiments were executed on a PC with an AMD Ryzen 5 1500X
@ 3.5 GHz processor and 8 GB of RAM.

Overall, agents were implemented as different programs that were deployed in inde-
pendent docker containers. Such containers could either be hosted on cloud infrastructure
executed locally on the stakeholder’s premises. Furthermore, to investigate the effects of
different strategies, we set up simulations to test and evaluate particular desired algorithms.
This was made possible via additional orchestrator scripts that utilized the API of the IoT
platform to register, deploy, and configure services in batches. Moreover, the agent actions
and final outcomes in the simuations were logged so that we could perform a post-hoc
analysis of the results. For the purposes of the simulations, we also define the duration of
a simulated hour in actual time, which in our experiments was set to two seconds. In an
actual system deployment, the required data would be obtained in real-time via sensor
measurements or user input forms. In our simulations, however, this information was
retrieved from the datasets indicated above.

Our first use-case served the purpose of comparing the various EV charging scheduling
methods, using the two pricing mechanisms that we described above. As explained above,
(i) the first slot charging scheduling method involves charging the EV during the first slot
when it is connected to a charger; (ii) the lowest prices method involves charging the EV
during intervals with the lowest consumption price; and (iii) the V2G charging scheduling
method allows an EV to also sell back to the grid some of its energy and recharge later,
as long as it is ensured that it is profitable to do so (given the price difference between
discharge and recharge intervals). Figure 7 depicts the average cumulative EV costs
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for the entire planning horizon when the MD agent implemented the NRG-Coin pricing
mechanism; whereas Figure 8 depicts these costs in the case in which the adaptive pricing
mechanism was adopted. It is clear that, regardless of the pricing mechanism in use, the
first slot method resulted in the highest costs for the EV. This was expected since, in this
case, the EV agent chooses to charge their vehicle immediately, without taking into account
the energy price. At the same time, by adopting the lowest prices method, the total cost
of EV charging dropped by about 33% by the end of the time horizon for both pricing
mechanisms examined. Regardless of the difference in the magnitude of the prices for
the two mechanisms, for (adaptive responses to higher electricity prices), the drop in costs
was relatively the same, and it was accrued via the better utilization of cheaply produced
energy (e.g., from renewable sources). The difference in the absolute price values between
the two mechanisms was not so important in our simulations since the two runs were
independent from one another, and were subject to change according to the parametrization
of the pricing functions that would have been adopted by real-world businesses. What
is of interest is the relative difference between the prices of the time intervals for each
mechanism, which, as we show in our third use-case below, ultimately affects the decisions
of the EV agents in a similar manner. Finally, by allowing V2G operations, the charging
costs dropped even more, being 15% lower than those of the lowest prices method, and 43%
lower than those of the first slot method. This was not tested in the case of the adaptive
pricing mechanism, since this mechanism was originally designed for smart charging and
does not support V2G.

Figure 7. Average cumulative cost per EV for different charging scheduling methods (NRG-Coin
pricing).

We then studied the impact of the charging scheduling methods on the aggregate
energy imbalance. Our baseline was a grid imbalance without EV demand. We calculated
the sum of the absolute imbalance values among the intervals, the sum of only the positive
imbalance intervals (i.e., the total exported or “wasted” energy), and the sum of only the
negative intervals (i.e., the total energy imports).

As seen in Table 1 we observed significant and differing impacts of different EV
charging strategies on the energy imbalance. The employment of the first slot method by
the EVs clearly affected the system negatively: the total imbalance was increased by 7%,
and the imported energy increased by 104.2%, meaning that more than double the energy
had to be produced to meet demand. At the same time, however, the EVs absorbed energy
that would otherwise be wasted; thus, the corresponding amount dropped by 21.8%.
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Figure 8. Average cumulative cost per EV for different charging scheduling methods (adaptive pricing).

In contrast, the use of the lowest prices method demonstrated a tangible positive effect
on the system: there was a drop of 31.44% in the energy imbalance, whereas the amount
of wasted energy was reduced by 45.6%. However, “imported” energy increased as well,
albeit by a much smaller value, i.e., by 16.4%. This is because the (one hundred) EVs did
introduce a significant demand that had to be met, whereas their charging strategy did not
take the potential high energy prices into full account, nor did they contribute energy to
tackle grid shortages.

Table 1. Energy differences in charging scheduling methods compared to the “no EV” baseline. The
MAPE of the original imbalance curve was 63.9%.

Method Imbalance Wasted Imported MAPE

First Slot +7.0% −21.8% +104.2% −12.4%
Lowest Prices −31.4% −45.6% +16.4% −44.5%
V2G −37.3% −49.1% +2.5% −55.7%

An even more positive impact on the system imbalance was obtained when using
the more “intelligent” V2G charging strategy. The EVs now optimized their charging/dis-
charging plans, taking energy prices into full account and also contributing energy back
to the grid. As a result, there was an even greater reduction in the grid imbalance of
37.3%. Moreover, the wasted energy was now reduced by 49.1% and there was only a slight
increase of 2.5% in “imported” energy. Furthermore, this method demonstrated a reduction
in the mean absolute percentage error (MAPE) that was significantly larger than those of the
previous two methods. MAPE measures the difference between the induced imbalance
and a totally flat curve with a value of zero, which resembles perfect matching between
supply and demand. This is clear when plotting the imbalance across the time horizon for
each method, as we have shown in Figure 9. Indeed, it is clearly visible there that the V2G
strategy resulted in much lower induced peaks in the imbalance curve than those induced
by First Slot or Lowest Prices methods.
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Figure 9. Tackling the energy imbalance using different charging scheduling methods.

In the second use-case, we measured the total cumulative costs of EVs when increasing
the duration of their connection to chargers up to 12 h compared to the original data (i.e.,
without performing any charging rescheduling), following the three different charging
scheduling methods as in the first use-case.

The results shown in Figures 10 and 11 demonstrate that by increasing the duration of
connection, the lowest prices and V2G methods managed to gradually reduce the battery
charging costs. This occurred since the longer an EV is connected to a charger, the greater
the probability that it will be able to find the most advantageous intervals at which to buy
energy from the grid—and also to sell it back to the grid in the case of V2G. As anticipated,
again, the V2G method led to lower charging costs than the other two methods, and the
difference (mirroring V2G’s advantages) increased as the duration of the connection to a
charger became longer.

Figure 10. Cost comparison of varying time periods for which EVs were connected to chargers
(NRG-Coin pricing).
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Figure 11. Cost comparison of varying time periods for which EVs were connected to chargers
(adaptive pricing).

In our third use-case, we compare the performance of different pricing strategies for
the MD agent. Specifically, we tested the NRG-Coin pricing and the adaptive pricing methods
described in Section 4.5. Both algorithms aim to balance supply and demand by setting
higher consumption prices during intervals in which there is a negative imbalance and
lower consumption prices for intervals in which the imbalance is positive. In this use
case, we assumed that EVs were charged following the lowest prices scheduling approach9.
Assuming that EV agents were rational and aimed to reduce their expenses, the application
of the two pricing algorithms resulted in demand being shifted to utilize the generated
energy more effectively, thus leading to smaller peaks in the imbalance curve. Figure 12
shows that the algorithms had similar effects on the stability of the grid. In Table 2, we
can observe similar behavior, namely, reducing the wasted energy, with this mechanism
slightly outperforming the NRG-Coin pricing mechanism in terms of imported energy and
MAPE reductions.

Table 2. Pricing Algorithms: energy differences compared to the “no EVs” baseline.

Method Imbalance Wasted Imported MAPE

NRG-Coin −31.4% −45.6% +16.4% −44.5%
Adaptive Pricing −31.3% −45.6% +17.1% −42.7%

Figure 12. Comparison of adaptive pricing and NRG-Coin pricing mechanisms.
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Finally, the fourth use-case was conducted to examined the scalability of our frame-
work in terms of communication complexity as the supported EV population increased. To
this end, we plotted in Figure 13 the total number of exchanged messages required for the
scheduling of EV charging using our proposed cooperation protocols over a 10 day period,
against increasing numbers of supported EVs. It is clear from Figure 13 that there was a
linear increase in the number of messages exchanged (over 10 days) as the number of EVs
increased. As such, this result attests to the scalability of our approach.

Figure 13. Message count for 10 days vs. the number of EVs.

6. Discussion: Enabling Digital Twins and Real-World Integration

In this study, we have taken several steps towards enabling the use of digital twins
for V2G/G2V, and more generally for the smart grid domain, as well as enabling their
real-world deployment. We know that currently there are a number of limitations in regard
to the real-world application of V2G , e.g., the relatively small number of EVs, the existence
of cheaper and better alternatives, high cost and complexity, consumer resistance, etc. [60].
The work presented in this study constitutes a step towards delivering V2G scenarios in
the real world since it helps to reduce administration complexity and end-user costs, as we
showed in our analysis.

First, we presented the inter-agent and intra-agent control models of ASEME that can
be used for different development goals:

• The inter-agent control model (EAC): This can be shared with third parties. It contains
both the activities (the basic states) and the topics that must be used by the agents to
effectively participate in a protocol.

• The intra-agent control model (IAC): This is used for modeling the agent. It reuses
parts of the EAC to ensure that the developed agents can be seamlessly integrated into
the open MAS.

• Note that an EAC implementation can also be reused “as-is” by developers, who can
use the same platform (e.g., Python) for developing their agents.

In energy markets, stakeholders develop their own business models and can have
diverse goals in negotiating with regard to their consumption and offers, and can join
and leave the system at any time. All these characteristics point to the relevance of open
multiagent systems and agent technology in general [5,6]. These open interactions call
for common ontologies, communication protocols, and suitable broker and coordination
infrastructures to enable interoperability [61].

We have used existing standards (i.e., MQTT) to propose an architecture that is truly
open, allowing players to reuse existing agents or build their own. The MAS V2G/G2V
framework that we presented in Section 3.3 defines specific communication protocols
among the stakeholders and is the basis of an implementation approach that allows for

188



Systems 2023, 11, 157

the evaluation and comparison of different functionalities that could be offered by the
various modules in such a setting. By focusing on openness, we allow the extension
and customization of such protocols so that they comply with the diversity of real-world
approaches. In contrast to previous studies, the semantic schemes of the services offered
to agents have been described here in detail. Using our framework as a basis, designers
may evaluate their own algorithms, e.g., for generating charging recommendations, for the
scheduling of EV charging on a large scale, or for analyzing the effects of alternative pricing
strategies. Taken together, the openness and extendability of our proposed architecture,
along with its experimental evaluation in simulated settings, as presentred in this paper,
verify its appropriateness and potential for real-world integration.

We can also provide some guidelines for the deployment of the system. The first step
is to determine the entity that will deploy, manage, and maintain the system’s backbone,
that is, the IoT platform. This entity can be any independent service provider, a power
grid regulator, or a government agency, which will also be responsible for giving access
to new users. Potential users include all the stakeholders that we have identified in our
architecture (see Section 3). Each stakeholder may purchase or develop (or outsource) an
application incorporating an agent that will represent them to the platform.

For example, car owners may download an appropriate application in which they
can create a profile and connect to the platform. The complexity of the application can be
determined based on their needs. A simple application, for example, would reserve a place
after a user request. A more sophisticated application could also employ machine-learning
techniques to learn the user’s habits and automatically reserve a place when needed by
informing its user.

Moreover, additional sensors and actuators must be interfaced with the IoT platform,
allowing agents to receive measurements and submit actions. Examples include the sensory
equipment of EV batteries, the charger controllers, and the various smart meters installed
in the buildings. The EV agent could be deployed in an owner-controlled machine, e.g.,
inside the EV, and appropriate encryption could be established with regard to the messages
exchanged in order to ensure the protection of private information. Privacy is also a concern
for the other stakeholders in the ecosystem as they too exchange private data, for example,
the buying and selling prices of each charging station, buildings’ consumption profiles, and
so on.

Therefore, our approach is readily deployable and can support real-world trials, thus
enabling the use of digital twins in the smart grid domain [12,13]. The engineering approach
that we followed possesses the following capabilities that are important in regard to digital
twins [62]:

• It allows for synchronization between the physical world and the cyber domain.
The design of our system is such that it can incorporate real-time updates even in
simulation mode, which reflect the changes in the real world. For example, if a new
charging station emerges, then a new CS agent appears in the system and starts
pursuing its goals.

• It allows the co-simulaton and modeling of subsystems. This V2G/G2V system could
be considered as a subsystem for the overall smart grid, or as an instance of many
interconnected smart grids. These grids could be hierarchical, i.e., the available power
could be determined by a producer or by a higher authority that manages grids.
Moreover, one of the participating agents, e.g., a charging station, could itself be a
multi-agent system of charging connectors participating in the V2G/G2V system, in
the form of one station that can accommodate many vehicles.

• The simulation mode can be used to test and compare various agent strategies, e.g.,
for coordinated charging/discharging [48,63] or for dealing with battery degrada-
tion issues [64,65], and in general for any approach that must be tested before it is
finally deployed.
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• Each resource is modeled as an agent, thus allowing the system to be scaled regardless
of the complexity of interactions. The system scales linearly, as we demonstrated in
our experimental evaluation (Figure 13).

Altogether, in comparison with the state of the art, in this study we have put forward
a functional system that (a) enables large-scale V2G/G2V, (b) is supported by the use of a
digital twin for simulations, (c) uses open protocols for easy adoption and realization by
business stakeholders, and (d) allows each participant to adopt their own strategies and
algorithms.

7. Conclusions and Future Work

In this paper we have demonstrate how to engineer an open system for the V2G/G2V
energy transfer problem domain, and provided its architecture and the implementations of
agents as flexible microservices that are interconnected by means of an IoT platform.

We illustrated the development process, starting by capturing the requirements of such
a system by reviewing the stakeholders of the application domain and their goals. Then,
using the ASEME methodology for IoT-enabled multiagent systems development [18,19],
we proceeded to analyze the requirements, proposing the architecture, and then developing
the prototype with the innovation of enabling the support of large-scale deployments using
IoT technology.

We achieved our objective of proposing an open architecture [7] and od covering
diverse business models via the definition of a number of key agent types and the develop-
ment of open protocols.These types and protocols can be easily extended by any interested
stakeholder, according to their needs. Our simulation experiments verify the applicability
of our approach, and we have outlined the steps to be taken for its effective integration in
the real world, along with the benefits arising from such an integration.

As the first item of our future work, we intend to populate the agents’ components with
actual machine-learning and recommender algorithms, in order to support the decision-
making of agents in relation to various activities and tasks. Furthermore, the deployment
and comparison (in simulation mode) of heterogeneous agent behaviors would be of
significance, e.g., comparing various strategies for charging/discharging, or comparing
different pricing mechanisms adopted by different charging networks. The choice of which
behaviors to simulate could be performed according to the corresponding cultural and
social values that are prevalent at different deployment sites [60,66].

Another interesting line of work would be to augment our solution with specialized
graphical user interfaces. Such interfaces would be quite different for each agent role. For
example, the interface for EVs would focus on usability for the elicitation of preferences,
whereas that of the MD would focus on data and market analytics, and there could be
different versions for the same agent type, as long as they all followed the protocols we
defined via their back-end functionality.

Moreover, the openness of our architecture allows for the creation of alternative or
additional protocols—e.g., protocols to serve the specific needs of various real-world
stakeholders, and to help conceptualize and realize digital twins of actual real-world
systems, of which the systematic analysis and the recognition of related opportunities and
shortcomings are left as future works. Indeed, it is our aim to conduct a pilot, real-world
study of our architectural framework. This will allow us to better evaluate its applicability
and to identify interesting business models and necessary extensions of the framework.

The architecture can be extended to allow the incorporation of service-level agreements
(SLAs) in the form of smart contracts between the different stakeholders. Smart contracts
can define the obligations of the contracting parties, as well as issues related to the quality of
service, such as performance, availability, and security [67]. The stakeholders’ functionality,
modeled using statecharts, allows for the automatic monitoring of the execution of SLAs
and the handling of possible violations, e.g., with property statecharts [68] or Symboleo [69].

Finally, it would be interesting to employ our generic engineering approach to different
application domains. For instance, this approach could be utilized within the domain of
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digital twins for manufacturing, in which agent-based modeling with the use of statecharts
has recently been proposed [62]. More generally, we believe that the ideas presented in this
paper can be of use and tested in any domain that calls for the engineering of IoT-based
open MAS architectural frameworks. In this direction, it would be interesting to develop a
code generator for an IoT platform for ASEME models, similarly to the research conducted
on an automatic code generator for the JADE framework [70].

Author Contributions: The authors confirm their contributions to the paper as follows: Conceptu-
alization, N.I.S., C.A. and G.C.; investigation, N.I.S., C.A. and G.I.; methodology, N.I.S., C.A., G.I.
and G.C.; software, N.I.S., C.A. and G.I.; validation, N.I.S., C.A. and G.I.; supervision, N.I.S. and
G.C.; data curation, C.A. and G.I.; writing—original draft, N.I.S., C.A. and G.I.; writing—review and
editing, N.I.S., C.A., G.I. and G.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The associated code is available online: https://github.com/iatrakis/
IoT-V2G-G2V (accessed on 18 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Notes

1 https://jade.tilab.com/ (accessed on 18 March 2023)
2 https://github.com/SwitchEV/RISE-V2G (accessed on 18 March 2023).
3 The message queue transport telemetry (MQTT) protocol is an OASIS standard messaging protocol for the Internet of Things,

mqtt.org https://mqtt.org/ (accessed on 18 March 2023).
4 REpresentational State Transfer (REST) over Hypertext Transfer Protocol (HTTP).
5 More detailed descriptions of the inter- and intra-agent controls and a detailed description of the protocols, including the message

syntax and semantics, can be found in our online repository: https://github.com/iatrakis/IoT-V2G-G2V (accessed on 18 March
2023).

6 This is very useful for experimentation with large agent populations.
7 Several battery charging models have been introduced in the past, considering load transfer constraints and mobility patterns

(see, e.g., [54–56]). In our study, we do not require any particular models for calculating travel duration and battery SOC, since
such values are acquired directly as sensor measurements. Of course, any of the battery charging models proposed to date could
be incorporated in each individual agent implementation if deemed necessary by the strategy.

8 Specifically, consumption and production data originated from a synthetic dataset generator [59], which was trained on in-
formation from the ENTSOE https://transparency.entsoe.eu (accessed on 18 March 2023) platform, and on EV data from the
MyElectricAvenue https://eatechnology.com/resources/projects/my-electric-avenue/ (accessed on 18 March 2023) project.

9 This was selected because the lowest prices was shown in the first use-case to perform better than the first slot method. Note that
using the top-scoring V2G scheduling method was not an available option, since one of the pricing methods we intended to
evaluate in this third use-case, adaptive pricing, does not support V2G activities (cf. Section 4.5).
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Abstract: While much attention has been given, to date, to subsidies and taxes, the literature on
the topic is yet to address less visible aspects of electro-mobility. These include the interactions
among players, including money exchanges, and balance sheet issues. Analysing these is needed,
as it helps identify additional mechanisms that may affect electro-mobility. This paper reports a
modelling exercise that applies the system dynamics method, with its focus on stock and flow
variables. The resulting simulation model captures the financial statements of several macro agents.
The results show that the objective of the study is met: the model remains ‘stock-flow consistent’,
meaning that assets and equity and liabilities balance out. By attaining this, the model serves as a
coherent framework that makes the “hidden” side of electro-mobility visible, for the first time, based
on current state-of-the-art, with the implication that it facilitates the analysis of potential financial
factors that may either jeopardise or be conducive to faster road electrification. We conclude that the
incorporation of the financial statements of key electro-mobility agents and their interlinkages in a
simulation model is both a feasible and desired property for policy-relevant models.

Keywords: accounting framework; agent; automotive; electro-mobility; financial statement; simulation;
stock flow consistency; system dynamics

1. Introduction

1.1. Background

The process of road transport electrification is complex, and the rate of growth of
electric vehicle (EV) sales and stock is dependent on the actions of several major players.
Focusing on electro-mobility in Europe, the Powertrain Technology Transition Market
Agent Model (PTTMAM) represents four of these, grouped as market agents: Authorities,
Infrastructure Providers, Vehicle Manufacturers and Users [1].

In this model, each agent makes a series of decisions which have an influence on one
or more of the other agents (see Figure 1). For instance, users demand vehicles that are
produced by manufacturers. While these decisions were modelled for aspects that tend to
be rather visible (e.g., authorities set emission targets and infrastructure providers deploy
recharging infrastructure), other aspects that are thought to be important, as well, tend to
be less visible (remain “hidden”). These include, prominently, the financial position of each
agent and the money inflows and outflows that determine it.

For example, Regulation (EU) 2019/631 stipulates that “the amounts of the excess
emissions premium should be considered as revenue for the general budget of the Union”
and the European Commission should consider the feasibility of allocating them to a
fund “to support re-skilling, up-skilling and other skills training of workers in the au-
tomotive sector” [2] (p. 19). This is clearly a potential transfer of money from vehicle
manufacturers to a public institution and, in turn, possibly to certain households, directly
or indirectly via manufacturers.

Systems 2023, 11, 132. https://doi.org/10.3390/systems11030132 https://www.mdpi.com/journal/systems
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Figure 1. PTTMAM’s market agents, their decisions and linkages (Source: [3]).

Another example is the direct government support to original equipment manufactur-
ers (OEMs). For instance, [4] reported EUR 295 million in government grants and subsidies
in 2020, part of which was for alternative drive systems. [5] reported EUR 1 billion in
government grants in the same year, though this OEM includes liquidity on favourable
terms given by the European Central Bank (ECB) in that category.

A more indirect way of Member State (MS) support to vehicle manufacturers is as
follows: the European Investment Bank (EIB) receives annual contributions from MSs; in
turn, the EIB offers finance support to the automotive sector, as can be seen in Table 1.
This table summarizes the evidence on EIB support to electro-mobility. Though the list
is probably not exhaustive, it can yield a preliminary estimate of cumulative EIB finance
support to the European automotive sector: ca. EUR 7 billion for research and development
(R&D) actions and EV production support between 2010 and 2020.

Table 1. European Investment Bank’s finance support to the automotive sector: selected results on
R&D and EV production.

Year Name/Area Firm
Finance

[EURmio]

2010 R&D trucks Daimler 400
2010 Environmentally friendly vehicles Ford 450 *
2010 EV and battery production Nissan 220
2011 Research to meet emission targets Fiat 250
2011 Hybridisation BMW 325
2011 R&D (electrification) Renault 180
2012 R&D (emissions/safety) Daimler 300
2013 Innovative technologies BMW 400
2013 Research to meet emission targets Renault 400
2013 FCEV Daimler 400
2014 R&D trucks Daimler 500
2014 Innovative powertrains VW 500
2015 R&D (efficient engines) FCA 600
2016 R&D (alternative fuel/hybrid engines) FCA 250
2017 Innovative powertrains PSA 250
2017 R&D (hybrid/electric) Volvo Cars 245
2018 Hybrid and electric vehicles FCA 420
2019 Electric motor development PSA/NIDEC 145
2020 EV (BEV/PHEV) production FCA (Stellantis) 300
2020 PHEV production/R&D (automation) FCA (Stellantis) 485

* GBP. Source: own collection from [6].
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1.2. Current State of the Research Field

The three examples mentioned in the previous section illustrate the importance of
also taking into account the money flows among the key agents of the electro-mobility
eco-system and, consequently, their financial positions. The extent to which this has been
examined in the existing literature is considered in this section.

One of the most recent studies, which focuses on the electro-mobility sector and
energy transition, applies hybrid econometric dynamic systems modelling based on Post-
Keynesian economic theory, to address the energy transport transition in China, India,
Japan, the United Kingdom and United States (US) [7]. Its objective is to demonstrate that
the policy mix can support achieving tipping points where reinforcing learning and positive
dynamics can support the transition relying on market driven forces alone. Similarly, [8]
demands for economic modelling to investigate decarbonisation transitions at the global
level, demanding financial incentives to the power and transport sector, still, with little
ability to replicate the real structure of those sectors. In fact, those models apply policies
while ignoring the “hidden” financial side of electro-mobility, leading to missing important
leverage points that could support policy makers in addressing a faster energy and road
transport transition.

Acknowledging that the literature on electro-mobility has expanded in the last few
years, two previous review exercises reported by one of the authors are highlighted in [9],
where system dynamics (SD) was identified as a prominent method to investigate the
uptake of electric cars; in [10], a more in-depth review of a selection of SD models was
performed. In comparison to earlier work (e.g., [11,12]), the current study extends previous
modelling efforts by modelling balance sheets and assuring the stock-flow consistency
(SFC) conditions, meaning an approach in which “the stocks and flows of both real and
financial variables must be fully integrated, along with an explicit consideration of their
dynamics” (Lavoie in [13]) (p. vii).

SFC modelling was prominently reported by [14]. The other author adopted the
SFC modelling approach in previous work: [15] presented the Economic Risk, Resources
and Environment (ERRE) model, which applies fossil fuels, agricultural and climate lim-
its as boundaries to a growing economy. In ERRE, “a balance sheet approach is em-
ployed for every economic agent to assure stock-and-flowconsistency in the economy
as a whole” (p. 184).

The need to account for financial aspects when modelling the low-carbon energy
transition was highlighted by [16]. Turning to the more recent literature dealing with
SFC and the low-carbon energy transition, the transmission channels of climate finance
policies (the carbon tax and green supporting factor) were examined by [17], who also
identified reinforcing feedback processes when modelling six sectors/agents. Using a
similar structure for agents, [18] also investigated carbon taxation, with the finding that
it leads to a higher level of green investments as a result of financing by commercial
banks. According to [19], “a crucial gap remains, preventing macro model-based analysis
of financing barriers and policy interventions that may accelerate the energy transition”.

We identify a persistent research gap: the balance sheets of the key electro-mobility
players have, to the best of our knowledge, not been coherently modelled. We think that
this is relevant because the financial division of an OEM tends to account for a sizeable
proportion of the firm’s balance sheet and to interact with other players such as authorities,
banks and households. To the authors’ knowledge, this aspect is not yet covered in
the literature, and we take this opportunity to address this inconsistency, as it can be
relevant to policy targeting an acceleration of the road transport transition. We adopted
the methodology indicated in the next sub-section (which lists additional materials) to
address this gap.
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1.3. Objective, Focus and Structure

The present paper describes the approach followed to create a simulation model that
represents the financial statements of those players. This was a prerequisite for the objective
of the study: capturing the interactions (in terms of money flows) among key market agents,
while ensuring that the model remains ‘stock-flow consistent’.

The present study covers the global vehicle market, with a focus on the European
conditions. For the purpose of this work, the following changes were implemented to
earlier versions of the PTTMAM model [1]: (i) the ‘infrastructure providers’ were renamed
‘suppliers’, and ‘users’ became ‘households’; (ii) the banking sector was modelled by
including a conglomerate of private/commercial banks (selling also vehicle insurance), the
European Central Bank (ECB) and the European Investment Bank (EIB); and (iii) the last
two represent new sub-agents of the market agent group ‘authorities’, which now includes
government as a separate sub-agent.

The structure of the paper is as follows: after this short Introduction, the methods are
described in Section 2. The results are reported in Section 3. Section 4 offers a discussion.
An appendix completes this paper with additional info on the model.

2. Materials and Methods

2.1. Methodology

The methodology was implemented following a series of steps:

1. The financial statements of OEMs (i.e., vehicle manufacturers) were collected from
their annual reports and data from the U.S. Securities and Exchange Commission
filings. As for any other firm, the three main financial statements of OEMs are: a
balance sheet, an income statement and a cash flow statement. Each of them facilitates
the analysis of, respectively, solvency, profitability and liquidity. There are two
broad economic and financial decisions firms need to make: investment (maximise
profitability) and financing (minimise capital costs). Whereas the former is visible in
the assets side of a balance sheet, the latter can be reflected in the equity and liabilities
section [20]. Instead of profit maximising, “some companies may respond to daunting
balance-sheet damage by minimizing debt” [21] (p. xii). This is a sufficient reason for
us to model debt explicitly.

2. The statements were checked, their key elements identified, and the connections
deduced. To support our task, the following materials were also used: [22–24].

3. Two balance sheet items (PPE and inventories) require an explanation, as their values
can be affected by alternative assumptions. For each of them, we first read what the
accounting rules are; we then check what has been assumed in previous SD work and
identify what most OEMs adopt in practice.

4. The information collected from the previous steps was implemented in the simula-
tion software environment ‘Vensim’. A reference that was used for the preliminary
version is [25].

5. The variables for the initialisation of the model were created and initial values (see
Table 2; money values are expressed in nominal terms) were assigned to those, so that
the behaviour resulting from the structure represented in the model (step 4) could be
simulated for the period 2005–2030. This was based on numerical integration using
Euler, with a time step of 0.25 year (see, e.g., [26]).

6. The structure was refined until there were, a priori, no financial leakages in the
modelled system.

7. The monetary structure was linked with the physical structure (e.g., revenues from
selling vehicles) from which a series of key performance indicators (KPIs) could
be computed.
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The outlined methodological approach relies on the following steps. The initial part is
statistical and includes the sourcing of relevant initial values. Furthermore, the ‘double-
entry bookkeeping’ rule from the field of accounting [27] is imposed. The implementation
in the software requires the use of stock and flow variables, which are connected in stock
and flow structures (see, e.g., [28]). As stated by [29], stocks and flows are not independent,
as the former result from the latter, and flows are also influenced by stocks. Thus, a two-way
relationship between these variables may be posited. At the core of this methodology is the
reliance on the SD method, which is well-suited for searching for the economy’s feedback
structure [30]. Ref. [13] concluded that SD is a robust method to assure SFC conditions are
met.

2.2. Model
2.2.1. Overview

Figure 2 provides an overview of the developed model. As can be seen, the private
and public sectors interact in several ways, as transactions among agents take place in
our simulated environment. Initial stock values do not reflect data collection but are
assumed for the purpose of demonstrating the modelling framework. On model testing,
see Appendix A. The simulation model is freely available at the webpage shown in the
Supplementary Materials.

Figure 2. Overview of the conceptual model, with interactions among agents.

Focusing on the interlinkages among ‘Banks and insurance’, ‘Households’ (HHs) and
‘OEMs’, Figure 3 shows four balancing (B) feedback loops and five reinforcing (R) ones.
They describe the debt dependency process, the amplifying nature of borrowing to acquire
liquidity and pay interest, as well as the counteracting effects of debt adjustment and
repayment. This is highlighted in Figure 3 as the “hidden” side of electro-mobility and
forms a core component of this paper. At the top of the figure, a key aspect of electro-
mobility is made visible, as EVs are still priced higher than conventional vehicles and thus
require substantial upfront payments from HHs. While this causal loop diagram informed
the modelling building process, it remains a simplification, as the link between borrowing
from the OEM and vehicle purchase is mediated in the simulation model by the stock
‘wealth HH debtor’. Moreover, the figure provides a stylised overview, with ‘Banks and
insurance’ (green area) overlapping the other two agents.
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Figure 3. Causal loop diagram with feedback processes involving three agents.

2.2.2. Authorities

Authorities represent the public sector, which, as indicated above, consists of govern-
ments and selected EU institutions. Table 2 lists the initial values of these sub-agents.

Table 2. Initial values of the authorities’ balance sheets [EUR].

Sub-Agent Assets Liabilities & Equity

ECB 6 × 1012 6 × 1012

EIB 2.8 × 1011 2.8 × 1011

Government 1011 1011

Source: own assumptions.

The government is defined as a single entity (i.e., without disaggregation by country)
in the present version of the model to facilitate the analysis. The liabilities side of the
balance sheet consists of bank debt (in this hypothetical case, to the central bank). The
simulated government budget is affected by three revenue items (corporate tax, energy tax,
value-added tax (VAT)) and four expenditures:

• Public infrastructure expenditures, calculated as follows: the historical and projected
electric vehicle supply equipment (EVSE) values for the world, disaggregated into
slow- and fast-charging points, provided by [31], are incorporated into the model. The
project values reflect the STEPS scenario and are interpolated linearly as needed. The
resulting estimates are used to compute annual deployment under the assumption
that EVSE is long-lived. Next, the cost of the EVSE is as follows: EUR 9000/point
for slow and EUR 100,000/point for fast. We work under the premise that the
government provides the required funding for the deployment of such publicly
accessible infrastructure.

• Public R&D expenditures: this variable is included and linked to OEMs to facilitate
the analysis of government grants to the automotive industry. However, in the current
version of the model, it takes a value of zero.

• Public transport procurement: all buses are purchased by this agent.
• Purchase subsidies: estimates of government purchase subsidies for the period 2016–2021

were collected from [32], with a linear decline to zero in 2025 assumed.

Concerning revenues, it is assumed that taxes represent half of the fuel price. The
simulated VAT rate is 20%.
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EU institutions are modelled in a very basic fashion (see Figure 4 for the example of
the ECB). As can be seen in this figure, ECB assets consist of loans (to commercial banks
and governments) and cash. The grey variables within the <> signs are known in the SD
literature as ‘shadow variables’ and represent variables that are defined in another part of
the model. For instance, ‘debt to central bank’ is defined as a stock variable in the ‘Banks
and insurance’ agent.

 
Figure 4. Overview of the ECB structure in the model. Note: the rectangles represent stock variables;
flow variables are represented by valves and pipes.

The interest policy rate is fixed at 3%. Concerning the EIB, a favourable rate of 4% is
available to OEMs. To make the model operational, it is assumed that the potential revenues
from missing vehicle emissions targets are available to the Union’s budget via the EIB.

2.2.3. Banks and Insurance Firms

This agent represents a conglomerate of commercial/private banks that engage also in
insurance services. The insurance premium is assumed to be EUR 500 vehicle/year. The
annual percentage rate (APR) is simulated with a constant value of 5%. Table 3 shows the
initial values of the balance sheet items modelled for this agent.

Table 3. Initial values of the Banks and insurance’ balance sheets [EUR].

Balance Sheet Item From OEM (Automotive) From OEM (Financial)

Cash and cash equivalents 1011

Loans to consumers 7.87 × 1012

OEM debt (short-term) 1.25 × 1011 7.21 × 1011

OEM debt (long-term) 1.73 × 1011 1.02 × 1012

Deposits 4.5 × 1012

Debt to central bank
Equity

4.5 × 1012

1012

Assets 1013

Liabilities and equity 1013

Source: own assumptions.
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2.2.4. Households

HHs are divided into two sub-agents: creditor and debtor. The key difference is that
the latter holds debt (to banks and OEMs). Another difference is that, while the debtor
HH receives the labour wages from vehicle manufacturing, the dividends are accrued to
the creditor HH. The wealth of this sub-agent is stored as deposits in the private banking
system. As for the other agents, Table 4 shows the key initial values. Most of the cars
(with the exception of those registered by OEMs for leasing/rental purposes) are purchased
by these two sub-agents, with an equal split in share. The historical and projected global
battery electric vehicle (BEV) stock, disaggregated into vehicle type, provided by [31], was
fed into the model.

Table 4. Initial values of the HHs’ balance sheets [EUR].

Balance Sheet Item Creditor Debtor

Wealth (assets) 4.5 × 1012 9.04 × 1012

Bank loans 0 7.87 × 1012

Debt to OEM (short-term) 0 5.19 × 1011

Debt to OEM (long-term) 0 6.51 × 1011

Equity 4.5 × 1012 0

Assets 1.35 × 1013

Liabilities and equity 1.35 × 1013

Source: own assumptions.

2.2.5. Suppliers

This agent represents a conglomerate of raw material, battery, energy, infrastructure
and vehicle maintenance providers. The corresponding items related to these become
sources of annual revenue for this agent. Its assets are initially valued at EUR 1e+12. Suppli-
ers deploy the publicly accessible EVSE commissioned by governments, with depreciation
influenced by an average lifetime of 20 years for this asset. Moreover, the Suppliers are the
agent purchasing freight vehicles (vans and trucks).

Three types of fuels are supplied by this agent: petrol and diesel for ICEV (the former
for cars, and the latter for the rest) and electricity for BEVs.

The markup over cost set by the Suppliers is 20% (a reasonable assumption; see,
e.g., [33]), both for raw materials and batteries. The maintenance cost is EUR 300 vehi-
cle/year (for a range by manufacturer see [34]). See the time-variant values used for the
exchange rate and the battery and fuel prices in the Supplementary Materials.

2.2.6. Vehicle Manufacturers

By far, the most elaborate agent in our model is the OEM. This agent includes a
hypothetical domestic and foreign OEM, each one holding a market share of 50%. Table 5
shows the initial values assigned to each of the two OEM conglomerates, comparing total
assets with the sum of liabilities and equity (L&E). Each of them is duplicated, for OEMs
are subscripted in our model into Automotive and a Financial Divisions, in line with the
information gathered from their annual reports. As can be seen, simplifications of several
items were made, and their weight greatly differs by division. For the rest of the agents,
these statements are more simple. As expected, OEM debt becomes an asset for commercial
banks (recall Table 3). Conversely, HH debt tied to vehicle purchases is captured in financial
services receivables (current and noncurrent), which are an asset to the OEM. The evidence
on car finance is provided by, for example, [35].
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Table 5. Initial values of the OEMs’ balance sheet [EUR].

Balance Sheet Item Automotive Division Financial Division

Cash and cash equivalents 9.73 × 1010 1.10 × 1010

Securities 8.43 × 1010 5.52 × 109

Trade receivables 5.51 × 1010 0
Financial services receivables 0 2.60 × 1011

Inventories 8.75 × 1010 0
Property, plant & equipment 2.16 × 1011 0

Intangibles 2.40 × 1010 0
Leases 0 1.40 × 1011

Financial services noncurrent 0 3.26 × 1011

Trade payables 1.07 × 1011 0
Debt (short-term) 6.27 × 1010 3.60 × 1011

Debt (long-term) 8.96 × 1010 5.08 × 1011

Retained earnings 1.55 × 1011

Reserves 2.31 × 1010

Assets 1.31 × 1012

Liabilities and equity 1.31 × 1012

Source: own assumptions as a result of simplifying and aggregating the information contained in publicly
available financial statements, as reported by several OEMs.

As hinted above, the first balance sheet item requiring an explanation is PPE, which
is affected by depreciation. According to the Generally Accepted Accounting Principles
(GAAP) and International Financial Reporting Standards (IFRS), acceptable depreciation
methods include straight-line, accelerated and units-of-production methods [22]. Straight-
line depreciation was adopted in the SD accounting model by [36]. While there are differ-
ences across individual OEM and years, our analysis of OEM financial information leads us
to conclude that the straight-line method was the main one adopted over the past decade in
this industry. We thus implement this method in our model, following [36]. Assuming that
annual vehicle sales remain constant (see Section 2.2.4), plant acquisition is kept constant at
EUR 10 billion annually. Investment in vehicles to generate lease revenues amount to EUR
55 billion per year. Annual depreciation and amortisation expenses equal EUR 64.5 billion.

The second item is inventories, whose valuation differs by method. While GAAP
accepts the weighted-average cost, first-in, first-out (FIFO) and last-in, first-out (LIFO)
methods, IFRS prohibits the use of LIFO [22]. Implementing the average cost method in his
model, [36] regards it as the only reasonable one to account for inventories in an SD model,
acknowledging that this method is not used by most firms. In our model, we compute
physical inventories and their values for four types of vehicles: cars, vans, trucks and buses.
These are kept constant over the simulation period.

Table 6 shows additional assumptions made for OEMs. Furthermore, it is assumed
that OEMs self-register cars for leasing/rental purposes, with the fleet owned by the
Financial Division increasing from almost 14 million cars to almost 27.5 million in 2030.
An annual transfer amounting to EUR 30 billion from the Automotive to the Financial
Division is simulated.

Focusing on the different types of vehicles modelled, Table 7 lists key assumptions.
Each vehicle type is also disaggregated into an internal combustion engine vehicle (ICEV)
and a BEV. While the labour costs are assumed to be the same for the two technologies,
besides the battery the material costs differ. The table also shows two assumptions that are
important for the calculation of the fleet’s energy demand, which is needed to compute
expenditures on energy products.
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Table 6. Further model assumptions for OEMs.

Constant/Variable Value Justification

Administrative intensity 4% Own analysis 1

Corporate tax rate 30% [5] (p. 128)
Dividend distribution ratio 40% [4] (p. 133)

Emission penalties EUR 0 Assuming targets are met
Lifetime plant 50 yr Values range up to 60 yr

Lifetime vehicle 5 yr Values range up to 10 yr
Marketing intensity 10% Own analysis 1

R&D intensity 6% Own analysis 1

Revenues from leasing EUR 4900/car Own assumption
Spread over APR 1% Own assumption

1 Forthcoming. ‘Intensity’ is relative to sales revenues. Lifetime values sourced from OEM reports.

Table 7. Assumptions, by type of vehicle.

Constant/Variable Unit Car Van Truck Bus

Battery capacity 1 kWh 24/30/50 24/30/50 300 250
Labour cost EUR/vehicle 5000 3750 25,000 50,000

Material cost [BEV] EUR/vehicle 7845 4095 32,069 114,224
Material cost [ICEV] EUR/vehicle 5000 3750 25,000 50,000

Annual mileage km/vehicle 12,000 24,000 80,000 110,000
Fuel efficiency [BEV] kWh/km 0.2 0.2 1.3 1.3
Fuel efficiency [ICEV] litre/km 0.08 0.08 0.36 0.36

1 The first value is used for 2005–2014, the second for 2015–2019 and the third for 2020–2030.

3. Results

3.1. Evolution of the Vehicle Fleet

A selection of the model results for the various agents is presented below. All the
figures refer to a simulation run named ‘Current’. Figure 5 shows the evolution of the
vehicle stock, disaggregated by the type of vehicle and technology. The BEVs exhibit
growth at the expense of the ICEVs, though the latter still dominates at the global level in
2030. This is the type of output most models consider, but what are the potential economic
and financial implications for the agents involved in this system? The “hidden” side of
electro-mobility becomes visible, based on our simulation framework, in the next figures.

3.2. Balance Sheets

As vehicle sales require vehicle production and demand, and both are partly financed
with debt, it becomes useful to consider the structure of the liabilities and how it is con-
nected to other agents’ assets. For instance, HH debt to OEMs for the purpose of purchasing
vehicles constitutes an asset for the latter, and the debt of the two agents to private banks
represents a fraction of the total assets owned by these. EIB loans to OEMs to facilitate
cleaner vehicle production also feature in the assets side of the EIB balance sheet. The
Central Bank’s assets may also be formed of loans to governments and private banks. This
means that the overall behaviour of the system is the result of the interaction between the
macro agents (recall Figure 2).

Figure 6 shows the simulated evolution of assets (and thus L&E) for two agents. While
the chart on the left shows the output of the two public banks, the behaviour of private
banks and the government can be seen in the chart on the right. The balance sheet expands
in all cases, though very slowly in the case of the EIB.
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a b

c d

Figure 5. Simulated vehicle stock (2005–2030), by type of vehicle and powertrain (a) cars, (b) vans, (c)
trucks, (d) buses.

(a) (b)

Figure 6. Balance sheet simulation of: (a) public banks; (b) private banks and government.

Similarly, Figure 7 shows the simulated evolution of the balance sheet for the rest of
the private sector. As can be seen on the left chart, the wealth of the creditor HH quickly
overtakes that of the debtor, which declines slowly towards the end of the simulation. The
chart on the right shows the growing assets of the suppliers and vehicle manufacturers,
which diverge from a similar base in 2005 until the assets of each OEM doubles in size
those of the suppliers in 2030.

What drives the changes in balance sheets are flow variables. For instance, the annual
interest paid by HH debtors to OEMs amounts to slightly more than EUR 35 billion (or
EUR 1083 per vehicle sold). This is an example of additional results generated by the model
which, for reasons of space, cannot be reported here (see the Supplementary Materials
instead). Variable OEM profits (growing, in particular, in the Financial Division) not only
accumulate into retained earnings but also boosts dividends, which increase the wealth of
creditor HHs. The simulated behaviour of ‘net savings HH creditor’ is always positive but
exhibits a downwards trend, with swings between 2008 and 2020. This variable affects the
stock and flow structure related to bank deposits, which leads to bank deposits growing
until 2030 at a slower rate.
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(a) (b)

Figure 7. Balance sheet simulation of: (a) households; (b) firms.

Moreover, the flow variables tend to be influenced by business operations and items
from the income statement. Besides the physical ones (e.g., sales in Section 3.1), money
items such as ‘dividends paid’ play a role. This flow is determined by the dividend
distribution ratio (Table 6) and the net income, which is, in turn, used to compute a key
performance indicator (KPI), examined next.

3.3. Key Performance Indicators

The computation of KPIs facilitates so-called ratio analysis. Our analysis of OEM
reports confirmed our expectation that KPIs are important to OEM decision-makers. While
the purpose was not to create a model to improve the behaviour of the automotive industry
from an OEM perspective, it is useful to report the four standard profitability KPIs and
an operating return KPI: the return on equity (ROE). This is done in Table 8, which also
lists, for comparability, typical values found in the literature. Each KPI was computed
following [22]. The ROE is reported for the Financial Division, as is common in the sector,
while the profitability ratios correspond to the Automotive Division. In our simulation,
the ROE peaks with a value of almost 16% in 2007, the year in which the global financial
crisis began. As other sources of income were not assumed, our earnings before interest
and taxes (EBIT) are the same as the operating income, and thus the two ratios show the
same values.

Table 8. Simulated values of the financial KPIs and benchmarks.

KPI Simulated 1 25% Median 75%

Gross margin 42/37% 28% 43% 63%
Operating margin 20/16% 6% 12% 22%

EBIT margin 20/16% 5% 11% 18%
Net profit margin 13/11% 2% 7% 15%

ROE 7/4% 3% 10% 18%
1 These are our model results, with the first value corresponding to 2005 and the second to 2030. The values for the
last three columns correspond to quartiles from large US firms in 2018 and were sourced from Table 2.4 in [24].

By adding KPIs, the decisions of OEMs may be more sensibly modelled. In a way, this
helps integrate the physical and financial sides of the OEM business. Our simulated KPI
values are within the ranges derived from the data. The fact that the ones for profitability
are closer to the 75% quartile while, in reality, some OEMs struggle to exhibit strong KPI
performance is likely to be due to our assumption that the global vehicle market is served
by a duopoly. In practice, OEMs set target margins that may be attained or not. Moreover,
those targets may vary by year, depending on the management’s perception of business
and international conditions. For instance, [37] reports how distant their adjusted target
range for the automotive EBIT margin was from their target range.
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4. Discussion

The automotive industry is undergoing radical transformation. The challenges faced
by the sector in response to the presence of climate urgencies were clearly articulated by [38].
The importance of analysing the balance sheet to gauge the success of the business was
highlighted by [39]. There seems to be an emerging need, relatively neglected in the existing
literature, for researchers and policy-makers to put the potential emission penalties into
the broader context of OEMs’ financial position and to understand the channels through
which money flows (e.g., to promote R&D in cleaner vehicles, to finance zero-emission
powertrain sales) among market agents. The present paper represents one step forward
towards addressing this need.

The paper describes a simulation model to facilitate such analyses. We came across
the work by [36] after we built our accounting framework but incorporated some of the
features suggested by the author (recall Section 2.2.6).

Model testing was proposed as a means to demonstrate the standard behaviour of
the model without aiming to explore either large sensitivities and uncertainties in every
single parameter, or behaviour reproducibility tests based on historical data. This is in line
with the purpose of this paper, which was to highlight the existence of the “hidden” side of
the automotive sector, with OEMs ultimately behaving as financial institutions providing
loans and receiving interest payments from their clients. Standard tests in line with the SD
literature were performed, such as integration error tests, and unit consistency as indicated
in Appendix A.

One way of exploring uncertainty is to compute alternative vehicle sales growth rates.
This would then alter OEM manufacturing capacity needs and, in turn, investment in PPE.
According to [40], retained earnings finance most EU firm investments. This would have
implications for Figure 7b, which would also change if greater bargaining power were
accorded to Suppliers. By making the model available, we facilitate this type of analysis
being carried out by the interested reader.

The model assures full consistency in keeping the economic and financial flows within
the system. By interlinking the money flows among the agents, it is possible to trace how
money circulates within the automotive sectors. In particular, this allows analysts to keep
track of cumulative public and private expenditures, such as purchase subsidies and R&D
expenditures, respectively.

The simulated vehicle fleet suggests that petrol and diesel-powered vehicle remain
the dominant technology until 2030, which would have environmentally damaging con-
sequences unless other actions are taken. This picture could be altered if government
grants and subsidies in support of innovations that lower emissions were simulated (recall
Section 2.2.2). The important role public banks have to play in the transition to net zero has
most recently been highlighted by [41].

Turning to our balance sheet results, by distinguishing between debtor and creditor
HHs, we are in a position to start investigating distributional issues (e.g., automotive
dividends and wages). However, a key limitation of our work is that it depicts HHs and
governments as aggregated entities. A more realistic representation would disaggregate
them by country. We felt that such level of detail would obscure the present exercise and
be, thus, counterproductive.

While debt was modelled and securities were included explicitly in the OEMs’ assets,
the capital and financial markets were portrayed in a simple manner. No explicit reference
was made to, for example, money markets, commercial papers or corporate bonds (see,
e.g., [42]) or risk management (see OEMs’ reports). No leverage, liquidity and valuation
ratios were calculated, as outside of the main purpose of our model, but these could be
easily added in the system, based on the version proposed.

The focus was on interrelated patterns rather than realistic numerical outcomes. While
these may not correspond to actual data, setting the initial asset values to EUR 1 trillion for
governments and suppliers (close to the estimated value for OEMs) was not completely
undeliberate, for it facilitated the comparison of behaviours unfolding from a similar base.
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The sum of all the assets in our model amount to EUR 150.6 trillion in 2020. To put this into
context, [43] estimated that the world economy had USD 1540 trillion in assets in the same
year, of which one-third corresponded to real assets. Further data refinements may be made
in the future: for the ECB, using [44], for the EIB, relying on [45], and for governments,
using the Public Sector Balance Sheet (PSBS) The database is available at [46].

We conclude that the incorporation of the financial statements of key electro-mobility
agents and their interlinkages in a simulation model is both feasible and a desired property
for more realistic and policy relevant models. After all, the process of electrification does
not follow solely from policy prescriptions but is the result of the way the key players digest
relevant information, including financial. Taking these aspects into account in a modelling
framework leads to an explicit generic representation of the banking sector. The downside
of this is that the model becomes larger and understanding it more demanding. Still, we
conclude that the benefits of this approach outweigh its costs, as it brings a perspective
other modelling tools neglect.

Though we modelled the global vehicle market, we opted for defining authorities in
European terms. For this reason, references to the ECB, EIB and the EU were made. This
was done to emphasise the emission penalties that are relevant in the EU context (as this
was one of the points made in the Introduction). However, such agents can be defined
in more general terms (e.g., central bank instead of the ECB or public investment bank
instead of the EIB), and the structure can, in principle, be applied to other markets. As a
matter of fact, no excess emissions leading to penalties were simulated. To compute this in
a robust manner, a representation of the existing regulations is needed. This is indeed the
key connection point between the model proposed here and PTTMAM, which models HHs
(‘Users’) and ‘Authorities’ with disaggregation by country. Such model integration will be
pursued in future work. While there may be physical constraints that limit the speed of EV
uptake (e.g., battery supply bottlenecks), the resulting model upgrade would enable the
analysis of potential financial aspects.

The SFC framework proposed here makes the “hidden” side of electro-mobility visible,
with the implication that it facilitates the analysis of potential financial constraints that
might also jeopardise faster road travel electrification. Conversely, it may help identify the
levers in the system for more effective financial support.

Supplementary Materials: Supporting information can be downloaded at http://data.europa.eu/
89h/2086b2cb-3f20-4241-b8f8-00fa99969f86.

Author Contributions: Conceptualization, J.J.G.V.; methodology, J.J.G.V. and R.P.; software, J.J.G.V.
and R.P.; validation, J.J.G.V. and R.P.; formal analysis, J.J.G.V. and R.P.; data curation, J.J.G.V.; writing—
original draft preparation, J.J.G.V.; writing—review and editing, R.P.; visualization, J.J.G.V. and
R.P.; project administration, J.J.G.V. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is included in the Supplementary Materials.

Acknowledgments: We are very grateful to two anonymous reviewers and an internal reviewer for
their comments. We are also grateful to three anonymous reviewers from the Transportation Research
Board’s Standing Committee on Economics and Finance for their helpful remarks on a preliminary
version of this work. We also thank Giorgos Fontaras for his support. The views expressed are purely
those of the author and may not, in any circumstances, be regarded as stating an official position of
the European Commission.

Conflicts of Interest: The authors declare no conflict of interest.

208



Systems 2023, 11, 132

Appendix A

Documenting the model with the System Dynamics Model Documentation and As-
sessment Tool (SDM-Doc) proposed by [47] reveals that the model contains 451 variables,
of which 55 are stocks. The documentation file, which contains the model’s full code, is
available in the Supplementary Materials.

Two SFC tests are performed, one for each individual agent (i.e., assets and liabilities
match within every agent at every point in time), and a second one at the system level (i.e.,
financial institutions’ liabilities match the liquidity in the entire economy). Concerning
the second test, which determines whether consistency at the system level (i.e., for all the
agents involved) is attained, the results are shown in Figure A1. The deviations from zero
in our checks (visible in Figure A1 and available also in the model) are rather small, that is,
within EUR 0.1, out of the large numbers used to initialize the stock and cash flow variables
to several billion Euros, as indicated in Tables 2 and 3). This also partially works as an
integration test in the model. This SD model is a continuous time model adopting Euler
type integration at time steps of 0.25 years. Due to the stock calculation inherent in the
software, the system makes tiny approximations of the large numbers that have been used
to run the model. The tiny unbalances, shown in Figure A1, are simply due to this, and we
can consider these as 0, thus satisfying the SFC condition.

Figure A1. Outcome of the SFC check.

The integration error test was also performed in line with the standard SD litera-
ture, thus demonstrating that behaviour does not change below a certain delta time, and
minimising the computation power to run the simulation to the minimum possible [28].
Systems boundary adequacy and structure assessment tests were carried out during the
phase of construction of the model on an iterative basis, and the test for unit consistency
was passed with the completed version of the model.
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Abstract: Cartesian genetic programming is a popular version of classical genetic programming,
and it has now demonstrated a very good performance in solving various use cases. Originally,
programs evolved by using a centralized optimization approach. Recently, an algorithmic level
decomposition of program evolution has been introduced that can be solved by a multi-agent system
in a fully distributed manner. A heuristic for distributed combinatorial problem-solving was adapted
to evolve these programs. The applicability of the approach and the effectiveness of the used multi-
agent protocol as well as of the evolved genetic programs for the case of full enumeration in local
agent decisions has already been successfully demonstrated. Symbolic regression, n-parity, and
classification problems were used for this purpose. As is typical of decentralized systems, agents
have to solve local sub-problems for decision-making and for determining the best local contribution
to solving program evolution. So far, only a full enumeration of the solution candidates has been
used, which is not sufficient for larger problem sizes. We extend this approach by using CMA-ES as
an algorithm for local decisions. The superior performance of CMA-ES is demonstrated using Koza’s
computational effort statistic when compared with the original approach. In addition, the distributed
modality of the local optimization is scrutinized by a fitness landscape analysis.

Keywords: Cartesian genetic programming; multi-agent system; COHDA; distributed
optimization; CMA-ES

1. Introduction

In [1], a variant of genetic programming (GP) has been proposed that uses a lattice
layout of the nodes instead of a tree and is thus called Cartesian genetic programming
(CGP). Since then it has become quite popular; it has been broadly adopted [2] and applied
to many different use cases and applications [3–5].

Programs in CGP are encoded by an integer-based representation of a directed graph.
In this way, the alleles encode the addresses of the other nodes, which serve as data sources
for their own functions, or they encode functions by their addresses in a look-up table. The
data addresses always refer to the outputs previously calculated by other function nodes
that are further ahead in the execution row. Later versions have also experimented with
float-based representations [6]. In order to organize the graph in an optimized way (with
respect to solving a given problem), so far, only centralized algorithms are used.

On the other hand, systems with self-organizing capabilities, such as multi-agent-
based systems, are widely seen as a promising method for coordination and distributed
optimization in cyber-physical systems (CPS) with a large number of distributed entities,
such as sensing or operational equipment [7,8], and especially for horizontally distributed
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control tasks [9]. Solving a genetic programming problem can also be seen as such a
system [10].

Although up to now most cyber-physical systems are primarily on a semi-autonomous
level, future CPS will show a degree of autonomy that makes them hard to control
(cf. [11,12]). The autonomy in CPS emerges, for example, from integrated concepts, such
as self-organization principles, that are used for coordination inside the system as well as
for reaching autonomy. Autonomy may also be achieved by the integration of artificial
intelligence (AI). Looking at the example of the European Union, such AI-enabled algo-
rithms are stipulated in [13]. Contemporary cyber-physical systems already comprise a
huge number of physical operation and sensing equipment that has to be orchestrated for
secure and reliable operation. The electric energy grid, modern transportation systems,
and environmental management systems [14] are prominent examples of such large-scale
CPS. Multi-agent systems and self-organization principles have now been used for many
different applications. Examples can be found in [15–17].

A growing degree of autonomy is desirable to achieve in future CPS [18,19] because
the size of the systems, and thus the complexity, steadily grows. Thus, the sizes of the
optimization problems and coordination tasks grow as well. Due to some limitations
in predictability, adaptive control is desirable and often translated into self-organization
approaches. Thus, self-organization seems most promising for the design of adaptive
systems [20].

A targeted design of a specific emergent behavior is difficult to achieve, especially
when using just general-purpose programming languages [21]. Consequently, the authors
in [22] proposed learning, in self-organized systems, how to solve new problems in a
decentralized way. For the purpose of swarm-based optimization, the feasibility has
successfully been demonstrated [10]. So far, the evolution of learned problem-solving
programs was achieved by using a centralized algorithm. On the other hand, that use case
constitutes the first reason to distribute the evolution of CGP programs: to enable a swarm
to achieve program evolution by itself in a likewise decentralized manner.

For the evolution of Cartesian genetic programs, a (1 + λ)-evolution strategy is often
used. As a single operator for variation, the mutation is harnessed. A mutation may
operate on all or only a subset of the active genes [23,24]. Although initially thought of
to be of low or even no use [1], crossover can help a lot if multiple chromosomes have
independent fitness assessments [25]. An in-depth analysis of some reasons can be found
in [10], in which the authors scrutinize the fitness landscape as an example of learning
some meaningful behavior inside a swarm. This is not the case in our application, so we
will also not make any use of operators, such as crossover, and restrict ourselves to the
mutation. Recently, some distributed use cases have been contemplated that showed that
CGP evolution can be very time-consuming when solved by a centralized algorithm [22].

In the case of standard GP, distributed versions have already been in place for a
while [26]. Although distributed GP is closely related to CGP due to their representations,
distributed CGP has been so far missing. So, another reason to distribute CGP is the
acceleration by parallelization and distribution of the evolution process and thus of the
computational burden.

Optimization in multi-agent systems has now been researched in various directions
and brought up a multitude of synchronization concepts and [27–29] decentralized opti-
mization protocols [30,31]. A good overview can be found in [32]. In [33], an algorithmic
level decomposition [34] of CGP evolution has been proposed. This was achieved by using
an agent-based, distributed approach to solving [35]. In [36] the fully decentralized, agent-
based approach combinatorial optimization heuristics for distributed agents (COHDA) has
been proposed as a solution to problems that can be decomposed on an algorithmic level.
The general concept is closely related to cooperative coevolution [37]. The key concept of
COHDA is an asynchronous iterative approximate best-response behavior. Each agent is
responsible for one dimension of the algorithmic problem decomposition. The intermediate
solutions of other agents (represented by published decisions) are regarded as temporarily
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fixed. Thus, each agent only searches along a low-dimensional cross-section of the search
space and thus has to solve merely a simplified sub-problem. Nevertheless, for evaluation
of the solution, the full objective function is used after the aggregation of all agents’ con-
tributions. In this way, the approach achieves an asynchronous coordinate descent with
the additional ability to escape local minima by parallel searching different regions of the
search space and because former decisions can be revised if newer information becomes
available. This approach is especially suitable for large-scale problems [38].

To adapt COHDA to CGP, the chromosome that encodes the graph representation
is split up into sub-chromosomes for each node ([33]). Assigning the best alleles to a
chromosome that encodes a computation node is then regarded as the low-dimensional
optimization problem of a single agent. Thus, to each node, exactly one agent is assigned.
The multi-agent system jointly evolves the program with agents that can be executed
independently and fully distributed.

Evolving the problem requires frequent decisions on the (probably) best assignment
of the functions and the respective wiring of the inputs made by individual agents. So
far, the overall approach had been tested with agents fully enumerating through the set
of all possible solutions. This was feasible as the test problems were small enough, and
the aim was to evaluate the overall approach without any randomness inside an agent’s
decision function. Here, we extend this approach by using a heuristic for deciding the best
local solutions. As this heuristic needs to be called upon many times during the agent
negotiations, we chose to use the covariant matrix adaption evolution strategy (CMA-ES),
which is well known for the property of using just a low budget of objective evaluations.
Thus, the contributions of this paper are the adaption of CMA-ES as a solver for the local
optimization of an agent’s decision routine; an analysis of the individual and time variable
complexity of the local optimization problems, and additional results demonstrating the
superiority of the CMA-ES approach.

The rest of the paper is organized as follows. We start with a recap of both technologies
that are combined into the distributed CGP. We describe the adaption of COHDA to CGP
and how CMA-ES is adapted to suit the local optimization problem of an agent’s decision.
The applicability and the effectiveness of the enumeration approach are demonstrated
using problems from symbolic regression, n-parity problems, and classification problems.
Finally, we demonstrate the superiority of the CMA-ES approach for larger problems. We
justify the choice by analyzing the trace of the modality of the agent’s local optimization
problems with a fitness landscape analysis. We conclude with a prospective view of further
use cases and possible extensions.

2. Distributing Cartesian Genetic Programming

In CGP, computer programs are encoded as graph representations [39]. In general, CGP
is an enhancement of a method that was originally developed for the use case of evolving
digital circuits [40,41]. CGP already demonstrated its capabilities in synthesizing complex
functions. Several different use cases from different fields have so far been scrutinized,
for example, for image processing [42] or neural network training [4]. Moreover, some
additions to CGP have been developed. Examples comprise recurrent CGP [23] (as in
recurrent neural networks) or self-modifying CGP [43]. The authors in [33] used standard
CGP. As the extension presented here improves the original approach in an internal sub-
process, we also used standard CGP.

A chromosome in CGP comprises function-encoding genes and connection- and
output-encoding genes. Together, they encode a computational graph (actually, a grid)
that represents the executable program. The example in Figure 1 shows a graph with six
computational nodes, two inputs, and also two outputs. The allele that encodes a function
represents the index in an associated look-up table (from 0 to 3 in the example) with a list
of all functions.

Each computation node is encoded by a gene sequence consisting of the function look-
up index and the connected input (input into the system or output of another computation
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node). These are the parameters that are fed into the function. Hence, the total length of
each function node gene sequence is n + 1 with n being the arity of the function plus one
allele for the function index. The graph in standard CGP is an acyclic one. Parameters that
are fed into a computation node may only be collected from nodes that have already been
executed or from the inputs into the system. Thus, standard CGP works with a predefined
execution order. Outputs can be connected to any computation node (representing the
computation result of the output) or directly to any system input. Not all outputs of
computational nodes are used as input for other functions. There might be no connections.
Usually, many such unused computational nodes occur in evolved CGP [40] programs.
These nodes are inactive, do not contribute to the encoded program’s output, and are not
executed during the interpretation of the program. Thus, they do not cause any delay
in computation.

Phenotypes are of variable length. In contrast, the size of the chromosome is static. As
functions may have different arities, some genes may remain unused as input connections.
Using an intermediate output of an inner node is also not mandatory. In this way, the fact
that evolution is mainly responsible for rewiring makes CGP special.
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1 4

2 3

0

1

0 0 1 2 1 1 1 0 3 0 0 1 2 0 5 3 4 7 6

code 0 1 2 3
function + - ⋅

genotype:

phenotype:    = ,   = ⋅ ( + )
Figure 1. Computational graph and its genotype and phenotype representation in Cartesian genetic
programming; modified after [22].

COHDA has been introduced as a distributed multi-agent solution to distributed
energy management problems [44]. Since then, it has been used for many different use
cases. Examples include coalition structure formation [45], global optimization [38], trajec-
tory optimization for unmanned air vehicles [46], or surplus distribution based on game
theory [47].

In [33], COHDA has been used for distributing the evolution of Cartesian genetic
programs. When COHDA is executed, each participating agent reacts to updated infor-
mation from other agents. This is completed by adapting the own previous decision on a
possible (local) solution candidate. In the original use case, COHDA agents represented a
decentralized energy unit in distributed energy management. In this way, agents had to
select an energy generation scheme for their own controlled energy unit. The selection had
to be carried out such that it enables a group of energy-generation units to jointly fulfill an
energy product (e.g., from some energy market) as well as they can. So, each agent had to
decide on the local energy-generation profile only for a single generator. All decisions were
always based on (intermediate) selected production schemes of other agents.

We start by we explaining the agent protocol that is the base algorithm for CGP
program evolution.

In [36], COHDA was introduced to solve a problem known as predictive schedul-
ing [48]. This is a problem from the smart grid domain and serves as an example here.
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COHDA works with an asynchronous iterative approximate best-response behavior, which
means that all agents coordinate themselves by updating knowledge and exchanging infor-
mation about each other. The agents make local decisions solely based on this information.
The general protocol works in three repeatedly executed steps.

However, in the beginning, the agents are drawn together first by an artificial commu-
nication topology. As a first step, a small-world topology [49] has proven useful and is the
most used topology. For this reason, we also use a small-world topology. Starting with an
arbitrarily chosen agent and then passing it a message containing just the global objective,
each agent repeatedly goes through three stages: perception, decision, and action (cf. [50]).

Perception phase: In this first phase, the agent prepares for local decision-making. Each
time the agent receives a message from one of the neighboring agents (which precedes
the directed communication topology), the data that are contained in the message are
included into their own knowledge base. The data that come with the message consist
of the updated local decision of the agent that sent the message and the transient
information on the decisions of other agents that led to the previous agent’s decision.
After updating the local knowledge with the received information, usually, a local
decision is made based on this information. In order to better escape local minima,
agents may postpone a decision until more information has been collected [51].

Decision phase: Here, the agent has to conduct a local optimization to yield the best
decision for its own local action that puts the coalition forward as best as possible.
To complete this, each agent solves a low-dimensional part of the problem. The
term “dimension”, in this context, can also refer to a sub-manifold containing low-
dimensional local solutions as a fraction of a much higher-dimensional global search
space. In the smart grid use case, for example, a local contribution to the global
solution (the energy generation profile for a large group of independently working
energy resources) consists of a many-dimensional real-valued vector describing the
amount of generated energy per time interval for one single device. In the CGP case,
a local solution would consist of a local chromosome encoding the functions and
inputs of a single node. Other agents have made local decisions before, and, based on
the gathered information about the (intermediate) local decisions of these agents, a
solution candidate for the local (constrained) search space is sought. To this decision
phase, we added CMA-ES for better local optimization.

Action phase: In the last stage, the agent compares the fitness of the best-found solution
with the previous solution. For comparison, the global objective function is used.
When the new solution has a better fitness (or a lower error, depending on the specific
problem setting), the agent finally broadcasts a message containing its new local
solution contribution together with everything it has learned from the other agents
and their current local solution contributions (the decision base) to its immediate
neighbors in the communication topology. Receiving agents then execute these three
phases from scratch, leading probably to revised local solution contributions and thus
to further improved overall solutions.

If an agent is not able to find a local solution contribution that improves the overall
solution, no message is sent. If no agent can find any improvement, the process has reached
at least the local optimum and eventually ceases because no more messages are sent.

After the system has produced a series of intermediate solutions, the heuristic even-
tually terminates in a state where all agents know an identical solution. This one is taken
as the final solution of the heuristic. Properties such as guaranteed convergence and local
optimality have been formally proven [44]. Moreover, after a short setup time, COHDA
possesses the anytime property. Thus, the agent protocol may be stopped at any time with
a valid (sub-optimal) solution, if necessary.

The agent approach can be adapted to CGP as follows. Each agent is responsible for a
single node in the program graph. In general, there are two types of agents, the function
node agents a fi

responsible for the function node fi and the output agents ayj responsible
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for the output yj. The task of both agent types is rather similar but can be distinguished
by the local search space. Each function node agent is responsible for exactly one node
and thus internally just manages the code (look-up table address) of the function and the
respective input addresses as a variable number of integers depending on the arity of the
function. This list of integers is just one sub-chromosome of a complete solution. At the
same time, every agent has some knowledge about the intermediate assignment of alleles
to chromosomes of other agents. These are immutable for this agent. Together (their own
gene set and the knowledge of others’ gene sets), the genotype of a complete solution, and,
subsequently, a phenotype solution can be constructed by an agent.

If an agent that is responsible for a function node receives a message, it updates its
own knowledge about the other agents. Each agent knows the most recent chromosomes
from other agents. If newer information is received with the message, the outdated gene
information is updated. In the case that such far unknown information arrives, additional
genes are integrated into the agent’s own belief. After the data update, the agent has to
make a decision about its own chromosome. This decision is a local optimization process
previously solved by enumerating all of the solution candidates [33].

The known genes of the other agents are temporarily treated as fixed for the duration
of the agent’s current decision-making. Each agent may make modifications only to its own
chromosome. Nevertheless, the genes of the other agents may afterward again be altered
by the respective agents as a reaction to previously made alterations. If an agent makes a
new local decision, it solves for the global problem of finding a good genotype but may
only mutate its own local chromosome. Figure 2 shows this situation as an example of the
agent a f3 that is responsible for the function node f3.

0 2 2 6

3 7? 5

1 4

2 3

0

1

0 0 1 2 1 1 1 0 3 ? ? ? 2 0 5 3 4 7 6genotype:

phenotype:  = ,  = ⋅ ( + )

0 2 2 61 40

2 31
3 7

agent 
aggregate from incoming messages

locally optimize
code 0 1 2 3

func-
tion

+ - ⋅

Figure 2. Single, local optimization step (intra-agent decision) during CGP program evolution (cf. [33]).

The optimization for finding the best local decision could, in general, be completed by
any algorithm; e.g., by an evolution strategy. For the test cases in [33], the full enumeration
of all solution candidates was sufficiently fast enough because each agent had just a rather
limited set of choices. Nevertheless, for larger scenarios, the use of problem-specific
heuristics has already been recommended in [33]. Constraints can easily be checked as
the number of functions and the arity of each function are known to the agent. Currently,
we set the number of rows in the graph to one (as in [33]). This convenient single-row
representation has been shown to be no less effective [52] and has already been frequently
used, e.g., in [53]. The levels-back parameter is set to the number of agents to allow input
from all preceding nodes. Each agent knows its own index and may thus decide which
other nodes (or program input) to choose as input for its own node.
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As soon as the best local allele assignment has been found, the agent compares the
solution quality with the quality of the previously found solution. If the new solution is
better, messages are sent to neighboring agents. During our experiments, we found that it
is advantageous to always send messages to the output agents in order to enable a more
frequent update of the best output. The basic difference between the function and the
output node agents is the local gene. The output agents just manage a single gene consisting
of a single-integer allele that encodes the node that is connected to the respective output.

When no more agents can progress, no messages are sent, and the whole negotiation
process finally ceases. Initially, COHDA was supposed to approach an often unknown
optimum as closely as possible. For the CGP use case, on the other hand, it is also fine to
drop out of the process if one agent, for the first time, finds a solution that fully satisfies a
quality condition (i.e., the program does what it is supposed to do). Thus, we added an
additional termination criterion. If an agent discovers a solution that constitutes a success,
it sends a termination signal instead of a decision message and reports the found solution.

3. Evaluation

3.1. General Approach

For evaluation of the overall approach, The authors in [33] investigated three use cases:
regression problems, the n-parity problem, and classification problems. We start with a
recap of the results.

3.1.1. Regression

For comparison with the results achieved by the original CGP from [54], a symbolic
regression of the following sixth order polynomial was used: x6 − 2x4 + x2. The objective
here is to evolve a program that produces the same output for the arbitrary input x. The
function set that was used consisted of the four basic arithmetic operations: {+,−, ·, /}.
For evaluation, 50 input values x were randomly chosen from the interval [−1, 1], and x
was the only input to the program. In the original approach, [54] gave also the constant
1.0 as additional input to the program. Previously, ephemeral constants had been used as
well to support with solving the problem with GP [55]. Already in [33], it was observed
that this additional help is not necessary, and so, we also refrained from using such
auxiliary constructs.

For comparison, the following statistical measures as introduced by John Koza [56]
were used. The cumulative probability of success for a budget of i objective evaluations is
given by

P(M, i) =
nsuccess(i)

ntotal
, (1)

where nsuccess denotes the number of successful runs with i objective function calls each,
and ntotal denotes the total number of runs. M denotes the number of individuals. In our
use case, M—although possibly interpretable as the number of agents—is of no use as
the agent system works asynchronously and not in terms of generations with a constant
number of evaluations per iteration. Instead, i was set to the total budget of the maximum
number of objective function calls allowed by all of the agents together, and, thus, M was
set to M := 1. This approach is consistent with the generalization in [57].

From the success rate, the mean number of independent runs required to achieve a
minimum rate of success when the budget is fixed to a maximum of i evaluations per run
can be derived. Let z denote the wanted success rate. Then,

R(z) =
⌈

log(1− z)
log(1− P(M, i))

⌉
(2)

gives the number of necessary runs. The computational effort I(M, i, z) = M · i · R(z) gives
the number of individual function evaluations that must be performed to solve a problem

219



Systems 2023, 11, 177

to a proportion of z [57]. As i is a matter of parametrization, Koza defines the minimum
computational effort as

Imin(M, z) = min
i

M · R(z). (3)

Table 1 shows the comparison of results yielded from distributed CGP with the original
results from [54]. The distributed approach shows competitiveness compared with the
original results achieved with a genetic algorithm with a population size of 10, a uniform
crossover (100% rate), and a 2% mutation. In [54], the number of maximum generations was
set to 8000. This is not meaningful in asynchronous agent systems. In [33], the total number
of evaluations was restricted to 80,000 (for 10 agents in total) instead. The confidence level
was set to z = 0.99.

Table 1. Comparison of the computational effort for symbolic regression between distributed and
standard CGP (cf. [33]).

COHDA GA [54]

success rate (80,000) 0.97 0.61
minimum computational effort 75,000 90,060

independent runs (budget) 3 (25,000) 6 (15,000)

Table 2 shows some results for several other symbolic regression problems.

Table 2. Results (yielding the minimal computational effort CE) for several symbolic regression
problems with 1-dimensional and 2-dimensional input. Modified after [33].

f (x) No. of Agents Budget P(i) R(z) min. CE Mean Effort

x2 + 2x + 1 8 20,000 0.93 2 40,000 7768.4 ± 9944.6
x8 + x5 20 200,000 0.83 3 600,000 136,833.2 ± 129,852.2

x2

2x−1 30 220,000 0.67 5 1,100,000 786,270.1 ± 791,943.8
0.2x2 + 0.5 20 500,000 0.50 7 3,500,000 538,625.2 ± 436,231.5
2x2

1 + x1x2 15 180,000 0.81 3 540,000 110,931.5 ± 127,073.4

Figure 3 explores the relation of the number of agents (and thus mainly the functional
nodes) to the mean number of evaluations and to the length of the encoded phenotype
solution (the number of active nodes). The experiment was conducted for the simple
regression problem −x6 with 100 runs for each different number of agents. Although the
mean number of active nodes (calculated only for successful runs) stays rather constant in
Figure 3b, an unnecessarily high number of agents leads obviously to some outliers with a
bloated phenotype. The mean number of evaluations also grows. Future improvements
should address these issues, maybe by starting with a rather low number of agents and
adding more agents only in the case that no further improvement to a solution is detected.

220



Systems 2023, 11, 177

10 20 30 40 50

0

2

4

6

8

·105

no. of agents/ nodes

nu
m

be
r

of
ev

al
ua

ti
on

s

(a)

10 20 30 40 50
0

20

40

60

80

no. of agents/ nodes

pr
og

ra
m

le
ng

th

(b)

Figure 3. Relation of the number of agents and the mean number of evaluations (a) as well as the
relation of the number of agents and the length of resulting phenotypes in (b) – measured by the
number of active nodes. Modified after [33].

3.1.2. N-Parity

Evolving Boolean functions is a standard use case in evaluating genetic programming
algorithms [58–60]. A special case is the even-n-parity problem [56]. The goal is to find a
function that counts the number of ones of the given n bits using only Boolean expressions,
returning TRUE if the number is even. In this way, a correct classification of arbitrary bit
strings of a length n with an even number of ones is sought [61]. The input to the CGP
program are the bits b0, . . . , bn. The used function set for program evolution consists of the
four Boolean functions {AND, OR, NAND, andNOR}. The Boolean even-n-parity function
is seen as the most difficult Boolean function to evolve [56,62]. With standard GP, results
for problem sizes up to n = 5 can be obtained [62]. For solving larger instances, techniques
such as automatically defined functions [63] or extended function sets are needed [59].
Some results for the CGP programs evolved by COHDA are listed in Table 3. The number
of agents and the total budget (for all agents together) are a result of sampling for the
minimal computational effort (Equation (3)). Sampling has been carried out by grid search.

Table 3. Results for several instances of the n-parity problem (correctly classifying an even number
of 1 in a bit string of length n) for different numbers of agents (cf. [33]).

Size # of Nodes No. of Evaluations

even-2 10 522.77 ± 575.61
even-2 20 1640.52 ± 1900.74
even-2 30 3111.77 ± 3366.56

even-3 10 2309.05 ± 1819.84
even-3 20 7834.47 ± 8174.38

even-4 30 64,772.04 ± 54,501.49

even-5 40 242,264.33 ± 192,328.68

So far, distributed CGP had been trained for up to n = 5. For smaller instances of
the problem, different numbers of agents (the computation nodes) were tested as well.
Obviously, having larger chromosomes (the number of agents in our case), as stated in [64],
is not always advantageous—at least in the distributed case.

3.1.3. Classification

Finally, a real-world problem from the energy domain was used. The distributed
approach was tested on a classification problem known as flexibility modeling [65] and
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adapted. The goal is to correctly classify the energy-generation profiles x ∈ Rd with xi,
denoting the generated amount of energy during the ith time interval for a given, specific
energy resource. A generation profile x can either be feasible (meaning it can be operated
by the energy resource without violating any technical constraint) or not. This problem is
often modeled as a one-class classification problem [66].

Solutions using support vector machines (SVM) or support vector data description
(SVDD) as a classifier can, for example, be found in [67,68]. The approach was compared
with SVDD [69]. The classifiers are trained using a set of feasible generation profiles that
is generated using an appropriate simulation model of the energy resource. The authors
in [33] used the model of a co-generation plant (CHP). This model comprises a micro CHP
with 4.7 kW of rated electrical power (12.6 kW thermal power) bundled with a thermal
buffer store. Constraints restrict the power band, buffer charging, gradients, min. on and
off times, and satisfaction of thermal demand. Thermal demand is a subject to simulate the
losses of a detached house according to given weather profiles. For each agent, the CHP
model is individually (randomly) configured with a state of charge, weather condition,
temperature range, allowed operation gradients, and similar variables [47].

The goal was to evolve a program that obtains d values that represent the amount
of energy x = (x1, . . . , xd) as inputs and outputs of y < 0, if the profile is infeasible to
operate for the energy resource, or y ≥ 0, in the case that the profile is feasible and can
thus be operated by the CHP. For evaluation, a training set of 1000 generation profiles
(50% feasible) that was generated by the simulation model was used. The function set was:
{+,−, ·, /, AND, OR, NOT, XOR,=,<,>, IF THEN ELSE, 0, 1, 2}, with 0, 1, and 2 denoting
constants (nullary functions).

For evaluation and for comparing the performance of the the classifiers, we used
the classification accuracy. Evaluation during CGP evolution was completed using 1000
training instances to calculate the confusion matrix and, finally, the achieved accuracy.
The SVDD classifier was trained with 1000 feasible instances. After the classifier program
has been evolved, we compared the CGP classifier with the SVDD classifier using 100
times a test set of 1000 newly generated, thus far unseen generation profile instances from
identically parameterized simulation models (the same sets for both classifiers, respectively).
Table 4 shows the results for the different dimensions d of the generation profile.

Table 4. Comparison of results for the flexibility modeling classification problem (using a model for
co-generation plants). We compare distributively evolved CGP program and SVDD classifier (cf. [33]).

Dim. Agents Evaluations Training Accuracy Accuracy CGP Accuracy SVDD

8 30 8,351,149 0.89 0.8616 ± 0.0110 0.8770 ± 0.0091
32 50 205,262,361 0.952 0.9569 ± 0.0085 0.9732 ± 0.0048
96 50 68,825,837 0.896 0.9461 ± 0.0109 0.9603 ± 0.0059

Although all CGP results are slightly worse than those of SVDD, the achieved accuracy
is still estimable. The training accuracy denotes the best fitness that has been achieved
during several test runs of program evolution. The best-found programs were then been
applied to the different unseen test sets generated for the newly instantiated CHP models.
This generalization ability is compared between CGP and SVDD by their respective mean
accuracies. Another interesting observation can be seen in the following example phenotype
for eight-dimensional generation profiles as input:

y = +(∗(x1, x3), IF(x7,−(/(2.0,−(AND(x0,−(/(x0, x7), x7)), ∗(x1, x3))),

+(/(x6, x7), /(x7, x6))), x0)).
(4)

Obviously, not all inputs are always of interest for classification as some are constantly
omitted. These were always the same ones in different evolved programs. This fact is also
reflected by the just marginally growing number of agents compared to the faster-growing

222



Systems 2023, 11, 177

dimensionality of the problem. Such identification of the smaller intrinsic dimension is an
extra for the CGP program not provided by classifiers such as SVDD.

3.2. CMA-ES for Optimizing Local Agent Decisions

The covariance matrix adaption evolution strategy [70,71] is well known as an evolu-
tion strategy for solving multi-modal black-box problems by using lessons that have been
learned from previously seen successful evolution steps for the improvement of future
operations. A new population of solution candidates is sampled from a multivariate normal
distribution N (0, C) with the covariance matrix C. This covariance matrix is adapted at the
end of each iteration such that it maximizes the generation of improving steps according
to previously seen distributions for good steps. The method learns a second-order model
of the objective function and exploits it for structure information and for reducing the
calls of objective evaluations. Such behavior renders this algorithm especially useful for
our purpose as it is used as an inner part (optimizing the local decision of an agent) of a
bi-level approach. In this way, CMA-ES is used for calculating the objective of an outer
optimization (the agent negotiations). Thus, using as few objective evaluations as possible
is advantageous for our use case.

An a priori parametrization with structure knowledge of the problem by the user is
not necessary as if the method is adapting itself without supervision. A good introduction
to CMA-ES can be found, for example, in [72].

CMA-ES is used for solving the internal optimization problem that arises when an
agent has to decide on the best allele combination for the local sub-chromosome that
encodes the function controlled by that agent. Thus, the dimension of the problem that has
to be solved by CMA-ES is determined by the number of genes in the chromosome, which
is rather small compared to the overall number of genes of the global problem that is used
for evaluation. Thus, CMA-ES is expected to still work rather quickly and not to suffer from
performance degradation due to the huge matrix computations caused by high-dimensional
problem instances. In the following, we follow [73,74] with our explanations.

We consider the aforementioned agent negotiation with a stage in which each agent
has to search the individual allele configuration for a single node. Thus, the individual
feasible set of indices for function encoding and wiring of other outputs to this input for
the best option (according to the given objectives) must be found. This search constitutes a
local optimization problem. As this smaller sub-problem is a local one, as seen from the
agent’s perspective, there is no need to harness a distributed solving strategy.

As this local optimization is part of the exterior agent negotiation process, and because
it is therefore called many times, a heuristic that uses only a small number of objective
evaluations is advantageous. CMA-ES is well known for this characteristic [72]. The
constraints of this optimization problem are rather simple box constraints and, thus, easy
to handle.

In each iteration g of CMA-ES, a multivariate distribution is sampled in order to
generate a new offspring solution population in the σ-vicinity of good parent solutions
with the mean m:

x(g+1)
k ∼ m(g) + σ(g)N (0, C(g)), k = 1, . . . , λ. (5)

This sampling is suitable for continuous problems. To be able to use CMA-ES for our
discrete problem, we allowed continuous alleles and scaled them back to discrete values
prior to their assignment to genes in the sub-chromosome. Additionally, we restricted the
range to [0, 1[:

x(g+1)
k =

{
x(g+1)

k mod 1, x(g+1)
k ≥ 1

(x(g+1)
k mod 1) + 1, x(g+1)

k < 0
. (6)

C(g) ∈ Rn×n constitutes the covariance matrix of the search distribution at a generation
(iteration) g with an overall standard deviation σ(g) that can also be interpreted in terms
of an adaptive (multivariate) step size. The step size is adapted individually for each
dimension to support and favor the direction in which fast improvement can be expected
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according to the formerly seen results. The mean of the multivariate distribution is denoted
by m(g); λ ≥ 2 denotes the population size.

The new mean m(g+1) for generating a sample of the next generation in CMA-ES is
calculated as the weighted average

m(g+1) =
μ

∑
i=1

wix
(g+1)
i:λ , ∑ wi = 1, wi > 0, (7)

of the best (in terms of the objective function evaluation) individuals form the current
sample x(g)

i , . . . , x(g)
λ .

In order to make the above relaxed continuous genotype solution candidates discrete
again, we introduce a decoder mapping to the respective phenotype (example of agent a fi

):

γ =

⎧⎨
⎩
⌊

x(g+1)
k,i · |F|

⌋
i = 0⌊

x(g+1)
k,i · index(a fi

)
⌋

i > 0
, 0 ≤ I < 1 + max arity(F) (8)

where |F| denotes the number of functions in the function set F, index(a fi
) denotes the

number of agents that are ahead of agent a fi
(only from these may the input be taken), and

max arity(F) denotes the maximum arity of all functions in the set. In this way, the solution
candidate is scaled back to a valid discrete genotype.

In our case, the genotype consists of a sub-chromosome with the zeroth gene encoding
the function and genes 1 to max arity(F) + 1 encoding the wiring with the previous (in
the calculation line). Functions with an arity lower than the maximum arity do not use all
wirings. This approach is in line with [75].

Ranking is now carried out by

f (γ(x(g)
1:λ), κ), . . . , f (γ(x(g)

λ:λ), κ), λ ≥ μ, (9)

to define x(g)
i:λ as the ith-ranked best individual. Please note that for evaluation, the global ob-

jective is used. The evaluation of the global objective takes the individual sub-chromosomes
of all agents and combines them. Thus, κ in Equation (9) denotes the current working
memory of the agent. κ contains the temporarily fixed alleles of the other agents (so far
known from the perception phase).

Finally, the covariance matrix is updated as usual and is also based on the decoder-
based ranking Equation (9):

C(g+1)
μ =

μ

∑
i=1

wi

(
x(g+1)

i:λ −m(g)
)(

x(g+1)
i:λ −m(g)

)�
. (10)

CMA-ES has a set of parameters that can be tweaked to some degree for a problem-
specific adaption. Nevertheless, the default values that are applicable for a wide range of
problems are usually available. For our experiments, we used the following default settings
for the CMA-ES part. The (external) strategy parameters are λ, μ, wi=1...μ, controlling
selection and recombination; cσ and dσ controlling the step size; and cc and μcov controlling
the covariance matrix adaption. We have chosen to set these values after [72]:

λ = 4 + �3 ln n�, μ =

[
λ

2

]
, (11)

wi =
ln( λ

2 + 0.5)− ln i

∑
j=1
μ

λ
2 + 0.5)− ln i

, i = 1, . . . , μ (12)

Cc =
4

n + 4
, μcov = μe f f , (13)
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Ccov =
1

μcov

2
(n +

√
2)2

+

(
1− 1

μcov

)
min

(
1,

2μcov − 1
(n + 2)2 + μcov

)
.

(14)

An in-depth discussion of these parameters is also given in [76]. These settings are
specific to the dimension N of the objective function. In our case, N = 1 + max arity(F)
is related to the maximum arity of all functions in the function set plus one gene for
encoding the function itself. Thus, the dimensionallity stays rather small. Hence, CMA-ES
will not suffer from large matrix calculations for updating the covariance matrix as in
high-dimensional problems.

3.3. Results

For the evaluation of the CMA-ES approach, we used the classification use case
described above, as this is the most practically relevant use case from [33]. In order to
make the problem more severe, we added five NOP to the function set, causing no harm
to the result but making the search space exponentially larger. In addition, we used more
agents to further increase the search space (due to more wiring choices). This is also quite
realistic for the use case of an agent swarm that is supposed to learn how to solve new,
unseen problems. An agent may offer abilities and functions that are of no use for solving
the problem but increase the search space.

As there is no known minimum in this optimization problem, we chose to stop
the process as soon as the objective value of 0.18 has been found. This value has been
empirically found. We observed that, once a CGP program with an objective value of less
than or equal to 0.18 has been found, the program shows a sufficiently good performance
in classification. The absolute number of objective evaluations of all agents was counted to
calculate Koza’s minimum effort statistics.

The results showed that full enumeration—except for very small problem instances—
had to be stopped at some point (we chose 5 million evaluations) without a valid result.
Table 5 shows the result for a small four-dimensional classification problem.

Table 5. Comparison of full enumeration and CMA-ES for a very small example (4-dimensional
classification with 30 agents).

Budget P(i) R(z) Computational Effort

full enumeration

1,000,000 0.31 13 1.3× 107

2,000,000 0.42 10 2.0× 107

4,000,000 0.79 3 1.2× 107

CMA-ES

10,000 0.27 15 150,000
11,000 0.53 7 77,000
12,000 0.66 5 60,000
13,000 0.87 3 39,000

This example already shows the vast improvement of CMA-ES over full enumeration.
The minimum computational effort that the agents (in total) needed with CMA-ES is more
than 300 times smaller than with full enumeration. For larger examples, the full enumer-
ation approach was not at all able to obtain a sufficiently good result with a reasonable
budget for the objective evaluations. For this reason, we omitted full enumeration in the
remaining results. Tables 6 and 7 finally show some results for larger classification problems
of CMA-ES only.
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Table 6. Results for CMA-ES only for a 32-dimensional classification problem with 100 agents.

Budget P(i) R(z) Computational Effort

32,000 0.27 15 480,000
40,000 0.64 5 200,000
45,000 0.72 4 180,000
50,000 0.91 2 100,000

Table 7. Results for CMA-ES only for a 32-dimensional classification problem with 200 agents.

Budget P(i) R(z) Computational Effort

15,000 0.08 53 795,000
17,000 0.33 12 204,000
19,000 0.75 4 76,000
20,000 0.92 2 40,000

3.4. Analysis

Finally, we analyzed the individual complexity that the agents face during different
episodes of the negotiation. This complexity is not constant. It depends on the previous
choices of all other agents. If it is an agent’s turn to make a decision—i.e., to optimize its own
function choice, including the wiring of the parameters to the other agent’s functions—the
fitness landscape is defined as follows

F = (S, f , d), (15)

with the search space S, which always stays the same (the set of all combinations of the
functions with the allowed parameter wirings) and the neighborhood definition d. For our
research, we used the following neighborhood:

xk+1
i =

⎧⎪⎨
⎪⎩

xk
i + 1 if r ≤ 1

3

xk
i if 1

3 < r ≤ 2
3

xk
i − 1 otherwise

, 1 ≤ i ≤ d. (16)

Here, xk+1 denotes a neighboring solution that is generated from a solution candidate
xk. The random variable r is uniformly randomly sampled from the interval [0, 1].

In this way, each allele is increased by one, decreased by one or stays the same
with a likelihood of 1/3 each. The element that changes in the landscape definition F
is the objective function f . The objective f is still defined as described above for the
classification use case. The classification accuracy (which is used for f ) is calculated using
the performance of a solution candidate on different so-far unseen classification instances.
However, this performance highly depends on the decisions of all other agents. Thus, the
fitness landscape varies with each call of the decision method of an agent.

The analysis then was performed as follows. Prior to each decision method call, the
modality (as a measure of ruggedness) of the local problem of each agent was calculated.
To complete this, we followed the method of [77]. First, we generated a series of fitness
values by using a random path of the solution candidates on the fitness landscape. To
generate the random path, the neighborhood relation d from Equation (16) was used. For
each solution candidate along the generated path, the fitness can be calculated using the
objective function with the fixed parts of the other agents. We can then tokenize the series
of all subsequent fitness values to a sequence of tokens encoding uphill, downhill, or flat
episodes. The relation of the length of the shortest possible token string (containing up,
down, and flat tokens) to the length of the original path or series of fitness values then gives
a measure for the modality ρ ∈ [0, 1]. ρ = 0 denotes a completely flat fitness landscape;
ρ = 1, on the other hand, denotes the maximum number of local optima that fit into a path
of the given length.
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This modality is calculated for each local decision of each agent. Figure 4 shows an
example result for a first, simple instance of the classification problem. Here, we looked
at a four-dimensional classification problem and used 20 agents for evolving a program
that does the classification of CHP schedule feasibility. Time-steps (as a unit for time), in
this case, are an artificial measure. The multi-agent systems work asynchronously, but,
we can maintain an artificial clock tick that could be interpreted as a unit of time (second,
millisecond, . . . ) but, in fact, has no practical meaning here except for ordering the events.

The experiment has been repeated four times, as depicted in Figure 4a–d. We see that
the modality varies over time and becomes lower toward the end of the evolution process.
The latter fact is not immediately clear. Although toward the end more and more agents fix
their local result because they are unable to find any further improvement, it is not clear
why this should make the search for the remaining agents easier.
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Figure 4. Variation of the modality of the different agents during the program evolution process for 4
instances of a 4-dimensional classification problem solved with 20 agents each. (a–d) display one
instance each with the traces of the individual modality (one line per agent).

Nevertheless, this seems to be a general pattern. Figures 5–7 show some more examples
of 96-dimensional classification problem instances. These figures show the same general
pattern. Moreover, it seems that if the number of agents is increased, the phase of high
modality in local optimization moves to earlier stages. The number of agents varies from
50 (used for the result in Figure 5) to 200 (which is already way too many; see Figure 7).
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Figure 5. Variation of the modality for an example instance of a 96-dimensional classification problem
solved by 50 agents.
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Figure 6. Variation of the modality for an example instance of a 96-dimensional classification problem
solved by 100 agents.
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Figure 7. Variation of the modality for an example instance of a 96-dimensional classification problem
solved by 200 agents.

We can conclude two things:

1. The choice of CMA-ES as an algorithm that adapts without supervision to different
problem instances with different characteristics was good because the modality of the
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local optimization problems that the agents have to solve comprises a wide range of
modalities.

2. It seems worthwhile to conduct a larger and more thorough fitness landscape analysis
in order to develop situation-aware and adaptive local decision support for the agents.

Thus, future work will address a fitness landscape-aware selection of different local
optimization techniques for the agents.

4. Conclusions

We presented the adaption of a distributed optimization heuristic protocol for Carte-
sian genetic programming and an extension using CMA-ES for improving local agent
decisions. By decomposing the evolution on an algorithmic level, it becomes possible to
distribute the nodes and regard the evolution process as a parallel, asynchronous execution
of an individual coordinate’s descent.

The results show that the distributed approach is competitive with regard to the
evolved programs. This holds true for the solution quality as well as for the computational
effort and for smaller tasks even with the full enumeration approach. A speed-up by parallel
execution becomes possible and has been increased significantly here. With the extension
via CMA-ES for agent-internal optimization during decision-making, the computational
effort has dropped significantly, even for larger problem instances. Another advantage is
the ability to distribute the computational burden. Moreover, the distributed evolution of
programs enables seamless integration into distributed applications, in addition to using
the example of the smart grid.

Agent-based Cartesian genetic programming constitutes a universal means to execute
cooperative planning among individually acting entities. Future work will now lean
toward distributed use cases. Another advantage is that different nodes may have different
function sets in case they represent real-world nodes with different capabilities.

So far, we considered only the original standard CGP. Extensions such as recurrent
CGP can be integrated right away now. These extensions affect basic interpretation (some
also affect the execution of the phenotype) and can thus be evolved by the same distributed
approach. Only an adaption of the possible choices of other agents’ output as input for its
own node is necessary. In the same way, different levels-back parameterizations can be
easily handled.

Further improvements are expected when agents are equipped with intelligent rules
for choosing from different decision methods; i.e., optimization methods (CMA-ES, full
enumeration, others) should be chosen ad hoc from a set of different methods according to
the current individual’s situation.

However, even with this initial setting that has been scrutinized in this contribution
for making a swarm of individually acting agents learn problem-solving via distributed
CGP, the results are already very promising. Agents capable of combining individual skills
to solve so-far unseen problems without any central algorithm are a major building block
for large-scale future autonomous cyber-physical systems.
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Abstract: This paper addresses the issue of choosing an appropriate reward function in multi-agent
reinforcement learning. The traditional approach of using joint rewards for team performance is
questioned due to a lack of theoretical backing. The authors explore the impact of changing the
reward function from joint to individual on learning centralized decentralized execution algorithms
in a Level-Based Foraging environment. Empirical results reveal that individual rewards contain
more variance, but may have less bias compared to joint rewards. The findings show that different
algorithms are affected differently, with value factorization methods and PPO-based methods taking
advantage of the increased variance to achieve better performance. This study sheds light on the
importance of considering the choice of a reward function and its impact on multi-agent reinforcement
learning systems.

Keywords: agent coordination; multi-agent reinforcement learning; centralized learning decentralized
execution

1. Introduction

Multi-agent reinforcement learning (MARL) is a promising field of artificial intelli-
gence (AI) research, and over the last couple of years, has seen increasingly more pushes to
tackle less “toy” problems (full game environments such as ATARI and the Starcraft Multi-
Agent Environment (SMAC)) and instead try to solve complex “real-world” problems [1–3].
Coordination of agents across a large state space is a challenging and multifaceted problem,
with many approaches that can be used to increase coordination. These include com-
munication between agents, both learned and established, parameter sharing and other
methods of imparting additional information to function approximators, and increasing
levels of centralization.

One paradigm of MARL that aims to increase coordination is called centralized Learn-
ing decentralized Execution (CLDE) [4]. CLDE algorithms train their agents’ policies
with additional global information using a centralized mechanism. During execution,
the centralized element is removed, and the agent’s policy is based on conditions only on
local observations. This has been shown to increase the coordination of agents [5]. CLDE
algorithms separate into two major categories: centralized policy gradient methods [6–8]
and value decomposition methods [9,10]. Recently, however, there has been work that
has put into question the assumption that centralized mechanisms do indeed increase
coordination. Lyu et al. [11] found that in actor–critic systems, the use of a centralized critic
led to an increase in variance seen in the final policy learned; however, they noted more
coordinated agent behaviour while training and concluded that the use of a centralized
critic should be thought of as a choice that carries with it a bias variance trade-off .

One aspect of agent coordination that is similarly often taken at face value is the use
of a joint reward in cooperative systems that use centralization. The assumption is that
joint rewards are necessary for the coordination of systems that rely on centralization. We
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have not been able to find a theoretical basis for this claim. The closest works addressing
team rewards in cooperative settings that we could find include works on difference
rewards which try to measure the impact of an individual agent’s actions on the full system
reward [12]. The high learnability, among other nice properties, makes difference rewards
attractive but impractical, due to the required knowledge of the total system state [13–15].

We investigate the effects of changing the reward from a joint reward to an individual
reward in the Level-Based Foraging (LBF) environment. We investigate how different
CLDE algorithm performances change as a result of this change and discuss this perfor-
mance change. In this work, we study the effect of varying reward functions from joint
rewards to individual rewards on Independent Q Learning (IQL) [16], Independent Prox-
imal Policy Optimization (IPPO) [17], independent synchronous actor–critic (IA2C) [6],
multi-agent proximal policy optimization (MAPPO) [7], multi agent synchronous actor–
critic (MAA2C) [5,6], value decomposition networks (VDN) [10], and QMIX [9] when
evaluated on the LBF environment [18]. This environment was chosen as it is a gridworld
environment, and therefore simpler to understand when compared to other MARL environ-
ments such as those based on the StarCraft environment; however, it is a very challenging
environment that requires cooperation to solve and has the ability to include the forcing of
cooperative policies and partial observability for study.

We show empirically that using an individual reward in the LBF environment causes
an increase in the variance in the reward term in the Temporal Difference (TD) error signal
and any derivative of this term. We study the effects that this increase in variance has on
the selected algorithms and discuss whether this variance is helpful for the learning of
better joint policies in the LBF environment. Our results show that PPO-based algorithms,
with and without centralized systems and QMIX, perform better with individual rewards,
while actor–critic models based on A2C suffer when using individual rewards.

This work is comprised of multiple sections, starting with the background in Section 2.
Section 3 outlines our experimental method, and we report our results in Section 4. We
discuss the results and compare them to the previous results in Section 5. All supplementary
information pertaining to this work can be found in the Appendices A–C.

2. Background

2.1. Dec-POMDPs

We define a fully cooperative task as a decentralized partially observable Markov deci-
sion process (Dec-POMDP) which consists of the tuple M = < D, S, A, T, O, o, R, h, b0 > [4].
Where D is the set of agents, S is the set that describes the true state of the environment, A is
the joint action set over all agents, and T is the transition probability function, mapping the
joint actions to state. O is the joint observation set, o represents the observation probability
function, and R is the reward function which describes the set of all individual rewards for
each agent R = Ri

t. The problem horizon, h, is equivalent to the discount factor γ in the RL
literature. The initial state distribution is given by b0. M describes a partially observable
scenario in which agents interact with the environment through observations, without ever
knowing the true state of the environment. When agents have full access to the state
information, the tuple becomes < D, S, A, T, R, h, b0 > and is defined as Multi-agent Markov
Decision Process (MMDP) [4].

2.2. Reward Functions
2.2.1. Joint Reward

The entire team receives a joint reward value at each time step taken as the sum
of all individual agent rewards R = Ri = · · · = RN = ∑N

i=1 Ri
t. The joint reward has

an interesting property that is usually left aside: by being the summation of all agents’
rewards, if an agent is not participating in a reward event, they still receive a reward. This
creates a small but nonzero probability for all agents to receive a reward in any state and
for any action. In addition, in partially observable tasks, these reward events can occur
with no context for some of the agents. The advantage of the joint reward is a salient signal
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across all that can be learned from, as well as additional information about the performance
of team members that may or may not be observable.

2.2.2. Individual Reward

Mixed tasks differ from the fully cooperative case only in terms of the reward received
by the agents. Mixed tasks attribute individual rewards to each agent rather than a joint
reward, making the term R in the tuple M, R = Ri

t for each agent i. During reward events,
a reward is only given to agents who participate in reward events. This reduces the saliency
of the reward signal during a reward event, and can cause increased variance in the reward
signal when different agents achieve a reward.

2.3. Level-Based Foraging

Level-Based Foraging (LBF) is a challenging exploration problem in which multiple
agents must work together to collect food items scattered randomly on a gridworld [18].
The environment is highly configurable, allowing for partial observability and the use of
cooperative policies only. In LBF, agents and food are assigned random levels, with the
maximum food level always being the sum of all agent levels. Agents can take discrete
actions, such as moving in a certain direction, loading food, or not taking any action. Agents
receive rewards when they successfully load a food item, which is possible only if the sum
of all agent levels around the food is equal to or greater than the level of the food item.
Agent observations are discrete and include the location and level of all food and agents on
the board, including themselves.

The LBF environment is highly configurable, starting with gridworld size, number
of agents, and number of food items. The scenarios in the LBF are described using the
following nomenclature: NxM-Ap-Bf, where N and M define the size of the gridworld, A
indicates the number of agents, and B indicates the number of food objectives in the world.
A 10 by 10 grid world with three agents and three food would be described as 10x10 -3p-3f.
Additionally, partial observability can be configured by adding Cs- before the grid size. C
defines the radius size that agents can observe. For all objects outside the radius, the agent
will receive a constant value of −1 in that observation. Finally, the addition of the -coop
tag after the number of food causes the game to enforce that all agents must be present to
collect food, thereby forcing cooperative policies to be the only policies that can be learned.
As an example, an eight-by-eight gridworld with two players and two food that forces
cooperative policies while subjecting the agents to partial observability with a radius of
two would be specified as 2s-8x8-2p-2f-coop . An example of the LBF gridworld is shown in
Figure 1.

Figure 1. LBF Foraging-8x8-2p-3f example gridworld taken from Papoudakis et al. [5]
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3. Method

To compare our results with those of previous publications, we made sure that the sce-
narios and scenario parameters matched those of Papoudakis et al. [5] and Atrazhev et al. [19],
and the results were compared to the results of those previous works.

To remain consistent with previous publications, the LBF scenarios selected for this
study are 8x8-2p-2f-coop, 2s-8x8-2p-2f-coop, 10x10-3p-3f, and 2s-10x10-3p-3f. Algorithms are
also selected based on these criteria: IQL [16], IA2C [6], IPPO [17], MAA2C [5], MAPPO [7],
VDN [10] and QMIX [9] were selected as they are studied in both Papoudakis et al. [5] and
in Atrazhev et al. [19] and represent an acceptable assortment of independent algorithms,
centralized critic CLDE algorithms, and value factorization CLDE algorithms.

To evaluate the performance of the algorithm, we calculate the average returns and
maximum returns achieved throughout all evaluation windows during training, and the
95% confidence interval across ten seeds.

Our investigation consists of varying two variables, the reward function, and episode
length. The length of the episode was varied between the reported value of 25 used by
Papoudakis et al. [5] and 50, which is the default length of the episode in the environment.
We perform two separate hyperparameter tunings, one for each reward type, adhering to
the hyperparameter tuning protocol included in Papoudakis et al. [5].

All other experimental parameters are taken from Papoudakis et al. [5], and we
encourage readers to look into this work for further details.

4. Results

We compare IQL, IA2C, IPPO, MAA2C, MAPPO, VDN, and QMIX and report the mean
returns and max returns achieved by algorithms using individual rewards in Tables 1 and 2,
respectively. The mean returns and maximum returns of algorithms using joint rewards are
reported in Tables 3 and 4, respectively. We include tables for the increased episode length
(50 timesteps) in the Appendix C.

Table 1. Maximum returns and 95% confidence interval of algorithms using individual rewards
in selected scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values
indicate the best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.11 1.00 ± 0.00
8x8-2p-2f-2s-c 0.97± 0.0 0.94± 0.01 0.95± 0.01 0.93± 0.01 0.93± 0.01 0.97± 0.0 0.98 ± 0.00

10x10-3p-3f 0.94± 0.02 0.86± 0.01 0.88± 0.04 0.85± 0.03 0.86± 0.02 0.93± 0.04 0.95 ± 0.02
10x10-3p-3f-2s 0.75± 0.01 0.71± 0.02 0.76± 0.02 0.7± 0.02 0.73± 0.07 0.74± 0.01 0.77 ± 0.01

Table 2. Mean return values and 95% confidence interval of algorithms using individual rewards
in selected scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values
indicate the best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 0.78± 0.08 0.82± 0.02 0.84 ± 0.07 0.78± 0.05 0.77± 0.07 0.7± 0.08 0.75± 0.04
8x8-2p-2f-2s-c 0.83± 0.01 0.71± 0.01 0.77± 0.01 0.68± 0.01 0.69± 0.03 0.81± 0.01 0.86± 0.01

10x10-3p-3f 0.68± 0.02 0.7± 0.02 0.72± 0.03 0.66± 0.03 0.69± 0.02 0.55± 0.04 0.58± 0.03
10x10-3p-3f-2s 0.62 ± 0.0 0.55± 0.02 0.58± 0.02 0.51± 0.02 0.53± 0.06 0.57± 0.01 0.62±0.01

Table 3. Maximum returns and 95% confidence interval of algorithms using joint rewards in selected
scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values indicate the
best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
8x8-2p-2f-2s-c 0.97± 0.01 1.0 ± 0.0 0.63± 0.02 1.0 ± 0.0 0.56± 0.02 0.98± 0.0 0.97± 0.0

10x10-3p-3f 0.89± 0.08 0.99 ± 0.01 0.89± 0.02 0.98± 0.01 0.9± 0.24 0.9± 0.03 0.91± 0.02
10x10-3p-3f-2s 0.7± 0.01 0.84 ± 0.04 0.56± 0.01 0.85 ± 0.01 0.58± 0.01 0.77± 0.01 0.76± 0.04
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Table 4. Mean return values and 95% confidence interval of algorithms using joint rewards in selected
scenarios over 10 seeds, after a hyperparameter search was completed. Bolded values indicate the
best result in a scenario.

Scenario IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 0.77± 0.08 0.96± 0.01 0.96± 0.01 0.97 ± 0.01 0.96± 0.02 0.78± 0.04 0.69± 0.04
8x8-2p-2f-2s-c 0.82± 0.01 0.94 ± 0.01 0.39± 0.02 0.94 ± 0.0 0.45± 0.02 0.84± 0.0 0.79± 0.01

10x10-3p-3f 0.47± 0.07 0.88 ± 0.02 0.71± 0.03 0.87± 0.02 0.59± 0.21 0.56± 0.03 0.46± 0.04
10x10-3p-3f-2s 0.56± 0.01 0.67± 0.05 0.44± 0.0 0.69 ± 0.02 0.46± 0.0 0.6± 0.01 0.56± 0.05

We generally observe that in the individual reward case, QMIX is able to consistently
achieve the highest maximal return value in all scenarios. In terms of the highest mean
returns, QMIX is able to outperform IPPO in the partially observable scenarios. In the joint
reward case, the majority of the results are in line with those reported in [5]; however, we
note that the average return results for QMIX are much higher with our hyperparameters.
We go into more detail regarding these results in Appendix A.

When comparing joint reward performance with individual reward performance, we
note that the effects of reward are not easily predictable. Centralized critic algorithms are
evenly split in performance, with MAPPO performing better with individual reward, while
MAA2C’s performance suffers. This is paralleled by the independent versions of MAPPO
and MAA2C. The value factorization algorithms are also divided, with QMIX performance
becoming the top-performing algorithm across the tested scenarios. VDN, however, sees an
incredible drop in performance when using joint rewards. Finally, IQL performance when
using individual reward is relatively unaffected in the simpler 8x8 scenarios but decreases
in the larger scenarios.

5. Discussion

5.1. Independent Algorithms
5.1.1. IQL

Our results show that IQL achieves increased mean return values and maximum
return values when using individual rewards. Our results also show that IQL experienced
a reduction in loss variance when using individual rewards. Since IQL is an independent
algorithm, the joint reward is the only source of information from other agents. Seeing that
IQL does not observe the other agents specifically, our results suggest that the joint reward
seems to increase the variance in the loss function by the nonzero probability of agents
receiving the reward at any timestep, as discussed earlier. The reduction in variance in the
loss function allows for better policies to be learned by each individual agent, and this is
further evidenced by the reduction in variance and simultaneous increase in the mean of
the absolute TD error that agents have in the CLBF experiments.

5.1.2. IPPO

IPPO is able to use the individual reward signal to achieve higher mean returns and
maximum returns in all scenarios except for the 8x8-2p-2f-coop. We believe that this is
in large part due to the decrease in variance that is observed in the maximum policy
values that are learned. Our results show that the TD error that is generated from multiple
different individual rewards appears to be higher and more varied than the TD error that is
generated from a joint reward. This variance seems to permeate through the loss function,
allowing the algorithm to continue discovering new higher policies through training. It
seems that joint rewards cause the TD error to start out strong, and quickly the algorithm
finds a policy (or set of policies) that has the maximal chances of achieving rewards at
all timesteps. This is a local minimum, but the error is too small for policies to escape
the minima.
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5.1.3. IA2C

IA2C suffers from the increase in variance in individual rewards. We note evidence
of divergent policy behaviour in a number of metrics, most notably the critic and policy
gradient loss. The critic is still able to converge; however, the policy gradient loss diverges
quite a bit more in the individual reward case. It seems that a joint reward is necessary to
help coordinate the agent’s behaviour.

5.2. Value Factorization Algorithms
5.2.1. VDN

VDN with individual rewards has a very rapid reduction in loss values. Our data
suggest that when using individual rewards, VDN converges prematurely on suboptimal
policies, causing the observed reduction in mean and max return. This may be due to
the fact that VDN does not incorporate any state information into the creation of the joint
value function. The authors seem to have relied on the information contained in the joint
rewards to help guide the coordination of agents through the learned joint value function.
With individual rewards, the joint action value function simply optimizes for the first policy
that serves to maximize returns without regard for agent coordination or guiding agents to
find optimal policies.

5.2.2. QMIX

Our results show that when individual rewards are used with qmix, return mean and
maximum return values are increased. When comparing joint rewards to independent
rewards, independent rewards show signs of faster convergence in loss and gradient norms.
Qmix’s combination of monotonicity constraints and global state information in its hyper-
network seems to be able to find coordinated policies when using individual rewards that
achieve higher returns than those found when using joint rewards. By leveraging the
global state information during training, the improvement shows significantly higher in the
partially observable scenarios where the increased information builds stronger coordination
between agents.

5.3. Centralized Critic Algorithms

Performance in centralized critics is varied and seems to depend on the underlying
algorithm used.

5.3.1. MAA2C

The increase in information that is imparted by MAA2C’s centralized critic seems to
not be enough to counter the increase in variance that is caused by individual rewards.
When using joint rewards, the critic is able to converge and is able to guide the actor policies
to find optimal values relatively quickly, and is best demonstrated by the convergence of
the TD error. When using individual rewards, there seems to be too much variance for the
critic to be able to converge quickly. It has been shown that simply adding a centralized
critic to an actor–critic MARL algorithm with the hopes of decreasing variance in the agent
learning is not necessarily true and will actually increase the variance seen by actors [11]. It
seems that in MAA2C, using the joint reward to decrease the variance seen by the critic
is a good way to increase performance. We do, however, note that when we increased
the episode length, the individual reward mean and max returns continued to increase;
however, they do not show any evidence of rapid convergence. It seems that more research
is required on the effects of increasing the episode length to determine if the joint reward
has a bias component.

5.3.2. MAPPO

Similarly to IPPO, MAPPO performs better when using individual rewards than
when using joint rewards. MAPPO’s centralized critic does not seem to be able to prevent
the critic from converging prematurely. Centralized critics have been shown to increase
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variance [11]; however, our results show that the increase in variance in the critic loss is not
enough. Just as in IPPO, the critic converges within 100 episodes when using joint rewards.
This corresponds to the majority of the gains in return, which seems to indicate that some
local minima are found by the algorithm.

6. Conclusions and Future Work

In summary, our results show that different CLDE algorithms respond in different
ways when the reward is changed from joint to individual in the LBF environment. MAPPO
and QMIX show that they are able to leverage the additional variance present in the
individual reward to find improved policies, while VDN and MAA2C suffer from the
increase and perform worse. Of the centralized critic algorithms, it seems that it is crucial
that the centralized algorithm critic be able to converge slowly enough to find the optimal
joint policy, but not fast enough to find a local minima. In addition, if the critic is too
sensitive to the increase in variance, it may diverge as in MAA2C and be unable to find
the optimal policy. Value decomposition methods also seem to need additional state
information to condition the coordination of agents to learn optimal policies. Since much
of the emergent behaviour sought in MARL systems is a function of how agents work
together, we feel that the choice of reward function may be of even more importance in
MARL environments than in a single-agent environment. Our results hint that there may be
some greater bias variance-type trade-off between joint and individual rewards; however,
more research will need to be performed to confirm this.

As we have outlined in several sections of this work, there are still many questions
that need answering before we can definitively say that the choice of using a joint reward
or an individual reward when training MARL algorithms comes down to a bias variance
trade-off. First, this theory of increased variance would need to be studied in simpler
scenarios that can be solved analytically in order to confirm that individual rewards do
increase variance. This simpler scenario would need to have the same sparse positive
reward as seen in the LBF. Following the establishment of this theoretical underpinning,
the next step would be to either relax the sparse constraint or the positive reward constraint
and still see if the theory holds true. Once that is performed, a definitive conclusion could
be presented about the effects of varying reward functions between joint and individual
rewards in cooperative MARL systems.
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Appendix A. Hyperparameter Optimization

CLBF Hyperparameter Optimisation

The appendix of [5] contains the hyperparameter search protocol that they used in
order to perform their hyperparameter search. In order to keep the comparison to [5], we
propose following the same hyperparameter search protocol, which is outlined in Table A1.
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Table A1. Hyperparameter search protocol taken from [5].

Hyperparameters Values

Hidden dimension 64/128
Learning rate 0.0001/0.0003/0.0005

Reward Standardization True/False
Network Type FC/GRU

Evaluation Epsilon 0.0/0.05
Epsilon Anneal 50,000/200,000
Target Update 200 (hard)/0.01 (soft)

Entropy Coefficient 0.01/0.001
n-step 5/10

The hyperparameter search was performed as follows. A search with three seeds
was performed on the 10x10-3p-3f scenario to narrow down a short list of candidate
hyperparameter configurations. Priority was given to hyperparameter sets that repeat.

Table A2 Shows the difference between previously tested hyperparameters and the hyper-
parmeters that were discovered during the hyperparameter search on the CLBF environment.

Table A2. IPPO selected hyperparameters.

Hyperparameters Papoudakis et al. [5] Our Hyperparameter Search

Hidden dimension 128 64
Learning rate 0.0003 0.0003

Reward Standardization False True
Network Type FC GRU
Target Update 200 (hard) 200 (hard)

Entropy Coefficient 0.001 0.01
n-step 5 10

Appendix B. Validation of Papoudakis et al. [5] Results

As part of our work on the analysis of algorithmic performance, we replicated the
work that was performed as part of [5] on the LBF environment. This section includes the
data that were collected from our repeated experiments. We used the hyperparameters that
were reported in the appendix section of [5] and ran 10 runs for each hyperparameter con-
figuration. The selected hyperparameters were those for parameter sharing, and parameter
sharing was used for the data collection to keep in line with the results in [5].

We found discrepancies between the reported data in [5] for VDN and QMIX, and these
discrepancies also seem to explain some of the results we reported in [19]. Notably, we
found that the convergence of the value factorization methods was not reported properly
in [5], and these convergence values are in line with the increase in convergence rates that
we found in [19].

Table A3. Maximum returns and 95% confidence interval of hyperparameter configurations taken
from [5]. Bolded values are those that differ significantly from [5].

Tasks/Algs IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 1.0± 0.0 1.0± 0.00 1.0± 0.00 1.0± 0.00 1.0± 0.0 1.0± 0.00 1.0± 0.00
8x8-2p-2f-2s-c 0.97± 0.01 1.0± 0.0 0.63± 0.02 1.0± 0.0 0.56± 0.02 0.98± 0.00 0.97± 0.0

10x10-3p-3f 0.89± 0.08 0.99± 0.01 0.89± 0.02 0.98± 0.01 0.9± 0.24 0.9± 0.03 0.91± 0.02
10x10-3p-3f-2s 0.7± 0.01 0.84± 0.04 0.56± 0.01 0.85± 0.01 0.58± 0.01 0.77± 0.01 0.76± 0.04
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Table A4. Average returns and 95% confidence interval of hyperparameter configurations taken
from [5]. Bolded values are those that differ significantly from [5].

Tasks/Algs IQL IA2C IPPO MAA2C MAPPO VDN QMIX

8x8-2p-2f-c 0.77± 0.08 0.96± 0.01 0.96± 0.01 0.97± 0.01 0.96± 0.02 0.78± 0.04 0.69± 0.04
8x8-2p-2f-2s-c 0.82± 0.01 0.94± 0.01 0.39± 0.02 0.94± 0.0 0.45± 0.02 0.84± 0.0 0.79± 0.01

10x10-3p-3f 0.47± 0.07 0.88± 0.02 0.71± 0.03 0.87± 0.02 0.59± 0.21 0.56± 0.03 0.46± 0.04
10x10-3p-3f-2s 0.56± 0.01 0.67± 0.05 0.44± 0.0 0.69± 0.02 0.46± 0.0 0.6± 0.01 0.56± 0.05

Appendix C. Variance Analysis Data

This section of the appendix contains all the statistical data analysis that was used
during the empirical variance analysis in Section 4. The statistical analysis used Bartlett’s
test in order to determine if the variance in two means is the same. The α value used to
determine statistical significance is α = 0.05. Bartlett’s test tests the null hypothesis h0 that
the variances of each data distribution tested are identical. If the p-value is below that of
the selected α, then the null hypothesis is rejected, and the variances of the data tested are
not the same. In our analysis, the data collected for each run were averaged over, and then
the set of 10 replicates was used in Bartlett’s test. The nan value indicates that there was
no variation at all because the algorithm was able to solve the scenario perfectly in the
25 timestep scenarios for both individual and joint rewards.

Appendix C.1. IQL

Below are the statistics that were gathered on the IQL algorithm. The result aspects of
the algorithm that were compared include the following:loss, grad norm, mean of selected
q values, means of return, max of returns, and target network mean q values for the selected
action. Variances are evaluated between joint reward and independent reward. Bolded
p-values reject the null hypothesis, indicating that the variances between the 25-step and
50-step runs are different.

Table A5. p-values of Bartlett’s test for homogeneity of variances for gradient norm values of IQL
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.88 0.15 0.048 0.35
50 0.066 0.63 0.18 0.044

Table A6. p-values of Bartlett’s test for homogeneity of variances for loss values of IQL between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.014 0.095 1.45 × 10−3 0.71
50 0.21 0.069 6.42 × 10−4 0.67

Table A7. p-values of Bartlett’s test for homogeneity of variances for the mean q value of selected
actions of IQL between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.68 0.50 0.074 0.002
50 0.56 0.49 0.059 0.64

Table A8. p-values of Bartlett’s test for homogeneity of variances for the target value of selected
actions of IQL between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.70 0.47 0.080 2.08 × 10−3

50 0.56 0.47 0.061 0.63
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Table A9. p-values of Bartlett’s test for homogeneity of variances for the mean return values of IQL
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.99 0.36 2.80 × 10−3 7.73 × 10−3

50 0.73 0.48 0.023 0.57

Table A10. p-values of Bartlett’s test for homogeneity of variances for the max return values of IQL
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.84 × 10−6 0.77 5.28 × 10−5 0.41
50 nan 9.22 × 10−3 1.60 × 10−3 0.47

Appendix C.2. IPPO

Below are the statistics that were gathered on the IPPO algorithm. The statistics that
were tested include the following: mean return, max return, agent grad norms, critic grad
norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Variances are evaluated between joint reward and independent reward. Bolded
p-values reject the null hypothesis, indicating that the variances between the 25-step and
50-step runs are different.

Table A11. p-values of Bartlett’s test for homogeneity of variance for mean returns of IPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 4.52 × 10−5 0.074 0.54 1.14 × 10−5

50 0.16 3.39 × 10−6 0.75 1.37 × 10−4

Table A12. p-values of Bartlett’s test for homogeneity of variance for max returns of IPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 0.013 0.049 9.04 × 10−4

50 0.0 8.66 × 10−7 8.26 × 10−6 0.34

Table A13. p-values of Bartlett’s test for homogeneity of variance for agent grad norms returns of
IPPO varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 8.27 × 10−17 9.97 × 10−4 1.17 × 10−12 3.23 × 10−14

50 9.14 × 10−16 5.11 × 10−8 8.82 × 10−13 5.99 × 10−18

Table A14. p-values of Bartlett’s test for homogeneity of variance for critic grad norms returns of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.98 × 10−21 1.15 × 10−13 2.98 × 10−22 2.27 × 10−15

50 4.39 × 10−23 2.60 × 10−15 9.49 × 10−20 5.75 × 10−18

Table A15. p-values of Bartlett’s test for homogeneity of variance for critic loss of IPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.51 × 10−25 2.56 × 10−10 2.33 × 10−22 2.43 × 10−17

50 1.69 × 10−28 1.79 × 10−11 1.01 × 10−18 2.90 × 10−18
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Table A16. p-values of Bartlett’s test for homogeneity of variance for policy gradient loss of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.86 × 10−17 2.06 × 10−9 5.25 × 10−14 4.11 × 10−12

50 1.22 × 10−22 9.84 × 10−17 7.55 × 10−14 4.60 × 10−14

Table A17. p-values of Bartlett’s test for homogeneity of variance for maximum policy values of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.39 × 10−5 1.28 × 10−3 0.19 0.18
50 0.64 6.63 × 10−4 1.88 × 10−4 0.011

Table A18. p-values of Bartlett’s test for homogeneity of variance for advantage means of IPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 2.05 × 10−17 3.98 × 10−10 9.86 × 10−15 2.59 × 10−12

50 1.12 × 10−21 1.38 × 10−16 5.35 × 10−14 8.63 × 10−14

Appendix C.3. IA2C

Below are the statistics that were gathered on the IA2C algorithm. The statistics that
were tested include the following: mean return, max return, agent grad norms, critic grad
norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Variances are evaluated between joint reward and independent reward. Bolded
p-values reject the null hypothesis, indicating that the variances between the 25-step and
50-step runs are different.

Table A19. p-values of Bartlett’s test for homogeneity of variances for mean return values of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.016 0.35 0.63 6.69 × 10−3

50 0.003 0.38 0.12 0.063

Table A20. p-values of Bartlett’s test for homogeneity of variances for max return values of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 4.27 × 10−4 0.071 0.29
50 0.0 0.0 2.07 × 10−9 0.016

Table A21. p-values of Bartlett’s test for homogeneity of variances for critic grad norm of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.25 0.24 0.33 0.005
50 0.13 0.31 0.019 0.010

Table A22. p-values of Bartlett’s test for homogeneity of variances for critic loss of IA2C between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.60 0.19 0.011 4.12 × 10−4

50 0.81 0.33 0.045 0.17
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Table A23. p-values of Bartlett’s test for homogeneity of variances for PG loss of IA2C between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.25 0.24 0.33 4.89 × 10−3

50 0.13 0.31 0.019 9.87 × 10−3

Table A24. p-values of Bartlett’s test for homogeneity of variances for advantage mean of IA2C
between 25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.20 0.17 3.13 × 10−3 0.033
50 0.029 0.13 0.15 3.15 × 10−3

Appendix C.4. VDN

Below are the statistics that were gathered on the VDN algorithm. The results aspects
of the algorithm that were compared include the following: loss, grad norm, mean of
selected q values, means of return, max of returns, and target network mean q values for
the selected action. Variances are evaluated between joint reward and independent reward.
Bolded p-values reject the null hypothesis, indicating that the variances between the 25-step
and 50-step runs are different.

Table A25. p-values of Bartlett’s test for homogeneity of variances for gradient norm values of VDN
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.30 0.41 1.00 0.13
50 0.45 0.011 0.55 0.005

Table A26. p-values of Bartlett’s test for homogeneity of variances for loss values of VDN between 25
timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.17 0.40 0.016 0.10
50 0.87 0.58 0.33 0.076

Table A27. p-values of Bartlett’s test for homogeneity of variances for the mean q value of selected
actions of VDN between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.034 0.099 0.77 0.052
50 0.021 0.87 0.83 0.20

Table A28. p-values of Bartlett’s test for homogeneity of variances for the target network mean q
values of selected actions of VDN between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.034 0.11 0.78 0.038
50 0.020 0.86 0.81 0.18

Table A29. p-values of Bartlett’s test for homogeneity of variances for the mean return values VDN
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.038 0.002 0.27 0.11
50 0.36 0.75 0.71 0.37
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Table A30. p-values of Bartlett’s test for homogeneity of variances for the max return values VDN
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 0.50 0.31 0.089
50 0.0 0.26 0.26 0.003

Appendix C.5. QMIX

Below are the statistics that were gathered on the QMIX algorithm. The results aspects
of the algorithm that were compared include the following: loss, grad norm, mean of
selected q values, means of return, max of returns, and target network mean q values for
the selected action. Variances are evaluated between joint reward and independent reward.
Bolded p-values reject the null hypothesis, indicating that the variances between the 25-step
and 50-step runs are different.

Table A31. p-values of Bartlett’s test for homogeneity of variances for loss values of Qmix between
25 timesteps and 50 timesteps.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 8.18 × 10−6 0.13 7.12 × 10−5 5.66 × 10−8

50 9.17 × 10−32 1.84 × 10−10 0.25 3.55 × 10−4

Table A32. p-values of Bartlett’s test for homogeneity of variances for gradient norm values of Qmix
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 2.92 × 10−8 0.20 6.36 × 10−7 7.19 × 10−10

50 1.09 × 10−17 1.53 × 10−11 1.06 × 10−3 9.73 × 10−7

Table A33. p-values of Bartlett’s test for homogeneity of variances for the mean q value of selected
actions of Qmix between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.04 0.55 0.01 1.65 × 10−8

50 0.04 2.86 × 10−8 0.03 0.08

Table A34. p-values of Bartlett’s test for homogeneity of variances for the target network mean q
values of selected actions of Qmix between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.04 0.52 6.18 × 10−3 1.21 × 10−8

50 0.03 2.66 × 10−8 0.03 0.07

Table A35. p-values of Bartlett’s test for homogeneity of variances for the max return values Qmix
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 Nan 0.90 0.76 2.73 × 10−4

50 4.65 × 10−6 0.83 3.90 × 10−4 0.21

Table A36. p-values of Bartlett’s test for homogeneity of variances for the mean return values Qmix
between 25 timesteps and 50 timesteps grouped by scenario.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.87 0.61 0.40 1.24 × 10−5

50 7.55 × 10−3 2.10 × 10−2 0.51 0.25
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Appendix C.6. MAA2C

Below are the statistics that were gathered on the MAA2C algorithm. The statistics
that were tested include the following: mean return, max return, agent grad norms,critic
grad norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Bolded p-values reject the null hypothesis, indicating that the variances between
the 25-step and 50-step runs are different.

Table A37. p-values of Bartlett’s test for homogeneity of variance for mean returns of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.46 × 10−7 9.93 × 10−5 0.12 0.22
50 9.03 × 10−8 7.12 × 10−12 1.59 × 10−7 0.89

Table A38. p-values of Bartlett’s test for homogeneity of variance for Max Returns of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.0 9.83 × 10−10 1.09 × 10−4 0.011
50 0.0 0.0 9.83 × 10−2 0.28

Table A39. p-values of Bartlett’s test for homogeneity of variance for agent grad norms of MAA2C
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.90 7.12 × 10−2 0.43 4.62 × 10−3

50 1.76× 10−2 0.50 0.80 4.54 × 10−2

Table A40. p-values of Bartlett’s test for homogeneity of variance for critic grad norms of MAA2C
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.33 0.020 2.81 × 10−5 0.74
50 0.13 0.005 0.13 0.012

Table A41. p-values of Bartlett’s test for homogeneity of variance for critic loss of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 0.027 2.52 × 10−4 0.004 0.69
50 0.029 0.11 1.20 × 10−5 0.59

Table A42. p-values of Bartlett’s test for homogeneity of variance for pg loss of MAA2C varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.20 × 10−5 1.32 × 10−5 2.22 × 10−3 0.029
50 0.034 1.17 × 10−6 0.014 0.025

Table A43. p-values of Bartlett’s test for homogeneity of variance for max policy values of MAA2C
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.28 × 10−7 6.16 × 10−4 0.18 0.019
50 3.31 × 10−4 1.64 × 10−3 1.94 × 10−8 0.061
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Table A44. p-values of Bartlett’s test for homogeneity of variance for advantage mean values of
MAA2C varying episode length between 25 timesteps and 50 timesteps and comparing reward func-
tions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.51 × 10−3 0.025 1.11 × 10−3 0.071
50 0.38 3.53 × 10−4 0.90 1.07 × 10−4

Appendix C.7. MAPPO

Below are the statistics that were gathered on the MAPPO algorithm. The statistics
that were tested include the following:mean return , max return, agent grad norms, critic
grad norms, critic loss, policy gradient loss, maximum Pi values of the actor, and advantage
means. Bolded p-values reject the null hypothesis, indicating that the variances between
the 25-step and 50-step runs are different.

Table A45. p-values of Bartlett’s test for homogeneity of variance for return means of MAPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.21 × 10−4 0.12 1.08 × 10−6 2.85 × 10−6

50 2.76 × 10−6 0.84 0.92 4.05 × 10−6

Table A46. p-values of Bartlett’s test for homogeneity of variance for return maxes of MAPPO varying
episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.28 × 10−5 0.90 3.71 × 10−8 3.70 × 10−4

50 0.00 1.86 × 10−5 1.66 × 10−6 1.74 × 10−3

Table A47. p-values of Bartlett’s test for homogeneity of variance for agent grad norms of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.73 × 10−12 1.85 × 10−5 2.49 × 10−10 3.24 × 10−9

50 6.17 × 10−16 2.60 × 10−8 3.29 × 10−13 4.52 × 10−18

Table A48. p-values of Bartlett’s test for homogeneity of variance for critic grad norm of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 1.29 × 10−17 2.35 × 10−11 6.32 × 10−11 4.66 × 10−12

50 1.53 × 10−20 1.51 × 10−19 9.26 × 10−22 8.30 × 10−20

Table A49. p-values of Bartlett’s test for homogeneity of variance for policy gradient loss of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 3.46 × 10−18 6.95 × 10−7 1.15 × 10−7 6.13 × 10−8

50 3.70 × 10−22 1.11 × 10−17 1.14 × 10−14 3.87 × 10−16

Table A50. p-values of Bartlett’s test for homogeneity of variance for max policy values of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 6.89 × 10−3 0.83 1.44 × 10−6 0.22
50 0.015 0.15 0.40 0.10
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Table A51. p-values of Bartlett’s test for homogeneity of variance for advantage mean values of MAPPO
varying episode length between 25 timesteps and 50 timesteps and comparing reward functions.

Foraging-8x8-2p-2f-coop/ Foraging-2s-8x8-2p-2f-coop/ Foraging-10x10-3p-3f/ Foraging-2s-10x10-3p-3f/

25 2.81 × 10−18 4.19 × 10−7 3.13 × 10−7 5.83 × 10−8

50 6.95 × 10−22 1.27 × 10−17 1.62 × 10−14 4.02 × 10−16
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Abstract: Blockchain is currently a core technology for developing new types of decentralized
applications. With the unique properties of blockchain, unique challenges and characteristics are
introduced to the system. Among these characteristics, the infrastructure costs and benefits of the
system are critical to evaluate the feasibility of any system and have yet to be addressed in the current
literature. This work presents a framework for evaluating blockchain applications’ infrastructure
costs and benefits. The framework includes a taxonomy to classify the related transactions, a model to
evaluate the infrastructure costs and benefits in applications using public or private blockchains, and
a methodology to guide the use of the model. The model is based on simple parameters that describe
the systems, and the methodology helps to identify and estimate these parameters at any stage of the
application life cycle. We quantitatively analyze three real use cases to demonstrate the framework’s
merit. The analyses highlight the model’s accuracy by achieving the same results presented in the use
cases. Furthermore, the use-case analyses emphasize the framework’s potential to evaluate different
scenarios across the entire life cycle of blockchain-based applications.

Keywords: blockchain; software; infrastructure; costs; benefits; evaluation

1. Introduction

Blockchain is recognized as one of the most important technology disruptions in
the latest years [1]. Researchers and practitioners have shown increasing interest in
leveraging blockchain technology’s unique benefits and properties to empower new soft-
ware systems [2]. Applications in several domains have adopted private [3] and public
blockchain networks [4,5] to provide a software platform where interactions between actors
can occur without intermediaries. Thus, from a software perspective, blockchain has been
mainly characterized as an architecture component that provides immutable storage and
computational capabilities in a decentralized way. The unique properties of this software
component also raise new challenges across the systems development life cycle while
introducing unexplored characteristics that need to be identified and evaluated [1,6]. Much
of the current literature has focused on non-functional characteristics of blockchain-based
systems, such as scalability, security, and performance [6,7].

However, blockchain is still in the early stages of adoption [8], and more is needed to
know about other characteristics supporting the system development, deployment, and
evaluation. Among these characteristics, the infrastructure to support the application is
critical to evaluate the potential monetary value in terms of costs and benefits across the en-
tire application life cycle. Costs and benefits can greatly increase the adoption of blockchain
on software systems [1], as blockchain technology is a major target of investments for
companies [7]. Although there has been some research on evaluating the infrastructure
costs of blockchain applications [1,9], these findings are focused on particular use cases
and are not extendable to other scenarios. Each application and use case may have unique
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requirements and characteristics that must be considered to evaluate its blockchain in-
frastructure [1]. Therefore, further research is necessary to fully understand blockchain
applications’ potential costs and benefits across various use cases and contexts.

This work presents an infrastructure cost framework for blockchain-based software
systems, extending a first version of the model presented in [10]. We propose a framework
to evaluate application costs and benefits from the early stages of development to the
exploitation phase, based on the blockchain software component of the system. Our goal
is to provide a tool matching the existing literature on the cost and benefits of blockchain-
based applications while also providing the tools to analyze more complex cost scenarios.

The framework comprises a transaction taxonomy, a cost and benefits model for public
and private networks, and a methodology to apply the model. First, the taxonomy aims
to classify and generalize typical transactions in the life cycle of blockchain applications.
Then, the infrastructure cost and benefits model aims to create evaluation scenarios over the
entire application’s life cycle based on simple application parameters. The selection of these
parameters aims to simplify the characterization of the system with minimal application
domain knowledge. Finally, we propose a methodology for identifying and estimating
the model parameters. To illustrate the proposed framework’s usability, we quantitatively
analyze the monetary costs and benefits of three blockchain-based applications from the
current literature. These evaluations highlight the flexibility of the model to work for
public and private blockchains, the simplicity of identifying the model parameters using
the proposed methodology, and the benefits of the framework to analyze different scenarios
for the entire application life cycle.

The contribution of this paper is three-fold. (i) We propose a transaction taxonomy for
blockchain-based applications. (ii) We define an infrastructure cost model for private and
public blockchains. (iii) We propose a methodology that identifies and estimates the model
parameters to create and evaluated scenarios over the application’s life cycle.

The rest of this paper is structured as follows: Section 2 describes similar works and
highlights the gap in the literature; Section 3 formalizes the problem our framework ad-
dresses; Section 4 describes the proposed framework by detailing the transaction taxonomy,
cost model, and methodology; Section 5 uses the methodology to apply the model and
evaluate three real use cases. We finalize the paper with our conclusion and plans for
future work.

2. Related Works

In recent years, there has been an increasing amount of literature on blockchain as
a core component for developing new software systems. From a system and software-
engineering perspective, blockchain applications present inherent challenges, such as
scalability, security, and performance [6] given by a specific life cycle that introduces
unique constraints and characteristics in the system [1]. Much of the current literature on
blockchain-based systems pays particular attention to high-level characteristics such as
the levels of permissions or types of actors to evaluate which software components can
benefit from blockchain [11] or if other software components are sufficient [12]. However,
monetary costs are still marginally addressed.

In this context, one of the first studies addressing the topic of costs for a blockchain-
based system is presented in [13]. The authors aimed to quantify the current scalability
limits of Bitcoin, and from that goal, they performed a small exploratory analysis of
estimating monetary costs. However, since they focus on the scalability aspects of Bitcoin,
they do not provide an approach compatible with a software-system perspective. Similarly,
the authors of [14] address the cost of a blockchain-based system in the context of a
blockchain-based digital payment. The authors rely on private Ethereum infrastructure
and present a brief analysis of the costs of managing the private architecture. Their model
focuses on the rewarding costs for miners and the costs of network resources, based on the
same scalability metrics described in [13].
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A different approach to cost is presented in [15] by describing an evaluation framework
that identifies factors influencing a blockchain application from a financial perspective
(i.e., cost savings and benefits). However, the proposal has a high-level approach that
divides the framework into five focus areas: the purpose of the blockchain, the features
of the blockchain, the cost reductions derived from using blockchain, environmental and
motivational factors for using blockchain, and the actual implementation and operations
costs. Therefore, infrastructure costs are linked to only one focus area and are addressed
with a narrow perspective. Similarly, the authors of [16] present a cost comparison between
the Ethereum blockchain and Amazon under the context of business process execution for
supply chain applications. In this work, the authors focus on operation costs under different
architecture choices and provide a good model for the Ethereum network. However,
they focus on the comparison against Amazon Simple Workflow Service but need more
generalization for other application scenarios or blockchain architectural choices.

Recently, authors of [17] presented an overview of blockchain-based applications
with a focus on smart contracts in the Ethereum network. On the one hand, the work
emphasized how Ethereum is becoming the preferred platform for developing blockchain-
based applications, a fact also highlighted by surveys such as [18,19]. On the other hand, the
study presented several metrics regarding the application, such as the level of open-source
and the usage of patterns in smart contracts. Here, the authors focused only on analyzing
existing applications, using gas usage as a metric to evaluate the costs of blockchain-
based systems on public networks. Nonetheless, they do not provide a model or structure
framework for this evaluation.

The importance of gas usage as a cost metric is also underlined by the authors of [20] in
their study about developing cost-effective blockchain-powered applications. The authors
emphasize that developers of these applications need to understand the gas of their smart
contract through the entire application lifecycle (deployment and usage). Furthermore, the
authors state that transactions with high gas usage will frequently have the same priority
as transactions with low gas usage when using the same gas price, despite the difference in
transaction fees. To leverage this topic, the authors propose a gas usage prediction models
to help developers make informed decisions regarding gas prices. However, the authors
do not address the cost of deploying or issuing the transaction in the context of a software
system; they only focus on the gas price. The authors of [9] conducted preliminary work
on infrastructure costs for blockchain-based systems based on gas usage. They provided a
simple monetary cost model for the required infrastructure in a farm-to-fork case study but
did not offer enough information to generalize to other architectures or case studies.

Summarizing, the infrastructure cost of blockchain-based applications has been marginally
analyzed in current literature, which leans to focus on metrics such as scalability and perfor-
mance or high-level concerns such as motivation or other environmental factors. Furthermore,
only a few works provide frameworks or models for these cost analyses. There is a need for an
approach that covers the entire lifecycle of blockchain-based applications or needs more details
to provide enough generalization to evaluate different scenarios, particularly on public and
private infrastructures.

3. Problem Definition

Our proposal aims to provide a model to allow actors and stakeholders to evaluate the
economic feasibility of a blockchain-based application. The model seeks to estimate costs
and monetary benefits during the entire life cycle of the application (i.e., from the early
stages of development to a more advanced stage of exploitation). Furthermore, the model
is general enough to evaluate a system using a private or a public blockchain network.

First, we consider a blockchain-based application as the software that supports the
interactions of a group of actors identified only by their private/public keys. These actors
have limited types of interactions to create and transfer information and value among them.
We consider that the entire application logic is in the blockchain so that all information
and interactions in the application are immutable, auditable, and accessible by anybody.
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Further, we consider that the application has a two-phase life cycle: bootstrap and operation,
similarly to the phases deployment and operation presented in [16]. It is important to
notice that off-chain computations and side-chains are beyond the scope of this paper.

Using this definition of a blockchain-based application, we defined the cost of the ap-
plication C(m) as the infrastructure needed to process and store the interactions I between
the actors A. These interactions generate a value unit K, which provides the monetary
benefits B(m) for a group of stakeholders S.

Therefore, we estimate C(m) and B(m) based on the characteristics of the application
and the blockchain network that supports it, i.e., the nodes running the network. The
number of nodes and configurations depends on the blockchains’ technical implementation
(e.g., consensus model). Furthermore, the configuration follows the application require-
ments (e.g., transaction life-span, latency, and throughput) and the existing trust between
stakeholders [21]. However, the type of blockchain used for the application (i.e., public or
private) makes a great difference in estimating the costs and benefits. On public blockchains,
transactions that create new information (i.e., modify the state of the blockchain) have
a monetary cost. Conversely, the transaction number does not directly affect the infras-
tructure cost in private blockchains. Therefore, we divided the model into two parts: the
public blockchain cost model and the private blockchain cost model, described in the
following section.

4. Proposed Cost and Benefit Model

In this section, we describe our proposed model to evaluate a blockchain-based
application’s infrastructure costs and benefits.

First, we define a transaction taxonomy since our model considers interactions among
actors and stakeholders (i.e., transactions) as the functional units for an application’s
life-cycle assessment (LCA). The taxonomy is called CRIV and classifies the interactions
between the actors in the framework of blockchain applications during all the development
and exploitation phases.

Then, we define the costs and benefits model using the proposed taxonomy and a
few simple system parameters. We model the costs of public and private blockchains
separately, given that the transaction fees depend on the network type. Similarly, we model
the monetary benefits for the stakeholders associated with a generic blockchain that can be
public or private.

Finally, we proposed a methodology that guides the model’s use by helping identify
and estimate the model parameters.

Table 1 lists and describes the mathematical symbols used as the parameters for the model.

Table 1. Parameters for the proposed cost model.

Parameter Description Parameter Description

A0 Number of initial actors S Number of stakeholders
K Value unit Lk K lifespan
PC(m) Cryptocurrency price PK Value unit price
Pnode Node price FI Interaction factor
μ Time factor for transactions Fg Growth factor
OC Computational cost of TC FV Value factor
OR Computational cost of TR Ft Trust factor
OI Computational cost of TI Fo Operation factor
OV Computational cost of TV Fk Benefit factor
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4.1. Proposed Transaction Taxonomy for Blockchain Applications

As described in the previous section, the interactions among actors in a blockchain-
based application are transactions. From the set I of all possible transactions, we focus only
on a subset T = {Ti, i = [C, R, I, V]} ⊂ I of transactions that creates new information for
the application and the actors. Considering that these transactions vary greatly from one
application to another, we propose the CRIV taxonomy to easily identify core transactions
and link them to the application’s life cycle. CRIV categorizes the interactions into four
types of transactions: creation TC, registration TR, interaction TI , and value TV . Figure 1
shows the four transactions in our taxonomy along with the general life cycle of the
application. Each type of transaction is defined as follows:

• Creation transaction TC deploys the application into the blockchain. TC may include
one or more transactions happening during the bootstrap phase.

• Registration transaction TR is required at the first interaction of an actor with the
system to make the actor part of the application.

• Interaction transaction TI are the most common interactions between actors. They pro-
duce information to be stored in the blockchain, without including any value transfer.

• Value transaction TV is the most important transaction as it includes the value transfer
between unknown actors.

Figure 1. Life cycle of a blockchain-based application.

4.2. Proposed Public Blockchain Cost Model

Given the life cycle of an application shown in Figure 1, we divide the cost model
into two components, i.e., the bootstrap CB and operation CO costs. CB considers the
transactions needed to deploy the application logic (TC) and the transactions to register
the initial actors (TR). CO considers the transactions for the registration of new actors (TR),
the interaction transactions between actors (TI), and the transactions that transfer value
(TV). Here, considering the general life cycle of an application, CB and CO are evaluated
in a given month m, defined as the minimal time window for assessing the systems. This
window makes it easier to make comparisons with other types of monetary evaluations
(e.g., budget planning). However, the cost model can easily adapt to shorter and longer
windows. Hence, the initial month (m = 0) corresponds to the bootstrap phase, and
any other month (m > 0) indicates the operation phase. We define the costs of a public
blockchain infrastructure Cpub(m) as:

Cpub(m) =

{
CB(m) = CTC(m) + CTR(m), if m = 0
CO(m) = CTR(m) + CTI(m) + CTV(m) m > 0

(1)

where CTi(m) is the total monetary costs paid in a month m, for all the transactions of
type i, where i = {C, R, I, V}. The monetary cost of a single transaction of type i links the
computational cost Oi of the transaction with the price of the cryptocurrency PC(m) and a
processing time factor μ. Finally, the total number of transactions of type i in a given month
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m is given by Qi(m). The price of the cryptocurrency PC(m) is a function that the user must
define by considering the high volatility of the cryptocurrency price and the scenario to
evaluate. For instance, the user can use historic cryptocurrency prices to define PC(m) with
a fixed value for any month (i.e., an average for all months). Similarly, the user can define
PC(m) with a different monthly value (i.e., an average for each month). The factor μ is used
to scale the price paid for each transaction (i.e., a transaction fee). Transactions with higher
prices are more attractive for the node operators and typically are processed faster since
the node that processes the transaction will receive the fee as a reward [20]. The total cost
CTi(m) for each transaction i is given by:

CTi(m) = Oi PC(m) μ Qi(m), with i ∈ {C, R, I, V} (2)

In the operational phase, the total number of transactions of each type i in a given
month m is directly related to the number of actors A(m) in the system defined as:

A(m) =

{
A0, if m = 1
A(m− 1) Fg m > 1

(3)

where A0 is the initial number of actors in the system and Fg is the actor growth factor that
describes the growth of the system in terms of actors related to the time unit m such that:

Fg = (A(m)/A(m− 1))− 1 (4)

For instance, a Fg = 0.5 means that if A(m− 1) = 100, then at A(m) = 150. Finally,
the number of each type of transaction Qi(m) in the operation phase (m > 0) with respect
to the actor number is defined as:

Qi(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for i = TC, m = 0
A(m)− A(m− 1) for i = TR, m ≥ 0
A(m) FI for i = TI , m > 0
A(m) FV for i = TV , m > 0

(5)

where QC(m) is equal to 0 after the bootstrap phase (m > 0). QR(m) is given by the number
of new actors in that month. QI(m) links the total number of actors in the system A(m)
using an interaction factor FI . FI relates to the expected number of interaction transactions
TI of each actor. For example, if each actor is expected to have at least two TI in the time
unit m (e.g., TI per month), the factor is set to FI = 2. Lastly, QV(m) links the total number
of actors with factor FV , which represents the value transfer transactions TV of each actor.
For instance, when actors are expected to have at least one TV every two months, the
factor is set to FV = 0.5. The user can estimate the values of FI and FV at an early stage
of development. In a more advanced stage, the factors can be estimated from the current
activity in the system.

4.3. Proposed Private Blockchain Cost Model

For applications based on a private blockchain, we define the infrastructure cost
CPri(m) in a given month m as divided into two components CB and CO, indicating the
bootstrap and the operation phase, respectively. CB is the initial investment to acquire N
nodes (i.e., computers) with a price Pnode to create the network infrastructure. CO is the
expense of running and operating the nodes. Similar to the traditional software systems,
we estimate the operating costs CO as a percentage of Pnode using a scale factor Fo. Fo is
estimated by considering the system characteristics in terms of the hardware and software
required to run the nodes. The infrastructure cost CPri(m) in a private blockchain is defined as:

CPri(m) =

{
CB(m) = N Pnode if m = 0
CO(m) = N Fo Pnode m > 0,

(6)
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In our model, the node number N is related to the number of stakeholders S by a trust
factor Ft:

N = S (1− Ft). (7)

where Ft is the relation between the N and the total number of stakeholders. For instance, if
100 stakeholders agree that only 30 different nodes are required to support the infrastructure,
there is a trust factor of 70%. Similarly, a 100% trust factor will translate into a centralized
system. Here, for simplicity, one node represents one stakeholder.

4.4. Proposed Model for Monetary Benefits

For applications based on both public and private blockchains, the monetary benefits
B(m) for the stakeholders are derived from the value units K transacted in the application
and are given by:

B(m) = Fk QV(m) PK (8)

where Fk is the benefit factor that indicates the expected value units for each value transfer
transaction TV , QV(m) is the number of value transfer transactions in the month m, and
PK is the price (i.e., total monetary value) of the value unit K. PK is the sum of all the
monetary values assigned to each stakeholder S (i.e., the benefit for each stakeholder). In a
public network, this value may also be linked to the price of the cryptocurrency, such as
PK(m) = 0.4 PC(m).

4.5. Proposed Methodology

From a software system perspective, a methodology is a procedure to help understand
the steps needed to perform a task with such a system [22]. Here, we propose a methodol-
ogy of five steps to guide the people behind the blockchain-based application (i.e., the user)
to use our model to perform a monetary evaluation of the application. The methodology
groups the model parameters into four categories, using the relations between the parame-
ters. These four groups translate into four steps (S1–S4), providing a simplified incremental
approach to identifying them. The last step of the methodology (S5) is the actual monetary
evaluation of the application and includes a series of proposed analyses. The five steps of
the methodology are:

(S1) Define the blockchain setup: The first step aims at selecting the blockchain net-
work on which the application will be implemented (e.g., Ethereum, Hyperledger).
Assign the values for the network’s node price Pnode, the operation factor Fo, the
cryptocurrency price PC(m), and the time factor μ.

(S2) Identify the actors and stakeholders: Once the blockchain network is selected,
the second step aims at identifying the actors A0 (i.e., who uses the application),
stakeholders S (i.e., who is interested in the application), the value unit K, and
its lifespan Lk (i.e., what is transacted in the application and how long it lasts).
Estimate how the number of actors will change Fg and how much trust is between
the stakeholders Ft.

(S3) Estimate the computational cost of interactions: The third step strives to apply
the proposed CRIV taxonomy to identify the different types of transactions and
estimate their computation costs Oc, Or, Oi, and Ov. Estimate the interaction factor
Fi and the value factor Fv.

(S4) Identify the benefits: The fourth step aims to give a monetary value to the value
unit Pk and estimate the benefits factor Fk. If these parameters can not be identified,
the model can still be used for estimating the costs, but the benefits will not be
available. At the end of this step, all the model parameters have been identified,
even if some values could not be estimated

(S5) Evaluate scenarios: Once all parameters have been identified, the values assigned pro-
vide a scenario to evaluate the blockchain-based application’s cost and benefits. Chang-
ing the model parameters value can provide different scenarios to compare (different
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Fg, different PC(m). Some of the most common evaluations include: using Equation (1)
to estimate the bootstrap and operation costs on a public network or using Equation (6)
for a private network. Another example is using Equation (8) for estimating the bene-
fits. Furthermore, equations and parameters can be combined to obtain other evalu-
ations. For instance, dividng Equation (1) by the number of actors on a given month
C(m)/A(m) can provide an estimate of how much each actor will pay for the system
operation. For each evaluation, varying the model parameters value can provide
different scenarios to compare (different Fg, different PC(m)). These are just a few
examples of the model’s usability.

5. Evaluation of the Proposed Model

To evaluate the correctness and goodness of our proposal, we evaluated a series of
blockchain-based applications in the current literature [4,23–25]. We selected applications
using Ethereum, as it is a reference implementation for smart contracts and can be used in
both public and private scenarios [18]. However, our proposed model can be used with
any other blockchain implementation.

We present three use cases: a water management system using a public network, a
medical image system that can be used on public or private networks, and a manufacturing
traceability application using a private network. For each use case, we show how to apply
the proposed model following our methodology for defining the model parameters. Given
that all applications run on the Ethereum network, the first step of the methodology is
common for all use cases. Then, for each use case, we provide analyses highlighting our
model’s potential when evaluating the costs and benefits of blockchain-based applications.

5.1. (S1) Define the Blockchain Setup

We define Ethereum as the blockchain network for all use cases. The cryptocurrency
price PC(m) is the price of Ethereum, using historical values that are available online
(Etherscan 1). The computational cost Oi of the transactions is equal to the gas required for
their execution, and μ is the gas price on Ethereum, expressed in gwei. For the cost of the
node Pnode, we consider the minimum hardware requirements for an Ethereum node 2. At
the time of writing, this translates into a computer of USD 300. We consider the operation
factor for the node as 40% of the cost of the node, this Fo = 0.4.

5.2. Use Case: Water Management System

The authors of [4] present an architecture for a blockchain-based IoT water manage-
ment system. The authors implement a prototype using Ethereum as a public blockchain
and constrained IoT devices as data sources. The authors evaluate focused on the IoT
devices and provide implementation details of the smart contracts. Some parameters of
our model are clearly expressed (i.e., A,S, K, Lk), while others require a brief analysis to be
estimated (i.e., Pk). Thus, following our methodology, the steps are:

5.2.1. (S2) Identify Actors and Stakeholders

The group of actors A comprises farmers using IoT devices to measure water consump-
tion (i.e., a valve). The stakeholders S are three organizations interested in encouraging
water savings (i.e., an energy company, NGO, and certification authorities), thus S = 3.
The value unit K is a cubic meter of the saved water, and the lifespan unit is a day, as
water usage is reported daily. We estimated the initial number of actors is A0 = 100 with a
monthly growth of 5%, making Fg = 0.5, based on the information described in the paper
and the references within it.

5.2.2. (S3) Estimate the Computation Cost of Interactions

The application is based on two types of smart contracts with four types of transactions.
These transactions can be directly mapped to our taxonomy CC, CR, CI , and CV . The
computation cost is calculated based on the gas usage reported for the transactions. The
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farmers report their water consumption once a week, which translates into four FI = 4
(four transactions TI per month), and they receive their rewards once a month, thus, FV = 1
(one transaction TV per month).

5.2.3. (S4) Identify the benefits

Each actor saves on average 4 m3 in 100 ha farm as described in similar studies [26].
Hence, the benefit factor is set to Fk = 4. The authors do not provide a monetary value
for a m3 of saved water ( PK), so it must be estimated based on the document and its
references. We estimated that the energy company offers a discount of USD 0.2 for each
saved m3. We considered NGO assigns to the savings a value equal to the cost of irrigation
m3 at USD 0.8 (according to [26]). Finally, we assume a “eco-friendly” label will translate
into USD 10 additional monthly benefits. Thus, the total monetary value of K is USD 11.
Table 2 summarizes the value of the parameters for the application, obtained following the
proposed methodology, and that will be used for evaluating scenarios.

Table 2. Parameters for the cost model of the water-management system from [4].

Parameter Value Parameter Value

A0 100 S 3
K Saved m3 of water Lk 1 day
PC(m) 205 PK USD 11
Pnode USD 300 FI 4
μ 2, 5, 10 gwei Fg 0.05
OC 3,343,572 FV 1
OR 143,947 Ft 0.01
OI 26,821 Fo 0.4
OV 156,580 Fk 1

5.2.4. (S5) Evaluate Scenarios

In their work, the authors present a brief evaluation of the transaction costs using three
different gas prices (i.e., 2, 5, and 10 gwei) with a cryptocurrency price equal to USD 205
(based on the yearly average for 2019), as shown in Table 3. Our model uses Equation (2)
and the proposed taxonomy to obtain these values.

Table 3. Transaction costs for the water management use case [4].

Gas 2 Gwei 5 Gwei 10 Gwei

Valve Creation 143.947 USD 0.059 USD 0.148 USD 0.295
setValue() 26.821 USD 0.011 USD 0.027 USD 0.055

App Creation 3.343.572 USD 1.371 USD 3.427 USD 6.854
Reward 156.580 USD 0.064 USD 0.160 USD 0.321

Furthermore, our model can extend the author’s evaluation to different scenarios.
Considering the monthly average price for 2019, we can use Equations (1), (6), and (8) to
evaluate the costs and benefits of the application for a year. Figure 2 shows the benefits
(Bene f ), the total monthly cost of a private network (CPri), and the total monthly for a
public network using 2, 5, and 10 gwei (CPub2, CPub5, CPub10, respectively), evaluated for
the year 2019.
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Figure 2. Monthly costs and benefits of the water management system.

With this use case, we highlight the correctness of our model to match the existing
literature on cost. Furthermore, we highlight its potential for analyzing more complex cost
scenarios with minimal additional information. For instance, those developing the blockchain-
based application should easily identify the values we have estimated (i.e., K, Pk).

5.3. Use Case: Patient-Centric Image Management System

Jabarulla and Lee propose a blockchain-based patient-centric image management
system [24]. They developed a proof-of-concept using the Ethereum blockchain and a
distributed storage system. The authors validate their proposal with experiments and
evaluate gas usage as a metric for executing functions. Furthermore, they assigned a
monetary value to the gas to provide a price reference for the system.

5.3.1. (S2) Identify Actors and Stakeholders

The actors A are patients, doctors, and practitioners involved. The value unit K is
a medical image with a lifespan LK of 3 months. As presented in the paper, we define
A0 = 4 with a growth factor Fg = 0.75. However, more information is needed to identify
the stakeholders S.

5.3.2. (S3) Estimate the Computation Cost of Interactions

Based on the source code provided by the authors, we can obtain the value for OC.
The authors provide the gas usage for the contract functions, and using our taxonomy, we
can obtain the values for OR and OV . There needs to be more detail to estimate OI based
on the three functions described, so we average the values. Then, we define FI and FV as 1,
meaning we consider sharing one image (FI) and accessing one image (FV).

5.3.3. (S4) Identify the Benefits

The authors state that an average transaction price of USD 0.11 is lower than existing
solutions for managing patients’ images. Therefore, we consider PK as USD 0.11 and set FK
as 1. Table 4 summarizes the model’s parameters.
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Table 4. Parameters for the cost model of patient-centric image management system [24].

Parameter Value Parameter Value

A0 4 S -
K medical image Lk 3 months
PC(m) USD 187 PK USD 0.11
Pnode USD 300 FI 1
μ 2 gwei Fg 0.75
OC 1,611,435 FV 1
OR 67,397 Ft -
OI 113,510 Fo 0.4
OV 170,412 Fk 1

5.3.4. (S5) Evaluate Scenarios

The authors use a cryptocurrency price of USD 187 and a gas price of 2 gwei to provide
an average transaction price of USD 0.11. With our model, we can obtain the average trans-
action price by dividing the total costs Equation (2) by the number of actors Equation (3).
This operation renders a value of USD 0.12, where the minimal difference is due to the
estimation of the computation cost of interactions. Then, we extend the author’s evaluation
by analyzing the impact of adding more images per user (changing the parameter FI)
impact the costs. Figure 3 shows this cost with a baseline of USD 0.12.

Figure 3. Comparison of average transaction price using different values for FV and FI .

This evaluation highlights the correctness of our model to match existing approaches
to evaluate costs. Furthermore, the model offers additional value by providing the tools to
evaluate different scenarios even if a few parameters can not be estimated.

5.4. Use Case: Automotive Manufacturing Traceability

Kuhn et al. [23] propose a blockchain-based traceability architecture to process manu-
facturing data. The authors present an evaluation of gas used per transaction as a metric
for scalability without a monetary evaluation. Compared with the other use cases, this
application does not provide enough information to estimate several model parameters.
However, the model can still be used as follows.

5.4.1. (S2) Identify Actors and Stakeholders

The value unit is manufactured (i.e., electrical contacts) with a lifespan of Lk of one
day. The stakeholders S are the companies involved in the manufacturing process, each
providing a node for the blockchain network with N ∈ [10, 50]. Since each stakeholder
provides a node, the trust factor is Ft is 0. The actors A are the machines and devices in the
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production process with A ∈ [10, 100]. Unfortunately, there is not enough information to
estimate a growth factor Fg.

5.4.2. (S3) Estimate the Computation Cost of Interactions

All the interactions are managed through a single contract based on the ERC1155
token standard and deployed on a private Ethereum network. The paper provides results
regarding gas usage for a single stakeholder, processing a batch of 3000 items, which
means 3000 transactions. However, more details are needed for applying the taxonomy or
estimating Fv and Fi.

5.4.3. (S4) Identify the Benefits

Based on the paper [23] and the references within, we can define PK as USD 0.5 for
each processed unit using a Benefit factor Fk = 1. Table 5 summarizes the value of the
parameters for the use case.

Table 5. Parameters for the cost model of the architecture for automotive traceability [23].

Parameter Value Parameter Value

A0 50 S 25
K electric contact Lk 1 day
PC(m) - PK USD 0.5
Pnode USD 300 FI -
μ - Fg 0
OC - FV -
OR - Ft -
OI - Fo 0.4
OV - Fk 1

5.4.4. (S5) Evaluate scenarios

Although if this use case only provides enough information for estimating 6 of the
18 parameters, it can be used to calculate additional cost information. For instance,
using Equation (6), the bootstrap cost is USD 7.500 for acquiring 25 nodes, and the op-
eration cost is fixed at USD 3500. Then, making the monthly costs equal to the benefits
described by Equation (8), the total number of transactions Qv(m) should be 7000 to reach
an equilibrium value.

This use case highlights the usability of the model, even when not all parameters can
be defined or estimated. With only 6 of the 18 parameters, the model provided the tools to
find a monetary balance point for a private Ethereum network.

5.5. Discussion

In the previous sections, we evaluated our proposed model and methodology with
three use cases from the current literature. In the first use case, we demonstrated that our
model could match the existing literature on cost and has the potential to analyze more
complex cost scenarios. In the second use case, we further demonstrated the correctness
of our model in matching existing cost evaluation approaches, even if a few parameters
cannot be estimated. In the last use case, we highlighted the usability of our model with
minimal available information. The results and rationale of using our framework in these
use cases highlighted the usability of the selected parameters and the methodology to
identify them. On the one hand, our selection of static parameters, even if it can be
considered a limitation, strikes simplicity and effectiveness and proved useful, particularly
with little application domain knowledge. On the other hand, the proposed methodology
to guide the users was also demonstrated to be effective in maintaining a streamlined and
straightforward approach while still being widely applicable. Finally, the quantitative
information showcased by the example cost and benefits analysis performed on each use
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case provides an empirical reference that can further enrich the growing field of studying
blockchain-based systems.

6. Conclusions and Future Works

In this paper, we presented a framework for evaluating the costs and benefits of the
blockchain-based system across its entire life cycle. The proposed framework includes a
transaction taxonomy, a cost and benefit model, and a methodology to use the model. We
used the methodology to apply the proposed model and quantitatively evaluate the cost and
benefits of three use cases found in the current literature. The analyses highlight the model’s
accuracy and usability in evaluating different types of blockchain-based applications.
In particular, the proposed methodology emphasizes the simplicity of identifying and
estimating the model parameters. Once the parameters have been identified, the evaluation
shows how to assess different scenarios by simply varying the values of some parameters.
Furthermore, the diverse use cases provided different application details, showcasing
the model’s potential even when some parameters could not be identified or estimated.
All these features make our proposed methodology a valuable tool for organizations
that want to estimate the costs associated with implementing blockchain-based systems
in various domains. By leveraging our model’s usability and flexibility, they can make
informed decisions about such systems’ feasibility and expected returns on investment.
Additionally, the empirical reference provided by our quantitative information can serve as
a benchmark for future research in this field, enabling researchers to explore new areas of
study more effectively. Overall, our model and methodology offer a powerful combination
of simplicity, effectiveness, and versatility that can benefit industry practitioners and
academic researchers.

Future works include assessing other use cases to improve the methodology and
provide reference values for the model parameters. Similarly, studying which parameters
can benefit dynamic values is an interesting research path. Finally, studying a possible
hybrid model combining public and private blockchain networks could enhance our
proposed framework.
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Abstract: Hyperparameter optimization is one of the most tedious yet crucial steps in training
machine learning models. There are numerous methods for this vital model-building stage, ranging
from domain-specific manual tuning guidelines suggested by the oracles to the utilization of general
purpose black-box optimization techniques. This paper proposes an agent-based collaborative
technique for finding near-optimal values for any arbitrary set of hyperparameters (or decision
variables) in a machine learning model (or a black-box function optimization problem). The developed
method forms a hierarchical agent-based architecture for the distribution of the searching operations
at different dimensions and employs a cooperative searching procedure based on an adaptive width-
based random sampling technique to locate the optima. The behavior of the presented model,
specifically against changes in its design parameters, is investigated in both machine learning
and global function optimization applications, and its performance is compared with that of two
randomized tuning strategies that are commonly used in practice. Moreover, we have compared the
performance of the proposed approach against particle swarm optimization (PSO) and simulated
annealing (SA) methods in function optimization to provide additional insights into its exploration in
the search space. According to the empirical results, the proposed model outperformed the compared
random-based methods in almost all tasks conducted, notably in a higher number of dimensions and
in the presence of limited on-device computational resources.

Keywords: multi-agent systems; distributed machine learning; hyperparameter tuning; agent-based
optimization; random search

1. Introduction

Almost all machine learning (ML) algorithms comprise a set of hyperparameters that
control their learning process and the quality of their resulting models. The number of
hidden units, the learning rate, the mini-batch sizes, etc., in neural networks, the kernel
parameters and regularization penalty amount in support vector machines, and maximum
depth, sample split criteria, and the number of used features in decision trees are a few
common hyperparameter examples that need to be configured for the corresponding learn-
ing algorithms. Assuming a specific ML algorithm and a dataset, one can build a countless
number of models each with a potentially different performance and/or learning speeds,
by assigning different values to the algorithm’s hyperparameters. While they provide
ultimate flexibility in using ML algorithms in different scenarios, they also account for most
failures and tedious development procedures. Unsurprisingly, there are numerous studies
and practices in the machine learning community devoted to the optimization of hyper-
parameters. The most straightforward yet difficult approach utilizes expert knowledge
to identify potentially better candidates in hyperparameter search spaces to evaluate and
use. The availability of expert knowledge and generating reproducible results are among
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the primary limitations of such a manual searching technique [1], particularly due to the
fact that using any learning algorithm on different datasets likely requires different sets of
hyperparameter values [2].

Formally speaking, let Λ = {λ} denote the set of all possible hyperparameter value
vectors and X = {X (train),X (valid)} be the dataset split into training and validation sets.
The learning algorithm with hyperparameter values vector λ is a function that maps
training dataset X (train) to model M, i.e., M = Aλ(X (train)), and the hyperparameter
optimization problem can be formally written as [1]:

λ(∗) = arg min
λ∈Λ

Ex∼Gx

[
L
(

x;Aλ(X (train))
)]

(1)

where Gx and L(x;M) are, respectively, the grand truth distribution and the expected loss
of applying learning model M over i.i.d. samples x; and Ex∼Gx

[
L
(

x;Aλ(X (train))
)]

gives
the generalization error for algorithmAλ. To cope with the inaccessibility of the grand truth
in real-world problems, the generalization error is commonly estimated using the cross-
validation technique [3], leading to the following approximation of the above-mentioned
optimization problem:

λ(∗) ≈ arg min
λ∈Λ

mean
x∈X (valid)

L
(

x;Aλ(X (train))
)
≡ arg min

λ∈Λ
Ψ(λ) (2)

where Ψ(λ) is called the hyperparameter response function [1].
Putting the manual tuning approaches aside, there is a wide range of techniques that

use black-box optimization methods to address the ML hyperparameter tuning problem.
Grid search [4,5], random search [1], Bayesian optimization [6–8], and evolutionary and
population-based optimizations [9,10] are some common tuning methodologies that are
studied and used extensively by the community. In grid search for instance, every com-
bination of a predetermined set of values in each hyperparameter is evaluated, and the
hyperparameter value vector that minimizes the loss function is selected. For k number of
configurable hyperparameters, if we denote the set of candidate values for the j-th hyperpa-
rameter λ

(i)
j ∈ λ(i) by Vj, the grid search would evaluate T = Πk

j=1|Vj| number of trials that
can grow exponentially with the increase in the number of configurable hyperparameters
and the quantity of the candidate values for each dimension. This issue is referred to
as the curse of dimensionality [11] and is the primary reason for making grid search an
uninteresting methodology in large-scale real-world scenarios. Moreover, in the standard
random search, a set of b uniformly distributed random points in the hyperparameter
search space, {λ(1), . . . , λ(b)} ∈ Λ are evaluated to select the best candidate. As the number
of evaluations only depends on the budget value b, a random search does not suffer from
the curse of dimensionality, is shown to be more effective than grid search [1], and is often
used as a baseline method. Bayesian optimization, as a global black-box expensive function
optimization technique, iteratively fits a surrogate model to the available observations
(λ(i), Ψλ(i) ), and then uses an acquisition function to determine the next hyperparameter
values to evaluate and use in the next iteration [8,12]. Unlike grid and random search
methods, in which the searching operations can be easily parallelized, the Bayesian method
is originally sequential, though various distributed versions have been proposed in the
literature [13,14]. Nevertheless, thanks to its sample efficiency and robustness to noisy
evaluations, Bayesian optimization is a popular method in the hyperparameter tuning of
deep-learning models, particularly when the number of configurable hyperparameters
is less than 20 [15]. Evolution and population-based global optimization methods, such
as genetic algorithms and swarm-based optimization techniques, form the other class of
common tuning approaches in which the hyperparameter configurations are improved
over multiple generations generated by local and global perturbations [10,16]. Population-
based methods are embarrassingly parallel [17] and, similar to grid and random search
approaches, the evaluations can be distributed over multiple machines.
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Multi-agent systems (MAS) and agent-based technologies, when applied to machine
learning and data mining, bring about scalability and autonomy and facilitate the decen-
tralization of learning resources and the utilization of strategic and collaborative learning
models [18–20]. Neither agent-based machine learning nor collaborative hyperparameter
tuning are novelties of this paper, as they have been previously studied in the literature.
The research reported in [21] is among the noteworthy contributions, which proposes a
surrogate-based collaborative tuning technique incorporating the experience achieved from
previous experiments. To put it simply, this model performs simultaneous configurations
of the same hyperparameters over multiple datasets and employs the gained information
in all subsequent tuning problems. Auto-tuned models (ATM) [22] is a distributed and
collaborative system that automates hyperparameter tuning and classification model selec-
tion procedures. At its core, ATM utilizes the conditional parameter tree (CPT), in which a
learning method is placed at the root, and its children are the method’s hyperparameters to
represent the hyperparameter search space. Different tunable subsets of hyperparameter
nodes in the CPT are selected during model selection and assigned to a cluster of workers
to be configured. Koch et al. [23] introduced autotune as a derivative-free hyperparam-
eter optimization framework. Composed of a hybrid and extendable set of solvers, this
framework concurrently runs various searching methods, potentially distributed over a
set of workers, to evaluate objective functions and provide feedback to the solvers. Auto-
tune employs an iterative process during which all of the points that have already been
evaluated are exchanged with the solvers to generate new sets of points to evaluate. In
learning-based settings, the work reported in [24] used mutli-agent reinforcement learning
(MARL) to optimize the hyperparameters of deep convolutional neural networks (CNN).
The suggested model splits the design space into sub-spaces and devotes each agent to
tuning the hyperparameters of a single network layer using Q-learning. Parker-Holder
et al. [25] presented the population-based bandit (PB2) algorithm, which efficiently directs
the searching operation of hyperparameters in reinforcement learning using a probabilistic
model. In PB2, a population of agents is trained in parallel, and their performance is
monitored on a regular basis. An underperforming agent’s network weights are replaced
with those of a better-performing agent, and its hyperparameters are tuned using Bayesian
optimization.

In continuation of our recent generic collaborative optimization model [20], this paper
delves into the design of a multi-level agent-based distributed random search technique
that can be used for both hyperparameter tuning and general purpose black-box function
optimization. The proposed method, at its core, forms a tree-like structure comprising
a set of interacting agents that, depending on their position in the hierarchy, focus on
tuning/optimizing a single hyperparameter/decision variable using a biased hyper-cube
random sampling technique or aggregating the results and facilitating collaborations
based on the gained experience of other agents. The rationales behind choosing random
search as the core tuning strategy of the agents include, but are not limited to, its intrinsic
distributability, acceptable performance in practice, and it does not require differentiable
objective functions. Although the parent model in [20] does not impose any restrictions
on the state and capabilities of the agents, this paper assumes homogeneity in the sense
that the tuner/optimizer agents use the same mechanism for their assigned job. With
that said, the proposed method is analyzed in terms of its design parameters, and the
empirical results from the conducted ML classification and regression tasks, as well as
various multi-dimensional function optimization problems, demonstrate that the suggested
approach not only outperforms the underlying random search methodologies under the
same deployment conditions, but also provides a better-distributed solution in the presence
of limited computational resources.

The remainder of this paper is organized as follows: Section 2 dissects the proposed
agent-based random search method; Section 3 presents the details of used experimental ML
and function optimization settings and discusses the performance of the proposed model
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under different scenarios; and finally, Section 4 concludes the paper and provides future
work suggestions.

2. Methodology

This section dissects the proposed agent-based hyperparameter tuning and black-box
function optimization approaches. To help with a clear understanding of the proposed algo-
rithms, this section begins by providing the preliminaries and introducing the key concepts,
then presents the details of the agent-based randomized search algorithms accompanied by
hands-on examples whenever needed.

2.1. Preliminaries

An agent, as the first-class entity in the proposed approach, might play different roles
depending on its position in the system. As stated before, this paper uses hierarchical
structures to coordinate the agents in the system, and hence, it defines two agent types:
(1) internals, which play the role of result aggregators and collaboration facilitators in
connection with their subordinates; and (2) terminals, which, implementing a single-variable
randomized searching algorithm, are the actual searchers/optimizers positioned at the
bottom-most level of the hierarchy. Assuming G to be the set of all agents in the system
and the root of the hierarchy to be at level 0, this paper uses gl

λi
( Gl

λj
) to denote the agent

(the set of agents) at level l of the hierarchy that are specialized in tuning hyperparameter
λi (hyperparameter set λj), respectively, where λj ⊆ λ and gl+1

λi
∈ Gl

λj
iff. λi ∈ λj.

As denoted above, the hyperparameters that the agents represent determine their
position in the hierarchy. Let Aλ={λ2,λ2,...λn} be the ML algorithms for which we intend to
tune the hyperparameters. As the tuning process might not target the entire hyperparameter
set of the algorithm, the proposed method divides the set into two objective and fixed disjoint
subsets which, respectively denoted by λo and λ f refer to the hyperparameter sets that we
intend to tune and the ones we need to keep fixed. Formally, that is λ = λo ∪ λ f and λo ∩
λ f = ∅. The paper further assumes two types of objective hyperparameters: (1) primary
hyperparameters denoted by λ̂o, which comprise the main targets of the corresponding
tuners (agents); and (2) subsidiary hyperparameters denoted by λ̂′

o, which include the ones
whose values are set by the other agents to help limit the searching space. These two sets
are complements of each other, i.e., λ̂′

o = λo − λ̂o, and the skill of an agent is determined
by the primary objective set λ̂o, that it represents. With that said, for all terminal agents in
the hierarchy, we have |λ̂o| = 1, where | . . . | denotes the set cardinality.

The agents of a realistic MAS are susceptible to various limitations that are imposed
by their environment and/or computational resources. This paper, due to its focus on the
decentralization of the searching process, foresees two limitations for the agents: (1) the
maximum number of concurrent connections, denoted by c that an agent can manage;
(2) the number of concurrent processes, called budget and denoted by b that the agent can
execute and handle. In the proposed method, c > 1 determines the maximum number of
subordinates (children) that an internal agent can have. However, the budget b ≥ 1 puts a
restriction on the maximum number of parallel evaluations that an agent can perform in
the step of searching for the optima.

Communications play a critical role in all MAS, including the agent-based method
proposed in this paper. For all intra-systems, i.e., between any two agents, and inter-
systems, i.e., between an agent and a user’s interactions, the suggested method uses the
following tuple-based structure for the queries:〈

Aλ, {λ̂o, λ̂′
o, λ f },V , {X (train),X (valid)},L

〉
(3)

where V = {(λi, vi)}1≤i≤n denotes the set containing the candidate values for all hyperpa-
rameters, and the remaining notations are as defined in Equation (1). Based on what was
discussed before, it is clear that |λ f | ≤ |V | ≤ λ.
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2.2. Agent-Based Randomized Searching Algorithm

The high-level abstract view of the proposed approach is composed of two major
steps: (1) distributedly building the hierarchical MAS; and (2) performing the collaborative
searching process through vertical communications in the hierarchy. The sections that
follow go into greater detail about these two stages.

2.2.1. Distributed Hierarchy Formation

As for the first step, each agent t divides the primary objective hyperparameter set of
the query it receives, i.e., λ̂o, into a ct > 1 number of subsets, for each of which the system
initiates a new agent to handle. This process continues recursively until there is only one
hyperparameter in the primary objective set, i.e., |λ̂o| = 1, which is assigned to a terminal
agent. Figure 1 provides an example hierarchy resulting from the recursive division of the
primary objective set λo = {λ1, λ2, λ3, λ4, λ5, λ6}. For the sake of clarity, we have used
the indexes of the hyperparameters as the labels of the nodes in the hierarchy, and the
green and orange colors are employed to highlight the members of the λ̂o and λ̂′

o sets,
respectively. Regarding the maximum number of concurrent connections that the agents
can handle in this example, it is assumed for all agents that c = 2, except for the rightmost
agent in the second level of the hierarchy, for which c = 3. It is worth emphasizing that
at the beginning of the process, when the tuning query is received from the user, we have
λ̂o = λo and λ̂′

o = ∅, which is the reason for the all-green node of the root node in this
example.

1, 2, 3, 4, 5, 6

1, 2, 3 , 4, 5, 6

1, 2 , 3, 4, 5, 6

1 , 2, 3, 4, 5, 6 1 , 2 , 3, 4, 5, 6

1, 2 , 3 , 4, 5, 6

1, 2, 3 , 4, 5, 6

1, 2, 3 , 4 , 5, 6 1, 2, 3, 4 , 5 , 6 1, 2, 3, 4, 5 , 6

1, 2, 3, 4, 5, 6

1, 2, 3 4, 5, 6 4, 5, 61, 2, 3

3, 4, 5, 61, 2 1, 2 3 4, 5, 6 1, 2, 3 4 5, 6 5 61, 2, 3, 4 6 1, 2, 3, 4, 5

2, 3, 4, 5, 61 1 2 3, 4, 5, 6

Figure 1. Hierarchical structure built for λo = {λ1, λ2, λ3, λ4, λ5, λ6}, where the primary and com-
plementary hyperparameters of each node are, respectively, highlighted in green and orange, and the
labels are the indexes of λi.

Algorithm 1 presents the details of the process. We have chosen self-explanatory
names for the functions and variables and provided comments wherever they are required
to improve clarity. In this algorithm, the function PREPARERESOURCES in line 3 prepares
the data and computational resources for the newly built/assigned terminal agent. Such
resources are used for training, validation, and tuning processes. The function SPAWNOR-
CONNECT in line 8 creates a subordinate agent that represents the ML algorithm Aλ and
expected loss function L. This is achieved by either creating a new agent or connecting to
an existing idle one if the resources are reused. Two functions, PREPAREFEEDBACK and
TUNE in lines 17 and 18, respectively, are called when the structure formation process
is over and the root agent initiates the tuning process in the hierarchy. Later, these two
functions are discussed in more detail.
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Algorithm 1: Distributed formation of the hierarchical agent-based hyperparam-
eter tuning structure.

1 Function START(
〈
Aλ, {λ̂o, λ̂′

o, λ f },V , {X (train),X (valid)},L
〉

):

2 if |λ̂o| = 1 then � agent is terminal

3 R ←PREPARERESOURCES(
〈
{λ̂o, λ̂′

o, λ f }, {X (train),X (valid)}
〉

)

4 INFORM(Parent,R) � informs the parent agent
5 else � agent is internal (|λ̂o| > 1)
6 k ← min(cmy, |λ̂o|) � the number of children
7 for i ← 1 to k do

8 Gi ← SPAWNORCONNECT(Aλ,L)
9 λ̂oi ←DIVIDE(λ̂o,i, k) � the ith unique devision

10 λ̂′
oi
← (λ̂o − λ̂oi ) ∪ λ̂′

o
11 Ri ←ASK(Gi, START,〈

Aλ, {λ̂oi , λ̂′
oi

, λ f },V , {X (train),X (valid)},L
〉

)

12 end

13 R ←AGGREGATE({Ri}i) � combines children’s answers
14 if Parent �= ∅ then

15 INFORM(Parent,R)
16 else

17 F ← PREPAREFEEDBACK(R,V)
18 TUNE(F ) � initiates the tuning process
19 end

20 end

21 end

2.2.2. Collaborative Tuning Process

The collaborative tuning process is conducted through a series of vertical commu-
nications in the built hierarchy. Initiated by the root agent, as explained in the previous
section, the TUNE request is propagated to all of the agents in the hierarchy. As for the
internal agents, the request will be simply passed down to the subordinates as they arrive.
As for the terminal agents, moreover, the request launches the searching process in the
sub-space specified by the parent. The flow of the results will be in an upward direction
with a slightly different mechanism. As soon as a local optimum is found by a terminal
agent, it will be sent up to the parent agent. Having waited for the results to be collected
from all of its subordinates, the parent aggregates them together and passes the combined
result to its own parent. This process continues until it reaches the root agent, where the
new search guidelines are composed for the next search round.

Algorithm 2 presents the details of the iterated collaborative tuning process, which
might be called by both terminal and internal agents. When it is called by a terminal agent,
it initiates the searching operation for the optima of the hyperparameter that the agent
represents and informs the result to its parent. Let gl

λj
be the terminal agent concentrating

on tuning hyperparameter λj. As it can be seen in line 3, the result of the search will be

a single-item set composed of the identifier of the hyperparameter, i.e., λj, the set V (∗)
j

containing the coordinates of the best candidate agent gl
λj

has been found, and the response

function value for that best candidate is, i.e., Ψ(∗)
j . An internal agent running this procedure

merely passes the tuning request to the subordinates and waits for their search results (line 7
of the algorithm). Please note that this asking operation comprises a filtering operation
on set F . That is, a subordinate will receive a subset F i ⊂ F that only includes the
starting coordinates for the terminal agents that are reachable through that agent. Having
collected all of the results from its subordinates, the internal agent aggregates them by
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simply joining the result sets and informing its own parent, in case it is not the root agent.
This process is executed recursively until the aggregated results reach the root agent of
the hierarchy. Depending on whether the stopping criteria of the algorithm are reached,
the root prepares feedback to initiate the next tuning iteration or a report detailing the
results. The collaboration between the agents is conducted implicitly through the feedback
that the root agent provides to each terminal agent based on the results it has gathered
in the previous iteration. As presented in line 17 of the algorithm, this feedback basically
determines the coordinates of the position where the terminal agents should start their
searching operation. It should be noted that the argmin function in this operation is due
to employing the loss function L as a metric to evaluate the performance of an ML model.
For performance measures in which maximization is preferred, such as in accuracy, this
operation needs to be replaced by argmax accordingly.

Algorithm 2: Iterated collaborative tuning procedure.

1 Function TUNE(F ):
2 if Children = ∅ then � terminal agent agent

3 {(λj,V (∗)
j , Ψ(∗)

j )} ←RUNTUNINGALGORITHM(F = V )

4 INFORM(Parent, {(λj,V (∗)
j , Ψ(∗)

j )})

5 else

6 foreach Gl+1
i ∈ Children do

7 R(∗)
i ←ASK(Gl+1

i , TUNE, F i ⊂ F ) � R(∗)
i = {(λk,V (∗)

k , Ψ(∗)
k )}k

8 end

9 R(∗) ← ⋃
Gl+1

i ∈Children
R(∗)

i � aggregates results

10 if Parent �= ∅ then � non-root internal agent
11 INFORM(Parent,R(∗))
12 else

13 if SHOULDSTOP(StopCriteria) �= True then

14 F ←
{
(λi,V j); j = arg min

1≤k≤n
Ψ(∗)

k

}
1≤i≤n

� prepares feedback

15 TUNE(F ) � initiates next tuning iteration
16 else

17 PREPAREREPORT(R(∗)) � reports final result
18 end

19 end

20 end

21 end

The details of the tuning function that each terminal agent runs in line 3 of Algorithm 2
to tune a single hyperparameter are presented in Algorithm 3. As its input, this function
receives a coordinate that agent gl

λi
will use as its starting point in the searching process.

The received argument, together with b additional coordinates that the agent generates
randomly, are stored in the set of candidate C. Accordingly, C[c] and C[c](λi) refer to the
c-th coordinate in the set and the value assigned to the hyperparameter λi of that coordinate,
respectively. Moreover, please recall from Section 2.1 that b denotes the evaluation budget
of a terminal agent. The terminal agents in the proposed method employ slot-based uniform
random sampling to explore the search space. Formally, let E = {ελ1 , ελ2 , . . . , ελn} be a set
of real values that each agent utilizes for each hyperparameter to control the size of slots
in any iteration. Similarly, let s = {sλ1 , sλ2 , . . . , sλn} specify the coordinate of the position
that an agent starts its searching operation in any iteration. To sample b random values in

271



Systems 2023, 11, 228

the domain Dλj of any arbitrary hyperparameter λj, the agent will generate one uniform
random value in range

R =
[
max(infDλj , sλj − ελj), min(supDλj , sλj + ελj))

]
(4)

and b − 1 random values in Dλj − R by splitting it into b − 1 slots and choosing one
uniform random value in each slot (lines 6 and 8 of the algorithm). The generation of the
uniform random values is achieved by calling the function UNIFORMRAND(A1, A2, A3).
This function divides range A1 into A2 equal-sized slots and returns the uniform random
value generated in the A3-th slot. As it can be seen in line 12 of the algorithm, the agent
employs the same function to generate one and only one value per each element in its
subsidiary objective hyperparameter set λ̂′

o.
The slot width parameter set E is used to control the exploration behavior of the

agent around the starting coordinates in the search space. For instance, for any arbitrary
hyperparameter λi, very small values of ελi emphasize generating candidates in the close
vicinity of the starting position. Moreover, larger values of ελi decrease the chance that
the generated candidate will be close to the starting position. In the proposed method, the
agents adjust E adaptively. To put it formally, each agent starts the tuning process with
the pre-specified value set E (0), and assuming that C(∗) denotes the best candidate that
the agent has found in the previous iteration, the width parameter set E in iteration i is
updated as follows:

E (i) =

{
Δ� E (i−1) If V = C(∗)

E (i−1) otherwise
(5)

where Δ = {δλ1 , δλ2 , . . . , δλn} denotes the scaling changes to apply to the width parame-
ters, and � denotes the element-wise multiplication operator. As the paper discusses in
Section 3, despite the generic definitions provided here for futuristic extensions, using the
same scaling value for all primary hyperparameters has led to satisfactory results in our
experiments.

Algorithm 3: A terminal agent’s randomized tuning process.

1 Function RUNTUNINGALGORITHM(F = V = {(λm, vm)}1≤m≤n):
2 C[0]← V
3 Rλi ←

[
max(infDλi , vi − ελi ), min(supDλi , vi + ελi ))

]
4 for c ← 1 to c = b do

5 if c = 1 then � the first sample for λ̂o = {λi}
6 C[c](λi)←UNIFORMRAND(Rλi , 1, 1)
7 else � the remaining samples for λ̂o = {λi}
8 C[c](λi)←UNIFORMRAND(Dλi −Rλi , b− 1, c− 1)
9 end

10 forall λk ∈ λ̂′
o do

11 Rλk ←
[
max(infDλk , vk − ελk ), min(supDλk , vk + ελk ))

]
12 C[c](λk)←UNIFORMRAND(Rλk , 1, 1)
13 end

14 end

15 C(∗) ← arg min
0≤j≤b

Ψ(C[j])

16 return {(λi,C(∗), Ψ(C(∗))}
17 end

To better understand the suggested collaborative randomized tuning process of agents,
an illustrative example is depicted in Figure 2. In this figure, each agent is represented by a
different color, and the best candidate that each agent finds at the end of each iteration is
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shown by a filled shape. Moreover, we have assumed that the value of the loss function
becomes smaller as we move inwards in the depicted contour lines, and to prevent any
exploration in the domain of the subsidiary hyperparameters, we have set E = {ελ1 =
1
6 , ελ2 = 0} and E = {ελ1 = 0, ελ2 = 1

6} for agents g1
λ1

and g1
λ2

, respectively, assuming that
the domain size of each hyperparameter is 1 and b = 3. In Iteration 1, both agents start at
the top right corner of the search space and are able to find candidates that yield lower
loss function values than the starting coordinate. For iteration 2, the starting coordinate of
each agent is set to the coordinate of the best candidate found by all agents in the previous
iteration. As the best candidate was found by agent g1

λ2
, we only see the change in the

searching direction of the red agent, i.e., g1
λ2

. The winner agent at the end of this iteration is
agent g1

λ1
; hence, we do not see any change to its searching direction in iteration 3. Please

note that the four circles for agent g1
λ1

in the last depicted iteration is because it shows the
starting coordinate, which happens to remain the best candidate in this iteration. It is also
worth emphasizing that the starting coordinates are not evaluated again by the agents,
as they have already been accompanied by their corresponding response values from the
previous iterations.

λ1

λ2

iteration = 1

g1
λ1

g1
λ2

λ1

λ2

iteration = 2

g1
λ1

g1
λ2

λ1

λ2

iteration = 3

g1
λ1

g1
λ2

Figure 2. A toy example demonstrating three iterations of running the proposed method for tuning
two hyperparameters λ1 and λ2 using terminal agents g1

λ1
and g1

λ2
, respectively. It is assumed that

for each agent, b = 3.

3. Results and Discussion

This section dissects the performance of the proposed method in more detail. It begins
with the computational complexity of the technique and then provides empirical results on
both machine learning and general function optimization tasks.

3.1. Computational Complexity

Forming the hierarchical structure and conducting the collaborative searching process
are the two major stages of the proposed method and these stages need to be conducted in
sequence. The rest of this section investigates the complexity of each step separately and in
relation to one another.

Regarding the structural formation phase of the suggested method, the shape of the
hierarchy depends on the maximum number of connections that each agent can handle; the
fewer the number of manageable concurrent connections, the deeper the resulting hierarchy.
Using the same notations presented in Section 2.1 and assuming the same c > 1 for all
agents, the depth of the formed hierarchy is �logc |λo|�. Thanks to the distributed nature of
the formation algorithm and the concurrent execution of the agents, the worst-case time
complexity of the first stage will be O(logc |λo|). With the same assumption, it can be easily
shown that the resulting hierarchical structure is a complete tree. Hence, denoting the total
number of agents in the system by G, this quantity would be:

c�logc |λo|� − 1
c− 1

< G ≤ c�logc |λo|�+1 − 1
c− 1

(6)
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With that said, the space complexity for the first phase of the proposed technique
would be O( c�logc |λo|�+1−1

c−1 ) = O(|λo|). It is worth noting that among all created agents,
only |λo| terminal agents would require dedicated computational resources as they are
completing the actual searching and optimization process, and the remaining G− |λo| can
all be hosted and managed together.

The procedures in each round of the second phase of the suggested method can be
broken down into two main components: (i) transmitting the start coordinates from the
root of the hierarchy to the terminal agents, transmitting the results back to the root, and
preparing the feedback; and (ii) conducting the actual searching process by the terminal
agents to locate a local optimum. The worst-case time complexity of preparing the feedback
based on the algorithms that were discussed in Section 2 would beO(|λo|), which is because
it finds the best candidate among all returned results. In addition, due to the concurrency
of the agents, the first component is only processed at the height of the built structure.
Therefore, the time complexity of component (i) would be O(|λo|+ logc |λo|) = O(|λo|).
The complexity of the second component, moreover, depends on both the budget of the
agent, i.e., b, and the complexity of building and evaluating response function Ψ. Let O(R)
denote the time complexity of a single evaluation. As a terminal agent makes a b number
of such evaluations to choose its candidate optima, the time complexity for the agent
would be O(bR). As all agents work in parallel, the complexity of a single iteration at the
terminal agents would be O(bR), leading to the overall time complexity of O(|λo|+ bR).
In machine learning problems, we often have O(|λo|)� O(R). Therefore, if I denotes the
number of iterations until the second phase of the tuning method stops, the complexity of
the second stage would beO(IbR). The space complexity of the second phase of the tuning
method depends on the way that each agent is implementing the main functionalities, such
as the learning algorithms they represent, transmitting the coordinates, and providing
feedback. Except for the ML algorithms, all internal functionalities of each agent can be
implemented using O(|λo|) space. Moreover, we have G agents in the system, which leads
to a total space complexity of O(|λo|2) for non-ML tasks. Let O(S) denote the worst-case
space complexity of a machine learning algorithm that we are tuning. The total space
complexity of the second phase of the proposed tuning method would be O(|λo|2 + S).
Similar to the time complexity, in machine learning, we often have O(|λo|)� O(S), which
makes the total space complexity of the second phase O(S). Please note that we have
factored out the budgets of the agents and the number of iterations because we did not
store the history between different evaluations and iterations.

Considering both stages of the proposed technique and due to the fact that they are
conducted in sequence, the time complexity of the entire steps in an ML hyperparameter
tuning problem, from structure formation to completing the searching operations, would be
O(logc |λo|+ IbR) = O(IbR). Similarly, the space complexity would be O(|λo|+ S) =
O(S).

3.2. Empirical Results

This section presents the empirical results of employing the proposed agent-based
randomized searching algorithm and discusses the improvements resulting from the sug-
gested inter-agent collaborations. Hyperparameter tuning in machine learning is basically a
back-box optimization problem, and hence, to enrich our empirical discussions, this section
also includes results from multiple multi-dimensional optimization problems.

The performance metrics used for the experiments are based on those that are commonly
used by the ML and optimization communities. Additionally, we analyze the behavior of
the suggested methodology based on its own design parameter values, such as budget,
width, etc. The methods that have been chosen for the sake of comparison are the standard
random search and the Latin hypercube search methods [1] that are commonly used in
practice. Our choices are based on the fact that not only are these methods embarrassingly
parallel and among the top choices to be considered in distributed scenarios, but they are
also used as the core optimization mechanisms of the terminal agents in the suggested
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method, and hence can better present the impact of the inter-agent collaborations. In its
generic format, as emphasized in [20], one can easily employ alternative searching methods
or diversify them at the terminal level, as needed.

Throughout the experiments, each terminal agent runs on a separate process, and
to make the comparisons fair, we keep the number of model/function evaluations fixed
among all of the experimented methods. To put it in more detail, for a budget value of b for
each of |λo| terminal agents and I number of iterations, the proposed method will evaluate
the search space in b× I coordinates. We use the same |λo| number of independent agents
for the compared random-based methodologies and, keeping the evaluation budgets of the
agents fixed—the budgets are assumed to be enforced by the computational limitations of
devices or processes running the agents—we repeat those methods I times and report the
best performance among all agents’ repetition histories as their final result.

The experiments assess the performance of the proposed method in comparison to the
other random-based techniques in four categories: (1) iteration-based assessment, which
checks the performance of the methods for a particular iteration threshold. In this category,
all other parameters, such as budget, connection number, etc., are kept fixed; (2) budget-
based assessment, which examines the performance under various evaluation budgets for
the terminal agents. It is assumed that all agents have the same budget; (3) width-based
assessment, which checks how the proposed method performs for various exploration
criteria specified by the slot width parameter; and finally, (4) connection-based evaluation,
which inspects the effect of the parallel connection numbers that the internal agents can
handle. In other words, this evaluation checks if the proposed method is sensitive to the
way that the hyperparameter or decision variables are split during the hierarchy formation
phase. All implementations use Python 3.9 and the scikit-learn library [26], and the results
reported in all experiments are based on 50 different trials.

For the ML hyperparameter tuning experiments, we have dissected the behavior of
the proposed algorithm in two classifications and two regression problems. The details
of such problems, including the hyperparameters that are tuned and the used datasets
are presented in Table 1. In all of the ML experiments, we have used five-fold cross-
validation as the model evaluation method. The results obtained for the classification
and regression problems are plotted in Figure 3 and Figure 4, respectively. Please note
that there are numerous ML algorithms that can be used to evaluate our approach. Our
selected algorithms are representative of different types of classifiers/regressors, including
linear and non-linear models with different regularization methods, and we found them
widely used in hyperparameter tuning literature based on their performance sensitivity
to the choice of hyperparameter values. We also experienced this empirically during our
evaluations of some other ML algorithms. We found that all of the compared models
converged to a local optimum point quickly, potentially due to the geometry of their
response functions, which would not demonstrate the improvements of our model. By
comparing the performance of the presented methods on these models, we hope to draw
more general conclusions about the effectiveness of the methods in various settings.

For the iterations plot in the first column plots of Figures 3 and 4, we fixed the
parameters of the proposed method for all agents as follows: b = 3, E = 2−6, c = 2,
Δ = {2, 2, . . . , 2}. As can be seen, when the proposed method is allowed to run for more
iterations, it yields better performance, and its superiority against the other two random-
based methods is evident. Comparing the relative performance improvements resulting
from the proposed method in the presented ML tasks, it can be seen that as the search
space of the agents and the number of hyperparameters needed to be tuned increased,
the proposed collaborative method achieved a higher improvement. For the Stochastic
Gradient Descent (SGD) classifier, for instance, the objective hyperparameter set comprises
six members with continuous domain spaces, and the number of improvements that have
been made after 10 iterations is much higher, about 17%, than in the other experiments
with three to four hyperparameters and mixed continuous and discrete domain spaces.
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Table 1. The details of the machine learning algorithms and the datasets used for hyperparameter
tuning experiments.

ML Algorithm λo Dataset Performance Metric

C-Support Vector Classification (SVC) [26,27] {c, γ, kernel} 1 artificial (100,20) † accuracy
Stochastic Gradient Descent (SGD) Classifier [26] {α, l1_ratio, tol, ε, η0, val_frac} 2 artificial (500,20) † accuracy
Passive Aggressive Regressor [26,28] {c, tol, ε, val_frac} 3 artificial (300,100) ‡ mean squared error
Elastic Net Regressor [26,29] {α, l1_ratio, tol, selection} 4 artificial (300,100) ‡ mean squared error

1 c∼logUni f orm(10−2, 1013), γ∼Uni f orm(0, 1), kernel ∈ {poly, linear, rbf, sigmoid}. 2 α∼Uni f orm(0, 103), l1_ratio
∼Uni f orm(0, 1), tolerance∼Uni f orm(0, 103), ε∼Uni f orm(0, 103), η0∼Uni f orm(0, 103), validation_fraction∼
Uni f orm(0, 1). 3 c∼Uni f orm(0, 103), tolerance∼Uni f orm(0, 103), validation_fraction∼Uni f orm(0, 1), ε∼
Uni f orm(0, 1). 4 α∼Uni f orm(0, 1), l1_ratio∼Uni f orm(0, 1), tolerance∼Uni f orm(0, 1), selection ∈ {cyclic,
random}. † An artificially generated binary classification dataset using scikit-learn’s make_classification
function [30]. The first number represents the number of samples and the second figure is the number of features.
‡ An artificially generated regression dataset using scikit-learn’s make_regression function [30]. The first number
represents the number of samples and the second figure is the number of features.
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Figure 3. Average performance of the C-support vector classification (SVC) (first row) and stochastic
gradient descent (SGD) (second row) classifiers on two synthetic classification datasets based on the
accuracy measure. The error bars in each plot are calculated based on the standard error.

The second column of Figures 3 and 4 illustrate how the performance of the proposed
technique changes when we increase the evaluation budgets of the terminal agents. For
this set of experiments, we set the parameter values of our method as follows: I = 10,
E = 2−6, c = 2, Δ = {2, 2, . . . , 2}. By increasing the budget value, the performance of the
suggested approach per se improves. However, the rate of improvement slows down for
higher budget values, and comparing it against the performance of the other two random-
based searching methods, the improvement is significant for lower budget values. In other
words, the proposed tuning method surpasses the other two methods when the agents
have limited searching resources. This makes our method a good candidate for tuning the
hyperparameters of deep learning approaches with expensive model evaluations.
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Figure 4. Average performance of the passive aggressive (first row) and elastic net (second row)
regression algorithms on two synthetic regression datasets based on the mean squared error (MSE)
measure. The error bars in each plot are calculated based on the standard error.

The behavior of the suggested method under various exploration parameter values
can be seen in column 3 of Figures 3 and 4. The ω values on the x-axis of the plots are used
to set the initial value for the slot width parameter of all agents using E = 2−ω−1. Based
on this configuration, higher values of ω yield lower values of E , and as a result, there is
more exploitation around the starting coordinates. The other parameters of the method
are configured as follows: I = 10, b = 3, c = 2, Δ = {2, 2, . . . , 2}. Recall from Section 2
that the exploration parameter is used by an agent for the dimensions that it does not
represent. Based on the results obtained from various tasks, choosing a proper value for
this parameter depends on the characteristics of the response function. Having said that,
the behavior for a particular task remains almost consistent. Hence, trying one small and
one large value for this parameter in a specific problem will reveal its sensitivity and help
choose an appropriate value for it.

Finally, the last set of experiments investigates the impact of the number of parallel
connections that the internal agents can manage, i.e., c, on the performance of the suggested
method. The results of this study are plotted in the last column of Figures 3 and 4. The
difference in the number of data points in each plot is because of the difference in the size of
the hyperparameters that we tune for each task. The values of the parameters that we kept
fixed for this set of experiments are as follows: I = 10, b = 3, E = 2−6, Δ = {2, 2, . . . , 2}.
As can be seen from the illustrated results, the proposed method is not very sensitive to
the value that we choose or that is enforced by the system for parameter c. This parameter
plays a critical role in the shape of the hierarchy that is distributedly formed in phase
1 of the suggested approach; therefore, one can opt to choose a value that fits with the
connection or computational resources that are available without sacrificing performance
very much.

As stated before, we have also studied the suggested technique for the black-box
optimization problem to see how it performs in finding the optima of various convex
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and non-convex functions. These experiments also help us to closely check the relative
performance improvements in higher dimensions. We have chosen three non-convex
benchmark optimization functions and a convex toy function, the details of which are
presented in Table 2. For each function, we run the experiments in three different dimension
sizes, and the goal of the optimization is to find the global minimum. Very similar to the
settings that we discussed for ML hyperparameter tuning, whenever we mean to fix the
value of each parameter value in different experiment sets, we use the following parameter
values: I = 10, b = 3, E = 2−10, c = 2, Δ = {2, 2, . . . , 2}.

Table 2. The details of the multi-dimensional functions used for black-box optimization experiments.

Function λo Domain f (x∗)

Hartmann, 3D, 4D, 6D [31] {x1, . . . , xd}, d ∈ {3, 4, 6} xi ∈ [0, 1] 3D:−3.86278, 4D:−3.135474, 6D:−3.32237

Rastrigin, 3D, 6D, 10D [32] {x1, . . . , xd}, d ∈ {3, 6, 10} xi ∈ [−5.12, 5.12] 3D:0, 6D:0, 10D:0

Styblinski–Tang, 3D, 6D, 10D [33] {x1, . . . , xd}, d ∈ {3, 6, 10} xi ∈ [−5, 5] 3D:−117.4979, 6D:−234.9959, 10D:391.6599

Mean Average Error, 3D, 6D, 10D † {x1, . . . , xd}, d ∈ {3, 6, 10} xi ∈ [0, 100] 3D:0, 6D:0, 10D:0 ‡

† This is a toy multi-dimensional MAE function that is defined as f (x) = 1
n ∑n

i=1 |x− χ|, where χ denotes a
ground truth vector that is generated randomly in the domain space for each experiment. ‡ This is a convex
function and the coordinate of its minimum value depends on the ground truth vector that is generated, i.e.,
when x = χ.

The plots are grouped by functions and can be found in Figures 5–8. The conclusion
that was drawn concerning the behavior of the proposed approach under different values
of its design parameters applies to these optimization experiments as well. That is, the
more the proposed method runs, the better performance it achieves; its superiority on low
budget values is clear; its sensitivity to exploration parameter values is consistent; and the
way that the decision variables are broken down during the formation of the hierarchy
does not affect the performance very much. Furthermore, as can be seen in each group
figure, the proposed algorithm yields a better minimum point in comparison to the other
two random-based methods when the dimensionality of a function increases.

Disregarding its multi-agent formulation, autonomy, and inter-agent collaborations,
the proposed method shares similarities with heuristic and population-based black-box
optimization approaches. We believe that even with such a viewpoint, our method can
be more applicable due to its simple architecture, low number of hyperparameters, its
innate distribution, and because it requires less domain knowledge. Figures 9 and 10
provide a comparison between the performance of our agent-based method and the ones
of particle swarm optimization (PSO) [34] and simulated annealing (SA) [35]. Please note
that these comparisons are not to prove our method’s superiority over population-based
and/or heuristic methods, but to give a glimpse into some additional behaviors and the
potentiality of the agent-based solution. In its current immature condition, we do not doubt
that our immature approach will most probably be outperformed by the many mature
heuristic methods available.

For the PSO algorithm, we have employed the standard version and set its hyper-
parameter values as c1 = c2 = 1.5 and ω = 0.7. As for the SA algorithm, we have used
Kirkpatrick’s method [35] to define the accepting probabilities with T0 = 100 and the
geometric process for the annealing schedule, i.e., Tk = T0αk with α = 0.95. Please note
that our choices for the aforementioned values are based on multiple trials and errors and
the general practical suggestions found in the literature. Finally, the values that we have
utilized for our agent-based solution are as follows: c = 2, E = 2−10, Δ = {2, 2, . . . 2} and
I = 10, b = 3, whenever they are assumed fixed. Please note that these values are the same
as the ones we applied in the previous set of analyses, and we have not conducted any
optimization to choose the best possible values.
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Figure 5. Average values of the Hartmann function optimized under variable iterations, budgets,
explorations, and connection thresholds. Each row of the figure pertains to a particular dimension
size, and the error bars are calculated based on the standard error.

Due to the different underlying principles used in each of these algorithms, providing
an absolutely fair comparison would not be possible. For instance, in our method, the
number of agents is fixed, and each agent has an evaluation budget. In the PSO algorithm,
however, the population size is a hyperparameter, and each particle makes a single evalua-
tion. The SA, moreover, is a single-agent, centralized approach with one evaluation in each
of its iterations. To the best of our ability, in this empirical comparison, we have tried to
keep the total number of evaluations fixed among all experiments. Strictly speaking, we
set the same number of iterations, i.e., I , in the PSO but set its population size to b× |λo|.
Similarly, in the SA, we set the number of iterations to b× |λo| × I .

279



Systems 2023, 11, 228

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

av
er

ag
e

f(
x∗
)

Iterations

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

Budgets

1 5 9 13 17 21 25 29 33 37

4

6

8

10

12

14

16

18

20

Exploration

2 3
4

6

8

10

12

14

16

18

20

Connections

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

av
er

ag
e

f(
x∗
)

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37

10

20

30

40

50

60

2 3 4 5 6
10

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10

40

60

80

100

120

140

160

I

av
er

ag
e

f(
x∗
)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

b
1 5 9 13 17 21 25 29 33 37

30

40

50

60

70

80

90

100

110

120

ω
2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

110

c

Proposed Randomized Latin Hyper-cube

R
as

tr
ig

in
3D

R
as

tr
ig

in
6D

R
as

tr
ig

in
10

D
Figure 6. Average values of the Rastrigin function optimized under variable iterations, budgets,
explorations, and connection thresholds. Each row of the figure pertains to a particular dimension
size, and the error bars are calculated based on the standard error.

The results presented in Figure 9 show how each different method behaves under
different numbers of iterations in each of the benchmark problems. As can be seen, in
most benchmarks, the proposed method has outperformed both PSO and SA in higher
iteration numbers. Recalling the true optimal function values from Table 2, the tied or close
conditions among all methods happen near the global optima, which we believe can be
improved through an adaptive exploitation method. Furthermore, due to the relatively
higher improvements in the Rastrigin and Styblinski–Tang functions and the fact that these
two functions are composed of several local optima, we can conclude that our proposed
method has better capability to escape those local positions.

280



Systems 2023, 11, 228

1 2 3 4 5 6 7 8 9 10
−120

−110

−100

−90

−80

−70

−60

−50

av
er

ag
e

f(
x∗
)

Iterations

1 2 3 4 5 6 7 8 9 10

−120

−100

−80

−60

−40

−20

0

Budgets

1 5 9 13 17 21 25 29 33 37

−115

−110

−105

−100

−95

−90

Exploration

2 3

−115

−110

−105

−100

−95

Connections

1 2 3 4 5 6 7 8 9 10

−220

−200

−180

−160

−140

−120

−100

−80

av
er

ag
e

f(
x∗
)

1 2 3 4 5 6 7 8 9 10
−250

−200

−150

−100

−50

0

1 5 9 13 17 21 25 29 33 37

−230

−220

−210

−200

−190

−180

−170

−160

2 3 4 5 6

−230

−220

−210

−200

−190

−180

−170

−160

1 2 3 4 5 6 7 8 9 10

−350

−300

−250

−200

−150

I

av
er

ag
e

f(
x∗
)

1 2 3 4 5 6 7 8 9 10

−400

−350

−300

−250

−200

−150

−100

−50

0

b
1 5 9 13 17 21 25 29 33 37

−360

−340

−320

−300

−280

−260

−240

ω
2 3 4 5 6 7 8 9 10

−360

−340

−320

−300

−280

−260

−240

c

Proposed Randomized Latin Hyper-cube

St
yb

lin
sk

i-
Ta

ng
3D

St
yb

lin
sk

i-
Ta

ng
6D

St
yb

lin
sk

i-
Ta

ng
10

D
Figure 7. Average values of the Styblinski–Tang function optimized under variable iterations, budgets,
explorations, and connection thresholds. Each row of the figure pertains to a particular dimension
size, and the error bars are calculated based on the standard error.

The results exhibited in Figure 10 show the behavior of the tested optimization algo-
rithms under various budget restrictions. In this set of experiments, we have fixed the
number of iterations to I = 10, and the results show a promising success of our method in
outperforming the other two in most problems. Similar to the rationale provided above, the
amount of improvement in Rastrigin and Styblinski–Tang functions is evident. Moreover,
our method also shines when we have a low budget for the number of evaluations in each
iteration. In other words, it can be a good candidate for optimizing expensive-to-evaluate
problems or its use in computationally limited devices.
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Figure 8. Average values of the toy mean absolute error function optimized under variable iterations,
budgets, explorations, and connection thresholds. Each row of the figure pertains to a particular
dimension size, and the error bars are calculated based on the standard error.

Regarding the computational time, we extend our analysis of the time complexity of
the proposed methods in the previous section to the compared random-based methods. Let
b, I , and |λo| denote the evaluation budget of each agent, the number of iterations, and the
total number of hyperparameter/decision variables to be optimized, respectively. As we
have compared the methods under fair conditions, i.e., giving each agent the opportunity
to run its randomized algorithm for I times, and since we have assumed that all |λo|
agents run independently in parallel, the time complexity of both “randomized” and “Latin
hypercube” methods would beO(IbR), whereR denotes the complexity of the underlying
ML model or function evaluation. Recall from the previous section that the time complexity
of the proposed method is O(|λo|+ IbR) due to its initial structure formation phase and
the vertical communication of non-terminal agents. In other words, our proposed approach
requires additional O(|λo|) computational time in the worst case. The worst case occurs
when the computational time complexity of the evaluation of the objective function or the
ML model, i.e., O(R), is low. In almost all ML tasks however, we have O(|λo|)� O(R),
hence the time difference is negligible. It is worth emphasizing that this comparison is
based on the assumption of a fair comparison and parallel execution of the budgeted agents.
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It is clear that any changes applied to the benefit of a particular method will definitely
change the requirements. For instance, if we limit the number of evaluations in randomized
methods, they will require less time to find a local minimum; however, the result will be
of lower quality. Regarding the tested heuristic methods, as we have kept the number
of evaluations fixed and due to using a similar amount of work internally, we expect a
computational complexity similar to our approach for them.
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Figure 9. Average function values of four objective functions optimized under a variable number
of iterations. Each row of the figure pertains to a particular dimension size, and the error bars are
calculated based on the standard error.

It is worth reiterating that the contribution of this paper is not to compete with the
state-of-the-art algorithms in function optimization, but to propose a distributed tun-
ing/optimization approach that can be deployed on a set of distributed and networked
devices. The discussed analytical and empirical results not only demonstrated the behavior
and impact of the design parameters that we have used in our approach, but also suggested
the way that they can be adjusted for different needs. We believe the contribution of this
paper can be significantly improved with more sophisticated and carefully chosen tuning
strategies and corresponding configurations.
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Figure 10. Average function values of four objective functions optimized under a variable number of
budget values. Each row of the figure pertains to a particular dimension size, and the error bars are
calculated based on the standard error.

4. Conclusions

This paper presented an agent-based collaborative random search method that can be
used for machine learning hyper-parameter tuning and black-box optimization problems.
The approach employs two types of agents during the tuning/optimization process: the
internal and terminal agents that are responsible for facilitating collaborations and tuning
individual decision variables, respectively. Such agents and the interaction network be-
tween them are created during the hierarchy formation phase and remain the same for the
entire runtime of the suggested method. Thanks to the modular and distributed nature of
the approach and its procedures, it can be easily deployed on a network of devices with
various computational capabilities. Furthermore, the design parameters used in this tech-
nique enable each individual agent to customize its own searching process and behavior
independent from its peers in the hierarchy, allowing for diversity in both algorithmic and
deployment levels.

The paper dissected the proposed model from different aspects and provided some
tips on handling its behavior for various applications. According to the analytical dis-
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cussions, our approach requires slightly more computational and storage resources than
the traditional and Latin hypercube randomized search methods that are commonly used
for both hyper-parameter tuning and black-box optimization problems. However, this
results in significant performance improvements, especially in computationally restricted
circumstances with higher numbers of decision variables. This conclusion was verified
in both machine learning model tuning tasks and general multi-dimensional function
optimization problems. Furthermore, the empirical results on two widely used heuristic
methods, namely PSO and SA, showed that our method exhibits better exploration and
potential for escaping local optima while using limited computational resources.

The presented work can be further extended both technically and empirically. As was
discussed throughout this paper, we kept the searching strategies and the way the design
parameters are configured as simple as possible so we could reach a better understanding
of the effectiveness of the collaborations and searching space divisions. A few potential
extensions in this direction include: the utilization of diverse searching methods, hence
the possession of a heterogeneous multi-agent system at the terminal level; the split of the
searching space that is not based on the dimensions, but rather on the range of the values
that decision variables in each dimension can have; employment of more sophisticated
collaboration techniques; and the use of a learning-based approach to dynamically adapt
the values of the design parameters during the runtime of the method. Empirically, the
presented research can be extended by completing an in-depth comparison with population-
based methods and applying our method to expensive machine learning tasks, such as
tuning deep learning models with a large number of hyper-parameters. We are currently
working on some of these studies and suggest them as future work.
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Abstract: We introduce resource allocation techniques for problems where (i) the agents express
requests for obtaining item bundles as compact edge-weighted directed acyclic graphs (each path
in such a graph is a bundle whose valuation is the sum of the weights of the traversed edges), and
(ii) the agents do not bid on the exact same items but may bid on conflicting items that cannot be
both assigned or that require accessing a specific resource with limited capacity. This setting is
motivated by real applications such as Earth observation slot allocation, virtual network functions, or
multi-agent path finding. We model several directed path allocation problems (vertex-constrained
and resource-constrained), investigate several solution methods (qualified as exact or approximate,
and utilitarian or fair), and analyze their performances on an orbit slot ownership problem, for
realistic requests and constellation configurations.

Keywords: path allocation; fairness; constraint optimization; satellite constellation

1. Introduction

Earth observation satellites capture a vast number of images of the Earth’s surface every
day. These images are delivered to end-users who have made observation requests for several
purposes such as monitoring critical areas affected by natural disasters or crises, observing
infrastructures, monitoring the environment, etc. The observation request process operates in
the following manner. First, users submit their observation requests to the main mission center.
The mission center then computes observation plans which are transmitted to the satellites
when they overfly a ground control station. Subsequently, each satellite captures the requested
images and transmits the collected data when it passes over a ground reception station. The
satellites we consider in this work are on low Earth orbit and complete around 16 orbits per
day, which allows them to pass over several Earth areas at different times every day.

In order to improve the capability to deliver images as early as possible after requests
are formulated, one can rely on constellations of Earth observation satellites that are currently
deployed. Constellations also offer the possibility for users to express more complex requests.
An example of such a complex request is a periodic request, that consists in observing an area
of interest at regularly spaced dates. Generally, the number of posted requests on a given
time horizon is too large to satisfy them all. Therefore, the main mission center has to select
which requests to perform for the upcoming time horizon, for instance using manually defined
prioritization rules. As such a selection process does not offer guarantees for users with regards
to the satisfaction of their requests, Earth observation satellite constellations’ managers now
propose a new observation paradigm, namely, exclusivity orbit slots booking. Whenever users

Systems 2023, 11, 297. https://doi.org/10.3390/systems11060297 https://www.mdpi.com/journal/systems
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buy exclusive orbit slots of a satellite, they can exploit this satellite during the associated time
windows using their own ground stations. This allows users to send observation plans to
satellites and collect the observations realized during the orbit slots.

In this respect, from the point of view of the operator of an Earth observation satellite
constellation, we consider the following problem. The goal is to attribute ownership of
some orbit portions to several clients. Each client has some points of interest (POIs) to
acquire at some frequency, e.g., capture L’Aquila city every 2 h for 6 months. Since several
satellites may capture the very same point on Earth around the requested observation
times, several possible bundles of orbit slots are specified by each client, together with a
preference for some bundles depending on the quality of the sequence of orbit slots, e.g.,
based on the POI viewing angle provided by each slot. Moreover, as several clients may
be interested in very close POIs, several requested orbit slots may overlap. Each orbit slot
in this category can be either allocated to a single client or divided between clients. These
situations can be captured by the models we propose in this article.

More precisely, we consider a problem of allocation of conflicting bundles of items
constrained by item chaining (to allocate to each agent a chain of successive items). The
chaining constraint is captured by using, for each agent, an edge-weighted directed acyclic
graph (DAG) representing all the valid bundles (i.e., paths) of items for the agent, where
the quality of a bundle is represented by additive edge weights. Then, conflicting bundles
cannot be allocated at the same time and have to be handled so that each agent obtains
one conflict-free path in its graph. Such a setting occurs in application domains such as
network function virtualization (NFV), where users request allocating directed graphs of
services into a shared networked infrastructure [1]. As explained before, this also occurs
in Earth observation using a constellation of satellites in a scenario where users demand
the ownership of some repetitive orbit slots, without overlapping with other users’ slots,
to fulfill periodic observation requests [2,3]. In such settings, beside the additive edge
weights, other criteria can be considered to guide the allocation process, especially when
constellation users are stakeholders expecting allocations to be fair or proportional to
their investment.

In this paper, we contribute on the following points:

• We define a generic modeling framework for the path allocation problem with conflict
(directed path allocation problem, or DPAP) and consider two optimization criteria
(global utility and leximin).

• We instantiate this framework with two compact representations of conflicts, one
based on a vertex conflict (vertex-constrained directed path allocation problem, or
V-DPAP) and one based on a resource consumption conflict (resource-constrained
directed path allocation problem, or R-DPAP)—note that V-DPAP comes from the
path allocation in the directed acyclic graph (PADAG) problem defined in [4].

• We show that the decision problems associated with V-DPAP and R-DPAP are NP-
complete, whatever the optimization criteria.

• We define several complete and incomplete allocation schemes for solving V-DPAP
and R-DPAP.

• We evaluate all of the algorithmic approaches on dozens of orbit slot allocation bench-
marks and discuss the obtained results.

The paper is structured as follows. Section 2 discusses related works focusing on the
allocation of goods as paths. Section 3 presents the DPAP framework to tackle path allocation
in multiple conflicting edge-weighted directed acyclic graphs. In Sections 4 and 5, we consider
vertex-based conflicts (V-DPAP) and resource-based conflicts (R-DPAP). We analyze the theo-
retical complexity of the associated decision problems and discuss the relationship between
the two frameworks. Section 6 lists some algorithms, complete and incomplete, that can be
used to solve V-DPAP and R-DPAP. Section 7 presents the experiments used to evaluate the
performances and behaviors of our solution methods on problem instances coming from the
Earth observation domain. Finally, Section 8 concludes the article with some perspectives.
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2. Related Works

The literature contains some work related to the allocation of goods structured as
graphs. In fair division of graphs, the objective is to divide a graph of items between several
agents, with additive utilities attached to nodes [5,6]. These works provide interesting
properties to find envy-free or Pareto-optimal, allocations in an efficient manner in some
specific graph structures, e.g., paths, trees, stars. However, in our problem, (i) agents do
not compete for the very same set of items, (ii) the graph is directed to compose paths from
a start time to an end time, and (iii) even by mapping our problem to a graph division
problem and by regrouping conflicting items into composite items, it is highly improbable
that the resulting graph is acyclic. Here, graphs are used to express preferences and not
the goods to allocate. In short, our work does not fall into the existing graph fair division
frameworks, and cannot benefit from theoretical results on path-shaped or star-shaped
graphs.

Another related method is path auctions [7–9], where agents bid for paths in a graph
where each edge is owned by an agent. The goal is to assign paths to agents by the means
of auctions, and optionally to keep some privacy for the edge owners. In the case of a
utilitarian objective function for the winner determination problem, without price privacy,
this falls into the Vickrey–Clarke–Groves framework, and thus guarantees some efficient
and strategy-proof mechanisms. However, here again, agents bid on the very same set of
nodes and edges.

In the transportation domain, investigations on very similar structures, that is flow
networks, provide techniques for fair maximum flow in multi-source and multi-sink net-
works [10]. While the techniques used are very similar to ours (linear programming), the
maximum flow objective is very different from path utility maximization with a single
path per agent. Furthermore, [11] worked on multiple shortest path problems based on
deconflicting techniques. While the problem displays similar characteristics, once again the
agents evolve on the very same graphs, and the objective is focused on minimizing path
length and minimizing conflicting paths, without fairness desiderata.

In congestion games, agents are allocated paths so that the delays incurred by crossing
paths are minimized. The more agents are allocated the same nodes, the more delay is attached
to their paths [12,13]. In our work, we do not consider delay but incompatibilities. Even if
they could be modeled as nonlinear {0, ∞} functions, in our problem some path allocations
are unfeasible, contrarily to congestion games. Furthermore, using congestion game solution
methods, as in [13], may result in unfair Nash equilibria, because of numerous unfeasible
paths1.

More generally, another classical approach to the fair allocation of indivisible goods
is round-robin, which is almost envy-free [14]. This is notably one favored technique to
allocate virtual network functions in network function virtualization infrastructures [15],
or to schedule tasks. We will use it as a competitor for our techniques.

In [16], we proposed constraint-programming approaches for fair sharing of orbit slots
in the case of Earth observation satellites. We considered several types of requests, such
as periodic and global requests. The latter type of requests cannot be modeled within the
graph-based framework proposed in this paper. Therefore, we had to enumerate all the
ways to (partially) satisfy requests. This enumeration is not required within the framework
we propose here, because of the compact graph representation. Moreover, the approaches
of [16] were evaluated on small horizons, due to the computational intensiveness of the
proposed solution methods. The horizons considered in this paper are much longer.

In this paper, we investigate several mathematical programming-based (utilitarian, lex-
imin, approximate leximin) and ad hoc algorithms (greedy, round-robin) to allocate paths in
conflicting graphs. We generalize our previous work [4] to the case of directed path allocation
problems (DPAP) and consider another conflict expression that is based on resources. Note
that a more detailed description of the work performed in [4] is presented later in the paper.

In another direction, there is a wide literature on Earth observation scheduling prob-
lems (EOSPs) [17]. In such problems, some observation requests have to be assigned to
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satellites and scheduled for each satellite so that several constraints (e.g., temporal con-
straints related to the possible maneuvers of the satellites) are satisfied. Various criteria have
been studied in the literature. Nevertheless, as the problem is generally over-constrained
because of the number of requests to satisfy, a classical criterion is to optimize a (weighted)
total reward provided by the satisfied requests. The Earth observation scheduling problem
has a lot in common with the orbit slot allocation problem (OSAP) considered in this paper.
Indeed, both problems involve observation requests posted by users, visibility windows,
constraints related to the satellite disjunctive nature, etc. However, there are several differ-
ences between the two problems. First, in the orbit slot allocation problem, users want to
“own” the satellite during some orbit portions in order to perform a set of observations. The
targets to be observed during each slot are not precisely known in advance, which means
that constraints about the satellites’ maneuvers are irrelevant in the case of OSAP. Then,
the requests’ nature is different. In fact, in OSAP, the requests are composed of several
slots possibly over several months ahead, and each slot is quite long as it is supposed to
allow the user to perform several observations. In the case of EOSPs, there are many more
requests but on a very short time horizon (a few days at most), and each request requires a
very small amount of satellite time. Finally, fairness between users is essential in the case of
OSAPs, whereas it is rarely considered in EOSPs. Two exceptions are the work described
in [18], where the authors study a multi-objective EOSP and aim at maximizing the total
profit and minimizing the maximum profit difference between each pair of users, and the
work described in [19], where a heuristic method is proposed to solve the EOSP while
taking into account fairness.

Using graphs in the context of EOSPs is not novel. In [20], an activity-on-node graph
allows modeling of all the alternatives to satisfy observation requests by a set of satellites
(one node is one opportunity to observe a request target by a satellite, and the edges allow
conflicts between observation candidates to be represented). Then, maximizing the number
of satisfied requests amounts to computing the maximum independent set of the graph.

3. Directed Path Allocation Problems

In this section, we define the so-called directed path allocation problem (DPAP), where
agents’ valuations of item bundles are represented as edge-weighted DAGs, as illustrated
in Figure 1, and where the goal is to select one path in each DAG while satisfying set
compatibility constraints over the selected paths. We first introduce some notation related
to graphs and then formalize the generic problem we consider.

Definition 1. A single-source single-sink edge-weighted DAG g is a triple 〈Vg, Eg, ug〉 such that:

• Vg is a set of nodes; in our case, each node corresponds to an item that can be allocated to an
agent, except for two specific nodes referred to as the source sg and the sink tg;

• Eg ⊂ Vg ×Vg is the set of arcs of the acyclic graph, with the assumption that sg and tg are,
respectively, the unique source and sink of the graph; an arc v1 → v2 indicates that items v1
and v2 can be selected sequentially;

• ug : Eg → R+ is a utility function that associates a weight to each arc of the graph to represent
a preference over the combinations of item selections; we assume that Eg contains an arc from
sg to tg labeled by utility 0, to deal with cases where no bundle of items can be selected in g.

In the following, the set of paths from sg to tg is denoted by Πg.

For each graph g and each set of edges X ⊆ Eg, the utility of X for g is defined by
ug(X) = ∑e∈X ug(e), which means that edge valuations are additive. As a result, each path
from sg to tg in a graph g is evaluated by summing the utilities of the traversed edges, and
each DAG represents, in a compact manner, a set of valuations for bundles of items, as in
combinatorial auctions.

Definition 2. A Directed Path Allocation Problem (DPAP) is a tuple 〈A,G, μ, φ〉, where

• A = {1, . . . , n} is a set of agents;
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• G = {g1, . . . , gm} is a set of single-source single-sink edge-weighted DAGs, as introduced in
Definition 1;

• μ : G → A maps each graph g in G to its owner a in A; we also denote by Ga = μ−1(a) the
set of graphs owned by agent a;

• φ : Πg1 × . . .×Πgm → {0, 1} is a path compatibility function that indicates whether a
combination of paths (p1, . . . , pm) (one path per graph) is feasible (value 1) or not (value 0).

In a DPAP, the definition of the path compatibility function φ is related to the presence
of items that cannot be shared by the agents. More precisely, a conflict between two paths
represents the fact that assigning these paths to clients is infeasible (e.g., because some orbit
slots overlap) or strongly undesirable for the constellation manager. A naive definition of
the compatibility function is the list of combinations of paths that are compatible with each
other. However, the number of paths in a DAG is exponential, which makes this definition
impractical in the general case. Therefore, in the next sections, we propose and discuss
different ways to define the compatibility function in a compact way.

Example 1. Figure 1 illustrates a DPAP representing an orbit slot allocation problem. In such
a problem, satellite orbit slots must be allocated to agents so that the latter can make several
observations of a POI on Earth. In this example, we consider two agents A and B that each have one
observation request, request a for agent A and request b for agent B.

Within the DPAP modeling framework, we consider a graph for each request: graph ga for
request a and graph gb for request b. The nodes of these graphs are the orbit slot candidates for each
request (slots a1, a2, and a3 for request a, and slots b1, b2, b3, and b4 for request b). A path in a
graph represents a way to satisfy the corresponding request. For instance, for satisfying request a,
starting from sa, one can either select first slot a1 and then slot a2, or select first slot a3 and then slot
a2. Each edge has a utility that represents the reward for selecting slots in a given order. For instance,
edges sa → a1 and sa → a3 have utilities equal to 0.2 and 0.5, respectively. This represents the fact
that agent A prefers selecting slot a3 rather than selecting slot a1. Such a difference can be due to a
satellite viewing angle that is better for a3 than for a1. Note that for a node, its incoming edges do
not necessarily have the same utility value. For instance, the utility of edge b1 → b4 is equal to 0.1,
whereas the utility of edge b3 → b4 is equal to 0.3.

The graph associated with request a contains three possible paths while the graph associated
with request b contains five possible paths. We assume here that only 10 combinations of paths are
allowed by the path compatibility function φ among the 15 possible ones. For instance, paths πa,1
and πb,2 are compatible (φ(πa,1, πb,2) = 1) but paths πa,1 and πb,3 are not (φ(πa,1, πb,3) = 0).
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0
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gb sb

b1 b2
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0
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0.5

0

0.4
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0

0.1
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Paths for graph ga:
πa,0 = [sa, ta]
πa,1 = [sa, a1, a2, ta]
πa,2 = [sa, a3, a2, ta]

Paths for graph gb:
πb,0 = [sb, tb]
πb,1 = [sb, b1, b2, tb]
πb,2 = [sb, b1, b4, tb]
πb,3 = [sb, b3, b2, tb]
πb,4 = [sb, b3, b4, tb]

Forbidden combinations:
(πa,1, πb,1)
(πa,1, πb,3)
(πa,2, πb,1)
(πa,2, πb,3)
(πa,2, πb,4)

Figure 1. Sample users’ bundle valuations (or preferences) represented as a DPAP.

Definition 3. For a DPAP 〈A,G, μ, φ〉, an allocation is a function π that associates, with each
graph g ∈ G, one path π(g) from sg to tg in g. If G = {g1, . . . , gm}, such an allocation is valid if
and only if φ(π(g1), . . . , π(gm)) = 1 holds. Formally, π(g) can be represented as a set of nodes in
Vg. Indeed, as DAGs are manipulated, it is easy to reconstruct the edges successively traversed by
the path from this set.
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Definition 4. For a DPAP 〈A,G, μ, φ〉, the global utility u(π) associated with an allocation π is
the sum of the utilities obtained in each graph, that is u(π) = ∑g∈G ug(π(g)). The utility obtained
for agent a is ua(π) = ∑g∈Ga ug(π(g)).

Definition 5. For a DPAP 〈A,G, μ, φ〉 involving n agents, the leximin utility vector asso-
ciated with an allocation π is the vector lex(π) = (Λ1, . . . , Λn) that corresponds to vector
(u1(π), . . . , un(π)) sorted following an increasing order (Λi ≤ Λj holds for i < j).

If π and π′ denote two allocations for a given DPAP, and lex(π) = (Λ1, . . . , Λn) and
lex(π′) = (Λ′

1, . . . , Λ′
n) are their associated leximin utility vectors, π is strictly better than

π′ with respect to the leximin criterion if there exists k in [1..n] such that Λk > Λ′
k and for

all i < k, Λi = Λ′
i. Note that leximin-based fair allocations allow the favoring of agents that

are less satisfied.
The problems we consider in this paper are: (i) how to compute an optimal (utilitarian)

valid allocation π that maximizes u(π), and (ii) how to compute an optimal fair valid
allocation π that maximizes lex(π).

Example 2. In the graphs described in Example 1 and illustrated in Figure 1, the individual best
paths for agents A and B are {sa, a3, a2, ta} and {sb, b1, b2, tb}, respectively. They both have a
utility equal to 1. However, these paths are not compatible according to the list of forbidden paths
and cannot both belong to a valid allocation.

Figure 2a gives an example of a valid allocation πex = {ga �→ {sa, a1, a2, ta}, gb �→
{sb, b1, b4, tb}} for the DPAP introduced before. The global utility of πex is u(πex) = u(πex(A))+
u(πex(B)) = 0.7 + 0.6 = 1.3. The leximin vector associated with πex is lex(πex) = (0.6, 0.7):
agent B has the lowest utility (0.6), and agent A’s utility is equal to 0.7.

Figure 2b illustrates allocation πutil = {ga �→ {sa, a3, a2, ta}, gb �→ {sb, b1, b4, tb}} that
maximizes the global utility: u(πutil) = 1.0+ 0.6 = 1.6. The leximin vector is lex(πutil) = (0.6, 1.0).

Figure 2c illustrates allocation πlex = {ga �→ {sa, a1, a2, ta}, gb �→ {sb, b3, b4, tb}} that
maximizes the leximin vector: lex(πlex) = (0.7, 0.7). The global utility associated with πlex is
lower: u(πutil) = 1.4.
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Figure 2. Examples of valid allocations for the DPAP described in Figure 1. (a) Illustration of allocation
πex with the paths selected in graphs ga and gb. (b) Allocation πutil that maximizes the global utility:
u(πutil) = 1.6. (c) Allocation πlex that maximizes the leximin vector: lex(πlex) = (0.7, 0.7).
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4. V-DPAP: Vertex-Constrained Directed Path Allocation Problems

In practice, the compatibility function φ that describes the allowed combinations of
paths must be described in a compact way. We study the case where φ is simply defined
by a set of conflicts between vertices, where each conflict corresponds to a subset of items
that cannot all be simultaneously selected. For our target application related to booking
orbit slots over a constellation of satellites, this is useful to model situations where two
satellite slots required for two distinct booking requests are not compatible because they
overlap and require the same satellite. The introduction of conflicts between vertices leads
us to a specific case of DPAP called the vertex-constrained directed path allocation problem
(V-DPAP). Note that V-DPAP is very close to the problem presented in [4].

4.1. Framework Definition

Definition 6. A Vertex-Constrained Directed Path Allocation Problem (V-DPAP) is a DPAP
〈A,G, μ, φ〉 where function φ is defined by a set of conflicts C between vertices of the graph. Each
conflict σ ∈ C is a non-empty set of vertices Vσ that cannot all be selected by an allocation. Moreover,
we assume that the vertices in Vσ all belong to distinct graphs.

From this, function φ returns a value of 0 for a selection of paths (p1, . . . , pm) if and only if
there exists a conflict σ ∈ C such that all vertices in Vσ are traversed by one path in (p1, . . . , pm).
Formally, φ(p1, . . . , pm) = 0 if there exists σ ∈ C such that Vσ ⊆

⋃m
i=1 Vpi , where Vpi denotes the

set of vertices in path pi.

The previous definition covers both binary conflicts holding on two vertices and n-ary
conflicts holding on any set of vertices. This differs from our initial framework, called
PADAG, where only binary vertex conflicts were considered [4]. We will sometimes define
a V-DPAP as a tuple 〈A,G, μ, C〉 equivalent to 〈A,G, μ, φ〉 since φ is non-ambiguously
defined by the set of conflicts C.

Example 3. Figure 3 illustrates a V-DPAP that contains two conflicts, namely, conflict σ1 = {a2, b2}
that invalidates any combination of paths traversing both a2 and b2, and conflict σ2 = {a3, b3} that
invalidates any combination of paths traversing both a3 and b3. It can be shown that these conflicts
lead to the same valid allocations as the ones provided in the DPAP of Figure 1.
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conflict σ1 = {a2, b2}

conflict σ2 = {a3, b3}

Figure 3. V-DPAP equivalent to the DPAP example of Figure 1; the set of vertex conflicts, represented
as red hypernodes, gives a compact representation of the set of allowed combinations of paths.

4.2. Theoretical Complexity

Proposition 1. For a V-DPAP, determining whether there exists a valid allocation π such that
utilitarian evaluation u(π) is greater than or equal to a given value is NP-complete.

Proof. First, the problem is NP since u(π) is computable in polynomial time. Then, there
exists a polynomial reduction of 3-SAT (which is NP-complete) to our problem. In a 3-SAT
formula that contains m clauses, each clause over the propositional variables x, y, z can be
represented as a weighted DAG g, where:

1. the set of nodes is Vg = {x,¬x, y,¬y, z,¬z, sg, tg},
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2. the set of paths from sg to tg in g corresponds to the set of truth values for x, y, z that
satisfy the clause (decision diagram representation),

3. the weight of every edge is set to 0, except for edges sg → n where n �= tg, that have
weight 1.

Last, for every propositional variable x, we can add one conflict (n, n′) for each pair of
nodes labeled by the literals x and ¬x in two distinct graphs.

For instance, the 3-SAT problem (x ∨ y ∨ z) ∧ (¬x ∨ y ∨¬w) can be represented by the
V-DPAP illustrated in Figure 4. Clause (x ∨ y ∨ z) is translated into graph g1 and clause
(¬x ∨ y ∨ ¬w) into graph g2. Vertices linked by dashed edges correspond to conflicts.

Then, as one path is selected in each graph and as there are m graphs, determining
whether there exists a valid allocation π such that u(π) ≥ m, with m the number of
clauses in the 3-SAT formula, is equivalent to finding a solution that satisfies all the clauses,
hence the NP-completeness result given that all operations used in the transformation are
polynomial.
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0

0

0

0

0
0

Figure 4. V-DPAP associated with the 3-SAT instance (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬w). Nodes in conflict
are linked through a dashed edge.

Proposition 2. For a V-DPAP, it is NP-complete to decide whether there exists a valid allocation
whose leximin evaluation is greater than or equal to a given utility vector. The proposition holds
even if there is a unique graph per agent.

Proof. In the general case, it suffices to consider a problem involving a unique agent
owning all the graphs, and to use the result of the previous proposition. If there is a unique
graph per agent, it suffices to use the exact same 3-SAT encoding as before. Then, it is
possible to show that there exists a valid allocation whose leximin evaluation is greater
than or equal to (1, 1, . . . , 1) if and only if there exists a solution for the 3-SAT problem.
Furthermore, the leximin evaluation of an allocation π can be computed in polynomial
time, hence the NP-completeness result.

5. R-DPAP: Resource-Constrained Directed Path Allocation Problems

The V-DPAP framework allows the posting of constraints on the simultaneous selection
of items from different graphs. This is particularly relevant when the items correspond
to tasks that require disjunctive resources over a given time frame. In this case, if two
tasks i and j need to book the same resource over two time intervals [ws(i), we(i)] and
[ws(j), we(j)], respectively, and if these two time intervals overlap, then a conflict {i, j} can
be defined. However, in practice, tasks i and j can be temporally flexible and can require
the resource only during limited durations d(i) and d(j), respectively. In this case, even if
time windows [ws(i), we(i)] and [ws(j), we(j)] overlap, tasks i and j may still be compatible.
Such specifications are useful for our target application, where an agent may request a
satellite only during 2 or 3 min over the whole 10 min pass of that satellite over the area
of interest. This section introduces another extension of DPAP that is adapted to path
allocation for items corresponding to such temporally flexible tasks.
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5.1. Framework Definition

Definition 7. A Resource-Constrained Directed Path Allocation Problem (R-DPAP) is a
DPAP 〈A,G, μ, φ〉 where function φ is defined by:

• a set of disjunctive resources R = {r1, . . . , rp};
• for each graph g ∈ G, a triple (wsg, weg, cg) such that:

– wsg : Vg → N and weg : Vg → N associate a start date and an end date, respectively,
that together define a time window for each item;

– cg : Vg → R∪ {r∅} returns the resource required for each item. For any vertex v ∈ Vg,
cg(v) = r∅ indicates that v does not require any resource in R. In particular, the source
and sink nodes do not consume any resource. Moreover, we assume that for two items
v and v′ belonging to the same graph and requiring the same resource in R, the time
windows of v and v′ do not overlap;

– dg : Vg → N associates a duration with each item; resource cg(v) must be used during
dg(v) time units within time window [wsg(v), weg(v)] without any interruption (non-
preemptive consumption).

From this, function φ returns a value of 1 for a path allocation if and only if, given the items
selected by the paths, there exists a way to schedule the consumptions over the disjunctive resources
in R (see Definition 8).

Definition 8. In an R-DPAP 〈A,G, μ, φ〉, an allocation π is valid if and only if for each graph
g ∈ G, there exists a function τπ,g : π(g) → N that assigns a start date to each node v in π(g)
such that:

• for all graphs g ∈ G, for all nodes v ∈ π(g), τπ,g(v) ≥ wsg(v) and τπ,g(v) + dg(v) ≤
weg(v);

• there is no conflict for nodes in π(g) with respect to resource consumption. Formally, for
each pair of distinct graphs g and g′, for each node v ∈ π(g) and each node v′ ∈ π(g′) such
that cg(v) = cg′(v′) and cg(v) �= r∅ (i.e., v and v′ consume the same resource in R), either
τπ,g(v) + dg(v) ≤ τπ,g′(v′) or τπ,g′(v′) + dg′(v′) ≤ τπ,g(v) holds.

Example 4. We reuse the orbit slot allocation problem whose graph is given in Figure 1, and where
two requests a and b are involved. We assume here that each request requires two observation slots
of duration 2. For both requests, the first slot must occur around time 3 and the second slot around
time 9. We consider two satellites sat1 and sat2. For request a, there are two time windows around
time 3 during which satellites pass over the target area of a: time window a1 = [1, 4] for satellite
sat1 and time window a3 = [2, 4] for satellite sat2. Around time 9, only satellite sat1 passes over
the target area, which results in time window a2 = [7, 10]. Similarly, for request b, time windows
b1 = [2, 5] and b3 = [1, 4] allow the target area to be observed around time 3 with satellites sat1
and sat2, respectively. Time windows b2 = [8, 10] and b4 = [9, 12] are available for observing
around time 9. Such a problem can be represented through the R-DPAP illustrated in Figure 5.
Each satellite can be seen as a resource. Each request is represented through a graph: graph ga
for request a and graph gb for request b. The nodes in the graph correspond to the time windows
associated with each request and each satellite. For instance, node a1 in graph ga corresponds to
time window a1 = [1, 4]. Formally, dga(a1) = 2 (because an observation duration equal to 2 is
required), wsga(a1) = 1, wega(a1) = 4 (corresponding to time window [1, 4]) and cga(a1) = sat1.

Example 5. Figure 6a illustrates an allocation for the problem presented in Example 4. A valid
allocation could be πex = {ga �→ {sa, a1, a2, ta}, gb �→ {sb, b1, b4, tb}}. In fact, we can consider
two functions τπex,ga and τπex,gb that assign start dates to nodes in πex without any conflict in
resources. As illustrated in Figure 6b, it is possible to have τπex,ga(a1) = 1 (i.e., a slot starting at
time 1 and ending at time 3 is booked within time window a1), τπex,ga(a2) = 7, τπex,gb(b1) = 3,
and τπex,gb(b4) = 9, which results in a non-conflicting access to the resources sat1 and sat2.
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0.1

0.5

resource sat1

resource sat2

(a)

time1 2 3 4 5 6 7 8 9 10 11 12

sat1

[2]a1 [2]a2

[2]b1 [2]b2

sat2

[2]a3

[2]b3 [2]b4

(b)

Figure 5. Orbit slot allocation problem involving two satellites sat1 and sat2 and two agents A and
B that each have one request, denoted a and b, respectively. Two observation slots with a duration
equal to 2 must be allocated for each request (represented by [2] in each observation slot). The first
orbit slot of each request should be around time 3 and the second one around time 9. (a) Graphs ga
and gb representing the requests and resources of Example 4. (b) Description of the resources, time
windows, and durations associated with the vertices of graphs ga and gb.
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time1 2 3 4 5 6 7 8 9 10 11 12

sat1

a1 a2

b1 b2

sat2

a3

b3 b4
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Figure 6. Valid allocation example, πex, for the R-DPAP described in Example 4. (a) Illustration of
allocation πex with the paths selected for graphs ga and gb. (b) Start dates that allow the selection of
the nodes of πex without any conflict in resources.

5.2. Theoretical Complexity

Proposition 3. The R-DPAP-UTIL-DEC problem, which consists in determining whether, for a
given R-DPAP problem, there exists an allocation π and start time functions τπ,g such that π is
valid and utilitarian evaluation u(π) is greater than or equal to a given value, is NP-complete.

Proof. Given an R-DPAP, an allocation π for it, a start time function τπ,g for each graph g,
and a utility lower bound L, verifying that the scheduling constraints are satisfied and that
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u(π) is greater than or equal to L is polynomial. This proves that R-DPAP-UTIL-DEC is in
class NP.

To prove the NP-completeness of R-DPAP-UTIL-DEC, we rely on the fact that the
one-machine scheduling problem with release dates and due dates in which the objective is
to minimize the maximum lateness of jobs is NP-complete [21].

Let 〈A, P, R, D〉 be such a problem where:

• A = {a1, . . . , an} is a set of activities;
• P : A → N is a function that assigns a processing time to each activity of A;
• R : A → N is a function that assigns a release date to each activity of A;
• D : A → N is a function that assigns a due date to each activity of A.

The objective of the problem is to define a function σ : A → N that assigns a start date
σ(a) to each activity a in A such that:

• the release dates are satisfied, i.e., ∀a ∈ A, σ(a) ≥ R(a);
• the machine performs at most one activity at each time step, i.e., ∀ai, aj ∈ A2 with

i �= j, either σ(ai) + R(ai) ≤ σ(aj) or σ(aj) + R(aj) ≤ σ(ai) holds;
• the maximum lateness Lmax is minimized, where Lmax = maxn

i=1(σ(ai) + P(ai) −
D(ai)).

In the associated decision problem, we consider a bound l, and the objective is to
decide if it is possible to define σ such that Lmax ≤ l.

Such a problem can be transformed to an R-DPAP as follows:

• we consider a unique resource r;
• we consider an agent agenta for each activity a in A;
• for each activity a in A, we consider the graph ga (illustrated in Figure 7a) that belongs

to agent agenta and that has the following features:

– its set of vertices is composed of three nodes: sa, ta, and va;
– its set of edges is composed of (sa, va) with a utility equal to 1, and (sa, ta), (va, ta)

that both have a null utility;
– as illustrated in Figure 7b, node va requires resource r during D(a) time units

within time window [R(a), D(a) + l];

• the obtained R-DPAP is 〈{agenta | a ∈ A}, {r}, {ga | a ∈ A}, μ〉, with μ a function that
assigns, for each activity a in A, agent agenta to graph ga.

The maximum lateness is lower than or equal to l in the machine scheduling problem if
and only if there exists a valid allocation π with a utility greater than or equal to n. Indeed,
to reach such a utility value, the paths selected in the n graphs must each have a utility
equal to 1. The selection of such paths indicates that all activities va can be scheduled on
the unique resource while satisfying the release date and the due date, to which is added
the lateness bound l.

sa tava

0

1 0 Node v dg(v) [wsg(v), weg(v)] cg(v)
sa 0 [0, 0] r∅
va P(a) [R(a), D(a) + l] r
ta 0 [0, 0] r∅

(a) (b)

Figure 7. R-DPAP part generated for each activity a in A. (a) Graph generated for each activity a in
A. (b) Description of nodes in the graph generated for each activity a in A.

Proposition 4. The R-DPAP-LEX-DEC problem, which consists in determining whether, for a
given R-DPAP problem, there exists an allocation π and start time functions τπ,g such that π is
valid and its leximin evaluation is greater than or equal to a given utility vector, is NP-complete.
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Proof. By using the same encoding as in the previous proof, there exists a solution such
that Lmax ≤ l if and only if the leximin-optimal allocation has a value greater than or
equal to (1, 1, . . . , 1). Further, the leximin evaluation of an allocation π can be computed in
polynomial time, hence the NP-completeness result.

5.3. Relationship between R-DPAP and V-DPAP

An R-DPAP combines a path selection problem and a scheduling problem over the
resources used by the selected items. In the following, we show that it is possible to
transform an R-DPAP into an equivalent V-DPAP by generating a set of item selection
conflicts that is equivalent to the set of selections forbidden by the scheduling problem.

To illustrate this point, let us consider the example given in Figure 8, that involves four
requests: a, b, c, d. It is first possible to decompose the scheduling problem of the R-DPAP
into a set of subproblems containing items that may be in competition for using a given
resource (gray rectangles depicted in the figure). For example, items a4 and b5 belong to
the same subproblem because their time windows overlap, and items b5 and c1, whose
time windows do not overlap, also belong to the same subproblem because the presence
of items a4 and d1 creates an indirect interaction between b5 and c1. More formally, to
compute the content of these scheduling subproblems, we can build, for each resource
r, the graph Gr containing one node per item and one edge between item i and item j if
and only if the time windows of i and j overlap. Then, the scheduling subproblems to
consider correspond to the connected components of graph Gr. In Figure 8, we obtain three
connected components for resource sat1, namely, {a1, b1}, {a2, b2}, and {a4, b5, c1, d1}, and
three connected components for resource sat2, namely, {a3, b3}, {b4}, and {a5, b6, c2, d2}.

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

sat1

a1 [2] a2 [2] a4 [2]

b1 [2] b2 [2] b5 [2]

c1 [3]

d1 [4]

sat2

a3 [2] a5 [3]

b3 [2] b4 [2] b6 [3]

c2 [3]

d2 [4]

a1 [2]

b1 [2]

a a2 [2]

b2 [2]

a

a3 [2]

b3 [2] b4 [2]b

a4 [2]

b5 [2]

c1 [3]

d1 [4]

a

a5 [3]

b6 [3]

c2 [3]

d2 [4]

b

Figure 8. Orbit slot allocation problem involving two satellites sat1 and sat2 and four requests a, b, c,
d posted by four agents A, B, C, D; the duration associated with each item is also indicated (e.g., a
duration of 2 time units for item a1 and a duration of 3 time units for item c1).

After these steps, for each component Γ obtained, we can compute the set of minimal
scheduling conflicts associated with Γ. This set contains all the sets S ⊆ Γ such that, (1) there
is no feasible schedule performing all the tasks in S while respecting their time window
and duration constraints, and (2) set S is minimal for inclusion, that is, for every set S′ ⊂ S,
there exists a way to schedule all the tasks in S′. To compute these minimal conflicts, we
proceed as follows.

• We consider the non-empty subsets S of Γ one by one, following an increasing cardi-
nality order. For a given set S, if there exists a subset S′ ⊂ S of size |S| − 1 such that
S′ is a conflict, S is marked as being a conflict but is not added to the set of minimal
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conflicts. Otherwise, we test whether there exists a schedule containing all the tasks in
S. If not, S is marked as a conflict and added to the set of minimal conflicts.

• To determine whether there exists a schedule containing all the items in a set S, we
use a dynamic programming algorithm. More precisely, we consider the subsets S′ of
S following an increasing cardinality order and we determine, for each subset S′ ⊆ S,
the minimum time mt(S′) at which all items in S′ can be served in a feasible schedule.
To do this, we start from mt(∅) = −∞ and apply recursive formulas. If item i ∈ S′

belongs to graph g and is the last item visited, the minimum time at which the visit
of i can end is given by mt(S′, i) = max(mt(S′ \ {i}), wsg(i)) + dg(i), and visiting i at
the latest position among the items in S′ is feasible if and only if mt(S′, i) ≤ weg(i).
From this, the minimum time mt(S′) at which all items in S′ can be served in a feasible
schedule is given by mt(S′) = mini∈S′ |mt(S′ ,i)≤weg(i) mt(S′, i). It can be shown that at
the end of the process, all the items in S can be scheduled if and only if mt(S) < +∞.
The dynamic programming algorithm described before has a time complexity that is
exponential in the size of S; however, the number of requests is low for the practical
application we are targeting.

Example 6. For the example given in Figure 8, the set of minimal conflicts obtained is

{{a2, b2}, {a4, b5, c1, d1}, {a3, b3}, {a5, b6, d2}, {b6, c2, d2}}

Such conflicts are equivalent to the constraints of the initial scheduling problem.

The method described before allows us to transform an R-DPAP P into a V-DPAP P′
that contains the exact same set of items as P and has the same graph topology as P , and
where the conflicts in P′ are those obtained by preprocessing the scheduling problem of
P . In the following, given the (restricted) number of requests in our target application, we
consider that such a transformation from R-DPAP to V-DPAP can be used and we focus on
the definition of algorithms for solving V-DPAP.

6. V-DPAP Solution Methods

We propose here several allocation schemes for V-DPAP. Some of them are based
on integer linear programming (ILP) and mixed integer linear programming (MILP), so
we first introduce decision variables and constraints for these models. For any DAG
g = 〈Vg, Eg, ug〉, we define binary variables xe ∈ {0, 1}, for any e ∈ Eg, stating whether
edge e is selected in the path defining the solution bundle. We also use auxiliary binary
variables βv, stating whether node v is selected in solution path π(g), i.e., βv = 1 if v ∈ π(g),
and 0 otherwise. For any node v in Vg, we denote by In(v) (respectively Out(v)) its set
of incoming (respectively outcoming) edges. In all ILP models introduced hereafter, we
impose constraints (1)–(3) to define all the possible paths, (4) and (5) to account for item
selection conflicts, (6) to ensure that sources and sinks are selected, and (7) to define the
edge selection variables.

∑
e∈In(v)

xe = ∑
e∈Out(v)

xe, ∀g ∈ G, ∀v ∈ Vg \ {sg, tg} (1)

∑
e∈Out(sg)

xe = 1, ∀g ∈ G (2)

∑
e∈In(tg)

xe = 1, ∀g ∈ G (3)

∑
e∈In(v)

xe = βv, ∀g ∈ G, ∀v ∈ Vg \ {sg, tg} (4)

∑
v∈σ

βv ≤ |σ| − 1, ∀σ ∈ C (5)

βsg = βtg = 1, ∀g ∈ G (6)
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xe ∈ {0, 1}, ∀a ∈ A, ∀g ∈ Ga, ∀e ∈ Eg (7)

6.1. Utilitarian Allocation (util)

The classical approach to allocation is the utilitarian one. This consists in finding the
allocation that maximizes the sum of utilities of all selected paths. This corresponds to
solving the integer linear program Putil(〈A,G, μ, C〉) composed of constraints (1)–(7) and
the objective function given below:

maximize ∑
a∈A

∑
g∈Ga

∑
e∈Eg

ug(e) · xe (8)

The resulting allocation π is decoded from the βv variables. Formally, for all g ∈ G,
π(g) = {v ∈ Vg | βv = 1}.

Example 7. In Figure 3, the utilitarian allocation is πutil = {a �→ {sa, a3, a2, ta},
b �→ {sb, b1, b4, tb}}, with utility u(πutil) = ua(πutil) + ub(πutil) = 1.0 + 0.6 = 1.6.

6.2. Leximin Allocation (lex)

Beyond utilitarianism, one way to implement fair allocation and Pareto-optimality
is to consider the leximin rule, that selects, among all possible allocations, an allocation
leading to the best utility profiles with respect to the leximin order [22]. More precisely,
let z = [z1, . . . , zn] be the utility vector, where each component za ∈ [0, Za] represents
the utility for agent a ∈ A. Za denotes here the best utility value for user a considered
alone, i.e., for the mono-agent problem, where the best path can be chosen for each graph
g ∈ Ga. In leximin optimization, the objective is to lexicographically maximize vector
Λ = [Λ1, . . . , Λn] obtained after ordering [z1, . . . , zn] following an increasing order. Such
a leximin rule can be implemented through a sequence of ILP [23]. We adapt here such a
procedure to the specific case of V-DPAP. Suppose we have already optimized over the
first K − 1 components [Λ1, . . . , ΛK−1] of Λ, for K ∈ [1..n]. Then, one can use the MILP
presented thereafter to optimize the Kth component ΛK of the leximin profile.

In this MILP model, variable λ represents the utility optimized at level K in Λ, with
λ ∈ [ΛK−1, maxa∈A Za], using convention Λ0 = 0. Variable yak is a binary variable that
takes value 1 if agent a ∈ A plays the role of the agent associated with level k ∈ [1..K− 1]
in [Λ1, . . . , ΛK−1], and 0 otherwise. Constraint (10) computes the utility associated with
each agent. Constraints (11) and (12) ensure that a unique agent is associated with each
level k ∈ [1..K − 1] already dealt with. Constraint (13) ensures that the utility obtained
for the agent associated with level k ∈ [1..K − 1] must not be less than Λk. Last, together
with the objective function, Constraint (14) ensures that λ will be equal to the minimum
utility value obtained for the agents that are not associated with levels [1..K− 1] in Λ. In
this constraint, M = maxa∈A Za is used to ignore the agents associated with levels strictly
lower than K when optimizing λ (big-M formulation). In the end, the optimization of ΛK
can be performed using program Plex(〈A,G, μ, C〉, K, [Λ1, . . . , ΛK−1]) that is composed of
constraints (1)–(7) and the additional constraints and objective function given below:

maximize λ (9)

za = ∑
g∈Ga

∑
e∈Eg

ug(e) · xe, ∀a ∈ A (10)

∑
a∈A

yak = 1, ∀k ∈ [1..K− 1] (11)

∑
k∈[1..K−1]

yak ≤ 1, ∀a ∈ A (12)

za ≥ ∑
k∈[1..K−1]

Λk · yak, ∀a ∈ A (13)

λ ≤ za + M ∑
k∈[1..K−1]

yak, ∀a ∈ A (14)
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za ∈ [0, Za], ∀a ∈ A (15)

yak ∈ {0, 1}, ∀a ∈ A, ∀k ∈ [1..K− 1] (16)

λ ∈ [ΛK−1, maxa∈A Za] (17)

To implement the leximin rule, it then suffices to solve a sequence of Plex problems
for K ∈ A to optimize the value of each component of the utility profile, as presented in
Algorithm 1.

Algorithm 1: Leximin algorithm.
Data: A V-DPAP 〈A,G, μ, C〉
Result: A leximin-optimal path allocation π

1 for K = 1 to |A| do

2 (λ∗, sol)← solve Plex(〈A,G, μ, C〉, K, [Λ1, . . . , ΛK−1])
3 ΛK ← λ∗

4 for g ∈ G do π(g)← {v ∈ Vg | sol(βv) = 1}
5 return π

Example 8. For the example in Figure 3, the leximin-optimal allocation is πlex = {ga �→
{sa, a1, a2, ta}, gb �→ {sb, b3, b4, tb}}, with utility vector (uA(πlex), uB(πlex)) = (0.7, 0.7).

6.3. Approximate Leximin Allocation (a-lex)

The previous model implements an exact leximin rule, and thus enforces fairness in
the resulting allocation. However, it may not scale well when increasing the number of
agents and edges. This is why we provide an approximate version of the computation of
the leximin based on an iterated maximin scheme. This approach considers at each step
a minimum utility Δa ≥ 0 for some agents and maximizes the worst utility among the
remaining agents, for which we arbitrarily assume Δa = −1. The problem to solve, referred
to as Pa-lex(〈A,G, μ, C〉, Δ), is the following one:

maximize δ (18)

such that (1), (2), (3), (4), (5), (6), (7)

δ ≤ ∑
g∈Ga

∑
e∈Eg

ug(e)xe, ∀a ∈ A | Δa = −1 (19)

∑
g∈Ga

∑
e∈Eg

ug(e)xe ≥ Δa, ∀a ∈ A | Δa �= −1 (20)

δ ∈ R
+ (21)

The solution method then consists in optimizing in an iterative manner, as for leximin.
As sketched in Algorithm 2, at each iteration (one per agent), Pa-lex is solved, one worst
agent â is determined, and its minimum utility Δâ is fixed. The main difference with Plex, is
that at each iteration in Pa-lex the position of an agent in the order is implicitly determined
once for the whole algorithm, while in Plex the order can be revised at each iteration.
Moreover, if any equality occurs at line 5 to determine the worst agent (case |S| > 1), one
may rely on some heuristic or arbitrary choice. Thus, Pa-lex is an approximation of Plex that
contains fewer variables and constraints.

Example 9. The approximate leximin allocation for the example in Figure 1 is πa-lex = {ga �→
{sa, a1, a2, ta}, gb �→ {sb, b3, b4, tb}}, with utility vector (uA(πa-lex), uB(πa-lex)) = (0.7, 0.7).
This is the same as πlex, but in the general case, πa-lex and πlex can differ.
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Algorithm 2: Approximate leximin algorithm.
Data: A V-DPAP 〈A,G, μ, C〉
Result: An iterated maximin-optimal allocation π

1 Δ ← [−1, . . . ,−1]
2 for K = 1 to |A| do

3 (δ∗, sol)← solve Pa-lex(〈A,G, μ, C〉, Δ)
4 S ← argmin

a∈A | Δa=−1
∑

g∈Ga

∑
e∈Eg

ug(e)sol(xe)

5 â ← choose an agent a in S
6 Δâ ← δ∗

7 for g ∈ G do π(g)← {v ∈ Vg | sol(βv) = 1}
8 return π

6.4. Greedy Allocation (greedy)

For very fast decisions, approximate leximin might still be too slow. In such cases,
a greedy approach can quickly provide valid allocations. The main idea of greedy path
allocation is to iterate over the set of graphs. At each step, one graph g∗ that has the best
utility path is selected and this path is chosen as π(g∗). Moreover, given the nodes already
selected and the new ones in π(g∗), all the nodes in the other graphs that are in conflict are
deactivated. Graph g∗ is then removed, and the process continues until there is no more
graphs to consider. This process ensures that constraints (1)–(6) are met. Determining the
best path in a DAG g has a linear time complexity O(|Eg|+ |Vg|) [24]. Obviously, greedy
is equivalent to utilitarian when there is no conflict between graphs. Indeed, greedy will
return the best path for each graph, which is the best utilitarian solution in such settings.
Moreover, if there are no ties when selecting the best path for each graph, then this greedy
approach leads to a Nash equilibrium, where no agent can improve its utility without a
negative impact on other agents. This is equivalent to the Nashify procedure from [13] in
the context of congestion games, with only one turn. We will see in the experiments that
this equilibrium is far from being fair.

Example 10. For the example in Figure 3, there is a path of value 1 in the two graphs ga and
gb. If the best path in ga is chosen first, then the allocation obtained in the end is πgreedy =
{ga �→ {sa, a3, a2, ta}, gb �→ {sb, b1, b4, tb}}, with global utility u(πgreedy) = uA(πgreedy) +
uB(πgreedy) = 1.0 + 0.6 = 1.6 and utility vector (1.0, 0.6).

6.5. Round-Robin Allocations (p-rr and n-rr)

One fast approach to the fair allocation of indivisible goods is round-robin. This consists
in making each agent choose in turn (in a predefined fixed order) one item (depending
on the preferences) until there is no more item to allocate. It is polynomial in the number
of agents and items. In our case, one may consider two kinds of items to allocate: paths
(denoted p-rr) or nodes (denoted n-rr). In the case of paths, each agent selects at its turn
its best feasible path, given the already allocated nodes (to prevent conflicts). This process
operates similarly to greedy, but alternates between users to balance utilities. In the case
of nodes, each agent incrementally builds the path associated with each of its graphs, by
choosing in turn a next best feasible node until either the sink is reached or there is no
more feasible nodes to choose (dead-end path). In the latter case, the agent is allocated the
0-utility source-to-sink path and loses the previously chosen nodes. In both approaches,
constraints (1)–(6) are met since all the paths considered are feasible. Note that if there
are no ties for the best path chosen by an agent at its turn, then p-rr results in a Nash
equilibrium. This is not true for n-rr, since some nodes left by some agents reaching a dead-
end may have prevented some other agents from finding a better solution. To overcome
this difficulty, it is possible to increase the possible partial satisfaction schemes for a request,
e.g., by adding arcs with a null utility from any node v to the sink node.
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Example 11. In Figure 3, if request a begins the path round-robin allocation, πp-rr for the ex-
ample in Figure 3 is equivalent to πgreedy, since a chooses {sa, a3, a2, ta} and then b chooses
{sb, b1, b4, tb}. If request b begins, then b chooses {sb, b1, b2, tb} and then the only possible path
for a is {sa, ta}, meaning that agent A receives a null utility.

If request a begins, the node round-robin allocation πn-rr is equivalent to πgreedy because a
first chooses a3, then b chooses b1 (only feasible option), then a chooses a2, and finally b chooses
b4 (only feasible option). However, if request b begins, b first chooses b1, then a chooses a3, then
b chooses b2, and finally a reaches a dead-end, since the selection of b2 implies that a2 cannot be
selected.

7. Experimental Evaluation

In this section, we evaluate the different allocation methods proposed when applied to
orbit slot allocation problems encoded as V-DPAP or R-DPAP. We present the experimental
setup and analyze some results obtained on synthetic realistic instances. In addition to
the experimental evaluation, this section also illustrates how a concrete application can be
modeled in our theoretical framework.

7.1. Benchmarks

We first describe the benchmark generation in the case of orbit slot allocation problems.

7.1.1. Constellation and Requests Features

We consider a low-Earth-orbit constellation (500 km altitude) composed of np regularly
spaced orbital planes having a 40-degree inclination, with np ∈ {2, 4, 8, 16} and two regularly
spaced satellites over each orbital plane (Walker constellation). We randomly generate requests
for four agents wishing to obtain orbit slot ownerships to implement some repetitive ground
acquisitions of POIs belonging to the same area. POIs are randomly selected within an extracted
subset from [25], around Grenoble, France. All the agents have the same template for each
request r, that is, communicating and getting observations every day at three requested times
(RTs): 8:00 + δr, 12:00 + δr, and 16:00 + δr, where δr is uniform random time shift in [−2h, 2h].
Note that δr applies to all RTs of the same request. For each request r and each RT t for r, the
slots over which orbit ownership can be claimed for achieving r around time t are determined
thanks to a space mechanics toolbox, based on the assumption that a satellite is relevant for a
POI as soon as its elevation above the horizon is greater than 15 degrees. Depending on the
number of satellites in the constellation, there might not be a satellite passing over a POI exactly
at the RT. We consider a tolerance window Δ equal to 1 h before and after each RT, meaning
that an orbit slot is considered as valid for an RT t if the middle of its temporal window is
less than an hour from that RT. Finally, we impose a minimum duration minD of 120 s for all
requests and do not consider orbit slots whose duration is shorter than this duration.

Note that these features were validated as realistic by a satellite constellation manager
we work with. In fact, in the case of orbit slot allocation problems, the number of users that
can afford to own orbit slots is quite low and so is their number of requests.

7.1.2. From Requests to DAGs

In order to encode the problem within the DPAP framework, we first create an agent u for
each user that has an observation request. Then, for each request r associated with agent u, we
first create a graph gr and define a function μ such that μ(gr) = u. In a graph gr created for
request r, the nodes are the orbit slots usable for capturing the POI targeted by r at some RT,
and the edges link two such consecutive orbit slots. We also add a source node that precedes all
of the orbit slots of the earliest RT and a sink node that follows all of the orbit slots of the latest
RT. Consequently, a path in the graph (i.e., a sequence of consecutive orbit slots) represents a
way to satisfy r. Figure 8 represents four requests (a, b, c, and d) from four users (respectively,
A, B, C, and D), with three RTs that are time 3, time 9, and time 21. In this example, each RT
has at most two possible orbit slots per request. For instance, for request a, there are two orbit
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slots for RT 3 (a1 and a3), one orbit slot for RT 9 (a2), and two orbit slots for RT 21 (a4 and a5).
Requests c and d do not have any orbit slot for RTs 3 and 9 but two each for RT 21.

For simplicity, even if the incoming arcs in the graphs of a DPAP for a given slot can
have different weights, we only consider in our experiments utilities attached to the slots
and not to the transitions between slots. As illustrated in Figure 9, for each candidate orbit
slot for a given RT, we consider a utility function that is piecewise linear in the distance
between the middle τ of the slot and that RT. The utility linearly decreases from 1 when τ
is exactly on the RT to 0.25 when τ reaches the bounds of the tolerance window, i.e., RT
+Δ and RT −Δ. We normalize each utility with respect to the maximum utility that can be
achieved for each user individually along by using its best paths. Therefore, each user’s set
of best paths has a utility equal to 1.

time

utility
1

0.25

RTRT− Δ RT + Δ

orbit slot o

starto endoτo

utility of o

Figure 9. Utility function used to compute the utility of an orbit slot with respect to some RT and a
tolerance Δ.

In order to limit the number of edges in graphs, we add a virtual node between all
slots of one RT and all slots of the next RT. If there are n orbit slots for an RT t and m slots
for the next RT t′, this allows there to be n + m edges (n edges with utility 0 going into
the virtual node and m edges weighted by the utility of orbit slots going out of the virtual
node) instead of n ·m edges (all n nodes connected to all m nodes).

Last, we consider two variants of the problem depending on whether requests can be
partially satisfied.

• In the full satisfaction variant, each path goes through one orbit slot for each RT, except
for a specific direct source-to-sink path that allows us to guarantee that there exists at
least one feasible path for each request. In other words, it is not possible to skip one
RT for an observation request, unless this request is not served at all.

• In the partial satisfaction variant, it is possible to skip some RTs for a request. In terms
of generated graphs, it simply consists in adding edges with a null utility between
successive virtual nodes, between the source and the first virtual node and between
the last virtual node and the sink.

Figure 10 illustrates the request a of Figure 8 in a full configuration (only black edges)
and in a partial configuration (black and thick blue edges).
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Figure 10. Graph for request a of Figure 8 with virtual nodes between successive RTs. The graph
with only black edges represents the problem in full satisfaction mode. The graph with both black
and thick blue edges represents the problem in partial request satisfaction mode.
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7.1.3. V-DPAP and R-DPAP Generation

We describe here how the function φ is implemented in the case of the orbit slot
problem for generating V-DPAP and R-DPAP instances.

V-DPAP. For generating the set of conflicts C associated with a V-DPAP, we define a
conflict for each pair of nodes corresponding to orbit slots that: 1. belong to
the same satellite; 2. temporally overlap; and 3. are from different users. For
the last assumption, we consider that it is possible to allocate to some user two
orbit slots from the same satellite that overlap. In fact, as the allocation of an
orbit slot consists in allowing an agent to dispose of the satellite during the
associated time interval, two overlapping orbit slots o1 and o2 can be seen as
a unique orbit slot that is the union of o1 and o2. With this conflict generation
scheme, all the conflicts obtained are binary. Note that it would be possible to
compute these conflicts more finely, for instance, by following the approach
proposed in [26].

R-DPAP. In the case of the φ function in R-DPAP, we follow the same process as in
Example 4. More precisely, we create a resource ρs for each satellite s of the
constellation. Then, for each graph gr associated with an observation request r,
for each vertex v in Vgr that corresponds to an orbit slot o (i.e., all vertices except
source, sink, and the ones added between successive RTs), we define wsgr (v) =
starto, wegr (v) = endo (i.e., the temporal window associated with vertex v is
exactly the temporal window associated with orbit slot o), dgr (v) = minD
(i.e., the duration associated with v is the minimum duration required) and
cgr (v) = ρs where s is the satellite associated with orbit slot o. For each vertex
v that is a virtual node, we consider that wsgr (v) = wegr (v) = 0, dgr (v) = 0,
and cgr (v) = r∅. Note that R-DPAPs are next transformed into V-DPAPs as
explained in Section 5.3, and in this case the conflicts obtained are not necessarily
binary ones.

7.1.4. Instance Generation Parameters and Properties

Table 1 summarizes all the parameters used for configuring the instances. Some of these
parameters do not vary, e.g., the number of requests for each user, which is equal to two. The
parameters that have different values as per configuration are the number of orbital planes np,
the type of problem (V-DPAP or R-DPAP), and the request mode satisfaction (full or partial).
For each configuration, 100 random instances have been generated. For 2 requests per agent,
3 RTs per day, and a horizon h = 180 days, the DAGs generated contain 3 · (2h− 1) = 1077
layers. These settings generate DAGs having the features displayed in Table 2.

7.1.5. Experimental Conditions

Our experimental environment has been implemented in Java 1.8 and executed on a
20-core Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz, 62 GB RAM, Ubuntu 18.04.5 LTS.
Utilitarian, leximin, and approximate leximin make use of the Java API of IBM CPLEX
20.1 (using a 2 min timeout). Note that the computation time does not need to be as tight
as in Earth observation scheduling problems. In fact, in EOSPs, it might be operationally
required to generate a schedule within a few minutes. Such operational constraints are
not relevant for orbit slot allocation problems as plans are computed months in advance.
Nevertheless, we limit the time taken by each call to the MILP solver.
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Table 1. Generation parameters along with their possible values for configuring instances.

Generation Parameters Values

Constellation

Altitude 500 km
Number of orbital planes np 2, 4, 8, 16
Number of satellites/plane 2

Inclination 40°

Scheduling
horizon

Start 1 January 2020
Duration 180 days

Problems Number of users 4
Type V-DPAP, R-DPAP

Requests

Number of requests/user 2
Requested observation Times 3 RTs/request

Maximum random time shift δr 1 h
Tolerance Δ 1 h

Minimum slot duration minD 120 s
Satisfaction mode full, partial

Algorithms Type util, lex, a-lex, greedy, p-rr, n-rr
CPLEX time limit 120 s

Table 2. Properties of generated problems used in the experimental evaluation (average values over
100 instances per configuration are reported).

Problem Properties
np

2 4 8 16

V-DPAP

Conflicts 37,715.34 74,009.12 146,657.94 291,831.52
Conflict size 2.0 2.0 2.0 2.0
Slots per RT 1.94 3.81 7.54 15.01

Slot duration (s) 618.10 616.44 616.91 616.66

R-DPAP

Conflicts 1715.38 3527.42 6981.19 13,929.55
Conflict size 3.28 3.17 3.21 3.19
Slots per RT 1.94 3.81 7.54 15.01

Slot duration (s) 618.10 616.44 616.91 616.66

For each pair (problem type, request satisfaction mode) in {V-DPAP, R-DPAP} × {full,
partial}, we have generated four types of plots. The first and second types of plots (e.g.,
Figure 11a,b) allow visualization of the average normalized global utility and the average
global reward (i.e., utility not normalized), respectively, both with [0.05, 0.95] as a confidence
interval 2 for each constellation size and for each algorithm. In the second type of plot (e.g.,
Figure 11c), the average computation time (logarithmic time scale) is indicated, also for
each constellation size and each algorithm. Finally, the fourth type of plot (e.g., Figures 12)
allows us to analyze the fairness of the resulting allocations. More precisely, we show the
average utility profile in all instances for each algorithm and for each constellation size.
Such a utility profile is in leximin order: for each radar, among the four agents, the south
represents the agent having the best utility over all agents, the west is the second best utility,
the north is the third best utility, and the east corresponds to the agent with the worst utility.
For some cases, we sometimes detail utility profiles obtained by each algorithm in some
specific instances.

We first present results associated with the full request satisfaction mode, and then
results associated with the partial request satisfaction mode.
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(a)

(b)

(c)

Figure 11. Performance metrics obtained by each algorithm for each constellation size, for full request
satisfaction mode and encoded as V-DPAP. (a) Normalized utility; (b) global reward; (c) computa-
tion time.

a-lex lex util greedy p-rr n-rr

2 orbital planes

a-lex lex util greedy p-rr n-rr

4 orbital planes

a-lex lex util greedy p-rr n-rr

8 orbital planes

a-lex lex util greedy p-rr n-rr

16 orbital planes

Figure 12. Average utility profiles (in leximin order) for each constellation size and each algorithm
(south: best utility over all agents; west: second best utility; north: third best utility; east: worst
utility), for full request satisfaction mode and encoded as V-DPAP.
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7.2. Results for the Full Request Satisfaction Mode
7.2.1. V-DPAP Results Analysis for np = 2

Figure 11a compares the normalized utility obtained by each algorithm. As expected,
the utilitarian allocation algorithm (util) returns the best global utility. Such a utility is
nevertheless quite low, as it does not reach 0.4 on average. The leximin allocation algorithm
(lex) is the second in terms of the normalized utility. Its normalized utility score is slightly
lower than that of the util. The approximate leximin (a-lex) algorithm’s utility is around
0.3. The fact that a-lex’s utility is lower than lex’s comes from the fact that a-lex cannot
backtrack on its decision on the agent’s order in the leximin vector, which is prejudicial
in the case of the utility’s equality within agents. Greedy allocation (greedy) and path
round-robin allocation (p-rr) have almost the same global utility (around 0.2) and finally,
node round-robin allocation (n-rr) has a global utility lower than 0.1. In terms of global
reward, this corresponds to 1000 for the best algorithm (util) and around 150 for the worst
one (n-rr).

The time required by each algorithm is reported in Figure 11c. The most time-
consuming approaches are a-lex and lex (around 20 s). In fact, they have to call the MILP
solver (CPLEX) as many times as the number of agents (here four). Algorithms greedy, n-rr,
and p-rr are the fastest ones as they return a solution in less than a second. Algorithm util
returns a solution in approximately 10 s.

The top line of Figure 12 displays the average utility profiles involving two orbital
planes. The best served agent has a utility very close to 1. Such radars show that the worst
served and second worst served agents all have a null utility. This comes from the fact that
the corresponding instances are very conflicting. Once two agents receive a path with a
utility strictly greater than 0, this prevents the others from satisfying their requests. We can
notice that algorithms util and lex have very similar utility profiles on average. Algorithm
a-lex does not perform as well for fairness, specifically for the second best served agent.
Algorithms n-rr, p-rr, and greedy serve only one agent.

7.2.2. Sensitivity to Constellation Size

The comparison between the algorithms for utility, computation time, and leximin
profiles does not change with respect to the number of orbital planes. In other words, the
relative performance of the algorithms is the same whatever the size of the constellation.
Figure 11a shows that the normalized global utility obtained by the agents does not increase
a lot with the constellation’s size. However, the allocation’s global reward increases with
the growing number of orbital planes. In fact, as shown in Figure 11b, the global reward
obtained for 2 orbital planes (i.e., a constellation with 4 satellites) is around 1000 for the util
algorithm. When considering 16 orbital planes (i.e., a constellation with 32 satellites), such
a reward almost reaches 1500, at best. The fact that the normalized utility does not increase
with the constellation size but the global reward does, comes from the normalization factor.
In fact, with 32 satellites, the global utility that the agents can obtain individually is higher
than with 4 satellites. However, the global utility obtained by the agents is relatively the
same compared with their best paths and results in a similar normalized global utility.

The time required for computing the allocations also increases with the size of the
constellation. More precisely, Figure 11c shows that computation time is multiplied by 10
when the number of satellites increases from 4 to 32. This comes from the higher number of
orbit slots and consequently much larger graphs (see Table 2) with more paths to explore
and more constraints to check.

The average utility profiles given in Figure 12 show that the utility profiles obtained
by algorithms do not change much with the constellation size. Even with more satellites, at
the most two agents have a utility strictly greater than 0. This confirms the high number
of conflicts of the requests in the considered instances. This illustrates the low utility and
reward obtained in this setting: few requests are fulfilled in the end.

These results show that, in the case of V-DPAP with full request satisfaction mode,
algorithm util is quite interesting in terms of global utility versus required time. Moreover,
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as the instances do not allow the utility profiles to be balanced between the agents, this
algorithm provides as fair allocations as algorithm lex.

7.2.3. R-DPAP Results

Figures 13–15 present the results associated with R-DPAP instances in the full request
mode satisfaction. The algorithms behave relatively to each other as for the V-DPAP case.
More precisely, with respect to the global utility, algorithm util returns the best global utility,
then, lex, a-lex, greedy, and n-rr equivalently, and finally, n-rr.

(a)

(b)

(c)

Figure 13. Performance metrics obtained by each algorithm for each constellation size, for full request
satisfaction mode and encoded as R-DPAP. (a) Normalized utility; (b) global reward; (c) computation
time.
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a-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rra-lex lex util greedy p-rr n-rra-lexa-lexa-lexa-lexa-lexa-lexa-lex lexlexlexlexlexlexlex utilutilutilutilutilutilutil greedygreedygreedygreedygreedygreedygreedy p-rrp-rrp-rrp-rrp-rrp-rrp-rr n-rrn-rrn-rrn-rrn-rrn-rrn-rra-lex lex util greedy p-rr n-rr

Figure 14. Utility profiles (in leximin order) for the first 5 instances for a constellation with 2 orbital
planes (4 satellites) and each algorithm (south: best utility over all agents; west: second best utility;
north: third best utility; east: worst utility), for full request satisfaction mode and encoded as R-DPAP.

309



Systems 2023, 11, 297

a-lex lex util greedy p-rr n-rr

2 orbital planes

a-lex lex util greedy p-rr n-rr

4 orbital planes
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16 orbital planes

Figure 15. Average utility profiles (in leximin order) for each constellation size and each algorithm
(south: best utility over all agents; west: second best utility; north: third best utility; east: worst
utility), for full request satisfaction mode and encoded as R-DPAP.

In comparison with the V-DPAP results, instances encoded in the R-DPAP framework
allow a higher utility to be reached. First, the normalized global utility (Figure 13a) is
around 0.5 for algorithm util with 32 satellites. Note that it is only a little less with 4 satellites
(around 0.45). In terms of global reward (Figure 13b), the average score is around 1700 for
util with 32 satellites.

The fact that the utility is higher in the R-DPAP benchmark than in the V-DPAP
framework comes from the fact that the first allows the orbit slots to be split while the
second does not. Consequently, with R-DPAP, when an agent is given an orbit slot on a
path with a non-null utility, overlapping orbit slots for other agents might still be selectable.
Such a phenomenon can be confirmed by the radars of Figure 14. Indeed, instance 0 with
2 orbital planes (left radar) shows that it is possible for three agents out of four to have a
non-null utility. Such an allocation is obtained with algorithm lex. In this case, note that
algorithm a-lex performs worse than lex in the sense that two agents have a zero utility with
a-lex. This is probably due to the fact that both algorithms compute that the worst served
agent has a null utility, but a-lex has to choose to which agent this null utility is allocated.
In the case of a bad choice, this prevents a-lex from obtaining a higher utility for the second
worst served agent.

The left radar of Figure 14 also shows that util tends to favor agents with high utilities
(two agents with utility equal to 1, and two agents with 0), whereas lex splits utility between
agents (best agent with utility 1, two others with utility 0.45, and the last with 0). The
average utility profiles of Figure 15 confirm this difference of behavior between algorithms
util and lex. As for V-DPAP, algorithm a-lex’s performance is lower than util and lex with
respect to fairness. Other approaches manage on average to serve a second agent but with
a very low utility.

Finally, the order of magnitude for the time required to compute solutions is the same
between V-DPAP and R-DPAP.

These results show that, in the case of R-DPAP with full request mode satisfaction,
the best trade-off between global utility and computation time is given by algorithm util.
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However, in terms of fairness, this algorithm is not as good as algorithm lex in several
instances, even if lex gives larger computation times.

Note that R-DPAP is still parametric in the sense that it requires defining the duration
minD (here 120 s) requested in each orbit slot. With a low minD value, orbit sharing can be
possible, while using a high minD value may prevent such splitting, and in the extreme
case R-DPAP becomes equivalent to V-DPAP, utility-wise.

7.3. Results for the Partial Request Satisfaction Mode

We now analyze the results for the instances in which requests can be partially satisfied
by skipping some RTs.

7.3.1. V-DPAP Results

Figures 16 and 17 show the results for instances encoded as V-DPAP. From Figure 16a,
we can observe that the normalized utility is much higher than with instances encoded in
V-DPAP with the request full satisfaction mode. For instance, for a constellation involving
4 satellites, algorithms util, lex and a-lex almost reach a 0.6 normalized utility value. For
32 satellites, this normalized utility is equal to 0.85. In terms of reward (Figure 16b), the
global reward is also much higher. Note that the relative performance of the algorithms
is the same as for V-DPAP with the full satisfaction mode, i.e., algorithm util returns the
allocation with the best global utility, then lex, a-lex, p-rr, greedy, and n-rr. Nevertheless,
with 32 satellites, all algorithms except n-rr return allocations with approximately the same
global utility. This increase in performance with the change in request mode satisfaction
shows that even if paths conflict, the skip possibility allows many more requests to be
tackled.

(a)

(b)

(c)

Figure 16. Performance metrics obtained by each algorithm for each constellation size, for flexible
requests encoded as V-DPAP. (a) Normalized utility; (b) global reward; (c) computation time.
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Figure 17. Utility profiles (in leximin order) for the first 5 instances for a constellation with 2 orbital
plans (4 satellites) and each algorithm (south: best utility over all agents; west: second best utility;
north: third best utility; east: worst utility), for flexible requests encoded as V-DPAP.

From Figure 16c, we can first notice that the time required by algorithms lex and a-lex is
much higher than for V-DPAP with request full satisfaction mode. In fact, for algorithm lex,
10 s are required for V-DPAP with request full satisfaction mode but 100 for V-DPAP with
request partial satisfaction mode. However, for these algorithms, the order of magnitude
does not change with the constellation size. Such a phenomenon is probably due to the fact
that there are a lot of complex paths (i.e., paths that are not source → sink) with the same
utility, which makes it harder to compute the worst utility for a given agent. Algorithms
greedy, p-rr, and n-rr also require much more time than for instances in V-DPAP with full
request satisfaction mode. This can be explained by the fact the number of paths is much
larger but that nodes still belong to several conflicts. Therefore, every time a path is selected
in a graph, other graphs have many nodes that are deactivated, which forces new best paths
to be computed and overall requires some computation time. In comparison, algorithm util
requires approximately the same time in the partial and full satisfaction modes.

Next, Figures 17 and 18 show that in the partial satisfaction mode, the utility profiles
are much more balanced between agents. The radars in Figure 17 allow the algorithms’
behaviors to be compared over some instances involving two satellites. It shows that
algorithm util favors high utilities, which is sometimes quite fair (instance 3) and sometimes
not (instance 0). Algorithm greedy serves very well one agent but cannot serve well the
others because of conflicts between paths. Algorithm p-rr performs a little better than greedy
in terms of fairness. Algorithms lex and a-lex allow the utility to be balanced between the
agents. For instance, the top line radars show that it is possible to reach a solution where
all agents have approximately the same utility (around 0.6). Algorithm n-rr is also quite fair
but the utility per agent is much lower (0.2). Figure 18 shows that these comments can be
generalized to all instances on average.

In the case of a larger constellation, the algorithms (except n-rr) behave almost the
same in terms of leximin vectors, and there exist solutions where all agents can be served
quite well.

These results show that in the case of V-DPAP with requests partial satisfaction mode,
algorithm util offers the best utility/time trade-off. However, in terms of fairness, such an
algorithm gives good performance only for constellations with at least 8 orbital planes (16
satellites). For a smaller number of satellites, algorithms lex and a-lex can be much fairer
(depending on the instance), despite a greater computation time.
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Figure 18. Average utility profiles (in leximin order) for each constellation size and each algorithm
(south: best utility over all agents; west: second best utility; north: third best utility; east: worst
utility), for partial request satisfaction mode and encoded as V-DPAP.

7.3.2. R-DPAP Results

In the case of R-DPAP with partial request satisfaction mode, Figure 19a shows that
the maximum utility is reached by all algorithms whatever the constellation size, except for
n-rr. Note that the obtained global normalized utility is not equal to 1 because there are
still some conflicts between some orbit slots that prevent the agents from obtaining their
best paths.

Figure 19b shows that the global reward increases with the number of satellites in the
constellation. In fact, the larger the constellations, the higher the number of orbit slots and
the higher the number of paths with a higher utility in the graphs.

For all of the algorithms, the computation time required is much lower than for V-
DPAP with partial satisfaction mode. This is quite natural, since even if there is a large
number of paths, the selection of one path for an agent does not require deactivating many
nodes in other graphs. This comes from the fact that orbit slots can be split between agents,
which results in less conflicts between nodes.

We do not provide here radars per instance, since the profiles obtained by the algo-
rithms all overlap. Indeed, Figure 20 confirms that all the agents have a utility almost equal
to 1 for all the algorithms except n-rr. The latter struggles with highly conflicting settings.
With less conflicting settings (with more satellites) n-rr drastically improves its performance,
since there is less chance to reach a situation where an agent must skip one RT.
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(a)
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(c)

Figure 19. Performance metrics obtained by each algorithm for each constellation size, for flexible
requests encoded as R-DPAP. (a) Normalized utility; (b) global reward; (c) computation time.
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Figure 20. Average utility profiles (in leximin order) for each constellation size and each algorithm
(south: best utility over all agents; west: second best utility; north: third best utility; east: worst
utility), for partial request satisfaction mode and encoded as R-DPAP.
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These results suggest that in the case of R-DPAP with full request satisfaction mode,
algorithm greedy offers the best trade-off in quality/time as it allows a fair allocation to be
reached with a high global utility (as for other algorithms) but in much less time.

8. Conclusions

In this paper, we proposed several models for novel resource allocation problems
where agents express their preferences over conflicting bundles of items as edge-weighted
DAGs (DPAP). We particularly focused on conflicts on vertices (V-DPAP) and conflicts on
resources (R-DPAP). We introduced and analyzed several solution methods (utilitarian,
leximin, approximate leximin, greedy) against the classically used round-robin allocations
from the utilitarianism and fairness perspectives. We evaluated these methods on large
randomly generated instances of orbit slot allocation problems, where requests could
be fully or partially fulfilled. We showed that when requests must be fully fulfilled,
allowing resource sharing via R-DPAP encoding improves the performance of the system
compared to V-DPAP with respect to normalized utility and global reward, while the
computation times are equivalent or lower. When considering the request full satisfaction
mode, problems encoded as V-DPAP are much more constrained with respect to the number
of agents that can receive a non-empty allocation. Therefore, algorithm util is a relevant
approach. In the case of R-DPAP, algorithm a-lex provides good results with respect to
utility and is much fairer than other approaches, even if it requires a longer computation
time. In the case of partial request satisfaction mode and V-DPAP problems, there is no
clear winner on all metrics for small constellations: lex clearly returns fair allocations with
a good global utility but requires a long computation time. On the other hand, algorithm
util is faster but not as fair. For large constellations, algorithm util allows us to reach the
fairest allocations and is, therefore, the most suitable. Finally, when offering even more
flexibility, i.e., allowing partial request fulfilling, the performances become even better,
to a point where, for larger constellations, all the algorithms reach the same optimal and
fair allocations. This highlights that adding request flexibility eases the allocation process,
whilst the problems remain NP-hard in general. In such a case, non-exact algorithms such
as greedy offer the best trade-off with respect to utility, fairness, and computation time.

We identify several tracks for future investigations. First, as DPAPs are strongly
constrained by conflicts, we aim to explore minimum conflict heuristics to improve our
algorithms. Secondly, we believe DPAP and its variants have great potential to be used in
a variety of domains, and we thus aim to evaluate the proposed techniques on problems
coming from other application fields, such as the NFV domain (function chains modeled
as graphs and incompatibilities controlling the access to nodes) or the multi-agent path
finding domain (path preferences modeled as graphs and incompatibilities, imposing
that two agents cannot occupy the same position at the same time). Depending on the
targeted application, other ways for expressing conflicting bundles could be explored.
For instance, one could consider that items can consume resources with capacity. Finally,
in the Earth observation domain, once the slots have been allocated, the agents have to
plan their own observations within the allocated slots, and may have to interact to accept
external observations. Such a coordination scheme has been investigated [3], but we aim to
evaluate the whole chain (slot allocation followed by coordinated observation scheduling)
on realistic data.
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Abbreviations

The following abbreviations are used in this manuscript:

DAG Directed acyclic graph
DPAP Directed path allocation problem
V-DPAP Vertex-constrained DPAP
R-DPAP Resource-constrained DPAP
PADAG Path allocation in directed acyclic graph
ILP Integer linear programming
MILP Mixed integer linear programming
POI Point of interest
RT Request time
lex Leximin solver
a-lex Approximate leximin solver
greedy Greedy solver
util Utilitarian MILP solver
p-rr Path round-robin solver
n-rr Node round-robin solver

Notes

1 A Nash equilibrium is an allocation in which the modification of a path for a single agent does not improve its associated utility.
2 We have removed the worst 5% of values and the best 5% of values for the indicated range.

References

1. Yang, S.; Li, F.; Trajanovski, S.; Yahyapour, R.; Fu, X. Recent Advances of Resource Allocation in Network Function Virtualization.
IEEE Trans. Parallel Distrib. Syst. 2021, 32, 295–314. [CrossRef]

2. Lemaître, M.; Verfaillie, G.; Fargier, H.; Lang, J.; Bataille, N.; Lachiver, J.M. Equitable Allocation of Earth Observing Satellites
Resources. In Proceedings of the 5th ONERA-DLR Aerospace Symposium (ODAS’03), Toulouse, France, 4–6 June 2003.

3. Picard, G. Auction-based and Distributed Optimization Approaches for Scheduling Observations in Satellite Constellations
with Exclusive Orbit Portions. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS-22), Virtual Event, New Zealand, 9–13 May 2022.

4. Maqrot, S.; Roussel, S.; Picard, G.; Pralet, C. Bundle Allocation with Conflicting Preferences Represented as Weighted Directed
Acyclic Graphs—Application to Orbit Slot Ownership. In Advances in Practical Applications of Agents, Multi-Agent Systems, and
Complex Systems Simulation. The PAAMS Collection, Proceedings of the 20th International Conference, PAAMS 2022, L’Aquila, Italy,
13–15 July 2022; Dignum, F., Mathieu, P., Corchado, J.M., De la Prieta, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2022;
Volume 13616, pp. 280–293. [CrossRef]

5. Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; Peters, D. Fair Division of a Graph. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017; pp. 135–141.
[CrossRef]

6. Igarashi, A.; Peters, D. Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Honolulu, HI, USA, 27 January–1 February 2019;
pp. 2045–2052. [CrossRef]

7. Immorlica, N.; Karger, D.R.; Nikolova, E.; Sami, R. First-Price Path Auctions. In Proceedings of the Proceedings 6th ACM
Conference on Electronic Commerce (EC-2005), Vancouver, BC, Canada, 5–8 June 2005; pp. 203–212. [CrossRef]

8. Du, Y.; Sami, R.; Shi, Y. Path Auctions with Multiple Edge Ownership. Theor. Comput. Sci. 2010, 411, 293–300. [CrossRef]
9. Zhang, L.; Chen, H.; Wu, J.; Wang, C.; Xie, J. False-Name-Proof Mechanisms for Path Auctions in Social Networks. In Proceedings

of the Twenty-Second European Conference on Artificial Intelligence, The Hague, The Netherlands, 29 August–2 September 2016;
Volume 285, pp. 1485–1492. [CrossRef]

10. Megiddo, N. Optimal Flows in Networks with Multiple Sources and Sinks. Math. Program. 1974, 7, 97–107. [CrossRef]

316



Systems 2023, 11, 297

11. Hughes, M.S.; Lunday, B.J.; Weir, J.D.; Hopkinson, K.M. The Multiple Shortest Path Problem with Path Deconfliction. Eur. J. Oper.
Res. 2021, 292, 818–829. [CrossRef]

12. Nisan, N.; Roughgarden, T.; Tardos, E.; Vazirani, V.V. Algorithmic Game Theory; Cambridge University Press: Cambridge, NY,
USA, 2007.

13. Panagopoulou, P.N.; Spirakis, P.G. Algorithms for Pure Nash Equilibria in Weighted Congestion Games. ACM J. Exp. Algorithmics
2007, 11, 2.7-es. [CrossRef]

14. Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A.D.; Shah, N.; Wang, J. The Unreasonable Fairness of Maximum Nash
Welfare. ACM Trans. Econ. Comput. 2019, 7, 1–32. [CrossRef]

15. Riera, J.F.; Escalona, E.; Batallé, J.; Grasa, E.; García-Espín, J.A. Virtual Network Function Scheduling: Concept and Challenges. In
Proceedings of the 2014 International Conference on Smart Communications in Network Technologies (SaCoNeT), Vilanova i la
Geltru, Spain, 18–20 June 2014; pp. 1–5. [CrossRef]

16. Maqrot, S.; Roussel, S.; Picard, G.; Pralet, C. Orbit Slot Allocation in Earth Observation Constellations. In PAIS 2022, Proceedings of
the 11th Conference on Prestigious Applications of Artificial Intelligence, Vienna, Austria, 25 July 2022; Passerini, A., Schiex, T., Eds.;
co-located with IJCAI-ECAI 2022; Frontiers in Artificial Intelligence and Applications; IOS Press: Amsterdam, The Netherlands
2022; Volume 351, pp. 3–16. [CrossRef]

17. Wang, X.;Wu, G.; Xing, L.; Pedrycz,W. Agile Earth Observation Satellite Scheduling over 20 years: Formulations, Methods and
Future Directions. IEEE Syst. J. 2021, 15, 3881–3892. [CrossRef]

18. Tangpattanakul, P.; Jozefowiez, N.; Lopez, P. A Multi-Objective Local Search Heuristic for Scheduling Earth Observations Taken
by an Agile Satellite. Eur. J. Oper. Res. 2015, 245, 542–554. [CrossRef]

19. Bianchessi, N.; Cordeau, J.F.; Desrosiers, J.; Laporte, G.; Raymond, V. A Heuristic for the Multi-Satellite, Multi-Orbit and
Multi-User Management of Earth Observation Satellites. Eur. J. Oper. Res. 2007, 177, 750–762. [CrossRef]

20. Eddy, D.; Kochenderfer, M.J. A Maximum Independent Set Method for Scheduling Earth-Observing Satellite Constellations. J.
Spacecr. Rocket. 2021, 58, 1416–1429. [CrossRef]

21. Lenstra, J.; Rinnooy Kan, A.; Brucker, P. Complexity of Machine Scheduling Problems. In Studies in Integer Programming; Hammer,
P., Johnson, E., Korte, B., Nemhauser, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1977; Volume 1, pp. 343–362. . [CrossRef]

22. Moulin, H. Fair Division and Collective Welfare; MIT Press: Cambridge, MA, USA, 2003.
23. Kurokawa, D.; Procaccia, A.D.; Shah, N. Leximin Allocations in the Real World. ACM Trans. Econ. Comput. 2018, 6, 1–24.

[CrossRef]
24. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001.
25. OpenStreetMap Points of Interest (on French Territory). 2021. Available online: https://www.data.gouv.fr/fr/datasets/points-

dinterets-openstreetmap/ (accessed on 30 August 2021).
26. Wang, J.; Song, G.; Liang, Z.; Demeulemeester, E.; Hu, X.; Liu, J. Unrelated Parallel Machine Scheduling with Multiple Time

Windows: An Application to Earth Observation Satellite Scheduling. Comput. Oper. Res. 2023, 149, 106010. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

317





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Systems Editorial Office
E-mail: systems@mdpi.com

www.mdpi.com/journal/systems

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-0365-9308-1


