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Editorial

On the Special Issue “Limit Theorems of Probability Theory”

Alexander N. Tikhomirov 1,2,∗ and Vladimir V. Ulyanov 2,3,4,∗
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119991 Moscow, Russia
4 Institute for Financial Studies, Shandong University, Jinan 250100, China
* Correspondence: sasha-tikh@yandex.ru (A.N.T.); vulyanov@hse.ru (V.V.U.)

M. Loeve wrote that “the fundamental limit theorems of Probability theory may be
classified into two groups. One group deals with the problem of limit laws of sequences of
some of random variables, the other deals with the problem of limits of random variables,
in the sense of almost sure convergence, of such sequences. These problems will be labeled,
respectively, the Central Limit Problem (CLP) and the Strong Central Limit Problem (SCLP).
Like all mathematical problems, the CLP and SCLP are not static; as answers to old queries
are discovered they experience the usual development and new problems arise”.

The papers in this Special Issue present new directions and new advances for limit
theorems in probability theory and its applications. The list of topics is extensive, and it
includes classical models of sums of both independent and various types of dependent
random variables, probabilities of large deviations, functional limit theorems, and limit
theorems for random processes, in high-dimensional spaces, for spectra of random matrices
and random graphs, and more.

In [1], Xia Wang and Miaomiao Zhang obtain a large deviation principle for the
maximum of the absolute value of partial sums of independent, identically distributed,
centered, random variables. It is assumed that tail probabilities for “positive” and “negative”
tails of the summand have the same exponential decrease.

Estimating the expected value of a random variable via data-driven methods is one of
the most fundamental problems in statistics. In [2], Rundong Luo, Yiming Chen, and Shuai
Song present an extension of Olivier Catoni’s classical M-estimators of the empirical mean,
which focus on heavy-tailed data by imposing more precise inequalities on exponential
moments of Catoni’s estimator. The authors show that their estimators behave better than
Catoni‘s estimators, both in practice and theory. The results obtained are illustrated on
modeled and real data.

Paper [3], by Friedrich Götze and Andrei Yu Zaitsev, deals with studying a connection
of the Littlewood–Offord problem to estimations of the concentration functions of some
symmetric, infinitely divisible distributions. It is shown that the concentration function of
a weighted sum of independent, identically distributed, random variables is estimated in
terms of the concentration function of a symmetric, infinitely divisible distribution, whose
spectral measure is concentrated on the set of plus–minus weights.

There has been a renewed interest in exponential concentration inequalities for stochas-
tic processes in probability and statistics over the last three decades. De la Peña established
a good exponential inequality for a discrete time, locally square, integrable martingale.
In [4],, Naiqi Liu, Vladimir V. Ulyanov, and Hanchao Wang obtain de la Peña’s inequalities
for a stochastic integral of multivariate point processes. The proof is primarily based on the
Doléans-Dade exponential formula and the optional stopping theorem. As an application,
they obtain an exponential inequality for block counting process in the Λ–coalescent.

Mathematics 2023, 11, 3665. https://doi.org/10.3390/math11173665 https://www.mdpi.com/journal/mathematics
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In [5], Alexander N. Tikhomirov and Dmitry A. Timushev prove the local Marchenko–
Pastur law for sparse sample covariance matrices that corresponded to rectangular obser-
vation matrices and sparse probability. The new bounds of the distance between Laplace
transforms of the empirical spectral distribution function of the sparse sample covariance
matrices and the Marchenko–Pastur law distribution function are obtained in the complex
domain. It is assumed that a sparse probability and the moments of the matrix elements
satisfy some conditions.

In see [6], Mihailo Jovanović, Vladica Stojanović, Kristijan Kuk, Brankica Popović,
and Petar Čisar describe one of the non-linear (and non-stationary) stochastic models, the
Gaussian, or Generalized, Split-BREAK (GSB) process, which is used in the analysis of
time series with pronounced and accentuated fluctuations. In the beginning, the stochastic
structure of the GSB process and its important distributional and asymptotic properties
are given. To that end, a method based on characteristic functions (CFs) was used. Various
procedures for the estimation of model parameters, asymptotic properties, and numerical
simulations of the obtained estimators are also investigated. Finally, as an illustration of
the practical application of the GSB process, an analysis of the dynamics and stochastic
distribution of the infected and immunized populations in relation to COVID-19 in the
Republic of Serbia is presented.

The Poisson Stochastic Index process (PSI-process) represents a special kind of a
random process, when the discrete time of a random sequence is replaced by the continuous
time of a “counting” process of a Poisson type. In [7], Yuri Yakubovich, Oleg Rusakov,
and Alexander Gushchin establish a functional limit theorem for normalized cumulative
sums of PSI-processes in the Skorokhod space. This theorem can be used in different ways.
The PSI-processes are very simple, and some results can be obtained directly for their sums
and imply the corresponding facts of the limiting stationary Gaussian process. On the
other hand, the theory of stationary Gaussian processes has been deeply developed in the
last few decades, and some results of this theory can have consequences for pre-limiting
processes, which model a number of real life phenomena.

In [8], Igor Borisov and Maman Jetpisbaev consider a class of additive functionals of a
finite or countable collection of the group frequencies of an empirical point process that
corresponds to, at most, a countable partition of the sample space. Under broad conditions,
it is shown that the asymptotic behavior of the distributions of such functionals is similar to
the behavior of the distributions of the same functionals of the accompanying Poisson point
process. However, the Poisson versions of the additive functionals under consideration,
unlike the original ones, have the structure of sums (finite or infinite) of independent
random variables, which allows them to reduce the asymptotic analysis of the distributions
of additive functionals of an empirical point process to classical problems of the theory of
summation of independent random variables.

In [9], Shuya Kanagawa investigates asymptotic expansions for U-statistics and
V-statistics with degenerate kernels, and finds the order estimates for the remainder terms.
It implies the corresponding results for the Cramér–von Mises statistics of a uniform distri-
bution on (0,1). The scheme of the proof is based on three steps. The first one is the almost
certain convergence in a Fourier series expansion of the kernel function. The key condition
for the convergence is the nuclearity of a linear operator defined by the kernel function.
The second one is a representation of U-statistics or V-statistics, by single sums of Hilbert
space valued random variables. The third one is the application of asymptotic expansions
for single sums of Hilbert space valued random variables.

In [10], Alexander Bulinski and Nikolay Slepov study the convergence rate in the
famous Rényi theorem by means of the Stein method refinement. Namely, it is demon-
strated that the new estimate of the convergence rate of the normalized geometric sums to
exponential laws involving the ideal probability metric of the second order is sharp. Some
recent results concerning the convergence rates in Kolmogorov and Kantorovich metrics
are extended as well. In contrast to many previous works, there are no assumptions that
the summands of geometric sums are positive and have the same distribution. For the
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first time, an analogue of the Rényi theorem is established for the model of exchangeable
random variables. Furthermore, within this model, a sharp estimate of convergence rate to
a specified mixture of distributions is provided. The convergence rate of the appropriately
normalized random sums of random summands to the generalized gamma distribution
is estimated. Here, the number of summands follows the generalized negative binomial
law. The sharp estimates of the proximity of random sums of random summand distribu-
tions to the limit law are established both for independent summands and for the model
of exchangeable ones. The inverse to the equilibrium transformation of the probability
measures is introduced and, in this way, a new approximation of the Pareto distributions
by exponential laws is proposed. The integral probability metrics, and the techniques of
integration with respect to sign measures, are essentially employed.

In [11], Yasunori Fujikoshi and Tetsuro Sakurai consider the high-dimensional consis-
tencies of KOO methods for selecting response variables in multivariate linear regression
with some covariance structures. The method, which was named the knock-one-out (KOO)
method, determines “selection” or “no selection” for each variable by comparing the model
that removes that variable and the full model. It is assumed that the covariance structure
is one of three covariance structures: (1) an independent covariance structure with the
same variance, (2) an independent covariance structure with different variances, and (3) a
uniform covariance structure. A sufficient condition for model selection consistency is
obtained using a KOO method under a high-dimensional asymptotic framework, such that
sample size, the number of response variables, and the number of explanatory variables
are large.

In [12], Alexander N. Tikhomirov considers the limit of the empirical spectral distribu-
tion of Laplace matrices of generalized random graphs. Applying the Stieltjes transform
method, the author proves under general conditions that the limit spectral distribution
of Laplace matrices converges with the free convolution of the semicircular law and the
normal law.

In [13], Gerd Christoph and Vladimir V. Ulyanov complete their studies on the formal
construction of asymptotic approximations for statistics based on a random number of
observations. Second-order Chebyshev–Edgeworth expansions of asymptotically normally
or chi-squared distributed statistics from samples with negative binomial or Pareto-like
distributed random sample sizes are obtained. The results can have applications for a
wide spectrum of asymptotically normally or chi-square distributed statistics. Random,
non-random, and mixed scaling factors for each of the studied statistics produce three
different limit distributions. In addition to the expected normal or chi-squared distribu-
tions, Student’s t-, Laplace, Fisher, gamma, and weighted sums of generalized gamma
distributions also occur.

The Kolmogorov and total variation distance between the laws of random variables
have upper bounds are represented by the L1-norm of densities when random variables
have densities. In [14], Yoon-Tae Kim and Hyun-Suk Park derive an upper bound, in terms
of densities such as the Kolmogorov and total variation distance, for several probabilistic
distances (e.g., Kolmogorov distance, total variation distance, Wasserstein distance, Forter–
Mourier distance, etc.) between the laws of F and G in the case where a random variable F
follows the invariant measure that admits a density and a differentiable random variable
G, in the sense of Malliavin calculus, and also allows a density function.

In [15], Manuel L. Esquível and Nadezhda P. Krasii describe the structure of the
random matrices by deterministic matrices, forming the skeletons of the random matrices.
The authors propose to use an algorithm of matrix substitutions with entries in a finite
field of integers that modulo some prime number, akin to the algorithm of one dimensional
automatic sequences. A random matrix has the structure of a given skeleton if, to the same
number of an entry of the skeleton in the finite field, it corresponds a random variable
having, at least, as its expected value, the correspondent value of the number in the finite
field. Affine matrix substitutions are introduced, and fixed-point theorems that allow
for the consideration of steady states of the structure, which are essential for an efficient
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observation, are proven. For some more restricted classes of structured random matrices,
the parameter estimation of the entries is addressed, as well as the convergence in law,
and also some aspects of the spectral analysis of the random operators associated with
the random matrix. Finally, aiming at possible applications, it is shown that there is a
procedure to associate a canonical random surface to every random structured matrix of a
certain class.

In summary, this Special Issue proposes and develops new mathematical methods
and approaches, new algorithms and research frameworks, and their applications to solve
various nontrivial practical problems. We strongly believe that the selected topics and
results will be attractive and useful to the international scientific community, and will
contribute to further research in the field of limit theorems in probability theory.

Acknowledgments: The research activity of the Guest Editors was conducted within the framework
of the HSE University Basic Research Programs and within the program of the Moscow Center for
Fundamental and Applied Mathematics, Lomonosov Moscow State University.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Large Deviations for the Maximum of the Absolute Value of
Partial Sums of Random Variable Sequences

Xia Wang * and Miaomiao Zhang

Faculty of Science, College of Statistics and Date Science, Beijing University of Technology, Beijing 100124, China;
zhangmiaomiaoqd@163.com
* Correspondence: wangxia@bjut.edu.cn

Abstract: Let {ξi : i ≥ 1} be a sequence of independent, identically distributed (i.i.d. for short)
centered random variables. Let Sn = ξ1 + · · ·+ ξn denote the partial sums of {ξi}. We show that

sequence { 1
n

max
1≤k≤n

|Sk| : n ≥ 1} satisfies the large deviation principle (LDP, for short) with a good rate

function under the assumption that P(ξ1 ≥ x) and P(ξ1 ≤ −x) have the same exponential decrease.

Keywords: large deviation principle; principle of the largest term; maximum of the absolute value of
partial sums

1. Introduction

Throughout this paper, on a probability space {Ω,F , P}, let {ξi : i ≥ 1} be a sequence
of independent, identically distributed (i.i.d.) centered random variables that take real
values. Denote the partial sums Sn := ∑n

i=1 ξi of sequence {ξi : i ≥ 1}.
The seminal paper of Cramer [1] motivates our work. Cramer obtained that { 1

n
Sn :

n ≥ 1} satisfies large deviation principle (LDP) with rate function Λ∗(x) (see Theorem 1)
under finite moments, which is the famous Cramer condition, i.e., if there exists a δ > 0
such that Eeλ|X1| < ∞ for all |λ| < δ . Cramer theorem has the following form for any
measurable set B ⊂ R:

− inf
x∈B◦

Λ∗(x) ≤ lim inf
n→∞

1
n

logP(
Sn

n
∈ B) (1)

≤ lim sup
n→∞

1
n

logP(
Sn

n
∈ B) ≤ − inf

x∈B̄
Λ∗(x). (2)

where B◦ denotes the interior of B and B̄ denotes its closure. We call inequality (1) the large
deviations lower bound and inequality (2) the large deviations upper bound. If both hold,

then sequence { 1
n

Sn : n ≥ 1} satisfies LDP with rate function Λ∗(x). In other words, the
theory of LDP deals with large fluctuations and the probability of such large fluctuations
decays exponentially.

The tail probability P(Sn ≥ nx) of independent random variables was researched

in detail in many papers. Nagaev [2] obtained that partial sums { 1
n

Sn : n ≥ 1} for i.i.d.

random variables and found that it satisfies LDP under the assumption that P(ξ1 ≥ x)
decreases similarly to a power function. Soon, Nagaev [3] obtained the bounds for probabil-
ities of partial sums of independent random variables, by weakening the requirement, on
the hypothesis that generalized and ordinary moments are finite. Under Cramer condition,
Kiesel and Stadtmuller [4] extended Cramer theorem to weighted sums of i.i.d. random
variables. Moreover, Gantert, Ramanan and Rembart [5] researched the LDP for weighted
sums of i.i.d. random variables with stretched exponential tails.

Mathematics 2022, 10, 758. https://doi.org/10.3390/math10050758 https://www.mdpi.com/journal/mathematics
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The tail probabilityP( max
1≤k≤n

Sk ≥ nx) has been researched in depth. Under the

Cramer condition, Borovkov and Korshunov [6] conducted work for time-homogeneous
Markov chain and Shklyaev [7] conducted work for i.i.d. random variables; both ob-
tained LDP. Soon after, Kozlov [8] obtained LDP results by applying a direct probability
approach to P( max

1≤k≤n
Sk ≥ nx) of i.i.d. non-degenerate random variables, which obey

the Cramer condition. Lately, Fan, Grama and Liu [9] established the LDP for sequence

{ 1
n

max
1≤k≤n

Sk : n ≥ 1} of martingale differences random variables under finite subexponen-

tial moments condition.
Feller [10] mentioned the importance of the estimation of tail probability P( max

1≤k≤n
|Sk| ≥

nx), which has attracted broad attention in recent decades. Recently, Li [11] established
the upper bound estimation for probability P( max

1≤k≤n
|Sk| ≥ nx) of martingale differences

random variables bounded in Lp. For strictly stationary and negatively associated random
variables, Xing and Yang [12] obtained some exponential inequalities for the maximum of
the absolute value of partial sums via classical techniques based on blocking and truncation.
Moreover, the upper bound estimation for tail probability P( max

1≤k≤n
|Sk| ≥ nx) for martin-

gale differences random variables was obtained by Fan, Grama and Liu [13] in situations
where conditional subexponential moments are bounded.

The above results demonstrate that the research for probability { 1
n

max
1≤k≤n

|Sk| : n ≥ 1}
only obtained large deviations upper bound. To fill this gap, we shall primarily obtain the

result that sequence { 1
n

max
1≤k≤n

|Sk| : n ≥ 1} of i.i.d. random variables satisfies LDP under

the assumption that P(ξ1 ≥ x) and P(ξ1 ≤ −x) have the same exponential decrease (see
Corollary 1), i.e., we obtain large deviations lower bound and large deviations upper bound.

This article is organized as follows. We firstly introduce the necessary knowledge
about definitions and theorems that we need in Section 2. Then, the main theorems and
corollaries are presented in Section 3. Moreover, in Section 4, we provide the lemmas
needed to prove the conclusions and proofs of our main results.

2. Preliminaries

Before we present our results and proofs, we introduce some definitions and theorems
that can be found in cf. [14,15].

Definition 1. (1) A function I: F → [0, ∞] is called a rate function if it is non-negative and lower
semicontinuous, i.e., the level sets {x : I(x) ≤ α} are closed, for α ∈ R. (2) A rate function I is
said to be good if, in addition, its level sets are compact.

Definition 2. We say that a sequence of random variables {ξi : i ≥ 1} satisfies LDP in R with
rate function I if I is a rate function and, for any measurable set B ∈ B(R), the following is the case:

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1
n

log P(ξn ∈ B)

≤ lim sup
n→∞

1
n

log P(ξn ∈ B) ≤ − inf
x∈B̄

I(x),

where B◦ denotes the interior of B, and B̄ denotes its closure.

Theorem 1. (Cramer’s theorem) Let {ξi : i ≥ 1} be a sequence of i.i.d. real value random

variables on (Ω,F , P). Let partial sums Sn =
n
∑

i=1
ξi, and let Λ(θ) be log moment generating

function of ξ1, i.e., Λ(θ) = logEeθξ1 , and let Λ∗(x) be convex conjugate of Λ, i.e., Λ∗(x) =

6
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sup
θ∈R
{θξ −Λ(θ)}. Then, {Sn

n
: n ≥ 1} satisfies LDP with rate function Λ∗(x) in R if Λ is finite

in a neighborhood of zero, i.e., for any measurable set B ⊂ R of the following:

− inf
x∈B◦

Λ∗(x) ≤ lim inf
n→∞

1
n

logP(
Sn

n
∈ B)

≤ lim sup
n→∞

1
n

logP(
Sn

n
∈ B) ≤ − inf

x∈B̄
Λ∗(x).

Theorem 2. (Principle of the largest term) Let an and bn be sequences in R+. Then, the
following is the case:

lim sup
n→∞

1
n

log(an + bn) ≤ lim sup
n→∞

1
n

log(an) ∨ lim sup
n→∞

1
n

log(bn),

and the following is the case.

lim inf
n→∞

1
n

log(an + bn) ≥ lim inf
n→∞

1
n

log(an) ∨ lim inf
n→∞

1
n

log(bn).

3. Main Results

Let {ξi : i ≥ 1} be a sequence of i.i.d. centered random variables and denote Sn :=
n
∑

i=1
ξi. Then, we shall investigate the LDP for the sequence of { 1

n
max

1≤k≤n
|Sk| : n ≥ 1}. The

main results of this paper are as follows.

Theorem 3. Let {ξi : i ≥ 1} be a sequence of i.i.d. random variables. If Eξ1 = 0, Eξ1
2 < ∞ and

for some constants α ∈ (0, 1), 0 < C1 ≤ C2, the following is the case:

−C2 ≤ lim inf
x→∞

1
xα

logP(ξ1 ≥ x) ≤ lim sup
x→∞

1
xα

logP(ξ1 ≥ x) ≤ −C1,

then for all x > 0, we have the following.

−C2xα ≤ lim inf
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx)

≤ lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −C1xα.

Theorem 4. Let {ξi : i ≥ 1} be a sequence of i.i.d. random variables. If Eξ1 = 0 and for some
constants α ∈ (0, 1), 0 < C1 ≤ C2, 0 < C3 ≤ C4, the following is the case:

−C2 ≤ lim inf
x→∞

1
xα

logP(ξ1 ≥ x) ≤ lim sup
x→∞

1
xα

logP(ξ1 ≥ x) ≤ −C1,

−C4 ≤ lim inf
x→∞

1
xα

logP(ξ1 ≤ −x) ≤ lim sup
x→∞

1
xα

logP(ξ1 ≤ −x) ≤ −C3,

then for all x > 0, we have the following.

−(C2 ∧ C4)xα ≤ lim inf
n→∞

1
nα

logP( max
1≤k≤n

|Sk| ≥ nx)

≤ lim sup
n→∞

1
nα

logP( max
1≤k≤n

|Sk| ≥ nx) ≤ −(C1 ∧ C3)xα.

7
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Corollary 1. Let {ξi : i ≥ 1} be a sequence of i.i.d. random variables. If Eξi = 0, and for some
constants α ∈ (0, 1), C > 0, we have the following:

lim
x→∞

1
xα

logP(ξ1 ≥ x) = −C,

lim
x→∞

1
xα

logP(ξ1 ≤ −x) = −C,

then for all x > 0, the following is obtained.

lim
n→∞

1
nα

logP( max
1≤k≤n

|Sk| ≥ nx) = −Cxα.

Then, { 1
n

max
1≤k≤n

|Sk| : n ≥ 1} satisfies LDP with the good rate function I(x) = Cxα.

4. Proofs of Main Results

To prove our main results, we need the following lemmas, and we also will provide
their proofs.

Lemma 1. For a random variable ξ1 with Eξ1 = 0, we assume E(ξ1
2exp{(ξ+1 )α}) < ∞, for some

constant α ∈ (0, 1). Set η1 = ξ11{ξ1≤y}, for y >0. Then, the following is the case.

Eeyα−1η1 ≤ 1 +
y2α−2

2
E(ξ2

1exp{(ξ+1 )α}).

Proof of Lemma 1. By Taylor’s expansion, we can obtain

eyα−1η1 ≤ 1 + yα−1η1 +
y2α−2η2

1
2

eyα−1η+1 .

The following is the case:

η+
1 = ξ11{0≤ξ1≤y}

≤ y1−αξ1
α1{0≤ξ1≤y}

≤ y1−α(ξ+1 )α,

and η2
1 ≤ ξ2

1. Then, we obtain the following.

Eeyα−1η1 ≤ 1 + yα−1Eη1 +
y2α−2

2
E(η2

1eyα−1η+1 )

≤ 1 + yα−1Eξ1 +
y2α−2

2
E(ξ2

1exp{(ξ+1 )α})

= 1 +
y2α−2

2
E(ξ2

1exp{(ξ+1 )α}).

Thus, we complete the proof of Lemma 1.

Lemma 2. Assume {ξi : i ≥ 1} is an i.i.d. random variables sequence. If Eξ1 = 0, and for some
constants α ∈ (0, 1), C > 0, Eξ2

1exp{(ξ+1 )α} < ∞,

lim sup
x→∞

1
xα

logP(ξ1 ≥ x) ≤ −C,

8
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then for all x > 0, the following is the case.

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −Cxα.

Proof of Lemma 2. Set ηi = ξi1{ξi≤y} for y > 0. Then, the following is the case.

P( max
1≤k≤n

Sk ≥ x) ≤ P( max
1≤k≤n

k

∑
i=1

ηi ≥ x) + P( max
1≤k≤n

k

∑
i=1

ξi1{ξi>y} > 0)

= P(
k

∑
i=1

ηi ≥ x, ∃k ∈ [1, n]) + P( max
1≤i≤n

ξi > y)

:= P1 + P2. (3)

For all x > 0, denote stopping time

T(x) = min{k ∈ [1, n] :
k

∑
i=1

ηi ≥ x} and min ∅ = 0.

We easily obtain

1{∑k
i=1 ηi≥x, ∃k∈[1,n]} =

n

∑
k=1

1{T(x)=k}.

In order to obtain the upper bound of P1, we consider martingale Z(λ) = {(Zk(λ),Fk) :
k ≥ 0}, where Fk = σ(ξ1, ξ2, · · · , ξk), k ≥ 0, and the following is the case.

Zk(λ) =
k

∏
i=1

exp{ληi}
Eexp{ληi}

, Z0(λ) = 1.

Let the following be the case.

ZT(x)∧k(λ) =
T(x)∧k

∏
i=1

exp{ληi}
Eexp{ληi}

, Z0(λ) = 1.

By the property of martingale, then {(ZT(x)∧k(λ),Fk) : k ≥ 0} is also a martingale.
Because E(ZT(x)∧n(λ)) = E(Z0(λ)) = 1, then we define the probability measure dPλ :=
ZT(x)∧ndP and define the expectation with respect to Pλ by Eλ.

P1 = Eλ[ZT(x)∧n(λ)
−11{∑k

i=1 ηi≥x, ∃k∈[1,n]}]

= Eλ[(
T(x)∧n

∏
i=1

exp{ληi}
Eexp{ληi}

)−1
n

∑
k=1

1{T(x)=k}]

=
n

∑
k=1

Eλ[(
T(x)∧n

∏
i=1

exp{ληi}
Eexp{ληi}

)−11{T(x)=k}]

=
n

∑
k=1

Eλ[(
k

∏
i=1

exp{ληi}
Eexp{ληi}

)−11{T(x)=k}]

=
n

∑
k=1

Eλ[exp{−
k

∑
i=1

log
exp{ληi}

Eexp{ληi}
}1{T(x)=k}]

=
n

∑
k=1

Eλ[exp{−λ
k

∑
i=1

ηi +
k

∑
i=1

logEeληi}1{T(x)=k}]

=
n

∑
k=1

Eλ[exp{−λ
k

∑
i=1

ηi + klogEeλη1}1{T(x)=k}]. (4)

9
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Under the conditions of Lemma 2, we take λ = yα−1, and by Lemma 1, and log(1 +
t) ≤ t, for ∀t ≥ 0, we obtain the following.

logEeyα−1η1 ≤ log(1 +
y2α−2

2
E(ξ2

1exp{(ξ+1 )α}))

≤ y2α−2

2
E(ξ1

2exp{(ξ1
+)α}). (5)

On the set {T(x) = k}, we obtain ∑k
i=1 ηi ≥ x. Combining this fact with (4) and (5),

we obtain that, for all x > 0, the following is the case.

P1 ≤
n

∑
k=1

Eλ(exp{−λx + n
y2α−2

2
E(ξ1

2exp{(ξ1
+)α})}1{T(x)=k})

≤ exp{−yα−1x + n
y2α−2

2
E(ξ1

2exp{(ξ1
+)α})}Eλ(

n

∑
k=1

1{T(x)=k})

≤ exp{−yα−1x + n
y2α−2

2
E(ξ1

2exp{(ξ1
+)α})}. (6)

Next, using the Markov inequality, we obtain the following.

P2 = P(
n⋃

i=1

{ξi > y})

≤ nP(ξ1 > y)

≤ nP(ξ2
1exp{(ξ+1 )α} > y2exp{yα})

≤ n
y2 exp{−yα}E(ξ2

1exp{(ξ+1 )α}). (7)

Let y = x. Combining (3), (6) and (7) together, we obtain the following.

P( max
1≤k≤n

Sk ≥ x)

≤ exp{−xα +
nE(ξ2

1exp{(ξ+1 )α})
2x2−2α

}+ nE(ξ2
1exp{(ξ+1 )α})

x2 e−xα

= e−xα
(exp{nE(ξ2

1exp{(ξ+1 )α})
2x2−2α

}+ nE(ξ2
1exp{(ξ+1 )α})

x2 ).

Now, we replace x by nx in the above inequality; then, the following is obtained.

P( max
1≤k≤n

Sk ≥ nx) ≤ e−nαxα
(exp{E(ξ1

2exp{(ξ1
+)α})

2n1−2αx2−2α
}+ E(ξ1

2exp{(ξ1
+)α})

nx2 ).

Take log and limsup to both sides and use the principle of the largest term; here, we
obtain the LDP upper bound.

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −xα.

Now we end the proof of Lemma 2.

In the following, we prove Theorem 3.

10
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Proof of Theorem 3. (i) Firstly, we prove the upper bound. Let ε ∈ (0, 1) be fixed, ξ ′1 =

C1
1
α ξ1(

C1 − ε

C1
)β, β > 1

α . By the condition given in Theorem 3, we have the following:

lim sup
x→∞

1
xα

logP(ξ1 ≥ x) ≤ −C1,

we obtain for ∀ε > 0, ∃ x0, such that when x > x0,

logP(ξ1 ≥ x)
xα

≤ −C1 + ε;

that is,
P(ξ1 ≥ x) ≤ exp{−(C1 − ε)xα}.

Thus, for ∀ε > 0, ∃ x0, such that when x > x0,

P(ξ ′1 ≥ x) ≤ exp{−(C1 − ε)1−αβC1
αβ−1xα}.

Then, the following is the case:

E{(ξ ′1
+
)2exp{(ξ ′1

+
)α}} =

∫ ∞

0
P(ξ

′
1 ≥ x)(2x + αxα−1)exα

≤ 2
∫ ∞

0
xe−θxα

dx + α
∫ ∞

0
xα+1e−θxα

dx

< ∞,

where θ = (C1 − ε)1−αβC1
αβ−1 − 1, θ > 0.

Because Eξ2
1 < ∞, one can easily obtain E(ξ

′
1)

2 = C
2
α
1 (

C1 − ε

C1
)2βEξ2

1 < ∞. Then, we obtain

the following.

E(ξ ′1)
2exp{(ξ ′1

+
)α} = E((ξ ′1)

2exp{(ξ ′1
+
)α}1{ξ ′1≥0} + (ξ ′1)

2exp{(ξ ′1
+
)α}1{ξ ′1<0})

= E((ξ ′1)
2exp{(ξ ′1

+
)α}1{ξ ′1≥0} + (ξ ′1)

21{ξ ′1<0})

≤ E(ξ ′1
+
)αexp{(ξ ′1

+
)α}+ E(ξ ′1)

2

< ∞.

Thus, sequence {ξ ′i} satisfies the conditions of Lemma 2, and we denote S′k =
k
∑

i=1
ξ ′i .

Then, we obtain, for all x > 0, the following.

lim sup
n→∞

1
nα

logP( max
1≤k≤n

S′k ≥ nx)

= lim sup
n→∞

1
nα

logP(C1
1
α (1− ε

C1
)β max

1≤k≤n
Sk ≥ nx)

≤− xα.

Thus, we obtain the following.

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −C1(1−
ε

C1
)αβxα.

Letting ε→ 0, we obtain the following.

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −C1xα. (8)

11
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(ii) Next, we will prove the lower bound.
Because {ξi : i ≥ 1} is an i.i.d sequence, the following is the case.

P( max
1≤k≤n

Sk ≥ nx) ≥ P(Sn ≥ nx)

= P(ξ1 +
n

∑
i=2

ξi ≥ n(ε + x)− nε)

≥ P({
n

∑
i=2

ξi ≥ −nε} ∩ {ξ1 ≥ n(ε + x)})

= P(
n

∑
i=2

ξi ≥ −nε)P(ξ1 ≥ n(ε + x)). (9)

By using the weak law of large numbers and the following fact:

{
n

∑
i=2

ξi ≥ −(n− 1)ε} ⊆ {
n

∑
i=2

ξi ≥ −nε},

we know the following.

lim
n→∞

P(
n

∑
i=2

ξi ≥ −nε) = 1. (10)

Then, by the condition in Theorem 3, lim inf
x→∞

1
xα

log P(ξ1 ≥ x) ≥ −C2, we obtain

∀ ε > 0, ∃ x0, s.t. ∀x > x0,
logP(ξ1 ≥ x)

xα
≥ −C2 − ε.

Then, the following is the case.

P(ξ1 ≥ x) ≥ exp{−(C2 + ε)xα}.

Thus, we obtain the following.

P(ξ1 ≥ n(x + ε)) ≥ exp{−[(x + ε)n]α(C2 + ε)}. (11)

Combining (9), (10) and (11) together, we easily obtain the following.

lim inf
n→∞

1
nα

log P( max
1≤k≤n

Sk ≥ nx)

≥lim inf
n→∞

1
nα

log P(
n

∑
i=2

ξi ≥ −nε)+ lim inf
n→∞

1
nα

log P(ξ1 ≥ n(ε + x))

≥− (C2 + ε)(x + ε)α.

Letting ε→ 0, we obtain the following.

lim inf
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≥ −C2xα. (12)

At last, by (8) and (12), we obtain, for all x > 0, the following.

−C2xα ≤ lim inf
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx)

≤ lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −C1xα.

Thus, we complete the proof of Theorem 3.

12
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In the following, we prove Theorem 4.

Proof of Theorem 4. By the condition lim inf
x→∞

1
xα logP(ξ1 ≥ x) ≤ −C1, we obtain for ∀ ε >

0, ∃ x0, such that when ∀x > x0, the following.

P(ξ1 ≥ x) ≤ exp{−(C1 − ε)xα}.

By condition lim inf
x→∞

1
xα logP(ξ1 ≤ −x) ≤ −C3, we obtain for ∀ ε > 0, ∃ x0, such that

when ∀x > x0, P(ξ1 ≤ −x) ≤ exp{−(C3 − ε)xα}.
Thus, we obtain the following.

Eξ1
2 =

∫ ∞

0
2xP(|ξ1| ≥ x)dx

=
∫ x0

0
2xP(|ξ1| ≥ x)dx +

∫ ∞

x0

2xP(|ξ1| ≥ x)dx

≤ x0
2 +

∫ ∞

x0

2xP(ξ1 ≥ x)dx +
∫ ∞

x0

2xP(ξ1 ≤ −x)dx

≤ x0
2 +

∫ ∞

x0

2xexp{−(C1 − ε)xα}dx +
∫ ∞

x0

2xexp{−(C3 − ε)xα}dx

< ∞.

Thus, by Theorem 3, we obtain the following:

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≤ −C1xα,

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≤ −nx) ≤ −C3xα,

and we know the following.

P( max
1≤k≤n

|Sk| ≥ nx) ≤ P( max
1≤k≤n

Sk ≥ nx) + P( max
1≤k≤n

(−Sk) ≥ nx).

Thus we obtain the following inequality by the principle of the largest term.

lim sup
n→∞

1
nα

logP( max
1≤k≤n

|Sk| ≥ nx)

≤ lim sup
n→∞

1
nα

log(P( max
1≤k≤n

Sk ≥ nx) + P( max
1≤k≤n

(−Sk) ≥ nx))

≤ lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ∨ lim sup
n→∞

1
nα

logP( max
1≤k≤n

(−Sk) ≥ nx))

≤ (−C1xα) ∨ (−C3xα)

≤ − (C1 ∧ C3)xα. (13)

By the given conditions in Theorem 4 , lim inf
x→∞

1
xα logP(ξ1 ≥ x) ≥ −C2,

lim inf
x→∞

1
xα logP(ξ1 ≤ −x) ≥ −C4, we obtain the following.

lim inf
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ≥ −C2xα,

lim sup
n→∞

1
nα

logP( max
1≤k≤n

Sk ≤ −nx) ≥ −C4xα.

13
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Since the following is the case:

P( max
1≤k≤n

|Sk| ≥ nx) ≤ P( max
1≤k≤n

Sk ≥ nx) ∨ P( max
1≤k≤n

(−Sk) ≥ nx),

then we obtain the following.

lim inf
n→∞

1
nα

logP( max
1≤k≤n

|Sk| ≥ nx)

≥ lim inf
n→∞

1
nα

log(P( max
1≤k≤n

Sk ≥ nx) ∨ P( max
1≤k≤n

(−Sk) ≥ nx))

≥ lim inf
n→∞

1
nα

logP( max
1≤k≤n

Sk ≥ nx) ∨ lim inf
n→∞

1
nα

logP( max
1≤k≤n

(−Sk) ≥ nx))

≥ (−C2xα) ∨ (−C4xα)

≥ −(C2 ∧ C4)xα. (14)

Combining (13) and (14), we complete the proof of Theorem 4.

Proof of Corollary 1. Take C1 = C2 = C3 = C4 = C in Theorem 4, we can obtain the
following easily for all x > 0.

lim
n→∞

1
nα

logP( max
1≤k≤n

|Sk| ≥ nx) = −Cxα.

Because the upper bound and the lower bound are same, we can obtain the fact that

{ 1
n

max
1≤k≤n

|Sk| : n ≥ 1} satisfies LDP with good rate function I(x) = Cxα.

5. Conclusions

We obtained LDP for the maximum of the absolute value of partial sums of i.i.d.
centered random variables under the assumption that P(ξ1 ≥ x) and P(ξ1 ≤ −x) have the
same exponential decrease. For further research, we will consider LDP for the maximum of
the absolute value of partial sums of other types of dependent random variables, such as
martingale differences and acceptable random variables.
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Abstract: Estimating the expected value of a random variable by data-driven methods is one of the
most fundamental problems in statistics. In this study, we present an extension of Olivier Catoni’s
classical M-estimators of the empirical mean, which focus on the heavy-tailed data by imposing more
precise inequalities on exponential moments of Catoni’s estimator. We show that our works behave
better than Catoni‘s both in practice and theory. The performances are illustrated in the simulation
and real data.

Keywords: M-estimator; Catoni’s estimator; empirical mean

MSC: 60E15; 62F35

1. Introduction

In this study, we focused on estimating the mean m = EX of a real random variable X,
supposing that X1, . . . , Xn are independent and identically distributed drawn from X. It is
well known that the empirical mean m̂n = n−1 ∑n

i=1 Xi is the most popular estimator of m,
and theoretical properties have been thoroughly studied [1].

However, recent works have concentrated more on the performance of the estimator
when the distribution is heavy-tailed (the second moment or fourth moment of the distri-
bution does not exist), which is becoming more and more common in many research fields
(see, e.g., Embrechts, Klüppelberg, and Mikosch [2]). When the data have a heavy tail,
the traditional method such as the empirical mean performs poorly, and appropriate robust
estimators are required, which drives related research on M-estimator (generalizations of
Maximum Likelihood estimator) for correction of the outliers (Huber [3]).

There has been a renewed interest in the area of robust statistics over the last several
decades. Nemirovsky and Yudin [4], Hsu and Sabato [5], and Jerrum et al. [6] proposed
various forms of Median-of-means (MOM) estimators to handle data in different situations.
They called for dividing the data into several groups with equal size and then calculating
the empirical mean within each group, finally taking the median of these empirical means
as the formal MOM estimator, which reduces the impact of heavy-tailed data. Tukey
and McLaughlin [7] and Huber and Ronchetti [8] tried to improve the performance of
the empirical mean by using a truncation of X (they name it truncated mean), which
removed part of the sample containing γn maximum and minimum values depending on
the parameter γ ∈ (0, 1) and then averaged the remaining values to improve the robustness.
Catoni [9], Audibert, and Catoni [10] studied the properties of M-estimation for regression
problems. The relevant works about robust techniques in various fields are summarized in
Bartlett and Mendelson [11], Maronna [12], Bubeck, and Lugosi [13].

Recently, Catoni [14] modified the empirical mean to a new robust estimator. It is easy
to observe that the empirical mean is the solution of the following estimation equation

n

∑
i=1

(Xi − μ) = 0. (1)
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If we change the form of Equation (1) to

n

∑
i=1

φ[α(Xi − μ)] = 0. (2)

The solution of (2) is called Catoni’s mean estimator, where φ : R → R is a non-
decreasing differentiable truncation function such that for any x ∈ R, − log

(
1− x + x2/2

)
≤ φ(x) ≤ log

(
1 + x + x2/2

)
, and α is a parameter to ensure the existence of the estimator.

We denote Catoni’s mean estimator by m̃n,α. The main purpose of the truncation function
is to make φ(x) grow slower than x, and then the effect of outliers due to heavy tails in X
will be diminished. Although φ(x) is not the derivative of some explicit error function, it
still can be considered as an influence function in robust theory.

By a mild assumption that the variance v = E
[
(X−m)2] of the distribution exists

and choosing the parameter α to optimize the bounds, Catoni [14] obtained the following
performance of m̃n,α.

Theorem 1. Let X1, . . . , Xn be independent, identically distributed random variables, which are
drawn from X. We assume that the mean m and variance v of X exist. For any x ∈ R+, and positive
integer n such that n > 2x. Catoni’s mean estimator m̃n,α with parameter α =

√
2x

nv
(

1+ 2x
n−2x)

)
satisfies,

P

{
|m̃n,α −m| ≥

√
2vx

n− 2x

}
≤ 2e−x. (3)

Moreover, if we choose α to be independent from x as follows, and assume n > 2(1 + x),

α =
√

2
nv , then

P

{
|m̃n,α −m| ≥ 1 + x

1− (1 + x)/n

√
v

2n

}
≤ 2e−x. (4)

The method of Catoni [14] is widely promoted as a robust estimator by Brownlees,
Joly, and Lugosi [15], Minsker [16], and Wang et al. [17]. We need to point out here that the
parameter α is the solution of the equation where the derivative of Catoni’s estimator’s
deviation with respect to α equals to 0. When v = 0, the Catoni’s estimator’s deviation is 0,
and no specific α is needed. This also holds for Theorem 2.

The main contribution of this article is to improve Catoni’s estimator under the as-
sumption of the third moment condition, and we named it the third-moment Catoni
estimator. Starting from the adjustment of the truncation function denoted by ψ(x) in our
work, as Figure 1 shows, the influence function with the third moment performs closer to
the true value than the original one of Catoni’s. We obtained a more precise exponential
moment upper bound, which leads to a better error bound.

Simultaneously, our work had a better performance for the samples drawn from the
t-distribution, which is common in many fields of research(see Jones and Faddy [18]). As a
special case of the heavy-tailed distribution, the third moment of the t-distribution exists,
which satisfies our assumptions about the distribution. We present the superiority of our
estimator in a Monte Carlo simulation. We also show the performance of the proposed
estimator under a skewed normal distribution to evaluate the adaptability of the estimator
to other distributions.
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Figure 1. Different chooses of influence function.

The rest of the article is organized as follows. In Section 2, we introduce the main
result of the third-moment Catoni’s estimator. A Monte Carlo simulation is provided in
Section 3 to compare the performance of the proposed estimator with Catoni’s estimator for
t-distribution. Section 4 examines the performance of the proposed estimator on real data.

2. Main Result

Let (Xi)
n
i=1 denote an i.i.d. sample drawn from the distribution of X. Let m, v,

and s be the mean, variance, and third central moment of X, respectively, which is
E(X) = m,E

[
(X−m)2] = v, and E

[
(X−m)3] = s.

The influence function ψ(x) here should be considered wider than the original function
as Catoni’s to obtain a more accurate exponential moment. In this study, we assumed that

ψ(x) =

{
log
(
1 + x + x2/2 + x3/6

)
, x ≥ 0

− log
(
1− x + x2/2− x3/6

)
, x < 0.

(5)

Our mean estimator m̂n,α is the unique solution of Rn,α(μ) = 0, where

Rn,α(μ) =
n

∑
i=1

ψ(α(Xi − μ)). (6)

Next, we present our main result that bounds the m̂n,α−m with the appropriate choice
of negative parameter α:

Theorem 2. Let X1, . . . , Xn be independent, identically distributed random variables with finite
mean m, variance v, and third central moment s. For any x > 0, the error bound between the
estimator and the empirical mean satisfies

P

{
|m̂n,α −m| ≥ 2

(
3

√
q
2
+
√

Δ + 3

√
q
2
−
√

Δ
)}
≤ 2e−x, (7)

where

Δ =
( q

2

)2
+
( p

3

)3
, p =

3 + 3vα2

α2 , q =
nα3s + 6x− 4n

nα3 .

Under some technical assumptions that will be mentioned in the following corollary,
we have the following upper bound on the probability of the exponential tail:
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Corollary 1. Let X1, . . . , Xn be independent, identically distributed random variables with finite
mean m, variance v and third central moment s. For any x > 0 and assume that n > 3

2 (1 + x) and

−
√

4n3v3

729 � s �
√

4n3v3

729 ,

P

{
|m̂n,α −m| ≥ (1 + x)

√
v
n

}
≤ 2e−x. (8)

Remark 1. It is obvious that with the assumption that n is a positive integer and satisfies n > 3
2 (1 + x)

and −
√

4n3v3

729 � s �
√

4n3v3

729 , then

1 + x
1− (1 + x)/n

√
v

2n
≥ (1 + x)

√
v
n

,

By assuming that α < 0, we obtained a better estimator bias than (4) in Catoni’s result.

Remark 2. When the sample was small, our result was still valid with a small s. We might consider
the following example. Let X1, . . . , Xn be independent, identically distributed random variables,
which are drawn from X. Assuming that the mean m = 0.01, variance v = 1, x = 1, n = 4, and

whenever −
√

4n3v3

729 � s �
√

4n3v3

729 such as s = 0.2, which satisfies the assumption we have

P(|m̂n,α − 1| ≥ 1) ≤ 2
e

.

For the convenience of proof, we first present the following lemma (Cardano formula);
refer to Høyrup’s [19] for more details.

Lemma 1. For any general cubic equation of the form x3 + px + q = 0, one of the roots over the
field of real numbers has the form:

x = 3

√
− q

2
+
√

Δ + 3

√
− q

2
−
√

Δ, (9)

where the discriminant of the root Δ is as follows, when Δ > 0, the cubic equation has one real root;
the cubic equation has three real roots when Δ ≤ 0.

Δ =
q2

4
+

p3

27
.

Proof of Theorem 2. Due to the inequality (5) about the ψ(x), we have the following
exponential moment inequality of Rn,α(μ), for all μ ∈ R:

E

[
eRn,α(μ)

]
≤
(
E

[
1 + α(X− μ) +

α2(X− μ)2

2
+

α3(X− μ)3

6

])n

=

(
1 +E[α(X− μ)] +E

[
α2(X− μ)2

2

]
+E

[
α3(X− μ)3

6

])n

,

(10)

with a brief calculation, we have E[X − μ]2 = v + (m− μ)2 and E[X − μ]3 = (m− μ)3 +
3v(m− μ) + s; so, the inequality (10) can be bounded by the following term:

exp

(
nα(m− μ) +

nα2(v + (m− μ)2)
2

+
nα3

6

(
(m− μ)3 + 3v(m− μ) + s

))
.
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Similarly,

E

[
e−Rn,α(μ)

]
≤
(
E

[
1− α(X− μ) +

α2(X− μ)2

2
− α3(X− μ)3

6

])n

=

(
1−E[α(X− μ)] +E

[
α2(X− μ)2

2

]
−E

[
α3(X− μ)3

6

])n

=

(
1− α(m− μ) +

α2(v + (m− μ)2)
2

− α3

6

(
(m− μ)3 + 3v(m− μ) + s

))n

≤ exp

(
−nα(m− μ) +

nα2(v + (m− μ)2)
2

− nα3

6

(
(m− μ)3 + 3v(m− μ) + s

))
.

(11)

Let

A1 = nα(m− μ) +
nα2(v + (m− μ)2)

2
+

nα3

6

(
(m− μ)3 + 3v(m− μ) + s

)
,

A2 = −nα(m− μ) +
nα2(v + (m− μ)2)

2
− nα3

6

(
(m− μ)3 + 3v(m− μ) + s

)
,

whenever Xi has a finite third moment s. We can obtain from the Markov inequality that
for any μ ∈ R and x ∈ R+,

P{Rn,α(μ) ≥ A1 + x}
= P{exp(Rn,α(μ)) ≥ exp(A1 + x)}
≤ E

[
eRn,α(μ)

]
/ exp(A1 + x)

≤ e−x.

(12)

In the same way, we have

P{−Rn,α(μ) ≥ A2 + x} ≤ e−x. (13)

Then, as shown in Figure 2.

Figure 2. Representation of R̂ f (μ) and the cubic equation C+(μ) and C−(μ).

We can control the estimator m̂n,α by the roots of the cubic equation as follows:

C+(μ) = A1 + x = 0,

C−(μ) = −A2 − x = 0.
(14)
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Equation (13) above can be regarded as a cubic equation about m− μ. To solve (13),
we first convert it into a standard-form one-dimensional cubic equation by letting yn =
m− μ− 1

α , (n = 1, 2), and then we obtain the following equations:

y3
1 +

3 + 3vα2

α2 y1 +
nα3s + 6x− 4n

nα3 = 0,

y3
2 +

3 + 3vα2

α2 y2 −
nα3s + 6x− 4n

nα3 = 0.
(15)

For any α ∈ R−, according to Lemma 1, since (3 + 3vα2)/α2 is always positive, Δ is
always greater than 0. In this case, our equation has one real root and two imaginary roots,
which means we can control the m̂n,α by the root of (13) as follows:

μ+ = m− 1
α
+ 3

√
q
2
−
√

Δ + 3

√
q
2
+
√

Δ,

μ− = m− 1
α
− 3

√
q
2
+
√

Δ− 3

√
q
2
−
√

Δ,

where the Δ, p, and q are the same as above. We can easily obtain from the formula above
that Rn,α(μ+) ≤ 0, implying that m̂α,n < μ+ with probability at least 1− e−x, since Rn,α(μ)
is a non-increasing function. Similarly, m̂α,n > μ− with probability at least 1− e−x. Then,
by choosing the parameter α, we can derive the performance of the estimator m̂α,n for the
bias of the mean m. That is, with probability at least 1− 2e−x, we have

μ− < m̂α,n < μ+.

The proof of Theorem 2 is completed.

Proof of Corollary 1. In fact, the right-hand side of (7) can be bounded as follows without
limiting the sign of s:

|m̂n,α −m| ≤ 2
(∣∣∣∣ 3

√
q
2
+
√

Δ + 3

√
q
2
−
√

Δ
∣∣∣∣)

< 4

∣∣∣∣∣ 3

√
nα3s + 6x− 4n

2nα3

∣∣∣∣∣
= 4

∣∣∣∣∣ 3

√
− 2

α3 +
3x
nα3 +

s
2

∣∣∣∣∣,
(16)

with the assumption n > 3
2 (1 + x), which is weaker than Catoni’s, (16) can be bounded by

4

∣∣∣∣∣ 3

√
2
α3 −

2
α3 +

s
2

∣∣∣∣∣
= 4
∣∣∣∣ 3

√
s
2

∣∣∣∣.
(17)

Moreover, assuming that −
√

4n3v3

729 � s �
√

4n3v3

729 , we can obtain that (17) is bounded

by (1 + x)
√

v
n ; then, (8) holds.

3. Simulation

In this section, we considered the performance of the estimator with respect to the
t-distribution on applications by Monte Carlo simulation exercise results. We focused on
the performance of the estimator in L1 regression. Our data were simulated from a linear
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model generated from a t-distribution regressed by our proposed estimator; we measured
the loss of the regression by the minimization of the L1 norm.

The details of the simulation are as follows: we considered n independent, identically
distributed real random variables pairs (X1, Y1), (X2, Y2) . . ., (Xn, Yn) where Xi take their
values in R3 while Yi in R, and the explanatory variables Xi are drawn from a multivariate
normal distribution with 0 mean, and variance is a three-dimensional identity matrix.
The response variable Yi is generated as follows:

Yi = XT
i θ + εi, (18)

where the parameter vector θ is set to be (0.25,−0.25, 0.50), and εi is an error term with
zero mean and unit variance, which is drawn from a Student t-distribution. Our main goal
was to estimate the parameter θ by minimizing the L1 risk

E

∣∣∣Y− XT
i θ
∣∣∣,

and then we defined the the L1 estimators θ̂1, the classical Catoni mean estimator θ̂2, and
the third-moment Catoni’s estimator θ̂3 as follows

θ̂1 = arg min
θ

R̂1(θ) = arg min
θ

1
n

n

∑
i=1

∣∣∣Yi − XT
i θ
∣∣∣,

θ̂2 = arg min
θ

R̂2(μ) = arg min
θ

1
nα

n

∑
i=1

φ
(

α
(∣∣∣Yi − XT

i θ
∣∣∣− μ

))
= 0,

θ̂3 = arg min
θ

R̂3(μ) = arg min
θ

1
nα

n

∑
i=1

ψ
(

α
(∣∣∣Yi − XT

i θ
∣∣∣− μ

))
= 0,

(19)

where the R̂2(μ), R̂3(μ) is the root of the right side of the equation, respectively; φ(x) is
the widest choice defined in Catoni’s result, the parameter α = 1, which is the same as
Brownless’s work; ψ(x) was set as above; and the parameter α = −1. The measures for the
performance of the estimator are as follows:

R
(

θ̂1

)
− R(θ) = E

∣∣∣Y− XT θ̂1

∣∣∣−E

∣∣∣Y− XTθ
∣∣∣,

R
(

θ̂2

)
− R(θ) = E

∣∣∣Y− XT θ̂2

∣∣∣−E

∣∣∣Y− XTθ
∣∣∣,

R
(

θ̂3

)
− R(θ) = E

∣∣∣Y− XT θ̂3

∣∣∣−E

∣∣∣Y− XTθ
∣∣∣.

(20)

The simulation experiments repeated with different sample sizes, which ranged
from 50 to 1000 and with degrees of freedom of the t-distribution ranging from 1 to
7. Each set of the sample size experiments was replicated 1000 times, and for each
replication, we evaluated the performance of the regression by the mean of the sample(

X′1, Y′1
)
, (X′2, Y′2), . . . , (X′m, Y′m)—that is, i.i.d.with the sample (X1, Y1), (X2, Y2) . . ., (Xn, Yn).

We used the following equation to evaluate the performance of the regression, which called
excess risk.

R̃
(

θ̂1

)
=

1
m

m

∑
i=1

∣∣∣Y′i − ZT
i θ̂1

∣∣∣2,

R̃
(

θ̂2

)
=

1
m

m

∑
i=1

∣∣∣Y′i − ZT
i θ̂2

∣∣∣2,

R̃
(

θ̂3

)
=

1
m

m

∑
i=1

∣∣∣Y′i − ZT
i θ̂3

∣∣∣2.

(21)

Figure 3 displays the performance of the excess risk for three estimators when n = 500
and the degrees of freedom of the t-distribution ranged from 1 to 7; we can obtain that the
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proposed estimator performs better than the other estimators, which means more stability
on the outliers.

Figure 3. Excess risk varies with degrees of freedom.

The results of the Monte Carlo simulation including the performance of the estimator
for different n are presented in Table 1, and we also compared the performance between
the proposed estimator and other estimators with various risks in Table 2 where sample
size n = 500 and degrees of freedom d = 1; the L1 represents the general L1 regres-
sion; the C and C3 denote the original Catoni estimator and our third-moment Catoni
estimator, respectively; and the ER, RB, and SMSE represents the excess risk, relative

risk ( |‖θ̂‖2−‖θ‖2|
‖θ‖2

, with θ̂ = 1
1000 ∑1000

j=1 θ̂(j)), and the square root of the mean square error

(
√

MSE =
√

1
1000 ∑1000

j=1 [‖θ̂(j)‖2 − ‖θ‖2]2).
We can derive from the table that when the distribution has a heavy tail, our estimator

performs better in most cases than the other two estimators, and the excess risk of the
estimator decreases as the sample size increases. At the same time, with the degrees of
freedom of the t-distribution rising, the tail of the t-distribution becomes thinner, which
becomes closer to the normal distribution, and the performance of all procedures on excess
risk is significantly improved; additionally, the proposed estimator also performs well for
different risks.

Table 1. The excess risk of the L1, Catoni, and third-moment Catoni regression estimator for different
degrees of freedom and sample size n.

n = 50 n = 100 n = 250 n = 500 n = 1000

d = 1 L1 8.79 5.91 5.75 4.15 3.67
C 7.53 4.63 4.90 4.07 3.49
C3 7.46 4.06 4.84 4.06 3.38

d = 3 L1 1.51 1.34 1.22 1.15 1.14
C 1.38 1.27 1.20 1.15 1.12
C3 1.27 1.21 1.14 1.10 1.08

d = 5 L1 1.09 1.11 1.08 1.08 1.07
C 1.08 1.13 1.09 1.10 1.08
C3 1.06 1.08 1.03 1.04 1.04

d = 7 L1 1.08 1.02 1.05 1.01 1.00
C 1.05 0.94 1.03 1.00 0.98
C3 0.97 0.94 0.90 0.85 0.86
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Table 2. Comparisons of the performance between the proposed estimator and other estimators with
various risks.

L1 C C3

ER 4.1561 4.0747 4.0628
RB 0.0398 0.0385 0.0383

SMSE 0.0970 0.0952 0.0947

We also examined the performance of the third-moment Catoni estimator on a skewed
normal distribution in Table 3; the model still follows (18) where ε follows a skewed normal
distribution with shape parameter α = 1, 3, 5 and with other settings unchanged. We can
draw conclusions from the table that the bias of the improved estimator is still smaller
than the original one. However, the deviation in the estimator did not display a significant
difference as the shape parameter α changed. We suppose that this results from the tail
behavior of the skew normal distribution in that the existence of its fourth moment conflicts
with the usual assumption that the fourth moment of heavy tail distribution does not exist.
At the same time, neither Catoni’s estimator nor our estimator performed better than the
estimator obtained by L1 regression.

Table 3. The excess risk of the L1, Catoni, and third-moment Catoni regression estimator on a skewed
normal distribution.

n = 50 n = 100 n = 250 n = 500 n = 1000

s = 1 L1 0.847 0.829 0.820 0.807 0.784
C 0.865 0.844 0.825 0.785 0.779
C3 0.859 0.837 0.823 0.789 0.781

s = 3 L1 0.857 0.833 0.809 0.819 0.798
C 0.861 0.842 0.829 0.835 0.828
C3 0.861 0.843 0.827 0.835 0.824

s = 5 L1 0.831 0.825 0.812 0.792 0.782
C 0.856 0.855 0.850 0.839 0.828
C3 0.855 0.855 0.848 0.827 0.822

4. Empirical Analysis

In this section, we used the proposed procedure to research the dataset “tumor cell
resistance to death,” an artificial dataset consisting of two different types of tumor cells
A and B, and the experiment records their resistance to different doses of experimental
drugs. The explanatory variable Xi here is the dose of the drug, and the response variable
Yi is the score representing the resistance to death, ranging from 0 to 4. These data are
available in the R lqr package; Galarza et al. [20] have studied these data by the quantile
regression method.

In Figures 4–7, we display the QQplot and the log-QQplot about the scores for cell A
and cell B, and it can be seen that the distribution of both cells lacks normality; however,
the normality is satisfied between cells and log-scores; besides, the boxplot and the bee
colony diagram in Figures 8 and 9 shows that both cell A and cell B have heavy-tails, which
allows us to focus on the following regression model:

log(Yi) = β0 + β1Xi,

where Yi and Xi are defined before. Our focus was estimating the parameters β0 and β1,
the solution of the following equation:

r̂β(u) =
1

nα

n

∑
i=1

ψ
(

α
(∣∣∣log(Yi)− β0 − X�i β1

∣∣∣− u
))

= 0.
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Figure 4. QQplot for cell A.

Figure 5. QQplot for cell B.

Figure 6. log-QQplot for cell A.
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Figure 7. log-QQplot for cell B.

Let R̂C(β) denote the solution of the r̂β(u) = 0; then, the Catoni regression estimator
of β0 and β1 is in the form as follows:

arg min
β0,β1

R̂C(β).

Figure 8. Boxplot about the log-scores for the two types of cells.
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Figure 9. The bee colony diagram about the log-scores for the two types of cells.

Moreover, we compared the proposed estimator with the classical OLS estimator in
Figures 10 and 11. The residuals plots are shown in Figures 12–15, from which we can draw
the conclusion that the distribution of the residual of the three-order Catoni regression
performs more uniformly; furthermore, the Mean Squared Error of the third-moment
Catoni regression and OLS regression was 0.1120, 0.1255 for cell A and 0.2268, 0.2335 for
cell B, respectively, which indicates that the proposed method is a better regression.

Figure 10. Regression for cell A.
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Figure 11. Regression for cell B.

Figure 12. OLS regression residual plot for cell A.

Figure 13. Third-moment Catoni regression residual plot for cell A.
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Figure 14. OLS regression residual plot for cell B.

Figure 15. Third-moment Catoni regression residual plot for cell B.

5. Discussion

Estimating the mean of random variables is a classical issue in statistics [1], and it
has been well studied in classical statistics; however, with the discovery of heavy-tailed
distribution in many research fields, its existence is an important challenge in statistics.
When the data have heavy tails, the traditional estimators such as the empirical mean
usually perform poorly. Therefore, how to find an appropriate robust procedure is a well-
known problem and has aroused great interest. A new estimator based on reconstructing
the structure of the empirical mean was proposed by Catoni, which has excellent theoretical
properties on the bias.

The Catoni’s estimator is based on the existence of the variance v of the random
variable. Therefore, with a weaker assumption on the moment conditions, it is an interesting
issue whether the estimator has a better performance. In this study, we assumed that the
third moment s of the data exists, and a more accurate upper bound of the exponential
moment was obtained, which motivates an estimator with a better bias. To a certain extent,
the assumption reduces the robustness to outliers, but it has a minimal effect in heavy tails
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distribution (the fourth moment does not exist). In future work, we have the following
goals: first, we believe that our method can be applied as an improved mean estimator to
any relevant model as long as the third moment of the distribution has good theoretical
properties and wide application; second, it is an interesting idea to discuss and compare the
bias bound of the proposed estimator with the minimax bound; finally, the estimation of the
variance in regression models is very important in statistical inference. Considering that the
deviation of the estimator given in our main theoretical results from the true value can be
regarded as the confidence interval based on the known variance; therefore, the proposed
estimator is not suitable for the estimation of variance, but it is an interesting issue how a
proper variance estimator affects the bias of our estimator; additionally, we will consider
variance estimation under heavy-tailed distributions in later work.
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Abstract: The paper deals with studying a connection of the Littlewood–Offord problem with
estimating the concentration functions of some symmetric infinitely divisible distributions. It is
shown that the concentration function of a weighted sum of independent identically distributed
random variables is estimated in terms of the concentration function of a symmetric infinitely divisible
distribution whose spectral measure is concentrated on the set of plus-minus weights.
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The aim of the present work is to provide a supplement to the paper of Eliseeva and
Zaitsev [1]. We studied a connection of the Littlewood–Offord problem with estimating
the concentration functions of some symmetric infinitely divisible distributions. In the
study, we repeat the arguments of [1], adding, at the last step, an application of Jensen’s
inequality.

Let X, X1, . . . , Xn be independent identically distributed (i.i.d.) random variables. The
concentration function of a Rd-dimensional random vector Y with distribution F = L(Y) is
defined by the equality

Q(F, λ) = sup
x∈Rd

P(Y ∈ x + λB), 0 ≤ λ ≤ ∞,

where B = {x ∈ Rd : ‖x‖ ≤ 1/2}. Of course, Q(F, ∞) = 1. Let a = (a1, . . . , an), where
ak = (ak1, . . . , akd) ∈ Rd, k = 1, . . . , n. In this paper, we studied the behavior of the

concentration functions of the weighted sums Sa =
n
∑

k=1
Xkak with respect to the properties

of vectors ak. Interest in this subject has increased considerably in connection with the study
of eigenvalues of random matrices (see, for instance, Friedland and Sodin [2], Rudelson
and Vershynin [3,4], Tao and Vu [5,6], Nguyen and Vu [7], Vershynin [8], Tikhomirov [9],
Livshyts, Tikhomirov and Vershynin [10], Campos et al. [11]). For a detailed history of the
problem, we refer to a review of Nguyen and Vu [12]. The authors of the above articles (see
also Halász [13]) called this question the Littlewood–Offord problem, since, for the first
time, this problem was considered in 1943 by Littlewood and Offord [14] in connection with
the study of random polynomials. They considered a special case, where the coefficients
ak ∈ R are one-dimensional, and X takes values ±1 with probabilities 1/2.

The recent achivements in estimating the probabilities of singularity of random ma-
trices [9–11] were based on the Rudelson and Vershynin [3,4,8] method of least common
denominator. Note that the results of [2,4,8] (concerning the Littlewood–Offord problem)
were improved and refined in [15–17].

Mathematics 2022, 10, 1740. https://doi.org/10.3390/math10101740 https://www.mdpi.com/journal/mathematics
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Now, we introduce some notation. In the sequel, let Fa denote the distribution of
the sum Sa, let Ey be the probability measure concentrated at a point y, and let G be the
distribution of the symmetrized random variable X̃ = X1 − X2. For δ ≥ 0, we denote

p(δ) = G
{
{z : |z| > δ}

}
. (1)

The symbol c will be used for absolute positive constants which may be different, even
in the same formulas.

Writing A� B means that |A| ≤ cB. Furthermore, we will write A � B, if A� B and
B� A. We will write A�d B, if |A| ≤ c(d)B, where c(d) > 0 depends on d only. Similarly,
A �d B, if A�d B and B�d A. The scalar product in Rd will be denoted 〈 · , · 〉. Later, �x�
is the largest integer k, such that k < x. For x = (x1, . . . , xn) ∈ Rn, we will use the norms
‖x‖2 = x2

1 + · · ·+ x2
n and |x| = maxj |xj|. We denote by F̂(t), t ∈ Rd, the characteristic

function of d-dimensional distributions F.
Products and powers of measures will be understood in the convolution sense. For

infinitely divisible distribution F and λ ≥ 0, we denote by Fλ the infinitely divisible
distribution with characteristic function F̂λ(t).

The elementary properties of concentration functions are well studied (see, for instance,
refs [18–20]). It is known that

Q(F, μ)�d (1 + �μ/λ�)d Q(F, λ) (2)

for any μ, λ > 0. Hence,
Q(F, cλ) �d Q(F, λ). (3)

Let us formulate a generalization of the classical Esséen inequality [21] to the multi-
variate case ([22], see also [19]):

Lemma 1. Let τ > 0 and let F be a d-dimensional probability distribution. Then,

Q(F, τ)�d τd
∫
|t|≤1/τ

|F̂(t)| dt. (4)

In the general case, Q(F, τ) cannot be estimated from below by the right hand side of
inequality (4). However, if we assume additionally that the distribution F is symmetric and
its characteristic function is non-negative for all t ∈ R, then we have the lower bound:

Q(F, τ)�d τd
∫

|t|≤1/τ

F̂(t) dt, (5)

and, therefore,
Q(F, τ) �d τd

∫
|t|≤1/τ

F̂(t) dt, (6)

(see [23] or [18], Lemma 1.5 of Chapter II for d = 1). In the multivariate case, relations
(5) and (6) may be found in Zaitsev [24]. The use of relation (6) allows us to simplify the
arguments of Friedland and Sodin [2], Rudelson and Vershynin [4] and Vershynin [8] which
were applied to Littlewood–Offord problem (see [15–17]).

The main result of this paper is a general inequality which reduces the estimation
of concentration functions in the Littlewood–Offord problem to the estimation of concen-
tration functions of some infinitely divisible distributions. This result is formulated in
Theorem 1.

For z ∈ R, introduce the distribution Hz with the characteristic function

Ĥz(t) = exp
(
− 1

2

n

∑
k=1

(
1− cos(〈 t, ak〉z)

))
. (7)
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It depends on the vector a. It is clear that Hz is a symmetric infinitely divisible
distribution. Therefore, its characteristic function is positive for all t ∈ Rd.

Recall that G = L(X1 − X2) and Fa = L(Sa), where Sa =
n
∑

k=1
Xkak.

Theorem 1. Let V be an arbitrary one-dimensional Borel measure, such that λ = V{R} > 0, and
V ≤ G, that is, V{B} ≤ G{B}, for any Borel set B. Then, for any τ > 0, we have

Q(Fa, τ)�d

∫
z∈R

Q(Hλ
1 , τ|z|−1)W{dz}, (8)

where W = λ−1V.

Corollary 1. For any ε, τ > 0, we have

Q(Fa, τ)�d Q(Hp(τ/ε)
1 , ε), (9)

where p( · ) is defined in (1).

In order to verify Corollary 1, we note that the distribution G = L(X̃) may be repre-
sented as the mixture

G = p0G0 + p1G1, where pj = P
{

X̃ ∈ Aj
}

, j = 0, 1,

A0 = {x : |x| ≤ τ/ε}, A1 = {x : |x| > τ/ε}, Gj are probability measures defined for pj > 0
by the formula Gj{B} = G{B ∩ Aj}/pj , for any Borel set B. In fact, Gj is the conditional
distribution of X̃, given that X̃ ∈ Aj. If pj = 0, then we can take Gj as an arbitrary measure.

The conditions of Theorem 1 are satisfied for V = p1G1. λ = p1 = p(τ/ε), W = G1.
Inequalities (2) and (6) imply that

Q(Fa, τ) �d

∫
z∈A1

Q(Hλ
1 , τ|z|−1)W{dz}

≤ sup
z≥τ/ε

Q
(

Hp(τ/ε)
1 , τ/z

)
= Q

(
Hp(τ/ε)

1 , ε
)
, (10)

proving (9).
Applying Theorem 1 with V of the form

V{dz} =
(
1 + �τ(ε|z|)−1�

)−d G{dz}, (11)

and using inequality (2), we obtain.

Corollary 2. For any ε, τ > 0, we have

Q(Fa, τ)�d λ−1 Q(Hλ
1 , ε), (12)

where
λ = λ(G, τ/ε) = V{R} =

∫
z∈R

(
1 + �τ(ε|z|)−1�

)−d G{dz}. (13)

It is clear that �τ(ε|z|)−1� = 0 if |z| > τ/ε. Therefore, λ = λ(G, τ/ε) ≥ p(τ/ε), hence,
Q(Hλ

1 , ε) ≤ Q(Hp(τ/ε)
1 , ε). Thus, if λ �d 1, then inequality (12) of Corollary 2 is stronger

than inequality (9) of Corollary 1.
The proof of Theorem 1 is based on elementary properties of concentration functions.

We repeat the arguments of [1], adding, at the last step, an application of Jensen’s inequality.
In [1], inequality (2) was used instead. The main result of [1] does not imply Corollary 2.
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Note that Hλ
1 is an infinitely divisible distribution with the Lévy spectral measure Mλ =

λ
4 M∗, where M∗ =

n
∑

k=1

(
Eak + E−ak

)
. It is clear that the assertions of Theorem 1 and

Corollaries 1 and 2 may be treated as statements about the measure M∗.
Corollary 1 was already proved earlier in [1,25], see also [26] for the case τ = 0. It

was used essentially in [25,27] to show that Arak’s inequalities for concentration functions
may be used for investigations of the Littlewood–Offord problem. Arak has shown that if
the concentration function of infinitely divisible distribution is relatively large, then the
spectral measure of this distribution is concentrated in a neighborhood of a set with simple
arithmetical structure. Together with Corollary 1, this means that a large value of Q(Fa, τ)
implies a simple arithmetical structure of the set {±ak}n

k=1. This statement is similar to the
so-called “inverse principle” in the Littlewood–Offord problem (see [5,7,12]).

Note that using the results of Arak [23,28] (see also [18]) one could derive from
Corollary 1 inequalities similar to boumds for concentration functions in the Littlewood–
Offord problem, which were obtained in a paper of Nguyen and Vu [7] (see also [12]). A
detailed discussion of this fact is presented in [25,27]. We noticed that Corollary 2 may
be stronger than Corollary 1. Therefore, the results of [25,27] could be improved (in the
sense of dependence of constants on the distribution of X1) replacing an application of
Corollary 1 by an application of Corollary 2. The authors are going to devote a separate
publication to this topic.

Proof of Theorem 1. Let us show that, for arbitrary probability distribution, W and λ, T > 0,

log
∫
|t|≤T

exp
(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
λ W{dz}

)
dt

≤
∫

z∈R

(
log
∫
|t|≤T

exp
(
− λ

2

n

∑
k=1

(
1− cos(〈 t, ak〉z)

))
dt
)

W{dz}

=
∫

z∈R

(
log
∫
|t|≤T

Ĥλ
z (t) dt

)
W{dz}. (14)

It is suffice to prove (14) for discrete distributions W = ∑∞
j=1 pjEzj , where 0 ≤ pj ≤ 1,

zj ∈ R, ∑∞
j=1 pj = 1. Applying in this case the generalized Hölder inequality, we have

∫
|t|≤T

exp
(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
λ W{dz}

)
dt

=
∫
|t|≤T

exp
(
− λ

2

∞

∑
j=1

pj

n

∑
k=1

(
1− cos(〈 t, ak〉zj)

))
dt

≤
∞

∏
j=1

( ∫
|t|≤T

exp
(
− λ

2

n

∑
k=1

(
1− cos(〈 t, ak〉zj)

))
dt
)pj

. (15)

Taking logarithms of the left- and right-hand sides of (15), we get (14). In general cases,
we can approximate W by discrete distributions in the sense of weak convergence and pass
to the limit. Note also that the integrals

∫
|t|≤T dt may be replaced in (14) by the integrals∫

μ{dt} with an arbitrary Borel measure μ.
Since for characteristic function Û(t) of a random vector Y, we have

|Û(t)|2 = E exp(i〈 t, Ỹ〉) = E cos(〈 t, Ỹ〉),

where Ỹ is the corresponding symmetrized random vector, then

|Û(t)| ≤ exp
(
− 1

2
(
1− |Û(t)|2

))
= exp

(
− 1

2
E
(
1− cos(〈 t, Ỹ〉)

))
. (16)
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According to Theorem 1 and relations V = λ W ≤ G, (14) and (16), applying Jensen’s
inequality of the form exp(E f (ξ)) ≤ E exp( f (ξ)) for any measurable function f and any
random varialble ξ, we have

Q(Fa, τ) �d τd
∫

τ|t|≤1
|F̂a(t)| dt

�d τd
∫

τ|t|≤1
exp
(
− 1

2

n

∑
k=1

E
(
1− cos(〈 t, ak〉X̃)

))
dt

= τd
∫

τ|t|≤1
exp
(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
G{dz}

)
dt

≤ τd
∫

τ|t|≤1
exp
(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
λ W{dz}

)
dt

≤ exp
( ∫

z∈R
log
(

τd
∫

τ|t|≤1
Ĥλ

z (t) dt
)

W{dz}
)

≤
∫

z∈R

(
τd
∫

τ|t|≤1
Ĥλ

z (t) dt
)

W{dz}. (17)

Using (6), we have

τd
∫

τ|t|≤1
Ĥλ

z (t) dt �d Q(Hλ
z , τ) = Q

(
Hλ

1 , τ|z|−1). (18)

Substituting this formula into (17), we obtain (8). In (18), we have used that Hλ
z =

L(zη), where η is a random vector with L(η) = Hλ
1 .
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Abstract: There has been a renewed interest in exponential concentration inequalities for stochastic
processes in probability and statistics over the last three decades. De la Peña established a nice
exponential inequality for a discrete time locally square integrable martingale. In this paper, we
obtain de la Peña’s inequalities for a stochastic integral of multivariate point processes. The proof is
primarily based on Doléans–Dade exponential formula and the optional stopping theorem. As an
application, we obtain an exponential inequality for block counting process in Λ−coalescent.

Keywords: de la Peña’s inequalities; purely discontinuous local martingales; stochastic integral of
multivariate point processes; Doléans–Dade exponential
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1. Introduction

Let S = (Sn)n≥0 be a locally square integrable martingale on (Ω,F , (Fn)n≥1,P). The
predictable quadratic variation of S = (Sn)n≥0 is given by

< S, S >n=
n

∑
i=1

E[((Si − Si−1)
2|Fi−1].

Many authors studied the upper bound of

P(Sn ≥ x,< S, S >n≤ y).

The celebrated Freedman inequality is as follows.

Theorem 1 (Freedman [1]). Let S = (Sn)n≥0 be a locally square integrable martingale on
(Ω,F , (Fn)n≥1,P).If |Sk − Sk−1| ≤ c for each 1 ≤ k ≤ n, then

P
(
Sn ≥ x,< S, S >n≤ y

)
≤ exp{− x2

2(y + cx)
}.

This result can be regarded as an extension of Hoeffding [2]. Fan, Grama and Liu [3,4],
and Rio [5] obtained a series of remarkable extensions of Freedman inequality [1]. See also
Bercu et al. [6] for a recent review in this field.

De la Peña [7] establishes a nice exponential inequality for discrete time locally square
integrable martingales.
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Theorem 2 (De la Peña [7]). Let S = (Sn)n≥0 be a locally square integrable and conditionally
symmetric martingale on (Ω,F , (Fn)n≥1,P). Then,

P
(
Sn ≥ x,

n

∑
i=1

(Si − Si−1)
2 ≤ y

)
≤ exp{− x2

2y
}.

This result is quite different from the classical Freedman’s inequality. The challenge for
obtaining Theorem 1 is to find an approach based on the use of the exponential Markov’s
inequality. De la Peña constructed a supermartingale to get Theorem 1. Furthermore, Bercu
and Touati [8] established the following result for self-normalized martingales, which are
similar to Theorem 1.

Theorem 3 (Bercu and Touati [8]). Let S = (Sn)n≥0 be a locally square integrable martingale on
(Ω,F , (Fn)n≥1,P). Then, for all x, y > 0, a ≥ 0 and b > 0,

P
( |Sn|

a + b < S, S >n
≥ x,< S, S >n≥

n

∑
i=1

(Si − Si−1)
2 + y

)
≤ 2 exp{−x2(ab +

b2y
2

)}.

It is natural to ask what will happen when we study the continuous-time processes for
the above cases? Let (Ω,F , (Ft)t≥0,P) be a stochastic basis. M = (Mt)t≥0 is a continuous
locally square integrable martingale. The predictable quadratic variation of M, < M, M >,
is a continuous increasing process, such that (M2

t− < M, M >t)t≥0 is a local martingale.
However, we cannot define an analogy for M like ∑n

i=1(Si − Si−1)
2 in Theorems 1 and 3.

Since M = (Mt)t≥0 has jumps, we can replace ∑n
i=1(Si − Si−1)

2 by ∑s≤t |�Ms|2. It is an
interesting problem to consider De la Peña type inequalities for continuous-time local
square integrable martingale with jumps. Some authors obtained the concentration inequal-
ities for continuous-time stochastic processes. Bernstein’s inequality for local martingales
with jumps was given by van der Geer [9]. Khoshnevisan [10] found some concentra-
tion inequalities for continuous martingales. Dzhaparidze and van Zanten [11] extended
Khoshnevisan’s results to martingales with jumps.

This paper focuses on the De la Peña type inequalities for stochastic integrals of
multivariate point processes. Stochastic integrals of multivariate point processes are an
essential example of purely discontinuous local martingales. Some useful facts and results
essential for this paper’s proofs will be collected in Section 2. Section 3 will present our
main results and give their proofs, while Section 4 will derive an exponential inequality
for block counting process in Λ−coalescent as applications. Usually, c, C, K, · · · denote
positive constants, which very often may be different at each occurrence.

2. Preliminaries

Let(Ω,F , (Ft)t≥0,P) be a stochastic basis. A stochastic process M = (Mt)t≥0 is called
a purely discontinuous local martingale if M0 = 0 and M is orthogonal to all continuous
local martingales. The reader is referred to the classic book [12] due to Jacod and Shiryayev
for more information. We shall restrict ourselves to the integer-valued random measure
μ on R+ ×R induced by a R+ ×R-valued multivariate point process. In particular, let
(Tk, Zk), k ≥ 1, be a multivariate point process, and define

μ(dt, dx) = ∑
k≥1

1{Tk<∞}ε(Tk ,Zk)
(dt, dx), (1)

where ε(Tk ,Zk)
is the delta measure at point (Tk, Zk). Then μ(ω; [0, t] × R) < ∞ for all

(ω, t) ∈ Ω×R. Let Ω̃ = Ω×R+ ×R, P̃ = P ⊗ B, where B is a Borel σ-field on R and P
a σ-field generated by all left continuous adapted processes on Ω×R+. The predictable
function is a P̃-measurable function on Ω̃. Let ν be the unique predictable compensator
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of μ (up to a P-null set). Namely, ν is a predictable random measure such that for any
predictable function W, W ∗ μ−W ∗ ν is a local martingale, where the W ∗ μ is defined by

W ∗ μt =

⎧⎨⎩
∫ t

0

∫
R

W(s, x)μ(ds, dx), if
∫ t

0

∫
R
|W(s, x)|μ(ds, dx) < ∞,

+∞, otherwise.

Note the ν admits the disintegration

ν(dt, dx) = dAtK(ω, t; dx), (2)

where K(·, ·) is a transition kernel from (Ω×R+,P) into (R,B), and A = (At)t≥0 is an
increasing càdlág predictable process. For μ in (1), which is defined through multivariate
point process, ν admits

ν(dt, dx) = ∑
n≥1

1
Gn([t, ∞]×R)

1{t≤Tn+1}Gn(dt, dx),

where Gn(ω, ds, dx) is a regular version of the conditional distribution of (Tn+1, Zn+1) with
respect to σ{T1, Z1, · · · , Tn, Zn}. In particular, if Fn(dt) = Gn(dt×R), the point process
N = ∑n≥1 1[Tn ,∞) has the compensator At = ν([0, t]×R), which satisfies

At = ∑
n≥1

∫ Tn+1∧t

0

1
Fn([s, ∞])

Fn(ds).

Now, we define the stochastic integrals of multivariate point processes. For a stopping
time T, [T] = {(ω, t) : T(ω) = t} is the graph of T. For μ in (1), define D =

⋃∞
n=1[Tn]. With

any measurable function W on Ω̃, we define at = ν({t} ×R), and

Ŵ ∗ νt =

⎧⎨⎩
∫
R

W(t, x)ν({t} × dx), if
∫
R
|W(t, x)|ν({t} × dx) < ∞,

+∞, otherwise.

We denote by Gloc(μ) the set of all P̃−measurable real-valued functions W such that
[∑s≤t(W̃s)2]1/2 is local integrable variation process, where W̃t = W1D(ω, t)− Ŵt.

Definition 1. If W ∈ Gloc(μ), the stochastic integral of W with respect to μ− ν is defined as a
purely discontinuous local martingales, the jump process of which is indistinguishable from W̃.

We denote the stochastic integral of W with respect to μ− ν by W ∗ (μ− ν). For a
given predictable function W, W ∗ (μ− ν) is a purely discontinuous local martingale, which
is defined through jump process. It is easy to prove that W ∗ (μ − ν) = W ∗ μ −W ∗ ν.
Denote M = W ∗ (μ− ν).

Itô’s formula for a purely discontinuous local martingale is essential for our proofs.
Now, we present Itô’s formula for M.

Lemma 1 (Itô’s formula, Jacod and Shiryaev [12]). Let μ be a multivariate point process, ν be
the predictable compensator of μ, W be a given predictable function on Ω̃, and W ∈ Gloc(μ). Let f
be a differentiable function, for M = W ∗ (μ− ν) and t > 0,

f (Mt) = f (M0) +
∫ t

0
f ′(Ms−)dMs + ∑

s≤t
[ f (Ms)− f (Ms−)− f ′(Ms−)ΔMs].
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Under some conditions, Wang, Lin and Su [13] obtained

P

(
Mt ≥ x,< M, M >t≤ v2 for some t > 0

)
≤ exp{− x2

2(v2 + cx)
} (3)

where < M, M > is the predictable quadratic variation process of M = W ∗ (μ− ν),

< M, M >t= (W − Ŵ)2 ∗ νt + ∑
1≤s≤t

(1− as)Ŵ2
s .

When M is a purely discontinuous local martingale, ∑s≤· |ΔMs|2− < M, M > is a local
martingale. There will be an interesting problem when the predictable quadratic variation
< M, M > in (3) is replaced by the quadratic variation ∑s≤· |ΔMs|2. In this paper, we will
estimate the upper bound of two types of tail probabilities:

P

(
Mt ≥ x, ∑

s≤t
|ΔMs|2 ≤ v2 for some t > 0

)
(4)

and

P

(
Mt ≥ (α + β ∑

s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥< M, M >t +v2 for some t > 0

)
. (5)

It is important to note that the continuity of A implies the quasi-left continuity of M.
However, the quasi-left continuity of M can be destroyed easily by changing the filtration
in the underlying space. For example, let N be a homogeneous Poisson process with respect
to F. Let (Tn)n≥0 be the sequence of the jump-times of N. The process N is not quasi-left
continuous in the filtration G obtained by enlarging F initially with the σ−fieldR = σ(T1).
( σn = (1− 1

2n )T1 is a sequence of G -stopping times announcing T1). The main purpose of
this paper consists in estimating (4) and (5) when M is not quasi-left continuous.

3. The Main Results and Their Proofs

Now, we present our first main result.

Theorem 4. Let μ be a multivariate point process, ν be the predictable compensator of μ, at =
ν({t} × R), W be a given predictable function on Ω̃, and W ∈ Gloc(μ). M = W ∗ (μ − ν).
Assume ΔM ≥ −1. Then, for x > 0, v > 0,

P

(
Mt ≥ x, ∑

s≤t
|�Ms|2 ≤ v2 for some t > 0

)
≤
(v2 + x

v2

)v2

e−x.

Proof of Theorem 4. For simplicity of notation, put

S(λ)t =
∫ t

0

∫
R

(e[λ(W−Ŵ)−(λ+log(1−λ))(W−Ŵ)2] − 1− λ(W − Ŵ))ν(ds, dx)

+ ∑
s≤t

(1− as)(e[−λŴs+(λ+log(1−λ))(Ŵs)2] − 1 + λŴs),

where λ ∈ [0, 1).
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Furthermore,

ΔS(λ)t =
∫
R

(
e[λ(W−Ŵ)−(λ+log(1−λ))(W−Ŵ)2] − 1− λ(W − Ŵ)

)
ν({t}, dx)

+(1− at)(e[−λŴt+(λ+log(1−λ))(Ŵt)
2] − 1 + λŴt)

= e[−λŴt−(λ+log(1−λ))(Ŵt)
2]
( ∫

R

e[λW−(λ+log(1−λ))(W2−2WŴ)]ν({t}, dx) + 1− at

)
+(1− at)(−1 + λŴt)−

∫
R

(
1 + λ(W − Ŵ)

)
ν({t}, dx)

= e[−λŴt−(λ+log(1−λ))(Ŵt)
2]
( ∫

R

e[λW−(λ+log(1−λ))(W2−2WŴ)]ν({t}, dx) + 1− at

)
+(1− at)λŴt − 1− λ

∫
R

(W − Ŵ)ν({t}, dx).

In addition, it is easy to see by noting at ≤ 1,∫
R

e[λW−(λ+log(1−λ))(W2−2WŴ)]ν({t}, dx) + 1− at ≥ 0,

and
(1− at)λŴt = λ

∫
R

(W − Ŵ)ν({t}, dx).

In combination, we have for all t > 0

ΔS(λ)t > −1,

where λ ∈ [0, 1). For any semimartingale S(λ)t, the Doléans–Dade exponential is

E(S(λ))t = eS(λ)t−S(λ)0− 1
2<S(λ)c ,S(λ)c>t ∏

s≤t
(1 + ΔS(λ)t)e−ΔS(λ)t .

We shall first show that the process
(

e[λMt−(λ+log(1−λ))∑s≤t(ΔMs)2)]/E(S(λ))t

)
t≥0

is a local

martingale. Denote Xt = λMt − (λ + log(1− λ))∑s≤t(ΔMs)2, Yt = ∑s≤t(ΔMs)2.
The Itô formula yields

eXt = 1 + eXt− · X + ∑
s≤t

(eXs − eXs− − eXs−ΔXs)

= 1 + λeXt− ·M− (λ + log(1− λ))eXt− ·Y
+ ∑

s≤t
(eXs − eXs− − eXs−ΔXs)

= 1 + λeXt− ·M + ∑
s≤t

(eXs − eXs− − λeXs−ΔMs).

For X, the jump part of X is

ΔX = [λ(W − Ŵ)− (λ + log(1− λ))(W − Ŵ)2]1D

−λŴ1Dc + (λ + log(1− λ))Ŵ21Dc

where D is the thin set, which is exhausted by {Tn}n≥1. Thus,

∑
s≤t

(eΔXs − 1− λΔMs)− S(λ) =: Zt (6)

is a local martingale. Denote Ξ(λ)t = ∑s≤t(eΔXs − 1− λΔMs), we have
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∑
s≤t

(eXs − eXs− − λeXs−ΔMs)− eX− · S(λ)

= eX− · Ξ(λ)− eX− · S(λ) = eXt− · Z.

Thus,

eX − eX− · S(λ)
= 1 + λeXt− ·M + ∑

s≤t
(eXs − eXs− − λeXs−ΔMs)− eX− · S(λ)

= 1 + λeXt− ·M + eXt− · Z =: N1.

N1 is a local martingale. Following the similar arguments in Wang Lin and Su [13], we have(
eXt /E(S(λ))t

)
t≥0

is a local martingale. In fact, set H = eX, G = E(S(λ)), A = S(λ) and

f (h, g) = h
g . The Itô formula yields

f (H, G) = 1 +
1

G−
· H − H−

G2
−
· G

+ ∑
s≤·

(
Δ f (H, G)s −

ΔHs

Gs−
+

f (H, G)s−
Gs−

ΔGs

)
.

Since E(S(λ)) = 1 + E(S(λ))− · S(λ), we have

1
G−
· H − H−

G2
−
· G

=
1

G−
· H − H−

G−
· S(λ) = 1

G−
· (eX − eX− · S(λ))

=
1

G−
· N1.

Noting that ΔG = G−ΔA, ΔN1 = ΔH − H−ΔA, we have

Δ f (H, G)s −
ΔHs

Gs−
+

f (H, G)s−
Gs−

ΔGs = −
ΔN1sΔAs

Gs−(1 + ΔAs)
,

where A is a predictable process, and N is a local martingale. By the property of the Stieltjes
integral, we have

∑
s≤·

Δ f (H, G)s −
ΔHs

Gs−
+

f (H, G)s−
Gs−

ΔGs = −
ΔA

G−(1 + ΔA)
· N1. (7)

Thus, (
eX/E(S(λ))

)
= 1 +

1
G−
· N1 −

ΔA
G−(1 + ΔA)

· N1

is a local martingale.
Let

B1 = {Mt ≥ x, ∑
s≤t
|�Ms|2 ≤ v2 for some t > 0}

and
τ1 = inf{t > 0 : Mt ≥ x, ∑

s≤t
|�Ms|2 ≤ v2}.

44



Mathematics 2022, 10, 2114

Note by (4.12) in [4], for λ ∈ [0, 1) and x ≥ −1,

exp{λx + x2(λ + log(1− λ))} ≤ 1 + λx.

This implies∫ t

0

∫ ∞

−1
exp{λx + (λ + log(1− λ))x2}νM(ds, dx) ≤

∫ t

0

∫ ∞

−1
(1 + λx)νM(ds, dx), (8)

because ΔMt ≥ −1 for any t > 0, where νM is the predictable compensate jump measure
of M. Inequality (8) implies S(λ) ≤ 0. Since ex ≥ x + 1 and eS(λ)t ≥ E(S(λ)t),

E[
eλXT

eS(λ)T
] ≤ E[

eλXT

E(S(λ))T
] = 1 (9)

for any stopping time T. Thus, U = (Ut)t≥0 is a supermartingale, where

Ut =
exp{λMt + (λ + log(1− λ))∑s≤t(�Ms)2}

exp{S(λ)t}
.

Thus, on B1
Uτ1 ≥ exp{λx + (λ + log(1− λ))v2}.

We have

P(B1) ≤ inf
λ∈[0,1)

exp{−λx− (λ + log(1− λ))v2}

=
(v2 + x

v2

)v2

e−x. (10)

Put

L(λ)t =
∫ t

0

∫
R

(e[λ(W−Ŵ)+ f (λ)(W−Ŵ)2] − 1− λ(W − Ŵ))ν(ds, dx)

+ ∑
s≤t

(1− as)(e[−λŴs+ f (λ)(Ŵs)2] − 1 + λŴs),

where f (λ) ≥ 0 for λ ≥ 0. We have the following proposition from the proof of Theorem 4.

Proposition 1. Let μ be a multivariate point process, ν be the predictable compensator of μ,
at = ν({t} × R), W be a given predictable function on Ω̃. M = W ∗ (μ − ν). Denote X̃t =

λMt − f (λ)∑s≤t(ΔMs)2, for λ ≥ 0. Then, eX̃/E(L(λ)) is a local martingale.

In Theorem 4, the condition �M ≥ −1 plays an important role. In the following
theorem, we will present another result, which is the analogy of Theorem 1 in continuous
time case.

Theorem 5. Let μ be a multivariate point process, ν be the predictable compensator of μ, at =
ν({t} ×R), W be a given predictable function on Ω̃, and W ∈ Gloc(μ). M = W ∗ (μ− ν), In
addition, define

S̃(λ)t =:
∫ t

0

∫
R

(e[λ(W−Ŵ)− λ2
2 (W−Ŵ)2] − 1− λ(W − Ŵ))ν(ds, dx)

+ ∑
s≤t

(1− as)(e[−λŴs+
λ2
2 (Ŵs)2] − 1 + λŴs),
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and assume that for any t > 0 and λ > 0, S̃(λ)t ≤ 0. Then, for x > 0, v > 0,

P

(
Mt ≥ x, ∑

s≤t
|�Ms|2 ≤ v2 for some t > 0

)
≤ exp {− x2

2v2 }

Proof of Theorem 5. Define

Vt =
exp{λMt − λ2

2 ∑s≤t |�Ms|2}
E(S̃(λ))t

.

By Proposition 1, V is a local martingale. Note S̃(λ)t ≤ 0 for any t > 0 and λ > 0.
We have

E[
exp{λMT − λ2

2 ∑s≤T |�Ms|2}
eS̃(λ)T

] ≤ E[VT ] = 1 (11)

for any stopping time T.
Recall that

B1 = {Mt ≥ x, ∑
s≤t
|�Ms|2 ≤ v2 for some t > 0}

and
τ1 = inf{t > 0 : Mt ≥ x, ∑

s≤t
|�Ms|2 ≤ v2}.

We have

P(B1) ≤ inf
λ≥0

exp{−λx +
λ2

2
v2}

= exp {− x2

2v2 }. (12)

Remark 1. For integrable random variable ξ and a positive number a > 0, define

Ta(ξ) = min(|ξ|, a)sign(ξ).

If E[ξ] = 0, and for all a > 0, E[Ta(ξ)] ≤ 0. Then, ξ is called heavy on left. Bercu and
Touati [14] extended Theorem 1 to general case. Let S = (Sn)n≥0 be a locally square integrable on
(Ω,F , (Fn)n≥1,P). If

E[Ta(Sn − Sn−1)|Fn−1] ≤ 0 (13)

for all a > 0 and n > 0, Bercu and Touati [14] obtained

P
(
Sn ≥ x,

n

∑
i=1

(Si − Si−1)
2 ≤ y

)
≤ exp{− x2

2y
}.

In fact, our condition, S̃(λ)t ≤ 0, is analogy of (13) in continuous time case. Let N = (Nt)t≥0
be a homogeneous Poisson point process with parameter κ, and let (ηk)k≥1 be a sequence of i.i.d.
r.v.’s with a common distribution function F(x). Assume N is independent of (ηk)k≥1. Define

Yt =
Nt

∑
k=1

ηk, t ≥ 0. (14)

This is a so-called compound Poisson process. The jump measure of Y is given by

μY(dt, dx) = ∑
k≥1

1{Tk<∞}ε(Tk ,ηk)
(dt, dx), (15)
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and the predictable compensator νY is

νY(dt, dx) = κdtF(dx). (16)

Thus, (Yt − x ∗ νY
t )t≥0 is a purely discontinuous local martingale. For (Yt − x ∗ νY

t )t≥0,

S̃(λ)t = κ
∫ t

0

∫
R

(e[λx− λ2
2 x2] − 1− λx)F(dx)ds.

If E[ηk] = 0 for any κ ≥ 1, S̃(λ)t ≤ 0 implies that∫
R

e[λx− λ2
2 x2]F(dx) ≤ 1. (17)

Bercu and Touati [14] found that if ηk is heavy on the left, then (17) holds. Thus, our condition is an
analogy of (13) in continuous time case.

In [7,15], there were obtained a series of exponential inequalities for events involving
ratios in the context of continuous martingales, which in turn extended the results in [10].
Su and Wang [16] extended a similar problem for purely discontinuous local martingales
in quasi-left continuous case. In this subsection, we obtained the similar inequality for
stochastic integrals of a multivariate point process.

Theorem 6. Let μ be a multivariate point process, ν be the predictable compensator of μ, at =
ν({t}×R), W be a given predictable function on Ω̃, and W ∈ Gloc(μ). Denote M = W ∗ (μ− ν).
Then, for all x ≥ 0, β > 0, v > 0 α ∈ R,

P

(
Mt ≥ (α + β ∑

s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥< M, M >t +v2 for some t > 0

)
≤ exp{− x2

2
(αβ +

β2v2

2
)}.

Proof of Theorem 6. Recall that V = (Vt)t≥0 is a local martingale, where

Vt =
exp{λMt − λ2

2 ∑s≤t |�Ms|2}
E(S̃(λ))t

.

For any stopping time T,

E[
exp{λMT − λ2

2 ∑s≤T |�Ms|2}
exp{S̃(λ)T}

] ≤ E[VT ] = 1. (18)

By Markov’s inequality, we obtain that for all λ > 0,
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P

(
Mt ≥ (α + β ∑

s≤t
|�Ms|2)x and ∑

s≤t
|�Ms|2 ≥< M, M >t +v2 for some t > 0

)
≤ E[exp{λ

4
Mτ2 − (

αλx
4

+
βλx

4 ∑
s≤τ2

|�Ms|2)}1B2 ]

= exp{−αλx
4
}E[exp{λ

4
Mτ2 −

λ2

8
( ∑

s≤τ2

|�Ms|2+ < M, M >τ2)

+(
λ2

8
− βλx

4
) ∑

s≤τ2

|�Ms|2 +
λ2

8
< M, M >τ2)}1B2 ]

≤ exp{−αλx
4
}
√
E[exp{λ

2
Mτ2 −

λ2

4
( ∑

s≤τ2

|�Ms|2+ < M, M >τ2)}1B2 ]

×
√
E[exp{(λ2

4
− βλx

2
) ∑

s≤τ2

|�Ms|2 +
λ2

4
< M, M >τ2}1B2 ],

where

B2 = {Mt ≥ (α + β ∑
s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥< M, M >t +v2 for some t > 0},

τ2 = inf{t > 0 : Mt ≥ (α + β ∑
s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥< M, M >t +v2}.

In fact,

E[exp{λ

2
Mτ2 −

λ2

4
( ∑

s≤τ2

|�Ms|2+ < M, M >τ2)1B2 ]}

≤

√√√√
E[

exp{λMτ2 − λ2

2 ∑s≤τ2
|�Ms|2}

exp{S̃(λ)τ2}
1B2 ]

√
E[exp{S̃(λ)τ2 −

λ2

2
< M, M >τ2 ]}.

By (18)

E[
exp{λMτ2 − λ2

2 ∑s≤τ2
|�Ms|2}

exp{S̃(λ)τ2}
1B2 ] ≤ 1.

Furthermore,

E[exp{S̃(λ)τ2 −
λ2

2
< M, M >τ2}] ≤ 1

by ∣∣ exp{x− 1
2

x2} − 1− x
∣∣ ≤ 1

2
x2, x ∈ R.

Taking λ = βx, we get

P

(
B2

)
≤ exp{− x2

4
(αβ +

β2v2

2
)} ×

√
P

(
B2

)
.

Thus

P

(
Mt ≥ (α + β ∑

s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥< M, M >t +v2 for some t > 0

)
≤ exp{− x2

2
(αβ +

β2v2

2
)}.
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From the proof of Theorem 6, we can obtain the following results.

Theorem 7. Let μ be a multivariate point process, ν be the predictable compensator of μ, at =
ν({t}×R), W be a given predictable function on Ω̃, and W ∈ Gloc(μ). Denote M = W ∗ (μ− ν).
In addition, define

S̃(λ)t =:
∫ t

0

∫
R

(e[λ(W−Ŵ)− λ2
2 (W−Ŵ)2] − 1− λ(W − Ŵ))ν(ds, dx)

+ ∑
s≤t

(1− as)(e[−λŴs+
λ2
2 (Ŵs)2] − 1 + λŴs),

and assume that for any t > 0 and λ > 0, S̃(λ)t ≤ 0. Then for all x ≥ 0, β > 0, v > 0, α ∈ R,

P

(
Mt ≥ (α + β ∑

s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥ v2 for some t > 0

)
≤ exp{− x2

4
(αβ +

β2v2

2
)}.

4. Application

In this section, we will derive exponential inequalities for block counting process
in Λ−coalescent. The Λ−coalescent was introduced independently by Pitman [17] and
Sagitov [18]. In this paper, the notation and details of Λ−coalescent are from Limic and
Talarczyk [19].

Let Λ be an probability measure on [0, 1], Π = (Πt)t≥0 is a Markov jump process. Π
takes values in the set of partition of {1, 2, · · · }. For any n ≥ 1, the restriction Πn of Π to
{1, 2, · · · , n} is a continuous time Markov chain with the following transitions: when Πn

has b blocks, any given k−tuples of blocks coalesces at rate

λb,k =
∫ 1

0
rk−2(1− r)b−kΛ(dr)

where 2 ≤ b ≤ n. Let Nt be the number of blocks of Πt at t. In fact, N = (Nt)t≥0 is a point
process. Limic and Talarczyk [19] presented integral equation for N. Define

π(dt, dy, dx) = ∑
k≥1

ε{Tk ,Yk ,Xk}(dt, dy, dx)

where {Xk} is an independent array of i.i.d. random variables (Xk
j )j,k∈N, where Xk

j have
uniform distribution on [0, 1]. The multivariate point processes π have the compensator
dt Λ(dy)

y2 dx.
Limic and Talarczyk [19] found that

Nt = Nr −
∫ t

r

∫ 1

0

∫
[0,1]N

f (Ns−, y, x)π(ds, dy, dx)

for all 0 < r < t, where

f (k, y, x) =
k

∑
j=1

1{xi≤y} − 1 + 1∩k
j=1{xj>y}.

Define

Ψ(k) =
∫ 1

0

∫
[0,1]N

f (k, y, x)]
Λ(dy)

y2 dx,
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t =
∫ ∞

vt

1
Ψ(q)

dq,

and

Mt =
∫ t

0

∫ 1

0

∫
[0,1]N

f (Ns−, y, x)

vs
(π(dt, dy, dx)− ds

Λ(dy)
y2 dx).

M = (Mt)t≥0 plays important role in the study of Λ−coalescent. Limic and Talar-
czyk [19] obtained that M is a square integrable martingale. It is not difficult to see that
�M ≥ 0,

∑
s≤t
|�Ms|2 =

∫ t

0

∫ 1

0

∫
[0,1]N

f 2(Ns−, y, x)

v2
s

π(dt, dy, dx)

and

< M, M >t=
∫ t

0

∫ 1

0

∫
[0,1]N

f 2(Ns−, y, x)

v2
s

ds
Λ(dy)

y2 dx.

We have the following result.

Theorem 8. Let M be defined as above, we have

P

(
Mt ≥ x, ∑

s≤t
|�Ms|2 ≤ v2 for some t > 0

)
≤
(v2 + x

v2

)v2

e−x

and

P

(
Mt ≥ (α + β ∑

s≤t
|�Ms|2)x, ∑

s≤t
|�Ms|2 ≥< M, M >t +v2 for some t > 0

)
≤ exp{− x2

2
(αβ +

β2v2

2
)}.

where x ≥ 0, β > 0, v > 0, α ∈ R.
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Abstract: We proved the local Marchenko–Pastur law for sparse sample covariance matrices that
corresponded to rectangular observation matrices of order n×m with n/m→ y (where y > 0) and
sparse probability npn > logβ n (where β > 0). The bounds of the distance between the empirical
spectral distribution function of the sparse sample covariance matrices and the Marchenko–Pastur
law distribution function that was obtained in the complex domain z ∈ D with Im z > v0 > 0 (where
v0) were of order log4 n/n and the domain bounds did not depend on pn while npn > logβ n.

Keywords: sparse sample covariance matrices; local Marchenko–Pastur law; Stieltjes transformation

MSC: 60F99; 60B20

1. Introduction

The random matrix theory (RMT) dates back to the work of Wishart in multivariate
statistics [1], which was devoted to the joint distribution of the entries of sample covariance
matrices. The next RMT milestone was the work of Wigner [2] in the middle of the last
century, in which the modelling of the Hamiltonian of excited heavy nuclei using a large
dimensional random matrix was proposed, thereby replacing the study of the energy levels
of nuclei with the study of the distribution of the eigenvalues of a random matrix. Wigner
studied the eigenvalues of random Hermitian matrices with centred, independent and
identically distributed elements (such matrices were later named Wigner matrices) and
proved that the density of the empirical spectral distribution function of the eigenvalues of
such matrices converges to the semicircle law as the matrix dimensions increase. Later, this
convergence was named Wigner’s semicircle law and Wigner’s results were generalised in
various aspects.

The breakthrough work of Marchenko and Pastur [3] gave impetus to new progress
in the study of sample covariance matrices. Under quite general conditions, they found
an explicit form of the limiting density of the expected empirical spectral distribution
function of sample covariance matrices. Later, this convergence was named the Marchenko–
Pastur law.

Sample covariance matrices are of great practical importance for the problems of
multivariate statistical analysis, particularly for the method of principal component analysis
(PCA). In recent years, many studies have appeared that have connected RMT with other
rapidly developing areas, such as the theory of wireless communication and deep learning.
For example, the spectral density of sample covariance matrices is used in calculations
that relate to multiple input multiple output (MIMO) channel capacity [4]. An important
object of study for neural networks is the loss surface. The geometry and critical points of
this surface can be predicted using the Hessian of the loss function. A number of works
that have been devoted to deep networks have suggested the application of various RMT
models for Hessian approximation, thereby allowing the use of RMT results to reach
specific conclusions about the nature of the critical points of the surface.

Another area of application for sample covariance matrices is graph theory. The ad-
jacency matrix of an undirected graph is asymmetric, so the study of its singular values
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leads to sample covariance matrices. An example of these graphs is the bipartite random
graph, the vertices of which can be divided into two groups in which the vertices are not
connected to each other.

If we assume that the probability pn of having graph edges tends to zero as the
number of vertices n increases to infinity, we arrive at the concept of sparse random
matrices. The behaviour of the eigenvalues and eigenvectors of a sparse random matrix
significantly depends on its sparsity and results that are obtained for non-sparse matrices
cannot be applied. Sparse sample covariance matrices have applications in random graph
models [5] and deep learning problems [6] as well.

Sparse Wigner matrices have been considered in a number of papers (see [7–10]), in which
many results have been obtained. With the symmetrisation of sample covariance matrices, it
is possible to apply these results when observation matrices are square. However, when the
sample size is greater than the observation dimensions, the spectral limit distribution has a
singularity at zero, which requires a different approach. The spectral limit distribution of
sparse sample covariance matrices with a sparsity of npn ∼ nε (where ε > 0 was arbitrary
small) was studied in [11,12]. In particular, a local law was proven under the assumption
that the matrix elements satisfied the moment conditions E |Xjk|q ≤ (Cq)cq. In this paper,
we considered a case with a sparsity of npn ∼ logα n for α > 1 and assumed that the matrix
element moments satisfied the conditions E |Xjk|4+δ ≤ C < ∞ and |Xjk| ≤ c1(npn)

1
2−κ for

κ > 0.

2. Main Results

We let m = m(n), where m ≥ n. We considered the independent and identically
distributed zero mean random variables Xjk, 1 ≤ j ≤ n and 1 ≤ k ≤ m with E Xjk = 0 and
E X2

jk = 1 and an independent set of the independent Bernoulli random variables ξ jk, 1 ≤
j ≤ n and 1 ≤ k ≤ m with E ξ jk = pn. In addition, we supposed that npn → ∞ as n→ ∞.
In what follows, we omitted the index n from pn when this would not cause confusion.

We considered a sequence of random matrices:

X =
1√
mpn

(ξ jkXjk)1≤j≤n,1≤k≤m. (1)

Denoted by s1 ≥ · · · ≥ sn, the singular values of X and the symmetrised empirical spectral
distribution function (ESD) of the sample covariance matrix W = XX∗ were defined as:

Fn(x) =
1

2n

n

∑
j=1

(
I{sj ≤ x}+ I{−sj ≤ x}

)
,

where I{A} stands for the event A indicator.
We let y := y(n, m) = n

m and Gy(x) be the symmetrised Marchenko–Pastur distribu-
tion function with the density:

gy(x) =
1

2πy|x|
√
(x2 − a2)(b2 − x2) I{a2 ≤ x2 ≤ b2},

where a = 1 − √y and b = 1 +
√

y. We assumed that y ≤ y0 < 1 for n, m ≥ 1.
When the Stieltjes transformation of the distribution function Gy(x) was denoted by Sy(z)
and the Stieltjes transformation of the distribution function Fn(x) was denoted by sn(z),
we obtained:

Sy(z) =
−z + 1−y

z +
√
(z− 1−y

z )2 − 4y

2y
,

sn(z) =
1

2n

[ n

∑
j=1

1
sj − z

+
n

∑
j=1

1
−sj − z

]
=

1
n

n

∑
j=1

z
s2

j − z2
.
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We also put:

b(z) = z− 1− y
z

+ 2ySy(z) = −
1

Sy(z)
+ ySy(z). (2)

In this paper, we proved the so called local Marchenko–Pastur law for sparse covariance
matrices. We let:

Λn := Λn,y(z) = sn(z)− Sy(z).

For a constant δ > 0, we defined the value κ = κ(δ) := δ
2(4+δ)

. We assumed that
a sparse probability of pn and that the moments of the matrix elements Xij satisfied the
following conditions:

• Condition (C0): for c0 > 0 and n ≥ 1, we have npn ≥ c0 log
2
κ n;

• Condition (C1): for δ > 0, we have μ4+δ := E |X11|4+δ < ∞;
• Condition (C2): a constant c1 > 0 exists, such that for all 1 ≤ j ≤ n and 1 ≤ k ≤ m,

we have |Xjk| ≤ c1(npn)
1
2−κ .

We introduced the quantity v0 = v0(a0) := a0n−1 log4 n with a positive constant a0.
We then introduced the region:

D(a0) := {z = u + iv : (1−√y− v)+ ≤ |u| ≤ 1 +
√

y + v, V ≥ v ≥ v0}.

For constants u0 > 0 and V, we defined the region:

D̃(a0, a1) = {z = u + iv : |u| ≤ u0, V ≥ v ≥ v0, |b(z)| ≥ a1Γn}.

Next, we introduced some notations. We let:

Γn = 2C0 log n
( 1

nv
+ min

{ 1
np|b(z)| ,

1√
np

})
.

We introduced the quantity:

d(z) =
Im b(z)
|b(z)|

and put:

dn(z) :=
1

nv

(
d(z) +

log n
nv|b(z)|

)
+

1
np|b(z)| . (3)

We stated the improved bounds for Λn(z) and put:

Tn :=I{|b(z)| ≥ Γn}
(

dn(z) + d
3
4
n (z)

1

(nv)
1
4
+ d

1
2
n (z)

1

(nv)
1
2

)

+ I{|b(z)| ≤ Γn}

⎛⎝(Γn

nv

) 1
2
+ Γ

1
2
n

⎛⎝ Γ
1
2
n√
nv

+
1√
np

⎞⎠⎞⎠.

Theorem 1. Assuming that the conditions (C0)–(C2) are satisfied. Then, for any Q ≥ 1 the posi-
tive constants C = C(Q, δ, μ4+δ, c0, c1), K = K(Q, δ, μ4+δ, c0, c1) and a0 = a0(Q, δ, μ4+δ, c0, c1)
exist, such that for z ∈ D(a0):

Pr
{
|Λn| ≥ KTn

}
≤ Cn−Q.

We also proved the following result.
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Theorem 2. Under the conditions of Theorem 1 and for Q ≥ 1, the positive constants C =
C(Q, δ, μ4+δ, c0, c1), K = K(Q, δ, μ4+δ, c0, c1), a0 = a0(Q, δ, μ4+δ, c0, c1) and a1 = a1(Q, δ, μ4+δ,
c0, c1) exist, such that for z ∈ D̃(a0, a1):

Pr
{
| Im Λn| ≥ KTn

}
≤ Cn−Q.

2.1. Organisation

The paper is organised as follows. In Section 3, we state Theorems 3–5 and several
corollaries. In Section 4, the delocalisation is considered. In Section 4, we prove the
corollaries that were stated in Section 3. Section 6 is devoted to the proof of Theorems 3–5.
In Section 7, we state and prove some auxiliary results.

2.2. Notation

We use C for large universal constants, which may be different from line to line.
Sy(z) and sn(z) denote the Stieltjes transformations of the symmetrised Marchenko–Pastur
distribution and the spectral distribution function, respectively. R(z) denotes the resolvent
matrix. We let T = {1, . . . , n}, J ⊂ T, T(1) = {1, . . . , m} and K ⊂ T(1). We consider the
σ-algebras M(J,K), which were generated by the elements of X (with the exception of the
rows from J and the columns from K). We write M

(J,K)
j instead of M(J∪{j},K) and M

(J,K)
l+n

instead of M(J,K∪{l}) for brevity. The symbol X(J,K) denotes the matrix X, from which the
rows with numbers in J and columns with numbers in K were deleted. In a similar way, we
denote all objects in terms of X(J,K), such that the resolvent matrix is R(J,K), the ESD Stieltjes
transformation is s(J,K)

n , Λ(J,K)
n , etc. The symbol Ej denotes the conditional expectation with

respect to the σ-algebra Mj and El+n denotes the conditional expectation with respect to
σ-algebra Ml+n. We let Jc = T \ J and Kc = T(1) \K.

3. Main Equation and Its Error Term Estimation

Note that Fn(x) is the ESD of the block matrix:

V =

[
On X

X∗ Om

]
,

where Ok is a k× k matrix with zero elements.
We let R = R(z) be the resolvent matrix of V:

R = (V− zI)−1.

By applying the Schur complement, we obtained:

R =

[
z(XX∗ − z2I)−1 (XX∗ − z2I)−1X

X∗(XX∗ − z2I)−1 z(X∗X− z2I)−1

]
.

This implied:

sn(z) =
1
n

n

∑
j=1

Rjj =
1
n

m

∑
l=1

Rl+n,l+n +
m− n

nz
.

For the diagonal elements of R, we could write:

R(J,K)
jj = Sy(z)

(
1− ε

(J,K)
j R(J,K)

jj + yΛ(J,K)
n R(J,K)

jj
)
, (4)

for j ∈ Jc and:

R(J,K)
l+n,l+n = − 1

z + ySy(z)
(
1− ε

(J,K)
l+n R(J,K)

l+n,l+n + yΛ(J,K)
n R(J,K)

l+n,l+n
)
, (5)
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for l ∈ Kc. The correction terms ε
(J,K)
j for j ∈ Jc and ε

(J,K)
l+n for l ∈ Kc were defined as:

ε
(J,K)
j = ε

(J,K)
j1 + · · ·+ ε

(J,K)
j3 ,

ε
(J,K)
j1 =

1
m

m

∑
l=1

R(J,K)
l+n,l+n −

1
m

m

∑
l=1

R(J∪{j},K)
l+n,l+n ,

ε
(J,K)
j2 =

1
mp

m

∑
l=1

(X2
jlξ jl − p)R(J∪{j},K)

l+n,l+n ,

ε
(J,K)
j3 =

1
mp ∑

1≤l �=k≤m
Xjl Xjkξ jlξ jkR(J∪{j},K)

l+n,k+n ;

and

ε
(J,K)
l+n = ε

(J,K)
l+n,1 + · · ·+ ε

(J,K)
l+n,3,

ε
(J,K)
l+n,1 =

1
m

n

∑
j=1

R(J,K)
jj − 1

m

n

∑
j=1

R(J,K∪{l+n})
jj ,

ε
(J,K)
l+n,2 =

1
mp

n

∑
j=1

(X2
jlξ jl − p)R(J,K∪{l+n})

jj ,

ε
(J,K)
l+n,3 =

1
mp ∑

1≤j �=k≤n
Xjl Xklξ jlξkl R

(J,K∪{l+n})
jk .

By summing Equation (4) (J = ∅ and K = ∅), we obtained the self-consistent
equation:

sn(z) = Sy(z)(1 + Tn − yΛnsn(z)),

with the error term:

Tn =
1
n

n

∑
j=1

ε jRjj.

We let s0 > 1 be positive constant V, depending on δ. The exact values of these
constants were defined as below. For 0 < v ≤ V, we defined kv as:

kv = kv(V) := min{l ≥ 0 : sl
0v ≥ V}.

Remembering that:
Λn = Λn(z) := sn(z)− Sy(z),

and:
Γn = 2C0 log n

( 1
nv

+ min
{ 1

np|b(z)| ,
1√
np

})
.

We defined:

an(z) = an(u, v) =

{
Im b(z) + Γn, if |b(z)| ≥ Γn,
Γn, if |b(z)| ≤ Γn.

The function b(z) was defined in (2). For a given γ > 0, we considered the event:

Qγ(v) :=
{
|Λn(u + iv)| ≤ γan(u, v), for all u

}
and the event:

Q̂γ(v) =
kv⋂

l=0

Qγ(sl
0v).

For any γ value, the constant V = V(γ) existed, such that:

Pr{Q̂γ(V)} = 1. (6)
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It could be V =
√

2/γ, for example. In what follows, we assumed that γ and V were
chosen so that (6) was satisfied and we wrote:

Q := Q̂γ.

We defined:

βn(z) :=
an(z)

nv
+
|A0(z)|2

np
,

where
A0(z) = ySy(z)−

1− y
z

.

In this section, we demonstrate the following results.

Theorem 3. Under the condition (C0), the positive constants C = C(δ, μ4+δ, c0), a0 = a0(δ, μ4+δ, c0)
and a1 = a1(δ, μ4+δ, c0) exist, such that for z = u + iv ∈ D̃:

E |Tn|qI{Q} ≤ C
(

F1 + · · ·+ F6

)
,

where

F1 =
aq

n(z)
nqvq , F2 = |Sy(z)|2qβ

q
n(z)I{|b(z)| ≥ Γn}+ |Sy(z)|2q β

q
2
n (z)Γ

q
2
n ,

F3 = |Sy(z)|2q β
q
2
n (z)Γ

q
n(I{|b(z)| ≤ Γn}I{z /∈ D})

+
[ |Sy(z)|3q β

q
2
n (z)a

q
2
n (z)

(nv)q

(
|Sy(z)|q|A0(z)|

q
2 β

q
2
n (z) +

|A0(z)|
q
2

(np)
q
2

+
1

(nv)
q
2

)]
,

F4 =
|Sy(z)|2qβ

q
2
n (z)

a
q
2
n (z)(nv)q

(
|Sy(z)|q|A0(z)|

q
2 β

q
2
n (z) +

|A0(z)|
q
2

(np)
q
2

+
1

(nv)
q
2

)
,

F5 = q
q
2 |Sy(z)|

3q
2 β

q
2
n (z)|A0(z)|

q
4

a
q
4
n (z)

(nv)
q
2
(an(z) + |b(z)|)

q
2

+ Cqq
q
2

(
an(z)|Sy(z)|

nv

) q
4 (
|Sy(z)|2βn(z)

) q
4
(an(z) + |b(z)|)

q
2
|Sy(z)|

q
4

(np)
q
4

1

(nv)
q
4

+ Cqqq

(
|Sy(z)|2an(z)

nv

) q
4 (
|Sy(z)|2βn(z)

) q
4
(an(z) + |b(z)|)

q
2

1

(nv)
q
2

,

F6 = Cqq2(q−1)(an(z) + |b(z)|)q−1|Sy(z)|β
1
2
n (z)

[(
qq−1 |Sy(z)|an(z)

nv

)q−1 1
(np)2κ(q−1)

+ qq
( |Sy(z)|an(z)

nv

)q−1

|Sy(z)|q−1β
q−1

2
n (z)

+ q
3(q−1)

2

(
|Sy(z)|2an(z)

nv

) q−1
2 ( 1

nv

)q−1

+
q2(q−1)

(np)2(q−1)κ(nv)q−1

+ q2(q−1) |Sy(z)|
q−1

2

(nv)q−1

(
an(z)|Sy(z)|

(nv)

) q−1
2

+ q
5(q−1)

2
1

nq−1vq−1

( |Sy(z)|an(z)
nv

) q−1
2

+
q3(q−1)

(np)2(q−1)κ(nv)q−1

]
.

Remark 1. Theorem 3 was auxiliary. Tn was the perturbation of the main equation in the Stieltjes
transformation of the limit distribution. The size of Tn was responsible for the stability of the
solution of the perturbed equation. We were interested in the estimates of Tn that were uniform
in the domain D and had an order of log n/(nv) (such estimates were needed for the proof of the
delocalisation of Theorem 6). It was important to know to what extent the estimates depended on
both npn and nv. The estimates behaved differently on the beam and at the ends of the support of the
limit distribution (the introduced functions an(z) and b(z) were responsible for the behaviour of the
estimates, depending on the real part of the argument: on the beam or at the ends of the support of
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the limit distribution). For Λn estimation, there were two regimes: for |b(z)| ≥ Γn, we used the
inequality (10) and for |b(z)| ≤ Γn, we used the inequality (18).

Corollary 1. Under conditions of Theorem 3, the following inequalities hold:

I{|b(z)| ≥ Γn}E |Tn|qI{Q} ≤ Cq|b(z)|q
[( q2

(np)2κ

)q−1
d

2q−1
2

n (z)

+ d
3q
4

n (z)
( q2

nv

) q
4
+ d

q
2
n (z)

( q2

nv

) q
2
+ qq−1d

3q−2
2

n (z)

+ q2(q−1)dq
n(z)

1
(nv)q−1 + q3(q−1)d

1
2
n (z)

1
(nv)q−1(np)2κ(q−1)

]
(7)

and

I{Γn ≥ |b(z)|}E |Tn|qI{Q} ≤ Cq
(

Γn

nv
+

1
np

) q
2
Γ

q
2
n . (8)

Corollary 2. Under the conditions of Theorem 3 and in the domain:

D = {z = u + iv : 1−√y− v ≤ |u| ≤ 1 +
√

y + v, V ≥ v ≥ v0},

for any Q > 1, a constant C exists that depends on Q, such that:

Pr
{
|Λn| >

1
2

Γn;Q
}
≤ Cn−Q.

Moreover, for z = u + iv to satisfy v ≥ v0 and |z| ≥ C max{
√

log n√
np , log4 n

(np)2κ } and for Q > 1,
a constant C exists that depends on Q, such that:

Pr
{
| Im Λn| >

1
2

Γn;Q
}
≤ Cn−Q.

Corollary 3. Under the conditions of Theorem 3, for Q ≥ 1, a constant C that depends on Q exists,
such that:

Pr{Q} ≥ 1− Cn−Q.

Theorem 4. Under the conditions of Theorem 1, for Q ≥ 1, the positive constants C = C(Q, δ, μ4+δ,
c0, c1) and a0 = a0(Q, δ, μ4+δ, c0, c1) exists, such that for z = u + iv ∈ D(a0):

Pr{ |Λn| ≥
1
2

Γn} ≤ Cn−Q.

Moreover, for Q ≥ 1, the positive constants C = C(Q, δ, μ4+δ, c0, c1), C0 = C0(Q, δ, μ4+δ, c0, c1)
and a0 = a0(Q, δ, μ4+δ, c0, c1) exist, such that for z = u + iv satisfying v ≥ v0 and |z| ≥ Γn:

Pr
{
| Im Λn| >

1
2

Γn

}
≤ Cn−Q, (9)

where
Γn = C0 log n

( 1
nv

+ min
{ 1

np|b(z)| ,
1√
np

})
.

To prove the main result, we needed to estimate the entries of the resolvent matrix.

Theorem 5. Under the condition (C0) and for 0 < γ < γ0 and u0 > 0, the constants H =
H(δ, μ4+δ, c0, γ, u0), C = C(δ, μ4+δ, c0, γ, u0), c = c(δ, μ4+δ, c0, γ, u0), a0 = a0(δ, μ4+δ, c0, γ,
u0) and a1 = a1(δ, μ4+δ, c0, γ, u0) exist, such that for 1 ≤ j ≤ n, 1 ≤ k ≤ m and z = u+ iv ∈ D̃,
we have:

Pr{|Rjk| > H|Sy(z)|; Q̂γ(v)} ≤ Cn−c log n,
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Pr{max{|Rj,k+n|, |Rj+n,k|} > H|Sy(z)|; Q̂γ(v)} ≤ Cn−c log n,

Pr{|Rj+n,k+n| > H|A0(z)|; Q̂γ(v)} ≤ Cn−c log n,

where
A0(z) = ySy(z)−

1− y
z

.

Corollary 4. Under the conditions of Theorem 5, for v ≥ v0 and q ≤ c log n, a constant H exists,
such that for j, k ∈ T∪ (T(1) + n):

E |Rjk|q I{Q̂γ} ≤ Hq|Sy(z)|q.

4. Delocalisation

In this section, we demonstrate some applications of the main result. We let L =
(Ljk)

n
j,k=1 and K = (Kjk)

m
j,k=1 be orthogonal matrices from the SVD of matrix X s.t.:

X = LD̃K∗,

where D̃ =
[
Dn On,m

]
and D = diag{s1, . . . , sn}. Here and in what follows, Ok,n denotes

a k× n matrix with zero entries. The eigenvalues of matrix V are denoted by λj (λj = sj
for j = 1, . . . , n, λj = −sj for j = n + 1, . . . , 2n and λj = 0 for j = 2n + 1, . . . , n + m). We
let uj = (uj,1, . . . , uj,n+m) be the eigenvector of matrix V, corresponding to eigenvalue λj,
where j = 1, . . . , n + m.

We proved the following result.

Theorem 6. Under the conditions (C0)–(C2), for Q ≥ 1, the positive constants
C1 = C1(Q, δ, μ4+δ, c0, c1) and C2 = C2(Q, δ, μ4+δ, c0, c1) exist, such that:

Pr
{

max
1≤j,k≤n

|Ljk|2 ≤ C1
log4 n

n

}
≤ C2n−Q.

Moreover, for j = 1, . . . n, we have:

Pr
{

max
1≤j≤n,1≤k≤m

|Kjk|2 ≤ C1
log4 n

n

}
≤ C2n−Q.

Proof. First, we noted that according to [13] based on [14] and Theorem 1, c̃1, c̃2, C > 0
exists, such that:

Pr{c̃1 ≤ sn ≤ s1 ≤ c̃2} ≥ 1− Cn−Q.

Furthermore, by Lemma 11, we obtained:

Rjj =
n

∑
k=1
|Ljk|2

( 1
sk − z

− 1
sk + z

)
=
∫ ∞

−∞

1
x− z

dFnj(x),

where

Fnj(x) =
1
2

n

∑
j=1
|Ljk|2(I{sk ≤ x}+ I{sk > −x}).

We noted that:

max
1≤j≤n

|Ljk|2 ≤ 2 sup
u:|u|≥c̃1/2

(Fnj(u + λ)− Fnj(u)),
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and

Fnj(x + λ)− Fnj(x) =
∫ x+λ

x
dFnj(u)

≤ 2λ
∫ λ

0

λ

(x + λ− u)2 + λ2 dFnj(u) ≤ 2λ Im Rjj(x + λ + iλ).

These implied that:

sup
x:|x|≥ c̃1

2

|Fnj(x + λ)− Fnj(x)| ≤ 2λ sup
|x|> c̃1

4

Im Rjj(x + iλ).

We chose λ ∼ n−1 log4 n. Then, by Corollary 4, we obtained:

Pr
{

sup
x:|x|> c̃1

2

|Fnj(x + λ)− Fnj(x)| ≤ C log4 n
n

}
≥ 1− Cn−Q.

We obtained the bounds for Kjk in a similar way. Thus, the theorem was proven.

5. Proof of the Corollaries

5.1. The Proof of Corollary 4

Proof. We could write:

E |Rjk|q I{Q} ≤ E |Rjk|q I{Q} I{A(v)}+E |Rjk|q I{Q} I{Ac(v)}.

Combining this inequality with |Rjk| ≤ v−1, we found that:

E |Rjk|q I{Q} ≤ Cq + v−q
0 E{ I{Q} I{Ac(v)}.

By applying Theorem 5, we obtained what was required.
Thus, the corollary was proven.

5.2. The Proof of Corollary 2

Proof. We considered the domain D. We noted that for z ∈ D, we obtained:

|z|2 ≥ (1−√y− v)2 + v2 ≥ 1
2
(1−√y)2 and |A0(z)| ≤ C,

and
|b(z)| ≤ 1− y

α
+ 2
√

y + B.

First, we considered the case |b(z)| ≥ Γn. This inequality implied that:

|b(z)| ≥
√

2C0 log n√
np

≥ 1√
np

.

From there, it followed that:

min
{ 1

np|b(z)| ,
1√
np

}
=

1
np|b(z)| .

Furthermore, for the case |b(z)| ≥ Γn, we obtained |bn(z)|I{Q} ≥ (1− γ)|b(z)|I{Q}.
We used the inequality:

|Λn|I{Q} ≤
C|Tn|
|b(z)| . (10)
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By Chebyshev’s inequality, we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ 2q E |Tn|qI{Q}
Γq

n|b(z)|q
.

By applying Corollary 1, we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ 2qHq
n

Γq
n

,

where

Hq
n : = Cq

[( q
1
2

(np)2κ

)q−1
d

2q−1
2

n (z) + d
3q
4

n (z)
( q2

nv

) q
4
+ d

q
2
n (z)

( q
nv

) q
2

+ qq−1d
3q−2

2
n (z) + q2(q−1)dq

n(z)
1

(nv)q−1 + q3(q−1)d
1
2
n (z)

1
(nv)q−1(np)2κ(q−1

]
. (11)

First, we noted that for q = K log n:

dn(z)
Γn

≤ C
log n

. (12)

Moreover, for q = C log n:
q2

nvΓn
≤ C log n. (13)

From there, it followed that:

Cqd
3q
4

n (z)
(

q2

nv

) q
4

≤ (
C

log n
)

q
2 . (14)

Furthermore:

Cq
(

dn(z)
Γn

) q
2
(

q
nvΓn

) q
2
≤
(

C
log n

) q
2
. (15)

Using these estimations, we could show that:

2qHq
n

Γq
n
≤
(

C
log n

) q
2

(16)

By choosing q = K log n and K > C(Q), we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ Cn−Q.

Then, we considered the case |b(z)| ≤ Γn. In this case:

Γ
1
2
n (

Γn

nv
+

1
np

)
1
2 /Γn ≤ (

1
nv

+
1

npΓn
)

1
2 ≤ C

log n
. (17)

By applying the inequality |Λn(z)| ≤ C
√
|Tn| and Corollary 1, we obtained:

Pr{|Λn| ≥
1
2

Γn;Q} ≤
2q( Γn

nv + 1
np )

q
2

Γ
q
2
n

≤ Cq(
1

nv
+

1
npΓn

)
q
2 .
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It was then simple to show that:

Pr{|Λn| ≥
1
2

Γn;Q} ≤ Cn−Q.

Thus, the first inequality was proven. The proof of the second inequality was similar
to the proof of the first. We had to use the inequality:

| Im Λn| ≤ C
√
|Tn|, (18)

which was valid on the real line, instead of |Λn| ≤ C
√
|Tn|, which held in the domain D̂.

Moreover, we noted that for any z value, we obtained:

|Sy(z)||A0(z)| ≤ C.

Thus, the corollary was proven.

5.3. Proof of Corollary 3

Proof. According to Theorem 4:

Pr{|Λn(z)| ≤
1
2

Γn(z);Q} ≥ 1− Cn−Q.

We noted that for v = V:
Pr{Q(z)} = 1.

Furthermore: ∣∣∣dΛ(z)
dz

∣∣∣ ≤ 2
v2 .

We split the interval [v0, V] into subintervals by v0 < v1 < · · · < vM = V, such that
for k = 1, . . . , M:

|Λn(u + ivk)−Λn(u + ivk−1)| ≤
1
2

Γn(z).

We noted that the event Qk = {|Λn(u + ivk)| ≤ 1
2 Γn(u + ivk)} implied the event

Q̃k+1 = {|Λn(u + ivk)| ≤ Γn}. From there, for vk ≤ v ≤ vk+1, k = 0, . . . , M − 1, we
obtained:

Pr{Q(u + iv)} ≥ 1− Pr{Q(u + ivk−1)} − Pr{Qk−1
c;Q(u + ivk−1)} ≥ 1− Cn−Q.

6. Proof of the Theorems

6.1. Proof of Theorem 1

Proof. We obtained:

Pr{|Λn(z)| ≥ Tn} ≤ Pr{|Λn(z)| ≥ Tn;Q}+ Pr{Qc}.

The second term in the RHS of the last inequality was bounded by Corollary 3. For z
(such that |b(z)| ≥ CΓn(z)), we used the inequality:

|Λn(z)| ≤
|Tn|
|bn(z)|

,

the inequality:
|bn(z)| ≥ (1− γ)|b(z)|
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and the Markov inequality. We could write:

Pr{|Λn(z)| ≥ Tn} ≤
E{|TN |q;Q}
|Tn|q|b(z)|q

+ Cn−c log log n.

We recalled that in the case |b(z)| ≥ Γn:

Tn := K
(
d̂n(z) + d̂

3
4
n (z)

1

(nv)
1
4
+ d̂

1
2
n (z)

1

(nv)
1
2

)
.

In the case |b(z)| ≥ Γn and using Corollary 1, we obtained:

Pr{|Λn(z)| ≥ KTn} ≤
( Hn

KTn

)q
+ Cn−c log log n.

First, we considered the case |b(z)| ≥ Γn. By our definition of rn(z), we obtained:

Pr{|Λn(z)| ≥ Tn} ≤
(

C
1

K log
1
2 n

)q

+ Cn−c log log n. (19)

This inequality completed the proof for |b(z)| ≥ Γn.
We then considered |b(z)| ≤ Γn. We used inequality |Λn(z)| ≤

√
|Tn| and Corollary 1

to obtain:

Pr{|Λn(z)| ≥ Tn} ≤
(

C
K

)q
. (20)

By choosing a sufficiently large K value, we obtained the proof. Thus, the theorem
was proven.

6.2. Proof of Theorem 2

Proof. The proof of Theorem 2 was similar to the proof of Theorem 1. We only noted that
inequality:

| Im Λn(u + iv)| ≤
√
|Tn|

held for all u ∈ R.

6.3. The Proof of Theorem 5

Proof. Using the definition of the Stieltjes transformation, we obtained:

sn(z) =
1

2n

( n

∑
j=1

1
sj − z

+
n

∑
j=1

1
−sj − z

)
=

1
n

n

∑
j=1

z
s2

j − z2
,

and

Sy(z) =
−(z2 − ab) +

√
(z2 − a2)(z2 − b2)

2yz
.

It is also well known that for z = u + iv:

|Sy(z)| ≤
1√
y

and
A0(z) := − 1

ySy(z) + z
=
(

ySy(z)−
1− y

z

)
.
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We considered the following event for 1 ≤ j ≤ n, 1 ≤ k ≤ m and C > 0:

Ajk(v, J,K; C) = {|R(J,K)
jk (u + iv)| ≤ C}.

We set:

A(1)(v, J,K) = ∩n
j=1 ∩m

k=1Aj,k(v, J,K; C|Sy(z)|),
A(2)(v, J,K) = ∩m

j=1 ∩n
k=1Aj+n,k(v, J,K; C|Sy(z)|),

A(3)(v, J,K) = ∩n
j=1 ∩m

k=1Aj,k+n(v, J,K; C|Sy(z)|),
A(4)(v, J,K) = ∩m

j=1 ∩m
k=1Aj+n,k+n(v, J,K; C|A0(z)|).

For j ∈ Jc, k ∈ Kc and u, we obtained:

|R(J,K)
jk (z)| ≤ 1

v
.

We recalled:

a := an(u, v) =

{
Im b(z) + Γn, if |b(z)| ≥ Γn,
Γn, if |b(z)| ≤ Γn.

Then:
Γn = Γn(z) = 2C0 log n(

1
nv

+ min{ 1
np|b(z)| ,

1√
np
}).

We introduced the events:

Q̂(J,K)
γ (v) :=

kv⋂
l=0

{
|Λ(J,K)

n (u + isl
0v)| ≤ γan(u, sl

0v) +
|J|+K|

nsl
0v

}
.

It was easy to see that:
Q̂γ(v) ⊂ Q̂(J,K)

γ (v).

In what follows, we used Q := Q̂γ(v).
Equations (4) and (5) and Lemma 10 yielded that for γ ≤ γ0 and for J,K that satisfied

(|J|+ |K|)/nv ≤ 1/4, the following inequalities held:

|R(J,K)
jj | I{Q} ≤ 2|Sy(z)||ε(J,K)

j ||R(J,K)
jj | I{Q}+ 2|Sy(z)| (21)

and |A0(z)|(|J|+ |K|)/nv ≤ 1/4,

|R(J,K)
l+n,l+n| I{Q} ≤ 2|A0(Z)||ε(J,K)

l+n ||R
(J,K)
l+n,l+n| I{Q}+ 2|A0(z)|. (22)

We noted that for |z| ≥ C1 log n
nv and |J| ≤ C2 log n under appropriate C1 and C2, we

obtained A0(z)(|J|+ |K|)/nv ≤ 1/4.
We considered the off-diagonal elements of the resolvent matrix. It could be shown

that for j �= k ∈ Jc:

R(J,K)
jk = R(J,K)

jj

(
− 1√

mp

m

∑
l=1

Xjlξ jl R
(J∪{j},K)
l+n,k

)
= R(J,K)

jj ζ
(J,K)
jk , (23)
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for l �= k ∈ Kc:

R(J,K)
l+n,k+n = R(J,K)

l+n,l+n

(
− 1√

mp

n

∑
r=1

Xrlξrl R
(J,K∪{l+n})
k+n,r

)
= R(J,K)

l+n,l+nζ
(J,K)
l+n,k+n, (24)

and

R(J,K)
j,k+n = R(J,K)

jj

(
− 1√

mp

m

∑
r=1

Xjrξ jrR(J∪{j},K)
r+n,l+n

)
= R(J,K)

jj ζ
(J,K)
j,k+n,

R(J,K)
k+n,j = R(J,K)

jj

(
− 1√

mp

m

∑
r=1

Xjrξ jrR(J∪{j},K)
r+n,k+n

)
= R(J,K)

j,j ζ
(J,K)
k+n,j, (25)

where

ζ
(J,K)
jk = − 1√

mp

m

∑
l=1

Xjlξ jl R
(J∪{j},K)
l+n,k , ζ

(J,K)
j+n,k+n = − 1√

mp

n

∑
r=1

XrjξrjR
(J,K∪{j+n})
r,k+n ,

ζ
(J,K)
j+n,k = −

1√
mp

m

∑
l=1

Xklξkl R
(J∪{k},K)
l+n,j+n , ζ

(J,K)
j,k+n = − 1√

mp

n

∑
l=1

XlkξlkR(J∪{j},K)
l+n,k+n . (26)

Inequalities (21) and (22) implied that:

Pr{|Rjj|I{Q} > C|Sy(z)|} ≤ Pr
{
|ε j|I{Q} >

1
4

}
(27)

for 1 ≤ j ≤ n and C > 4√
y and that:

Pr{|Rl+n,l+n|I{Q} > C|A0(z)|} ≤ Pr
{
|ε l+n|I{Q} >

1
4|A0(z)|

}
(28)

for 1 ≤ l ≤ m and C > 2. Equations (23)–(25) produced:

Pr{|Rjk|I{Q} > C|Sy(z)|} ≤ Pr{|Rjj|I{Q} > C|Sy(z)|}+ Pr{|ζ jk|I{Q} > 1}

for 1 ≤ j �= k ≤ n and:

Pr{|Rl+n,k+n|I{Q} > C|A0(z)|} ≤ Pr{|Rl+n,l+n|I{Q} > C|A0(z)|}
+ Pr{|ζl+n,k+n|I{Q} > 1}

for 1 ≤ l �= k ≤ m. Similarly, we obtained:

Pr{|Rl,k+n|I{Q} > C|Sy(z)|} ≤ Pr{|Rl,l |I{Q} > C|Sy(z)|}+ Pr{|ζl,k+n|I{Q} > 1}

and

Pr{|Rl+n,k|I{Q} > C|Sy(z)|} ≤ Pr{|Rk,k|I{Q} > C|Sy(z)|}+ Pr{|ζl+n,k|I{Q} > 1}.

We noted that for |z| ≤ B, we obtained:

1
|A0(z)|

≤ B +
√

y.

Using Rosenthal’s inequality, we found that:

Ej |ζ jk|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j)

kk )
q
2 + qq(np)−qκ−1 1

n

m

∑
l=1
|R(j)

k,l+n|q
)
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for 1 ≤ j �= k ≤ n and that:

Ej+n |ζ j+n,k+n|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j+n)

k+n,k+n)
q
2

+ qq(np)−qκ−1 1
n

n

∑
r=1
|R(j+n)

k+n,r |q
)

,

Ej |ζ j,k+n|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j+n)

k+n,k+n)
q
2

+ qq(np)−qκ−1 1
n

n

∑
r=1
|R(j+n)

k+n,r+n|q
)

,

Ej+n |ζ j+n,k|q ≤ Cq
(

q
q
2 (nv)−

q
2 (Im R(j+n)

k+n,k+n)
q
2

+ qq(np)−qκ−1 1
n

n

∑
r=1
|R(j+n)

k+n,r+n|q
)

for 1 ≤ j �= k ≤ m. We noted that:

Pr{|ε(J,K)
j | > 1

4
;Q} ≤ Pr{A(4)(sv, J,K)

c
;Q}+ Pr{|ε(J,K)

j | > 1
4

;A(4)(sv, J,K);Q},

Pr{|ε(J,K)
j+n | >

1
4|A0(z)|

;Q} ≤ Pr{A(1)(sv, J,K)
c
;Q}

+ Pr{|ε(J,K)
j+n | > 1/(4|A0(z)|);A(1)(sv, J,K);Q; },

Pr{|ζ(J,K)
jk | > 1;Q} ≤ Pr{A(2)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
jk | > 1;A(2)(sv, J,K);Q},

Pr{|ζ(J,K)
l+n,k+n| > 1;Q} ≤ Pr{A(3)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
l+n,k+n| > 1;A(3)(sv, J,K);Q; },

Pr{|ζ(J,K)
j+n,k| > 1;Q} ≤ Pr{A(4)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
j+n,k| > 1;Q;A(4)(sv, J,K)},

Pr{|ζ(J,K)
k,j+n| > 1;Q} ≤ Pr{A(4)(sv, J,K)

c
;Q}

+ Pr{|ζ(J,K)
k,l+n(v)| > 1;Q;A(4)(sv, J,K)}.

Using Chebyshev’s inequality, we obtained:

Pr{|ε(J,K)
j | > 1/4;Q;A(4)}

≤ Cq
E
(
Ej |ε j|q

)
I{Q(J,K)}I{A(4)}.

By applying the triangle inequality to the results of Lemmas (1)–(3) (which were
the property of the multiplicative gradient descent of the resolvent matrix), we arrived at
the inequality:

Ej I{A(4)(sv, J,K)}|ε j|q ≤ Cq
[

1
(nv)q +

(
qs|A0(z)|2

np

) q
2

+
1

np

(
qs|A0(z)|
(np)2κ

)q

+

(
q2s(an(z) + |A0(z)|)

nv

) q
2

+
1

np

(
qs|A0(z)|

(nv)

) q
2
(

q2

np

) q
2

+

(
q2s|A0(z)|
(np)2κ

)q 1
(np)2

]
.
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When we set q ∼ log2 n, nv > C log4 n and np > C(log n)
2
κ and took into account that

κ < 1/2 and |A0(z)| ≤ C/|z|, then we obtained:

Ej |ε j|q I{A(4)(sv, J∪ {j},K)} ≤ Cn−c log n.

Moreover, the constant c could be made arbitrarily large. We could obtain similar esti-
mates for the quantities of ε l+n, ζ jk, ζ j+nk, ζ jk+n, ζ j+n,k+n. Inequalities (27) and (28) implied:

Pr{|R(J,K)
jj | I{Q} > C|Sy(z)|} ≤ Pr{A(4)(sv, J∪ {j},K)

c}+ Cn−c log n,

Pr{|R(J,K)
l+n,l+n| I{Q} > C|A0(z)|} ≤ Pr{A(1)(sv, J,K∪ {l})c}+ Cn−c log n,

Pr{|R(J,K)
jk | I{Q} > C|Sy(z)|} ≤ Pr{A(2)(sv, J,K∪ {l})c}+ Cn−c log n,

Pr{|Rj+n,k| I{Q} > C|Sy(z)|} ≤ Pr{A(4)(sv, J,K∪ {j})c}+ Cn−c log n,

Pr{|Rk+n,j| I{Q} > C|Sy(z)|} ≤ Pr{A(4)(sv, J,K∪ {j})c}+ Cn−c log n,

Pr{|Rk+n,j+n| I{Q} > C|A0(z)|} ≤ Pr{A(3)(sv, J,K∪ {j})c}+ Cn−c log n.

The last inequalities produced:

max
j,k∈Jc∪Kc

Pr{|R(J,K)
j,k | I{Q} > C} ≤ Cn−c log n

+ max
j∈Jc ,k∈Kc

max{Pr{Ac(sv, J∪ {j},K; CA0(z))}, Pr{Ac(s0v, J,K∪ {k}; CA0(z))}.

We noted that kv ≤ C log n for v ≥ v0 = n−1 log4 n. So, by choosing c large enough,
we obtained:

Pr{Ac(v) ∩Q} ≤ Cn−c log n.

This completed the proof of the theorem.

6.4. The Proof of Theorem 3

Proof. First, we noted that for z ∈ D, a constant C = C(y, V) exists, such that:

|b(z)| ≤ C.

Without a loss of generality, we could assume that Γ−1
n ≥ |b(z)|. We recalled that:

a := an(z) := an(u, v) =

{
Im b(z) + Γn if |b(z)| ≥ Γn,
Γn, if |b(z)| ≤ Γn.

Then:
Γn = 2C0 log n

( 1
nv

+ min
{ 1

np|b(z)| ,
1√
np

})
.

We considered the smoothing of the indicator hγ(x):

hγ(x, v) =

⎧⎪⎨⎪⎩
1, for |x| ≤ γa,

1− |x|−γa
γa , for γa ≤ |x| ≤ 2γa,

0, for |x| > 2γa.

We noted that:
IQ̂γ(v)

≤ hγ(|Λn(u + iv)|, v) ≤ IQ̂2γ(v)
,
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where, as before:

Q̂γ(v) =
kv⋂

ν=0
{|Λn(u + isν

0v)| ≤ γan(u, sν
0v)}.

We estimated the value:

Dn := E |Tn|qhq
γ(|Λn|, v).

It was easy to see that:
E |Tn|qI{Q} ≤ Dn.

To estimate Dn, we used the approach developed in [15], which refers back to Stein’s
method. We let:

ϕ(z) := z|z|q−2.

We set:
T̂n := Tnhγ(|Λn|, v).

Then, we could write:
Dn := E T̂n ϕ(T̂n).

The equality:

Tn = 1 +
(

z− 1− y
z

)
sn(z) + ys2

n(z) = b(z)Λn(z) + yΛ2
n(z)

implied that a constant C exists that depends on γ in the definition of Q, such that:

|Tn| I{Q} ≤ (|b(z)||Λn(z)|+ y|Λn(z)|2)I{Q} ≤ C(a2
n(z) + |b(z)||an(z)|)I{Q} ≤ C.

We considered:
B := A(1) ∩A(2) ∩A(3) ∩A(4).

Then:
Dn ≤ E |Tn|q I{Q} I{B}+ Cn−c log n.

By the definition of Tn, we could rewrite the last inequality as:

Dn :=
1
n

n

∑
j=1

E ε jRjjhγ(|Λn|, v)ϕ(T̂n) I{B}+ Cn−c log n.

We set:
Dn = D(1)

n + D(2)
n + Cn−c log n, (29)

where

D(1)
n :=

1
n

n

∑
j=1

E ε j1Rjjhγ(|Λn|, v)ϕ(T̂n) I{B},

D(2)
n :=

1
n

n

∑
j=1

E ε̂ jRjjhγ(|Λn|, v)ϕ(T̂n) I{B},

ε̂ j := ε j2 + ε j3.

We obtained:
1
n

n

∑
j=1

ε j1Rjj =
1

2n
s′n(z) +

sn(z)
2nz

and this yielded: ∣∣∣ 1
n

n

∑
j=1

ε j1Rjj

∣∣∣ ≤ C
nv

Im sn(z) +
C
n
+

C|Λn|
n|z| . (30)
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Then, we used:

|Sy(z)|
|z| ≤ 1

1− y
(y|Sy(z)|2 + |z||Sy(z)|+ 1}) ≤ C.

Inequality (30) implied that for z ∈ D:

|D(1)
n | ≤ J1D

q−1
q

n , (31)

where

J1 = C
an(z)

nv
.

Further, we considered:

T̂(j)
n = Ej T̂n, T(j)

n = Ej Tn, Λ(j)
n = Ej Λn.

We noted that by the Jensen inequality, for q ≥ 1:

E |T̂(j)
n |q ≤ E |T̂n|q.

We represented D(2)
n in the form:

D(2)
n = D(21)

n + · · ·+ D(24)
n , (32)

where

D(21)
n :=

Sy(z)
n

n

∑
j=1

E ε̂ jhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B},

D(22)
n :=

1
n

n

∑
j=1

E ε̂ j(Rjj − Sy(z))hγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B},

D(23)
n :=

1
n

n

∑
j=1

E ε̂ jRjj(hγ(|Λn|, v)− hγ(|Λ(j)
n |, v))ϕ(T̂(j)

n ) I{B},

D(24)
n :=

1
n

n

∑
j=1

E ε̂ jRjjhγ(|Λn|, v)(ϕ(T̂n)− ϕ(T̂(j)
n )) I{B}.

Since Ej ε̂ j = 0, we found:

D(21)
n =

Sy(z)
n

n

∑
j=1

E ε̂ jhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{Bc}.

From there, it was easy to obtain:

|D(21)
n | ≤ Cn−c log n. (33)

6.4.1. Estimation of D(22)
n

Using the representation of Rjj, we could write:

D(22)
n = D̃(22)

n + D̂(22)
n + D̆(22)

n ,
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where

D̃(22)
n :=

Sy(z)
n

n

∑
j=1

E ε̂2
j Rjjhγ(|Λ(j)

n |, v)ϕ(T̂(j)
n ) I{B},

D̂(22)
n :=

ySy(z)
n

n

∑
j=1

E ε̂ jΛnRjjhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B},

D̆(22)
n :=

ySy(z)
n

n

∑
j=1

E ε̂ jε j1Rjjhγ(|Λ(j)
n |, v)ϕ(T̂(j)

n ) I{B}

By Hölder’s inequality:

|D̂(22)
n | ≤ C|Sy(z)|

n

n

∑
j=1

E
1
q
[
Ej |ε̂ j||Λn||Rjj|hγ(|Λ(j)

n |, v) I{B}
]q

D
q−1

q
n . (34)

Further:

Ej

[
|ε̂ j||Λn||Rjj|hγ(|Λ(j)

n |, v) I{B}
]
≤ C|Sy(z)|Ej

[
|ε̂ j||Λn|hγ(|Λ(j)

n |, v) I{B}
]
.

We obtained:

|Λn|hγ(|Λ(j)
n |, v) I{B} ≤ |Λn|hγ(|Λn|, v) I{B}

+ |Λn||hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)| I{B}.

In the case |bn(z)| ≥
√
|Tn|, we obtained:

|Λn| ≤
|Tn|
|bn(z)|

≤
√
|Tn|.

This implied that:

|Λn|hγ(|Λn|, v) I{B}I{
√
|Tn| ≤ |bn(z)|} ≤ C

√
|Tn|h(|Λn|, v).

Furthermore, in the case |bn(z)| ≤
√
|Tn| and |b(z)| ≥ Γn, we obtained:

|bn(z)|I{Q} ≥ (1− 2γ)|b(z)|I{Q} > c|b(z)|I{Q}.

This implied that:

|Λn|I{Q} ≤ C(Im b(z) + Γn)I{Q} ≤ C
√
|Tn|.

For |b(z)| ≤ Γn, we could write:

Ej

[
|ε̂ j||Λn||Rjj|hγ(|Λ(j)

n |, v) I{B}
]
≤ C|Sy(z)|Ej

[
|ε̂ j||Λn|I{|Λ(j)

n | ≤ CΓn}, I{B}
]

≤ C|Sy(z)|Γn Ej

[
|ε̂ jI{|Λ(j)

n | ≤ CΓn}, I{B}
]
.

Using this, we concluded that:

Ej

[
|ε̂ j||Λn|hγ(|Λ(j)

n |, v) I{B}
]
≤ E

1
2
j |ε̂ j|2I{|Λ(j)

n | ≤ Can(z)}I{B}

×
(
I{|b(z)| ≥ Γn}E

1
2
j |T̂n|+ ΓnI{|b(z)| ≤ Γn}I{z /∈ D}

)
.
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By applying Lemmas 2 and 3, we obtained:

Ej

[
|ε̂ j||Λn|hγ(|Λ(j)

n |, v) I{B}
]
≤ Cβ

1
2
n (z)

(
E

1
2
j |T̂n|+ ΓnI{|b(z)| ≤ Γn}I{z /∈ D}

)
. (35)

By combining inequalities (34) and (35), |Sy(z)||A0(z)| ≤ C and Young’s inequality,
we obtained:

|D̂(22)
n | ≤H1D

2q−1
2q

n + H2D
q−1

q
n , (36)

where

H1 =C|Sy(z)|2β
1
2
n (z)I{|b(z)| ≥ Γn},

H2 =|Sy(z)|2Γnβ
1
2
n (z)I{|b(z)| ≤ Γn}I{z /∈ D}.

Hölder’s inequality and (35) produced:

|D̃(22)
n | ≤ C|Sy(z)|2βn(z)D

q−1
q

n . (37)

6.4.2. Estimation of D(23)
n

We noted that:

|hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)||Rjj| I{B}

≤ C
an(z)

|Λn −Λ(j)
n | I{max{|Λn|, |Λ(j)

n |} ≤ 2γan(z)} I{B}.

Using Hölder’s inequality and Cauchy’s inequality, we obtained:

D(23)
n ≤ C|Sy(z)|

an(z)
1
n

n

∑
j=1

E
1
q
{[

Ej |ε̂ j|2I{Q}I(B)
] q

2
[
Ej |Λn −Λ(j)

n |2I{Q}I(B)
] q

2
}

D
q−1

q
n .

By applying Lemmas 2, 3 and 5, we obtained:

D(23)
n ≤ C|Sy(z)|a−1

n (z)β
1
2
n (z)

1
n

n

∑
j=1

E
1
q
[
Ej |Λn −Λ(j)

n |2I{Q}I(B)
] q

2 D
q−1

q
n .

6.4.3. Estimation of D(24)
n

Using Taylor’s formula, we obtained:

D(24)
n =

1
n

n

∑
j=1

E ε̂ jRjjhγ(|Λn|, v)(T̂n − T̂(j)
n )ϕ′(T̂(j)

n + τ(T̂n − T̂(j)
n )) I{B},

where τ is uniformly distributed across the interval [0, 1] and the random variables are
independent from each other. Since I{B} = 1 yields |Rjj| ≤ C|Sy(z)|, we found that:

|D(24)
n | ≤ C|Sy(z)|

n

n

∑
j=1

E |ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)
n ||ϕ′(T̂(j)

n + τ(T̂n − T̂(j)
n ))| I{B}.

Taking into account the inequality:

|ϕ′(T̂(j)
n + τ(T̂n − T̂(j)

n ))| ≤ Cq
[
|T̂(j)

n |q−2 + qq−2|T̂n − T̂(j)
n |q−2

]
,
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we obtained:

|D(24)
n | ≤ Cq|Sy(z)|

n

n

∑
j=1

E |ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)
n ||T̂(j)

n |q−2
I{B}

+
Cqq−1|Sy(z)|

n

n

∑
j=1

E |ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)
n |q−1

I{B} =: D̂(24)
n + D̃(24)

n .

By applying Hölder’s inequality, we obtained:

D̂(24)
n ≤ Cq|Sy(z)|

n

n

∑
j=1

E
2
q
[
Ej{|ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)

n | I{B}}
] q

2
E

q−2
q |T̂(j)

n |q.

Jensen’s inequality produced:

D̂(24)
n ≤ Cq|Sy(z)|

n

n

∑
j=1

E
2
q
[
Ej{|ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)

n | I{B}}
] q

2 D
q−2

q
n .

To estimate D̂(24)
n , we had to obtain the bounds for:

V
q
2

j := E
[
Ej
{
|ε̂ j|hγ(|Λn|, v)|T̂n − T̂(j)

n | I{B}
}] q

2 .

Using Cauchy’s inequality, we obtained:

V
q
2

j ≤ E(V(1)
j )

q
4 (V(2)

j )
q
4 ≤ E

1
2 (V(1)

j )
q
2 E

1
2 (V(2)

j )
q
2 (38)

where

V(1)
j :=Ej |ε̂ j|2 I{Q̂2γ(v)} I{B},

V(2)
j :=Ej |T̂n − T̂(j)

n |2h2
γ(|Λn|, v) I{B}.

6.4.4. Estimation of V(1)
j

Lemma 2 produced:

Ej |ε j2|2] I{Q̂2γ(v)} I{B} ≤
C|A0(z)|2

np
,

and, in turn, Lemma 3 produced:

Ej |ε j3|2 I{Q̂2γ(v)} I{B} ≤
C
nv

an(z).

By summing the obtained estimates, we arrived at the following inequality:

V(1)
j ≤ Can(z)

nv
+

CA2
0(z)

np
= βn(z). (39)

6.4.5. Estimation of V(2)
j

We considered T̂n − T̂(j)
n . Since T̂n = Tnhγ(|Λn|, v) and T̂(j)

n = Ej T̂n, we obtained:

T̂n − T̂(j)
n = (Tn − T(j)

n )hγ(|Λn|, v)

+ T(j)
n

(
[hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)]−Ej Tn

[
hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
])

.
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Further, we noted that:

Tn = Λnbn = Λnb(z) + yΛ2
n,

T(j)
n z = Λ(j)

n b(z) + yEj Λ2
n.

Then:

Tn − T(j)
n = (Λn −Λ(j)

n )(b(z) + 2yΛ(j)
n )

+ y(Λn −Λ(j)
n )2 − yEj(Λn −Λ(j)

n )2. (40)

We obtained:

T̂n − T̂(j)
n = (b(z) + 2yΛ(j)

n )
[
(Λn −Λ(j)

n )hγ(|Λn|, v) ]

+ y
[
(Λn −Λ(j)

n )2 −Ej(Λn −Λ(j)
n )2

]
hγ(|Λn|, v)

+ T(j)
n

[
(hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)−Ej(hγ(|Λn|, v)− hγ(|Λ(j)
n |, v))

]
. (41)

Then, we returned to the estimation of V(2)
j . Equality (41) implied:

V(2)
j ≤ 4|b(z)|2 Ej |Λn −Λ(j)

n |2h4
γ(|Λn|, v) I{B}

+ 8y2
Ej |Λ(j)

n |2|Λn −Λ(j)
n |2h4

γ(|Λn|, v) I{B}

+ 4y2
[
Ej |Λn −Λ(j)

n |4h4
γ(|Λn|, v)

]
I{B}

+ 4y2
[
Ej(Λn −Λ(j)

n )2hγ(|Λn|, v)
]2

Ej h2
γ(|Λn|, v) I{B}

+ 4|T(j)
n |2 Ej

[
hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
]2

h2
γ(|Λn|, v) I{B}

+ 4|T(j)
n |2

[
Ej

(
hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
)]2

Ej h2
γ(|Λn|, v) I{B}.

We could rewrite this as:

V(2)
j ≤ A1 + A2 + A3 + A4,

A1 = C|b(z)|2 Ej |Λn −Λ(j)
n |2h4

γ(|Λn|, v)I{B},
A2 = CEj |Λ(j)

n |2|Λn −Λ(j)
n |2h4

γ(|Λn|, v)I{B},
A3 = CEj |Λn −Λ(j)

n |4h2
γ(|Λn|, v)

(
h2

γ(|Λn|, v) +Ej h2
γ(|Λn|, v)

)
I{B},

A4 = C|T(j)
n |2 Ej

∣∣∣hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)

∣∣∣2(h2
γ(|Λn|, v) +Ej h2

γ(|Λn|, v)
)
I{B}.

First, we found that:

A1 ≤ C|b(z)|2 Ej |Λn −Λ(j)
n |2h4

γ(|Λn|, v)I{B}.

and

A2 ≤Ca2
n(z)Ej |Λn −Λ(j)

n |2h4
γ(|Λn|, v)I{B}.

We noted that:

A3 ≤
C

n2v2 Ej |Λn −Λ(j)
n |2h2

γ(|Λn|, v)I{B}.
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It was straightforward to see that:

|T(j)
n |2(h2

γ(|Λn(z)|, v) +Ej h2
γ(|Λn(z)|, v)) ≤ C(|b(z)|2a2

n(z) + a4
n(z) +

1
n4v4 ).

This bound implied that:

A4 ≤ C(|b(z)2a2
n(z) + a4

n(z) +
1

n4v4 )Ej

∣∣∣hγ(|Λn|, v)− hγ(|Λ(j)
n |, v)

∣∣∣2I{B}.
Further, since:∣∣∣hγ(|Λn|, v)− hγ(|Λ(j)

n |, v)
∣∣∣ ≤ C

γan(z)
|Λn −Λ(j)

n |I{max{|Λn|, |Λ(j)
n |} ≤ (1 + γ)an(z)},

we could write:

A4 ≤C(|b(z)|2 + a2
n(z))Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}.

By combining the estimates that were obtained for A1, . . . , A4, we concluded that:

V(2)
j ≤C(a2

n(z) + |b(z)|2)Ej |Λn −Λ(j)
n |2I{max{|Λn|, |Λ(j)

n |} ≤ Can(z)}I{B}.

Inequalities (38) and (39) implied the bounds:

V
q
2

j ≤ Cqβ
q
4
n (z)(a2

n(z) + |b(z)|2)
q
4

×E

(
Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}

) q
4
. (42)

We noted that:

D̂(24)
n ≤ Cq|Sy(z)|

( 1
n

n

∑
j=1

Vj

)
D

q−2
q

n .

Then, Inequality (42) yielded:

D̂(24)
n ≤ Cq|Sy(z)|β

1
2
n (z)(a2

n(z) + |b(z)|2)
1
2

× 1
n

n

∑
j=1

E
2
q
(
Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}

) q
4 D

q−2
q

n .

We rewrote this as:

D̂(24)
n ≤ L1D

q−2
q

n , (43)

where

L1 =Cq|Sy(z)|β
1
2
n (z)(a2

n(z) + |b(z)|2)
1
2

× 1
n

n

∑
j=1

E
2
q
(
Ej |Λn −Λ(j)

n |2I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}I{B}

) q
4
.

6.4.6. Estimation of D̃(24)
n

We recalled that:

D̃(24)
n =

Cqqq−1

n
|Sy(z)|

n

∑
j=1

E |ε̂ j||T̂n − T̂(j)
n |q−1hγ(|Λn|, v) I{B}.
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Using Inequalities (40) and (41) and an(z) ≥ C
nv , we obtained:

|T̂n − T̂(j)
n | ≤

(
|b(z)|+ |an(z)|+

C
an(z)

|T(j)
n |
)
|Λn −Λ(j)

n |I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}.

By applying:

|T(j)
n |I{|Λ(j)

n (z)| ≤ Can(z)} ≤ C(a2
n(z) + |b(z)|an(z)),

we obtained:

|T̂n − T̂(j)
n | ≤C(|b(z)|+ an(z))|Λn −Λ(j)

n |I{max{|Λn|, |Λ(j)
n |} ≤ Can(z)}.

The last inequality produced:

D̃(24)
n ≤ Cqqq−1(an(z) + |b(z)|)q−1

n
|Sy(z)|

n

∑
j=1

E
1
q
(
Ej |ε j|2hγ(|λn|, v)I{B}

) q
2

×E
q−1

q
(
Ej |Λn −Λ(j)

n |2q
I{B}

) 1
2

≤ Cqqq|Sy(z)|β
1
2
n (z)(an(z) + |b(z)|)q−1 1

n

n

∑
j=1

(
E
(
Ej |Λn −Λ(j)

n |2q
I{Q}I{B}

)) q−1
2q

.

We put:

Rn(q) :=
1
n

n

∑
j=1

E

(
Ej |Λn −Λ(j)

n |2I{B}I{Q}
) q

2

and

Un(q) :=
1
n

n

∑
j=1

E |Λn −Λ(j)
n |2q

I{B}I{Q}.

By applying Lemma 5, we obtained:

Rn(q) ≤ Cq |Sy(z)|qa
q
2
n (z)

(nv)q

(
|Sy(z)|q|A0(z)|

q
2 β

q
2
n (z) +

|A0(z)|
q
2

(np)
q
2

+
1

(nv)
q
2

)
.

Finally, using Lemma 6, we obtained:

U
q−1
2q

n (q) ≤ Cqqq−1
(

an(z)
nv

)q−1

|Sy(z)|2(q−1)
( |A0(z)|
(np)2κ

)q−1

+ Cq
(

an(z)
nv

)q−1

|Sy(z)|2(q−1)β
q−1

2
n (z)

+ Cq−1q
q−1

2

( |Sy(z)|an(z)
nv

) q−1
2
( |Sy(z)||A0(z)|

nvnp

) q−1
2

+ Cq−1qq−1
( |Sy(z)

nv

)q−1( |A0(z)|
(np)2κ

)(q−1)

+ Cqqq−1
( |Sy(z)|

nv

)q−1( an(z)
nv

) q−1
2

+ Cq−1q
3(q−1)

2

(
an(z)|Sy(z)|

nv

) q−1
2
( |A0(z)||Sy(z)|

(np)2κ

) q−1
2
(

1
nv

)q−1

+ Cq−1q2(q−1) |A0(z)|q−1|Sy(z)|q−1

(nv)q−1(np)2κ(q−1)
.

Using:
|Sy(z)||A0(z)| ≤ 1 + 2

√
y,
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we could write:

U
q−1
2q

n (q) ≤ Cq−1qq−1
( |Sy(z)|an(z)

nv

)q−1 1
(np)2κ(q−1)

+ Cq−1
( |Sy(z)|an(z)

nv

)q−1

|Sy(z)|q−1β
q−1

2
n (z)

+ Cq−1q
q−1

2

⎛⎝ |Sy(z)|
1
2 a

1
2
n (z)

nv

⎞⎠q−1(
1

np

) q−1
2

+ Cqqq−1
(

1
nv

)q−1( 1
np

)2κ(q−1)

+ Cq−1qq−1 |Sy(z)|
q−1

2

(nv)q−1

(
an(z)|Sy(z)|

(nv)

) q−1
2

+ Cqq
3(q−1)

2
1

nq−1vq−1

( |Sy(z)|an(z)
nv

) q−1
2 1
(np)(q−1)κ

+ Cq−1q2(q−1 1
(nv)q−1(np)2κ(q−1)

.

By combining Inequalities (29), (31), (32), (33), (36), (37) and (43) and applying Young’s
inequality, we obtained the proof.

6.5. The Proof of Theorem 4

Proof. We considered the case z ∈ D, where

D = {z = u + iv : (1−√y− v)+ ≤ |u| ≤ 1 +
√

y + v, V ≥ v ≥ v0 = n−1 log4 n}.

For z, we obtained:

2V + (1 +
√

y) ≥ |z| ≥ 1√
2
(1−√y).

This implied that the constant C1 exists, depending on V, y, such that:

|b(z)| ≤ C1.

First, we considered the case |b(z)| ≥ Γn. Without a loss of generality, we assumed
that C0 ≥ C1, where C0 is the constant in the definition of an(z). This meant that an(z) =
Im b(z) + C0Γn. Furthermore:

|bn(z)|I{Q} ≥ (1− 2γ)|b(z)|I{Q}

and

|Λn(z)|I{Q} ≤ C
|Tn|
|b(z)| .

Using Theorem 3, we obtained:

E |Λn(z)|qI{Q} ≤ Cq
qq
(

F1 + · · ·+ F6

)
|b(z)|q .

We let:

d(z) =
Im b(z)

∨ 1
nv

|b(z)| .

The analysis of Fi/|b(z)|q for i = 1, . . . , 6.
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• The bound of F1/|b(z)|q. By the definition of an(z) and F1, we obtained:

F1/|b(z)|q ≤ Cq
(

d(z)
nv

+
1

np|b(z)|

)q
.

• The bound of F2/|b(z)|q. By the definition of F2, we obtained:

F2/|b(z)|q ≤ Cq|Sy(z)|2q
( d(z)
(nv)

+
1

(np|b(z)|)
)q

.

For this, we used |Sy(z)||A0(z)| = |1 + zSy(z)| ≤ C.
• The bound for F3/|b(z)|q. By the definition of F3, we obtained:

F3/|b(z)|q ≤

⎛⎝ |Sy(z)|
3q
2 a

q
2
n (z)

(nv)q +
|Sy(z)|

q
2

(nv)
q
2 (np)

q
2
+
|Sy(z)|q
(nv)q

⎞⎠( 1
(np)|b(z)| +

d(z)
nv

)q
.

• The bound of F4/|b(z)|q. Simple calculations showed that:

F4(z)/|b(z)|q ≤

⎛⎝ |Sy(z)|
3q
2

(nv)qa
q
2
n (z)

+
|Sy(z)|

q
2

a
q
2
n (z)(nv)

q
2

+
|Sy(z)|q

(annv)
q
2

⎞⎠( 1
(np)|b(z)| +

d(z)
nv

)q
.

• The bound of F5/|b(z)|q. We noted that:

(an(z) + |b(z)|)/|b(z)| ≤ C.

From there and from the definition of F5, it followed that:

F5(z)/|b(z)|q ≤ Cqq
q
2

((d(z)
nv

+
1

(np)|b(z)|
) 3q

4
(

1
nv

) q
4

+
(d(z)

nv
+

1
(np)|b(z)|

) q
2
( |Sy(z)|

nv

) q
2
)

.
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• The bound of F6/|b(z)|q. Simple calculations showed that:

F6/|b(z)|q ≤ Cqq2(q−1)

(np)2κ(q−1)
β

1
2
n (z)
|b(z)|

(d(z)
nv

+
1

np|b(z)|
)q−1

+ Cqq2(q−1)β
1
2
n (z)|b(z)|−1

(d(z)
nv

+
1

np|b(z)|
) 3(q−1)

2

+
Cqq

5(q−1)
2

(np)
q−1

2

β
1
2
n (z)|b(z)|−1

(d(z)
nv

+
1

np|b(z)|
) (q−1)

2 1

(nv)
q−1

2

+
Cqq3q

(np)2κ(q−1)
1

(nv)q−1

+ qq |Sy(z)|
q−1

2

(nv)q−1
β

1
2
n (z)
|b(z)|

(d(z)
nv

+
1

np|b(z)|
) q−1

2

+
Cqq3q

(nv)
q−1

2

β
1
2
n (z)
|b(z)|

(d(z)
nv

+
1

np|b(z)|
) q−1

2 1
(np)κ(q−1)

+
Cqq4(q−1)

(np)2κ(q−1)
1

(nv)q−1
β

1
2
n (z)
|b(z)| .

We defined:

dn(z) :=
d(z)
nv

+
1

(np)|b(z)| .

By combining all of these estimations and using:

dn(z)|b(z)| ≥
1

np
,

we obtained:

I{Γn ≤ |b(z)|}E |Λn|qI{Q} ≤ Cqqq(q
q
2 (nv)−

q
2 d

q
2
n (z) + dq

n(z)).

For z ∈ D (such that Γn ≤ |b(z)|), we could write:

E |Λn(z)|qI{Q} ≤ Cqqq(q
q
2 (nv)−

q
2 d

q
2
n (z) + dq

n(z)) ≤ δqΓq
n.

Then, we considered |b(z)| ≤ Γn. In this case, we used the inequality:

|Λn| ≤
√
|Tn|.

In what follows, we assumed that q ∼ log n.
The bound of E |Tn|q for |b(z)| ≤ Γn.

• By the definition of an(z), we obtained:

an(z)
nv

=
Γn

nv
.

We could obtain from this that, for sufficiently small δ > 0 values:

F1 ≤ CqΓq
n/(nv)q ≤ δqΓ2q

n .

• We noted that Γn ≥ Im b(z) ≥ Im A0(z). This immediately implied that:

CqqqF2 ≤ δqΓ2q
n .
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• We noted that for Im b(z) ≤ |b(z)| ≤ Γn, we obtained:

min{ 1
np|b(z)| ,

1√
np
} = 1√

np

and
1

np
≤ δΓ2

n/ log2 n.

From there, it followed that:
Cqqq ≤ δqΓ2q

n .

• Simple calculations showed that:

CqqqF4 ≤ δqΓ2q
n .

• Simple calculation showed that:

CqqqF5 ≤ CqΓ4q
n ≤ δqΓ2q

n .

• It was straightforward to check that:

CqqqF6 ≤ CqΓ3q
n ≤ δqΓ2q

n .

By applying the Markov inequality for Γn ≤ Im b(z) ≤ C, we obtained:

Pr{|Λn| > Kdn(z) log n;Q} ≤ Cn−q.

On the other hand, when Im b(z) ≤ Γn, we used the inequality:

|Λn| ≤ C|Tn|
1
2 .

By applying the Markov inequality, we obtained:

Pr{|Λn(z)| ≤ 2δΓn;Q} ≤ Cn−Q.

This implied that:

Pr{|Λn(v)| ≤
1
2

Γn;Q} ≤ Cn−Q.

We noted that Q = Q(v) for V ≥ v ≥ v0 and that for V ≥ v ≥ v0:

an(z) ≥
C log2 n

n
.

On the other hand:

sup
u
|Λn(v)−Λn(v′)| ≤

|v− v′|
v2

0
≤ n2|v− v′| = n2Δv.

We chose Δv, such that:

sup
u
|Λn(v)−Λn(v′)| ≤

1
2

Γn.

It was enough to put Δv := n−4. We let K :=
[

V−v0
Δv

]
. For ν = 0, . . . , K− 1, we defined:

vν = v0 + νΔv,
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and vK = V. We noted that v0 < v1 < · · · > vK = V and that:

sup
u
|Λn(vν+1 −Λn(vν)| ≤

1
2

Γn.

We started with vK = V. We noted that:

Pr{Q(V)} = 1.

This implied that:

Pr{|Λn(vK)| ≤
1
2

Γm} ≤ Cn−Q.

From there, it followed that:

Pr{Q(vK−1)} ≤ Cn−Q.

By repeating this procedure and using the union bound, we obtained the proof.
Thus, Theorem 4 was proven.

7. Auxiliary Lemmas

Lemma 1. Under the conditions of Theorem, for j ∈ Jc and l ∈ Kc, we have:

max
{
|ε(J,K)

j1 |, |ε(J,K)
l+n,1|

}
≤ C

nv
.

Proof. For simplicity, we only considered the case J = ∅ and K = ∅. We noted that:

ε j1 =
1

2m

((
Tr R− m− n

z
)
−
(

Tr R(j) − m− n− 1
z

))
=

1
2m
(

Tr R− Tr R(j))− 1
2mz

.

By applying Schur’s formula, we obtained:

|ε j1| ≤
1

nv
.

The second inequality was proven in a similar way.

Lemma 2. Under the conditions of Theorem 5, for all j ∈ Jc, the following inequalities are valid:

Ej |ε(J,K)
j2 |2 ≤ μ4

np
1
n

m

∑
l=1

∣∣R(J∪{j},K)
l+n,l+n

∣∣2
and

El+n |ε(J,K)
l+n,2|2 ≤

μ4

np
1
n

n

∑
j=1

∣∣R(J,K∪{l})
jj

∣∣2.

In addition, for q > 2, we have:

Ej |ε(J,K)
j2 |q ≤ Cq

( q
q
2

(np)
q
2

( 1
n

m

∑
l=1

∣∣R(J∪{j},K)
l+n,l+n

∣∣2) q
2
+

qq

(np)2qκ+1
1
n

m

∑
l=1

∣∣R(J∪{j},K)
l+n,l+n

∣∣q)
and for l ∈ Kc, we have:

El+n |ε(J,K)
l+n,2|q ≤ Cq

( q
q
2

(np)
q
2

( 1
n

n

∑
j=1

∣∣R(J,K∪{l})
jj

∣∣2) q
2
+

qq

(np)2qκ+1
1
n

n

∑
j=1

∣∣R(J,K∪{l})
jj

∣∣q).
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Proof. For simplicity, we only considered the case J = ∅ and K = ∅. The first two
inequalities were obvious. We only considered q > 2. By applying Rosenthal’s inequality,
for q > 2, we obtained:

Ej |ε j2|q =
1

(mp)q Ej

∣∣∣ m

∑
l=1

(X2
jlξ jl − p)R(j)

l+n,l+n

∣∣∣q
≤ Cq

(mp)q

[
q

q
2

( m

∑
l=1

Ej |X2
jlξ jl − p|2|R(j)

l+n,l+n|2
) q

2

+ qq
m

∑
l=1

Ej |X2
jlξ jl − p|q|R(j)

l+n,l+n|q
]

≤ Cq

(mp)
q
2

[
(qμ4)

q
2

( 1
m

m

∑
l=1
|R(j)

l+n,l+n|2
) q

2

+
mqq

(mp)
q
2

μ̃2q
1
m

m

∑
l=1
|R(j)

l+n,l+n|q
]
. (44)

We recalled that:
μ̃r = E |Xjkξ jk|r

and under the conditions of the theorem:

μ̃2q ≤ Cq p(np)q−2qκ−2μ4+δ.

By substituting the last inequality into Inequality (44), we obtained:

Ej |ε j2|q ≤ Cq
[ q

q
2

(mp)
q
2

( 1
m

m

∑
l=1
|R(j)

l+n,l+n|2
) q

2
+

qq

(mp)2qκ+1
1
m

m

∑
l=1
|R(j)

l+n,l+n|q
]
.

The second inequality could be proven similarly.

Lemma 3. Under the conditions of the theorem, for all j ∈ TJ, the following inequalities are valid:

Ej |ε(J,K)
j3 |2 ≤

C ∑m
l,k=1 |R

(J∪{j},K)
l+n,k+n (z)|2
n2

and

El+n |ε(J,K)
l+n,3|2 ≤

C ∑n
i,k=1 |R

(J,K∪{l})
i,k (z)|2
n2 .

In addition, for q > 2, we have:

Ej |ε(J,K)
j3 |q ≤ Cq

(
qq(nv)−

q
2
(

Im s(j)
n (z)− Im

{
1− y

z

}) q
2

+ q
3q
2 (nv)−

q
2 (np)−qκ−1 1

n

m

∑
l=1

(Im R(J∪{j},K)
l+n,l+n )

q
2

+ q2q(np)−2qκ 1
n2

m

∑
l=1

m

∑
k=1
|R(J∪{j},K)

l+n,k+n |q
)
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and for l ∈ T1
K

, we have:

El+n |ε(J,K)
l+n,3|q ≤ Cq

(
qq(nv)−

q
2
(

Im s(l)n (z)
) q

2

+ q
3q
2 (nv)−

q
2 (np)−qκ−1 1

n

m

∑
j=1

(Im R(J,K∪{l+n})
jj )q

+ q2q(np)−2qκn−2
n

∑
j=1

n

∑
k=1
|R(J,K∪{l+n})

kj |q
)

.

Proof. It sufficed to apply the inequality from Corollary 1 of [16].

We recalled the notation:

βn(z) =
an(z)

nv
+
|A0(z)|2

np
.

Lemma 4. Under the conditions of the theorem, the following bounds are valid:

Ej |Rjj −Ej Rjj|2 I{Q} I{B} ≤ C|Sy(z)|4βn(z) (45)

and

Ej |Rjj −Ej Rjj|q I{Q} I{B} ≤ Cq|Sy(z)|2qqq
(

qq
( |A0(z)|
(np)2κ

)q
+ β

q
2
n (z)

)
. (46)

Proof. We considered the equality:

Rjj = −
1

z− 1−y
z + ys(j)

n (z)

(
1 + ε̂ jRjj

)
.

It implied that:

Rjj −Ej Rjj = −
1

z− 1−y
z + ys(j)

n (z)

(
ε̂ jRjj −Ej ε̂ jRjj

)
. (47)

Further, we noted that for a sufficiently small γ value, a constant H existed, such that:∣∣∣∣∣ 1

z− 1−y
z + ys(j)

n (z)

∣∣∣∣∣ I{Q} ≤ H|Sy(z)| I{Q}.

Hence:

Ej |Rjj −Ej Rjj|2 I{Q} I{B} ≤ H2|Sy(z)|2
(
Ej |ε̂ j|2|Rjj|2 I{Q} I{B}

+Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2
)

.

It was easy to see that:

Ej |ε̂ j|2|Rjj|2 I{Q} I{B} ≤ C|Sy(z)|2 Ej |ε̂ j|2 I{Q} I{B}

≤ C|Sy(z)|2
( an(z)

nv
+
|A0(z)|2

np

)
.

We introduced the events:

Q(j) =
{
|Λ(j)

n | ≤ 2γan(z) +
1

nv

}
.

83



Mathematics 2022, 10, 2326

It was obvious that:
I{Q} ≤ I{Q} I{Q(j)}.

Consequently:

Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 ≤ Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 I{Q(j)}.

Further, we considered Q̃ = {|Λn| ≤ 2γan(z)}. We obtained:

I{Q(j)} ≤ I{Q̃}.

Then, it followed that:

Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 ≤ Ej I{Q} I{B}Ej |ε̂ j|2|Rjj|2 I{Q̃}.

Next, the following inequality held:

Ej |ε̂ j|2|Rjj|2 I{Q̃} ≤ Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃}+Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃c}. (48)

Under the condition C0 and the inequality |Rjj| ≤ v−1
0 , we obtained the bounds:

Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃c} ≤ Cn−c log n.

By applying Lemmas 2 and 3, for the first term on the right side of (48), we obtained:

Ej |ε̂ j|2|Rjj|2 I{Q̃}I{B̃} ≤ C|Sy(z)|2
( an(z)

nv
+
|A0(z)|2

np

)
.

This completed the proof of Inequality (45).
Furthermore, by using representation (47), we obtained:

Ej |Rjj −Ej Rjj|q I{Q} I{B} ≤ Cq|Sy(z)|q E |ε̂ j|q|Rjj|qI{Q}IB}
≤ Cq|Sy(z)|2q

Ej |ε̂ j|q|I{Q}IB}.

By applying Lemmas 2 and 3, we obtained:

Ej |Rjj −Ej Rjj|q I{Q} I{B} ≤ Cq|Sy(z)|2q

((
q|A0(z)|2

np

) q
2

+

(
q|A0(z)|
(np)2κ

)q

+

(
q2an(z)

nv

) q
2

+

(
q3|A0(z)|
nv(np)2κ

) q
2

+

(
q2|A0(z)|
(np)2κ

)q)
.

By applying Young’s inequality, we obtained the required proof. Thus, the lemma was
proven.

Lemma 5. Under the conditions of the theorem, we have:

Ej |Λn −Λ(j)
n |2 I{Q} I{B} ≤C

|Sy(z)|4|A0(z)|an(z)
(nv)2 βn + C

|Sy(z)|2|A0(z)|an(z)
(nv)2np

+ C
|Sy(z)|2an(z)

(nv)3 .

Proof. We set Λ̂(j)
n = s(j)

n (z)− Sy(z). Using Schur’s complement formula:

Λn − Λ̂(j)
n =

1
2n

(1 +
1

np

m

∑
l.k=1

XjlXjkξ jlξ jk[R(j)]2k+n,l+n)Rjj.
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Since Λ̂(j)
n was measurable with respect to M(j), we could write:

Λn −Λ(j)
n = (Λn − Λ̂(j)

n )−Ej{Λn − Λ̂(j)
n }.

We introduced the notation:

ηj1 =
1

np

m

∑
l=1

(X2
jlξ jl − p)[R(j)2

]l+n,l+n,

ηj2 =
1

np

m

∑
l=1

m

∑
k=1,k �=l

XjlXjkξ jlξ jk[R
(j)2

]k+n,l+n.

In this notation:

Λn −Λ(j)
n =

1
n

(
1 +

1
n

m

∑
l=1

[R(j)2
]l+n,l+n

)
(Rjj −Ej Rjj)

+
1
n
(ηj1 + ηj2)Rjj −

1
n
Ej(ηj1 + ηj2)Rjj.

We noted that:

Ej |ηj1|2 I{Q} I{B} ≤
C

n2 p

m

∑
l=1

∣∣[R(j)2
]l+n,l+n

∣∣2 I{Q(j)} I{B(j)}.

Since: ∣∣[R(j)2
]l+n,l+n

∣∣ ≤ m

∑
k=1

∣∣R(j)
l+n,k+n

∣∣2 ≤ C
v

Im R(j)
l+n,l+n,

Theorem 5 produced:

Ej |ηj1|2 I{Q} I{B} ≤
C

npv2
1
n

m

∑
l=1

(
Im R(j)

l+n,l+n
)2

I{Q(j)} I{B(j)} ≤ C|A0(z)|an(z)
npv2 .

Similarly, for the moment of ηj2, we obtained the following estimate:

Ej |ηj2|2 I{Q} I{B} ≤
C
n2

m

∑
l,k=1

∣∣[R(j)]2l+n,k+n
∣∣2 I{Q(j)} I{B(j)}

≤ C
n2 Tr |R(j)|4I{Q(j)} I{B(j)} ≤ C

nv3 an(z).

From the above estimates and Lemma 4, we concluded that:

Ej |Λn −Λ(j)
n |2 I{Q} I{B}

≤ C
|A0(z)|an(z)

(nv)2

( |Sy(z)|2
np

+Ej |Rjj −Ej Rjj|2
)
I{Q} I{B}+ C|Sy(z)|2

(nv)2
an(z)

nv
.

Thus, the lemma was proven.

Lemma 6. Under the conditions of the theorem, for 2 ≤ q ≤ c log n, we have:
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Ej|Λn −Λ(j)
n |q I{Q} I{B}

≤ Cq|Sy(z)|2q aq
n(z)

(nv)q

(
qq
( |A0(z)|
(np)2κ

)q
+ β

q
2
n (z)

)
+

Cq
q
2 |Sy(z)|q

(nv)q(np)
q
2
|A0(z)|

q
2 a

q
2
n (z)

+
Cqq|Sy(z)|q

(nv)q(np)2qκ+1 |A0(z)|q +
Cqqq|Sy(z)|q

(nv)
3q
2

a
q
2
n (z) +

Cqq
3q
2 |Sy(z)|q

(nv)
3q
2 (np)qκ+1

|A0(z)|
q
2 a

q
2
n (z)

+
C|Sy(z)|qq2q

(np)2qκ+2nqvq |A0(z)|q.

Proof. We used the representation:

Λn −Λ(j)
n =

1
n

(
1 +

1
n

m

∑
l=1

[R(j)2
]l+n,l+n

)
(Rjj −Ej Rjj)

+
1
n
(ηj1 + ηj2)Rjj −

1
n
Ej(ηj1 + ηj2)Rjj.

We noted that by using Rosenthal’s inequality:

Ej |ηj1|q I{Q} I{B} ≤
Cq

q
2 |A0(z)|

q
2 a

q
2
n (z)

vqn
q
2 p

q
2

+
Cqq|A0(z)|q
vq(np)2qκ+1 .

Similarly, for the second moment of ηj2, we obtained the following estimate:

Ej |ηj2|q I{Q} I{B} ≤
Cqqq

n
q
2 v

3q
2

a
q
2
n (z) +

Cqq
3q
2

n
q
2 v

3q
2 (np)qκ+1

|A0(z)|
q
2 a

q
2
n (z) +

Cqq2q|A0(z)|q
(np)2qκ+2vq .

From the estimates above and Lemma 4, we concluded that:

Ej |Λn −Λ(j)
n |q I{Q} I{B}

≤ Cq aq
n(z)

(nv)q Ej |Rjj −Ej Rjj|q I{Q} I{B}+
Cqq

q
2 a

q
2
n (z)|A0(z)|

q
2 |Sy(z)|q

(nv)q(np)
q
2

+
Cqqq|Sy(z)|q A0(z)|q
(nv)q(np)2qκ+1

+
Cqqqa

q
2
n (z)|Sy(z)|q

(nv)
3q
2

+
Cqq

3q
2 |Sy(z)|q|A0(z)|

q
2 a

q
2
n (z)

(nv)
3q
2 (np)qκ+1

+
C|Sy(z)|qq2q|A0(z)|q

(np)2qκ+2nqvq .

To finish the proof, we applied Lemma (45) and Inequality (46). Thus, the lemma was
proven.

Lemma 7. For 1−√y− v ≤ |u| ≤ 1 +
√

y + v, the following inequality holds:

|b(z)| ≤ Can(z).

Proof. We noted that:

b(z) = z− 1− y
z

+ 2ySy(z) =

√
(z− 1− y

z
)2 − 4y

and

an(z) = Im{
√
(z− 1− y

z
)2 − 4y}+ 1

nv
+

1
np

.
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It was easy to show that for 1−√y ≤ |u| ≤ 1 +
√

y:

Re{(z− 1− y
z

)2 − 4y} ≤ 0.

Indeed:

Re{(z− 1− y
z

)2 − 4y} ≤ u2 +
1− y)2

u2 − 2(1 + y).

The last expression was not positive for 1−√y ≤ |u| ≤ 1 +
√

y. From the negativity
of the real part, it followed that:

Im{
√
(z− 1− y

z
)2 − 4y} ≥ 1√

2

∣∣∣∣∣
√
(z− 1− y

z
)2 − 4y

∣∣∣∣∣
This implied the required proof. Thus, the lemma was proven.

Lemma 8. There is an absolute constant C > 0, such that for z = u + iv:

|Λn| ≤ C min{ |Tn|
|b(z)| ,

√
|Tn|}, (49)

and that for z = u + iv to satisfy 1−√y− v ≤ |u| ≤ 1 +
√

y + v and v > 0, the following
inequality is valid:

| Im Λn| ≤ C min{ |Tn|
|b(z)| ,

√
|Tn|}. (50)

Proof. We changed the variables by setting:

w =
1√
y
(z− 1− y

z
), z =

w
√

y +
√

yw2 + 4(1− y)
2

,

and
S̃(w) =

√
ySy(z), s̃n(w) =

√
ysn(z).

In this notation, we could rewrite the main equation in the form:

1 + ws̃n(w) + s̃2
n(w) = Tn.

It was easy to see that:

Λn =
1√
y
(s̃n(z)− S̃(w)).

Then, it sufficed to repeat the proof of Lemma B.1 from [17]. We noted that this lemma
implied that Inequality (50) held for all w with Im w > 0 (and, therefore, for all z) and that
Inequality (49) satisfied |Re w| ≤ 2 + Im w for w.From this, we concluded that Inequality
(49) held for z = u + iv, such that 1−√y− cv ≤ |u| ≤ 1 +

√
y + cv for a sufficiently small

constant c > 0.
Thus, the lemma was proven.

Lemma 9. For z = u + iv, we have:

|A0(z)| =
1

|z + ySy(z)|
≤ 1 + |b(z)|,

and
Im A0(z) ≤ Im b(z),

where
b(z) = z− 1− y

z
+ 2ySy(z).
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Proof. First, we noted that:

1
z + ySy(z)

= −
(

ySy(z)−
1− y

z

)
.

Using this, we could write:

b(z) = A0(z)−
1

A0(z)
. (51)

From there, it followed that:

A0(z) =
b(z)±

√
b2(z)+4

2
.

This implied that:
|A0(z)| ≤ 1 + |b(z)|.

Equality (51) yielded:

Im A0(z) =
|A0(z)|2

1 + |A0(z)|2
Im b(z) ≤ Im b(z).

Thus, the lemma was proven.

Lemma 10. A positive absolute constant B exists, such that:

an(z)|A0(z)| ≤ B

and
|Sy(z)||A0(z)| ≤ C.

Proof. First, we considered |b(z)| ≥ Γ−1. Then, for |z| ≥ CΓn:

an(z)|A0(z)| ≤ Γn(|b(z)|+ 1) ≤ CΓn

|z| ≤ C.

In the case Γn ≤ |b(z)| ≤ C, we obtained:

an(z)A0(z) ≤ |b(z)|(|b(z)|+ 1) ≤ C(C + 1).

we then considered the case |b(z)| ≤ Γn:

an(z)A0(z) ≤ (ySy(z) +
1− y
|z| )Γn ≤

√
yΓn + 1− y ≤ 1.

To prove the second inequality, we considered the equality:

|Sy(z)A0(z)| = |yS2
y(z)−

1− y
z

Sy(z)| = | − 1− zSy(z)| ≤ C.

Thus, the lemma was proven.

We let X be a rectangular n × m matrix with m ≥ n. We let s1 ≥ · · · ≥ sn be
the singular values of matrix X. The diagonal matrix with djj = sj was denoted by
Dn = (djk) n× n. We let On,k be an n× k matrix with zero entries. We put On = On,n

and D̃n =
[
DnOn,m−n

]
. We let L and K be orthogonal (Hermitian) matrices, such that the

singular value decomposition held:

X = LD̃nK.
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Furthermore, we let In be the identity of an n × n matrix and En =
[
InOn,m−n

]
.

We introduced the matrices Ln = LEn and Kn = KET
n . We noted that L∗n = ET

n L∗ and

K∗n = EnK∗. We introduced the matrix V =

[
O X

X∗ O

]
. We considered the matrix

Z = 1√
2

[
L Ln

Kn −K

]
. We then obtained the following:

Lemma 11.

Z∗VZ =

⎡⎣ Dn On On
On −Dn Om−n,n

Om−n,n Om−n,n Om−n

⎤⎦ =: D̂.

Proof. The proof followed direct calculations. It was straightforward to see that:

Z∗V =
1√
2

[
K∗nX∗ L∗X
−L∗nX K∗X

]
=

1√
2

[
EnD̃TL∗ D̃K∗

−EnD̃K∗ D̃TL∗

]
.

Furthermore:

Z∗VZ =
1
2

[
EnD̃T + D̃ET

n EnD̃T − D̃nET
n

−ET
n D̃ + D̃TEn −D̃TEn − ET

n D̃ = D̂

]
.

8. Conclusions

In this work, we obtained results by assuming that the conditions (C0)–(C2) were ful-
filled. The condition (C2) was of a technical nature. In our investigation on the asymptotic
behaviour of the Stieltjes transformation on a beam, this restriction could be eliminated.
However, this was a technically cumbersome task that requires separate consideration.
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2279–2375. [CrossRef]
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Abstract: This paper describes one of the non-linear (and non-stationary) stochastic models, the
GSB (Gaussian, or Generalized, Split-BREAK) process, which is used in the analysis of time series
with pronounced and accentuated fluctuations. In the beginning, the stochastic structure of the GSB
process and its important distributional and asymptotic properties are given. To that end, a method
based on characteristic functions (CFs) was used. Various procedures for the estimation of model
parameters, asymptotic properties, and numerical simulations of the obtained estimators are also
investigated. Finally, as an illustration of the practical application of the GSB process, an analysis is
presented of the dynamics and stochastic distribution of the infected and immunized population in
relation to the disease COVID-19 in the territory of the Republic of Serbia.

Keywords: stochastic processes; emphatic fluctuations; non-stationarity; asymptotic normality;
Gaussian distribution; estimation; COVID-19

MSC: 60E10; 60F05; 62M10

1. Introduction

Stochastic models which are used in the analysis of time series with pronounced and
permanent fluctuations are of particular importance in contemporary research. For this
purpose, we start from the basic results of Engle and Smith [1], who first introduced the
so-called STOchastic Permanent BREAKing process, popularly called the STOPBREAK
process. Many authors have since considered the STOPBREAK notion, primarily in the field
of econometrics. Some of its modifications were considered, among others, in [2–5], while
its application was presented, for instance, in [6–8].

The original modification of the STOPBREAK process, named the Split-BREAK model,
was introduced in [9]. After that, the general form of this process, named Gaussian (or
Generalized) Split-BREAK (GSB) process, was proposed in [10–12]. This stochastic model also
can be viewed as a generalization of STOPBREAK, as well as a well-known linear Auto-
Regressive Moving Average (ARMA) model. In that way, the GSB process has already been
applied in analyzing non-linear time series with pronounced and permanent fluctuations.
Let us point out that in the mentioned works, of main consideration were the stochastic
properties of the stationary components of the GSB process. The main goal of this paper is
a more detailed investigation of the non-stationary components (time series) of the GSB
model. These series naturally have a more complex stochastic structure, but they are of
particular interest in contemporary research [13–18]. To this end, the asymptotic properties
of distributions of the GSB series will also be of specific interest.

In addition to the theoretical aspects, the application of the GSB process in describing
the dynamics and finding an adequate stochastic distribution of the infected and immunized
population with respect to COVID-19 on the territory of the Republic of Serbia was also
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considered. We point out that many authors who deal with this, still current, issue have
contributed various theoretical models that investigate it from several aspects. For instance,
rigorous mathematical models, usually based on analyzing and solving systems of partial
coupled equations, have been proposed, among others, in [19–21]. On the other hand, works
in [22–25] combine deterministic and stochastic approaches, such as multiple and logistic
regression, multifactor correlation, and the least squares estimation method, to predict the
various effects caused by the COVID-19 pandemic. A particularly interesting approach
is given in [26,27] where, to predict the COVID-19 dynamics more accurately, machine
learning techniques and the construction of a complete information system are used. Finally,
to the best of our knowledge, most stochastic approaches to-date in the analysis of infection,
immunization, and other indicators related to the disease of COVID-19 were based on
the use of the gamma distribution [21,28], as well as a log-normal distribution [29]. This
is precisely one of the reasons why we believe that a different approach is given here,
primarily in stochastic modeling and research of this problem. At the same time, let us
emphasize that our main goal is to model the temporal dynamics of the COVID-19 disease,
based on a formal study of the stochastic structure of the GSB model. In this sense, some
other indicators and features of this disease, which can also affect its dynamics (see, for
instance [30–32]), can to a certain degree be a limitation of this approach.

In the next section, starting from previous works [9–12], some definitions and basic
stochastic properties of the GSB process are discussed. Section 3 contains the main and
novel results related to this process’s detailed stochastic structure and asymptotic properties,
where the method of characteristic functions (CFs) was used as the basic tool. Section 4
presents the procedure for estimating the unknown parameters of the GSB process and an
investigation of the asymptotic properties of the obtained estimators. Numerical Monte
Carlo simulations of the obtained estimators are considered in Section 5. In addition, the
application of the GSB process in describing the dynamics and distribution of the size of
infected and immunized populations on the territory of the Republic of Serbia is given here.
Finally, concluding remarks are highlighted in Section 6.

2. Definition and Main Properties of the GSB Process

The basic series of GSB processes is defined by the following equality:

yt = mt + εt. (1)

Here, t = 0, 1, . . . , T are the known time values, (mt) is the series of the so-called mar-
tingale means, and (εt) are the innovations, i.e., series of independent identical distributed
(IID) Gaussian N

(
0, σ2) random variables (RVs). Moreover, it is considered that (εt) is

defined on the same probability space (Ω,F , P), expanded by some filtration F = (Ft),
i.e., nondecreasing σ-algebras on Ω. In a practical sense, filtration (Ft) represents a set of
“information” at time t. Therefore, it is assumed that, for each t = 0, 1, . . . , T, the RVs εt
are Ft-adaptive. Accordingly, the conditional expectation, as well as the variance of RVs εt,
are, respectively,

E(εt|Ft−1) = 0, V(εt|Ft−1) = E
(

ε2
t

∣∣∣Ft−1

)
= σ2.

On the other hand, for martingale means (mt), we assume that they are defined by the
following recurrence relation:

mt = mt−1 + qt−1εt−1 = m0 +
t−1

∑
j=0

qjε j. (2)
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Here, we can effectively assume that m0
as
= μ (const.) and ε−1 = ε0

as
= 0. Meanwhile, qt is the

so-called noise indicator, i.e., the RV that depends on innovations (εt) in the following way:

qt = I
(

ε2
t−1 > c

)
=

{
1, ε2

t−1 > c
0, ε2

t−1 ≤ c.

The value c > 0 represents the critical value of the reaction, i.e., the significance of the
previous realization of innovations (εt) which allow their present values to be included
in Equation (2). In other words, value qt−1 = 0 indicates that there is no change in the
martingale mean value mt, compared to the previous value mt−1. Consequently, the value
yt will be obtained with a “small” fluctuation, which depends only on εt. By contrast, in
the case of qt = 1 an emphatic (permanent) fluctuation of yt is registered. Thus, the level of
previous realizations of series (εt) affects the degree of variations in the series (yt), that is,
it indicates the intensity of fluctuations in the GSB process. Furthermore, according to the
previous equalities, it follows that:

E(yt|Ft−1) = mt + E(εt|Ft−1) = mt,

from which we conclude that the series realizations (yt) are “close” to the martingale means
(mt). Moreover, it is valid to put:

E(yt) = E[E(yt|Ft−1)] = E(mt) = E(mt−1) + E(qt−1εt−1)
= E(mt−1) = · · · = E(m0) = μ,

i.e., the mean values of the series (yt) and (mt) have equal, constant values. We notice that
the previous equalities speak a lot about the stochastic nature of the GSB process, that is,
the additive decomposition (1). Since the sequence (mt) is measurable concerning the field
Ft−1, it represents a component of predictability and stability of the GSB process. In contrast,
the innovations series (εt) is the deviation factor (white noise) of the basic GSB series (yt) in
relation to the martingale means (mt).

Further, we determine the conditional variance of the series (yt) from the equation:

V(yt|Ft−1) = E(y2
t |Ft−1)−m2

t = 2mtE(εt) + E(ε2
t ) = σ2,

and from here, one obtains:

V(yt) = E(y2
t )− μ2 = E(m2

t ) + 2E(mtεt) + E(ε2
t )− μ2 = V(mt) + σ2.

For each t = 1, . . . , T, it also holds that:

V(mt) = E
(
m2

t
)
− μ2

= E
(
m2

t−1
)
+ 2E(mt−1qt−1εt−1) + E

(
q2

t−1ε2
t−1
)
− μ2

= V(mt−1) + acσ2,

where ac = E(qt) = E
(
q2

t
)
= P
{

ε2
t > c

}
. It follows that the variance of martingale means

(mt), under the assumption m0 ≡ μ(const.), can be expressed as:

V(mt) = tacσ2, t ≥ 0.

From here, the variance of the basic series (yt) can be obtained as follows:

V(yt) = V(mt) + σ2 = (tac + 1)σ2, t ≥ 0.

According to the previous equalities, the variances of the series (yt) and (mt) have non-
constant values that depend on the point in time (t) in which they are observed.
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Correlation functions of the series (yt) and (mt) can be obtained in a similar way. Note
that for every s > t ≥ 0, it holds that:

Cov(mt, ms) = E(mtms)− μ2 = E(mtms−1) + E(mtqs−1εs−1)− μ2

= Cov(mt, ms−1),

and it is easy to see that the covariance of the series (mt) satisfies:

Cov(mt, ms) = V(mt), s > t ≥ 0.

From here, the correlation function of the martingale means is obtained:

K̃(s, t) =
Cov(mt, ms)√

V(mt)·
√

V(ms)
=

{
min(s,t)√

s·t , s �= t
1, s = t.

Similarly, according to equalities:

Cov(yt, ys) = E(ytys)− μ2 = E(ytms) + E(ytεs)− μ2

= E(mtms) + E(εtms)− μ2 = Cov(mt, ms) + acσ2

= V(mt) + acσ2 = V(yt), s > t ≥ 0,

the correlation function for (yt), can be obtained as follows:

K(s, t) =

{ acmin(s,t)+1√
(acs+1)·(act+1)

, s �= t

1, s = t.

Therefore, both correlation functions depend on the time arguments t, s and indicate
the non-stationarity of the series (yt) and (mt). This fact requires some more complex
techniques to examine their properties. Moreover, note that when s > t ≥ 0,

lim
s→t

K̃(s, t) = lim
s→t

min(s,t)√
s·t = t√

t2 = 1

lim
s→t

K(s, t) = lim
s→t

acmin(s,t)+1√
(acs+1)·(act+1)

= act+1√
(act+1)2 = 1.

Thus, the correlation functions of both series (yt) and (mt) satisfy the L2-continuity condition.
At the end of this section, we define a series of increments of the GSB process by the

following equality:
Xt = yt − yt−1, t = 1, . . . , T. (3)

Almost all authors who have studied STOPBREAK processes highlight the importance of
this sequence. This series, as can be easily seen from Equations (1) and (2), can be given in
the following form:

Xt = εt − θt−1εt−1, (4)

where θt = 1− qt = I
(
ε2

t−1 ≤ c
)
. The series (Xt) is named a Splitting Moving Average

process (of order 1), shortened to Split-MA (1) process, because it operates in two regimes.
Fluctuations of innovations (εt) that were emphasized in the previous time moment (t − 1)
imply θt−1 = 0, so the equality Xt = εt holds. On the other hand, fluctuations that do not
exceed the critical value c give a representation of (Xt) in the form of a standard, linear MA
(1) process. In this way, (Xt) has similar properties to the MA (1) models, which can be
applied in research into it. Thus, taking earlier assumptions, the mean value and variance
of this series, obtained by simple computation, are:

E(Xt) = 0, V(Xt) = E
(

X2
t

)
= σ2(bc + 1),
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where bc = 1− ac = P
(
ε2

t−1 ≤ c
)
. Moreover, the covariance of this sequence is:

Cov(Xt, Xs) =

⎧⎨⎩
(bc + 1)σ2, s = t
−bcσ2, |s− t| = 1
0, otherwise,

and obviously has an identical structure to the standard MA (1) series. Based on the ob-
tained covariance, we can easily see that the series (Xt) is stationary and that its correlation
function can be written in the form:

ρX(h) :=
Cov(Xt, Xt+h)

V(Xt)
=

⎧⎨⎩
1, h = 0
−bc/(bc + 1), h = ±1

0, otherwise.

Finally, according to Equations (3) and (4), it follows that:

yt − yt−1 = εt − θt−1εt−1, t = 1, . . . , T, .

which can be viewed as a non-linear Integrated Auto-Regressive Moving Average (ARIMA)
model with “temporary” components (θt−1εt−1). These imply the specific structure of the
series (Xt), as well as other components of the GSB process.

In the following section, as we have already pointed out, we also discuss the applica-
tion of the GSB model in describing the dynamics of infection and immunization of the
population on the territory of the Republic of Serbia. As will be seen, this kind of dynamics
has pronounced fluctuations that can be described by the non-stationary components of
the GSB process, primarily by its main time series (yt). In that case, due to its stationarity,
the Split-MA (1) process plays an important role. As an illustration, Figure 1 shows the
realizations of all the above-mentioned series obtained by the Monte Carlo simulation of
the GSB model.

 

Figure 1. Dynamics of the basic series of the GSB model. (Parameter values are: μ = 0 and c = σ = 1).

3. Stochastic Distribution and Asymptotic Properties of the GSB Process

In this section, some stochastic properties of the GSB process, regarding the distribution
and asymptotic behavior of its basic stochastic components, are discussed in more detail.
As explained in the previous section, the GSB model, given by Equations (1)–(4), contains
four stochastic components: the basic series (y), innovations (εt), the martingale means
(mt), and the series of increments (Xt). At the same time, series (εt) and (Xt) represent the
stationary components of the GSB process, where (Xt) is “close” to the linear MA model.
In general form, the stochastic structure of the series (Xt) is described in [12], where the
method of characteristic functions (CFs) was used. Following this approach, the basic
stochastic properties of the series (Xt) can be expressed by the following statement.
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Theorem 1. Let (Xt) be the Split-MA (1) process defined by Equation (4). For arbitrary x ∈ R and
t = 0, ·1, . . . , T, the cumulative distribution function (CDF) of this stochastic process is given by:

FX(x) := P{Xt < x} = (1− bc)Fε(x) + bcF√2ε(x), (5a)

where Fε(x) and F2ε(x) are CDFs of RVs εt : N
(
0, σ2) and

√
2εt : N

(
0, 2σ2) , respectively.

Proof. For arbitrary t = 0, 1, . . . , T, let us denote the series of RVs ηt = θtεt. Since θt and
εt are mutually independent RVs, it follows

E(ηt) = E(θt)E(εt) = 0,
V(ηt) = E

(
θ2

t
)
E
(
ε2

t
)
= bcσ2.

Moreover, it is simply shown that Cov(ηt, ηt+h) = 0 holds for every h �= 0, i.e., (ηt) is a
series of uncorrelated RVs. By applying conditional probabilities, the CDF of these RVs can
be obtained as follows:

Fη(x) : = P{ηt < x}
= P{ηt < x|θt = 1}·P{θt = 1}+ P{ηt < x|θt = 0}·P{θt = 0}
= P{εt < x}·P{θt = 1}+ P{x > 0}·P{θt = 0}
= bcFε(x) + (1− bc)F0(x),

where F0(x) = I(x > 0) is the CDF of the RVI0
as
= 0. Based on that, for the CF of the RVsηt,

one obtains:

ϕη(u) : =
+∞∫
−∞

eiuxFη(dx) =
+∞∫
−∞

eiux[bcFε + (1− bc)F0](dx)

= bc ϕε(u) + (1− bc)ϕ0(u).

Here, ϕε(u) = e−
σ2u2

2 and ϕ0(u) ≡ 1 are CFs of the RVs εt и I0, respectively. By substituting
these CFs into the previous equality, we have:

ϕη(u) = 1 + bc

(
e−

σ2u2
2 − 1

)
,

whence, by applying Equation (4), it follows that the CF of RVs Xt is:

ϕX(u) = ϕε(u)·ϕη(u) = e−
σ2u2

2

[
1 + bc

(
e−

σ2u2
2 − 1

)]
= (1− bc)e−

σ2u2
2 + bce−σ2u2

.

According to the last equality and Lévy’s correspondence theorem (see, e.g., [33] (p. 181)),
Equation (5) immediately follows, that is, the statement of the theorem is proved. �

Remark 1. As shown in [12], the CDF of RVs Xt can also be given in the following form:

FX(x) := P{Xt < x} = [(1− bc)F0(x) + bcFε(x)] ⊗ Fε(x), (5b)

where “⊗” denotes the convolution of two (arbitrary) CDFs F(x), G(x):

(F⊗ G)(x) :=
+∞∫
−∞

F(x− y)G(dy).
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The equivalence of Equations (5a) and (5b) are directly obtained from the fact that CDF
F0(x) is neutral for the convolution operator, i.e.,

(F⊗ F0)(x) = (F0 ⊗ F)(x) =
+∞∫
−∞

I(x > y)F(dy) = F(x).

Finally, note that by differentiating Equation (5), the probability density function (PDF) of
the series (Xt), one obtains:

fX(x) =
1− bc

σ
√

2π
e−

x2

2πσ2 +
bc

2σ
√

π
e−

x2

4πσ2 .

By a similar procedure as in the previous theorem and using the convolutions of
CDFs, we describe the stochastic distribution of other components of the GSB process, i.e.,
the series (mt) and (yt). As already shown in the previous section, these series represent
non-stationary stochastic processes with a constant mean μ = E(mt) = E(yt). Accordingly,
the following statement is valid.

Theorem 2. Let (yt) and (mt) be the time series defined by Equations (1) and (2), respectively,
where m0

as
= μ (const). For arbitrary x ∈ R and t = 0, ·1, . . . , T, the CDFs of these series are

as follows:

Fm(x, t) := P{mt < x} =
t
⊗

j=1

[
(1− bc)Fj(x) + bcF0(x)

]
⊗Fμ(x). (6)

Fy(x, t) := P{yt < x} =
t
⊗

j=1

[
(1− bc)Fj(x) + bcF0(x)

]
⊗ Fμ(x)⊗ Fε(x). (7)

Here, F0(x) and Fj(x) are the CDFs of previously defined RVs I0 and εt, respectively, and
Fμ(x) = Fm(x, 0) is the CDF of the RV m0

as
= μ. In addition, when T = +∞, the following

convergences (in distribution) are valid:

1√
t
mt

d→ N
(

0, acσ2
)

,
1√

t
yt

d→ N
(

0, acσ2
)

, t→ +∞. (8)

Proof. For arbitrary t = 0, 1, . . . , T, let us introduce a series of RVs ξt = qtεt. In the same
way as in the proof of the previous theorem, it is shown that (ξt) is a series of mutually
uncorrelated RVs, with E(ξt) = 0, D(ξt) = acσ2, where ac = E(qt) = P

{
ε2

t > c
}
= 1− bc.

By reapplying the conditional probabilities, the CDF of ξt is obtained as follows:

Fξ(x) : = P{ξt < x}
= P{ξt < x|qt = 1·P{qt = 1}+ P{ξt < x| qt = 0}·P{qt = 0}
= P{εt < x}·P{qt = 1}+ P{x > 0}·P{qt = 0}
= acFε(x) + (1− ac)F0(x).

According to this, their corresponding CF is obtained:

ϕξ(u) =
+∞∫
−∞

eiuxFξ(dx) =
+∞∫
−∞

eiux[acFε + (1− ac)F0](dx)

= ac ϕε(u) + (1− ac)ϕ0(u) = 1 + ac

(
e−

σ2u2
2 − 1

)
= (1− bc)e−

σ2u2
2 + bc.
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Applying Equation (2), we find that the CFs of the RVs (mt) are as follows:

ϕm(u, t) = ϕμ(u)
t−1

∏
j=0

ϕξ(u) = eiuμ

[
(1− bc)e−

σ2u2
2 + bc

]t
, (9)

where ϕμ(u) = eiuμ is CF of the RV m0
as
= μ. Then, Equation (6) immediately follows from

Equation (9) and Lévy’s correspondence theorem [33] (p. 181).
Similarly, by applying the previous Equations (1) and (9), the CFs of the RVs (yt)

are obtained:

ϕy(u, t) = ϕm(u)·ϕε(u) = eiuμ− σ2u2
2

[
(1− bc)e−

σ2u2
2 + bc

]t
. (10)

From here, by reapplying the theorem of Lévy, Equation (7) immediately follows.
To prove the second part of the theorem, i.e., Equation (8), note first that the CFs of

the RVs mt/
√

t and yt/
√

t, when t = 1, 2, . . . , according to Equations (9) and (10), can be
written as follows:

ϕm

(
u√

t
, t
)

= eiuμ/
√

t
[

1 + ac

(
e−

σ2u2
2t − 1

)]t

= eiuμ/
√

t
[
1− acσ2u2

2t + σ
(

u2

t

)]t
,

ϕy

(
u√

t
, t
)

= eiuμ/
√

t− σ2u2
2t

[
1 + ac

(
e−

σ2u2
2t − 1

)]t

= eiuμ/
√

t− σ2u2
2t

[
1− acσ2u2

2t + σ
(

u2

t

)]t
.

Here, σ(z) is an infinitely small value of a higher order than z when z→ 0 . Hence, for a
fixed but arbitrary u ∈ R, we have:

ϕm

(
u√

t
, t
)
→ e−

acσ2u2
2 , ϕy

(
u√

t
, t
)
→ e−

acσ2u2
2 , t→ +∞,

and the convergences thus obtained confirm the asymptotic relations in Equation (8). �

Remark 2. Note again that the proofs of the previous two theorems are based on deter-
mining the CFs of the corresponding time series of the GSB process. In this sense, the
CFs of the uncorrelated series of RVs (ξt) and (ηt) play a fundamental role. The series
(ξt) and (ηt) can be viewed as “new” innovations with “optional” non-zero values, which
essentially describe the stochastic structure of the GSB process. Nevertheless, as the relation
ηt + ξt

as
= εt holds for each t = 0, ·1, . . . , T, it is sufficient to consider only one of these

two series of uncorrelated RVs (which is what was done in the statement of Theorem 2).
Moreover, it can be easily shown that CDFs:

Fξ(u) = (1− bc)Fε(x) + bcF0(x),
Fη(u) = bcFε(u) + (1− bc)F0(u)

are continuous almost everywhere, with the only point of discontinuity x = 0 where
they have “jumps” of the values bc and 1− bc, respectively (see for more detail [34,35]).
Therefore, the CDFs of the series (ξt) and (ηt) are mixtures of Gaussian and discrete type
distribution, usually named Contaminated Gaussian Distribution (CGD). This is another
important fact that disables an application of some of the standard procedures in the
investigation of the properties of non-stationary series (yt) and (mt).

On the other hand, Equation (8) shows that even non-stationary time series (mt) and

(yt) can generate series
(

mt/
√

t
)

and
(

yt/
√

t
)

that converge toward a normal distribution
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when t→ +∞ . Moreover, based on the properties of the non-stationary components of
the GSB process described in Section 2, the time series

(
mt/
√

t
)

has a constant variance

acσ2. These facts will be of importance in the practical application of the GSB process and
can be readily observed based on the convergence of the corresponding CFs ϕm

(
u/
√

t, t
)

and ϕy

(
u/
√

t, t
)

. As an illustration, Figure 2 shows convergences of the modulus of these
CFs, for different time indices (t).

Figure 2. Graphs of the convergence of modulus of the characteristic functions ϕm

(
u/
√

t, t
)

and

ϕy

(
u/
√

t, t
)

, when t = 1, 2, . . . , 500. (Parameter values are: μ = c = σ = 1).

At the end of this section, we additionally describe some more asymptotic properties
of series obtained by transformations of non-stationary time series (mt) and (yt). They also
refer to the possibility of finding their asymptotically normal (AN) distributions, which can
be shown by the following statement:

Theorem 3. For arbitrary α ≥ 1 and time series (yt) and (mt), given by Equations (1) and (2),
respectively, let us define the so-called α-mean series:

Mt;α =
1
tα

t

∑
j=1

mj, Yt;α =
1
tα

t

∑
j=1

yj,

Then the following statements hold:

(i). When 1 ≤ α ≤ 3/2, time series Mt;α and Yt;α have an asymptotically normal distribution,
i.e., the following relations, when t→ +∞ , are valid:

Mt;α ∼ N
(

μt1−α,
acσ2t3−2α

3

)
, Yt;α ∼ N

(
μt1−α,

acσ2t3−2α

3

)
. (11)

(ii). When α > 3/2, time series Mt;α and Yt;α asymptotically vanish, i.e.,

Mt;α
d→ I0, Yt;α

d→ I0, t→ +∞. (12)
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Proof. We show the statement of the theorem first for the time series Mt;α. Based on the
definition of time series (mt), i.e., Equation (2), one obtains:

Mt;α = 1
tα

t
∑

j=1
mj =

1
tα

t
∑

j=1

(
m0 +

j−1
∑

k=0
qkεk

)

= 1
tα

[
tm0 +

t−1
∑

j=0
(t− j)qjε j

]
= t1−αm0 +

t
∑

k=1

k
tα ξt−k.

Thus, the series Mt;α is represented as a sum of uncorrelated RVs ξt−k, k = 1, . . . , t. By
applying the well-known properties of the CFs, as well as the expressions for the CF of the
series (ξt), the CFs of Mt;α are as follows:

ϕM;α(u, t) = ϕm

( u
tα−1 , 0

) t

∏
k=1

ϕξ

(
ku
tα

)
= eiuμt1−α

t

∏
k=1

[
1 + ac

(
e−

k2σ2u2

2t2α − 1
)]

.

Taking the logarithm of the function ϕM;α(u, t) gives a function:

ψM(u, t, α) := ln ϕM;α(u, t) = iuμt1−α +
t

∑
k=1

fk(u, t, α),

where fk(u, t, α) := ln
[
1 + ac

(
exp
(
−k2σ2u2t−2α/2

)
− 1
)]

. After some computation, we
find that, when 0 < ac < 1,

∂ fk(0,t,α)
∂u =

− ack2σ2u
t2α e

− k2σ2u2

2t2α

1+ac

(
e
− k2σ2u2

2t2α −1

)
∣∣∣∣∣∣∣∣
u=0

= 0

∂2 fk(0,t,α)
∂u2 =

− ack2σ2

t2α e
− k2σ2u2

2t2α

(
(1−ac)

(
1− k2σ2u2

t2α

)
+ace

− k2σ2u2

2t2α

)
(

1+ac

(
e
− k2σ2u2

2t2α −1

))2

∣∣∣∣∣∣∣∣
u=0

= − ack2σ2

t2α .

Thus, the functions fk(u, t, α) have local maxima at the point u = 0. Using a similar
procedure as in [34], that is, by Laplace approximation of functions fk(u, t, α) at u = 0,
one obtains:

ψM(u, t, α) = iuμt1−α +
t

∑
k=1

[
∂2 fk(0,t,α)

∂u2 · u2

2 + σk
(
u2)]

= iuμt1−α +
t

∑
k=1

[
− ack2σ2u2

2t2α + σk
(
t−2αu2)]

= iuμt1−α − acσ2u2

12t2α t(t + 1)(2t + 1) + σ
(
t3−2αu2).

Then, by taking the asymptotic value in the last expression, when t→ +∞ , it follows:

ψM(u, t, α) ∼
{

iuμt1−α − acσ2t3−2α/6, 1 ≤ α ≤ 3/2
0, α > 3/2.

Substituting this expression into the CFs ϕM;α(u, t), it is easy to conclude that the first part
of the theorem, in the sense of the series Mt;α, is valid.
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The proof for the series Yt;α is carried out analogously. Using Equation (1), as the
previously proven facts, we have that

Yt;α = 1
tα

t
∑

j=1

(
mj + ε j

)
= Mt;α +

t
∑

j=1

ε j
tα = t1−αm0 +

t
∑

k=1

k
tα ξt−k +

t−1
∑

k=0

εt−k
tα

= t1−αm0 +
εt
tα +

t
∑

k=1
(1 + kqt−k)

εt−k
tα .

Since RVs εt−k, k = 0, 1, . . . , t, are mutually independent, after some computation, we
obtain the CFs of series Yt;α as follows:

ϕY;α(u, t) = ϕm

(
u

tα−1 , 0
)

ϕε

( u
tα

) t
∏

k=1

[
(1− ac)ϕε

( u
tα

)
+ ac ϕε

(
(k+1)u

tα

)]
= eiuμt1−α− σ2u2

2t2α
t

∏
k=1

[
e−

σ2u2

2t2α + ac

(
e−

(k+1)2σ2u2

2t2α − e−
σ2u2

2t2α

)]
= eiuμt1−α− σ2u2(t+1)

2t2α
t

∏
k=1

[
1 + ac

(
e−

(k2+2k)σ2u2

2t2α − 1
)]

.

From here, using the same procedure as in the previous part of the proof, i.e., by taking the
logarithm of the function ϕY;α(u, t), and by developing ψY(u, t,α) := ln ϕY;α(u, t) at the
point u = 0, we have:

ψY(u, t, α) = iuμt1−α − σ2u2(t+1)
2t2α +

t
∑

k=1
ln
[

1 + ac

(
e−

(k2+2k)σ2u2

2t2α − 1
)]

= iuμt1−α − σ2u2(t+1)
2t2α −

t
∑

k=1

[
ac(k2+2k)σ2u2

2t2α + σk
(
t−2αu2)]

= iuμt1−α − σ2u2

2
(
t1−2α + t−2α

)
− ac

σ2u2

12t2α t(t + 1)(2t + 7)
+σ
(
t3−2αu2).

Finally, taking the asymptotic values, when t→ +∞ , one obtains:

ψY(u, t, α) ∼
{

iuμt1−α − σ2u2

2

(
t1−2α + t−2α + act3−2α

3

)
, 1 ≤ α ≤ 3/2

0, α > 3/2.

Substituting this expression into CFs ϕY;α(u, t), the entire statement of the theorem is proved. �

Remark 3. In the previous theorem, the case α = 3/2 is particularly interesting because
Equation (11) then gives the following convergences:

1
t3/2

t

∑
j=1

mj
d→ N

(
0,

acσ2

3

)
,

1
t3/2

t

∑
j=1

yj
d→ N

(
0,

acσ2

3

)
, t→ +∞. (13)

We will call these convergences, in the usual way, central limit theorems (CLTs) for the GSB
process. As will be seen below, they will be helpful for estimating the unknown parameters
of the GSB process, primarily the conditional variance σ2.

4. Parameter Estimation Procedures

Now, let us consider the problem of estimation of (unknown) parameters of the GSB
process, the critical value (c), mean value (μ), and conditional variance (σ2). To estimate
the first parameter c, a series of increments (Xt) will be used as the (only) observable
and stationary component of the GSB model. Recall that we have named this series the
Split-MA (1) process because it is close to standard, linear MA models. Although some of
the estimation procedures we present here are like standard estimation methods in MA
models (see, for instance [36]), the specificity of the Split-MA (1) model requires additional
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testing and analysis, primarily of the quality of the obtained estimates. To that end, the
consistency and asymptotic normality of the estimators were examined. After that, several
new approaches were considered, based on the observation of non-stationary time series
(yt). The main goal of these procedures is aimed at obtaining the estimated values of the
parameters μ and σ2.

4.1. Estimates of Critical Value (c)

Let (Xt) be the Split-MA (1) process defined by Equation (4). As we have already
shown, the first correlation coefficient of this series is:

ρX(1) = −
bc

1 + bc
, 0 < bc < 1.

From here, by solving on bc, we get the estimated value of this parameter:

b̃c = −
ρ̂X(1)

1 + ρ̂(1)
, 0 < bc < 1, (14)

where:

ρ̂X(1) =

(
T

∑
t=1

XtXt−1

)(
T

∑
t=1

X2
t

)−1

is the estimated value of the first correlation. Based on the estimate b̃c, the corresponding
estimate of the critical value c = c̃ can be determined as a solution to the equation:

P
{

ε2
t ≤ c

}
= b̃c.

According to Equation (14), it is easy to see that b̃c and c̃ are appropriate estimates if the
following inequalities hold:

0 < b̃c < 1 ⇐⇒ −0.5 < ρ̂X(1) < 0.

In [9], it was shown that thus obtained estimators are strictly consistent if the inno-
vations (εt) have a continuous distribution. Moreover, the estimates b̃c and c̃ will also be
asymptotically normal (AN) if the RVs (εt) have a symmetric distribution. Note that both
conditions are fulfilled in the case of Gaussian innovations εt : N

(
0,σ2), when the RVs

(εt/σ)
2 have a χ2

1 distribution. Thus, the estimate of the critical value c̃ is simply found
from the equality:

c̃ = σ̃2·F−1
χ2

1

(
b̃c

)
. (15)

Here, σ̃2 is the estimated variance of innovations (εt) which will be described later.
However, it can be shown that, as for the linear MA series, the estimate b̃c is not the

most efficient estimate for bc (asymptotic efficiency of the estimate b̃c is analyzed at the
end of this subsection). To obtain more efficient estimates of the given parameters, we will
modify the well-known Gauss-Newton method of estimating the parameters of nonlinear
functions (see, for instance [36]). First, notice that Equation (4) can be written in the form:

εt = Xt + θt−1εt−1, t = 1, . . . , T

or, in functional form,
εt(X, θ) = Xt + θt−1εt−1(X, θ). (16)

On the other hand, if we define a series of RVs as

Wt(X, θ) = θtWt−1(X, θ) + εt−1(X, θ), (17)
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then it is easy to see that the RVs Wt(X, θ) are Ft−1 adapted, for each t = 1, . . . , T, and
thus independent of εt and θt+1. According to mentioned properties of RVs (θt) and (εt), it
follows that (Wt(X, θ)) is a stationary and ergodic series of RVs (see, for more detail [37])
with E(Wt(X, θ)) = 0 and correlation function ρW(h) = b|h|c , h = 0,±1, . . . To this series,
using the procedure described in [38], we add the so-called residual series:

Rt(X, θ) = Wt(X, θ)− bcWt−1(X, θ). (18)

The RVs Rt(X, θ) are also Ft−1 adapted and mutually non-correlated, which can easily be
shown. Namely, by applying Equations (16)–(18), for any integer h > 0, one obtains:

Cov(Rt(X, θ), Rt+h(X, θ)) = E(Rt(X, θ)Rt+h(X, θ))
= E[Rt(X, θ)(Wt+h(X, θ)− bcWt+h−1(X, θ))]
= E(Rt(X, θ)Wt+h(X, θ))− bcE(Rt(X, θ)Wt+h−1(X, θ))
= E[Rt(X, θ)θt+hWt+h−1(X, θ)]− bcE(Rt(X, θ)Wt+h−1(X, θ)) = 0.

Thus, Equation (18) defines the series (Wt(X, θ)) as a linear autoregressive (AR) pro-
cess with innovations (Rt(X, θ)). From here, we obtain another estimate of the unknown
parameter bc ∈ (0, 1) by the following algorithmic procedure:

(1) Applying Equation (14), determine b̃c as (the initial) estimate of bc, and according to
Equation (15), determine estimate c̃.

(2) Based on Equations (16)–(18) and having obtained an estimate b̃c, compute, for each
t = 1, . . . , T, the values:

θ̃t:= I
(

ε2
t−1

(
X, θ̃
)
≤ c̃
)

εt

(
X, θ̃
)

:= Xt + θ̃t−1εt−1

(
X, θ̃
)

Wt

(
X, θ̃
)

:= θ̃tWt−1

(
X, θ̃

)
+ εt−1

(
X, θ̃
)

Rt

(
X, θ̃
)

:= Wt

(
X, θ̃
)
− b̃cWt−1

(
X, θ̃

)
,

where θ̃0 = 1, ε0

(
X, θ̃
)
= ε−1

(
X, θ̃
)
= W0

(
X, θ̃
)
= 0.

(3) Using the standard regression procedure, i.e., the correlation function ρW(h) when
h = 1, obtain an estimate of bc in the form:

b̂c =

(
T−1

∑
t=0

Wt

(
X, θ̃
)

Wt+1

(
X, θ̃
))( T

∑
t=1

W2
t

(
X, θ̃
))−1

.

(4) As in the first step, based on the estimate b̂c, the critical value ĉ can be estimated as a
solution of the equation (concerning c):

P{ε2
t ≤ c} = b̂c.

We emphasize that in [9], strict consistency and AN of the estimates b̃c and c̃ as well as
b̂c and ĉ was proved. At the same time, the distribution of innovations (εt) was not explicitly
used there. In the case of GSB process, where innovations are Gaussian distributed, we can
express these results as follows:

Theorem 4. Estimates b̃c and b̂c are strictly consistent for the parameter bc, i.e., it is valid that:

b̃c
as→ bc, b̂c

as→ bc, T → +∞.
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Moreover, the estimates b̃c and b̂c are asymptotically normal for bc, i.e.,

√
T
(

b̃c − bc

)
d→ N

(
0, Ṽ
)

,
√

T
(

b̂c − bc

)
d→ N

(
0, V̂
)
, T → +∞,

where
~
V(bc) = (bc + 1)2(2b2

c + 4bc + 1
)

and V̂(bc) = (1− bc)
(
3b2

c + 3bc + 1
)
.

Remark 4. Based on the previous theorem, the consistency and AN of the estimates c̃ and
ĉ, as continuous functions of b̃c and b̂c, is also valid (see, for instance [9] or [39] p. 24).
Additionally, for any bc ∈ (0, 1), the inequality V̂(bc) ≤ Ṽ(bc) holds when the equality is
valid only for bc = 0, as can be seen in Figure 3. This means that asymptotic variance V̂(bc),
as a measure of “scattering” b̂c from the true value bc, is (significantly) smaller than Ṽ(bc).
So, b̂c is a more efficient estimate than b̃c, which justifies its introduction.

 

Figure 3. Graphs of the asymptotic variances of the estimates b̃c. (dashed line) and b̂c (solid line),
depending on bc ∈ (0, 1).

4.2. Estimates of Mean (μ)

As an estimator for the parameter μ = E(yt), the sample mean of series (yt) was
usually used:

μ̃ := yT =
1
T

T

∑
t=1

yt. (19)

This estimator is obviously unbiased E(μ̃) = E(yT) = μ, but its variance is not bounded.
Namely, using the previously defined α-mean series YT;α when α = 1, we can represent the
estimator μ̂ as a sum of uncorrelated RVs:

μ̃ = m0 +
1
T

[
T

∑
k=1

(1 + kqT−k)εT−k + εT

]
.

Thus, for the variance of μ̃ we get:

Ṽ := V(μ̃) = 1
T2

[
T
∑

k=1
V((1 + kqT−k)εT−k) + V(εT)

]
= σ2

T2

[
T
∑

k=1
E(1 + kqT−k)

2 + 1
]

= σ2

T2

[
T
∑

k=1
(1 + ack(k + 2)) + 1

]
= σ2

T2

[
T + 1 + ac

T(T+1)(2T+7)
6

]
= σ2(T+1)

T2

(
1 + ac

T(2T+7)
6

)
= acσ2T

3 +O
(
T−1)→ +∞, T → +∞.
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Note that, as expected, the variance Ṽ = V(μ̃) is asymptotically identical to that in
Theorem 3, i.e., as in Equation (11), when α = 1. Moreover, Ṽ = 0 when ac = 0, that is, in
the case of extremely large values of the parameter c. However, in practical applications,
this condition is usually not met.

An alternative way to obtain an estimate for μ is to take the sample mean of the mean
series yt, when t = 1, . . . , T, i.e.,

μ̂ :=
1
T

T

∑
t=1

yt =
1
T

T

∑
t=1

ωtyt. (20)

Here, ωt := H(T)− H(t− 1) and H(t) :=
t

∑
j=1

j−1, t = 1, . . . , T are the harmonic numbers,

with assumption H(0) = 0. Obviously, μ̂ is also an unbiased estimate of the parameter μ,
but with weights that are more pronounced at the “older” points of time (t) in which real-
izations of the series (yt) are observed. This is consistent with the fact that the covariances
of RVs yt depend on these “older” time indices. Moreover, as shown in Section 2, at these
time points, the covariances of RVs yt are equal to their variances. For these reasons, it is
expected that the estimate μ̂ will be more efficient than μ̃. Indeed, using a similar procedure
as before, we first represent the estimate μ̂ as a sum of uncorrelated RVs:

μ̂ = 1
T

T
∑

t=1
ωt

(
m0 +

t−1
∑

j=0
qjε j

)
+ 1

T

T
∑

t=1
ωtεt

= 1
T

[
m0

T
∑

t=1
ωt +

T−1
∑

j=0

(
qjε j

T
∑

t=j+1
ωt

)
+

T
∑

t=1
ωtεt

]
.

As for each j = 1, . . . , T, the statement below holds:

T

∑
t=j

ωt =
T

∑
t=j

(H(T)− H(t− 1)) =
T

∑
t=j

T

∑
k=t

1
k
= T − (j− 1)

(
ωj + 1

)
,

it follows that it can also be written:

μ̂ = 1
T

[
T(m0 + q0ε0) +

T−1
∑

j=1

(
T − j

(
ωj+1 + 1

))
qjε j

]
+ 1

T

T
∑

t=1
ωtεt

= m0 + q0ε0 +
1
T

T−1
∑

j=1

(
cjqj + ωj

)
ε j +

εT
T2 ,

where cj = T− j
(
ωj+1 + 1

)
. Thus, after some computation, the variance of μ̂ one obtains is:

V̂ := V(μ̂) = 1
T2

[
T−1
∑

j=1
E
(
cjqj + ωj

)2E
(

ε2
j

)
+

E(ε2
T)

T2

]

= σ2

T2

[
T−1
∑

j=1

(
accj
(
cj + 2ωj

)
+ ω2

j

)
+ 1

T2

]
= σ2(ac(T−1)−2)H(T−1)H( T)

T + σ
(

H−2(T)
)

= acσ2H2(T) + σ
(

H−2(T)
)
→ +∞, T → +∞.

Notice that the variance of V̂ := V(μ̂) is also unbounded, but with a lower asymptotic
order than Ṽ = V(μ̃), since:

lim
T→+∞

V(μ̂)

V(μ̃)
= lim

T→+∞

H2(T)
T

= 0.
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This means that the estimate μ̂ is (asymptotically) more efficient than μ̃, which can be seen
in Figure 4. Here are shown 3D plots of both variances Ṽ and V̂, which were observed as
functions of two variables ac ∈ (0, 1) and T > 0.

 
(a) (b) 

Figure 4. Variances shown as 3D plots of the estimate μ̃ (a) and estimate μ̂ (b), depending on
ac ∈ (0, 1) and T > 0. (The variance of innovations is σ2 = 1).

4.3. Estimates of Variance
(
σ2)

Let us consider determining the estimates of the third unknown parameter σ2, which
represents the variance of the innovations (εt), that is, the conditional variance of the
base series (yt). It is precisely these facts that enable different estimation procedures for
the parameter σ2. First, notice that based on the previously obtained estimates b̃c and b̂c,
i.e., the modeled innovation values (εt) given by Equation (16), the variance σ2 can be
easily estimated. The usual estimation procedure is based on sampling variance:

σ̃2 =
1
T

T

∑
t=1

ε2
t

(
X, θ̃
)

or σ̂2 =
1
T

T

∑
t=1

ε2
t
(
X, θ̂
)
. (21)

Here, εt

(
X, θ̃
)

are εt
(
X, θ̂
)

modeled innovation values obtained from the estimates

b̃c and b̂c, respectively. Notice that in the case of Gaussian innovations (εt), the estimates
given by Equation (21) are identical to the maximum likelihood estimators. Indeed, the
log-likelihood function then reads as follows:

L(y1, . . . , yT ; σ2) = −T
2

ln(2πσ2)− 1
2σ2

T

∑
t=1

(yt −mt)
2 ,

and by solving the equation ∂L
(
y1, . . . , yT ; σ2)/∂σ2 = 0, the estimate of σ2 is obtained as

in Equation (21), that is, as the sample variance of the series (εt). Thus, the consistency and
AN of both estimates σ̃2 and σ̂2 can be readily shown. We note that due to their equivalence,
only the estimate σ̂2 will be further considered (see Theorem below).

On the other hand, note that the previous estimation procedure is based on unobserv-
able, modeled values of innovations (εt). Another approach to estimating the variance σ2

is based on the so-called two-stage procedure, using the previously estimated parameter b̂c.
By applying the equality V(Xt) = E

(
X2

t
)
= σ2(bc + 1), as well as the sample variance of

the series (Xt), we can obtain an estimate:

σ̂2
X =

1

T
(

b̂c + 1
) T

∑
t=1

X2
t . (22)
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Then, it follows:

Theorem 5. Estimates σ̂2 and σ̂2
X are strictly consistent for the parameter σ2, i.e., it is valid to put:

σ̂2 as→ σ2, σ̂2
X

as→ σ2, T → +∞.

Moreover, the estimates σ̂2 and σ̂2
X are asymptotically normal for σ2, i.e.,

√
T
(

σ̂2 − σ2
)

d→ N (0, V1),
√

T
(

σ̂2
X − σ2

)
d→ N (0, V2), T → +∞, (23)

where V1 = 2σ4 and V2 = σ4(2 + 11bc − b2
c
)(

1 + 2bc − 3b3
c
)−1.

Proof. Since
(
ε2

t
)

is an IID series of RVs, the stationarity and ergodicity of this series are
apparent. Applying the strong low of large numbers (SLLS), it follows:

σ̂2 =
1
T

T

∑
t=1

ε2
t
(
X, θ̂
) as→ σ2.

Furthermore, it can easily be shown that V
(
σ̂2) = 2σ4/T is the variance of the estimate

σ̂2. Thus, applying the central limit theorem (CLT), the first convergence in Equation (23)
is obtained.

To prove the properties of the estimate σ̂2
X , we note that

(
X2

t
)

is also a stationary and
ergodic series of RVs. If SLLS is now applied to the following statistics:

X2
t :=

1
T

T

∑
t=1

X2
t , (24)

then one obtains:
1
T

T

∑
t=1

X2
t

as→ σ2(bc + 1).

At the same time, according to Theorem 4, we have that b̂c is a strongly consistent estimator
of bc, i.e., b̂c + 1 as→ bc + 1, when T → +∞. Thus, the last two convergences give:

σ̂2
X =

X2
t

b̂c + 1
as→ σ2, T → +∞.

To prove the AN of the estimate σ̂2
X , note first that the sequence

(
X2

t
)

is 1-dependent, in
the sense of Definition 6.3.1 in [36] (p. 245). According to Cauchy-Swarz and Minkowski in-
equalities, applied to Equation (4), i.e., the sixth moment of the sum Xt = εt + (−θt−1εt−1),
it follows that:

E|Xt|6 ≤
[(

E|εt|6
)1/6

+
(

bc E|εt−1|6
)1/6

]6

≤ 15σ6
(

1 + bc
1/6
)6

< +∞.

Then, the Hoeffding-Robbins theorem [40] can be applied, based on which it follows:

√
TX2

t = T−1/2
T

∑
t=1

X2
t

d→ N
(

σ2(bc + 1), V0

)
, (25)
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for which:

V0 = V
(
X2

t
)
+ 2Cov

(
X2

t , X2
t+1
)
= E
(
X4

t
)
+ 2E

(
X2

t X2
t+1
)
− 3σ4(1 + bc)

2

= 3σ4(1 + 3bc) + 2σ4(1 + 4bc + b2
c
)
− 3σ4(1 + bc)

2

= σ4(2 + 11bc − b2
c
)
.

By applying the almost sure convergence of the estimate b̂c and the previously obtained
convergence in Equation (25), we have

√
Tσ̂2

X =

√
TX2

t

b̂c + 1
d→ N

(
σ2, V2

)
, T → +∞,

where V2 = V0/V̂(bc). Thus, according to Theorem 4, the second convergence in Equa-
tion (23) is obtained. �

Remark 5. As in Theorem 4, by comparing the asymptotic variances V1 and V2 for the
estimates σ̂2 and σ̂2

X , respectively, it is easy to see that inequality V1 ≤ V2 holds. At the same
time, the equality V1 = V2 = 2σ4 is valid only when bc = 0 (Figure 5a), so the estimator σ̂2

is more efficient than σ̂2
X .

  
(a) (b) 

Figure 5. (a) Graphs of the asymptotic variances of the estimates σ̂2 (dashed line) and σ̂2
X (solid line),

depending on bc ∈ (0, 1). (b) Plot in 3D of the variance of statistics X2
t , depending on bc ∈ (0, 1) and

T > 0. (The variance of the innovations is σ2 = 1).

However, according to the proof of the previous theorem, it can be easily seen that for
the variance of the statistics X2

t , given by Equation (24), is valid (Figure 5b):

V(X2
t ) =

σ4(2 + 11bc − b2
c
)

T
→ 0, T → +∞.

Thus, X2
t can be used as an estimator of the “hybrid” parameter σ2(bc + 1), which will be

of interest for practical research, that is, the application of the GSB model discussed below.
Finally, another approach to finding estimates of the variance σ2 is based on the

observations of the non-stationary series (yt). Applying Theorem 3, i.e., the previously
proven convergence in Equation (13), we have:

YT;3/2 :=
1

T3/2

T

∑
t=1

yt
d→ N

(
0,

acσ2

3

)
, T → +∞.
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If we now consider the statistics:

S2
T := Y2

T;3/2 =
1

T3

(
T

∑
t=1

yt

)2

=
1

T3

T

∑
j=1

T

∑
k=1

yjyk, (26)

after some computation, one obtains:

E
(
S2

T
)

= 1
T3

T
∑

j=1

T
∑

k=1
E
(
yjyk
)
= 1

T3

T
∑

j=1

T
∑

k=1

[
Cov
(
yjyk
)
+ μ2]

= 1
T3

T
∑

j=1

T
∑

k=1

[
σ2(min{j, k}ac + 1) + μ2]

= σ2

T3

[
ac

T
∑

j=1

(
j + 2

j−1
∑

k=1
k

)
+ T2

]
+ μ2

T = σ2

T3

(
ac

T
∑

j=1
j2 + T2

)
+ μ2

T

= σ2ac
6T2 (T + 1)(2T + 1) + σ2+μ2

T → acσ2

3 , T → +∞.

Thus, S2
T is an asymptotically unbiased estimator for acσ2/3, and using the estimate âc =

1− b̂c, an estimator of the parameter σ2 can be taken as:

σ̂2
Y :=

3
âc

S2
T =

3
âcT3

T

∑
j=1

T

∑
k=1

yjyk. (27)

5. Numerical Simulation and Application of the GSB Process

As already mentioned in the introductory section, two important aspects related to
the practical implementation of the GSB process will be explored here. Firstly, numerical
Monte Carlo simulations of previously obtained GSB estimators are analyzed. Then, based
on actual data, the GSB process was applied to analyze the dynamics and distribution of
the infected and immunized population with respect to COVID-19 disease in the territory
of the Republic of Serbia.

5.1. Numerical Simulations of GSB Estimators

We first describe a pseudo-algorithm for estimating the parameters of the GSB model
based on N = 1000 independent Monte Carlo replications of the GSB series. To that end, we
assume that all series have size T = 500, which is close to the length of the actual series to
be considered below. The primary aim is to examine the convergence, i.e., the quality of the
previously proposed estimators on a sample of a given length. Therefore, corresponding
estimation errors will also be investigated for this purpose. Using the previously presented
theoretical facts, the pseudo-algorithm for estimating the parameters of the GSB process
can be formulated as follows:

1. In the first estimation step, compute the sample correlation ρ̂X(1) for a series of
increments (Xt). If the condition −0.5 < ρ̂X(1) < 0 is fulfilled, by using Equation (14),
the estimator b̃c can be obtained.

2. Compute statistics X2
t , given by Equation (24), as an estimate of the “hybrid” parame-

ter σ2(bc + 1). The following variance estimator is then obtained:

σ̂2
X =

X2
t

b̃c + 1
.

3. According to Equation (15) and previously obtained estimates b̃c and σ̂2
X , compute the

estimator c̃ = σ̂2
X ·F−1

χ2
1

(
b̃c

)
.
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4. By using the estimate c̃, for each t = 1, . . . , T, generate the (modeled) values of series
(εt) and (mt), by applying the iterative procedure:{

εt = yt −mt,
mt = mt−1 + εt−1 I

{
ε2

t−2 ≥ c̃
}

,
(28)

where ε0 = ε−1 = 0, and m0 = y0 = μ̂ is given by Equation (20).
5. According to previously obtained series (εt), and by using Equation (21), compute a

(more efficient) variance estimator σ̃2.
6. By applying the Gauss-Newton procedure, i.e., Equations (16)–(18), the estimate b̂c

can be obtained.
7. According to previously obtained estimates b̂c and σ̃2, compute the estimator

ĉ = σ̃2·F−1
χ2

1

(
b̂c

)
.

We point out that in the above-mentioned pseudo algorithm, the 2nd stage can be
replaced by the following alternative step:

2’.Compute statistics S2
T , given by Equation (26), and estimate the “hybrid” parameter

acσ2/3. Then, according to Equation (27), the variance σ2 can be estimated as:

σ̂2
Y :=

3
ãc

S2
T ,

where ãc = 1− b̃c.
By applying this pseudo-algorithm, the obtained values of the estimated parameters

can be summarized as shown in Table 1, where their average values (Mean), minimums
(Min.), maximums (Max.) can also be seen, along with the appropriate mean squared errors
of estimation (MSEE) given in parentheses. Furthermore, testing results concerning the AN
of thus obtained estimates are also presented in Table 1. To that end, Anderson-Darling
and Cramer-von Mises normality tests were used. Their test statistics (denoted as AD and
W, respectively), as well as their corresponding p-values, were calculated using procedures
from the R-package “nortest” [41].

According to the obtained values, it is evident that most estimators have a property of
the AN. This applies even to the estimates of the mean value μ̃ and μ̂, which are obtained
from realizations of non-stationary GSB-series (yt). As already explained, this is related to
Theorems 2 and 3, which respectively describe the AN properties of the series

(
yt/
√

t
)

and so-called α-means series. Notice that the asymptotic variance of these estimators is
not bounded, hence there is a large range of their observed values. On the other hand,
the AN property is not particularly emphasized in the case where the critical value (c) is
estimated. This is because both estimates c̃ and ĉ are obtained by the three-step procedure:
estimates for the parameters bc and σ2 should first be determined, and only then for c. In
the case of variance estimators σ̃2 and σ̂2, obtained based on modeled innovations (εt),
it is easy to see that they have the highest and almost the same efficiency. Furthermore,
the values of the estimator σ̂2

X are only slightly “weaker” than σ̃2 and σ̂2. This is expected
since, according to Theorem 5, the AN property holds for all these variance estimators.
However, the estimate σ̂2

Y is by far the weakest variance estimate and can be omitted from
further analysis. Moreover, based on previously obtained theoretical results, also confirmed
through simulations, the most robust estimates of the unknown parameters c, μ,σ2 are
ĉ, μ̂, σ̂2, respectively. For those reasons, these estimators will be used for GSB modeling of
actual data on COVID-19, which will be discussed below.
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Table 1. Summary statistics of estimated parameters of the GSB process, obtained by a Monte Carlo
study, along with realized statistics of normality tests.

Parameters
Estimators

Statistics Values
AD

(p-Value)
W

(p-Value)

Mean (μ̃)

Min. −24.9395
0.2886

(0.6161)
0.0415

(0.6545)
Mean −0.0192

(MSEE) (7.2791)
Max. 26.8691

Mean (μ̂)

Min. −20.0310
0.3363

(0.5056)
0.0453

(0.5845)
Mean −0.00806

(MSEE) (4.6055)
Max. 19.7987

Critical value (c̃)

Min. 0.3849
1.0160 *
(0.0112)

0.1449 *
(0.0278)

Mean 1.0904
(MSEE) (0.5069)

Max. 1.6481

Critical value (ĉ)

Min. 0.5105
0.5647

(0.1435)
0.1074

(0.0889)
Mean 0.9844

(MSEE) (0.1587)
Max. 1.5033

Variance (σ̃2)

Min. 0.8271
0.3144

(0.5446)
0.0494

(0.5182)
Mean 0.9991

(MSEE) (0.0630)
Max. 1.2182

Variance (σ̂2)

Min. 0.8248
0.3247

(0.5231)
0.0546

(0.4459)
Mean 1.0002

(MSEE) (0.0631)
Max. 1.2118

Variance (σ̂2
Y)

Min. 0.7796

0.4018
(0.3584)

0.0588
(0.3921)

Mean 1.0034

(MSEE) (0.0842)

Max. 1.3340

Variance (σ̂2
X)

Min. 0.1104
90.626 **

(<2.2 × 10−16)
16.522 **

(7.37 × 10−10)
Mean 1.0937

(MSEE) (1.4183)
Max. 1.6313

* p < 0.05, ** p < 0.01.

5.2. Application of the GSB Process: A Case Study of COVID-19 Dynamics

In this section we give, as an illustration, a practical application of the GSB process in
stochastic modeling of actual data. In other words, as mentioned in the introductory section,
we will show that it can be an adequate stochastic model for describing the dynamics of the
infected and vaccinated population in relation to the SARS-CoV2 virus on the territory of
the Republic of Serbia. To that end, we observe realizations of two time series (Ut) and (Vt)
which, daily, represents the total number of infected persons, i.e., persons vaccinated with
the first dose of the vaccine, starting from 24 December 2020 (the start date of vaccination
in Serbia) and ending with 6 June 2022. The dynamics of both time series, length T = 529,
are shown in Figure 6.
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(a) (b) 

Figure 6. Dynamics of the total infected (a) and vaccinated population (b) in relation to the virus
SARS-CoV2 on the territory of the Republic of Serbia.

The main statistical indicators of these series (also labeled as Series A and Series B,
respectively) are shown in the following Table 2. Based on thus obtained values, it can be
concluded that these are time series with distinct, pronounced fluctuations. For instance,
the average number of infected people is (approximately) 3650 per day, ranging from
60 to 19,901 infected people. Similar to that, the average number of vaccinated persons
is 6348 per day, but the range of vaccinated persons varies from only 4 to as many as
68,678 persons per day. Therefore, we further consider the possibility that the GSB process
can be used here as an appropriate stochastic model. For this purpose, as basic sequences,
we observe the realizations of the so-called log-volumes, i.e., logarithmic values of series
(Ut) and (Vt):

y(1)t := ln(Ut), y(2)t := ln(Vt), t = 0, 1, . . . , T. (29)

Notice that the main goal of this transformation is to obtain more evenly distributed values
of both series, and although based on increasing of the logarithmic function, the emphasis
of fluctuations will remain. Additionally, inequalities Ut, Vt ≥ 1 implies the non-negativity
of both log-volumes series

(
y(1)t , y(2)t ≥ 0

)
.

Table 2. Basic statistical indicators of observed actual series.

Statistics Infected (A) Vaccinated (B)

Mean 3650.84 6336
Median 2000 2960
Mode 1366 45

Stand. deviation 3650.84 1026.38
Minimum 60 4
Maximum 19,901 68,678
Kurtosis 8.1189 8.2609

Skewness 2.1418 2.7009

Further, using the log-volumes as a basic series, and using Equation (3), the series of
increments

(
X(1)

t

)
,
(

X(2)
t

)
are determined entirely. Based on them, the estimates of GSB

process parameters can be obtained by applying the pseudo-algorithm presented above.
We emphasize that here the estimation procedure is repeated twice, i.e., for both series (A
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and B). Thus, modeled values of martingale means and innovations series, generated by
Equation (29), are as follows:⎧⎨⎩ ε

(j)
t = y(j)

t −m(j)
t ,

m(j)
t = m(j)

t−1 + ε
(j)
t−1 I

{(
ε
(j)
t−2

)2
≥ c̃
}

,
(30)

where j = 1, 2. As initial values of the iterative procedure (30), as before, we have taken
ε
(j)
0 = ε

(j)
−1 = 0, as well as m(j)

0 = y(j)
0 = μ̂. Table 3 contains the basic statistical indicators

of the actual series, log-volumes (y(j)
t ) and increments

(
X(j)

t

)
, as well as modeled series,

martingale means
(

m(j)
t

)
and innovations

(
ε
(j)
t

)
.

Table 3. Basic statistical indicators of actual and modeled series.

Statistics
Series A Series B

y(1)
t X(1)

t m(1)
t ε(1)

t y(2)
t X(2)

t m(2)
t ε(2)

t

Mean 7.4041 −0.0033 7.4111 −0.0054 7.3544 −0.0068 8.9349 −0.1769
Median 7.5976 −0.0336 7.6061 −0.0332 7.9940 −0.0566 9.4269 −0.1106

Stand. deviation 1.3247 0.1948 1.3244 0.1912 2.0546 1.0036 1.7589 1.0238
Minimum 4.0943 −0.5990 4.0943 −0.5990 1.3863 −5.0554 1.0986 −6.6837
Maximum 9.8985 0.9125 9.8985 0.7390 11.1372 5.5147 11.3099 4.5209
Kurtosis 2.3419 4.3332 2.3305 3.7214 2.4071 10.1761 3.6732 10.2208

Skewness −0.5493 0.6114 −0.5605 0.4518 −0.4958 0.4290 −1.0703 −0.1625

By analyzing thus obtained values, an interesting connection can be observed, which
can be explained by the previous theoretical results. Firstly, the average values of the
log-volumes are “close” to the averages of the martingale means, which is in accordance
with the equality E(yt) = E(mt). Moreover, with series A, almost equal values of other
statistical indicators (standard deviations, for instance) are noticeable. This can also be
seen by comparing the corresponding statistical indicators of increments

(
X(1)

t

)
and in-

novations
(

ε
(1)
t

)
, which will be explained below. Table 4 shows the above-mentioned

estimators obtained according to the previously described procedures. In addition, some
other estimates are shown, such as the sample linear correlation ρ̂X(1) and estimates of the
value bc. Accordingly, note that the condition −0.5 < ρ̂X(1) < 0 is fulfilled in the cases of
both series. Moreover, let us notice, for instance, that the estimated values for σ2 in the case
of Series B are “close” to unity, so it can be assumed that innovations (εt) in this case have
a standard N (0, 1) distribution.

Table 4. Estimated values of GSB process parameters.

Parameters Series A Series B

μ̃ 7.4041 7.3544
μ̂ 7.4454 8.1409

ρ̂X(1) −0.0126 −0.2577
b̃c 0.0127 0.3472
c̃ 0.0003 0.2118
b̂c 0.0953 0.4436
ĉ 0.0006 0.3477

σ̃2 0.0413 1.0462
σ̂2 0.0403 1.0634
σ̂2

X 0.0375 1.0053

As we have already pointed out, the most robust estimators of the GSB process are
ĉ, μ̂, σ̂2 and based on them, modeled values of the series (m(j)

t ) and (ε(j)
t ) were obtained. Let
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us recall that these series, respectively, represent the stability and the impact of fluctuations
in the dynamics of the total number of infected and vaccinated people. The agreement
between the modeled series and the actual data can be seen in Figure 7a where, along with
the empirical values of the log-volumes (y(j)

t ), modeled values of martingale means (m(j)
t )

are given. On the other hand, the agreement of a series of increments, i.e., the Split-MA(1)
process (X(j)

t ) with innovations (ε(j)
t ) is shown in Figure 7b.

It should also be noted that the high agreement between the actual and modeled series
is particularly noticeable in the case of series A. This can be explained theoretically, in the
way it was done in Section 2. If at some points in time, innovations (ε(1)t ) have a pronounced

fluctuation, they become equal to increments (X(1)
t ) at the next moment. The agreement

between the realizations of these two series will be all the better if, in addition to large and
pronounced fluctuations of (ε(1)t ), the critical value c is relatively small. Note that this is
precisely the case with series A, where “small” estimated values of the parameter c indicate
the possibility that the true value of this parameter is c = 0 (or, equivalently, bc = 0). If the
sample size is large enough, this assumption can be formally tested by the null hypothesis
H0 : c = 0 or, equivalently, H0 : bc = 0. According to Theorem 4, testing procedures can be
based on the normal distribution, that is, using some standard, well-known statistical tests.

Note that in that case, the series of increments (X(1)
t ) is equalized with innovations

(ε(1)t ). This implies that (y(j)
t ) is a series with independent increments, i.e.,

Xt
(1) = yt

(1) − yt−1
(1) = εt

(1) ⇐⇒ yt
(1) = yt−1

(1) + εt
(1). (31)

According to Equation (1), it follows that yt−1
(1) = mt

(1), so all “information from
the past” is contained in the previous realization of the series (y(1)t ). In that way, the
entire statistical analysis of this series, i.e., the dynamics of the infected population, gains
simplicity; namely, series A then has (only) two stochastic components (y(1)t ) and (ε(1)t ),
i.e., it represents a random walk series.

Finally, using the inverse transformations of those given in Equation (29), PDFs of
actual series (Ut) and (Vt) are readily obtained:

fU(x, t) =
1
x

f (1)y (ln x, t), fV(x, t) =
1
x

f (2)y (ln x, t). (32)

Here, f (j)
y (ln x, t), j = 1, 2 are the PDFs of log-volumes (y(j)

t ), obtained by differentiating the
CDFs given by Equation (9), which can be done simply. Still, due to the non-stationarity of
the mentioned series, which also depends on time, it is necessary to apply some numerical
procedures to calculate their PDFs. For this purpose, the R-package “distr” [42] has been
used, and the results of the applied procedure are shown in Figure 8.

Here are the empirical distributions, i.e., histograms of the number of infected and
vaccinated persons per day, with their fitted PDFs, obtained using Equations (32). Due
to the non-stationarity of the time series (Ut) and (Vt), as well as the comparison of the
theoretical PDFs, fitting was also performed for the PDFs fU(x, t) and fV(x, t) of length
t = 50, 10, . . . , 500 < T = 529 (shown with dashed lines in Figure 8). In the case of the
infected population (Series A), according to Equation (31) and the condition c≈ 0, it follows
that RVs y(1)t have (an approximately) normal N

(
μ, (t + 1)σ2) distribution. Thus, RVs Ut

will have (an approximately) log-normal distribution, shown with the solid line in Figure 8a.
Note that this result is close to that obtained in [29]. Nevertheless, the distribution of the
number of vaccinated population (Series B), shown with the solid line in Figure 8b, has a
more pronounced “peak” close to the origin. It can also be explained by previous theoretical
results, primarily given in Theorem 2, i.e., by Equation (8), which concerns the asymptotic
behavior of the main GSB series (yt).
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(a) (b) 

Figure 7. Graphs of empirical and modeled data: (a) log-volumes (solid lines) and martingale means
(dashed lines); (b) Split-MA(1) process (solid lines) and innovations series (dashed lines). The upper
panels represent the dynamics of the COVID-19 infection (Series A), and the lower panels represent
the dynamics of the vaccinated population (Series B).

(a) (b) 

Figure 8. Empirical distributions of actual data (histograms) and their fitted PDFs (lines), obtained
by the proposed estimation procedure: (a) distribution of the infected population (Series A); (b) dis-
tribution of the vaccinated population (Series B).
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6. Conclusions

The stochastic analysis of the GSB process presented in this paper confirms its possi-
bility in modeling actual time series with pronounced fluctuations. The applied methods
of dynamic and statistical analysis, based on this process, aim here to understand the
long-term tendency of the SARS-COV2 virus behavior, as well as the immunization process.
Along with other contemporary research, we hope this one can help further development
of successful methods of overcoming the pandemic. To this end, notice that new strains of
the SARS-CoV2 virus, which are very common, can affect the overall symptoms as well
as the disease dynamics of COVID-19 (see, c.f. [43–45]). They may therefore change the
dynamics of both time series investigated here. This may therefore be a new goal and
motivation for some future research.

Finally, let us emphasize that one of the main stochastic advantages of the GSB model
is that it allows the simultaneous use of both stationary and non-stationary components.
Thereby, the asymptotic behavior of the GSB time series as well as the corresponding esti-
mates thus obtained are of particular importance. It should also be noted that the proposed
parameter estimation procedure can be implemented algorithmically in a relatively simple
way. Additionally, some other estimation methods, such as the Empirical Characteristic
Function (ECF) method described in [12] can be used. As shown in [11,12], it can also be
used to model some other types of real data with pronounced and persistent fluctuations.
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Abstract: We consider a sequence of i.i.d. random variables, (ξ) = (ξi)i=0,1,2,..., Eξ0 = 0, Eξ2
0 = 1,

and subordinate it by a doubly stochastic Poisson process Π(λt), where λ ≥ 0 is a random variable
and Π is a standard Poisson process. The subordinated continuous time process ψ(t) = ξΠ(λt) is
known as the PSI-process. Elements of the triplet (Π, λ, (ξ)) are supposed to be independent. For
sums of n, independent copies of such processes, normalized by

√
n, we establish a functional limit

theorem in the Skorokhod space D[0, T], for any T > 0, under the assumption E|ξ0|2h < ∞ for some
h > 1/γ2. Here, γ ∈ (0, 1] reflects the tail behavior of the distribution of λ, in particular, γ ≡ 1 when
Eλ < ∞. The limit process is a stationary Gaussian process with the covariance function Ee−λu,
u ≥ 0. As a sample application, we construct a martingale from the PSI-process and establish a
convergence of normalized cumulative sums of such i.i.d. martingales.

Keywords: functional limit theorem; Poisson stochastic index process; pseudo-Poisson process;
random intensity

MSC: 60F17; 60G10; 60G44

1. Introduction

The Poisson Stochastic Index process (PSI-process) represents a special kind of a
random process when the discrete time of a random sequence is replaced by the continuous
time of a “counting” process of a Poisson type.

Throughout this paper, we consider the triplet {Π, λ, (ξ)} of jointly independent
components defined on a probability space {Ω,F ,P}. Here, Π is a standard Poisson
process on R+ := {t ∈ R : t ≥ 0}, λ is an almost surely (a.s.) non-negative random
variable, which plays a role of random intensity, and (ξ) denotes a random sequence
ξ0, ξ1, . . . of independent and identically distributed (i.i.d.) random variables. Let us define
a PSI-process in the following way:

ψ(t; λ) ≡ ψ(t) := ξΠ(λt), t ∈ R+ . (1)

The mechanism of PSI-processes is reduced to sequential replacements of terms of
the “driven” sequence (ξ) at arrival times of the “driving” doubly stochastic Poisson
process Π(λt).

Let us introduce a “natural” filtration F ≡ (Ft)t∈R+
, generated by the PSI-process

Ft := σ{Π(λs), s ≤ t; ξ0, . . . ξk, k ≤ Π(λt) } ⊂ F . (2)

Note that if the distribution of ξ0 has no atoms, then the natural filtration F coincides
with a filtration, which is generated by a compound Poisson type process with the random
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intensity λ: Y(t) := ∑
Π(λt)
k=0 ξk starting at the random point ξ0. (In the case when ξ0 has

an atom at 0, some jumps of Π(λt) may be “missed” in Y, the process Y is known as a
stuttering compound Poisson process. A similar phenomenon happens with a PSI-process
when ξ0 has any atom, not necessarily at 0. For details we refer to [1].)

PSI-processes may have a lot of interpretations. For instance, in insurance models and
their applications: while a compound Poisson process Y(t) is monitoring the cumulative
value of claims up to a current time t, the corresponding PSI-process ψ(t) is monitoring the
last claim.

Another interpretation arises in models of information channels. Here, (ξ) plays a role
of random loads on an information channel. The driving doubly stochastic Poisson process
Π(λt) affects (ξ) in the following manner. At arrival points of the driving process Π(λt),
the current term of (ξ) is replaced with the next term.

In view of these interpretations, as well as from a point of view of the classical
probability theory, it makes sense to consider sums of independent PSI-processes. In
this paper, we confine ourselves to the case when all terms in these sums are identically
distributed PSI-processes and when the terms of the driven sequences have a finite second
moment. Without loss of generality, we assume that Eξ0 = 0 and Eξ2

0 = 1. Let ψ(k),
k = 1, 2, . . . , denote independent copies of ψ. Note that the Poisson processes in the
definition (1) are also independent in different copies, as well as the time change factors

λk
d
= λ, for any k ∈ N. Introduce

ζn(t) :=
1√
n

n

∑
k=1

ψ(k)(t; λk), n ∈ N, t ≥ 0, (3)

the normalized cumulative sum. Note that ζn is a stationary process for any n.
When one of the processes ψ(1), . . . , ψ(n) changes its value, all the values of other

processes remain the same a.s. Hence, the change mechanism behind the sums of type (3)
can be described as a projection of some information from past to future and replacement
of other information with new independent values. This can be opposed to autoregression
schemes, which are based on contractions of information. This mechanism of projection
survives after a passage to the limit as n→ ∞. Hence, if the limit exists in some sense, it
has to be described by so-called “trawl” or “upstairs represented” processes introduced by
O. E. Barndorf-Nielsen [2,3] and R. Wolpert, M.Taqqu [4], respectively. A relationship of
PSI-processes with trawl processes is discussed briefly in [5].

Our main result is a functional limit theorem for normalized cumulative sums (3)
(Theorem 1): random processes ζn weakly converge, as n → ∞, in the Skorokhod space
of càdlàg functions defined on a compact [0, T], T > 0. The limit process ζ is Gaussian,
centered, stationary, and its covariance function is Lλ(|t− s|), s, t ∈ R+, where Lλ denotes
the Laplace transform of the random intensity λ. In a simpler case of non-random intensity
λ, the analogous functional limit theorem has been established by the second author in [6].
In this case, the limit is necessarily an Ornstein–Uhlenbeck process. Introducing a random
intensity significantly widens the class of possible limiting processes but makes a proof
of the corresponding functional limit theorem more involved. Our method of proof is
essentially based on a detailed analysis of a modulus of continuity for the PSI-process.

In our research, we came upon the following interesting phenomena, which occurs
if Eλ = +∞. Then, the fatter the tail of λ is, the more moments of ξ0 are needed for the
relative compactness of the family (ζn)n∈N. When Eλ < ∞, our method of proof requires
just a condition E|ξ0|2+ε < ∞, for some ε > 0.

As an example of a functional of the PSI-process, we construct a martingale adapted to
the natural filtration (Ft) generated by the PSI-process defined in (2). Consider a pathwise
integrated PSI-process

Ψ(t) :=
∫ t

0
ψ(s)ds (4)

and define a so-called M-process associated with the PSI-process as
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M(t; λ) ≡ M(t) := λΨ(t) + ψ(t)− ξ0, t ≥ 0 . (5)

Suppose that λ is a positive constant and Eξ0 = 0. Then, M(t) is an (Ft)-martingale,
starting at the origin. The proof presented in Section 3 is reduced to a direct calculation and
exploits the fact that the pair (Ψ, ψ) is an R2-valued Markov process (moreover, a strong
Markov process with respect to (Ft)).

This example shows that the PSI-process ψ(t) is the stationary solution of the Langevin
equation driven by the martingale M(t):

dψ(t) = −λψ(t) + dM(t). (6)

As one of the consequences of our main result, we obtain as a limit the classical
martingale

√
2λW(t), t ≥ 0, which replaces M(t) in (6). Here and below, W(t) is a standard

Brownian motion.
Remark that if λ is a non-degenerate random variable, then M(t; λ) is not measurable

with respect to Ft, and hence, it is not an (Ft)-martingale. However, if we supplement F0
with σ(λ) to generate an initially enlarged filtration (Fλ

t ), then the M-process becomes
a local martingale with respect to the new adjusted filtration. If Eλ < ∞, then it is a
martingale (see Proposition 2).

Suppose now as usual that Eξ2
0 = 1. Direct application of Theorem VIII.3.46 [7] (p. 481)

allows us to obtain a functional limit theorem for the martingale M(t), i.e., for

Mn :=
1√
n

n

∑
i=1

M(i)(t), (7)

where M(i)(t), i = 1, 2, . . . , are independent copies of M(t). Here, the convergence takes
place in the Skorokhod space, and the limit process is

√
2EλW(t), t ≥ 0.

The rest of the paper is organized as follows. In Section 2, we introduce some notation
and formulate our main result, Theorem 1. In Section 3, the M-process described above is
studied in some details, as an example of the application of Theorem 1. Another example
of the PSI-process such that the normalized cumulative sums do not converge in the
Skorokhod space is constructed in Section 4 in order to show that some conditions are
indeed necessary in a functional limit theorem. Section 5 collects some auxiliary facts about
PSI-processes and their modulus of continuity. In Section 6, we study sums of PSI-processes
and prove our main result. We finish the article with some conclusions in Section 7.

2. Main Results

Let (ξ) = (ξ0, ξ1, . . . ) be a sequence of random variables. Consider an independent of
(ξ) standard Poisson process Π(t), t ≥ 0. Then, one can subordinate the sequence by the
Poisson process to obtain a continuous time process

ψ(t) = ξΠ(t), t ≥ 0.

Consider also a non-negative random variable λ, which is independent of (ξ) and
Π. The time-changed Poisson process Π(λt) is a Poisson process with random intensity,
also known as (a specific case of) a Cox process or a doubly stochastic Poisson process. We
consider the PSI-process with the random time-change

ψ(t; λ) = ξΠ(λt), t ≥ 0. (8)

We call ψ(t; λ) the Poisson stochastic index process, or PSI-process for short.
It turns out that if random variables ξi, i = 0, 1, . . . , are uncorrelated and have zero

expectations and unit variances, then the covariance function for ψ(t; λ) is equal to the
Laplace transform of λ

Lλ(u) = E e−λu, u ≥ 0. (9)
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Lemma 1. Let (ξ) = (ξ0, ξ1, . . . ) be a sequence of uncorrelated random variables with Eξi ≡ 0
and Eξ2

i ≡ 1. Let λ be a non-negative random variable and Π(t) be a standard Poisson process.
Suppose that (ξ), λ, and Π are mutually independent. Then, for any s, t ≥ 0

Cov
(
ψ(s; λ), ψ(t; λ)

)
= Lλ(|t− s|).

In particular, ψ is a wide sense stationary process.

Proof. First note that Eψ(s, λ) = 0 since any Eξi = 0. Hence, Cov
(
ψ(s; λ), ψ(t; λ)

)
=

Eψ(s; λ)ψ(t; λ). Suppose without loss of generality that 0 ≤ s ≤ t. Given λ, one has

E(ψ(s; λ)ψ(t; λ)|λ) = E

(
ξΠ(λs)ξΠ(λt)

∣∣λ)
= E

(
1{Π(λs) = Π(λt)}

∣∣λ)
= E

(
1{Π(λ(t− s)) = 0}

∣∣λ)
= e−λ(t−s).

Here and below, 1{A} denotes the indicator of an event A. We used the assumption
that E ξiξ j = δij, the Kronecker delta, and also the stationarity of the increments of the
Poisson process. Taking expectation with respect to λ yields the result.

Remark 1. Unlike [8], we allow λ to have an atom at 0, which implies that limu→∞ Lλ(u) =
P(λ = 0) > 0.

Corollary 1. Let the triplet (Π, λ, (ξ)) satisfy the assumptions of Lemma 1. Then, the processes
(ζn) defined in (3) as normalized cumulative sums of independent copies of ψ(t; λ) converge in
the sense of finite dimensional distributions (f.d.d.), as n→ ∞, to a stationary centered Gaussian
process ζ(t) with the covariance function Cov(ζ(s), ζ(t)) = Lλ(|t− s|), s, t ∈ R+.

Proof. This is an immediate consequence of the central limit theorem (CLT) for vectors.
Indeed, for any fixed time moments 0 ≤ t1 < . . . < td, the finite-dimensional distribu-
tions of

(
ψ(k)(t1; λk), . . . , ψ(k)(td; λk)

)
are i.i.d. for different k and have zero mean and the

covariation matrix
B =

(
Lλ(|ti − tj|)

)d
i,j=1 .

Lemma 1 emphasizes a special role played by the Laplace transform Lλ in the study of
PSI-processes with random intensities. We will need asymptotics of the Laplace transform
Lλ in the right neighborhood of 0.

Assumption 1. For some γ ∈ (0, 1] and any ε > 0, the Laplace transform (9) of λ satisfies

1− Lλ(s) = o(sγ−ε), s ↓ 0. (10)

It is well known that (10) holds with γ = 1 if Eλ < ∞ or with γ ∈ (0, 1] if the tail
P(λ > x) of λ varies regularly of index −γ at x → ∞, see, e.g., [9] (Theorem 8.1.6).

Below, we shall always suppose that terms of the sequence (ξ) are i.i.d., hence uncor-
related, and satisfy the assumptions of Lemma 1. By Corollary 1, random processes (ζn)
have a limit ζ as n→ ∞ but in the rather weak f.d.d. sense. The aim of this paper is to es-
tablish a more strong result, a functional limit theorem for (ζn) in an appropriate functional
space. If Assumption 1 holds, then the covariance function of the limiting process ζ(t)
behaves in a controllable way at 0, and ζ(t) has a version with almost surely continuous
paths because γ > 0 in (10), see, e.g., [10] (§9.2). Our main result is that, under additional
moment assumptions E|ξ0|2h < ∞ for some h > 1/(γ2) (where γ is the exponent in (10)),
the convergence indeed takes place in the Skorokhod space D[0, T], for any T > 0.
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Theorem 1. Consider a triplet
(
Π, λ, (ξ)

)
that consists of a standard Poisson process Π, a non-

negative random variable λ satisfying Assumption 1, and a sequence (ξ) = (ξ0, ξ1, . . . ) of i.i.d.
random variables such that Eξ0 = 0 and Eξ2

0 = 1. Elements of the triplet are supposed to be
independent and to satisfy the condition

E|ξ0|2h < ∞ for some h >
1

γ2 . (11)

Let
(
Πk, λk, (ξ(k))

)
, k = 1, 2, . . . , be a sequence of independent copies of the triplet

(
Π, λ, (ξ)

)
,

ψ(k) ≡ ψ(k)(t; λk) be the PSI-process (1) constructed from the k-th triplet, and ζn be defined by (3).
Then, for any T > 0, the sequence of stochastic processes (ζn(t)) converges in the Skorokhod space
D[0, T], as n→ ∞, to a zero mean stationary Gaussian process ζ(t) with the covariance function
E ζ(s)ζ(t) = Lλ(|s− t|), s, t ∈ [0, T].

Remark 2. Nowadays, it is common to consider a weak convergence in the space D[0, ∞). Due
to specific features of our model (stationary of ζn for every n, continuity of ζ), this implies a weak
convergence in D[0, T] for all T > 0. Since we essentially use the results from Billingsley’s book [11]
that deals with D[0, T], we prefer to formulate our results in D[0, T], T > 0, as in Theorem 1.

We prove Theorem 1 in Section 6 and now proceed with studying some of
its consequences.

3. Example: A PSI-Martingale

Recall the definition (2) of the natural filtration F given in the Introduction. Note that
since PSI-processes (with non-random λ) belong to a so-called class of “Pseudo-Poisson
processes” [12] (Ch. X), they have the Markov property with the following transition
probabilities: for x ∈ R; t, u ∈ R+,

P(ψ(t + u) ≤ x| ψ(t) = x0) = P(Π(λu) > 0)P(ξ0 ≤ x) + P(Π(λu) = 0)1{x0 ≤ x}
=
(

1− e−λu
)
P(ξ0 ≤ x) + e−λu1{x0 ≤ x} .

Denote the pathwise integrated PSI-process Ψ(t) =
∫ t

0 ψ(s)ds. Note that a pair (Ψ, ψ)

is an R2-valued Markov process, although Ψ itself is not Markovian.

Proposition 1 (The PSI-martingale). Assume that ξ0, ξ1, . . . are i.i.d. and Eξ0 = 0. Then,
for a non-random λ > 0, the stochastic process M(t) defined in (5) is a starting at the origin
F-martingale for t ∈ R+.

Proof. Let us introduce a slightly modified M-process

M(t) := λΨ(t) + ψ(t) = M(t) + ξ0.

First, we show that it is an F-martingale starting at the random point ξ0. Since the pair
(Ψ(t), ψ(t)) is a Markov process adapted to the filtration (Ft), andM(t) is determined by
(Ψ(t), ψ(t)), we have

E(M(t + u)|Ft) = E(M(t + u)|Ψ(t), ψ(t)), ∀u, t ≥ 0 . (12)

Let 0 < T1 < T2 < · · · be jump times of the driving Poisson process Π(λt). Denote the
random period θ(t) = min{Tk : Tk > t} − t; that is the time for which the Poisson process
Π(λs) does not change after time t. For each fixed t, the period θ(t) has the exponential
distribution with the intensity λ. Using this notation, we can calculate
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E(ψ(t + u)|Ψ(t), ψ(t)) = ψ(t)E 1{θ(t) > u} = ψ(t) e−λu, (13)

E(Ψ(t + u)|Ψ(t), ψ(t)) = Ψ(t) + ψ(t)E min{θ(t), u} = Ψ(t) + ψ(t)
1− e−λu

λ
. (14)

Multiplying (14) by λ and adding (13), we obtain E(M(t + u)|Ψ(t), ψ(t)) = M(t),
which proves the assertion aboutM(t) due to (12).

Now, the claim of Proposition 1 easily follows from σ(Ψ(t), ψ(t)) ⊂ Ft
and E(ξ0|Ft) = ξ0.

As it has been mentioned in the Introduction, for a random non-degenerate λ, the
process M(t) is not Ft-measurable, and the filtration F should be augmented by σ(λ):

Fλ
t := σ{Π(λs), s ≤ t; ξ0, . . . ξk, k ≤ Π(λt); λ }; F

λ := (Fλ
t )t∈R+

. (15)

The following analog of Proposition 1 holds, but the proof is more tricky.

Proposition 2 (The PSI-martingale with random intensity). Assume that (ξ) = (ξ0, ξ1, . . .)
is a sequence of i.i.d. random variables with Eξ0 = 0, Π = Π(t) is a standard Poisson process,
a random variable λ is positive a.s.; λ, (ξ), and Π are independent. Then, the stochastic process
M(t; λ), t ≥ 0, defined in (5) is a local martingale with respect to Fλ. If Eλ < ∞, then M(t) is
a martingale.

Proof. Let 0 < τ1 < τ2 < . . . be jump times of the Poisson process Π(t) and Tk := τk/λ
corresponding jump times of the process Π(λt). Recall that filtrations F = (Ft)t≥0 and
Fλ = (Fλ

t )t≥0 are defined in (2) and (15), respectively. It is easy to check that a set A ∈ F
belongs to Ft (resp. to Fλ

t ), t ≥ 0, if and only if A ∩ {Tk ≤ t < Tk+1} = A ∩ {Π(λt) =
k} ∈ Gk (resp. A ∩ {Tk ≤ t < Tk+1} ∈ Gλ

k ) for every k = 0, 1, . . . . Here,

Gk := σ{T1, . . . , Tk; ξ0, . . . ξk } = σ{τ1, . . . , τk; ξ0, . . . ξk },

the latter equality being held if λ = const, and

Gλ
k := σ{T1, . . . , Tk; ξ0, . . . ξk; λ } = σ{τ1, . . . , τk; ξ0, . . . ξk; λ }.

In particular, the filtrations (Ft)t≥0 and (Fλ
t )t≥0 are right-continuous.

First, we calculate the Fλ-compensator of the locally integrable process

Π(λt) =
∞

∑
n=1

1{t ≥ Tn}.

Since, for λ = const, Π(λt) is a Poisson process with intensity λ, its F-compensator is
λt. This means that Π(λt)− λt is an F-martingale. Denoting N(t) := Π(t)− t, this can be
written as

E

{(
N(λt)− N(λs)

)
1{Π(λs) = k} f (τ1, . . . , τk; ξ0, . . . ξk)

}
= 0

for every 0 ≤ s < t, k = 0, 1, . . . , and any bounded Borel function f from R2k+1 in R.
Consider now the case of random λ. Note that E

(
Π(λt)1{λ ≤ k}

)
≤ kt < ∞ for any t and

k ≥ 1. This allows us to take a conditional expectation given λ in the expression below,
where f is as above and g is a bounded measurable function from R to R:

E

{(
N(λt)− N(λs)

)
1{Π(λs) = k} f (τ1, . . . , τk; ξ0, . . . ξk)g(λ)1{λ ≤ k}

}
= EE

{(
N(λt)− N(λs)

)
1{Π(λs) = k} f (τ1, . . . , τk; ξ0, . . . ξk)g(λ)1{λ ≤ k}

∣∣∣λ} = 0.
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This means

0 = E

{(
N(λt)− N(λs)

)
1{λ ≤ k}

∣∣∣Fλ
s

}
= E

(
N(λt ∧ σk)− N(λs ∧ σk)

∣∣Fλ
s
)
,

where σk = 0 if λ > k and σk = +∞ otherwise. We conclude that N(λt) is an Fλ-local
martingale, and λt is the Fλ-compensator of Π(λt).

The same proof shows that

K(λt) :=
∞

∑
n=1

ξn1{t ≥ Tn}

is an Fλ-local martingale. Indeed, it is a compound Poisson process with zero mean;
hence, it itself is an F-martingale for a deterministic λ. To ensure that the corresponding
expectation is finite, we note that E

(
K(λt)1{λ ≤ k}

)
≤ ∑∞

n=1 E|ξn|P(t ≥ Tn, λ ≤ k) ≤
E|ξ0|E

(
Π(λt)1{λ ≤ k}

)
< ∞.

The final step of the proof is to determine the Fλ-compensator of the process

J(λt) :=
∞

∑
n=1

ξn−11{t ≥ Tn}

We can represent J(λt) as the pathwise Lebesgue–Stieltjes integral of a predictable
process

H(λt) :=
∞

∑
n=1

ξn−11{Tn−1 < t ≤ Tn}

with respect to Π(λt). Note that the integral process∫
(0,t]

H(λt)dΠ(λt)

is a process with Fλ-locally integrable variation because its variation up to σk is estimated
from above similarly to K(λt). This allows us to conclude that the Fλ-compensator of J(λt)
is the Lebesgue–Stieltjes integral process of H(λt) with respect to the Fλ-compensator of
Π(λt), see, e.g., Theorem 2.21 (2) in [13], i.e., the Fλ-compensator of J(λt) equals∫

(0,t]
H(λt)λdt = λΨ(t).

Summarizing, we obtain that the Fλ-compensator of

ψ(t)− ξ0 =
∞

∑
n=1

(ξn − ξn−1)1{t ≥ Tn} = K(λt)− J(λt),

that is −λΨ(t).
Finally, the quadratic variation of M is

[M, M]t =
∞

∑
k=1

(ξk − ξk−1)
21{Tk ≤ t} . (16)

Hence, if Eλ < ∞,

E([M, M]t)
1/2 ≤ E

∞

∑
k=1
|ξk − ξk−1|1{Tk ≤ t}

≤ 2E|ξ0|E
∞

∑
k=1

1{Tk ≤ t} ≤ 2E|ξ0|EΠ(λt) = 2tE|ξ0|Eλ.

Therefore, M(t) is a martingale according to Davis’ inequality (see [14] (Ch. 9)).
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If we assume also that Eξ2
0 = 1, then the Fλ-martingale M(t) has EM(t)2 < ∞ for

all t ∈ R+. Its quadratic variation is calculated in (16). The variance of M(t) can then be
calculated as follows:

Var M(t) = E [M, M]t = E

∞

∑
k=1

(ξk − ξk−1)
21{Tk ≤ t} = E(ξ1 − ξ0)

2
EΠ(λt) = 2tEλ .

If Eλ < ∞ (in particular, if λ is not random), then the variance of M(t) is finite for
any t ∈ R+. Hence, direct application of Theorem VIII.3.46 [7] (p. 481) allows us to obtain
a functional limit theorem for properly normalized sums of independent copies M(i)(t),
i = 1, 2, . . . , of the martingale M(t), i.e., for the processes

Mn(t) :=
1√
n

n

∑
i=1

M(i)(t), n = 1, 2, . . . , t ≥ 0.

Here, the convergence takes place in the Skorokhod space, and the limit process is√
2EλW(t), where W(t), t ≥ 0, is a standard Brownian motion.

Assume now that λ > 0 is non-random. It is easy to see that the mapping (ψ(t))t∈[0,T] $→
(M(t))t∈[0,T] is continuous in the Skorokhod space D[0, T], for any T > 0. Hence, as a
corollary of Theorem 1, we reconstruct the above result that the convergence Mn →

√
2λW

takes place in the Skorokhod space, under the condition that E|ξ0|2+ε < ∞, for some ε > 0.

4. Counterexample: Diverging Sums

For β > 1, denote μβ = β
β−1 and consider a function

fβ(x) =

{
β(x + μβ)

−β−1, x ≥ −1/(β− 1),
0, x < −1/(β− 1)

of x ∈ R. This is a probability density. Let ξ be a random variable with this density, then,
by the choice of μβ the mean Eξ = 0 for any β > 1, and Var ξ = β

(β−2)(β−1)2 < ∞ for
any β > 2. Moreover, all absolute moments of non-negative order less than β exist, while
E|ξ|β = ∞. The tail distribution function is P

(
ξ > x

)
= (x + μβ)

−β for x ≥ −1/(β− 1).
Let (ξ) = (ξ0, ξ1, . . . ) be a sequence of i.i.d. random variables distributed as ξ.

For α > 0, let λ be independent of (ξ) and have the tail distribution function P
(
λ >

x
)
= (x + 1)−α for x ≥ 0. The Laplace transform of λ can be expressed in terms of the

(upper) incomplete Gamma function function

Γ(α, x) =
∫ ∞

x
e−yyα−1dy.

By a simple change of variables, we obtain

Lλ(s) = E e−sλ = αessαΓ(−α, s), s > 0. (17)

The asymptotics of Lλ(s) as s ↓ 0 can be read, say, from Theorem 8.1.6 [9] (p. 333): as
s ↓ 0,

1− Lλ(s) ∼

⎧⎪⎨⎪⎩
Γ(1− α)sα, α ∈ (0, 1),
s log 1

s , α = 1,
s

α−1 . α > 1.

Hence, λ satisfies Assumption 1 with γ = min{α, 1}.
Let Π(t) be a standard Poisson process, independent of both (ξ) and λ. Define a

PSI-process ψ(t; λ) with the random intensity λ as in (1).
Consider independent copies ψ(k)(t; λk), k = 1, 2, . . . , where λk are independent

copies of λ, and let (ζn(t)) be their normalized cumulative sums, as in (3). The CLT for
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vectors implies that, for β > 2 and α > 0, in terms of finite-dimensional distributions, the
processes (ζn) converge, as n → ∞, to a stationary centered Gaussian process with the
covariance function β(β − 2)−1(β − 1)−2Lλ(u), u ≥ 0. We claim that, nevertheless, for
certain parameters α > 0 and β > 2, the functional limit theorem cannot hold true for these
(ζn). The proof is based on the following technical result.

Proposition 3. One can find n0 such that for any n ≥ n0, with probability not less than 1/16, one
of the PSI-processes ψ(1)(t; λ1), . . . , ψ(n)(t, λn) has a jump of size at least n1/(αβ), for t ∈ [0, 1].

Proof. Define for n = 1, 2,. . .

μn := max{λ1. . . . , λn}.

The cumulative distribution function of μn is

Fn(x) := P
(
μn ≤ x

)
=
(
1− (x + 1)−α

)n, x ≥ 0.

Notice that limn→∞ Fn(n1/α) = e−1. Hence, for large enough n, there exists κ ∈
{1, . . . , n} such that λκ ≥ n1/α with probability not less than 1/2. Since Πκ is independent
of λκ and the Poisson distribution is asymptotically symmetric around its mean as the
parameter becomes large, we may claim that P(Πκ(λκ) > n1/α|λκ ≥ n1/α) > 1/3. Hence,
with probability not less than 1/6 among PSI-process ψ(1), . . . , ψ(n), at least one process
ψ(κ) engages more than n1/α random variables (ξ

(κ)
i ) on the time interval [0, 1]; that is,

Πκ(λκ) ≥ m := �n1/α�+ 1. Here and below for x ∈ R, we denote �x� = max{n ∈ Z : n ≤
x} the floor function.

Consider now ηκ,m := max{ξ(κ)1 , . . . , ξ
(κ)
m }. For any fixed n, they are i.i.d. and have

the cumulative distribution function

Gm(x) := P
(
ηκ,m ≤ x

)
=
(
1− (x + μβ)

−β
)m, x > −1/(β− 1),

and ηκ,m > m1/β with probability not less than 1/2 for all m large enough, because
Gm(m1/β) =

(
1− (m1/β + μβ)

−β
)m → e−1 as m→ ∞. This maximum is attained on some

ξ
(κ)
j , and with probability 3/4 at least one of ξ

(κ)
j−1 and ξ

(κ)
j+1 is less than 21/β − μβ < 0. (We

neglect a situation when the maximum is attained for j = 1 or j = m, which happens with
the probability 2/m, see, e.g., [15].) It means that, for large m, ψ(κ)(t, λκ) has at least one
jump greater than m1/β, with probability at least 3/8.

Combining the above estimates and using the independence between Π(λκt) and
the corresponding driven sequence (ξ(κ)), we see that, with probability not less than
1/16, the process ψ(κ)(t; λκ), t ∈ [0, 1], has a jump of size at least m1/β ≥ n1/(αβ), for all
n ≥ n0 = n0(α, β).

Since all these PSI-processes jump at different moments of time a.s., the jump of any
process is not compensated by other PSI-processes and makes a contribution to ζn. If
αβ ≤ 2, then after the scaling by

√
n in (3), the size of the jump that exists according to

Proposition 3 exceeds n1/(αβ)−1/2 �→ 0 as n→ ∞. Hence, the limit in the Skorokhod space
D[0, 1], if it exists, should have jumps with positive probability. However, it is well known
that the stationary Gaussian process with the covariance function const · Lλ(u), u ≥ 0,
where Lλ(u) is given by (17), has a continuous modification a.s. This contradiction shows
that the convergence ζn → ζ cannot take place in D[0, 1] as n→ ∞.

Remark 3. The considered counterexample suggests that the correct condition for the functional
limit theorem could be E|ξ0|2h < ∞ for some h > 1/γ. Theorem 1 is proved under the more
restrictive condition h > 1/γ2. In the case Eλ < ∞, Assumption 1 holds with γ = 1, so both
inequalities become h > 1. In the more interesting case Eλ = ∞, we conjecture that the less
restrictive inequality h > 1/γ should be enough. The only place in our proof where we need
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h > 1/γ2 is Lemma 4, which is proved with a straightforward and rather rough approach. A more
sophisticated technique is needed to show that the same or similar result holds if h > 1/γ.

5. Modulus of Continuity for PSI-Processes with Random Intensity

We need to bound the probability of large changes of the PSI-process with random
intensity. The following result builds a base for such bounds.

Proposition 4. Consider a PSI-process ψ defined by (1). Then, for any fixed δ > 0,

P

(
sup

0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| ≥ r
)
=
∫ ∞

−∞

[
1− Lλ

(
δ(1− F(x + r) + F(x− r))

)]
dF(x) (18)

at least for all r > 0 such that F(x) and F(x + r) have no common discontinuity points.

Proof. Suppose first that λ is fixed. If there are no jumps of Π(λt) on [0, δ] % t, then
ψ(t; λ) = ψ(0, λ) = ξ0 for all t ∈ [0, δ]. If Π(λt) has k > 0 jumps on [0, δ], then

sup
0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| = max{|ξ1 − ξ0|, . . . , |ξk − ξ0|}.

Since (ξi) are i.i.d., conditioning on the value of ξ0 = x, we obtain

P
(
max{|ξ1 − ξ0|, . . . , |ξk − ξ0|} < r

)
=
∫ ∞

−∞
P
(
|ξ1 − x| < r

)kdF(x)

and if F(x) and F(x + r) have no common discontinuities as functions of x, it implies

P
(
max{|ξ1 − ξ0|, . . . , |ξk − ξ0|} ≥ r

)
= 1−

∫ ∞

−∞

(
F(x + r)− F(x− r)

)kdF(x).

For a fixed λ, the process Π(λt) has k jumps on [0, δ] with probability (λδ)k

k! e−λδ, so by
the law of total probability,

P

(
sup

0≤s≤δ

∣∣ψ(s; λ)− ψ(0; λ)
∣∣ ≥ r

∣∣∣ λ
)

=
∞

∑
k=1

(
1−

∫ ∞

−∞

(
F(x + r)− F(x− r)

)kdF(x)
) (λδ)k

k!
e−λδ

= 1− e−λδ − e−λδ
∫ ∞

−∞

(
exp
(
λδ
(

F(x + r)− F(x− r)
))
− 1
)

dF(x)

=
∫ ∞

−∞

(
1− exp

(
−λδ

(
1− F(x + r) + F(x− r)

)))
dF(x),

where changing the order of summation and integration is justified by Fubini’s theorem,
and the last line follows by simple manipulations using

∫ ∞
−∞ dF(x) = 1. The claim (18)

follows by taking expectation with respect to λ, and again, the order of integration can be
changed by Fubini’s theorem.

The equality (18) easily implies a bound for the probability in the left-hand part of (18)
in terms of the so-called concentration function of a random variable ξ defined as

Qξ(r) = sup
x∈R

P(x ≤ ξ ≤ x + r).

The straightforward calculation shows that (18) implies that

P

(
sup

0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| ≥ r
)
≤ 1− Lλ

(
δ(1−Qξ0(2r))

)
. (19)
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However, we need a more explicit bound. To obtain such bound, we analyze the
behavior of the Laplace transform Lλ(s) for small s. It is postulated in Assumption 1, but
for applications, it is convenient to obtain an explicit inequality. It can always be done by
slightly reducing the power of s.

Lemma 2. If λ satisfies Assumption 1, then for any ε ∈ (0, γ), there exists a constant C > 0
such that

0 ≤ 1− Lλ(s) ≤ Csγ−ε, s ≥ 0. (20)

Proof. Since (1− Lλ(s))s−γ+ε → 0 as s ↓ 0, according to (10), the inequality (20) holds
with C = 1 when s ∈ [0, s0) for some sufficiently small s0 = s0(γ, ε, Lλ). The inequality for
s ≥ s0 can be fulfilled by increasing C if necessary.

A combination of the above statements gives an estimate for the probability of big
changes of the PSI-process with random intensity on a small interval, provided that we
can bound the tail probability for an individual random variable ξ0, say under some
moment assumptions.

Proposition 5. Suppose that the PSI-process ψ(t; λ) with the random intensity λ defined by (1)
satisfies the assumptions of Proposition 4, that λ satisfies Assumption 1, and that E|ξ0|2h < ∞
for some h > 0. Then, for any ε ∈ (0, γ), there exists a constant C > 0 such that for all r > 0
and δ ∈ [0, 1]

P

(
sup

0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| ≥ r
)
≤ Cδγ−εr−2h(γ−ε). (21)

Proof. Denote for short m2h := E|ξ0|2h < ∞ by assumption. Take r > 0, then for any
|x| < r/2

1− F(x + r) + F(x− r) = P
(
ξ0 ≤ x− r or ξ0 > x + r

)
≤ P
(
|ξ0| ≥ r/2

)
≤ 22hm2h

r2h

by Markov’s inequality. Thus, since Lλ does not increase

∫ r/2

−r/2

[
1− Lλ

(
δ(1− F(x + r) + F(x− r))

)]
dF(x) ≤ 1− Lλ

(
4hm2h δr−2h). (22)

On the other hand, 1− Lλ

(
δ(1− F(x + r) + F(x− r))

)
≤ 1− Lλ(δ) for any x ∈ R and

r ≥ 0. Hence, for any ε > 0, again by the Markov inequality applied to |ξ0|2h(γ−ε), one has

(∫ −r/2

−∞
+
∫ ∞

r/2

)[
1− Lλ

(
δ(1− F(x + r) + F(x− r))

)]
dF(x)

≤ (1− Lλ(δ))P
(
|ξ0| ≥ r/2

)
≤ (1− Lλ(δ))

22h(γ−ε)m2h(γ−ε)

r2h(γ−ε)
. (23)

Combining (22) and (23) and using Lemma 2, we obtain the result.

6. Sums of PSI-Processes

Since the limit of the normalized cumulative sums (ζn) is an a.s. continuous stochastic
process, we can use Theorem 15.5 from Billingsley’s book [11] (p. 127), which gives the
conditions for convergence of processes from the Skorokhod space D[0, 1] to a process with
realizations lying in C[0, 1] a.s., in terms of the modulus of continuity

ωζ(δ) = sup
s,t∈[0,1]
|s−t|≤δ

{|ζ(s)− ζ(t)|}. (24)

It claims that if
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(i) for any ε > 0 there exists t such that P
(
|ζn(0)| > t

)
≤ ε for all n ≥ 1;

(ii) for any positive ε and w there exist δ ∈ (0, 1) and n0 such that

P
(
ωζn(δ) ≥ w

)
≤ ε, n ≥ n0; (25)

(iii) (ζn) converges weakly in terms of finite-dimensional distributions to some random
function ζ as n→ ∞,

then (ζn) converges to ζ as n→ ∞, in D[0, 1] and ζ is continuous a.s.
In order to bound ωζn in probability, Billingsley suggests to use a corollary to

Theorem 8.3 in the same book, which can be formulated as follows. Suppose that ζ
is some random element in D[0, 1], then for any δ > 0 and w > 0

P
(
ωζ(δ) ≥ 3w

)
≤
�1/δ�−1

∑
i=0

P

(
sup

t∈[iδ,(i+1)δ]

∣∣ζ(t)− ζ(iδ)
∣∣ ≥ w

)
. (26)

The sum (26) can be estimated efficiently in our settings because ζn is stationary by
construction for any n. Hence, all the probabilities in the sum (26) are the same and

P
(
ωζn(δ) ≥ 3w

)
≤ 1

δ
P

(
sup

t∈[0,δ]

∣∣ζn(t)− ζn(0)
∣∣ ≥ w

)
. (27)

Remark 4. Actually, the events whose probabilities are added in the right-hand side of (26) are
dependent since for a large n and a small δ, an appearance of a big (≥ ε) jump of ζn on [0, δ] suggests
that there are many jumps of some ψ(i)(t; λi), and hence, the correspondent λi is large; so it is
probable that there would be many jumps on other intervals and a probability of a big jump is not
too small. Perhaps this observation can be used to find a better bound than the union bound (27),
but we have not used it.

In order to check assumption (ii) of Billingsley’s theorem, we apply the following
two-stage procedure. We use (27) to bound the “global” probability of jumps greater than
w on some interval of the length δ. We aim to show that for any w > 0 and ε > 0, one can
find positive C, τ, and δ such that

P

(
sup

t∈[0,δ]

∣∣ζn(t)− ζn(0)
∣∣ ≥ w

)
≤ Cδ1+τ and Cδτ < ε (28)

for all n greater than some n0. To this end, we first show that one can find positive C, τ, δ,
and n0 such that (28) holds for n = n0 and then analyze the local structure of ζn to show
that (28) actually holds for all n ≥ n0.

Our analysis of supt∈[0,δ]

∣∣ζn(t)− ζn(0)
∣∣ is based on the results of Section 5. Consider

the Poisson processes with random intensity Πi(λit), i = 1, . . . , n, used in the construction
of ψ(1), . . . , ψ(n), and denote κn(δ) the (random) number of these processes that have at
least one jump on [0, δ]:

κn(δ) :=
n

∑
i=1

1{Πi(λiδ) > 0} . (29)

This is a binomial random variable with n trials and the success probability

p1 ≡ p1(δ) := 1− Lλ(δ). (30)

Lemma 2 provides an upper bound for p1(δ). We are interested just in the case when
p1(δ) is small compared to 1/n, that is, when E κn(δ) is small. Then, the probability that
κn(δ) ≥ b decays fast enough even for an appropriately chosen but fixed b.

Lemma 3. Let λ satisfy Assumption 1. Then, for any a > 1/γ, b > a/(aγ− 1) and c > 0, one
can find positive τ and δ0 such that for all n satisfying nδ1/a ≤ c, it holds
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P
(
κn(δ) ≥ b

)
≤ δ1+τ , δ ∈ (0, δ0).

Proof. The well-known Chernoff bound [16] (Theorem 2.1) ensures that for any t ≥ 0,

P
(
κn(δ) ≥ np1(δ) + t

)
≤ exp

(
− f
(
t/(np1(δ))

)
np1(δ)

)
, (31)

where f (x) = (1 + x) log(1 + x)− x. For a > 1/γ, Lemma 2 along with the assumption
nδ1/a ≤ c guarantee that np1(δ) ≤ Cδγ−1/a−ε for any ε ∈ (0, γ) and some C (which may
depend on ε). Taking ε < γ− 1/a yields np1(δ) → 0 as δ ↓ 0. Plugging t = b− np1(δ),
which is positive for small δ, into (31) gives

logP
(
κn(δ) ≥ b

)
≤ − f

(
(b/(np1(δ))− 1

)
np1(δ)

= −b(log b− 1) + b log(np1(δ))− np1(δ)

≤ −b(log b− 1− log c) + b(γ− 1/a− ε) log δ.

Restricting ε further to be less than γ− 1/a− 1/b, which is positive by the assumptions,
implies that the coefficient of log δ, that is b(γ− 1/a− ε), is bigger than 1, and Lemma 3
is proved.

Lemma 4. Suppose that the random λ satisfies Assumption 1 and that E|ξ0|2h < ∞ for some
h > 1/γ2. Let 0 < c1 < c2 < ∞. Then for any a ∈ (1/γ, (hγ− 1)/(1− γ)) (with the right
bound understood as ∞ if γ = 1) and for any fixed w > 0, there exist positive δ0 and τ such that
for all n ∈ [c1δ−1/a, c2δ−1/a]

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
)
≤ δ1+τ , δ ∈ (0, δ0]. (32)

Proof. Let a > 1/γ and w > 0 be fixed. Denote for short δ = n−a. By the law of
total probability,

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
)

=
n

∑
k=0

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
∣∣ κn(δ) = k

)
P
(
κn(δ) = k

)
≤

b−1

∑
k=1

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
∣∣ κn(δ) = k

)
P
(
κn(δ) = k

)
+ P
(
κn(δ) ≥ b

)
(33)

for any integer b ≥ 2. Consider an event κn(δ) = k ≥ 1, which means that not more than
some k of n processes ψ(1), . . . , ψ(n) jump on [0, δ], and other n− k processes are constant.
Then, supt∈[0,δ] |ζn(t)− ζn(0)| ≥ w implies that at least one of k PSI-processes that jumps
on [0, δ] changes by more than w

√
n/k. So, for k ≥ 1,

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
∣∣ κn(δ) = k

)
≤ kP

(
sup

t∈[0,δ]
|ψ(t; λ)− ψ(0; λ)| ≥ w

√
n/k

∣∣ Π(λ·) jumps on [0, δ]
)

=
k
p1

P
(

sup
t∈[0,δ]

|ψ(t; λ)− ψ(0; λ)| ≥ w
√

n/k
)
. (34)

Proposition 5 provides a bound for the probability in the right-hand part of (34), and
since κn(δ) has the binomial distribution with the parameters n and p1, using the total
probability formula, we continue (33) as
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P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
)

≤
b−1

∑
k=1

kP
(

sup
t∈[0,δ]

|ψ(t; λ)− ψ(0; λ)| ≥ w
√

n/k
)(n

k

)
pk−1

1 (1− p1)
n−k + P

(
κn(δ) ≥ b

)
≤ C

b−1

∑
k=1

k
(

n
k

)( k2hδk

w2hnh

)γ−ε
+ P
(
κn(δ) ≥ b

)
(35)

for any ε ∈ (0, γ), h > 0 such that E|ξ0|2h < ∞, and some C depending on the choice of ε,
where the last inequality follows from Proposition 5.

Suppose now that h > 1/γ2. Then 1/γ < (hγ − 1)/(1− γ), where the right part
is understood as ∞ if γ = 1. Choose a ∈ (1/γ, (hγ − 1)/(1− γ)) and an integer b >
a/(aγ− 1). Then, by Lemma 3, there exists a positive τ such that P

(
κn(δ) ≥ b

)
≤ δ1+τ for

small enough δ. Bounds c1δ−1/a ≤ n ≤ c2δ−1/a give

k
(

n
k

)( k2hδk

w2hnh

)γ−ε
≤ k2h(γ−ε)

(k− 1)!w2h(γ−ε)

nkδk(γ−ε)

nh(γ−ε)
≤ ck

2k2h(γ−ε)

ch(γ−ε)
1 w2h(γ−ε)

δk(γ−ε−1/a)+h(γ−ε)/a.

Choosing ε < γ − 1/a ensures that the power of δ is minimal for k = 1, and the
inequality a < (hγ− 1)/(1− γ) guarantees that for k = 1 this power γ + (hγ− 1)/a−
(1 + h/a)ε > 1 for small enough ε; thus, (32) follows from (35).

The estimates that are used in the proof of Lemma 4 essentially rely on the relation
between δ and n. Therefore, this argument cannot be used to provide a bound (28) uniformly
for all n ≥ n0. In order to obtain such bound, we apply the technique close to the one used
in Billingsley’s book [11] (Ch. 12). If we impose some moment condition on ξ0, then the
following bound holds:

Lemma 5. Suppose that Eξ0 = 0, Eξ2
0 = 1 and E|ξ0|2h < ∞ for some h > 1. Then, for some

constant C > 0 and for all n = 1, 2, . . . and 0 ≤ s < t ≤ 1

E
∣∣ζn(t)− ζn(s)

∣∣2h ≤ C max{p1(t− s)h, p1(t− s)n1−h}, (36)

where p1(·) is defined by (30).

Proof. Due to stationarity of ζn for each n, it is enough to consider the case s = 0. For any
t ≥ 0, we can represent the increment ζn(t)− ζn(0) as a sum of i.i.d. random variables

ζn(t)− ζn(0)
d
=

1√
n

n

∑
i=1

ηi , (37)

ηi
d
=
(
ξ1 − ξ0

)
1{Π(λt) > 0} . (38)

Each summand ηi has a symmetric distribution, and two factors in the right-hand part
of (38) are independent. By Rosenthal’s inequality (see, e.g., [17] (Th. 2.9)), we obtain

E
∣∣ζn(t)− ζn(0)

∣∣2h ≤ Cn−h max
{(

Var
n

∑
i=1

ηi

)h
, nE|η1|2h

}
(39)

for some constant C > 0. Both moments can be easily evaluated. Since the summands
are i.i.d.,

Var
n

∑
i=1

ηi = n Var η1 = np1(t)Var(ξ1 − ξ0) = 2np1(t),

because E 1{Π(λt) > 0} = p1(t). Similarly,

E|η1|2h = p1(t)E |ξ1 − ξ0|2h.
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Plugging these two values into (39), we readily obtain (36), maybe with another
constant C than in (39).

Corollary 2. Suppose that Assumption 1 holds, and h > 1/γ in the settings of Lemma 5. Then,
for any fixed w > 0, one can find positive δ1 and τ such that for all n ≥ (t− s)−(γ+1)/(h+1) it
holds

P
(∣∣ζn(t)− ζn(s)

∣∣ ≥ w
)
≤ (t− s)1+τ , t− s ∈ (0, δ1]. (40)

Proof. By the Markov inequality, we have

P
(∣∣ζn(t)− ζn(s)

∣∣ ≥ w
)
≤ E

∣∣ζn(t)− ζn(s)
∣∣2hw−2h, 0 ≤ s < t ≤ 1.

Lemma 5 gives a bound for the right-hand side in terms of p1(t− s) and n. Lemma 2
provides the upper bound for p1(t− s), and the condition on n imposed in the claim implies
n−1 ≤ (t− s)(γ+1)/(h+1). Hence, for any ε > 0, there exists a constant C′ > 0 such that for
all 0 ≤ s < t ≤ 1

P
(∣∣ζn(t)− ζn(s)

∣∣ ≥ w
)
≤ C′max

{
(t− s)h(γ−ε), (t− s)γ−ε+(h−1)(γ+1)/(h+1)}.

Taking ε = (hγ − 1)/(h + 1), which is positive by the assumptions, makes both
exponents above equal: h(γ− ε) = γ− ε + (h− 1)(γ + 1)/(h + 1) = 1 + ε. Hence, this
choice of ε yields (40) with τ = ε for all 0 ≤ s < t ≤ 1, but with a constant in the right-hand
side of the inequality. Reducing to t− s lying in a proper interval (0, δ1] allows us to get rid
of the constant.

Proof of Theorem 1. Without loss of generality, we may assume T = 1 (otherwise perform
a non-random time change t $→ t/T). We need to show that the conditions of Theorem 15.5
of [11] (recalled in the beginning of Section 6) hold. Condition (iii) was already verified
(see Corollary 1), and it implies condition (i). So it remains to check condition (ii), which
follows from (28).

Suppose that we are given positive ε and w and want to find δ and n0 such that (25)
holds. Lemma 4 applied with c1 = 1/2, c2 = 2 implies that for some positive δ0, τ and any
a ∈ (1/γ, (hγ− 1)/(1− γ)) inequality (32) holds for δ ∈ (0, δ0]. Corollary 2 guarantees
that for some positive δ1, inequality (40) holds for n sufficiently large and δ ∈ (0, δ1], and
in our application below, the lower bound on n will be fulfilled if a < (h + 1)/(γ + 1).
Choose some a ∈ (1/γ, min{(hγ− 1)/(1− γ), (h+ 1)/(γ+ 1)}) (this interval is not empty
if h > 1/γ2), fix a positive δ ≤ min{δ0, δ1} and let n0 = �δ−1/a�.

For this choice of parameters, Lemma 4 (again with c1 = 1/2, c2 = 2) ensures
that (28) holds for all n ∈ [n0, 2n0]. Suppose now that n > 2n0 and let m = �naδ�.
(Note that a > 1/γ ≥ 1, so m ≥ 2 if n > 2n0.) Then for c1 = 1/2, c2 = 2 we have
n ∈ [c1(δ/m)−1/a, c2(δ/m)−1/a], so (32) holds with δ/m instead of δ, implying that for any
i = 1, . . . , m

P

(
sup

t∈[δ(i−1)/m,δi/m]

∣∣ζn(t)− ζn(δ(i− 1)/m)
∣∣ ≥ w

)
≤ (δ/m)1+τ , (41)

due to the stationarity of ζn. Let

Zm(δ) := max
i=1,...,m

{∣∣ζn(δi/m)− ζn(0)
∣∣}.

Take s = iδ/m and t = jδ/m for some 0 ≤ i < j ≤ m. Now, we aim to apply
Corollary 2 for these s and t. Note that t − s ∈ (0, δ1) by the choice of δ, so it remains
to check that the assumption n ≥ (t − s)−(γ+1)/(h+1) holds. Indeed, t − s ≥ δ/m and
m/δ ≤ na; thus, (t − s)−(γ+1)/(h+1) ≤ na(γ+1)/(h+1) < n by the choice of a. Hence,
Corollary 2 implies
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P
(∣∣ζn(jδ/m)− ζn(iδ/m)

∣∣ ≥ w
)
≤
(
(j− i)δ/m

)1+τ′

for some τ′ > 0. Hence, Theorem 12.2 from Billingsley’s book [11] implies that

P
(
Zm(δ) ≥ w

)
≤ Kδ1+τ′ (42)

for some K > 0, which depends on τ′ but not on δ.
Suppose now that Zm(δ) < w and supt∈[δ(i−1)/m,δi/m]

∣∣ζn(t)− ζn(δ(i − 1)/m)
∣∣ < w

for all i = 1, . . . , m. Then, supt∈[0,δ] |ζn(t)− ζn(0)| < 2w by the triangle inequality. Hence,

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ 2w
)

≤ P
(
Zm(δ) ≥ w

)
+ mP

(
sup

t∈[0,δ/m]

∣∣ζn(t)− ζn(0)
∣∣ ≥ w

)
≤ (K + 1)δ1+τ1

with τ1 = min{τ, τ′}, by inequalities (41) and (42). This argument works for any δ ≤
min{δ0, δ1}, with δ0 and δ1 given by Lemma 4 and Corollary 2, and choosing δ > 0 small
enough, one can guarantee that (K + 1)δτ1 ≤ ε. This proves (28) (with 2w instead of w, but
w > 0 is arbitrary) for all n ≥ n0, and the claim follows by application of Theorem 15.5
from Billingsley’s book [11].

7. Conclusions

The functional limit theorem for normalized cumulative sums of PSI-processes
(Theorem 1) can be used in opposite directions. The PSI-processes are very simple, and
some results can be obtained directly for their sums and imply the corresponding facts
for the limiting stationary Gaussian process ζ. On the other hand, the theory of stationary
Gaussian processes has been deeply developed in the last few decades, and some results
of this theory can have consequences for the pre-limiting processes (ζn), which model a
number of real life phenomena.

When γ < 1 in Assumption 1, there is some gap between the conditions implied by
the counterexample of Section 4, that is E|ξ0|2/γ+ε < ∞ for some ε > 0, and the actual
condition E|ξ0|2/γ2+ε < ∞ (see (11)) under which Theorem 1 is proven. Also, if Eλ < ∞,
it is still unclear if just the finiteness of the variance Eξ2

0 < ∞ would be sufficient for the
convergence in the Skorokhod space.
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Abstract: In this paper, we consider a class of additive functionals of a finite or countable collection
of the group frequencies of an empirical point process that corresponds to, at most, a countable
partition of the sample space. Under broad conditions, it is shown that the asymptotic behavior
of the distributions of such functionals is similar to the behavior of the distributions of the same
functionals of the accompanying Poisson point process. However, the Poisson versions of the additive
functionals under consideration, unlike the original ones, have the structure of sums (finite or infinite)
of independent random variables that allows us to reduce the asymptotic analysis of the distributions
of additive functionals of an empirical point process to classical problems of the theory of summation
of independent random variables.

Keywords: empirical point process; Poisson point process; Poissonization; group frequency; additive
functional

MSC: 60F05

1. Introduction

In this paper, we study a class of additive functionals (statistics) of a finite or countable
collection of group frequencies constructed by a sample of size n with a finite or countable
partition of the sample space. Under broad conditions, it is shown that, as n → ∞, the
asymptotic behavior of distributions of the additive functionals under consideration is com-
pletely similar to the behavior of distributions of the same functionals of the accompanying
Poisson point process. From here it is easy to establish that the above-mentioned weak
convergence is equivalent to that for the same additive functionals but with independent
group frequencies, which are constructed, respectively, using a finite or countable collection
of independent copies of the original sample, when we fix in the i-th partition element
only the points from the i-th independent copy of the original sample. In other words, in
the case under consideration, we remove the dependence of the initial group frequencies
with a multinomial distribution. This phenomenon makes it possible to directly use the
diverse tool of the summation theory of independent random variables to study the limiting
behavior of the additive statistics being considered.

The structure of this paper is as follows. In Section 2, we introduce the empirical
and accompanying Poisson vector point processes and formulate some important results
regarding their connection. In Section 3, we introduce a class of additive statistics and
give a number of examples. Section 4 contains the main result of the paper, i.e., a duality
theorem, which states that an original additive statistic with some normalizing and cen-
tering constants weakly converges to a limit if, and only if, their Poisson version with the
same normalizing and centering constants weakly converges to the same limit. In Section 5,
we discuss some applications of the duality theorem. In Section 6, we present moment
inequalities connecting the original additive statistics and their Poisson versions. Section 7
is devoted to asymptotic analysis of first two moments of additive statistics connected with
an infinite multinomial urn model. Section 8 contains proofs of all results of the paper.
Finally, in Section 9, we summarize the results and discuss some their extensions.
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2. Empirical and Poisson Point Processes

Let {X(k)
i , i ≥ 1}, k = 1, m be a finite set of independent copies of a sequence of

independent identically distributed random variables with values in an arbitrary measur-
able space (X,A) and distribution P. For any natural n1, . . . , nm, consider m independent
empirical point processes based on respective samples X(k)

1 , . . . , X(k)
nk , k = 1, m:

V(k)
nk (A) :=

nk

∑
i=1

IA(X(k)
i ), k = 1, m, A ∈ A.

Define the m independent accompanying Poisson point processes as

Π(k)
nk (A) :=

πk(nk)

∑
i=1

IA(X(k)
i ), k = 1, m, A ∈ A,

where πk(t), k = 1, m, are independent standard Poisson processes on the positive half-
line, which do not depend on all sequences {X(k)

i ; i ≥ 1}, k = 1, m. In other words,
Πnk (A) = Vπk(nk)

(A) for all k = 1, m. We consider the point processes Vnk (·) and Πnk (·) as
stochastic processes with trajectories from the measurable space (BA, C) of all bounded
functions indexed by the elements of the set A, with the σ-algebra C of all cylindrical
subsets of the space BA. The distributions of stochastic processes Vnk (·) and Πnk (·) on C
are defined in a standard way.

Now, we introduce the vector-valued empirical and accompanying Poisson point
processes

Vn̄(A) := (V(1)
n1 (A), . . . , V(m)

nm (A)) ≡ Vn̄,

Πn̄(A) := (Π(1)
n1 (A), . . . , Π(m)

nm (A)) ≡ Πn̄,

where n̄ = (n1, n2, . . . , nm). The vector-valued point processes Vn̄ and Πn̄ are considered
as random elements with values in the measurable space ((BA)m, Cm).

Let A0 ∈ A with p := P(A0) ∈ (0, 1). Consider the restrictions of the vector point
processes Vn̄ and Πn̄ to the set

A0 := {A ∈ A : A ⊆ A0}. (1)

These so-calledA0-restrictions are denoted by V0
n̄ and Π0

n̄, respectively. For the distributions
L(V0

n̄) and L(Π0
n̄) in the measurable space ((BA)m, Cm), there are the following three

assertions (some particular versions of these assertions have been proved in [1,2]).

Theorem 1. The following inequality is valid:

L(V0
n̄) ≤

1
(1− p)mL(Π

0
n̄). (2)

Corollary 1. For any non-negative measurable functional F defined on ((BA)m, Cm),

EF(V0
n̄) ≤

1
(1− p)m EF(Π0

n̄); (3)

the expectation on the right-hand side of (3) may be infinite at that.

The following result plays an essential role in proving the main result of the paper—a
duality limit theorem for the distributions L(Vn̄) and L(Πn̄) (see Theorem 3 below).

Theorem 2. For each multi-index n̄, one can define some vector point processes V0∗
n̄ and Π0∗

n̄ on a
common probability space so that they coincide in distribution with the point processes V0

n̄ and Π0
n̄,

respectively, and
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sup
Ac⊆A0

P

(
sup

A∈Ac

∥∥∥V0∗
n̄ (A)−Π0∗

n̄ (A)
∥∥∥ �= 0

)
≤ 1− (1− p)m < mp, (4)

where ‖(z1, . . . , zm)‖ := maxk≤m |zk|, and the outer supremum is taken over all at most countable
families Ac of sets from A0.

Remark 1. In Theorem 2, the sup-seminorm sup
A∈Ac

‖ · ‖ is obviously measurable with respect to the

cylindrical σ-algebra Cm. If instead of Ac we substitute the entire class A0 (possibly uncountable)
then this measurability may no longer exist (unless, of course, the point processes under consideration
do not have the separability property). Nevertheless, the assertion of Theorem 2 remains valid in
this case if the probability P is replaced by the outer probability P∗(No) := infN∈Cm :N⊇No P(N).
However, the outer probability has only the property of semiadditivity, which makes it difficult
to use.

Let measurable sets Δ1, Δ2, . . . form a finite or countable partition of the sample space under
the condition pi := P(Δi) > 0 for all i. Without loss of generality, we can assume that the sequence
{pi} is monotonically nonincreasing. Denoted by ν

(k)
nk1, ν

(k)
nk2, . . ., k = 1, m, the corresponding group

frequencies are defined by the sample X(k)
1 , . . . , X(k)

nk . Put

ν̄in̄ := Vn̄(Δi) =
(

ν
(1)
n1i , . . . , ν

(m)
nmi

)
, i = 1, 2, . . . .

Let us agree that everywhere below the limit relation n̄→ ∞ will be understood as nk → ∞
for all k = 1, m.

3. Additive Statistics: Examples

In the paper, we consider a class of additive statistics of the form

Φ f (Vn̄) := ∑
i≥1

fin̄(ν̄in̄), (5)

where f ≡ { fin̄} is an array of arbitrary finite functions defined on Zm
+ under the condition

∑
i≥1
| fin̄(0, . . . , 0)| < ∞ ∀n, (6)

which ensures the correct definition of the functional Φ f (Vn̄) in the case of a countable
partition of the sample space, since the sum under consideration contains only a finite set of
nonzero random vectors ν̄in̄. In the case of a finite partition and m = 1, additive functionals
of the form (5) were considered in [3–5].

We now give some examples of such statistics.
(1) Consider a finite partition {Δi; i = 1, . . . , N} of the sample space. Put fin̄(x̄)

:= |x̄−n̄pi |2
|n̄pi | , i = 1, . . . , N, where | · | is the standard Euclidean norm in Rm. Then the functional

Φχ2(Vn̄) :=
N

∑
i=1

|ν̄in̄ − n̄pi|2
|n̄pi|

(7)

is an m-variate version of a well-known χ2-statistic. Note that, in the present paper, we are
primarily interested in the case where N ≡ N(n̄)→ ∞ as n̄→ ∞.

(2) Let now the sizes of all m samples be equal: nj = n, j = 1, . . . , m. In an equivalent
reformulation of the original problem, we consider a sample of m-dimensional observations
{(X1

i , . . . , Xm
i ); i ≤ n} under the main hypothesis that the sample vector coordinates are

independent and have the same N-atomic distribution with unknown masses p1, . . . , pN .
In this case, the log-likelihood function can be represented as the additive functional

Φlog(Vn̄) :=
N

∑
i=1

(ν̄in̄, 1̄) log pi,
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where 1̄ is the unit vector in Rm and (·, ·) is the Euclidean inner product.
(3) Consider a finite or countable partition {Δi; i ≥ 1}. Let fin̄(x̄) ≡ f (x̄) := IB(x̄) be

the indicator function of some subset B ⊂ Zm
+ . Then the functional

ΦIB(Vn̄) := ∑
i≥1

IB(ν̄in̄) (8)

counts the number of partition elements (cells) containing any number of vector sample
observations from the range B in a multinomial scheme (finite or infinite) of placing particles
into cells (see [6–12]). Note that in the case of an infinite multinomial scheme in (8), it is
additionally assumed that 0 /∈ B.

In the case m = 2 and B = {(x, y) ∈ Z2
+ : x = 0, y > 0}, the two-sample statistic (8)

counts the number of nonempty cells after second (“additional”) series of trials (“future”
sample), which were empty in the first series (“original” sample). Statistics of such a kind
play an important role in the theory of species sampling (for example, see [13,14]). In this
case the functional (8) is called the number of unseen species in the original sample.

(4) In the case m = 1, consider the joint distribution (see [10]) of the random variables

ΦIB(Vn1), ΦIB(Vn1+n2), . . . , ΦIB(Vn1+...+nm)

defined in (8) by the sample (X1, . . . , XN), with N = n1 + . . . + nm. It is clear that studying
the asymptotic behavior of the joint distribution of these random variables (for example,
proving the multidimensional central limit theorem) can be reduced to the study of the
limit distributions of the linear combinations of the form

a1ΦIB(Vn1) + a2ΦIB(Vn1+n2) + . . . + amΦIB(Vn1+...+nm)

for almost all vectors (a1, . . . , am) with respect to the Lebesgue measure on Rm. It is easy to
see that, for any natural j ≤ m,

Vn1+...+nj = V(1)
n1 + . . . + V(j)

nj ,

where the empirical point processes V(1)
n1 , . . . , V(j)

nj are defined by the above-mentioned in-
dependent subsamples. So, in this case, we deal with a functional of the form (5) defined by
m independent empirical point processes corresponding to the m independent subsamples
(X1, . . . , Xn1), (Xn1+1, . . . , Xn1+n2),. . . , (XN−nm+1, . . . , XN), and with the array of functions

fin̄(x̄) ≡ f (x1, . . . , xm) := a1 IB(x1) + a2 IB(x1 + x2) + . . . + am IB(x1 + . . . + xm). (9)

(5) Consider the stochastic process {ΦIB(Vn̄); B ⊂ Zm
+} indexed by all subsets of Zm

+.
As was noted above, studying the asymptotic behavior of the joint distributions of this
process can be reduced to studying the asymptotic behavior of the distributions of any
linear combinations of corresponding one-dimensional projections of this process, i.e., to
studying the asymptotic behavior of the distributions of functionals of the form (5) for
m = 1 and the array of functions

fin̄(x) ≡ f (x) := a1 IB1(x) + a2 IB2(x) + . . . + ar IBr (x) (10)

for almost all vectors (a1, . . . , ar). For one-point sets, the asymptotic analysis of the above-
mentioned joint distributions can be found, for example, in [7–12].

(6) Consider the case m = 1 and the functional

Φ f (Vn) := ∑
i≥1

npi IB(νin), (11)

which counts the sampling ratio of the cells containing any number of particles from the
range B. For the one-point set B = {0}, such functional was considered in [9]. In general, if
instead of npi in (11) we consider arbitrary weights g(n, i) > 0 (under condition (6)) with

140



Mathematics 2022, 10, 4084

one or another interpretation, the functional Φ f (Vn) in this case will be interpreted as the
total weight of the corresponding cells.

4. Poissonization: Duality Theorem

In this section, we present the main result of the paper—a duality theorem for additive
statistics under consideration. First of all, we explain the term “Poissonization”. It means
that studying the limit behavior of the original additive statistics, we reduce the problem to
studying the following “Poissonian version” of the functional (5) under condition (6):

Φ f (Πn̄) := ∑
i≥1

fin̄(π̄in̄), (12)

where π̄in̄ =
(

π
(1)
n1i , . . . , π

(m)
nmi

)
, π

(k)
nki := Πnk (Δi), i ≥ 1, is a sequence of independent Poisson

random variables with respective parameters nk pi. It is clear that the functional (12) is
well defined with probability 1 since only a finite number of the vectors {π̄in̄} differ from
the zero vector. Independence of the summands is a crucial difference of the Poisson
version of an additive functional from the original one. Some elements of Poissonization
for additive functionals of the form (8) and (10) are contained, for example, in [9,12].
In [9], the author used the well-known representation of an empirical point process as
the conditional Poisson point process under the condition that the number of atoms of
the accompanying Poisson point process equals n. Moreover, in [9], the simple known
representation π(n) = n + Op(

√
n) was employed, where Op(

√
n) denotes a random

variable such that Op(
√

n)/
√

n is bounded in probability as n → ∞. In [12], proving the
multivariate central limit theorem for the above-mentioned joint distributions (in fact, for
functionals of the form (10) in the case of one-point subsets {Bi}), the authors applied
a reduction to the joint distributions of the Poissonian versions of additive functionals
using known upper bounds for a multivariate Poisson approximation to a multinomial
distribution (see also [15]). The main goal of the paper is to establish a duality theorem,
which demonstrates absolute identity of the asymptotic behavior of the distributions of the
additive functionals under consideration and their Poissonian versions.

First, we formulate a crucial auxiliary assertion in proving the main result.

Lemma 1. Let {Δn̄} be an arbitrary scalar array satisfying the condition fin̄(πin̄)Δn̄
p→ 0 as

n̄→ ∞ for every fixed i. Then, for each multiindex n̄, one can define on a common probability space
a pair of point processes V∗n̄,Δn̄ and Π∗n̄,Δn̄ such that L(V∗n̄,Δn̄) = L(Vn̄), L(Π∗n̄,Δn̄) = L(Πn̄),
and for any ε > 0,

P
(
|Δn̄|

∣∣∣Φ f (V
∗
n̄,Δn̄)−Φ f (Π

∗
n̄,Δn̄)

∣∣∣ > ε
)
→ 0 as n̄→ ∞. (13)

Remark 2. Lemma 1 only asserts that the marginal distributions (that is, for each n̄ separately) of
the arrays {V∗n̄,Δn̄ , n̄ ∈ Zm

+} and {Vn̄, n̄ ∈ Zm
+}, and also {Π∗n̄,Δn̄ , n̄ ∈ Zm

+} and {Πn̄, n̄ ∈ Zm
+}.

Note that the probability in (13) is precisely determined by the marginal distributions of the
mentioned random arrays, i.e., formally, it also depends on n̄. Without loss of generality, we can
assume that pairs of point processes (V∗n̄,Δn̄ , Π∗n̄,Δ barn

) are independent in n̄ , and on this extended
probability space, the universal probability measure P in (13) is given in the standard way, which no
longer depends on n̄. In this case it is correct to speak about the convergence to zero in probability of
the sequence of random variables in (13).

Lemma 1 gives the key to the proof of the following duality theorem, a criterion
for the weak convergence of distributions of functionals of the point processes under
consideration. The essence of this result is that the asymptotic behavior of the distributions
of additive functionals of the point processes Vn̄ and Πn̄ is exactly the same. In addition,
one can also indicate a third class of additive functionals (under condition (6)) that has the
same property:
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Φ∗f := ∑
i≥1

fin̄(ν̄
∗
in̄),

where {ν̄∗in̄, i ≥ 1} is a sequence of independent random vectors such that L(ν̄∗in̄) = L(ν̄in̄)
for all i. The functional Φ∗f is well defined due to the Borel–Cantelli lemma and the simple
estimate P(ν̄∗in̄ �= 0) = P(ν̄in̄ �= 0) ≤ m‖n̄‖pi.

Let us agree that the symbol «=⇒» in what follows will denote the weak convergence
of distributions. The main result of the paper is as follows.

Theorem 3. Under the conditions of Lemma 1, the following three limit relations are equivalent as
n̄→ ∞:

(1) L
(

Φ f (Vn̄)Δn̄ −Mn̄

)
=⇒ L(γ),

(2) L
(

Φ f (Πn̄)Δn̄ −Mn̄

)
=⇒ L(γ),

(3) L
(

Φ∗f Δn̄ −Mn̄

)
=⇒ L(γ),

where Mn̄ and Δn̄ are some scalar arrays and γ is some random variable.

5. Applications

Theorem 3 allows us to reduce the asymptotic analysis of the distributions of the
additive functionals under consideration to a similar analysis of their Poissonian versions,
i.e., to the asymptotic analysis of distributions of sums (finite or infinite) of independent
random variables, or to reduce the problem to studying the limit behavior of the distributi-
ons L

(
Φ f (Vn̄

)
, absolutely ignoring the dependence of the random variables {ν̄in̄, i ≥ 1}.

Note also that, under some rather broad assumptions, the law L(γ) will be infinitely
divisible. A detailed analysis of such conditions and corresponding examples will be
considered in a separate paper. Here we present only a few of these corollaries, focusing
our attention on the equivalence of the first two relations of Theorem 3.

First of all, we note one useful property of the expectations of the functionals under
consideration as functions of n̄.

Lemma 2. Let maxn̄ supx̄ | fin̄(x̄)| ≤ Ci, ∑
i≥1

Ci pi < ∞, and

∑
i≥1

E| fin̄(π̄in̄)| < ∞ ∀n̄. (14)

Then the relations lim
n̄→∞

|EΦ f (Vn̄)| = ∞ and lim
n̄→∞

|EΦ f (Πn̄)| = ∞ are equivalent. In the case of

infinite limits,
EΦ f (Vn̄) ∼ EΦ f (Πn̄) as n̄→ ∞.

Remark 3. For functionals of the form (8) in an infinite multinomial scheme, the conditions of
Lemma 2 are typical. Let m = 1 and B := {j : j > k} for any k ≥ 0. Then

lim
n→∞

EΦ f (Vn) = lim
n→∞ ∑

i≥1
P(νin > k) = ∞

since, by virtue of the law of large numbers, lim
n→∞

P(νin > k) → 1 for every fixed i. Moreover,

in the case under consideration, obviously, EΦ f (Vn) ≤ n. Similarly, without any restrictions
on the probabilities {pi}, the infinite limits in Lemma 2 for functionals of the form (8) (and even
more so for (11)) also hold for the set B consisting of all odd natural numbers. Here the limit
relation lim

n→∞
EΦ f (Πn̄) ≡ lim

n→∞
∑

i ge1
P(πin ∈ B) = ∞ follows immediately from the equality

P(πin ∈ B) = 1
2 (1− e−2npi ).
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It is also worth noting that for some sets B the main contribution to the limit behavior
of the series ∑

i≥1
P(πin ∈ B) can be made not only by their initial segments but also tails.

For example, this will be the case for any one-point sets Bk := {k} for k > 0 if the group
probabilities are given as pi = Ci−1−b or pi = ce−Coiα for some constants c, C, Co, b > 0
and α ∈ (0, 1). In this case, for any subset B of natural numbers in the definition of the
functionals (8) and (11), the expectation limits indicated in Lemma 2 will be infinite (see
Section 7 and [9,12]). On the other hand, if pi = ce−Coi, then for any one-point set the
expectations mentioned will be bounded uniformly in n (see Section 7 and [9,12]). For
more complex functionals with kernels (9) or (10) for the above-mentioned distributions
{pi}, one can find sufficiently broad conditions that ensure unbounded increase in their
expectations and variances as n̄→ ∞ for almost all vectors (a1, . . . , ar) ∈ Rr (see Section 7).

Now we present one of the corollaries of Theorem 3, namely, the law of large numbers
for the additive functionals under consideration, setting in this theorem
Δn̄ := (EΦ f (Πn̄))−1, Mn̄ := 0, and γ := 1.

Corollary 2. Let the conditions of Lemma 2 be fulfilled. If |EΦ f (Πn̄)| → ∞ as n̄→ ∞ then the
following criterion holds:

Φ f (Vn̄)

EΦ f (Vn̄)

p−→ 1 iff
Φ f (Πn̄)

EΦ f (Πn̄)

p−→ 1;

in this case, the normalizations EΦ f (Vn̄) and EΦ f (Πn̄) can be swapped.

Remark 4. In consideration of Chebyshev’s inequality, a sufficient condition for the limit relations
in Corollary 2 is as follows:

∑
i≥1

D fin̄(π̄in̄)(
∑

i≥1
E fin̄(π̄in̄)

)2 → 0.

For example, let fin̄(·) ≥ 0 and sup
x̄,i,n̄

fin̄(x̄) ≤ C0. Then D fin̄(π̄in̄) ≤ C0E fin̄(π̄in̄) and

∑
i≥1

D fin̄(π̄in̄)(
∑

i≥1
E fin̄(π̄in̄)

)2 ≤ C0

∣∣∣∣∣∑i≥1
E fin̄(π̄in̄)

∣∣∣∣∣
−1

→ 0.

In particular, this estimate is valid in the case fin̄(x̄) ≡ f (x̄) := IB(x̄), with 0 /∈ B, if only
EΦ f (Πn̄) = ∑

i≥1
P(π̄in̄ ∈ B)→ ∞.

We now formulate an analog of Lemma 2 for the variances of the functionals under
consideration.

Lemma 3. Under the conditions maxn̄ supx̄ | fin̄(x̄)| ≤ Ci ∀i and ∑
i≥1

C2
i pi < ∞ the limit relation

lim
n̄→∞

DΦ f (Vn̄) = ∞ holds if and only if lim
n̄→∞

DΦ f (Πn̄) = ∞. In the case of infinite limit the

following equivalence is valid: DΦ f (Vn̄) ∼ DΦ f (Πn̄) as n̄→ ∞.

Lemma 3 and Theorem 3 imply the following important criterion, which allows us to
reduce proving the central limit theorem for additive functionals Φ f (Vn̄) to proving the
same assertion for the Poissonian version Φ f (Πn̄).

Corollary 3. Under the conditions of Lemma 3 and DΦ f (Πn̄)→ ∞ as n̄→ ∞ the limit relation

143



Mathematics 2022, 10, 4084

L
(

Φ f (Vn̄)− EΦ f (Vn̄)

D1/2Φ f (Vn̄)

)
=⇒ N(0, 1) as n̄→ ∞,

is valid if, and only if,

L
(

Φ f (Πn̄)− EΦ f (Πn̄)

D1/2Φ f (Πn̄)

)
=⇒ N (0, 1) as n̄→ ∞,

where N (0, 1) is the standard normal distribution. In this case, the normalizing and centering
sequences in these two limit relations can be, respectively, swapped.

In order to prove this corollary we should put in Theorem 3 Δn̄ := D−1/2Φ f (Πn̄),
Mn̄ := EΦ f (Vn̄)D−1/2Φ f (Πn̄), and L(γ) := N (0, 1). In this case, Lemma 3 allows us only
to replace the normalizing and centering sequences in Theorem 3 with some equivalent
sequences.

Remark 5. The validity of the central limit theorem for the sequence Φ f (Πn̄) in Theorem 3 will be
justified if, say, the third-order Lyapunov condition is met:

∑
i≥1

E| fin̄(π̄in̄)− E fin̄(π̄in̄)|3(
∑

i≥1
D fin̄(π̄in̄)

)3/2 → 0 as n̄→ ∞.

For example, let sup
x̄,i,n̄
| fin̄(x̄)| ≤ C0. Then it is easy to see that

∑
i≥1

E| fin̄(π̄in̄)− E fin̄(π̄in̄)|3 ≤ 2C0 ∑
i≥1

D fin̄(π̄in̄).

Thus, if DΦ f (Πn̄)→ ∞as n̄→ ∞, then the Lyapunov condition will be met and the approval
of the above investigation will take place. So an important special case fin̄(x̄) := IB(x̄) is included
in the scheme at issue if

DΦIB(Πn̄) = ∑
i≥1

P(π̄in̄ ∈ B)(1− P(π̄in̄ ∈ B))→ ∞ as n̄→ ∞.

Note that examples for which the specified variance property takes place or is violated are given,
for example, in [9].

Finally, here is another consequence of Theorem 3, relating to the asymptotic behavior of
χ2-statistics in (7) at m = 1 and N ≡ N(n)→ ∞. First of all, note that

EΦχ2(Πn) = N,

Dn := DΦχ2(Πn) = 2N +
N

∑
i=1

1
npi

.

Corollary 4. Let N ≡ N(n) → ∞ as n → ∞. Then the following two asymptotic relations
are equivalent:

L
(

Φχ2(Vn)− N

Dn
1/2

)
=⇒ N (0, 1), (15)

L
(

Φχ2(Πn)− N

Dn
1/2

)
=⇒ N (0, 1). (16)

Note that in the present case, the requirement of Lemma 1 is met, since each term
(νin−npi)

2

npi
(as a sequence of n) is bounded in probability due to Markov’s inequality, and
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therefore, with the normalizing sequence Δn := D−1
n , this term will tend to zero in proba-

bility as n→ ∞.

Remark 6. In the relations (15) and (16) we can say just about the double limit when N, n→ ∞
because this assertion is missing restrictions on the rate of increase in the sequence N(n). The
proposed formulation in Corollary 4, equivalent to the one just mentioned, is more convenient to
refer to Theorem 3. Note that the centering sequence En can be replaced with its equivalent sequence
EΦχ2(Vn) = N − 1. Replacement in the normalization in (15) the variance Dn with the variance
of the χ2-statistic itself, i.e., by the term (for example, see [16])

DΦχ2(Vn) = 2N +
1
N

N

∑
i=1

1
npi
− 3N − 2

n
,

is possible only if these two variances are equivalent. For example, this would be the case if
mini≤N npi → ∞. This means that the growth rate of the sequence N ≡ N(n) is subject to
appropriate constraints, which is not the case in the above consequence. So, in this assertion we can
talk about a double limit as n, N → ∞.

The formulated criterion allows us to establish a fairly general sufficient condition for
the asymptotic normality of χ2-statistics with an increasing number of groups.

Theorem 4. Let N ≡ N(n)→ ∞ as n→ ∞. Then the asymptotic relation (15) is valid if

∑N
i=1(npi)

−2(
N + ∑N

i=1(npi)−1
)3/2 −→ 0 (17)

as n→ ∞.

The problem of finding more or less broad sufficient conditions for asymptotic nor-
mality χ2-statistics with a growing number of groups were studied by many authors in the
second half of the last century (for example, see [3–5,16–18]). Note that all known sufficient
conditions for the above weak convergence imply fulfillment of the asymptotic relation (17).
For example, the condition mini≤N npi → ∞ along with N → ∞ (see [17,18]), obviously
immediately entails relation (17). It is equally obvious that the requirement of the so-called
regularity of multinomial models (see [3–5]), i.e.,

0 < c1 ≤ min
i≤N

Npi, max
i≤N

Npi < c2 < ∞,

where the constants c1 and c2 are independent of N, also implies (17). On the other hand, it
is easy to construct examples in which the regularity requirement of the multinomial model
is violated but relation (17) is valid. For example, let pi := CNi−1−b, i = 1, . . . , N, where

b > 0 and CN :=
(

∑i≤N i−1−b
)−1

. It is easy to see that, as N → ∞, the sums ∑N
i=1 p−2

i and

∑N
i=1 p−1

i increase as N3+2b and N2+b, respectively. Therefore, as n, N → ∞, the ratio in (17)
is equivalent to

N3+2b
√

n(N2+b)3/2 =
Nb/2
√

n

up to a constant factor. So, here we already need to measure the growth rate N with
n. Obviously, in this case, in order to fulfill condition (17), you need to require that
N = o(n1/b). If the probabilities pi decrease exponentially then the growth rate zone
for N narrows to o(log n). It is worth to note that for the above-mentioned power-type
probabilities at issue the condition mini≤N npi → ∞ implies the asymptotic relation
N = o(n1/(b+1)) that is more restrictive than the above constraint.
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6. Probability and Moment Inequalities

The next theorem is related to estimation of the distribution tails of additive functionals.

Theorem 5. Let fin̄(·) ≥ 0 for all i. Then, for any x > 0,

P(Φ f (Vn̄) ≥ x) ≤ 2C∗P(Φ f (Πn̄) ≥ x/2), (18)

where C∗ := min
j≥1

max{(∑i≤j pi)
−1, (∑i>j pi)

−1}. If additionally supx f1n̄(x) ≤ c0 then

P(Φ f (Vn̄) ≥ x) ≤ p−1
1 P(Φ f (Πn̄) ≥ x− c0). (19)

Remark 7. In (19), the constant c0 may depend on n̄. What is more, we can use the truncation of
the random variable f1n̄(νin̄) at the level c0, while adding to the right-hand side of inequality (19)
the probability P( f1n̄(νin̄) > c0).

Corollary 5. Under the conditions of Theorem 5, let F be a continuous nondecreasing function
defined on R+, with F(0) = 0. If EF(2Φ f (Πn̄)) < ∞ then

EF(Φ f (Vn̄)) ≤ 2C∗EF(2Φ f (Πn̄)). (20)

As an example, consider the functional ΦIB(Vn̄) defined in (8). Then, as a consequence
of (19) and Chernoff’s upper bound [19] for the distribution tail of a sum of independent
nonidentically distributed Bernoulli random variables (the transition from finite sums to
series in this case is obvious), we obtain the following result.

Corollary 6. Put Mn(B) := EΦIB(Πn̄) = ∑i≥1 P(πin ∈ B). Then for any ε > (Mn(B))−1 the
following inequality holds:

P

(∣∣∣∣∣ΦIB(Vn̄)

Mn(B)
− 1

∣∣∣∣∣ > ε

)
≤ 2p−1

1 e−
δ2 Mn(B)

2+δ , (21)

where δ := ε− 1
Mn(B) > 0.

Remark 8. one can replace the Poissonian mean Mn(B) in (21) with the mean EΦIB(Vn̄), which
differs from Mn(B) by no more than 1 due to Barbour–Hall’s estimate of the Poisson approximation
to a binomial distribution (see [15,20]). Further, if the condition Mn(B) → ∞ is met as n → ∞
then from (21) we obtain not only the law of large numbers (already formulated in Corollary 2),
but at a certain growth rate of the sequence Mn(B), the strong law of large numbers (SLLN) (see
Section 7). If in the case m = 1 we consider the infinite intervals B ≡ Bk := {i : i > k} for any
k ∈ Z+ then the SLLN occurs at any speed of increasing the sequence Mn(B) to infinity. This
follows from estimate (21), the monotonicity of the functions IBk (x), and the simple technique in
proving SLLN in [9,21].

7. Asymptotic Analysis of the Means and Variances of Additive Statistics

In the previous section, it was noted that when proving certain limit theorems for the
introduced additive functionals, it is extremely important to have information about the
behavior of their means and variances. In this section, for additive statistics (8)–(11), we
demonstrate exactly how the asymptotic behavior of these moments is studied. To simplify
the notation, we will consider here the case m = 1. The subsequent asymptotic analysis is
based on the following elementary assertion, which is presented in one way or another in
many papers on this topic.

Lemma 4. Let fn(x) be a sequence of non-negative, integrable, and piecewise monotonic functions
defined on R+. Suppose that each fn(x) has M monotonicity intervals, where M is independent of
n. Finally, assume that, as n→ ∞,
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∞∫
0

fn(x)dx → ∞, sup
x≥0

fn(x) = o

⎛⎝ ∞∫
0

fn(x)dx

⎞⎠.

Then, as n→ ∞,

∑
j>0

fn(j) ∼
∞∫

0

fn(x)dx.

We now give a few examples of calculating the asymptotics we need.
(1) Let Bk := {i : i > k} for any k ∈ Z+. In Remark 3 it was already noted that

Mn(Bk)→ ∞ due to the strong law of large numbers for binomially distributed random
variables. However, for specific classes of distributions {pi}, one can estimate the growth
rate of the sequence {Mn(Bk)}. For example, let pi := Ci−1−b, where b > 0, i = 1, 2, . . ..
Then, using Lemma 4 and the well-known connection between the tail of a Poisson distri-
bution and the corresponding gamma distribution, we obtain after integration by parts and
a change of the integration variable:

Mn(Bk) ≡ ∑
i≥1

P(πin > k) = ∑
i≥1

γk+1,1(npi)

∼ (Cn)
1

1+b

∞∫
0

γk+1,1(y−1−b)dy =
(Cn)

1
1+b

k!
Γ
(

k +
b

1 + b

)
, (22)

where γk+1,1(z) :=
z∫

0

tk

k! e−tdt, Γ(z) :=
∞∫
0

tz−1e−tdt, z > 0, are the distribution function of

the gamma-distribution with parameters (k + 1, 1), and the gamma-function, , respectively.
For example, if k = 0 then the asymptotics of the expectation of the number of nonempty
cells is as follows (see [6,9]):

Mn(B0) ∼ (Cn)
1

1+b

∞∫
0

(1− e−y−1−b
)dy = (Cn)

1
1+b Γ

(
b

1 + b

)
. (23)

By analogy to the arguments in proving (22), after an appropriate change of the integration
variable, we obtain for the one-point sets the following asymptotics:

Mn({k}) ∼ (Cn)
1

1+b

∞∫
0

y−k(1+b)

k!
e−y−1−b

dy

=
(Cn)

1
1+b

(1 + b)k!

∞∫
0

xk−1− 1
1+b e−xdx =

(Cn)
1

1+b

(1 + b)k!
Γ
(

k− 1
1 + b

)
. (24)

Thus, from (24) it follows that for any subset B of the natural series in the case under
consideration of a power-law decrease in {pi} the following asymptotic representation
is true:

Mn(B) ∼ (Cn)
1

1+b

(1 + b) ∑
k∈B

1
k!

Γ
(

k− 1
1 + b

)
. (25)

Note that, due to the countable additivity of the finite measure Mn(·) and the relations (22)–(24),
the sum (possibly infinite) in (25) will always be finite.

Remark 9. Inequality (21), relation (25), and the Borel–Cantelli lemma guarantee that the strong
law of large numbers holds for the sequence {Mn(B)} for any subsets B of the natural series in the
case of a power-law decrease in the probabilities {pi}. Moreover, what has been said and the above
asymptotics are also preserved for probabilities of the form pi := C(i)i−1−b, where C(x) is a slowly
varying function under certain minimal constraints (see [9,12]). In this case, in the asymptotic
relations (22)–(25) instead of C one should substitute C(n).
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Asymptotic behavior of the variances of the functionals ΦIB(Πn) for some B and
broad conditions on the rate of decrease in the sequence {pi} is given in [9]. Here we
only demonstrate how this variance is calculated for arbitrary subsets B of the natural
series under the above conditions on {pi}. Analogously with (22) we have for the infinite
intervals Bk:

Dn(Bk) := DΦIBk
(Πn) = ∑

i≥1
P(πin > k)−∑

i≥1
P2(πin > k)

= ∑
i≥1

γk+1,1(npi)−∑
i≥1

γ2
k+1,1(npi) ∼ (Cn)

1
1+b

∞∫
0

(
γk+1,1(y−1−b)− γ2

k+1,1(y
−1−b)

)
dy. (26)

Similarly to proving (24), we derive the asymptotics of the variance for the one-point sets:

Dn({k}) = ∑
i≥1

P(πin = k)−∑
i≥1

P2(πin = k)

=
(Cn)

1
1+b

(1 + b)

⎛⎝ ∞∫
0

1
k!

xk−1− 1
1+b e−xdx−

∞∫
0

1
(k!)2 x2k−1− 1

1+b e−2xdx

⎞⎠
=

(Cn)
1

1+b

(1 + b)k!

(
Γ
(

k− 1
1 + b

)
− 2

1
1+b−2k

k!
Γ
(

2k− 1
1 + b

))
. (27)

Although the set function Dn(·) is not additive, the extension to arbitrary subsets B of
the natural series of computing the asymptotics of Dn(B) presents no difficulty. Along
with formula (25), which gives one term in the resulting asymptotics, we use the following
representation for the second sum:

∑
i≥1

P2(πin ∈ B) ∼ (Cn)
1

1+b

1 + b

∞∫
0

(
∑
k∈B

xk

k!

)2

x−1− 1
1+b e−2xdx

=
(Cn)

1
1+b

1 + b ∑
k,l∈B

2
1

1+b−k−l

k!l!
Γ
(

k + l − 1
1 + b

)
. (28)

Thus, the difference between the right-hand sides of (25) and (28) determines the asymptotic
of Dn(B) for any subset of the natural series.

(2) The asymptotics of the first two moments for the functionals (10) for pairwise dis-
joint sets {Bj} is derived in exactly the same way. In the case of one-point sets
Bj := {kj}, the asymptotic behavior of the first moment immediately follows from the pre-
vious calculations. As for the variance, we should first note that, due to the orthogonality
of the indicator random variables under consideration, we have

D
r

∑
s=1

as IBs(πin) =
r

∑
s=1

a2
s P(πin = ks)−

(
r

∑
s=1

asP(πin = ks)

)2

=
r

∑
s=1

a2
s P(πin = ks)−

r

∑
j,s=1

asajP(πin = ks)P(πin = kj).

Summation over i of the resulting expression and the previous calculations give the desired
asymptotics:

DΦ f (Πn) ∼
(Cn)

1
1+b

b + 1

r

∑
s,j=1

⎡⎣ a2
s

rks!
Γ
(

ks −
1

b + 1

)
−

2
1

b+1−ks−kj asaj

ks!kj!
Γ
(

ks + kj −
1

b + 1

)⎤⎦.
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We note the resulting representation can vanish on the set of vectors (a1, . . . , ar) of zero

Lebesgue measure in Rr, i.e., on the surface defined by the relation
r
∑

s,j=1
Bs,jasaj = 0 for

some coefficients {Bs,j}.
For infinite intervals of the form Bj := {i : i > kj}, the variance is studied in a similar

way. We assume without loss of generality that k1 ≤ k2 ≤ . . . ≤ kr. To calculate the variance
of this functional, it suffices for us to restrict ourselves to the second moment, since the
asymptotics of the first one has already been studied. We have

E

(
r

∑
s=1

as I(πin > ks)

)2

=
r

∑
s=1

a2
s P(πin > ks) + 2E

r−1

∑
j=1

aj I
(
πin > kj

) r

∑
s>j

as I(πin > ks)

=
r

∑
s=1

a2
s P(πin > ks) + 2E

r−1

∑
j=1

aj

r

∑
s>j

as I(πin > ks)

=
r

∑
s=1

a2
s P(πin > ks) + 2

r−1

∑
j=1

aj

r

∑
s>j

asP(πin > ks).

Further calculations in essence have already been made earlier. So, finally we obtain

DΦ f (Πn) ∼ (Cn)
1

1+b
r

∑
s,j=1

⎡⎣ a2
s
r

∞∫
0

Γks+1,1(v−1−b)dv− asaj

∞∫
0

Γks+1,1(v−1−b)Γkj+1,1(v−1−b)dv

⎤⎦
with comments similar to the above regarding the zeroing of the double sum.

To conclude this section, we give an example where the above-mentioned moments of
the functional under consideration do not tend to infinity as n grows. We put pj = e−Cj,
with C := log 2. Let us show that

sup
n

∑
j≥1

P(πnj = k) < ∞.

This estimate obviously implies that the first two moments of the functional ΦIB(Πn) are
uniformly bounded in n for B := {k}. Indeed, one has

∑
j≥1

P(πnj = k) =
nk

k! ∑
j≥1

e−ne−Cj
e−Ckj ≤ eCknk

k!

∞∫
1

e−ne−Cx
e−Ckxdx

=
eCknk

Ck!

e−C∫
0

e−nttk−1dt =
eCk

Ck!

ne−C∫
0

e−uuk−1du;

here we used the estimate e−ne−Cj
e−Ckj ≤ eCke−ne−Cx

e−Ckx for all x ∈ [j, j + 1], also rep-
resenting the integral over the semiaxis [0, ∞) as a series of integrals over the indicated
segments of unit length. If n→ ∞ then the integral in the last expression converges mono-
tonically to the quantity Γ(k), which proves our assertion. Note also that a similar example
is given in [9].

8. Proofs

Proof of Theorem 1. The assertion of the theorem is essentially a consequence of some
results from [1,2,22,23] . First we introduce the necessary notation and recall the assertions
from [22,23] we need.

Let {Yi} be a sequence of independent identically distributed random elements taking
values in a measurable Abelian group (G,A) with measurable operation «+». Assume
that the zero (neutral) element 0, as a one-point set, belongs to σ-algebra A and p := P

(Y1 �= 0) ∈ (0, 1). Denote by {Y0
i } a sequence of independent identically distributed

random variables with marginal distribution
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L(Y0
1 ) = L(Y1|Y1 �= 0),

and also put Sn := Σn
i=1Yi and S0

n := Σn
i=1Y0

i . In [1,2,22], the following assertion
was obtained.

Lemma 5. For any natural n, the following representations are valid:

L(Sn) = L(S0
ν(n,p)), L(Sπ(n)) = L(S0

π(np)), (29)

where L(ν(n, p)) ≡ Bn,p, is the binomial distribution with parameters n and p, π(t) is a standard
Poisson process; wherein the pair (ν(n, p), π(np)) does not depend on the sequence {X0

i }.

The second important assertion gives an estimate for the Radon–Nikodim derivative
of the binomial distribution with respect to the accompanying Poisson law (see [23]).

Lemma 6. For all p ∈ (0, 1) and natural n, the following estimate holds:

sup
k≥0

Bn,p(k)
L(π(np))(k)

≤ 1
1− p

. (30)

Remark 10. There are other estimates for this Radon–Nikodim derivative. For example, in [24], it
was established that

sup
k≥0

Bn,p(k)
L(π(np))(k)

≤ 2√
1− p

for any n and p ∈ (0, 1). Note that for p ≥ 3/4 this estimate is more accurate than (30).

It is clear that it is enough to prove the assertion for m = 1. A proof of the general case
is carried out by induction on m and immediately follows from the total probability formula
and an estimate for the conditional probability when m− 1 coordinates of the vector Vn̄
are fixed. From (29) and (30) and the total probability formula (when the sequence {Y0

i } is
fixed) we obtain the inequality

L(Sn) ≤
1

1− p
L(Sπ(n)). (31)

Now we put Yi := IA(X(1)
i ), A ∈ A0, where A0 is defined in (1). Consider the

Abelian group

G :=

{
k

∑
i=1

ei IA(zi), A ∈ A0; ∀k ≥ 1, ∀zi ∈ X, ∀ei = −1, 1

}

and equip this group with the cylindric σ-algebra. It is clear that Yi ∈ G and the following
is true: P(Y1 �= 0) = P(A0) = p ∈ (0, 1). So, inequality (2) follows from (31) and the
above-mentioned induction on m.

Proof of Theorem 2. We will carry out our reasoning in the generality and notation of
the proof of Theorem 1. Both relations (29) will be the basis of construction where the
sequence {Y0

i } is assumed to be the same in constructing the sums S0
n and S0

π(n) on a
common probability space. So, to prove the first two assertion of the theorem, we only need
to construct on the common probability space the random variables ν(n, p) and πnp so that
they would be as close as possible to each other. The resulting probability space will be the
direct product of the two probability spaces where are, respectively, defined the sequence
of independent identically distributed random variables {Y0

i } and the above-mentioned
pair of scalar indices. For the optimal definition of random indices ν(n, p) and πnp on a
common probability space, we use Dobrushin’s theorem (see [25]), which guarantees the
existence of marginal copies ν∗(n, p) and π∗np of the mentioned random indices defined on
a common probability space so that
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P(ν∗(n, p) �= π∗np) = dTV(L(ν(n, p),L(πnp)), (32)

where dTV(·, ·) is the total variation distance between distributions. Now we use the
well-known estimate of Poisson approximation to a binomial distribution (see [15,20]):

dTV(L(ν(n, p),L(πnp)) ≤ p ∧ (np2) ≤ p. (33)

Using the described construction to each of the m independent coordinates of the vector
point processes under consideration, we easily obtain from (32) and (33) the assertion of
the theorem.

Proof of Lemma 1. Fix a multi-index n̄. Let us assume that the point processes Vn̄ and Πn̄
are defined on the same probability space in one way or another. Then for any natural k we
have the estimate

|Φ f (Vn̄)−Φ f (Πn̄)| ≤ ∑
i≥k
| fin̄(ν̄in̄)− fin̄(π̄in̄)|+ ζkn̄, (34)

where ζkn̄ := ∑
i<k
| fin̄(ν̄in̄)|+ ∑

i<k
| fin̄(π̄in̄)|. Put A0 :=

⋃
i≥k

Δi, p(k) := P(A0) = ∑
i≥k

pi. Note

that the tail of the series on the right-hand side of inequality (34) is a functional of the
A0-restrictions of the studied vector point processes defined on common probability space.
So we can use Theorem 2, which guarantees the existence of an absolute coupling (de-
pending on k) of the mentioned A0-restrictions with the following lower bound for the
coincidence probability (see (4); here, in order not to clutter up the notation, we omit the
upper symbol «*»):

P

⎛⎜⎜⎜⎜⎝
(ν

(1)
n1k, ν

(1)
n1k+1, . . .) = (π

(1)
n1k, π

(1)
n1k+1, . . .)

(ν
(2)
n2k, ν

(2)
n2k+1, . . .) = (π

(2)
n2k, π

(2)
n2k+1, . . .)

. . . . . . . . .
(ν

(m)
nmk, ν

(m)
nmk+1, . . .) = (π

(m)
nmk, π

(m)
nmk+1, . . .)

⎞⎟⎟⎟⎟⎠

= P

⎛⎝ sup
Δj , j≥k

∥∥∥V0
n̄ (Δj, . . . , Δj)−Π0

n̄(Δj, . . . , Δj)
∥∥∥ = 0

⎞⎠ ≥ (1− p(k))m. (35)

Hence, the coupling method of Theorem 2 vanishes the first term on the right-hand side of
(34) with a probability no less than (1− p(k))m.

Further, by virtue of estimate (2) we conclude that L(ν̄in̄)) ≤ 1
(1−pi)mL(π̄in̄) for any i.

Therefore, by virtue of the conditions of the theorem, we have Δn̄ fin̄(νin̄)
p→ 0 for any i for

n̄→ ∞. So, for any given (obviously, such construction exists) random variable ζkn̄ on the
same probability space with the A0-restrictions of the point processes mentioned above,

there is the relation Δn̄ζkn̄
p→ 0 for n̄ → ∞ for any fixed k. Therefore, using the diagonal

method, one can choose k ≡ k(n̄) → ∞ for n̄ → ∞, for which Δn̄ζkn̄
p→ 0 as n̄ → ∞.

After constructing the point processes under consideration on a common probability space
by the method of Theorem 2 for each n̄ and already chosen k(n̄) (in this case, obviously,
p(k(n))→ 0), the limit relation (13) will hold. Lemma 1 is proved.

Proof of Theorem 3. The equivalence of items 1 and 2 directly follows from Lemma 1 and
the evident two-sided estimate

P(ξ ≤ x− ε)− P(|ξ − η| > ε) ≤ P(η ≤ x) ≤ P(ξ ≤ x + ε) + P(|ξ − η| > ε)

for any x ∈ R, ε > 0, and arbitrary random variables ξ and η defined on a common
probability space. It remains to put

ξ := Φ f (V
∗
n̄,Δn̄)Δn̄ −Mn̄, η := Φ f (Π

∗
n̄,Δn̄)Δn̄ −Mn̄,
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where the point processes V∗n̄,Δn̄
and Π∗n̄,Δn̄ are defined in Lemma 1.

We now prove the equivalence of items 2 and 3 of the theorem. To this end we need to
reformulate the assertion in Lemma 1 where we substitute Φ∗f for the functional Φ f (Vn̄).
As the resulting probability space in this assertion, we consider the direct product of the
probability spaces where νni and πni are defined by Dobrushin’s theorem. We only note
that, after such construction,

P({ν̄∗in̄, i ≥ k} ≡ {π̄in̄, i ≥ k}) ≥ 1−m ∑
i≥k

pi ∼ 1

if only k → ∞. Further, we repeat the corresponding reasoning in the proof of Lemma 1
(using the corresponding analog of (34)) as well as the above-mentioned arguments in
proving the equivalence of items 1 and 2.

Proof of Lemma 2. We restrict ourselves to the case m = 2. For an arbitrary m, the assertion
can be easily proved by induction on m using analogues of the estimates that will be given
below. So we have

EΦ f (Vn̄) = ∑
i≥1

∑
k1,k2≥0

fin̄(k1, k2)P(ν
(1)
in1

= k1)P(ν
(2)
in2

= k2),

EΦ f (Πn̄) = ∑
i≥1

∑
k1,k2≥0

fin̄(k1, k2)P(π
(1)
in1

= k1)P(π
(2)
in2

= k2);

here the introduction of the operator E under the summation sign in the second formula is
legal due to (14) and Fubini’s theorem. Now, estimate the total variation distance between
the distributions of the vectors (ν(1)in1

, ν
(2)
in2

) and (π
(1)
in1

, π
(2)
in2

):

∑
k1,k2≥0

|P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π
(1)
in1

= k1)P(π
(2)
in2

= k2)|

≤ ∑
k1,k2≥0

|P(ν(1)in1
= k1)− P(π

(1)
in1

= k1)|P(ν(2)in2
= k2)

+ ∑
k1,k2≥0

|P(ν(2)in2
= k2)− P(π

(2)
in2

= k2)|P(π(1)
in1

= k1)

= ∑
k1≥0
|P(ν(1)in1

= k1)− P(π
(1)
in1

= k1)|+ ∑
k2≥0
|P(ν(2)in2

= k2)− P(π
(2)
in2

= k2)|.

We now use once more Barbour–Hall’s upper bound (see [15,20]) for the total variation
distance between the distributions L

(
ν
(j)
inj

)
and L

(
π
(j)
inj

)
:

∑
kj≥0
|P(ν(j)

inj
= kj)− P(π

(j)
inj

= kj)| < 2pi, j = 1, m.

Then the total variation distance between the distributions of the bivariate vectors under
consideration is estimated as follows:

∑
k1,k2≥0

|P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π
(1)
in1

= k1)P(π
(2)
in2

= k2)| ≤ 4pi.

Therefore,
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∣∣∣∣∣∑i≥1
∑

k1,k2≥0
fin̄(k1, k2)P(ν

(1)
in1

= k1)P(ν
(2)
in2

= k2)

− ∑
i≥1

∑
k1,k2≥0

fin̄(k1, k2)P(π
(1)
in1

= k1)P(π
(2)
in2

= k2)

∣∣∣∣∣
≤ ∑

i≥1
Ci ∑

k1,k2≥0

∣∣∣P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π
(1)
in1

= k1)P(π
(2)
in2

= k2)
∣∣∣ ≤ 4 ∑

i≥1
Ci pi

or
|EΦ f (Vn̄)− EΦ f (Πn̄)| ≤ 4 ∑

i≥1
Ci pi.

From here we obtain the assertion we need.

Proof of Lemma 3. As in the proof of Lemma 2, we restrict ourselves to the case m = 2. It
is clear that we need to examine two series

S1(Vn̄) := ∑
i≥1

∑
k1,k2≥0

f 2
in̄(k1, k2)P(ν

(1)
in1

= k1)P(ν
(2)
in2

= k2),

S2(Vn̄) := ∑
i≥1

(
∑

k1,k2≥0
fin̄(k1, k2)P(ν

(1)
in1

= k1)P(ν
(2)
in2

= k2)

)2

,

In the same way as in the proof of Lemma 1, we obtain

|S1(Vn̄)− S1(Πn̄)| ≤ 4 ∑
i≥1

C2
i pi.

Similarly,

|S2(Vn̄)− S2(Πn̄)|
≤ ∑

i≥1
2Ci ∑

k1,k2≥0
| fin̄(k1, k2)|

∣∣∣P(ν(1)in1
= k1)P(ν

(2)
in2

= k2)− P(π
(1)
in1

= k1)P(π
(2)
in2

= k2)
∣∣∣

≤ 4 ∑
i≥1

C2
i pi.

From these estimates it follows that

|DΦ f (Πn̄)−DΦ f (Vn̄)| ≤ 8 ∑
i≥1

C2
i pi,

whence we obtain the assertion of Lemma 2.

Proof of Theorem 4. By Corollary 4, it suffices to present conditions for the asymptotic
normality of the Poisson version of the χ2-statistic, i.e., conditions for the feasibility of
relation (16). As such, we take the Lyapunov condition of third order. Indeed, consider the
following scheme of series of independent in each series of centered random variables:

ξin :=
(πin − npi)

2

npi
− 1, i = 1, . . . , N(n), n ≥ 1.

The Lyapunov condition of third order, which guarantees the fulfillment of the central limit
theorem (16), is as follows:

D−3/2
n

N(n)

∑
i=1

E|ξin|3 → 0 as n→ ∞. (36)

In order to estimate the absolute third moment in (36), we need the well-known recurrence
relation for the central moments of the Poisson distribution:
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E(πλ − λ)n = λ
n−2

∑
k=0

Ck
n−1E(πλ − λ)k, n ≥ 2,

where πλ is a Poisson random variable with parameter λ. From here it follows that

E(πλ − λ)6 = 15λ3 + 25λ2 + λ,

and using the elementary estimate |a2 − 1|3 ≤ 4(a6 + 1), we obtain

E|ξin|3 ≤
4

(npi)3

(
15(npi)

3 + 25(npi)
2 + npi

)
+ 4 = 64 +

100
npi

+
4

(npi)2 .

It is clear that, to prove relation (36) it suffices to verify that, under the conditions of the
theorem, 64N + 100 ∑N

i=1
1

npi
+ 4 ∑N

i=1
1

(npi)2(
2N + ∑N

i=1
1

npi

)3/2

≤ 100

(
2N +

N

∑
i=1

1
npi

)−1/2

+
4 ∑N

i=1
1

(npi)2(
N + ∑N

i=1
1

npi

)3/2 → 0,

that is true in virtue of (17).

Proof of Theorem 5. For any natural k, denote

Φ(k)
f (Vn̄) := ∑

i≤k
fin̄(ν̄in̄).

P
(

Φ f (Vn̄) ≥ x
)
≤ P
(

Φ(k)
f (Vn̄) ≥

x
2

)
+ P
(

Φ f (Vn̄)−Φ(k)
f (Vn̄) ≥

x
2

)
. (37)

In the notation of Theorem 1, let V0
n̄ be the restriction of the point process Vn̄ to the set

A0 :=
⋃

i≤k
Δi with hit probability p := ∑

i≤k
pi. Under the sign of the first probability of

the right-hand side of inequality (37), instead of the point process Vn̄, we can substitute
V0

n̄ and use inequality (2) for the distributions of the restrictions of the corresponding
point processes.

The difference
Φ f (Vn̄)−Φ(k)

f (Vn̄) = ∑
i>k

fin̄(ν̄in̄)

is also an additive functional of the restriction of the point process Vn̄ to the additional set
A0 :=

⋃
i>k

Δi with hit probability p := ∑
i>k

pi. For this functional, we also use estimate (2).

As a result, from (37) and Theorem 1, taking into account the non-negativity of the terms
fin̄(·), we obtain

P
(

Φ f (Vn̄) ≥ x
)
≤
(

∑
i>k

pi

)−m

P
(

Φ(k)
f (Πn̄) ≥

x
2

)

+

(
∑
i≤k

pi

)−m

P
(

Φ f (Πn̄)−Φ(k)
f (Πn̄) ≥

x
2

)
≤ 2C∗P

(
Φ f (Πn̄) ≥

x
2

)
.

The theorem is proved.

Proof of Corollary 5. is based on the following well-known equality. If ζ is a non-negative
random variable with finite mean then

Eζ =

∞∫
0

P(ζ ≥ x)dx.
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Using successively this equality for ζ equal to Φ f (Vn̄) or 2Φ f (Πn̄), we easily obtain from
(18) the moment inequality (20).

9. Conclusions

In this paper, we discuss a remarkable asymptotic property of a wide class of addi-
tive statistics that allows us to ignore the dependence of the summands in the additive
structure of the statistics under consideration and to reduce asymptotic analysis of their
distributions to the classical theory of the central limit problem. As consequences, we
obtain refinements of certain results concerning the limit behavior of some known classes
of additive statistics. Although we limited ourselves only to the law of large numbers and
the central limit theorem for the statistics at issue, in the model under consideration it
is possible to study sufficient conditions for the weak convergence of their distributions
to other infinitely divisible laws as well. In fact, we deal here with a variant of Poisson
approximation of empirical point processes, or in other words, with a compound Poisson ap-
proximation of an n-th partial sum of independent random variables taking values in some
function space. So, in the present paper we deal with the classical subject of Probability
Theory and the Poisson approximation of sums of independent multivariate random
variables (for example, see [1,12,22,23]).

Moreover, one can reformulate the above-mentioned Poissonization duality theorem
for more general U-statistic-type functionals

Uf (Vn) := ∑
i1≤...≤im

fn̄,i1,...,im(νn̄,i1 , . . . , νn̄,im),

where f ≡ { fn̄,i1,...,im(·)} is an array of finite functions defined on Zd
+, with d := ∑k≤m nk,

satisfying only the restriction

∑
i1≤...≤im

| fn̄,i1,...,im(0, . . . , 0)| < ∞ ∀n̄.

For example, in this more general setting, one can study the limit behavior of the functionals

UI(Vn) := ∑
i≥1

IĀ(νi−1,n)IA(νi,n) · · · IA(νi+m−1,n)IĀ(νi+m,n),

where Ā is the complement of an arbitrary subset A ⊂ Z+, with 0 /∈ A, and ν0n := 0. These
functionals count the number of success chains of length m in the dependent (finite or
infinite) Bernoulli trials {IA(νi,n); i ≥ 1}.
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Abstract: Asymptotic expansions for U-statistics and V-statistics with degenerate kernels are inves-
tigated, respectively, and the remainder term O(n1−p/2), for some p ≥ 4, is shown in both cases.
From the results, it is obtained that asymptotic expansions for the Cramér–von Mises statistics of the
uniform distribution U(0, 1) hold with the remainder term O

(
n1−p/2

)
for any p ≥ 4. The scheme

of the proof is based on three steps. The first one is the almost sure convergence in a Fourier series
expansion of the kernel function u(x, y). The key condition for the convergence is the nuclearity of a
linear operator Tu defined by the kernel function. The second one is a representation of U-statistics
or V-statistics by single sums of Hilbert space valued random variables. The third one is to apply
asymptotic expansions for single sums of Hilbert space valued random variables.

Keywords: U-statistics; V-statistics; asymptotic expansion; integral kernel; nuclearity
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1. Introduction

Asymptotic expansions for symmetric statistics are studied by many people. See, e.g.,
Callaert–Janssen–Veraverbeke (1980) [1], Withers (1988) [2], Maesono (2004) [3], and so on.
They treat U-statistics with non-degenerate kernels. On the other hand, Bentkus—Götze
(1999) [4]and Zubayraev (2011) [5] obtained optimal bounds in asymptotic expansions for
U-statistics with degenerate kernels. They treat the following modified U-statistics,

Wn =
1
n2 ∑

1≤i<j≤n
φ
(
ξi, ξ j

)
+

1
n ∑

1≤i≤n
φ1(ξi), (1)

where φ(·, ·) is a symmetric function, φ1(·) is a measurable function and {ξi} are i.i.d.
random variables. Wn coincides with V-statistics when

φ1(x) =
1
2

φ(x, x). (2)

If φ1(x) = 0 for any x, then Wn coincides with U-statistics. They obtained asymptotic
expansions with remainder O(n−1) for the distribution function of Wn.In this paper, we
investigate asymptotic expansions for the simple U-statistics and the V-statistics with
degree two defined by

Un =
2
n2 ∑

1≤i<j≤n
u
(
ξi, ξ j

)
, Vn =

1
n2 ∑

1≤i,j≤n
u
(
ξi, ξ j

)
, (3)

respectively. We obtain asymptotic expansions with remainder O(n1−p/2) for some p ≥ 4
for the distribution function of Un or Vn under some assumptions for {ξi} and u(x, y). Our
scheme of the proof is based on three steps. The first one is the almost sure convergence
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in a Fourier series expansion of u
(
ξi, ξ j

)
. The key condition for the convergence is the

nuclearity of a linear operator Tu defined by the kernel function u(x, y). The second one is a
representation of U-statistics or V-statistics by single sums of Hilbert space valued random
variables. The third one is to apply asymptotic expansions for single sums of Hilbert space
valued random variables due to Sazonov—Uyanov (1995) [6].

2. Symmetric Statistics

Let
{

ξ j, j ≥ 1
}

be i.i.d. random variables with a probability distribution μ on an arbi-
trary measurable space (X, B). Suppose that u(x1, x2, · · · , xn) is a real valued symmetric
function for some k ≥ 1, i.e.,

u(x1, x2, · · · , xk) = u
(
xi1 , xi2 , · · · , xik

)
, (4)

for any permutation (i1, i2, · · · , ik) of (1, 2, · · · , k). A statistics defined by the kernel function
u(x1, x2, · · · , xk) is called a symmetric statistics. The followings are the typical examples of
the symmetric statistics.

Example 1. U-statistics with degree k ≥ 1:

Un =

(
n
k

)−1

∑
1≤i1<i2<···<ik≤n

u
(
ξi1 , ξi2 , · · · , ξik

)
. (5)

Example 2. V-statistics with degree k ≥ 1:

Vn = n−k ∑
1≤i1,i2,··· ,ik≤n

u
(
ξi1 , ξi2 , · · · , ξik

)
. (6)

In this paper, we treat V-statistics Vn and U-statistics Un with degree two defined by
(3) when the kernel function u(x, y) is degenerate, i.e.,

E[u(ξ1, x)] = 0, (7)

for any real number x.

3. Non-Central Limit Theorems for U-Statistics with Degenerate Kernels

Assume that {ξi} are i.i.d. random variables with a distribution μ. Let u(x, y) be a real
valued symmetric function on R× R and square integrable such that

E
[
u(ξ1, ξ2)

2
]
< ∞. (8)

Suppose that u(x, y) is a degenerate kernel satisfying the condition (7). Let L2(R, μ)
be the space of all square integrable functions with respect to μ. Then, according to Serfling
(1980) [7], we see that the kernel u(x, y) induces a bounded linear operator L2(R, μ) →
L2(R, μ) (trace class) defined by

Tu( f ) = E[u(ξ1, x) f (ξ1)] =
∫ ∞

−∞
u(y, x) f (y)μ(dy), f ∈ L2, (9)

which has eigenvalues {λi} and eigenfunctions {gi} satisfying for each i ≥ 1{
E[gi(ξ1)] = 0, E

[
g2

i (ξ1)
]
= 1

E
[
gi(ξ1)gj(ξ1)

]
= 0 (i �= j), E[u(ξ1, x)gi(ξ1)] = λigi(x)

. (10)
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With respect to (10), see Serfling (1980) [7], pp. 196 and Dunford and Schwartz (1963),
pp. 905, 1009, 1083, 1087 for more details. Then we have

lim
n→∞

E

⎡⎣(u
(
ξi, ξ j

)
−

n

∑
k=1

λkgk(ξi)gk
(
ξ j
))2
⎤⎦ = 0, (11)

for each i, j ≥ 1. Serfling (1980) [7] showed the non-central limit theorem for U-statistics
with degree 2.

Theorem 1. (Serfling (1980) [7])
Put θ = E[u(ξ1, ξ2)]. Let Un be a U-statistics with the degenerate kernel u(x, y) defined by

Un =
2
n2 ∑

1≤i<j≤n
u
(
ξi, ξ j

)
, (12)

Let {Zi} be i.i.d. random variables with the standard Normal distribution N(0, 1). Then, as n→ ∞

nUn ⇒
∞

∑
j=1

λj

(
Z2

j − 1
)

, (13)

where “⇒” means the weak convergence in R.

It is well known that the rate of convergence in (13) is O(n−1/2) (See, e.g., Serfling
(1980) [7] for more details). We obtain asymptotic expansions for Un and Vn using asymp-
totic expansions due to Sazonov—Uyanov (1995) [6] for sums of Hilbert space valued i.i.d.
random variables in the next section.

4. Asymptotic Expansions for Single Sums which Hit a Ball in a Hilbert Space

In this section we consider an asymptotic expansions for sums of Hilbert space valued
random vectors {Xi} according to Sazonov—Uyanov (1995) [6]. Let {Xi} be a sequence
of i.i.d. random vectors in a separable Hilbert space H with E[X1] = 0 and E

[
‖X1‖2

]
= 1,

where ‖x‖2 = 〈x, x〉 for x ∈ H and 〈·, ·〉 is the inner product in H. Define the covariance
operator V of X1 by

〈Vx, y〉 = E[〈X1 − E[X1], x〉〈X1 − E[X1], y〉], (14)

for x, y ∈ H. Denote by σ2
1 ≥ σ2

2 ≥ · · · the eigenvalues of V and by e1, e2, · · · be the
orthonormal eigenvectors corresponding to the eigenvalues. Put

Sn =
1

σ
√

n

n

∑
i=1

(Xi − E[Xi]), vk =

(
k

∏
i=1

σi

)−1/k

, ck(V) = vk−1
k , (15)

where σ2 = E
[
‖X1 − E(X1)‖2

]
. Define the projection K : H → H by

Ky =
6k−5

∑
i=1
〈y, ei〉ei, y ∈ H. (16)

Put

θk(L) = sup
{∣∣∣E[exp

(√
−1〈y, X1〉

)]∣∣∣ ∣∣∣∣‖Ky‖ ≥ 1
L

}
. (17)
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for any L > 0. Let Y be the H-valued Gaussian random variables with mean 0 and the
covariance operator V. For a, h ∈ H, r > 0, i = 0, 1, · · · we put

Φi(a, r) = P

{∥∥∥∥∥
(

1− i
n

)1/2
Y− a

∥∥∥∥∥ < r

}
, (18)

dhΦi(a, r) = lim
t→∞

Φi(a− th, r)−Φi(a, r)
t

. (19)

Define the differential operators dk
h by

d1
hΦi(a, r) = dhΦi(a, r), dk

hΦi(a, r) = dh

(
dk−1

h Φi(a, r)
)

, k ≥ 2. (20)

Put
χj,L

′ = I
{∥∥Xj

∥∥ < L
}

(21)

for the indicator I{·}
χj,t = χj,

√
n(1+t)

′ (22)

and χj = χj,0. For positive integers l1, l2, · · · , ls we put

Qs =
(

dl1
X1χ1
− dl1

Y1

)
· · ·
(

dls
X1χs
− dls

Ys

)
(23)

and for integers k ≥ 2, 1 ≤ i ≤ k− 2, we put

Ai(a, r) = n−i/2
n

∑
j=1

∑ ′n−j
(

n
j

)(
l(j)!
)−1

E
(
Qj
)
Φj(a, r), (24)

where l(j) = l1! · · · lj! and ∑ ′ denotes the summation over all, such that

l1 ≥ 3, l2 ≥ 3, · · · , lj ≥ 3, l1 + l2 + · · · ,+lj = 2j + i. (25)

The following theorem is the key result for the proofs of our theorems.

Theorem 2. Sazonov—Uyanov (1995) [6]
Suppose that E

[
‖X1‖p] < ∞ for some p ≥ 4. For any t ≥ 0 and integer k ≥ 2, let L be a

positive number, such that

E
[
‖X1‖2(1− χj,L

′)] ≤ σ2
6k−5
3

. (26)

Then, for L ≤ n1/2

Δn(a, r) :=

∣∣∣∣∣P{‖Sn − a‖ < r} − P{‖Y− a‖ < r} −
k−2

∑
i=1

Ai(a, r)

∣∣∣∣∣ (27)

≤ A(p, s, t)

+c(k) exp{−sα}
{

c6k−5(V)E[B2(a, r)(1− χ1)] +
(

1 + M(a, r)k−2
)

E[Bk+1(a, r)(1− χ1)]

+c6k−5(V)
(

1 + m3(a, r)|a|〈Va, a〉
)k−2

(
L2

n

)(k−1)/2

+ θ
n
/
(k log(n

/
L2))

k (L) log
(

n
/

L2
)}

,

where for s = |‖a‖ − r| and α ≥ 1
5 ,

A(p, s, t) := nE[(1− χ1,t)] + cp(1− s)pn1−p/2E
[
‖X1‖p(χ1,t − χ1)

]
, (28)
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B(j, r) = n−(j−2)
(
‖X1‖j + mj(a, r)|〈X1, a〉|j

)
, (29)

M(a, r) = m2(a, r)〈Va, a〉 (30)

and

m(a, r) :=

{
min
{

1, r
‖a‖

}
, ‖a‖ > 0

0, a = 0
. (31)

In addition, the terms in the asymptotic expansion for ε > 0 satisfies the estimates

|Ai(a, r)| ≤ c(ε, i) exp
{
− s2

2 + ε

}
n−i/sc6i+3(V) (32)

×E
[
χi‖X1‖i+2 + |〈X1, a〉|i+2χimi+2(a, r)×{

1 + m2(i+2)(a, r)
(

1 + m2(i+2)(a, r)〈Va, a〉i−1
)}

+ M(a, r)3i+2
]

for even i, and if i is odd, then we have

|Ai(a, r)| ≤ c(ε, i) exp
{
− s2

2 + ε

}
n−i/s

{
c6i+3(V)

(
1 +
(

m2(a, r)〈Va, a〉i−1
))

(33)

×E
[
|〈X1, a〉|χim(a, r)

{
‖X1‖2 + ‖X1‖i+1 + 〈X1, a〉i+1(a, r)mi+1(a, r)

}]
+c6i+3(V)m(a, r)〈Va, a〉1/2E

[
χi‖X1‖i+1

]
5. The Sato–Mercer Theorem

In the proofs of our theorems we use the Fourier series expansion for the kernel
function u

(
ξi, ξ j

)
by eigenvalues and eigenfunction of the linear operator Tu defined by

(9). Since (11) holds in the sense of the L2-convergence, (11) can not be applied to show
the asymptotic expansions for U-statistics or V-statistics as it is. We show that u

(
ξi, ξ j

)
can

be represented by the Fourier series expansion in (11) almost surely using the following
Sato–Mercer theorem. (See Sato (1992) [8] for more details.)

Theorem 3. (The Sato–Mercer theorem)
Let X be a separable metric space with a Borel measure ν on X, and K(x, y) be a function on

X× X such that there exists a Borel-measurable subset X0, such that

ν(X\X0) = 0. (34)

Suppose that K(x, y) is continuous on X0 and satisfies∫
X

∫
X
|K(x, y)|2ν(dx)ν(dy) < ∞ (35)

and ∫
X

∫
X

K(x, y) f (x) f (y)ν(dx)ν(dy) ≥ 0, (36)

for any f ∈ L2(X, ν). Then, the linear operator TK on L2(X, ν) defined by

TK f (x) =
∫

X
K(x, y) f (y)ν(dy), f ∈ L2(X, ν) (37)

is nuclear if, and only if, ∫
X

K(x, x)ν(dx) < ∞ (38)

holds.
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From Theorem 3, we have the next result.

Theorem 4. Let
{

ξ j, j ≥ 1
}

be i.i.d. random variables with the distribution μ. Let u(x, y) be a
real valued symmetric function on R× R and Tu be a linear operator defined by

Tu f (x) = E[u(ξ1, x) f (ξ1)] =
∫ ∞

−∞
u(y, x) f (y)μ(dy), f ∈ L2(R, μ). (39)

Suppose that u(x, y) is the square integrable degenerate kernel of the linear operator Tu, such that∫ ∞

−∞

∫ ∞

−∞
u2(x, y)μ(dx)μ(dy) < ∞, (40)

∫ ∞

−∞

∫ ∞

−∞
u(x, y) f (x) f (y)μ(dx)μ(dy) ≥ 0, (41)

for any f ∈ L2(R, μ) and

E[u(ξ1, x)] =
∫ ∞

−∞
u(y, x)μ(dy) = 0 (42)

for any x ∈ R. Let {λk} and {gk} be eigenvalues and eingenfunctions of the linear operator Tu,
respectively. Suppose

λk ≥ 0, k ≥ 1. (43)

Furthermore assume that there exists a Lebesgue measurable subset X0 ⊂ R, such that

μ(X0) = 1 (44)

and u(x, y) is continuous on X0. Then, we have

u
(
ξi, ξ j

)
=

∞

∑
k=1

λkgk(ξi)gk
(
ξ j
)

a.s., (45)

for each i, j ≥ 1.

Proof. It is easy to see that from (10)

E

[
n

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣] =

n

∑
k=1

E
[∣∣λkgk(ξi)gk

(
ξ j
)∣∣] (46)

=
n

∑
k=1
|λk|E

[∣∣gk(ξi)gk
(
ξ j
)∣∣]

≤
n

∑
k=1
|λk|
{

E
[

gk(ξi)
2
]}1/2{

E
[

gk
(
ξ j
)2
]}1/2

=
n

∑
k=1
|λk|,

for each n ≥ 1. Tending n→ ∞, (46) implies that

E

[
∞

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣] ≤ ∞

∑
k=1
|λk|. (47)
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On the other hand, from (40) and (41), u(x, y) satisfies (35) and (36). Therefore, Tu is nuclear
by Theorem 3. Hence, from (43) and the nuclearity of Tu, we have

∞

∑
k=1
|λk| =

∞

∑
k=1

λk < ∞. (48)

From (47) and (48), we have

E

[
∞

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣] < ∞, (49)

which implies
∞

∑
k=1

∣∣λkgk(ξi)gk
(
ξ j
)∣∣ < ∞, a.s. (50)

Therefore, (45) is proved from (11) and (50).

Remark 1. If the symmetric function u(x, y) is piecewise continuous on R, then there exists
X0 ⊂ R satisfying (44) such that u(x, y) is continuous on X0. In the next section, we show a
typical example of U- or V-statistics defined by such piecewise continuous function u(x, y) as its
kernel function.

6. Asymptotic Expansions for Degenerate V-Statistics and U-Statistics with Degree 2

For applying Theorem 2 for Hilbert space valued random variables to the proof of
asymptotic expansions for Vn, we represent Vn by sums of Hilbert space valued random
variables {Gi} by the following method.

According to K.—Yoshihara (1994) [9], we introduce a separable Hilbert space H-
equipped with the inner product 〈·, ·〉 and the norm ‖ · ‖ as follows,

H =

{
x = (x1, x2, · · ·) ∈ R∞

∣∣∣∣∣ ∞

∑
k=1
|λk|x2

k < ∞

}
, (51)

〈x, y〉 =
∞

∑
k=1
|λk|xkyk (52)

and

‖x‖ =
(

∞

∑
k=1
|λk|x2

k

)1/2

. (53)

Using the assumptions of Theorem 4, we have from (10) and (48) that

E

[
∞

∑
k=1
|λk|g2

k(ξi)

]
=

∞

∑
k=1
|λk|E

[
g2

k(ξi)
]
=

∞

∑
k=1
|λk| < ∞, (54)

which implies that we can define H-valued random variables by

Gi = (g1(ξi), g2(ξi), g3(ξi), · · ·) (55)

for each i ≥ 1. Let {Un, n ≥ 1} and {Vn, n ≥ 1} be U-statistics and V-statistics with degree
2 defined by (3), respectively.

Theorem 5. Without loss of generality we assume that θ = 0. Suppose that
{

ξ j, j ≥ 1
}

is
a sequence of i.i.d. random variables with the distribution μ. Assume that u(x, y) is a square
integrable symmetric function with respect to μ× μ satisfying (40) ∼ (42). Suppose that for some
p ≥ 4

E
[
‖G1‖p] < ∞. (56)
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Furthermore, without loss of generality, assume that

∞

∑
k=1

λk = 1. (57)

Let Y be the H-valued Gaussian random variables with mean 0 and the covariance operator V
satisfying (14) with the eigenvalues σ2

1 ≥ σ2
2 ≥ · · · and the orthogonal eigenvectors e1, e2, · · · . For

any t ≥ 0, integer k ≥ 2, let L be a positive number, such that

E
[
‖G1‖2(1− χj,L

′)] ≤ σ2
6k−5
3

. (58)

Then, for L ≤ n1/2 and α ≥ 1
5 ,∣∣∣∣∣P{|nVn| ≤ r} − P{‖Y‖ ≤ r} −

k−2

∑
i=1

Ai(0, r)

∣∣∣∣∣ (59)

≤ A(p, s, t) + c(k) exp{−rα}[c6k−5(V)E[B2(0, r)(1− χ1)]

+E[Bk+1(0, r)χ1] + c6k−5(V)

(
L2

n

)(k−1)/2

+ θ
n
/
(k log(n

/
L2))

k (L) log
(

n
/

L2
)

,

where

‖Y‖ =
∣∣∣∣∣ ∞

∑
j=1

λj

(
Z2

j − 1
)∣∣∣∣∣, (60)

A(p, s, t) = nE[(1− χ1,t)] + c(p)(1 + r)−pn1−p/2E
[
‖G1‖p(χ1,t − χ1)

]
(61)

and
Bj(0, r) = n−(j−2)/2‖G1‖j. (62)

Proof. Put

h(x) =
∞

∑
k=1

λkxk (63)

for

x ∈ H =

{
x = (x1, x2, · · ·)

∣∣∣∣∣ ∞

∑
k=1
|λk|x2

k < ∞

}
(64)

Recall that for each i,

1√
n

n

∑
i=1

Gi =

(
1√
n

n

∑
i=1

g1(ξi),
1√
n

n

∑
i=1

g2(ξi), · · ·
)
∈ H. (65)

Then we have

nVn =
1
n ∑

1≤i,j≤n
u
(
ξi, ξ j

)
=

1
n ∑

1≤i,j≤n

∞

∑
k=1

λkgk(ξi)gk
(
ξ j
)

(66)

=
1
n

∞

∑
k=1

λk

{
∑

1≤i,j≤n
gk(ξi)gk

(
ξ j
)}

=
1
n

∞

∑
k=1

λk

{
n

∑
i=1

gk(ξi)

}2

=

∥∥∥∥∥ 1√
n

n

∑
i=1

Gi

∥∥∥∥∥.

Thus, we can apply Theorem 2 to show Theorem 5.
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Theorem 6. Suppose that the i.i.d. random variables {ξi, i ≥ 1} obey a continuous distribution.
Let v(x, y) be a symmetric function defined by

v(x, y) =
{

u(x, y), x �= y
0, x = y

. (67)

Under the same assumptions in Theorem 5, the equation (59) holds for Un with the degenerate kernel
v(x, y).

Proof. Since the i.i.d. random variables {ξi, i ≥ 1} obey a continuous distribution, we
have

P
{

ξi �= ξ j
}
= 1 (i �= j). (68)

Therefore, from (67) and (68)

nUn =
2
n ∑

1≤i<j≤n
u
(
ξi, ξ j

)
=

1
n ∑

1≤i,j≤n
v
(
ξi, ξ j

)
a.s. (69)

Since the right hand side of (69) is the V-statistics with the degenerate kernel v(x, y)
satisfying all assumptions of Theorem 5, Theorem 6 holds from Theorem 5.

Remark 2. From (10), E[G1] = 0 and σ2 = E
[
‖G1‖2

]
= 1 in Theorem 5.

7. Cramer–Von Mises Statistics

There are some examples of U-statistics or V-statistics for which the above theorems
are applicable under the assumption of nuclearity of the kernel functions where the above
theorems are applicable.

Example 3. (Cramér-von Mises Statistics, Sato (1992) [8])
Assume that i.i.d. random variables

{
ξ j, j ≥ 1

}
obey the uniform distribution U(0, 1), i.e., μ is the

Lebesgue on [0, 1]. Define a kernel function u(x, y) by

u(x, y) =
∫ 1

0

(
I[x,1](t)− t

)(
I[y,1](t)− t

)
t(1− t)

dt, x, y ∈ [0, 1] (70)

satisfies the hypothesis of Theorem 5 or Theorem 6. On the other hand, we have

∫ 1

0
u(x, x)dx =

∫ 1

0
dx
∫ 1

0

(
I[x,1](t)− t

)2

t(1− t)
dt (71)

=
∫ 1

0

dt
t(1− t)

∫ 1

0

(
I[x,1](t)− t

)2
dx = 1 < ∞.

Therefore, the integral operator Tu defined by

Tu f (y) =
∫ 1

0
u(x, y) f (y)dx (72)

is nuclear from Theorem 3. Therefore, since the degenerate kernel u(x, y) defined by (70) satisfies
all assumptions of Theorem 5, Theorem 5 holds for the Cramér-von Mises Statistics. Furthermore,
Theorem 6 also holds for U-statistics with the degenerate kernel v(x, y) defined by (67) and (70).

8. Conclusions

Bentkus—Götze (1999) [4] and Zubayraev (2011) [5] obtained the remainder O(n−1)
in asymptotic expansions for U-statistics or V-statistics with degenerate kernels. From
Theorems 5 and 6, if we assume E

[
‖G1‖p] ≤ ∞, p ≥ 4 and some conditions, then we
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obtain the remainder O
(

n1−p/2
)

. Applying Theorem 5, we obtain asymptotic expansions
for the Cramér–von Mises statistics of the uniform distribution U(0, 1) with the remainder
O
(

n1−p/2
)

for any p ≥ 4.
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Abstract: The convergence rate in the famous Rényi theorem is studied by means of the Stein
method refinement. Namely, it is demonstrated that the new estimate of the convergence rate of the
normalized geometric sums to exponential law involving the ideal probability metric of the second
order is sharp. Some recent results concerning the convergence rates in Kolmogorov and Kantorovich
metrics are extended as well. In contrast to many previous works, there are no assumptions that
the summands of geometric sums are positive and have the same distribution. For the first time,
an analogue of the Rényi theorem is established for the model of exchangeable random variables.
Also within this model, a sharp estimate of convergence rate to a specified mixture of distributions is
provided. The convergence rate of the appropriately normalized random sums of random summands
to the generalized gamma distribution is estimated. Here, the number of summands follows the
generalized negative binomial law. The sharp estimates of the proximity of random sums of random
summands distributions to the limit law are established for independent summands and for the model
of exchangeable ones. The inverse to the equilibrium transformation of the probability measures is
introduced, and in this way a new approximation of the Pareto distributions by exponential laws
is proposed. The integral probability metrics and the techniques of integration with respect to sign
measures are essentially employed.

Keywords: probability metrics; Stein method; geometric sums; generalization of the Rényi theorem;
generalized transformation of equilibrium for probability measures and its inverse; generalized
gamma distribution

MSC: 60F99; 60E10; 60G50; 60G09

1. Introduction

The theory of sums of random variables belongs to the core of modern probability
theory. The fundamental contribution to the formation of the classical core was made by
A. de Moivre, J. Bernoulli, P.-S. Laplace, D. Poisson, P.L. Chebyshev, A.A. Markov, A.M.
Lyapunov, E. Borel, S.N. Bernstein, P. Lévy, J. Lindeberg, H. Cramér, A.N. Kolmogorov,
A.Ya. Khinchin, B.V. Gnedenko, J.L. Doob, W. Feller, Yu.V. Prokhorov, A.A. Borovkov,
Yu.V. Linnik, I.A. Ibragimov, A. Rényi, P. Erdös, M. Csörgö, P. Révész, C. Stein, P. Hall, V.V.
Petrov, V.M. Zolotarev, J. Jacod and A.N. Shiryaev among others. The first steps led to limit
theorems for appropriately normalized partial sums of sequences of independent random
variables. Besides the laws of large numbers, special attention was paid to emergence of
Gaussian and Poisson limit laws. Note that despite many efforts to find necessary and
sufficient conditions for the validity of the central limit theorem (the term was proposed
by G. Pólya for a class of limit theorems describing weak convergence of distributions of
normalized sums of random variables to the Gaussian law), this problem was completely
resolved for independent summands only in the second part of the 20th century in the
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works by V.M. Zolotarev and V.I. Rotar. Also in the last century, the beautiful theory
of infinitely divisible and stable laws was constructed. New developments of infinite
divisibility along with classical theory can be found in [1]. For exposition of the theory of
stable distributions and their applications, we refer to [2], see also references therein.

Parallel to partial sums of a sequence of random variables (and vectors), other sig-
nificant schemes have appeared, for instance, the arrays of random variables. Moreover,
in physics, biology and other domains, researchers found that it was essential to study
the sums of random variables when the number of summands was random. Thus, the
random sums with random summands became an important object of investigation. One
can mention the branching processes which stem from the 19th century population models
by I.J. Bienaymé, F. Galton and H.W. Watson that are still intensively being developed,
see, e.g., [3]. In the theory of risk, it is worth recalling the celebrated Cramér–Lundberg
model for dynamics of the capital of an insurance company, see, e.g., Ch. 6 in [4]. Various
examples of models described by random sums are considered in Ch. 1 of [5], including
(see Example 1.2.1) the relationship between certain random sums analysis and the famous
Pollaczek–Khinchin formula in queuing theory. A vast literature deals with the so-called
geometric sums. There, one studies the sum of independent identically distributed random
variables, and the summation index follows the geometric distribution, being indepen-
dent with summands. Such random sums can model many real world phenomena, e.g.,
in queuing, insurance and reliability, see the Section “Origin of Geometric Sums” in the
Introduction of [6]. Furthermore, a multitude of important stochastic models described by
systems of dependent random variables occurred to meet diverse applications, see, e.g., [7].
In particular, the general theory of stochastic processes and random fields arose in the last
century (for introduction to random fields, see, e.g., [8]).

An intriguing problem of estimating the convergence rate to a limit law was addressed
by A.C. Berry and C.-G. Esseen. Their papers initiated the study of proximity for distri-
bution functions of the normalized partial sums of independent random variables to the
distribution function of a standard Gaussian law in the framework of the classical theory of
random sums.

To assess the proximity of distributions, we will employ various integral probability
metrics. Usually, for random variables Y, Z and a specified classH of functions h : R→ R,
one sets

dH(Y, Z) := sup
h∈H
|E[h(Y)]−E[h(Z)]| ∈ [0, ∞]. (1)

Clearly, dH(Y, Z) is a functional depending on law(Y) and law(Z), i.e., distributions
of Y and Z. A classH should be rich enough to guarantee that dH possesses the properties
of a metric (or semi-metric). The general theory of probability metrics is presented, e.g.,
in [9,10]. In terms of such metrics, one often compares the distribution of a random variable
Y under consideration with that of a target random variable Z. In Section 2, we recall the
definitions of the Kolmogorov and Kantorovich (alternatively called Wasserstein) distances
and Zolotarev ideal metrics corresponding to the adequate choice ofH, denoted below as
K,H1 andH2, respectively.

It should be emphasized that for sums of random variables, deep results were estab-
lished along with creation and development of different methods of analysis. One can
mention the method of characteristic functions due to the works of J.Fourier, P.-S.Laplace
and A.M.Lyapunov, the method of moments proposed by P.L.Chebyshev and developed
by A.A.Markov, the Lindeberg method of employing auxiliary Gaussian random vari-
ables and the Bernstein techniques of large and small boxes. In 1972, C.Stein in [11] (see
also [12]) introduced the new method to estimate the proximity of the distribution under
consideration to a normal law. Furthermore, this powerful method was developed in the
framework of classical limit theorems of the probability theory. We describe this method in
Section 2. Applying the Stein method along with other tools, one can establish in certain
cases the sharp estimates of closeness between a target distribution and other ones in
specified metrics (see, e.g., [13,14]). We recommend the books [15,16] and the paper [17]
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for basic ideas of the ingenious Stein method. The development of this techniques under
mild moment restrictions for summands is treated in [18,19]. We mention in passing that
there are deep generalizations of Stein techniques involving generators of certain Markov
processes; a compact exposition is provided, e.g., on p. 2 of [20].

In the theory of random sums of random summands, the limit theorems with ex-
ponential law as a target distribution play a role similar to the central limit theorem for
(nonrandom) sums of random variables. Here, one has to underline the principal role of the
Rényi classical theorem for geometric sums published in [21]. Recall this famous result. Let
X1, X2, . . . be a sequence of independent identically distributed (i.i.d.) random variables
such that μ := E[X1] �= 0. Take a geometric random variable Np with parameter p ∈ (0, 1),
defined as follows:

P(Np = k) = p(1− p)k, k ∈ N∪ {0}. (2)

Assume that Np and (Xn)n∈N are independent. Set S0 := 0, Sn := X1 + . . . + Xn,
n ∈ N. Then,

Wp :=
SNp

E[SNp ]
D→ Z ∼ Exp(1) as p→ 0+, (3)

where D→ stands for convergence in distribution, and Z follows the exponential law Exp(λ)
with parameter λ = 1, E[SNp ] = μ(1− p)/p. In fact, instead of Np, A.Rényi considered
the shifted geometric random variable N(p) such that P(N(p) = k) = p(1− p)k−1, k ∈ N.
Clearly, Np has the same law as N(p) − 1. He supposed that i.i.d. random variables
X1, X2, . . . are non-negative, and N(p) and (Xn)n∈N are independent. Then, SN(p)/E[SN(p)]
converges in distribution to Z ∼ Exp(1) as p → 0+, where E[SN(p)] = μ/p. It was
explained in [22] that both statements are equivalent and the assumption of nonnegativity
of summands can be omitted.

Building on the previous investigations discussed below in this section, we study
different instances of quantifying the approximation of random sums by limit laws and
also extend the Stein method employment. The main goals of our paper are the following:
(1) to find sharp estimates (i.e., optimal ones which cannot be diminished) of proximity of
geometric sums of independent (in general non-identically distributed) random variables
to exponential law using the probability metric dH2 ; (2) to prove the new version of the
Rényi theorem when the summands are described by a model of exchangeable random
variables, establishing the due non-exponential limit law together with an optimal bound of
the convergence rate applying dH2 ; (3) to obtain the exact convergence rate of appropriately
normalized random sums of random summands to the generalized gamma distribution
when the number of summands follows the generalized negative binomial distribution
employing dH2 ; (4) to introduce the inverse transformation to an “equilibrium distribution
transformation”, give full description of its existence and demonstrate the advantage of
applying the Stein method combined with that inverse transform; and (5) to use such
approach in deriving the new approximation in the Kolmogorov metric dK of the Pareto
distribution by an exponential one, which is important in signal processing.

The main idea is to apply the Stein method and deduce (Lemma 2) new estimates of
the solution of Stein’s equation (corresponding to an exponential law Exp(λ) as a target
distribution) when a function h appearing in its right-hand side belongs to a classH2. This
entails the established sharp estimates. The integral probability metrics and the techniques
of integration with respect to sign measures are essentially employed. It should be stressed
that we consider random summands which take, in general, positive and negative values
and in certain cases need not have the same law.

Now, we briefly comment on the relevance of the five groups of the paper results
mentioned above. Some upper bounds for convergence rates in Equation (3) were obtained
previously by different tools (the renewal techniques and the memoryless property of
the geometric distribution), and the estimates were not sharp. We refer to the results by
A.D. Soloviev, V.V. Kalashnikov and S.Y. Vsekhsvyatskii, M. Brown, V.M. Kruglov and
V.Yu. Korolev, where the authors either used the Kolmogorov distance or proved specified
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nonuniform estimates for differences of the corresponding distribution functions. For
instance, in [23] the following estimate was proved

sup
x∈R
|P(Wp ≤ x)− P(Z ≤ x)| ≤ p

E[X2
1 ]

μ2 max
{

1,
1

2(1− p)

}
,

where Z ∼ Exp(1). Moreover, this estimate is asymptotically exact when p→ 0+. Some
improvements are in [24] under certain (hazard rate) assumptions. E.V. Sugakova obtained
a version of the Rényi theorem for independent, in general, not identically distributed
random variables. We also mention contributions by V.V. Kalashnikov, E.F. Peköz, A. Röllin,
N. Ross and T.L. Hung which gave the estimates in terms of the Zolotarev ideal metrics.
We do not reproduce all these results here since they can be viewed on pages 3 and 4 of [22]
with references where they were published.

In Corollary 3.6 of [25] for nondegenerate i.i.d. positive random variables X1, X2, . . .
with mean μ and finite second moment, it was proved that

ζ2(pS(p), Z(1/μ)) ≤ p(E[X2
1 ] + 2μ2),

where S(p) := ∑
N(p)
j=1 Xj, ζ2 is the Zolotarev ideal metric of order two, Z(λ) ∼ Exp(λ),

λ > 0. In [22], the estimates for proximity of geometric sums distributions to Z ∼ Exp(1)
were provided in the Kantorovich and ζ2 metrics. A substantial contribution of the authors
of [22] is the study of random summands X1, X2, . . . that need not be positive (see also [26]).
The general estimate for deviation of Wp from Z ∼ Exp(1) in the ideal metric of order s
was proved in [27]. We do not assume that Wp is constructed by means of i.i.d. random
variables and, moreover, demonstrate that our estimate (for summands taking real values)
involving the metric dH2 is sharp.

The exchangeable random variables form an important class having various appli-
cations in statistics and combinatorics, see, e.g., [28]. As far as we know, the model of
exchangeable random variables is studied in the context of random sums for the first time
here. It is interesting that instead of the exponential limit law we indicate explicit expression
of the new limit law. In addition, we establish the sharp estimate of proximity of random
sums distributions to this law using dH2 .

A natural generalization of the Rényi theorem is to study the summation index follow-
ing non-geometrical distribution. In this way, the upper bound of the convergence rate of
random sums of random summands to generalized gamma distribution was proved in [29].
Theorem 3.1 in [30] contains the estimates in the Kolmogorov and Kantorovich distances
for approximations of non-negative random variable law by specified (nongeneralized)
gamma distribution. The proof relies on Stein’s identity for gamma distribution established
in H.M.Luk’s PhD thesis (see the reference in [30]). New estimates of the solutions of the
gamma Stein equation are given in [31]. We derive the sharp estimate for approximation of
random sums by generalized gamma law using the Zolotarev metric of order two. In a quite
recent paper [32] the author established deep results concerning further generalizations
of the Rényi theorem. Namely, Theorem 1 of [32] demonstrates how one can provide the
upper bounds of the convergence rate of specified random sums to a more general law than
an exponential one using the estimates in the Rényi theorem. This approach is appealing
since the author employs the ideal metric of order s > 0. However, the sharpness of these
estimates was not examined.

Note that in [33] the important “equilibrium transformation of distributions” was pro-
posed and employed along with the Stein techniques. We will consider this transformation
Xe for a random variable X in Section 7 and also tackle other useful transformations. In the
present paper, the inverse to the “equilibrium distribution transformation” is introduced.
We completely describe the possibility to construct such transformation and provide an
explicit formula for the corresponding density. The idea to apply such inverse transforma-
tion whenever it exists is based on the result [33] demonstrating that one can obtain a more
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precise estimate for proximity in the Kantorovich metric between Xe and Z than between
X and Z, where Z ∼ Exp(1) and E[X] = 1, E[X2] < ∞. We extend this result. Moreover,
we prove that in this way one can obtain a new estimate of approximation of the Pareto
distribution by an exponential one. It is shown that our new estimate is advantageous
for a wide range of parameters of the Pareto distribution. Let Xe ∼ Pareto(α, β), i.e., the
distribution function of Xe is

Fe(x) = 1−
(

β

x + β

)α

, x ≥ 0, α > 0, β > 0.

We show that the preimage X ∼ Pareto(α + 1, β). Thus, for any α > 2, β > 0, one
has dK(Xe, Z) ≤ 1/(α − 1), where Z ∼ Exp(α/β) and dK stands for the Kolmogorov
distance. This bound is more precise than the previous ones applied in signal processing,
see, e.g., [34].

This paper is organized as follows. After the Introduction, the auxiliary results are
provided in Section 2. Here we include the material important for understanding the main
results. We recall the concept of probability metrics, consider the Kolmogorov and the
Kantorovich distances and examine the Zolotarev ideal metrics. We describe the basic
ideas of Stein’s method, especially for the exponential target distribution. In this section,
we formulate a simple but useful Lemma 1 concerning the essential supremum of the
Lipschitz function, an important Lemma 2 giving the solution of the Stein equation for
different functional classes. We explain the essential role of the generalized equilibrium
transformation proposed in [22] which permits study of the summands taking both positive
and negative values. We formulate Lemma 3 to be able to solve an integral equation
involving the generalized equilibrium transformation when E[X] �= 0 and E[X2] < ∞.
The proofs of auxiliary lemmas are placed in Appendix A. Section 3 is devoted to an
approximation of the normalized geometric sums Wp by an exponential law. Here, the
sharp convergence rate is found (see Theorem 1) by means of the probability metric dH2 . The
proof is based on the Lebesgue–Stieltjes integration techniques, the formula of integration
by parts for functions of bounded variations, Lemma 2, various limit theorems for integrals
and the important result of [22] concerning the estimates involving the Kantorovich distance.
In Section 4, for the first time an analog of the Rényi theorem is proved for a model of
exchangeable random variables proposed in [35]. We demonstrate (Theorem 2) that, in
contrast to Rényi’s theorem, the limit distribution for random sums under consideration
is a specified mixture of two explicitly indicated laws. Moreover, the sharp convergence
rate to this limit law is obtained (Theorem 3) by means of dH2 . In Section 5, the distance
between the generalized gamma law and the suitably normalized sum of independent
random variables is estimated when the number of summands has the generalized negative
binomial distribution. Theorem 4 demonstrates that this estimate is sharp. For the proof, we
employ various truncation techniques, the transformations of parameters of initial random
variables, the monotone convergence theorem and explicit formula for the generalized
gamma distribution moments of order δ > 0, obtained in [27]. Section 6 provides the
pioneering study of the same problem in the framework of exchangeable random variables
and also gives the sharp estimate for the dH2 metric (Theorem 5). In Section 7, we introduce
the inverse to the equilibrium transformation of the probability measures. Lemma 6
contains a full description of situations when a unique preimage X of a random variable
Xe exists and gives an explicit formula for distribution of X. This approach permits us
to obtain the new estimates of closeness of probability measures in the Kolmogorov and
Kantorovich metrics (Theorem 6). In particular, due to Theorem 6 and Lemmas 2, 6, it
becomes possible to find a useful estimate of proximity of the Pareto law to the exponential
one (Example 2). Section 8 containing the conclusions and indications for further research
work is followed by Appendix A and the list of references.
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2. Auxiliary Results

Let K := {h : hz(x) = I{x ≤ z}, x, z ∈ R}, where I{A} := 1 if A holds and zero
otherwise. The choice H = K in Equation (1) corresponds to the Kolmogorov distance.
Note that h above is a function in x, whereas z is the index parameterizing the class.

A function h : R→ R is called the Lipschitz one if

Lip(h) := sup
x,u∈R; x �=u

|h(x)− h(u)|
|x− u| < ∞. (4)

Then,
|h(x)− h(u)| ≤ C|x− u|, x, u ∈ R, (5)

and in light of Equation (4), Lip(h) is the smallest possible constant C appearing in Equation (5).
We write Lip(C), where C ∈ [0, ∞) for a collection of the Lipschitz functions having Lip(h) ≤ C.
For s > 0 set m = m(s) := 's− 1( ∈ N∪ {0} (where, for a ∈ R, 'a( stands for the minimal
integer number which is equal or greater than a). Introduce a class of functions

Hs := {h : R→ R, |h(m)(x)− h(m)(u)| ≤ |x− u|s−m, x, u ∈ R}, s > 0.

As usual, h(0)(x) = h(x), x ∈ R. We write dHs for a metric defined according to
Equation (1) with H = Hs. V.M. Zolotarev and many other researchers defined an ideal
metric ζs of order s > 0 involving only bounded functions fromHs. We will use collections
H1 andH2 without assumption that functions h are bounded on R. This is the reason why
we write dHs instead of ζs. Thus, we employ

H1 := {Lip(1)}, H2 := {h : h′ ∈ Lip(1)}.

Note that in definitions ofH2 we deal with h ∈ C(1), where the space C(1)(R) consists
of functions h : R → R such that h′(x) exists for all x ∈ R, and h′ is continuous on R

(evidently the Lipschitz function is continuous). One calls dH1 the Kantorovich metric
(the term Wasserstein metric appears in the literature as well). One also uses the bounded
Kantorovich metric when the class H1 contains all the bounded functions from Lip(1).
The metric ζs was introduced in [36] and called an ideal metric in light of its important
properties. The properties of ζs metrics, where s > 0, are collected in Sec. 2 of [32]. We
mention in passing that various functionals are ubiquitous in assessing the proximity of
distributions. In this regard, we refer, e.g., to [37,38].

To apply the Stein method, we begin with fixing the target random variable Z (or its
distribution) and describe a class H to estimate dH(Y, Z) for a random variable Y under
consideration. Then, the problem is to indicate an operator T (with specified domain of
definition) so that the Stein equation

Tf (x) = h(x)−E[h(Z)] (6)

has a solution fh(x), x ∈ R, for each function h ∈ H. After that, one can substitute Y
instead of x in Equation (6) and take the expectation of both sides, assuming that all these
expectations are finite. As a result, one comes to the relation

E[Tfh(Y)] = E[h(Y)]−E[h(Z)]. (7)

It is not a priori clear why the estimation of the left-hand side of Equation (7) is
more adequate than the estimation of |E[h(Y)]− E[h(Z)]| for h ∈ H. However, in many
situations, justifying the method this occurs. The choice of T depends on the distribution of
Z. Note that in certain cases (e.g., when Z follows the Poisson law) one considers functions
f defined on a subset of R. We emphasize that the construction of operator T is a nontrivial
problem, see, e.g., [33,39–41].
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The basic idea in this way is the following. For many probability distributions (Gaus-
sian, Laplace, Exponential, etc.), one can find an operator T characterizing the law of a
target variable Z. In other words, for a rather large class of functions f , E[Tf (Y)] = 0 if and
only if law(Y) = law(Z) (i.e., the laws of Y and Z coincide). Thus, if |E[Tfh(Y)]| is small
enough for a suitable class of functions h, this leads to the assertion that the law of Y is
close (in a sense) to the law of Z. One has to verify that this kind of “continuity” takes place.
Clearly, if for any h ∈ H, whereH defines the integral probability metric in Equation (1),
one can find a solution fh of Equation (6), then the relation E[Tfh(Y)] = 0 for all fh, h ∈ H,
yields dH(Y, Z) = 0 and, consequently, law(Y) = law(Z).

Further, we assume that Z ∼ Exp(λ), i.e., Z has exponential distribution with parame-
ter λ > 0. In this case (see, e.g., Sec. 5 in [17]), one uses the operator

T f (x) := f ′(x)− λ f (x) + λ f (0), x ∈ R, λ > 0, (8)

and writes the Stein Equation (6) as follows

f ′(x)− λ f (x) + λ f (0) = h(x)−E[h(Z)], x ∈ R. (9)

It should be stipulated that E[h(Z)] ∈ R for a test function h ∈ H, and there exists a
differentiable solution f of Equation (9). Therefore, if one can find such solution f , then

E[ f ′(Y)]− λE[ f (Y)] + λ f (0) = E[h(Y)]−E[h(Z)] (10)

under the hypothesis that all these expectations are finite. If f : R → R is absolutely
continuous, then (see, e.g., Theorem 13.18 of [42]) for almost all x ∈ R with respect to
the Lebesgue measure, there exists f ′(x). Moreover, one can find an integrable (on each
interval) function g : R→ R, x ∈ R, to guarantee, for each x, u ∈ R, that

f (x) = f (u) +
∫ x

u
g(v)dv, (11)

where g(v) = f ′(v) for almost all v ∈ R. Thus, (Tf )(x) is defined for such f according
to Equation (8) for almost all x ∈ R. In general, for an arbitrary random variable Y, one
cannot write E[(Tf )(Y)] since the value of expectation depends on the choice of a version
of (Tf )(x), x ∈ R. Really, let B ∈ B(R) be such that m(B) = 0, where m stands for the
Lebesgue measure. Assume that Y takes values in B. Then, it is clear that E[(Tf )(Y)] de-
pends on the choice of a function (Tf )(x) version defined on R. However, if the distribution
PY of a random variable Y has a density with respect to m, then E[(Tf )(Y)] will be the same
for any version of Tf (with respect to the Lebesgue measure). In certain cases, the Stein
operator is applied to smoothed functions (see, e.g., [33,43]). Otherwise, Equation (6) does
not hold at each point of R (see, e.g., Lemma 2.2 in [16]), and complementary efforts are
needed. For our study, it is convenient to employ in Equation (8) for T in the capacity of
f ′(x), x ∈ R, the right derivative. In many cases, for a real-valued function f defined on a
fixed set D ⊂ R one considers supx∈D | f (x)| as "essential supremum". Recall that a function
f̃ is a version of f (and vice versa) if the measure (here the Lebesgue measure) of points x
such that f̃ (x) �= f (x) is zero. The notation ‖ f ‖∞ means that one takes inf f̃ supx∈D | f̃ (x)|,
where f̃ belongs to the class of all versions of f . Clearly, ‖ f ‖∞ will be the same if we change
f on a subset of D having a measure which is equal to zero. Thus, we write ‖ f ′‖∞ instead
of ‖g‖∞ appearing in Equation (11). The following simple observation is useful. Its proof is
provided in Appendix A.

Lemma 1. A function h is the Lipschitz function on R with Lip(h) = C < ∞ if and only if h is
absolutely continuous and (its essential supremum) ‖h′‖∞ = C < ∞.
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Remark 1. Note that 0 ≤ h(x) ≤ 1, x ∈ R, for any h ∈ K. If, for some positive constant C,
h ∈ Lip(C), then Equation (5) yields that |h(x)| ≤ C|x|+ |h(0)|. If h′ is a Lipschitz function
(with Lip(h′) = C), then h′′(x) exists for almost all x ∈ R and an application of Lemma 1 gives

|h′(x)− h′(0)| =
∣∣∣∣∫ x

0
h′′(u)du

∣∣∣∣ ≤ C|x|, x ∈ R.

Consequently, |h′(x)| ≤ A|x|+ B for some positive A, B (one can take A = C, B = |h′(0)|) and
any x ∈ R. As h′(x) is continuous on each interval, it follows that |h(x)| ≤ ax2 + b|x|+ c for some
positive a, b, c and all x ∈ R (a = C/2, b = |h′(0)|, c = |h(0)|). Therefore, |h(x)| ≤ A0x2 + B0
for some positive A0, B0 and each x ∈ R.

Lemma 2. For any λ > 0 and each h ∈ K ∪H1 ∪H2, the equation

f ′(x)− λ f (x) = h(x), x ∈ R, (12)

has a solution
fh(x) = −eλx

∫ ∞

x
h(u)e−λudu, x ∈ R, (13)

where fh(0) = −E[h(Z)]/λ. If h ∈ K, then for all x ∈ R there exists f ′h(x) and ‖ f ′h‖∞ ≤ 1.
If h ∈ H1 ∪H2, then f ′h is defined on R and ‖ f ′h‖∞ ≤ ‖h′‖∞/λ. For h ∈ H2, a function f ′′h is
defined on R and ‖ f ′′h ‖∞ ≤ min{2‖h′‖∞, ‖h′′‖∞/λ}.

The right-hand side of Equation (13) is well defined for each x ∈ R in light of Remark 1.
Lemma 4.1 of [33] contains for λ = 1 some statements of Lemma 1. We will use the above
estimates for any λ > 0. Estimates for h ∈ H2 were not considered in [33]. The proof of
Lemma 2 is given in Appendix A.

The following concept was introduced in [33].

Definition 1 ([33]). Let X be a non-negative random variable with finite E[X] > 0. One says that
a random variable Xe has distribution of equilibrium with respect to X if for any Lipschitz function
f : R→ R,

E[ f (X)]− f (0) = E[X]E[ f ′(Xe)]. (14)

Note that Definition 1 deals separately with distributions of X and Xe. One says that
Xe is the result of the equilibrium transformation applied to X. The same terminology is
used for transition from law(X) to law(Xe). For the sake of completeness, we explain in
Appendix A (Comments to Definition 1) why one can take the law of Xe having a density
with respect to the Lebesgue measure

pe(x) =

{
1

E[X]
P(X > x), x ≥ 0,

0, x < 0,
(15)

to guarantee the validity of Equation (14).

Remark 2. For a non-negative random variable X with finite E[X] > 0, one can construct a
random variable Xe having a density (15). Accordingly, we then have a random vector (X, Xe) with
specified marginal distributions. However, the joint law of X and Xe is not fixed and can be chosen
in appropriate way. If X1, X2, . . . is a sequence of independent random variables, we will assume
that a sequence (Xn, Xe

n)n∈N consists of independent vectors, and these vectors are independent
with all considered random variables which are independent with (Xn)n∈N.

In the recent paper [22], a generalization of the equilibrium transformation of distribu-
tions was proposed without assuming that random variable X is non-negative.
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Definition 2 ([22]). Let X be a random variable having a distribution function F(x) := P(X ≤
x), x ∈ R. Assume the existence of finite E[X] �= 0. An equilibrium distribution function
corresponding to X (or F(x)) is introduced by way of

Fe(x) :=

⎧⎨⎩−
1

E[X]

∫ x
−∞ F(u)du, x ≤ 0,

−E[X− ]
E[X]

+ 1
E[X]

∫ x
0 (1− F(u))du, x > 0,

(16)

where X− := XI{X < 0}. This function can be written as Fe(x)=
∫ x
−∞ pe(u)du, where

pe(x) =

{
− 1

E[X]
F(x), x ≤ 0,

1
E[X]

(1− F(x)), x > 0,
(17)

thus, pe is a density (with respect to the Lebesgue measure) of a signed measure Qe corresponding to
Fe. In other words, Equation (17) demonstrates the Jordan decomposition (see, e.g., Sec. 29 of [44])
of Qe.

Clearly, for a non-negative random variable, the functions defined in Equation (15)
and Equation (16) coincide. For a nonpositive random variable, the function Fe appearing
in Equation (16) is a distribution function of a probability measure. In general, when X
can take positive and negative values, the function introduced in Equation (16) is not a
distribution function. We will call Fe the generalized equilibrium distribution function. Note
that |pe(x)| ≤ 1

|E[X]| . Thus, Fe is the Lipschitz function and consequently continuous
(Fe(x) is well defined for each x ∈ R since E[X] is finite and nonzero). Moreover, Fe is
absolutely continuous being the Lipschitz function. Each absolutely continuous function
has bounded variation. If G is a function of bounded variation, then G = G1 − G2, where
G1 and G2 are nondecreasing functions (see, e.g., [42], Theorem 12.18). One can employ
the canonical choice G1(x) := Varx

0(G), where Varb
a(G) means the variation of G on [a, b],

−∞ < a ≤ b < ∞ (if a > b then Varb
a(G) := −Vara

b(G)). If G is right-continuous (on R),
then evidently G1 and G2 are also right-continuous. Thus, for a right-continuous G having
bounded variation, a nondecreasing function Gi in its representation corresponds to a
σ-finite measure Qi on B(R), i = 1, 2. More precisely, there exists a unique σ-finite measure
Qi on B(R) such that, for each finite interval (a, b], Qi((a, b]) = Gi(b) − Gi(a), i = 1, 2.
Recall that one writes for the Lebesgue–Stieltjes integral with respect to a function G∫

R

f (u)dG(u) :=
∫
R

f (u)dG1(u)−
∫
R

f (u)dG2(u), (18)

whenever the integrals in the right-hand side exist (with values in [−∞, ∞]), and the cases
∞−∞ or −∞ + ∞ are excluded. The integral

∫
R

f (u)dGi(u) means the integration with
respect to measure Qi, i = 1, 2. The signed measure Q corresponding to G is Q1 − Q2.
Thus,

∫
R

f (u)dG(u) means the integration with respect to signed measure Q. Note that if
G = U1 −U2 where Ui is right-continuous and nondecreasing (i = 1, 2), then∫

R

f (u)dG1(u)−
∫
R

f (u)dG2(u) =
∫
R

f (u)dU1(u)−
∫
R

f (u)dU2(u). (19)

The left-hand side and the right-hand side of Equation (19) make sense simultaneously,
and if so, are equal to each other. Indeed, for any finite interval (a, b] (a ≤ b), one has
G1(b)− G1(a)− (G2(b)− G2(a)) = U1(b)−U1(a)− (U2(b)−U2(a)). Thus, the signed
measures corresponding to G1 − G2 and U1 −U2 coincide on B(R). We mention in passing
that one can also employ the Jordan decomposition of a signed measure.

For Fe introduced in Equation (16), the analog of Equation (15) has the form

E[ f (X)]− f (0) = E[X]
∫
R

f ′(x)dFe(x). (20)
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Taking into account Equation (17), one can rewrite Equation (20) equivalently as follows

E[ f (X)]− f (0) =
∫
(−∞,0]

f ′(x)(−F(x))dx +
∫
(0,∞)

f ′(x)(1− F(x))dx. (21)

The right-hand side of the latter relation does not depend on the choice of a version of f ′.
Due to Theorem 1(d) of [22], Equation (20) is valid for any Lipschitz function f . Evidently,
an arbitrary function f ∈ H2 need not be the Lipschitz one and vice versa.

Lemma 3. Let X be a random variable such that E[X2] < ∞ and E[X] �= 0. Then, Equation (20)
is satisfied for all f ∈ H2.

The proof is provided in Appendix A.

3. Limit Theorem for Geometric Sums of Independent Random Variables

Consider Np ∼ Geom(p), see Equation (2). In other words, Np has a geometric distri-
bution with parameter p. Let X1, X2, . . . be a sequence of independent random variables
such that E[Xk] = μ, where μ ∈ R, μ �= 0, k ∈ N. Assume that Np and (Xn)n∈N are
independent. Consider a normalized geometric sum

Wp :=
p

μ(1− p)

Np

∑
k=1

Xk, (22)

introduced in Equation (3). Since Np can take zero value, set, as usual, ∑0
k=1 Xk := 0. One

can see that Wp can be viewed as a random sum Sp := ∑
Np
k=1 Xk normalized by E[X]E[Np].

Lemma 4. Let X1, X2, . . . and Np, where p ∈ (0, 1), be random variables described above in this
Section. Then, the following relations hold:

E[Wp] = 1, E|Wp| ≤
supk∈N E|Xk|

|μ| ,

E[W2
p ] =

p
μ2(1− p)

E[X2
Np+1] + 2. (23)

Proof. Recall that

E[Np] =
∞

∑
k=1

kp(1− p)k−1 =
1− p

p
, (24)

E[N2
p ] =

∞

∑
k=1

k2 p(1− p)k−1 =
(1− p)(2− p)

p2 . (25)

Thus, one has

E[Wp] =
p

μ(1− p)

∞

∑
k=1

kμP(Np = k) =
p

1− p
E[Np] = 1.

Clearly, E|Xk| < ∞ since E[Xk] is finite (k ∈ N). Therefore

E|Wp| ≤
p

|μ|(1− p)

∞

∑
k=1

kE|Xk|P(Np = k) ≤ supk∈N E|Xk|
|μ| .

Set νk := E[X2
k ], k ∈ N. One has

E[S2
p] =

∞

∑
k=1

P(Np = k)E

(
k

∑
i=1

Xi

)2

=
∞

∑
k=1

p(1− p)k

(
k

∑
i=1

νi + k(k− 1)μ2

)
. (26)

176



Mathematics 2022, 10, 4747

According to Equations (24) and (25) one derives the formula

∞

∑
k=1

p(1− p)k
(

k(k− 1)μ2
)
= μ2

(
(1− p)(2− p)

p2 − 1− p
p

)
= 2
(

μ(1− p)
p

)2

. (27)

Convergence of the series ∑∞
k=1 p(1− p)k ∑k

i=1 νi having non-negative terms holds simulta-
neously with the validity of inequality E[W2

p ] < ∞. Changing the order of summation, we
obtain

∞

∑
k=1

p(1− p)k
k

∑
i=1

νi =
∞

∑
i=1

(1− p)iνi =

(
1− p

p

)
E[X2

Np+1].

The latter formula and Equations (26), (27) yield

E[W2
p ] =

(
p

μ(1− p)

)2
E[S2

p] =

(
p

μ(1− p)

)2
((

1− p
p

)
E[X2

Np+1] + 2
(

μ(1− p)
p

)2
)

=
p

μ2(1− p)
E[X2

Np+1] + 2.

Equation (23) is established.

The proof of Theorem 3.1 in [45] shows for non-negative i.i.d. random variables
X1, X2, . . . (when μ = 1, see Formula (3.15) in [45]) that the equilibrium transformation of
Wp distribution has the following form:

We
p =

p
μ(1− p)

( Np

∑
k=1

Xk + Xe
Np+1

)
= Wp +

p
μ(1− p)

Xe
Np+1, (28)

where Xe
Np+1 means that we construct Xe

1, Xe
2, . . . and then take a random index Np + 1. In

other words,

Xe
Np+1 =

∞

∑
n=0

Xe
n+1I{Np = n}.

It was explained in Section 2 that a generalized equilibrium distribution function Fe
Wp

(x)
(see Definition 2) need not be a distribution function when the summands X1, X2, . . . can
take values of different signs. However, employing this function, one can establish the
following result.

Theorem 1. Let X1, X2, . . . be a sequence of independent random variables having finiteE[Xk] = μ,
where μ �= 0, k ∈ N. Assume that Np and (Xn)n∈N are independent, where Np ∼ Geom(p),
0< p<1. If Z ∼ Exp(1), then

dH2(Wp, Z) =
E[X2

Np+1]

2μ2

(
p

1− p

)
(29)

where Wp was introduced in Equation (22).

Proof. If E[W2
p ] = ∞, then dH2(Wp, Z) = ∞ since, for a function h(x) = x2/2, x ∈ R,

belonging toH2, one has E[h(Wp)] = ∞, whereas E[h(Z)] < ∞. According to Equation (23),
E[W2

p ] and E[X2
Np+1] are both finite or infinite simultaneously. Consequently, Equation (29)

is true when E[W2
p ] = ∞.

Let us turn to the case E[W2
p ] < ∞. At first, we obtain an upper bound for dH2(Wp, Z).

Take h ∈ H2. Applying Lemmas 1 and 2 and Remark 1, one can write due to Stein’s
Equation (10) that

|E[h(Wp)]−E[h(Z)]| = |E[ f ′h(Wp)]−E[ fh(Wp)] + f (0)|. (30)
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Using the generalized equilibrium distribution transformation (20) one obtains:

|E[ f ′h(Wp)]−E[ fh(Wp)] + f (0)| =
∣∣∣∣∫

R

f ′h(x) dFWp(x)−
∫
R

f ′h(x) dFe
Wp

(x)
∣∣∣∣. (31)

Due to Lemma 3 this is true, for h ∈ H2, because fh ∈ H2 according to Lemma 2 (with
λ = 1). Next, we employ the relation∫

R

f ′h(x) dFWp(x)−
∫
R

f ′h(x) dFe
Wp

(x) =
∫
R

f ′h(x) d(FWp − Fe
Wp

)(x). (32)

Evidently, one can write
∫
R
| f ′h(x)| dFWp(x) < ∞. The notation dFe

Wp
(x) in the integral refers

to the Lebesgue–Stieltjes integral with respect to a function Fe
Wp

(x) of bounded variation. In
fact, the integral with integrator dFe

Wp
(x) means that integration employs a signed measure

Q+
p − Q−p , where Q+

p and Q−p have the following densities with respect to the Lebesgue
measure:

q+p (x) := (1− FWp(x))I{(0, ∞)}, q−p (x) := FWp(x)I{(−∞, 0]}, x ∈ R,

we took into account that E[Wp] = 1 according to Lemma 4. Then, for any −∞ < a <

b < ∞, one ascertains that variation of Fe
Wp

on [a, b] is given by formula Varb
a(Fe

Wp
) =∫ b

a |pe
Wp

(u)|du (see, e.g., Theorem 4.4.7 [46]). Note that for any −∞ < a < b < ∞,

∫ b

a
|pe

Wp
(u)|du ≤ E|Wp| < ∞

according to Lemma 4. Thus, Fe
Wp

is a function of bounded variation. In the right-hand
side of Equation (32), we take the Lebesgue–Stieltjes integral with respect to the function of
bounded variation (FWp − Fe

Wp
)(x), x ∈ R. Let Fe

Wp
(x) = Fe

p,1(x)− Fe
p,2(x), x ∈ R, where Fe

p,i
are nondecreasing right-continuous functions (even continuous since Fe

Wp
is continuous),

i = 1, 2. Thus,

FWp(x)− Fe
Wp

(x) = (FWp(x) + Fe
p,2(x))− Fe

p,1(x), x ∈ R.

With the help of Equations (18) and (19) one makes sure that, for each n ∈ N,∫
(−n,n]

f ′h(x) d(FWp − Fe
Wp

)(x) =
∫
(−n,n]

f ′h(x) d(FWp(x) + Fe
p,2(x))−

∫
(−n,n]

f ′h(x) d(Fe
p,1(x))

=
∫
(−n,n]

f ′h(x) dFWp(x) +
∫
(−n,n]

f ′h(x) dFe
p,2(x)−

∫
(−n,n]

f ′h(x) dFe
p,1(x)

=
∫
(−n,n]

f ′h(x) dFWp(x)−
∫
(−n,n]

f ′h(x) d(Fe
p,1(x)− Fe

p,2(x))

=
∫
(−n,n]

f ′h(x) dFWp(x)−
∫
(−n,n]

f ′h(x) dFWe
p(x).

All the integrals in the latter formulas are finite. According to Lemma 2 and Remark 1, one
can write | f ′h(x)| ≤ A0|x|+ B0, where A0, B0 are positive constants. Thus, the Lebesgue
theorem on dominated convergence ensures that

lim
n→∞

∫
(−n,n]

f ′h(x) dFWp(x) =
∫
R

f ′h(x) dFWp(x),

where the latter integral is finite. Indeed,∫
R

(A0|x|+ B0) dFWp(x) = A0E|Wp|+ B0 < ∞ (33)
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according to Lemma 4. By the same Lemma, one has E[Wp] = 1. Therefore, on account of
Equation (17), the following relation holds:∫

(−n,n]
f ′h(x) dFWe

p(x) =
∫
(−n,0]

f ′h(x)(−FWp(x))dx +
∫
(0,n]

f ′h(x)(1− FWp(x))dx,

whereas Corollary 2, Sec. 6, Ch. II of [47] and Lemma 4 entail that

∫
(−∞,0]

(A0|x|+ B0)FWp(x)dx +
∫
(0,∞)

(A0|x|+ B0)(1− FWp(x))dx

≤ A0E[W2
p ] + B0E|Wp| < ∞. (34)

The Lebesgue theorem on dominated convergence for σ-finite measures and Equation (34)
yield

lim
n→∞

∫
(−n,n]

f ′h(x)dFe
Wp

(x) =
∫
R

f ′h(x)dFe
Wp

(x),

where the latter integral is finite. Now, we show that

lim
n→∞

∫
(−n,n]

f ′h(x) d(FWp − Fe
Wp

)(x) =
∫
R

f ′h(x) d(FWp − Fe
Wp

)(x). (35)

Note that f ′h(x)I(−n,n](x) → f ′h(x) at each x ∈ R as n → ∞. To apply the version of the
Lebesgue theorem to integrals over a signed measure, it suffices (see, e.g., [48], p. 74) to
verify that ∫

R

| f ′h(x)||d(FWp − Fe
Wp

)(x)| < ∞,

where |dG|means that one evaluates an integral with respect to the measure corresponding
to the total variation of a measure determined by a right-continuous function G of bounded
variation. The extension of the Lebesgue theorem on dominated convergence for signed
measures is an immediate corollary of the Jordan decomposition mentioned above. Using
this decomposition, one obtains the inequality∫

R

| f ′h(x)||d(FWp − Fe
Wp

)(x)| ≤
∫
R

| f ′h(x)||dFWp(x)|+
∫
R

| f ′h(x)||dFe
Wp

(x)|.

Due to Remark 1 one has | f ′h(x)| ≤ A0|x|+ B0 for all x ∈ R and some positive constants
A0, B0. Then, Equations (33) and (34) yield (as FWp generates probability measure)∫

R

(A0|x|+ B0)dFWp(x) +
∫
R

(A0|x|+ B0)|dFe
Wp

(x)| < ∞.

The functions f ′h and FWp − Fe
Wp

are right-continuous and have bounded variation. Then
each of them can be represented as the difference of right-continuous nondecreasing
functions, and using for any n ∈ N the integration by parts formula (see, e.g., Theorem 11,
Sec. 6, Ch. 2, [47]), one has∫

(−n,n]
f ′h(x) d(FWp − Fe

Wp
)(x)

= f ′h(x)(FWp(x)− Fe
Wp

(x))|n−n −
∫
(−n,n]

(FWp(x)− Fe
Wp

(x))d f ′h(x).

Since the integral in the right-hand side of Equation (35) is finite, it holds

f ′h(x)(FWp(x)− Fe
Wp

(x))→ 0, x → −∞ or x → ∞ (36)

(the proof is similar to the proof of Corollary 2, Sec. 6, Ch. 2 in [47]). Then,
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∫
R

f ′h(x) d(FWp − Fe
Wp

)(x) = − lim
n→∞

∫
(−n,n]

(FWp(x)− Fe
Wp

(x))d f ′h(x).

The function f ′h is absolutely continuous according to Lemma 2. Hence (see also
Equations (36) and (A12) in Appendix A) we get∣∣∣∣∫

R

f ′h(x) d(FWp(x)− Fe
Wp

(x))
∣∣∣∣ = lim

n→∞

∣∣∣∣∫
(−n,n]

(FWp(x)− Fe
Wp

(x)) f ′′h (x) dx
∣∣∣∣

≤ ‖ f ′′h ‖∞

∫
R

∣∣FWp(x)− Fe
Wp

(x)
∣∣ dx ≤

∫
R

∣∣FWp(x)− Fe
Wp

(x)
∣∣ dx, (37)

because ‖ f ′′h ‖∞ ≤ ‖h′‖∞ ≤ 1 due to Lemmas 1 and 2. Using the homogeneity of the
Kantorovich metric for signed measures which is derived from formula (20) of [22] (see
Lemma 1 (a) there) and applying Lemma 3 of that paper, we can write

∫
R

∣∣FWp(x)− Fe
Wp

(x)
∣∣ dx =

p
|μ|(1− p)

∫
R

∣∣FSNp
(x)− Fe

SNp
(x)
∣∣ dx

≤
E[X2

Np+1]

2μ2

(
p

1− p

)
. (38)

Relations (30), (31), (32), (37), (38) and Lemmas 1 and 2 guarantee that dH2(Wp, Z) does not
exceed the right-hand side of Equation (29).

Now, we turn to the lower bounds for dH2(Wp, Z). Choose h(x) = x2/2 as the test
function. Since h ∈ H2, we can write

dH2(Wp, Z) ≥
∣∣E[h(Wp)]−E[h(Z)]

∣∣ = 1
2

∣∣E[W2
p ]−E[Z2]

∣∣. (39)

For a random variable Z following the exponential law Exp(1), one has E[Z2] = 2. Formula
(23) of Lemma 4 yields

dH2(Wp, Z) ≥
E[X2

Np+1]

2μ2

(
p

1− p

)
.

Taking into account formula (38), we come to the desired statement. The proof is com-
plete.

Remark 3. Evidently,

E[X2
Np+1] =

∞

∑
n=0

E[X2
n+1]p(1− p)n.

Thus, one obtains
E[X2

Np+1] ≤ sup
n∈N

E[X2
n],

and the latter inequality becomes an equality when E[X2
n] = E[X2

1 ] for all n ∈ N. Therefore, the
statement of Theorem 1 can be written as follows

dH2(Wp, Z) ≤ supn∈N E[X2
n]

2μ2

(
p

1− p

)
,

and this becomes an equality when E[X2
n] = E[X2

1 ] for all n ∈ N.

Remark 4. In [22], the authors proved the following inequality

dH2(Wp, Z) ≤
3E[X2

Np+1]

2μ2

(
p

1− p

)
.
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We established the sharp estimate with a factor 1/2 instead of 3/2 having employed Equation (20)
for a class of functions comprising solutions of the Stein equation for h ∈ H2. The estimate with
factor 1/2 was also obtained in the recent paper [49] but for i.i.d. summands. The lower bounds
were not provided there. In our Theorem 1, the summands have the same expectations but need not
have the same distribution.

Remark 5. If the summands of Wp are non-negative, we consider We
p appearing in Equation (28).

Applying Theorem 1(i) [22] to relation (29), one obtains

dH1(W
e
p, Z) =

E[X2
Np+1]

2μ2
p

1− p
.

For i ∈ N, consider a random variable Xi having distribution Exp(1/μ). Then Xe
i ∼ Exp(1/μ),

and, consequently, Xe
Np+1 ∼ Exp(1/μ). We can choose Xe

i , i ∈ N, according to Remark 2. Then,
the distribution of We

p will be the same if we change Xe
Np+1 to XNp+1 in Equation (28). In such a

way, We
p is a normalized sum of a random number of independent random variables. Using the

homogeneity of the Kantorovich metric, one has

dH1

(
p
μ

Np+1

∑
k=1

Xk, (1− p)Z

)
= (1− p)dH1

(
p

μ(1− p)

Np+1

∑
k=1

Xk, Z

)
=

E[X2
Np+1]

2μ2 p. (40)

Therefore, for an arbitrary sequence (Xk)k∈N satisfying conditions of Theorem 1, the upper bound
for the left-hand side of Equation (40) is not less than the right-hand side of Equation (40).

4. Limit Theorem for Geometric Sums of Exchangeable Random Variables

Now, we consider exchangeable random variables X1, X2, . . . satisfying the depen-
dence condition proposed in [35]. Namely, assume that for all n ∈ N, tj ∈ R (j = 1, . . . , n)
and some ρ ∈ [0, 1]

E

[
ei(t1X1+...+tnXn)

]
= ρE

[
eiX1(t1+...+tn)

]
+ (1− ρ)

n

∏
j=1

E

[
eitjXj

]
, (41)

where i2 = −1. The cases of ρ = 0 and ρ = 1 correspond, respectively, to independent
random variables and those possessing the property of comonotonicity. The latter means
that for ρ = 1 the joint behavior of X1, . . . , Xn is strongly correlated and coincides with one
of a vector (X1, . . . , X1).

Theorem 2. Let X1, X2 . . . be exchangeable random variables with E[X1] = μ, μ �= 0 satisfying
condition (41) for some ρ ∈ (0, 1). Suppose that (Xn)n∈N and Np are independent, where Np ∼
Geom(p), p ∈ (0, 1). In contrast to the Rényi theorem, one has

Wp
D→ Y, p→ 0+,

where the law of Y is the following mixture

PY = ρPVX1/μ + (1− ρ)PZ, (42)

random variables X1, V are independent and V ∼ Exp(1), Z ∼ Exp(1).

Proof. Let X̃1, X̃2, . . . be independent copies of X1, X2, . . ., respectively. Suppose that
X̃1, X̃2, . . . are independent with Np. Set S0 := 0, S̃0 := 0, S̃n := X̃1 + . . . + X̃n, n ∈ N.
Denote the characteristic function of a random variable ξ by fξ(t), t ∈ R. For each t ∈ R,
using Equation (41), one has
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fSNp
(t) =

∞

∑
n=0

E

[
eitSn

]
P(Np = n)

= P(Np = 0) +
∞

∑
n=1

(
ρE
[
eiX1tn

]
+ (1− ρ)

n

∏
j=1

E

[
eitXj

])
P(Np = n)

= p +
∞

∑
n=0

(
ρE
[
eiX1tn

]
+ (1− ρ)

n

∏
j=1

E

[
eitX̃j

])
P(Np = n)− ρp− (1− ρ)p

= ρ fX1 Np(t) + (1− ρ)
∞

∑
n=0

fS̃n
(t)P(Np = n) = ρ fX1 Np(t) + (1− ρ) fS̃Np

(t).

For each t ∈ R, one has

fWp(t) = ρ f p
μ(1−p) X1 Np

(t) + (1− ρ) fW̃p
(t), (43)

where W̃p = p
μ(1−p) ∑

Np
j=1 X̃j.

According to the classical Rényi theorem, W̃p
D→ Z as p → 0+, where Z ∼ Exp(1).

Note that Tp := p
1−p Np

D→ V as p → 0+, where V ∼ Exp(1). In fact, one can apply
Theorem 1 with Xj ≡ 1, j ∈ N to check this. For each t ∈ R, taking into account that Tp and
X1 are independent and applying the Lebesgue theorem on dominated convergence, we
see that

E

[
eitTpX1

]
= E

[
EeitTpX1 |X1

]
=
∫
R

eitTp xdFX1(x)→
∫
R

eitV xdFX1(x) = E

[
eitVX1

]
, p→ 0+,

since X1 and V are independent. Hence,

p
μ(1− p)

X1Np
D−→ VX1

μ
, p→ 0+

is true. In light of Equation (43),

Wp
D−→ Y, p→ 0+,

here the law of Y is the mixture of distributions VX1/μ and Z provided by Equation (42).
The proof is complete.

Theorem 3. Assume that Np and (Xn)n∈N satisfy conditions of Theorem 2. Let μ2 = E[X2
1 ].

Then,

dH2(Wp, Y) =
μ2

2μ2

(
p

1− p

)
. (44)

Proof. Relation (43) for characteristic functions implies that the following equality of
distributions holds

Wp
D
=

p
μ(1− p)

(
(1− Iρ)NpX1 + IρS̃Np

)
, (45)

where indicator Iρ equals 1 and 0 with probabilities 1 − ρ and ρ, respectively, and is
independent of all the variables under consideration. Assume at first that μ2 < ∞. Then,
for h ∈ H2,

E[h(Wp)] = ρE

[
h
(

p
μ(1− p)

NpX1

)]
+(1− ρ)E[h(W̃p)].

In view of Equation (42) one has
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E[h(Y)] = ρE
[

h
(VX1

μ

)]
+(1− ρ)E[h(Z)].

The latter two formulas and the triangle inequality yield

|E[h(Wp)]−E[h(Y)]|

≤ ρ

∣∣∣∣E[h
(

p
μ(1− p)

NpX1

)]
−E
[

h
(VX1

μ

)]∣∣∣∣+ (1− ρ)
∣∣∣E[h(W̃p)]−E[h(Z)]

∣∣∣. (46)

By means of Theorem 1 we have

sup
h∈H2

|E[h(W̃p)]−E[h(Z)]| = μ2

2μ2

(
p

1− p

)
. (47)

For each h ∈ H2, taking into account the independence of X1, Np, V, one can write∣∣∣∣E[h
(

p
μ(1− p)

NpX1

)]
−E
[

h
(VX1

μ

)]∣∣∣∣
=

∣∣∣∣∫
R

(
E

[
h
(

p
μ(1− p)

NpX1

)]
−E
[

h
( xV

μ

)])
dFX1(x)

∣∣∣∣.
Due to homogeneity of dH2 we infer from Theorem 1 that

sup
h∈H2

∣∣∣∣E[h
(

p
μ(1− p)

NpX1

)]
−E
[

h
( xV

μ

)]∣∣∣∣ = dH2

(
px

μ(1− p)
Np,

xV
μ

)

=

(
x
μ

)2
dH2

(
p

(1− p)

Np

∑
k=1

1, V

)
=

1
2

(
x
μ

)2 p
1− p

.

Consequently, it holds∣∣∣∣E[h
(

p
μ(1− p)

NpX1

)]
−E
[

h
(VX1

μ

)]∣∣∣∣
≤ p

2(1− p)

∫
R

(
x
μ

)2
dFX1(x) =

μ2

2μ2

(
p

1− p

)
. (48)

Equations (46), (47) and (48) lead to the upper bound for dH2(Wp, Y).
Note that a function h(x) = x2/2, x ∈ R, belongs to ∈ H2 and therefore

sup
H2

∣∣E[h(Wp)]−E[h(Y)]
∣∣ ≥ 1

2

(
E[W2

p ]−E[Y2]
)

. (49)

Note that E[Z2] = E[V2] = 2 because Z ∼ Exp(1) and V ∼ Exp(1). The random variables
X1, V, Z are independent. Thus, in light of Equation (42), one has

E[Y2] = 2ρ
μ2

μ2 + 2(1− ρ). (50)

By means of Equations (45), (23) and (25) we obtain

E[W2
p ] =

(
p

μ(1− p)

)2
ρE[N2

p ]E[X
2
1 ] + (1− ρ)E[W̃2

p ]

=

(
p

μ(1− p)

)2
ρ
(1− p)(2− p)

p2 μ2 + (1− ρ)

(
p

μ2(1− p)
μ2 + 2

)
=

=
μ2

μ2

(
ρ

2− p
1− p

+ (1− ρ)
p

1− p

)
+ 2(1− ρ). (51)
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Equations (50) and (51) permit to find E[W2
p ]− E[Y2]. Hence Equation (49) leads to the

inequality

sup
H2

∣∣E[h(Wp)]−E[h(Y)]
∣∣

≥
(1

2

)μ2

μ2

(
ρ

(
2− p
1− p

− 2
)
+ (1− ρ)

p
1− p

)
=
(1

2

)μ2

μ2
p

1− p
. (52)

Now, let μ2 = ∞. Then, dH2(Wp, Y) = ∞ according to Equation (52). The proof is
complete.

5. Convergence of Random Sums of Independent Summands to Generalized
Gamma Distribution

Statements concerning weak convergence of geometric sums distributions to exponen-
tial law are often just particular cases of more general results concerning the convergence
of random sums of random summands to generalized gamma law when the number of
summands follows the generalized negative binomial distribution, see, e.g., [27,29,49]).
The recent work [29] demonstrated how it is possible to study the mentioned general case
employing the estimates of proximity of geometric sums distributions to exponential law.
We introduce some notation to apply Theorem 1 for analysis of the distance between the
distributions of random sums and the generalized gamma law.

Introduce a random variable Gr,λ such that Gr,λ ∼ G(r, λ), where G(r, λ) is the gamma
law with positive parameters r and λ, i.e., its density with respect to the Lebesgue measure
has the form

g(z; r, λ) =
λrzr−1

Γ(r)
e−λz

I(0,∞)(z), z ∈ R,

Γ(r) being the gamma function. For r = 1, one has G(1, λ) = Exp(λ). Clearly, for a > 0,
aGr,λ ∼ G(r, λ/a). Set G∗r,α,λ := G1/α

r,λ , where α > 0. One says that random variable G∗r,α,λ
has the generalized gamma distribution G∗(r, α, λ). According to Equation (5) of [29], the
density of G∗r,α,λ is given by formula

g∗(z; r, α, λ) =
|α|λrzαr−1

Γ(r)
e−λzα

I(0,∞)(z), z ∈ R.

Also it is known (see Equation (6) in [29]) that, for r ∈ (0, 1), α ∈ (0, 1] and λ > 0, the
following relation holds

g∗(z; r, α, λ) =
∫ 1

0

u
1− u

e−
u

1−u zq(u; r, α, λ) du, z > 0, (53)

where q is a density of a specified random variable Yr,α,λ such that support of its distribution
belongs to (0, 1) (see Remark 3 [49]). We only note that for α = 1 the density q admits a
representation

q
(

u; r, 1,
b

1− b

)
= br

(
sin πr

π

)
(1− u)r−1

u(u− b)r I(b,1)(u), b ∈ (0, 1).

Consider a random variable N∗r,α,p having the generalized negative binomial distribu-
tion GNB(r, α, p), where r > 0, α �= 0 and p ∈ (0, 1), i.e.,

P(N∗r,α,p = k) =
∫ ∞

0

zk

k!
e−zg∗

(
z; r, α,

p
1− p

)
dz, k = 0, 1, . . . (54)

Thus GNB(r, α, p) has a mixed Poisson distribution. One can verify that GNB(r, 1, p)
coincides with NB(r, p), where NB(r, p) is the negative binomial law. Recall that Nr,p ∼
NB(r, p) if
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P(Nr,p = k) =
Γ(k + r)
k!Γ(r)

pr(1− p)k, k = 0, 1, . . .

Note also that N1,p ∼ Geom(p).
Introduce the random variables

W∗r,α,p :=
1
μ

(
p

1− p

)1/α N∗r,α,p

∑
k=1

Xk, S∗r,α,p :=
N∗r,α,p

∑
k=1

Xk, (55)

where N∗r,α,p ∼ GNB(r, α, p), r > 0, α �= 0, p ∈ (0, 1), and E[Xk] = μ, μ �= 0, k ∈ N. We
assume that (Xn)n∈N and N∗r,α,p are independent, where r > 0, α �= 0, p ∈ (0, 1).

Theorem 4. Let (Xn)n∈N be a sequence of independent random variables having E[Xn] = μ,
μ �= 0, n ∈ N. Then, for W∗r,α,p introduced in Equation (55) with parameters r ∈ (0, 1), α ∈ (0, 1],
p ∈ (0, 1) and Gr,1 having the gamma distribution G(r, 1), the following relation holds

dH2(W
∗
r,α,p, G1/α

r,1 ) =
1

2μ2

(
p

1− p

)2/α ∫ 1

0
E[X2

Nu+1]

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du, (56)

whenever the right-hand side of Equation (56) is finite. Here, Nu := N∗1,1,u, Nu ∼ Geom(u),
u ∈ (0, 1) and q appeared in Equation (53).

Proof. Without loss of generality, we can assume that μ = 1; otherwise, we consider
X̃n := Xn

μ , n ∈ N. For such sequence, E[X̃2
Nu+1] =

1
μ2 E[X2

Nu+1]. Note that 1−p
p Gr,1 has the

same distribution as Gr,p/(1−p). Applying the homogeneity property of the ideal probability
metric of order two, one has

dH2(W
∗
r,α,p, G1/α

r,1 ) =

(
p

1− p

)2/α

dH2

(
S∗r,α,p, G1/α

r,p/(1−p)

)
.

The proof of Theorem 1 [29] starts with establishing for any bounded Borel function h,
r ∈ (0, 1), α ∈ (0, 1] and p ∈ (0, 1), that

E
[
h
(
G1/α

r,p/(1−p)

)]
=
∫ 1

0
E

[
h
(

1− u
u

Z
)]

q
(

u; r, α,
p

1− p

)
du, (57)

where Z ∼ Exp(1), and

E
[
h(S∗r,α,p)

]
=
∫ 1

0
E
[
h(S∗1,1,u)

]
q
(

u; r, α,
p

1− p

)
du. (58)

Let us examine these relations for each h ∈ H2. Recall that in light of Remark 1 |h(x)| ≤
A0x2 + B0 for some positive constants A0 and B0 (which depend on h), we write h =
h+ − h−, where h+(x) := h(x)I{h(x) ≥ 0}, h−(x) := −h(x)I{h(x) ≤ 0}. Set hn(x) :=
h+(x)I(−n,n](x), n ∈ N. Then, hn and n ∈ N are bounded Borel functions such that for each
x ∈ R, 0 ≤ hn(x)↗ h+(x) as n→ ∞. Hence, the monotone convergence theorem yields

E
[
h+
(
G1/α

r,p/(1−p)

)]
= lim

n→∞
E
[
hn
(
G1/α

r,p/(1−p)

)]
.

Note that, for each u ∈ (0, 1), E
[

hn

(
1−u

u Z
)]
↗ E

[
h+
(

1−u
u Z

)]
. Applying the monotone

convergence theorem once again, we obtain

∫ 1

0
E

[
h+
(

1− u
u

Z
)]

q
(

u; r, α,
p

1− p

)
du = lim

n→∞

∫ 1

0
E

[
hn

(
1− u

u
Z
)]

q
(

u; r, α,
p

1− p

)
du.
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So, Equation (57) is valid if instead of h belonging to H2 we write h+. Obviously, 0 ≤
h+(x) ≤ |h(x)| ≤ A0x2 + B0, x ∈ R, n ∈ R. Thus,

E

[
h+
(

G1/α
r,p/(1−p)

)2
]
≤ A0E

(
G2/α

r,p/(1−p)

)
+ B0 < ∞.

According to [27] (page 8), for δ > 0, one has

E
[
(G∗r,α,λ)

δ
]
=

Γ(r + δ
α )

λδ/αΓ(r)
. (59)

This permits us to write E
(
G2/α

r,p/(1−p)

)
= E

[
(G∗r,1,p/(1−p))

2/α
]
< ∞.

In the same manner, we demonstrate that Equation (57) is valid if instead of h ∈ H2

we take h−. Moreover, E
[
h−
(
G1/α

r,p/(1−p)

)]
is finite. Therefore, Equation (57) holds for any

h ∈ H2, and for such h, E
[
h
(
G1/α

r,p/(1−p)

)]
is finite.

By the monotone convergence theorem E[h+(S∗r,α,p)] = limn→∞ E[hn(S∗r,α,p)]. In a
similar way, E[hn(S∗1,1,u)]↗ E[h+(S∗1,1,u)] as n→ ∞, and applying this theorem once again,
we obtain∫ 1

0
E[h+(S∗1,1,u)]q

(
u; r, α,

p
1− p

)
du = lim

n→∞

∫ 1

0
E[hn(S∗1,1,u)]q

(
u; r, α,

p
1− p

)
du.

Taking into account that Equation (58) is valid for bounded Borel functions hn, one ascertains
that Equation (58) holds if we replace h by h+. To show the latter integral is finite, we note
that 0 ≤ h+(x) ≤ |h(x)| ≤ A0x2 + B0, for some positive A0, B0 and all x ∈ R. Formula (23)
of Lemma 4 yields, for each u ∈ (0, 1),

E
[
(S∗1,1,u)

2] ≤ 1− u
u

E[X2
Nu+1] + 2

(1− u)2

u2 .

It was assumed above that the right-hand side of Equation (56) is finite. So,

∫ 1

0
E

(
A0

(
1− u

u
E[X2

Nu+1] + 2
(1− u)2

u2

)
+ B0

)
q
(

u; r, α,
p

1− p

)
du < ∞,

since in light of Equation (57), taking h(x) = 1 and h(x) = x2

2 (these functions belong to
H2), x ∈ R, we obtain, respectively,∫ 1

0
q
(

u; r, α,
p

1− p

)
du = 1,

E[Z2]
∫ 1

0

(1− u)2

u2 q
(

u; r, α,
p

1− p

)
du = E

(
G2/α

r,p/(1−p)

)
< ∞. (60)

We demonstrate analogously that Equation (58) holds upon replacing h ∈ H2 with h− and
if the right-hand side of Equation (56) is finite, it follows that∫ 1

0
E
[
h−(S∗1,1,u)

]
q
(

u; r, α,
p

1− p

)
du

is finite as well. Consequently, Equation (58) is established for each h ∈ H2 (whenever the
right-hand side of Equation (56) is finite) and E

[
h(S∗r,α,p)

]
is finite for such h. Therefore, for

h ∈ H2 and fixed α, r, p, one has
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E
[
h(S∗r,α,p)

]
−E
[
h
(
G1/α

r,p/(1−p)

)]
=
∫ 1

0

(
E
[
h(S∗1,1,u)

]
−E

[
h
(

1− u
u

Z
)])

q
(

u; r, α,
p

1− p

)
du =: J(h).

By Theorem 1, for h ∈ H2, it holds∣∣∣∣E[h(S∗1,1,u)
]
−E

[
h
(

1− u
u

Z
)]∣∣∣∣ ≤ dH2

(
S∗1,1,u,

1− u
u

Z
)
=

(
1− u

u

)2
dH2

(
u

1− u
S∗1,1,u, Z

)

≤
(

1− u
u

)2 u
1− u

(
1
2

)
E[X2

Nu+1] =

(
1
2

)
1− u

u
E[X2

Nu+1],

where we take into account that N∗1,1,u ∼ NB(1, u), and NB(1, u) coincides with Geom(u).
Thus, u

1−u S∗1,1,u can be written as

u
1− u

Nu

∑
k=1

Xk,

where Nu ∼ Geom(u), Nu and (Xk)k∈N are independent.

Therefore, for each h ∈ H2,
(

p
1−p

)2/α
|J(h)| is bounded by the right-hand side of

Equation (56), and so the desired upper bound is obtained (recall that μ = 1).
Now, we turn to the lower bound of dH2(W

∗
r,α,p, G1/α

r,1 ). Take h(x) = x2/2 belonging to

H2. Then, applying Equation (23) to evaluate E
[(

S∗1,1,u
)2], one has

dH2(W
∗
r,α,p, G1/α

r,1 )

≥ 1
2

(
p

1− p

)2/α
∣∣∣∣∣
∫ 1

0

(
E
[(

S∗1,1,u
)2]−(1− u

u

)2
E
[
G2

1,1
])

q
(

u; r,
p

1− p

)
du

∣∣∣∣∣
=

1
2

(
p

1− p

)2/α ∫ 1

0

(
1− u

u

)
E[X2

Nu+1]q
(

u; r,
p

1− p

)
du, (61)

where G1,1 = Z ∼ Exp(1). Thus, Equation (61) completes the proof.

Corollary 1. Let conditions of Theorem 4 be satisfied and also μ2 = supn∈N E[X2
n] < ∞. Then,

the right-hand side of Equation (56) is finite and

dH2(W
∗
r,α,p, G1/α

r,1 ) ≤ μ2

2μ2

(
p

1− p

)1/α Γ(r + 1
α )

Γ(r)
.

The inequality becomes an equality if μ2 = E[X2
n] for all n ∈ N. In particular, if α = 1 then

Γ(r+1)
Γ(r) = r.

Proof. According to Equation (57), for h(x) = x, x ∈ R,

E
[
G1/α

r,p/(1−p)

]
= E[Z]

∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du.

Thus, the following relation is valid.∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du = E

[
G1/α

r,p/(1−p)

]
. (62)

Due to [27] (see page 8 there), for δ > 0, one has E[G∗r,α,λ] =
Γ(r+1/α)
λ1/αΓ(r) . Therefore,
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E
[
G1/α

r,p/(1−p)

]
= E[G∗r,α,p/(1−p)] =

(
1− p

p

) 1
α Γ(r + 1

α )

Γ(r)
.

For α = 1, we obtain E[Gr,p/(1−p)] =
1−p

p
Γ(r+1)

Γ(r) = r (1−p)
p .

6. Convergence of Random Sums of Exchangeable Summands to Generalized
Gamma Distribution

Consider the model of exchangeable random variables X1, X2, . . . described in Section 4.
Introduce the distribution of a random variable U∗r,α,λ as the following mixture

PU∗r,α,λ
= ρP( V∗r,α,λX1

μ

) + (1− ρ)PZ∗r,α,λ
, (63)

where ρ ∈ [0, 1], α > 0, r > 0, μ := E[X1], μ �= 0, random variables X1, V∗r,α,λ are

independent, V∗r,α,λ ∼ G∗(r, α, λ), Z∗r,α,λ ∼ G∗(r, α, λ). Since E[G2/α
r,λ ] = Γ(r+2/α)

λ2/αΓ(r) (see, e.g.,
page 8 [27]), one has

E
[
(U∗r,α,λ)

2] = (ρ
E[X2

1 ]

μ2 + (1− ρ)

)
Γ(r + 2/α)

λ2/αΓ(r)
. (64)

Due to the properties of generalized gamma distributions, for any positive number c,

1
cα

U∗r,α,λ =
1
cα

(
(1− Iρ)

V∗r,α,λX1

μ
+ IρZ∗r,α,λ

)
=

(
(1− Iρ)

V∗r,α,λX1

μ
+ IρZ∗r,α,cλ

)
= U∗r,α,cλ, (65)

where indicator Iρ equals 1 and 0 with probabilities 1 − ρ and ρ, respectively, and is
independent with all the variables under consideration. Note that U∗1,1,1 has the same
distribution as a random variable Y, having the law defined in Equation (42). Recall that
the generalized negative binomial distribution GNB(r, α, p) is the law of a random variable
N∗r,α,p, see Equation (54). We will use the following result.

Lemma 5. If r > 0, α �= 0, p ∈ (0, 1), then for N∗r,α,p ∼ GNB(r, α, p) one has

E
[
N∗r,α,p

]
= E

[
G∗r,α,p/(1−p)

]
, E

[
N∗r,α,p(N∗r,α,p − 1)

]
= E

[(
G∗r,α,p/(1−p)

)2]. (66)

Proof. According to Equation (54), for each n ∈ N,

n

∑
k=1

kP(N∗r,α,p = k) =
∫ ∞

0
z

n

∑
k=1

zk−1

(k− 1)!
e−zg∗(z; r, α,

p
1− p

) dz,

n

∑
k=2

k(k− 1)P(N∗r,α,p = k) =
∫ ∞

0
z2

n

∑
k=2

zk−2

(k− 2)!
e−zg∗(z; r, α,

p
1− p

) dz.

The desired statement follows from the monotone convergence theorem for the Lebesgue
integral by letting n→ ∞.

Theorem 5. Let X1, X2 . . . be exchangeable random variables, introduced in Section 4, such that
E[X1] = μ, E[X2

1 ] = μ2 < ∞. Assume that for some ρ ∈ (0, 1) Equation (41) holds. Suppose that
(Xn)n∈N and N∗r,α,p are independent, where N∗r,α,p ∼ GNB(r, α, p). Then, for W∗r,α,p defined in
Equation (55) with parameters r ∈ (0, 1), α ∈ (0, 1], p ∈ (0, 1) and U∗r,α,1 given in Equation (63),
one has
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dH2(W
∗
r,α,p, U∗r,α,1) =

μ2

2μ2

(
p

1− p

)1/α Γ(1 + 1
α )

Γ(r)
. (67)

Proof. Without loss of generality, we can assume that μ = 1; otherwise, we consider
X̃n := Xn/μ, n ∈ N. For such sequence, μ̃2 = EX̃2

1 = μ2/μ2. Note that Equation (58)
is true for dependent summands (see Theorem 1 [29]). Furthermore, for bounded h(t),
t ∈ R, function hx(t) = h(xt) is also bounded for any x ∈ R. Thus, an employment of
Equation (63) gives

E
[
h
(
U∗r,α,λ

)]
= ρ

∫
R

E
[
hx
(
G1/α

r,λ

)]
dFX1(x) + (1− ρ)E

[
h
(
G1/α

r,λ

)]
. (68)

Now we apply Equation (57) with bounded hx and by Fubini’s theorem obtain:

∫
R

E
[
hx
(
G1/α

r,λ

)]
dFX1(x) =

∫
R

∫ 1

0
E

[
hx

(
1− u

u
V∗
)]

q(u; r, α, λ) du dFX1(x)

=
∫ 1

0
E

[
h
(

1− u
u

X1V∗
)]

q(u; r, α, λ) du, (69)

where X1 and V∗ are independent and V∗ ∼ Exp(1). Apply Equation (57) for the second
summand of Equation (68). Then, Equation (69) yields

E
[
h
(
U∗r,α,λ

)]
= ρ

∫ 1

0
E

[
h
(

1− u
u

X1V∗
)]

q(u; r, α, λ) du + (1− ρ)
∫ 1

0
E

[
h
(

1− u
u

Z∗
)]

q(u; r, α, λ) du

=
∫ 1

0
E

[
h
(

1− u
u

U∗1,1,1

)]
q(u; r, α, λ) du, (70)

where Z∗ ∼ Exp(1) and U∗1,1,1 have the same distribution as Y, see Equation (42).
Recall that, for h ∈ H2, an inequality |h(x)| ≤ A0x2 + B0 holds for all x ∈ R and

some positive constants A0, B0 (see Remark 1). Moreover, E
[(

U∗r,α,λ
)2]

< ∞ according
to Equation (64). So, employing bounded hn(x) = h(x)I(−n,n](x) tending to h(x) ∈ H2
as n → ∞, one can invoke the Lebesgue dominated convergence theorem to claim that
limn→∞ E

[
hn(U∗r,α,λ)

]
= E

[
h
(
U∗r,α,λ

)]
. We take into account that

∫ 1

0
E

∣∣∣∣hn

(
1− u

u
U∗1,1,1

)∣∣∣∣q(u; r, α, λ) du ≤ A0E
[(

U∗1,1,1
)2] ∫ 1

0

(
1− u

u

)2
q(u; r, α, λ) du + B0.

The integral in the right-hand side of the latter formula is finite by Equation (60) and
E
[(

U∗1,1,1
)2]

< ∞ in accord with Equation (64). Thus, it is possible to apply the Lebesgue
dominated convergence theorem to obtain

lim
n→∞

∫ 1

0
E

[
hn

(
1− u

u
U∗1,1,1

)]
q(u; r, α, λ) du =

∫ 1

0
E

[
h
(

1− u
u

U∗1,1,1

)]
q(u; r, α, λ) du

for any h ∈ H2. So, Equation (70) holds for all h ∈ H2.
In a similar way, limn→∞ E[hn(S∗r,α,p)] = E

[
h
(
S∗r,α,p

)]
for h ∈ H2. According to the

Cauchy–Bunyakovsky–Schwarz inequality for identically distributed variables X1, X2, . . .
we have |E[XiXj]| ≤ μ2 for i, j ∈ N and consequently

E
[(

S∗r,α,p
)2]

=
∞

∑
k=0

P(N∗r,α,p = k)E
[( k

∑
j=1

Xj
)2
]

≤ μ2

∞

∑
k=0

P(N∗r,α,p = k)k2 = μ2E
[(

N∗r,α,p
)2]. (71)
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Equations (59) and (66) entail that E
[(

N∗r,α,p
)2]

< ∞. Thus, the dominated convergence
theorem guarantees that limn→∞ E[hn(S∗r,α,p)] = E

[
h
(
S∗r,α,p

)]
. Furthermore, one can demon-

strate that, for each h ∈ H2,

lim
n→∞

∫ 1

0
E
[
hn
(
S∗1,1,u

)]
q(u; r, α, λ) du =

∫ 1

0
E
[
h
(
S∗1,1,u

)]
q(u; r, α, λ) du. (72)

For this purpose we note that Equation (71) implies∫ 1

0
E
∣∣hn
(
S∗1,1,u

)∣∣q(u; r, α, λ) du ≤ C + Aμ2

∫ 1

0
E
[(

N∗1,1,u
)2]q(u; r, α, λ) du.

According to Equation (66) one has∫ 1

0
E
[(

N∗1,1,u
)2]q(u; r, α, λ) du =

∫ 1

0

(
E
[(

G∗1,1,u/(1−u)
)2]

+E
[
G∗1,1,u/(1−u)

])
q(u; r, α, λ) du.

The latter integral is finite because one can take h(x) = x and h(x) = x2/2 in Equation (57)
and invoke Equation (59). Then, it is possible to use the dominated convergence theorem
once again to establish Equation (72).

Now, combining Equation (58) and Equation (70) leads for any h ∈ H2 to the relation

E
[
h(S∗r,α,p)

]
−E
[
h(U∗r,α,p/(1−p))

]
=
∫ 1

0

(
E
[
h(S∗1,1,u)

]
−E

[
h
(

1− u
u

U∗1,1,1

)])
q
(

u; r, α,
p

1− p

)
du. (73)

Note that a random variable N∗1,1,u follows the geometric distribution Geom(u) with pa-
rameter u ∈ (0, 1). For each h ∈ H2 and any u ∈ (0, 1), by Theorem 3 and in view of dH2
homogeneity, we obtain∣∣∣∣E[h(S∗1,1,u)

]
−E

[
h
(

1− u
u

U∗1,1,1

)]∣∣∣∣ ≤ dH2

(
S∗1,1,u,

1− u
u

U∗1,1,1

)
=

(
1− u

u

)2
dH2(Wu, Y) ≤

(
1− u

u

)2( u
1− u

)
μ2

2
=

(
1− u

u

)
μ2

2
. (74)

Employing Equations (73), (74) and (62) one deduces

dH2(S
∗
r,α,p, U∗r,α,p/(1−p)) ≤

μ2

2

∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du =

μ2

2
E
[
G1/α

r,p/(1−p)

]
. (75)

Equation (65) implies by virtue of dH2 homogeneity that

dH2(W
∗
r,α,p, U∗r,α,1) =

(
p

1− p

)2/α

dH2(S
∗
r,α,p, U∗r,α,p/(1−p)). (76)

Combining Equations (59), (75) and (76) we conclude that the right-hand side of Equa-
tion (67) is an upper bound for dH2(W

∗
r,α,p, U∗r,α,1).

Choosing h(x) = x2/2 in Equation (73), upon employing Equation (52) and Equa-
tion (62) one infers:

dH2(W
∗
r,α,p, G1/α

r,1 ) ≥

≥ 1
2

(
p

1− p

)2/α
∣∣∣∣∣
∫ 1

0

(
E
[(

S∗1,1,u
)2]−(1− u

u

)2
E
[(

U∗1,1,1
)2])q

(
u; r, α,

p
1− p

)
du

∣∣∣∣∣ =
=

μ2

2

(
p

1− p

)2/α ∫ 1

0

(
1− u

u

)
q
(

u; r, α,
p

1− p

)
du =

μ2

2

(
p

1− p

)2/α

E[G∗r,α,p/(1−p)].
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Using Equation (59) once again, we see that the right-hand side of Equation (67) is a lower
bound for dH2(W

∗
r,α,p, U∗r,α,1).

7. Inverse to Equilibrium Transformation

The development of Stein’s method is closely connected with various transformations
of distributions. Let a random variable W ≥ 0 and 0 < μ = E[W] < ∞. Then, one
says that a random variable Ws has the W-size biased distribution if for all f such that
E[W f (W)] exists

E[W f (W)] = μE[ f (Ws)].

The connection of this transformation with Stein’s equation was considered in [50,51].
It was pointed out in [51] that this transformation works well for combinatorial problems,
such as counting the number of vertices in a random graph having prespecified degrees,
see also [52]. In [53], another transformation was introduced. Namely, if a random variable
W has mean zero and variance σ2 ∈ (0, ∞), then the authors of [53] write (Definition 1.1)
that a variable W∗ has W-zero biased distribution whenever, for all differentiable f such
that EW f (W) exists, the following relation holds

E[W f (W)] = σ2
E[ f ′(W∗)].

This definition is inspired by an equation E[W f (W)] = σ2E[ f ′(W)] characterizing
the normal law N(0, σ2). The authors of [53] explain that W∗ always exists if E[W] = 0
and varW ∈ (0, ∞). Zero-based coupling for products of normal random variables is
treated in [54]. In Sec. 2 of [30], it is demonstrated that the gamma distribution is uniquely
characterised by the property that its size-biased distribution is the same as its zero-biased
distribution. Two generalizations of zero biasing were proposed in [55], see p. 104 of that
paper for discussion of these transformations. We refer also to survey [56].

Now, we turn to the equilibrium distribution transformation introduced in [33] and
concentrate on approximation of the law under consideration by means of an exponential
law, see the corresponding Definition 1 in Section 2.

According to the second part of Theorem 2.1 of [33] (in our notation), for Z ∼ Exp(1)
and non-negative random variable X with E[X] = 1 and E[X2] < ∞ the following esti-
mate holds

dH1(X, Z) ≤ 2E|Xe − X|,
and at the same time

dH1(Xe, Z) ≤ E|Xe − X|. (77)

The authors of [33] also proved that dK(Xe, Z) ≤ E|Xe − X|. Notice that the estimate
for dH1(Xe, Z) is more precise than that for dH1(X, Z).

Now we turn to Equation (77) and demonstrate how to find the distribution of X
when we know the distribution of Xe. In other words, we concentrate on the inverse of an
equilibrium distribution transformation.

Assume that E[X] > 0. Recall that a random variable Xe exists if Fe(x) appearing in
Equation (16) is a distribution function. The latter statement for E[X] > 0 is equivalent to
nonnegativity of X. Indeed, for non-negative X, Fe(x) coincides with a distribution function
having a density (15). If Fe(x) is a distribution function and E[X] > 0 in Equation (16), then
Fe(x) ≥ 0 for x < 0 only if F(x) = 0 for x < 0.

Thus a random variable Xe has a (version of) density pe(x) introduced in Equation (15).
Obviously, the function pe(x) has the following properties. It is nonincreasing on [0, ∞) and
pe(x) = 0 for x < 0. This density is right-continuous on [0, ∞) and consequently pe(0) < ∞.
Now, we are able to provide a full description of the class of densities for random variables
Xe relevant to all non-negative X with positive mean.

Lemma 6. Let a non-negative random variable Xe have a version of density (with respect to the
Lebesgue measure) pe(x), x ∈ R, such that this function is nonincreasing on [0, ∞), pe(x) = 0 for
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x < 0, and there is finite limx→0+ pe(x). Then, there exists a unique preimage of Xe distribution
having the distribution function F continuous at x = 0. Namely,

F(x) =

{
1− pe(x)

pe(0) , x ≥ 0,

0, x < 0.
(78)

Proof. First of all, note that pe(0) > 0 as otherwise pe(x) = 0 for all x ∈ R (pe is a
nonincreasing function on [0, ∞)). We also know that there exist a left-sided limit and a
right-sided limit of pe at each point x ∈ (0, ∞) as well as the right-sided limit of pe at x = 0.
The set of discontinuity points of pe is at most countable, and we can take a version which
is right continuous at each point of [0, ∞). Then, Equation (78) introduces a distribution
function. Consider a random variable X with distribution function F and check the validity
of Equation (14).

The integration by a parts formula yields, for any b > 0,

1 ≥
∫ b

0
pe(x) dx = bpe(b) + pe(0)

∫ b

0
x dF(x). (79)

Summands in the right-hand side of Equation (79) are non-negative. Therefore, for any
b > 0, E[XI(X ≤ b)] ≤ 1/pe(0). Hence, the monotone convergence theorem implies that
E[X] is finite. According to Equation (78)

bpe(b)/pe(0) = b(1− F(b)) = bP(X > b)→ 0, b→ ∞, (80)

since E[X] < ∞. Taking in the Equation (79) limit as b → ∞, one obtains 1 = pe(0)E[X].
Now, we are ready to verify Equation (14). For any Lipschitz function f , E[ f (X)] is
finite and

E[ f (X)] =
∫ ∞

0
f (x)dF(x) = − 1

pe(0)

∫ ∞

0
f (x)dpe(x).

Taking into account Equation (80), we infer that f (b)pe(b) → 0 as b → ∞. Consequently,
applying integration by parts once again ( f has bounded variation), we obtain

E[X]E[ f ′(Xe)] =
1

pe(0)

∫ ∞

0
f ′(x)pe(x) dx =

1
pe(0)

∫ ∞

0
pe(x)d f (x)

=
1

pe(0)

[
− f (0)pe(0)−

∫ ∞

0
f (x)dpe(x)

]
= E[ f (X)]− f (0).

Uniqueness of X distribution corresponding to Xe is a consequence of Equation (15)
and continuity of F(x) at x = 0. Indeed, assume that for X1 and X2 one has Xe

1 = Xe
2. Then,

Equation (15) yields that for almost all x ≥ 0,

1
E[X1]

P(X1 > x) =
1

E[X2]
P(X2 > x), (81)

and therefore P(X1 > x) = cP(X2 > x), where c is a positive constant (the equilibrium
distribution in Definition 1 is introduced for random variables with positive expectation
only). Since P(X1 = 0) = P(X2 = 0) = 0, one has P(X1 > 0) = P(X2 > 0). Let xn → 0+,
n → ∞, where the points xn belong to the set considered in Equation (81) to ensure that
c = 1. Thus, distributions of X1 and X2 coincide.

Remark 6. Let Xp be the Bernoulli random variable taking values 1 and 0 with probabilities p and
1− p, respectively. Then, it is easily seen that the distribution of Xe

p is uniform on [0, 1]. Thus, in
contrast to Lemma 6, without assumption of continuity of F at a point x = 0 one can not guarantee,
in general, the preimage uniqueness for the inverse transformation to the equilibrium one.
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In the proof of Lemma 6, we find out that E[X] = 1/pe(0). Set λ = pe(0), Z ∼ Exp(λ).
Then, E[X] = E[Z]. Further, we suppose that this choice of λ is made.

Recall that random variables U and V are stochastically ordered if either P(U ≤ x) ≤
P(V ≤ x), for every x ∈ R, or the opposite inequality holds (for all x ∈ R). Now, we clarify
one of the Theorem 2.1 of [33] statements (see also Theorem 3 [22], where the result similar
to Theorem 2.1 of [33] is formulated employing the generalized distributions).

Theorem 6. Let a random variable Xe satisfy conditions of Lemma 6, and E[Xe] < ∞ and X be a
preimage of the equilibrium transformation. Then, Equation (77) holds. Moreover, the inequality
becomes an equality when X and Xe are stochastically ordered.

Proof. Apply the Stein Equation (10) along with equilibrium transformation (14). Then, in
light of E[X] = 1

λ and E fh(X)− fh(0) = 1
λE f ′h(Xe), we can write∣∣E[h(Xe)]−E[h(Z)]

∣∣ = ∣∣E( f ′h(Xe)− λ fh(Xe)
)
+ λ f (0)

∣∣
= λ
∣∣E( fh(Xe)− fh(X)

)∣∣ ≤ λ|| f ′h||∞E|Xe − X| ≤ ||h′||∞E|Xe − X|. (82)

The last inequality in (82) is true due to Lemma 2. Now, we demonstrate that equality in (82)
can be attained. Taking h(x) = x− 1

λ , we have a solution fh(x) = − 1
λ x of Equation (12).

Then, ∣∣E[h(Xe)]−E[h(Z)]
∣∣ = λ

∣∣E( fh(Xe)− fh(X)
)∣∣ = ∣∣E(Xe − X)

∣∣.
Employing the integration by parts formula, one can show that the expression in

the right-hand side of the last equality is equal to the Kantorovich distance between
X and Xe when these variables are stochastically ordered. Note that x(1− F(x)) → 0,
x(1− Fe(x)) → 0 as x → ∞ and xF(x) → 0, xFe(x) → 0 as x → −∞ because E[X] and
E[Xe] are finite. Thus,

∣∣E[Xe]−E[X]
∣∣ = ∣∣∣∣∫

R

x
(
dFXe(x)− dFX(x)

)∣∣∣∣
=

∣∣∣∣− ∫
R

(
FXe(x)− FX(x)

)
dx
∣∣∣∣ = ∫

R

|FXe(x)− FX(x)| dx,

since FXe(x) ≥ FX(x) (or ≤) for all x ∈ R. It is well-known that the Kantorovich distance is
the minimal one for the metric τ(U, V) = E|U −V| (see, e.g., [9], Ch. 1, §1.3). Therefore,∫

R

|FXe(x)− FX(x)| dx = infE|U −V|,

where the infimum has taken over all joint laws (U, V) such that PU = PXe and PV = PX
(see also Remark 2 and [10], Corollary 5.3.2). Consequently, in the framework of Theorem 6,∣∣E[Xe]−E[X]

∣∣ = E|Xe − X|.

Remark 7. One can show that by means of Lemma 2 and Equation (82) it is possible to provide an
estimate

dK(Xe, Z) ≤ λE|Xe − X|. (83)

For each function h belonging to K, in a similar way to Equation (82), one can apply Equation (10)
together with equilibrium transformation. Now, it is sufficient to study the Stein equation with
right derivative. Formula (13) gives a solution of the Stein equation according to Lemma 2. Note
that for fh, the right derivative coincides almost everywhere with the derivative, and the law of
Xe is absolutely continuous according to Equation (15). Thus, for the Lipschitz function fh (see
Lemma 2), one can use an equilibrium transformation.
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Example 1. Consider the distribution functions Fε(x) of random variables Xε, taking values
ε and 2− ε with probabilities 1/2, 0 < ε < 1. Formula (15) yields that Xe

ε has the following
piece-line structure

Fe
ε (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if x < 0,
x, if 0 ≤ x < ε,
x/2 + ε/2, if ε ≤ x < 2− ε,
1, if 2− ε ≤ x.

If ε ≥ 1/2 then, for all x ∈ R, the following inequality holds: Fe
ε (x) ≥ Fε(x), i.e., Xε and Xe

ε

are stochastically ordered. We see that for ε < 1/2, the inequality is violated in the right
neighborhood of a point ε. Thus, there are beside the stochastically ordered pairs (X, Xe)
also those of a different kind.

Now, we turn to another example of stochastically ordered X and Xe.

Example 2. Take Xe having the Pareto distribution. The notation Xe ∼ Pareto(α, β) means
that Xe has a density f e(x) = αβα

(x+β)α+1 (x ≥ 0) and the corresponding distribution function

Fe(x) = 1−
(

β
x+β

)α
, where x ≥ 0, α > 0, β > 0.

Further, we consider only α > 1, since in this case there exists finite E[Xe] = β
α−1 .

By means of Lemma 6, we obtain the distribution of the preimage of the equilibrium
transformation

F(x) = 1− f e(x)
f e(0)

= 1− αβα

(x + β)α+1
βα+1

αβα
= 1−

(
β

x + β

)α+1
, x ≥ 0.

Thus one can state that X ∼ Pareto(α + 1, β). It is not difficult to see that Fe(x) ≤ F(x) for
x ∈ R, i.e., the random variables Xe and X are stochastically ordered. Due to Theorem 6,
one has

dH1(Xe, Z) = E|Xe − X| = E[Xe]−E[X] =
β

α− 1
− β

α
=

β

α(α− 1)
, (84)

dK(Xe, Z) ≤ α

β
E|Xe − X| = 1

α− 1
.

In such a way we find the bound for the Kolmogorov distance between the distributions
Pareto(α, β) and Exp(α/β). This relation demonstrates the convergence rate of d1(Xe, Z)
to zero as α→ ∞. The estimate is nontrivial for α > 2.

Remark 8. It is interesting that estimation of the proximity of the Pareto law to the Expo-
nential one became important in signal processing, see [34] and references therein. Let
X ∼ Pareto(α, β), where α > 0, β > 0, and Z ∼ Exp(λ). In [34], the author indicates that
the Pinsker–Csiszár inequality was employed to derive

dK(X, Z) ≤
√

2DKL(X||Z), (85)

where DKL(X||Z) is the Kullback–Leibler divergence between laws of X and Z. More
precisely, in the left-hand side of Equation (85) one can write the total variation distance
dTV(X, Z) between distributions of X and Z. Clearly, dK(X, Z) ≤ dTV(X, Z). By evaluating
DKL(X||Z) and performing an optimal choice of parameter λ, it was demonstrated (formula
(19) in [34]) that, for α > 1 and any β > 0,

dK(X, Z) ≤
√

2
α(α− 1)

(86)
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if λ = α−1
β . The author of [34] on page 8 writes that in his previous work [57] the inequality

dK(X, Z) ≤ 3
α

(87)

was established with the same choice of λ. Next, he also writes that “in the most cases α > 2”
and notes that the estimate in Equation (86) involving the Kullback–Leibler divergence is
more precise for α > 9

7 than the estimate in Equation (87) obtained by the Stein method.
Moreover, on page 4 of [34] we read: “The problem with the Stein approach is that the
bounds do not suggest a suitable way in which, for a given Pareto model, an appropriate
approximating Exponential distribution can be specified”. However, we have demonstrated
that application of the inverse equilibrium transformation together with the Stein method
permits indicating, whenever α > 2, the corresponding Exponential distribution with
proximity closer than the right-hand sides of Equation (86) and Equation (87) can provide.

8. Conclusions

Our principle goal was to find the sharp estimates of the proximity of random sums
distributions to exponential and more general laws. This goal is achieved when we employ
the probability metric dH2 . Thus, it would be valuable to find the best possible approxima-
tions of random sums distributions by means of specified laws using the metrics ζs of order
s > 0. The results of [32] provide the basis for this approach.

There are various complementary refinements of the Rényi theorem. One approach is
related to the employment of Brownian motion. It is interesting that in [58] (p. 1071) the
authors proposed an explanation of the Rényi theorem involving the embedding theorem.
We provide a little bit different complete proof. Let X1, X2, . . . be i.i.d. random variables
with mean μ := EX1 and σ2 := varX1 < ∞, whereas Sn, n ∈ N, denote the corresponding
partial sums. According to Theorem 12.6 of [59], which is due to A.V. Skorokhod and V.
Strassen, there exists a standard Brownian motion B(t), t ≥ 0, (perhaps it is defined on an
extension of initial probability space) such that

1√
t

sup
0≤u≤t

|S[u] − μu− σB(u)| P→ 0, t→ ∞, (88)

and

lim
t→∞

S[t] − μt− σB(t)√
2t log log t

= 0 a.s., (89)

where P→ stands for convergence in probability, and a.s. means almost surely. Thus, in light
of Equation (89), we can write, for t ≥ 0,

S[t] = μt + σB(t) + R(t), (90)

where sup0≤u≤t R(u)/
√

t P→ 0 and R(t)/
√

2t log log t→ 0 a.s. when t→ ∞. Substitute Np

(see Equation (2)) in Equation (90) instead of t. It is easily seen that Np
P→ ∞ (i.e., for each

t > 0, one has P(Np ≤ t)→ 0 as p→ 0+) and by means of characteristic functions one can

verify that pNp
D→ Z as p→ 0+, where Z ∼ Exp(1). Therefore, μpNp

D→ μZ, p→ 0+. In
the proof of Lemma 4, we showed (Equation (24)) that E[Np] = (1− p)/p. Consequently,

var[pB(Np)] = p2
E[B(Np)

2] = p2
∞

∑
k=0

E[B(k)2]p(1− p)k

= p2
∞

∑
k=0

kp(1− p)k = p2
E[Np] = p2 1− p

p
= p(1− p)→ 0, p→ 0 + .
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Hence, pσB(Np)
P→ 0 as p→ 0+. Now, we demonstrate that pR(Np)

P→ 0, p→ 0 + .
For any ε > 0 and any t > 0,

P(p|R(Np)| > ε) ≤ P(p|R(Np)| > ε, Np ≤ t) + P(Np > t)

≤ P(p sup
0≤u≤t

|R(u)| > ε) + P(Np > t).

In light of Equation (88), for arbitrary γ > 0 and ε > 0, one can take t0 = t0(γ) such
that P(sup0≤u≤t0

|R(u)| > ε
√

t0) < γ/2. Then, for any 0 < p ≤ 1/
√

t0, we obtain

P(p sup
0≤u≤t0

|R(u)| > ε) < γ/2.

Since Np
P→ ∞, we can find p0 > 0 such that P(Np > t0) < γ/2 if 0 < p ≤ p0.

Therefore, R(Np)
P→ 0 as p→ 0+. The Slutsky lemma yields the desired relation

pSNp
D→ μZ, p→ 0+,

which implies Equation (3). However, it seems that there is no clear intuitive reason why
the law of the random sum converges to an exponential in the Rényi theorem. Moreover, in
Ch. 3, Sec. 2 “The Rényi Limit Theorem” of [20] (see Sec. 2.1 “Motivation”), one can find
examples demonstrating that intuition behind the Rényi theorem is poor.

Actually, relation (90) leads to refinements of Equation (3). In [58], it is proved that
if X1 has finite exponential moments and other specified conditions are satisfied then
there exists a more sophisticated approximation for distribution of Wp, and its accuracy
is estimated. The results are applied to the study of M/G/1 queue for both light-tailed
and heavy-tailed service time distributions. Note that in [58], Section 5, the authors study
the model where the distribution of X1 can depend on p. For future research, it would be
desirable to establish analogues of our theorems for such a model.

The results concerning the accuracy of approximating a distribution under consid-
eration by an exponential law are applicable to some queuing models. Let, for a queue
M/G/1, the inter-arrival times follow Exp(λ) distribution and S stand for the general
service time. Introduce the stationary waiting time W and define ρ := λE[S] to be its load.

Due to [60], if E[S3] < ∞ then (1− ρ)W D→ Z as ρ → 1, where Z ∼ Exp(1). Theorem 3.1
of [45] contains an upper bound of dH1(Wp, Z), where Z ∼ Exp(1). This estimate is used
by the authors for analysis of queueing systems with a single server. It would be interesting
to obtain the sharp approximations in the framework of queueing systems.

For the model of exchangeable random variables, Theorem 2 in Section 2 ensures the
weak convergence of distributions under consideration to specified mixture of explicitly
indicated laws. Theorem 3 proves the sharp convergence rate estimate to this limit law
by means of the ideal probability metric of the second order. It would be worthwhile to
establish such an estimate of the distributions proximity applying the Lévy–Prokhorov
distance because convergence in this metric is equivalent to the weak convergence of
distributions of random variables. All the more, at present there is no unified theory of
probability metrics. In this regard, one can mention Proposition 1.2 of [17] stating that
if a random variable Z has the Lebesgue density bounded by C then, for any random
variable Y,

dK(Y, Z) ≤
√

CdH1(Y, Z).

However, this estimate only gives the sub-optimal convergence rates. We also highlight
the important total variation distance dTV . The authors of [61] study the sum W := ∑j∈J Xj,
where {Xj, j ∈ J} is a family of locally dependent non-negative integer-valued random
variables. Using the perturbations of Stein’s operator, they establish the upper bounds for
dTV(W, M) where the law of M is a mixture of Poisson distribution and either binomial or
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negative binomial distribution. It would be desirable to obtain the sharp estimates and,
moreover, consider a more general model where the set of summation is random. In this
connection, it seems helpful to employ the paper [62], where the authors proved results
concerning the weak convergence of distributions of statistics constructed from samples
of random size. In addition, it would be interesting to extend these results to stratified
samples by invoking Lemma 1 of [63].

Special attention is paid to various generalizations of the geometric sums. In Theorem 3.3
of [64], the authors consider random sums with summation index Tn := Y1 + . . . + Yn, where
Y1, Y2, . . . are i.i.d. random variables following the geometric law Geom(p), see Equation (2).
Then, they show that STn /E[STn ] converge in distribution to the gamma law with certain
parameters as p→ 0+. In [62], it is demonstrated that the Linnik and the Mittag–Leffler
laws arise naturally in the framework of limit theorems for random sums. Hopefully,
in future the complete picture of limit laws involving general theory of distributions
mixtures will appear. In addition, it is desirable to study various models of random
sums of dependent random variables. On this track, it could be useful to consider the
decompositions of exchangeable random sequences extending the fundamental de Finetti
theorem, see, e.g., [65].

One can try to generalize the results of Section 7 for accumulative laws proposed
in [66]. These laws are akin to both the Pareto distribution and the lognormal distribution.
In addition, we refer to [43] where the “variance-gamma distributions” were studied. These
distributions form a four-parameter family and comprise as special and limiting cases the
normal, gamma and Laplace distributions. Employment of these distributions permits
enlarging a range of applications in modeling and fitting real data.

To complete the indication of further research directions, we note that the next essential
and nontrivial step is to establish the limit theorem in functional spaces for processes
generated by a sequence of random sums of random variables. For such stochastic processes,
one can obtain the analogues of the classical invariance principles.
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Appendix A

Proof of Lemma 1. If Lip(h) = C < ∞, then h is absolutely continuous (see, e.g., §13
in [42]), and consequently there exists h′(x) for almost all x ∈ R. Thus, |h′(x)| ≤ C for
almost all x ∈ R in light of Equation (4). Assume that essential supremum ‖h′‖∞ = C0 < C.
Then, for any ε > 0, one can find a version of h′, defined on R, such that supx∈R |h′(x)| ≤
C0 + ε. (It was explained in Section 2 that one can consider a measurable extension of h′

to R). Then, due to Equation (11) with h instead of f we obtain Equation (5) with C0 + ε
instead of C. Consequently, Lip(h) ≤ C0 < C. We come to the contradiction.

On the other hand, let h be absolutely continuous. Then, for almost all x ∈ R, there
exists h′(x) and Equation (11) is valid for h instead of f . Assume that essential supremum
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‖h′‖∞ = C < ∞. Then, for any ε > 0 there is a version of h′ such that supx∈R |h′(x)| ≤ C+ ε.
According to Equation (11), the relation (5) holds with C + ε instead of C. Since ε > 0 can be
taken as an arbitrary small, one can claim that Lip(h) ≤ C. Suppose that Lip(h) ≤ C0 < C.
Then, for almost all x ∈ R, there exists h′ and |h′| ≤ C0. Thus, we found a version with
‖h′‖∞ ≤ C0. The contradiction shows that Lip(h) = C. Hence, the desired statement is
proved.

Proof of Lemma 2. Let x0 be a continuity point of a function h ∈ K ∪H1 ∪H2. Then, the
same is true for a function h(u)e−λu, u ∈ R. Hence, the function

∫ ∞
x h(u)e−λudu has a

derivative −h(x0)e−λx0 at point x0 (in light of Remark 1 an integral
∫ ∞

x h(u)e−λudu is well
defined for any x ∈ R). Thus, for each point x of continuity h there exists

f ′h(x) = −λeλx
∫ ∞

x
h(u)e−λudu− eλx(−h(x)e−λx) = λ fh(x) + h(x). (A1)

For each fixed z ∈ R and a function h(x) = I{x ≤ z}, where x ∈ R, Equation (12) is verified
in a similar way for the right derivative fh at point z ∈ R. Taking x = 0 in Equation (12), we
obtain −E[h(Z)]/λ. Evidently, −eλx ∫ ∞

x e−λudu = −1/λ. Therefore, Equation (A1) yields

f ′h(x) = −λeλx
∫ ∞

x
(h(u)− h(x))e−λudu. (A2)

If a function h belongs to K, then, for any u, x ∈ R, the following inequality holds |h(u)−
h(x)| ≤ 1. Consequently, for h ∈ K, one has ‖ f ′h‖∞ ≤ 1 (where f ′h means a right derivative
of a version of f ′h, and we operate with essential supremum).

Taking into account Lemma 1, for a function h ∈ H1 and any x ≤ u, one can write
|h(u)− h(x)| ≤ Lip(h)(u− x) = ‖h′‖∞(u− x). For h ∈ H2 and x ≤ u, by the Lagrange
finite-increments formula, |h(u)− h(x)| ≤ |h′(v)|(u− x) ≤ ‖h′‖∞(u− x), where x < v < u.
Hence, for any x ∈ R and h ∈ H1 ∪H2,

| f ′h(x)| = λeλx
∫ ∞

x
(h(u)− h(x))e−λudu ≤ λeλx‖h′‖∞

∫ ∞

x
(u− x)e−λudu =

‖h′‖∞

λ

since
λeλx

∫ ∞

x
(u− x)e−λudu =

∫ ∞

0
λve−λvdv =

1
λ

. (A3)

Taking into account Equation (12), one can see that, for any h ∈ H2, f ′h = λ fh + h, where fh
and h have derivatives at each point x ∈ R. Using Equation (A2) and Equation (A3), we
obtain, for x ∈ R,

f ′′h (x) = λ f ′h(x) + h′(x) = −λ2eλx
∫ ∞

x
(h(u)− h(x))e−λudu + h′(x)

= −λ2eλx
∫ ∞

x
(h(u)− h(x)− h′(x)(u− x))e−λudu. (A4)

By means of Equation (A3) and the Lagrange finite-increments formula we can write

| f ′′h (x)| ≤ 2‖h′‖∞λ2eλx
∫ ∞

x
(u− x)e−λudu = 2‖h′‖∞. (A5)

Let us apply the Taylor formula with integral representation of the residual term:

h(u) = h(x) + h′(x)(u− x) + R(u, x), R(u, x) =
∫ u

x
(u− t)h′′(t)dt, u, x ∈ R. (A6)

This representation known for the Riemann integral (see, e.g., [67], §9.17) holds in the
framework of the Lebesgue integral if it is possible to use the recurrent integration by parts
for R(u, x), i.e.,
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∫ u

x
(u− t)h′′(t)dt = −h′(x)(u− x) +

∫ u

x
h′(t)dt = −h′(x)(u− x) + h(u)− h(x). (A7)

Integral in the left-hand side of Equation (A7) exists by virtue of Lemma 1 since h′ ∈ Lip(1).
Therefore, h′′(x) is defined for almost all x ∈ R and (essential supremum) ‖h′′‖ ≤ 1. The
latter equality in Equation (A7) is obvious since h′ is continuous function on R. The first
equality in Equation (A7) is valid due to the integration by parts formula for the Lebesgue
integral. Indeed, functions h′(t) and (u − t) are absolutely continuous for t belonging
to [x, u]. Thus, we can apply, e.g., Theorem 13.29 of [42] to justify the first equality in
Equation (A7). Consequently, due to Equation (A4) and Equation (A6) one can write

| f ′′h (x)| ≤
∣∣∣∣−λ2eλx

∫ ∞

x

(∫ u

x
(u− t)h′′(t)dt

)
e−λudu

∣∣∣∣
≤ ‖h

′′‖∞

2

∣∣∣∣∫ ∞

x
λ2(u− x)2e−λ(u−x)du

∣∣∣∣ = ‖h′′‖∞Γ(3)
2λ

=
‖h′′‖∞

λ
, (A8)

where Γ(α) :=
∫ ∞

0 uα−1e−udu, α > 0. Relations Equation (A5) and Equation (A8) lead to
the last statement of Lemma 2. The proof is complete.

Comments to Definition 1. For each Lipschitz function f , one can claim that E[ f (X)] is
finite since E|X| < ∞ and, in light of Remark 1, one has | f (x)| ≤ C|x| + | f (0)|, where
C = Lip( f ), x ∈ R. Clearly, it is sufficient to verify Equation (14) for any Lipschitz
function f such that f (0) = 0 (otherwise we take the Lipschitz function f (x)− f (0), x ∈ R).
Evidently, pe(x), x ∈ R, introduced by Equation (15), is a probability density because for
non-negative random variable X according to [47], Ch.2, formula (69)

E[X] =
∫
[0,∞)

P(X > u)du. (A9)

We will show that, for such f and a density pe of Xe, one has∫
[0,∞)

f (u)dF(u) =
∫
[0,∞)

f ′(u)P(X > u)du, (A10)

where F is a distribution function of X and E[X] �= 0. We take integrals over [0, ∞) as X ≥ 0
and pe(x) = 0 for x < 0.

We know that a function f has a derivative at almost all points x ∈ R. Therefore, the
right-hand side of Equation (A10) does not depend on the choice of a version f ′ (P(X > u)
is a measurable bounded function). The integral in the right-hand side of Equation (A10) is
finite because ‖ f ′‖ ≤ C in light of Lemma 1 and since the right-hand side of Equation (A9) is
finite. One can take the integrals over (0, ∞) in Equation (A10) as f (0) = 0 and m({0}) = 0,
where m stands for the Lebesgue measure.

Function f is a function of finite variation (as f is the Lipschitz function). Therefore,
f = f1 − f2 where f1 and f2 are nondecreasing functions. We can take the canonical
representation with f1(x) = Varx

0( f ) and f2(x) = f (x) − f1(x), x ∈ R, where Varb
a( f )

is the variation of f on [a, b], a < b (see, e.g., [42], Theorem 12.18). If f ∈ Lip(C), then
Varb

a( f ) ≤ C(b− a). For a < c < b, one has (see, e.g., [42], Lemma 12.15)

Varc
a( f ) + Varb

c ( f ) = Varb
a( f ).

We see that such f1 and f2 are the Lipschitz functions when f is the Lipschitz one. Hence,
for almost all x ∈ R, there exist f ′1(x), f ′2(x) and f ′(x) = f ′1(x)− f ′2(x). Thus, it is enough
to demonstrate that∫

(0,∞)
fi(u)dF(u) =

∫
(0,∞)

f ′i (u)P(X > u)du, i = 1, 2.
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These integrals are finite since f1 and f2 are the Lipschitz functions. Note that∫
(0,∞)

fi(u)dF(u) = −
∫
(0,∞)

fi(u)d(1− F(u)) = −
∫
(0,∞)

fi(u)dP(X > u).

By applying Theorem 11 of Sec. 6, Ch. 2 [47], one obtains, for each b > 0, nondecreasing
continuous function fi and a nondecreasing right-continuous function (−P(X > u)), the
following formula:∫

(0,b]
fi(u)dP(X > u) = fi(b)P(X > b)− fi(0)P(X > 0)−

∫
(0,b]

P(X > u)d fi(u) (A11)

= fi(b)P(X > b)−
∫
(0,b]

P(X > u) f ′i (u)du.

We take into account that fi(0) = 0 and the σ-finite measure Qi corresponding to fi is
absolutely continuous w.r.t. m, and the Radon–Nikodým derivative dQi

dm (x) = f ′i (x), x ∈ R,
i = 1, 2. In addition, we can write P(X > u) in Equation (A11) since for at almost all u ∈ R

the left-limit of this function coincides with P(X > u) (there exist at most a countable
set of jumps of P(X > u), u ∈ R). Obviously, fi(b)P(X > b) → 0 as b → ∞ because
| fi(u)| ≤ Aiu + Bi for some positive Ai, Bi and all u ∈ R. Indeed, according to formula (73)
of Sec. 6, Ch. 2 of [47] the condition E|X| < ∞ yields

bP(|X| > b)→ 0, b→ ∞.

By the Lebesgue dominated convergence theorem one infers that∫
(0,b]

fi(u)dP(X > u)→
∫
(0,∞)

fi(u)dP(X > u), b→ ∞.

and
lim
b→∞

∫
(0,b]

P(X > u) f ′i (u)du =
∫
(0,∞)

P(X > u) f ′i (u)du.

This permits to claim the validity of Equation (A10) which entails the desired Equation (15).

Proof of Lemma 3. For f ∈ H2, in light of Remark 1 one can state that | f (x)| ≤ A0x2 + B0
for some positive numbers A0 and B0. Let F be a distribution function of X. Since E[X2] <
∞, due to Corollary 2, Sec. 6, Ch. 2, v.1, [47] one has

x2F(x)→ 0, x → −∞; x2(1− F(x))→ 0, x → ∞.

Hence, we obtain that f (x)F(x) → 0 as x → −∞ and f (x)(1− F(x)) → 0 as x → ∞.
Continuous function f has a bounded variation. Thus f = f1 − f2 where f1 and f2 are
nondecreasing continuous functions. Thus, for any a < 0 and i = 1, 2, the integration by
parts formula (see, e.g., Theorem 11, Sec. 6, Ch. 2, [47]) and Equation (18) give∫
(a,0]

( f1(x)− f2(x))dF(x) = f (0)F(0)− f (a)F(a)−
(∫

(a,0]
F(x)d f1(x)−

∫
(a,0]

F(x)d f2(x)
)

= f (0)F(0)− f (a)F(a)−
∫
(a,0]

F(x)d f (x).

We take into account that the integrands are bounded measurable functions and the mea-
sures corresponding to F, f1 and f2 are finite on any interval (a, 0]. Therefore such integrals
are finite. According to the Lebesgue theorem on dominated convergence (recall that
E[X2] < ∞) one has

lim
a→−∞

∫
(a,0]

f (x)dF(x) =
∫
(−∞,0]

f (x)dF(x),
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and the limit is finite. The monotone convergence theorem for σ-finite measure yields

lim
a→−∞

(∫
(a,0]

F(x)d f1(x)−
∫
(a,0]

F(x)d f2(x)
)
=
∫
(−∞,0]

F(x)d f1(x)−
∫
(−∞,0]

F(x)d f2(x).

We have seen that f (a)F(a)→ 0 as a→ −∞. Hence, in light of Equation (18)∫
(−∞,0]

F(x)d f1(x)−
∫
(−∞,0]

F(x)d f2(x) =
∫
(−∞,0]

F(x)d f (x).

Therefore, for i = 1, 2, each integral
∫
(−∞,0] F(x)d fi(x) is finite as

∫
(−∞,0] F(x)d f (x) is finite.

Thus,∫
(−∞,0]

f (x)dF(x) = f (0)F(0)−
∫
(−∞,0]

F(x)d f (x) = f (0)F(0) +
∫
(−∞,0]

(−F(x)) f ′(x)dx,

as f is absolutely continuous. Indeed, for any x ∈ R,

f (x) = f (0) +
∫
(0,x]

f ′(u)du,

where (continuous) f ′ ∈ L1[a, b] for any finite interval [a, b]. Thus, ( f ′)+ ∈ L1[a, b] and
( f ′)− ∈ L1[a, b]. Set

f1(x) := f (0) +
∫
(0,x]

( f ′(u))+du, f2(x) :=
∫
(0,x]

( f ′(u))−du.

Then f1 and f2 are nondecreasing continuous functions on R, f = f1 − f2 and∫
(a,0]

F(x)d f (x) =
∫
(a,0]

F(x)d f1(x)−
∫
(a,0]

F(x)d f2(x),

where these three integrals are finite. For (non-negative) σ-finite measures corresponding
to f1 and f2, one can write∫

(a,0]
F(x)d f1(x) =

∫
(a,0]

F(x)( f ′(x))+dx,
∫
(a,0]

F(x)d f2(x) =
∫
(a,0]

F(x)( f ′(x))−dx.

Thus, one has∫
(a,0]

F(x)d f (x) =
∫
(a,0]

F(x)( f ′(x))+dx−
∫
(a,0]

F(x)( f ′(x))−dx

=
∫
(a,0]

F(x)(( f ′(x))+ − ( f ′(x))−)dx =
∫
(a,0]

F(x) f ′(x)dx. (A12)

The bound ‖ f ′‖ ≤ 1 follows from Lemma 1. Therefore, the Lebesgue theorem on dominated
convergence yields (as E|X| < ∞)

lim
a→−∞

∫
(a,0]

F(x) f ′(x)dx =
∫
(−∞,0]

F(x) f ′(x)dx.

We have demonstrated that∫
(−∞,0]

F(x)d f (x) =
∫
(−∞,0]

F(x) f ′(x)dx.

In a similar way, we consider
∫
(0,b](1− F(x))dx and letting b→ ∞ come to relation

−
∫
(0,∞)

f (x)d(1− F(x)) = f (0)(1− F(0)) +
∫
(0,∞)

(1− F(x))d f (x)
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= f (0)(1− F(0)) +
∫
(0,∞)

(1− F(x)) f ′(x)dx.

This establishes Equation (21).
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Abstract: In this paper, we consider the high-dimensional consistencies of KOO methods for selecting
response variables in multivariate linear regression with covariance structures. Here, the covariance
structures are considered as (1) independent covariance structure with the same variance, (2) indepen-
dent covariance structure with different variances, and (3) uniform covariance structure. A sufficient
condition for model selection consistency is obtained using a KOO method under a high-dimensional
asymptotic framework, such that sample size n, the number p of response variables, and the number
k of explanatory variables are large, as in p/n→ c1 ∈ (0, 1) and k/n→ c2 ∈ [0, 1), where c1 + c2 < 1.

Keywords: consistency property; covariance structures; high-dimensional asymptotic framework;
KOO methods; multivariate linear regression

MSC: 62H12; 62H10

1. Introduction

We focus on a multivariate linear regression model of p response variables y1, . . . , yp
on a subset of k explanatory variables x1, . . . , xk. Suppose that there are n observations on a
p-dimensional response vector y = (y1, . . . , yp)′ and a k-dimensional explanatory vector
x = (x1, . . . , xk)

′, and let Y : n× p and X : n× k be the observation matrices of y and x
with sample size n, respectively. The multivariate linear regression model including all the
explanatory variables under normality is written as follows:

Y ∼ Nn×p(XΘ, Σ⊗ In), (1)

where Θ is a k× p unknown matrix of regression coefficients, and Σ is a p× p unknown
covariance matrix that is positive definite. Nn×p(·, ·) is the normal matrix distribution,
such that the mean of Y is XΘ, and the covariance matrix of vec (Y) is Σ⊗ In; equivalently,
the rows of Y are independently normal with the same covariance matrix Σ. Here, vec(Y)
is the np× 1 column vector that is obtained by stacking the columns of Y on top of one
another. We assumed that rank(X) = k.

In multivariate linear regression, the selection of variables for the model is an impor-
tant concern. One of the approaches is to first consider variable selection models and then
apply model selection criteria such as AIC and BIC. Such a criterion for Full Model (1) is
expressed as follows:

GIC = −2 log L(Ξ̂) + dg, (2)

where L(Ξ̂) is the maximal likelihood, Ξ = {Θ, Σ}, d > 0 is the penalty term, and g is
the number of unknown parameters given by {kp + 1

2 p(p + 1)}. For AIC and BIC, d is
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defined as 2 and log n, respectively. In the selection of k variables x1, . . . , xk, we identified
{x1, . . . , xk} with the index set {1, . . . , k} ≡ ω, and denote GIC for subset j ⊂ ω by GICj.
Then, the model selection based on GIC chooses the following model:

j̃ = arg min
j

GICj. (3)

Here the minimum is usually taken for all combinations of response variables. There are
computational problems for the methods based on GIC, including AIC and BIC methods,
since we need to compute 2k − 1 statistics for the selection of k explanatory variables. To
avoid this computational problem, [1] proposed a method that was essentially thanks
to [2]. The method, which was named the knock-one-out (KOO) method by [3], determines
“selection” or “no selection” for each variable by comparing the model removing that
variable and the full model. More precisely, the KOO method chooses the model or the set
of variables given by

ĵ = {j ∈ ω | GICω\j > GICω}, (4)

where ω\j is a short expression for ω\{j}, which is the set obtained by removing element j
from the set ω. In general, the KOO method can be applied to a method or criterion, not
only AIC, a general variable selection criterion or method.

In the literature on multivariate linear regression, numerous papers have dealt with
the variable selection problem, as it relates to selecting explanatory variables. When Σ
is unknown positive definite, [4–6], for example, indicated that, in a high-dimensional
case, AIC and Cp have consistency properties, but BIC is not necessarily consistent. KOO
methods in the multivariate regression model were studied by [3] and [7,8]. The KOO
method in discriminant analysis; see [9], and [10]. For a review, see [11].

In this paper, we assume that the covariance structure was one of three covariance
structures: (1) an independent covariance structure with the same variance, (2) an indepen-
dent covariance structure with different variances, and (3) a uniform covariance structure.
The numbers of unknown parameters in covariance structures (1)–(3) were 1, p, and 2,
respectively. Sufficient conditions for the KOO method given by (4) to be consistent were
derived under a high-dimensional asymptotic framework, such that sample size n, the
number p of response variables, and the number k of explanatory variables were large,
as in p/n → c1 ∈ (0, 1) and k/n → c2 ∈ [0, 1), where c1 + c2 < 1. Ref. [12] considered
similar problems under covariance structures (1), (3), and (4), an autoregressive covariance
structure, but did not consider them under (2). Moreover, in the study of asymptotic
consistencies, they assumed that k was fixed, but in this paper, k may tend to infinity,
such that k/n → c2 ∈ [0, 1). From the numerical experiments in [12], we know that the
probability of choosing the true model in Cases (1) and (3) results from the following table
(Table 1). In variable selection for multivariate linear regression using the KOO method, the
probability of selecting the true model is shown in the following table. Here, we examine
Cases (1), an independent covariance structure with the same variance, and (3), a uniform
covariance structure.

Table 1. KOO Based on AIC.

k = 3 KOO Based on AIC KOO Based on AIC
(n, p) (20, 10) (200, 100) (20, 10) (200, 100)

(1) 0.74 1.00 0.77 1.00
(3) 0.47 1.00 0.22 1.00

In this table (Table 1), k is the number of nonzero true explanatory variables, and the
true parameter values were omitted. In [12], k was treated as finite. In this paper, k may
tend to infinity, such that k/n→ c2 ∈ [0, 1).

The present paper is organized as follows. In Section 2, we present notations and
preliminaries. In Section 3, we state KOO methods with Covariance Structures (1)–(3) in
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terms of key statistics. Further, an approach for their consistencies is stated in Section 3.
In Sections 4–6, we discuss consistency properties of KOO methods under Covariance
Structures (1)–(3). In Section 7, our conclusions are discussed.

2. Notations and Preliminaries

Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements, and Xj
denotes the n× kj matrix comprising the columns of X indexed by the elements of j. Then,
Xω = X. Further, we assumed that covariance matrix Σ had a covariance structure Σc.
Then, we have a generic candidate model:

Mc,j : Y ∼ Nn×p(XjΘj, Σc,j ⊗ In), (5)

where Θj is a kj × p unknown matrix of regression coefficients. We assumed that rank(X) = k.
When Σc,j is a p × p unknown covariance matrix, we could write the GIC in (2)

as follows:

GICc,j = n log |Σ̂j|+ np(log 2π + 1) + d
{

kj p +
1
2

p(p + 1)
}

, (6)

where nΣ̂j = Y′(In − Pj)Y and Pj = Xj(X
′
jXj)

−1X′j. When j = ω, model Mc,ω is called the
full model. Σ̂c,ω and Pω are defined from Σ̂c,j and Pj as j = ω, kω = k and Xω = X.

In this paper, we considered the cases in which the covariance matrix Σc belonged to
each of the following three structures:

(1) Independent covariance structure with the same variance (ICSS).

Σv = σ2
v Ip,

(2) Independent covariance structure with different variances (ICSD).

Σb = diag(σ2
1 , . . . , σ2

p),

(3) Uniform covariance structure (UCS).

Σu = σ2
u(ρ

1−δij
u )1≤i,j≤p.

The models considered in this paper can be expressed as in (5) with Σv,j, Σb,j, and Σu,j
for Σc,j. Let f (Y; Θj, Σc,j) be the density of Y in (5) with Σ = Σc,j. In the derivation of the
GIC, under the covariance structure Σ = Σc,j, we use the following equality:

−2 log max
Θj ,Σc,j

f (Y; Θj, Σc,j) = np log(2π)

+ min
Σc,j

{
np log |Σc,j|+ trΣ−1

c,j Y
′(In − Pj)Y

}
. (7)

Let Σ̂c,j be the quantity minimizing the right-hand side of (7). Then, in our model, it satisfies
trΣ̂−1

c,j Y
′(In − Pj)Y = np, and we obtain

GICc,j = −2 log f (Y; Θ̂j, Σ̂c) + dmc,j

= np log |Σ̂c,j|+ np(log 2π + 1) + dmc,j, (8)

where mc,j is the number of independent unknown parameters under Mc,j, and d is a
positive constant that may depend on n. For AIC and BIC, d is defined by 2 ([13]) and
log n ([14]), respectively.
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3. Approach to Consistencies of KOO Methods

Our KOO method is based on

Tc,j;d = GICc,ω\j −GICc,ω. (9)

In fact, the KOO method chooses the following model:

ĵc;d =
{

j | Tc,j;d > 0
}

. (10)

Its consistency can be proven by showing the following two properties:

Q1 : [F1] ≡ ∑
j∈j∗

Pr(Tc,j;d ≤ 0)→ 0, (11)

Q2 : [F2] ≡ ∑
j/∈j∗

Pr(Tc,j;d ≥ 0)→ 0, (12)

as in [11]. The result can be shown by using the following inequality:

Pr( ĵc;d = j∗) = Pr

⎛⎝⋂
j∈j∗

“Tc,j;d > 0”
⋂

j/∈j∗

“Tc,j;d < 0”

⎞⎠
= 1− Pr

⎛⎝⋃
j∈j∗

“Tc,j;d ≤ 0”
⋃

j/∈j∗

“Tc,j;d ≥ 0”

⎞⎠
≥ 1− ∑

j∈j∗

Pr(Tc,j;d ≤ 0)− ∑
j/∈j∗

Pr(Tc,j;d ≥ 0).

Here, [F1] denotes the probability that true variables are not selected, and [F2] denotes the
probability that nontrue variables are selected. Such notations are used for other variable
selection methods. xj is included in the true set of variables if θj �= 0.

Here, we list some of our main assumptions:
A1: The set j∗ of the true explanatory variables is included in the full subset, i.e.,

j∗ ⊂ ω. and the set j∗ is finite.
A2: The high-dimensional asymptotic framework:

p→ ∞, n→ ∞, k→ ∞, p/n→ c1 ∈ (0, 1), k/n→ c2 ∈ [0, 1),
where 0 < c1 + c2 < 1.

A general model selection criterion ĵc;d is high-dimensionally consistent if

lim Pr( ĵc;d = j∗) = 1,

under a high-dimensional asymptotic framework. Here, “lim” means the limit under A2.

4. Asymptotic Consistency under an Independent Covariance Structure

In this section, we show an asymptotic consistency of the KOO method on the basis
of a general information criterion under an independent covariance structure. A generic
candidate model when the set of explanatory variables is j can be expressed as follows:

Mv,j : Y ∼ Nn×p(XjΘj, Σv,j ⊗ In), (13)

where Σv,j = σ2
v,jIp and σ2

v,j > 0. Let us denote the density of Y under (13) with
f (Y; Θj, σv,j). Then, we have

−2 log f (Y; Θj, σ2
v,j) = np log(2π) + np log σ2

v,j

+
1

σ2
v,j

tr(Y− XjΘj)
′(Y− XjΘj).
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Therefore, the maximal estimators of Θj and σ2
v,j under Mv,j are given as follows:

Θ̂j = (X′jXj)
−1X′jY, σ̂2

v,j =
1

np
trY′(In − Pj)Y. (14)

General Information Criterion (8) is given by

GICv,j = np log σ̂2
v,j + np(log 2π + 1) + dmv,j, (15)

where d is a positive constant, and mv,j = kj p + 1.
Using (9) and (15), we have

Tv,j;d ≡ GICv,ω\j −GICv,ω

= np log
(

1 + U2jU−1
1

)
− dp, (16)

where

U1 = trY′(In − Pω)Y =
p

∑
�=1

y′�(In − Pω)y�,

U2j = trY′(Pω − Pω\j)Y =
p

∑
�=1

y′�(Pω − Pω\j)y�.

U1/σ2
v,j∗ and U2j/σ2

v,j∗ are independently distributed as a central and a noncentral chi-
squared distribution, respectively. More precisely, assume that

E(Y) = Xj∗Θj∗ , (17)

and let σ2
v,∗ = σ2

v,j∗ . Then, using basic distributional properties (see, [15]) on quadratic
forms of normal variates and Wishart matrices, we have the following results:

(1) U1/σ2
v,∗ ∼ χ2

(n−k)p,

(2) U2j/σ2
v,∗ ∼ χ2

p(δ
2
v,j), (18)

(3) U1 ⊥ U2j,

where noncentrality parameter τ2
v,j is defined by

δ2
v,j =

1
σ2

v,∗
tr(Xj∗Θj∗)

′(Pω − Pω\j)Xj∗Θj∗ .

If j /∈ j∗, δ2
v,j = 0, and if j ∈ j∗, in general, τ2

v,j �= 0. For a sufficient condition for the
consistency of the KOO method based on GICv,j, we assumed

A3v : For any j ∈ j∗, δ2
v,j = O(np), and lim

p/n→c1

1
np

δ2
v,j = η2

v,j > 0. (19)

Now, we consider thew high-dimensional asymptotic consistency of the KOO method
based on GICv,j in (15), whose selection method is given by ĵv,j;d = {j | Tv,j;d > 0}. When
j �∈ j∗, from (16), we can write

Tv,j;d = np log
{

1 + χ2
p/χ2

m

}
− dp, m = (n− k)p.

Therefore, we have
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[F2] = ∑
j �∈j∗

Pr(np log
{

1 + χ2
p/χ2

m

}
≥ dp)

=
(
k− kj∗

)
Pr(U ≥ h) (20)

≤
(
k− kj∗

)
Pr(U ≥ h0),

where

U =
χ2

p

χ2
m
− p

m− 2
,

h = ed/n − 1− p
m− 2

, h0 =
d
n
− p

m− 2
. (21)

Note that h0 < h. Then, under the assumption h0 > 0, we have

[F2] ≤
(
k− kj∗

)
h−2�E[U2�] ≤

(
k− kj∗

)
h−2�

0 E[U2�]. (22)

Related to the assumption h0 > 0, we assumed

A4v : d >
np

m− 2
→ 1

1− c2
, and d = O(na), 0 < a < 1. (23)

The first part in A4v implies h0 > 0. It is easy to see that

E[U2] =
2p(m + p− 2)
(m− 2)2(m− 4)

= O((n2 p)−1).

Here, for the first equality, assumption m > 4 is required. Further, h−2
0 = O(n2(1−a)).

Therefore, from (22), we have that [F2]→ 0.
When j ∈ j∗, we can write Tv,j;d = np log

{
1 + χ2

p(δ
2
v,j)/χ2

m

}
− dp. Therefore, we can

express [F1] as

[F1] = ∑
j∈j∗

Pr(T̃v,j;d ≤ 0),

where

T̃v,j;d =
p
n

log

{
1 +

χ2
p(δ

2
v,j)

χ2
m

}
− d

n
.

Assumptions A3v and A4v easily show that

T̃v,j;d → c1 log(1 + η2
v,j) > 0.

This implies that Pr(T̃v,j;d ≤ 0)→ 0.
These imply the following theorem.

Theorem 1. Suppose that Assumptions A1, A2 A3v, and A4v are satisfied. Then, the KOO
method based on general information criteria GICv,j defined by (15) is asymptotically consistent.

An alternative approach for “[F1]→ 0”. When j ∈ j∗, we can write

Tv,j;d = np log
{

1 + χ2
p(δ

2
v,j)/χ2

m

}
− dp.

Therefore, we have
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[F1] = ∑
j∈j∗

Pr(np log
{

1 + χ2
p(δ

2
v,j)/χ2

m

}
≤ dp)

= ∑
j∈j∗

Pr(Ũj ≤ h̃j),

where, for j ∈ j∗,

Ũj =
χ2

p(δ
2
v,j)

χ2
m
−

p + δ2
v,j

m− 2
, h̃j = ed/n − 1−

p + δ2
v,j

m− 2
= h−

δ2
v,j

m− 2
.

Then, under d = O(na)(0 < a < 1), A3v in (19) and the assumption h̃j < 0 (or
equivalently h < δ2

j /(m− 2)), we have

[F1] ≤ kj∗ max
j
|h̃j|−2�E[Ũ2�].

It is easily seen that

E[Ũ2
j ] =

2(p + 2δ2
v,j)(m + p− 2 + δ2

v,j)

(m− 2)2(m− 4)
= O((n2 p)−1),

where m > 4 and under d = na(0 < a < 1) and A3v,

|h̃j|2 →
η2

v,j

c1(1− c2)
.

These imply that [F1] → 0. In this approach, it was assumed that h̃j < 0 (or equiva-
lently h < δ2

j /(m− 2)).

5. Asymptotic Consistency under an Independent Covariance Structure with
Different Variances

In this section, we assumed that covariance matrix Σ had an independent covariance
matrix with different variances, i.e., Σ = Σb = diag(σ2

b1, . . . , σbp). First, let us consider
deriving a key statistic Tb,j;d = GICb,ω\j − GICb,ω. Consider a candidate model with
E(Y) = XΘ,

Mb,ω : Y ∼ Nn×p(XΘ, Σb ⊗ In). (24)

Let the density in the full model be expressed as f (Y; Θ, Σb). Then, we have

−2 log f (Y; Θ, Σb) = np log(2π)

+
p

∑
�=1

{
n log σ2

b� +
1

σ2
b�
(y� − Xθ�)

′(y� − Xθ�)

}
.

It holds that

−2 log max
Θ,Σb

f (Y; Θ, Σb) = np(log 2π + 1)

+
p

∑
�=1

n log
1
n

y′�(In − Pω)y�. (25)
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Next, consider the model removing the jth explanatory variable from the full model
Mb,ω, which is denoted by Mb,ω\j or M; b, ω\j. Similarly,

−2 log max
M;b,ω\j

f (Y; Θ, Σb) = np(log 2π + 1)

+
p

∑
�=1

n log
1
n

y′�(In − Pω\j)y�. (26)

Using (25) and (26), we can obtain a general information criterion (8) for two models,
Mb,ω and Mb,ω\j, and we have

Tb,j;d ≡ GICb,ω\j −GICb,ω

=
p

∑
�=1

n log
(

1 + U2�U−1
1�

)
− dp, (27)

where

U1� = y′�(In − Pω)y�, � = 1, . . . , p,

U2� = y′�(Pω − Pω\j)y�, � = 1, . . . , p.

Let us assume that
E(Y) = Xj∗Θj∗ and σ2

b,∗ = σ2
b,j∗ (28)

Then, as in (18), we have the following results:

(1) U1�/σ2
b,∗ ∼ χ2

n−k, � = 1, . . . , p,

(2) U2�/σ2
b,∗ ∼ χ2

1(δ
2
b,j;�), � = 1, . . . , p, (29)

(3) U1�, U2�, (� = 1, . . . , p) are independent,

where noncentral parameters δ2
b,j;� are defined by

δ2
b,j;� =

1
σ2

b,∗
(Xj∗θ

(�)
∗ )′(Pω − Pω\j)(Xj∗θ

(�)
∗ ),

with Θ∗ = (θ
(1)
∗ , . . . , θ

(p)
∗ ). If j /∈ j∗, δ2

b,j;� = 0, and if j ∈ j∗, δ2
b,j;� �= 0. For a sufficient

condition for consistency of the KOO method based on GICb,j, we assumed

A3b : For any j ∈ j∗, lim(n− k)−1δ2
b,j;� = η2

b,j;� > 0, and

lim
1
p

p

∑
�=1

log
{

1 +
1

n− k
δ2

b,j;�

}
→ η2

b,j > 0. (30)

Now, we consider the high-dimensional asymptotic consistency of the KOO method
based on Tb,j;d in (9), whose selection method is given by ĵv,j;d = {j | Tb,j;d > 0}. When
j �∈ j∗, we have

[F2] = ∑
j �∈j∗

Pr(
p

∑
�=1

n log
{

1 + U2�U−1
1�

}
≥ d)

≤ ∑
j �∈j∗

p

∑
�=1

Pr(n log
{

1 + U2�U−1
1�

}
≥ d).
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This implies that

[F2] ≤ p(k− kj∗)Pr(n log
{

1 + χ2
1/χ2

n−k

}
≥ d)

= p(k− kj∗)Pr(V ≥ r), (31)

where

V =
χ2

1
χ2

n−k
− 1

n− k− 2
,

r = ed/n − 1− 1
n− k− 2

, r0 =
d
n
− 1

n− k− 2
. (32)

Note that r0 < r. Then, under the assumption r0 > 0, we have

[F2] ≤ p
(
k− kj∗

)
r−2�E[V2�] ≤ p

(
k− kj∗

)
r−2�

0 E[V2�]. (33)

Related to the assumption r0 > 0, we assumed

A4b : d >
n

n− k− 2
→ 1

1− c2
, and d = O(na), 0 < a < 1. (34)

The first part in A4b implies r0 > 0. It is easy to see that

E[V2] =
2(n− k− 1)

(n− k− 2)2(n− k− 4)
= O((n2)−1).

Further, r−2
0 = O(n2(1−a)). Therefore, from (33), we have that [F2]→ 0.

When j ∈ j∗, we can write Tb,j;d = n ∑
p
�=1 log{1 + U2�U−1

1� } − dp. Therefore, we can
express [F1] as follows:

[F1] = ∑
j∈j∗

Pr(T̃b,j;d ≤ 0),

where

T̃b,j;d =
1
p

p

∑
�=1

log

{
1 +

χ2
1;�(δ

2
b,j;�)

χ2
n−k;�

}
− d

n
.

Assumptions A3b and A4b easily show that

T̃b,j;d → η2
b,j > 0.

This implies that Pr(T̃b,j;d ≤ 0)→ 0.
These imply the following theorem.

Theorem 2. Suppose that Assumptions A1, A2, A3b and A4b are satisfied. Then, the KOO
method based on Tb,j:d in (27) is asymptotically consistent.
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Let us consider an alternative approach for "[F1]→ 0" as in the case of independent
covariance structure. When j ∈ j∗, we can write

[F1] = ∑
j∈j∗

Pr

(
p

∑
�=1

{
n log

(
1 +

χ2
1;�(δ

2
b,j;�)

χ2
n−k;�

)
− d

}
≤ 0

)

≤ ∑
j∈j∗

p

∑
�=1

Pr

(
n log

(
1 +

χ2
1;�(δ

2
b,j;�)

χ2
n−k;�

)
− d ≤ 0

)

= ∑
j∈j∗

p

∑
�=1

Pr
(

Ṽj,� ≤ r̃j,�

)
.

Here, for j ∈ j∗,

Ṽj,� =
χ2

1;�(δ
2
b,j;�)

χ2
n−k;�

−
1 + δ2

b,j;�

n− k− 2
, � = 1, . . . , p,

r̃j,� = ed/n − 1−
1 + δ2

b,j;�

n− k− 2
= r−

δ2
b,j

n− k− 2
, � = 1, . . . , p,

where r is the same one as in (32). Note that χ2
1;�(δ

2
b,j;�), � = 1, . . . , p are distributed as a

noncentral distribution χ2
1(δ

2
b,j;�), and they are independent. Then, under the assumption

r̃j < 0 (or equivalently r < δ2
bj;�/(n− k− 2)), we have

[F1] ≤ kj∗

p

∑
�=1
|r̃j,�|−2sE[Ṽ2s

j,� ], s = 1, 2, . . . . (35)

In the above upper bound, it holds that

|r̃j,�| ∼ δ2
b,j;�/(n− k)→ η2

b,j;�. (36)

Useful bounds are obtained by giving the first few moments of Ṽj;�. For example,

E[Ṽ2
j,�] =

2(1 + 2δ2
v,j;�)(n− k− 1 + δ2

v,j;�)

(n− k− 2)2(n− k− 4)
= O(n−1),

E[Ṽ4
j,�] = O(n−2).

Then, Bound (35) with s = 2 can be asymptotically expressed as follows:

kj∗

p

∑
�=1

η−4
b,j;�E[Ṽ

4
j,�] = kj∗ p

(
1
p

p

∑
�=1

η−4
b,j;�

)
×O(n−2).

The above expression is O(n−1) under the assumption that 1
p ∑

p
�=1 η−4

b,j;� tends to
a quantity.

6. Asymptotic Consistency under a Uniform Covariance Structure

In this section, we show an asymptotic consistency of KOO method based on a general
information criterion under a uniform covariance structure. First, following [12], we derive
a GICu,j as in (6), and a key statistic Tu,j;d as in (9). A uniform covariance structure is
given by

Σu = σ2
u(ρ

1−δij
u ) = σ2

u{(1− ρu)Ip + ρu1p1′p}, (37)
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with Kronecker delta δij. The covariance structure is expressed as follows:

Σu = α

(
Ip −

1
p

Gp

)
+ β

1
p

Gp,

where
α = σ2

u(1− ρu), β = σ2
u{1 + (p− 1)ρu}, Gp = 1p1′p,

and 1p = (1, . . . , 1)′. Matrices Ip − 1
p Gp and 1

p Gp are orthogonal idempotent matrices, so
we have

|Σu| = βαp−1, Σ−1
u =

1
α

(
Ip −

1
p

Gp

)
+

1
β
· 1

p
Gp.

Now, we consider the multivariate regression model Mu,j given by

Mu,j : Y ∼ Nn×p(XjΘj, Σu,j ⊗ In), (38)

where Σu,j = αj
(
Ip − p−1Gp

)
+ βj p−1Gp. Let H = (h1, H2) be an orthogonal matrix where

h1 = p−1/21p, and let

Wj = Y′(In − Pj)Y and Uj = H′WjH.

Here, h1 is a characteristic vector of Σu,j, and each column vector of H2 is a character-
istic vector of Σu,j. Let the density function of Y under Mu,j be denoted by f (Y; Θj, αj, βj).
Then, we have

g(αj, βj) = −2 log max
Θj

f (Y; Θj, αj, βj)

= np log(2π) + n(p− 1) log αj + n log βj + trΨ−1
j Uj,

where Ψj = diag(βj, αj, . . . , αj). Therefore, the maximum likelihood estimators of αj and
βj under Mu,j are given by

α̂j =
1

n(p− 1)
trH′2Y

′(In − Pj)YH2,

β̂j =
1
n

h′1Y
′(In − Pj)Yh1.

The number of independent parameters under Mu,j is mj = kj p + 2. Noting that Ψj
is diagonal, we can obtain the general information criterion (GIC) in (8) for Y in (38) as
follows:

GICu,j = n(p− 1) log α̂j + n log β̂j + np(log 2π + 1) + d(kj p + 2). (39)

Therefore, we have

Tu,j;d ≡ GICu,ω\j −GICu,ω

= n(p− 1) log
{

α̂ω\j(α̂ω)−1
}
+ n log

{
β̂ω\j

(
β̂ω
)−1
}
− dp (40)

= Z1j + Z2j.

Here, Z1j and Z2j are defined as follows:

Z1j = n(p− 1) log
{

1 + V(1)
2j

(
V(1)

1

)−1
}
− d(p− 1),

Z2j = n log
{

1 + V(2)
2j

(
V(2)

1

)−1
}
− d, (41)
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using the following V(i)
1 , V(i)

2j , i = 1, 2:

V(1)
1 = trH′2Y(In − Pω)YH2, V(1)

2j = trH′2Y
′(Pω − Pω\j)YH2,

V(2)
1 = h′1Y

′(In − Pω)Yh1, V(2)
2j = h′1Y

′(Pω − Pω\j)Yh1.

Related to the distributional reductions of Z1j, Z2j, j = 1, . . . , k, we use the following
Lemma frequently.

Lemma 1. Let W have a noncentral Whishart distribution Wp(m, Σ; Ω). Let the covariance
matrix Σ be decomposed into characteristic roots and vectors as follows:

Σ = HΛH′

= (H1, . . . , Hh)diag(λ1Iq1 , . . . , λhIqh)(H1, . . . , Hh)
′,

where λ1 > . . . > λh > 0 and H is an orthogonal matrix. Then, trH′jWjHj, i = 1, . . . , h are
independently distributed to noncentral chi-squared distributions with mkj degrees of freedom and
noncentrality parameters δ2

j = trH′jΩHj.

Proof. The result may be proven by considering the characteristic function of
(trH′1WH1, . . . , trH′qWHq) which is expressed as follows (see Theorem 2.1.2 in [15]):

E
[
eit1trH′1WH1+···+ithtrH′hWHh

]
= E[etr(K)]

= |Ip − 2ΣK|−m/2etr
{

ΩK(Ip − 2ΣK)−1)
}

,

where K = it1H1H′1 + · · ·+ it1HqH′q. The result can be easily obtained by checking that
the above last expression equals

q

∏
j=1

(1− 2itj)
−nkj/2 exp

{
itj

1− 2itj
trH′jΩHj

}
.

Assume that the true model is expressed as

Mu,j∗ : Y ∼ Nn×p(Xj∗Θj∗ , Σu,∗ ⊗ In), (42)

where Σu,∗ = α∗
(
Ip − p−1Gp

)
+ β∗p−1Gp. Using Lemma 1, we have the following lemma.

Lemma 2. Under True Model (42), it holds that

(1) V(1)
1 /α∗ and V(1)

2j /α∗ are independently distributed to a central chi-squared distribution
χ2
(p−1)(n−k) and a noncentral chi-squared distribution χ2

p−1(δ
2
1j), respectively.

(2) V(2)
1 /β∗ and V(2)

2j /β∗ are independently distributed to a central chi-squared distribution χ2
n−k

and a noncentral chi-squared distribution χ2
1(δ

2
2j), respectively.

(3) Noncentrality parameters δ2
1j and δ2

2j are defined as follows:

δ2
1j =

1
α∗

trH′2(Xj∗Θj∗)
′(Pω − Pω\j)(Xj∗Θj∗)H2

δ2
2j =

1
β∗

h′1(Xj∗Θj∗)
′(Pω − Pω\j)(Xj∗Θj∗)h1.
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Here, if j /∈ j∗, then δ2
1j = 0 and δ2

2j = 0.

Now, we consider the high-dimensional asymptotic consistency of the KOO method
based on Tb,j;d in (27), whose selection method is given by ĵv,j;d = {j | Tb,j;d > 0}. For a
sufficient condition for the consistency of ĵv,j;d, we assumed

A3u: For any j ∈ j∗, δ2
1j = O(np), δ2

2j = O(n) and

lim
1

np
δ2

1j = η2
1j > 0, lim

1
n

δ2
2j = η2

2j > 0, (43)

When j �∈ j∗, we have

[F2] = ∑
j �∈j∗

{
Pr(Z1j + Z2j ≥ 0)

}
≤ ∑

j �∈j∗

{
Pr(Z1j ≥ 0) + Pr(Z2j ≥ 0)

}
= (k− kj∗)

{
Pr(Z(1) ≥ s(1)0 ) + Pr(Z(2) ≥ s(2)0 )

}
.

Here,

Z(1) =
χ2

p−1

χ2
(p−1)(n−k)

− p− 1
(p− 1)(n− k)− 2

,

s(1) = ed/n − 1− p− 1
(p− 1)(n− k)− 2

, s(1)0 =
d
n
− p− 1

(p− 1)(n− k)− 2
,

Z(2) =
χ2

1
χ2

n−k
− 1

n− k− 2
,

s(2) = ed/n − 1− 1
n− k− 2

, s(2)0 =
d
n
− 1

n− k− 2
.

Note that s(1)0 < s(1) and s(2)0 < s(2). Then, under the assumption that s(1)0 > 0 and

s(2)0 > 0, we have

[F2] ≤ (k− kj∗)

[(
s(1)0

)−2�
E
[
(Z(1))2�

]
+
(

s(2)0

)−2�
E
[
(Z(2))2�

]]
. (44)

Related to assumptions s(1)0 > 0 and s(2)0 > 0, we assumed

A4u : d >
n(p− 1)

(p− 1)(n− k)− 2
→ 1

1− c2
, d >

n
n− k− 2

→ 1
1− c2

,

and d = O(na), 0 < a < 1. (45)

The first part in A4u implies s(1)0 > 0 and s(2)0 > 0. It is easy to see that

E[(Z(1))2] =
2(p− 1)2(n− k + 1)

{(p− 1)(n− k)− 2}2{(p− 1)(n− k)− 4} = O((n3)−1),

E[(Z(2))2] =
2(n− k− 1)

(n− k− 2)2(n− k− 4)
= O((n2)−1).

Further, (s(1)0 )−2 = O(n2(1−a)) and (s(2)0 )−2 = O(n2(1−a)). Therefore, from (44), we
have that [F2]→ 0.

When j ∈ j∗, we can write Tb,j;d = n ∑
p
�=1 log{1 + U2�U−1

1� } − dp. Therefore, we can
express [F1] as follows:

[F1] = ∑
j∈j∗

Pr(T̃b,j;d ≤ 0),
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where

T̃b,j;d =
1
p

p

∑
�=1

log

{
1 +

χ2
1;�(δ

2
b,j;�)

χ2
n−k;�

}
− d

n
.

Assumptions A3b and A4b easily show that

T̃v,j;d → log(1 + γ2
v,j) > 0.

This implies that Pr(T̃v,j;d ≤ 0)→ 0, and [F1]→ 0.
These imply the following theorem.

Theorem 3. Suppose that Assumptions A1, A2, A3u and A4u are satisfied. Then, the KOO
method based on Tu,j:d in (40) is asymptotically consistent.

7. Concluding Remarks

In this paper, we considered selecting regression variables in a p variate regression
model with one of three covariance structures: (1) ICSS (an independent covariance struc-
ture with the same variance), (2) ICSD (an independent covariance structure with different
variances), and (3) UCS (a uniform covariance structure). It was proposed to use a KOO
method on the basis of a general information criterion with a penalty term d. We indicated
high-dimensional consistencies of the KOO methods with d = O(na), 0 < a < 1. Ref. [12]
studied the asymptotic consistencies of KOO methods in (1) and (3). However, in their
approach, the number of explanatory variables was fixed; in this paper, the number of
explanatory variables may have tended to infinity. KOO methods may be feasible in com-
putation. The idea goes back to [1], and [2]. However, high-dimensional properties were
recently studied in [7–9,11].

A high-dimensional study of the KOO method under an autoregressive covariance
structure (AUTO), and extending our results to the case of non-normality remain as fu-
ture work.
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1. Introduction and Summary

The spectral theory of random graphs is a branch of mathematics that has been studied
intensively in the literature in recent decades. The asymptotic behavior of eigenvalues and
eigenvectors of matrices associated with graphs, adjacency matrices and Laplace matrices,
in particular (see definition below), as the number of vertices of the graph tends to infinity
is investigated. See for instance [1–8]. The adjacency matrix of the generalized Erdős–Rènyi
random graph is a special case of the generalized Wigner matrix (matrices with elements
that are independent up to symmetry, with zero means and different variances). Many deep
results have been obtained recently for such matrices. Methods of studying of the spectrum
asymptotics of the adjacency matrices are the same as for the spectrum asymptotics of
Wigner matrices—these are the method of moments and the Stieltjes transform method.
It should be noted that the most profound results for the spectrum of Wigner random
matrices were obtained by the methods related to the Stieltjes transform; see [3,9,10].

Laplace matrices have one significant difference—the dependence of the diagonal
elements on the remaining elements of the matrix. This significantly complicates the study.
For instance, the limit distribution of the empirical spectral function of the Laplace matrix
of a complete graph (non-random) was found firstly in 2006; see [11]. In most of the works
devoted to the study of the spectrum asymptotics of Laplace matrices of random graphs,
the method of moments is used; see [2,4,12]. In this paper, we consider the empirical
spectral distribution function of the Laplace matrices of both weighted and unweighted
generalized Erdős-Rényi random graphs. We have obtained simple sufficient conditions
for the convergence of the empirical spectral distribution function of the Laplace matrices
of random graphs to a distribution function that is a free convolution of the semicircular
law and the standard normal law. The conditions are expressed in terms of the properties
of the graph edge probability matrix and the weight variance matrix (for weighted graphs).
To prove the convergence, we exclusively use the Stieltjes transform method.

We consider a non-oriented simple graph (without loops and with simple edges)
{V, E} with vertices |V| = n and set of edges E such that edges e ∈ E are independent and
have probability pe. Consider the adjacency n× n matrix

A =
[
Ajk
]
, (1)

Mathematics 2023, 11, 764. https://doi.org/10.3390/math11030764 https://www.mdpi.com/journal/mathematics
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where

Ajk =

{
0, if (j, k) /∈ E,
1, if (j, k) ∈ E.

Define a degree of vertex j ∈ V as

dj := ∑
k:(j,k)∈E

Ajk.

We shall assume that Ajk for 1 ≤ j ≤ k ≤ n are independent and EAjk = pjk
(n). Note that

Edj = ∑k:k �=j pjk
(n). We have that matrix A is symmetric, i.e., Ajk = Akj, and that r.v.’s Ajk

for 1 ≤ j ≤ k ≤ n are independent. We introduce the quantity

ân =
1
n

n

∑
j,k=1

pjk
(n)(1− pjk

(n)). (2)

We introduce the diagonal matrix

D = diag(d1, . . . , dn),

normalized and centered Laplace matrix of not weighted graph G defined as

L̂ =
1√
ân

[
(D−A)−E(D−A)

]
.

We shall consider the weighted graphs G̃ = (V, E, w) as well with weight function
wjk = wkj = Xjk, where, for 1 ≤ j ≤ k ≤ n, there are independent random variables s.t.

EXjk = 0, EX2
jk = σ2

jk.

The distribution of Xjk may depend on n, but for brevity, we shall omit the index n in the
notations. We introduce the quantity

an =
1
n

n

∑
i,j=1

pij
(n)σ2

ij. (3)

The quantity an may be interpreted as the expected mean degree of graph G̃. With graph G̃,
we consider the adjacency matrix

Ã =
[
AijXij

]
and normalized Laplace or Markov matrix

L̃ =
1√
an

(D̃− Ã),

where
D̃ = diag(d̃1, . . . , d̃n) with d̃i = ∑

j:j �=i
AijXij.

We shall denote by λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) ordered eigenvalues of a symmetric
n× n matrix B. We shall consider the spectrum of matrices L̃, and L̂. For brevity of notation,
we shall write μ̃j = λj(L̃), and μ̂j = λj(L̂). We introduce the corresponding empirical
spectral distributions (ESDs)

Ĝn(x) :=
1
n

n

∑
j=1

I{μ̂j ≤ x}, G̃n(x) :=
1
n

n

∑
j=1

I{μ̃j ≤ x}. (4)
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In the paper [11], in 2006, it was shown under conditions pij
(n) ≡ 1 and σ2

ij ≡ 1, for any

1 ≤ i, j ≤ n, that ESD G̃n(x) weakly converges in probability to the non-random distri-
bution function G(x), which is defined as a free convolution of the Gaussian distribution
function and the semicircular distribution function (the definition of free convolution see,
for instance, in [13]).

In [4], in 2010, the authors considered the limit of G̃n(x) for weighted Erdös–Renyi
graphs (pij

(n) ≡ pn) with equivariance weights (σ2
ij ≡ σ2). Assuming that pn bounded away

from zero and one, and that random variables Xij have the fourth moment, they proved
that G̃n(x) weakly converges to the same function G(x).

In [14], in 2020, Yizhe Zhu considered the so-called graphon approach to the limiting
spectral distribution of Wigner-type matrices. The author described the moments of
the limit spectral measure in terms 2279–2375, of graphon of the variance profile matrix
Σ = (σ2

ij) and number of trees with a fixed number of vertices. Recently, Chatterjee and
Hazra published the paper [12] in which the approach of Zhu was developed.

In [15], in 2021, the author stated simple conditions on probabilities pij for the con-
vergence of ESD of adjacency matrices to the semicircular law. In the present paper, we
consider the convergence of ESD Ĝn(x) and G̃n(x) under similar conditions to the func-
tion G(x).

First, we formulate some conditions which we shall use in the present paper.

• Condition CP(0):
an → ∞, as n→ ∞. (5)

• Condition CP(0a): There exists a constant C0 s.t.

sup
n≥1

max
1≤j,k≤n

1
an

pjk
(n)σ2

jk ≤ C0 < ∞.

• Condition CP(1):

lim
n→∞

1
nan

n

∑
j=1

n

∑
k=1
|pjk

(n)σ2
jk −

an

n
| = 0.

• Condition CX(1): For any τ > 0

Ln(τ) :=
1

nan

n

∑
i,j=1

pij
(n)

EX2
ijI{|Xij| > τ

√
an} → 0 as n→ ∞. (6)

Remark 1. Condition CP(1) is equivalent to the following two conditions together

• Condition CP(1a):

lim
n→∞

1
n

n

∑
j=1
| 1
an

n

∑
k=1

pjk
(n)σ2

jk − 1| = 0. (7)

• Condition CP(1b):

lim
n→∞

1
nan

n

∑
j=1

n

∑
k=1
|pjk

(n)σ2
jk −

1
n

n

∑
l=1

pjl
(n)σ2

jl | = 0.

The main result of the present paper is the following theorem.

Theorem 1. Let conditions CP(0), CP(0a), CP(1), CX(1) hold. Then, ESDs G̃n(x) converge in
probability to the distribution function G(x), which is the additive free convolution of the standard
normal distribution function and the semi-circular distribution function:
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lim
n→∞

G̃n(x) = G(x).

Corollary 1. Assume that σ2
jk ≡ σ2 and pjk

(n) ≡ pn for any 1 ≤ j, k ≤ n and any n ≥ 1. Assume

that npn → ∞ as n→ ∞ and assume that condition CX(1) holds. Then, ESDs G̃n(x) converge in
probability to the distribution function G(x), which is the additive free convolution of the standard
normal distribution function and the semi-circular distribution function:

lim
n→∞

G̃n(x) = G(x).

Proof of Corollary. Note that in the case pjk
(n) ≡ pn and σ2

jk = σ2, we have

an = npnσ2.

Condition CP(0) is fulfilled. Moreover, it is simple to see that all conditions of Theorem 1
are fulfilled.

Theorem 2. Let conditions
ân → ∞ as n→ ∞, (8)

and

lim
n→∞

1
nân

n

∑
j=1

n

∑
k=1
|pjk

(n)(1− pjk
(n))− ân

n
| = 0 (9)

hold. Then, ESDs Ĝn(x) converge in probability to the distribution function G(x), which is
the additive free convolution of the standard normal distribution function and the semicircular
distribution function,

lim
n→∞

Ĝn(x) = G(x).

In what follows, we shall omit the superscript (n) in the notations of p(n)ij , writing
pij instead.

2. Toy Example

Consider graph {V, E} with clique number d = d(n) where |V| = n. The clique
number of graph G is the size of the largest clique or a maximal clique of the graph. LetM
denote the clique of the graph. Define the weights of vertices as follows

Wi =

{
d, if i ∈ M
1, otherwise.

.

We introduce edge probabilities as follows

pij = WiWj/d2 =

⎧⎪⎨⎪⎩
1
d2 , if i /∈ M, j /∈ M,
1
d if i ∈ M, j /∈ M, or i /∈ M, j ∈ M,
1, if i, j ∈ M.

(10)

We assume that σ2
jk ≡ σ2 = 1, for 1 ≤ j, k ≤ n. In this case, we have

n

∑
j,k=1

pjk = (
n− d

d
+ d)2, (11)
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and

an =
n
d2 (1 + αn)

2, where αn =
d(d− 1)

n
. (12)

Proposition 1. Under condition

lim
n→∞

d2(n)
n

= 0 (13)

conditions CP(0), CP(0a) and CP(1) hold.

Proof. We have

1
nan

n

∑
j,k=1
|pjk −

an

n
| = 1

nan
(

1
d2 (2αn + α2

n)(n− d)2 + 2|1
d
− 1

d2 (1 + αn)
2|d(n− d)+

d2(1− 1
d2 (1 + αn)

2)

=
αn(1 + 2αn)(n− d)2

n2(1 + αn)2 + 2|1− 1
d
(1 + αn)

2| d2(n− d)
n2(1 + αn)2

+
d4

n2(1 + αn)2 (1−
1
d2 (1 + αn)

2). (14)

It is straightforward to check that for d = d(n) satisfying the condition (13), we have
αn = o(1), an → ∞ as n→ ∞ and

lim
n→∞

1
nan

n

∑
j,k=1
|pjk −

an

n
| = 0. (15)

That means that the conditions CP(0a) and CP(1) hold. Furthermore,

max
1≤k≤n

n

∑
l=1

pkl ≤
n
d
+ d. (16)

It is straightforward to check as well that

sup
n≥1

max1≤k,l≤n pkl

an
≤ C0. (17)

Thus, Proposition 1 is proved.

3. Proof of Theorem 1

We shall use the method of the Stieltjes transform for the proof of Theorem 1. Introduce
the resolvent matrix of matrix L̃,

R := RL̃(z) = (L̃− zI)−1,

where I := In denotes a n× n unit matrix. Let mn(z) denote the Stieltjes transform of the
empirical spectral distribution function of matrix L̃,

mn(z) =
∫ ∞

−∞

1
x− z

dG̃n(x) =
1
n

TrR.

For the proof of Theorem 1, it is enough to prove the convergence of the Stieltjes transforms
for any fixed z = u + iv with v > 0; moreover, it is enough to prove that mn(z) converges
to some function, say s(z), in some set with a non-empty interior. According to Lemma A2,
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it is enough to prove the convergence of the expected Stieltjes transform sn(z) = Emn(z) =
E 1

n TrR only. Using Lemma A1, the result of Theorem 1 follows from the relation

sn(z)− sg(z + sn(z))→ 0 as n→ ∞,

where sg(z) denotes the Stieltjes transform of the standard Gaussian distribution,

sg(z) =
1√
2π

∫ ∞

−∞

1
x− z

exp{− x2

2
}dx.

First, we need some additional notations. By L̃(j), we denote the matrix obtained from
L̃ by replacing diagonal entries L̃ll , l = 1, . . . , n with L̃

(j)
ll = 1√

an
∑r �=j AlrXlr. Note that the

diagonal entries of matrix L̃(j) (except L̃(j)
jj ) do not depend on the r.v. values Xjk, Ajk for

k = 1, . . . , n. We denote by D̃(j) the diagonal matrix with diagonal entries D̃(j)
ll = 1√

an
AjlXjl .

Denote by R̃(j) the resolvent matrix corresponding to the matrix L̃(j),

R̃(j) = (L̃(j) − zI)−1.

We have
R = R̃(j)−RD̃(j)R̃(j). (18)

Using this formula, we may write

Rjj = R̃(j)
jj −

1√
an

n

∑
r=1

AjrXjrRjr R̃(j)
rj . (19)

According to Lemma A5, we obtain

lim
n→∞

∣∣∣ 1
n

TrR− 1
n

n

∑
j=1

R̃(j)
jj

∣∣∣ = 0. (20)

Furthermore, let us denote by L̃(j,0) the matrix obtained from L̃(j) by deleting both the j-th
column and j-th row. R̃(j,0) denotes the resolvent matrix corresponding to the matrix L̃(j,0).
Using the Schur complement formula, we may write

R̃(j)
jj =

1

L̃(j)
jj − z−∑l,k:l �=j,k �=j[R̃(j,0)(z)]kl L̃jl L̃jk

. (21)

Introduce the following notations

ε j1 := ∑
l �=k:l �=j,k �=j

[R̃(j,0)]kl L̃jl L̃jk, ε j2 =
1
an

∑
k:k �=j

[R̃(j,0)]kk(Ajk − pjk)X2
jk,

ε j3 =
1
an

∑
k:k �=j

[R̃(j,0)]kk pjk(X2
jk − σ2

jk),

ε j4 =
1
an

∑
k:k �=j

[R̃(j,0)]kk(pjkσ2
jk −

1
n

n

∑
l=1

pjlσ
2
jl),

ε j5 =
1
n ∑

k:k �=j
R̃(j,0)

kk
( 1

an

n

∑
l=1

pjlσ
2
jl − 1

)
,

ε j6 =
1
n ∑

k:k �=j
R̃(j,0)

kk − 1
n

n

∑
k=1

Rkk,

ε j7 =
1
n

n

∑
k=1

[R]kk −E
1
n

n

∑
k=1

[R(z)]kk.
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Put ε j = ∑7
ν=1 ε jν. Let

ζ j := L̃(j)
jj =

1√
an

∑
k �=j

AjkXjk.

In these notations, we may write

E[R̃(j)]jj = E
1

ζ j − z− sn(z)− ε j
.

We continue as follows

ER̃(j)
jj = E

1
ζ j − z− sn(z)

+E
ε j

ζ j − z− sn(z)
R̃(j)

jj . (22)

Summing the last equality in j = 1, . . . , n, we obtain

sn(z) = E
1

ζJ − z− sn(z)
+E

εJ
ζJ − z− sn(z)

R(J)
JJ

+E(RJ,J − R̃(J)
J,J ), (23)

where J denotes a random variable which is uniform distributed on the set {1, . . . , n} and independent
on all other random variables. Denote by Fn(x) the distribution function of ζJ and let

Δn = sup
x
|Fn(x)−Φ(x)|,

where Φ(x) denotes the distribution function of the standard normal law. Denote the Stieltjes
transform of the standard normal law by sg(z),

sg(z) =
∫ ∞

−∞

1
x− z

dΦ(x).

Note that
E

1
ζJ − z− ŝn(z)

− sg(z + ŝn(z)) =
∫ ∞

−∞

1
x− z− ŝn(z)

d(Fn(x)−Φ(x)). (24)

Integrating by part, we obtain

|E 1
ζJ − z− ŝn(z)

− sg(z + ŝn(z))| ≤ 2v−2Δn. (25)

According to Lemma A3,

|E 1
ζJ − z− sn(z)

− sg(z + sn(z))| → 0 as n→ ∞. (26)

Note that
|E εJ

ζJ − z− sn(z)
RJJ| ≤ v−2

E|εJ|. (27)

It remains to prove that E|εJ| → 0 and E(RJ,J − R̃(J)
J,J ) → 0 as n → ∞. The last claim follows from

Lemmas A6–A11, Lemma A2 and equality (20).
Thus, Theorem 1 is proved.

4. The Proof of Theorem 2

Similar to the previous section, we may write that diagonal entries of matrix L̂

ζ̂ j =
1√
ân

∑
k �=j

(Ajk − pjk). (28)

Let R̂ = (L̂ − zI)−1 denote the resolvent matrix of the matrix L̂. Let j ∈ {1, . . . , n} be fixed. We
denote by L̂(j) the matrix obtained from L̂ by replacing diagonal entries L̂ll , l = 1, . . . , n with

L̂
(j)
ll = 1√

ân
∑r �=j(Alr − plr). Let D̂(j) = L̂ − L̂(j). By definition, D̂(j) = diag(d̂(j)

1 , . . . , d̂(j)
n ) is a

diagonal matrix with d̂(j)
ll = 1√

ân
(Ajl − pjl), for l = 1, . . . , n. Note that diagonal entries of matrix L̂(j)

(except L̂(j)
jj ) do not depend on the r.v. values Ajk for k = 1, . . . , n. By L̂(j,0), we denote the matrix

obtained from L̂(j) by deleting both the j-th column and j-th row. R̂(j,0) denotes the resolvent matrix
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corresponding to the matrix L̂(j,0). Analogously to (21), we represent the diagonal entries of resolvent
matrix R̂(j) = (L̂(j) − zI)−1 in the form

R̂(j)
jj =

1

L̂(j)
jj − z−∑l,k:l �=j,k �=j R̂(j,0)

kl L̂jl L̂jk

. (29)

Introduce the following notations

ε̂ j1 := ∑
l �=k:l �=j,k �=j

[R̂(j,0)]kl L̂jl L̂jk, ε̂ j2 =
1
ân

∑
k:k �=j

[R̂(j,0)]kk((Ajk − pjk)
2 − pjk(1− pjk))

ε̂ j3 =
1
ân

∑
k:k �=j

R̂(j,0)
kk
(

pjk(1− pjk)−
ân

n
)
,

ε̂ j4 =
1
n ∑

k:k �=j
R̂(j,0)

kk − 1
n

n

∑
k=1

R̂kk,

ε̂ j5 =
1
n

n

∑
k=1

R̂kk −E
1
n

n

∑
k=1

R̂kk.

Put ε̂ j = ∑5
ν=1 ε̂ jν. Let

ζ̂ j := L̂(j)
jj =

1√
ân

∑
k �=j

(Ajk − pjk).

In these notations, we may write

E[R̂(j)]jj = E
1

ζ̂ j − z− ŝn(z)− ε̂ j
,

where ŝn(z) = E 1
n TrR̂. We continue as follows

E[R̂(j)]jj = E
1

ζ̂ j − z− ŝn(z)
+E

ε̂ j

ζ j − z− ŝn(z)
R̂(j)

jj (z). (30)

Summing the last equality in j = 1, . . . , n, we obtain

ŝn(z) = E
1

ζ̂J − z− ŝn(z)
+E

ε̂J

ζ̂J − z− ŝn(z)
R̂(J)
JJ

+E(R̂JJ − R̂J

JJ
), (31)

where J denotes a random variable which is uniform distributed on the set {1, . . . , n} and independent
on all other random variables. Similar to inequality (25), we have

|E 1
ζ̂ j − z− ŝn(z)

− sg(z + ŝn(z))| ≤
1
v2 Δ̂n. (32)

According to Lemma A12∣∣∣∣∣E 1
ζ̂ j − z− ŝn(z)

− sg(z + ŝn(z))

∣∣∣∣∣→ 0 as n→ ∞. (33)

Furthermore, since Im z + Im sn(z) ≥ v and |R̂(J)
JJ
| ≤ v−1, we have

|E ε̂J

ζ̂J − z− ŝn(z)
R̂(J)
JJ
| ≤ v−2

E|ε̂J|. (34)

By Lemmas A13–A17,
lim

n→∞
E|ε̂J| = 0. (35)

Furthermore, we note that
R̂ = R̂(J) − R̂(J)D̂(J)R̂. (36)
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This relation implies that

|E(R̂JJ − R̂(J)
JJ

) ≤ max
1≤j≤n

E‖R̂− R̂(j)‖ ≤ v−2 max
1≤j≤n

E‖D̂(j)‖. (37)

It is straightforward to check that

E‖D̂(j)‖ ≤ 1√
ân

E max
1≤l≤n

|Ajl − pjl | ≤
1√
ân
→ 0 as n→ ∞. (38)

Combining relations (33), (35), (38), we obtain

κn(z) := sn(z)− sg(z + sn(z))→ 0 as n→ ∞. (39)

The last relation and Lemma A1 completed the proof of Theorem 2. Thus, Theorem 2 is proved.
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Appendix A

Definition of Additive Free Convolution

We give the definition of the additive free convolution of distribution functions following the
paper [16] (Section 5).

Definition A1. A pair (A, ϕ) consisting of a unital algebra A and a linear functional ϕ : A → C with
ϕ(1) = 1 is called the free probability space. Elements of A are called random variables, the numbers
ϕ(ai(1)· · ·ai(n)) for such random variables a1, . . . , ak ∈ A are called moments, and the collection of all mo-
ments is called the joint distribution of a1, . . . , ak. Equivalently, we may say that the joint distribution of
a1, . . . , ak is given by the linear functional μa1,...,ak : C〈X1, . . . , Xk〉 → C with μa1,...,ak (P(X1, . . . , Xk)) =
ϕ(P(a1, . . . , ak)), where C〈X1, . . . , Xk〉 denotes the algebra of all polynomials in k non-commutative indeter-
minantes X1, . . . , Xk.

If for a given element a ∈ A there exists a unique probability measure μa on R such that∫
tkdμa(t) = ϕ(ak) for all k ∈ N, we identify the distribution of a with the probability measure μa.

Definition A2. Let (A, ϕ) be a non-commutative probability space.

(1) Let (Ai)i∈I be a family of unital sub-algebras of A. The sub-algebras Ai are called free independent if,
for any positive integer k, ϕ(a1 · · · ak) = 0 whenever the following set of conditions holds: aj ∈ Ai(j)
(with i(j) ∈ I) for j = 1, . . . , k, ϕ(aj) = 0 for all j = 1, . . . , k and neighboring elements are from taken
different sub-algebras, i.e., i(1) �= i(2), i(2) �= i(3), . . . , i(k− 1) �= i(k).

(2) Let (A′i)i∈I be a family of subset of A. The subsets A′i are called free or freely independent if their
generated initial sub-algebras are free, i.e., if (Ai)i∈I are free, where for each i ∈ I, Ai is the smallest
initial sub-algebra of A which contains A′i .

(3) Let (ai)i∈I be a family of elements from A. The elements ai are called free independent if the subsets
({ai})i∈I are free.

Consider two random variables a and b which are free. Then, distributions of a + b (in the sense
of linear functionals) depend only on the distribution of a and b.

Definition A3. For free random variables a and b, the distribution of a + b is called the free additive
convolution of μa and μb and is denoted by

μa�b = μa � μb.
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To compute the free convolution of concrete distributions, we may use the so-called R-transform
introduced by Voiculescu [17]. Let s(z) be the Stieltjes transform of some distribution function F(x).
Denote by s−1(z) the inverse function of s(z) in the science of composition. Define R-transform
as follows

R(z) = −s−1(z)− 1
z

.

Let F(x) be the semicircle distribution function. Its Stieltjes transform satisfies the equation

s2(z) + zs(z) + 1 = 0

Denote by Rsc(z) the R-transform of the semicicular law. Simple calulations show that

Rsc(z) = z.

We denote dy R f c(z) the R-transform of the free convolution semicircular law and Gaussian law. Let
Rg denote the R-transform of the standard normal law. Then

R f c(z) = Rsc(z) + Rg(z).

See for instance, refs. [18,19]. Using the definition of the R-transform via the Stieltjes transform,
we obtain

−s−1
f c (z) = z− s−1

g (z).

It is straightforward to show that this equality implies

s f c(z) = sg(z + s f c(z)). (A1)

We prove the following simple but important lemma.

Lemma A1. Let a sequence of Stieltjes transforms of the distribution functions Fn(x) satisfy the equations

sn(z) = sg(z + sn(z)) +κn(z), (A2)

where
κn(z)→ 0 as n→ ∞.

Then, the distribution functions Fn(x) weakly converge to the distribution function Ff c(x), which is free
convolution of the semicircular law and the standard normal law.

Proof. It is enough to prove that the Stieltjes transform sn(z) converges in some region with non-
empty interior to the Stieltjes transform s f c(z), which satisfies equation (A1). We shall consider the
region of z = u + iv with v >

√
2. Since the derivative of sg(z) does not exceed the level 1/v2, we

may write

|sn(z)− sm(z) ≤
1
2
|sn(z)− sm(z)|+ |κn(z)|+ |κm(z)|.

or
|sn(z)− sm(z)| ≤ 2|κn(z)|+ 2|κm(z)| → 0 as n, m→ ∞. (A3)

The sequence of the Stieltjes transforms sn(z) is Cauchy; consequently, there exists a limit say s f c(z)
of this sequence,

lim
n→∞

sn(z) = s f c(z).

Taking the limit in the equation (A2), we obtain

s f c(z) = sg(z + s f c(z)).

The last equality implies that s f c(z) is the Stieltjes transform of the semicircular law and the standard
Gaussian law. Thus, Lemma is proved.

Appendix B. Weighted Graphs

Appendix B.1. Variance of Stieltjes Transform of Empirical Measure

In this section, we estimate the variance of mn(z) = 1
n TrR, where R := RL(z) = (L̃− zI)−1. We

prove the following Lemma.

230



Mathematics 2023, 11, 764

Lemma A2. For any z = u + iv with v > 0, the following inequality holds

lim
n→∞

E| 1
n

TrR− 1
n
ETrR| = 0. (A4)

Proof. The proof of this lemma is using the martingale representation of ξ − Eξ. This method in
Random Matrix Theory was firstly used by Girko, see for instance [20]. We introduce the sequence of
σ-algebras Mk generated by random variables Xj,l for 1 ≤ j, l ≤ k. It is easy to see that Mk ⊂Mk+1.
Denote by Ek the conditional expectation with respect to σ-algebra Mk. For k = 0, E0 = E. Introduce
random variables

γk := Ek
1
n

TrR−Ek−1
1
n

TrR. (A5)

The sequence of γk, for k = 1, . . . , n is martingale difference and

1
n

TrR−E
1
n

TrR =
n

∑
k=1

γk.

Introduce the sub-matrices L̃(k) obtained from L̃ by deleting both the k-th row and k-th column.
Denote by R(k) = R(k)(z) the corresponding resolvent matrix, R(k)(z) = (L̃(k) − zI)−1. Note that
the matrix L̃(k) depends on the random variables Xkl , l = 1, . . . , n via diagonal entries. To overcome
this difficulty, we introduce the matrix L̃(k,0) obtained from L̃(k) by replacing diagonal entries with

L̂(k)
jj := 1√

an
∑l:l �=k,l �=j Ajl Xjl . The corresponding resolvent matrix is denoted via R(k,0). We have now

EkTrR(k,0) = Ek−1R(k,0).

This allows us to write

γk =Ek(
1
n
(TrR− TrR(k))−Ek−1(

1
n
(TrR− TrR(k)))

+Ek(
1
n
(TrR(k) − TrR(k,0)))−Ek−1(

1
n
(TrR(k) − TrR(k,0))) =: γ

(1)
k + γ

(2)
k .

By the overlapping theorem, for z = u + iv,∣∣∣∣ 1n TrRL(z)−
1
n

TrR(k)(z)
∣∣∣∣ ≤ 1

nv
. (A6)

From here, we immediately obtain

|γ(1)
k | ≤

2
nv

,

and
n

∑
k=1

E|γk|2 ≤
4

nv2 . (A7)

To complete the proof, it remains to show that

lim
n→∞

n

∑
k=1

E|γ(2)
k |

2 = 0. (A8)

Note that
E|γ(2)

k |
2 ≤ 2E| 1

n
TrR(k) − 1

n
TrR(k,0)|2. (A9)

Introduce the diagonal matrix D(k) with diagonal entries

D(k)
ll =

1√
an

Akl Xkl , l �= k.

In these notations, we have

1
n

TrR(k) − 1
n

TrR(k,0) =
1
n

TrR(k)D(k,0)R(k,0) =
1

n
√

an
∑

l �=k,j �=k
R(k)

l j AkjXkjR
(k,0)
jl . (A10)
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This implies that
n

∑
k=1

E|γ(2)
k |

2 ≤ 4
n2an

n

∑
k=1

E|∑
j �=k

AkjXkj
(

∑
l �=k

R(k)
l j R(k,0)

jl
)
|2. (A11)

We continue this inequality as follows

n

∑
k=1

E|γ(2)
k |

2 ≤ 8
n2an

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

R(k)
l j R(k,0)

jl I{Akj|Xkj| ≤ τ
√

an}
)∣∣∣2

+
8

n2an

n

∑
k=1

E|∑
j �=k

AkjXkj
(

∑
l �=k

R(k)
l j R(k,0)

jl
)
I{Akj|Xkj| > τ

√
an}
∣∣∣2. (A12)

Applying Cauchy’s inequality to the second term in the right-hand side of the last inequality, we obtain

8
n2an

n

∑
k=1

E|∑
j �=k

AkjXkj
(

∑
l �=k

R(k,0)
l j R(k)

jl
)
I{Akj|Xkj| > τ

√
an}|2

≤ 8
nan

n

∑
k=1

∑
j �=k

EAjkX2
kj
∣∣∑

l �=k
R(k)

l j R(k,0)
jl

∣∣2I{Akj|Xkj| > τ
√

an}. (A13)

It is straightforward to check that ∣∣∑
l �=k

R(k)
l j R(k,0)

jl

∣∣2 ≤ v−4. (A14)

Using this bound, we obtain

8
n2an

n

∑
k=1

E|∑
j �=k

AkjXkj
(

∑
l �=k

R(k)
l j R(k,0)

jl
)
I{Akj|Xkj| > τ

√
an}|2 ≤ 8v−4Ln(τ). (A15)

We estimate now the first term in the r.h.s. of (A12). Using that

R(k) = R(k,0) + R(k,0)D(k)R(k), (A16)

we may write

8
n2an

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

R(k)
l j R(k,0)

jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

≤ 8
n2an

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

R(k,0)
l j R(k,0)

jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

+
8

n2a2
n

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

n

∑
s=1

Xks AksR(k,0)
ls R(k)

sj R(k,0)
jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2. (A17)

By the independence of random variables AjkXjk for j = 1, . . . , n and matrix R̂(k,0), we have

8
n2an

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

R(k,0)
l j R(k,0)

jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

≤ 8
n2anv4

n

∑
k=1

∑
j �=k

pjkσ2
jk +

1
n2a2

nτ2v4

n

∑
k=1

(
n

∑
j=1

pjkEX2
jkI{|Xjk| > τ

√
an})2

≤ 8
nv4 +

( Ln(τ)

τv2

)2
. (A18)

For the second term in the r.h.s. of (A17), we have
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8
n2a2

n

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

n

∑
s=1

Xks AksR(k,0)
ls R(k)

sj R(k,0)
jl
)
I{Akj|Xkj| ≤ τ

√
an}
∣∣∣2

=
8

n2a2
n

n

∑
k=1

E

∣∣∣ ∑
s �=k

AksXks
( n

∑
j=1

Xkj Akj ∑
l �=k

R(k,0)
ls R(k)

sj R(k,0)
jl I{Akj|Xkj| ≤ τ

√
an}
)∣∣∣2

≤ 8
na2

n

n

∑
k=1

E ∑
s �=k

Aks|Xks|2
∣∣∑

j=1
Xkj Akj ∑

l �=k
R(k,0)

ls R(k)
sj R(k,0)

jl I{Akj|Xkj| ≤ τ
√

an}
∣∣2. (A19)

Note that

n

∑
r=1
|R(k)

rj ||∑
l �=k

R̂(k)
lr R̂(k)

jl | ≤
( n

∑
r=1
|R(k)

jr |2
) 1

2
( n

∑
r=1
|[R(k,0)]2jr|2

) 1
2 ≤ v−3. (A20)

Using this inequality, we obtain

8
n2a2

n

n

∑
k=1

E

∣∣∣∑
j �=k

AkjXkj
(

∑
l �=k

n

∑
r=1

Xkr AkrR(k,0)
lr R(k)

rj R(k,0)
jl
)∣∣∣2 n

∏
r=1

I{Akr|Xkr| ≤ τ
√

an}

≤ 8τ2

nanv6

n

∑
k=1

∑
j �=k

pjkσ2
jk =

8τ2

v6 . (A21)

Combining inequalities (A7), (A12), (A20), we obtain

E|TrR−ETrR|2 ≤ C
nv2 +

Cτ2

v6 +
CLn(τ)

v4 . (A22)

Passing to the limit first in n→ ∞ and then in τ → 0, we obtain

lim
n→∞

E| 1
n
(TrR−ETrR)|2 = 0. (A23)

Thus, lemma is proved.

In what follows, we shall assume that z = u + iv is fixed.

Appendix B.2. Convergence of Diagonal Entries Distribution Functions of Laplace Matrices to the
Normal Law

Lemma A3. Under conditions CP(0) and CX(0), we have

lim
1
n

n

∑
j=1

max1≤k≤n pjkσ2
jk

an
= 0. (A24)

Proof. We fix arbitrary τ > 0. We may write

1
n

n

∑
j=1

max1≤k≤n pjkσ2
jk

an
≤ τ2 +

1
nan

n

∑
j=1

n

∑
k=1

pjkE|Xjk|2I{|Xjk| < τ
√

an}. (A25)

By condition CX(0), we obtain

lim sup
n→∞

1
n

n

∑
j=1

max1≤k≤n pjkσ2
jk

an
≤ τ2.

Because τ is arbitrary, we obtain the claim.

Lemma A4. Under conditions CP(0), CP(2) and CX(0), CX(1), we have

lim
n→∞

sup
x
|Fn(x)−Φ(x)| = 0 (A26)
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Proof. Let J be an independent on Ajk and Xjk random variable uniform distributed on the set
{1, . . . , n}. We consider the characterictic function of ζJ =

1√
an

∑n
k=1 AJ,kXJ,k, fn(t) = E exp{itζJ} =

1
n ∑n

j=1 E exp{itζ j}. Introduce the following set of indices

M =M1 ∩M2 ∩M3, (A27)

where

M1 :=
{

j ∈ {1, . . . , n} :
1
an
|

n

∑
k=1

pjkσ2
jk − 1| ≤ 1

16

}
,

M2 :=
{

j ∈ {1, . . . , n} :
1
an

n

∑
k=1

pjkEX2
jkI{|Xjk| > τ

√
an} ≤

1
16

}
,

M3 :=
{

j ∈ {1, . . . , n} :
1
an

max
1≤k≤n

pjkσ2
jk ≤

1
16t2

}
. (A28)

We denote by Ac the complement set of A and by |A|, we denote the cardinality of set A. Note that
by condition CP(1)

|Mc
1|

n
≤ 16

1
nan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
an

n
| → 0, as n→ ∞. (A29)

Analogously, by CX(1),
|Mc

2|
n
≤ 16Ln(τ)→ 0, as n→ ∞. (A30)

Finally, by Lemma A3

|M3
c|

n
≤ 16t2 1

nan

n

∑
j=1

max
1≤k≤n

pjkσ2
jk → 0 as n→ ∞. (A31)

Combining the last three relations, we obtain

lim
n→∞

|Mc|
n

= 0. (A32)

Note that by the independence of Ajk and Xjk,

fnj(t) := E exp{ it√
an

ζ j} =
n

∏
k=1

E exp{ it√
an

AjkXjk} =:
n

∏
k=1

fnjk(t).

Furthermore,

fnjk(t) = 1 + pjk(E exp{ it√
an

Xjk} − 1), (A33)

and by condition CP(0)

| fnjk(t)− 1| ≤ t2

2an
pjkσ2

jk ≤
t2

2an
max

1≤j,k≤n
pjkσ2

jk → 0 as n→ ∞. (A34)

Without loss of generality, we may assume that

max
1≤jmk≤n

| fnjk(t)− 1| ≤ 1
4

, (A35)

and applying Taylor’s formula, we write that

ln fnjk(t) = pjk

(
E exp{ it√

an
Xjk} − 1

)
+ 2θ(t)p2

jk

∣∣∣∣E exp{ it√
an

Xjk} − 1
∣∣∣∣2, (A36)
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where θ(t) denotes some function such that |θ(t)| ≤ 1. Futhermore, by Taylor’s formula

E exp{ it√
an

Xjk} − 1 = − t2

2an
σ2

jk + θ1(t)
|t|3

6a
3
2
n

E|Xjk|3I{|Xjk| ≤ τ
√

an}

+ θ2(t)|E
∣∣∣∣exp{ it√

an
Xjk} − 1− it√

an
Xjk +

t2

2an
X2

jk

∣∣∣∣I{|Xjk| > τ
√

an}, (A37)

where θi(t), i = 1, 2 denotes some functions such that |θi(t)| ≤ 1. Using this equality, we may write

ln fnjk(t) =−
t2

2an
pjkσ2

jk + θ1(t)
τ|t|3
6an

pjkσ2
jk

+ θ2(t)
t2

an
pjkE|Xjk|2I{|Xjk| ≥ τ

√
an}+ θ3(t)

t4

4a2
n

p2
jkσ4

jk. (A38)

Summing this equality by k = 1 . . . , n, we obtain

ln fnj(t) =−
t2

2
1
an

n

∑
k=1

pjkσ2
jk + θi(t)τ

|t|3
6an

n

∑
k=1

pjkσ2
jk

+ θ2(t)
t2

an

n

∑
k=1

pjkE|Xjk|2I{|Xjk| ≥ τ
√

an}

+ θ3(t)
t4

4

max1≤j,k≤n pjkσ2
jk

an

1
an

n

∑
k=1

pjkσ2
jk. (A39)

For 8
17|t| > τ > 0, we have

| ln fnj(t) +
t2

2
| ≤ t2

3
. (A40)

This implies that for j ∈ M

| fnj(t)− exp{− t2

2
}| ≤ C

(
t2(∣∣ 1

an

n

∑
k=1

pjkσ2
jk − 1

∣∣+ 1
an

n

∑
k=1

pjkE|Xjk|2I{|Xjk| > τ
√

an}
)

+ τ|t|3 +
t4 max1≤j,k≤n pjkσ2

jk

an

)
. (A41)

From this inequality, it follows that

| fn(t)− exp{− t2

2
}| ≤ 2|Mc|

n

+
1
n

n

∑
j=1

(
t2(∣∣ 1

an

n

∑
k=1

pjkσ2
jk − 1

∣∣+ 1
an

n

∑
k=1

pjkE|Xjk|2I{|Xjk| > τ
√

an}
)

+ τ|t|3 +
t4 max1≤j,k≤n pjkσ2

jk

an

)
. (A42)

By conditions CP(0) and CX(0), relation (A32) and Lemma A3, we obtain

lim
n→∞

fn(t) = exp{− t2

2
}. (A43)

Thus, the lemma is proved.

Lemma A5. Under the conditions of Theorem 1, we have

lim
n→∞

1
n

n

∑
j=1

E|Rjj − R̃(j)
jj | = 0. (A44)
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Proof. By ‖V‖, we shall denote the operator norm of matrix V. Matrices R̃(j) and D̃(j) are defined in
the beginning of Section 3 before the relation (18). Note that

‖RD̃(j)R̃(j)‖ ≤ v−2‖D̃(j)‖. (A45)

It is easy to check that
1
n

n

∑
j=1

E|Rjj − R̃(j)
jj | ≤

1
n

n

∑
j=1

E‖R− R̃(j)‖. (A46)

Using that
R = R̃(j)−RD̃(j)R̃(j), (A47)

we obtain
‖R− R̃(j)‖ ≤ v−2‖D̃(j)‖. (A48)

Futhermore, for any τ > 0, we have

E‖D̃(j)‖ ≤ 1√
an

E max
1≤l≤n,l �=j

{|Xjl |Ajl} ≤ τ +
1

τan

n

∑
l=1

pjlEX2
jlI{|Xjl | > τ

√
an}. (A49)

Summing this inequality in j = 1, . . . , n, we obtain

1
n

n

∑
j=1

E|Rjj − R̃(j)
jj | ≤ v−2(τ +

1
τ

Ln(τ)). (A50)

Since τ is arbitrary, this inequality and condition CX(0) together imply (A44). Thus, Lemma A5 is
proved.

Appendix B.3. The Bounds of 1
n ∑n

j=1 E|ε jν|, for ν = 1, . . . , 7

Lemma A6. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j1| ≤
τ

v
+

1
v

(
max1≤j,k≤n pjkσ2

jk

an

) 1
2

Ln(τ)
1
2 . (A51)

Proof. By definition of ε j1, we may write

ε j1 :=
1
an

∑
l �=k:l �=j,k �=j

[R̃(j,0)]kl Ajk Ajl XjkXjl . (A52)

Applying the Cauchy inequality, we obtain

1
n

n

∑
j=1

E|ε j1| ≤

⎛⎝ 1
n

n

∑
j=1

E|ε j1|2
⎞⎠ 1

2

. (A53)

Simple calculations show that

1
n

n

∑
j=1

E|ε j1| ≤

⎛⎝ 1
na2

n

n

∑
j=1

∑
k �=j

∑
l �=j

E|R̃(j,0)
kl |

2 pjk pjlσ
2
jkσ2

jl

⎞⎠ 1
2

, (A54)

We introduce the following notations

Wj = (|R̃(j.0)
kl |

2)n
k,l=1, Hj = (pj1σ2

j1, . . . , pjnσ2
jn)

T . (A55)

In these notations, we write

1
n

n

∑
j=1

E|ε j1| ≤

⎛⎝ 1
na2

n

n

∑
j=1

H(j)T
W(j)H(j)

⎞⎠ 1
2

.
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Using that
n

∑
l=1
|R̃(j,0)

kl |
2 ≤ 1

v2 , (A56)

we obtain that the spectral norm of matrix W(j) satiesfies the inequality

‖W(j)‖ ≤ 1
v2 , (A57)

and

‖H(j)T
W(j)H(j)‖ ≤ ‖W(j)‖‖H(j)‖2 ≤ 1

v2

n

∑
k=1

p2
jkσ4

jkj. (A58)

Using the last bound, we obtain

1
n

n

∑
j=1

E|ε j1| ≤
1
v

⎛⎝ 1
na2

n

n

∑
j=1

n

∑
k=1

p2
jkσ4

jk

⎞⎠ 1
2

. (A59)

Furthermore, we apply the bound

σ2
jk ≤ τ2an +EX2

jkI{|Xjk| > τ
√

an}. (A60)

We obtain
1
n

n

∑
j=1

E|ε j1| ≤
1
v

(
τ2 +

1
na2

n

n

∑
j=1

n

∑
k=1

p2
jkσ2

jkE|Xjk|2I{|Xjk| > τ
√

an}
) 1

2
. (A61)

We continue as follows

1
n

n

∑
j=1

E|ε j1| ≤
τ

v
+

1
v

(
max1≤j,k≤n pjkσ2

jk

an

) 1
2

Ln(τ)
1
2 .

Thus, Lemma is proved.

Lemma A7. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j2| ≤
1
v

Ln(τ) +
τ

v
. (A62)

Proof. We recall the definition of ε j2,

ε j2 =
1
an

∑
k:k �=j

[R̃(j,0)]kk(Ajk − pjk)X2
jk. (A63)

Using triangle inequality and Cauchy’s inequality, we may write

1
n

n

∑
j=1

E|ε j2| ≤
1

nanv

n

∑
j=1

n

∑
k=1

pjkEX2
jkI{|Xjk| ≥ τ

√
an}

+

⎛⎜⎝ 1
na2

n

n

∑
j=1

E

∣∣∣∣∣∣ ∑
k:k �=j

[R̃(j,0)]kk(Ajk − pjk)X2
jkI{|Xjk| ≥ τ

√
an}

∣∣∣∣∣∣
2
⎞⎟⎠

1
2

. (A64)

Since E[R̃(j,0)]kk(Ajk − pjk)X2
jkI{|Xjk| ≥ τ

√
an} = 0 and random variables Ajk, Xjk are independent

for k = 1, . . . n and independent on [R̃(j,0)]kk, we obtain

1
n

n

∑
j=1

E|ε j2| ≤
1
v

Ln(τ) +
τ

v

⎛⎝ 1
nan

n

∑
j=1

∑
k:k �=j

pjkσ2
jk

⎞⎠ 1
2

=
1
v

Ln(τ) +
τ

v
(A65)

Thus, the lemma is proved.
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Lemma A8. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j3| ≤
3
v

Ln(τ) +
τ

v
. (A66)

Proof. By definition of ε j3, we have

ε j3 =
1
an

∑
k:k �=j

[R̃(j,0)(z)]kk pjk(X2
jk − σ2

jk), (A67)

We may write

1
n

n

∑
j=1

E|ε j3| ≤
1
v

1
nan

n

∑
j=1

n

∑
k=1

pjkE|X2
jk − σ2

jk|I{|Xjk| > τ
√

an}

+
1
n

n

∑
j=1

E

∣∣∣ 1
an

n

∑
k=1

pjkR̃(j,0)
kk (X2

jk − σ2
jk)I{|Xjk| ≤ τ

√
an}
∣∣∣ (A68)

Furthermore,

1
nan

n

∑
j=1

n

∑
k=1

pjkE|X2
jk − σ2

jk|I{|Xjk| > τ
√

an} ≤ Ln(τ)

+
1

nan

n

∑
j=1

n

∑
k=1

pjkσ2
jkEI{|Xjk| > τ

√
an}. (A69)

Using inequality (A60), we obtain

1
nan

n

∑
j=1

n

∑
k=1

pjkσ2
jkEI{|Xjk| > τ

√
an} ≤ Ln(τ)

+
1

nan

n

∑
j=1

n

∑
k=1

pjkE|Xjk|2I{|Xjk| > τ
√

an}EI{|Xjk| > τ
√

an} ≤ 2Ln(τ).

We estimate now the second term in the right-hand side of (A68). Applying triangle inequality,
we obtain

1
n

n

∑
j=1

E

∣∣∣ 1
an

n

∑
k=1

pjkR̃(j,0)
kk (X2

jk − σ2
jk)I{|Xjk| ≤ τ

√
an}
∣∣∣

≤ 1
n

n

∑
j=1

∣∣∣ 1
an

n

∑
k=1

pjkER̃(j,0)
kk E(X2

jk − σ2
jk)I{|Xjk| ≤ τ

√
an}
∣∣∣

+

⎛⎝ 1
n

n

∑
j=1

E

∣∣∣ 1
an

n

∑
k=1

R̃(j,0)
kk (X2

jkI{|Xjk| ≤ τ
√

an} −EX2
jkI{|Xjk| ≤ τ

√
an})

∣∣∣2
⎞⎠ 1

2

. (A70)

Simple calculations show that

1
n

n

∑
j=1

E

∣∣∣ 1
an

n

∑
k=1

R̃(j,0)
kk (X2

jkI{|Xjk| ≤ τ
√

an} −EX2
jkI{|Xjk| ≤ τ

√
an})

∣∣∣2
≤ 1

v2na2
n

n

∑
j=1

n

∑
k=1

p2
jkE|Xjk|4I{|Xjk| ≤ τ

√
an}

≤ τ2

v2
1

nan

n

∑
j=1

n

∑
k=1

pjkσ2
jk =

τ2

v2 . (A71)

Finally, we note that

E(X2
jk − σ2

jk)I{|Xjk| ≤ τ
√

an} = E(X2
jk − σ2

jk)I{|Xjk| > τ
√

an}. (A72)
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Combining inequalities (A68), (A70), (A71), we obtain the result of the lemma. Thus, the lemma is
proved.

Lemma A9. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j4| ≤
1

vnan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
1
n

n

∑
l=1

pjlσ
2
jl |. (A73)

Proof. By definition of ε j4, we have

ε j4 =
1
an

∑
k:k �=j

R̃(j,0)
kk
(

pjkσ2
jk −

1
n

n

∑
l=1

pjlσ
2
jl
)
. (A74)

Using that |R̃(j,0)
kk | ≤ 1

v , we obtain

1
n

n

∑
j=1

E|ε j4| ≤
1

vnan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
1
n

n

∑
l=1

pjlσ
2
jl |. (A75)

Lemma A10. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j5| ≤
1

vn

n

∑
j=1

∣∣∣ 1
an

n

∑
l=1

pjlσ
2
jl − 1

∣∣∣. (A76)

Proof. Recall that

ε j5 =
1
n ∑

k:k �=j
R̃(j,0)

kk
( 1

an

n

∑
l=1

pjlσ
2
jl − 1

)
. (A77)

Using that |R̃(j,0)
kk | ≤ v−1, we obtain

1
n

n

∑
j=1

E|ε j5| ≤
1

vn

n

∑
j=1

∣∣∣ 1
an

n

∑
l=1

pjlσ
2
jl − 1

∣∣∣. (A78)

Thus, the lemma is proved.

Lemma A11. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε j6| ≤
τ

v2 +
1

nv2τ
Ln(τ). (A79)

Proof. By definition of ε j6, we have

ε j6 =
1
n ∑

k:k �=j
[R̃(j,0)]kk −

1
n

n

∑
k=1

[R]kk. (A80)

By the triangle inequality, we obtain

1
n

n

∑
j=1

E|ε j6| ≤
1
n

n

∑
j=1

E| 1
n

TrR̃(j,0) − 1
n

TrR̃(j)|+ 1
n

n

∑
j=1

E| 1
n

TrR̃(j) − TrR|. (A81)

By the overlapping theorem, we have

| 1
n

TrR̃(j,0) − 1
n

TrR̃(j)| ≤ 1
nv

. (A82)

It remains to estimate the second term in the r.h.s. of (A81). Note that

R̃(j) − R = R̃(j)D(j)R. (A83)
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This equality implies that

TrR̃(j) − TrR =
1√
an

n

∑
l=1

n

∑
k=1

Rkl AjkXjkR̃(j)
lk . (A84)

Summing this equality in j, we obtain

1
n

n

∑
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E| 1
n

TrR̃(j) − 1
n

TrR| ≤ 1
n2√an

n

∑
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E|
n

∑
l=1

n

∑
k=1

Rkl AjkXjkR̃(j)
lk |. (A85)

Using that
n

∑
l=1
|Rkl R̃

(j)
kl | ≤

1
v2 , (A86)

we obtain

1
n

n

∑
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E| 1
n
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n

TrR| ≤ 1
v2n2√an

n

∑
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n

∑
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pjkE|Xjk|I{|Xjk| ≤ τ
√

an}

+
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n2v2anτ
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n

∑
k=1

pjkEX2
jkI{|Xjk| > τ

√
an} ≤

τ

v2 +
1

nv2τ
Ln(τ). (A87)

Thus, the lemma is proved.

Appendix C. Unweigthed Graphs

Appendix C.1. Convergence of Diagonal Entries Distribution Functions of Laplace Matrices to the
Normal Law

We denote by F̂n(x) the distribution function of random variable ζ̂J and

Δ̂n := sup
x
|F̂n(x)−Φ(x)|. (A88)

Lemma A12. Under the conditions of Theorem 2, we have

lim
n→∞

sup
x
|F̂n(x)−Φ(x)| = 0. (A89)

Proof. We consider the characteristic function of ζ̂J, f̂n(t) = 1
n ∑n

j=1 E exp{itζ̂ j}. Introduce the
following set of indices

M̂ =:=
{

j ∈ {1, . . . , n} :
1
ân

n

∑
k=1
|pjk(1− pjk)−

ân

n
| ≤ 1

16

}
. (A90)

We denote by Ac a complement set of A and by |A|, we denote the cardinality of set A. Note that,
by condition CP(1),

|M̂c|
n
≤ 16

1
nan

n

∑
j=1

n

∑
k=1
|pjkσ2

jk −
an

n
| → 0, as n→ ∞. (A91)

Note that, by independence of Ajk,

f̂nj(t) := E exp{ it√
ân

ζ̂ j} =
n

∏
k=1

E exp{ it√
ân

(Ajk − pjk)} =:
n

∏
k=1

f̂njk(t)

Applying the Taylor formula, we may write

f̂njk(t) = 1−
t2 pjk(1− pjk)

2ân
+ θ(t)

|t|3

6â
3
2
n

pjk(1− pjk), (A92)

where θ(t) denotes some function such that |θ(t)| ≤ 1.
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Using this equality, we may write

ln f̂njk(t) =−
t2

2ân
pjk(1− pjk) + θ1(t)

τ|t|3

6â
3
2
n

pjk(1− pjk)

+ θ2(t)
t4 p2

jk(1− pjk)
2

â2
n

+ θ3(t)
t6 p2

jk(1− pjk)
2

â3
n

. (A93)

Summing this equality by k = 1 . . . , n, we obtain

ln f̂nj(t) =−
t2

2
− t2

2
1
ân

n

∑
k=1

(pjk(1− pjk)−
ân

n
) + θ1(t)

|t|3

6â
3
2
n

n

∑
k=1

pjk(1− pjk)

+ θ2(t)
t4

â2
n

n

∑
k=1

p2
jk(1− pjk)

2 + θ3(t)
t6

â3
n

n

∑
k=1

p2
jk(1− pjk)

2. (A94)

Note that for j ∈ M̂,
1
an

n

∑
k=1

pjk(1− pjk) ≤
17
16

, for j ∈ M̂, (A95)

and

lim
n→∞

|M̂c|
n

= 0. (A96)

Similar to (A42), we may write

| f̂n(t)− exp{− t2

2
}| ≤2|M̂c|

n
+

t2

2
1

nân

n

∑
j=1

n

∑
k=1
|pjk(1− pjk)−

ân

n
|

+
C|t|3√

ân
+

Ct4

ân
+

C|t|6
â2

n
(A97)

This inequality implies that

lim
n→∞

f̂n(t) = exp{− t2

2
}. (A98)

Thus, Lemma A12 is proved.

In what follows, we shall assume that z = u + iv is fixed.

Appendix C.2. The Bounds of 1
n ∑n

j=1 E|ε̂ jν|, for ν = 1, . . . , 5

Lemma A13. Under conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j1| ≤
(

1
4anv2

) 1
2

. (A99)

Proof. By definition of ε j1 we may write

ε̂ j1 :=
1
ân

∑
l �=k:l �=j,k �=j

[R̂(j,0)]kl(Ajk − pjk)(Ajl − pjl). (A100)

Applying the Cauchy inequality, we obtain

1
n

n

∑
j=1

E|ε j1| ≤

⎛⎝ 1
n

n

∑
j=1

E|ε j1|2
⎞⎠ 1

2

. (A101)
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Simple calculations show that

1
n

n

∑
j=1

E|ε̂ j1| ≤

⎛⎝ 1
na2

n

n

∑
j=1

∑
k �=j

∑
l �=j

E|R̂(j,0)
kl |

2 pjk pjl(1− pjk)(1− pjl)

⎞⎠ 1
2

≤

⎛⎝ 1
4na2

n

n

∑
j=1

∑
k �=j

∑
l �=j

E|R̂(j,0)
kl |

2 pjk(1− pjk)

⎞⎠ 1
2

≤

⎛⎝ 1
4na2

nv2

n

∑
j=1

∑
k �=j

pjk(1− pjk)

⎞⎠ 1
2

≤
(

1
4anv2

) 1
2

. (A102)

Thus, Lemma A13 is proved.

Lemma A14. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j2| ≤
1√
ânv

. (A103)

Proof. We recall the definition of ε̂ j2,

ε̂ j2 =
1
ân

∑
k:k �=j

[R̂(j,0)]kk((Ajk − pjk)
2 − pjk(1− pjk)). (A104)

Using the triangle inequality and the Cauchy inequality, we may write

1
n

n

∑
j=1

E|ε̂ j2| ≤

⎛⎝ 1
nâ2

n

n

∑
j=1

n

∑
k=1

E|R̂(j,0)
kk |

2 pjk(1− pjk)(1− 2pjk)
2

⎞⎠ 1
2

≤

⎛⎝ 1
ânv2

1
nân

n

∑
j=1

n

∑
k=1

pjk(1− pjk)

⎞⎠ 1
2

=

(
1

ânv2

) 1
2

. (A105)

Thus, Lemma A14 is proved.

Lemma A15. Under conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j3| ≤
1
v

1
nan

n

∑
j=1

n

∑
k=1
|pjk(1− pjk)−

ân

n
|. (A106)

Proof. By definition of ε̂ j3, we have

ε̂ j3 =
1
an

∑
k:k �=j

[R̂(j,0)]kk(pjk(1− pjk)−
ân

n
). (A107)

We may write

1
n

n

∑
j=1

E|ε̂ j3| ≤
1
v

1
nân

n

∑
j=1

n

∑
k=1
|pjk(1− pjk)−

ân

n
|. (A108)

Thus, Lemma A15 is proved.

Lemma A16. Under the conditions of Theorem 1, we have

1
n

n

∑
j=1

E|ε̂ j4| ≤
1

v2
√

ân
. (A109)
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Proof. Recall that

ε̂ j4 =
1
n ∑

k:k �=j
R̂(j,0)

kk − 1
n

n

∑
k=1

R̂kk. (A110)

Note that
| 1
n

TrR̂(j) − 1
n

TrR̂(j,0)| ≤ 1
nv

. (A111)

Furthermore,
R̂− R̂(j) = R̂D̂(j)R̂(j). (A112)

Recall that ‖A‖ denotes the operator norm of matrix A. The last equality and inequality
max{‖R̂‖, ‖R̂(j)‖} ≤ v−1 implies that

| 1
n

Tr(R̂− R̂(j))| ≤ ‖R̂− R̂(j)‖ ≤ ‖R̂‖‖D̂(j)‖‖R̂(j)‖ ≤ v−2‖D̂(j)‖. (A113)

Note that
E‖D̂(j)‖ ≤ 1√

ân
E max

1≤k≤n
|Ajk − pjk| ≤

1√
ân

. (A114)

Combining the last two inequalities, we obtain the claim. Thus, Lemma A16 is proved.

Appendix C.3. Variance of 1
n TrR̂

In this section, we estimate the variance of mn(z) = 1
n TrR̂, where R̂ = R̂(z) = (L̂− zI)−1. We

prove the following lemma.

Lemma A17. For any v > 0 and z = u + iv, the following inequality holds

lim
n→∞

E| 1
n

TrR̂−E
1
n

TrR̂| = 0. (A115)

Proof. The proof of this lemma is similar to the proof of Lemma A2. We introduce the sequence of
σ-algebras Mk generated by random variables Aj,l for 1 ≤ j, l ≤ k. It is easy to see that Mk ⊂Mk+1.
Denote by Ek the conditional expectation with respect to σ-algebra Mk. For k = 0, E0 = E. Introduce
random variables

γ̂k := Ek(
1
n

TrR̂)−Ek−1(
1
n

TrR̂). (A116)

The sequence of γ̂k, for k = 1, . . . , n is a martingale difference and

1
n

TrR̂−E
1
n

TrR̂ =
n

∑
k=1

γ̂k.

Furthermore, introduce the sub-matrices L̂(k) obtained from L̂ by replacing the diagonal entries with

L̂(k)
ll := 1√

an
∑l:l �=k,l �=j(Ajl − pjl). Denote by R̂(k)(z) the corresponding resolvent matrix, R̂(k)(z) =

(L̂(k) − zIn−1)
−1. We introduce the matrix L̂(k,0) obtained from L̂(k) by deleting both the k-th row

and k-th column. The corresponding resolvent matrix we denote via R̂(k,0). We have now

EkTrR̂(k,0) = Ek−1R̂(k,0).

This allows us to write

γ̂k =Ek(
1
n
(TrR̂− TrR̂(k)))−Ek−1(

1
n
(TrR̂− TrR̂(k)))

+Ek(
1
n
(TrR̂(k) − TrR̂(k,0)))−Ek−1(

1
n
(TrR̂(k) − TrR̂(k,0))) =: γ̂

(1)
k + γ̂

(2)
k .

By the overlapping theorem ∣∣∣∣ 1n TrR̂(k) − 1
n

TrR̂(k,0)
∣∣∣∣ ≤ 1

nv
. (A117)

From here, we immediately obtain

|γ̂(2)
k | ≤

2
nv

,
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and
n

∑
k=1

E|γ̂(2)
k |

2 ≤ 4
nv2 . (A118)

To complete the proof, it remains to show that

lim
n→∞

n

∑
k=1

E|γ̂(1)
k |

2 = 0. (A119)

Note that
E|γ̂(1)

k |
2 ≤ 2E| 1

n
TrR̂− 1

n
TrR̂(k)|2. (A120)

Introduce the diagonal matrix D̂(k) with diagonal entries

D̂(k)
ll =

1√
an

(Akl − pkl), l �= k.

In these notations, we have

1
n

TrR̂− 1
n

TrR̂(k) = − 1
n

TrR̂D̂(k)R̂(k) = − 1
n
√

ân
∑

l �=k,j �=k
R̂(k)

l j (Akl − pkl)R̂(k)
jl . (A121)

This implies that
n

∑
k=1

E|γ̂(1)
k |

2 ≤ 4
n2 ân

n

∑
k=1

E|∑
j �=k

(Akj − pkj)
(

∑
l �=k

R̂lj R̂
(k)
jl
)
|2. (A122)

We continue this inequality as follows

n

∑
k=1

E|γ̂(1)
k |

2 ≤ 8
n2 ân

n

∑
k=1

E

∣∣∣∑
j �=k

(Akj − pkj)
(

∑
l �=k

R(k)
l j R̂(k)

jl
)∣∣∣2

≤ 8
n2v4 ân

n

∑
k=1

∑
j �=k

pjk(1− pjk) ≤
8

nv2 . (A123)

Inequalities (A118) and (A123) completed the proof. Thus, Lemma A17 is proved.
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Abstract: This article completes our studies on the formal construction of asymptotic approximations
for statistics based on a random number of observations. Second order Chebyshev–Edgeworth ex-
pansions of asymptotically normally or chi-squared distributed statistics from samples with negative
binomial or Pareto-like distributed random sample sizes are obtained. The results can have applica-
tions for a wide spectrum of asymptotically normally or chi-square distributed statistics. Random,
non-random, and mixed scaling factors for each of the studied statistics produce three different limit
distributions. In addition to the expected normal or chi-squared distributions, Student’s t-, Laplace,
Fisher, gamma, and weighted sums of generalized gamma distributions also occur.

Keywords: second order Chebyshev–Edgeworth expansions; negative binomially distributed sample
sizes; Pareto-like distributed sample sizes; asymptotically normally distributed statistics; asymptotically
chi-square distributed statistics; scaled Student’s t-distribution; normal distribution; discrete Pareto
distribution; generalized Laplace distribution; weighted sums of generalized gamma distributions

MSC: 62E17; 62H10; 60E05

1. Introduction

To improve the convergence properties of sums of independent identically distributed
random variables in the Central Limit Theorem, asymptotic expansions of distribution
functions of normalized sums were considered. The history of asymptotic expansions
in nonparametric statistics is presented in detail in Wallace [1], Bickel [2], and Hall [3],
among others. Chebyshev–Edgeworth expansions, with which we are concerned here,
are presented in great detail in Bhattacharya and Rao [4] for random vectors and in
Petrov [5] for one-dimensional random variables. For instance, in Pfanzagl [6] and Bentkus
et al. [7], the authors emphasize that asymptotic expansions can provide more effective
approximations for asymptotic studies in statistical theory. Second order approximations
of distribution functions of sums of random variables are of great importance because
they take into account the skewness and kurtosis of the random variable in addition to the
expected value and the variance, as in the Central Limit Theorem. In Burnashev [8], second
order expansions are proved for the asymptotically normally distributed sample median
Mm on a sample of size m and its MSE. Based on this, for a Laplace population with density
e−|x|/2, the actual MSE with exact data is compared numerically with approximations
data. For the normal approximation, the influence of the remaining term is below 10%
only for m > 250, while for the approximation with the second order expansion, the
influence of the remaining term is below 10% already from m = 8. For a Cauchy population
with smooth and heavy tailed density 1/(π (1 + x2)), for the normal approximation, the
influence of the remaining term is below 10% for m ≥ 23, while for the approximation
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with the second order expansion, the influence of the remaining term is below 10% already
from m = 11. Consequently, as Burnashev [8] pointed out, asymptotic expansions can
significantly improve the exactness of statistical conclusions, even in the case of a small
number of observations. The results in the abovementioned papers are based on non-
random sample sizes or non-random number of observations.

When planning statistical studies, situations often arise where the sample sizes are
unknown in advance and they are modeled as realizations of random variables. Many
models from medicine, finance, risk theory, physics, and reliability lead to samples with
random dimensions. For instance, in the papers by Nunes et al. [9,10,11], different models
in medical research random size samples were investigated in order to prevent false
conclusions. In Esquível et al. [12], the authors give an informative overview of statistical
inference with a random number of observations and some applications. Results for
mean and variance for normally distributed samples, calculation of quantiles, and interval
estimates with random sample size were also proved. Döbler [13] gives a detailed review
of the literature on random sums as well as recent results on approximation in various
metrics. In Schluter and Trede [14] (Theorem 1, Proposition 1), the authors show, using
the convergence of a negative binomial random sum, that the growth rate of cities is
Student t-distributed with 2 degrees of freedom. Their empirical investigations verify the
result. The references in the above-cited papers provide further applications for random
dimension sampling.

Bening et al. [15,16] proved convergence rates and asymptotic expansions for distri-
butions of statistics TNn based on samples with random dimension Nn ≥ 1. Here, Tm is a
statistic based on a non-random number m ≥ 1 of independent observations. The random
variables size Nn ≥ 1 form a sequence of integer random sample sizes that depends on
a natural parameter n with Nn → ∞ in probability for n → ∞. Inequalities with a con-
vergence rate are assumed for the approximations of the distribution functions of both
the normalized statistics Tm and the normalized random sample sizes Nn. As examples,
convergence rates and first order asymptotic expansions are derived for the statistics TNn ,
where Tm is an asymptotically normal statistic and the random sample size Nn is either
negatively binomial or Pareto-like distributed.

In Christoph et al. [17], inequalities for the second order approximations of the distri-
bution functions of normalized negative binomial and Pareto-like sample sizes were proved.
Consequently, second order Chebyshev–Edgeworth approximations and the correspond-
ing Cornish–Fisher expansions could be obtained for the distribution of the normalized
arithmetic mean of a sample with normalized negative binomial or Pareto-like sample sizes
where the remainders are of order n−3/2.

The present work provides a supplement to our paper, Christoph and Ulyanov [18],
where we have developed a formal second order design for asymptotic Chebyshev–
Edgeworth approximations. We considered asymptotically normal statistics with sample
size having negative binomial distribution as well as asymptotically chi-squared statistics
with Pareto-like distributed sample sizes. In addition to the distributions of statistic Tm
and random sample size Nn, three scaling factors for TNn are also introduced, leading
to different expansions. It is the first paper to consider approximations for asymptotic
chi-square statistics based on random sample sizes. Some more applications of random
sample size sampling were also mentioned.

In the present paper, we provide similar results for asymptotically normal statistics
of samples with Pareto-like distributed sample sizes and for asymptotically chi-squared
statistics with sample size having negative binomial distribution.

For better reader convenience, we list in Section 2 some notations, conditions, and
statements that were also used in Christoph and Ulyanov [18]. Section 3 states the necessary
approximations for the statistics Tm and the sample sizes Nn. The dependence of the
limit distributions of the scaled statistic TNn on the distributions of the statistic Tm and
the sample size Nn, as well as the scaling factors, is discussed in Section 4. Section 5
then presents the main results. As examples, we consider the same statistic Tm as in
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Christoph and Ulyanov [18] (Corollaries 1 and 2), but with changed sample sizes. Section 6
provides the proofs of the main results, leaving three auxiliary lemmas to Appendix A.
Conclusions are presented in Section 7.

2. Notation and Preliminaries

Let (Ω,A,P) be a probability space on which all occurring random variables are given.
Set positive numbers, real axis, integer part [y] of real y, and indicator function

as follows:

N+ = {1, 2, ...}, R = (−∞ , ∞), y− 1 < [y] ≤ y and IA = IA(x) =

{
1, x ∈ A ⊂ R

0, x /∈ A ⊂ R
.

Let X1, X2, X3 . . . ∈ R be independent identically distributed random variables. Define
the statistic

Tm := Tm(X1, . . . , Xm) with m ∈ N+,

based on the random sample {X1, X2, . . . , Xm} with a non-random sample size m ∈ N+.
Consider the sequence of discrete random variables N1, N2, . . ., depending on an

integer parameter n ≥ 1. This integer Nn ≥ 1 indicates the random dimension of the
observations X1, . . . , XNn . Let us assume that the sample size Nn does not depend on
X1, X2, X3 . . ., where Nn → ∞ in probability when n → ∞. Define for each n ∈ N+ the
statistic TNn obtained from a random sample {X1, X2, . . . , XNn} by

TNn(ω) := TNn(ω)

(
X1(ω), X2(ω), . . . , XNn(ω)(ω)

)
for each ω ∈ Ω. (1)

It follows from Esquível et al. [12] (Theorem 2.1.1) that the statistic TNn is well-defined
in (1).

Since we want to prove second order approximations for the statistic TNn in form
of inequalities, we need the corresponding assumptions for the statistic Tm and for the
random sample size Nn as well.

For the statistic Tm with ETm = 0 and the random sample sizes Nn ∈ N+ we sup-
pose conditions on the structure of the approximating functions as well as on the conver-
gence rate:

Assumption 1. There are a distribution function F(x), bounded functions f1(x), f2(x) which are
differentiable for all x �= 0, γ ∈ {−1,−1/2, 0, 1/2, 1}, a > 1/2 as well as 0 < C1 < ∞ such that

supx

∣∣∣P(mγTm ≤ x
)
− F(x)−m−1/2 f1(x)− Ia>1(a)m−1 f2(x)

∣∣∣ ≤ C1 m−a, m ≤ 1. (2)

Assumption 2. There exists a distribution function H(y) with H(0+) = 0, a bounded variation
function h2(y), a sequence of numbers 0 < gn ↑ ∞, b > 0, and 0 < C2 < ∞ such that for n ∈ N+

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)

∣∣ ≤ C2n−b, for 0 < b ≤ 1,

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)− n−1h2(y)

∣∣ ≤ C2n−b, for b > 1.

⎫⎬⎭ (3)

Remark 1. Assumptions 1 and 2 require inequalities for the approximations of Tm and Nn for
all m, n ∈ N+, leading to inequalities for the approximations of TNn . See also Remark 5 below on
Poisson and binomial random variables Nn. For these sample sizes, we are so far only aware of
estimates of the remaining terms with small-o or large-O convergence rates. About the differences
between inequalities and O order bounds, see, e.g., Fujikoshi and Ulyanov [19] (Chapter 1).

Remark 2. In Bening et al. [16], these conditions are formulated more generally. Assumption 1
requires the existence of f1,. . . , fl with a > l/2 and Assumption 2 that of h1,. . . ,hk with b > k/2.
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We restrict ourselves here, as in Christoph and Ulyanov [18], to the required approximation
functions.

Assumptions 1 and 2 lead to the approximations for the distribution functions of
statistics TNn :

Proposition 1. (Christoph and Ulyanov [18], Proposition 1) Let γ ∈ {−1,−1/2, 0, 1/2, 1}.
The statistic Tm and the sample size Nn are supposed to satisfy Assumptions 1 and 2, respectively.
Then,

supx∈R
∣∣∣P(gγ

n TNn ≤ x
)
− Gn(x, 1/gn)

∣∣∣ ≤ C1 E
(

N−a
n
)
+ (C3Dn + C4) n−b, (4)

where a > 0, b > 0 are the convergence rates in (2) and (3),

Gn(x, 1/gn) =
∫ ∞

1/gn

(
F(x yγ) +

f1(xyγ)√
gny

+
f2(xyγ)

gny

)
d
(

H(y) +
h2(y)

n

)
, (5)

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
F(xyγ) +

f1(xyγ)√
gny

+
f2(xyγ)

ygn

)∣∣∣∣dy, (6)

and f1(z), f2(z), h2(y) are given in (2) and (3). The constants C1, C3, C4 do not depend on n.

Bening et al. [16] proved general transfer theorems under the conditions indicated in
Remark 2 only for case γ ≥ 0. Therefore, the proof is repeated in Christoph and Ulyanov [20]
(Appendix A.1).

3. Second Order Estimates for Both the Statistics Tm and the Sample Sizes Nn

First we consider the following statistics Tm with non-random sample size m and
ETm = 0 with the corresponding second order approximations. Let the asymptotically
normal statistic Tm satisfy the following inequality:∣∣∣P(√mTm ≤ x)−Φ(x)−

(
m−1/2(p0 + p2x2) + m−1(p1x + p3x3 + p5x5)Ia>1(a)

)
ϕ(x)

∣∣∣ ≤ C m−a (7)

with a > 0 and Φ(x) refers to the standard normal distribution function with density
function ϕ(y):

Φ(x) =
∫ x

−∞
ϕ(y)dy, x ∈ R, and ϕ(y) =

1√
2π

e−y2/2, y ∈ R.

Asymptotically chi-squared distributed statistics Tm satisfy the following inequality:∣∣∣P(mTm ≤ x)− Gd(x)−m−1(q1x + q2x2)gd(x)
∣∣∣ ≤ C m−2 , (8)

where Gd(x), d ∈ N+, denotes the chi-squared distribution function with d degrees of
freedom and the density function gd(y):

gd(y) =
1

2d/2 Γ(d/2)
y(d−2)/2 e−y/2, y > 0, and Gd(x) = P(χ2

d ≤ x) =
∫ x

0
gd(y)dy, x > 0.

In Christoph and Ulyanov [18] (Sections 3.1 and 3.2), some examples of such statistics Tm
are given that satisfy (7) or (8) and consequently, Assumption 1.

As already announced, we consider the following random sample sizes Nn with the
corresponding second order approximations.

The Pareto-like random sample sizes Nn(s) are defined as follows:
Let Yj(s) ∈ N+, j = 1, 2, . . . be independent discrete Pareto II random variables with

parameter s > 0, which are discretized from continuous Lomax (Pareto II) random variables
on N+, for a review, see, e.g., Buddana and Kozubowski [21]. For s > 0, there are defined
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P
(
Yj(s) ≤ k

)
=

k
s + k

, Nn(s) = max
1≤j≤n

Yj(s) and P(Nn(s) ≤ k) =
(

k
s + k

)n
, n, k ∈ N+. (9)

Proposition 2. (Christoph and Ulyanov [18], Proposition 4) Let Nn(s) be the discrete Pareto-
like random variable whose distribution function is given in (9); then, for all integers n ≥ 1 and
fixed positive s > 0, we have

supy>0

∣∣∣∣P(Nn(s)
n
≤ y
)
−Ws(y)−

h2;s(y)
n

∣∣∣∣ ≤ C2(s)
n2 (10)

Ws(y) = e−s/y y > 0, h2;s(y) =
s e−s/y

2 y2

(
s− 1 + 2Q1(n y)), y > 0, (11)

with jump correcting function Q1(y) = 1/2− (y− [y]) and C2(s) > 0 does not depend on n.
Furthermore,

E
(

Nn(s)
)−a ≤ C(a, s) n−min{a,2}, (12)

with optimal bound in (12) for 0 < a ≤ 2 , where a is the convergence rate in (7).

Remark 3. The inverse exponential random variable W(s) with distribution function Hs(y) =
P(W(s) ≤ y) = e−s/yI(0 , ∞)(y) and rate parameter s > 0 is “heavy tailed” with shape parameter 1
as is P(Nn(s) ≤ y). Thus, the expected values of these two random variables do not exist.

Suppose the positive integer Nn(r) has a (shifted by 1) negative binomial distribution
with probability of success 1/n, n ∈ N+, parameter r > 0, probabilities

P(Nn(r) = j) =
Γ(j + r− 1)

Γ(j) Γ(r)

(
1
n

)r(
1− 1

n

)j−1
, j ∈ N+ and gn = E(Nn(r)) = r (n− 1) + 1. (13)

In statistical studies, for counting models, the negative binomial and Poisson distributions
are the two most important ones. In Schluter and Trede [14] (Section 2.1), the authors
emphasize that the negative binomial distribution with its two parameters can typically
observe over-dispersion in count data, while this is not the case with the one-parameter
Poisson distribution. They proved in a more general framework

limn→∞ supy|P(Nn(r)/gn ≤ y)− Gr,r(y)| = 0, (14)

while Gr,r(y) denotes the gamma distribution that has identical scale and shape parameters
r > 0, whose density is

gr,r(y) =
rr

Γ(r)
yr−1e−ry

I(0 , ∞)(y), y ∈ R.

In Bening and Korolev [22] (Lemma 2.2), the result (14) was also obtained.

Proposition 3. (Christoph and Ulyanov [18], Proposition 3) Let r > 0. The discrete random
variable Nn(r) has probabilities and expected value gn given in (13). Then, for all n ∈ N+:

supy≥0

∣∣∣∣P(Nn(r)
gn

≤ y
)
− Gr,r(y)−

h2;r(y)
n

∣∣∣∣ ≤ C2(r) n−min{r,2}, (15)

where C2(r) > 0 does not depend on n and with the jump correcting function Q1(y) = 1/2−
(y− [y]),

h2;r(y) =

{
0, f or r ≤ 1,
gr,r(y)

2 r

(
(y− 1)(2− r) + 2Q1(gn y)

)
, f or r > 1.

(16)
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Moreover, negative moments E(Nn(r))−a satisfy the estimation for all r > 0, α > 0

E
(

Nn(r)
)−α ≤ C(r)

{
n−min{r, α}, r �= α
ln(n) n−α, r = α

(17)

and the convergence rate in case r = α cannot be improved.

Remark 4. Second order Chebyshev–Edgeworth expansions (10) and (15) with r > 1 were first
proved in Christoph et al. [17] (Theorems 4 and 1). Approximations in (10) and (15) with remainder
estimations Cs/n or Cr n−min{r,1} are given, e.g., in Bening et al. [16] and Gavrilenko et al. [23].
In Christoph et al. [24] (Corollaries 5.4 and 6.5), leading terms for the negative moments of Nn(r)
and Nn(s) are derived that lead to (17) and (12).

Remark 5. The negative binomial distribution belongs to the class of Panjer distributions, which
also includes the Poisson and binomial distributions. Samples with binomial or Poisson distributed
sample sizes were studied among others in the above-cited papers [9–12]. Convergence rate bounds
for statistics based on such samples are given in Döbler [13], Korolev [25], Bulinski and Slepov [26].
Döbler [13], Korolev and Shevtsova [27], Sunklodas [28] obtained Berry–Esseen bounds for sums
based on samples with binomial and Poisson sample sizes. To the best of the authors’ knowledge,
Chebyshev–Edgeworth expansions for these lattice distributed random variables have only been
proven so far with bounds of small-o or large-O rates, see, e.g., Petrov [29] (Chapter 6, Theorem 6)
or Kolassa and McCullagh [30]. Therefore, inequality (3) in Assumption 2 is not fulfilled.

4. Limit Distributions of Statistics with Random Size Samples using Different
Scaling Factors

We now consider the statistics Tm and the sample sizes Nn, which are supposed to
satisfy the inequalities (2) and (3) in Assumptions 1 and 2, respectively. Let us investigate
the scaled statistics gγ

n Nγ∗−γ
n TNn with the sequence gn ↑ ∞ as n→ ∞. We analyze the two

cases Φ and Gu as limiting distributions F in Assumption 1 with respect to the exponents
γ∗ and γ: If F = Φ, then γ∗ = 1/2 and γ ∈ {−1/2, 0, 1/2}, while if F = Gu, then γ∗ = 1
and γ ∈ {−1, 0, 1}. Then, conditioning on Nn and using (2) and (3), we have

P

(
gγ

n Nγ∗−γ
n TNn ≤ x

)
=P

(
Nγ∗

n TNn ≤ x (Nn/gn)
γ
)

=
∞

∑
m=1

P

(
mγ∗Tm ≤ x(m/gn)

γ
)
P(Nn = m)

(2)
≈ E

(
F(x(Nn/gn)

γ)
)
=
∫ ∞

1/gn
F(xyγ)dP(Nn/gn ≤ y)

(3)
≈
∫ ∞

1/gn
F(xyγ)dH(y). (18)

Consequently, the limit distribution of the scaled statistic gγ
n Nγ∗−γ

n TNn is a scale mixture of

underlying F with mixing distribution H: P
(

gγ
n Nγ∗−γ

n TNn ≤ x
)
→
∫ ∞

0 F(xyγ)dH(y), as
n→ ∞. Refer to, e.g., Choy and Chan [31], Fujikoshi et al. [32] (Chapter 13), and Fujikoshi
and Ulyanov [19] (Chapter 2) and the references therein.

The limiting distributions
∫ ∞

1/gn
F(xyγ)dH(y) therefore only arise from the leading

distributions F(x) and H(y) in the inequalities (2) and (3) and also depend on the parame-
ter γ.

In Christoph and Ulyanov [18] (Sections 5 and 6), the cases F(x) = Φ(x) with H(y) =
Gr,r(y) as well as F(x) = Gu(x) with H(y) = Ws(y) were considered. Now, we interchange
the distributions of random sample sizes Nn. We first study the limiting distributions of
asymptotically normally distributed statistics with Pareto-like distributed sample sizes
Nn(s) and also asymptotically chi-squared distributed statistics with negative binomial

distributed sample sizes Nn(r). Since Ws(1/n) = e−s n and Gr,r(1/gn) ≤ rr−1

Γ(r) g−r
n hold,

the integral range in the last integral in (18) can be extended from (1/gn, ∞) to (0, ∞) for
further investigations.
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4.1. The Case F(x) = Φ(x) and H(y) = Ws(y)

In Christoph and Ulyanov [20,33], asymptotically normally distributed statistics Tm
for samples of m-dimensional normally distributed vectors were considered: correlation
coefficient as well as the three geometric features: the length of a vector, the distance, and
the angle between two vectors. Inequalities for second order approximations for statistic Tm
are derived when the dimension m is replaced by Pareto-like distributed random dimension
Nn(s). For the median of a sample with random sample size Nn(s) analogous results are
shown in Christoph et al. [24] (Section 6). All these asymptotically normally distributed
statistics TNn(s) with Pareto-like random dimensions or sample sizes have the same limiting
distribution.

Let γ ∈ {1/2, 0, −1/2}. Since ENn(s) = ∞, we choose as gn = n. Then, the limit
laws for

P

(
nγNn(s)1/2−γTNn(s) ≤ x

)
are Vγ(x, s) =

∫ ∞

0
Φ(x yγ)dHs(y) =

∫ ∞

0
Φ(x yγ)

s
y2 e− s ydy.

with corresponding densities

vγ(x, s) =
s√
2 π

∫ ∞

0
yγ−2e−(x2 y2 γ/2+s/y)dy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
l1/
√

s(x) =

√
2 s
2 e−

√
2 s|x|, γ = 1

2 ,

ϕ(x) = 1√
2 π

e−x2/2, γ = 0,

s∗2(x;
√

s) = 1
2
√

2 s

(
1 + x2

2 s

)−3/2
, γ = −1

2 ,

. (19)

Therefore, the limit distributions Vγ(x, s) are the Laplace law L1/
√

s(x) with density l1/
√

s(x)
and scale parameter λ = 1/

√
s for γ = 1/2, the standard normal law Φ(x) and density ϕ(x)

for γ = 0 and for γ = −1/2 the scaled Student’s t-distribution S∗2(x;
√

s) with 2 degrees of
freedom and density s∗2(x;

√
s). These mixed scale distributions Vγ(x, s) are discussed in

more detail in Christoph and Ulyanov [20] (Section 4.2).

4.2. The Case F(x) = Gd(x) and H(y) = Gr,r(y)

Asymptotically chi-squared distributed statistics of samples with random sample size
were considered for the first time in Christoph and Ulyanov [18] in case of H(y) = Ws(y) =
e−s/y, y > 0.

Now, negatively binomial distributed sample sizes Nn(r) are considered. With γ ∈
{1, 0, −1} and gn = ENn(r) = r(n− 1) + 1, the limit distributions for

P

(
gγ

n Nn(r)1−γTNn(r) ≤ x
)

are Vγ(x; d, r) =
∫ ∞

0
Gd(x yγ)dGr,r(y) =

∫ ∞

0
Gd(x yγ)

rr

Γ(r)
yr−1 e− r ydy.

The corresponding densities are

vγ(x; d, r) =
rr xd/2−1

Γ(r) 2d/2 Γ(d/2)

∫ ∞

0
yr+γ d/2−1 e−(x yγ/2+r y)dy

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f ∗(x; d, 2 r) =

Γ(d/2 + r) xd/2−1

Γ(d/2) Γ(r) 2d/2 rd/2

(
1 + x

2r

)−(d+2 r)/2
, γ = 1,

gd(x) = 1
2d/2 Γ(d/2)

xd/2−1 e−x/2, γ = 0,

wr−d/2(x; d, r) = r
Γ(r) Γ(d/2)

(
x r
2

)r/2+d/4−1
Kr−d/2(

√
2 r x). γ = −1.

(20)

We prove (20) for γ = ±1 in Section 6 in the proof of Theorem 2.
The scale mixtures Vγ(x; d, r) are the (scaled by d) F-distribution F∗(x; d, 2 r) =

F(x/d; d, 2 r) with parameters d ∈ N+ and r > 0 and density f ∗(x; d; 2 r) = 1
d f ( x

d ; d; 2 r)
for γ = 1, the chi-squared distribution Gd(x) with d degrees of freedom and density gd(x)
for γ = 0 and a gamma distribution of generalized type Wr−d/2(x; d, r) occurs with density
wr−d/2(x; d, r) for γ = −1. The modified Bessel function of the third kind or Macdonald
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functions Kλ(u) also occurred in Christoph and Ulyanov [18,20] in generalized gamma and
Laplace densities.

Remark 6. The Macdonald function satisfying order-reflection formula K−λ(u) = Kλ(u) and
Kλ(u) may be expressed for λ = m + 1/2 with integer m in closed forms. In Oldham et
al. [34] (Formulas 51:4:1 and 26:13:3), the Macdonald functions K−λ(u) = Kλ(u) for λ =
1/2, 3/2, 5/2, 7/2, 9/2 are explicitly given. Using Prudnikov et al. [35] (Formulas 2.3.16.1-3),
the densities wr−d/2(x; d, r) = wm+1/2(x; d, r) can be calculated:

wm+1/2(x; d, r) =
rr xd/2−1

Γ(r) 2d/2 Γ(d/2)

⎧⎪⎨⎪⎩
(−1)m√π ∂m

∂rm
(
r−1/2 e−

√
2 r x), m = 0, 1, 2, . . . ,

(−2)−m
√

π
r

∂−m

∂x−m e−
√

2 r x, m = 0,−1,−2, . . .
(21)

Example 1. Some densities wm+1/2(x; d, r) for m = r− (d + 1)/2 = −2,−1, 0, 1, 2:

m = −2 d = 7, r = 2 w−3/2(x; 7, 2) = 4 x
15 (1 +

√
4 x) e−

√
4 x

m = −1 d = 4, r = 3/2 w−1/2(x; 4, 3/2) = 3
4
√

3 x e−
√

3 x

m = 0 d = 4, r = 5/2 w1/2(x; 4, 5/2) = 1
12
√

25 x e−
√

5 x

m = 0 d = 3, r = 2 w1/2(x; 3, 2) =
√

4 x e−
√

4 x

m = 1 d = 3, r = 3 w3/2(x; 3, 3) = 3
8 (6 x +

√
6 x) e−

√
6 x

m = 2 d = 3, r = 4 w5/2(x; 3, 4) = 1
12

(
(8 x)3/2 + 24 x + 3

√
8 x
)

e−
√

8 x.

Remark 7. If m = r− (d + 1)/2 is an integer, the distribution functions Wm+1/2(x; d, r) of the
densities wm+1/2(x; d, r) can also be calculated explicitly by substitution and partial integration.

Example 2. Distribution functions Wλ(x; d, r) for given densities wλ(x; d, r) with λ = ±1/2:

w−1/2(x; 4,
3
2
) =

3
4

√
3 x e−

√
3 x and W−1/2(x; 4,

3
2
) = 1− 1

2

(
2
√

3 x + 3 x + 2
)

e−
√

3 x (22)

w1/2(x; 4,
5
2
) =

25x
12

e−
√

5 x and W1/2(x; 4,
5
2
) = 1−

(
(5x)3/2

6
+

5 x
2

+

√
5 x
6

+ 1

)
e−
√

5 x (23)

w1/2(x; 3, 2) =
√

4 x e−
√

4 x and W1/2(x; 3, 2) = 1− (2x + 2
√

x + 1) e−
√

4 x. (24)

Remark 8. The generalized gamma distribution G∗(x; β, α, λ) has two shape parameters α and β,
a scale parameter λ, and the density

g∗(x; β, α, λ) =
|α| λβ

Γ(β)
xαβ−1 e−λxα

, x ≥ 0, |α| > 0, β > 0, λ > 0. (25)

The density (25) is given in Korolev and Zeifman [36] and Korolev and Gorshenin [37] and
summarizes many known densities. Generalized gamma distributions are defined in many different
ways, but they do not correspond to the ones that occur above.

Remark 9. The densities wm+1/2(x; d, r) with integer m = r− (d + 1)/2 are generalized gamma
densities g∗(x; β, α, λ) given in formula (25) or may be represented as linear combinations of such
densities. The parameters α = 1/2 and λ =

√
2 r apply in all densities g∗(x; β, α, λ). The

parameter β also depends on the number of derivatives m = r− (d + 1)/2 in the densities (21).

Example 3. Some linear combinations of generalized gamma densities:
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w1/2(x; 3, 2) = g∗(x; 3, 1/2,
√

4)

w3/2(x; 3, 3) = 3
4 g∗(x; 4, 1/2,

√
6) + 1

4 g∗(x; 3, 1/2,
√

6)

w5/2(x; 3, 4) = 1
2 g∗(x; 5, 1/2,

√
8) + 3

8 g∗(x; 4, 1/2,
√

8) + 1
8 g∗(x; 3, 1/2,

√
8).

5. Main Results

Inequalities for approximations to scaled statistics P

(
gγ

n Nγ∗−γ
n TNn ≤ x

)
for γ ∈

{0,±1/2,±1} will be presented. Here, γ∗ = 1/2 and γ ∈ {0,±1/2} when the statistic Tm
is asymptotically normally distributed, or γ∗ = 1 and γ ∈ {0,±1} when normalized Tm
has chi-squared limit distribution.

5.1. Asymptotically Normal Statistics Tm and Pareto-like Sample Sizes Nn(s)

Let asymptotically normal statistic Tm satisfy inequality (7) with coefficients pk and the
rate of convergence a > 0. The Pareto-like sample size Nn = Nn(s), s > 0, is given in (9),
which fulfills the inequality (10). For the scaling factors, select γ∗ = 1/2 and γ ∈ {0,± 1/2}
in formula (18).

Theorem 1. Under the conditions given above, the following approximations apply:

i: Let γ = 1/2. The non-random scaling factor
√

n for the statistic TNn(s) leads to approxi-
mations by the Laplace distribution L1/

√
s(x) with the density l1/

√
s(x) stated in (19) for

γ = 1/2:

supx

∣∣∣P(√n TNn(s) ≤ x
)
− L1/

√
s ;n(x)

∣∣∣ ≤ Cs n−min {a,2}

where a > 0 is the rate of convergence in (7) and

L1/
√

s;n(x) = L1/
√

s(x) + l1/
√

s(x)

(
I{a>1/2}(a)
√

n

[
p2 x2 + p0

( |x|√
2 s

+
1

2 s

)]

+
I{a>1}(a)

n

[
p5 x3 |x|

√
2 s + p3 x3 +

(
p1 +

s− 1
4

)
x
( |x|√

2 s
+

1
2 s

)])
.

ii: Let γ = 0. The random scaling factor
√

Nn(s) with TNn(s) leads to the normal approximation
Φ(x):

supx

∣∣∣∣P(√Nn(s) TNn(s) ≤ x
)
−Φ(x)− ϕn,2(x)

∣∣∣∣ ≤ Cs n−min {a,2},

where a > 0 is the rate of convergence in (7) and

ϕn,2(x) =ϕ(x)
(√

π(p0 + p2 x2)

2
√

s n
I{a>1/2}(a) +

p1 x + p3 x3 + p5 x5

s n
I{a>1}(a)

)
.

iii: Let γ = −1/2. The mixed scaling factor n−1/2 Nn(s) at TNn(s) results in Scaled Student’s
t-distribution S∗2(x;

√
s) with density s∗2(x;

√
s) given in (19) for γ = −1/2:

supx

∣∣∣P(n−1/2 Nn(s) TNn(s) ≤ x
)
− S∗n;2(x)

∣∣∣ ≤ Cs n−min {a,2},
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where a > 0 is the rate of convergence in (7) and

S∗n;2(x;
√

s) = S∗2(x;
√

s) + s∗2(x;
√

s)

(
I{a>1/2}(a)
√

n

[
p0 +

3p2x2{� > �}(a)
(x2 + 2s)

]

+
I{a>1}(a)

n

[
3p1x

x2 + 2s
+

15p3x3

(x2 + 2s)2 +
105p5x5

(x2 + 2s)3 +
3 (s− 1) x
4 (x2 + 2s)

])
.

As applications of the Theorem 1, we now examine the Student t-distribution, the
Student t-test statistic, and the sample mean as asymptotically normal statistics Tm consid-
ered in Christoph and Ulyanov [18] (Section 3.1 and Corollary 1) for the case of negative
binomial sample sizes Nn = Nn(r).

Corollary 1. Let the conditions of Theorem 1 be satisfied:

i: Let γ = 1/2. In case of the Student’s t-statistic Tm = Z/
√

χ2
m with m degrees of freedom

estimated in [18] (Formula (18)), inequality (7) is valid with p0 = p2 = p5 = 0, p1 = p3 =
1/4 and a = 2. The non-random scaling factor

√
n and Pareto-like Nn(s) sample sizes lead to:

supx

∣∣∣∣∣∣P
⎛⎝ √

n Z√
χ2

Nn(s)

≤ x

⎞⎠− L1/
√

s(x)−
l1/
√

s(x)
8 n

(
2 x3 + x (1 + |x|

√
2 s
)∣∣∣∣∣∣ ≤ Cs n−2

ii: Let γ = 0. Let Tm = (Xm − μ)/σ̂m be the Student’s t-statistic with sample mean Xm and
sample variance σ̂m, which was considered in [18] (Formulas (21) and (20)). The first order
approximation (7) with p0 = λ3/6, p2 = λ3/3, a = 1, the Pareto-like random sample sizes
Nn(s) and the random scaling factor

√
Nn(s) result in:

supx

∣∣∣∣P(√Nn(s) TNn(s) ≤ x
)
−Φ(x)− ϕ(x)

√
π(λ3 + 2 λ3 x2)

12
√

s n

∣∣∣∣ ≤ Cs n−1,

iii: Let γ = −1/2. Considering sample mean Tm = Xm estimated in [18] (Formulas (15) and
(16)), one has (7) with p0 = −p2 = λ3/6, p1 = λ4/8− 5λ2

3/24, p3 = −λ4/24 +
5λ2

3/36, p5 = −λ2
3/72, a = 3/2, Pareto-like random sample sizes Nn(s) and mixed scaling

factor n−1/2 Nn(s), then

supx

∣∣∣P(n−1/2 Nn(s) TNn(s) ≤ x
)
− S∗2(x;

√
s)− s∗n;2(x;

√
s)
∣∣∣ ≤ Cs n−3/2,

with

s∗n;2(x;
√

s) = s∗2(x;
√

s)

(
1√
n

(
λ3

6
− λ3x2

2(x2 + 2s)

)

+
1
n

(
(3λ4 − 5λ2

3)x
8(x2 + 2s)

− 5(3λ4 − 10λ5)x3

24(x2 + 2s)2 − 35λ2
3x5

24(x2 + 2s)3 +
3 (s− 1) x
4 (x2 + 2s)

))
.

5.2. Asymptotically Chi-Squared Distributed Tm with Negative Binomially Distributed Sample
Sizes Nn(r)

Let the asymptotically chi-squared distributed statistics Tm satisfy inequality (8) with
coefficients q1, q2 and the rate of convergence a = 2. The negative binomially distributed
sample sizes Nn = Nn(r) with parameter r > 0 and success probability 1/n are given
in (13) and fulfill the inequality (15). For the scaling factors, choose γ∗ = 1 and γ ∈ {0,±1}
in formula (18).

Theorem 2. Under the conditions given above, the following approximations apply.
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i: Let γ = 1. The non-random scaling factor gn = ENn(r) = r(n− 1) + 1 at statistics TNn(r)
leads to approximations by the scaled F-distribution F∗(x; d, 2 r) = F(x/d; d, 2 r) having
parameters d ∈ N+ and r > 0 and density f ∗(x; d; 2 r) = 1

d f ( x
d ; d; 2 r) given in (20) with

γ = 1:

supx

∣∣∣P(gn TNn(r) ≤ x
)
− F∗(x; d, 2 r)− f ∗n (x; d, 2 r)

∣∣∣ ≤ Cr

{
n−min {r,2}, r �= 2,
n−2 ln n, r = 2,

where

f ∗n (x; d, 2 r) =
f ∗(x; d, 2 r)

gn
I{r>1}(r)

((
q1 −

2− r
2

)
x (2 r + x)
2 r + d− 2

+ q2 x2 +
x(2− r)

2

)
. (26)

ii: For γ = 0 and random scaling factor Nn(r) at TNn(r), the approximation Gd(x) does not
change:

supx

∣∣∣P(Nn(r) TNn(r) ≤ x
)
− Gd(x; n)

∣∣∣ ≤ Cr

{
n−min {r,2}, r �= 2,
n−2 ln n, r = 2,

where

Gd(x; n) = Gd(x) +
gd(x)

gn
I{r>1}(r)(q1 x + q2 x2)

r
r− 1

.

iii: Let γ = −1 and r ≥ 2. The mixed scaling factor g−1
n N2

n(r) at TNn(r) results in a gamma
distribution of generalized type Wr−d/2(x; d, r) with density wr−d/2(x; d, r) given in (20) for
γ = −1:

sup
x

∣∣∣∣P(N2
n(r)
gn

TNn(r) ≤ x
)
−Wr−d/2; n(x; d, r)

∣∣∣∣ ≤ Cr

{
n−2, r > 2,
n−2 ln n, r = 2,

,

where

Wr−d/2; n(x; d, r) = Wr−d/2(x; d, r) +
wr−d/2(x; d, r)

gn
I{r>1}(r)

(
2 q2 r x +

(r− 2) x
2

+

√
2rx
2

(
2 q1 + 2 q2(d + 2− 2 r) + 2− r

)Kr−d/2−1(
√

2rx)

Kr−d/2(
√

2rx)

)
.

The restriction r ≥ 2 in Theorem 2(iii) has a purely proof-technical character. In
Proposition 4, a result is shown with r = 3/2.

Remark 10. The function R(u; d, r) = Kλ−1(u)
Kλ(u)

can be calculated explicitly for λ = m + 1/2

with integer m = r − (d + 1)/2. Then, for example, R(
√

3 x; 4, 3/2) = 1 + 1√
3 x

and

R(
√

4 x; 3, 2) = 1.

Example 4. Let γ = −1 in (20), r = 2 and d = 3. Then, for an asymptotically chi-squared

distributed test variable Tm satisfying (8), with scale factor N2
n(2)

2n− 1 , the estimation holds:

sup
x>0

∣∣∣∣P( N2
n(2)

2n− 1
TNn(2) ≤ x

)
− W1/2(x; 3, 2) +

w1/2(x; 3, 2)
4 (2n− 1)

(√
4x (q2

√
4 x + q1 + q2)

)∣∣∣∣ ≤ C2
ln n
n2 ,

where W1/2(x; 3, 2) and w1/2(x; 3, 2) are specified in (24).

As applications to Theorem 2, we now examine Hotelling’s T2
0 distribution and nor-

malized quotients of two independent chi-square distributions as asymptotic chi-square
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distributions, considered in Christoph and Ulyanov [18] (Section 3.2 and Corollary 2) where
the sample sizes Nn = Nn(s) had Pareto-like distribution.

Corollary 2. The conditions of the Theorem 2 shall be fulfilled:

i: Let γ = 1. Consider Hotelling’s generalized T2
0 -statistic T2

0 = Tm = tr
(
SqS−1

m
)

with
independently distributed random matrices Sq and Sm having Wishart distributions Wp(q, Ip)
and Wp(m, Ip), respectively. Then, inequality (8) holds with limit distribution Gd(x),
d = p q, q1 = (p + 1− q)/2 and q2 = (p + 1 + q)/(2d + 4). The non-random scaling
factor gn = ENn(r) by TNn(r) leads to

supx

∣∣∣P(gn TNn(r) ≤ x
)
− F∗(x; p q, 2 r)− f ∗n (x; p q, 2 r)

∣∣∣ ≤ Cr

{
n−min {r,2}, r �= 2,
n−2 ln n, r = 2,

(27)

where the scaled F-distribution F∗(x; p q, 2 r) with density f ∗(x; p q, 2 r) is given in (20) for
γ = 1

f ∗n (x; p q, 2 r) =
f ∗(x; p q, 2 r)

gn
I{r>1}(r)

((
p + 1− q

2
− 2− r

2

)
x (2 r + x)

2 r + p q− 2

+
(p + 1 + q) x2

(2p q + 4
+

x(2− r)
2

)
. (28)

ii: Let γ = 0, χ2
d and χ2

m be independent and Tm = χ2
d/χ2

m be scale mixtures satisfying
inequality (8) with coefficients q1 = (d− 2)/2 and q2 = −1/2. Random degrees of freedom
Nn(r) instead of m and random scaling factor Nn(r) lead to

sup
x>0

∣∣∣P(Nn(r) TNn(r) ≤ x
)
− Gd(x; n)

∣∣∣ ≤ Cr

{
n−min {r,2}, r �= 2,
n−2 ln n, r = 2,

where

Gd(x; n) = Gd(x) +
gd(x)
2 gn

I{r>1}(r)((d− 2) x − x2)
r

r− 1
.

iii: Let γ = −1. The statistics Tm = χ2
4/χ2

m satisfy the inequality (8) with the limiting distribu-
tion G4(x) and the coefficients q1 = 1 and q2 = −1/2. The mixed scaling factor g−1

n N2
n(r)

at TNn(r) results in a limiting gamma distribution of generalized type Wr−d/2(x; d, r). Only
if r− (d + 1)/2 = m is an integer, the involved Macdonald functions Kr−d/2(

√
2 r x) may

be explicitly calculated. Since d = 4, we choose r = 5/2 and find r− (d + 1)/2 = 0. Then,
uniformly in x > 0:∣∣∣∣∣P

(
N2

n(5/2)
(5n− 3)/2

χ2
4

χ2
Nn(5/2)

≤ x

)
− W1/2(x; 4, 5/2) +

w1/2(x; 4, 5/2)
2 (5n− 3)

(
9 x−

√
5 x
)∣∣∣∣∣ ≤ C3/2

n3/2 ,

where W1/2(x; 4, 5/2) and w1/2(x; 4, 5/2) are specified in (23).

Remark 11. In the paper Monahkov [38], an analogous to (27) estimation is shown, but with
11 approximation terms in corresponding formula (28). Instead of (8) with q1 = (p + 1− q)/2,
q2 = (p + 1 + q)/(2d + 4) and d = p q, the following equivalent inequality is used; see Fujikoshi
et al. [39] (Theorem 4.1(ii)):

supx

∣∣∣∣P(m tr
(

SqS−1
m

)
≤ x
)
− Gd(x)− d

4 m

(
a0Gd(x) + a1Gd+2(x) + a2Gd+4(x)

)∣∣∣∣ ≤ C
m2

where a0 = q − p − 1, a1 = −2q, a2 = q + p + 1 with a0 + a1 + a2 = 0 and
d = p q.
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Proposition 4. Let γ = −1. Consider the statistics Tm = χ2
4/χ2

m, satisfying the inequality (8)
with the limiting distribution G4(x), the coefficients q1 = 1 and q2 = −1/2 and the mixed scaling
factor g−1

n N2
n(r) at TNn(r). If r = 3/2 and d = 4, then r− (d + 1)/2 = −1, gn = (3n− 1)/2

and, uniformly in x > 0:∣∣∣∣∣P
(

N2
n(3/2)

(3n− 1)/2
χ2

4
χ2

Nn(3/2)

≤ x

)
− W−1/2(x; 4, 3/2) +

w−1/2(x; 4, 3/2)
2 (3n− 1)

(
7 x +

√
3 x + 1

)∣∣∣∣∣ ≤ C3/2

n3/2 ,

where W−1/2(x; 4, 3/2) and w−1/2(x; 4, 3/2) are specified in (22).

6. Proofs

For the proofs of Theorems 1 and 2, we use Proposition 1. The statistics Tm and the
sample size Nn are either asymptotically normally and discretely Pareto-like distributed (i.e.,
F = Φ and H = Ws) or asymptotically chi-squared and negatively binomially distributed
(i.e., F = Gd and H = Gr,r). In both cases, the size Dn defined in (6) is uniformly bounded
for all n ∈ N+, see Christoph and Ulyanov [18] (Lemma A1). Next, the bounds that
are required in (4) for the negative moments of sample sizes ENn(s)−a and ENn(r)−a

are provided by (12) and (17). Furthermore, it follows from Christoph and Ulyanov [18]
(Proposition 2 and Lemma A2) that in both cases the domain of integration of the integrals
in the function Gn(x, 1/gn) defined in (5) can be extended from (1/gn, ∞) to (0, ∞):

supx
∣∣Gn(x, 1/gn)− Gn,2(x)

∣∣ ≤ C g−b
n ,

where b = 2 if F = Φ and H = Ws or b = min{r, 2} if F = Gd and H = Gr,r, respectively,
and

Gn,2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ ∞

0 F(x yγ)dH(y), for 0 < b ≤ 1/2,∫ ∞
0

(
F(x yγ) +

f1(x yγ)√
gny

)
dH(y) =: Gn,1(x), for 1/2 < b ≤ 1,

Gn,1(x) +
∫ ∞

0
f2(x yγ)

gny dH(y) +
∫ ∞

0
F(x yγ)

n dh2(y), for b > 1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (29)

We still have to calculate the integrals in (29) that contain f1, f2, and h2, respectively.

Proof of Theorem 1. We now consider F = Φ, H = Hs and γ ∈ {0;±1/2}. Here,
f1(xyγ) = (p0 + p2x2 y2γ)ϕ(x yγ), f2(xyγ) = (p1x yγ + p3x3 y3γ + p5x5 y5γ)ϕ(x yγ) and
we divide the function h2(y) = h2;s(y) given in (11) into two parts: h∗2;s(y) = s (s −
1) e−s/y /(2 y2) and h∗∗2;s(y) = s Q1(n y) y−2 e−s/y. The densities of the limit distributions
Vγ(x; d, r) =

∫ ∞
0 Φ(x yγ)dWs(y) were given in (20). If γ = 1/2 to calculate the integrals

in (29) involving f1(x
√

y), f2(x
√

y) and h∗2;s(y) we use Prudnikov et al. [35] (Formulas
2.3.16.2 and 2.3.16.3):

∫ ∞

0
y−m−1/2 e−py−q/ydy =

⎧⎪⎨⎪⎩
(−1)−m√π ∂−m

∂p−m
(

p−1/2 e−2
√

p q ), m = 0,−1,−2, . . .

(−1)m
√

π√
p

∂m

∂qm
(
e−2
√

p q ), m = 0, 1, 2, . . .
, p, q > 0, (30)

for p = x2/2 > 0, q = s > 0 and m = 0, 1, 2, respectively. The corresponding integral with
h∗∗2;s(y) was estimated in Christoph et al. [17] (see Proof of Theorem 5) by c(s) e−

√
π s n/2 ≤

C(s)n−2.
In case of γ = 0, we obtain

∫ ∞
0 Φ(x)dh2(y) = Φ(x)

(
h2(∞)− limy→0 h2(y)

)
= 0. To

calculate the integrals with f1(x) and f2(x) we use [35] (Formula 2.3.3.1) with α = 3/2, 2
and q = s:∫ ∞

0
y−α−1 e−q/ydy

1/y=z
=

∫ ∞

0
zα−1 e−q zdz = Γ(α) q− α, α > 0, q > 0. (31)

If γ = − 1/2, the integrals with f1(x/
√

y), f2(x/
√

y) and h∗2,s(x/
√

y) are calculated
using (31) with α = 3/2, 5/2, 7/2, 9/2 and q = s+ x2/2. From Christoph and Ulyanov [20]
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(see Proof of Theorem 8), it follows that holds: n−1 supx

∣∣∣∫ ∞
0 Φ(x/

√
y)dh∗∗2;s(y)

∣∣∣ ≤ C(s)n−2

and Theorem 1 is proved.

Proof of Theorem 2. Now, we consider the case F(x) = Gd(x), H(y) = Gr,r(y) and γ ∈
{0;±1}. This combination has not yet been studied in the literature. Only if γ = 1,
there is a result by Monahkov [38]; see Remark 11 above. Then, f1(xyγ) = 0, f2(xyγ) =
(q1x yγ + q2x2 y2γ)gd(x yγ) and we divide the function h2(y) = h2;r(y) given in (16) into
two parts: h∗2;r(y) = (2 r)−1 gr,r(y)(y− 1)(2− r) and h∗∗2;r(y) = r−1 gr,r(y)Q1

(
gn y
)
.

For γ = 1, the density v1(x; d, r) in (20) and the integrals in (29) with f2(x y) and h∗2;r(y)
are computed with (31) for α = r+ d/2, r+ d/2− 1. The integral with h∗∗2;r(y) is estimated in
(A1) in Lemma A1. Together with the inequality |1/gn− 1/(rn)| ≤ max{2, r}(r− 1)(rn)−2,
we get (26).

In case of γ = 0, we obtain
∫ ∞

0 Gd(x)dh2(y) = Gd(x)
(
h2,r(∞)− limy→0 h2,r(y)

)
= 0.

To calculate the integrals with f2(x), we use (31) with α = r− 1 and q = r.
If γ = − 1 the density v−1(x; d, r) in (20) and the integrals with f2(x/y) and h∗2,r(y)

are calculated using Prudnikov et al. [35] (Formula 2.3.16.1):∫ ∞

0
yα−1e−p y−q/ydy = 2(p/q)α/2 Kα(2

√
pq), p, q > 0,

with α = r− d/2, r− d/2− 1, r− d/2− 2, p = r and q = x/2. We use the order-reflection
formula Kα(u) = K−α(u) and the recursion formula; see Oldham et al. [34] (Chapter 51.5):

Kr−d/2−2(
√

2rx) = Kd/2+2−r(
√

2rx) =
2 (d/2− r + 1)√

2rx
Kd/2−r+1(

√
2rx) + Kd/2−r(

√
2rx).

The integral with h∗∗2;r(y) is estimated in (A4) in Lemma A2 and Theorem 2 is proved.

Proof of Proposition 4. We consider γ = −1, r = 3/2 d = 4 and gn = (3n− 1)/2. The
integrals in (29) with f2(x/y) and h∗2,r(y) are calculated using (30) with m = −1, −2, −3,
p = r and q = x/2. The integral with h∗∗2, r is estimated in (A5) in Lemma A3 and
Proposition 4 is proved.

7. Conclusions

The common goal of the present work and that of Christoph and Ulyanov [18] is
to develop formal second order Chebyshev–Edgeworth expansions for sample statistics
with random sample sizes. Corresponding expansions are assumed for the statistics
with non-random sample sizes as well as for the random sample sizes. The statistics
examined are asymptotically normally distributed and, for the first time in this setting, also
asymptotically chi-squared distributed. The random sample sizes have negative binomial
or Pareto-like distributions. The formal construction of the approximating functions allows
the results to be used for a whole family of asymptotically normal or chi-squared distributed
statistics. The Student t-distribution with m degrees of freedom, the one-sample Student
t-test statistic, and the sample mean are considered as examples of asymptotic normal
statistics. Hotelling’s generalized T2

0 statistic and scale mixture of a normalized quotient of
two independent chi-squared random variables were studied as examples of the asymptotic
chi-squared distributions. In addition, random, non-random, and mixed scaling factors for
the statistics are considered, which have a significant influence on the limit distributions.
The limit laws are scale mixtures of the normal with mixing gamma or chi-squared with
mixing inverse exponential distributions. In addition to the normal distribution and the
chi-square distribution, there are a variety of limit distributions: the Laplace, the scaled
Student t-, the scaled Fisher, the generalized gamma, and linear combinations of generalized
gamma distributions.

The remaining terms in the approximations of the scaled statistics are estimated
by inequalities.

260



Mathematics 2023, 11, 1848

Author Contributions: Conceptualization, G.C. and V.V.U.; methodology, V.V.U. and G.C.; formal
analysis, G.C. and V.V.U.; investigation, G.C. and V.V.U.; writing—original draft, G.C. and V.V.U.;
writing—review and editing, V.V.U. and G.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding. It was carried out within the project “Analysis
of the quality of approximations in the statistical analysis of multivariate observations” of the Magde-
burg University, the program of the Moscow Center for Fundamental and Applied Mathematics,
Lomonosov Moscow State University, and HSE University Basic Research Programs.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the Editor for his support and the Reviewers for their appro-
priate comments which have improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Auxiliary Lemmas

Lemma A1. Let r > 1 then

|J1(x)| =
∣∣∣∣∫ ∞

0
Gd(x y)dh∗∗2;r(y)

∣∣∣∣ ≤ c(r, d)
gr−1

n
with h∗∗2;r(y) = r−1 gr,r(y)Q1

(
gn y
)
. (A1)

Proof of Lemma A1. We use the Fourier series expansion of the jump correcting function
Q1(y) at all non-integer points y; see Prudnikov et al. [35] (Formula 5.4.2.9 for a = 0):

Q1(y) =
1
2
− (y− [y]) = ∑∞

k=1
sin(2 π k y)

k π
, y �= [y], (A2)

and Prudnikov et al. [35] (Formula 2.5.31.4):∫ ∞

0
yα−1 e−py sin(by)dy =

Γ(α)
(b2 + p2)α/2 sin(α arctan(b/p)) with α > −1, b, p > 0 . (A3)

Integration by parts in the integral J1(x), using (A2), interchanging sum and integral and
applying (A3) with α = r + d/2− 1, p = (r + x/2) and b = 2πkgn leads to

J1(x) = − rr−1 xd/2

Γ(r) 2d/2 Γ(d/2)

∫ ∞

0
yr+d/2−2 Q1

(
gny
)

e−(r+x/2)ydy

= − rr−1 xd/2

π Γ(r) 2d/2 Γ(d/2)

∞

∑
k=1

1
k

∫ ∞

0
yr+d/2−2 e−(r+x/2)y sin

(
2πkgny

)
dy

= − rr−1 Γ(r + d/2− 1)
π Γ(r) 2d/2 Γ(d/2)

∞

∑
k=1

ak(x; n)
k

with

ak(x; n) =
xd/2 sin

(
(r + d/2− 1) arctan(2πkgn/(r + x/2))

)
(
(2πkgn)2 + (r + x/2)2

)(r+d/2−1)/2
.

Now, we split the exponent (r + d/2− 1)/2 = (r− 1)/2 + d/4 and obtain

|ak(x; n)| ≤ xd/2

(2πkgn)r−1 (r + x/2)d/2 ≤
2d/2

(2π k gn)r−1 .
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Since r > 1, we find uniform in x ≥ 0

|J1(x)| ≤ c1(r, d)
gr−1

n
∑∞

k=1 k−r =
c(r, d)
gr−1

n

and Lemma A1 is proved.

Lemma A2. Let r ≥ 2, then

|J−1(x)| =
∣∣∣∣∫ ∞

0
Gd(x/y)dh∗∗2;r(y)

∣∣∣∣ ≤ c(r, d)
gn

with h∗∗2;r(y) = r−1 gr,r(y)Q1
(

gn y
)
. (A4)

Proof of Lemma A2. Integration by parts in the integral J−1(x), using the Fourier series
expansion (A2), interchanging sum and integral, we find

J−1(x) =
rr−1 xd/2

Γ(r) 2d/2 Γ(d/2)

∫ ∞

0
yr−d/2−2 Q1

(
gny
)

e−(ry+x/(2 y))dy =
rr−1

π Γ(r) 2d/2 Γ(d/2)

∞

∑
k=1

Jk,n(x)
k

with Jk,n(x) =
∫ ∞

0 xd/2 yr−d/2−2 e−(ry+x/(2 y)) sin
(
2πkgny

)
dy.

In the literature, we have only found integrals Jk,n(x) with power functions y−1/2 and
y−3/2. Therefore, we integrate by parts in the integral Jk,n(x):

Jk,n(x) =
−1
2

∫ ∞

0

(
(d− 2r + 4) f1(x, y) + 2r f2(x, y)− f3(x, y)

)
e−(ry+x/(2 y)) cos(2πkgny)

2πkgn
dy,

where f1(x, y) = xd/2yr−d/2−3, f2(x, y) = xd/2yr−d/2−2 and f3(x, y) = xd/2+1yr−d/2−4.
Since r ≥ 2 and d ≥ 1 we obtain yr−2 e−ry/2 ≤ cr and (x/y)(d−1)/2 e−x/(4y) ≤ cd.

Using (30) with m = 0, 1, 2, p = r/2, and q = x/4 we find∫ ∞

0
f1(x, y)dy ≤ crcdx1/2

∫ ∞

0
y−3/2 e−(ry/2+x/(4 y))dy = crcd2

√
π e−

√
rx /2 ≤ C1(r, d),

∫ ∞

0
f2(x, y)dy ≤ crcdx1/2

∫ ∞

0

y−1/2

e(ry/2+x/(4 y))
dy = crcd

√
2π x/r e−

√
2rx /2 ≤ C2(r, d),

∫ ∞

0
f3(x, y)dy ≤ crcdx3/2

∫ ∞

0

y−5/2

e(ry/2+x/(4 y))
dy = crcd2

√
π(
√

2rx + 2) e−
√

rx /2 ≤ C3(r, d)

and

|Jk,n| ≤
1

4πkgn

(
|d− 2r + 4|C1(r, d) + 2rC2(r, d) + C3(r, d)

)
≤ C∗(r, d)

kgn
.

Hence,

|J−1(x)| ≤ rr−1

π Γ(r) 2d/2 Γ(d/2)
π2

6 gn
C∗(r, d) ≤ c(r, d)

gn
.

Lemma A2 is proved.

Lemma A3. Let γ = −1, r = 3/2, d = 4 and gn = (3n− 1)/2, then

|J∗−1(x)| =
∣∣∣∣∫ ∞

0
Gd(x/y)dh∗∗2;3/2(y)

∣∣∣∣ ≤ c(3/2, 4)√
gn

with h∗∗2;3/2(y) = (2/3) g3/2,3/2(y)Q1
(

gn y
)
. (A5)

Proof of Lemma A3. Integration by parts in the integral J∗−1(x), using the Fourier series
expansion (A2), interchanging sum and integral, we find

J∗−1(x) =
√

3/2 x2

4 Γ(3/2)

∫ ∞

0
y−5/2 Q1

(
gny
)

e−(3y/2+x/(2 y))dy =

√
3/2√
π

∞

∑
k=1

J∗k,n(x)
k
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with
J∗k,n(x) = x2

∫ ∞

0
y−5/2 e−(3y/2+x/(2 y)) sin

(
2πkgny

)
dy.

Using Prudnikov et al. [35] (Formula 2.5.37.3), with the real constants p > 0, q > 0
and b > 0, we obtain∫ ∞

0
y−3/2 e−p y−q/y sin(b y)dy =

√
π√
q

e− 2
√

q z+ sin(2
√

q z−) and 2 z2
± =

√
p2 + b2 ± p. (A6)

It was shown in Christoph et al. [17] (Proof of Theorem 5) that Leibniz’s integral rule allows
differentiation to q under the integral sign in (A6). Therefore,∫ ∞

0
y−5/2 e−p y−q/y sin(b y)dy = (

√
π/2) e−2

√
q z+
(

q−3/2 sin(2
√

q z−)

+ 2 q−1 z+ sin(2
√

q z−) − 2 q−1 z− cos(2
√

q z−)
)

.

Since 0 < z− ≤ z+, p = 3/2, q = x/2, b = 2πkgn, k ≥ 1 and gn ≥ 1 we find
z+ ≥

√
π k gn,

|J∗k,n(x)| ≤ x2
√

π

2
e−
√

2 x z+

(
2
√

2
x3/2 +

8
x

z+

)
=

√
π

z+
e−
√

2 x z+
(√

2 x z+ + 4 x z2
+

)
≤ e−1 + 8 e−2

√
k n

and

|J−1(x)| ≤
√

3/2√
π

∞

∑
k=1

e−1 + 8 e−2

k3/2√gn
.

Lemma A3 is proved.
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Abstract: The Kolmogorov and total variation distance between the laws of random variables have
upper bounds represented by the L1-norm of densities when random variables have densities. In this
paper, we derive an upper bound, in terms of densities such as the Kolmogorov and total variation
distance, for several probabilistic distances (e.g., Kolmogorov distance, total variation distance,
Wasserstein distance, Forter–Mourier distance, etc.) between the laws of F and G in the case where a
random variable F follows the invariant measure that admits a density and a differentiable random
variable G, in the sense of Malliavin calculus, and also allows a density function.

Keywords: Malliavin calculus; invariant measure; density function; Stein’s bound; fourth moment
theorem; probabilistic distance; Scheffe’s theorem

MSC: 60H07; 60F17; 60F25;

1. Introduction

Let B = {B(h), h ∈ H}, where H is a real separable Hilbert space, be an isonormal
Gaussian process defined on some probability space (Ω,F,P) (see Definition 1). The authors
in [1] discovered a celebrated central limit theorem, called the “fourth moment theorem”, for
a sequence of random variables belonging to a fixed Wiener chaos associated with B (see
Section 2 for the definition of Wiener chaos).

Theorem 1 (Fourth moment theorem). Let {Fn, n ≥ 1} be a sequence of random variables

belonging to the q(≥ 2)th Wiener chaos with E[F2
n ] = 1 for all n ≥ 1. Then Fn

L−→ Z if and only

if E[F4
n ] → 3 = E[Z4], where Z is a standard Gaussian random variable and the notation L−→

denotes the convergence in distribution.

After that, the authors in [2] obtained a quantitative bound of the distances between
the laws of F and Z by developing the techniques based on the combination between
Malliavin calculus (see, e.g., [3–7]) and Stein’s method for normal approximation (see,
e.g., [8–10]). These distances can be defined in several ways. More precisely, the distance
between the laws of F and Z is given by

d(F, Z) ≤ Cd

√
E[(1− 〈DF,−DL−1F〉H)2]. (1)

where D and L−1 denote the Malliavin derivative and the pseudo-inverse of the Ornstein–
Uhlhenbeck generator, respectively (see Definitions 2 and 5), and the constant Cd in (1)
only depends on the distance d considered. In the particular case where F is an element in
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the qth Wiener chaos of B with E[F2] = 1, the upper bound (1) for Kolmogorov distance
(Cd = 1) is given by

dKol(F, Z) ≤
√

q− 1
3q

(E[F4]− 3). (2)

where E[F4]− 3 is the fourth cumulant of F.
The application of the Stein’s method related to Malliavin calculus has been ex-

tended from the normal distribution to the cases of Gamma and Pearson distributions
(see e.g., [11,12]). Furthermore, the authors in [13] extend the upper bound (1) to a more
general class of probability distribution. For a differentiable random variable in the sense
of the Malliavin calculus, they obtain the upper bound of distance between its law and a
law of a random variable with a density that is continuous, bounded, and strictly positive
in the interval (l, u) (−∞ ≤ l < u ≤ ∞) with finite variance. Their approach is based on
the construction of an ergodic diffusion that has a density p as an invariant measure. The
diffusion with the invariant density p has the form

dXt = b(Xt)dt +
√

a(Xt)dWt, (3)

where W is a standard Brownian motion. Then, they consider the generator of the diffusion
process X and use the integration by parts (see Definition 3 for the integration by parts
formula) to find an upper bound for the distance between the law of a differentiable random
variable G and the law of a random variable F with density pF. This bound contains D and
L−1 as in the bound (1). Precisely, for a suitable class of functions F ,

sup
f∈F
|E[ f (G)− f (F)]|

≤ CE
[∣∣∣∣12 a(G) +E

[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣G]∣∣∣∣]
+C|E[b(G)]|. (4)

If a random variable G admits a density with respect to the Lebesgue measure, the Kol-
mogorov ( i.e., F = {1(l,z); z ∈ (l, u)}) and total variation distance ( F = {1B; B ∈ B(R)})
can be bounded by

sup
f∈F
|E[ f (G)− f (F)]| ≤

∫ ∞

−∞
|pG(x)− pF(x)|dx. (5)

We note that Scheffe’s theorem implies that the pointwise convergence of densities
is stronger than convergence in distribution. In this paper, we assume that the law of G
admits a density with respect to the Lebesgue measure. This assumption on G is satisfied
for all distributions considered throughout examples in the paper [13]. Using the bound
of (4) and the diffusion coefficient in (3) given by

a(x) =
−2
∫ x

l (y−m)pF(y)dy
pF(x)

,

we derive a bound of general distances in the left-hand side of (4), being expressed in terms
of the density functions of two random variables F and G as in the case of Kolmogorov
and total variation distances. In addition, we deal with the computation of the conditional
expectation in (4). When G is general, it is difficult to find an explicit computation of this
expectation. The random variables in all examples covered in [13] are just functions of a
Gaussian vector. In this case, it is possible to compute the explicit expectation. If the law
of these random variables admits a density with respect to the Lebesgue measure, like all
examples considered in [13], we can find the formula from which we can easily compute
this expectation.
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The rest of the paper is organized as follows. Section 2 reviews some basic notations
and the results of Malliavin calculus. In Section 3, we describe the construction of a diffusion
process with an invariant density p and derive an upper bound between the laws of F and
G in terms of densities. In Section 4, we introduce a method that can directly compute the
conditional expectation in (4). Finally, as an application of our main results, in Section 5, we
obtain an upper bound of an example considered in [13]. Throughout this paper, c (or C)
stands for an absolute constant with possibly different values in different places.

2. Preliminaries

In this section, we briefly review some basic facts about Malliavin calculus for Gaussian
processes. For a more detailed explanation, see [6,7]. Fix a real separable Hilbert space H,
with inner product 〈·, ·〉H.

Definition 1. We say that a stochastic process B = {B(h), h ∈ H} defined on (Ω,F, P) is an
isonormal Gaussian process if B is a centered Gaussian family of random variables such that
E[B(g)B(h)] = 〈g, h〉H for every g, h ∈ H.

For the rest of this paper, we assume that F is the σ-field generated by X. To simplify
the notation, we write L2(Ω) instead of L2(Ω,F, P). For each q ≥ 1, we writeHq to denote
the closed linear subspace of L2(Ω) generated by the random variables Hq(B(h)), h ∈ H,
‖h‖H = 1, where the space Hq is the qth Hermite polynomial. The space Hq is called the
qth Wiener chaos of B. Let S denote the class of smooth and cylindrical random variables F
of the form

F = f (B(ϕ1), · · · , B(ϕm)), m ≥ 1, (6)

where f : Rm → R is a C∞-function such that its partial derivatives have at most polynomial
growth, and ϕi ∈ H, i = 1, · · · , m. Then, the space S is dense in Lq(Ω) for every q ≥ 1.

Definition 2. For a given integer p ≥ 1 and F ∈ S , the pth Malliavin derivative of F with respect
to B is the element of L2(Ω;H,p), where the space H,p denotes the symmetric tensor product of H,
defined by

DpF =
m

∑
i1,...,ip=1

∂p f
∂x1, . . . , ∂xp

(B(ϕ1), . . . , B(ϕn))ϕi1 ⊗ · · · ⊗ ϕip . (7)

For a fixed p ∈ [1, ∞) and an integer k ≥ 1, we denote by Dk,p the closure of its
associated smooth random variable class of S with respect to the norm

‖F‖p
k,p = E[|F|p] +

k

∑
�=1

E[‖D�F‖p
H⊗� ].

For a given integer p ≥ 1, we denote by δp : L2(Ω;H⊗p) → L2(Ω) the adjoint of the
operator Dp : Dk,2 → L2(Ω;H,q), called the multiple divergence operator of order p. The
domain of δp, denoted by Dom(δp), is the subset of L2(Ω;H⊗p) composed of those elements
u such that

|E[〈DpF, u〉H⊗p ]| ≤ C(E[|F|2]1/2 for all F ∈ D
p,2.

Definition 3. If u ∈ Dom(δp), then δp(u) is the element of L2(Ω) defined by the duality relationship

E[Fδp(u)] = E[〈DpF, u〉H⊗p ] for every F ∈ D
p,2. (8)

The above formula (8) is called an integration by parts formula. For a given integer
q ≥ 1 and f ∈ H,q, the qth multiple integral of f is defined by Iq( f ) = δq( f ). Let h ∈ H

with ‖h‖H = 1. Then, for any integer q ≥ 1, we have Iq(h⊗q) = q!Hq(B(h)). From this, the
linear mapping Iq : H,q → Hq by Iq(h⊗q) = q!Hq(B(h)) has an isometric property. It is
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well known that any square integrable random variable F ∈ L2(Ω) can be expanded into a
series of multiple integrals:

F = E[F] +
∞

∑
q=1

Iq( fq),

where the series converges in L2, and the functions fq ∈ H,q, q ≥ 1, are uniquely deter-
mined by F. Moreover, if F ∈ Dm,2, then fq = 1

q!E[D
qF] for all q ≤ m.

Definition 4. For a given F ∈ L2(Ω), we say that F belongs to Dom(L) if

∞

∑
q=1

q2
E[Jq(F)2] < ∞,

where Jq is the projection operator from L2(Ω) intoHq, that is, Jq(F) = Proj(F|Hq), q = 0, 1, 2 . . ..
For such an F, the operator L is defined through the projection operator Jq, q = 0, 1, 2 . . ., as
LF = −∑∞

q=1 qJqF.

It is not difficult to see that the operator L coincides with the infinitesimal generator of
the Ornstein–Uhlhenbeck semigroup {Pt, t ≥ 0}. The following gives a crucial relationship
between the operator D, δ, and L: Let F ∈ L2(Ω). Then, we have F ∈ Dom(L) if and only
if F ∈ D1,2 and DF ∈ Dom(δ). In this case, δ(DF) = −LF, that is, for F ∈ L2(Ω), the
statement F ∈ Dom(L) is equivalent to F ∈ Dom(δD).

Definition 5. For any F ∈ L2(Ω), we define the operator L−1, called the pseudo-inverse of L, as
L−1F = ∑∞

q=1
1
q Jq(F).

Note that L−1 is an operator with values in D2,2 and LL−1F = F−E[F] for all F ∈ L2(Ω).

3. Diffusion Process with Invariant Measures

In this section, we explain how a diffusion process is constructed to have an invariant
measure μ that admits a density function, say p, with respect to the Lebesgue measure
(see [13,14] for more information). Let μ be a probability measure on I = (l, u) (−∞ ≤ l <
u ≤ ∞) with a continuous, bounded, and strictly positive density function p. We take a
function b : I → R that is continuous such that e ∈ (l, u) exists for which b(x) > 0 for
x ∈ (l, e) and b(x) < 0 for x ∈ (e, u) are satisfied. Moreover, the function bp is bounded on
I and ∫ u

l
b(x)p(x)dx = 0. (9)

For x ∈ I, let us set

a(x) =
2
∫ x

l b(y)pF(y)dy
p(x)

. (10)

Then, the stochastic differential equation (sde)

dXt = b(Xt)dt +
√

a(Xt)dBt (11)

has a unique ergodic Markovian weak solution with the invariant measure μ.
The authors prove in [15] that the convergence of the elements of a Markov chaos to

a Pearson distribution can be still bounded with just the first four moments by using the
new concept of a chaos grade. Pearson diffusions are examples of the Markov triple and Itô
diffusion given by the sde

dXt = −(Xt −m)dt +
√

a(Xt)dBt, (12)
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where m is the expectation of μ, and

a(x) =
−2
∫ x

l (y−m)p(y)dy
p(x)

for x ∈ (l, u). (13)

Let us define

h̃ f (y) =
2
∫ y

l ( f (u)−E[ f (F)])p(u)du
a(y)pF(y)

,

where F is a random variable having its law of μ. For f ∈ C0(I), where C0(I) = { f : I →
R| f is continuous on I vanishing at the boundary of I}, we define

h f (x) =
∫ x

0
h̃ f (y)dy.

Then, h f satisfies that

f −E[ f (F)] = b(x)h′f (x) +
1
2

a(x)h′′f (x).

In [13], the authors derive the Stein’s bound between the probability measure μ and the
law of an arbitrary random variable G. This bound extends the results in [2,12] in the case
where μ is a standard Gaussian and Gamma distribution, respectively.

Theorem 2 (Kusuoka and Tudor (2012) [13]). Let F be a random variable having the target law
μ with a probability distribution associated to the diffusion given by sde (11). Let G be an I-valued
random variable in D1,2 with b(G) ∈ L2(Ω). Then, for every f : I → R such that h̃ f and h̃′f are
bounded, the following holds:∣∣E[ f (G)− f (F)

]∣∣
≤ ‖h̃′f ‖∞E

[∣∣∣∣12 a(G) +
〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣∣]
+‖h̃ f ‖∞|E[b(G)]|, (14)

and ∣∣E[ f (G)− f (F)
]∣∣

≤ ‖h̃′f ‖∞E

[∣∣∣∣E[1
2

a(G) +
〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣G]∣∣∣∣
]

+‖h̃ f ‖∞|E[b(G)]|. (15)

When the laws of F and G admit densities pF and PG (with respect to Lebesgue
measure), respectively, we derive an upper bound (14) in terms of the densities of F and G
by using Theorem 2.

Theorem 3. Let F be a random variable having the law μ with the density pF associated to the
diffusion given by sde (11). Let G be a random variable in D1,2 with b(G) ∈ L2(Ω). Suppose that
the law of G has the density pG with respect to the Lebesgue measure. Then, for every f : I → R

such that h̃ f and h̃′f are bounded, we find that
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∣∣E[ f (G)− f (F)
]∣∣

≤ ‖h′f ‖∞E

[∣∣∣∣ ∫ ∞

G
b(y)

(
pF(y)
pF(G)

− pG(y)
pG(G)

)
dy
∣∣∣∣
]

+

(
‖h′f ‖∞E

[∫ ∞
G pG(y)dy

pG(G)

]
+ ‖h f ‖∞

)∣∣E[b(G)]
∣∣. (16)

Proof. Let ϕ : R → R be a C1-function having a bounded derivative ϕ′ with a compact
support. Using the integration by parts yields

E

[
ϕ′(G)E

[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣G]]
= E

[〈
− DL−1(b(G)−E[b(G)]), Dϕ(G)

〉
H

]
= E

[
ϕ(G)(b(G)−E[b(G)])

]
= −

∫ ∞

−∞
ϕ(x)

d
dx

( ∫ ∞

x
(b(y)−E[b(G)])pG(y)dy

)
dx

= −ϕ′(x)
∫ ∞

x
(b(y)−E[b(G)])pG(y)dy

∣∣∣∣∞
−∞

+
∫ ∞

−∞
ϕ′(x)

∫ ∞

x
(b(y)−E[b(G)])pG(y)dydx

= E

[
ϕ′(G)

∫ ∞
G (b(y)−E[b(G)])pG(y)dy

pG(G)

]
. (17)

The above equality (17) obviously shows that

E

[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣G]
=

∫ ∞
G (b(y)−E[b(G)])pG(y)dy

pG(G)
. (18)

Using the relations (10) and (17), the first expectation in the right-hand side of (15) can be
written as

E

[∣∣∣∣12 a(G) +E

[〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣G]∣∣∣∣]

= E

[∣∣∣∣
∫ G
−∞ b(y)pF(y)dy

pF(G)
+

∫ ∞
G (b(y)−E[b(G)])pG(y)dy

pG(G)

∣∣∣∣
]

(19)

Since ∫ u
l b(y)pF(y)dy

pF(G)
= 0,

we have that ∫ G
−∞ b(y)pF(y)dy

pF(G)
= −

∫ ∞
G b(y)pF(y)dy

pF(G)
,
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This implies that (19) can be written as

E

[∣∣∣∣E[1
2

a(G) +
〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

∣∣∣G]∣∣∣∣]
≤ E

[∣∣∣∣
∫ ∞

G b(y)pF(y)dy
pF(G)

−
∫ ∞

G b(y)pG(y)dy
pG(G)

∣∣∣∣
]

+
∣∣E[b(G)]

∣∣E[∫ ∞
G pG(y)dy

pG(G)

]
. (20)

Combining (15) and (20) completes the proof of this theorem.

Remark 1. In Theorem 2 of [13], the authors prove that if a random variable G ∈ D1,2 has the
invariant measure μ, then E[b(G)] = 0 and

E

[
1
2

a(G) +
〈
− DL−1b(G), DG

〉
H

∣∣∣G] = 0. (21)

Furthermore, if μ admits the density pF, it is obvious from (19) that (21) holds.

Remark 2. We think it would be interesting to give numerical examples from the computational
validity in Theorem 3. In this respect, although not a numerical example, we give a simple example
to deduce an upper bound for between the laws of two centered Gaussain random variables.

Proposition 1. Let F and G be two centered Gaussian random variables with variances σ2
1 > 0

and σ2
2 > 0. Then,

dF (F, G) ≤ sup
f∈F
‖h′f ‖∞

∣∣σ2
F − σ2

G
∣∣, (22)

where F is the class of functions to be chosen depending on the type of the distance d.

Proof. Obviously, the random variable F has the law μ with the density

pF(x) =
1√

2πσF
exp

(
− x2

2σ2
F

)

associated to the diffusion given by sde with b(x) = −x and a(x) = 2σ2
F. Since E[b(G)] = 0,

the second sum in (16) is vanished. Hence, from Theorem 3, it follows that∣∣E[ f (G)− f (F)
]∣∣

≤ ‖h′f ‖∞E

[∣∣∣∣∣e G2

2σ2
F

∫ ∞

G
ye
− y2

2σ2
F dy− e

G2

2σ2
G

∫ ∞

G
ye
− y2

2σ2
G dy

∣∣∣∣∣
]

= ‖h′f ‖∞E

[∣∣∣∣∣σ2
Fe

G2

2σ2
F

∫ ∞

− G2

2σ2
F

e−udu− σ2
Ge

G2

2σ2
G

∫ ∞

− G2

2σ2
G

e−udu

∣∣∣∣∣
]

= ‖h′f ‖∞
∣∣σ2

F − σ2
G
∣∣. (23)

Since the distance dF (F, G) between two distributions F and G is given by

dF (F, G) = sup
f∈F

∣∣E[ f (G)− f (F)
]∣∣,

the proof of this proposition is completed.
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Depending on the choice ofF , several types of distances can be defined (see Section 5.2).
Comparing the upper bound in Proposition 3.6.1 of [6] obtained from an elementary
application of Stein’s method with the upper bound in (22) is very interesting. This shows
that our study is differentiated from the existing ones.

4. Computation of E
[
〈−DL−1(b(G)− E[b(G)]), DG〉H|G

]
When G is general, it is difficult to find an explicit computation of the right-hand

side of (15). In particular, when
〈
− DL−1(b(G)−E[b(G)]), DG

〉
H

is not measurable with
respect to the σ-field generated by G, there are cases where it is impossible to compute the
expectation. The next proposition in [4] contains an explicit example.

Proposition 2. Let DG = ΨG(B), where B is an isonormal Gaussian process and ΨG : RH → H

is a uniquely defined measurable function a.e. Then, we have〈
− DL−1(G−E[G]), DG

〉
H

=
∫ ∞

0
e−t〈ΨG(B),E′

[
ΨG(e−tB +

√
1− e−2tB′)

]
〉Hdt, (24)

so that

E
[〈
− DL−1(G−E[G]), DG

〉
H
|G
]

=
∫ ∞

0
e−tE

[
〈ΨG(B), ΨG(e−tB +

√
1− e−2tB′)〉H|G

]
dt. (25)

Here, B and B′ are defined on the product space (Ω×Ω′,F ⊗F′,P⊗P′) such that B′ stands for an
independent copy of B. E and E′ denote the expectation with respect to P⊗ P′ and P′, respectively.

If G = h(N)−E[h(N)], where h : Rd → R is a C1-function with bounded derivative
and N = (N1, . . . Nd) is a d-dimensional Gaussian random variable with zero mean and
covariance 〈hi, hj〉H = E[Ni Nj] = (Ci,j), i, j = 1, . . . , d, where {hi, i = 1, . . . , n} stands
for the canonical basis of H. By using Proposition 2, the following useful formula can
be proved: 〈

− DL−1(G−E[G]), DG
〉
H

=
∫ ∞

0
e−x

E
′
[ d

∑
i,j=1

Ci,j
∂h
∂xi

(N)
∂h
∂xj

(
e−x N +

√
1− e−2x N′

)]
dx. (26)

In order to show the significance of the bound (15), the authors in [13] consider the several
random variables G. Here, among these random variables, we consider random variables
with the uniform and Laplace distribution. The random variable defined by

G = e−
1
2 (B( f )+B(g)),

where B( f ) and B(g) are independent standard Gaussian random variables, has the uni-
form distribution U ([0, 1]). The authors in [13] compute the right-hand side of (26) to
prove that

E[
〈
− DL−1(G−E[G]), DG

〉
H
|G] = G(1− G). (27)

Computing in this way is tedious and lengthy. To overcome this situation, we can use
Equation (18) to prove that (27) holds. Since G has the uniform distribution U ([0, 1]),
we have

E

[〈
− DL−1(G− 1

2
), DG

〉
H

∣∣G] =

∫ ∞
G (y− 1

2 )1[0,1](y)dy
1[0,1](G)

= G(1− G). (28)
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In the case where G has a Laplace distribution, the authors in [13] consider two random variables:

G1 =
1
2
(

B(h1)
2 + B(h2)

2 − B(h3)
2 − B(h4)

2), (29)

G2 = B(h1)B(h2) + B(h3)B(h4). (30)

where hi, i = 1, . . . , 4, are orthonormal functions in L2([0, T]). It can be easily seen that Gi,
i = 1, 2, has the Laplace distribution with parameter 1. In the paper [13], the authors prove,
using Theorem 2 in [13], that for i = 1, 2,

E

[〈
− DL−1Gi, DGi

〉
H

∣∣Gi

]
= 1 + |Gi|. (31)

The authors argue that these identities are difficult to be proven directly. Here, we introduce
a method that can directly prove these identities (31) by using the formula given in (18).
Since Gi, i = 1, 2, has a Laplace distribution with parameter 1, we find that for i = 1, 2,

E

[〈
− DL−1(Gi −

1
2
), DGi

〉
H

∣∣Gi

]
=

1
2

∫ ∞
Gi

ye−|y|dy
1
2 e−|Gi |

. (32)

An elementary computation yields that for Gi ≥ 0 a.s,

1
2

∫ ∞
Gi

ye−|y|dy
1
2 e−|Gi |

=
e−Gi (1 + Gi)

e−Gi
= 1 + Gi, (33)

and for Gi < 0 a.s.

1
2

∫ ∞
Gi

ye−|y|dy
1
2 e−|Gi |

=

1
2

∫ 0
Gi

yeydy + 1
2

∫ ∞
0 ye−ydy

1
2 eGi

=
eGi (1− Gi)

eGi
= 1− Gi. (34)

Combining (33) and (34) proves that the identity (31) holds.

5. Example

In this section, we illustrate the upper bound of probabilistic distances in Theorem 3
through an example considered in [13]. We denote the Wiener integral of h ∈ L2([0, T])
by W(h). Let {hi, i = 1, 2, . . .} be a sequence of orthonormal bases of L2([0, T]) and
{GN , N = 1, 2 . . .} a sequence of random variables defined by

GN = e−
1√
2N ∑N

i=1(W(hi)
2−1). (35)

Let F be a random variable having log normal distribution with mean m = 0 and variance
σ2 = 1. Then, the density of F is given by

pF(x) =
1√
2πx

exp
(
− 1

2
(log x)2

)
1(0,∞)(x). (36)

Next, we compute the density of the random variable GN given by (35). We first
compute the cumulative distribution function of GN . Let us set XN = ∑N

i=1 W(hi)
2. Then,

the random variable XN = N −
√

2N log GN has a Gamma distribution with parameters
α = N

2 and β = 1
2 , that is,

PXN (x) =
1

2
N
2 Γ(N

2 )
x

N
2 −1e−

x
2 1(0,∞)(x). (37)
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Using (37), we find that for x ≥ 0,

P(GN ≤ x) = P

(
− 1√

2N

N

∑
i=1

(W(hi)
2 − 1) ≤ log x

)
= P

(
XN ≥ N −

√
2N log x

)
=

∫ ∞

N−
√

2N log x
pXN (y)dy. (38)

Differentiating Equation (38) proves that

pGN (x) =
√

2N
x

pXN

(
N −
√

2N log x
)
. (39)

From (39), it follows that

pGN (x) =

√
2N

2
N
2 Γ(N

2 )x

(
N −
√

2N log x
) N

2 −1e−
1
2

(
N−
√

2N log x
)

1(0,∞)(x)

=

√
2N

2
N
2 Γ(N

2 )x
exp
{(N

2
− 1
)

log(N −
√

2N log x)

− 1
2
(N −

√
2N log x)

}
1(0,∞)(x). (40)

5.1. Scheffe’s Theorem

First, we prove that GN converges in distribution to F by using Scheffe’s theorem
and then find a convergence rate of the Kolmogorov and total variation distance. The
right-hand side of (40) can be written as

pGN (x) =

√
2N

2
N
2 Γ(N

2 )x
exp
{(N

2
− 1
)

log N − N
2

}

× exp
{(N

2
− 1
)

log
(

1−
√

2
N

log x
)

+

√
N
2

log x
}

1(0,∞)(x). (41)

For any fixed x ∈ (0, ∞), we have, from (36) and (41), that

pGN (x)− pF(x) =

[ √
2N

2
N
2 Γ(N

2 )
exp
{(N

2
− 1
)

log N − N
2

}

− 1√
2π

]
1
x

e−
1
2 (log x)2

+

√
2N

2
N
2 Γ(N

2 )
exp
{(N

2
− 1
)

log N − N
2

}

× 1
x

[
exp
{(N

2
− 1
)

log
(

1−
√

2
N

log x
)

+

√
N
2

log x
}
− e−

1
2 (log x)2

]
= A1,N + A2,N . (42)
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To estimate the first term A1,N in (42), we can use the following specific version of the
Stirling formula of the Γ function, incorporating upper and lower bounds (see [16]):

Lemma 1. Let S(x) = xx− 1
2 e−x. Then for all x > 0,

√
2πS(x) ≤ Γ(x) ≤

√
2πS(x)e

1
12x . (43)

The term |A1,N | in (42) can be written as

|A1,N | =
1√
2π
|1− A11,N × A12,N |

1
x

e−
1
2 (log x)2

, (44)

where

A11,N =

√
2π
√

2
N (N

2 )
N
2 e−

N
2

Γ(N
2 )

,

A12,N =

√
2Ne(

N
2 −1) log N− N

2

2
N
2

√
2
N (N

2 )
N
2 e−

N
2

.

Obviously,

A12,N =

√
2N2

N
2 −1(N

2 )
N
2 −1

2
N
2

√
2
N (N

2 )
N
2

= 1. (45)

Hence, form (43) and (44),

|A1,N | =
1√
2π

∣∣∣∣Γ(N
2 )−

√
2π(N

2 )
N
2 − 1

2 e−
N
2

Γ(N
2 )

∣∣∣∣
≤ 1√

2π

(
1− e

1
12N
)

=
1

12
√

2πN
+ o
( 1

N
)
. (46)

Using the Taylor expansion of log
(

1−
√

2
N log x

)
log
(

1−
√

2
N

log x
)
= −

√
2
N

log x− 2
2N

(log x)2 + ox(N−1),

we write A2,N as

A2,N =

√
2N

2
N
2 Γ(N

2 )
exp
{(N

2
− 1
)

log N − N
2

}

× 1
x

[
exp
{
− 1

2
(log x)2 + o(1)

}
− e−

1
2 (log x)2

]
. (47)

Since

lim
N→∞

√
2N

2
N
2 Γ(N

2 )
exp
{(N

2
− 1
)

log N − N
2

}
=

1√
2π

,

we will have that limN→∞ A2,N = 0, and hence, from (42),

lim
N→∞

pGN (x) = pF(x) for all x ∈ (0, 1).
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This convergence implies, from Scheffe’s theorem, that as N → ∞,∫ ∞

0
|pGN (x)− pF(x)|dx → 0.

An upper bound for the Kolmogorov and total variation distance is given in (5). Hence, GN
converges in distribution to F. Next, we find the rate of convergence for an upper bound
for these distances by using the bound (5). By using the change of variables log x = z, we
find, from (36) and (40), that

d(G, F) ≤
∫ ∞

0

∣∣pF(x)− pG(x)
∣∣dx

=
∫ ∞

−∞

∣∣∣∣ 1√
2π

e−
z2
2 −

√
2N

2
N
2 Γ(N

2 )
e(

N
2 −1) log N− N

2

× e(
N
2 −1) log(1−

√
2
N z)+

√
N
2 z
∣∣∣∣dz. (48)

Using the Taylor expansion of log(1−
√

2
N z), the right-hand side of (48) can be repre-

sented as

d(G, F) ≤ 1
2

∫ ∞

−∞

∣∣∣∣ 1√
2π

e−
z2
2 −

√
2N

2
N
2 Γ(N

2 )
e(

N
2 −1) log N− N

2

× e−
z2
2 +
√

2
N z+oz(N−

1
2 )
∣∣∣∣dz

≤ 1
2

∣∣∣∣ 1√
2π
−
√

2N

2
N
2 Γ(N

2 )
e(

N
2 −1) log N− N

2

∣∣∣∣ ∫ ∞

−∞
e−

z2
2 dz

+

√
2N

2
N
2 +1Γ(N

2 )
e(

N
2 −1) log N− N

2

∫ ∞

−∞
e−

z2
2

×
∣∣∣∣1− e

√
2
N z+oz(N−

1
2 )
∣∣∣∣dz

= B1,N + B2,N . (49)

From (46), it follows that

B1,N ≤
C√
N

. (50)

Obviously,

B2,N ≤ C
∫ ∞

−∞
e−

z2
2

∣∣∣∣1− e
√

2
N z+ z2

N ++oz(N−
1
2 )
∣∣∣∣dz

≤ C√
N

. (51)

From (50) and (51), we prove that the rate of convergence of the Kolmogorov and total
variation distance between the laws of F and GN is of order 1√

N
.

5.2. General Distance

In this section, we consider general distances between the laws of F and GN defined by

dF (GN , F) = sup
f∈F

∣∣E[ f (GN)]−E[ f (F)]
∣∣, (52)

where F is a class of functions defined on R. Depending on the choice of F , several types
of distances can be defined. In addition to the Kolmogorov distance and total variation
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distance, the following distances can be obtained: for example, if F = { f : ‖ f ‖L ≤ 1},
where ‖ · ‖L denotes the Lipschitz seminorm defined by

‖ f ‖L = sup

{
f (x)− f (y)|
|x− y| : x �= y

}
.

then the distance in (52) is called Wasserstein. If F = { f : ‖ f ‖L + ‖ f ‖∞ ≤ 1}, the Fortet-
Mourier will be obtained. The rate of convergence of this distance can be found by using
the bound given in Theorem 3. The drift coefficient of the associated diffusion is given by

a(x) =
2em+ σ2

2

pF(x)

[
Φ
(

log x−m
σ

)
−Φ

(
log x−m

σ
− σ

)]
, (53)

where the function Φ denotes the distribution function of the standard Gaussian distribution.
Let us set ḠN = GN −E[GN ]. From (18) and (39), it follows that

E

[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

∫ ∞
GN

(y−m)pGN (y)dy

pGN (GN)

=
GN
∫ ∞

GN
(y−m)

√
2N
y pXN

(
N −
√

2N log y
)
dy

√
2NpXN

(
N −
√

2N log GN
)

=
GN
∫ XN
−∞(e−

1√
2N

(x−N) −m)pXN (x)dx
√

2NpXN (XN)
, (54)

where m is the expectation of GN given by

m = e
√

N
2

(
1 +

√
2
N

)− N
2

.

The right-hand side of (54) can be written as

E

[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]

=
e
√

N
2 GN

∫ XN
−∞

[
e−

x√
2N −

(
1 +
√

2
N
)− N

2
]
pXN (x)dx

√
2NpXN (XN)

=
e
√

N
2 GN X1− N

2
N e−

XN
2

√
2N

×
∫ XN

0

[
e−

x√
2N −

(
1 +

√
2
N
)− N

2
]
x

N
2 −1e−

x
2 dx

=
e
√

N
2 GN X1− N

2
N e−

XN
2

√
2N

{∫ XN

0
x

N
2 −1e−

1
2 (
√

2
N +1)xdx

−
∫ XN

0

(
1 +

√
2
N
)− N

2 x
N
2 −1e−

x
2 dx

}
. (55)
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Using the change of variables
(√ 2

N + 1
)
x = y, we express the right-hand side of (55) as

E

[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
√

N
2 GN X1− N

2
N e

XN
2

√
2N

(
1 +

√
2
N
)− N

2

×
∫ (
√

2
N +1)XN

XN

x
N
2 −1e−

x
2 dx. (56)

By using the expansion

(
1 +

√
2
N
)− N

2 = e−
√

N
2 + 1

2− 1
3
√

2N
+o(N−

1
2 ),

the right-hand side of (56) can be expressed as

E

[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
1
2− 1

3
√

2N
+o(N−

1
2 )GN X1− N

2
N e

XN
2

√
2N

×
∫ (
√

2
N +1)XN

XN

x
N
2 −1e−

x
2 dx. (57)

The change of variables x−XN√
2
N XN

= z shows that (57) is

E

[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
1
2− 1

3
√

2N
+o(N−

1
2 )GN XN

N

×
∫ 1

0

(
1 +

√
2
N

z
) N

2 −1
e−

XN z√
2N dz. (58)

The Taylor expansion of log
(

1 +
√

2
N z
)

, 0 ≤ z ≤ 1, is given by

log
(

1 +

√
2
N

z
)
=

√
2
N

z− 1
N

z2 + o(N−1). (59)

Applying this expansion (59) to a function
(

1 +
√

2
N z
) N

2 −1
, we have

(
1 +

√
2
N

z
) N

2 −1
= e

( N
2 −1)

(√
2
N z− 1

N z2+o(N−1)

)
= e

√
N
2 z− z2

2 +No(N−1)e−
√

2
N z+o(N−

1
2 ). (60)

Substituting (60) into the integrand in (58) yields that

E

[〈
− DL−1ḠN , DG

〉
H

∣∣ḠN

]
=

e
1
2− 1

3
√

2N
+o(N−

1
2 )GN XN

N

×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 z+o(N−

1
2 )dz. (61)
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From (36) and (53), the drift coefficient of diffusion is given by

1
2

a(GN) =
e

1
2

pF(GN)

∫ log GN

log GN−1

1√
2π

e−
z2
2 dz

=
√

2πe
1
2 GNe

1
2

(
1√
2N

(XN−N)
)2 ∫ − 1√

2N
(XN−N)

− 1√
2N

(XN−N)−1

1√
2π

e−
z2
2 dz

=
e

1
2 GNe

1
4N (XN−N)2

√
2N

∫ XN+
√

2N

XN

e−
(y−N)2

4N dz

=
e

1
2 GN√
2N

∫ XN+
√

2N

XN

e−
(y−XN )2

4N − (XN−N)(y−XN )
2N dy. (62)

The use of the change of variables (y−XN)√
2N

= z makes the right-hand side of (62) equal to

1
2

a(GN) = e
1
2 GN

∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 zdz. (63)

From (61) and (63), we write 1
2 a(GN)− gḠN

(ḠN) = D1,N + D2,N + D3,N , where

D1,N = e
1
2
(
1− e−

1
3
√

2N
+o(N−

1
2 ))GN

×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 zdz,

D2,N = e
1
2− 1

3
√

2N
+o(N−

1
2 )GN

(
1−−XN

N

)
×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 zdz,

D3,N = e
1
2− 1

3
√

2N
+o(N−

1
2 )GN

XN
N

×
∫ 1

0
e−

z2
2 −

XN z√
2N

+
√

N
2 z
(1− eo(N−

1
2 ))dz.

Lemma 2. For every x > 0, we have

E[Gx
N ] = e

x2
2 +ox(N−β). (64)

where 0 < β < 1
2 .

Proof. We write GN = e
√

N
2 × e−

XN√
2N , where XN ∼ Γ(N

2 , 1
2 ). Hence,

E[Gx
N ] = ex

√
N
2 E
[
e−

x√
2N

XN ]
= ex

√
N
2
(

1 +
2x√
2N

)− N
2

. (65)

Since

log
(

1 +
2x√
2N

)
=

2x√
2N
− 2x2

2N
+ ox(N−α), α <

3
2

,
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we have

(
1 +

2x√
2N

)− N
2

= e
− N

2 log
(

1+ 2x√
2N

)

= e−x
√

N
2 + x2

2 +ox(N−β), 0 < β <
1
2

. (66)

Substituting (66) into (65) proves this lemma.

Next, we estimateE[|Dk,N |], k = 1, 2, 3. The Cauchy–Schwartz inequality and Lemma 2
give the estimate

E[|D1,N |] ≤ e
1
2
∣∣1− e−

1
3
√

2N
+o(N−

1
2 )∣∣√E[G2

N ]

×
(∫ 1

0
e−z2

E
[
G2z

N
]
dz

) 1
2

≤ e
3
√

2N
(1 + o(1))eo(1) ≤ c√

N
. (67)

By Hölder inequality and Lemma 2, we have

E[|D2,N |] ≤ e
1
2− 1

3
√

2N
+o(N−

1
2 )
(E[G3

N ])
1
3
(E[|N − XN |3])

1
3

N

×
( ∫ 1

0
e−

3z2
2 E[G3z

N ]dz
) 1

3

≤ e
1
2− 1

3
√

2N
+o(N−

1
2 )e

3
2+o(N−β)

(
E

[(
N − XN√

2N

)4]) 1
4√ 2

N

×
( ∫ 1

0
e3z2+oz(N−β)dz

) 1
3

≤ e
1
2− 1

3
√

2N
+o(N−

1
2 )e

3
2+o(N−β)

(
3 +

12
N

) 1
4
√

2
N

e1+o(N−β)

≤ c√
N

. (68)

Similarly,

E[|D3,N |] ≤ e
1
2− 1

3
√

2N
+o(N−

1
2 )
(E[G3

N ])
1
3
(E[|XN |3])

1
3

N

×
( ∫ 1

0
e−

3z2
2 E[G3z

N ]dz
) 1

3

|1− eo(N−
1
2 )|

≤ e
1
2− 1

3
√

2N
+o(N−

1
2 )e

3
2+o(N−β)(1 + o(1))

× e1+o(N−β)|1− eo(N−
1
2 )|

≤ c√
N

. (69)
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Combining the bounds in (67), (68) and (69), we obtain

∣∣E[ f (GN)− f (F)
]∣∣ ≤ ‖h′f ‖∞E

[∣∣∣1
2

a(GN)− gḠN
(ḠN)

∣∣∣]
≤ c√

N
. (70)

Therefore, we find that the rate of convergence of the general distance is of order 1√
N

.

6. Conclusions and Future Works

When a random variable F follows the invariant measure that admits a density and a
differentiable random variable G in the sense of Malliavin allows a density function, this
paper derives an upper bound on several probabilistic distances (e.g., Kolmogorov distance,
total variation distance, Wasserstein distance, and Forter–Mourier distance, etc.) between
the laws of F and G in terms of two densities. Among these distances, it is well known that
the upper bound of the Kolmogorov and total variation distance can be easily expressed
in terms of densities. The significant feature of our works is to show that the bounds of
distances other than the two distances mentioned above can be expressed in some form
of two density functions. An insight into the main result of this study is that it is possible
by applying our results to express an upper bound for the distance of two distributions in
terms of two density functions even when it is difficult to express the distance as a density
function of two distributions.

Future works will be carried out in two directions: (1) Using the results worked in this
paper, we plan to conduct a study on the upper bound that is more rigorous than the results
obtained in the papers [15,17]. (2) In the case when G is a random variable belonging to a
fixed Wiener chaos, we will prove the fourth moment theorem by using the bound obtained
in this paper.
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Abstract: The structure of the random matrices introduced in this work is given by deterministic
matrices—the skeletons of the random matrices—built with an algorithm of matrix substitutions
with entries in a finite field of integers modulo some prime number, akin to the algorithm of one
dimensional automatic sequences. A random matrix has the structure of a given skeleton if to the
same number of an entry of the skeleton, in the finite field, it corresponds a random variable having,
at least, as its expected value the correspondent value of the number in the finite field. Affine matrix
substitutions are introduced and fixed point theorems are proven that allow the consideration of
steady states of the structure which are essential for an efficient observation. For some more restricted
classes of structured random matrices the parameter estimation of the entries is addressed, as well
as the convergence in law and also some aspects of the spectral analysis of the random operators
associated with the random matrix. Finally, aiming at possible applications, it is shown that there
is a procedure to associate a canonical random surface to every random structured matrix of a
certain class.

Keywords: random fields; random Matrices; random linear operators; notions of recurrence; symbolic
dynamics; automata sequences

MSC: 60G60; 60B20; 47B80; 37B20; 37B10; 11B85

1. Introduction

Let us start with some motivations. A generic problem in Big Data analysis may have
as a starting point a large matrix having columns to represent the questions and the lines to
represent the subject’s answers (see [1], p. 28). The typical observed matrix may appear to
be random. The questions can admit answers that can be either categorical—and so can
be modelled by random variables taking values in a finite set—or be quantitative and be
modelled by random variables taking values in some set of numbers; in this case, we can
also have random variables taking values in a finite set by consider a partition in intervals
of the range of the real valued random variables. A natural generic question about these
matrices is to determine the existence of a possible structure of the matrix. One initial idea,
to better understand this line of problems, is to build matrices with random entries but
with a prescribed structure and try to recover this structure by means of some statistical
tests or by the spectral analysis of the matrix. These ideas give a practical motivation for
this study.

Let us situate our work in the context of the subject of substitutions. The analysis
of scalar or string substitutions so to say, is a widely studied subject for which [2,3] are
comprehensive references. Important results in the subject of substitutions are to be found
also under the denomination of automated sequences, for instance in [4,5]. To the best of
our present knowledge, the study of matrix valued substitutions has received no special
attention in the literature. In this work, we propose a first approach to this topic. There
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has been work in multidimensional substitutions but in a different perspective than the
adopted here that can be studied in [6–8] and in the chapter by J. Peyriére in [9] and other
references therein.

An important starting point of the study of spectral statistics of random matrices
is the work [10]. In it, the author focuses on three ensembles of asymmetric Gaussian
random matrices derived from the Gaussian Orthogonal, Gaussian Unitary and Gaussian
Symplectic random matrix ensembles by relaxing the Hermitian character. The three
sets of matrices have a common Gaussian probability measure but they exhibit profound
differences in their spectral patterns, differences that are qualitatively described in this
work although the quantitative description was further improved by other authors. The
difficult study of generic properties of random matrices related to the spectral analysis
has received much attention in recent years as perfectly demonstrated in the following
works: [11–18]. Readable introductions to the subject are presented in [19–25].

For a remarkable general formulation of the circular law that is most useful for our
purposes we will refer the following result that conveys the flavour of an universality result
that may be a relevant guide for the statistical analysis of possible existing particular types
of structure in large observed matrices.

Theorem 1 (Circular law, Tao and Wu [22]). If Mn is a n × n matrix with entries that are
independent identically distributed with a complex centred and standardised random variable.
Then, given,

μ M√
n
(x, y) :=

1
n

#{1 ≤ i ≤ n : -λi ≤ x ,.λi ≤ y} ,

the empirical spectral distribution of the eigenvalues λi of (1/
√

n)Mn, we have that the sequence
(μ M√

n
(x, y))n≥1 converges to the uniform measure on the unit disc given by:

dμcircular(x, y) =
1
π

1I{|x|2+|y|2≤1}(x, y)dxdy .

We stress that until this optimal formulation was reached, several other technically in-
volved formulations were obtained attesting the intrinsic difficulty of the subject, displayed
in the works on the subject first referred above. Let us quote Terence Tao for a synthesis of
the recent short history of the subject: A rigorous proof of the circular law was then established
by Bai, assuming additional moment and boundedness conditions on the individual entries. These
additional conditions were then slowly removed in a sequence of papers by Gotze–Tikhimirov, Girko,
Pan–Zhou, and Tao–Vu .

We now refer to recent developments in the study of random matrices having some
structure, the main topic that is dealt with in the present work, in particular results on
the spacing distribution, on invertibility, and appearance of large structures and on the
spectral analysis of these random matrices. These works may give an idea of the amount of
exploratory work needed in the subject of random matrices with structure.

In [26], the authors consider four specific sparse patterned random matrices, namely
the Symmetric Circulant, Reverse Circulant, Toeplitz, and the Hankel matrices. The entries
are assumed to be Bernoulli with success probability linearly decreasing to zero. The mo-
ment approach is used to show that the expected empirical spectral distribution converges
weakly for all these sparse matrices. The work in [27] is a complementary reference where
the author investigates the existence and properties of the limiting spectral distribution of
different patterned random matrices as the dimension grows. The method of moments
and normal approximation with some combinatorics is used to deal with the Wigner ma-
trix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample
auto-covariance matrix, and the k-Circulant matrices.

In [28], a bound on the growth of the smallest singular value is found for random
matrices with independent uniformly anti-concentrated entries with no restrictions on the
null mean or identical distribution of the entries. The result obtained covers inhomogeneous

284



Mathematics 2023, 11, 2505

matrices with different variances of the entries as long as the sum of second moments has
sub-quadratic growth with the order of the matrix. Following this work, the reference [29]
extends the results of Tao and Vu and Krishnapur on the universality of empirical spectral
distributions to a class of inhomogeneous complex random matrices where the entries are
linear images of standardised independent random variables satisfying a lower bound
and Pastur’s condition. The proof uses an anti-concentration for sums of non-identically
distributed independent complex random variables.

In [30], the semicircle law is established for a sequence of random symmetric matrices
that may be considered as adjacency matrices of random graphs; the random matrices have
independent entries given by the product of independent standardised random variables,
the weight of the edges, with Bernoulli random variables that gives the probability of
the edge. The empirical distribution of the eigenvalues of the normalised random matrix
converges in the Kolmogorov distance to the distribution function of the semicircle law
under boundedness and average conditions.

The work [31] deals with random ray pattern matrices that is matrices for which
each of its nonzero entries has modulus one. A ray pattern matrix corresponds to a
weighted digraph. A random model of ray pattern matrices with order n is introduced,
where a uniformly random ray pattern matrix is defined to be the adjacency matrix of a
simple random digraph whose arcs are weighted with i.i.d. random variables uniformly
distributed over the unit circle in the complex plane. In this paper, it is shown that the
threshold function for a random ray pattern matrix to be ray nonsingular is 1/n. This
function is also a threshold function for the property that giant strong components appear
in the simple random digraph.

The work [32] deals with patterned random matrices which are real symmetric with
substantially less independent entries than in real symmetric matrices. The main results are
the calculation of spacing distribution for order three matrices deriving the distributions
analytically. As expected, spacing distribution displays a range of behaviours based on the
structural constraints imposed on the matrices.

In this work, we propose and study an algorithm to build sequences of random
matrices, with independent entries, that have a built in structure. Furthermore, we explore
some aspects of this kind of random matrices related to identification, spectral analysis,
and an idea for applications. An overview of the content of this work is now detailed.

• In Section 2, we present a first example of the algorithm, used to build structured
matrices, given by the iterative application of matrix valued substitutions; the second
example uses powers of the Kronecker product of a given matrix and is a partic-
ular case of the generic algorithm of matrix substitutions. A general procedure of
construction of the sequence of structured matrices by substitutions is detailed in
Section 3.1.

• In Section 3, we present the results on fixed points of matrix substitutions.
• The randomisation of structured matrices defined by matrix substitutions is studied

in Section 4. Preliminary results on the spectral analysis of these random matrices are
presented in Section 4.3. An application to modelling is detailed in Section 4.4 with an
algorithm to associate a random field to an infinite random matrix of the kind studied
in this work.

2. Structured Matrices Built by Substitutions

We start by presenting two examples of an algorithm to build sequences of arbitrary
large matrices with entries in a finite set. For technical reasons we suppose that the entries
of the structured matrices take values in some finite field, for instance:

�p = �/p� = {0, 1, 2, . . . , p− 1} ,

p being a prime number. The identification of the entries of the matrix as elements of �p
matters, essentially for the matrix substitution procedure used to build these structured
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matrices. Further ahead we will also consider that the entries of the matrix represent integer
real numbers.

We will proceed to show, in Section 3, that in a certain class of matrix substitution
maps we define, namely the affine matrix substitution maps, every such map admits either
a fixed point or a periodic point.

2.1. A Matrix Sequence Built by Iterated Application of a Matrix Substitution

In the following examples, we suppose that the matrices entries take values in the
field �3 = {0, 1, 2}. We now consider an example of a sequence of matrices with a structure
defined by substitutions. The main idea of the construction of this sequence of matrices is
the following. We start with some initial matrix M0. The second matrix in the sequence,
the matrix M1, is obtained by replacing each term of the M0 matrix by the matrices given
by σ0, σ1, σ2 according to the entry of M0 we are replacing is, respectively, 0, 1, 2.

M0 =

⎛⎝ 2 0 1
1 2 1
1 0 2

⎞⎠ σ0 =

⎛⎝ 0 1 2
1 1 2
2 0 1

⎞⎠ σ1 =

⎛⎝ 1 0 0
0 2 0
1 0 1

⎞⎠ σ2 =

⎛⎝ 1 2 2
0 1 2
0 0 1

⎞⎠ . (1)

In Section 3 we present a formal description of this procedure in a more general case. With
this algorithm we have that,

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 0 1 2 1 0 0
0 1 2 1 1 2 0 2 0
0 0 1 2 0 1 1 0 1
1 0 0 1 2 2 1 0 0
0 2 0 0 1 2 0 2 0
1 0 1 0 0 1 1 0 1
1 0 0 0 1 2 1 2 2
0 2 0 1 1 2 0 1 2
1 0 1 2 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

and also,

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 2 2 1 2 2 0 1 2 1 0 0 1 2 2 1 0 0 0 1 2 0 1 2
0 2 0 0 1 2 0 1 2 1 1 2 0 2 0 0 1 2 0 2 0 1 1 2 1 1 2
1 0 1 0 0 1 0 0 1 2 0 1 1 0 1 0 0 1 1 0 1 2 0 1 2 0 1
0 1 2 1 0 0 1 2 2 1 0 0 1 0 0 1 2 2 0 1 2 1 2 2 0 1 2
1 1 2 0 2 0 0 1 2 0 2 0 0 2 0 0 1 2 1 1 2 0 1 2 1 1 2
2 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 2 0 1 0 0 1 2 0 1
0 1 2 0 1 2 1 0 0 1 2 2 0 1 2 1 0 0 1 0 0 0 1 2 1 0 0
1 1 2 1 1 2 0 2 0 0 1 2 1 1 2 0 2 0 0 2 0 1 1 2 0 2 0
2 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 1 0 1 2 0 1 1 0 1
1 0 0 0 1 2 0 1 2 1 0 0 1 2 2 1 2 2 1 0 0 0 1 2 0 1 2
0 2 0 1 1 2 1 1 2 0 2 0 0 1 2 0 1 2 0 2 0 1 1 2 1 1 2
1 0 1 2 0 1 2 0 1 1 0 1 0 0 1 0 0 1 1 0 1 2 0 1 2 0 1
0 1 2 1 2 2 0 1 2 0 1 2 1 0 0 1 2 2 0 1 2 1 2 2 0 1 2
1 1 2 0 1 2 1 1 2 1 1 2 0 2 0 0 1 2 1 1 2 0 1 2 1 1 2
2 0 1 0 0 1 2 0 1 2 0 1 1 0 1 0 0 1 2 0 1 0 0 1 2 0 1
1 0 0 0 1 2 1 0 0 0 1 2 0 1 2 1 0 0 1 0 0 0 1 2 1 0 0
0 2 0 1 1 2 0 2 0 1 1 2 1 1 2 0 2 0 0 2 0 1 1 2 0 2 0
1 0 1 2 0 1 1 0 1 2 0 1 2 0 1 1 0 1 1 0 1 2 0 1 1 0 1
1 0 0 0 1 2 0 1 2 0 1 2 1 0 0 1 2 2 1 0 0 1 2 2 1 2 2
0 2 0 1 1 2 1 1 2 1 1 2 0 2 0 0 1 2 0 2 0 0 1 2 0 1 2
1 0 1 2 0 1 2 0 1 2 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1
0 1 2 1 2 2 0 1 2 1 0 0 1 0 0 1 2 2 0 1 2 1 0 0 1 2 2
1 1 2 0 1 2 1 1 2 0 2 0 0 2 0 0 1 2 1 1 2 0 2 0 0 1 2
2 0 1 0 0 1 2 0 1 1 0 1 1 0 1 0 0 1 2 0 1 1 0 1 0 0 1
1 0 0 0 1 2 1 0 0 1 2 2 0 1 2 1 0 0 0 1 2 0 1 2 1 0 0
0 2 0 1 1 2 0 2 0 0 1 2 1 1 2 0 2 0 1 1 2 1 1 2 0 2 0
1 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 2 0 1 2 0 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2. A Matrix Sequence Built by Kronecker Power Iterations

An apparently different way of building substitution structured matrices is by means
of Kronecker powers of an initially given matrix that we now illustrate. The initial matrix
is given by:

R0 =

⎛⎝ 2 1 0
0 1 1
1 0 2

⎞⎠
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The sequence of the matrices taking values in �3 = {0, 1, 2} is defined by induction for
n + 1 by taking the Kronecker product of the matrix for index n with R0 modulo 3 to keep
the entries of the matrix in �3, that is,

Rn+1 := [Rn ⊗ R0] (mod 3).

So, the second matrix of the sequence is,

R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 2 1 0 0 0 0
0 2 2 0 1 1 0 0 0
2 0 1 1 0 2 0 0 0
0 0 0 2 1 0 2 1 0
0 0 0 0 1 1 0 1 1
0 0 0 1 0 2 1 0 2
2 1 0 0 0 0 1 2 0
0 1 1 0 0 0 0 2 2
1 0 2 0 0 0 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the third matrix of the sequence is:

R2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 1 2 0 0 0 0 1 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 2 2 0 0 0 0 2 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 0 1 0 0 0 2 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 0 1 2 0 0 0 0 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 2 0 1 2 0 1 0 0 0 1 0 2 1 0 2 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 2 1 0 2 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 1 1 0 1 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 1 0 2 1 0 2 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0 2 1 0 0 0 0 1 2 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 2 0 1 1 0 0 0 0 2 2 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 2 0 1 1 0 2 0 0 0 2 0 1 1 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 1 0 0 0 0 2 1 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 2 0 0 0 1 0 2 1 0 2
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 2 0 2 1 0 0 0 0 1 2 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 2 0 1 1 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2 0 1 1 0 2 0 0 0 2 0 1
1 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 2 0 0 0 0
0 2 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2 0 0 0
2 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 1 0 0 0
0 0 0 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0
0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 2
0 0 0 1 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 0 1
2 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0
0 1 1 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 1 1
1 0 2 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Remark 1 (Kronecker power matrices are matrix substitutions). We observe that the above
example of a Kronecker power matrix sequence corresponds to a special kind of substitution, the
linear matrix substitution (see Definition 3 ahead). In fact, the algorithm for building a Kronecker
power series of matrices is given by the substitutions in the sense of Section 2.1 with the matrices
σ0, σ1 and σ2 defined by:

σ0 =

⎛⎝ 0 0 0
0 0 0
0 0 0

⎞⎠ σ1 = R0 =

⎛⎝ 2 1 0
0 1 1
1 0 2

⎞⎠ σ2 =

⎛⎝ 1 2 0
0 2 2
2 0 1

⎞⎠.

This is a consequence of the fact that computing a Kronecker power sequence starting with the matrix
R0 is equivalent to computing a matrix substitution given by:

σ0 = (0 · R0 mod 3) = 03×3, σ1 = (1 · R0 mod 3) = R0, σ2 = (2 · R0 mod 3).
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We observe that the two kinds of substitutions give rise to different structured matrices.
For instance, the distribution of the absolute values of the eigenvalues—in , that is,
supposing that the entries are complex—of the seventh iteration of substitutions for these
two types of matrix substitutions are different and is shown, as histograms in Figure 1
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Histogram of absolute values of R7
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1500

Histogram of absolute values of M7

Figure 1. Histogram of absolute values of the eigenvalues of the structured matrices R7 and M7.

Another significant difference between the two constructions is noticeable in the form
of the dispersion, in the plane, of the eigenvalues that can be seen in Figure 2.
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Figure 2. Dispersion or real and imaginary parts of eigenvalues of R7 and M7.

Remark 2. The dispersion of eigenvalues observed in Figure 2 is to be compared to the dispersion of
samples of randomised matrices of both kinds, Kronecker and simple, presented in Figure 3 ahead. It
is as if the general structure of this dispersion remains despite the randomisation, at least whenever
the variance of the random variables is small. This leads to conjecture that it may be important
to determine the spectral distribution of the substitution matrices in order to infer for the spectral
distribution of the randomised matrices.
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Figure 3. Eigenvalues distribution in� of a sample of 40 matrices with affine substitution induced
structure and increasing variance

3. On the Fixed Points of Affine Matrix Substitutions

In this Section we present fixed point theorems for affine matrix substitutions . The
work here presented rests upon a procedure to build sequences of structured matrices, by
means of matrix substitutions. In order for such matrices to be a usable model, subject to
observation, some stable resulting structure should result from the procedure. Our view is
that this stable structure should be either a fixed point or at least a periodic point of a map
on some space of matrices. We opt to consider spaces of infinite matrices. A general and
historic approach to the subject of infinite matrices is given in [33]. A more recent account
of important results on this subject is given in [34]. Furthermore, a flavour of a specific
kind of problems can be read in [35]. The perspective of considering an infinite matrix as a
linear operator on some Banach space of power summable sequences is exploited in the
reference book [36] in which the concept of band-dominated operators, corresponding to
operators that are limits of operators defined by infinite matrices with a finite number of
non-null lines and columns, plays an important role. A particular case of this concept is of
crucial importance in our work to prove the existence of a particular kind of observable
fixed point.

To begin with we define some spaces of finite and infinite matrices with entries in �p.

3.1. Some Spaces of Matrices

Let us briefly describe the setting. For simplicity, let p be a prime number and let
�p = {0, 1, . . . , p− 1} be the finite field with #�p = p. The set �p may be though as the
alphabet when the perspective of finite automata is adopted or, in the context of Big Data
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the set that codifies the possible answers. We next define the space of infinite matrices with
entries in the field �p.

M+∞ :=
{

M =
[
aij
]

i,j≥1 : aij ∈ �p

}
= �

(�\{0}×�\{0})
p . (3)

We have thatM+∞ is a vectorial space over the field �p. LetM0 be a particular subspace
ofM+∞ which may be identified to a set of finite square matrices if all infinite parts of
rows and infinite parts of columns having as entries only 0 ∈ �p are discarded, that is:

M0 :=
{

M =
[
aij
]

i,j≥1 ∈ M+∞ : ∃n ≥ 1 ∀i, j ≥ n aij = 0
}

.

We have thatM0 is a vectorial subspace ofM+∞ and we observe that M ∈ M0 can have
null lines and columns. We now decomposeM0 by observing that for each M ∈ M0 there
always exists nM, the first integer n ≥ 1 such that for all i, j > nM we have that aij = 0.
Using this property, let us defineM#

n×n =M#
n×n(�p) ⊂M0 as:

M#
n×n :=

{
M =

[
aij
]

i,j≥1 : ∃n ≥ 1,
(
∃i, ain �= 0∨ ∃j, anj �= 0

)
∧
(
∀i, j > n , aij = 0

)}
.

that is,M#
n×n is a subset ofM0 of infinite square matrices having a leading principal matrix

of exact order n such that neither the column or the line of order n have all its entries equal
to zero and such that all columns or rows of order greater or equal to n + 1 have only zero
entries. M#

n×n is not a subspace as the sum of two matrices inM#
n×n may be an element of

M#
n−1×n−1 by the fact that the entries belong to �p and the sum is to be computed modulus

p. We then may define:

Mn×n(�p) =Mn×n :=
⋃

1≤k≤n

M#
k×k , (4)

which is a vectorial space of infinite matrices over �p, a subset ofM0, defined in such a
way such that the decomposition is of partition type, and that we have,

M0 =
⋃

n≥1

Mn×n(�p) . (5)

We now introduce a sequence of infinite matrices associated with a given matrix
substitution map. This sequence will be obtained by operating substitutions either on the
finite matrix corresponding to the leading principal matrix of the infinite matrix or, directly,
on the infinite matrix.

Definition 1 (Matrix substitution map). The matrix substitution map associated with matrix
substitution rules is defined in the following sequence of steps.

1. Let us consider the initial state as M0 ∈ Mn×n(�p) for some n ≥ 1.
2. We associate to M0 its leading principal matrix of order n, denoted by M<∞

0 which, we
stress, is a finite matrix of order n. LetM<∞

n×n(�p) denote the set of the leading principal
matrices of order n associated with the elements ofMn×n(�p),M0 orM+∞.

3. For technical reasons we will restrain our study by considering that we chose d ≥ 1 such that
for all k ∈ �p we have σk a finite matrix of order d that is, such that σk ∈ M<∞

d×d(�p). In
the applications we may have d = n. Let us define the global substitution rule σ : �p $→
M<∞

d×d(�p), associated with {σ0, σ1, . . . , σp−1} by:

∀j ∈ �p σ(j) =
p−1

∑
k=0

σk1I{k=j}(j) , (6)
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We now have an associated finite matrix substitution map denoted by Φ<∞
σ defined by:

∀A =
[
ai,j
]

1≤i,j≤r ∈ M
<∞
n×n Φ<∞

σ (A) =
[
σ
(
ai,j
)]

1≤i,j≤r ∈ M
<∞
d·n×d·n . (7)

4. We define matrix substitution map denoted by Φσ by adding to the finite matrix Φ<∞
σ (A) ∈

M<∞
d·n×d·n infinite rows and columns of entries of 0 ∈ �p in such a way that Φσ(A) is an

infinite matrix such that we have Φσ(A) ∈ Mn×n(�p) and such that the leading principal
matrix of order n of Φσ(A) is precisely Φ<∞

σ (A).
5. We now define the extension of the notion of a matrix substitution map for matrices inMn×n,

to the space of infinite matrices M+∞. Given that we supposed that global substitution
σ : �p $→ M<∞

d×d(�p) take values in a space of finite matrices of order d, we may define
Φσ(M) for M ∈ M+∞, with M = [aij]i,j≥1 as the matrix [σ(aij)]i,j≥1, that is, an infinite
matrix having entries matrices [σk(aij)], for aij = k with k ∈ �p.

6. The matrix substitutions sequence denoted by Mσ ≡ (Mm)m≥0 is defined by induction,
for M0 = M with M ∈ M<∞

d·n×d·n or M ∈ M+∞, by:

∀n ≥ 0 Mm+1 = Φ<∞
σ (Mm) , M ∈ M<∞

d·n×d·n ; Mm+1 = Φσ(Mm) , M ∈ M+∞ . (8)

Remark 3 (A substantiation for operating on finite order matrices). The procedure of applying
matrix substitutions to the leading principal matrix of the infinite matrices is designed to overcome
the restriction of having σ0 always equal to the null matrix with only 0 ∈ �p entries.

Remark 4 (Generalisations and open problems). It is possible to generalize this procedure
in several ways. For instance, we could have two different matrix substitution maps applied
successively. There are several interesting problems under the perspective of this setting.

(I) Given a sequence of matrices (An)n≥0 , satisfying some compatibility conditions, is it possible
to determine conditions under which there exists an initial state M0 and a matrix substitution
map Φσ such that (An)n≥0 = Mσ?

(II) A related and very important problem is to determine the properties of the eigenvalues of the
matrices of the sequence Mσ that may be derived from the properties of Φσ.

3.2. On the Existence of Fixed Points for Matrix Substitution Maps

In this Section we consider the existence of fixed points of matrix substitution maps
both for matrices inM+∞ and inM0.

3.2.1. Fixed Points for Matrix Substitution Maps over Infinite Matrices

Let us first deal with fixed points inM+∞ (see the definition in Formula (3)) of a linear
matrix substitution map Φσ. We consider the definition of a matrix substitution map given
in Definition 1 for matrices in the space of infinite matricesM+∞. For infinite matrices
we will show that a matrix substitution map defined on M+∞ may be seen as a usual
substitution of constant length on a finite set in the sense of ([3], p. 87).

Theorem 2 (On the existence of fixed points for infinite matrices). Let σ : �p $→ M<∞
d×d(�p)

be a global substitution taking values in a space of finite matrices, of order d, with entries in �p, and
let Φσ be the associated matrix substitution map defined onM+∞. Then, there exists an integer ρ
and M ∈ M+∞ such that,

M = Φρ
σ(M) := Φσ ◦Φσ ◦ · · · ◦Φσ︸ ︷︷ ︸

ρ times

(M) ,

that is, M is a fixed point for the matrix substitution map Φρ
σ(M) defined for M ∈ M+∞.

Proof. We will show that to each matrix substitution map there corresponds a univocal
substitution map in the usual sense and then, we will apply a well known result that
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guarantees the existence of fixed points for usual substitution maps (see [3], pp. 87–88).
We first observe that given s = [sij]1≤i,j≤d a d× d matrix with entries in �p we have an
enumeration of these entries given by (s̃k)k=1,...,d2 with:

sij = s̃(i−1)d+j = s̃k .

This type of enumeration of a finite matrix will be applied to to the matrices of the substitu-
tions σk in order to convert the matrix σk in a word of length constituted by letters taken
from �p. The reversion of this enumeration works as follows. Given a finite word having
d2 letters we associate to it a d× d square matrix having as its first line the first d letters
of the word, as its second line the letters of order d + 1 to 2d2 and so on and so forth. It is
clear that applying the enumeration and then the reversion gives the initial matrix.

Next, we have that given an infinite matrix, M = [mij]i,j≥1 with entries in �p we have
an enumeration of these entries given by (m̃l)l≥1 with:

mij = m̃ (i+j−1)(i+j−2)
2 +i

= m̃l .

This second type of enumeration will be applied to convert an infinite matrix with entries
in �p in an infinite word. Again, let us detail how the reversion of this enumeration process
works. Take an infinite word and consider the associated infinite matrix as follows: the
first letter of the word is the first entry of the matrix; the second and the third letters of the
word give the first diagonal, just below the first entry, in the direction up-down; the forth,
fifth, and sixth letters of the word give the second diagonal, just below the first diagonal,
in the direction up–down and so on and so forth. It is clear also that applying the second
enumeration and then this reversion process gives the initial matrix. Now, take the global
matrix substitution rule σ that replaces each k ∈ �p by the d× d matrix σk. Consider the
associated words σ̃k with letters in �p obtained by applying the first enumeration to the
matrices σk. Take an infinite matrix M with entries in �p and apply the second enumeration
rule to M to obtain an infinite word M̃ = (m̃l)l≥1; we may define first an usual substitution
rule σ̃ on �p by σ̃(k) = σ̃k and also an usual word substitution map Φ̃σ on the set of infinite
words built with letters in �p by:

Φ̃σ(M̃) = (Φ̃σ(m̃l))l≥1 ,

which is an infinite word obtained from the infinite word M̃ by replacing each one of its
letters k ∈ �p by the correspondent word σ̃k. Recall Proposition V.1 in ([3], p. 88) that
guarantees the existence of some infinite word M̃ and some integer ρ such that:

Φ̃ρ
σ(M̃) = Φ̃σ ◦ Φ̃σ ◦ · · · ◦ Φ̃σ︸ ︷︷ ︸

ρ times

(M) = M̃ ,

and consider the infinite matrix M such that the second type of enumeration applied to it
returns M̃. It is clear that if we apply the second enumeration process to Φρ

σ(M) we obtain
Φ̃ρ

σ(M̃) which is equal to M̃ and by reverting the enumeration process on M̃ we finally
obtain M, that is:

Φρ
σ(M) = M ,

as stated above.

3.2.2. Fixed Points for Matrix Affine Substitutions Maps Defined over Finite Matrices

We can obtain finite dimensional fixed points of matrix substitution maps by applying
Theorem 2.

Definition 2 (Generalised fixed points for a finite matrix substitution map). Let us consider
a given integer n ≥ 1. The matrix M ∈ M<∞

n×n(�p) (see Definition 1) is a finite matrix fixed point
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of the matrix substitution map (Φ<∞
σ ) if and only if there exists an integer ρ ≥ 1 such that the

leading principal part of order n of (Φ<∞
σ )ρ(M) is equal to M.

Proposition 1. For any integer n ≥ 2 and a given matrix substitution map (Φ<∞
σ ) there exists

fixed points in the sense of Definition 2.

Proof. We only have to apply Theorem 2 in order to obtain a fixed point of order ρ of
M ∈ M+∞ for the matrix substitution map Φσ and then to consider the leading principal
matrix of order n of M. We obtain that (Φ<∞

σ )ρ(M) ∈ M<∞
ndρ×ndρ(�p) and since we have that

the leading principal part of Φρ
σ(M) of order ndρ is equal to the finite matrix (Φ<∞

σ )ρ(M)
we will have that the leading principal part of order n of (Φ<∞

σ )ρ(M) is equal to M.

We will pursue next the goal of obtaining fixed points of matrix substitution maps in an
algorithmic way, that is, by dealing with finite matrices. Let us now introduce topological
structures over the spaces of matrices defined in Section 3. In order to define semi-norms
overMn×n, a space we may identify to the space of finite matrices of order n over the
field �p = �/p�, we will consider the trivial absolute value |·|p (see [37], pp. 197–198),
given by:

∀k ∈ �p |k|p =

{
0 if k = 0
1 if k �= 0 .

If �p is considered as a vectorial space over itself then, due to the properties of an absolute
value over a field, we have that |·|p may be considered as a norm over the vectorial space
�p. For M ∈ Mn×n(�p) let the modified sum semi-norm be given, for m > 1, by:

‖M‖m :=
1

m2 ∑
1≤i,j≤m

∣∣aij
∣∣

p ≤ 1 . (9)

Essentially, ‖M‖m counts the proportion of nonzero elements in the leading principal
matrix of order m of M. We observe that—with m the order of the semi-norm and n the
order of the matrix—as m > n grows, ‖M‖m will tend to zero. ‖·‖m is a semi-norm as
the proportion of nonzero entries of the sum of two matrices—with entries in the field
�p—can only decrease with respect with the sum of the proportions of each matrix. As a
consequence of the decomposition ofMn×n(�p) in Formula (4), we have that:

‖M‖[n] = ‖M‖Mn×n(�p)
:=

1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p ≤ 1 , (10)

is a norm overMn×n(�p) and, with the norm ‖M‖Mn×n(�p)
the space of matricesMn×n(�p)

is, obviously, a Fréchet space. Now, let j :Mn×n $→ M(n+1)×(n+1) be the natural injection
which is well defined taking into account Formula (4). Since we have that, for M ∈
Mn×n \Mn+1×n+1 that for i = n + 1 or j = n + 1,

∣∣aij
∣∣

p = 0, we then have,

‖j(M)‖[n+1] =
1

(n + 1)2 ∑
1≤i,j≤n+1

∣∣aij
∣∣

p

≤ 1
(n + 1)2 ∑

1≤i,j≤n

∣∣aij
∣∣

p +
1

(n + 1)2 ∑
i=n+1∨j=n+1

∣∣aij
∣∣

p

≤ 1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p = ‖M‖[n] .

(11)

As a consequence j maps continuously (Mn×n, ‖·‖n) into
(
Mn+1×n+1, ‖·‖n+1

)
. Further-

more, as a consequence, we may consider overM0 the inductive topology generated by
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the family of Fréchet spaces (Mn×n, ‖·‖n)n≥1 (see ([38], pp. 53–65) or ([39], pp. 57–60),
or ([40], pp. 222–225)).

Remark 5 (On the topology of the spaceM0). Let τ be this topology overM0. As a consequence
of the well known results in the theory of LF spaces, we have that:

1. The restriction of τ toMn×n coincides with the norm topology ‖·‖n.
2. (M0, τ) is a Hausdorf space.
3. We have the Dieudonné–Schwartz lemma, that is, if a set B is bounded in (M0, τ) then there

exists some nb ≥ 1 such that B ⊂Mnb×nb .
4. A sequence (Mn)n≥1 converges in (M0, τ) if and and only if there exists some nc ≥ 1 such

that {Mn : n ≥ 1} ⊂ Mnc×nc and the sequence (Mn)n≥1 converges in
(
Mnc×nc , ‖·‖nc

)
.

5. We have Köthe’s theorem, that is, (M0, τ) is a complete space.

Remark 6 (A comparable topology). If we consider over M+∞ the family of semi-norms
(sm)m≥1, given by:

sm

([
aij
]

i,j≥1

)
:= sup

n≤m

1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p , (12)

we have that (see [38], p. 64 for a proof of this result)M+∞ is a Fréchet space, we have that (M0, τ)
embeds continuously inM+∞ and that the closure of (M0, τ) isM+∞.

Now, let us consider Mσ ≡ (Mn)n≥0 with Mn+1 = Φσ(Mn) Our first goal is to study
the contraction properties of Φσ overM0. The second goal is to extend Φσ toM+∞, also
as a contraction. This allows us to identify an invariant set. For that purpose we have to
identify conditions under which Φσ is linear, or affine overM0.

Definition 3 (Linear matrix substitutions). The matrix substitution map Φσ (see
Formulas (6)–(8)) is defined to be a linear matrix substitution map overM0 iff for all k, k′ ∈ �p
we have that:

σk + σk′ = σ(k+k′ mod p) and k′ · σk = σ(k′ ·k mod p) . (13)

Remark 7 (A substantiation of Definition 3). With k + k′ ∈ �p and k · k′ ∈ �p we will
obviously have that,

Φσ(M + N) =
[
σ
(
aij + bij

)]
1≤i,j≤n =

[
σ
(
aij
)]

1≤i,j≤n +
[
σ
(
bij
)]

1≤i,j≤n

= Φσ(M) + Φσ(N) .

In fact, for the sum property—as for the product property the justification is similar—we have
by definition, [

σ
(
aij
)
= σk iff aij = k

]
and
[
σ
(
bij
)
= σk′ iff bij = k′

]
,

and so,

σ
(
aij
)
+ σ
(
bij
)
= σk + σk′ = σ(k+k′ mod p) = σ

(
aij + bij

)
iff aij + bij = (k + k′ mod p) .

Remark 8 (A consequence of Definition 3). Condition (13) for having a matrix substitution
linear implies that σ0 = 0 ∈ �p because we should have for all k ∈ {0, 1, 2, . . . p − 1} that
σ0 + σk = σk.

Remark 9 (Examples of linear matrix global substitution rules). A first example of a linear
matrix substitution in �3 is given by:

σ0 =

(
0 0
0 0

)
σ1 =

(
0 2
1 1

)
σ2 =

(
0 1
2 2

)
.
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Let us return to the example of Section 2.2. We observe that:

σ2 + σ1( mod 3) = σ(2+1 mod 3) = σ0 = 03×3 ,

thus showing that the substitution is a linear matrix substitution. A linear matrix substitution is
essentially defined by its σ1 substitution and so, every linear matrix substitution is derived from
a Kronecker power matrix equal to σ1 as defined in Section 2.2. We stress that not all matrix
substitutions are linear as the first example in Section 2.1 shows. In fact, with the notations and
definitions of this first example, we have that:

(σ1 + σ1)( mod 3) =

⎛⎝ 2 0 0
0 1 0
2 0 2

⎞⎠ (σ2 − σ0)( mod 3) =

⎛⎝ 1 1 0
2 0 0
1 0 0

⎞⎠ ,

and (σ2 − σ0 mod 3) �= (σ1 + σ1 mod 3) thus showing that the substitution is not linear.

Remark 10 (On the contraction character of a matrix substitution map). Let us suppose that
we have some matrix with constant entries, for instance:

M =
[
aij
]

i,j≥1 ∈ Mn×n with aij ≡ p− 1.

Then, with the usual absolute value over �p,

‖M‖[n] =
1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p =
1
n2 ∑

1≤i,j≤n
1 = 1 .

Now suppose, in the worst case scenario, that σp−1 ∈ M<∞
d×d is a matrix with all its entries, except

one, equal to p− 1 and the exception is 0. We now have as a consequence that all the entries of
leading principal matrix of order n + 1 of Mn+1 = Φσ(Mn) will be equal to p− 1 with n2 entries
that will be equal to 0. It then follows that,

‖Mn+1‖[d·n] = ‖Φσ(Mn)‖[d·n] =
1

(d · n)2 ∑
1≤i,j≤d·n

∣∣aij
∣∣

p

=
1

(d · n)2

[
(d · n)2 − n2

]
= 1− 1

d2 =

(
1− 1

d2

)
‖M‖[n] ,

since ‖M‖n = 1. This example shows that the contraction properties of Φσ depend on the proportion
of zeros vis-a-vis the nonzero entries of the substitutions.

Proposition 2 (Linear matrix substitutions that are contractions). Let Φσ be a linear matrix
substitution map associated with a global substitution rule σ such that the maximum number of
zeros in each σk, for k ∈ {1, . . . , k− 1}, is r with 1 ≤ r < d2. We recall that σ0 is the square matrix
with d2 entries all equal to 0 ∈ �p. Then, the map Φσ is a contraction fromMn×n intoMn·d×n·d
for every n ≥ 1.

Proof. Take a matrix A ∈ Mn×n such that the number of zero entries in the leading
principal matrix of order n of A is s with 0 ≤ s < n2. The case where A is a null matrix
is irrelevant because, in this case, Φσ(A) is the null matrix. Then in the leading principal
matrix of order nd of Φσ(A) there will be at least sd2 zero entries due to the substitution
of each zero in A by d2 zeros of the matrix σ0 which is a matrix of order d. Now, there are
n2 − s entries on A which are different of zero and for each of these non-null entries there
correspond a maximum of r zero entries in Φσ(A). As a consequence the total number of
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zero entries in Φσ(A) is bounded by sd2 + (n2 − s)r. As such, we have that the proportion
of nonzero elements in Φσ(A) has the following upper bound:

‖Φσ(A)‖[d·n] ≤ 1− sd2 + (n2 − s)r
n2d2 =

(
1− s

n2

)(
1− r

d2

)
=
(

1− r
d2

)
‖M‖[n] , (14)

and so, Φσ is a contraction with constant 1− r/d2 < 1.

Remark 11 (On the fixed points of linear matrix substitutions maps). We have first to observe
that if Φσ is a linear matrix substitution map associated with any global substitution rule σ then
any null matrix M =

[
aij
]

i,j≥1 ∈ Mn×n, that is, such that aij ≡ 0 ∈ �p, is a fixed point of Φσ.
In fact, since h aij ≡ 0 ∈ �p and σ0 = 0 we have,

Φσ(M) = M = 0 .

Let us describe now the non-null other fixed points of Φσ, a linear matrix substitution map
belonging toM0 (see Formula (5)). Consider a non-null matrix M =

[
aij
]

i,j≥1 ∈ Mn×n such
that Φσ(M) = M. By recalling that Φσ(M) ∈ Mnd×nd and reverting to the leading principal
matrices of both M—a finite matrix of order n—and Φσ(M)—which in turn is a finite matrix of
order nd—we may conclude that, with 0 �= a11, if a11 = k for k ∈ {1, 2, . . . , p− 1} ⊂ �p, then
σ(a11) = σk(a11) = M �= 0. Moreover, we should also have, due to Φσ(M) = M, that:

∀(i, j) �= (1, 1), aij �= a11 and ∀l ∈ {1, 2, . . . , p− 1}, l �= k⇒ σl = 0 .

We may conclude that if we are given a linear matrix substitution map then either the the correspon-
dent global substitution rule has the particular structure described above or there exists no other
fixed points inM0 besides the null matrix.

In order to overcome the limitation of the fixed points for linear matrix substitutions
maps we may consider other matrix substitution maps such as the ones defined next.

Definition 4 (Affine matrix substitutions). A matrix substitution map Φ is an affine matrix
substitution map if there exists a linear global substitution rule σ and a constant global
substitution rule νc such that,

Φ = Φσ +( mod p) Φνc = Φσ+(mod p)νc , (15)

with Φσ the linear matrix substitution map associated with σ and Φνc the constant matrix substitu-
tion map associated with νc.

Remark 12. The important equality in the right-hand side of Formula (15) can be verified by
resorting to the definition of a matrix substitution map associated with a global substitution rule.

We will now consider Definition 2 of the generalised fixed points for finite matrix
substitution maps. Recall that according to the definition in Formula (7) for we have that
Φ<∞

σ (M) ∈ M<∞
d·n×d·n and introduce the following notation,

Φ<∞
σ+νc(M)

∣∣
n , (16)

to denote the leading principal part of order n of Φ<∞
σ+νc

(M) for M ∈ Mn×n.

Theorem 3 (Fixed points of affine matrix substitutions). Consider an affine matrix substitution
Φσ+νc = Φσ + Φνc such that for the linear part global substitution rule σ, the maximum number
of zeros in each σk, for k ∈ {1, . . . , k− 1}, is r with 1 ≤ r < d2. Then we have that:

1. Φσ+νc is a contraction fromMn×n intoMn·d×n·d for every n ≥ 1.
2. Φσ+νc is a contraction fromM0 intoM0.
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3. There exists s ≥ 1 and L =
[
aij
]

i,j≥1 ∈ Ms×s a fixed point of Φσ+νc , that is, such that

Φ<∞
σ+νc

(L)
∣∣
s = L.

Proof. The first statement follows from Formula (14) of Proposition 2. Recall that, by
Formula (10) we have that ‖M‖[n] = ‖M‖n for M ∈ Mn×n where for m integer ‖M‖m is
the semi-norm defined in Formula (9). For M, N ∈ Mn×n we have that:

‖Φσ+νc(M)−Φσ+νc(N)‖[d·n] = ‖Φσ(M− N)‖[d·n] ≤
(

1− r
d2

)
‖M− N‖[n] , (17)

thus showing that the second statement is a consequence of the definition of the inductive
topology ofM0 and of a natural definition of a contraction in an LF topological vector space.
The last statement follows from a usual Banach fixed point theorem type argument, suitably
modified. We first show the Cauchy sequence contraction inequality. Let M ∈ Mn×n be
given and, consider the matrix substitutions sequence Mσ+νc ≡ (Mn)n≥0 that is defined,
by induction, by:

∀n ≥ 0 Mn+1 = Φσ+νc(Mn) = Φ(n+1)
σ+νc

(M0) ,

with M0 = M and, the iterated application map given, for instance for the second order
iteration by Φ(2)

σ+νc
= Φσ+νc ◦ Φσ+νc . We now show that Mσ+νc is a Cauchy sequence in

M0. For that, see ([38], p. 30), we have to show that for every U, a neighbourhood of
zero in M0 there exists some integer m0 ≥ 1 such that for all p ≥ 1 and m ≥ m0 we
have Mm+p −Mm ∈ U. We start by using Formula (17) to establish a contraction Cauchy
sequence type inequality.

∥∥Mm+p −Mm
∥∥
[dm+p ·n] ≤

p

∑
k=1
‖Mm+k −Mm+k−1‖[dm+k ·n]

≤
p

∑
k=1

∥∥∥Φ(m+k)
σ+νc

(M0)−Φ(m+k−1)
σ+νc

(M0)
∥∥∥
[dm+k ·n]

≤
(

p

∑
k=1

(
1− r

d2

)m+k−1
)
‖Φσ+νc(M0)−M0‖[d·n]

=

(
d2

r

)(
1− r

d2

)m
‖Φσ+νc(M0)−M0‖[d·n] .

(18)

Since by Köthe’s Theorem M0 is a complete space the conclusion now follows by the
following argument. Let us rewrite the inequality (18) in the form:

Mm+p −Mm ∈ B[dm+p ·n](0, cλm) , (19)

with B[dm+p ·n](0, cλm) the ball centred on zero with radius cλm inMdm+p ·n×dm+p ·n with,

c :=
d2

r
‖Φσ+νc(M0)−M0‖[d·n] and λ :=

(
1− r

d2

)
.

Now, let U be a convex neighbourhood of zero inM0. Then, see ([38], p. 57), for all n ≥ 1
we have that U ∩Mn×n is a neighbourhood of zero inMn×n and so,

∃ε > 0 BMn×n(0, ε) ⊆ U ∩Mn×n(⊂ U) .

Let m0 be an integer such that for all m ≥ m0 we have that cλm < ε, which is possible
as λ < 1. Now, due to the decreasing properties of the norms of the spaces Mn×n we
have that

∀p ≥ 1 , M ≥ m0 B[dm+p ·n](0, cλm) ⊂ BMn×n(0, ε) ⊂ U ,
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thus showing that Mσ+νc is a Cauchy sequence inM0. Finally, as a consequence of the
properties of the topology of the spaceM0, we have that the sequence Mσ+νc converges
inM0 and so, for some s ≥ 1 we have that Mσ+νc converges inMs×s. As a consequence,
there exists L ∈ Ms×s such that:

lim
n→+∞

∥∥∥L−Φ(n)
σ+νc

(M))
∥∥∥
[s]

= 0 (20)

We now observe that:

‖L−Φσ+νc(L)‖[s+1] ≤
∥∥∥Φσ+νc(L)−Φ(n+1)

σ+νc
(M))

∥∥∥
[s+1]

+
∥∥∥Φ(n)

σ+νc
(M)−Φ(n+1)

σ+νc
(M)

∥∥∥
[s+1]

+
∥∥∥L−Φ(n)

σ+νc
(M))

∥∥∥
[s+1]

.

Now by the contraction property of Φσ+νc shown in Formula (17) by the canonical injection
ofMs+1×s+1 inMs×s shown in Formula (11) we have that:∥∥∥Φσ+νc(L)−Φ(n+1)

σ+νc
(M))

∥∥∥
[s+1]

≤
∥∥∥L−Φ(n)

σ+νc
(M))

∥∥∥
[s+1]

≤
∥∥∥L−Φ(n)

σ+νc
(M))

∥∥∥
[s]

,

and so, by Formulas (18) and (20) we have that ‖L−Φσ+νc(L)‖[s+1] = 0 and this implies
that Φ<∞

σ+νc
(L)
∣∣
s = L, that is, L is a generalised fixed point for the finite matrix substitution

map Φσ+νc .

Remark 13 (Comparing Theorem 3 and Proposition 2). Theorem 3 is an improvement of
Proposition 2 in two directions. It is a constructive result since it gives an algorithm to obtain a
fixed point and while in Proposition 2 the fixed point was a fixed point of some number of iterations
of the matrix substitution map in Theorem 3 the fixed point obtained is a fixed point of only one
iteration of the matrix substitution map.

4. Random Matrices Associated to Structured Matrices

In this Section we consider structured random matrices derived from the structured
matrices considered in Section 2. Our approach to the spectral analysis of random matrices
derived from matrices built with a matrix substitution procedure relies on the general
theory of random linear operators as exposed in [41]. Other more recent approaches to
this subject are given in [42–44]. Take a structured matrix built by substitutions—that we
will denominate the skeleton of the random matrix—and consider the associated random
matrix having as entries random variables such that to the occurrence of each field element
i ∈ �p in the skeleton structured matrix there corresponds a random variable with at least
the same expected value as the expected value of a given random variable Xi, the same
for a given i ∈ �p. We will also consider the more stringent assumption that the entries in
the random matrix corresponding to same field element i ∈ �p are equi-distributed with
a given random variable Xi.The random matrix can have independent entries or not. As
usual the study of the independent case is easier and we will assume independence. For
instance, take the matrix M1 in Formula (2), that is:
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M1 =
[
m1

i,j

]
i,j
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 0 1 2 1 0 0
0 1 2 1 1 2 0 2 0
0 0 1 2 0 1 1 0 1
1 0 0 1 2 2 1 0 0
0 2 0 0 1 2 0 2 0
1 0 1 0 0 1 1 0 1
1 0 0 0 1 2 1 2 2
0 2 0 1 1 2 0 1 2
1 0 1 2 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This matrix is the skeleton of the following random matrix:

M1(X#) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X#1 X#2 X#2 X#0 X#1 X#2 X#1 X#0 X#0
X#0 X#1 X#2 X#1 X#1 X#2 X#0 X#2 X#0
X#0 X#0 X#1 X#2 X#0 X#1 X#1 X#0 X#1
X#1 X#0 X#0 X#1 X#2 X#2 X#1 X#0 X#0
X#0 X#2 X#0 X#0 X#1 X#2 X#0 X#2 X#0
X#1 X#0 X#1 X#0 X#0 X#1 X#1 X#0 X#1
X#1 X#0 X#0 X#0 X#1 X#2 X#1 X#2 X#2
X#0 X#2 X#0 X#1 X#1 X#2 X#0 X#1 X#2
X#1 X#0 X#1 X#2 X#0 X#1 X#0 X#0 X#1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

built with the rules detailed above and so it is a structured random matrix M1(X#) =[
X#(m1

i,j)
]

i,j
with skeleton M1 =

[
m1

i,j

]
i,j

such that the entries are independent and verify,

at least, �
[

X#(m1
i,j)
]
= m1

i,j.
We will address, in Sections 4.1, 4.2 and 4.4 several questions regarding these structured

random matrices, to wit:

1. Identification of a random matrix model (Section 4.1);
2. Convergence in law of random matrices built on skeletons matrices derived from

substitution maps having a fixed point (Section 4.2);
3. Spectral analysis of some random structured matrices (Section 4.3);
4. Random surfaces associated with random matrices built on skeletons matrices derived

from substitution maps having a fixed point (Section 4.4).

4.1. Testing for a Given Matrix Structure in a Realisation of a Stochastic Matrix

In this Section we will address the problem of testing if a given observed matrix can be
considered as a realisation of a random matrix associated with a structured matrix built by a
substitution map; this will be performed in a simple case. Let us suppose that we are given
a realisation M =

[
xij
]

1≤i,j≤N of a random matrix � =
[
Xij
]

1≤i,j≤N having a structure
derived from a matrix substitution map. We will admit the following assumptions.

(A) The matrix� has its skeleton—that is, a matrix M =
[
mi,j
]

i,j with entries in�p—which
is a fixed point of the matrix substitution map. This assumption is justified on the
grounds of the process that originated the skeleton being over its transient phase.

(B) The random variables which are entries of the random matrix� form a set of inde-
pendent random variables.

Consider now, for each i ∈ �p the sequence �i
Ni

= (Xi
n)1≤n≤Np formed by the random

variables of the random matrix� that correspond to the entries in the skeleton with value
i; we observe that ∑i∈�p Ni = N2. We assume furthermore that:

(C) For each i ∈ �p we have that Xi � Gi(θ), that is, the correspondent random variable
Xi has a probability law Gi(θ) with θ ∈ Θi ⊂ �q a parameter.

Due to hypothesis (B) and (C), the sequence�p
Ni

is a sample of the given random variable
Xi. Furthermore, so a test procedure such as, a likelihood ratio test can be applied to
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determine if the matrix realisation M comes from a prescribed model of a random matrix
with entries distributions verifying assumption (C) and with the skeleton given by a fixed
point of the substitution map according to assumption (A).

Remark 14 (On the detection of a structured random matrix). Let us suppose that we have an
observed large matrix which we suppose to be a realisation of a random matrix with independent
centred entries. If the random variables are identically distributed then by force of the circular
law, as quoted in Theorem 1 the spectral distribution of the normalised random matrix should be
approximately the uniform distribution in the unit circle; a rejection of such a null hypothesis can be
thought to be a strong indication of the existence of some particular structure in the matrix, namely
that the entries are not identically distributed. For a formulation of such a statistical test, see [45]
and also [46–48] and other references therein. Let us observe that it may be impossible to discern
between possible existing structure or not; in fact, we have examples that show that if the coefficient
of variation is large the distribution of eigenvalues of a structured matrix may have a similar pattern
to the distribution of eigenvalues of a unstructured matrix.

4.2. Convergence in Law of Random Structured Matrices Built by Arbitrary Substitutions

In this section, we show that if we consider a matrix fixed point of a matrix substitution
map then the sequence of random matrices having as skeletons the sequence of iterates, by
the matrix substitution map, of a given matrix converges in law to the random matrix that
has as skeleton the fixed point of the matrix substitution map. We suppose that we are in
the following context and notations.

• A global substitution given by : σ : �p $→ M<∞
d×d(�p);

• The associated matrix substitution map Φσ defined onM+∞;
• A fixed point M∞ of the substitution map Φσ.
• The entries in the random matrix corresponding to same field element p ∈ �p are

equi-distributed with a given random variable Xp.

We recall that if M0 ∈ M+∞ and Mn = Φσ(Mn−1) for n ≥ 1 then M∞ =M∞

limn→+∞ Mn the convergence taking place in the topology ofM∞ defined by the increasing
sequence of semi-norms given in Formula (12) (see Remark 6).

Theorem 4 (Convergence in law of random structured matrices). Suppose that for each i ∈ �p
the characteristic function of the random variable Xi is continuous at zero. If for n ≥ 1, Mn(X#)
and M∞(X#) are the random structured matrices with skeletons Mn and M∞, , respectively, and as
defined above then:

Law(Mn(X#)) −→n→+∞
Law(M∞(X#)) . (21)

Proof. Before applying Levy’s continuity theorem we clarify the convergence inM∞. The
increasing family of semi-norms (sm)m≥1 defined by:

sm(M) = sm

([
aij
]

i,j≥1

)
:= sup

n≤m

1
n2 ∑

1≤i,j≤n

∣∣aij
∣∣

p ,

gives the maximum proportion of non-null terms in the leading principal parts of dimension
less or equal to m of the matrix M =

[
aij
]

i,j≥1. Taking M0 ∈ M+∞ and Mn = Φσ(Mn−1)

for n ≥ 1, we have that M∞ =M∞ limn→+∞ Mn if and only if:

∀m ≥ 1 , lim
n→+∞

sm(Mn −M∞) = 0 .

If this is the case, taking now ε < 1/m, for a given m ≥ 1, and if sm(Mn −M∞) ≤ ε we have
necessarily the leading principal parts of order m of Mn and M∞ are equal. This implies that
all the entries of the leading principal parts of order m of Mn(X#) and M∞(X#) have that
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same laws. Now given an infinite random matrix M(X#)) =
[
aij(X#)

]
i,j≥1 with skeleton

M =
[
aij
]

i,j≥1 we may consider its characteristic function ϕM(X#)
, for each t ∈ �, by:

∀t ∈ � , ϕM(X#)
(t) =

[
ϕaij(X#)

(t)
]

i,j≥1
=
[
�

[
eitaij(X#)

]]
i,j≥1

.

For each t ∈ �, we have that ϕMn(X#)
(t) and ϕM∞(X#)

(t) are infinite matrices with coeffi-
cients in�. We consider on the spaceM∞(�) of infinite matrices

[
zij
]

i,j≥1 with coefficients
in zij ∈ � the topology defined by the increasing family of semi-norms:

ρm

([
zij
]

i,j≥1

)
= sup

n≤m
∑

1≤i,j≤n

∣∣zij
∣∣ ,

and we now show that:

lim
n→+∞

ϕMn(X#)
(t) =M∞(�) ϕM∞(X#)

(t)

⇔ ∀m ≥ 1 lim
n→+∞

ρm

(
ϕMn(X#)

(t)− ϕM∞(X#)
(t)
)
= 0 ,

for every fixed t ∈ �. It is enough to consider ε < 1/m for any fixed m ≥ 1. As seen
above if n ≥ 1 is such that sm(Mn −M∞) ≤ ε we have necessarily the leading principal
parts of order m of Mn(X#) and M∞(X#) have that same laws and so their the characteristic
functions of the entries of the respective leading principal parts of order m also coincide
and so ρm

(
ϕMn(X#)

(t)− ϕM∞(X#)
(t)
)
= 0. As a consequence of Levy’s continuity theorem

(see ([49], p. 389) or ([50], p. 144)), we have the thesis of the theorem in Formula (21).

4.3. Spectral Analysis of Some Structured Random Matrices

In this Section we will provide results shedding light on the spectral analysis of some
random structured matrices. The first result shows that under some mild assumptions a
random structured matrix defines, almost surely for each one of its realisations, a Hilbert-
Schmidt operator on l2(�), the Hilbert space of square summable sequences. The two main
references needed in this Section are [51,52] for the results on Hilbert–Schmidt operators
and [41] for random linear operators.

Theorem 5 (Random structured matrices with vanishing second moments). Consider a
random structured matrix M(X(#)) =

[
X

mij
ij

]
i,j

with skeleton M =
[
mij
]

i,j only verifying

�[X
mij
ij ] = mij besides the independence of the entries. Let (ei)i≥1 be the canonical orthonormal

basis of l2(�), that is, ei = (e1
i , e2

i , . . . en
i , . . . ) with en

i = δn
i the Kronecker’s delta. We assume that

the second moments �
[∣∣∣Xmij

ij

∣∣∣2] of the random matrix entries go to zero, sufficiently fast as i, j

grow indefinitely, more precisely:

∑
i,j
�

[∣∣∣Xmij
ij

∣∣∣2] = C < +∞ . (22)

Then we have that:

�

[
∑
i,j

∣∣〈M(X(#))ei, ej
〉∣∣2 < +∞

]
= 1 . (23)

Moreover, for ω ∈ Ω almost surely, M(X(#))(ω) defines a bounded operator in l2(�) which is
also a Hilbert–Schmidt operator in l2(�).
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Proof. The proof essentially relies on a Skorohod’s sufficient condition for random linear
operators in Hilbert space. We observe that:

∑
i,j

∣∣〈M(X(#))ei, ej
〉∣∣2 = ∑

i,j

∣∣∣Xmij
ij

∣∣∣2 .

Condition in Formula (22) implies, by Lebesgue’s monotone convergence theorem that:

�

[
∑
i,j

∣∣∣Xmij
ij

∣∣∣2] = ∑
i,j
�

[∣∣∣Xmij
ij

∣∣∣2] = C < +∞

Furthermore, so, by a standard argument we have the conclusion announced in For-
mula (23),

�

[
∑
i,j

∣∣〈M(X(#))ei, ej
〉∣∣2 < +∞

]
= �

[
∑
i,j

∣∣∣Xmij
ij

∣∣∣2 < +∞

]
= 1 .

We first have for ω ∈ Ω almost surely, that the operator M(ω) := M(X(#)(ω)) is bounded,
since, for all s ∈ l2(�), that is such that s = (si)i≥1 with ∑i≥1|si|2 < +∞, we have, by
Parseval’s equality and by Cauchy–Schwartz’s inequality:

‖M(ω)(s)‖2 = ∑
j≥1

∣∣〈M(ω)(s), ej
〉∣∣2 = ∑

j≥1

∣∣∣∣∣∑i≥1

〈
M(ω)(ei), ej

〉
〈s, ei〉

∣∣∣∣∣
2

≤ ∑
j≥1

[(
∑
i≥1

∣∣〈M(ω)(ei), ej
〉∣∣2)(∑

i≥1
|〈s, ei〉|2

)]

=

(
∑

i,j≥1

∣∣〈M(ω)(ei), ej
〉∣∣2)‖s‖2 ,

(24)

and thus, by Formula (23), the operator M(ω) is bounded. The final conclusion results
from Remark 2 in Skorohod’s treaty ([41], p. 8) stating that the condition expressed in
Formula (23), is suffices for the matrix operator defined by the random matrix M(X(#)) to
be a Hilbert–Schmidt operator, almost surely. In fact, by Theorem 2 in ([51], p. 34) we have
that a sufficient condition for the operator M(ω) to be an Hilbert–Schmidt operator is that:

∑
i≥1
‖M(ω)(ei)‖2 = ∑

j≥1
∑
i≥1
|〈M(ω)(ei), ei〉|2 < +∞ ,

and so the last result announced follows.

As a consequence of Theorem 5 and of the spectral theorem we obtain the spectral
representation of the kind of structured random matrices we studied in this Section.

Remark 15 (On the definition of eigenvalues of random structured matrices). Since every
Hilbert–Schmidt operator is compact and the random matrix entries are real the spectral theorem
for compact self adjoint operators (see [52], p. 113) shows that, for ω ∈ Ω almost surely, there is
an orthonormal system (φi(ω))i≥1 of eigenvectors of M(ω) and the corresponding eigenvalues
(λi(ω))i≥1 such that for all s ∈ l2(�) we have that:

M(ω)(s) = ∑
i≥1

λi(ω)〈s, (φi(ω)〉φi(ω) ,
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and since the operator M(ω) is Hilbert–Schmidt we have that:

∑
j≥1

∥∥M(ω)(φj(ω))
∥∥2

= ∑
j≥1

∥∥∥∥∥∑i≥1
λi(ω)

〈
φj(ω), (φi(ω)

〉
φi(ω)

∥∥∥∥∥
2

= ∑
j≥1

∥∥λj(ω)φj(ω)
∥∥2

= ∑
j≥1

∣∣λj(ω)
∣∣2 < +∞ .

So, the random structured matrices studied in this Section have, almost surely, square integrable
eigenvalues sequences .

The next result shows that the image of a nonrandom vector by some of the structured
random matrices in this Section is, asymptotically, a Gaussian vector.

Theorem 6 (Gaussian character of images of nonrandom vectors by some structured
random matrices). Consider a random structured matrix M(X(#)) =

[
X

mij
ij

]
i,j

with skele-

ton M =
[
mij
]

i,j only verifying �[X
mij
ij ] = mij and that and V

[
X

mij
ij

]
is bounded, besides the

independence of the entries. Suppose that x ∈ l2(N) ∩ l1(N). Suppose additionally that:

δL := max
j≤L

�

[∣∣∣〈x, ej
〉

X
mij
ij

∣∣∣3]
�

[∣∣∣〈x, ej
〉

X
mij
ij

∣∣∣2] −→L→+∞
0 . (25)

Then M(X(#))(x) is a vector which has components that are asymptotically Gaussian, a property
that we summarise in the form:

∑
j≥1

〈
x, ej
〉

X
mij
ij �

a(j)
N (D, C2) = N

(
∑
j≥1

〈
x, ej
〉
mij, ∑

j≥1

∣∣〈x, ej
〉∣∣2�[Xmij

ij

])
,

for each component of M(X(#))(x).

Proof. The proof is an application of Lyapunov’s central limit theorem for independent
but not identically distributed random variables (see [53], p. 362). We consider the op-
erator M(X(#)) : l2(�) $→ l2(�) and for notational purposes that (ei)i≥1 is the canon-
ical orthonormal basis of l2(�) and that (e�i )i≥1 is its the dual basis. With the notation
M(ω) := M(X(#)(ω)) we have that M(ω)(x) = ∑i≥1

〈
M(ω)(x), e�i

〉
e�i and if we take a

nonrandom vector x = ∑i≥1〈x, ei〉ei we have that M(ω)(x) = ∑i≥1〈x, ei〉M(ω)(ei), an
expression that may be developed into:

M(ω)(x) = ∑
i≥1

〈
∑
j≥1

〈
x, ej
〉

M(ω)(ej), e�i

〉
e�i = ∑

i≥1
∑
j≥1

〈
x, ej
〉〈

M(ω)(ej), e�i
〉
e�i

= ∑
i≥1

(
∑
j≥1

〈
x, ej
〉

X
mij
ij

)
e�i ,

using the fact that M(ω) =
[

X
mij
ij

]
i,j

. We observe that using previous notations we

have that:

�

[〈
x, ej
〉

X
mij
ij

]
=
〈

x, ej
〉
mij and�

[〈
x, ej
〉

X
mij
ij

]
=
∣∣〈x, ej

〉∣∣2V[Xmij
ij

]
.
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Now due to Lyapunov central limit theorem, the assumption made in Formula (25) and
Berry estimate for the rate of convergence, we may write, for a variable A = A(L) = O(L):

�

⎡⎢⎢⎣∑
j≤L

〈
x, ej
〉

X
mij
ij −�

[〈
x, ej
〉

X
mij
ij

]
√

∑j≤L
∣∣〈x, ej

〉∣∣2�[Xmij
ij

] ≤ x

⎤⎥⎥⎦ =
1√
2π

∫ x

−∞
e−

t2
2 dt + AδL .

The above expression may be written as:

�

[
∑
j≤L

〈
x, ej
〉

X
mij
ij ≤ x

√
∑
j≤L

∣∣〈x, ej
〉∣∣2�[Xmij

ij

]
+ ∑

j≤L

〈
x, ej
〉
mij

⎤⎦
=

1√
2π

∫ x

−∞
e−

t2
2 dt + AδL .

(26)

Since x ∈ l2(�) and�
[

X
mij
ij

]
, the variances of the entries of the matrix M(ω), are bounded

we have that:
∑
j≥1

∣∣〈x, ej
〉∣∣2�[Xmij

ij

]
= C2 < +∞ .

Since x ∈ l1(N) ∩ l2(N) and mij ∈ �p we have that ∑j≥1
∣∣〈x, ej

〉∣∣mij < +∞. As a conse-
quence let:

∑
j≥1

〈
x, ej
〉
mij = D ∈ R .

Consider the partial sums ∑j≤L
〈

x, ej
〉
mij = DL and

√
∑j≤L

∣∣〈x, ej
〉∣∣2V[Xmij

ij

]
:= CL. We

may write Formula (26) in the form:

�

[
∑
j≤L

〈
x, ej
〉

X
mij
ij ≤ xCL + DL

]
=

1√
2π

∫ x

−∞
e−

t2
2 dt + AδL ,

which, by a change of variable, amounts to:

�

[
∑
j≤L

〈
x, ej
〉

X
mij
ij ≤ y

]
=

1√
2πC2

∫ y

−∞
e−

(u−D)2

2C2 du + AδL . (27)

Since we have that:

1√
2πC2

∫ y

−∞
e−

(u−D)2

2C2 du =
1√
2π

∫ xC+D

−∞
e−

t2
2 dt = lim

L→+∞

1√
2π

∫ xCL+DL

−∞
e−

t2
2 dt

= lim
L→+∞

1√
2πC2

L

∫ y

−∞
e
− (u−DL)

2

2C2
L du ,

and from Formula (27), we have immediately:

lim
L→+∞

�

[
∑
j≤L

〈
x, ej
〉

X
mij
ij ≤ y

]
=

1√
2πC2

∫ y

−∞
e−

(u−D)2

2C2 du .

We may conclude that, on account of the independence of the entries of the random matrix,
we have that M(X(#))(x), for all nonrandom x, is a random vector which has components
∑j≥1

〈
x, ej
〉

X
mij
ij that are asymptotically Gaussian.
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Remark 16. The spectral analysis discussed in Remark 15 ensures a spectral decomposition of the
random structured matrix operator M(X(#)(ω)) to exist for ω almost surely and so not only the
eigenvalues but also the eigenvectors are random variables. Theorem 6 shows that if there exist an
almost surely constant eigenvector of the operator M(X(#)(ω)) then the correspondent eigenvalue
is Gaussian.

Whenever the distributions for the three symbols are identical the effect of having
a structured matrix naturally disappears as a consequence of Theorem 1. With different
distributions the effects of having structured matrices appear.

For an illustration example in Figure 3 we have chosen,

X0 � N (0, σ2) and X1 � N (1, σ2) and X2 � N (2, σ2)

and we took successively larger values for the variance.

Remark 17 (Identifying a random structured model by spectral analysis). There are two
conclusions that we may obtain from a first analysis of Figure 3. The first is that, as expected, for
smaller variances there is a similarity between the distribution of the eigenvalues in the plane of the
structure matrix, the skeleton of the random matrix with entries considered in the complex field,
and of the associated random matrix; a second observation, stressing well known facts, is that for
sufficiently large variance the distribution of the eigenvalues of the random matrix is similar to the
distribution of eigenvalues of a random matrix with independent and identically distributed entries
as in Theorem 1.

4.4. Modelling: Random Surfaces Associated to Random Matrices

In this Section we show that to each structured infinite matrix, under some hypothesis,
we can associate in a canonical way a random field, for instance, defining a random surface
over the unit square in the plane. The procedure is akin to the ones used to define the
multiplicative chaos of Mandelbrot, Kahane, and Peyrière (see [54]) with the difference that
we use products of real valued random variables instead of non-negative ones.

Prior to that we first provide a technical observation. The general theory of infinite
products of random variables of arbitrary sign is quite elaborated when compared with the
theory of infinite sums of random variables (see, for instance, [55–57]). Nevertheless, in
the case that the sequence of products is a (sub or super) martingale there are immediately
convergence results that can be taken to be used. Consider an infinite matrix M which is a
fixed point of some matrix substitution map. This assumption is motivated by the idea that
an observed matrix structure must have some permanence in time in order to be observed.
We will define an infinite random structured matrix with given skeleton M as a matrix
[Xi,j]i,j≥1 having as entries independent random variables, such that E

[
X

mi,j
i,j

]
= mi,j.

We now associate to the columns of the random matrix [Xi,j]i,j≥1 the following se-
quence of random variables (Lj)j≥1.

Lj = Lj(α, γ) := γ
1
xα

j

+∞

∑
i=1

X
mi,j
i,j

pi with xj :=
+∞

∑
i=1

mi,j

pi

with α ≥ 1 and 0 < γ ≤ 1. We will also suppose that there are no columns with only
zeros in any of the substitution matrices, which implies that there exists ε > 0 such that
xj > ε. The parameters α and γ will be chosen to satisfy certain conditions ahead. In order
to define the random surface we take a partition of ]0, 1[2 by a sequence of dyadic cells. A
representation of a decreasing sequence of dyadic cells in ]0, 1[2 is given in Figure 4.
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Figure 4. A decreasing sequence of dyadic cells.

In order to link the column random variables of the sequence (Lj)j≥1 to the dyadic
cells we consider for each decreasing sequence of dyadic cells such as:

C = (c(i1, i1i2, i1i2i3, . . . , i1i2i3 . . . iN))N≥1

which is uniquely identified by the indexes identifying the decreasing sequence of dyadic
cells i1, i1i2, i1i2i3, . . . , i1i2i3 . . . iN , . . . , i1, i2, i3, . . . , iN , · · · ∈ {1, 2, 3, 4}. We have the follow-
ing algorithm to rename the column random variables of the sequence (Lj)j≥1 ≡ (Lj(α))j≥1:

W1 = L1 W2 = L2 W3 = L3 W4 = L4
W1,1 = L5 W1,2 = L6 W1,3 = L7 W1,4 = L8
W2,1 = L9 W2,2 = L10 W2,3 = L11 W2,4 = L12
W3,1 = L13 W3,2 = L14 W3,3 = L15 W3,4 = L16
W4,1 = L17 W4,2 = L18 W4,3 = L19 W4,4 = L20 . . .

The linking algorithm of the column random variables to the dyadic cells of [0, 1]2 in its
first step and second steps is as indicated in Figure 5.

Figure 5. The placement of the first four random variables: first step (left); The placement of the next
16 random variables: second step (right).

We now detail the sequence of random variables that give the height of the random
surface. For that purpose we define a sequence of random variables (MN)n≥1 uniquely
associated with a decreasing sequence of dyadic cells in the following way:

MN = MN(c(i1, i1i2, . . . , i1i2 . . . iN)) := Wi1 ·Wi1i2 ·Wi1i2i3 . . . Wi1i2i3...iN =
N

∏
k=1

Wi1i2i3...ik , (28)

observing that MN = MN(c(i1, i1i2, . . . , i1i2 . . . iN)) with c(i1, i1i2, . . . , i1i2 . . . iN) the finite
sequence of dyadic cells that goes until the Nth step. We further observe that for every
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(s, t) ∈]0, 1[×]0, 1[ there exists an unique sequence C(s, t) = (c(i1, i1i2, . . . , i1i2 . . . iN))N≥1
of decreasing dyadic cells such that:

{(s, t)} =
⋂

N≥1

c(i1, i1i2, i1i2i3, . . . , i1i2i3 . . . iN)

This decreasing sequence of dyadic cells of a given point allows, with an additional hypoth-
esis, the definition of the random surface via the sequence (MN)N≥1 = (MN(C(s, t))N≥1.

Consider the left (negative) tail average for the distribution of X
mi,j
i,j given by:

ai,j := −
∫ 0

−∞
xdF

X
mi,j
i,j

(x) .

We have the following result.

Theorem 7 (Existence of a nontrivial random field associated with a structured random
matrix). Suppose that the following assumptions are verified:

(a) The left tail averages verify:
∞

∑
i=1

ai,j

pi ≤ m < +∞ ,

for some constant m.
(b) The variances of the random variables X

mi,j
i,j verify �

[
X

mi,j
i,j

]
= x2α0

j · vi, for a certain
α0 = α0(m) to be determined later and with vi such that:

1 < V :=
∞

∑
i=1

vi

p2i < +∞ .

Then, there is a combination of the parameters α, γ such that, for each (s, t) ∈]0, 1[×]0, 1[ the
sequence (MN)N≥1 = (MN(C(s, t))N≥1 is a supermartingale that converges almost surely to a
random variable X(s,t) defining the random field (X(s,t))(s,t)∈]0,1[2 , that is:

X(s,t) := lim
N→+∞

MN(c(i1, i1i2, . . . , i1i2 . . . iN)) a. s. , (29)

and �
[∣∣∣X(s,t)

∣∣∣] < +∞. Moreover, �
[

X(s,t)

]
≥ 1, that is, the random variable X(s,t) is

not constant.

Proof. We first observe that since xj ≥ ε we have:

�
[∣∣Lj(α, γ)

∣∣] ≤ γ

xα
j

⎛⎝+∞

∑
i=1

�

[∣∣∣Xmi,j
i,j

∣∣∣]
pi

⎞⎠ =
γ

xα
j

(
+∞

∑
i=1

mi,j + ai,j

pi

)
≤ γ

1 + m
εα

.

We now choose α = α0 such that (1 + m)/εα ≤ 1. Due to the independence of the of the
random variables X

mi,j
i,j , we have that:

�
[
Lj
]
=

γ2

x2α0
j

+∞

∑
i=1

�

[
X

mi,j
i,j

]
p2i =

γ2

x2α0
j

+∞

∑
i=1

x2α0
j · vi

p2i = γ2V .

We now choose γ = γ0 ≤ 1 such that γ2
0V = 1. The random variables of the sequence

(Wi1 , Wi1i2 , Wi1i2i3 , . . . Wi1i2i3...iN )N≥1 are, in fact, distinct random variables of the sequence
(Lj(α0, γ0))j≥1 and so, are independent. It is well known that, since

0 ≤ �
[
Lj(α0, γ0)

]
=
∣∣�[Lj(α0, γ0)

]∣∣ ≤ �[∣∣Lj(α0, γ0)
∣∣] ≤ 1 ,
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a sequence such as the one defined by Formula (28) is a supermartingale with respect to its
natural filtration (see, for instance, ([58], p. 475)). Due to the independence we have that:

[|MN |] =
[∣∣Wi1

∣∣] · [∣∣Wi1i2

∣∣] · [∣∣Wi1i2i3

∣∣] . . .
[∣∣Wi1i2i3...iN

∣∣]
=

N

∏
k=1

[∣∣Wi1i2i3...ik

∣∣] ≤ 1 ,

that is, supN≥1 [|MN |] ≤ 1, and so, due to a well known theorem of Doob (see, for
instance, ([58], p. 508)) the first conclusion follows. Using the facts that

[
Lj(α0, γ0)

]
= 1

and that the random variables Wi1i2i3...ik are distinct elements of the sequence(Lj(α0, γ0))j≥1,
observing that for k �= l we have that,

[Lk · Ll ] = [Lk] · [Ll ] + [Lk] · [Ll ]
2 [Ll ] · [Lk]

2

= 1 + [Ll ]
2 + [Lk]

2 ≥ 1 ,

by induction, we now can state that:

[MN ] =

[
N

∏
k=1

Wi1i2i3...ik

]
≥ 1 ,

and so the second conclusion also follows.

Let us give an idea of a random field built under the hypothesis of Theorem 7. In
Figure 6, we present a low order approximation of the random surface associated with the
example introduced by Formula (1) in Section 2.1. The skeleton for this approximation is
the matrix M7 a square matrix having around 43 million entries.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. An approximation of low order of the random surface, built upon the skeleton M7: surface
plot (left); Contour plot: (right).

Remark 18 (On the covariance of the random field (X(s,t))(s,t)∈]0,1[2 ). Due to the general
procedure considered in the construction of the random field it is possible to determine some
interesting results on the covariance. In fact let, for two distinct points (s, t), (s′, t′) ∈]0, 1[2, be
the correspondent martingale sequences with elements MN(C(s, t)) and MN+P(C(s′, t′)) with
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N, P ≥ 1. Let us suppose that the integer 0 ≤ N0 < N is the largest integer such that the points
(s, t), (s′, t′) both belong to the same dyadic cell. It is then clear then that:

Cov
[
MN(C(s, t)), MN+P(C(s′, t′))

]
= �

[
MN0(C(s, t))2

]
�

[
N

∏
k=N0+1

Wi1i2i3...ik (C(s, t))

]
�

[
N+P

∏
k=N0+1

Wi1i2i3...ik (C(s
′, t′))

]
−�[MN(C(s, t))]�

[
MN+P(C(s′, t′))

]
.

If all the random variables of the sequence (Lj)j≥1 have mean equal to 1 and then, forcefully, the
absolute moment of second order is strictly larger than 1, for instance, equal to 2, then, again by
Lebesgue convergence theorem we have that:

Cov
[

X(s,t), X(s′ ,t′)

]
= 2N0 − 1 ,

where, as already said, N0 ≥ 0 is the largest integer such that the points (s, t), (s′, t′) both belong
to the same dyadic cell. If the points do not belong to any common dyadic cell (see Figure 5), that is
if N0 = 0, the covariance is null. The closer the points are, the larger the integer N0 is, and so, the
larger the covariance.

5. Conclusions and Future Work

In this work, we introduced structured random matrices having a skeleton built from
the a matrix substitution process with entries in a finite field. We showed that the iterated
application of a particular kind of matrix substitution generates a sequence of matrices that
admit a periodic point—that may be a fixed point—or a fixed point for the sequence of
matrix principal parts of a given order. The random matrices, with independent entries,
having as skeletons matrices derived from this matrix substitution process have remarkable
properties whenever the random variables satisfy some uniform properties. It is showed,
under adequate hypothesis, that:

• The existence of a particular type of structure of matrix substitution type is identifiable
by simple statistical procedures;

• The convergence in law of a sequence of random matrices having as skeletons a
sequence of matrices with entries in a finite field that, of matrix substitution type,
converges to a fixed point;

• There is a generic result on the spectral analysis for the random matrices derived from
a matrix substitution procedure;

• There is a canonical manner to associate a nontrivial random field with interesting
properties to a random matrix having as a skeleton a matrix with entries in a finite
field of matrix substitution type.

A more detailed analysis of the spectral properties of the random matrices here
introduced is, for us, open to future work. Furthermore, matrices with a high percentage
of zeros can be generated by considering special global matrix substitutions maps; the
detailed properties of these matrices will be object of future work. Finally, a reciprocal
problem to the one considered in this work is to determine if a large matrix is a fixed point
of some global matrix substitution map. A reasonable conjecture is that for every large
matrix there exists a global matrix substitution map admitting a fixed point that is close, in
some sense, to the given matrix.
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