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Laser-based measurement and sensing technology has been paid more and more
attention by academia and industry because of its incomparable advantages, such as high
sensitivity, fast response, and no contact. Its application has penetrated various fields of
scientific research and industrial production, including industrial measurements, material
analysis, environmental monitoring, and more.

In industrial production, laser measurement technology can be used for precision
measurement, quality control, and inspection. For example, laser interferometry can be
used to measure the shape and surface quality of components, while machine vision
technology can be used to measure the distance and position of objects [1–3]. These tech-
nologies can help improve product quality and production efficiency. In the field of material
analysis, laser spectroscopy is an important tool. For instance, laser-induced breakdown
spectroscopy (LIBS) can be used to analyze the elemental composition of samples, and laser-
induced fluorescence spectroscopy (LIFS) can be used to analyze the chemical substances in
samples [4–6]. Furthermore, laser measurement and sensing technologies can also be used
in environmental monitoring and safety fields. For example, laser radar can be used to mea-
sure the concentration and distribution of atmospheric pollutants, while laser absorption
spectroscopy technology can be used for trace gas concentration analysis [7–9]. In recent
years, with the development of laser sources and measurement approaches, many new
technologies and applications of laser measurement and sensing have appeared [10,11].

This Special Issue aims to collect original research papers and reviews on recent
developments of laser measurement technologies and innovative applications. Potential
topics include, but are not limited to, laser measurement and sensing, micro- and nano-
photoelectric measurement, simultaneous measurement of multiple parameters, structured
light measurement, online digital measurement, computational measurement, embedded
photoelectric measurement, and laser spectroscopy analysis.

Geometric parameters are important basic quantities that reflect the physical proper-
ties of an object, and they are also some of the physical quantities requiring the highest
measurement accuracy in modern industrial production. For example, the measurement
accuracy of a modern 3-nanometer wire’s width needs to be sub-nanometer, and laser
measurement has become the only choice for such measurement [12]. Length measurement
is the basis of geometric measurement. Based on the combination of length and angle
measurement, the shape, size, position, and attitude of the target object can be measured
with high precision. In today’s highly developed information society, fast and accurate
simultaneous acquisition of a variety of information is the inevitable trend of the develop-
ment of future measuring instruments; laser multi-parameter simultaneous measurement
is also one of the future important development trends [13]. There are 10 articles in this
Special Issue, in which different laser measurement methods have been used to measure
geometric parameters.

In contribution 1, an absolute-type four-degrees-of-freedom (four-DOF) grating en-
coder that can simultaneously measure the three-axis pose (θx, θy, θz) and one-axis out-of-
plane position of an object with high accuracy was demonstrated. The presented grating

Sensors 2023, 23, 8584. https://doi.org/10.3390/s23208584 https://www.mdpi.com/journal/sensors
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encoder was composed of a stationary reading head and a movable grating reflector. The
authors investigated the modeling and decoupling algorithms to guarantee an independent
calculation of these four-DOF absolute positions. In addition, the authors constructed
a prototype and verified that the proposed grating encoder could achieve the absolute
measurement of four-DOF θx, θy, θz, and Z with an accuracy of sub-arcseconds and sub-
micrometers. The encoder proposed in this research is the first one to achieve absolute
simultaneous measurements of four-DOF position and pose with a large measurement
range. The success of this new grating encoder can benefit various multi-DOF positioning
applications, especially for large-scale synthetic aperture optics (SAO), including stitching
off-axis parabolic mirrors and pulse compression grating.

In contribution 2, a precision 3D measurement instrument integrating multiple laser
range sensors was designed, which fuses the information of multiple redundant laser range
sensors to obtain the coordinates of a 3D position. The authors developed an identification
model of laser beam position and orientation parameters based on redundant distance
information and standard spherical constraint to reduce the requirement for the assembly
accuracy of laser range sensors. In addition, they designed a hybrid identification algorithm
of PSO-LM (particle swarm optimization Levenberg–Marquardt) to solve the high-order
nonlinear problem of the identification model. Experiments of identification of position
and orientation, verifications of the measuring accuracy, and calibration of industrial robots
were conducted, which show the effectiveness of the proposed 3D measurement instrument
and identification methods. Moreover, the proposed instrument is small and can be used in
narrow industrial sites.

The authors of contribution 3 proposed an adaptive hybrid sampling method for
free-form surfaces based on geodesic distance. The free-form surfaces are divided into
segments, and the sum of the geodesic distance of each surface segment is taken as the
global fluctuation index of free-form surfaces. The number and location of the sampling
points for each free-form surface segment are reasonably distributed. Compared with the
common methods, this method can significantly reduce the reconstruction error for the
same sampling points. This method overcomes the shortcomings of the current commonly
used method of taking curvature as the local fluctuation index of free-form surfaces, and
provides a new perspective for the adaptive sampling of free-form surfaces.

Contribution 4 introduced a targetless and simultaneous measurement method of
three-degrees-of-freedom (3-DOF) angular motion errors using digital speckle pattern
interferometry (DSPI). Based on the analysis of the sensitivity mechanism of DSPI to DOF
errors and the formation mechanism of the phase fringes, the relationship between the
angular motion errors and the distribution of the interferometric phases was established,
and a new simultaneous measurement model of 3-DOF angular motion errors was further
proposed by the authors. Furthermore, repetitive tests, noise tests, and precision analysis
were carried out to verify the performance of the system. The test results showed that the
measurement resolution of the system was <1 μrad, which is capable of measuring the
pitch angle, yaw angle, and roll angle at the submicron arc level simultaneously without
target mirrors.

In contribution 5, an improved calibration method based on coplanar constraint was
proposed for a camera with a large FOV. Firstly, with an auxiliary plane mirror provided, the
positions of the calibration grid and the tilt angles of the plane mirror are changed several
times to capture several mirrored calibration images. Secondly, the initial parameters of the
camera are calculated based on each group of mirrored calibration images. Finally, adding
the coplanar constraint between each group of calibration grids, the external parameters
between the camera and the reference plane are optimized via the Levenberg–Marquardt
algorithm (LM). The experimental results show that the proposed camera calibration
method has good robustness and accuracy.

The authors of contribution 6 described a novel laser scattering instrument that mea-
sures mass concentration and particle size in real time over a wide concentration range. The
instrument combines laser scattering and time-of-flight aerodynamics in one optical device.
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In this study, two APD detectors were used to receive the forward-scattered light and the
side-scattered light, respectively, which can increase the sensitivity greatly. In addition, a
high-speed ADC and FPGA were combined to achieve an anti-overlap algorithm objective
to measure the high concentrations of aerosol. It was verified in experiments that the
anti-overlapping algorithm can effectively improve the applicability of the aerodynamic
particle size spectrometer under high concentration conditions.

In contribution 7, a compact and high-precision three-degrees-of-freedom (DOF; X, Y,
and Z directions) grating encoder based on quadrangular frustum pyramid (QFP) prisms
was proposed in this paper to solve the insufficient installation space problem of the reading
head of the multi-DOF in high-precision displacement measurement applications. The
authors built a three-DOF measurement platform through the self-collimation function of
the miniaturized QFP prism. The overall size of the reading head is 12.3 × 7.7 × 3 cm3,
and it has the potential for further miniaturization. The measurement accuracy of the
main displacement is below 500 nm on average; the minimum and maximum errors are
0.07% and 2.84%, respectively. This design will help further popularize the research and
applications of multi-DOF grating encoders in high-precision measurements.

In contribution 8, an evaluation method based on fitting planes was proposed to
evaluate laser plane attitude and determine the degree of laser coplanarity effectively.
Real-time fitting of laser planes with three planar targets of different heights provides
information about the laser plane attitude on both sides of the rails. On this basis, laser
coplanarity evaluation criteria were developed to determine whether the laser planes on
both sides of the rails are coplanar. Using the method in this study, the laser plane attitude
can be quantified and accurately assessed on both sides, effectively resolving the problem
with traditional methods that can only assess the laser plane attitude qualitatively and
roughly, thereby providing a solid foundation for calibration and error correction of the
measurement system.

In contribution 9, a high-precision real-time pose measurement method for the primary
lens of a space telescope in orbit based on laser ranging was proposed. The measurement
of the pose of the primary lens in real time and with high precision is one of the important
techniques for a space telescope. Through this method, the pose change of the telescope’s
primary lens can be easily calculated through six high-precision laser distance changes.
Analysis and experiments show that this method can accurately obtain the pose of the
primary lens in real time. The rotation error of the measurement system is 2 × 10−5 degrees
(0.072 arcsecs), and the translation error is 0.2 μm. This study will provide a scientific basis
for high-quality imaging of a space telescope.

Contribution 10 proposed a LiDAR-based method for sensing the thickness of tunnel
wet spray, which aims to improve efficiency and quality. The proposed method utilizes an
adaptive point cloud standardization processing algorithm to address differing point cloud
postures and missing data, and the segmented Lamé curve is employed to fit the tunnel
design axis using the Gauss–Newton iteration method. This establishes a mathematical
model of the tunnel section and enables the analysis and perception of the thickness of the
tunnel to be wet-sprayed through comparison with the actual inner contour line and the
design line of the tunnel. Experimental results show that the proposed method is effective
in sensing the thickness of tunnel wet spray, with important implications for promoting
intelligent wet spraying operations, improving wet spraying quality, and reducing labor
costs in tunnel lining construction.

Besides geometric parameter measurement, laser technology also has a wide range of
applications in vibration measurement, molecular concentration detection, and more.

The authors of contribution 11 studied the most relevant figures of merit (FoM) of a
DNTT-based organic phototransistor as a function of the timing parameters of light pulses
to assess the device’s suitability for real-time applications. The dynamic response to light
pulse bursts at ~470 nm (close to the DNTT absorption peak) was characterized at different
irradiances under various working conditions, such as pulse width and duty cycle. Several
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bias voltages were explored to allow for a trade-off to be made between operating points.
Amplitude distortion in response to light pulse bursts was also addressed.

In contribution 12, the measurement characteristics of speckles based on the photoin-
duced electromotive force (photo-emf) effect for high-frequency, small-amplitude, and
in-plane vibration were theoretically and experimentally studied. The relevant theoretical
models were utilized. A GaAs crystal was used as the photo-emf detector for experimental
research, as well as to study the influence of the amplitude and frequency of the vibration,
the imaging magnification of the measuring system, and the average speckle size of the
measuring light on the first harmonic of the induced photocurrent in the experiments.
The correctness of the supplemented theoretical model was verified, and a theoretical and
experimental basis was provided for the feasibility of using GaAs to measure in-plane
vibrations with nanoscale amplitudes.

Contribution 13 introduced a small-scale water quality detection instrument that can
detect two representative water quality parameters: the permanganate index and total
dissolved solids (TDS). The permanganate index measured through the laser spectroscopy
method can show the approximate value of organic matter in the water, and the TDS mea-
sured through the conductivity method can show the approximate value of inorganic matter
in the water. In addition, the authors proposed an evaluation method of water quality based
on the percent scores to facilitate the popularization of civilian applications. The instrument
designed in this paper has the advantages of high sensitivity, high integration, and small
volume, which lays the foundation for the popularity of the detection instrument.

The authors of contribution 14 studied a thermal management system for battery
modules (BTMS) of a hybrid train. The authors analyzed the flow rates in each branch and
the pressure losses. Since many branches of this system are built inside the battery box
of the hybrid train, flow rate measurements were conducted by means of an ultrasonic
clamp-on flow sensor because of its minimal invasiveness and its ability to be quickly
installed without modifying the system layout. Experimental data of flow rate and pressure
drop were then used to validate a lumped parameter model of the system, realized in the
Simcenter AMESim® environment.

Contribution 15 mainly focuses on the dust sensing system based on the light scattering
method. The authors minimized the cost by replicating the particle count (PC) of an existing
dust sensing device. The existing device uses multiple sensors to measure the number of
particles according to the size of dust. In this study, the authors attempted to replicate
the performance of a multi-sensor device through a single-sensor device to minimize the
power consumption and reduce the cost of the dust sensing system.

Machine learning and deep learning have been readily adopted in laser measure-
ment and sensing [14–16]. Using machine learning can improve the automation level
and efficiency of optoelectronic detection systems. By training and optimizing machine
learning algorithms with optoelectronic detection data, automatic processing and analysis
of data can be achieved, reducing manual intervention time and error rates, and improving
measurement accuracy and efficiency. This Special Issue includes two articles that combine
optoelectronic detection with machine learning.

Contribution 16 introduced an improved blind/referenceless image spatial quality
evaluator (BRISQUE) algorithm. The algorithm was formulated by using image char-
acteristic extraction technology to obtain a characteristic vector (CV) that consisted of
36 characteristic values that could effectively reflect the defocusing condition of the corre-
sponding image. The authors constructed an image database that contained a sufficient
number of training samples. The trained model is trained to obtain the support vector
machine (SVM) model by using the regression function of the SVM. The method of es-
tablishing the image definition evaluation model via SVM is feasible and yields higher
subjective and objective consistency.

Contribution 17 introduced a polarization imaging device of cotton foreign fiber based
on the difference in optical properties and polarization characteristics between cotton
fibers. The authors proposed an object detection and classification algorithm based on
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an improved YOLOv5 to achieve small foreign fiber recognition and classification. In the
algorithm, the lightweight network Shufflenetv2 with the Hard-Swish activation function
was used as the backbone feature extraction network. The PANet network connection
of YOLOv5 was modified to obtain a fine-grained feature map to improve the detection
accuracy for small targets. A CA attention module was added to the YOLOv5 network to
increase the weight of the useful features while suppressing the weight of invalid features
to improve the detection accuracy of foreign fiber targets. The model volume, mAP@0.5,
mAP@0.5:0.95, and FPS of the improved YOLOv5 were up to 0.75 MB, 96.9%, 59.9%, and
385 f/s, respectively, compared to YOLOv5, and the improved YOLOv5 increased by 1.03%,
7.13%, and 126.47%, respectively, which proves that the method can be applied to the vision
system of an actual production line for cotton foreign fiber detection.

Contributions 18 and 19 are review papers. Contribution 18 focused on the wheel flat
detection techniques and flat signal processing methods based on wayside deployment.
The timely and accurate detection of wheel flats is of great significance to ensure the safety
of train operation and reduce maintenance costs. Commonly used wheel flat detection
methods, including sound-based methods, image-based methods, and stress-based meth-
ods, are introduced and summarized. The advantages and disadvantages of these methods
are discussed, and conclusions are drawn. In addition, the flat signal processing meth-
ods corresponding to different wheel flat detection techniques are also summarized and
discussed by the authors.

In contribution 19, the advances in research on oscillation principles and key tech-
nologies of the different kinds of dual-frequency solid-state lasers are reviewed, including
birefringent dual-frequency solid-state lasers and biaxial and two-cavity dual-frequency
solid-state lasers. The system composition, operating principle, and some main experimen-
tal results are briefly introduced. Several typical frequency difference stabilizing systems
for dual-frequency solid-state lasers are introduced and analyzed. The main development
trends of research on dual-frequency solid-state lasers are predicted.

In summary, This Special Issue presents a variety of advanced laser measurement
techniques and their interesting applications in many areas. We hope that this SI will help
researchers to better understand the state of the art of laser-based measurement and sensing
technologies. We hope that the 19 published papers will also help researchers working in
the field to disclose future perspectives.
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Abstract: An absolute-type four-degree-of-freedom (four-DOF) grating encoder that can simultane-
ously measure the three-axis pose (θx, θy, θz) and one-axis out-of-plane position (Z) of an object with
high accuracy is demonstrated for the first time in this research. This grating encoder is composed of
a stationary reading head and a movable grating reflector. A light beam from the reading head is
projected onto the grating, and three diffracted beams (0th-, +1st-, and −1st-order) are generated,
collimated, and received by three separate quadrant photodetectors (QPDs). The information of
θx, θy, θz, and Z is coded into spot positions of these three diffracted beams on the QPDs. Thus,
the modeling and decoupling algorithms were investigated, and an independent calculation of
these four-DOF absolute positions was theoretically guaranteed. A prototype was then designed,
constructed, and evaluated. Experimental results verified that the proposed grating encoder could
achieve the absolute measurement of four-DOF θx, θy, θz, and Z with an accuracy of sub-arcseconds
and sub-micrometers. To the best of our knowledge, the proposed encoder in this research is the
first one to achieve absolute simultaneous measurements of four-DOF position and pose with a
large measurement range. The success of this new grating encoder can benefit various multi-DOF
positioning applications, especially for large-scale synthetic aperture optics (SAO), including stitching
off-axis parabolic mirrors and pulse compression grating.

Keywords: precision positioning; multi-degree-of-freedom; absolute measurement; grating encoder;
synthetic aperture optics; laser autocollimation

1. Introduction

Large-scale synthetic aperture optics (SAO) systems are highly important in several
applications, such as deep space exploration [1], high-energy laser physics, national defense
security [2], and other basic research fields [3,4]. The position and pose monitoring of the
sub-mirror affects its performance [5]. Therefore, highly accurate, absolute-type, multi-
degree-of-freedom position and pose monitoring equipment is necessary for aligning or
adjusting each sub-mirror to its ideal posture.

Currently, the multi-degree-of-freedom position and pose measurement schemes
mainly include optical and electrical schemes. The electrical method can demonstrate
a high accuracy but is limited in its applications [6,7] because of its short measurement
range, the requirement of conductive measurement target, and complexity of expansion
to multi-DOF. The optical scheme can provide both a nanometric accuracy and a large
range, mainly represented by the laser interferometer [8,9] and the grating encoder [10–13].
However, the laser interferometer is vulnerable to environmental variation because of its
long exposed optical path, which greatly influences the measurement standard, that is, light
wavelength. In contrast, the optical path in the grating encoder is much shorter, and its
primary measuring standard is the physical grating pitch [14–16]. Thus, the grating encoder
is less affected by the environment, normally demonstrates a more stable performance,
and has great potential for precision position and pose measurement [17–19]. However,
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the state-of-the-art grating encoders mainly focus either on the absolute measurement in
one-axis, or on the multi-DOF incremental measurement [20–23], and there are few types
of research on absolute-type multi-DOF measurement, and it remains a large challenge
to combine them while keeping a compact and lower weight structure. Thus, there is a
pressing need to develop a grating-based 6-DOF absolute position and pose measurement
method with high stability, accuracy, and compactness.

To address the same problems, some effective measurement schemes were proposed
for in-plane position measurement by phase detection [24]. Li et al. [25,26] proposed an
absolute 2-DOF encoder with two probes, which uses the correlation of reference codes
to obtain the absolute position information of the measurement target and achieves a
0.5 μm absolute position accuracy in X- and Y-directions. Furthermore, Shi et al. [27]
proposed a hybrid-positioning methodology that combines a pulse signal generated from
the correlation of reference codes as that in Ref. [25] and an incremental interference signal
to improve the positioning accuracy of the reference position. The positioning repeatability
was greatly improved and reached 10 nm for the motion range of several tens of millimeters.
Due to the success of the in-plane X- and Y-direction absolute position measurement, the
main research work of the six-DOF absolute measurement can focus on the out-of-plane,
i.e., the 4-DOF absolute position and pose measurement of θx, θy, θz, and Z-direction.

Several related types of research have been proposed for out-of-plane measurement [28,29]. Gao
et al. first demonstrated a three-DOF (θx, θy, θz,) autocollimator by using a grating reflector
to replace the flat mirror in the conventional laser autocollimator [30,31]. Although this
innovative autocollimator can provide a high resolution and a simultaneous measurement
of three-DOF poses, this is mainly for incremental measurement and not Z-direction
position measurement. Then, Liu et al. modified the proposal in Ref. [30] and proposed a
four-DOF system, allowing simultaneous measurement of four error motions involving
Z-direction [32], which was then expanded to be five-degrees-of-freedom approach [33].
These studies still focused on incremental measurement tests and did not discuss the
possibility of absolute measurement or inevitable alignment error compensation, which
is indispensable for these kinds of multi-DOF measurement systems. They also do not
demonstrate each posture for the multi-DOF position and pose motion inputs, so these
studies lack comprehensive evaluation of decoupling accuracy. The actual experiment
ranges in these studies were not sufficient at less than 4 arcseconds and with a large
relative measurement error, e.g., the 3×STDEV of yaw error is 0.4′ ′ in the range of 0.6′ ′ also
prevented its advancement.

In order to meet the high accuracy and absolute measurement demand of the out-of-
plane 4-DOFs of the sub-mirror, three improvement works based on the abovementioned
multi-DOF out-of-plane research were carried out in this study. Firstly, an absolute zero-
point of the QPD coordinate system was proposed to establish the absolute coordinate
of the spot position, and the absolute position and pose of the grating reflector can be
decoupled by the absolute coordinates of the three diffracted spots (+1st-, 0th-, and −1st-
order beams). Secondly, a homogeneous error compensation matrix involving installation
posture error and installation distance error was proposed, which can significantly reduce
the crosstalk error and improve the measurement accuracy. Finally, a compact prototype
system was designed and built in this study. For the first time, a verification experiment of
simultaneous input of multiple main motions was used to obtain the optimal homogeneous
error compensation matrix, and high-precision independent decoupling of the absolute
position and pose of the out-of-plane 4-DOF was realized, fully verifying the excellent
performance of the proposed grating encoder.

2. Principle and Method

As shown in Figure 1a, the change in the SAO focus and the error between the ideal
and real-time posture of the sub-mirror decreases the SAO performance. The proposed
encoder is used as a monitor in the system described in Figure 1b to help the actuator to
adjust the sub-mirror to its ideal posture.
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Figure 1. (a) The focus change of the synthetic aperture optics (SAO) and the ideal and real-time
postures of the sub-mirror; (b) the application of the encoder.

Figure 2a shows the schematic of the grating encoder. This grating encoder is com-
posed of a stationary reading head and a movable grating reflector. The 660 nm wavelength
laser beam is emitted from the laser diode (LD) and illuminates the grating reflector through
the beam splitter (BS). The diffraction beams are the +1st-, 0th-, and −1st-order beams,
which are refracted and focus on three QPDs through three convex lenses (CLs). The posi-
tion information regarding the light spot on the QPD is shown in Figure 2b. The specific
positions (xA, yA, xB, yB, xC, yC) of the light spot are calculated according to the back-end
photocurrent information, and the specific calculation formula can be expressed as formula
(1). In this paper, the obtained coordinates are absolute coordinates; thus, the position
coordinates on the QPD are all signed, and from the front of the QPD, right and up are
positive directions. {

xα = (Iα1+Iα2)−(Iα3+Iα4)
Iα1+Iα2+Iα3+Iα4

,

yα = (Iα1+Iα3)−(Iα2+Iα4)
Iα1+Iα2+Iα3+Iα4

,
(1)

where Iα are the four-way current signal outputs of the QPD, α = A, B, or C.
Taking QPDA as an example, due to different light intensity distributions, the coordi-

nate value can be calculated from Formula (1). The coordinate origin of the two-dimensional
coordinate system is the symmetric center of the four photodetectors. Due to the mechanical
structure, it is difficult to adjust the light spot to be perfectly located at the symmetrical
center of the QPD. Therefore, at the beginning of the test, the light spot is located at the
position (xA, yA) of the coordinate system of the QPD, and xA and yA are very close to 0.
The point (xA, yA) is used as the origin of a new QPDA coordinate system in Figure 2b,
which is represented in the form of the dashed line. In the new QPD coordinate system,
the light spot is located at the coordinate origin, The new coordinate systems of QPDB and
QPDC are simultaneously established according to this method.

First, the initial positions of the spots are set as the zero-point positions, i.e., every
spot position is at the origin of the new QPD coordinate system. When the grating moves
simultaneously in four degrees of freedom, the three light spots in the QPDA, QPDB, and
QPDC assume the (x1, y1), (x0, y0), and (x−1, y−1) positions, respectively, which are unique
coordinates for calculating the absolute position and pose.
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Figure 2. (a) The schematic of the encoder; (b) the spot coordinate of the QPDs.

In these coordinates, the position of the 0th-order light change is only related to θx
and θy, which can be solved in Formulas (2) and (3). In addition, z and θz also cause the
movement of the other spots and can be solved using Formulas (4) and (5).

θx =
kθx y0

2 f
= kθxz1

kθx y1

2 f
= kθxz−1

kθx y−1

2 f
, (2)

θy =
kθy x0

2 f
= kθydz1

kθy x1

2 f
= kθydz−1

kθy x−1

2 f
, (3)

θz = kθz
(y−1 − y0/kθxz−1)− (y1 − y0/kθxz1)

2L
, (4)

z = kz
x−1 − x0/kθydz−1 + x1 − x0/kθydz1

2
, (5)

where kz, kθx, kθy, and kθz are the parameters measured in the pre-experiment. f is the focal
length of the convex lens, and L is the equivalent distance between the photodetectors A
and B (or C and B). kθxz1 and kθxz−1 are the impact factors of θx on the +1st- and −1st-order
spot positions during the movement, and so are kθydz1 and kθydz−1 of θy.

However, in the simultaneous motions of 4-DOF absolute position and pose exper-
iment, there is an unexpected posture error inevitably generated between the grating
encoder measured value O (original value, shown in Formula (6)) and the true value T
(shown in Formula (7)) due to the imperfection in grating encoder alignment. This posture
error can be viewed as a system error and be predicted by using a compensation matrix.
The error compensation matrix is a 4 × 4 matrix (M), which can be obtained using Formula
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(8) after the pre-experiment. With this error compensation matrix, the original value can
be converted into the output of the grating encoder (θx_Encoder, θy_Encoder, θz_Encoder,
z_Encoder).

O =

⎡⎢⎢⎣
θx1O_main θx2O θx3O

θy1O θy2O θy3O
θz1O θz2O_main θz3O
z1O z2O z3O_main

⎤⎥⎥⎦, (6)

T =

⎡⎢⎢⎣
θx1T_main θx2T θx3T

θy1T θy2T θy3T
θz1T θz2T_main θz3T
z1T z2T z3T_main

⎤⎥⎥⎦, (7)

M × O = T, (8)

where M can be obtained in the pre-experiment with one main motion.
Due to installation errors, the 4-DOF movement is output simultaneously. The three

main motions move separately, i.e., θx, θz, z, thus generating three groups of main and
error motions. Then, A matrix O composed of θx_Original, θy_Original, θz_Original, and
z_Original can be collected, and M = T × O−1.

3. Experiments and Discussion

The absolute 4-DOF grating encoder test bench was built, and the schematic figure
of the experiment is shown in Figure 3. The measurement truth value is mainly obtained
by the dual-frequency laser interferometer and the autocollimator. A reflector is placed
below the grating at 45 degrees, and a plane reflector is pasted at the grating so that the
laser autocollimator can measure θx and θz.

Figure 3. Schematic figure of test bench.

The actual test bench is shown in Figure 4a. The autocollimator can measure the
absolute angle (θx, θz) of the grating with a measurement accuracy of 0.1′ ′. The laser
interferometer can measure the absolute displacement of the z-direction with a resolution
and measurement accuracy of 0.1 nm and ±160 nm, respectively. The movement element
is shown in Figure 4b, which can give the main motions of θx, θz, z, and error motion θy.
The z-direction movement is controlled by the high-dynamic Z Nanopositioner (PI) (model:
p-733. Z), with a resolution of 0.3 nm and a linearity of 0.03%, and the angles are controlled
by a two-axis tilt table driver, with a resolution of 0.02” and a linearity of 0.5%.
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Figure 4. (a) The test bench; (b) movement element.

The value measured by the laser interferometer and autocollimator is called the true
value, as described below and shown in the following figure as θx_True, θz_True, and
z_True. Owing to the limitation of the autocollimator, the true value of θy was obtained
during another set of repeated experiments by changing the measurement surface. The
following single motion, resolution, and multiple motion experiments were carried out in
this study.

The pre-experiment was performed in θx(80′ ′), θz(80′ ′), and the z-direction (100 μm)
as the main motions and obtained all the constant parameters and the error compensation
matrix (M) in Formulas (2)–(8). As is evident from Figure 2b, it is difficult to adjust the
spot center to the QPD center, but when the spot is located at the center of the QPD, the
measurement sensitivity and the resolution of the encoder is the highest. In this study,
the distance between the spot center and the QPD center is represented by the coefficient
of variation. The coefficients of variation, i.e., the ratio of standard deviation to average
of Iα1, Iα2, Iα3, and Iα4 on QPDs A, B, and C are 0.1802, 0.2662, and 0.3135, respectively.
Upon this, the resolutions of rotation around the x- and z-axes and the displacement along
the z-axis are 0.02′ ′, 0.06′ ′, and 20 nm, respectively, as shown in Figure 5a,b. Thus, the
coefficient of variation values confirm that the encoder’s resolution and accuracy can be
further improved, and it can work with high accuracy after being disturbed in practical use.

In Figure 5c,d, when a single freedom motion is provided by the movement element in
5 s, the residual errors are −0.60 to 0.70 arcsec in 50 arcsec θx rotation, −0.81 to 0.85 arcsec
in 40 arcsec θz rotation, and −0.55 to 0.49 μm in the 100 μm z-direction displacement. This
indicates that in the continuous measurement of a single degree of freedom, the encoder
has good linearity and stability without a large drift.

In multiple motion experiments, the square wave rotation motions with a frequency
of 0.1 Hz and the amplitude of 40′ ′ and 80′ ′ around the x- and z-axes and a z-direction
motion with 100 μm at a speed of 2 μm/s are simultaneously given by the movement
element. Three main movements are input concurrently, and their comparison with the
true value is shown in Figure 6. Since the movement element is a square wave motion,
there are data points during an abrupt change, and the original value cannot align with the
true value on the timeline. Therefore, the data areas that rise or fall steadily were selected
for data comparison, and the length of time was also changed in one simultaneous test.
Since the movement element’s accuracy is considerably high, this comparison method can
characterize the measurement performance of the encoder.
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Figure 5. (a) Angle resolution of the encoder; (b) displacement resolution of the encoder; (c) angle
error between the encoder value and the true value in a single degree; (d) the displacement error
between the encoder value and the true value in a single degree.

Because the measurement point of the z-axis displacement is different from that of the
grating encoder in periodic motion, a moving arm length linearly increases the displacement
along the z-axis. Since the error matrix calculation includes the linear relationship based on
this structure, the measured value of the laser interferometer represents the true value of
the grating displacement herein.

During the period (θx = 40′ ′, θz = 40′ ′, z = 100 μm) shown in Figure 6d–f before the
error matrix compensation, the grating encoder’s original value is stable but not correct.
From the output of the encoder’s original signal, because of the simultaneous movement of
multiple degrees of freedom, the angular measurement error around the x-axis is about
−3′ ′ to 7′ ′, while the angular measurement error around the z-axis is large, reaching the
degree of about ±40′ ′. Additionally, the angular measurement error first decreases overall
and then rises and returns, mainly because the rotation around the z-axis is affected by
z-axis displacement. The error of the original value is far from the true value; therefore, the
original signal requires compensation by the error matrix.

Figure 6d–i show that in the output after compensation, the measurement error is
greatly reduced. When the motion period (θx = 40′ ′, θz = 40′ ′, z = 100 μm) is applied
to the grating, the θz error range is (−23.58′ ′, 18.01′ ′) before compensation and (−5.56′ ′,
0.98′ ′) after compensation. The error range in z-direction position is (−13.64, 13.94 μm)
before compensation and (−2.33, 3.26 μm) after compensation. When the motion period
(θx = 80′ ′, θz = 80′ ′, z = 100 μm) is applied to the grating after compensation, the θz error
range is (−6.52′ ′, 3.91′ ′), and the error range in the z-direction position is reduced to
(−4.13, 3.42 μm). θx remains a relatively low error range without obvious change in these
two periods. During the period (θx = 40′ ′, θz = 40′ ′, z = 100 μm) shown in Figure 6d–f,
the root mean square (RMS) of the errors of the encoder value relative to the true value
is shown in Table 1. The standard error around the x-axis increased by 2.26%, mainly
because the fluctuations of the other three degrees of freedom were superimposed on it
after compensation by the error matrix. The RMS of the errors around the z-axis was
reduced by 78.99%, and the RMS of the errors of the displacement of the z-axis was reduced
by 88.14%, demonstrating the effectiveness of the error matrix compensation method. As

15



Sensors 2022, 22, 9047

shown in Figure 6g–i, when the period is θx = 80′ ′, θz = 80′ ′, and z = 100 μm, the same
compensation matrix is used, and the RMS of the errors of the encoder value is 3.02′ ′, 3.25′ ′,
and 1.21 μm in θx, θz, and z-direction, respectively. When the measuring range is enlarged,
the error does not increase obviously, which proves the effectiveness and reliability of the
compensation method.

Figure 6. (a–c) Position and pose errors without compensation; (d–i) position and pose errors after
compensation.

Table 1. The RMS of the error of the encoder value relative to the true value.

Error Value Original Value After Compensation Error Change Percentage/%

θx/(′ ′) 2.06 2.11 +2.26
θz/(′ ′) 13.24 2.78 −78.99
z/(μm) 8.66 1.03 −88.14

Table 2 shows the average residual error of the zero-point of the absolute four-degree
encoder with a different motion period. The encoder is stable in the sub-arcsecond and
sub-micron when returning to the origin of position and pose in θx and z-direction. Initially,
the precision of sub-angular seconds can be reached in θz; however, after a movement
of long duration, the average measurement residuals of −1.03′ ′ and 2.93′ ′ are generated,
respectively. This is because in the calculation of the roll angle of the grating, the rotation
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movement of the light spot is simplified to a linear movement, and its initial position is
not at the QPD center, resulting in the enhancement of nonlinearity and error during the
measurement.

Table 2. Encoder average residual of the zero-point.

Zero-Point 1/2(′ ′) 3/4(′ ′) 5/6(μm)

40′ ′40′ ′100μm 0.10/−1.46 −0.21/−1.03 0.0002/−0.73
80′ ′80′ ′100μm −0.07/−0.27 −0.14/2.93 0.10/0.62

Since the autocollimator cannot measure 3-DOF angles simultaneously, only the
compensation data are shown in Figure 6. The error motion of θy is not caused by crosstalk
but by the motion of the movement element itself due to the installation, which could be
detected in the repeated experiments. The data time length in Figure 7 is different from that
of Figure 6 as it does not align the time with the true value and retains the original value,
which is highly unstable. After the compensation, θy is more stable and shows a similar
change of displacement of the z-axis, indicating that the compensation matrix method is
correct. It proves that during the simultaneous operation of the four degrees of freedom,
although the DOFs affect each other, they share a relatively linear relationship within a
certain range. A larger measurement range and accuracy can be achieved by optimizing
the nonlinear formula and the design of the optical path onto the QPD center.

 

Figure 7. The θy value (40′ ′40′ ′100 μm) comparison between the original value and the value after
compensation.

4. Conclusions

This paper proposes an ultra-precision absolute-type multi-degree-of-freedom grating
encoder. Three aspects are studied as follows: Firstly, the absolute position matrix was
constructed by establishing the zero-points of the diffracted light spots on QPD coordinates,
and the absolute 4-DOF position and pose (θx, θy, θz, and Z) of the grating reflector in
space can be decoupled. Secondly, the homogeneous error compensation matrix was
proposed to greatly reduce the crosstalk error caused by installation posture error and
installation distance error and improve the accuracy. Finally, a compact prototype system
was designed, and the effectiveness of the proposed structure and compensation matrix
was fully verified by experiments. Experiments demonstrate that this encoder can provide
absolute 4-DOF position and pose monitoring with sub-arcsecond and sub-micron accuracy
and high stability.

In terms of absolute measurement, the measurement of x and y can be realized at
present [25–27], but the absolute measurement of the other four degrees of freedom cannot.
The measurement schemes [30,31] do not discuss the possibility of absolute measurement
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and only refer to the increment measurement of three angles, which excludes the mea-
surement of z-direction. The current commercial products, such as the TriAngle Products
of Trioptics [34], can only realize the measurement of two angles. Therefore, the encoder
proposed in this paper is very meaningful in the field of absolute multi-degree of freedom
measurement and has great application prospects in future precision positioning.
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Abstract: The low absolute positioning accuracy of industrial robots is one of the bottlenecks prevent-
ing industrial robots from precision applications. Kinematic calibration is the main way to improve
the absolute positioning accuracy of industrial robots, which greatly relies on three-dimensional (3D)
measurement instruments, including laser trackers and pull rope mechanisms. These instruments
are costly, and their required intervisibility space is large. In this paper, a precision 3D measurement
instrument integrating multiple laser range sensors is designed, which fuses the information of multi-
ple redundant laser range sensors to obtain the coordinates of a 3D position. An identification model
of laser beam position and orientation parameters based on redundant distance information and
standard spherical constraint is then developed to reduce the requirement for the assembly accuracy
of laser range sensors. A hybrid identification algorithm of PSO-LM (particle swarm optimization
Levenberg Marquardt) is designed to solve the high-order nonlinear problem of the identification
model, where PSO is used for initial value identification, and LM is used for final value identification.
Experiments of identification of position and orientation, verifications of the measuring accuracy, and
the calibration of industrial robots are conducted, which show the effectiveness of the proposed 3D
measurement instrument and identification methods. Moreover, the proposed instrument is small in
size and can be used in narrow industrial sites.

Keywords: calibration; identification; laser range sensor; standard spherical constrain; measurement

1. Introduction

The application of industrial robots has continuously enhanced the automation and
intelligence of the manufacturing industry. Compared with traditional machine tools,
Industrial robots have the advantages of low cost and high flexibility and are increasingly
used in grinding, milling, or 3D printing [1]. The requirements for the positioning accuracy
of industrial robots are constantly upgrading in many fields [2,3], e.g., aerospace, auto-
mobile manufacturing, machining, etc. Generally, the repetitive positioning accuracy of
industrial robots can reach the order of 0.01 mm, while the absolute positioning accuracy
can only reach the order of 1 mm without calibration [4–6]. However, this order of absolute
positioning accuracy limits industrial robots in relatively high-precision applications, such
as measurement, milling, grinding, etc. The absolute positioning accuracy for an industrial
robot is determined not only by its quality of components, manufacture, and assembly but
by its mechanical degradation, which is mainly affected by the deformation of linkages,
collision, temperature change, and other factors in practice [7–10]. Kinematic calibration
is the major method to improve the absolute positioning accuracy of industrial robots,
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which includes four steps: establishing a kinematic model, measuring the end position
of the robot, identifying the parameters of the kinematic model using the measured data,
and compensating in the motion controller with the identified parameters to improve the
absolute positioning accuracy of the robot [11]. The influence of thermal drift is important
for high-precision industrial robots. After kinematic calibration, the error caused by non-
kinematic factors such as thermal drift can be compensated to make the industrial robot
obtain higher positioning accuracy [12].

The accuracy of measuring is extremely important for kinematic calibration, which is
usually required to be higher than 0.2 mm in the three-dimensional (3D) space. At present,
there are few instruments that can meet this requirement in practice, mainly including
laser trackers, coordinate measuring machines (CMMs), pull rope calibration mechanisms,
etc. [13–15]. However, CMMs with large volumes are rarely used for kinematic calibration
for industrial robots since the site for kinematic calibration in practice is relatively small.

The laser tracker and the pull rope calibration mechanism are the widely used mea-
suring instruments in robot calibration. For the laser tracker, it is necessary to install
one or more reflective targets on the flange of the industrial robot to be measured. The
laser emitted by the laser tracker is reflected by the targets to track and measure the end
position of the industrial robot in 3D space. Gao et al. [16] measured the end position of an
ER20-C10 industrial robot with an API R-20 Radian laser tracker for kinematic calibration,
and the maximum positioning errors of the robot along x, y, and z decreased from 3.17 mm,
3.26 mm, and 3.30 mm to 0.39 mm, 0.68 mm, and 0.56 mm after calibration, respectively.
Jiang et al. [17] calibrated an RS10N robot using a Leica laser tracker, and the maximum
positioning error of the robot decreased from 4.8867 mm to 0.6421 mm. Hsiao et al. [18]
completed the calibration of a PMC6VA030 industrial robot with a Faro laser tracker. The
maximum positioning error and the average positioning error of the robot decreased from
6.294 mm and 2.613 mm to 1.225 mm and 0.310 mm after calibration.

Different from the laser tracker, the pull rope calibration mechanism uses one end of
the rope of the mechanism wound on a photoelectric encoder. The other end is connected
to the end flange of the industrial robot through a universal adapter. The displacement of
the end of the robot can be measured by the length of the rope pulled out [19]. Li et al. [20]
calibrated a 6-DOF robot by using a pull rope calibration mechanism with the result that the
maximum positioning error of the robot decreased from 3.36 mm to 1.07 mm. Mei et al. [21]
used a pull rope calibration mechanism based on SICK BCG13-E1BM0599 to measure
the movement distance of a 4-DoF stacking robot, and the 3σ value of positioning error
decreased from 11.73 mm to 1.79 mm after calibration, where σ is the standard deviation.

The above studies show that the calibration results with laser trackers are more accu-
rate than with the pull rope calibration mechanism. However, in practice, the operation
of the laser tracker is complex and time-consuming, the required intervisibility space is
large, and the cost is also very high [5]. These factors limit its field calibration applica-
tion in the workshop. Compared with the laser tracker, the measurement accuracy of
the pull rope calibration mechanism is much lower, and there is information conversion
from distance to position in the calibration model. As a result, its calibration accuracy is
limited. Nevertheless, the cost of the pull rope calibration mechanism is also lower than
the laser tracker.

Some alternative methods have been presented to meet the increasing demand for
calibration in various industries. Boby et al. [22] proposed a calibration method for the
industrial robot using a monocular camera as the measuring equipment, and the maximum
error of the robot decreased from 8.74 mm to 5.13 mm after calibration. Yang et al. [23]
proposed a kinematic calibration method based on the dynamic measurement of double
ball linkages. After calibration, the average roundness error (the roundness error is the
movement error of a circular path of the robot’s end) of the 6-DOF robot decreased from
0.46 mm to 0.36 mm, and the range of motion errors of the robots’ end in x and y directions
decreased by 0.10 mm and 0.07 mm, respectively. He et al. [24] proposed a kinematic
calibration method to improve the accuracy of a TKB2600 industrial robot using multiple
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location constraints. After calibration, the average relative offset decreased more than 50%.
Icli et al. [25] presented an automated calibration method for industrial robots based on
three orthogonal plunger dial indicators and four reference balls. After calibration, the
maximum position error and average position error of the KUKA KR6 R700 industrial
robot decreased to 0.624 mm and 0.326 mm, respectively. Guo et al. [26] presented a 3D
measurement system (R-test) with three range sensors and used this equipment to calibrate
the HSR-JR605 industrial robot. After calibration, the ratio of distance error to distance
and the ratio of relative position error to the relative position error of the robot decreased
from 14.30 μm/mm and 20.15 μm/mm to 4.4 μm/mm and 10.85 μm/mm, respectively.
The R-test requires the laser beam of the laser range sensor to be strictly orthogonal. The
three-dimensional measurement system based on the R-test relies on a high-precision
displacement platform in the kinematic calibration of industrial robots. However, the
calibration method based on vision measurement is affected greatly by camera distortion,
external light, and target accuracy. Moreover, the calibration method based on the dynamic
measurement of double ball linkages has a limited measuring range and can only improve
the positioning accuracy in the x and y directions. The calibration method based on external
constraints is usually limited by the need to constrain the end of the robot at a point or
contact closely with a plane. Thus, the measured information is less, and only zero-point
calibration can be performed.

To address the issues of current measurement instruments in the field of robot calibra-
tion, we developed a spatial position measurement system (SPMS) based on redundant
laser range sensors for measuring the position and calibrating robots in industrial sites.
The contributions and innovations of this paper are as follows.

• A small precision 3D position measuring device SPMS is proposed, which fuses
the information of multiple laser range sensors. The distance information of laser
range sensors is converted into position information through the standard spherical
constraint to realize the 3D position measurement in a narrow space;

• An identification model of laser beam position and orientation parameters based
on redundant distance information and standard spherical constraint is proposed to
reduce the requirement for the assembly accuracy of laser range sensors;

• To solve the high-order nonlinear problem of the identification model, a hybrid identi-
fication algorithm is proposed, where PSO is used for initial value identification and
LM is used for final value identification;

• Experiments were conducted to verify the measuring accuracy of the proposed device.

The paper is structured as follows. Section 2 provides the principle and construction
of the novel measurement system. The data acquisition method based on reference sphere
constraint, the establishment of the measurement coordinate system, and the identification
model of the position and orientation of the laser beam are given in Section 3. A parameter
identification method of position and orientation of the laser beam based on a hybrid
algorithm of PSO-LM is introduced in Section 4. The experiment of identification of laser
beams and verifications of the measuring accuracy and calibration of industrial robots are
shown in Section 5. Section 6 concludes this paper.

2. Construction of the Measurement System

The measurement system is constructed with redundant laser range sensors to measure
a reference sphere installed on the end of the industrial robot and moving along with the
robot. The components and measurement principles of the system are elaborated on in this
section. The sphere is only mounted on the flange for the robot calibration and not for the
later experiments for parameter identification.

2.1. Components of the Measurement System

The proposed SPMS consists of laser range sensors, a reference sphere, a data acqui-
sition and transmission circuit, and a support mechanism. In order to obtain accurate
coordinates of the spherical center of the reference sphere, the laser beams in the measur-
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ing system should not interfere with each other, and the facula formed by laser beams
projected on the reference sphere should be evenly distributed. Therefore, the laser dis-
placement sensors in SPMS are installed in the regular polygon support mechanism, as
shown in Figure 1.

 

Figure 1. The spatial position measurement system (SPMS).

The performance parameters of the range sensor are shown in Table 1. RC (resistor-
capacitance circuit) filtering and high-performance ADC (analog-to-digital converter) mod-
ules are used to collect, filter and convert the analog signal output by the laser range sensors
in the data acquisition and transmission circuit. The digital signal is then transformed into
distance information through the MCU (microcontroller unit). The schematic diagram and
photo of the circuit are shown in Figure 2.

Table 1. The performance parameters of the range sensor.

Standard
Distance

Measurement
Range

Linearity Repeatability
Temperature
Characteristics

Ambient
Temperature 2

100 mm 75 mm to
130 mm

±0.15% of
F.S. 1 10 μm 0.06% of

F.S./◦C −10 to +50 ◦C

1 F.S. denotes full scale. 2 No condensation or freezing.

  

(a) (b) 

Figure 2. The schematic diagram and photo of the circuit, they should be listed as: (a) The schematic
diagram; (b) the photo of the circuit.

2.2. Measurement Principle of the System

When SPMS is working, the beam of each laser range sensor is projected on the
reference sphere at the same time. The coordinates of the flare on the reference sphere are
substituted into the spherical equation to obtain the position of the reference sphere center,
and then the robot end position is finally measured according to the conversion relationship
between the position of the reference sphere center and the position of the robot end.
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The coordinates of the flare on the reference sphere can be calculated by:

Fk = PLk + γkLk (1)

where k is the number of laser range sensors (k = 1, 2, . . . , K, K is the total number of laser
range sensors in SPMS); Fk is the coordinates of the flare; Lk is the length of the beam that
can be read from the sensor; and PLk and γk are the position and orientation vectors of the
laser beam, respectively, which are determined by the installation of the sensor.

Since Fk is on the surface of the reference sphere, it conforms to the spherical equation,
as shown in (2).

(xk − xB)
2 + (yk − yB)

2 + (zk − zB)
2 = R2 (2)

where xk, yk, and zk are the coordinates of Fk in the x, y, and z direction, respectively; xB, yB,
and zB are the coordinates of the center of the reference sphere PB in x, y, and z direction,
respectively; R is the radius of the reference sphere. The coordinates of PB are what we want
for the reference sphere installed on the end of the robot, which can stand for the position
of the robot. The coordinates of PB can be written as the function of PLk, γk, Lk, and R:

PB = f (PLk,γk, Lk, R) (3)

where Lk can be read from the sensor; R is a known constant; and PLk and γk are unknown
constants that can be obtained by precision installation of the sensors or identification.

The reference sphere is fixed at the robots’ end for kinematic calibration. The center
position of the reference sphere represents the end position of the robot. That is, PB is the
end position of the industrial robot.

However, installing the sensor at a certain position and orientation precisely is very
difficult, costly, and time-consuming. We proposed an identification method to obtain PLk
and γk with redundant laser range information and spherical constrain.

3. Data Acquisition and Modeling for Position and Orientation of the Laser Beam

We propose the data acquisition method based on reference sphere constrain. Then,
the measurement coordinate system for the SPMS is established based on Schmidt orthogo-
nalization and normalization. Moreover, the position and orientation of the laser beam are
modeled with the spherical equation.

3.1. Data Acquisition Method Based on Reference Sphere Constraint

As shown in Figure 3, pk is the flare on the reference sphere of sensor k; Fk is the
coordinate of pk; Ot is the measurement coordinate system; Ow is the world system attached
with the laser tracker; PLk = [xLk, yLk, zLk]T; γk = [γkx, γky, γkz]T and γkx

2 + γky
2 + γkz

2 = 1;
and T is the homogeneous transformation matrix between Ot and Ow; m is the number
of pose changes of SPMS. Three points A1, A2, and A3 are selected on the surface of
the bracket of SPMS, with which Ot is established by Schmidt orthogonalization and
normalization. Then, according to (2), the nonlinear least squares problem is established
by orthogonal decomposition and homogeneous transformation. Finally, the position and
orientation parameters of the laser beam in Ot will be obtained by solving the nonlinear
least square problem.
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Figure 3. The data acquisition procedure of laser beams based on reference sphere constraint.

3.2. Establishment of the Measurement Coordinate System

To determine the origin and the axis direction of Ot, three points A1, A2, and A3, on
the surface of SPMS are selected, which will be measured by the laser tracker. A1 is the
origin of Ot. According to the calculation of A1, A2, and A3, we can obtain two vectors, b

and c, as shown in (4)
b = A2 − A1
c = A3 − A1

(4)

The orthogonal vector of b and c is:

d = b × c (5)

By Schmidt orthogonalization of vectors b, c, and d, the corresponding three mutually
orthogonal vectors β1, β2, and β3 can be calculated by:

β1 = b

β2 = c − 〈c,β1〉
〈β1,β1〉β1

β3 = d − 〈d,β1〉
〈β1,β1〉β1 − 〈d,β2〉

〈β2,β2〉β2

(6)

By normalization of vectors β1, β2, and β3, the corresponding orthogonal unit vectors
α1, α2, and α3 can be obtained. Taking A1 as the origin, α1, α2, and α3 as x axis, y axis, and
z axis, the measurement coordinate system Ot can be established. Since the coordinates of
A1, A2, and A3 are measured by the laser tracker in its measurement coordinate system Ow,
we can obtain the homogeneous transformation matrix T:

T =

⎡⎢⎢⎣
α11 α21 α31 A1x
α12 α22 α32 A1y
α13 α23 α33 A1z
0 0 0 1

⎤⎥⎥⎦ (7)

where αij is the component of αi (I = 1, 2, 3; j = 1, 2, 3); A1x, A1y, and A1z are the coordinates
of A1 in Ow.

3.3. Identification Modeling of Position and Orientation for Laser Beams

As shown in Figure 3, SPMS can be carried by a robot or other machines to move and
be measured in different positions and orientations. The reference sphere is fixed, and
the coordinates of the center of the reference sphere, which is fixed, are PBw = [xBw, yBw,
zBw]T in Ow.
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The coordinate system Ot is moving with SPMS in the calibration process. The
coordinates in Ot will be transformed into Ow for consistency. In Ot, the coordinates of the
flare on the reference sphere of sensor k, i.e., Fk in Ot, can be calculated:

Fk = PLk + γkLk (8)

The homogeneous coordinates of Fk are as shown in (9), which will be used in the next
homogeneous transformation.

Fk4×1 =

[
Fk
1

]
(9)

By multiplying the transformation matrix T, the homogeneous coordinates Fk4×1 in
Ow can be obtained by (10).

Fwk4×1 = T · Fk4×1 (10)

By substituting PLk = [xLk, yLk, zLk]T and γk = [γkx, γky, γkz]T into the equation, the
coordinates of Fk in Ow can be derived by (8)–(10).⎡⎢⎢⎣

xwk
ywk
zwk

1

⎤⎥⎥⎦ = T ·

⎡⎢⎢⎣
xLk + γkxLk
yLk + γkyLk
zLk + γkzLk

1

⎤⎥⎥⎦ (11)

where xwk, ywk, and zwk are the coordinates of Fk in Ow, respectively. Because Fk is a point
on the surface of the reference sphere, (12) can be obtained according to (2) and (11).

(xwk − xBw)
2 + (ywk − yBw)

2 + (zwk − zBw)
2 = R2 (12)

To obtain the least squares solution of xLk, yLk, zLk, γkx, γky, and γkz of (11), (11) and
(12) are rewritten as the function of dk, which is the distance between Fk and PBw:

dk = f
(

xLk, yLk, zLk, γkx, γky, γkz, xBw, yBw, zBw

)
(13)

At m positions and orientations, SPMS can be measured m times, by which m groups
of data, including Lki and A1i, A2i, A3i (i = 1, 2, . . . , m), can be obtained. With these data,
m equations can be obtained according to (13). The solution of these equations can be
converted to a least square problem, as shown in (14).

Δη = [ΔPLk, Δγk, ΔPBw]

min f (Δη) =
m
∑

i=1
Φ(Δη) =

m
∑

i=1
‖dki − R‖

2 (14)

There are K laser range sensors in SPMS, and the position and orientation of the
laser beam of each sensor have six parameters. Thus, (14) has 6K + 3 unknown variables,
including 3 for the coordinates of the center of the reference sphere. Thereby, to ensure that
(14) has definite solutions, m must be greater than or equal to 6K + 3.

4. Parameter Identification of Position and Orientation of Laser Beams

Solving (14), we can obtain the position and orientation of the laser beam of each sensor,
as well as the coordinates of the reference spherical center. The Levenberg–Marquardt
(LM) algorithm is a common method for solving nonlinear least squares problems with the
advantages of fast convergence and strong robustness. However, (14) is a high-dimensional
and strong nonlinear system of equations. When LM was used to solve (14), the results
depended heavily on the initial value. Particle swarm optimization (PSO) is a swarm
intelligence optimization algorithm that seeks the optimal solution through cooperation
and information sharing among particles in the population. Therefore, PSO is suitable for
solving multivariable and strongly nonlinear problems, but its calculation results have a
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certain extent of randomness. We present a PSO-LM hybrid algorithm to solve (14), where
PSO is used to obtain the initial solution, and LM is used for the final solution.

4.1. Initial Parameter Identification Based on PSO

To identify the 6K + 3 parameters in (14), the particle population size t of the PSO is
set as 5000. Then, the dimensions of position vector Xn−1

i and velocity vector Vn−1
i of the

ith particle are all 6K + 3 in the n − 1th iteration, and the iterations of Xn−1
i and Vn−1

i are:

Vi
n = wVi

n−1 + c1r1(P
i
bestn−1 − Xi

n−1) + c2r2(Gbestn−1 − Xi
n−1)

Xi
n = Xi

n−1 + Vi
n

(15)

where Pi
best n−1 is the best solution of the ith particle in the n − 1th iteration; Gbest n−1 is the

best solution of all the particles in the n − 1th iteration; c1 and c2 are the learning factors;
generally, c1 = c2 = 2 [27,28]; r1 and r2 are random numbers with a value range of [0, 1]; and
wn is the inertial factor, which can be calculated by (16).

wn = wmax − (wmax − wmin)n2

g2
n

(16)

where wmax and wmin are the upper and lower bounds of the inertia factor. Generally,
wmax = 0.9, wmin = 0.4, and gn are the maximum number of iterations.

4.2. Final Parameter Identification Based on LM

According to the basic principle of the LM algorithm, the n + 1th iteration equation in
solving (14) is:

δn+1 = δn − (JTJ + λnI)
−1

JT
nεn (17)

where δn is a (6K + 3) × 1 vector; J is a (K × m) × (6K + 3) Jacobian matrix; I is a
(6l + 3) × (6l + 3) identity matrix; εn is a (K × m) × 1 fitting error vector of the reference
sphere; and λn is the damping factor. Let:

JPLkn
=

⎡⎢⎣
∂dk1n
∂xLk

∂dk1n
∂yLk

∂dk1n
∂zkL

...
∂dkmn
∂xLk

∂dkmn
∂yLk

∂dkmn
∂zLk

⎤⎥⎦ (18)

Jγkn
=

⎡⎢⎢⎣
∂dk1n
∂γxk

∂dk1n
∂γyk

∂dk1n
∂γzk

...
∂dkmn
∂γxk

∂dkmn
∂γyk

∂dkmn
∂γzk

⎤⎥⎥⎦ (19)

JPBwkn
=

⎡⎢⎣
∂dk1n
∂xBw

∂dk1n
∂yBw

∂dk1n
∂zBw

...
∂dkmn
∂xBw

∂dkmn
∂yBw

∂dkmn
∂zBw

⎤⎥⎦ (20)

where dkmn is the distance between pk and PBw in the nth iteration; JPLkn, Jγkn, and JPBkn are
the first-order partial derivative matrices of dkmn for each component of PLk, γk, and PwBk;
m is the number of acquisition data; and k is the number of the laser range sensor. Then,
the Jacobian matrix J of laser beam position parameters will be:

J =

⎡⎣JPL1n Jγ1n
JPBw1n

... ... ...
JPLkn Jγkn

JPBwkn

⎤⎦ (21)
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The initial value of the damping factor λ0 is:

λ0 = τ · max
{

max
(

JTJ
)}

(22)

where τ = 10−8, its value is generally obtained from experience and adjusted according
to actual calculation results. The iteration value of the damping factor λn is determined
according to the scale factor ρn:

ρn =
XT

n (λn−1Xn − JTεn)

2
(23)

The iteration of the damping factor λn is:{
λn+1 = λn · max

{
1
3 , 1 − (2ρn − 1)3

}
, ρn ≥ 0

λn+1 = λnκn, κn+1 = 2κn, ρn < 0
(24)

5. Results of Experiments and Discussion

Three experiments were conducted to verify the proposed measurement system and
parameter identification method, including parameter identification of the position and
orientation of laser beams, verification of measuring accuracy of SPMS, and kinematic
calibration of industrial robots in this section. During the experiments, the ambient temper-
ature is about 20 ◦C, and the change is small. When the laser range sensor is not preheated,
its measurement accuracy is unstable [29]. Therefore, the laser range sensor was preheated
for 30 min before the experiment. After the completion of preheating, the experimental
data will be collected and processed.

5.1. Experiments for Identification of Laser Beams

The experimental platform for the calibration of laser beams and verification of mea-
suring accuracy consists of SPMS, a laser tracker, an EC66 robot, and a reference sphere
with a diameter of 50.8143 mm, as shown in Figure 4. The EC66 robot is only used as an
actuator carrying SPMS to change position and orientation.

 
Figure 4. The platform for parameter identification and measuring accuracy.

SPMS was carried by the EC66 robot to 55 different positions and orientations, and
55 groups of Lk, X1, X2, and X3 were acquired. With these acquired data, the position
and orientation parameters were obtained by the proposed identification method based
on PSO-LM, as shown in Table 2. The spherical fitting error of each group of data is
illustrated in Figure 5, which shows that nearly all the errors are smaller than 0.03 mm. The
measuring accuracy, which can be indicated by the maximum measuring error required by
the calibration of industrial robots, is 0.2 mm. Thus, the measuring accuracy of SPMS can
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meet the requirement. The measuring accuracy will be further verified in the next section.
After calibration, the components of the position and orientation of PLk = [xLk, yLk, zLk]T

and γk = [γkx, γky, γkz]T are shown in Table 2.

Table 2. The identified position and orientation parameters of laser beams.

k xLk (mm) yLk (mm) zLk (mm) γxk (rad) γyk (rad) γzk (rad)

1 74.420 67.247 97.126 −0.104 0.976 0.189
2 11.612 69.074 146.755 0.210 0.975 −0.069
3 92.918 67.986 142.254 −0.190 0.981 −0.031
4 52.951 69.811 175.249 0.018 0.981 −0.194
5 25.346 70.181 97.548 0.143 0.982 0.124

Figure 5. The spherical fitting error of each group of data.

5.2. Verification of the Measuring Accuracy

To verify the measuring accuracy of SPMS, an API R-20 Radian laser tracker is used as
the reference to calculate the measuring error of SPMS, as shown in Figure 4. The reference
sphere was measured 55 times using SPMS from different directions. With the measured
data PB and PBw can be obtained by (3) and (13), respectively. The difference between PB
and PBw is taken as the measuring error. The measuring errors of SPMS in 55 samples are
shown in Figure 6, and the statistical information is shown in Table 3. The maximum error
and average error of SPMS are 0.091 mm and 0.034 mm, respectively, which are precision
enough to be applied in the calibration of industrial robots. The measurement error of
SPMS mainly comes from the linearity error of laser range sensors according to the analysis
and test.

5.3. Experiments of Calibration for an Industrial Robot

To further verify the effectiveness of SPMS in the calibration of industrial robots, the
SPMS was used to calibrate an ER20-C10 6-DoF industrial robot. The kinematic model was
established according to the modified Denavit–Hartenberg (MD-H). The position of the
robot’s end was measured with SPMS. With the measured data, kinematic parameters and
the transformation parameter from the base of the robot to the measuring coordinate of
SPMS, as well as the parameters from the flange to the reference sphere, were identified
with the method in our previous publication [30]. As shown in Figure 7, the experimental
platform for kinematic calibration of robots consists of SPMS, ER20-C10 robot, and a
reference sphere with a diameter of 50.8143 mm.
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Figure 6. The measuring errors of SPMS.

Table 3. The statistics information of the measuring errors.

Index Maximum Error Average Error RMS

Value (mm) 0.091 0.034 0.039

 
Figure 7. The experiment platform for kinematic calibration of robots.

The nominal kinematic parameters of the ER20-C10 robot before calibration are shown
in Table 4.

Table 4. The kinematic parameters of the ER20-C10 robot before calibration.

No. of Joints αi−1 (rad) ai−1 (mm) di (mm) δθi (rad)

1 0 0.000 504.000 0
2 −pi/2 166.605 0.000 0
3 0 −782.270 0.000 0
4 −pi/2 138.826 761.350 0
5 pi/2 0.00 0.000 0

With the acquired data by SPMS, the kinematic parameters of the ER20-C10 industrial
robot are identified, as shown in Table 5.

31



Sensors 2023, 23, 1913

Table 5. The kinematic parameters of the ER20-C10 robot after calibration.

No. of Joints αi-1 (rad) ai-1 (mm) di (mm) δθi (rad)

1 0 0.000 504.000 0
2 −pi/2 167.648 0.000 1.39 × 10−2

3 0 −780.753 0.000 1.92 × 10−4

4 −pi/2 139.918 759.330 3.84 × 10−4

5 pi/2 0.00 0.000 6.63 × 10−4

The identified kinematic parameters are compensated to the controller of the ER20-C10
industrial robot. The positioning accuracy of the industrial robot is tested according to ISO
9283:1998 [31], where a cube of 400 mm × 400 mm × 400 mm was created in the working
space of the ER20-C10 industrial robot, shown in Figure 8. C1~C8 are the eight vertices
of the cube. Five testing points P1~P5 on the diagonal plane C1-C2-C7-C8 of the cube are
determined, among which P1 is the center of the cube, P2~P5 are on the two diagonals of
C1-C2-C7-C8 and being away from the vertices (10 ± 2)% of the diagonal length. After
the cube was determined, reflex targets were installed at the end of the ER20-C10 robot
for measurement with the laser tracker. According to ISO 9283:1998, cycle measurement
30 times should be conducted, and the average errors of P1~P5 can be obtained to evaluate
the absolute positioning accuracy of the industrial robot. In the experiments, the absolute
positioning (AP) was tested by the laser tracker before and after calibration, respectively.
The results are shown in Table 6, which indicates that the maximum error, average error,
and RMS are reduced from 1.462 mm, 1.056 mm, and 0.829 mm to 0.712 mm, 0.461 mm,
and 0.388 mm, with the reduction percentage of 51.3%, 56.3%, and 53.2%, respectively. In
another study by our team [30], a Radian laser tracker was used to calibrate and test an
ER20-C10 industrial robot, and the maximum error, average error, and std of the robot
after calibration were 0.637 mm, 0.460 mm, and 0.184 mm. Although there is still a certain
gap between the calibration effect of SPMS and that of the laser tracker, the kinematic
calibration of the industrial robot based on SPMS is effective and can significantly improve
the absolute accuracy of the industrial robot.

Figure 8. The test cube of the ER20-C10 industrial robot.

Table 6. The nominal kinematic parameters of the ER20-C10 robot after calibration.

Position
AP (mm)

Before Calibration
AP (mm)

After Calibration

P1 0.336 0.167
P2 1.462 0.712
P3 0.997 0.496
P4 1.454 0.620
P5 1.030 0.311
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6. Conclusions

A spatial position measurement system (SPMS) based on redundant laser range
sensors is proposed to solve industrial robots’ measurement and calibration problems in
narrow industrial sites. The main work of this paper is as follows:

• The conversion model is established from the distance information acquired by the
laser range sensor to position information through the standard spherical constraint;

• The parameters of position and orientation of laser range sensors in the model are
identified by a hybrid algorithm of PSO-LM to solve the high-dimensional and strong
nonlinear problem of the model;

• Experiments were carried out to verify the conversion model, the identification
method, the measuring accuracy of SPMS, and the effectiveness of industrial robot
calibration. The results of the experiments show that the maximum and average error
of SPMS is 0.091 mm and 0.034 mm, respectively; after calibration, the maximum error,
average error, and RMS of the industrial robot are reduced from 1.462 mm, 1.056 mm,
and 0.829 mm to 0.712 mm, 0.461 mm, and 0.388 mm, with the reduction percentage
of 51.3%, 56.3%, and 53.2%, respectively.

Therefore, the proposed measurement device based on redundant laser range sensors
is precise enough and can achieve suitable performance for industrial robot calibration.

Although many factors have been considered in the research work of this paper, there
are still some problems that need to be considered or improved in future work: (1) Research
on temperature compensation should be carried out to achieve more stable measurement
accuracy; (2) The influence of measurement configuration on industrial robot calibration is
not considered. The measurement configuration has a certain influence on the calibration
results. To further improve the effect of SPMS on the kinematic calibration of industrial
robots, optimization of the measurement configuration in the kinematic calibration of
industrial robots based on the observability index should be studied.
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Abstract: High precision geometric measurement of free-form surfaces has become the key to high-
performance manufacturing in the manufacturing industry. By designing a reasonable sampling plan,
the economic measurement of free-form surfaces can be realized. This paper proposes an adaptive
hybrid sampling method for free-form surfaces based on geodesic distance. The free-form surfaces
are divided into segments, and the sum of the geodesic distance of each surface segment is taken as
the global fluctuation index of free-form surfaces. The number and location of the sampling points
for each free-form surface segment are reasonably distributed. Compared with the common methods,
this method can significantly reduce the reconstruction error under the same sampling points. This
method overcomes the shortcomings of the current commonly used method of taking curvature as
the local fluctuation index of free-form surfaces, and provides a new perspective for the adaptive
sampling of free-form surfaces.

Keywords: adaptive sampling; free-form surface; non-uniform rational B-spline (NURBS);
geodesic distance

1. Introduction

Free-form surface parts are widely used in aerospace, automotive and other high-end
equipment manufacturing fields [1]. It is one of the hotspots in the measurement field to
measure their precise geometric quantities and ensure that they meet the accuracy require-
ments. This kind of part has a complex structure and large size, which also puts forward
higher requirements for the dexterity and space of measuring equipment. The geometric
measurement of a free-form surface can adopt a contact or non-contact measurement [2].
In the process of the geometric measurement of a free-form surface, the geometric error
can be evaluated from two aspects: measurement accuracy and measurement efficiency.
The measurement accuracy can be quantified by measuring the deviation between the
actual value and the real value. When the measurement accuracy meets the measurement
requirements, the measurement efficiency can be improved by optimizing the number and
location of the measurement points and the measurement path [3–6].

As shown in Figure 1a, the coordinate measuring machine (CMM) equipped with a
contact probe is one of the common contact measuring instruments [7]. It can obtain the
point coordinates of the parts to be measured by scanning the measurement point by point.
The point coordinates of the parts to be measured are reconstructed into free-form surfaces,
and the geometric errors are compared with the original surfaces to accurately evaluate the
machining errors generated in the manufacturing process of free-form surface parts. As
shown in Figure 1b, the articulated industrial robot equipped with an optical probe is one
of the common non-contact measuring instruments. The scanning measurement path is
generated based on the measurement points of the parts to be measured with significant
geometric characteristics, and the industrial robot drives the optical probe to move along
the scanning measurement path. The scanning point cloud is reconstructed into a free
surface, and the geometric error is compared with the original surface to determine the
machining error of the free surface [8].
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(a) (b) 

Figure 1. Two measurement methods. (a) CMM; (b) Robot optical scanning system.

When measuring the geometric quantity of the parts to be measured, the number
of measuring points is positively related to the measurement accuracy. The more the
number of measuring points, the higher the measurement accuracy will be. When the
number of measuring points reaches a certain value, the measurement accuracy will
not change significantly. However, if the number of measuring points is too large, the
measurement time will be significantly increased and the measurement efficiency will
be reduced. Therefore, when measuring the components of the free-form surface to be
measured, the number and position of the sampling points on the free-form surface should
be reasonably distributed to ensure that the measurement efficiency can be improved as
much as possible on the premise of meeting the measurement accuracy.

By setting a reasonable sampling plan, the corresponding measurement path is gen-
erated, and the free surface is measured using a contact measurement or non-contact
measurement. Thus, the high-precision measurement of free-form surfaces can be realized,
and the measurement efficiency can be significantly improved.

Blind sampling is a sampling method that does not consider the geometric characteris-
tics of the free-form surface [9]. The number and location of sample points determine the
geometric error of the reconstructed free-form surface. Uniform sampling is a simple and
efficient sampling method, which is widely used in the field of free-form surface sampling.
Dunbar et al. [10,11] introduced a random sampling strategy of fast disk under arbitrary
dimension, which can realize blind sampling of a free-form surface simply and efficiently.
Woo et al. [12] sampled the surface to be measured using the Hammersley distribution
method. The research results show that blind sampling has the characteristics of simple and
efficient sampling, but it cannot adaptively change the number and position of the sampling
points based on the geometric characteristics of the free-form surface to be measured, thus
affecting the measurement accuracy and efficiency.

Adaptive sampling generates sampling points according to the geometric characteris-
tics of a free-form surface. In short, more sampling points are generated in the area with a
large fluctuation of the free-form surface, and fewer sampling points are generated in the
area with a small fluctuation of the free-form surface [13]. Ren et al. [14] proposed a method
of using the curvature change matrix of adjacent points as the change index of a free-form
surface. According to the proposed index, the optimal position of the newly added bi-
directional curve mesh was determined, and the free-form surface was reconstructed based
on the Gordon surface fitting principle. Javad et al. [15] used the optimization method and
particle swarm optimization algorithm to optimize the position of the sampling points. On
the basis of the initial sampling points, the optimal position of the new sampling points
was determined by iterative optimization. When the geometric error between the recon-
structed surface and the original surface or the number of sampling points reached the set
threshold, the optimization was terminated. Gao et al. [16] took the aeroengine blade as the
measurement object, and adaptively generated the sampling points based on the bending
moment theory for the regions with different curvatures of the engine blade, so that the
number and position of the sampling points could be accurately determined according
to the fluctuation of the blade surface. In consideration of the influence of Gaussian cur-
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vature on machining error, Sang et al. [17] proposed a scanning line distribution strategy
based on star pattern, which classifies peak points and anchor points, and connects the
error peak points in different regions and anchor points in the same region, so that more
scanning lines are generated in the region with small machining error, and fewer scanning
lines are generated in the region with small machining error. Jiang et al. [18] studied a
calculation method based on curve chord deviation, and adopted a two-step sampling
method. First, based on the radius of the CMM probe ball as the threshold, adaptive
Isoparametric sampling was carried out on the leading edge curve and trailing edge surface
of the blade. Secondly, adaptive sampling points were selected on the Isoparametric based
on the proposed curve chord deviation theory, and finally, the adaptive sampling of the
blade was realized. Suleiman et al. [19] proposed a patch based free-form surface adaptive
sampling method, which sorts patches according to the Gaussian curvature of each patch,
determines the number of sampling points of each patch according to the sorting size, and
selects the points of maximum curvature, minimum curvature and average curvature in
the patch as the sampling points. If the number of sampling points exceeds these three
types of points, the maximum curvature, minimum curvature and average curvature are
taken as the sampling points, and so on until the number of sampling points reaches the
threshold of the number of sampling points. Mansour [20] studied an adaptive sampling
method for reducing the number of measurement points and improving the measurement
efficiency with the blade as the measurement object. Based on the least square method, the
minimum number of points required for the curve polynomial is found, so that the fitting
error expressed by the polynomial curve and cubic curve is minimal. He et al. [21] proposed
an adaptive sampling method for a free-form surface based on the machining error model.
The machining error model was established based on the curvature of the free-form surface,
and the relationship between Gaussian curvature and machining error was obtained. The
adaptive sampling of a free-form surface was carried out based on the error model and
the Hammersley principle. The number of sampling points was large in the places with
large errors and small in the places with small errors. Yi et al. [22] discretized the triangular
mesh of a free surface, and simplified the triangular mesh by iteratively shrinking the
triangle edges. Based on the principle of minimum quadratic error, the optimal objective
vertex under discrete curvature constraint is determined. By limiting the side length of the
triangular mesh to control the number of sampling points, the adaptive sampling of free-
form surfaces is realized. Yu et al. [23] selected the initial sampling point set, reconstructed
the initial point set and solved it with the original surface to obtain the global error. The
point with the largest global error is added to the initial point set to obtain the updated
initial point set. The reconstructed surface and the original surface are solved to obtain the
global error. The point with the maximum global error between the reconstructed surface
and the original surface is added to the initial point set as a new sampling point. Cycle in
turn until the global error reaches the set precision threshold or the number of sampling
points reaches the set number threshold. Mian et al. [24] studied the influence of different
sampling strategies on surface reconstruction accuracy, and the influence of workpiece size
and machining quality on sampling methods. Gohari et al. [25] used principal component
analysis to dynamically generate sampling points, thus reducing the number of sampling
points, reducing the measurement cost and improving the measurement efficiency.

For the precise measurement of geometric quantities of free-form surfaces, the number
of samples and the position of sampling points should be reasonably set to improve the
measurement accuracy and efficiency. In this study, geodesic distance is used as the
index of global fluctuation of a free-form surface. The free-form surface is divided into
blocks, and the number of samples is adaptively determined according to the changes in
the geometric characteristics of the free-form surface. Combined with the Isoparametric
distribution, Poisson distribution, Hammersley distribution and NRook distribution, the
distribution location of the sampling points is determined. Therefore, an adaptive hybrid
sampling method for a free-form surface based on geodesic distance is proposed, which
can effectively improve the measurement accuracy and efficiency.
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The rest of this paper is organized as follows: Section 2 introduces the free-form
surface modeling method; Section 3 introduces the definition of geodesic distance and its
solution method in detail, including three sub-steps; in Section 4, the number of sampling
points and the distribution of the sampling points are given; in Section 5, the reconstruction
errors between the reconstructed surface and the original surface are solved and the results
are analyzed; Section 6 summarizes the conclusions and future work prospects.

2. Free-Form Surface Modeling

Non uniform rational B-spline (NURBS) is one of the most commonly used parametric
mathematical models in free-form surface geometric modeling. NURBS surfaces are widely
used in the field of computer aided geometric design (CAGD), and are widely used in the
geometric representation of complex components in aerospace, automobile and other fields.

The free-form surface can be represented by the control points and degrees in the u
and v directions. The local adjustment of the free-form surface can be realized by adjusting
the control points and weight coefficients. The NURBS surface is usually obtained by using
the tensor product of two NURBS curves with two independent parameters, u and v.

The expression of a NURBS surface is as follows [26].

S(u, v) =
∑m

i=0 ∑n
j=0 wi,jNi,p(u)Nj,q(v)Pi,j

∑m
i=0 ∑n

j=0 wi,jNi,p(u)Nj,q(v)
(1)

where Pi,j is the control point; m is the number of control points in the u direction; n is the number
of control points in the v direction; p is the degree of the parameter coordinate u; q is the degree
of the parameter coordinate v; Ni,p(u) is a basis function of order p; Ni,p(v) is a basis function
of order q; U and V are defined knot vectors, U =

{
0, · · · , 0, up+1, · · · , ur−p−1, 1, · · · , 1

}
,

V =
{

0, · · · , 0, vq+1, · · · , vs−q−1, 1, · · · , 1
}

, which specify the distribution of parameters u
and v; wi,j is the same as the Pi,j relevant weight coefficient. The basis function is recursively
defined by the Cox–deBoor algorithm, where Ni,p(u):

Ni,1 =

{
1 if ui < u < ui+1
0 otherwise

(2)

Ni, p(u) =
u − ui

ui+p−1 − ui
Ni,p−1(u) +

ui+p − u
ui+p − ui+1

Ni+1,p−1(u) (3)

The NURBS surface is shown in Figure 2. The blue curve is the isoparm in the u
direction, the red curve is the isoparm in the v direction, and the red surface and the blue
curve form are the isoparm mesh of the NURBS surface.

Figure 2. NURBS surface and its Isoparametric mesh.
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3. Geodesic Distance

On the Riemannian manifold, the geodesic is defined as the shortest path between the
points on the model surface. Geodesic distance is the distance value of geodesic. Compared
with the curvature, the advantage of geodesic is that it can describe the free-form surface
globally, and the curvature can only be described based on the local part of a free-form
surface [27]. Therefore, the geodesic distance is used as the index of the surface fluctuation
of the free-form surface in this paper, which can accurately describe the global fluctuation
of the free-form surface and overcome the limitation that curvature can only describe the
local fluctuation.

The geodesic distance solution method used in this paper is the thermodynamic
method proposed by Crane [28]. It can be imagined that a hot needle touches a point x on
the surface, which is a hot core point. With the passage of time, the heat on this point x
diffuses to the rest of the surface. The heat at point y on the surface can be expressed by a
thermal kernel function kt,x(y) to describe how the geodesic distance between any point
x, y on the Riemannian manifold ϕ(x, y) can be recovered by the point state transformation
of the thermal core, as shown in Formula (4). The geodesic distance can be recovered by
solving the direction of thermal motion [29].

ϕ(x, y) = lim
t→0

√
−4t log kt,x(y) (4)

Step 1: Solve the thermal kinematics in Equation (5) by describing the propagation
state of heat, and establish the temperature scalar field U. The time dispersion of the thermal
propagation equation is

∂u
∂t

= Δu (5)

The thermal kinematics equation is discretized and sorted to obtain

(id − tΔ)ut = u0 (6)

where id is the identity matrix, t is the time interval, Δ is the discrete Laplacian operator, ut
is the thermal state at time t, and u0 is the thermal state at the initial time.

Step 2: The thermal gradient direction calculated in step 1 is the same as the gra-
dient direction of the geodesic distance. Since the gradient of the geodesic distance is a
unit vector, the gradient of the geodesic distance is obtained by normalizing the thermal
gradient direction.

X = −∇u/|∇u| (7)

where X is the gradient of the geodesic distance.
Step 3: after the gradient of geodesic distance is obtained through step 2, the geodesic

distance is solved through Formula (8):

min
φ

∫
M
|∇φ − X|2 (8)

According to the variational method, the minimization of Formula (8) is the Pois-
son equation.

Δφ = ∇ · X (9)

where φ is the geodesic distance between the vertex and the hot core point.
Based on the principle of the NURBS surface in part 2 of this paper, the free-form surface

to be measured is shown in Figure 3, with a size of 50 mm × 50 mm. Reduce the dimension
of the free-form surface from the three-dimensional space to the two-dimensional parameter
domain (u, v); carry out Isoparametric sampling on the two-dimensional parameter domain
(u, v); map the sampling points on the two-dimensional parameter domain to the three-
dimensional space; use the collection of sampling points on the three-dimensional space to
replace the free-form surface, and set the number of sampling points to (41 × 41) = 1681.
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Figure 3. Free-form surface.

In order to evaluate the global fluctuation of a free-form surface, it is necessary to
segment the surface. The principle of the surface segment is shown in Figures 4 and 5.
As shown in Figure 4, the free-form surface to be measured is divided into four surface
segments Pi in the two-dimensional parameter domain. Select the (41× 41 + 1)/2 = 841
sampling points to be used as hot core points (the red point in Figure 4 needs to be mapped
to the three-dimensional space). Since the sampling points in the same row and column
as the hot core point belong to the overlapping part of the two segments, the sampling
points in the same row and column as the hot core point will be deleted. Solve the geodesic
distance from the sampling point to the thermal core point in each surface segment Pi after
deleting the duplicate sampling points; sum the geodesic distances from the sampling
point to the thermal core point in each segment; obtain the sum of the geodesic distances
di of each segment sampling point, and take it as the global fluctuation change index of
the free-form surface. The sum of the geodesic distances di of each segment Pi is shown in
Table 1.

Figure 4. Schematic diagram of the geodesic distance of the first surface segment.

40



Sensors 2023, 23, 3224

Figure 5. Schematic diagram of the segment geodesic distance of the second surface.

Table 1. Sum of the geodesic distances of the first surface segment.

Segment Distance/mm

1 7750
2 7816
3 7578
4 7171

As shown in Figure 5, each surface segment Pi is further subdivided into four surface
segments Pij, and the sum of the geodesic distances dij from the sampling point to the hot
core point (red point in Figure 5) in each segment Pij is calculated. The results are shown in
Table 2. Finally, the sum of the geodesic distances dij of each free-form surface segment is
obtained, which is used as an indicator of global fluctuation. Based on this indicator, the
sampling quantity of each free-form surface segment is determined.

Table 2. Sum of the geodesic distances of the second quadric surface segment.

Segment Distance/mm

11 4207
12 4305
13 3983
14 3714
21 4174
22 4186
23 3824
24 3728
31 3546
32 3442
33 4059
34 4004
41 3366
42 3427
43 4069
44 4163
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4. Sampling Strategy

In this section, firstly, the sampling quantity of each surface segment is calculated
based on the sum of the geodesic distances of each surface segment solved in Section 3, and
then the positions of the sampling points are generated based on the Isoparametric distri-
bution, Poisson distribution, Hammersley distribution and NRook distribution. Finally, the
geometric error evaluation method of the reconstructed surface and the original surface
is determined.

4.1. Determine the Sampling Quantity

In this paper, a relative proportion method based on the sum of the geodesic distances
of each segment is used to determine the P of each surface segment. The specific solution
steps are as follows.

Step 1: According to the results of Section 3, calculate the average value of the sum of
the geodesic distances of P1, P2, P3 and P4; obtain the ratio λi of the sum of the geodesic
distances of P1, P2, P3 and P4 and di. The reference sampling number Ni of each surface
segment Pi is the ratio of the total number of samples N and the number of segments ϕ.
The sampling number of each surface segment Pi is the product of the number of reference
samples Ni and λi. The formula is as follows:

λi =
di

d
(10)

Ni =
N
ϕ

(11)

Ni = Ni ∗ λi (12)

Step 2: Each surface segment Pi continue to subdivide into surface segment Pij. Ac-
cording to the principle of step 1, calculate the average value di of the sum of the geodesic
distances of Pij; obtain the ratio λij of the sum of the geodesic distances of Pi1, Pi2, Pi3 and
Pi4 and dij. The reference sampling number Nij of each surface segment Pi is the ratio of
the total number of samples Ni and the number of segments ϕ; The sampling number of
each surface segment Pij is the product of the number of reference samples Nij and λij. The
sampling number of each surface segment Pij is the calculation result of step 1. The formula
is as follows:

λij =
dij

di
(13)

Nij =
Ni
ϕ

(14)

Nij = Nij ∗ λij (15)

According to the requirements of measurement accuracy, the total number of sampling
points of the free-form surface is determined to be 1600, ϕ = 4. Calculate the number of
sampling points of each surface segment as shown in Table 3.

4.2. Determine the Sampling Position

After determining the number of sampling points in each segment, a specific point
distribution algorithm is used to distribute the sampling points. In this paper, the sampling
points generated based on the Isoparametric distribution, Poisson distribution, Hammersley
distribution and NRook distribution are studied.
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Table 3. Number of sampling points for each surface segment.

Segment Sample Size

11 131
12 144
13 119
14 106
21 181
22 194
23 169
24 156
31 69
32 56
33 94
34 81
41 6
42 19
43 31
44 44

(a) Isoparametric distribution

Isoparametric distribution is to map the free-form surface from the three-dimensional
space to the two-dimensional parameter domain, sample the two-dimensional parameter
domain according to a certain step size to obtain the sampling points in the two-dimensional
parameter domain, remap the sampling points in the two-dimensional parameter domain to
the three-dimensional space, and obtain the set of sampling points in the three-dimensional
space. It is calculated by Formulas (16) and (17):

u = umin + (i − 1)
umax − umin
(Nu − 1)

; i = 1, 2, · · · , Nu (16)

v = vmin + (i − 1)
vmax − vmin
(Nv − 1)

; i = 1, 2, · · · , Nv (17)

where umin is the minimum value of the u direction parameter; umax is the maximum value
of the u direction parameter; Nu is the number of sampling points in the u direction; vmin
is the minimum value of the v direction parameter; vmax is the maximum value of the v
direction parameter; Nv is the number of sampling points in the v direction.

(b) Poisson distribution

Poisson distribution is a more uniform distribution mode compared to Isoparametric
distribution. This distribution method can generate a random point set. The distribution
method adopted is that every two points are at least on a specified minimum distance.
The algorithm takes the range of the Rn sample domain, the minimum distance r between
samples and the constant k as the inputs. The steps are as follows [30].

Step 1: Initialize the n dimensional background grid, which is used to store variables
and spatial search data. The search cell size is r/

√
n, and each grid cell contains, at most,

one sample. Therefore, the grid is an n dimensional integer array. The default index (−1)
indicates that there is no sample, and the non-negative integer indicates the index of the
sample in the single grid.

Step 2: The initial sample x0 is randomly selected from the sample field, inserted into
the background grid, and this uses index (0) to initialize the activity list (sample index list).

Step 3: When the active list is not empty, a random index is selected from the list, and
evenly selects k points from the spherical ring between the surrounding radius r and the
radius 2r. For each point, check whether it is within the radius r of the existing sample (use
the background grid to test only the nearby samples). If a point is far enough from the
existing sample, it is taken as the next sample and added to the existing index. If no such
point is found after k attempts, the index is removed from the active list.
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(c) Hammersley distribution

The Hammersley distribution is one of the most prominent uniform distribution
sampling algorithms at present. This method is based on the computer binary number
representation method, which converts a given decimal number into a binary number,
inverts the order, multiplies each number on each bit of the binary by a power series with
1/2 as the base number and the corresponding number of digits as the exponent, and
cumulatively sums them. The calculation result is placed after the decimal point to form
the sampling value. The sampling formula is as follows:

ui = i/N (18)

vi = ∑k−1
j=0 bij2−j−1 (19)

k = [log2 N] (20)

where N is the number of sampling points; i is the ith sampling point, and its range is
[0, N − 1]; bi is the binary representation of the index; bij is the jth bit representing bi, and
the range of j is [0, k − 1]; k is b number of digits of bi.

(d) NRook distribution

NRook distribution is a uniform distribution algorithm based on the principle of a
chess board. If a square is divided into n ∗ n small squares and n sampling points are placed
inside, there is only one sampling point in each row and column. The algorithm steps are
as follows.

Step 1: Initialize the sampling set Q and the sampling step λ according to the number
of samples N. The calculation formula is as follows:

Q = [0, 1, · · · , N − 1] (21)

λ = 1/N (22)

Step 2: Selecting random samples ni from the sample set Q; select the random
number pi , qi from [0, 1], ui is the sum of the result of multiplying the sampling step λ
by ni and a random number pi , vi is the sum of the result of multiplying the sampling
step λ by the sampling times i and a random number qi . The calculation formula is
as follows: {

ui = λni + pi
vi = λi + qi

(23)

According to the basic principles of the four distribution modes of Isoparametric
distribution, Poisson distribution, Hammersley distribution and NRook distribution,
the distribution sequence of parameter u ∈ [0, 1] and parameter v ∈ [0, 1] is calculated
and generated. The number of samples is set to 700. The results are shown in Figure 6.

The sampling points generated by the four distribution methods, i.e., Isopara-
metric distribution, Poisson distribution, Hammersley distribution and NRook distri-
bution, need to be remapped to the corresponding sections according to the surface
segment interval, and the sampling points are reconstructed. This is described in detail
in Section 5.

4.3. Error Comparison Method between the Reconstructed Surface and Original Surface

The reconstructed surface and the original surface after surface reconstruction need
to be evaluated for the geometric error of reconstruction. The method adopted in this
paper is shown in Figure 7. The Isoparametric method is used to take a series of sampling
points on the original surface, and make a straight line perpendicular to the z axis of the
oversampling point. The straight line has an intersection with the reconstructed surface.
The x and y coordinate values of the intersection and the sampling point are the same. The
difference between the z coordinate values of the sampling point and the intersection is
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calculated, which is the reconstructed geometric accuracy of the reconstructed surface and
the original surface.

(a) (b) 

(c) (d) 

Figure 6. Sampling distribution (a) Isoparametric distribution; (b) Poisson distribution; (c) Hammers-
ley distribution; (d) NRook distribution.

Figure 7. Schematic diagram of the reconstruction error surface.

By solving the z coordinate value difference between each sampling point on the
original surface and the intersection point on the reconstructed surface, the root mean
square error (RMSE) and the global maximum error (ME) are used as the reconstruction
accuracy indexes of the reconstructed surface and the original surface. The formula is
as follows:

MSE =
1
N

N

∑
i=1

‖zi − zi
′‖2 (24)

RMSE =

√√√√ 1
N

N

∑
i=1

‖zi − zi
′‖2 (25)
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ME = max
∣∣zi − zi

′∣∣ (26)

where N is the number of sampling points; zi is the z coordinate value of the original surface
sampling point; zi

′ is the coordinate value of the reconstructed surface sampling point.

5. Experiment and Discussion

The free-form surface is reconstructed according to the different sampling strategies.
The reconstructed surface is analyzed based on the reconstruction accuracy indexes, RMSE
and ME, of the reconstructed surface and the original surface to evaluate the impact of the
different sampling strategies on the reconstruction’s accuracy.

The parameter interval obtained by the four distribution methods of Isoparametric
distribution, Poisson distribution, Hammersley distribution and NRook distribution is
[0, 1], and the length of the parameter u and v interval of the surface segment is 0.25. There-
fore, it is necessary to map the boundary range of the divided surface to the corresponding
interval. The interval range of each surface segment is shown in Figure 8.

Figure 8. Interval range and sampling quantity of the surface segment.

According to the sampling number of each surface segment in Figure 8, four distri-
bution methods, i.e., Isoparametric distribution, Poisson distribution, Hammersley distri-
bution and NRook distribution, are used to calculate and generate sampling points, and
map them to the corresponding interval range of each surface segment in Figure 8. The
original free-form surface sampling point set obtained is used for the free-form surface
reconstruction. The reconstructed surface is shown in Figure 9, where the green point
represents the sample point, and the brown surface represents the reconstructed surface.
Different sampling methods produce a different distribution of the sample points, and the
reconstructed surface is also different.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) 

Figure 9. Sampling point distribution of the free-form surface and surface reconstruction: (a) Isopara-
metric; (b) Poisson; (c) Hammersley; (d) NRook; (e) Adaptive hybrid Poisson; (f) Adaptive hybrid
Hammersley; (g) Adaptive hybrid NRook.
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The reconstructed surface is compared with the original surface in terms of the recon-
structed geometric error, and the ME of each point (x, y, z) on the reconstructed surface is
converted into the corresponding color. The obtained error distribution results are shown
in Figure 10. Figure 10a is the reconstructed geometric error without surface blocking and
other parameter distribution; Figure 10b is the reconstructed geometric error of Poisson
distribution; Figure 10c is the reconstructed geometric error of Hammersley distribution;
and Figure 10d is the reconstructed geometric error of NRook distribution.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 10. Reconstructed surface ME distribution map: (a) Isoparametric; (b) Poissson; (c) Hammersley;
(d) NRook; (e) Adaptive hybrid Poisson; (f) Adaptive hybrid Hammersley; (g) Adaptive hybrid NRook.
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Table 4 and Figure 11 shows the error comparison results between the reconstructed
surface obtained by surface reconstruction and the original surface after the sampling
points of the free-form surface are obtained by the different distribution methods. Com-
paring Isoparametric distribution from the aspect of reconstruction ME, the reconstruction
error of the hybrid adaptive sampling method, based on geodesic distance combined with
Poisson distribution, Hammersley distribution and NRook distribution, is reduced by
47.12%, 41.56% and 20.22%, respectively, compared with that of the Isoparametric distri-
bution sampling method. Compared with the adaptive sampling method proposed in
Reference [24], the reconstruction error of the hybrid adaptive sampling method based on
the geodesic distance combined with Poisson distribution, Hammersley distribution and
NRook distribution, is reduced by 69.83%, 66.67% and 54.49%, respectively. The recon-
struction error of the adaptive hybrid sampling method, based on the geodesic distance
combined with Poisson distribution, Hammersley distribution, NRook distribution and
the adaptive sampling method used in Reference [14], is reduced by 62.46%, 62.15% and
52.61%, respectively, compared with Poisson distribution, Hammersley distribution and
NRook distribution.

Table 4. Comparison of the reconstruction errors using different sampling methods.

Sampling Method ME/mm RMSE/mm

Isoparametric 0.1855 0.0266
Poisson 0.2613 0.0467
Adaptive hybrid Poisson 0.0981 0.0202
Hammersley 0.2864 0.0708
Adaptive hybrid Hammersley 0.1084 0.0189
NRook 0.3123 0.1226
Adaptive hybrid NRook 0.1480 0.0213
Adaptive sampling method [24] 0.3252 0.0486

Figure 11. Comparison of the reconstruction errors using different sampling methods.

The adaptive hybrid sampling method based on geodesic distance significantly re-
duced the reconstruction ME compared with the general Isoparametric distribution sam-
pling method and the adaptive sampling method in Reference [24], and the reconstruction
accuracy has been greatly improved. The reconstructed ME based on the adaptive hybrid
sampling method of geodesic distance is significantly improved compared with the sam-
pling methods of Poisson distribution, Hammersley distribution and NRook distribution
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that are not based on the adaptive hybrid sampling method of geodesic distance, which ver-
ifies the effectiveness of the adaptive hybrid sampling method based on geodesic distance
in reducing the reconstructed ME.

From the aspect of reconstruction RMSE, the adaptive hybrid sampling method
based on geodesic distance combined with Poisson distribution, Hammersley distri-
bution and NRook distribution, reduces the reconstruction RMSE by 24.06%, 28.95%
and 20.00%, respectively, compared with the sampling method of Isoparametric dis-
tribution. Compared with the adaptive sampling method proposed in Reference [24],
the reconstructed RMSE of the hybrid adaptive sampling method based on geodesic
distance combined with Poisson distribution, Hamersley distribution and NRook dis-
tribution is reduced by 58.44%, 61.11% and 56.17%, respectively. The reconstructed
RMSE of the adaptive hybrid sampling method based on geodesic distance combined
with Poisson distribution, Hammersley distribution and NRook distribution is reduced
by 56.75%, 73.31% and 82.63%, respectively, compared with the sampling methods of
Poisson distribution, Hammersley distribution and NRook distribution.

The RMSE reconstruction of the adaptive hybrid sampling method based on
the geodesic distance combined with Poisson distribution, Hammersley distribution
and NRook distribution is greatly reduced compared with the sampling method of
Isoparametric distribution and the adaptive sampling method in Reference [24], and the
reconstruction accuracy is significantly improved. The RMSE of the adaptive hybrid
sampling method based on geodesic distance combined with Poisson distribution,
Hammersley distribution and NRook distribution is significantly reduced compared
with the sampling method based on Poisson distribution, Hammersley distribution
and NRook distribution without geodesic distance, and the reconstruction accuracy is
greatly improved.

In order to further verify the effectiveness of the proposed method, this paper uses
an ABB IRB1200 robot and Creaform MetraSCAN-R BLACK for experimental verification.
The measurement accuracy is 25 μm, and the measurement depth is 250 mm, as shown in
Figure 12.

 
Figure 12. Measuring the surface using a MetraSCAN laser scanner.

Set the number of sample points to 100, and use the self-developed path algorithm to
obtain the robot scanning measurement path, as shown in Figure 13. The free-form surface
is scanned and measured. The measured results are shown in Figure 14.
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Figure 13. Robot scanning measurement path.

 
Figure 14. Point cloud reconstruction results of the free-form surface.

In order to further verify the effectiveness of the sampling algorithm, repeated mea-
surement experiments are carried out. Taking the first measurement data as the error
judgment standard, analyze the error of the two measurement experiments. The error
results are shown in Figure 15. The average deviation is 0.001 mm and the standard error is
0.013 mm, which verifies the effectiveness and robustness of the sampling method proposed
in this paper.

Figure 15. Error comparison results.
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6. Conclusions

In this paper, an adaptive hybrid sampling method for a free-form surface based on
geodesic distance is proposed, which can be used for the precise measurement of geometric
parameters of free-form surfaces. This method can effectively improve measurement efficiency.

The geodesic distance is introduced as a measure of the global fluctuation of the
free-form surface. The free-form surface is divided into multiple surface segments. The
sampling number of each surface segment is determined according to the sum of the
geodesic distances of each surface segment within the surface segment. The sampling points
of each surface segment are generated based on the Poisson distribution, Hammersley
distribution and NRook distribution sampling methods. Finally, the sampling points of the
overall free-form surface are obtained.

The reconstruction error of the free-form surface obtained by this method was compared
with the common sampling strategies. The results show that the adaptive hybrid sampling
method of a free-form surface based on geodesic distance can effectively reduce the reconstruc-
tion error and significantly improve the reconstruction accuracy of free-form surfaces.

In future work, the sampling distribution method can be self-optimized by combining
intelligent algorithms, to further improve the reconstruction accuracy of free-form surfaces.
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Abstract: As a guide rail is the basic motion unit of precision equipment, the measurement of
and compensation for its motion errors are important preconditions for precision machining and
manufacturing. A targetless and simultaneous measurement method of three-degree-of-freedom
(3-DOF) angular motion errors using digital speckle pattern interferometry (DSPI) is introduced
in this paper. Based on the analysis of the sensitivity mechanism of DSPI to DOF errors and the
formation mechanism of the phase fringes, the relationship between the angular motion errors and
the distribution of the interferometric phases was established, and a new simultaneous measurement
model of 3-DOF angular motion errors was further proposed. An optical setup based on a three-
dimensional spatial-carrier DSPI with a right-angle symmetrical layout was used in the measurement
system. Furthermore, repetitive tests, noise tests, and precision analysis were carried out to verify
the performance of the system. The test results showed that the measurement resolution of the
system was <1 μrad, which is capable of measuring the pitch angle, yaw angle, and roll angle at
the submicron arc level simultaneously without target mirrors. The method has the advantages of
no need to install cooperative targets and high measurement resolution, showing broad application
prospects in many fields, including mechanical manufacturing, laser detection, aerospace, etc.

Keywords: digital speckle pattern interferometry; three degrees of freedom; angular motion errors;
pitch; yaw; roll

1. Introduction

As the advanced manufacturing industry develops by leaps and bounds, the demand
for precision and ultra-precision machine tools is growing gradually and progressively.
Computer numerical control (CNC) machine tools are the core production base of the equip-
ment manufacturing industry, and there is an increasing demand for the tools’ precision
requirements [1–5]. The precision detection of linear guide rails and rotary axes, which
are the main precision motion units in the structure of CNC machine tools, is the key to
precision machining and manufacturing [6]. Taking the linear guide rail as an example, its
motion errors in three-dimensional (3D) space mainly consist of three linear errors along
the axis directions (a positioning error in the direction of axis motion and two straightness
errors perpendicular to the axis) and three angular errors of the motion around the axis (i.e.,
the pitch angle, yaw angle, and roll angle) [7,8]. The three angular errors are the key part of
the six-degree-of-freedom (6-DOF) errors, and therefore, the research on the simultaneous
measurement method of the three angular errors has become a topic of general interest in
many fields, such as aerospace, mechanical manufacturing, and instrumentation.

At present, the measurement methods for the pitch angle, yaw angle, and roll angle
can be divided into optical measurement methods and non-optical measurement methods.
The latter is mainly those using electronic levels [9], capacitive sensors [10,11], etc., most
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of which belong to contact measurements, with a small measurement range and cable
connection required during work, resulting in limited application scenarios.

The research of optical measurement methods mostly concentrates on the laser multi-
DOF measurement system [12–14], which can be divided into the laser collimation method,
laser interferometry method, and combination method of laser collimation and laser inter-
ferometry. Sun et al. [15] proposed a simultaneous measurement method of three-degree-of-
freedom (3-DOF) based on the autocollimation. On the basis of the traditional photoelectric
autocollimator, a prism instead of a plane mirror was adopted as the cooperative target
to achieve a spectral dimension ampliation measurement by coating on the front surface
of the prism. The pitch and yaw angles were characterized by a slope of the right-angle
prism, and the roll angle was characterized by two right-angle surfaces so as to realize
the simultaneous measurement of the three angles. Although this method is simple in
structure, in practical applications, the beam is susceptible to the influence of multiple error
sources and the measurement precision of the system may be affected by the introduction
of the cooperative prism. The laser interferometry method and combination method, such
as the multi-axis laser interferometer [16], etc., enjoys the advantages of high measurement
resolution and large measurement range. In the working process, it is required to install
optical elements [17–19] (such as plane mirror, right-angle prism, grating, etc.) on the
measured objects to reflect the laser beams to the detectors, and then calculate the angle
values using optical information derived from the detectors. Liu et al. [20] put forward a
simultaneous measurement system of long-distance 6-DOF geometric errors based on the
laser interferometry, which allows for the simultaneous measurement of 3-DOF angular er-
rors. The proposed measurement system, which combines the geometric optics with a laser
interferometer, is characterized by less measuring time and a wider measuring range than
traditional laser interferometers. Cui et al. [21] came up with a simultaneous measurement
system of 6-DOF errors based on the combination of laser heterodyne interferometry and
laser fiber collimation. Dual-frequency laser beams that are orthogonally linear polarized
were adopted as the measuring datum. With the moving unit fixed to the measured axis
by two cube-corner reflectors and a beam splitter, the measured unit receives the beams
through a photodetector and carries out the photoelectric conversion to obtain the three
angular errors. However, all of the above-mentioned measurement methods require the
installation of light sources, detectors, or cooperative target mirrors on the objects to be
measured. In terms of the installation of these cooperative targets, the influence of the
self-weight and installation position of the equipment need to be taken into account since
they may introduce additional errors to the measurement, which, as a result, leads to the
limitation of their applications in many cases.

The digital speckle pattern interferometry (DSPI) technique—as a high-precision,
non-contact and target-mirror-free optical measurement method—has been applied to
the research of one-degree-of-freedom and two-degree-of-freedom angular motion mea-
surements recently. For example, a roll angle measurement method based on DSPI was
proposed [22]. By studying the relationship between the change in roll angle and the
distribution of the interferometric phases of DSPI, the micro roll angle was successfully
measured. In addition, a large-stroke roll angle measurement method was further proposed
to solve the problem of the small single measurement stroke of the roll angle [23]. Later, the
single-angle measurement and double-angle simultaneous measurement of the pitch angle
and yaw angle were realized based on DSPI [24]. The outstanding advantages of DSPI in
measuring the DOF of rigid bodies are demonstrated in the above research methods, that
is, high-precision measurement without the need for cooperative target mirrors.

Because the online measurement of the geometric errors of the moving parts of the
machine tool is a very time-consuming and frequent task, and the simultaneous measure-
ment of multi-degree-of-freedom motion errors can greatly reduce the measurement time,
it is of great significance to realize the simultaneous measurement of the 3-DOF angular
motion errors. However, the simultaneous measurement of the 3-DOF angle motion errors
using DSPI has not been realized yet. Due to the complexity of the measurement model
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and problems such as angle crosstalk, the aforementioned single-angle and double-angle
measurement methods based on DSPI cannot be simply extended to the simultaneous
measurement method of the three angles. In this article, a 3-DOF angular motion errors
geometric measurement model based on DSPI is established, and a new simultaneous mea-
surement method of 3-DOF angular motion errors is proposed. The proposed method can
not only perform dynamic measurements with high measurement resolution without the
cooperation of target mirrors but also can be applied to both the linear axis and rotary axis.
The theoretical analysis and test results are both provided. The theoretical measurement
resolution of the three angles is also discussed.

2. Principle

2.1. Geometric Model

The motion parts in the equipment are divided into two types: the linear axis and
the rotary axis. Their measurement setups are shown in Figure 1, where Figure 1a is the
measurement setup of the linear axis and Figure 1b is that of the rotary axis. The three
angular displacement errors around the x, y, and z directions are defined as Rx(d), Ry(d),
and Rz(d), respectively. Specifically, d refers to the linear displacement dz of the linear axis
and the angular displacement dθ of the rotary axis. In the DSPI measurement system, the
linear displacement of the linear axis along the z-axis and the angular displacement of the
rotary axis around the z-axis can be regarded as the accumulation of small displacement at
a high sampling rate. Therefore, this measurement method is suitable for both the linear
axis and the rotary axis.

  
(a) (b) 

Figure 1. The setups of the DOF error measurement with DSPI for (a) linear guide and (b) rotary axis.

In the two measurement setups, the DSPI device is placed directly in front of the end
face of the measured axis along the z-axis. The three laser beams from the upper, left, and
right sides of the DSPI device are illuminated to the end face of the measured axis at a
small angle. For the DSPI device, the motions of the linear axis or the rotary axis and the
resulting 6-DOF errors belong to the geometric motions of the rigid body in the six degrees
of freedom. Therefore, the above measurement settings can be simplified into a geometric
model as shown in Figure 2. More specifically, camera C is on the z-axis, and the three
lasers with the same wavelength, namely S1, S2, and S3, are symmetrically distributed
on the upper, left, and right sides of the camera. The lasers irradiate the end face of the
measured object and each laser beam interferes with its own reference beam at the camera
to form three independent speckle pattern interferograms. The coordinate system and
coordinate values of each point are shown in Figure 2.
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Figure 2. Geometric model of optical setups for measuring geometric motions of the rigid body by
DPSI.

When there are axis motion and 6-DOF errors at the same time, the arbitrary point
P on the end face of the measured axis is transformed to point P′, and the coordinates
change from (x, y, z) to (x + u, y + v, z + w). The three linear motions along the x, y, and
z directions are defined as Lx(d), Ly(d), and Lz(d), respectively, while the three angular
motions rotating around the x, y, and z axes are Rx(d), Ry(d), and Rz(d), respectively. As
shown in Figure 2, the displacements generated in the x, y, and z directions are, respectively,
represented by (u, v, w), where u is generated by Lx(d), Ry(d), and Rz(d); v is generated by
Ly(d), Rx(d), and Rz(d); and w is generated by Lz(d), Rx(d), and Ry(d). The expressions
of u, v, and w are obtained as follows:⎛⎝u

v
w

⎞⎠ =
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(
1 − cos Ry
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+

√
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⎞⎟⎠. (1)

Due to the small DOF errors, the higher-order terms of the DOF errors in Equation (1)
can be ignored. Therefore, the equation is further simplified, as shown below:⎛⎝u

v
w

⎞⎠ =

⎛⎝ Lx − yRz
Ly + xRz

Lz + yRx − xRy

⎞⎠. (2)

The relationship between the DOF errors and the geometric displacement is thereby
established.

2.2. Measurement Principle

The geometric model shown in Figure 2 is composed of three independent and sym-
metrical digital speckle pattern interference optical paths with single-beam illumination,
which are arranged symmetrically on the upper, left, and right sides of the optical axis.
Each interference corresponds to an out-of-plane displacement component and an in-plane
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displacement component. In that case, the relationship between the distribution of the
three interferometric phases and displacements is as follows [25]:⎛⎝Δφs1

Δφs2
Δφs3

⎞⎠ =
2π

λ

⎛⎝ u sin α + w(1 + cos α)
u sin(−α) + w(1 + cos α)

v sin α + w(1 + cos α)

⎞⎠, (3)

where, λ is the wavelength of the laser device and α is the illumination angle.
Considering the results shown in Equation (2), the phase increment output of the three

interferences can be expressed as:⎛⎝Δφs1
Δφs2
Δφs3

⎞⎠ =
2π

λ

⎛⎝ Lx sin α + Lz(1 + cos α) + yRx(1 + cos α)− xRy(1 + cos α)− yRz sin α
−Lx sin α + Lz(1 + cos α) + yRx(1 + cos α)− xRy(1 + cos α) + yRz sin α
Ly sin α + Lz(1 + cos α) + yRx(1 + cos α)− xRy(1 + cos α) + xRz sin α

⎞⎠. (4)

The phase of each interference is related to five geometric displacements, including
two linear displacements and three angular displacements. When the illumination of the
first and second interference optical paths is on the xoz plane, the interference optical path is
sensitive to the remaining five geometric displacements, except for the Ly. Differently, when
the illumination of the third interference optical path is on the yoz plane, the interference
path is not sensitive to Lx. When there are one or more geometric displacements, the
interferometric phases change accordingly, which explains the sensitivity of the DSPI to the
DOF errors.

The derivatives of the three interferometric phases with respect to x and y are taken.
Since the geometric displacement belongs to the rigid body displacements, with a spatial
gradient of 0, the spatial gradients of the three interferometric phases along the x and y
directions are expressed as:⎛⎜⎜⎝

∂Δφs1
∂x

∂Δφs1
∂y

∂Δφs2
∂x

∂Δφs2
∂y

∂Δφs3
∂x

∂Δφs3
∂y

⎞⎟⎟⎠ =
2π

λ

⎛⎝ −Ry(1 + cos α) Rx(1 + cos α)− Rz sin α
−Ry(1 + cos α) Rx(1 + cos α) + Rz sin α
−Ry(1 + cos α) + Rz sin α Rx(1 + cos α)

⎞⎠. (5)

It is revealed in Equation (5) that the spatial gradient of each digital speckle pattern
interferometric phase is only related to one or two angular displacements, indicating that
the generation of spatial fringes in the phase map is caused by the corresponding angular
displacements only. When angular displacement variation occurs, the spatial gradient
of the phases at a certain time is the same in the whole field, which suggests that the
phase fringes are uniformly changed and the fringe spacing determined by the angular
displacement between the two samplings is equal.

The expression of the three angular displacement errors can be obtained by solving
part of the information in Equation (5). Considering that the spatial distribution of the
phases varies uniformly in the whole field, the difference operation can be used to replace
the differential operation, and the three angular displacement errors can be expressed as:

⎛⎝Rx(d)
Ry(d)
Rz(d)

⎞⎠ =
λ

2π

⎛⎜⎜⎝
Δφs3(x1,y1,d)−Δφs3(x2,y2,d)

(1+cos α)(y1−y2)
Δφs1(x3,y3,d)−Δφs1(x4,y4,d)

(1+cos α)(x3−x4)
Δφs2(x5,y5,d)−Δφs2(x6,y6,d)−Δφs1(x5,y5,d)+Δφs1(x6,y6,d)

2 sin α(y5−y6)

⎞⎟⎟⎠, (6)

where, (xn, yn, d), (n ∈ N+) stands for the spatial coordinates of the point, and d represents
the displacement of the measured axis.
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According to the above mathematical model, it can be seen that the 3-DOF angular
motion errors are linearly related to the digital speckle pattern interferometric phases, and
the measurement resolution of the 3-DOF angular motion mainly depends on the phase
measurement resolution. Usually, in the measurement using DSPI, the phase measurement
resolution can reach π/10, and be up to π/25 under optimal conditions. In general, with
the phase resolution of π/10, the laser wavelength of 532 nm, and the illumination angle
of 20◦, the measurement resolution of the pitch, yaw, and roll angles can reach 0.14 μrad,
0.14 μrad, and 0.39 μrad, respectively, in theory when two symmetrical points about the
origin with a distance of 100 mm are selected for analysis.

3. Results and Discussion

3.1. Experimental Setup

The measurement system proposed in this paper is shown in Figure 3. Three lasers
with a central wavelength of 532 nm were utilized as the light source. A disc with a thickness
of 1 mm and a radius of 32 mm was taken as the measured object, which was fixed to a
six-axis piezoelectric oscillating table (Harbin Core Tomorrow Science & Technology Co.,
Ltd., Harbin, China, H63. XYZTR1S). An area of 13.4 mm × 13.4 mm in the center of the
measured object was selected as the measurement area. By driving the oscillating table,
tiny yaw, pitch, and roll motions were generated. The overall optical setup was composed
of three interference parts, which had independent light sources and shared an imaging
device and a detector. The illumination direction of the interference part containing Laser 3
was on the yoz plane, while the illumination directions of the other two interference parts
were on the xoz plane. All illumination angles were set to about 26◦. Taking the interference
part where Laser 1 was located as an example, the laser beam was split into a reference
beam and an object beam after passing through beam splitter 1 (BS1). The object beam was
irradiated to the measured object after passing through mirror 1 (M1) and beam expander 1
(BE1), and then the diffusely reflected beam was collected by the imaging lens and captured
by the camera through an aperture. The reference beam hit on the surface of the camera at a
specific angle near the center of the aperture to interfere with the object beam after entering
the optical fiber through the coupling lens 1 (CL1), yielding speckle pattern interferograms.
When the geometric motion occurred on the measured disc, the optical path of the object
beam changed while the optical path of the reference beam remained stable, thus changing
the interferometric phase.

Figure 3. Optical setup of the simultaneous measurement system of 3-DOF angular motion errors
using DSPI.
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The three interferograms corresponding to the three interference parts were super-
imposed. By performing Fourier transform on the interferograms, the interferometric
information was separated into three pairs of frequency components on the spectrum due
to the difference in spatial-carrier frequencies of the three interference parts. Three halos,
marked as A, B, and C in the spectrum, as shown in Figure 4a, were selected and used to
generate three phase maps that are shown in Figure 4b–d by the means of inverse Fourier
transform. These phase maps were derived from the three interference parts that contained
Laser 1, Laser 2, and Laser 3, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 4. Frequency spectrum and phase maps: (a) spectrum obtained after Fourier transform;
(b) wrapped phase map corresponding to frequency component A; (c) wrapped phase map cor-
responding to frequency component B; (d) wrapped phase map corresponding to frequency
component C.

After the phases shown in Figure 4 were unwrapped, several points at the edge of
the phase maps were used to solve the pitch, yaw, and roll angles by performing the
calculation shown in Equation (6). The results showed that the pitch, yaw, and roll angles
were 10.11 μrad, 10.12 μrad, and 10.23 μrad, respectively, which were basically identical to
the actual output values of the piezoelectric oscillating table (all of the three angles were
nominally 10 μrad), verifying the feasibility of the method preliminarily.
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3.2. Simultaneous Measurements of Pitch, Yaw, and Roll Angles

The pitch angle, yaw angle, and roll angle were simultaneously loaded by driving the
six-axis piezoelectric oscillating table. The angle-loading ranges of the pitch angle, yaw
angle, and roll angle set in the test were within 10–60 μrad, respectively. The three angle
channels of the piezoelectric oscillating table were controlled to output the same angle
value simultaneously, with a loading step of 5 μrad. Finally, a total of 11 data points were
obtained, and the measurement process was repeated three times to obtain three sets of
repeated test data. The measurement results and average deviation are shown in Figure 5.

   
( ) (b) (c) 

Figure 5. Simultaneous measurement results: (a) the measurement values of pitch, (b) the measure-
ment values of yaw, (c) the measurement values of roll.

The coincidence of the three groups of tests can be obviously reflected by the values
shown in Figure 5. In particular, the coincidence of the measurement curves of the pitch and
yaw angles was very good, while the coincidence of the roll angle data was slightly poor,
but the fluctuation was within the acceptable limits. Under different measurement steps,
the average deviation of pitch ranged from 0.14 μrad to 1.45 μrad, with an average relative
error of 3.54% compared with the piezoelectric oscillating table. The average deviation of
yaw was within the range of 0.33–1.45 μrad, with an average relative error of 3.71%. The
average deviation of roll was within the range of 0.68–3.72 μrad, with an average relative
error of 8.32%.

The close-loop piezoelectric oscillating table used in the experiment has good linearity
and repeatability accuracy, reaching 0.25% F.S. and 0.2% F.S., respectively, with a maximum
stroke of 600 μrad per axis. The closeness of the three-angle measurement results to the
outputs of the piezoelectric oscillating table indicates that the proposed method has high
accuracy in measurement, and proves that this method can reliably realize the simultaneous
measurement of the 3-DOF angular motion errors.

3.3. Repeatability Test

Aiming to verify the measurement reliability of the proposed measurement system,
the pitch angle, yaw angle, and roll angle were measured repeatedly 100 times with a
loading angle of 20 μrad by the piezoelectric oscillating table. The measurement results
are shown in Figure 6. It can be seen that the measured pitch angle fluctuated within
the range of 19.11–23.06 μrad, with an average of 21.39 μrad and a standard deviation of
0.81 μrad. The measured yaw angle fluctuated between 19.03 μrad and 22.50 μrad with
an average of 21.16 μrad and a standard deviation of 0.85 μrad. The measured roll angle
fluctuated between 16.03 μrad and 21.91 μrad with an average of 18.33 μrad and a standard
deviation of 1.82 μrad. The low standard deviation of the measurement values of the three
angles verified the high repeatability of the overall measurement. The factors affecting
the fluctuation of the measurement results of the three angles mainly include phase noise,
environmental disturbance, etc.
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( ) (b) (c) 

Figure 6. Repeatability experiment results: (a) results from pitch loading, (b) results from yaw
loading, (c) results from roll loading.

3.4. Noise Evaluation

In order to verify the influence of random errors caused by noise interference on
the measurement system, measurements were carried out 50 times, with the original
measurement system remaining unchanged and the measured object remaining stationary.
The data set obtained by DSPI is exhibited in Figure 7.

   
( ) (b) (c) 

Figure 7. Noise evaluation experiment: (a) measurement results of pitch, (b) measurement results of
yaw, (c) measurement results of roll.

The data in Figure 7 show that when the object was stationary, phase noise was
detected at all three angles, of which the standard deviations were 0.238 μrad, 0.242 μrad,
and 0.403 μrad, respectively. If twice the standard deviation was taken as the noise value,
the three-angle noise values were 0.476 μrad, 0.484 μrad, and 0.806 μrad, respectively,
which were all less than 1 μrad and close to the theoretical measurement resolution. It
is verified that the DSPI measurement system has a high resolution and can be used
for the simultaneous measurement of the pitch angle, yaw angle, and roll angle at the
submicron arc level. During the test, the measurement resolution can be further improved
and optimized by adopting a shorter wavelength laser source, and especially, expanding
the measurement area. In this test, the measurement area was 13.4 mm × 13.4 mm, so the
distance between the two selected points was short. If the measurement area is larger and
two points at a greater distance can be selected for calculating the angular motion errors,
then the measurement resolution will be improved.

The experimental results show that the measurement performance of the roll angle
is weaker than that of the pitch angle and yaw angle. This is consistent with theoretical
analysis. As can be seen from Equation (6), both the pitch and yaw angles can be solved
from one phase map, while the roll angle requires two phase maps to solve. This shows that
the measurement accuracy of the roll angle is more susceptible to phase errors. Moreover,
roll angle measurement has a higher sensitivity coefficient. In these experiments, the
illumination angles were 26◦, so the sensitivity coefficient of roll measurement was about
twice those of pitch angle and yaw angle measurements. These explain why roll angles
were slightly less measured. However, the measurement of the roll angle as well as the
measurements of pitch and yaw angles is a high-precision measurement method.

63



Sensors 2023, 23, 3393

4. Conclusions

A simultaneous measurement method of 3-DOF angular motion errors based on
DSPI is proposed. The method does not require any cooperative target and does not
require any pretreatment of the measured object, which is a true non-contact, pollution-free
measurement method. It not only eliminates the inconvenience and measurement errors
caused by the installation of the target mirrors, but also provides a feasible solution for
applications where the target mirror cannot be installed. Because this method belongs to
the optical interference method, its measurement resolution and measurement accuracy are
very high. Moreover, compared with the traditional optical interference methods of 3-DOF
angular motion error measurement, in addition to eliminating the need for a cooperative
target, the optical setup of this method is simple, easy to integrate, and highly reliable. This
method mainly relies on the diffused light from the rough surface of the measured object
for interference. Therefore, in the field of engineering, it can be applied to most measured
objects except for objects with a specular surface.

In this article, the measuring principle of the proposed method is described in detail,
and the performance of the measurement method is also demonstrated through theoretical
analysis and experimentation. It can be concluded from the theoretical analysis and
experimental results that this measurement method has an edge in terms of precision,
requiring no target mirrors, and is applicable to both the linear axis and the rotary axis.
Therefore, it has a certain application prospect in rigid body angle measurement and other
fields, laying a foundation for the research of the simultaneous measurement of 6-DOF
errors.
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Abstract: In the vision-based inspection of specular or shiny surfaces, we often compute the camera
pose with respect to a reference plane by analyzing images of calibration grids, reflected in such
a surface. To obtain high precision in camera calibration, the calibration target should be large enough
to cover the whole field of view (FOV). For a camera with a large FOV, using a small target can only
obtain a locally optimal solution. However, using a large target causes many difficulties in making,
carrying, and employing the large target. To solve this problem, an improved calibration method
based on coplanar constraint is proposed for a camera with a large FOV. Firstly, with an auxiliary
plane mirror provided, the positions of the calibration grid and the tilt angles of the plane mirror are
changed several times to capture several mirrored calibration images. Secondly, the initial parameters
of the camera are calculated based on each group of mirrored calibration images. Finally, adding
with the coplanar constraint between each group of calibration grid, the external parameters between
the camera and the reference plane are optimized via the Levenberg-Marquardt algorithm (LM).
The experimental results show that the proposed camera calibration method has good robustness
and accuracy.

Keywords: coplanar constraint; camera calibration; large FOV; specular measurement

1. Introduction

In recent years, the vision measurement system has been widely used in industrial
production due to its high precision, non-contact, real-time capabilities, etc. [1,2]. At the
same time, for some special objects, such as car windshield [3], painted body shell [4],
polishing mold, stainless steel products, and other smooth surface objects, the demand
for three-dimensional measurement is greater and greater. Meanwhile, the traditional
three-dimensional reconstruction method [5–7] is not ideal for the reconstruction of the
bright surface. The two-dimensional feature information of the image obtained by the
camera mainly comes from the surrounding environment of the shiny surface, rather
than the surface itself. For the high reflection characteristics of the shiny surface, the
reference pattern is usually placed around it, and the reference pattern modulated by the
surface helps realize three-dimensional reconstruction of itself [8–12]. In this case, the
calibration accuracy of the reference plane and camera directly affects the subsequent
three-dimensional reconstruction accuracy of the shiny surface. Meanwhile, to measure
more area of surface, a camera with a large FOV is needed. However, for calibration in
large FOV, the targets with large areas and high precision are not only difficult to make, but
they are also inconvenient to carry and use.

For the calibration of the catadioptric system, many scholars have proposed methods of
using an auxiliary plane mirror to estimate the external parameters between the camera and
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the reference object [13]. Kumar et al. [14] proposed using the orthogonal constraint between
the direction vector of the connection from the corresponding point of the object to the mirror
image, as well as the column vector of the rotation matrix to list linear equations for solving,
and each set of equations requires at least five calibration images. However, the calculated
position parameter has a large error with the true value, which is harmful to the subsequent
parameter optimization. Takahashi et al. [15] obtain the unique solution of three P3P problems
(perspective-three-point problem) from three mirror images based on the orthogonal constraint.
However, if the reference object is smaller than a certain size, a wrong solution will be obtained.
The method proposed by Hesch et al. [16] also obtains the solutions of three P3P problems from
three mirror images, but it can only select an optimal solution from 64 candidate solutions after
re-projection error evaluation. Xin et al. [17] directly estimate the camera rotation matrix by
the SVD decomposition of the sum of the rotation matrices. Additionally, they calculate the
translation vector by solving overdetermined linear equations. While it is more sensitive
to noise, the algorithm stability is poor. Bergamasco [18] proposed a method to locate
coplanar circles from images by means of a non-cooperative evolutionary game and refined
the estimation of camera parameters by observing a set of coplanar circles. However, the
accuracy of this method is low.

For the calibration of the camera with a large FOV, scholars consider combing several
two-dimensional small targets into a large three-dimensional target. While in the methods
proposed in the paper [19,20], all intrinsic parameters of the camera cannot be obtained
because the polynomial projection mode is used. Meanwhile, in the methods proposed
in the paper [21,22], the relative positions between the small targets are subject to certain
restrictions, which makes it difficult to be applied in real applications. Occlusion-resistant
markers, such as Charuco [23] or RUNETag [24], are also robust options, but they present
fewer points for calibration.

To solve this problem, we use a LCD monitor as a reference plane to produce the calibra-
tion grid. It not only solves the problem of difficulty in manufacturing, carrying, and using
large-sized objects, but it also can be used as a carrier for projecting encoded patterns when mea-
suring bright surfaces due to its ability to produce free patterns. Bergamasco [25,26] also used
a monitor that displays dense calibration grids for camera calibration, but it requires multi-
ple frames, and when dense grid points are spread over the display, the curvature of the
display surface will greatly affect the accuracy and robustness of calibration. Therefore,
this article calibrates using a smaller calibration grid on the monitor and covers the cam-
era’s field of view by moving the position of the calibration grid, which to some extent
reduces the impact of display surface curvature, and ultimately it achieves high accuracy
and robustness.

Firstly, by moving the calibration grid on the reference plane and changing the tilt
angle of the plane mirror on the optical platform to obtain multiple sets of mirrored
calibration images, the internal and external parameters of the camera are computed by
Zhang’s [27] calibration method. Secondly, the orthogonality constraint calibration method
and P3P algorithm proposed in [15,16] are used to obtain the external parameters from the
reference plane to the camera. Finally, the LM [28] algorithm is used to obtain the optimal
solution of the external parameters with the coplanar constraint of multiple calibration grid
positions. At the same time, using the method of reconstructing the smooth mirror shape
from a single image proposed in [12], three-dimensional measurement experiments are
carried out to indirectly verify the accuracy of the calibration method proposed.

2. Geometry of Camera Pose Estimation

2.1. Plane Mirror Reflection Model

As is shown in Figure 1, in the camera coordinate system C, the plane mirror can be
described by the plane parameters Π = {n, d}. The unit vector n denotes the normal vector
of the mirror plane, d represents the distance between the origin of C and the plane [17],
and Rs2c and Ts2c are the rotation matrix and the translation vector between the reference

68



Sensors 2023, 23, 3464

plane coordinate system and the camera coordinate system. P is a feature point on the
reference plane.

Figure 1. Calibration principle for reference plane. The camera C observes a point P on the reference
plane via the plane mirror Π. We denote by i the incident ray and by l the reflected ray, Rs2c and Ts2c

denote the pose parameters between the reference plane and the camera, n denotes the normal of the
mirror, and d is the distance between C and Π.

Based on the reflection property of the mirror, the relationship between this point and
its mirror point is given by:[

P′
1

]
= M1 ·

[
P
1

]
, M1 =

[
I − 2 · n · nT 2 · d · n

O 1

]
(1)

This denotes the symmetric transformation induced by Π. Note that M1 = M1
−1, and

(I − 2 · n · nT) is a Householder matrix. Let M2 describe the rigid transformation that
transforms points from the reference to the camera frame:

M2 =

[
Rs2c Ts2c
O 1

]
(2)

2.2. Mirror-Based Camera Projection Model

The perspective projection model is a camera imaging model widely used in computer
vision [23]. The mapping relation between any three-dimensional point Pw in the space
and its corresponding pixel point v = [x y 1]T in the image can be described as:

v =s · A · [R T] · Pw (3)

where s is a nonzero scale factor, A is the intrinsic parameters matrix of the camera, and
R and T are the rotation matrix and the translation vector between the camera coordinate
system and the world coordinate system. Taking the mirror reflection into account, con-
catenate the camera model with the mirror reflection, the mirror-based camera projection
model becomes:

v = s · A · M1 · M2 · Pw (4)

R and T can be written as:{
R = (I − 2 · n · nT) · Rs2c
T = (I − 2 · n · nT) · Ts2c + 2 · d · n

(5)

According to the Equation (5), we need at least three specular reflection images to
calculate Rs2c and Ts2c.
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2.3. Computation of External Parameters

By changing the tilt angle of the plane mirror, we can obtain mirrored images at
different positions and compute external parameters by the P3P algorithm [16]. Let
j, j′ ∈ {1, 2, 3}, and Rj represents the rotation matrix of the mirrored image at the j position
of the plane mirror. Assume unit vector mjj′ is perpendicular to nj and nj′ , so we can obtain:

Rj · Rj′
T · mjj′ = (I − 2 · nj · nj

T)× (I − 2 · nj′ · nj′
T) · mjj′ = mjj′ (6)

Rj · Rj′
T is a special orthogonal matrix, which has two complex conjugate eigenvalues,

and one eigenvalue equals 1. So mjj′ is the eigenvector of Rj · Rj′
T corresponding to the

eigenvalue of 1. According to the cross-product properties of the eigenvector, the unit
normal vectors corresponding to the three positions of the plane mirror can be calculated.

n1 =
m13 × m12

‖m13 × m12‖ , n2 =
m21 × m23

‖m21 × m23‖ , n3 =
m13 × m23

‖m13 × m23‖ . (7)

According to the Equation (5), Rs2c can be calculated. In the case of an ideal condition
without noise, the three rotation matrices calculated by three Rj should be equal. While
they are not equal in fact due to the noise. Therefore, the average of the rotation matrices
should be calculated [20].

R = [(R̂T · R̂)
1/2

]
−1

· R̂, where R̂ =
1
3
·

3

∑
j=1

Rs2cj (8)

The rest of the parameters [T, d1, d2, d3]
T can be solved by linear equations con-

structed by the Equation (5). So far, all of the initial values of the pose parameters have
been calculated.

⎡⎢⎣(I − 2 · n1 · n1
T) 2 · n1 o o

(I − 2 · n2 · n2
T) o 2 · n2 o

(I − 2 · n3 · n3
T) o o 2 · n3

⎤⎥⎦ ·

⎡⎢⎢⎢⎢⎣
T

d1

d2

d3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎣T1

T2

T3

⎤⎥⎦ (9)

2.4. Optimization with Coplanar Constraint

Linear solutions are usually sensitive to noise, we can minimize the reprojection error
of back-projection by adjusting Rs2c, Ts2c, n and d with coplanar constraint. As is shown
in Figure 2, we move the calibration grid on the LCD monitor for W times and rotate the
plane mirror corresponding to each grid position for M times. The grid has N characteristic
corners. Let Rji represent the rotation matrix of the mirrored image of the j grid at the
i plane mirror position. In the same way, Tji is translation vector, nji represents the normal
vector of the mirror, dji represents the distance between the origin of the camera coordinate
system and the plane mirror, Rs2cj represents rotation matrix from the j checkerboard
coordinate system to the camera coordinate system, and Ts2cj represents the translation
vector. Pk represents the k feature point of the grid in the reference plane coordinate system.
qjik represents the projection point of the k feature point of the j grid at the i planar mirror
position. q̃jik represents the back-projection point. The back-projection process can be
written as:

q̃jik = λji · A · (Rji · Pk + Tji) (10)

where λji is a nonzero scale factor, A represents the intrinsic matrix of the camera, and
Rji = (I − 2 · nji · nji

T) · Rs2cj, Tji = (I − 2 · nji · nji
T) · Ts2cj + 2 · dji · nji.
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Figure 2. Structure of measurement system. The calibration grid moves on the reference plane for
M times. A feature point Pk of the grid is reflected in the image point qk via the mirror at position
STX, STY, STZ. We can obtain three calibration images at each grid location. Then, W × 3 calibration
images can calculate the intrinsic matrix A, as well as the pose parameters Rji and Tji. Finally, Rs2c,
Ts2c, n, and d can be calculated by Equations (8) and (9).

Combined with the Equation (10), the reprojection error function of the back-projection
can be expressed as:

Errpro =
W

∑
j=1

M

∑
i=1

N

∑
k=1

‖qjik − q̃jik(Rs2cj, Ts2cj, nji, dji, Pk)‖2 (11)

Let Pjk represent the k feature point of the j checkboard in the camera coordinate system.

Pjk = (Rs2cj · Pk + Ts2cj) (12)

Since the reference plane can be regarded as a standard plane, the coplanar constraint
of the W grids should be added. Let Perr represent the fitting effect evaluation value of
plane fitting function: [ f itresult, Perr] = createFit(dx, dy, dz). The input of the function is
Pjk. The smaller the Perr value is, the better the coplanar effect will perform. In addition,
Rs2cj, j ∈ {1, . . . W} are equal in theory. Let Rav represent the average rotation matrix [24].
The error Rerr between Rs2cj and Rav can be written as:

Rerr =
W

∑
j=1

‖Rs2cj − Rav‖
2

(13)

The smaller the Rerr value is, the better the coplanar effect will perform. Likely, the
five plane mirror positions with zero tilt angle on the optical platform also have coplanar
characteristics. Therefore, the corresponding normal vectors nj1 are theoretically equal. The
average normal vector nav can also be calculated.

Nerr =
W

∑
j=1

‖nj1 − nav‖2 (14)

In the ideal condition, Perr = 0, Rerr = 0, Nerr = 0. Therefore, the cost function
can be regarded as two major components: the reprojection error term Errpro and the
coplanar constraint term (Perr, Rerr, Nerr). We can establish the cost function in the case of
equality constraints:⎧⎪⎨⎪⎩ F = min

W
∑

j=1

M
∑

i=1

N
∑

k=1
‖qjik − q̃(Rs2cj, Ts2cj, nji, dji, Pk)‖2 + Errcop

Errcop = Perr + Rerr+Nerr
(15)

where Rs2cj, Ts2cj, nji and dji are parameters to be optimized. The calculation of the specific
LM algorithm can be realized by the tool function lsqnonlin() in Matlab.
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2.5. Three-Dimensional Measurement Principle of a Single Camera

In the monocular measurement system, we observe the images of the grid pattern,
reflected in the unknown surface when the pose of the camera is known, and establish
the reflection correspondence between the three-dimensional reference points and the
two-dimensional image points. The depth of the reflection points on the surface is parame-
terized, and the surface shape is fitted by a polynomial. Therefore, the measurement of the
surface shape is converted into an optimization problem: minimizing the error between the
reference points and the corresponding points through the surface back projection [12]. The
principle of the measurement system is shown in Figure 3. O is the origin of the camera
coordinate frame, m is a feature point on the reference plane, p is a reflection point of the
surface, and v is a projection point on the normalized image plane. p and v are called
reflection correspondences. l is the reflected ray at p, and i is the incident ray. Rs2c and
Ts2c are the rotation matrix and translation vector from reference plane coordinate frame to
camera coordinate frame. Obviously, v is on the incident ray i. The relationship between
p and v is given by

p = s · v (16)

Figure 3. Principle of mirror surface measurement. A pinhole camera centered at O is observing
a mirror surface point p that reflects a reference point m to an image point v. We refer to m and v as
reflection correspondences. The reflected ray l is determined by m and p. We denote by i the incident
ray for image point v and by n the normal at p. Rs2c and Ts2c denote the pose parameters between
the reference plane and the camera.

s is the depth of the corresponding reflected point p. Correspondingly, the normal n to
the surface at p can be written as:

n =

(
∂p
∂x

,
∂p
∂y

,
∂p
∂z

)T
(17)

Suppose the coordinates of the normalized image points {v1, v1, . . . , vm} and points
on the reference plane {m1, m2, . . . , mm} are known. The principle of back projection is
shown in Figure 4. The three-dimensional reflection point on the mirror corresponds to
the normalized image plane coordinates (xi, yi)

T that can be expressed as pi = si(xi, yi, 1)T .
The unit vector of the incident ray is ii = (xi, yi, 1)T/‖(xi, yi, 1)T‖, the unit vector of the
reflected ray is li = ii − 2 · 〈ñi, ii〉 · ñi, and ñi = ni/‖ni‖. Let Rs2c = (r1 r2 r3), r3 represents
the coordinates of the unit vector in the Z-axis direction of the reference plane coordinate
frame in the camera coordinate frame. Ts2c indicates the coordinates of the origin of the
reference plane coordinate frame in the camera coordinate frame. The reference plane
can be represented by the vector q = (r3

T ,−r3
T · Ts2c)

T , such that
〈

q, (m̂T
i , 1)T

〉
= 0 for

any point on the reference plane. Back-projection can be achieved by computing the point
m̂, the intersection of the reflected ray with the reference plane.

m̂i = pi − (〈r3, pi〉 − r3
T · Ts2c)/〈r3, li〉 · li (18)

72



Sensors 2023, 23, 3464

Figure 4. Principle of back projection. The rotation matrix Rs2c can be written as (r1 r2 r3). r3 denotes
the unit vector in the Z-axis of the reference plane. Ts2c denotes the distance between S and C. The
reflected ray l intersects the reference plane at the point m̂. The point m̂ satisfies −r3

T · m̂ = ds2c. We
denote by dc2s the distance between C and the reference plane.

In Equation (18), m̂i is a function of depth s. We can build an optimization model to
minimize the error between the back projection point and the real point on the reference
plane. That means solving a nonlinear least-squares problem to estimate the depth of
the mirror.

min
s

m

∑
i=1

‖m̂i(s)− mi‖
2

(19)

For minimizing problems in (19), we can also iteratively calculate s with the LM
algorithm. The initial surface can be regarded as a plane.

3. Experimental Verification

3.1. Calibration Experiment

To verify the accuracy and universality of the calibration method proposed in this
paper, a monocular vision system measurement experiment was designed (Figure 5). The
whole measurement system consists of an optical platform, standard plane mirror, LCD
monitor, and large FOV camera. The focal length of the camera is 8 mm; the image
resolution is 1280 pixel × 1024 pixel, and the pixel size is 4 μm; the FOV of the camera
is 820 mm × 670 mm, which is much bigger than grid image. When the measurement
distance is about 1000 mm, the field of view of the camera is 820 mm × 670 mm. The LCD
is 19 inches in size and has a pixel size of 0.2451 mm. In order to approach a large field
of view measurement scene, we use a 90 × 120 mm checkerboard image as a calibration
target, which is much smaller than the camera’s field of view range.

 
Figure 5. Experiment setup. The whole measurement system consists of an optical platform, standard
plane mirror, LCD monitor, and large FOV camera.
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The LCD faces the standard plane mirror on the optical platform. The grid image on the
LCD is captured by the camera through the plane mirror. In the experiment, the grid image
is moved on the LCD. Each grid position corresponds to three positions of a plane mirror,
which are the position STZ on the optical platform, the position STX around the X-axis, and
the position STY around the Y-axis. In this way, it not only ensures that the three positions
of the plane mirror intersect with each other to satisfy the orthogonality constraint, but
also ensures that there is an obvious height difference to satisfy the conditions of Zhang’s
calibration method.

Figure 6 is a set of mirrored images of the grid taken by the camera for calibration.
The grid image was moved five times, and the five positions of the grid basically filled
the whole LCD screen to cover the whole FOV of the camera. In the five pose conversion
parameters from the reference coordinate system to the camera coordinate system, the
rotation matrices are equal, and the translation vectors change with the motion of the grid
in theory. In the same way, the plane mirrors at the STZ position corresponding to the
five grid images are also coplanar, so the corresponding mirror normal vectors are equal.
This is the coplanar constraint described in Section 2.4.

 
Figure 6. Checkerboard mirror image taken by the camera for calibration. The calibration grid moves
on the reference plane five times. We change the position of the plane mirror to position STX, STY,
and STZ for each grid. Then, we can obtain 5 × 3 = 15 calibration images.

Figure 7 describes the mirrored grid positions and the real grid positions with and
without coplanar constraints. The mirrored grid positions corresponding to the STZ
positions of the five plane mirrors are coplanar. Fitting the plane of five mirrored grid
positions, the average distance error RMSE is 0.14 mm, which is consistent with Figure 7a,c.
However, the coplanarity of the five grid positions restored is obviously different.
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(a) (b) 

  

(c) (d) 

Figure 7. Calibration results with and without coplanar constraints. • points denote the real feature
points on the reference plane. ∗ points denote the mirrored feature points. (a) Calibration results
with coplanar constraints in view 1. (b) Calibration results with coplanar constraints in view 2.
(c) Calibration results without coplanar constraints in view 1. (d) Calibration results without coplanar
constraints in view 2. Yellow: Grid location 1-STZ. Blue: Grid location 2-STZ. Green: Grid location
3-STZ. Red: Grid location 4-STZ. Cyan: Grid location 5-STZ.

As is shown in Figure 7c,d, the positions of each chessboard are not only poor in
coplanarity, but they also have a large offset in the relative positions, which can not comply
with the law of mirror reflection.

Figure 8a is the coplanarity of the five grids performs well with coplanar constraint,
RMSE = 0.11 mm. However, the five grids without coplanar constraint have poor copla-
narity, RMSE = 6.45 mm. Figure 8b is the reprojection error of the two methods after back
projection. The average reproject error of the method proposed in this paper is 0.1641 pixels,
and in paper [16], it is 0.1419 pixels.

 
(a) (b) 

Figure 8. Comparison of error with and without constraints. (a) Coplanarity error of the two methods.
With constraints: RMSE = 0.11 mm. Without constraints: RMSE = 6.45 mm. (b) Reprojection error of
the two methods. With constraints: RMS = 0.1641 pixel. Without constraints: RMS = 0.1419 pixel.
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The two methods are similar in terms of calibration accuracy, and the reprojection error
without coplanar constraint is smaller. However, for the reference plane, the calibration
result of this method is locally optimal. With coplanar constraints, the reprojection opti-
mization model can unify the positions of five checkerboards and optimize the calibration
results as a whole. Therefore, the calibration method in this paper sacrifices part of the
calibration accuracy to improve the reliability of the algorithm. This calibration result is
more suitable for practical measurement.

3.2. Measurement of the Step Surface

After the calibration of the reference plane, we can carry out a three-dimensional
measurement experiment according to Section 2.5. As is shown in Figure 9a,b, a standard
plane mirror is placed on the optical platform, and the mirror feature point calculation is
performed at the STZ position. Then place the standard gauge block between the optical
table and the planar mirror, so the mirror position is 8.74 mm higher than before, and the
mirror feature points are calculated at the higher mirror position. Fit the mirror surface
with feature points by createFit(), and then use the point-to-plane distance formula to
calculate the distance from each feature point to the fitting plane, and then take the average
value. Compare it with the actual distance of 8.74 mm to indirectly verify the accuracy of
the calibration method proposed in this paper. The mirror feature points of the first mirror
position are shown in Figure 9c. The plane fitting model is as follows:

f (x, y) = p00 + p10 · x + p01 · y (20)

 
(a) (b) 

  

(c) (d) 

Figure 9. Restoration of plane mirror feature points at position 5. (a) Mirrored checkerboard image
before placing the standard gauge block. (b) Mirrored checkerboard image after placing the standard
gauge block. (c) Mirror feature points at position STZ. (d) Plane fitting of two mirror feature points.
The distance between the two planes is 8.68 mm.

76



Sensors 2023, 23, 3464

We can obtain the coefficients of the plane: p00 = 421.4000, p10 = −0.6167,
p01 = 0.0267, and the RMSE = 0.02 mm. To have an intuitive display effect, the
first and second mirror positions are shown together in Figure 9d. The average distance of
the two mirror positions is 8.68 mm. The difference with the actual distance of 8.74 mm is
0.06 mm, and the relative error is 0.69%.

3.3. Measurement of the Spherical Mirror

In addition, we also measure the spherical mirror surface. The principle of the experi-
ment is the same as that of the mirror. Firstly, measure five sets of spherical characteristic
points, with 108 points in each group as measurement data. Then, place the spherical
mirror on a coordinate measuring machine (model: MC850) with the highest resolution of
1 um for sampling.

The number of detection points is 202, which is used as reference data. Since the
coordinate system of the coordinate measuring machine is not unified with the camera
coordinate system, it is necessary to use Cloud-Compare software to unify the measurement
data and reference data with the method of iterative closest point (ICP). The ICP registration
of the measured feature points and the reference feature points is shown in Figure 10b.

 
(a) (b) 

Figure 10. Restoration of spherical mirror feature points. (a) Mirrored checkerboard image of the
spherical mirror at position 5. (b) Display of feature points and reference data.

The spherical equation is fitted to the reference data through Cloud-Compare software.
As shown in Figure 11a, the spherical equation is:

z = −459.621 +
√
(475.6172 − (x − 0.506226)2 − (y − 0.264729)2) (21)

 
(a) (b) 

Figure 11. Spherical equation fitting of reference points. (a) Spherical equation fitting. The fitting
result: radius of the spherical mirror is 475.62 mm. RMSE = 0.01 mm, the manufacturing error can be
ignored. (b) Surface fitting error.
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Additionally, RMSE = 0.01 mm. The fitting error distribution is shown in Figure 11b.
We can obtain the spherical mirror radius from the Equation (21) (Table 1).

Table 1. The fitting results of measurement data and the measurement error results compared with
the reference data.

Point-Data Radius (mm) RMSE (mm) Error (%)

Data 1 477.94 0.02 0.49
Data 2 478.32 0.02 0.57
Data 3 472.48 0.02 0.66
Data 4 478.54 0.01 0.61
Data 5 472.37 0.02 0.68

In the experiment, we use a cubic polynomial to initialize the spherical mirror surface
because we treat the mirror surface as unknown. Supposing we directly use the spher-
ical equation to iteratively optimize the mirror surface, the measurement accuracy will
perform better.

4. Conclusions

This paper proposes a calibration method based on coplanar constraints for a camera
with a large FOV. The whole experiment process is divided into two parts. The first is the
calibration of a large FOV camera and the reference plane. By adjusting the tilt angle of the
planar mirror and moving the grid image on the LCD monitor, the camera acquires multiple
sets of calibration images and then obtains the optimal solution of the external parameters
between the camera and the LCD monitor with the coplanar constraint. The other is shiny
surface reconstruction. When the pose of the reference plane is known, we can establish the
dense reflection correspondence between normalized image plane two-dimensional feature
points, reference plane three-dimensional feature points, and bright surface reflection
points, and we can iteratively calculate the reflection point depth information. In terms of
calibration accuracy, the calibration accuracy of the method proposed in this paper is similar
to that of [16]. At the same time, in the step surface and spherical surface measurement
experiments, the results also indirectly prove the accuracy of the proposed method. The
universality of the method has important research significance for further application to
the multi-camera measurement system in the future.
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Abstract: Particle mass and particulate size are two important parameters used to characterize the
aerosol. Currently, there are a few methods for measuring particle mass concentration and particle
size. However, the existing methods have their own shortcomings. In this article, we describe a novel
laser scattering instrument that measures mass concentration and particle size in real time over a
wide concentration range. This instrument combines laser scattering and time-of-flight aerodynamics
in one optical device. There are two innovations in this paper: (1) Two APD detectors are used to
receive scattered light. One receives forward-scattered light and the other receives side-scattered light.
The advantage is that the sensitivity of the detector is increased greatly, and the ratio of forward and
side scattering is used to further obtain the size and shape information of the particles. (2) In order to
measure the high concentrations of aerosol, a high-speed ADC and FPGA is combined to achieve
an anti-overlap algorithm objective. It has been verified by experiments that the anti-overlapping
algorithm can effectively improve the applicability of the aerodynamic particle size spectrometer
under high concentration conditions.

Keywords: particle size; aerodynamic particle size; anti-overlap algorithm; particulate matter

1. Introduction

Industry’s rapid development in recent years has greatly contributed to China’s
economic progress, but it has also caused numerous air quality problems. Haze weather
frequently occurs as industrial pollution intensifies. Among all air pollutants, particulate
matter is the most serious and has the greatest effect on human health. Air pollution
control has become a public concern to ensure a reasonable development of industry [1].
Hence, the detection of air quality is particularly important. The monitoring and analysis
of the concentration of particulate matter in the atmosphere becomes a prerequisite for
environmental governance.

Particle size and mass are two important parameters used to characterize an aerosol.
The atmospheric particulate concentration is a basic parameter for characterizing the spatial
distribution of the particulate matter, which is generally expressed by mass concentration
and quantity concentration [2]. According to the aerodynamic diameter, atmospheric
particulate matter can be divided into four levels: (1) total suspended particulate matter
(TSP) with a diameter of less than 100 μm; (2) respirable particulate matter with a diameter
of less than 10 microns (PM10); (3) a diameter less than 2.5 μm fine particles (PM2.5), which
can be suspended in the atmosphere for a long time, bringing an important impact on
air quality and visibility; (4) ultrafine particles with a diameter less than 1 micron (PM1),
which can easily enter various tissues of the human body by respiratory system. PM2.5 and
PM1 have a small particle size and strong chemical activity, and are prone to carry toxic
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and harmful substances (such as heavy metals, viruses, microorganisms, etc.). They stay in
the atmosphere for a long time and move a long distance. Therefore, PM1 and PM2.5 have
greater impacts on human health and atmospheric environmental quality [3–5].

The standards for ambient air quality (PM1, PM2.5, and PM10), exposure assessment
for inhalable particulates, and FDA guidelines for pharmaceutical aerosol characterization
are based on mass and aerodynamic size of the particles. Most of this aerosol characteri-
zation will benefit from the real-time measurement of mass-weighted aerodynamic size
distributions, which will significantly reduce the time required to characterize aerosols and
provide higher resolution particle size data. The demand for concentration statistics over
different particle sizes is increasing with environmental requirements.

At present, there are some common methods for measuring particle mass concen-
tration and particle size: the β-ray absorption method [6,7], the QCM(Quartz crystal
microbalance) [8,9], the charge transfer method [10], the optical scattering method (laser
scattering method) [11–13], and the time-of-flight aerodynamic method [14–16]. The β-ray
absorption method has good mass sensitivity [6,17]; however, the disadvantage of the
β-ray absorption method is that it is time consuming and expensive [17]. Additionally, the
sampling paper tape inside must be replaced manually. The β-ray absorption method and
QCM method have good mass sensitivity, but are unable to measure particle size without a
size selective inlet. The charge transfer method is the most used for nanoparticles.

The optical scattering method is widely used for measuring particle size distribution
in real time [17,18]. Optical measurements of particle velocities are widely used to study
particle dynamics and gas flows. The measurement of particle size is used in a variety
of fields, including pollution and contamination monitoring, respirable particle mass
monitoring, and spray nozzle performance monitoring. Optical scattering has the following
advantages: (1) accurate particle counting when the concentration is low; (2) good signal-
to-noise ratios when the particles are larger (e.g., >100 μm); and (3) low cost. There are
several disadvantages to the optical method: (1) If particle density is unknown, optical
size does not equal geometric size since it depends on particle shape and refractive index;
this error is exacerbated when particle size distribution is converted to mass concentration.
(2) Particle concentrations will be underestimated because multiple particles are present at
the same time in the measure volume, causing coincidence errors. Due to these reasons,
optical scattering methods are mostly used in clean environments [17].

Time-of-flight velocimetry, also called transit time, two-spot, or two-focus velocimetry,
is the most common technique for measuring velocity. Using this method, two beams
of light radiation (laser radiation) are directed through a volume of particles. Two pulse
signals will be generated when a particle passes through both beams. In order to measure
particle velocity over a known distance, a timing signal is initiated contemporaneously
with the first pulse and terminated concurrently with the second pulse. The advantages
of time-of-flight aerodynamic method is that it is less dependent on the particle refractive
index and density than optical scattering method. Good agreement between the time-of-
flight aerodynamics and direct mass measurements has been reported [19]. However, a
commercial instrument that uses time-of-flight aerodynamics (for example the APS3321
from TSI) cannot measure high concentrations [20], mainly due to the defects of its signal
processing circuit and its data processing algorithm [21].

According to these methods and instrument characteristics, Table 1 briefly compares
the advantages and disadvantages of the methods for measuring particle concentration
and particle size.
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Table 1. Methods for measuring particulate concentration and size.

Method Advantage Disadvantage

β-ray absorption Good mass sensitivity.

Time consuming and expensive.
Sampling paper tape replaced manually.
Data output period is long (1 data/1 h).
Measuring different particles sizes need
cutting head.

QCM (Quartz crystal
microbalance) Good mass sensitivity.

Cannot measure particle size.
Highly affected by water vapor.
Measuring different particles sizes
needs cutting head.

Charge transfer

System is simple.
Mainly used for engine
exhaust nanoparticle size
detection.

Influenced by factors such as particle
size changes, composition changes, and
water vapor.

Optical scattering
(Laser scattering)

Low cost.
Accurate in low concentration.
Suitable for large particle.

Inaccurate mass concentration.
Concentrations will be underestimated
because of overlapping particles.

Time of flight
(Only have APS3321)

Suitable for 0.5–20 μm.
High measurement accuracy.
Measure mass concentration
at the same time.
High resolution, good stability.
Unaffected by water vapor.

Be interfered with by overlapping
particles in high concentrations due to
defects of its signal processing circuit.
Very expensive.
High technical complexity.

In this paper, we design a novel laser scattering instrument that measures mass
concentration and particle size in real time over a wide concentration range. The novelty
of this instrument is that it combines laser scattering and time-of-flight aerodynamic in
one optical device. We use two APDs in order to increase the sensitivity and obtain more
information of the particles. In order to measure higher particle concentrations, we use
digital acquisition technology for implementing anti-overlapping algorithms, which solve
the problem of overlapping particles interfering with each other in high concentrations.

2. Principle of Measurement

2.1. Instrument Description

The novel instrument is shown in Figure 1. Using a pump with a damping chamber
at a total flow rate of 5 L/min, clean air and aerosol (air with particulates) are drawn
into the optical chamber through the sheath nozzle in a continuous stream. The air is
filtered to remove particulates and becomes clean air through a HEPA filter. The clean
air is then drawn back into the optical chamber around the inlet nozzle as sheath flow
to reduce particles and protect the optics from particle contamination. The remaining
1 L/min of air with particulate matter through the inlet of the sheath nozzle enters the
optical chamber. As particles pass through the measurement volume, they are illuminated
by a parallel laser beam with a wavelength of 635 nm. The avalanche photo detector (APD)
captures side-scattered light in the scattering angle of 30◦ to 120◦ using a spherical mirror.
A lens focuses the forward-scattered light onto the second APD. Signals from the APD are
converted into digital form by high-speed ADCs and processed by FPGAs. In order to
maintain pressurized drop balance in the two flow paths, an orifice is used to maintain the
aerosol-to-sheath flow ratio. The HEPA filters are used to filter dust from the sheath flow
before affecting the flow rate. This damping chamber is used to reduce the air jitter that is
caused by the pump, thereby maintaining a steady flow rate at the nozzle.
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Figure 1. Schematic diagram of the novel instrument. The particle beam, laser beam, and the axis of
the mirror are orthogonal to each other.

The laser is shaped by an optical lens, then split into two beams by calcite spaced
100 μm apart. Each beam is 1 mm wide and 40 μm thick. Figure 2 shows the light intensity
over the measuring volume, double-peaked from top to bottom. A reduced pressure is
created and maintained by the vacuum pump, so that the clean gas at the nozzle is ejected
at the same speed. With the same pressure, different particles will move through the
measuring volume from top to bottom at different rates. Larger or heavier particles scatter
more lights and move over the measuring volume more slowly. This affects the relationship
among particle size, time of flight (TOF) and intensity, as seen in Figure 3. It can be used to
estimate the aerodynamic particle size of particles ranging from PM0.3 to PM20 based on
this property.
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Figure 2. Light intensity profile over measurement volume.
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Figure 3. Relationship among particle size, TOF, and intensity.
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2.2. Intensity Ratio of Backward Scattering to Forward Scattering

The laser scattering method principle calculates particle size distribution from the
scattered light intensity distribution (scattering pattern). When the laser irradiates the
particles, if the particle size exceeds the wavelength of the laser, the particles will scat-
ter the light in the same direction as the laser light (forward scattering). If the particle
size is approximately equal to or smaller than the wavelength of the light, the scattered
light increases in perpendicular directions (lateral) and in directions backward (backward
scattering) [22–26], show as Figure 4.

Direction of incident light

Rayleigh 
Scattering

Mie
 Scattering

Mie Scattering
Larger particles

Figure 4. Relationship between size and scattered light intensity distribution.

The device has two photo detectors, one of which is used to collect sideward and
backward-scattered light (scattering angles between 30◦ and 120◦), the other to collect
forward-scattered light. It offers two benefits: (1) The signal-to-noise ratio is increased by
combining the signal values from the two detectors. (2) As the particle diameter decreases,
the ratio of backward scattering plus sideward scattering to forward scattering increases. As
a result, this ratio can be utilized to increase the precision of small particle measurements.

2.3. Time of Flight

The Bernoulli’s equation is a basic equation in fluid dynamics [27]. According to
Bernoulli’s equation (Equation (1)), when the pressure difference between the inside and
outside of the nozzle of the instrument is 15 kPa, the air spray velocity of the sheath nozzle
will be 150 m/s.

P1 +
1
2

ρv2
1 = P2 +

1
2

ρv2
2 (1)

The velocity of particles relative to the air in the nozzle can reach approximately one
third the speed of sound (Table 2) [28].

Table 2. Particle properties in nozzle.

Particle Diameter
(μm)

Relative Velocity
(cm/s)

Particle Reynolds
Number

0.5 40.0 0.01
1.0 1750.0 1.16
3.0 6490.0 12.90

10.0 10,600.0 69.60
15.0 11,500.0 114.00
20.0 12,300.0 163.00

The Reynolds number is the ratio of inertial forces to viscous forces within a fluid The
larger the particle’s Reynolds number, the slower the particles move in the fluid [27,29].

As shown in Figure 1, the distance between two parallel beams is 100 μm; based on
Table 1, PM0.5-PM20 particles have a flight time (Time-of-Flight) ranging approximately
from 700 to 3500 nanoseconds.
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2.4. Digital Signal Processing and Anti-Overlap Algorithm

This paper proposes the use of high-speed ADC for photoelectric signal acquisition,
and FPGA for signal processing to replace previous analog circuits [21]. The advantage is
that digital signal processing techniques is capable of processing complex waveforms. With
the help of ADC and FPGA digital circuitry, it is possible to process waveforms shown in
Figure 5, which are impossible for analog circuits [20,30].

4.096μs

Detection 
Threshold

Detection 
Threshold

Detection 
Threshold

Detection 
Threshold

Event 1 Event 2

Event 3 Event 4

Figure 5. Complicate events which analog circuits cannot handle. In events 1 and 2, when the
signal from a small particle cannot remain above the threshold, only one crest is detected, and no
time-of-flight measurements are taken. In the case of event 3, although the signal remains above the
threshold, three or more crests are detected as a result of coincidence. Such events are logged, but
concentration and flight time are not recorded. Event 4 is outside the timer’s maximum range, and in
this case, the signal re-mains above the threshold until it moves outside the timer’s range, and only
one crest is observed. Event 4 is typically caused by large or recirculating particles, and in this case,
the event will be logged, but no time-of-flight is recorded.

In analog circuits, the threshold is set to a fixed value. The background signal output
by the APD fluctuates widely due to temperature, gain, etc. If the threshold is lowered, the
instrument will not operate correctly. The digital signal processing techniques proposed
in this paper can be used to dynamically detect the APD’s background value so that the
threshold value also fluctuates with the fluctuation of the background signal, causing
waveforms such as events 1 and 2 to be processed accurately. For detailed processing flow,
please refer to Figure 6, in which V is the voltage value of the APD output; V1 is the lowest
value detected in the current loop; and the threshold V2 is equal to the manually set value
S plus V1. Event 4 is also easily handled using the processing flow shown in Figure 6.

Is there 
Particulate matter in 
the measure volume?

if (V V2)

Dynamically adjust 
background value 

(Measure the lowest value 
V1  of the APD and store it)

NO

All the particles 
flew out of the

 Measure volume?
if (V < V2)

NO

Update 
Threshold V2

(V2=V1+S)

Store waveforms
for data analysis

Completely 
record a set of 

valid data

YES

Figure 6. Processing flow of signal acquisition and storage.

It is easy to process the waveforms of event 3 using digital processing techniques.
Event 3 is called particle overlap. There are many ways to handle event 3. This paper
proposed an anti-overlap algorithm, which can be achieved using the data processing flow
shown in Figure 7.
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Figure 7. Processing flow for anti-overlap algorithm.
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The system works in an uninterrupted and real-time mode. As soon as a particle flies
out of the measuring volume, the data is analyzed. To ensure that no data are lost, the
algorithm for particulate matter needs to be completed before the next particulate matter
flies out of the measurement volume. The time for particles to fly through the measurement
volume is approximately 600 ns–4000 ns, which means that the algorithm needs to be
completed within 600 ns. Therefore, an FPGA must be used to implement the algorithm.

3. Results and Discussion

Some experiments have been conducted to test the instrument’s performance using TSI
Company’s 3410U and CMAG 3475 aerosol generators. These generators generate particles
of varying sizes for experimentation, and the relationship between particle concentration
and scattered light intensity is observed [31]. The 3410U is an aerosol generator, which
produces aerosols of different sizes from 0.5 μm to 100 μm. CMAG 3475 aerosol generator
with Sinclair–Lamer condensation technology produces aerosols of varying sizes (0.5 mm
to 8 mm) by controlling temperature and airflow. CMAG 3475 produces particulates in
quantities per unit volume.

The specific experiments are as follows:

(1) A calibration experiment for TOF of Aerodynamic Particles was conducted in which
3410U was used to generate 11 different standards of particulate matter. Measure
the time-of-flight of 11 different diameters of standard particles and use these data to
calibrate the instrument. By calibrating the time-of-flight of 10 different diameters of
standard particles, the instrument can measure the time-of-flight of similar particles
in the future.

(2) Experiment for “scattered light intensity of p”. After TOF calibration in experiment 1,
several different diameters of standard particles are measured again. The instrument
performance is analyzed by analyzing the standard deviation of the measured TOF
data and light scattering intensity data. The results of the analysis can be used to de-
termine how well the instrument is functioning, and whether or not any adjustments
need to be made. The smaller the standard deviation, the better the instrument’s
performance.

(3) Experiment for “work in high concentrations”. In this experiment, the CMAG 3475
was used to generate standard particulate matter. This was performed to test the
accuracy of the instrument in measuring the number concentration at different con-
centrations by controlling the change in the number concentration per unit volume.
The CMAG 3475 was chosen because it is capable of producing a range of different
concentrations of particulate matter while also providing a constant number concen-
tration per unit volume. This allowed for a more accurate test of the instrument’s
accuracy in measuring the number concentration of particulate matter at different
concentrations.

(4) Experiment for ambient aerosols. In this experiment, a parallel comparison exper-
iment with the particle analyzer of the β-ray principle was performed at the same
location. The purpose of the experiment is to evaluate the accuracy of the analyzer by
comparing the results of the particles measured by β-ray.

3.1. Calibration Experiment for TOF of Aerodynamic Particle

In theory, there exists a precise relationship between aerodynamic size and velocity.
However, the actual system has some (albeit minor) variations. A series of tests using single
spheres of uniform sizes is highly recommended to calibrate the system. Based on these
tests, the empirical relationship between TOF measurements and aerodynamic particle size
will be established. Figure 8 is a calibration curve using 11 different standards of particulate
matter.
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(a) (b)  

Figure 8. TOF of aerodynamic particle size of PM0.3-PM20. (a) A logarithmic base of 2 is used for
the abscissa to facilitate viewing the values. (b) In order to view linearity comfortably, the abscissa
is normal.

Time-of-flight data for 11 different standard particle diameters were obtained, and
Figure 8 illustrates the results. The time-of-flight of particles 0.3–20 μm is approximately
700 ns to 4000 ns. In Figure 8b, it is evident that the particle size is linearly proportional to
time-of-flight. Figure 9 shows the data collected by ADC when calibrating the instrument
with PM1.2.
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Figure 9. TOF and Scattering Light Intensity of two PM1.2 particles; TOF = Δ = Numbers × 4 ns.

As shown in Figure 9, the TOF of PM1.2 is around 900 ns. In order to normalize the
data, for each particle with TOF, the scattering light intensity value is taken from the highest
point on each peak to take its adjacent 16 points, and there are 34 points in total for the
2 peaks. The scattering light particle size of the first PM1.2 is area 1 plus area 2, and the
scattering light particle size of the second PM1.2 is area 3 plus area 4.

In order to obtain time-of-flight data for 0.3 μm standard particles, one APD is utilized
to receive forward-scattered light and the other APD for side-scattered light; these two
APD’s signals are then summed for the same moment of data to increase the signal-to-noise
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ratio. By using two APDs, the system can measure the time of flight of particles with much
higher accuracy and resolution than if only one APD was used. The two APDs also allow
for measurements of both forward and side-scattered light, which gives a better overall
picture of the particles’ behavior.

3.2. Scattered Light Intensity of Particle

After time-of-flight calibration, which means that the time of flight corresponds to the
particle diameter, samples of standard particles (PM0.8, PM2.2, PM4) were tested with two
objectives: one for analyzing the standard deviation of TOF, and the other for analyzing
the light intensity of the forward and side-scattered light of the particles. For different
diameters of particulate matter, the ratio of forward scattering to side scattering is obtained.
To analyze instrument performance, 1000 FWHM data were collected for each particle
sample (PM0.8, PM2.2, and PM4.0). Its data heatmap is shown in Figure 10.

 

Figure 10. Scattered Light Intensity of PM0.8\PM2.2\PM4.

Analyzing the data in Figure 10 and Table 3, it is found that the standard deviation
of TOF increases with particle size. In addition, the standard deviation of scattered light
intensity increases with particle size. The standard deviation of TOF for the same particles
is much smaller than the standard deviation of light scattering. This indicates that the TOF
measurement is much more precise and accurate than light scattering measurement when it
comes to determining the size of particles. This is because the TOF measurement measures
the time it takes for a particle to travel a certain distance, so any change in particle size
would lead to a change in the time of flight. However, the light scattering measurement
is less accurate because it measures the amount of light reflected by the particles, and the
amount of light reflected does not necessarily depend on the size of the particle. Therefore,
the TOF measurement is more reliable for measuring particle size.

According to the data in Table 3, scattering light intensity increases as particle size
increases. The ratio of forward scattering light to backward scattering light increases
as particle size increases. This is because, in accordance with Mie scattering theory, the
larger the particle’s diameter, the stronger the forward scattering light relative to the side-
scattering light. This is due to the fact that larger particles have a larger cross-sectional area,
which increases the amount of light that is scattered in the forward direction. At the same
time, the size of the particles also increases the probability of light being scattered in the
backward direction, resulting in a higher ratio of forward to backward scattering light.
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Table 3. Standard deviation of TOF and Intensity of PM0.8\PM2.2\PM4.

Particle
Matter

Std of TOF

Total Intensity of
Scattered Light Ratio (F/B)

Std
of Light
Intensity

Std
of Light Scattering

ParticleSum Backward Forward

0.8 0.08 179 110 69 0.62 35.72 0.16

2.2 0.13 553 312 241 0.77 56.41 0.22

4.0 0.17 946 496 450 0.91 88.35 0.37

3.3. Work in High Concentrations

A particle generator CMAG 3475 is used to generate PM2.2 in different numbers of
concentrations from 0.1 to 10,000 particles/cm3. At these different concentrations, our
instrument was compared with the TSI 3321. The concentration data curves obtained by
these two analyzers are shown in Figure 11.

Figure 11. Concentration linearity and percent error of our equipment vs. APS 3321.

When the concentration is below 800 particles/cm3, both instruments exhibit very
good linearity and accuracy. The linearity and accuracy of the APS3321 deteriorates when
the concentration of generated particulate matter exceeds 1000 particles/cm3. The linearity
and accuracy of our equipment is excellent up to a concentration of 8000 units/cm3. Our
instrument measures maximum particle concentrations of 8000 particles/cm3, which is
much higher than the 1000 particles/cm3 measured by APS3321 [32]. Due to the overlap
of particles, the analog circuitry used in the APS3321 is unable to process complex signals
caused by high concentrations. In contrast, our instrument uses an ADC to acquire the
signal and anti-overlap algorithms implemented in a FPGA to increase linearity and
accuracy at high concentrations. This means that our instrument is capable of accurately
measuring higher particle concentrations than the APS3321, which is limited by its analog
circuitry and the complexity of signals caused by high concentrations. Additionally, our
instrument uses an ADC and anti-overlap algorithms to further improve accuracy and
linearity. However, there are some drawbacks to this approach. One is that it can be
more expensive to produce an instrument with digital circuitry. Another is that the digital
approach can be more complex and difficult to troubleshoot than an analog approach.
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3.4. Experiment for Ambient Aerosols

In this experiment, we compare the data obtained by the β-ray equipment in the
standard air station. Through analyzing the data, it can be seen that the PM2.5 and PM10
data obtained by our instrument (TOF) are consistent with the data of β-ray (Thermo-Fisher
Model 5014i) made by Thermo-Fisher Environmental Instrument, USA.

Using the method proposed by Thomas M. Peters [16], the number concentration
measured by the aerodynamic particle size spectrometer was converted into a mass con-
centration for comparison with the data of β-ray method. For each TOF channel, the
differential mass concentration (dMDae) was calculated as follows:

dMDae = dNDae
π

6
D3

veρP (2)

where Dae is aerodynamic diameter, N is number of particles, Dve is volumetric equivalent
diameter, and ρP is density of the particle. In this paper we set ρP as 1.8 g /cm3 for fine
PM2.5 and ρP as 2.7 g/cm3 for coarse PM10 [16]. Figures 12 and 13 are actual measurement
data of PM2.5 and PM10 using TOF and β-ray equipment, respectively.

Figure 12. Actual measured concentration of PM2.5.

The distance between the two instruments is about 10 m. On 15 December 2022, from
3:00 to 5:00, the β-ray lost 2 h of data because the tape needed to be replaced manually.
During the whole measurement period, the concentration value recorded by TOF is con-
sistent with the measured value of β-ray, the mass concentration data of TOF is based on
the assumption of the density of the analyzed particles, and there are some deviations
from the average concentration data of β-ray. TOF equipment outputs data every 5 min,
which is the average value within 5 min. β-ray outputs data once per hour, which is the
average value within an hour. When the concentration of particulate matter in the aerosol
fluctuates greatly within 1 h, the peak value of TOF data is higher, and it can reflect the real
concentration at that time more correctly. This is because TOF equipment can measure the
concentration of particles every 5 min, providing more accurate and real-time data than
the β-ray equipment, which provides data once per hour. It is acceptable to have some
deviations when compared to a β-ray instrument. Even in heavily polluted conditions,
TOF instruments can accurately reflect the true picture of pollutants.
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Figure 13. Actual measured concentration of PM10.

3.5. Performance Comparison

After the above comparative experiments and actual measurements, the feasibility of
the method for measuring particle size proposed in this paper is confirmed. The method
described in this article has many advantages over other types of equipment. The following
Table 4 compares our equipment with other equipment mentioned in this article.

Table 4. Performance comparison of various instruments and equipment.

Instruments Method

Measure (Particles Size) Measure (Mass)

Range Numbers Resolution Range Resolution

Thermo Model
5014i 1 β-ray Indirect

~10 mg/m3 0.1 μg/m3

QCM200 2 QCM Direct
~10 mg/m3 0.2 ng/m3

TSI 3091 3 Charge transfer 5.6~560 nm ~107 p/cm3 4 nm
@56 nm Indirect 10 ng/m3

TSI 8533 or 8534 4 laser scattering 0.1~15 μm ~50,000 p/cm3 1.57 μm
@2.2 μm

Indirect
~150 mg/m3 1 μg/m3

GRIMM model
1.107 5 laser scattering 0.25~32 μm ~2000 p/cm3 0.5 μm

@2.2 μm Indirect 0.4 μg/m3

TSI3321 6 TOF and laser
scattering 0.5~20 μm ~1000 p/cm3 0.15 μm

@2.2 μm Indirect 0.1 μg/m3

Our equipment 7 TOF and laser
scattering 0.3~20 μm ~8000 p/cm3 0.13 μm

@2.2 μm Indirect 0.1 μg/m3

1 Model 5014i [33]; 2 QCM200 [9]; 3 TSI3091 [34]; 4 Xiaoliang Wang’s Instrument [17]; 5 Hans Grimm’s Instru-
ment [18]; 6 TSI3321 [14–16,35]; 7 TOF range can be extended to 0.3~40 μm.

Compared to other methods, the TOF method has many advantages, such as that
the TOF method can measure particles of varying sizes and masses simultaneously. It
is also unaffected by water vapor, making it ideal for measuring particles in humid con-
ditions. Additionally, the TOF method offers high measurement accuracy and real-time
performance, and does not require any consumables.
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Compared with TSI3321, our equipment can measure forward scattering light and
backward scattering light at the same time. The addition of forward scattering light
and backward scattering light increases the measurement sensitivity, and the ratio of
forward to backward scattering light can further enrich the information of particles. Using
digital acquisition technology and digital signal processing technology, various complex
algorithms can be designed for high-concentration overlapping events to achieve a wide
measurement dynamic range, and high concentrations can be measured. Additionally,
digital signal acquisition provides for the establishment of a particle model library, which
can be used to develop new applications. This combination of technologies allows for the
acquisition of more accurate and detailed data on the particles in a sample.

4. Conclusions

Through verification, the method proposed in this paper can increase the minimum
resolution particle size of TOF from 0.5 μm to 0.3 μm by employing 2 APDs to receive
forward-scattered light and side-scattered light, and the ratio of forward scattering light
to side scattering light can be used to further obtain the size and shape information of the
particles.

The experiment for high concentrations shows that the anti-overlap algorithm pro-
posed in this paper can effectively improve the applicability of the aerodynamic particle
size spectrometer for high-concentration conditions. Based on the anti-overlap algorithm,
our instrument can work at concentrations up to 8000 particles/cm3, much higher than the
1000 particles/cm3 of APS3321 [32].

The experiment for ambient aerosols shows the 5-day data of the comparison between
the TOF instrument and the β-ray instrument to measure the ambient air. It can be seen that
the concentration data of the two instruments are consistent. Since the mass concentration
data of TOF is based on the assumption of the density of the analyzed particles, there are
some deviations from average concentration data of β-ray.

It is concluded that the two APD methods used in this paper can improve the sensi-
tivity of the instrument, and the anti-overlap algorithm based on the digital method can
increase the upper limit of the instrument’s detection concentration. It laid the foundation
for the development of a new generation of aerodynamic particle size spectrometer.
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Abstract: A compact and high-precision three-degrees-of-freedom (DOF; X, Y, and Z directions)
grating encoder based on the quadrangular frustum pyramid (QFP) prisms is proposed in this paper
to solve the insufficient installation space problem of the reading head of the multi-DOF in high-
precision displacement measurement applications. The encoder is based on the grating diffraction and
interference principle, and a three-DOF measurement platform is built through the self-collimation
function of the miniaturized QFP prism. The overall size of the reading head is 12.3 × 7.7 × 3 cm3

and has the potential for further miniaturization. The test results show that three-DOF measurements
can be realized simultaneously in the range of X-250, Y-200, and Z-100 μm due to the limitations
of the measurement grating size. The measurement accuracy of the main displacement is below
500 nm on average; the minimum and maximum errors are 0.0708% and 2.8422%, respectively. This
design will help further popularize the research and applications of multi-DOF grating encoders in
high-precision measurements.

Keywords: displacement measurement; grating encoder; multi-degrees-of-freedom; compactness

1. Introduction

Precision displacement measurements play a remarkable role in national ultraprecision
machining, national defense, and other fields [1–3]. At present, ultraprecision displacement
measurements predominantly involve electrical and optical measurement methods. Electri-
cal sensors typically include inductive, eddy current, and capacitive sensors, among which
eddy current and capacitive displacement sensors are most commonly used for precision
measurements. Eddy current is mainly aimed at the mm-level measurement range and can
generally only provide micron accuracy [4–7]. Capacitive displacement sensors can achieve
nanometer accuracy in a single degree-of-freedom (DOF). However, the measurement range
is generally compressed to the level of hundreds of microns [8]. This compression is mainly
due to the small linear range of the capacitance value [9]. Capacitive displacement sensors
can also be used in three DOF, but only achieve micron-level accuracy [10]. A high-precision
measurement of capacitive time grating is also currently observed, and the accuracy can
reach submicron or even higher [11,12] in a stable electromagnetic environment. Current
optical methods for precision displacement measurement include a laser interferometer
and grating encoder, which both achieve nanometer or even higher accuracy in mm-level
ranges with a complex system. Therefore, the two schemes have always complemented
each other in the field of large-range precision measurements [13,14]. However, the laser in-
terferometer is limited by the laser wavelength, which is the measurement standard [15,16];
therefore, in actual use, the wavelength is easily affected by the temperature and humidity
in the environment, thus affecting accuracy [17–19]. Laser interferometers are generally
used for measurements in a controlled environment in the laboratory, which can achieve
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high accuracy and stability [20–22]. The measurement standard of the grating encoder is
the grating pitch [23,24]. The standard of this physical structure is substantially stable, and
its measurement accuracy mainly depends on the accuracy and uniformity of the grating
pitch [25–28]. In addition, absolute measurements are possible [29] with nanometer-level
accuracy [30], and angle measurements can be realized under the appropriate optical
path [31,32]. Therefore, a grating encoder is a widely used measurement method in actual
industrial production and other applications.

However, in practical applications, the high-quality grating reading head will also
increase the difficulty in controlling equipment motion due to the limited installation or
operating space of production equipment; thus, high integration and stability of the grating
encoder are required in most situations. Commercial products, such as Heidenhain, can
only currently achieve multi-DOF by assembling together the sensor components [33].
Therefore, considering industrial applications, multi-DOF and integrated miniaturization
are the largest obstacles to practical promotion.

Scholars have also conducted a series of research to achieve multi-DOF and compact-
ness. Multi-DOF mostly comprises two to three DOF [34–37] and four to six DOF [32,38–41].
However, only a few scholars, mainly led by enterprises, such as the LIP6031D series prod-
ucts proposed by Heidenhain in July 2021, have researched miniaturization [42,43]. These
products realize two-DOF for single reading head reads and assemble these sensors with
low number DOF to form a sensor assembly with up to five DOF. The difficulty of miniatur-
ization lies in the necessary batch collimation of diffracted light for the three-DOF grating
encoder. Integrating this module and miniaturizing its volume is difficult. Scholars at home
and abroad generally use prisms [40], convex lenses [44], or diffraction gratings [45] for
batch collimation of diffracted light modules. Integrating the ordinary prism is complicated,
and the convex lens needs focal length matching. This condition limits the miniaturization
of the system and the low diffraction efficiency of the grating, which is not conducive to the
detection of light intensity. Thus, the three solutions are not conducive to the development
of miniaturization and integration.

This paper generally proposes a miniaturized three-DOF grating encoder based on
quadrangular frustum pyramid (QFP) prisms to solve the urgent need for multi-DOF inte-
gration miniaturization and provides a reference for future six-DOF miniaturization. This
encoder also addresses the difficulty of multi-DOF grating encoder application promotion
and promotes research progress in multi-DOF miniaturization.

2. Principles and Method

The main principle of the three-DOF compaction scheme proposed in this paper is
to design the encoder using two QFP prisms. The schematic of the QFP prism is shown
in Figure 1. The draft angle α of the collimated part is 12.924◦ when the collimation
operation is performed corresponding to the diffraction angle of the 1-micron periodic
grating. However, the experimental draft angle is approximately 12.9◦ because of the
defects in the processing technology.

This paper develops and designs a three-DOF encoder scheme using the QFP, and the
schematic is shown in Figure 2. The main principle is as follows: the polarization state of
the laser diode is adjusted when a laser with a wavelength of 660 nm is emitted from the
laser diode (LD). Therefore, the energy of the P-light and S-light, which are separated by the
polarizer beam splitter (PBS1), is the same. At this time, the S-light is first reflected, passed
through a quarter-wave plate (QWP1), and then converted into circularly polarized light
and irradiated on the reference grating. The four beams diffracted by the reference grating
are X+1, X−1, Y+1, and Y−1. After collimation by QFP1, the four beams demonstrate parallel
emission, pass through QWP1 again, and then transform into P-light to pass through PBS1.
Similarly, the P-light from PBS1 follows the same rule. Finally, four parallel beams, namely
X+1’, X−1’, Y+1’, and Y−1’, are obtained from the measurement grating, converted to S-light,
and then reflected on PBS1 after passing through QWP2 again. At this time, two sets of four
diffracted beams from various gratings enter the optical path subdivision module together
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under the performance of PBS1. These beams interfere with each other under the joint
action of the QWP and PBS. Photoelectric signals are generated with phase information of
0◦, 90◦, 180◦, and 270◦. The four groups of signals can eliminate the influence of the energy
fluctuation of the homodyne signal on the signal calculation and enhance the stability and
accuracy of the signal. The displacement in the three directions of X, Y, and Z can finally be
obtained in accordance with the signal calculation.

 

Figure 1. Schematic of the Quadrangular Frustum Pyramid Prism structure.

Figure 2. Schematic of the three-DOF reading head: (Beam Splitter (BS)).

The phase change of the signal is used for measurement in three-DOF encoders. The
Doppler frequency shift effect causes phase changes in the diffracted light direction when
the grating measurement moves along the X and Y directions. The principles in the two
directions are the same. Therefore, this paper takes the X direction as an example. When
the grating measurement is displaced along the X direction, the phase of the diffracted
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lights USX±1 in the X direction changes, as shown in Equation (1), while the reference beams
UrX±1 remain unchanged. {

UrX+1 = UrX−1 = U0
USX±1 = U0ei(ΩX±1 + Φ)

, (1)

where the phase changes are Ω and Φ, corresponding to the displacements in the X and Z
directions, respectively. {

ΩX±1 = ±2π Δx
g

Φ = 2π
Δz(1+cos θ)

λ

, (2)

where ΔX and ΔZ are the displacements in the X and Z directions, respectively, g is the
grating pitch, θ is the diffraction angle, and λ is the wavelength of the incident light.

After light synthesis,
UX±1 = UsX±1 + UrX±1. (3)

The light intensity is

IX±1 = UX±1 · UX±1 = 2U2
0 [1 + cos(ΩX±1 + Φ), (4)

The light intensity information of the corresponding four phases is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
IX±1(0◦) = b1 + a1 cos(Ω±1 + Φ)

IX±1(90◦) = b2 + a2 cos(Ω±1 + Φ + pi/2)
IX±1(180◦) = b3 + a3 cos(Ω±1 + Φ + pi)
IX±1(270◦) = b4 + a4 cos(Ω±1 + Φ + 3 × pi/2)

, (5)

where a1–a4 is the amplitude of the ideal interference signal, and b1–b4 is the amplitude of
the DC bias signal.

The influence of DC bias fluctuations can be removed, and the amplitude changes of
the interference signal can be preserved.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SX+1 = IX+1(0◦)−IX+1(180◦)
IX+1(0◦)+IX+1(180◦) ,

S′
X+1 = IX+1(90◦)−IX+1(270◦)

IX+1(90◦)+IX+1(270◦) ,

SX−1 = IX−1(0◦)−IX−1(180◦)
IX−1(0◦)+IX−1(180◦) ,

S′
X−1 = IX−1(90◦)−IX−1(270◦)

IX−1(90◦)+IX−1(270◦) ,

(6)

According to the trigonometric function, the calculation formula for the corresponding
displacement can be obtained as follows:⎧⎪⎪⎨⎪⎪⎩

ΔX = g
4π

{
arctan

(
SX+1
S′

X+1

)
− arctan

(
SX−1
S′

X−1

)}
,

ΔZ = λ
4π(1+cos θ)

{
arctan

(
SX+1
S′

X+1

)
+ arctan

(
SX−1
S′

X−1

)}
,

(7)

The calculation method in the Y direction is the same as that in the X direction and
will not be repeated herein.

In actual data processing, direct data processing according to formulas (5)–(7) cannot
obtain accurate displacement results because the actual incremental signal is not an ideal
cosine signal. First, the results are affected by noise interference. Second, the optical
component errors (e.g., the splitting ratio of the beam splitting prism is not ideal at 1:1),
system installation errors (e.g., adjusting the angle between the fast axis of the wave
plate and the X-axis direction to the optimum 45◦ is difficult), and errors in photoelectric
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conversion also contribute to the aforementioned phenomenon. The signal can be expressed
as follows:

SX+1 =
IX+1(180o) − IX+1(0o)

IX+1(180o) + IX+1(0o)

≈ A1 sin(Ω + Φ) + B1, (8)

SX+1
′ =

IX+1(90o) − IX+1(270o)

IX+1(90o) + IX+1(270o)

≈ A3 cos(Ω + ϕ − Φ) + B3, (9)

SX−1 =
IX−1(180o) − IX−1(0o)

IX−1(180o) + IX−1(0o)

≈ A2 sin(−Ω + Φ) + B2, (10)

SX−1
′ =

IX−1(90o) − IX−1(270o)

IX−1(90o) + IX−1(270o)

≈ A4 cos(−Ω + Φ − σ) + B4, (11)

where A1–A4 is the fluctuation amplitude of the interference signal, σ is the phase deviation
from the ideal signal, and B1–B4 is the maintained DC component.

Therefore, the signal processing process must be performed to minimize the relative
error of the calculated results to the true value. First, the high-frequency noise signal will be
removed by the low-pass filtering method without changing the phase. Second, amplitude
regularization will generally correct the maximum absolute value of the signal to maintain
consistency. Furthermore, the phase compensation can adjust the phase information of
each signal according to the ideal phase set. Finally, arctangent counting will provide a
displacement result based on the grating pitch.

3. Experiments and Discussion

This paper designed the experiments in three DOF based on the above principles, and
the object pictures of the test bench are shown in Figure 3. The pixelated part is a fixed
device that has nothing to do with this paper.

 

Figure 3. Three-DOF grating encoder test platform.
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The test platform comprises the following three main parts: data acquisition, displace-
ment, and reading head. The data acquisition part mainly includes an NI acquisition card,
an ADC module, and a computer. The displacement part is the Advanced Positioning
Technology (APT) drive controller of THORLABS and the corresponding displacement
drive (X and Y directions). The Z direction is controlled and displaced by the micron
displacement stage of the Physik Instrumente (PI). The main parameters are shown in
Table 1. The lower right corner of Figure 3 shows an enlarged picture of the reading head,
which was built in accordance with the schematic of Figure 2.

Table 1. Driver brand name and performance parameter.

Instrument Brand and Model Name Repeatability/μm Resolution/μm

X-displacement driver THORLABS/Z825B 0.2000 0.0500
Y-displacement driver THORLABS/Z825B 0.2000 0.0500
Z-displacement driver PI/M-112 0.2500 0.0500

Figure 4 shows the displacement driver designed for a three-DOF reading head, which
can output displacements in three directions simultaneously or one output alone. However,
a cosine error is observed in the actual test. Therefore, the displacement in one-direction
measurement will still output the displacement in other directions in the test and will be
measured using the three-DOF encoder.

Figure 4. Displacement driver designed for the three-DOF reading head.

The three-DOF measurement experiment was conducted on the basis of this experi-
mental platform. First, the pre-experiment was performed. The displacement value input
by the stage controller is taken as a standard reference. Then, the following corrections were
performed in accordance with the pre-experiment. The grating pitch in the X/Y direction
of the grating and the wavelength of the light wave are corrected after the pre-experiment,
and the corrected values are 1.1340, 1.0196, and 0.6879 μm. This paper uses a light spot with
a diameter of 0.5 mm for experiments to further miniaturize the encoder. Therefore, the
theoretical limit measurement range in the Z direction is 250 μm, while the range in the X
and Y directions is mainly determined using the area of the measurement grating. However,
the encoder will fail to perform the measurement when the displacement in the X and Y
directions is excessively large and the crosstalk displacement in the Z direction exceeds the
theoretical limit of 250 μm due to the cosine error. Therefore, the ranges selected for the
experiment are X-250, Y-200, and Z-100 μm.

Table 2 shows the measurement results of the three DOF in the main direction of the
X, Y, and Z directions. The driver velocities are 500 μm/s and 100 μm/s in the X and
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Y directions, respectively. The drive velocities are 1 μm/s for Z1 and Z2 and 4 μm/s
for Z3. The last column of Table 2 shows the percentage error of the main displacement
measurements from the input values. The table reveals the following: the minimum
displacement error percentage in the X, Y, and Z directions can reach 0.0708%, 0.1389%, and
0.3339%, respectively, and the minimum errors are below 200, 300, and 400 nm, respectively.
In the six groups of experiments, statistics are established on the accuracy error of the main
displacement, and the average error is 455 nm. In addition to the main motion direction,
measurements in the two other directions during all the tests are also stable. This finding
proves the stability and accuracy of measurements in three DOF.

Table 2. Measurement results of three DOF in X, Y, and Z directions. The bold indicates main dis-
placements.

Motion Axis Input Displacement/μm
Measured Value

X/μm Y/μm Z/μm Motion Error/%

X1 250 −251.3361 2.8269 −0.6948 0.5344
X2 250 −248.8365 5.3853 −0.5163 −0.4654
X3 250 −249.8230 4.4111 −0.8086 −0.0708
Y1 200 −4.0984 200.7770 −4.6850 0.3885
Y2 200 −2.4667 198.9402 −3.5440 −0.5299
Y3 200 −3.6587 200.2778 −5.2337 0.1389
Z1 100 −1.1824 1.1926 102.8422 2.8422

Z2/Reverse movement 100 0.9627 −1.0207 −99.0848 −0.9152
Z3 100 −0.0091 0.0088 100.3339 0.3339

Figure 5 shows that the measurement data (plotted in black) is first linearly fitted, and
the error (plotted in red) is the difference between the measured value and the fitted curve.
The fitted curve equation shown below assumes that the driver velocity is constant.

X/Y/Z = V × T, (12)

where the X/Y/Z are the fit values, V is the driver velocity, and T is the time of movement.

 

Figure 5. Displacement measurement results and errors of three-DOF: (a) X direction; (b) Y direction;
(c) Z direction.

Figure 5a shows that the predominant fluctuations in displacement measurements in
the X direction are within ±2 μm mainly due to the unideal speed of the driver operation
during motion. Periodic fluctuations are observed in the straight-line error of the drive
screw. In addition, a problem with speed fluctuations is found in the Y and Z directions,
which is considered a common problem for screw-driven drivers. The displacement velocity
is the largest in all three directions, thus also demonstrating the largest displacement
fluctuation. Figure 5b illustrates that the fluctuation error is less than 400 nm in the Y
direction. Figure 5c shows that the fluctuation error is less than 800 nm in the Z direction.
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In other words, the displacement fluctuation of the PI displacement driver is larger than
that of the THORLABS displacement driver. This finding is consistent with the repeatability
parameter trend shown in Table 1.

An equal displacement test of 100 μm was conducted in the opposite direction of the
X and Y directions to test the simultaneous measurement capability of three DOF, and
the movements of the Y and X directions were turned on successively. The experimental
results are X (−100.7862 μm), Y (−98.0961 μm), and Z (−1.2153 μm), and the measurement
error percentages in the X and Y directions are 0.7862% and −1.9039%, respectively. The
measurement error in the Y direction increases by approximately two times compared
with the single movement in the Y direction due to the simultaneous movement of the two
directions. A crosstalk error should be observed between the two movements of the X and
Y directions.

The final test conclusion indicates that the structure can achieve submicron accuracy
at 250 μm (X direction), 200 μm (Y direction), and 100 μm (Z direction), and the overall
structure is small with a size of 12.3 × 7.7 × 3 cm3. The measurement range and accuracy
can further increase with this three-DOF measurement method after the improvement of
the grating processing technology in the future.

4. Conclusions

A compact and high-precision three-DOF grating displacement encoder is estab-
lished in this paper based on the QFP prism, and the photoelectric signal is stabilized
and improved through the optical path subdivision module. Three DOF can be measured
simultaneously, the accuracy of the main displacement is below 500 nm on average, and the
minimum error is 7.08‱. The grating processing quality and area will be further improved
in the future. Therefore, the performance of the grating encoder will be further enhanced
to achieve a range of millimeters and an accuracy of 1‱.
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Abstract: The non-coplanar lasers on both sides of the rail during full-section rail profile measurement
based on line-structured light vision will cause the measured profile to be distorted, resulting in
measurement errors. Currently, in the field of rail profile measurement, there are no effective methods
for evaluating laser plane attitude, and it is impossible to determine the degree of laser coplanarity
quantitatively and accurately. This study proposes an evaluation method based on fitting planes in
response to this problem. Real-time fitting of laser planes with three planar targets of different heights
provides information about the laser plane attitude on both sides of the rails. On this basis, laser
coplanarity evaluation criteria were developed to determine whether the laser planes on both sides of
the rails are coplanar. Using the method in this study, the laser plane attitude can be quantified and
accurately assessed on both sides, effectively resolving the problem with traditional methods that can
only assess the laser plane attitude qualitatively and roughly, thereby providing a solid foundation
for calibration and error correction of the measurement system.

Keywords: laser plane; attitude evaluation; coplanarity evaluation; rail profile

1. Introduction

Rails play an important role in the maintenance and repair of railway lines. As a
result of regularly inspecting the rail profile, as well as evaluating the state parameters
of these rails, such as vertical wear and side wear [1–3], it is possible to gain a better
understanding of not only the state of the rails but also how to grind the rails, as this is a
crucial part of railway operations and maintenance [4,5]. The measurement of rail profiles
using line-structured light vision is based on the principle of triangulation and features
high speed, high precision, and noncontact. As a mainstream method of dynamic detection
of rail profiles globally, it can detect the parameters of in-service rails, such as vertical
wear and side wear [6–8]. In most cases, a line-structured light sensor is placed on each
side of a rail in order to obtain the profile data of the left and right half-sections of the
rail. The full-section profile of the rail is then produced by splicing these two half-sections
together [9–11]. In this process, if the laser beams of the line-structured light sensors are
not on the same plane on either side of the rail, the measurement profile will be distorted
to a certain degree, resulting in errors in rail profiling. It is therefore necessary to accurately
assess the laser plane attitude on both sides of the rail to ensure that the laser planes on
both sides are coplanar in order to obtain high-precision full-section profile data. When
the lasers on both sides are installed, they are incident on the calibration plate, forming a
line of intersection between the two lasers. The calibration plate is marked with a scale line.
In order to determine whether the laser planes are coplanar as required, it is necessary to
visually observe the degree of coincidence between the intersection lines of the laser planes
on both sides and the scale line of the calibration plate. Obviously, this method is limited
to a qualitative analysis and cannot provide a quantitative or accurate assessment of the
plane attitude of the lasers on both sides.
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Currently, little attention is being paid to the attitude of the laser planes on both sides
when measuring rail profiles. In most existing studies, the focus is on adjusting the lasers
in order to make them coplanar. As an example, Zhan et al. proposed a mechanism and
method for the adjustment of laser planes. A mechanical adjustment mechanism could be
used to translate and rotate the line-structured laser [12]. Through a high-precision manual
translation stage, Chen et al. were able to scan the profiles of large workpieces [13]. In
addition, some scholars have been able to align the laser planes on both sides by examining
calibration techniques. In one study, Wu et al. were able to calibrate profile measurement
components globally through the use of special mechanical parts, such as rotating arms [14].
In their study, Zhang et al. documented the positions of the laser profiler and markers
by photographing them and converting the adjustment of coplanarity into the position
adjustment of the laser profiler [15]. Ju et al. calibrated the laser planes by using the contour
line calibration method [16]. Wang et al. also identified a method for correcting the error in
rail profile measurement caused by non-coplanar lasers. Using projection transformation,
a laser non-coplanarity correction model was proposed, as well as a reference coordinate
system based on the longitudinal direction of rails. Half-section profile data were projected
onto an auxiliary plane perpendicular to the longitudinal direction of the rail, and the
projection profile was used to correct the measurement results [17]. Currently, few reports
have been published on the use of the laser plane attitude evaluation method for both sides
of the rail during the full-section measurement of the rail profile. In summary, existing
methods cannot quantitatively and accurately evaluate the attitude of laser planes on
both sides.

The author previously studied the distribution characteristics of laser non-coplanar
error in rail profile measurement sensors and proposed a correction method for laser non-
coplanar error and a calibration method for rail longitudinal parameters. However, during
the installation process of rail profile measurement devices, the laser coplanar adjustment
operation is mainly guided by observing the degree of collinearity of the laser line with the
naked eye, which has a certain degree of blindness. In order to avoid this blindness and
guide laser coplanar adjustment operations, this paper proposes a quantitative evaluation
method for laser plane posture. When the measuring device is installed, three planar
targets of different heights are used to obtain the attitude information of both laser planes
in real time. Such information is used to establish a laser coplanarity evaluation criterion,
which will be used to guide the alignment of the two line-structured lasers. As opposed to
naked-eye evaluations with low precision, poor real-time performance, and subjectivity,
the proposed method uses computer vision evaluations for laser coplanarity adjustment,
with high precision, excellent real-time performance, and visualization, which can reduce
calibration errors. In light of this, it is of great importance to improve the accuracy of the
measurement of rail profiles in full sections.

2. Basic Principle

Figure 1 presents a schematic diagram of the full-section rail profile measurement
based on line-structured light vision. Both sides of the rail are equipped with a line-
structured light sensor, and the lasers of both sensors are positioned in the same plane in
order to obtain the left and right half-sections of the rail. In order to obtain the full-section
profile of the rail, the half-section profiles on both sides are spliced together according to
the calibration parameters [18]. Using the scanning motion, the rail profile for the entire
railway line can be measured in the full section. The degree of coplanarity of the laser
planes on both sides of the rail is an important factor in determining the accuracy of a
full-section rail profile measurement system based on line-structured light vision. Ideally,
the laser planes on both sides should be coplanar in order to ensure the accuracy of rail
profile measurements. As shown in Figure 2, the origin is the center of the top surface of
the rail, the laser plane is the XOZ plane, and the horizontal direction is the X axis of the
world coordinate system, O-XYZ. The non-coplanarity of the laser planes on both sides
of the rail can therefore be expressed as the rotation of the laser plane around the X and
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Z axes, respectively. In Figure 3, the lasers on both sides are not coplanar, in which the
left laser plane is perpendicular to the longitudinal direction of the rail, but the right laser
plane rotates around the Z axis, at an angle. In this case, the right laser plane does not
remain perpendicular to the longitudinal direction of the rail, nor is it coplanar to the
left laser plane. While the left camera still captures the profile data of the cross-section
perpendicular to the rail longitudinal direction, the right camera captures the profile data
not perpendicular to the rail longitudinal direction, referred to as the oblique-section profile
data. In comparison with the cross-section profile of the rail, the oblique-section profile
is stretched in a certain direction, and this stretching direction is directly related to the
angle between the laser planes and the longitudinal direction of the rail. As a result of this
stretching, the rail profile is distorted, causing deviations in the positioning of the feature
points, leading to an increase in the measurement error of the rail wear. More generally, the
measured profiles on both sides of the rail are not the cross-section profile of the rail when
the laser planes are not coplanar or perpendicular to the longitudinal direction of the rail.
In addition, the measurements will be distorted, resulting in greater errors in determining
rail profile.

Figure 1. Schematic diagram of the full-section rail profile measurement based on line-structured
light vision.

At present, the laser coplanarity of the rail profile measurement system is determined
by observing the degree of overlap of two laser lines with the human eye. As shown in
Figure 4, the surface of the aluminum alloy ruler is engraved with a long scale line. When
installing the laser scan sensors on both sides, the laser planes on both sides are projected
onto the same scale line of the aluminum alloy ruler, as shown in Figure 5. The intersection
line of the laser planes on both sides and the scale line of the aluminum alloy ruler are
observed with the naked eye to determine whether the laser planes on both sides meet the
coplanar installation requirements based on the degree of overlap between the intersection
line and the scale line. Obviously, this method evaluates the attitude of a two-dimensional
plane through one-dimensional lines, which can only be qualitatively evaluated and cannot
be quantitatively evaluated and has a certain degree of blindness. Due to the low level of
visualization, it cannot effectively guide the coplanar installation operation of two laser scan
sensors. The main purpose of this article is to propose a quantitative evaluation method
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for laser plane attitude, which visualizes and quantifies the adjustment process of the laser
plane, thereby guiding the coplanar installation operation of two laser scan sensors.

Figure 2. Schematic diagram of coplanar lasers on both sides: (a) coplanar lasers and (b) profile
measurement results.

Figure 3. Schematic diagram of non-coplanar lasers on both sides: (a) non-coplanar lasers and
(b) profile measurement results.
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Figure 4. Aluminum alloy ruler.

Figure 5. Schematic diagram of the traditional laser plane evaluation method for rail profile measure-
ment system.

3. Materials and Methods

As can be seen from the analysis above, the existing method is based on visual
observation of whether the lasers on both sides are coplanar; however, there are many
uncertainties involved in the evaluation process, which cannot guarantee the accuracy
of calibration. Therefore, this study proposes a method for evaluating laser coplanarity
based on fitting planes, which can serve as a guide for the adjustment of laser coplanarity
on both sides. Figure 6 illustrates the visualized laser plane adjustment device for the
full-section rail profile measurement system. It contains an additional target compared to
the existing full-section rail profile measurement device. The special target consists of a
convex calibration block and three planar calibration plates. There are three upper surfaces
on the convex calibration block, and the upper surface in the center is higher than the upper
surfaces on both sides. As shown in Figure 7, three calibration plates are placed on the
three upper surfaces, which are numbered 1, 2, and 3, from left to right. Consequently,
the corresponding target coordinate systems, tcs1, tcs2, and tcs3, are established, with the
center of each calibration plate as the origin and the target plane as the XOY plane.
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Figure 6. The visualized laser plane adjustment device for the full-section rail profile measure-
ment system.

Figure 7. The coordinate system, which is composed of the convex calibration block and three
planar targets.

An overview of the laser plane attitude evaluation for the full-section rail profile
measurement system is presented in Figure 8. This system consists of a system calibration
module, an image acquisition module, and a coplanarity evaluation module. The specific
realization process for each module is described in more detail below.

The system calibration module is responsible for obtaining the internal and external
parameters of the cameras. The calibration method previously described [19] is employed
in this study to simultaneously collect images of the planar target calibration plates in
different attitudes through the left and right cameras in order to obtain the cameras’
internal parameters.
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Figure 8. Flowchart of laser coplanarity evaluation of the full-section rail profile measurement system.

The convex calibration block is located in the common field of view of the left and
right cameras, ensuring that the left laser plane intersects the target planes of tcs1 and
tcs2, and the right laser plane intersects the target planes of tcs2 and tcs3. After the lasers
on both sides are turned off, the left and right cameras are used to capture images of the
convex calibration block. Due to occlusion, as shown in Figure 9, the left camera can
capture the entire calibration plates No. 1 and No. 2, but only a portion of calibration
plate No. 3, and the right camera can capture the entire calibration plates No. 2 and
No. 3, but only a portion of calibration plate No. 1. The coordinate systems of the left
and right cameras are expressed as ccs1 and ccs2, respectively, and Rccs1

tcs1 , tccs1
tcs1 represent the

rotation matrix and translation vector of the coordinate systems ccs1 and tcs1. Since the
internal parameters of the cameras are known, based on the camera calibration method
as previously described, the rotation matrix, Rccs1

tcs1 , Rccs1
tcs2 , and translation vector, tccs1

tcs1 , tccs1
tcs2 ,
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of the coordinate systems from the left camera ccs1 to No. 1 and No. 2 targets, as well as
the rotation matrix, Rccs2

tcs2 , Rccs2
tcs3 , and translation vector, tccs2

tcs2 , tccs2
tcs3 , of the coordinate systems

from the right camera ccs2 to No. 2 and No. 3 targets are calculated based on the images of
the convex calibration block.

 

Figure 9. The images of the convex calibration block captured by the left and right cameras.

The image acquisition module is used to acquire the real-time light stripe images of
the convex calibration block during the process of adjusting the laser planes. During the
calibration process, the positions of the convex calibration block, the planar calibration
plates, and the cameras remain unchanged, while the lasers on both sides are turned on
and adjusted as required. With a suitable exposure time, the cameras on both sides are
used to collect the light strip images of the convex calibration block in real time. The light
strip image sequence of the convex calibration block is denoted as follows:

I =
{

Iij/i = 1, 2, j = 1, 2, 3 . . . n
}

(1)

where i = 1 is the light stripe image of the convex calibration block collected by the left
camera, i = 2 is the light stripe image of the convex calibration block collected by the right
camera, and n is the number of their respective light stripe images. The intersection line of
the laser planes and the calibration plates form a light stripe, as shown in Figure 10. The
light stripe image of the convex calibration block collected by the left camera shows the
intersection lines between the left laser plane and the planar calibration plates No. 1 and
No. 2, which are designated as l1 and l2, respectively. The light stripe image of the convex
calibration block collected by the right camera shows the intersection lines between the
right laser plane and the planar calibration plates No. 2 and No. 3, which are denoted as r2
and r3, respectively.

Based on the system calibration parameters and the convex calibration block light
stripe image, the coplanarity evaluation module calculates the parameters of the left and
right laser planes in order to determine whether the lasers on both sides are coplanar. The
coplanarity evaluation module operates in six steps, according to the data processing flow.
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Figure 10. The left and right light stripe images of the convex calibration block.

Step 1: The pixel coordinates of the light stripe centers are obtained by extracting the
centers of the left and right light stripe images of the convex calibration block. In Figure 10,
the light strip images of the convex calibration block collected by the cameras on both sides
are shown, and they indicate the intersection lines l1, l2, r2, and r3. As follows, the light
stripe centers are extracted using traditional algorithms (such as maximum value methods,
grayscale center-of-gravity methods, Steger methods, template-matching methods, etc.),
and the pixel coordinates of the left and right light stripe centers are obtained.

Pi =
{
(ui, vi)

T |0 ≤ u ≤ width − 1, 0 ≤ v ≤ height − 1 , i = 1, 2
}

(2)

where the width is the image width, and the height is the image height; P1 is any point on
the center of the left light stripe image; and P2 is any point on the center of the right light
stripe image.

Step 2: The pixel coordinates of the left and right light stripe image centers of the
convex calibration block are converted into the corresponding target coordinate system.
Different calibration plates correspond to different external parameters. The coordinate
transformation process is described below, using the light strip image of the convex cal-
ibration block captured by the left camera in Figure 10 as an example. First, as shown
in Figure 10, the light stripe l1 of the calibration plate No. 1 and the light stripe l2 of the
calibration plate No. 2 are located. Then, for the pixel coordinate of the light stripe center
of the calibration plate No. 1, (ui, vi)

T , the pixel coordinate of the center of the light stripe
l1, (ui, vi)

T , is transformed into the coordinate system of the No. 1 target according to the
internal and the external parameters (Rccs1

tcs1 and tccs1
tcs1) of the camera. Similarly, the pixel

coordinate of the center of the light stripe l2, (ui, vi), is transformed into the coordinate
system of the No. 2 target according to the internal and external parameters (Rccs1

tcs2 and
tccs1
tcs2) of the camera. A similar coordinate transformation is applied to the light stripe

image of the convex calibration block captured by the right camera. As a result, we have
the coordinate of the intersection line l1 in the coordinate system of target No. 1, tcs1

(Pl1
tcs1 =

(
xl1

tcs1, yl1
tcs1, zl1

tcs1

)T
); the coordinate of the intersection line l2 in the coordinate

system of target No. 2, tcs2 (Pl2
tcs2 =

(
xl2

tcs2, yl2
tcs2, zl2

tcs2

)T
); the coordinate of the intersection

line r2 in the coordinate system of target No. 2, tcs2 (Pr2
tcs2 =

(
xr2

tcs2, yr2
tcs2, zr2

tcs2
)T); and

the coordinate of the intersection line r3 in the coordinate system of target No. 3, tcs3
(Pr3

tcs3 =
(

xr3
tcs3, yr3

tcs3, zr3
tcs3

)T).
Step 3: The coordinate system of target No. 2 is regarded as the world coordinate

system, wcs, and the coordinates of the light stripe centers in the respective target coordinate

115



Sensors 2023, 23, 4586

systems are transformed into the world coordinate system. The transformation relationship
between the coordinate systems tcs2, tcs1, and tcs3 is calculated. The rotation matrix, Rtcs2

tcs1,
and translation vector, tccs2

tcs1 , from the target coordinate system tcs2 to the target coordinate
system tcs1 are calculated by Equation (3):⎧⎨⎩ Rtcs2

tcs1 =
(

Rccs1
tcs2

)−1 · Rccs1
tcs1

ttcs2
tcs1 =

(
Rccs1

tcs2
)−1 · (tccs1

tcs1 − tccs1
tcs2

) (3)

The rotation matrix and translation vector from the target coordinate system tcs2 to
the target coordinate system tcs3 are calculated by Equation (4):⎧⎨⎩ Rtcs2

tcs3 =
(

Rccs2
tcs2

)−1 · Rccs2
tcs3

ttcs2
tcs3 =

(
Rccs2

tcs2
)−1 · (tccs2

tcs3 − tccs2
tcs2

) (4)

The world coordinates of the light stripe center on the intersection lines l2 and r2
are the same as the coordinates in the target coordinate system, that is, Pl2

wcs = Pl2
tcs2 and

Pr2
wcs = Pr2

tcs2. The coordinates of the intersection lines l1 and r3 in the world coordinate

system, wcs, namely Pl1
wcs =

(
xl1

wcs, yl1
wcs, zl1

wcs

)T
and Pr3

wcs =
(
xr3

wcs, yr3
wcs, zr3

wcs
)T , are obtained

by Equations (5) and (6), respectively. Similarly, we have the coordinate of the intersection

line l2 in the world coordinate system (Pl2
wcs =

(
xl2

wcs, yl2
wcs, zl2

wcs

)T
), the coordinate of the

intersection line r2 in the world coordinate system (Pr2
wcs =

(
xr2

wcs, yr2
wcs, zr2

wcs
)T), and the coor-

dinate of the intersection line r3 in the world coordinate system (Pr3
wcs =

(
xr3

wcs, yr3
wcs, zr3

wcs
)T).

[
Pl1

wcs
1

]
=

⎡⎢⎢⎣
xl1

wcs
yl1

wcs
zl1

wcs
1

⎤⎥⎥⎦ =

[
Rtcs2

tcs1 ttcs2
tcs1

0 0 0 1

][
Pl1

tcs1
1

]
=

[
Rtcs2

tcs1 ttcs2
tcs1

0 0 0 1

]⎡⎢⎢⎣
xl1

tcs1
yl1

tcs1
zl1

tcs1
1

⎤⎥⎥⎦ (5)

[
Pr3

wcs
1

]
=

⎡⎢⎢⎣
xr3

wcs
yr3

wcs
zr3

wcs
1

⎤⎥⎥⎦ =

[
Rtcs2

tcs3 ttcs2
tcs3

0 0 0 1

][
Pr3

tcs3
1

]
=

[
Rtcs2

tcs3 ttcs2
tcs3

0 0 0 1

]⎡⎢⎢⎣
xr3

tcs3
yr3

tcs3
zr3

tcs3
1

⎤⎥⎥⎦ (6)

Step 4: In the world coordinate system, the two intersection lines (l1 and l2) of the left
laser plane and the two intersection lines (r2 and r3) of the right laser plane are sequentially
fitted to the plane, and the parameters of the left and right laser planes are obtained. The
fitting process is described below, taking the intersection lines l1 and l2 as an example.

In Pi
wcs =

(
xi

wcs, yi
wcs, zi

wcs
)T , i = 1, 2, 3 . . . k is any point on the intersection lines l1 and

l2 of the left laser plane and the calibration plates No. 1 and No. 2, where k = m + n,
and m and n are the number of points on the intersection lines l1 and l2, respectively. The
following matrix is thus constructed:

M =

⎡⎢⎣x1
wcs − x, x1

wcs − y, x1
wcs − z

...
xk

wcs − x, yk
wcs − y, x1

wcs − z

⎤⎥⎦ (7)

where x = 1
k

k
∑

i=1
xi

wcs, y = 1
k

k
∑

i=1
yi

wcs, z = 1
k

k
∑

i=1
zi

wcs. The point y(x, y, z)T is designated as

the center of gravity of the plane. If S = MT ·M, where S has three eigenvalues, then the
eigenvector corresponding to the smallest eigenvalue is the normal of the fitting plane, nl .
The left laser plane is constructed with (x, y, z)T as a point on the plane and the vector nl

as the normal. Similarly, the intersection lines r2 and r3 of the right laser plane are fitted
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to the plane to obtain the normal of the right laser plane, nr, and the right laser plane
is constructed.

Step 5: The angle between the normals of the fitting planes on the left and right sides
(α) and the distance between the planes (d) are calculated. The angle, α, can be calculated
by Equation (8):

α= arccos

(
nl ·nr∣∣nl
∣∣|nr|

)
(8)

In order to calculate the distance between the two planes, the corresponding plane
coordinate systems pcs1 and pcs2 are established with the center of gravity of the fitting
planes on the left and right sides as the origin and the normal direction as the Z axis. The
rotation of the coordinate system around the Z axis will not affect the direction of the plane
normal in the plane coordinate system. For simplicity, the rotation around the Z axis is set
to 0 here. The rotation matrix and translation vector from the plane coordinate system pcs1
to the world coordinate system (wcs) are denoted as Rpcs1

wcs and tpcs1
wcs , and the rotation matrix

and translation vector from the world coordinate system (wcs) to the plane coordinate
system pcs2 are expressed as Rwcs

pcs2 and twcs
pcs2. As a result, the corresponding homogeneous

transformation matrices are constructed, as shown below.

Hpcs1
wcs =

[
Rpcs1

wcs tpcs1
wcs

0 0 0 1

]
(9)

Hwcs
pcs2 =

[
Rwcs

pcs2 twcs
pcs2

0 0 0 1

]
(10)

Then the homogeneous transformation matrix of the coordinate system pcs1 and pcs2
can be expressed as follows:

Hpcs1
pcs2 = Hpcs1

wcs ·Hwcs
pcs2 (11)

Therefore, for any point in the coordinate system pcs2, Ppcs2 =
(
xpcs2, ypcs2, zpcs2

)T , it
can be transformed into the coordinate system pcs1 by Equation (12), where
Ppcs1 =

(
xpcs1, ypcs1, zpcs1

)T is the corresponding coordinate of the point in the coordi-
nate system pcs1.

[
Ppcs1

1

]
=

⎡⎢⎢⎣
xpcs1
ypcs1
zpcs1

1

⎤⎥⎥⎦ = Hpcs1
pcs2 ·Ppcs2 = Hpcs1

pcs2

⎡⎢⎢⎣
xpcs2
ypcs2
zpcs2

1

⎤⎥⎥⎦ (12)

N points on the right laser plane are arbitrarily taken, as shown in Equation (13),
and transformed into the coordinate system pcs1 through Equation (9). Then, we have
Equation (14).

Pi
pcs2 =

(
xi

pcs2, yi
pcs2, zi

pcs2

)T
, i = 1, 2, 3 . . . N (13)

Pi
pcs1 =

(
xi

pcs1, yi
pcs1, zi

pcs1

)T
, i = 1, 2, 3 . . . N (14)

Since the fitting plane on the left coincides with the XOY plane of the coordinate
system pcs1,

∣∣∣zi
pcs1

∣∣∣, i = 1, 2, 3 . . . N is the distance from these N points to plane 1, and the
distance (d) from plane 2 to plane 1 can be expressed as follows:

d =
1
N

i=N

∑
i=1

∣∣∣zi
pcs1

∣∣∣ (15)
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Step 6: Both the distance between the planes and the angle between the normals
determine whether the lasers on both sides are coplanar. If the angle between the two
planes is 0, it means that the two planes are parallel or coincident. If the distance from any
point on one of the planes to the other plane is 0, the two planes coincide. To eliminate the
influence of errors, two parameters are used to determine whether the lasers on both sides
are coplanar, namely the angle (α) and the distance (d). As long as the angle and distance
satisfy Equation (16), the coincidence degree of the left and right laser planes is high, and
the laser planes on both sides of the rail are appropriate.

d ≤ Td & α ≤ Tα (16)

where Td, Tα are the thresholds of the distance (d) and the angle (α), which can be deter-
mined in accordance with the accuracy requirements.

When the laser planes are adjusted, the left and right cameras collect real-time light
stripe images of the convex calibration block and obtain the sequence of light stripes, as
shown in Equation (2). Then, the coplanarity evaluation module processes the light strip
image sequence of the convex calibration block in real time, calculates the laser plane
parameters on both sides of the rail, draws the laser planes on both sides in real time
in the display window, and displays the angle and distance between the normals. By
utilizing Equation (16), the module determines if the laser planes on both sides of the rail
are appropriate, allowing the full-section rail profile measurement system to visualize the
alignment of both laser planes and effectively determine if the lasers are coplanar on both
sides. The effect is shown in Figure 11.

 

Figure 11. Schematic diagram of the visualized adjustment of the laser planes on both sides of the rail.
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4. Results and Discussion

4.1. Experimental Design

To confirm the advantages of the proposed laser coplanarity evaluation method, such
as a strong real-time performance, high accuracy, and visualization, a laser coplanarity
evaluation experiment was designed, and the experimental device shown in Figure 12 was
constructed. Among them, the camera is the Ranger 3 high-speed camera produced by
the German SICK company (Waldkirch, Germany), with a resolution of 2560 × 832 pixels,
and the line laser is produced by the Canadian Osela company, with a wavelength of
660 nm and 450 nm, respectively. The laptop used for test is ThinkPad T480, Intel®, Core™,
i7-8550U CPU@1.80GHz, 1.99 GHz, 32.0 GB memory, 64-bit operating system.

 

Figure 12. Experimental device for laser coplanarity evaluation: (a) calibration of the internal
parameters of the cameras and (b) simplified convex calibration block and calibration plates.

First, the internal parameters of the left and right cameras are calibrated based on the
planar target, and then the simplified convex calibration block is placed in the common
field of view of the two cameras, ensuring that the left laser plane intersects the calibration
plates No. 1 and No. 2, and the right laser plane intersects the calibration plates No. 2 and
No. 3. Then, the lasers on both sides are turned off, and the images of the calibration plates
are collected through the cameras on both sides. The result is shown in Figure 9. After that,
the lasers on both sides are turned on, and the light strip images of the three calibration
plates are collected in real time through the cameras on both sides. The result is shown in
Figure 10. The parameters of the laser planes on both sides are obtained in real time from
the cross-sectional laser images of the three calibration plates, and the two laser planes are
drawn in real time in the program window. The lasers on both sides are adjusted according
to the two laser planes displayed in real time in the program window until they satisfy the
coplanarity standard. The following three groups of experiments were carried out:

The first group of experiments is a real-time verification experiment. On the basis of
the abovementioned experimental device, the laser planes on both sides are continuously
adjusted, and two cameras collect 500 target images each in real time. At the same time,
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the coplanar degree of the two laser planes is calculated by the proposed method, and
the real-time performance of the proposed method is evaluated by the time of program
brushing the new window.

The second group of experiments is the accuracy verification experiment. In this
experiment, the accuracy of the proposed method is evaluated by the laser plane fitting
error, laser plane distance measurement error, and laser plane angle measurement error.
First, in the process of laser plane adjustment on both sides, 500 consecutive target images
are collected by two cameras, corresponding to 500 × 2 = 1000 laser plane positions;
therefore, the accuracy of the proposed method is evaluated with these 1000 laser plane
fitting errors. As shown in Figure 13, we kept the camera and two targets of different
heights stationary and placed the line laser on a precision displacement table and a rotating
table. Then, the controlled line laser moved from 0 mm translational motion to 10 mm,
with a step length of 1 mm. The light stripe images of two targets were collected at each
position. With the position of 0 mm as the reference, the proposed method was used to
calculate the distance between the laser plane at the other 10 different positions and the
laser plane at the reference position. Finally, controlling the line laser, we rotated from
0 deg to 2 deg, with a step size of 0.200 deg. Similarly, two target light stripe images were
collected at each position, and the angle between the remaining ten different laser planes
and the reference position laser plane was calculated using the proposed method, using
the 0 deg position as a reference. In order to compare the measurement accuracy of the
rail profile after laser coplanar adjustment, a comparative experiment was designed using
a standard worn rail as the measurement object. The standard worn rail are shown in
Figure 14, with a vertical wear of 11.00 mm. When the laser planes of two laser scan sensors
are not coplanar (in order to highlight the effect, the angle between the laser planes is about
3 deg), collect the full-section profile of the steel rail 20 times and calculate its vertical wear.
Under the guidance of the proposed method, two laser scan sensors were adjusted to meet
the installation requirements of coplanarity. The full profile of the steel rail was collected
20 times again, and its vertical wear was calculated.

 

Figure 13. Schematic diagram of accuracy verification experiment.
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Figure 14. Standard worn rail with a vertical wear of 11.00 mm. (NO. JZG-MHZ02, horizontal wear
0 mm, vertical wear 11 mm).

The third group of experiments is the repeatability verification experiment. Keep the
measuring device stationary, continuously collect 500 pairs of target images through two
cameras, and also evaluate the repeatability of the proposed method with the fitting error
of the laser plane.

4.2. Experimental Result
4.2.1. Real-Time Verification Experiment Results

Figure 15 exhibits the laser planes at three typical positions during the adjustment
process. It can be seen that the program window displays the laser planes on both sides
in real time and calculates the current coplanarity of the laser planes on both sides in real
time, according to the standard. Therefore, as opposed to traditional methods that rely
on visually observing laser beams, the proposed method allows for the visualization of
the three-dimensional laser plane in real time, thus avoiding blindness caused by observ-
ing two-dimensional laser beams. Figure 16 shows the corresponding refresh window
time of the two cameras. The average refresh time is 0.03 s, and the frame rate is about
33 frames/second, which can fully meet the real-time requirements.

 

Figure 15. The laser planes at three typical positions.
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Figure 16. The time for the program to refresh the window.

4.2.2. Accuracy Verification Experiment Results

The system calibration module calculates the transformation matrix between the cam-
era coordinate system and the target coordinate system through a single planar target
image, with known camera internal parameters. Figure 17 shows the reprojection error
diagram. The average reprojection errors of the No. 1 calibration plate and the No. 2 cali-
bration plate images obtained by the left camera are 0.037 pixel and 0.025 pixel, respectively.
The average reprojection errors of the images of the No. 2 calibration plate and the No. 3
calibration plate obtained by the right camera are 0.026 pixel and 0.027 pixel, respectively,
and the projection errors are within a reasonable range.

Figure 17. Reprojection errors of three calibration plates.

The laser plane fitting results and statistical values are given in Figure 18 and Table 1,
respectively. It can be seen that, during the random change of the laser plane attitude, the
average values of the laser plane fitting errors on both sides obtained by the proposed
method are 0.062 mm and 0.054 mm, respectively, which are smaller than the laser plane
calibration error of the rail profile measurement sensor.

Table 1. Statistical results of the laser plane fitting error (mm).

Camera Average Value Standard Deviation Maximum

Left camera 0.062 0.017 0.119
Right camera 0.054 0.017 0.121
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Figure 18. The results of laser plane fitting error.

The results of laser plane distance and angle measurement are shown in Table 2, where
MV represents the measured value, AV represents the actual value, and ME represents the
measurement error. It can be seen that when the laser plane is moving in a translational
motion, the maximum value of the distance measurement error of the laser plane is 0.13 mm,
and the average error is 0.09 mm. When the laser plane is rotating, the maximum value
of the angle measurement error of the laser plane is 0.019 deg, and the average value
is 0.009 deg. The measurement errors of plane distance and plane angle are within an
acceptable range.

Table 2. Laser plane distance and angle measurement results.

Location Index 1 2 3 4 5 6 7 8 9 10

Distance
(mm)

AV 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
MV 1.11 2.09 3.06 3.87 5.06 5.94 7.14 7.93 9.12 10.06
ME 0.11 0.09 0.06 0.13 0.06 0.06 0.14 0.07 0.12 0.06

Angle
(deg)

AV 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000
MV 0.206 0.400 0.581 0.807 1.008 1.191 1.415 1.616 1.804 1.991
ME 0.006 0.000 0.019 0.007 0.008 0.009 0.015 0.016 0.004 0.009

The results of rail wear before and after coplanar adjustment are shown in Figure 19,
and Table 3 provides the corresponding error statistics. It can be seen that, after the
coplanarity adjustment, the average measurement error of the rail’s vertical wear decreased
from 0.279 mm to 0.037 mm. Therefore, the proposed method can guide the laser coplanar
adjustment process and improve the accuracy of rail profile measurement.

Figure 19. Measurement results of rail wear before and after laser coplanar adjustment.
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Table 3. Measurement results of rail wear before and after coplanar adjustment (mm).

Statistical Value Mean Error Standard Deviation

Before coplanar adjustment 0.279 0.014
After coplanar adjustment 0.037 0.011

Therefore, the proposed laser coplanar evaluation method has high accuracy. Based
on the accurate acquisition of laser plane parameters on both sides, the degree of laser
plane on both sides can be quantitatively evaluated, which is superior to the traditional
qualitative evaluation method based on visual inspection.

4.2.3. Repeatability Validation Test Results

The repeatability experimental results and statistical values are shown in Figure 20
and Table 4, respectively. It can be seen that when the laser plane is not adjusted, the
average values of the fitting errors of the two laser planes obtained by the proposed method
are 0.022 mm and 0.021 mm, respectively, and the standard deviations are 0.013 mm and
0.012 mm, respectively, indicating that the method has high repeatability.

Figure 20. The results of the repeatability verification experiment.

Table 4. Statistical results of the repeatability verification experiment (mm).

Camera Average Value Standard Deviation Maximum

Left camera 0.022 0.013 0.045
Right camera 0.021 0.012 0.044

4.3. Discussions

Based on past experience, when the target area accounts for more than a quarter
of the entire image, it can ensure that the target attitude evaluation has high accuracy.
Conversely, when the target area accounts for a small proportion in the image, a certain
degree of measurement accuracy will be lost. Due to the limitations of the on-site installation
environment of the rail profile measurement sensor, larger targets cannot be used, and the
target area accounts for significantly less than a quarter, which limits the accuracy of laser
planar attitude assessment. Therefore, in response to the accuracy issue caused by the small
proportion of target areas, the author intends to perform further research work around
target optimization and attitude evaluation algorithm optimization in the next step.

Although using this method can ensure laser coplanar installation on both sides of the
rail, the next question is how to ensure the laser plane perpendicular to the longitudinal
direction of the rail. To address the issue, it is necessary to obtain the longitudinal direction
vector of the rail in the camera coordinate system (or world coordinate system). We
proposed a solution to calibrate the rail longitudinal direction in our previous research [8].
By combining the longitudinal vector parameters of the rail and the laser plane parameters,
it is possible to further quantitatively evaluate whether the installation of laser scan sensors
meets the requirements.
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5. Conclusions

Considering the difficulty of evaluating laser plane attitude in the measurement of
rail profiles, this paper presents a method for evaluating laser plane attitude using fitting
planes, analyzes the impact of non-coplanar lasers on plane profile measurement results,
elaborates on how the laser plane attitude calculation is calculated, and constructs the crite-
rion for evaluating laser coplanarity. The experimental results indicate that the proposed
method has the advantages of high accuracy, real-time performance, and excellent visual-
ization. This method improves the laser coplanarity adjustment process from the original
naked-eye evaluation with low precision, poor real-time performance and subjectivity to
computer-based evaluation with high precision, and strong real-time performance and
visualization. By doing so, it reduces the calibration error of the traditional calibration
method and provides a theoretical basis for improving the accuracy and reliability of rail
profile measurement systems. In on-site applications, factors such as changes in ambient
light and target posture affect the on-site evaluation efficiency and calibration accuracy
of the proposed method. Therefore, it is necessary to improve the evaluation algorithm
for railway on-site application scenarios to further improve the efficiency and accuracy of
on-site evaluation.
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Abstract: The aperture of space telescopes increases with their required resolution, and the transmis-
sion optical systems with long focal length and diffractive primary lens are becoming increasingly
popular. In space, the changes in the pose of the primary lens relative to the rear lens group have
a significant impact on the imaging performance of the telescope system. The measurement of the
pose of the primary lens in real-time and with high-precision is one of the important techniques
for a space telescope. In this paper, a high-precision real-time pose measurement method for the
primary lens of a space telescope in orbit based on laser ranging is proposed, and a verification system
is established. The pose change of the telescope’s primary lens can be easily calculated through
six high-precision laser distance changes. The measurement system can be installed freely, which
solves the problems of complex system structure and low measurement accuracy in traditional
pose measurement techniques. Analysis and experiments show that this method can accurately
obtain the pose of the primary lens in real-time. The rotation error of the measurement system
is 2 × 10−5 degrees (0.072 arcsecs), and the translation error is 0.2 μm. This study will provide a
scientific basis for high-quality imaging of a space telescope.

Keywords: pose measurement; laser ranging; space telescope; high-precision

1. Introduction

A membrane optical telescope is a new transmission-type imaging space telescope
based on special functional materials [1,2]. Theoretically, it overturns the traditional
imaging systems, which rely on the primary lens with a curved surface. Technically, it
breaks through the bottleneck of increasing the aperture, such as telescope weight, tolerance
control of primary lens surface, and envelope size of primary lens [3,4]. Similar projects,
such as the Membrane Optic Imager Real-Time Exploitation (MOIRE) program supported
by US Defense Advanced Research Projects Agency (DARPA) [5–8], have been called the
21st-century space disruptive imaging technology.

In space, the relative pose (positions and orientations) of the optical elements, espe-
cially between the primary lens and the rear lens group, will change due to the changes in
the thermal environment and the structure, which will seriously affect the imaging quality
of the telescope [9–11]. Furthermore, it is found that the tilt and decentration of the primary
lens will make the telescope imaging quality decrease obviously [12,13]. Therefore, the
pose measurement of the telescope primary lens has become difficult to overcome urgently
in membrane optical imaging technology [14,15].

Traditional pose measurement techniques usually adopt multiple sets of measuring
equipment and sensors, which are complicated in structure and require high installation
accuracy [16–18]. It is difficult to meet the pose measurement requirements of the primary
lens of a large aperture transmission space telescope, and the calculation process is relatively
cumbersome [19–21]. Due to excessive system devices and installation errors, more errors
will be introduced [22,23].
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This paper presents a high-precision real-time measurement method for the pose of
the primary lens of a telescope based on laser ranging. First, the high-precision distance
information can be obtained using the laser ranging method, and then the high-precision
pose information of the primary lens can be obtained by calculation. Finally, the pose of the
primary lens can be calculated by using six distances obtained by laser ranging, and the
measurement system can be installed freely, which solves the problems of complex system
structure and low measurement accuracy in traditional pose measurement techniques.
The system has the advantages of a simple structure, convenient installation, and high
measurement accuracy.

2. Telescope System Design

We take a long focal length diffraction imaging optical system as an example; the
schematic diagram of the telescope optical system is shown in Figure 1. The diameter of
the primary lens is 1 m, the primary lens is a plane, and there are annular microstructures
prepared on the surface so that the light can converge on the relay mirror. The relay mirror
is 300 mm in diameter, and the relay mirror and the rear lens group are fixed in a frame.
The relay mirror is used to fold the optical path and shorten the total length of the system.
The rear lens group is responsible for correcting aberrations and providing the final image.
The primary lens is extended to the right place by trusses, and the distance between the
primary lens and the relay mirror is about 3 m. In order to ensure the imaging quality of
the telescope, the Modulation Transfer Function (MTF) @62.5 lp/mm should be up to 0.1.
To meet the MTF requirement, the system needs to have good optical quality in terms of
resolution, contrast, and uniformity. The MTF is a measure of the ability of the system to
transfer contrast from the object to the image, and it depends on many factors, such as the
aperture size, aberrations, and diffraction effects, which is a challenging requirement for
a system with such a long focal length. Defocus tolerance is important for maintaining
the focus of the system over time and under different environmental conditions. The
focal depth is proportional to the square of the aperture diameter and the wavelength and
inversely proportional to the focal length. Therefore, the defocus of the system should be
less than 1/4 focal depth during the whole life cycle [24]. In summary, the long focal length
diffraction imaging optical system requires careful design and manufacturing to achieve
high MTF and low defocus tolerance. The use of annular microstructures, relay mirrors,
and rear lens groups are effective ways to improve the optical performance of the system.

Figure 1. Schematic diagram of the telescope optical system.

As we all know, MTF is a key index in the evaluation criteria of an optical system.
The index assigned by the telescope system to the MTF drop caused by the change of the
pose of the primary lens is 0.98; that is, the MTF drop caused by the change of the pose
of the primary lens is less than 2%. Optical analyses show that the decentration of the
primary lens is most sensitive to the telescope optical system. Therefore, a tolerance of 1%
is assigned to decentration for MTF drop, 0.5% for distance, and 0.5% for tilt. Through
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Monte Carlo simulation, it can be known that in order to ensure that decentration caused
MTF drop within 1%, decentration should be controlled within ±0.02 mm. Similarly, the
distance should be controlled within ±0.1 mm, and the tilt should be controlled within
±0.02◦. According to Shannon’s sampling theorem, their corresponding measurement
accuracy requirements should be 1/5 of the control requirements. In order to achieve the
requirement that MTF drops not more than 2%, the control requirements and measurement
accuracy requirements of the pose of the primary lens are provided in Table 1.

Table 1. Influence of each degree of freedom of pose on imaging and measurement accuracy require-
ments.

Pose Tolerance of Primary Lens
MTF

Influence
Tolerance

Measurement
Requirements

Distance (translation along the z-axis) 0.5% ±0.1 mm 20 μm
Decentration (translation along the

x/y axis) 1% ±0.02 mm 4 μm

Tilt (rotation around x/y axis) 0.5% ±0.02◦ 0.004◦

3. Principle of Measurement Method

3.1. Establishment of Optical Model of Measurement System

The method is derived from the principle of the Stewart Gough platform, where the
platform and base are connected by six legs at three points on the platform and six points
on the base to form a hexapod geometry platform, as shown in Figure 2. The Stewart
Gough platform is a mechanical system that uses actuators to drive changes in the length
of legs inducing changes in the pose of the platform. For the pose measurement system, the
platform legs are the laser optical paths, which constitute the laser optical paths between
the primary lens and the relay mirror. In traditional Stewart Gough platforms, forward
kinematics is used to map expected changes in platform pose to changes in leg length. For
the pose measurement system of the primary lens of the telescope, the laser ranging lengths
are known, and the pose of the primary lens must be determined. This is achieved by using
an inverse kinematics technique, which generated a sensitivity matrix used to calculate
primary lens pose changes from the laser ranging length changes.

Figure 2. Hexapod geometry Stewart Gough platform.
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In this method, six laser collimators are fixed on the edge of the relay mirror, and
three retroreflectors are fixed on the edge of the primary lens. Each retroreflector provides
reflected light for the corresponding two collimators so that six laser distances can be
obtained. According to the changes in the six measured distances and the initial coordinates
of the collimators and retroreflectors, the pose of the primary lens can be calculated. The
schematic diagram of the measurement principle is shown in Figure 3, where C1~C6 are
the laser collimators and A1~A3 are the retroreflectors.

Figure 3. The schematic diagram of the pose measurement principle.

3.2. Pose Calculation Algorithm

The sensitivity matrix is the basis of the pose calculation technique. The sensitivity
matrix defines the sensitivity of the pose changes of the primary lens relative to the relay
mirror to changes in the laser length. The change in the laser length is defined as the
sensitivity matrix multiplied by the changes in the pose

→
Δl = S·→p (1)

where S is the sensitivity matrix,
→
p is the pose vector which includes three translations and

three rotations, and
→
Δl is the laser length change. This is a simple linear algebraic equation,

which is the basis of the Stewart Gough platform pose calculation.
The sensitivity matrix is formed using the coordinates data measured by a laser tracker.

The laser path direction vectors must be established first. The coordinates of retroreflectors
ai, and the coordinates of collimators ci are measured. The direction vectors ei of the laser
are created

ei =
ci − ai
|ci − ai| , (i = 1, . . . , 6) (2)

The sensitivity matrix S is created by cross-multiplying the coordinates of the laser
collimators ci with the direction vectors. The origin of coordinates is located in the center of
the primary lens.

S =

⎡⎢⎣c1 × e1 e1
...

...
c6 × e6 e6

⎤⎥⎦ (3)

The sensitivity matrix is a 6 × 6 matrix that defines the sensitivity of the system to the
six degrees of freedom of rotation around and translation along the x-, y-, and z-axis of the
primary lens.
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After the sensitivity matrix is established, we measure six distances from the retrore-
flectors to the laser collimators L0i in the initial state. Then, the six distances from the
retroreflectors to the laser collimators in real-time Li are measured. And the changes in
distance are calculated

Δli = Li − L0i, (i = 1, . . . , 6) (4)

In forward kinematics, the sensitivity matrix is multiplied by the desired pose to
determine the changes in path length. The inverse of the sensitivity matrix is needed to
calculate the changes in the pose from the changes in laser path length. The changes in the
pose of the primary lens relative to the relay mirror

→
p are calculated

→
p = S−1·

→
Δl (5)

where S−1 is the inverse of the sensitivity matrix,
→
Δl the changes of laser leg length, which

can be obtained by two laser rangefinders.

4. Experiments

4.1. Laser Rangefinders

Laser rangefinders are the key equipment in experiments; the stability of their mea-
sured data largely determines the accuracy of experimental results. In addition, they have
a long working distance range of up to 50 m, allowing for measurements to be taken over
large distances. The laser rangefinders used in the experiment are two sets of IDS3005
laser rangefinders from ATTOCUBE Company (Munich, Germany), and the measurement
principle is shown in Figure 4a. One rangefinder weighs less than 2 kg, which makes it a
significant advantage for use in space telescopes. With a resolution of 1 pm and a repetition
accuracy of 2 nm, one rangefinder has three laser channels and can measure three distances
of data simultaneously. When two rangefinders are connected to a computer by a switch,
six laser channels can be measured at the same time, which constitutes six laser paths of
the measurement system.

Figure 4. Principle and accuracy test for the laser rangefinder. (a) Principle of the laser rangefinder,
which is based on Fabry-Perot interference. (b) Accuracy test for the laser rangefinder, the laser
ranging accuracy is ±0.5 μm.
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IDS3005 laser rangefinder adopts the principle of Fabry-Perot interference [25], which
has many advantages: The size of the laser collimators can be very small; the beam spacing
can be arranged freely; directly measuring the metal surface; directly measuring the Angle
by three beams; allowing a large target Angle deviation; little environmental impact; easy
installation and debugging; used in vacuum, low temperature, radiation environment.
These advantages make the measurement fairly simple. Each channel consists of a telecom
fiber that is coupled to a collimator that transmits a beam of laser to the retroreflector.
The backward reflection of the fiber tip is the reference arm of the rangefinder, and the
measuring arm is the path through the collimator to the retroreflector and back again. The
measured optical path difference (OPD) corresponds to the distance between the fiber tip
and the retroreflector.

The measurement accuracy of the laser rangefinder was tested. The test was carried
out in a standard laboratory environment, where the retroreflectors were fixed at about 3 m
away from the collimators of the laser rangefinder, three channels of one laser rangefinder
were measured in 5 min, and the measured distance data were recorded by a data recording
software, as shown in Figure 4b. According to the measured data, it was determined that
the laser rangefinder is accurate to within ±0.5 μm in such experimental conditions, with
little variation between two separate rangefinders. This is consistent with the measurement
accuracy data given by the manufacturer. Therefore, the error is acceptable and can meet
the experimental requirements. Therefore, we can use these instruments for the pose
measurement experiment.

Then, in order to determine the pose measurement accuracy under such laser ranging
accuracy, the relationship between the laser ranging accuracy and the pose measurement
accuracy was calculated by 10,000 Monte Carlo simulations, and the results are shown in
Table 2. This experimental system is highly accurate and precise in terms of rotation around
the x and y-axes, rotation around the z-axis, and translation along the x-, y-, and z-axes.
For example, in the experimental system, when the laser ranging accuracy is ±0.5 μm, the
accuracy of rotation around the x and y axes (tilt) Rx/Ry is 0.03”, the accuracy of rotation
around the z-axis (roll) Rz is 0.07”, the accuracy of translation along the x and y axes
(decentration) is 0.35 μm. The accuracy of translation along the z-axis (optical axis direction
of the telescope) is 0.15 μm, respectively, indicating highly precise control of the optical axis
direction of the telescope. Overall, this experimental system is highly precise and would be
ideal for conducting experiments that require highly accurate measurements of position
and orientation.

Table 2. Analysis accuracy (σ).

Degree of Freedom Accuracy

Rx,y 0.03”
Rz 0.07”
x,y 0.35 μm
z 0.15 μm

4.2. Ground Test

In order to verify the pose measurement method and its accuracy, an experimental
system was built, as shown in Figure 5. For convenience, a frame was used instead of the
primary lens of the telescope and its center was aligned with the center of the relay mirror.
At the same time, the frame was fixed to a high-precision hexapod platform to provide an
accurate reference pose. Three retroreflectors were attached to the edge of the frame. In
addition, six laser collimators were fixed to the edge of the relay mirror and connected to
the laser rangefinders by six fibers. Each retroreflector and collimator weigh only about
20 g, which makes the overall measurement system very light and flexible.
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Figure 5. Test system. Three retroreflectors (red circles on the right of Figure 5) were attached to the
edge of the frame, and six laser collimators (red circles on the left of Figure 5) were fixed to the edge
of the relay mirror to verify the pose measurement method and its accuracy.

After the experimental equipment was installed, the frame was first adjusted to the
initial position by the hexapod platform, and the six laser collimators were aligned with the
corresponding retroreflectors. Six initial distances were recorded at the initial position, and
then the hexapod platform was controlled to drive the frame; the change values of the six
new distances were recorded, and the pose can be calculated by the algorithm described
above. The pose obtained by this measurement method can be compared with the reference
pose of the hexapod platform to verify the accuracy of this measurement system.

To determine the accuracy of rotation and translation of the pose measurement method,
the hexapod platform was driven to rotate around the x-axis for step movement every
1 × 10−4 degree and move along the x-axis for step movement every 0.4 μm. The pose data
were measured once a second in 5 min. Figure 6 shows the test results of 1 × 10−4 degrees
and 0.4 μm step test of the measurement system, respectively. The error of rotation is
2 × 10−5 degrees (0.072 arcsec), and the error of translation is 0.2 μm. The spikes on the
curve are caused by the fact that the hexapod platform has not been stabilized during
the motion. The test results of rotation around the y/z-axis and translation along the
y/z-axis are almost the same. The experimental results show that the accuracy of the
measurement system for tilt reaches 1 × 10−5 degree level, and the measuring accuracy
for decentration reaches 100 nanometers level, both of which are much better than the
measurement requirements. The measurement and calculation were carried out on an
ordinary laptop computer, and the single calculation time is 5~10 milliseconds, which
achieves the purpose of high-precision real-time measurement.
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Figure 6. Test results of 1 × 10−4 degrees and 0.4 μm step test of the measurement system. (a) The tilt
error of the measurement system is 2 × 10−5 degrees, (b) The decentration error of the measurement
system is 0.2 μm.

4.3. Error Analysis

During the experiment, there were some errors introduced by the environment and
other factors. The analysis shows that the errors are about tens of nanometers. These error
sources can be divided into three categories, namely, random errors, systematic errors and
environmental errors.

The random errors include detector noise, optical noise, reading error, etc. For the
measurement system, the typical value of these noises is about a few nanometers and
can be further reduced by averaging the distance data. Systematic errors include some
nonlinear periodic errors, which may be caused by optical crosstalk in the light source and
electrical crosstalk between reference channels. These errors should be controlled by the
design of the rangefinder system, which has little influence on the measurement results.
Finally, the environmental errors are mainly caused by ambient temperature and humidity
changes and air disturbance, which affect the stability of ranging data. Fortunately, we can
reduce these errors caused by environmental factors through the environmental information
compensation module of the laser rangefinder and finally control the errors caused by
environmental factors within tens of nanometers.

Overall, the errors introduced by the environment and other factors can be mitigated
through careful design of the rangefinder system and the use of compensation modules to
reduce the impact of environmental factors. By minimizing these errors, the accuracy and
reliability of the laser rangefinder can be greatly improved, making it an essential tool for
a wide range of applications, from surveying and mapping to industrial positioning and
robotics.

5. Conclusions

In this paper, a reasonable solution for pose measurement of a long focal length optical
telescope in orbit is proposed. Considering the simplicity and accuracy, a measurement
system is provided to realize high-precision real-time measurement. The step test results
show that the rotation error of the measurement system is 2 × 10−5 degrees (0.072 arcsecs),
the translation error is 0.2 μm, and the single calculation time is 5~10 milliseconds, achieving
the purpose of high-precision real-time measurement. This method has the advantages
of simple structure, flexible installation, lightweight, non-contact, high-precision and real-
time, which lays a technical foundation for the pose measurement of the primary lens of
the space telescope. This measurement method also can be applied to other optical systems
and other related systems.
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Abstract: In tunnel lining construction, the traditional manual wet spraying operation is labor-
intensive and can be challenging to ensure consistent quality. To address this, this study proposes a
LiDAR-based method for sensing the thickness of tunnel wet spray, which aims to improve efficiency
and quality. The proposed method utilizes an adaptive point cloud standardization processing
algorithm to address differing point cloud postures and missing data, and the segmented Lamé curve
is employed to fit the tunnel design axis using the Gauss–Newton iteration method. This establishes
a mathematical model of the tunnel section and enables the analysis and perception of the thickness
of the tunnel to be wet sprayed through comparison with the actual inner contour line and the design
line of the tunnel. Experimental results show that the proposed method is effective in sensing the
thickness of tunnel wet spray, with important implications for promoting intelligent wet spraying
operations, improving wet spraying quality, and reducing labor costs in tunnel lining construction.

Keywords: 3D LiDAR point cloud; intelligent detection methods; normalization; shotcrete

1. Introduction

With the rapid development of 3D laser scanning technology, the application of laser
technology is rapidly expanding and offering decreased costs and increased accuracy. This
technology has various applications, including road detection [1,2], object recognition [3,4],
surface reconstruction [5,6] and tunnel detection [7,8].

In China, the total length of highways is reported to be 4,846,500 km, including
17,236.1 km of highway tunnels as of 2018 [9]. It is estimated that by 2030, the total number
of tunnels in operation in China will reach 17,000, exceeding 30,000 km in length [10]. There-
fore, the development of intelligent tunnels in construction and monitoring is becoming
increasingly urgent. The use of 3D laser scanning technology in tunnel construction and
monitoring can improve construction efficiency, ensure safety, and reduce labor costs.

Laser technology has become an indispensable tool in the intelligent development
of tunnels [11,12]. The use of laser scanners for acquiring 3D data of excavation surfaces
in tunnels was first proposed by Lemy et al. [13]. They determined the displacement of
the excavation surface by comparing the point clouds obtained at different times. This
study demonstrated the potential of LiDAR in data collection during tunnel excavation. In
subsequent years, Fekete et al. [7,14] used 3D laser scanning for quality control in drill and
blast tunnels. LiDAR scanning allowed for precise monitoring of excavation and support
installation during construction. More recent research has further explored the potential
of LiDAR in tunnel construction activities, such as rock mass classification [15], drill bit
wear detection [16], and automatic surveying of tunnel sections [17]. However, research on
tunnel shotcrete is still lacking. Shotcrete is commonly used in the construction of railway
and highway tunnels [18]. Tunnel shotcrete spraying is a process of rapidly applying
shotcrete to the rock or concrete surface to prevent tunnel collapse during excavation [19,20].
Currently, shotcrete spraying is a manual process, resulting in unstable construction quality
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and slow construction progress. There is a need for further research on the intelligent
construction of shotcrete in tunnels.

LiDAR-based 3D object detection is essential for automating tunnel shotcrete spraying,
as it directly relates to understanding the tunnel environment. A previous study proposed
a novel neural network structure based on LiDAR for detecting the area of tunnel shotcrete
spraying [21], demonstrating the real-time monitoring of the tunnel profile and shotcrete
area. Ranjbarnia [22] studied the effects of various parameters such as sprayed concrete
thickness, soil geomechanical properties, tunnel depth, and fault plane dip angle using
the 3D finite difference analysis algorithm and centrifuge physical model, but mainly
focused on crossing faults in urban tunnels, which is not applicable for the construction
analysis of tunnels in progress. Oreste [23] proposes a new calculation procedure based on
the combined use of two calculation methods, convergence confinement and hyperstatic
reaction methods, to analyze the factors of shotcrete and determine the trend of the lining
safety factor over time. Unlike previous studies, our research focuses on detecting the
thickness of shotcrete to enable intelligent detection for large spatial arch spraying processes
in complex tunnel scenarios. To achieve this, we developed a LiDAR-based intelligent
detection method. Our contribution lies in proposing a novel approach to address the
specific challenge of shotcrete thickness detection.

In summary, the main contributions of this paper are as follows:

• This paper proposes a new method for the intelligent detection of wet shotcrete
thickness on the tunnel arch surface during large spatial arch spraying processes in
complex tunnel scenarios, which has not been previously explored. This method
addresses the need for automated and accurate shotcrete spraying to improve the
construction quality and progress.

• An innovative adaptive tunnel standardization processing algorithm is introduced,
which mathematically describes the inner contour of the tunnel. This algorithm can
accurately detect the tunnel arch surface, which is a prerequisite for detecting the
thickness of shotcrete, and can adapt to different tunnel shapes and sizes.

• The proposed algorithm has demonstrated robust and reliable performance in de-
tecting tunnel shotcrete thickness during tunnel construction in China. This method
contributes significantly to the field of tunnel construction by improving construction
quality and efficiency while reducing costs and risks associated with manual inspection.

The structure of this paper is as follows: Section 2 presents the problem and describes
the process of data acquisition. In Section 3, an innovative adaptive method for normal-
izing point cloud data is proposed. Section 4 discusses a fitting method used to obtain a
mathematical model of the inner contour of a large-scene tunnel. The experimental results
are presented in Section 5. Finally, the paper is concluded with suggestions for further
research in Section 6.

2. Material

2.1. Problem Description

In modern tunneling operations, it is essential to acquire detailed information about
the shotcrete thickness of lining and installed support structures to ensure safety, long-term
stability, and quality control. The lining construction [24], including initial and secondary
lining, is an important tunnel supporting structure. The initial lining refers to shotcrete after
laying steel arch support [25], which is widely used as a support element in underground
building construction.

Tunnel shotcrete spraying is a process of spraying concrete at a high velocity onto the
surface of a rock or steel structure in order to prevent tunnel collapse during excavation [26].
Currently, shotcrete spraying is a manual process, which involves an operator manually
operating the mechanical arm for spraying, as shown in Figure 1. This method is highly
dependent on the operator’s experience and skills, and the quality of the shotcrete largely
depends on the operator. Furthermore, the manual operation exposes workers to a large
amount of dust and heavy and dangerous work, which may cause health problems. There-
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fore, an automatic tunnel lining construction system, as shown in Figure 2, is necessary to
automate the tunnel construction process.

Figure 1. Current construction method and classification of wet shotcrete states. The red large circle
indicates a magnification of the details in the small circle.

Figure 2. The solution of automatic tunnel lining construction system. The red box represents the
components of “Intelligent Sensing for Large Spatial Arch Spraying Process”, which include real-time
point cloud acquisition, point cloud normalization, and intelligent perception for the steel arch. The
arrows indicate the specific contents included in each component.

In the automatic tunnel lining construction system, the wet shotcrete process of the
tunnel arch is divided into three states: the unsprayed-state, the spraying-state, and the
sprayed-state [27,28]. The unsprayed-state is the state in which the shotcrete has not
yet been sprayed, the spraying-state is the state in which the shotcrete is being sprayed,
and the sprayed-state is the state in which the shotcrete has been applied, as shown in
Figure 1. LiDAR is used to collect tunnel point cloud data in these three states, which is
then processed using denoising, correction, clustering, and compensation techniques to
extract the tunnel arch points.

Afterward, a wet shotcrete thickness description model is established to determine
the depth of shotcrete needed for the tunnel arch surface to be sprayed continuously. With
the prediction and motion planning of the mechanical arm, an automatic tunnel lining
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construction system is proposed. This paper focuses on the intelligent sensing for the large
spatial arch spraying process in complex tunnel scenarios, which lays the foundation for
prediction and motion planning of the system.

2.2. Process of Data Acquirement

The LiDAR used in this study is mounted on the mechanical arm of the concrete
sprayer and integrates 16 laser/detector pairs in a compact housing for data collection [17].
In practice, the LiDAR is designed to be installed on the mechanical arm (as shown in
Figure 3a). Since the shotcrete machine is generally oriented towards the working surface
of the tunnel, during the wet spraying interval, when the mechanical arm stops moving,
the LiDAR scans the tunnel to realize the measurement and perception of the environment.
The original point cloud collected in reality is shown in Figure 3b, and there are mainly
several issues with it:

(1) The point cloud is contaminated with noisy data due to severe dust pollution;
(2) The point cloud is tilted due to the movement of the mechanical arm and the installa-

tion of the LiDAR;
(3) The point cloud data contain redundant data;
(4) Some point cloud data are missing due to obstruction by obstacles.

LiDAR

The Mechanical Arm of the Concrete Sprayer

Mechanical  Nozzle

(a) Data collection site. (b) Data collected.

Figure 3. Data collection and analysis. (a) describes the data collection site. (b) displays a frame of
tunnel point cloud data that includes various types of noise. The tunnel arch points are the target of
what we want to extract.

To address the issues mentioned above with the collected tunnel point cloud data, an
adaptive tunnel arch point extraction algorithm is proposed prior to sensing the shotcrete
thickness of the lining.

3. Method

A point cloud is a vast collection of surface characteristic points of a target object
that are directly obtained by LiDAR. However, due to the actual collection site conditions,
noise interference is inevitable. Additionally, the presence of construction equipment,
operators, rock waste, and other objects at the tunnel site may cause occlusion, which
affects the quality of the point cloud to varying degrees. Moreover, the large volume
of the tunnel point cloud and the existence of redundant information make it critical to
extract the characteristics of the tunnel cross-section point cloud and reduce computational
complexity. Therefore, standardizing the tunnel point cloud is crucial during the feature
point extraction process to ensure accurate analysis and efficient computation.
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3.1. Data Denoising

To filter out noise data caused by suspended concrete particles, we use a point cloud
filtering algorithm based on the threshold neighborhood method proposed by Rusu and
Cousins [29]. The algorithm selects neighboring points using a 3D Euclidean distance metric
and terminates once a fixed number of neighbors nnbrs or all points within a bounding
sphere of radius rsph have been found. The variables nnbrs and rsph control the size of the
neighborhood selection. Subsequently, the mean μ and standard deviation σ of nearest
neighbor distances are calculated, and points outside the μ ± ϑ · σ range are removed,
where the parameter ϑ adjusts the sensitivity of the threshold. In our implementation, we
have found the optimal value of ϑ to be 1, and nnbrs = 30.

Furthermore, based on experiments with multiple datasets, we have shown that
the μ ± σ thresholds are effective in removing noise, where around 1% of the points are
considered as noise.

3.2. Adaptive Point Cloud Pose Normalization

During the process of collecting radar data, the tunnel point cloud may be inclined
to different degrees due to various installation reasons, as illustrated in the left schematic
diagram in Figure 4. To enhance the stability and accuracy of tunnel wet spray state
perception, it is crucial to transform the coordinates of the tunnel point cloud before the
three-dimensional reconstruction of the tunnel. The pose normalization of the tunnel point
cloud needs to be performed to adjust all the tunnel point clouds to the position shown
on the right side of Figure 4. This process enables the alignment of the tunnel point cloud
with the reference frame, facilitating a more precise three-dimensional reconstruction of
the tunnel.

Figure 4. Schematic diagram of tunnel attitude standardization.

Considering the rigid body transformation characteristics of the tunnel, solving any
part of the rotation transformation matrix can enable the complete rotation transformation
of the tunnel point cloud. However, in the tunnel point cloud, the road point cloud exhibits
significant planar characteristics, which can be utilized to correct the tunnel wall point cloud
by solving the transformation matrix of the road point cloud. To extract the ground point
cloud from the tunnel point cloud, we propose a planar extraction algorithm based on the
M-estimator SAmple Consensus (MSAC) algorithm [30]. The MSAC algorithm optimizes
the calculation method of the loss function of the RANSAC algorithm, addressing the
RANSAC algorithm’s sensitivity to the threshold T selection of interior points. The loss
function value of the RANSAC algorithm is represented by C1. For the points inside the
model, the loss function is 0, whereas for the points outside the model, a constant penalty
is incurred. Thus, setting the threshold too high can result in poor estimation, while setting
it too low can affect the robustness of the model.
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C1 = ∑i p1(e2
i ) (1)

where e is the error function, and p1 is the robust scale parameter, defined as

p1(e2) =

{
0 e2 < T2

constant e2 ≥ T2
(2)

To address this issue, Torr and Zisserman [31] proposed a new loss function C2 that
can be minimized to obtain a more accurate model. The C2 loss function is defined as

C2 = ∑i p2(e2
i ) (3)

where e is the error function, and p2 is the robust standard error. The p2 function assigns a
weight to each data point based on its distance to the model, with larger weights assigned
to points that are closer to the model. This effectively reduces the influence of outliers in
the data and improves the accuracy of the model estimation.

p2(e2) =

{
e2 e2 < T2

T2 e2 ≥ T2
(4)

To extract the plane of the point cloud data, the MSAC algorithm is utilized to obtain
the plane equation, as shown in Equation (5). In this algorithm, a fixed penalty is given for
out-of-model points, while for in-model points, the fitting effect of the model is considered
to establish the most accurate model. Figure 5 shows the fitting result, which demonstrates
that the extracted plane points correspond well with the road surface of the tunnel.

apx + bpy + cpz + dp = 0 (5)

where ap, bp, cp, and dp are the coefficients of the plane equation.

−1
−4

−2
−6

Figure 5. Fitting result of the MSAC algorithm for plane extraction. The pink plane represents the
plane fitted by the algorithm.

In Figure 5, the point cloud is observed to be inclined at a certain angle with respect to
the X, Y, and Z axes. However, if the normal vector of the road point cloud is found to be
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parallel to the Z-axis, it indicates that this part of the point cloud has already undergone
the attitude standardization process.

In the cases where the normal vector of the road point cloud is not parallel to the
Z-axis, a point cloud correction algorithm based on continuous projection is proposed in
this section.

The proposed point cloud correction algorithm based on continuous projection in-
volves a series of steps. Firstly, the point cloud is projected onto the YOZ, XOY, and XOZ
planes sequentially. Next, the α-shape algorithm [32] is employed to determine the bound-
ary points of the point cloud on each plane, which are then used to identify the center
line of the point cloud in the plane. The rotation angle of the point cloud in the plane
is determined by the declination angle from the coordinate axis, and the transformation
matrix is obtained using the Rodrigue formula [33]. Finally, the point cloud is corrected
according to the transformation matrix.

A common way to determine the boundary of a finite point set is through the α-shape
algorithm [32]. For a finite point set, the algorithm forms a line segment between every two
points and draws a circle with a diameter of the line segment. If one of the circles does not
contain any other points except for the two points, then the two points are considered as
two boundary points. The sum of these boundary points gives the boundary of the point
cloud, as shown in Figure 6.

z[m]

y[m]
−6

x[m]
−4

−2

−1

Figure 6. The alpha-shape algorithm criteria. The red points represent the point cloud data of the
plane fitted by the MSAC algorithm in Figure 5, while the green points represent the boundary points
detected by the α-shape algorithm. The points pi and pj on the left are the boundary points, whereas
on the right, pi and pj are the internal points.

After obtaining the projected boundary points, a quadratic function is used to fit the
boundary of the point cloud, as shown in Equation (6):⎡⎢⎢⎢⎣

y1
y2
...

yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 x1 x2

1
1 x2 x2

2
...

...
...

1 xn x2
n

⎤⎥⎥⎥⎦
⎡⎣aq

bq
cq

⎤⎦+

⎡⎢⎢⎢⎣
ε1
ε2
...

εn

⎤⎥⎥⎥⎦ (6)

where n is the number of boundary points; xi and yi are the coordinates of the i-th boundary
point; aq, bq, and cq are the coefficients of the quadratic function; and the εi represent the
residual error between the fitted curve and the original point cloud data.

To obtain the midline of the plane, we first use the uniform sampling method to
obtain 50 sampling point sets on each boundary. For each sampling point, we record the
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normal line perpendicular to the boundary and the intersection point set with the opposite
boundary. Then, we recalculate the intersection of the normal line at the intersection point
on the boundary with the original boundary and record the intersection point set. Next,
we take the midpoint of each line segment between the two intersection points and then
calculate the midpoint of the two midpoints. The resulting set of midpoints is used to fit
the midline using Equation (7). The entire process is illustrated in Figure 7.

y = kmx + bm (7)

where km and bm are the parameters of a curve, and the RANSAC (RANdom SAmple
Consensus) algorithm [34,35] is used to estimate the parameters of the model. Then, the
inclination angle of the point cloud in the plane can be expressed by Equation (8).

θ = arctan(km) (8)

Figure 7. Determination of the midpoints on central axis. The green line represents one of the normal
lines of the boundary. M1 is the midpoint of the line segment between the intersection point of the
normal line with the opposite boundary and the boundary itself. The orange line represents the
normal line of the opposite boundary. M2 is the midpoint of the line segment between the intersection
point of the boundary’s normal line with the original boundary and the boundary itself. M is the
intersection point of the line segments between M1 and M2, which represents the point on the midline
of the plane, and the direction vector is �v.

Based on the Rodriguez rotation formula, the rotated vector �vrot of any vector �v0 in
space, rotated by an angle θ around a given rotation axis�n, can be expressed by Equation (9).
This equation ensures the accuracy of the rotation operation.

�vrot = Mr(�n, θ)�v0 = �v0 cos θ + (�n ×�v0) sin θ + (1 − cos θ)(�n ·�v0)�n (9)

where Mr is the rotation matrix, which is defined as shown in Equation (10):

Mr(�n, θ) =

⎡⎢⎢⎣
u2(1 − cos θ) + cos θ uv(1 − cos θ)− w sin θ uw(1 − cos θ) + v sin θ

uv(1 − cos θ) + w sin θ v2(1 − cos θ) + cos θ uw(1 − cos θ)− u sin θ

uw(1 − cos θ)− v sin θ vw(1 − cos θ) + u sin θ w2(1 − cos θ) + cos θ

⎤⎥⎥⎦ (10)

To investigate the impact of the continuous projection algorithm proposed in this
section on point cloud correction, this paper conducts an analysis of the inclination angles
and coordinate axes of 1000 frames of tunnel point clouds with varying inclination degrees,
before and after correction. The results are presented in Figure 8: “·” represents the
tilt angle before correction, and “*” represents the tilt angle after correction. From the
comparison of 1000 point clouds, it can be seen that there were varying degrees of tilt
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before correction, with the maximum deviation angle exceeding 15° in all directions. After
point cloud correction, the point cloud was corrected well in all directions, with a tilt
angle not exceeding 2°. The local enlargement images of 400 frames to 1000 frames further
demonstrate the effectiveness of the algorithm correction.

Figure 8. Comparison of deviation angle before and after correction. The x-axis represents different
point cloud frames, while the y-axis represents the inclination angle.

3.3. Adaptive Point Cloud Wall Normalization

At the data collection site, construction equipment and workers are in continuous
motion. Consequently, the point cloud collection process may result in some degree of
obstruction of the tunnel wall, leading to data loss to varying extents. This can lead to
subsequent issues in data processing and analysis. To address incomplete information, it
is necessary to detect the area of the tunnel wall point cloud and interpolate missing data
segments. This process is referred to as the wall standardization process of the tunnel point
cloud in this paper.

In order to compensate for missing data in the tunnel wall, this paper presents an
adaptive point cloud compensation algorithm based on an interpolation model. The
algorithm consists of two main parts: automatic detection and automatic interpolation.
During data collection, construction equipment and workers may obstruct the tunnel
wall, leading to incomplete point cloud data. In order to address this issue, the proposed
algorithm aims to automatically detect the missing areas of the tunnel wall point cloud and
interpolate the missing data segments.

145



Sensors 2023, 23, 5167

The adaptive point cloud compensation algorithm utilizes the first-order difference
algorithm for the automatic detection of missing parts of the point cloud. Once the location
of the missing point cloud is identified, the algorithm compensates for the missing segment
through interpolation using the piecewise cubic Hermite interpolating polynomial (PCHIP)
method, which is a type of piecewise polynomial interpolation that uses cubic Hermite
polynomials to ensure the smoothness of the interpolated curve.

Assuming that Pk(xk, yk, zk)
T and Pk+1(xk+1, yk+1, zk+1)

T are two points of tunnel arch
points after clustering, with a missing area between Pk and Pk+1, the algorithm checks if
|zk − zk+1| ≥ δ, where

δ =

nums−1
∑

i=1
|zi+1 − zi|

nums − 1
(11)

Here, nums is the number of clusters of tunnel arch points, and δ is the threshold value
for determining the missing area.

The cubic Hermite interpolation polynomial H3 is required to satisfy Equation (12):{
H3(xk) = ϕ(xk), H3(xk+1) = ϕ(xk+1)

Ḣ3(xk) = ϕ̇(xk), Ḣ3(xk+1) = ϕ̇(xk+1)
(12)

where ϕ(x) is the interpolation function, and H3(x) is the basis function of the piecewise
cubic Hermite interpolation polynomial, which can be expressed as

H3(x) = ψk(x)ϕ(xk) + ψk+1(x)ϕ(xk+1) + φk(x)ϕ̇(xk) + φk+1(x)ϕ̇(xk+1) (13)

where ψk(x), ψk+1(x), φk(x), φk+1(x) is the cubic Hermitian interpolation basis function for
nodes xk and xk+1, and they and their derivative must satisfy Equation (14).⎡⎢⎢⎢⎢⎣

ψk(xk), ψk(xk+1), ψ̇k(xk), ψ̇k(xk+1)

ψk+1(xk), ψk+1(xk+1), ψ̇k+1(xk), ψ̇k+1(xk+1)

φk(xk), φk(xk+1), φ̇k(xk), φ̇k(xk+1)

φk+1(xk), φk+1(xk+1), φ̇k+1(xk), φ̇k+1(xk+1)

⎤⎥⎥⎥⎥⎦ = I4 (14)

where I4 is a 4 × 4 identity matrix.
Under the constraints of Equation (14), ψk(x) and φk(x) can be constructed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ψk(x) =
(
aψx + bψ

)( x − xk+1
xk − xk+1

)2

φk(x) = aφ(x − xk)

(
x − xk+1
xk − xk+1

)2
(15)

The parameters aψ, bψ, and aφ can be obtained by using Equations (14) and (15) under
the constraint of satisfying Equation (14). The expressions of ψk+1(x) and φk+1(x) can
be constructed in a similar way. This results in an interpolation polynomial between
the endpoints Pk and Pk+1, the interpolation results of which are shown in Figure 9. In
Figure 9c,d, the red points represent the interpolated data points in the missing segments.
It can be observed that the proposed algorithm not only preserves the general trend of the
original data, but also achieves better data compensation accuracy with fewer wrongly
interpolated data points, resulting in a superior data compensation effect.
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(a) Tunnel missing area.

−1

(b) Defective area detection.

(c) Piecewise linear interpolation.

−1

(d) Our algorithm.

Figure 9. Compensation of missing parts, the red dots represent the interpolation points of the
algorithm. (a) shows an area of data loss, where the tunnel wall point cloud is missing. (b) shows the
markers for the missing parts of the tunnel in the point cloud; specifically, the green asterisk (*) point
represents the starting point of the missing segment, while the blue asterisk (*) point represents the
end point of the missing segment. (c) shows the result of piecewise linear interpolation. (d) displays
the interpolation result of our proposed algorithm.

4. Model

4.1. Theoretical Basis
4.1.1. The Gauss–Newton Iteration Method

The cross-section of a tunnel is typically designed as an ellipse [36]. There are two
types of algorithms to obtain an ellipse equation: non-iterative and iterative algorithms.
Examples of non-iterative algorithms include the Lagrange multiplier-based method pro-
posed in [37]. Iterative algorithms include the Gauss–Newton algorithm-based method
introduced in [38,39]. However, due to the complex tunnel environment during the con-
struction phase, the collected point cloud data are not suitable for non-iterative algorithms.
Therefore, in this study, Taylor series expansion was used to approximate the nonlinear
regression model and improve the regression coefficients by multiple iterations and correc-
tions until the minimum residual sum of squares was achieved. This method is referred to
as the Gauss–Newton iteration method.

It is assumed that Equation (16) represents a nonlinear regression model of an elliptical
cross-section of a tunnel:

ŷi = f (xi, r) + εi, (i = 1, 2, · · · , n) (16)
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where r = (r0, r1, · · · , rnr )
T is an nr × 1 matrix of coefficients to be determined, and εi

represents the error term, which follows a normal distribution. The total number of points
to be fitted is denoted by n, and xi is the x-coordinate of the i-th point, while ŷi is the
predicted value of xi.

To obtain an initial value of the regression coefficient r, let g(0) =
(

g0(0), g(0)1 , · · · , g(0)nr

)T
.

Taylor expansion is used at g(0) in Equation (16), and the second order and above partial
derivative terms are omitted to obtain Equation (17). This approach replaces the nonlinear
regression model with a series expansion, and the regression coefficients of the nonlinear
regression model are then iteratively updated and corrected until the minimum residual
sum of squares is obtained using the Gauss–Newton iteration method.

f (xi, r) = f (xi, g(0)) +
nr−1

∑
j=0

[
∂ f (xi, r)

∂rj

]
r=g(0)

(
rj − g(0)j

)
(17)

Equation (18) is obtained by combining Equations (16) and (17):

y(0)i ≈
nr−1

∑
j=0

G(0)
ij b(0)j + εi, (i = 1, 2, · · · , n) (18)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(0)i = yi − f (xi, g(0))

G(0)
ij =

[
∂ f (xi, r)

∂rj

]
r=g(0)

b(0)j =
(

rj − g(0)j

) (19)

Equation (18) can be written in a more simplified matrix form as Equation (20):

Y(0) ≈ G(0)b(0) + ε (20)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y(0)
n×1 =

⎡⎢⎢⎣
y1 − f (x1, g(0))

· · ·
yn − f (xn, g(0))

⎤⎥⎥⎦

G(0)
n×nr

=

⎡⎢⎢⎢⎢⎣
G(0)

10 · · · G(0)
1nr−1

...
...

G(0)
n0 · · · G(0)

nnr−1

⎤⎥⎥⎥⎥⎦

b(0)nr×1 =

⎡⎢⎢⎢⎣
b(0)0
...

b(0)nr−1

⎤⎥⎥⎥⎦

(21)

Refine the correction coefficient b(0) using the least-squares method:

b(0) =
(

G(0)TG(0)
)−1

G(0)TY(0) (22)

The revised values for the regression coefficients g(1) can be obtained by using Equation (23):

g(1) = g(0) + b(0) (23)
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To update the correction coefficient b(s) at the s-th iteration, we can use the least-
squares method, as shown in Equation (24). Then, the updated regression coefficients
g(s+1) at the (s + 1)-th iteration can be obtained by adding b(s) to g(s). This iterative process
is repeated until the SSR (sum of squares of residual) is below a certain tolerable error
K, which is given by Equation (25). More specifically, the iterative process continues
until

∣∣∣ SSR(s)−SSR(s−1)

SSR(s)

∣∣∣ ≤ K, where SSR(s) and SSR(s−1) are the SSR values at the s-th and
(s − 1)-th iterations, respectively:

b(s) =
(

G(s)TG(s)
)−1

G(s)TY(s) (24)

SSR(s) =
n

∑
i=0

[
yi − f

(
xi, g(s)

)]2
(25)

where s represents the number of iterations.

4.1.2. Analysis of Common Fitting Models

In China, the majority of large-scale tunnels are constructed as arched structures.
Consequently, when addressing the problem of fitting the inner contour of a tunnel, arched
models, such as the circle, ellipse, and Lamé curve, are commonly employed.

(1) Circle: A circle is the most fundamental geometric shape. For any circular figure
with center Oc(xc, yc) and radius Rc, the standard equation of the circle is given by

(x − xc)
2 + (y − yc)

2 = R2
c (26)

Based on the findings reported in [40], circular structures are known to exhibit excel-
lent pressure-bearing capacity. Therefore, tunnels excavated using shield machines
commonly adopt circular structures.

(2) Ellipse: The actual tunnel environment is complex, and various factors such as
geotechnical characteristics and surrounding rock mechanics need to be considered.
Additionally, the deformation of the tunnel during use must be addressed. The
elliptical structure can adjust its load capacity by changing the eccentricity and is
commonly used in practical engineering. The equation for an ellipse is as follows:

(x − xc)
2

a2 +
(y − yc)

2

b2 = 1 (27)

where Oc(xc, yc) is the center of the ellipse, a is the semimajor axis, and b is the
semiminor axis.
The load capacity of elliptical structural tunnels is closely related to the flatness of
the ellipse, which can be described mathematically by the eccentricity e. In practical
engineering, the eccentricity of the ellipse can be adjusted to change its load capacity.
When e is closer to 0, the load capacity of the ellipse is stronger. Conversely, when e is
closer to 1, the flatter the ellipse is, and the weaker its load capacity. This relationship
between eccentricity and load capacity is important to consider when designing
tunnels with elliptical cross-sections.

(3) The Lamé curve: This is also known as the hyperellipse [41], which is an extension of
the ellipse. It has been widely used in tunnel engineering due to its adjustable shape
parameters and excellent structural performance. The equation of the Lamé curve is
given by ∣∣∣ x

a

∣∣∣η
+

∣∣∣y
b

∣∣∣η
= 1 (28)

where a and b represent the major and minor axes of the Lamé curve, respectively,
and η is the shape parameter that determines the shape of the curve.
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By adjusting the values of a and b, symmetric closed curves such as rectangles, circles,
and hyperellipses can be obtained. When a = 6.0 and b = 4.0, hyperellipse curves of
different orders can be obtained, as shown in Figure 10.

Figure 10. Lamé curve.

From Figure 10, it can be observed that when 0 < η < 1, the curve is concave inward
and takes the shape of a four-pointed star. When η = 1, the curve becomes a rhombus. For
1 < η < 2, the curve is convex, and the curvature increases as it approaches the vertices.
When η = 2, the curve becomes an ellipse, which is a circle if a = b. For η > 2, the curve
becomes a rectangle with rounded corners, and as η increases, it approaches a rectangle,
which is also referred to as an ellipse in this case.

Based on the analysis of the circle, ellipse, and Lamé curve, it can be concluded that the
Lamé curve is more suitable for fitting the inner contour of the tunnel section, depending
on the specific shape of the tunnel. Therefore, this paper adopts the Lamé curve to fit the
tunnel section.

4.2. Extraction of Cross-Section Point Cloud

The calculation of the central axis is a crucial step in obtaining the tunnel section, as it
describes the direction of the tunnel, and each section is perpendicular to it. The central
axis of the tunnel is typically calculated by projecting the point cloud of the inner wall of
the tunnel. There are four commonly used methods to obtain the tunnel center line:

(1) Manual acquisition: low efficiency and large errors.
(2) Extracting the rails: not suitable for tunnels without steel rails.
(3) Calculating the tunnel boundary through data model fitting: limited by the tunnel

shape.
(4) Fitting boundary lines on both sides of the tunnel: adopted in this paper due to

the easy determination of boundary lines. The width is obtained by determining
boundary lines, which are then shifted to center and averaged to obtain the center
line of the tunnel.

In this study, the fourth method was chosen due to its simplicity and effectiveness,
as the boundary lines on both sides of the tunnel can be easily determined. The method
involves determining the width of the tunnel by finding the boundary lines on both sides
of the point cloud and then shifting each boundary line towards the center. The center line
of the tunnel is finally obtained by taking the average value of the shifted boundary lines.
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4.3. Fitting of Cross-Section Point Cloud

Based on the above analysis, it is apparent that the Lamé curve model is more suitable
for fitting the inner contour of the tunnel in wet spraying due to its robustness. However,
fitting the entire tunnel outline without distinction and estimating the error can increase
the amount of calculation and produce a large fitting error due to the different wet spray
conditions of each area. To account for these conditions, a method for fitting the inner
contour of the tunnel using segmented Lamé curves is proposed in this paper.

Initially, the sequential sampling method is used to take np sampling points, and the
Lamé curve is fitted to these points using the Gauss–Newton iteration method. The root
mean square error (RMSE) of the fitting is then calculated, and if the threshold condition
is met, the data are segmented, and sampling is performed from the left and right sides.
The RMSE is recalculated until the threshold condition is exceeded, and the data segment
fitted by the Lamé curve equation is obtained. Next, m sampling points are selected from
the position where the data are interrupted, and this step is repeated until all points have
been fitted.

RMSE =

√√√√ 1
np

i=np

∑
i=1

(observedi − predictedi)
2 (29)

For the inner contour curve of a specific section during the wet spraying process of
the tunnel, the results of the fitting are presented in Figure 11.

Figure 11. Piecewise Lamé curve fitting results. The labels 1 to 5 represent the fitting results of five
curves. The red points indicate the original tunnel data point cloud, while the other color points
represent the fitting curves of different regions.

In Figure 11, the red point cloud represents the actual inner contour curve of a section
at a certain position in the tunnel, while the other lines of different colors represent different
fitted Lamé curve segments. These curve segments are numbered from left to right, and
Table 1 shows the fitting parameters and RMSE of these five curves.
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Table 1. Piecewise Lamé curve fitting parameters.

ID 1 2 3 4 5

a 5.81 5.87 5.75 5.74 5.74
b 4.67 5.37 6.21 5.54 7.05
η 2.50 2.65 2.00 2.48 2.53

RMSE 0.0264 0.0476 0.0564 0.0570 0.0425

After analyzing the fitting parameters in Table 1, it can be observed that the Lamé
curve coefficients vary for different sections. However, the root mean square error of each
section is within the ideal range, indicating that the model fitting effect is satisfactory.

4.4. Thickness Perception Model

Figure 12 provides a front view of Figure 13, where the blue curve denotes the cross-
section of the tunnel to be wet sprayed, while the red curve denotes the tunnel lining
design line.

Figure 12. Front view of 3D wet shotcrete thickness description model. The blue curve denotes
the cross-section of the tunnel to be wet sprayed, while the red curve denotes the tunnel lining
design line.

Figure 13. The 3D wet shotcrete thickness description model. The blue curve L represents the
intersection curve of the unsprayed tunnel surface point cloud and the section, while the red curve
L′ represents the intersection curve of the designed surface and the section. Point Pi is a point in L,
while point P′

i is the corresponding mapping point of Pi in L′. The center of the tunnel at cross-section
y = yi is denoted by Oc.

In Figure 13, the depth di to be wet sprayed at a point Pi on the tunnel section can be
observed. The blue curve L represents the outline of the tunnel section, while the red curve
L′ represents the inner outline of the tunnel lining design.
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Oc denotes the central point of the section structure, while P′
i is the intersection point

between
−−→
OcPi and the inner contour line of the tunnel lining design. The thickness to be

wet sprayed at point P′
i is then calculated as di =

∥∥PiPi
′∥∥.

During the fitting of the tunnel contour using the segmental Lamé curve, each point Pi
on the contour was mapped to a point P′

i on the designed inner contour line of the tunnel.
Therefore, P′

i is a point on the Lamé curve and satisfies the equation of the Lamé curve for
its corresponding segment. From the 3D wet shotcrete thickness description model, we
have that the thickness to be wet sprayed at point P′

i is given by di = ‖PiP′
i ‖. Hence, P′

i
satisfies both the equation of the segmental Lamé curve and the equation of the distance
between Pi and P′

i . Therefore, we can write the two equations in a system of equations
as follows: ⎧⎪⎨⎪⎩

∣∣∣∣ x − xc

a

∣∣∣∣η

+

∣∣∣∣ z − zc

b

∣∣∣∣η

= 1

−−→
OcPi = λ

−−−→
OcP′

i

(30)

where λ represents an arbitrary constant.

5. Experiment

The proposed algorithm has been implemented in a highway tunnel construction
project in China, and the experimental results are presented in Figure 14.

Figure 14. Experimental results.

As previously described, there are three stages of shotcreting, each requiring a different
depth of concrete to be sprayed onto the tunnel surface. These depths are shown in Figure 14
for each respective stage. For the tunnel area in its three states of undried spraying, wet
spraying, and dried spraying, we sampled a typical area of 1 m × 3 m × 0.2 m from the
experimental results for verification and analysis.

(1) For the sampled areas in the unsprayed-state, which included 15,973 points, the
average depth to be sprayed was 39.85 cm, which is close to the maximum design
thickness of 40 cm for the concrete. Due to the varying depth of rock excavation
in the unsprayed area, the depth to be sprayed for each point differed, and there
was no specific pattern to follow. This reflects the actual construction conditions in
industrial settings.

(2) In the sampled areas of the sprayed-state, which included 17,345 points, the average
depth to be sprayed was 15.48 cm, with a maximum depth of 23.95 cm. This increase
in depth from the bottom up is consistent with the wet spraying process, where
spraying is done in a bottom-up sequence, and reflects the actual construction rules.

(3) For the sampled areas in the sprayed-state, which included 17,189 points, the average
depth to be sprayed was 3.51 cm, with a maximum depth of 4.83 cm. In total, 90.43%
of the sampling points were concentrated within the range of 3.5 ± 0.5 cm, and only
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1.37% of the sampling points exceeded 4.5 cm, which is consistent with the on-site
working conditions.

The consistency between the unsprayed depth of different states and the actual con-
struction site indicates the reliability of the proposed algorithm.

To evaluate the accuracy of our model, the tunnel arch points extracted in the previous
step were manually labeled, as shown in Figure 15.

Figure 15. Different types of points in a certain section of the tunnel. The TP points and FP points
represent tunnel surface points that were labeled correctly and incorrectly, respectively. The FN
points were the points that were falsely labeled as non-tunnel surface points.

In Figure 15, the variables TP (True-Positive) marked in blue and FP (False-Positive)
marked in red indicate the number of points that were labeled correctly and incorrectly
as tunnel surface points, respectively. The variable FN (False-Negative) marked in green
represents the number of points that were falsely labeled as non-tunnel surface points. To
evaluate the performance of the model, the precision, recall, and F-score criteria used by
Yang et al. [42,43] are adopted.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F − score = 2 · precision · recall
precision + recall

.

(31)

Table 2 presents the performance evaluation of the proposed algorithm for tunnel sur-
face extraction and compensation using the criteria mentioned above, including precision,
recall, and F-score.

Table 2. Assessment of the depth of concrete required to be sprayed on the tunnel surface in six
sample areas.

ID 1 2 3 4 5 6 Average

Precision 0.918 0.924 0.987 0.933 0.941 0.912 0.936
Recall 0.906 0.915 0.934 0.920 0.903 0.917 0.916
F-score 0.912 0.920 0.960 0.927 0.922 0.915 0.926
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Furthermore, we compared the average precision, recall, and F-score rates of the
results obtained by different methods and obtained intuitive comparison results, as shown
in Table 3. Based on the experimental results, the proposed method demonstrated higher
precision and recall rates than the control group.

Table 3. Comparison of precision and recall rate of each method.

Method Precision Recall F-Score

Region-growing 0.807 0.795 0.801
Elliptic cylindrical

model 0.837 0.829 0.833

2D projection +
BaySAC 0.792 0.801 0.796

Our method 0.936 0.916 0.926

The region-growing method [17] is applied to segment the rock surface from the tunnel
point cloud. A curvature threshold is used with the region-growing algorithm to extract
the rock surface of the tunnel. Additionally, the height threshold is used after DBSCAN
to remove the miscellaneous points on the left and right walls of the tunnel. This method
achieves an average precision, recall, and F-score of 80.7%, 79.5%, and 80.1%, respectively.

The elliptical cylinder model algorithm [36] differs from region growth algorithms in
that it uses the central axis of the fit to divide the region into two parts. Subsequently, the
elliptical fitting surface of the tunnel region is obtained through iteration to achieve the
filtering of inner wall non-points. This method achieves an average precision, recall, and
F-score of 83.7%, 82.9%, and 83.3%, respectively.

The continuous central axis is extracted by 2D projection [44], and then an interpola-
tion algorithm based on quadric parametric surface fitting, using the BaySAC (Bayesian
SAmpling Consensus) algorithm, is proposed to compute the cross-sectional point when
it cannot be acquired directly from the tunnel points along the extraction direction of
interest. This method achieves an average precision, recall, and F-score of 79.2%, 80.1%,
and 79.6%, respectively.

By analyzing six sampled areas under different wet spraying conditions, our experi-
mental results indicate that the algorithm achieved an average precision, recall, and F-score
of 93.6%, 91.6%, and 92.6%, respectively. This demonstrates that our approach is better
suited for analyzing complex wet spraying tunnel walls.

To verify the accuracy of the proposed method in determining the depth of concrete
needed to be sprayed on the tunnel surface, a series of experiments was conducted in a
real tunnel. The theoretical unsprayed depth Di

′ obtained from engineering design was
compared to the algorithmic results Di as shown in Figure 16.

The absolute average error MAD of the 1000 sampled areas is 0.989 cm, which demon-
strates that the proposed algorithm meets the accuracy requirements of engineering design
and confirms its reliability.

MAD =
1
n

n

∑
i=1

|Di
′ − Di| (32)
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Figure 16. Comparison of the ideal unsprayed depth and the results obtained by our algorithm. The
x-axis represents the sampling area, the y-axis represents the unsprayed depth, and the point marked
with a star (�) represents the ideal unsprayed depth. The point marked with an asterisk (*) represents
the result obtained by our algorithm, and the number next to the point represents the absolute error
between the unsprayed depth obtained by the proposed algorithm and the ideal unsprayed depth.

6. Conclusions

In this paper, we proposed an algorithm for analyzing the area of interest in a tunnel
point cloud. We used a continuous projection point cloud correction algorithm to process
the attitude of the inclined point cloud during acquisition and developed an adaptive
point cloud compensation algorithm to overcome data loss caused by occlusion. Due to
the irregular cross-sections of the large tunnel scene and large space, we proposed fitting
the segment Lamé curve to mathematically describe the inner contour line of the tunnel,
instead of using a simple elliptical cylinder or cylinder model. We then compared the
tunnel design line to analyze the thickness of the tunnel to be wet sprayed, allowing for
accurate assessment of the tunnel construction. The proposed algorithm has been shown
to effectively evaluate the depth of concrete required to be sprayed on the tunnel surface,
with an absolute average error of 0.989cm, meeting the precise requirements of engineering
design and demonstrating its reliability.

We plan to continue to conduct research on tunnel wet spraying processes, specifically
analyzing different scenarios and studying the more complex construction process of long
bend tunnels. Our aim is to establish a comprehensive system for monitoring the depth of
wet spraying in tunnels, as well as to investigate the positioning issue of mobile LiDAR
data to achieve higher real-time detection algorithms.
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Abstract: The photosensitivity, responsivity, and signal-to-noise ratio of organic phototransistors
depend on the timing characteristics of light pulses. However, in the literature, such figures of
merit (FoM) are typically extracted in stationary conditions, very often from IV curves taken under
constant light exposure. In this work, we studied the most relevant FoM of a DNTT-based organic
phototransistor as a function of the timing parameters of light pulses, to assess the device suitability
for real-time applications. The dynamic response to light pulse bursts at ~470 nm (close to the DNTT
absorption peak) was characterized at different irradiances under various working conditions, such
as pulse width and duty cycle. Several bias voltages were explored to allow for a trade-off to be made
between operating points. Amplitude distortion in response to light pulse bursts was also addressed.

Keywords: organic field-effect transistors (OFET); organic phototransistor (OPT); dinaphtho-thieno-
thiophene (DNTT); fast photoresponse; low-voltage operations OPT; random telegraph signals (RTS)

1. Introduction

Organic field-effect transistors (OFETs) are attracting the interest of the scientific
community as a valid alternative to standard semiconductor-based devices. This is due
to their several interesting properties, such as cost-effective fabrication over large areas, flex-
ibility, and light weight. The recent progress in OFET fabrication techniques has led to the
development of devices with high field-effect mobilities μ, low threshold voltages Vth, and
high current on/off ratios Ion/off. OFETs can be successfully employed as building blocks in
electronic circuits, as well as sensors in applications such as chemical and biological sensing, gas
analysis, and pressure monitoring [1–4]. Several works also demonstrated how OFETs can be
efficiently used as organic phototransistors (OPTs). The potential of such devices lies in the good
photosensitive properties of organic semiconductors, combined with the transistor intrinsic
amplification capability [5,6]. Fields of application of OPTs also include optical memory, light
communication [7–9], and radiation detection and dosimetry in radiotherapy [10–12]. Several
organic semiconductor materials have been investigated for OPT development, including TIPS-
pentacene and dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b′]thiophene (DNTT). For those materials,
field-effect mobility comparable to that of amorphous silicon, typically μ~1 cm2/Vs, low
turn-on voltage, and on/off current ratio larger than 106 have been reported [13–15].

The origin of the photoresponse in OPTs is usually attributed to the increase in the
minority carrier trap generation rate under light exposure [16,17]. For a p-type device
(i.e., hole-transporting device), the accumulation of photogenerated electrons in trap states
in the phototransistor channel causes a shift in the threshold voltage, resulting in multiple
holes injected into the channel for a single photogenerated carrier pair. Such a mechanism
is known as photoconductive gain. The transverse electric field induced by the gate
plays the role of helping to segregate photogenerated electron–hole pairs, decreasing the
probability of recombination. The photoconductive gain is recognized as a slow process:

Sensors 2023, 23, 2386. https://doi.org/10.3390/s23052386 https://www.mdpi.com/journal/sensors
159



Sensors 2023, 23, 2386

phototransistors that exhibit high photoconductive gain usually do not operate as fast as
a photodiode with similar carrier transit time [16,18]. Hence, characterizing the dynamic
photoresponse to transient light pulses is of paramount importance for devices of interest
for real-time applications.

The organic thin-film charge photogeneration has been investigated in the range
from picoseconds to seconds after excitation [19,20]. The optical response has been also
investigated in depth in OPTs. Among others, we mention here studies on devices based on
P3OT [21], PQT-12 [22], PBDFTDTBT [23], P3H3 [24], PDVT-8/PC61BM [25], DNTT [26–28],
and TIPS-pentacene [15]. Most of these works studied the performance of OPTs under
quasi-static light conditions at different irradiance, whereas a characterization of the device
dynamic response to short light pulses at low irradiance has been barely investigated.
Quasi-static characterization is useful for comparing the performance of different materials
and devices; however, it is not sufficient for assessing their suitability for detection of short
light pulses.

In this paper, we present a systematic characterization of a DNTT-based OPT, specif-
ically developed for real-time radiation detection and dosimetry applications [12,29,30],
where fast photoresponse to weak, fast light pulses is expected to be a key feature. Specifi-
cally, we report on the response to ~470 nm light pulses, under various timing conditions, at
different irradiances and operating points. Several figures of merit (FoM), such as photosen-
sitivity, responsivity, and signal-to-noise ratio, have been investigated. In all the explored
regions, these quantities strongly depend on the timing characteristics of the light pulses.
In this work, we have characterized them as a function of the pulse width, frequency, and
duty cycle, studying the correlation with the bias voltages. We also have studied stress
and distortion effects in the photoresponse when light pulse bursts are applied, to evalu-
ate the exploitation of such devices in applications where random light pulse sequences
are expected.

2. Materials and Methods

2.1. Organic Phototransistor Layout

The device under characterization is a thin-film transistor based on DNTT. The device
was designed, engineered, and realized at the CNR-IMM laboratory (Rome, Italy). Details
on the fabrication process are given in Refs. [29,30]. Here, we only recall some useful
information. The OPT was fabricated in a bottom-gate/top-contact configuration on a
100 μm thick substrate of polyethylene-naphthalate. The gate is made by a 70 nm thick Al
layer. Source and drain are made by 30 nm thick interdigitated finger electrodes of Au. The
semiconductor is 50 nm thick. A dielectric layer, made of a 600 nm thick fluoropolymer-
based material (CytopTM), separates the semiconductor from the gate. The whole structure
is encapsulated within a 240 nm thick layer of Cytop.

OPT are arranged in a 2 × 2 matrix (see Figure 1a). Each OPT has a channel length
L = 100 μm and a width W = 40 mm. The active area A = L × W is 0.04 cm2.
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Figure 1. Pictures of (a) the 2 × 2 OPT matrix bonded on a custom-made socket; (b) the OPT
matrix on the socket arranged on a motherboard within an aluminum box used as Faraday cage;
(c) the aforementioned setup with a LED source and its driver circuit mounted on top of the OPT.
(d) Emission spectrum of the LED source.

2.2. Electrical and Photoresponse Characterization Setup

The device was bonded on a custom-made socket (Figure 1a) arranged on a mother-
board enclosed in a Faraday cage (Figure 1b), which also acts as a black box to shield the
samples from environmental light.

The electrical characterization was performed by means of a B1500A Semiconductor
Device Parameter Analyzer, equipped with three source meter units (SMUs) connected
to the device source, gate, and drain. The SMUs were used to bias the OPT and to collect
transfer and output curves.

For the dynamic photoresponse characterization, the device was illuminated with
an LED source (Broadcom HLMP-KB45-A0000) installed on the top of the motherboard
housing the device under test (DUT) within the Faraday cage (Figure 1c).

The LED emission spectrum (Figure 1d) was characterized by means of a CCD-based
Ocean Insight Spectrometer with a sub-nm resolution. Such a LED was chosen due to its
emission wavelength peak (469 nm) close to the absorption peak of the DNTT: ~450 nm
(see Ref. [29]). The LED current was controlled by a driver circuit connected to a function
generator used to supply control pulses with variable timing. An irradiance in the range
from a few nW/cm2 to about 10 μW/cm2 was achieved with a collimated flat-top spot
with a diameter of ~4 mm on the DUT surface. The irradiance was calibrated by means of a
Thorlabs PM100USB power meter equipped with a S120C silicon photodiode.

The B1500A unit was used in the “I/V-t sampling measurement” mode [31] to sample
at a rate of 20 Hz the OPT drain current trend under illumination.

All measurements were conducted under ambient atmospheric conditions at
room temperature.
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3. Results and Discussion

3.1. Electrical Characterization in Dark

We measured the output and transfer characteristics of the device in the dark. Output
curves (Figure 2a) were acquired with a forward and reverse drain voltage Vds scan in the
range [+1 V, −12 V], for gate voltage Vgs values between −3 V and −12 V in steps of 3V.
Transfer curves (Figure 2b,c) were acquired in linear (Vds = −1 V) and saturation regimes
(Vds = −20 V) with a forward and reverse Vgs scan in the range [+4 V, −9 V].

Figure 2. (a) Output characteristics for Vgs varying between −3 V and −12 V in steps of 3 V, and transfer
characteristics in linear (Vds = −1 V) and saturation regimes (Vds = −20 V) represented in (b) linear and
(c) log-y scale. (d) Gate leakage current curves for Vds = −1 V and Vds = −20 V.

The curves show a typical p-type field-effect transistor behavior: outputs clearly show
the modulation effect due to Vgs, good linearity for low Vds, and saturation characteristics
at high Vds. Curves show minimal hysteresis between forward and reverse gate-voltage
sweeps in both the linear and saturation regimes. The gate leakage current Igs (Figure 2d)
is lower than 10−10 A, indicating a high-quality gate insulation.

From the curves, we extracted several characteristic parameters of the DUT [32]. The
field-effect mobility, computed in the linear regime (Vds = −1 V), is ~ 0.5 cm2 V−1 s−1 at
Vgs = −12 V. The threshold voltage is around −10 V. The onset voltage is in the range +2 V
to −3 V. The subthreshold slope is ~2.4 V dec−1. The log(Ion/Ioff) ratio is around 5, where
Ion is measured at Vgs = −12 V. All the extracted parameters in the explored ranges are in
good agreement with values reported in the literature for DNTT-based OFETs [13,14,26–30].

162



Sensors 2023, 23, 2386

3.2. Dynamic Photoresponse

We measured the device photoresponse to light bursts at ~470 nm. Upon illumination,
the device shows a fast switching of the drain current. As an example, we show in Figure 3a
the drain current measured when illuminating the device with a burst of 5 pulses at an
irradiance of 500 nW/cm2, with a repetition period T = 60 s (see Figure 3b) at Vds = −5 V and
Vgs = −5 V. The signal shows a temporal development that can be parameterized as the sum
of two exponentials [33–36]. The measured characteristic times are τf ast = (0.461 ± 0.005)
s and τslow = (4.02 ± 0.02) s, as shown in Figure 3c. When the light is turned off, the
device response drops very slowly, with characteristic times τf ast = (2.71 ± 0.03) s and
τslow = (30.18 ± 0.15) s, as shown in Figure 3d. Both rise and fall times are almost constant
within the burst. The slow return of Ids to the initial conditions when light is turned off is
due to the time it takes for trapped photogenerated traps to recombine [33].

Figure 3. (a) Ids current when illuminating the device with a 5-pulse burst with a period of T = 60 s.
(b) Details of the first two pulses of the burst. Data and best-fit curve with details on the fast and
slow exponential function components for the (c) signal growth and (d) decay.

We investigated several key FoMs, as well as studied the correlation of the pulse
timing and burst structure with the irradiance and the bias voltages, in order to characterize
the response in real-time applications.

The photosensitivity P and the photoresponsivity R were computed as follows [1,15]:

P =
ΔIds

Idark
ds

, (1)

R =
ΔIds

A × IRR
, (2)

where ΔIds = Ilight
ds − Idark

ds , and Ilight
ds and Idark

ds are the drain current in dark conditions and
under illumination, respectively; A is the active device area; and IRR is the irradiance
of the light source. R and P depend on the transistor layout and on the polarization
conditions [29].
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Figure 4 shows the trend of R and P as a function of Vgs for Vds = −1 V and for pulse
widths up to 10 s at a constant irradiance of 500 nW/cm2. The values shown in the plot are
the average taken on bursts of 5 pulses. The responsivity has a minimum as Vgs approaches
0 V, while it gradually increases up to 0.03 AW−1 at Vgs = −7 V, as a result of the increasing
exciton dissociation rate due to the transversal electrical field in the channel [27,37]. The
maximum value of P is 0.024, reached at Vgs = 0 V. This is near the turn on voltage, as
a result of the abundance of photogenerated carriers over scarce field-generated carriers.
At more negative Vgs values, the photoresponse is subdued to the increasing number of
field-induced charge carriers [27].

Figure 4. (a) Responsivity, (b) photosensitivity, and (c) signal-to-noise ratio as a function of Vgs

for Vds = −1 V for light pulse widths from 0.1 s to 10 s. (d) Responsivity, (e) photosensitivity, and
(f) signal-to-noise ratio as a function of the light pulse width at Vgs = −7, −3, 0 V and Vds = −1 V. All
these FoMs are shown at an irradiance of 500 nW/cm2.

Furthermore, we measured the signal-to-noise ratio S/N, where the noise N is eval-
uated as the RMS of the dark current measured immediately before the arrival of the light
pulse. Figure 4c shows the trend of S/N as a function of Vgs and for different pulse widths. The
maximum value is ~260, reached at Vgs = −3 V for a pulse width of 10 s. For a width shorter
than 0.5 s, the photoresponse reduces, and the highest S/N ratio occurs at Vgs = −5 V.

As shown in Figure 4d–f, the magnitude of R, P, and S/N reduces for shorter pulse
widths, because of the finite slew rate of Ids. As an example, at Vgs = −7 V, by varying
the light pulse width in the range from 100 ms to 1 s, R changes by a factor 30, while
from 1 s to 10 s, R changes only by a factor ~2. A similar behavior is observed for P and
S/N. As a consequence, the device characterizations achieved in quasi-stationary regimes
are not representative of the device response to short light pulses, as expected in various
photodetection applications.

We studied R, P and S/N for two more Vds values (−5 V, −10 V) and compared
the results, as shown in Figure 5a–c. The responsivity monotonically increases with the
absolute values of gate and drain voltages. From the measured values of R, we derived
the external quantum efficiency (EQE) of the device, i.e., the ratio between the number of
incident photons and photogenerated carriers, as follows [1]:
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EQE = R
hc
λq

, (3)

where q is the elementary charge, h is the Planck constant, and c is the speed of light in the
vacuum. Values as high as 20% were measured at Vgs = −7 V and Vds = −10 V.

Figure 5. (a) Responsivity, (b) photosensitivity, (c) signal-to-noise ratio, and (d) root mean square of
the Ids dark current as a function of Vgs for Vds = −1, −5, −10 V at an irradiance of 500 nW/cm2.

It should be noted that as Vgs and Vds increase, the dark current Ids grows as well,
as shown in transfer curves in Figure 2b. As a consequence, in applications where the
OPT is DC coupled to the front-end circuit, and the read-out of short light pulses asks for
high-gain trans-impedance amplifiers, the increment of the dark current could bring the
amplifier in saturation.

Differently from R, both P and S/N correlate the photoresponse with the dark current
and its root mean square (Figure 5d). The highest photosensitivity value was obtained with
the lowest drain bias applied in our tests (Vds = −1 V) and with a gate voltage Vgs = 0 V.
On the contrary, the S/N plot suggests the best operating point to be at Vgs = −5 V and
Vds = −10 V. However, for high values of Vds, it is well known that the high electrical field
lowers the device stability [18]. Indeed, we have observed that random telegraph signal
(RTS) phenomena arise. RTS consists of the discrete, fast fluctuation of the dark current Ids
between two or more values [38]. Figure 6 shows, as an example, a time window where
the drain current was affected by RTS behaviors. The onset of RTS is clearly to avoid. The
dark current fluctuations generate swift P variations and the step changes in the signal
baseline could be interpreted as a photoresponse. A good compromise is then achieved by
decreasing the gate and drain bias down to values as low as Vds = −1 V and Vgs = −3 V.
Taking all that into account, the optimal operating point clearly depends on the specific
application and the experimental setup to be used.
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Figure 6. Random telegraph signal behavior in the drain dark current observed for the OPT polariza-
tion of Vds = −5 V, Vgs = −5 V.

In order to study possible channel stress effects due to light exposure, we illuminated
the DUT with bursts of 20 pulses for different repetition periods: T = 15, 20, 35, 60 s. Figure 7
shows the drain current trend when illuminating the device with bursts of light pulses with
different periods. As noted in [29], the exposure to repeated light pulses causes a drift of
the drain current. This can be explained by the pile-up of a persistent component of the
photocurrent [33,39,40].

Figure 7. Drain current when illuminating the device with 10 s width light pulses with a period of
(a) T = 60 s, (b) T = 35 s, and (c) T = 15 s. The OPT was polarized with Vds = −1 V and Vgs = −3
V, and the irradiance was 500 nW/cm2. (d) Drain current measured under 10 s light pulses with a
period of 15 s (black points) and the eq. 6 model best-fit curve (red dotted line). The fitted slow and
fast model components are shown in green and blue, respectively.

Moreover, a pulse height reduction between the first pulse of the burst and the fol-
lowing ones is observed. A similar effect was shown in [41]; however, it has neither been
discussed nor interpreted. Figure 7a–c clearly shows that the shorter the period between
pulses, the greater the pulse height reduction.

We found that such phenomena can be described by composing models taken from
the literature [12,42,43]. As suggested in [42,43], we assumed that the photocurrent I’o is
linearly dependent on the total number of photogenerated minority carrier traps n:

Iph(t) ∝ n(t) (4)
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The time evolution of the defect density is governed by a rate equation:

dn
dt

= a − bn(t), (5)

where a is the defect generation rate, which is ultimately related to irradiance, and b is the
defect recombination rate.

The phenomena we observed require the presence of two populations of defects with
densities nx and ny, whose activation energies are different [12]. In such an approach, nx is
responsible for the fast photocurrent component, while ny for the persistent photocurrent
component. Differently from [12], where two defect populations with continuous activation
energy values were considered, here we simply assumed two discrete values. The overall
photocurrent is hence given by:

Iph(t) ∝ nx(t) + ny(t) (6)

where both nx and ny follow a rate equation in the form of Equation (5).
Figure 7d shows the measured drain current (in black) and superimposed the Equation (6)

model best-fit curve (red dotted curve). The fast and persistent photocurrent components
due to the nx and ny defect densities’ evolution are shown in green and blue, respectively.

The model reproduces the decrease of the signal height observed in data between the
first pulse and the following ones well. This phenomenon happens because of the build-up
of the persistent photocurrent component, which after the first burst does not return to
zero. The wander of the drain current baseline changes the response to the light pulses in
the burst as a function of the burst length.

Figure 8a,c show the trend of R and P for the pulses of the burst for different periods. R
and P show a marked reduction between the first and the second pulse, while they remain
nearly constant afterward. Figure 8b,d show R and P values averaged over the burst pulses
and normalized to the value achieved at 60 s, as a function of the light pulse period. They
clearly show that the shorter the pulse period, the smaller are R and P. A similar trend is
observed at different gate polarizations.

Figure 8. Trends of (a) R and (c) P for pulses in the burst, for different periods, at Vds = −1 V and
Vgs = −5 V. Averages of (b) R and (d) P in the burst, normalized to the values at 60 s, as a function of
the light pulse period for different gate polarizations.
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Finally, we have investigated the OPT photoresponse to 10 s light pulses as a function
of the irradiance in the range from 100 nW/cm2 to 1900 nW/cm2. As shown in Figure 9, ΔIds
increases with the irradiance and values as high as ~120 pA are reached at 1900 nW/cm2.
On the other hand, light pulses at an irradiance as low as 100 nW/cm2 still produce a
detectable response of ~20 pA. A nonlinear behavior is observed in Figure 9a, which is likely
to be attributed to the limiting nature of charge transport mechanisms in the polymer [44].
As a consequence, at the largest irradiance applied in our test, R reduces, and values as low
as 1.5 mAW−1 are reached (Figure 9b).

Figure 9. Trend of (a) ΔIds and (b) R for 10 s light pulses as a function of the irradiance at Vgs = −3 V
and Vds = −1 V.

4. Conclusions

Our results aim to evaluate the dynamic performance of a DNTT-based OPT in the
view of deployment in applications that foresee the detections of fast, random light pulse
sequences, such as radiation detection, dosimetry, and visible light communication. We
have characterized the dynamic photoresponse to ~470 nm light pulses, close to the DNTT
absorption peak.

We investigated several FoMs, such as photosensitivity, responsivity, and signal-to-
noise ratio, under various timing conditions, at different irradiances and operating points.
In all the explored regions, we observed that photosensitivity, responsivity, and signal-to-
noise ratio strongly depend on the timing characteristics of the light pulses. R changes by
more than an order of magnitude from 100 ms to 1 s, while R changes only by a factor ~2
from 1 s to 10 s. Stationary conditions are reached only after an exposition of a couple of
minutes. P and S/N behave in a similar fashion.

The maximum of the responsivity is obtained at the higher gate and drain voltages
explored. Differently, the highest photosensitivity value is obtained with the lowest drain
bias applied in our tests and with the gate and source shorted to ground. The S/N plots
suggest increasing both Vgs and Vds to achieve the best operating point. It is noticeable,
however, that for high values of Vds, random telegraph signal effects in the drain current
arise. Their occurrence makes it questionable to quantify the S/N ratio, and moreover, is
clearly to be avoided, because such step-like fluctuations could be interpreted as a true
signal. In applications where signal amplitude is paramount, both Vgs and Vds should be
increased to the limit allowed by the stability of the device operation and bias stress effects.
On the other hand, in order to avoid saturation in DC-coupled high-gain trans-impedance
amplifiers, a low dark current is mandatory, and hence low bias voltages are required.

We also studied stress and distortion effects in the photoresponse when pulse bursts
are applied. We observed a reduction in the ΔIds photoresponse, between the first and the
second pulse, while it remains approximately constant in the following pulses. We found
that such an effect in the data is well reproduced by composing models taken from the
literature, in which the photocurrent is assumed to be proportional to the defect density.
Supposing the presence of just two kinds of defects with discrete activation energies allowed
us to reproduce the experimental data accurately in a time window of minutes.

168



Sensors 2023, 23, 2386

In future works, we aim to correlate the OPT detectivity and the limit of detection to
the timing of the incoming light pulses.
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Abstract: In this study, the measurement characteristics of speckles based on the photoinduced
electromotive force (photo-emf) effect for high-frequency, small-amplitude, and in-plane vibration
were theoretically and experimentally studied. The relevant theoretical models were utilized. A GaAs
crystal was used as the photo-emf detector for experimental research, as well as to study the influence
of the amplitude and frequency of the vibration, the imaging magnification of the measuring system,
and the average speckle size of the measuring light on the first harmonic of the induced photocurrent
in the experiments. The correctness of the supplemented theoretical model was verified, and a
theoretical and experimental basis was provided for the feasibility of using GaAs to measure in-plane
vibrations with nanoscale amplitudes.

Keywords: in-plane vibration; GaAs; speckle measurement; photoinduced electromotive force

1. Introduction

The measurement of high-frequency micro-vibrations plays a critical role in multiple
areas, such as micro-electro-mechanical systems, structural health monitoring, laser ultra-
sonic technology, materials science, and biomedicine [1–8]. Optical measurement methods
with non-contact characteristics have been widely studied and applied [7–10]. Compared
with the measurement of out-of-plane vibration, where the measuring light is parallel to the
vibration direction, the measurement of in-plane vibration is relatively complex because
the measuring light cannot be incident on the vibration surface in the direction parallel
to the in-plane vibration direction. Speckle interferometry is commonly used for in-plane
displacement measurements [11–13]. However, owing to the high-speed performance
limitation of charge-coupled devices in the imaging process, they cannot measure higher
frequencies. In addition, there is a low tolerance for the presence of speckles in laser beams
from rough vibration surfaces for some traditional laser interferometers, leading to low
measurement sensitivity.

Laser interferometry based on photorefractive crystals has become a research focus be-
cause of its advantages of wavefront matching and low-frequency cutoff [14,15] and offers
some potential research directions and applications with many emerging materials [16–19].
The corresponding vibration measurement methods can restrain the influence of rough
surface speckles and environmental disturbances on the measurements, thereby improving
the measurement sensitivity. Among them, laser interferometry based on the photoinduced
electromotive force (photo-emf) effect was first reported by Stepanov et al. [20]. In this case,
the photo-emf effect is usually produced by projecting a non-steady two-beam interfer-
ence light pattern on a photorefractive crystal. The interference pattern is created by the
interference of a probe beam scattered by the measured sample with a coherent reference
beam. The vibration of this pattern subsequently produces an ac electric current in the
crystal. Stepanov et al. successively conducted theoretical research on the photo-emf effects
of different photorefractive materials, as well as experimental research on interferometry
under external electric field modulation for out-of-plane vibration measurement [21–28].
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Because of the non-steady characteristics of the photo-emf, as long as the beam with har-
monic oscillation shines on the photorefractive material, an alternating photocurrent will
be generated. This characteristic makes it possible to measure in-plane vibration with a
non-interfering speckle beam. Meanwhile, due to the non-reference beam path, it has the
advantage of a simple optical arrangement. Mosquera and Frejlich conducted research
on the speckle pattern measurement of in-plane vibration using a BTO crystal, and they
proposed that the photocurrent signal can reach a maximum value under a certain vi-
bration amplitude [29]. Santos conducted a theoretical study on the photocurrent signal
generated by a transverse-vibration-modulated speckle light incident on a GdTe:V crystal
and proposed a corresponding mathematical model and the application of this photo-emf
signal to evaluate the response time of the CdTe:V crystal [30–33]. Heinz and Garmire used
an array of semi-insulating GaAs photoconductive sensors to detect intensity variations
caused by the transverse movement of speckles [34]. Salazar conducted experimental
research based on BSO crystals and analyzed the influence of speckle size on the photocur-
rent [35]. Bryushinin studied the strains and stresses of their measured medium, caused
by mechanical vibration, using a photo-emf sensor and measured the resonant frequency
of the mechanical system and the distribution of the phase modulation amplitude on the
measured surface [36].

In this study, a speckle measurement method for in-plane vibration based on a GaAs
crystal photo-emf was investigated. A concrete calculation of the response time was added
to the corresponding theoretical model. With the GaAs crystal as the photo detector, the
effects of the vibration amplitude and frequency, as well as those of the imaging magnifica-
tion of the measurement system and the average speckle size of the measuring light on the
induced photocurrent, were explored. The numerical simulation and experimental results
were in good agreement with those of the modified theoretical model. The measurement of
in-plane vibrations of nanoscale amplitude in the frequency range of thousands of hertz
was achieved.

2. Theoretical Analysis

The photo-emf effect is a weak non-linear optical phenomenon. A photorefractive
crystal is used to receive scattered light from a remotely measured object with vibration
information (as shown in Figure 1). A short-circuited crystal is illuminated by a speckle
pattern with a speckle size of d. When the oscillatory movement of a speckle with a certain
frequency occurs, a photocurrent is generated. The photocurrent is caused by the generation
of charge carrier distribution in the conduction or valence band and the formation of a
space charge field in the photoionization process; the charge carrier distribution will vibrate
with the optical pattern vibration. If the time required for the spatial charge field buildup
of the material is significantly lower than the vibration frequency, the vibration of the
photogenerated charge carrier density can be considered to occur in the static space charge
field. This behavior causes a vibrational phase shift between the static space charge field
and the carrier density, resulting in the generation of a non-steady-state photocurrent.

Figure 1. Principle of in-plane vibration measurements based on GaAs.

172



Sensors 2023, 23, 2724

The intensity of a speckle pattern can be approximated by considering it as a set of
Gaussian beams whose diameters are normally distributed around a diameter equal to the
average speckle size. Each Gaussian beam represents a speckle particle, and the diameters
of these Gaussian beams are approximately equal to the average speckle size [35]

d = 1.22λ
di
Dp

, (1)

where d is the subjective speckle size, di is the image distance, λ is the wavelength, and Dp
is the imaging system aperture. The light intensity of speckled particles can be expressed as

I = I0e−(x2+y2), (2)

where w = d/2, x = X/
√

2w, and y = Y/
√

2w are the coordinates normalized by the
spatial coordinates X and Y, respectively; w = d/2 is the Gaussian beam radius. When the
measured object vibrates along the transverse direction x with amplitude δ and angular
frequency Ω, the speckle light pattern follows the measured object vibration with angular
frequency Ω and normalized amplitude A = Mδ/w, where M is the magnification of the
imaging system. Equation (2) changes to

I = I0e−[(x+Asin Ωt)2+y2], (3)

Assuming that the material response time τsc is significantly longer than the period of
the vibration pattern 2π/Ω (τscΩ � 1), which is significantly longer than the photoelectron
lifetime τ (τΩ � 1), and considering cyclic frontier conditions, the average current density
along the electrode space L can be obtained. The time-dependent term is as follows [30].

jxt(t) =
jD
l

∫ l
2

− l
2

e−[(x+Asin Ωt)2+y2]
E0/ED + Ω

2π
∫ 2π

Ω
− 2π

Ω
e−[(x+Asin Ωt)2+y2] (2x + 2Asin Ωt)dt

Ω
2π

∫ 2π
Ω

− 2π
Ω

e−[(x+Asin Ωt)2+y2]dt + Rd

dx, (4)

where jD = eμED N0 and ED = D/μw. μ and D = kBTμ/e are the mobility and diffusion
coefficients of the charge carriers, respectively; kB is the Boltzmann constant; T is the
absolute temperature; E0 = j0/eμN0 is the external electric field applied between the two
electrodes; e is the electronic charge; j0 is the average current density along the x-direction
x; Rd = Nd/N0 is the dark-to-bright conductivity parameter; and l = L/w.

The photocurrent was obtained by the average current density multiplied by the area
of the transverse electrode. Figure 2 shows the relationship between the amplitude and
photocurrent at different high frequencies, which satisfy τscΩ � 1.

If τsc is not significantly longer than the vibration period 2π/Ω, Equation (4) should
be modified to

jxt(t) =
jD
l

∫ l
2

− l
2

E0/ED+
Ω

2π

∫ 2π
Ω

− 2π
Ω

e−[(x+Asin Ωt)2+y2 ] (2x+2Asin Ωt)dt

Ω
2π

∫ 2π
Ω

− 2π
Ω

e−[(x+Asin Ωt)2+y2 ]dt+Rd

e−[(x+Asin Ωt)2+y2] τscΩ√
1 + (τscΩ)2

dx, (5)

where τsc = εε0
σ0

, ε is the dielectric constant, ε0 is the vacuum permittivity, and σ0 is the
photoconductivity of the crystal [32].

The response time τsc depends on the material itself, as well as on the incident
light intensity and geometric parameters, such as the speckle size in this case. The
formula of τsc should be further clarified for sufficiently accurate photocurrent simu-
lation. By analogy with the response time expression in the existing interferometric
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measurement mode [37], the specific formula for τsc in the speckle measurement mode
can be expressed as

τ−1
sc =

σ0

εε0
=

eμαPl

εε0hν
(

L
LD

)2 =
αPl

εε0

(
hν
e

)(
kBT

e

)(
L

LD

)2 , (6)

where α is the optical absorption coefficient, h is Planck’s constant, ν is the light fre-
quency, Pl is the incident light power, and LD = d/2π is the average diffusion length of
photoinduced carriers.

 

Figure 2. Relation between the photocurrent and vibration amplitude under τscΩ >> 1.

3. Numerical and Experimental Results

3.1. Experimental Arrangement

The experimental setup is illustrated in Figure 3. A GaAs crystal (10 mm × 10 mm × 0.8 mm,
crystal orientation [100], Molecular Technology GmbH, Berlin, Germany) with two par-
allel striped gold electrodes with an inter-electrode space of 2 mm on the front surface
served as the detector. Its main properties include a dielectric constant of 13.1, mobility of
5.2 × 103 cm2/(V·s), lattice constant of 0.56534 nm, and band gap of 1.4 eV. The measured
object was a small and thin scattering glass plate, which was firmly adhered to a shear
piezoelectric chip (PL5FBP3, Thorlabs, Newton, New Jersey, United States) and could
generate transverse vibrations.

Figure 3. Schematic of experimental system.

The scattered glass plate was illuminated by a laser beam with a wavelength of 532 nm,
200 mW. The transmitted light was collected through a lens with a focal length of 50.8 mm,
and the speckle pattern was obtained on the GaAs detector. A stop placed adjacent to the
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lens was used to control the transmitted light aperture. When the vibration frequency is
sufficiently high, the space charge field will not match with the photoconductive phase
of GaAs, resulting in a photocurrent of the corresponding frequency. The photocurrent
generated by the GaAs was measured using a lock-in amplifier. A laser vibrometer (PDV100,
Polytec, Baden-Württemberg, Germany) was placed perpendicular to the optical measuring
path. The measuring light hits the side of the object to obtain the corresponding out-of-
plane vibration, which is also in-plane vibration. This information was used to verify the
in-plane vibration and calibrate the vibration information of the measured object.

The shear piezoelectric plate was driven by 200 V at a 20 kHz sinusoidal voltage. The
time-domain comparison measurement results are shown in Figure 4. Signal 1 (yellow) was
obtained using PDV100, and signal 2 was obtained using GaAs (blue). The measurement
results are consistent, which verifies the feasibility of the system.

 

Figure 4. Time-domain comparison measurement results at 20 kHz.

The small in-plane vibrations at 50 kHz, 60 kHz, 70 kHz, and 75 kHz were measured
separately using this system, and the frequency-domain signals were obtained using a spec-
trometer. The results are shown in Figure 5. It can be observed that the measured vibration
frequency is consistent with the signal frequency loaded on the shear piezoelectric chip.

3.2. Results

The amplitude of the measured object was calibrated with the PDV100 laser vibrometer.
The effects of the amplitude and frequency of the vibration, imaging magnification of
the measuring system, and average speckle size of the measuring light on the induced
photocurrent were explored.

3.2.1. Effect of Vibration Amplitude

The aperture diameter was set to Dp = 50.8 mm, the lens focal length was f = 50.8 mm,
and the object distance (from the diffusing element to the lens) was ds = 76.81 mm. We
calculated the image distance (from the lens to the crystal) to be di = 150 mm and the
average speckle size to be d = 1.961 μm. At the same frequency, the amplitude of the
measured object was changed by varying the input voltage of the shear piezoelectric chip.
The measurement results and theoretical simulation results are shown in Figure 6.
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(a) (b) 

  
(c) (d) 

Figure 5. Measurement results of the system at different frequencies: (a) 50 kHz; (b) 60 kHz;
(c) 70 kHz; (d) 75 kHz.

  
(a) (b) 

Figure 6. Relation between amplitude of the first harmonic of the photocurrent and amplitude of the
vibration at different vibration frequencies: (a) experimental results; (b) theoretical simulation results.

176



Sensors 2023, 23, 2724

As shown in Figure 6a, under the same vibration frequency, the induced photocurrent
increases with increasing amplitude, which is the same as the simulation curve in Figure 6b.
It can also be observed that the measurement system can measure in-plane vibrations of
nanoscale amplitude. Although the response time is affected by the incident light intensity
and the speckle size, GaAs is a fast response material. τscΩ � 1 can be met when the
vibration frequency reaches several megahertz or even tens of megahertz. According to the
previous statement, the photocurrent is independent of the frequency and response time
in this case. For a low vibration frequency of kHz, as shown in Figure 6, τscΩ � 1 is not
satisfied. When the vibration amplitude is small enough compared to the speckle size, the
photocurrent is larger at higher frequencies and shows a monotonic increasing relationship.

3.2.2. Effect of Vibration Frequency

Under the same conditions that were applied in the previous experiment and the same
voltage drive, different frequencies were loaded on the shear piezoelectric chip. Experi-
ments and relevant theoretical simulations were performed to determine the relationship
between the vibration frequency and photoinduced current, as shown in Figure 7.

  
(a) (b) 

Figure 7. Relation between the amplitude of the first harmonic of the photocurrent and vibration fre-
quency at different vibration amplitudes: (a) experimental results; (b) theoretical simulation results.

According to Figure 7a, the photocurrent increases with increasing vibration frequency,
which is the same as the tendency of the simulation results in Figure 7b. When τscΩ � 1 is
not satisfied, the photocurrent will monotonously increase with the vibration frequency.

3.2.3. Effect of Imaging Magnification

The magnification of the imaging system was M = di/ds = ds
ds− f = ds− f

f , and the

average speckle size was d = 1.22λ di
Dp

. The image distance di must be controlled to maintain
the average speckle size d = 1.961 μm while changing the imaging magnification.

The vibration frequency was maintained at 22 kHz, and the focal length of the lens was
varied to obtain different imaging magnifications. The vibration amplitude of the speckle
changed with the imaging magnification. The relationship between the photocurrent and
in-plane vibration amplitude of the shear piezoelectric chip is shown in Figure 8, where the
magnification M of the imaging system is 0.5, 1, and 1.952.
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Figure 8. Relation between the amplitudes of the first harmonic of the photocurrent and vibration at
different magnifications.

As shown in Figure 8, when the imaging magnification of the measurement system increases,
the photocurrent also increases. This behavior occurs because the measured object will be
magnified on the image plane after passing through the imaging system, and the amplitude of
its vibration will also be magnified; thus, the photocurrent generated will also increase.

3.2.4. Effect of Average Speckle Size

The average speckle size was changed by changing the aperture of the imaging system.
The focal length of the lens was 50.8 mm. A variable stop was placed behind the lens to
change the size of the transmitted light. An optical attenuator was used to maintain the
average intensity of the image surface unchanged. The experimental results obtained by
adjusting the aperture to 10, 20, 30, and 40 mm are shown in Figure 9a, and the theoretical
simulation results are shown in Figure 9b.

  
(a) (b) 

Figure 9. Relation curve between the amplitude of the first harmonic of the photocurrent and
amplitude of the vibration at different average speckle sizes: (a) experimental results; (b) theoretical
simulation results.
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It can be observed that the smaller the average speckle size, the larger the output photocur-
rent. This finding is consistent with the simulation results shown in Figure 9b. As previously
mentioned, the maximum value of jω will appear when the amplitude δ approaches the speckle
radius w if τscΩ � 1. However, the material response time should be considered for a case
that does not meet τscΩ � 1. The relationship between the photocurrent and amplitude in this
case can be obtained by approximately estimating the response time. The photocurrent also
monotonously increased with the in-plane vibration amplitude.

4. Conclusions

In this study, we developed a speckle measurement method for in-plane vibrations
based on the photo-emf effect of crystal GaAs. The relevant theoretical models were
utilized. Through experimental and theoretical simulation, the measurement sensitivity
of nanoscale vibration was confirmed and the influences of the vibration amplitude, the
vibration frequency, the imaging magnification, and the average speckle size on the first
harmonic of the induced photocurrent when τscΩ � 1 was not satisfied were determined.
The accuracy of the supplementary response-time calculation formula was verified. This
study provides a theoretical simulation and experimental basis for the application of GaAs
in the measurement of in-plane, high-frequency submicron vibrations.
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Abstract: In order to realize rapid and accurate evaluation of drinking water quality, a small-scale
water quality detection instrument is designed in this paper that can detect two representative water
quality parameters: the permanganate index and total dissolved solids (TDS). The permanganate
index measured by the laser spectroscopy method can achieve the approximate value of the organic
matter in water, and the TDS measured by the conductivity method can obtain the approximate value
of the inorganic matter in water. In addition, to facilitate the popularization of civilian applications,
the evaluation method of water quality based on the percent-scores proposed by us is presented in
this paper. The water quality results can be displayed on the instrument screen. In the experiment,
we measured the water quality parameters of the tap water as well as those after the primary
and secondary filtration in Weihai City, Shandong Province, China. The testing results show that
the instrument can quickly detect dissolved inorganic and organic matter, and intuitively display
the water quality evaluation score on the screen. The instrument designed in this paper has the
advantages of high sensitivity, high integration, and small volume, which lays the foundation for the
popularity of the detection instrument.

Keywords: water quality; drinking water; laser spectroscopy; conductivity; small-scale detection
instrument

1. Introduction

Water is a necessary material condition for human survival and development, and
drinking water safety is an important prerequisite to ensuring human health. Unqualified
drinking water quality will lead to a variety of diseases [1–4]. Therefore, it is of great
significance to achieve rapid monitoring of drinking water quality for people’s health.
Soluble and insoluble matter in water can be divided into organic matter and inorganic
matter according to their chemical characteristics. There are many kinds of organic matter
in water, mainly humus, protein, fat, amino acids, carbohydrates, and synthetic organic
compounds (SOC). In addition, algae, bacteria, and viruses in water also belong to the
category of organic matter. Inorganic matter dissolved in water mainly exists in the form
of ions, among which inorganic cations include Ca, Mg, Na, K., etc., and inorganic anions
include F−, Cl−, NO2−, Br−, NO3−, PO4

3−, SO3
2−, SO4

2−, etc. It is impossible for rapid
monitoring of drinking water quality to contain every substance in water, so comprehensive
parameters are generally used for water quality monitoring. The organic matter parameters
include permanganate index, chemical oxygen demand (COD), total organic carbon (TOC),
dissolved organic matter (DOM), etc. The inorganic matter parameters include conductivity,
salinity, etc.

With the development of the world economy, people require that the quality of drink-
ing water be increasingly improved [5]. More and more research has been conducted
on the rapid monitoring system of domestic drinking water. Punit et al. [6] developed a
sustainable water quality monitoring system that measures five water quality parameters
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(pH, oxidation reduction potential (ORP), dissolved oxygen (DO), electrical conductivity
(EC), and temperature). Partial least squares regression (PLSR) model was used to establish
the comprehensive evaluation index of water quality. The R2 between the estimated value
and the predicted value of the water quality parameter was 0.93. The results show that the
system can replace traditional water quality monitoring technology. Arif Ul Alam et al. [7]
developed a multi-parameter water quality monitoring system (MWQMS) that includes
an array of low-cost, easy-to-use, high-sensitivity electrochemical sensors. The proposed
MWQMS system can simultaneously monitor pH, free chlorine, and temperature with
sensitivities of 57.5 mV/pH, 186 nA/ppm, and 16.9 mV/◦C, respectively, as well as BPA
with a <10 nM limit of detection. Anand et al. [8] established a practical water quality
monitoring system that integrated wireless sensor networks and different information and
communication technologies by using an online water quality monitoring network for data
acquisition, data processing, and data visualization. It measures the physical and chemical
parameters of drinking water, such as pH, turbidity, conductivity, and temperature, within
a preset time interval. The above-mentioned drinking water quality monitoring systems
can realize the real-time measurement of water quality parameters, but they are still in the
laboratory stage and the equipment is complex and expensive, so they are not suitable for
civilian application at present. Currently, TDS sensors are the most common rapid detection
equipment for drinking water quality in the market. TDS refers to the total amount of
all solutes in water, including the content of both inorganic and organic matter [9]. Its
measurement unit is milligrams per liter (mg/L). A higher TDS value indicates that there is
more dissolved matter in the water. The TDS sensor can give the TDS value by measuring
the conductivity of water, which has the advantages of simplicity, convenience, small
volume, and low price. Its measured value reflects the total ion concentration in water,
which can be approximately converted into the salt content in water. However, since most
organic matter such as proteins, microorganisms, colloids, bacteria, and viruses dissolved
in water, are non-conductive, the TDS value obtained by the conductivity method cannot
reflect their content. Therefore, the TDS detection commonly used by the conductance
method is one-sided and inaccurate in evaluating water quality.

In order to reflect the content of organic matter in drinking water, instruments for
detecting COD and TOC parameters in water by ultraviolet absorption spectrometry
have appeared on the market at present [10], but there exist some problems such as low
sensitivity, a high detection limit, and short service life. Fluorescence spectrum detection
technology has a good application prospect in water quality detection due to its advantages
of fast analysis speed and remarkable sensitivity and selectivity [11–14]. The sensitivity
of this method for detecting organic matter is 10–1000 times higher than that of the light
absorption method [15]. Therefore, in this paper, we use fluorescence technology to realize
organic matter measurement. In order to obtain higher fluorescence intensity in a small
size, a violet semiconductor laser is used as the excitation light source. In addition, the
laser spectra are detected by our self-made, highly sensitive micro spectrometer, which
can realize the highly sensitive and rapid detection of dissolved organic matter in water.
The permanganate index of water quality can be obtained by the analysis and calculation
of the fluorescence spectrum, and the relatively accurate measurement of organic matter
in water is realized. On this basis, we have developed a small drinking water quality
detection instrument that integrates organic matter detection by laser spectroscopy and
inorganic matter detection by conductivity. The instrument can be conveniently installed
in the tap water pipeline, water dispenser, or water purifier and directly give the water
quality evaluation scores as well as water quality parameters. In addition, it can give an
alarm on unqualified water as an indicator to replace the filter element of the water purifier
in time. The instrument has the advantages of high sensitivity, small volume, and low price,
which open up a wide range of practical application prospects.

182



Sensors 2023, 23, 2985

2. Instrument Structure and Detection Principle

2.1. Detection Standard

In March 2022, China released the Standards for Drinking Water Quality (GB5749-
2022), which stipulates that the Maximum Contaminant Levels (MCL) of total dissolved
solids in drinking water are 1000 mg/L. The MCL of TDS issued by the U.S. Environmental
Protection Agency (EPA) is 500 mg/L [16]. The TDS sensor commonly used in the market
is used to measure the content of total dissolved solids. The sensor is based on the con-
ductivity method and mainly measures the content of inorganic salts in water, including
calcium, magnesium, sodium, potassium, and some minerals. Water containing certain
concentrations of inorganic salts, such as calcium and magnesium ions, is beneficial to
human health, so it is not that the lower the total soluble solids in water, the better the water
quality. However, the TDS sensor cannot detect the content of organic matter. Considering
that some dissolved organic matter, microorganisms, bacteria, and viruses in water can
emit fluorescence excited by ultraviolet lasers, the combination of laser spectroscopy and
the conductivity method can realize a comprehensive detection of drinking water (the de-
tection parameters are shown in Table 1). The content of organic matter in water (including
microorganisms, bacteria, viruses, and so on) can be expressed by the permanganate index
in Table 1. However, the chemical analysis method used in the Chinese standard to detect
organic matter has the disadvantages of having a complex operation, causing secondary
pollution, and being time-consuming, which makes it unsuitable for the rapid detection of
civil drinking water. The laser spectroscopy method proposed by us has the advantages
of high detection sensitivity, fast detection speed, and simple and convenient operation,
which makes it suitable for rapid detection of drinking water quality at low organic content.

Table 1. Comparison between the detection method in this paper and the standard detection method
in China.

Detection Parameter
Drinking Water

Standard
Standard Detection

Method
Detection Method in

This Paper
Remarks

TDS ≤1000 mg/L 1

(≤500 mg/L 2)
Gravimetric method Conductance method Reflect inorganic

content
Permanganate

index ≤3 mg/L Chemical analysis Laser spectroscopy Reflect organic content

1 MCL of TDS in drinking water in China. 2 MCL of TDS in drinking water regulated by the U.S. EPA.

2.2. Instrument Structure

The structure of the small-scale drinking water quality detecting instrument designed
by us is shown in Figure 1, which includes five parts as follows: a laser emission unit,
a spectral detection unit, a conductance detection unit, a signal processing unit, and a
water sample detection unit. The laser emission unit is composed of a laser driving power
supply, a 405 nm semiconductor laser (NDV4312, NICHIA, China), and a laser collimating
lens. The output laser can be modulated by the power supply to achieve laser output
with different pulse widths so as to adjust the average laser output power (10–100 mW).
The spectrum detection unit includes a long-wave pass filter (Yulai Optics, China) and a
self-made miniature spectrometer. The filter with a cut-off wavelength of 420 nm is used
to eliminate the laser scattering interference. The wavelength measurement range of the
spectrometer is 400–760 nm, and the spectral resolution is 2 nm. The conductance detection
unit consists of a conductance probe (BA01, AtomBit, China), an amplifier circuit (BA111,
AtomBit, China), a single-chip microcomputer (STM32, STMicroelectronics, Italy), and an
output serial port. The signal processing unit adopts a microcomputer, which receives
the conductance digital signal through a serial port to control the laser power supply and
emit laser pulses. It also carries out spectral calculation and analysis after the spectral
signal is received through the USB interface. The calculated water quality parameter results
can be displayed on the LCD screen. The water sample detection unit is made up of a
transparent glass tube. The laser is incident into the tube at a certain inclination angle.
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The entrance of the spectrometer is close to the side wall of the water tube to receive the
fluorescence and Raman signals excited by the laser in the water. A conductance probe is
inserted into the tee, which is near the inlet end of the water tube so that the water can
flow through the conductance electrode. As shown in Figure 1, the five parts of the units
are integrated into the aluminum metal shell. The instrument size is 18 × 12 × 10 cm3.
The LCD screen embedded in the surface of the aluminum shell can be used to set the
instrument parameters and display the water quality measurement parameters. The inlet
and outlet of the water tube are connected to the water pipe, and whenever the water in the
tube is flowing or stationary, the water quality can be detected. The laser is incident on the
thick water tube at a certain angle. The excited fluorescence and Raman signals are received
by the spectrometer. The spectral signal is transmitted to the microcomputer through the
USB interface. The spectral curve after being denoised is analyzed by the computer, and
the water quality parameter value can be obtained. Some important parameters can be
displayed on the LCD screen, such as the permanganate index, TDS value, water quality
score value, etc. The instrument can work continuously for 24 h, and the period of each
data display is 2 s.

 
(a) (b) 

Figure 1. Composition and outline of the small drinking water quality instrument. (a) Structure
schematic of the detecting instrument; (b) Outline picture of the detecting instrument.

2.3. Detection Principle
2.3.1. Laser Spectroscopy Detection

When a laser is incident on the water, a scattered laser, Raman signal, and fluorescence
signal are generated. The fluorescence comes mainly from DOM in water, including humic-
like matter, esters, polycyclic aromatic hydrocarbons, protein-like matter, etc. The higher
the concentration of organic matter in water, the stronger the fluorescence signal that
is generated; thus, it can be considered that the permanganate index is proportional to
fluorescence intensity [17]:

C = A × IF + B (1)

where C is the value of the permanganate index, IF is the intensity of the DOM fluorescence
signal. The coefficient A and the limit of detection B are constants, which can be determined
experimentally.

We measure the permanganate index parameter of water quality using the Laser
Fluorescence–Raman ratio (LFRR) method, which is defined as laser-induced DOM fluo-
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rescence at water divided by the intensity of the water Raman peak [17]. The formula is
as follows:

IT =
IF
Ir

(2)

where IT is the ratio of Laser Fluorescence–Raman, Ir is the intensity of the water Raman sig-
nal after deducting the fluorescence background. In practical application, IF in Equation (1)
can be replaced by IT to achieve the accurate permanganate index measurement.

2.3.2. TDS Detection

The TDS detection in this paper adopts the conductance method. A special chip in
the conductance detection system is integrated with a high precision oscillating circuit, an
A/D conversion circuit, and a floating-point arithmetic unit. The chip is equipped with the
company’s patented conductivity-to-TDS conversion algorithm and temperature correction
algorithm to quickly realize the detection of TDS. Automatic temperature correction can
be realized in a wide temperature range, reducing the measurement error caused by the
change in TDS value with temperature. The measuring range is 0~3000 mg/L and the
detection limit is 1 mg/L.

2.3.3. Water Quality Evaluation Score

For ordinary consumers, the TDS and permanganate index are not intuitive and
difficult to understand. It is necessary to directly express the water quality evaluation
parameters in a way that is easy for ordinary people to understand. In our published
paper [18], we gave a percentage method for evaluating water quality parameters by laser
spectroscopy, and the water quality evaluation score can be directly displayed on the screen
of the detecting instrument. The formula for the water quality evaluation parameters is
as follows:

Sw =
IR − IF
IR − I0

× 100 (3)

where Sw is the score of water quality evaluation, IR is the water Raman signal generated by
inelastic scattering of the excitation light, I0 is background noise signal. With the purpose
of achieving a user-friendly result, a constant of 100 is induced in the formula to convert
the Sw into the range from 0 to 100.

3. Experimental Measurement Results

3.1. Preliminary Experiment

The tap water of Weihai City, Shandong Province, China, is chosen as the testing object.
In the preliminary experiment, we prepared seven diluted water samples by diluting tap
water with different volumes of deionized water. The mixing ratios of tap water and
deionized water were as follows: 1:0, 3:1, 1:1, 1:3, 1:7, 1:15, and 0:1, respectively, which
were numbered from no.1 to no.7 in sequence. Then we measured the concentration
for the 7 samples according to the water quality—determination of permanganate index
(GB/T 11892-1989 issued by China) [19]. The permanganate indices for the seven samples
were 4.15, 3.12, 2.04, 0.99, 0.51, 0.26, and 0 mg/L, respectively. In addition, we also
tested the 7 samples using the instrument we developed under the same test conditions.
The laser spectrum for each sample was collected 50 times. The laser-excited spectra
of different water samples are shown in Figure 2a. It can be seen that there are three
emission fluorescence peaks in this spectroscopy curve, including the laser source peak
at 405 nm, the Raman peak of water at 471 nm, and the fluorescence peak of DOM at 525
nm (mainly comes from esters and aromatics). Under identical laser power, the intensity
of the DOM fluorescence increases as the permanganate index increases. The correlation
between the ratio of Laser Fluorescence–Raman and the concentration of permanganate
index is shown in Figure 2b. The ratio of Laser Fluorescence–Raman (IT) increases with
permanganate index at 0~5 mg/L, and a linear regression equation with a correlation
coefficient R2 = 0.9881 is obtained:
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C = 3.0253 × IT + 0.1072 (4)

where C is the value of the permanganate index, and the constant 0.1072 is the detec-
tion limit. In the practical application, we can calculate the permanganate index from
Equation (4).

 
(a) (b) 

Figure 2. (a) The laser-excited spectra of different water samples; (b) The correlation between the
ratio of Laser Fluorescence–Raman and the concentration of permanganate index.

In addition, we also measured the TDS values by using our designed instrument for
the 7 water samples and obtained the water quality evaluation scores by Equation (3). The
results of the water quality measurement are shown in Table 2. We can see that, with the
increase in the dilution ratio of tap water, the permanganate index and TDS value decrease,
and the water quality evaluation parameters gradually increase. Table 2 shows that the
permanganate index value determined by laser spectroscopy is very close to the chemical
analysis value, and their relative errors remain below 9%. Overall, the result indicates
that the laser spectroscopy proposed in this paper can meet the demand for permanganate
index measurements of tap water with relatively high accuracy.

Table 2. The results of water quality measurement.

Sample Number

Permanganate Index (mg/L)
TDS

(mg/L)
Water Quality Rating

(Points)Laser Spectroscopy
(mg/L)

Chemical Analysis
(mg/L)

Relative Error
(%)

#1 4 4.15 3.75 125 59.9
#2 2.97 3.12 5.05 92 68.8
#3 2.01 2.04 1.5 66 78.2
#4 0.97 0.99 2 30 87.9
#5 0.48 0.51 6.25 17 93.1
#6 0.24 0.26 8.33 8 95.4
#7 0.04 0 / 0 100

3.2. Practical Application Experiment

Using the detection instrument shown in Figure 3, we measured the quality of tap
water before and after purification by water purifiers. The water purifier (NFX-OP model
made by Meishui Company of Japan), includes a two-stage filtration system. Its structure
is shown in Figure 2. Firstly, the detection instrument is placed in front of the water purifier
and used to measure the tap water. The flow velocity of tap water is 2.15 L/min. The
spectral signals of the water excited by the laser and measured by the spectrometer are
shown in the upper part of Figure 3. As shown in Figure 3a, it can be seen that the spectral
curve includes the laser scattering peak of 405 nm (mainly from the glass tube wall and the
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water scatter), the Raman peak of water at 471 nm, and the fluorescence peak of organic
matter in water at 525 nm. Then the instrument was inserted between the primary filter and
the secondary filter, and the spectral curve from the primary filtered water was measured
as shown in Figure 3b. The Raman peak intensity was almost unchanged. However, the
fluorescence peak of 525 nm was significantly reduced due to the filtration effect of the
water purifier, which indicated that most organic matter in the water had been filtered and
removed. Finally, the instrument was placed at the back end of the secondary filtration, and
the spectral curve from the secondary filtration water was measured as shown in Figure 3c.
The fluorescence peak almost disappeared, which indicated that the organic matter in the
water was almost completely removed after the secondary filtration.

   

 

(d) 

Figure 3. Laser spectral comparison of tap water, primary filtered water, and secondary filtered water.
(a) Laser spectra of tap water; (b) Laser spectra of primary filtered water; (c) Laser spectra of secondary
filtered water; (d) The two-stage water filtration system and three water quality monitoring spots.

The results of the permanganate index, TDS, and water quality scores can be directly
displayed on the screen of the instrument, and the measurement results in the three spots
are shown in Table 3. It can be seen that the TDS parameters of tap water are 128 mg/L;
after primary filtration and secondary filtration, their values are 138 mg/L and 156 mg/L,
respectively, which indicate that the content of inorganic salts in tap water before and after
filtration meets the drinking water standard. However, the permanganate index in tap
water is more than 3 mg/L, which is over the drinking water standard. The permanganate
index decreased to 1.41 mg/L after primary filtration, which indicated that although
there was some organic matter in the filtered water body, it was below the standard for
drinking water. After secondary filtration, the permanganate index is close to 0 mg/L,
which indicates that the organic matter in the water body is almost filtered out and that it
reached a better drinking water quality. The water quality scores of the three places were
measured to be 59.9, 81.2, and 94.8 respectively, according to our proposed percentage
method for evaluating water quality parameters by laser spectroscopy [19]. The scores
are higher after filtration, which indicates that the quality of tap water has improved. The
scores exceeded 90 points after secondary filtration, so the purified water was suitable for
people to drink [19].
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Table 3. Water quality measurement results for tap water, primary filtered water, and secondary
filtered water.

Water Sample
Permanganate Index

(mg/L)
TDS

(mg/L)
Water Quality

Scores

Tap water 4 125 59.9
Primary filtered water 1.41 138 81.2

Secondary filtered water 0.23 156 94.8

The permanganate index is a key parameter for drinking water quality evaluation. In
order to verify its accuracy, we also tested the permanganate index of three spots using
the chemical analysis method; their comparison results are shown in Table 4. It can be
seen that the relative error of the two methods are 3.75%, 8.51%, and 8.70%, respectively.
The average relative error is 6.99%. The result indicates that the water quality detection
instrument designed in this paper has relatively high accuracy and sensitivity. In addition,
to validate the long-term stability of the instrument, we set up a water quality monitoring
demonstration system in our laboratory, as shown in Figure 4. It includes an in-and-out
water monitoring screen. The water quality parameters before and after purification can be
intuitively displayed on the two screens. The values of two water quality parameters only
drift within ±5% in more than 3 months of testing time, and their measurement results
are independent of flow velocity. The experimental results prove that the water quality
monitoring instrument in the demonstration system has high stability.

Table 4. The comparison of the permanganate index measurement.

Water Sample
Laser Spectroscopy

(mg/L)
Chemical Analysis

(mg/L)
Relative Error

(%)

Tap water 4 4.15 3.75
Primary filtered water 1.41 1.53 8.51

Secondary filtered water 0.23 0.25 8.70

 
Figure 4. The drinking water quality monitoring demonstration system.

4. Conclusions

In this paper, a small-scale drinking water quality monitoring instrument is designed
that can detect permanganate parameters by laser spectroscopy method and obtain TDS
parameters by conductivity method. To a large extent, the two parameters represent the
content of organic matter and inorganic matter in water. For the convenience of civil
applications, we proposed a percentage method to evaluate drinking water quality quickly
and intuitively. In the experiment, using the instrument, we measured the water quality
parameters in three different spots of a water purifier made by the Japan Meishui Company.
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The corresponding TDS values as well as the permanganate index are obtained, and the wa-
ter quality parameters and corresponding evaluation scores can be displayed on the screen.
The testing results showed that after the tap water was filtered, the permanganate value
decreased, the water quality score increased, and the TDS value was almost unchanged. In
conclusion, the water quality detection instrument developed by us has a high sensitivity, a
fast detection speed, and a small volume, which can reflect the drinking water quality in a
more comprehensive way. It has the following characteristics:

(1) The small-scale laser spectrometer can be used to detect the organic matter in water
with high sensitivity, which makes up for the shortcoming that the TDS sensor is unfit
for measuring organic matter in water. It makes the rapid detection of drinking water
quality possible.

(2) The TDS value exceeds the standard, which indicates that the water quality is poor
and unfit for drinking. In fact, the TDS value of tap water in China rarely exceeds 500
mg/L, which indicates that TDS meets the water quality standard even without water
purification. In addition, the TDS value is not the smaller the better, because the water
contains a certain concentration of ions, such as Ca and Mg ions, that are beneficial to
the human body. If the TDS parameter measured by the conductivity method is lower
than a certain value, it can be considered that the inorganic matter in the water meets
the standard.

(3) Since TDS mainly reflects inorganic salt content, its value measured by the conduc-
tance method cannot reflect water quality accurately. We adopt high-sensitivity laser
spectroscopy technology to detect organic matter and give a percentage value to evalu-
ate the water quality. If the water quality score is 100 points, the concentration of organic
matter in the water is 0 mg/L, such as in deionized water. A score above 90 indicates
that the water has less organic matter, making it suitable for human consumption.
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Abstract: Electrification of the field of transport is one of the key elements needed to reach the targets
of greenhouse gas emissions reduction and carbon neutrality planned by the European Green Deal.
In the railway sector, the hybrid powertrain solution (diesel–electric) is emerging, especially for
non-electrified lines. Electric components, especially battery power systems, need an efficient thermal
management system that guarantees the batteries will work within specific temperature ranges and
a thermal uniformity between the modules. Therefore, a hydronic balancing needs to be realized
between the parallel branches that supply the battery modules, which is often realized by introducing
pressure losses in the system. In this paper, a thermal management system for battery modules
(BTMS) of a hybrid train has been studied experimentally, to analyze the flow rates in each branch
and the pressure losses. Since many branches of this system are built inside the battery box of the
hybrid train, flow rate measurements have been conducted by means of an ultrasonic clamp-on flow
sensor because of its minimal invasiveness and its ability to be quickly installed without modifying
the system layout. Experimental data of flow rate and pressure drop have then been used to validate
a lumped parameter model of the system, realized in the Simcenter AMESim® environment. This
tool has then been used to find the hydronic balancing condition among all the battery modules;
two solutions have been proposed, and a comparison in terms of overall power saved due to the
reduction in pressure losses has been performed.

Keywords: battery thermal management system (BTMS); hybrid train propulsion; ultrasonic flow
sensor; clamp-on sensor; hydronic balancing methods

1. Introduction

The transport sector is one of the main causes of CO2 emissions [1], and trains are
responsible for 4.6% of the greenhouse gas emissions from transportation because, in
several countries, there are still non-electrified lines with trains powered by diesel en-
gines [2]. Electrification costs time and money; battery power, on the other hand, is the
cleanest zero–emission solution to replace diesel trains and start achieving climate change
targets, which will instantly improve air quality in cities and non-electrified stations. This
technology will allow for travel beyond electrified routes, ensuring seamless journeys [3].
Moreover, battery-powered trains can also use regenerative braking, making them much
more environmentally friendly than diesel railcars [4].

However, a battery power system is a temperature-sensitive technology, where per-
formance is influenced by the temperature in terms of efficiency, lifetime, and safety [5,6].
For lithium-ion batteries, the optimum operating temperature is between 20 and 40 °C,
and the temperature difference between battery cells of the same pack should be less
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than 5 °C. Furthermore, the improper distribution of temperature can cause significant
performance degradation and may also lead to overheating and thermal runaway [7–9].
For these reasons, the battery thermal management system (BTMS) is one of the most
crucial elements of an electric train. Air cooling, liquid cooling, and heat pipe-based cooling
are the most common principles on which the BTMS is built [10–15], but there are also
new technologies such as phase change material-based cooling [16] and thermoelectric
element-based cooling [17–20].

Unlike other sectors, such as automotive and aerospace, where it is by now consoli-
dated, battery-based electric powertrain in the railway field is still in the embryonic stage.
Only in recent years, due to the Sustainable and Smart Mobility strategy [21] that is encour-
aged by the EU and other countries, researchers and big players are developing a program
that involves removing diesel engines and replacing them with a battery-based electric
powertrain to operate on non-electrified lines [3,22,23]. Those systems must be correctly
controlled in terms of temperature, especially the battery pack. Studies on BTMS have also
been widely developed in fields such as the automotive and aerospace. Xiong et al. [24]
developed an AMESim model of a liquid cooling system for a power battery of a plug-in
hybrid electric vehicle in order to analyze the thermal behavior. Sun et al. [16] conducted a
numerical analysis into the inhibiting effects of a novel hybrid BTMS, combining active and
passive cooling on thermal runaway propagation caused by single cell. Kellerman et al. [25]
developed a numeric model of BTMS for a hybrid electric aircraft under the assumption that
the ambient temperature may be higher than the allowed battery operating temperature.

In the railway field, a different approach is needed, especially with regard to liquid
cooling systems. Batteries in the railway applications must satisfy an energy accumula-
tion in the order of MWh [26] while, in the automotive sector, it is in the order of tens
of kWh [27,28]. For this reason, in railway applications, the overall dimension of the
battery packs is much larger and the refrigerant flow rate requirement is also higher. There-
fore, given the large flow rates involved, hydraulic optimization can lead to considerable
energy savings.

Previous research on BTMS for battery powered train mainly focused on thermal
aspects. Iwase et al. [4] conducted a thermal simulation to confirm the feasibility of natural
air cooling for train battery storage systems. Kang et al. [29] proposed a thermal prediction
model of a 1S18P battery pack classified into joules heating with equivalent resistance,
reversible heat, and heat dissipation. Teng and Yeow [30] analyzed the thermal performance
of two battery module cooling methods with the indirect liquid cooling system with three
types of tubular cooling plates between cells with interior fluid; they concluded that the
structural layout of a multiple parallel-channels cold plate resulted in a lower coolant
pressure and temperature gradient.

The aim of this research is the study of a liquid cooling system for train batteries, which
goes from the inlet manifold to the outlet manifold of the hydraulic system and to optimize
it from a hydronic point of view in order to find the condition that entails the balancing
of the flow rate in all the branches, to minimize the pressure drops and to guarantee to
all modules have the same operating conditions. To achieve this goal, a BTMS is studied
experimentally and numerically. From the results of the experimental campaign, the
Lumped Parameter Model (LPM) is validated. LPMs simplify spatially distributed systems
into discrete entities, in which radial or axial gradients are not considered and interactions
with the surroundings occur through ports on the boundary. The key advantages of this
approach are computational efficiency and simplification of the mathematical formulation,
even for more complex systems. However, in some cases the 0D-1D approach alone is not
sufficient, and, for this reason, 3D modeling is required for some system components. The
validation takes place in two phases. The first involves the validation of the hydraulic
system without batteries. The second provides the hydraulic characterization of the battery
module on the bench. Thanks to the validated model, numerical tests are then carried out
that are aimed at finding the aforementioned conditions. These are described in detail in
Section 4.2.
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This paper follows the steps of the LPM first introduced in [31], in which the priority
was the cooling of the power converters. In this case, our study focuses on the hydronic
balancing of the liquid cooling system for battery modules.

2. Materials and Methods

2.1. System Architecture and Description

The cooling system represented in Figure 1 shows a battery box made of sixteen battery
modules arranged in three parallel branches, in order to obtain the best performance.
Each module must be cooled by the same coolant flow rate and supplied at a constant
temperature; therefore, the fluid is first cooled in a chiller and then supplied to the modules
at 25 ◦C.

Figure 1. Battery liquid cooling system.

Figure 2 describes the functioning of the battery module, which is composed of the
battery cells, a heat exchanger, and a fan placed underneath. First, the coolant passes
through a chiller, in which it reaches 25 ◦C, and then, thanks to an air to liquid heat
exchanger, it cools the air that is conveyed to the battery cells with a fan.

In the first stage of this research the cooling system section was modeled without
the batteries because all sixteen battery modules were not available at first; therefore,
the cooling system without batteries was the only prototype available for experimental
validation. The proposed hydraulic model was validated via comparing simulations and
experimental results that were carried out via ultrasonic clamp-on flow measurements.
In the second stage, the single battery module was hydraulically characterised, and the
previous validated model was completed with battery modules. Thanks to the completed
model, it was possible to evaluate the unbalance of flow rates in the individual battery
modules and then choose the best way to achieve the balance.

In this work, two solutions were proposed: The first involves the use of calibrated
orifices in the branches of the cooling system with greater flow rate. The second involves a
layout modification without introducing secondary losses. Finally, a comparison between
the two solutions was carried out.
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Figure 2. Framework of the battery cooling system.

2.2. Ultrasonic Clamp-On Flow Measurements

Experimental flow measurements were carried out with the ultrasonic clamp-on sensor
Keyence FD-Q32C for DN32 pipes, powered by a 24 V power supply. This sensor measures
the time it takes to transmit a signal ultrasound from the emitter to the receiver. If the
flow rate increases, the signal is accelerated, that is, less time is required for transmission
from the emitter to the receiver. By employing the correlation between duration and flow
velocity, the sensor measures the instantaneous flow rate [32].

A clamp-on type sensor was chosen because it allows us to easily evaluate the flow rate
of the various branches of the system without modifying the system structure, since it was
installed outside the pipe for a completely non-wetted measurement. This prevented any
risk of adverse effects on the liquid and eliminated the need for piping work. On the other
hand, this sensor must be calibrated by adjusting the flow rate signal with a calibration
coefficient, whose value was obtained from the comparison with the measurement carried
out by a turbine flowmeter (Signet Flow Controller GF George Fischer 3-9010.111) that was
positioned downstream of the pump and has an accuracy of ±0.5% [33]. The optimal value
of the adjusting flow rate, equal to 1.07, was calculated as the slope of the last-squares linear
regression of the data obtained with the two sensors, as shown in Figure 3. In this case,
from the tests carried out, the optimal value of the adjusting flow rate span was found to
be 1.07.

2.3. Numerical Model of the Prototype Available

The first analyses were carried out on the available prototype that included the hy-
draulic system without the battery modules. This is because once the batteries were
mounted in the battery box enclosure it was not possible to measure the flow rate in the
various branches, since there is not enough space left to mount the clamp-on flow sensor.
The hydraulic system object of this research is a closed-cycle circuit with three branches in
parallel of different lengths which mainly consists of a cooling unit (pump and tank), inlet
and outlet manifolds, delivery and return pipes, flexible hoses, quick couplings, and an
orifice with a diameter of 10 mm and a thickness of 6 mm in the first and second branches
resulting from a preliminary sizing of the system. The circuit was implemented in Simcenter
AMESim, a multi-domain, lumped parameter simulation software, suitable for performing
simulations of the system as a whole, in which the arrangement of components refers to
that in the physical prototype (Figure 4).
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Figure 3. (A) Least-squares linear regression of the data obtained with the two sensors; (B) George
Fischer measurement; (C) Keyence measurement with adjusting flow rate span.

Figure 4. Simcenter AMESim model of the prototype available for testing.

The mainly used libraries were Thermal Hydraulic and Thermal Hydraulic Resistance.
The branches of different lengths (l1 < l2 < l3) were modeled using the thermal–hydraulic
modular piping that includes straight pipes, direction changes, and diameter changes. This
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submodel calculated the pressure drops while taking into account the compressibility of the
fluid and expansion of the pipe wall with pressure. The heat exchange and the influence of
temperature on the fluid viscosity were also considered. The methodology described by
the flowchart in Figure 5 was followed in order to select the AMESim submodels of the
pipelines of the cooling system. This line selection method considers the parameters of the
line and the fluid properties, and then it provides an analysis involving the following values:

• The aspect ratio Ar is the ratio between the length of the section l and the hydraulic
diameter dh:

Ar = l/dh (1)

• The dissipation number Dn is defined as:

Dn =
4lν
cd2

h
(2)

where ν is the kinematic viscosity and c is the speed of sound;
• The wave travel time Twave is the time that pressure disturbance takes to cross the pipe:

Twave = l/c. (3)

Figure 5. Flow chart for the choice of submodels of the hydraulic lines [34].

The coolant used was the Antifrogen N-39, produced by Clariant, which consists
of a mixture of 60% water and 40% ethylene glycol added with corrosion inhibitors. It
was modeled by using the Media Property Assistant tool, in which parameters such as
density, viscosity, and heat capacity, obtained from the datasheet (available on the supplier’s
website [35]) were inserted. The cooling unit was modeled as a super component which
mainly contains a 60 L tank and a centrifugal pump with an impeller with a diameter of
139 mm.

The flow was then split by a three-way manifold. This component was characterized
using another tool called Simerics MP+, a commercial 3D CFD simulation software, in order
to evaluate how the inlet flow rate (138 L/min) was distributed to the manifold outlets.
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In this study, a steady-state flow analysis was performed that includes a standard k − ε
turbulence model with a Converge Criterion of 10−4. The boundary conditions were an
inlet volumetric flux of 138 L/min and an outlet pressure of 101,325 Pa. Figure 6 provides a
synthesis of the results derived from this 3D CFD simulation.

Figure 6. The 3D CFD simulation of flow rate distribution in the manifold. (A) Streamlines view;
(B) vectors view; (C) contour view.

Mesh sensitivity analysis was performed for the outlet flow rates Qoutlet1, Qoutlet2,
Qoutlet3 where medium mesh and fine mesh had, respectively, 0.43 × 106 and 3.4 × 106 cells.
The results of the mesh sensitivity analysis are shown in Figure 7, from which it is clear
that a good level of approximation can be obtained with a medium mesh with a lower
computational effort. A workstation, equipped with a 64 GB RAM and Intel® Xeon® CPU
E5-2699 v3 2.30 GHz processor, was used to perform the analyses. The calculation times in
the case of medium mesh and fine mesh using 8 cores are, respectively, 468 s and 1093 s.

Figure 7. Mesh sensitivity analysis.

The manifold was then modeled in Simcenter AMESim (Figure 8) by means of a
thermo-hydraulic volume with one inlet and three outlets, and by inserting an equivalent
orifice at each outlet. The cross-sectional area of these orifices (respectively, Ω1, Ω2, and
Ω3) was evaluated in order to obtain the same flow distribution found in the 3D CFD
characterization, as described below.
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Figure 8. Manifold lumped parameter model.

The three orifices are in parallel [36]; therefore, Equation (4) holds:

Ωeq = Ω1 + Ω2 + Ω3. (4)

From the known orifice Equation [36], knowing Qinlet and Δp, it is possible to ob-
tain Ωeq:

Ωeq[mm2] =
Qinlet[L/min]

18.97 · Cf
·
√

ρ

2Δp[bar]
(5)

where ρ is the coolant density at 25 ◦C, equal to 1050 kg/m3, and Cf , equal to 0.611, is the
von Mises’ theoretical value for a circular sharp edge orifice [36]. Finally, from the flow rate
ratios Qoutlet1/Qoutlet2 and Qoutlet1/Qoutlet3 and from Equation (4) it is possible to derive
the sections Ω1, Ω2, and Ω3, respectively, equal to 781 mm2, 1221 mm2, and 1343 mm2.

3. Results for the Model Validation

In this section, the numeric hydraulic results are shown.
Although the system works in a single operating point, to better test the model, it

was validated by comparing the numerical results with the experimental ones in three
different operating conditions, as shown in Table 1. The first three operating conditions
provided the passage of fluid only in one branch at a time and excluded the other two. In
the fourth operating condition the third branch was excluded, whereas in the fifth condition,
which was the only condition that simulated the real operating conditions of the system,
the coolant flowed in all branches at the same time. The experimental measurements
were repeated ten times and are reported in the box-plots shown in Figure 9. From the
last condition, it is possible to notice, as expected, that when the first two branches are
shorter, they had a lower volumetric flow rate than the third due to the presence of the
10 mm orifices.

Table 1 also summarizes the comparison between the numerical results and the mean
values of the experimental results obtained by the Keyence FD-Q32C sensor in all operat-
ing conditions.

Table 1. Comparison between the numerical and the experimental results.

Operating
Condition

First Branch Second Branch Third Branch

Numeric Exp. Error Numeric Exp. Error Numeric Exp. Error
(L/min) (L/min) % (L/min) (L/min) % (L/min) (L/min) %

1 53 52 2 0 0 0 0 0 0
2 0 0 0 53 52 2 0 0 0
3 0 0 0 0 0 0 67 62 8
4 50 49 2 50 49 2 0 0 0
5 42 43 2 42 42 0 54 52 4
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Figure 9. Box plots of the experimental measurements. Number of tests repeated for each case: 10.

The results show that in most cases the error falls within the uncertainty range of the
flow sensor, equal to 1 L/min [37]. For the third branch only, a slightly higher error was
encountered. Nevertheless, the model is considered sufficiently reliable and can be used
for further investigations and optimization of the system.

4. Complete Hydraulic Model with Battery Modules

4.1. Battery Cooling System Description and Characterization

The previously validated model was extended by implementing a submodel that
introduced the pressure drop due to the air to liquid heat exchanger, integrated in the
battery module. The heat exchanger was experimentally characterized as a pressure loss
on the test bench. Figure 10 shows the (Q − Δp) curve that was derived from these
experimental data. This curve was assigned to an orifice that simulates the hydraulic
behavior of the battery module and then was implemented using the previous validated
numerical model (Figure 11).

Figure 10. (Q ÷ Δp) curve of the battery module heat exchanger.
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Figure 11. Numerical model with battery modules.

4.2. Hydronic Balancing

As previously said, each of the 16 battery modules that compose the electrical energy
storage system must be refrigerated with a specific flow rate at a specific temperature.
The system architecture (Figure 1) is made by three branches with the modules arranged
in parallel, in order to favor an equal distribution of the inlet flow Q of the coolant and,
therefore, to ensure the same thermal conditions for all users. Even if all the users are in
parallel, from a physical point of view these are arranged in sequence in order to reach each
battery by a line section of different length. The first and third branches serve six users
while the second serves only four users. As can be seen from Figure 12, these conditions
favor the unbalancing of the flow rates; therefore, actions are needed to obtain the optimum
condition of hydronic balancing:

Q1
∼= Q2 ∼= . . . ∼= Q16. (6)

In this case two solutions are proposed, the first provides calibrated orifices in the
branches with greater flow rate; the second involves a layout modification.

Figure 12. Flow rates in the individual battery modules for an inlet flow of 300 L/min.
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4.2.1. Solution 1: Calibrated Orifices

From the diagram of the individual flow rates (Figures 12 and 13A), it can be seen that
the flow rate in the first two branches was higher than the one in third branch. In order to
balance the flow rates, the calibrated orifices can be placed upstream of the battery modules
of the first two branches. Figure 13B shows the results obtained when using 10 mm orifices
in the first two branches of the cooling system, while Figure 13C shows the results obtained
when using 9 mm orifices in the first branch and 8.5 mm orifice in the second branch. With
these measures, a fairly good hydronic balance was achieved; the difference between the
higher and the lower flow rate was reduced by 90%.

Figure 13. (A) Flow rates without calibrated orifices. (B) Flow rates with 10 mm orifice in the first
and second branches. (C) Flow rates with 9 mm orifice in the first branch and 8.5 mm orifice in the
second branch.

4.2.2. Solution 2: Layout Modification

Assuming the pressure drop across a single battery module can be described as the
pressure drop occurring in an equivalent orifice with a section Ω, the flow rates that circulate
in the three branches of the hydraulic system were evaluated according to Equation (7):

Q =

√
Δp
R

(7)

where R indicates the hydraulic resistance introduced by the equivalent orifice:

R =
ρ

2C2
f Ω2

. (8)

Since the three branches were in parallel, the pressure drop across the hydraulic circuit
was always equal to ΔpA,B, and, since all the battery modules are the same, the sections
of the equivalent orifices with which they were replaced were equal. According to the
definition of the orifices in parallel, the first and the third branches, which deliver coolant to
six battery modules, had an equivalent orifice section of 6Ω, while the second branch, with
four battery modules, had an equivalent orifice section of 4Ω. From Equations (7) and (8),
it is possible to evaluate the flow rates in the three branches QI , QII , and QIII as follows:

QI = QIII = Cf · 6Ω

√
2ΔpA,B

ρ
(9)
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QII = Cf · 4Ω

√
2ΔpA,B

ρ
. (10)

Therefore:
QI
QII

=
QIII
QII

= 1.5 (11)

which is consistent with the results found before.
Regarding the pressure drop of the three branches it can be observed that (Figure 1):

ΔpA,B = ΔpA1,B1 + ΔpA,A1 + ΔpB1,B (12)

ΔpA,B = ΔpA2,B2 + ΔpA,A2 + ΔpB2,B (13)

ΔpA,B = ΔpA3,B3 + ΔpA,A3 + ΔpB3,B. (14)

Assuming:
ΔpA,A1 + ΔpB1,B = Δp1 (15)

ΔpA,A2 + ΔpB2,B = Δp2 (16)

ΔpA,A3 + ΔpB3,B = Δp3 (17)

it is possible to rewrite Equations (12)–(14) as:

ΔpA,B = ΔpA1,B1 + Δp1 (18)

ΔpA,B = ΔpA2,B2 + Δp2 (19)

ΔpA,B = ΔpA3,B3 + Δp3 (20)

where, from the Darcy–Weisbach equation:

Δpi =
λi li
dh

ρQ2
i

2A2 with i = 1, 2, 3 ( f or Q, i = I, I I, I I I) (21)

in which

• λ is the friction factor for a relative unitary length stretch of pipeline l/dh; it depends
on the Reynolds number and the relative roughness of the inner surface of the pipe;

• dh is the hydraulic diameter;
• l is the length of the pipeline section for each branch;
• A is the section of the pipe.

Analyzing Equation (21), from Equation (11) results:

QI ∼= QIII > QII . (22)

In addition, given the arrangement of the branches:

l1 < l2 < l3 (23)

while, for high Reynolds numbers (as in the present case, where Re is of the order of 106), λ
is almost constant.

Given the relations (22) and (23), and since Δpi depends on the square of the flow rate,
while only linearly on the length of the stroke, it is observed that:

Δp3 > Δp1 > Δp2 (24)

from which, given (18)–(20), it follows that:

ΔpA2,B2 > ΔpA1,B1 > ΔpA3,B3 (25)
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and finally, given (7), results:

Q7,8,9,10 > Q1,2,3,4,5,6 > Q11,12,13,14,15,16 (26)

which is consistent with the results shown in Figure 12.
From the previous considerations it appears that if the Δpi are the same, the flow rates

in the individual modules are also equal; therefore, in order to improve the balancing of the
flow rates without introducing further pressure drops, Equation (21) must be considered,
in which all terms are constant, except for l and Q.

Q depends on the number of modules placed in a branch, as can be seen from
(9) and (10), while l depends on the position in which the modules are arranged. To
equal the Δpi it is necessary to increase l when Q is small; in other words, the branch with
fewer users must be placed as far away as possible as well as in the model in Figure 14. In
this condition it is possible to see the results in terms of flow rate in the individual modules
in Figure 15.

Thanks to this solution, a maximum flow rate imbalance of 0.4 L/min was obtained,
which was much lower than the maximum flow rate imbalance of 1.5 L/min of the initial
layout. In this case the difference between the higher and the lower flow rate was reduced
by 73%.

4.2.3. Comparison between the Two Solutions

In terms of flow rates, the solution with the calibrated orifices involves a better balance
than the layout modification. Indeed, while the first reduces the imbalance by 90%, the
second is limited to 73%. In contrast, in terms of overall pressure drop between the inlet
manifold and the outlet manifold ΔpA,B (Figure 1), the first solution provided a ΔpA,B1 of
1.47 bar, while the second, since it introduced secondary losses due to orifices, provided a
higher ΔpA,B2 of 1.64 bar. This difference in pressure drops, multiplied by the nominal flow
rate Q of 300 L/min, caused a global power saving Ps for the whole system of 585 W.

Figure 14. Layout modification: the branch with fewer users is placed as last.
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Figure 15. Flow rates in the individual battery modules in case of layout modification.

5. Conclusions

In this paper, a lumped parameter model of the three branches liquid cooling system
of a battery pack for railway traction was initially validated. The validation was carried
out in two phases. First, a model of a cooling system without batteries was used, in which
the numerical results were compared with the experimental results obtained using an
ultrasonic clam-on type flow sensor. The results obtained showed a maximum error of
2% in the first two branches, while, in the third branch, there was a slightly higher error
which will be investigated by inserting additional pressure transducers in the next battery
box prototype. Then, the battery modules, previously characterized on a test bench, were
also included in the model. The validated model was used to find the hydronic balancing
condition among all the battery modules. To distribute the flow equally, two solutions
were proposed. The first involved calibrated orifices upstream of the modules with greater
volumetric flow rates, while the second modified the layout by placing the branch with
fewer users in the last position. Finally, the two solutions were compared to evaluate
the energy savings obtained by using the second solution instead of the first. From the
comparison, using the second solution, a power saving for the pump of almost 600 W
was estimated.

This power saving method is based on the equalization of the flow rates without
introducing secondary losses. This is possible if the branch in which there is the lowest
flow rate, the one with the least utilities, is also the longest one. Thus, the product of the
two terms l and Q in the Darcy–Weisbach equation tends to be the same for every branch.

This model represents a significant advantage and provides great support in the
optimization phase of the cooling system in terms of energy saving and rapid and low-cost
experimentation, thus increasing the efficiency of the R&D phase in product manufacturing.
Indeed, thanks to this approach it has been possible to compare several solutions without
building expensive prototypes, both when considering the calibration of the orifices and
the assembly of the system.

In this case, the main challenge facing liquid BTMS was to obtain a criterion for energy
savings derived only from the hydraulic system. In order to achieve this, different flow

204



Sensors 2023, 23, 390

measurements were necessary at different points in the system. The use of a clamp-on type
sensor made the experimental campaign easier and more flexible, since with just one sensor
it was possible to detect the flow rate in different branches without making any changes to
the system.

Future developments will provide the implementation of a model for the thermal
dissipation of the batteries in order to create a complete digital twin of the cooling system
of the battery thermal management that will allow us to perform numerical tests aimed at
finding the best cooling method to reduce energy consumption for safe, sustainable, and
comfortable collective mobility.

Author Contributions: Conceptualization, E.F., L.B. and A.S.; Methodology, R.D.R. and E.F.; Software,
R.D.R. and L.R.; Validation, R.D.R.; Formal analysis, R.D.R.; Investigation, R.D.R. and L.B.; Resources,
L.B. and A.S.; Data curation, R.D.R.; Writing—original draft, R.D.R.; Writing—review & editing, L.R.,
E.F. and A.S.; Visualization, L.R.; Supervision, L.R., E.F. and A.S.; Project administration, L.R., E.F.
and A.S.; Funding acquisition, A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions, e.g., privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A Pipe cross-sectional area (m2) Q Volumetric flow rate (m3/s)
Ar Aspect ratio (-) R Hydraulic resistance (Pa s2/m6)
c Speed of sound (m/s) Re Reynolds number (-)
Cf Orifice coefficient (-) rr Relative roughness (-)
dh Hydraulic diameter (m) Twave Wave travel time (s)
Dn Dissipation number (-) λ Friction factor (-)
l Length of a pipeline (m) ν Kinematic viscosity (m2/s)
p Pressure (Pa) ρ Density (kg/m3)
P Power (-) Ω Orifice cross-sectional area (m2)
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Abstract: As the application fields for digital twins have expanded, various studies have been
conducted with the objective of optimizing the costs. Among these studies, research on low-power
and low-performance embedded devices has been implemented at a low cost by replicating the
performance of existing devices. In this study, we attempt to obtain similar particle count results in
a single-sensing device replicated from the particle count results in a multi-sensing device without
knowledge of the particle count acquisition algorithm of the multi-sensing device. Through filtering,
we suppressed the noise and baseline movements of the raw data of the device. In addition, in the
process of determining the multi-threshold for obtaining the particle counts, the existing complex
particle count determination algorithm was simplified to make it possible to utilize the look-up table.
The proposed simplified particle count calculation algorithm reduced the optimal multi-threshold
search time by 87% on average and the root mean square error by 58.5% compared to existing method.
In addition, it was confirmed that the distribution of particle count from optimal multi-thresholds
has a similar shape to that from multi-sensing devices.

Keywords: digital twin; dust sensing; particle count; ADC filter; embedded device

1. Introduction

A digital twin replicates real-world environments and simulates prediction results
using a computer. The applications of digital twins are expanding throughout the industry
owing to their advantages such as safety, repeatability, and the low cost of predicting
results [1]. Digital twins are widely used in manufacturing to predict the results of a product,
and recently, the scope of autonomous driving has expanded through the digitization of
cities [2–8].

In particular, Industry 4.0 further emphasizes the importance of digital twins in smart
factories that have intelligent production systems [9–12]. Additionally, with the increase
in the average life expectancy of people, interest in health is increasing. Recently, due
to respiratory diseases caused by the coronavirus, interest in air quality among living
environments is on rise [13–15].

Dust-sensing devices digitize and provide dust concentration information in the air.
The use of a digital twin of dust concentration is important in minimizing the occurrence
of defects in ultra-fine processes in the industrial field [16], and in the case of buildings,
it is used for periodic internal air circulation [17,18]. The importance of digital twins
in the continuous management and conservation of energy consumption, particularly in
relation to the heating, ventilation, and air conditioning systems of buildings, is consistently
increasing [19]. In daily life, the increase in indoor fine dust concentration due to air
pollution is measured and used to establish an IoT environment linked to the automatic
operation of air purifiers and fans.
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Digital-twinned dust sensing systems are used in both industry and daily life, and
their field of application is expanding [20,21]. Accordingly, to cover long-term operation
and wide measurement areas, existing devices are being replaced by low-power and low-
cost embedded devices, and existing algorithms are being improved and optimized to be
made suitable for low-memory embedded devices [22,23].

In this study, we minimized the cost by replicating the particle count (PC) of an existing
dust sensing device. The existing device uses multiple sensors to measure the number of
particles according to the size of dust. In this study, we attempt to replicate the performance
of a multi-sensor device (reference device) through a single-sensor device (test device) to
minimize the power consumption and reduce the cost of the dust sensing system.

To this end, this study was conducted in three parts: (1) analog-to-digital converter
(ADC) filter design, (2) multi-threshold search, and (3) PC similarity analysis.

First, the light scattered by the dust was measured in terms of voltage using a photodi-
ode. The larger the dust particle, the more light is scattered, resulting in a higher voltage.
The change in the magnitude of the voltage measured by the photodiode is small. Thus, if
the baseline of the ADC fluctuates owing to the power supply noise, an error occurs in the
PC calculation. To improve this, in this study, we minimized the effect of power noise by
detecting baseline fluctuations using an average filter and then removing them. In addition,
because the test device is vulnerable to noise, an average filter was additionally applied to
suppress noise.

After filtering the ADC, determining a multi-threshold for measuring the PC according
to the size of the dust particle for the filtered ADC is necessary. In general, it is to generate
a look-up table (LUT) for a PC measurement algorithm because the threshold used in the
PC measurement process is not independent of other thresholds. Therefore, the searching
time for optimal multi-thresholds increases exponentially with the number of dust size
categories. Furthermore, the general PC measuring algorithm considers the width of the
voltage pulse in the ADC. This makes the algorithm more complex and makes it difficult to
generate LUTs, which further increases the searching time for optimal multi-thresholds.
The simplification of optimal multi-threshold searching algorithm is required because
run-time execution is important in digital twinning using light-weight embedded devices.
In this study, we improved the searching time and root mean square error (RMSE) using
LUTs by simplifying various variables used for the PC measurement. We reduced search
time by 87% and RMSE by 58.5% compared to the existing method.

In searching for the optimal multi-threshold, the suitability of the given multi-threshold
is determined by comparing the PCs from the test device (TPCs) with that from the refer-
ence device (RPCs). However, the TPCs are generally lower than the RPCs because the
test device is a single-sensor device. Thus, comparing the two sets of PC data was difficult.
To solve this, we normalized RPCs and TPCs in two steps. Firstly, we normalized RPCs
and TPCs according to the maxima of RPC0.3 and TPC0.3, which are generally the highest
values between PCs. This process normalizes the scale between the RPCs and TPCs. After
the first normalization, a secondary normalization is performed for each RPC and TPC
with the corresponding maxima of the RPCs. This process normalizes the internal scales of
RPCs and TPCs. After normalization, the similarity was compared using the RMSE.

By repeating the update of the multi-threshold and similarity measurement, the
optimal multi-threshold with the highest similarity are determined. Then, we can obtain
the TPCs using the optimal multi-threshold that replicates the RPCs.

Figure 1 is a schematic of the proposed method.
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Figure 1. Digital twin in dust sensing.

In this manner, without a known ADC and PC measuring algorithm for the reference
device, the optimal multi-thresholds are determined such that the TPCs replicate the RPCs.

The remainder of this paper is organized as follows. Section 2 introduces the structure
of the dust-sensing system and explains the ADC filtering. Section 3 explains the TPCs
acquisition processes using optimal multi-thresholds. After confirming that the RPCs are
replicated well through experiments on the acquisition of TPCs in Section 4, concluding
statements are provided in Section 5.

2. Dust Sensing System

2.1. Light Scattering Method

PM encompasses particles of sulfate, black carbon, dust from erosion, pollen, and
so on [24]. Various methods are available for measuring dust concentration. Existing
representative dust measurement methods for PM2.5 include the gravimetric method and
the beta-ray absorption method [25]. The gravimetric method manually measures the
weight of the collected dust, while the beta-ray absorption method automatically measures
the concentration using the amount of beta-rays absorbed by the dust.

Although the gravimetric method is accurate, it requires considerable time to collect
dust and has the disadvantage of needing to maintain a consistent temperature and hu-
midity during the measurement process. The beta-ray absorption method measures the
dust concentration at intervals of one hour, but its accuracy is relatively lower compared
to the gravimetric method. This measurement method is suitable for confirming the con-
centration of dust in everyday life on a daily or hourly basis; however, it is not suitable for
real-time measurements.

Recently, various sensor-based measurement devices have been developed to over-
come the limitations of traditional dust measurement devices, even though their reliability
has not been fully achieved. Among these devices, the light scattering method-based
measurement device is lightweight, compact, and capable of providing measurements
within a short time frame, ranging from one second to one minute [26,27].

Table 1 presents the comparison of characteristics of different dust sensing methods.

Table 1. Comparison of characteristics of dust sensing methods.

Sensing Method Accuracy Time Measurement Portability Cost

Gravimetric Very high 24 h Manual Low High

Bete-ray high 1 h Automatic Low High

Light scattering Low
1 s

∼1 min Automatic High Low
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The light scattering method has a limitation in that it cannot be used for administrative
statistics due to its low accuracy compared to other methods. However, it is the most
suitable for digital twinning of dust sensing due to its advantages such as its portability,
low power consumption, low cost, and real-time processing.

The light-scattering method measures the amount of light scattered by dust. Figure 2
illustrates the concept of the light scattering method.
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Figure 2. Light scattering method.

The larger the dust, the more light is scattered, resulting in a higher intensity of the
detected light and wider voltage pulses. Based on this characteristic, the PC categories were
classified according to the magnitude of the voltage, and the number of samples falling
within each category range was counted. The sampling frequencies of the ADC and TPCs
used in this study were 50 kHz and 1/6 Hz, respectively. One TPC sample for each PC
category was calculated by counting 300,000 ADC samples.

Typically, the number of dust particles based on size is primarily counted for each
category of differential PC (dPC), and the actual PC value is subsequently measured by
accumulating the dPC values. For instance, dPC0.3 consists of particle counts smaller than
0.5 μm, and the threshold of dPC is determined by the next category of dPC.

Moreover, dPC0.5, dPC1.0, · · · , and dPC10.0 are calculated in a similar way. PC0.3
is the accumulation of dPC0.3 to dPC10.0, and PC0.5 is the accumulation of dPC0.5 to
dPC10.0, as shown in (1):

PC0.3 = dPC0.3 + dPC0.5 + · · ·+ dPC10.0 (1)

PC0.5 = dPC0.5 + dPC1.0 + · · ·+ dPC10.0
...

PC10.0 = dPC10.0

Thus, PC0.3 ≥ PC0.5 ≥ · · · ≥ PC10.0.

2.2. ADC Filtering

The light scattered by dust was measured using a photodiode. The voltage measured
increased as the size of the dust particles increased. The PC is categorized into various
categories based on the size of the dust, such as PC0.3, PC0.5, and PC1.0. To obtain the
PC for each category, thresholds are required. In general, a global threshold was used
assuming no changes in environmental conditions. However, when the global threshold
is used, variations in the baseline caused by power supply noise can lead to erroneous
detection. Additionally, it becomes challenging to use the existing global threshold when
there are overall voltage fluctuations due to external environmental factors during the
measurement. To address these issues, baseline variations and bases were eliminated,
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creating an environment suitable for the application of global thresholds. Figure 3 illustrates
the raw ADC data, showing the fluctuations in the baseline.

Sample[N]

AD
C

Power noise
Raw ADC data

Figure 3. ADC raw data and baseline fluctuation noise.

As shown in Figure 3, baseline fluctuations caused by power supply noise were
observed. These fluctuations posed challenges when detecting particles based on the
global threshold. Excessive particle detection occurred when the baseline was low, while
all samples exceeded the threshold when the baseline was high, resulting in no particle
detection. Therefore, a preprocessing step is necessary to suppress baseline fluctuations.

Baseline fluctuations are commonly mitigated using a high-pass filter. Another ap-
proach involves acquiring baseline information through a low-pass filter and then removing
the low-pass-filtered signal to suppress baseline fluctuations. In this study, we designed a
suitable filter, considering both finite impulse response (FIR) filters and infinite impulse
response (IIR) filters, to effectively suppress baseline fluctuations.

2.2.1. FIR Average Filter

The test device used in this study can apply to an eight-tap FIR filter. Based on this,
we apply a seven-tap moving average filter as in (2):

y[n] =
6

∑
i=0

1
7

x[n − i] (2)

Figure 4 illustrates the input and filtered ADCs.
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Figure 4. Input and filtered ADCs using 7-tap FIR moving average filter.

As a result, the FIR moving average filter, which uses a small number of taps, is highly
responsive to baseline changes and can be influenced by high ADC samples. Consequently,
it has a disadvantage in preserving high ADC samples generated by a large amount of dust.
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On the other hand, if the window size of the moving average is increased, the filter
becomes less sensitive to baseline changes, leading to improved preservation of high ADC
samples. However, increasing the number of taps in the FIR filter significantly increases
the cost, presenting a challenge.

2.2.2. IIR Average Filter

The IIR filter offers the advantage of achieving a similar effect to that of a large number
of taps in an FIR filter, even with a small number of taps. The transfer function of the IIR
filter is defined using the Z-transform, as shown in (3):

H(z) =
Y(z)
X(z)

=
∑P

i=0 biz−i

∑Q
j=0 ajz−j

, (3)

where P is the feedforward filter order, Q is the feedback filter order, bi represents the
feedforward filter coefficients, and aj represents the feedback filter coefficients.

In this paper, we designed a second-order IIR filter to produce a similar result to that
of an FIR filter with a window size of 50, as shown in (4):

bi = [0.02, 0.000417, 0.000417] (4)

aj = [1,−0.97917, 0]

Figure 5 illustrates the experimental results using the IIR filter.
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Figure 5. Input and filtered ADCs using second-order IIR filter.

The results of the 49-tap FIR filter using MATLAB were compared, and it was con-
firmed that the results of the second-order IIR filter were sufficiently similar.

2.2.3. Composite FIR and IIR Filters

From the previous experiment, it was confirmed that the IIR filter can effectively detect
baseline fluctuations, even with a small number of taps. In order to further improve the
filtering performance, a 4-tap lowpass filter was applied to the FIR filter to suppress extreme
high-frequency noise signals. This means that the FIR filter suppresses the high-frequency
component, while the IIR filter captures the baseline and suppresses it, resulting in an
overall effect similar to a bandpass filter that suppresses the low-frequency component.

2.3. General PC Calculation Algorithm

From the filtered ADC data, the number of voltage pulses was counted using each
threshold to measure each dPC. Subsequently, each PC was obtained by accumulating
the corresponding dPC values. Therefore, multiple thresholds are required, one for each
category of PC.
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In general, the amount of light scattering increases with the size of the dust, resulting
in higher voltage measurements on the photodiode. This indicates a larger amount of dust
being observed. As a result, the ADC threshold gradually increases depending on the size
of the dust: Thr0.3 ≤ Thr0.5 ≤ · · · ≤ Thr10.0. Therefore, when searching for a threshold, the
search can be performed within a range larger than the threshold of the previous category.
Using a LUT can also be effective in minimizing overlapping operations since previously
calculated thresholds often overlap during the multi-threshold search process.

However, the general PC calculation algorithm is not simply based on applying the
threshold to the ADC values. It takes into account factors such as the change in states
(increase or decrease) between previous and current samples, category changes based
on the threshold, and the width of the voltage pulse. Figure 6 illustrates the conceptual
diagram of the general PC calculation algorithm.
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Figure 6. Algorithm scheme of general PC calculation.

It is necessary to consider not only the optimization of multiple thresholds for the
ADC voltage but also multiple thresholds for the pulse width. The measurement results of
PC according to these thresholds are not independent of each other. Therefore, applying an
LUT to the general PC calculation algorithm becomes difficult.

3. Proposed Algorithm

3.1. Simplified PC Calculation Algorithm

In this study, we simplified the algorithm by incrementing each PC when the voltage
of a sample exceeded a given threshold. In this simplified case, the same PC is obtained
regardless of the category for which the threshold is used to calculate the PC. As a result,
the PC values obtained according to the thresholds can be generated as an LUT. During the
optimal multi-threshold searching process, when calculating the similarity of TPCs for a
given set of multi-thresholds, there is no need to calculate the TPCs each time based on the
given thresholds. Instead, we can refer to the TPCs in the LUT and compare the similarity
with the RPCs.

Figure 7 illustrates the distributions of the LUT based on different thresholds and an
example of the TPC at thresholds 10, 20, and 40.

215



Sensors 2023, 23, 5557

(a) (b)

Figure 7. The LUT distribution and the example of TPCs according to thresholds: (a) LUT distribution;
(b) TPCs with thresholds 10, 20, and 40.

Figure 8 shows the simplified TPCs calculating algorithm using LUT.
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Figure 8. The simplified TPC calculating algorithm using LUTs.

Compared to Figure 6, the redundancy of the calculation of the TPCs according to the
threshold is removed, resulting in a simplified process.

3.2. PC Similarity Measurement

In general, the RMSE is widely used to measure the similarity of two signals.
For two given signals X and Y, the RMSE is calculated as in (5):

RMSE(X, Y) =

√
∑N

i=1(xi − yi)2

N
, (5)

where N is the length of the two signals.
RMSE is commonly used to measure the similarity between two signals when their

scales are similar.
However, comparing the similarity between RPCs and TPCs becomes challenging due

to the significant difference in their scales. In such cases, the Pearson similarity method [28]
is often employed as an alternative. The Pearson similarity is calculated using (6), which is
suitable for comparing signals with different scales:

ρ(X, Y) =
1

N − 1

N

∑
i=1

(
X − μX

σX

Y − μY
σY

)
, (6)

where μ and σ represent the mean and standard deviation of the signal, respectively.
The Pearson similarity is a robust measure that takes into account baseline movements

and scale changes between signals. It achieves this by normalizing the signals through
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the subtraction of their mean values and division by their standard deviations. This
normalization process helps to mitigate the impact of baseline shifts and variations in scale,
allowing for a more accurate comparison of the signals’ similarity.

In this study, instead of comparing two single-channel signals, it is necessary to
compare multiple multi-channel signals corresponding to the number of PC categories. As
a result, normalizing RPCs and TPCs using the Pearson similarity becomes challenging.

In this study, we calculate the RMSE after normalizing the scales of RPCs and TPCs
through two-step normalization using (7) and (8):

RPC0.3′ = RPC0.3/max(RPC0.3) (7)

TPC0.3′ = TPC0.3/max(TPC0.3)

RPC0.5′ = RPC0.5/max(RPC0.3)

TPC0.5′ = RPC0.5/max(TPC0.3)
...

RPC10.0′ = RPC10.0/max(RPC0.3)

TPC10.0′ = RPC10.0/max(TPC0.3)

RPC0.3′′ = RPC0.3′/max(RPC0.3′) (8)

TPC0.3′′ = TPC0.3′/max(RPC0.3′)
RPC0.5′′ = RPC0.5′/max(RPC0.5′)
TPC0.5′′ = RPC0.5′/max(RPC0.5′)

...

RPC10.0′′ = RPC10.0′/max(RPC10.0′)
TPC10.0′′ = RPC10.0′/max(RPC10.0′)

Figure 9 shows the process of primary and secondary normalized RPCs and TPCs for
measuring the RMSE.

Equation (7) and Figure 9b depict the first normalization of RPCs and TPCs, denoted
as RPCs’ and TPCs’. This first normalization is performed by dividing RPCs and TPCs by
their respective maxima, specifically RPC0.3 and TPC0.3. By doing so, the scale difference
between the RPCs and TPCs is addressed. Equation (8) and Figure 9c illustrate the sec-
ondary normalization of RPCs and TPCs, denoted as RPCs” and TPCs”. This secondary
normalization is carried out to address the scale difference within each multi-channel signal,
namely RPCs’ and TPCs’. During the secondary normalization process, RPCs’ and TPCs’
are divided by their corresponding maxima in RPCs, allowing the RMSE to be calculated
based on the magnitude of RPCs.

After normalizing the RPCs and TPCs, the similarity between them can be accurately
measured by utilizing the RMSE metric.

Figure 10 shows the process of measuring the RMSE through normalization based on
PC0.3.

For the RPCs, fixed data were obtained from the reference device. However, in the
case of TPCs, even if the same PCs are obtained from the LUT using the same threshold,
the normalized PC values can differ due to variations in the maximum value of PC0.3.
As a result, the LUT stores TPCs before normalization and measures their similarity after
normalizing the TPCs obtained from the LUT. This approach allows for accurate comparison
and assessment of the TPCs’ similarity.
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(a) (b) (c)

Figure 9. Example of normalization process for calculating RMSE: (a) RPCs and TPCs with given
multi-thresholds, (b) first normalization using maxima of RPC0.3 and TPC0.3, and (c) secondary
normalization using maxima of RPCs’.
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Figure 10. RMSE between RPCs and TPCs using two-step normalization.

4. Experiments

4.1. Experimental Environment

In this study, two particle sensors were used as test and reference devices. Figure 11
illustrates the two devices studied in the test chamber.

The two sensors were positioned in close proximity to each other within the test
chamber to enable simultaneous sensing and measurement of a stable change in particle
concentration. In this study, incense smoke was utilized as a surrogate for particulate
matter (PM). Following the smoking of incense for a specified duration, the process of
reducing the dust concentration through ventilation was observed and measured. To assess
the feasibility of digitally twinning the reference device, the temperature and humidity
levels inside the chamber were maintained at a constant level to minimize the influence of
external environmental variables. The test device employed in the experiment captured the
ADC readings at a sampling frequency of 50 kHz, followed by the acquisition of PCs at a
sampling frequency of 1/6 Hz, matching the sampling frequency of the RPCs.
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Figure 11. Arrangement of the two sensor devices and test environment.

4.2. Test Dataset Generation

For the experiments, three datasets were acquired from the chamber. The first
dataset assumed a high-concentration condition; the second dataset assumed a complex
dataset, including changes in the ventilation rate; and the third dataset assumed a low-
concentration condition. Figure 12 shows the RPCs of the three datasets obtained from the
reference device.

(a) (b) (c)

Figure 12. Three RPC dataset from the reference device: (a) first dataset with high concentration,
(b) second dataset with ventilation rate change, (c) third dataset with low concentration.

The small plot boxes inside each figure show the enlarged results of each PC1.0. The
reference device provides seven RPCs: RPC0.3, RPC0.5, RPC1.0, RPC2.5, RPC4.0, RPC7.0,
and RPC10.0. However, Figure 12 displays only the three RPCs, RPC0.3, RPC0.5, and
RPC1.0, because the test device can reliably replicate these RPCs. The possibility of the reli-
able replication of RPC2.5 or higher RPCs was analyzed through the following experiment.

Figure 13 shows the example of the change in RMSE between the RPC and TPC
obtained according to the threshold for the first dataset in Figure 12a.

In the case of TPC0.3, TPC0.5, and TPC1.0, it is possible to detect the optimal threshold
where the RMSE has a minimum value. However, in the case of TPC2.5, the RMSE
continuously decreases as the threshold increases, and the optimal threshold of TPC2.5
continuously increases until all TPC2.5 values become 0. This phenomenon occurs because
the expected result value is less than 1 when normalizing TPC2.5 according to the ratio
of RPC0.3 to RPC2.5. Each value of TPC2.5 represents the number of samples larger than
the given threshold Thr2.5. Therefore, having a value less than 1 means that there are no
samples larger than Thr2.5, and the RMSE is minimized when all TPC2.5 values become 0.
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Figure 13. RMSE distribution of each PC according to the thresholds.

This limitation arises from the fact that the test device used in this study is a low-
cost, single-sensing device. As a result, we observed that reliable replication of the RPC
calculation algorithm is feasible for PC0.3, PC0.5, and PC1.0 using the test device. Since
the focus of this study is to generate TPCs that replicate RPCs, PCs with values exceeding
PC2.5 were excluded from the analysis.

4.3. Experiments

The experimental results involved a comparison between the RPCs and the corre-
sponding TPCs. The TPCs obtained from the test device were generated using both the
existing general multi-threshold approach and the proposed simplified multi-threshold
approach. Figures 14–16 illustrate the comparisons of the results for the three datasets
shown in Figure 12.

(a) (b) (c)

Figure 14. Comparison of results of the first dataset: (a) RPCs, (b) TPCs determined by the existing
general multi-threshold detection, (c) TPCs determined by the proposed simplified multi-threshold
detection.
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(a) (b) (c)

Figure 15. Comparison of results of the second dataset: (a) RPCs, (b) TPCs determined by the existing
general multi-threshold detection, (c) TPCs determined by the proposed simplified multi-threshold
detection.

(a) (b) (c)

Figure 16. Comparison of results of the third dataset: (a) RPCs, (b) TPCs determined by the existing
general multi-threshold detection, (c) TPCs determined by the proposed simplified multi-threshold
detection.

The small plot boxes inside each figure show the enlarged results of each PC1.0. As
shown in Figures 14–16, without knowledge of the ADC and PCs generation algorithm of
the reference device, we replicated the RPCs and the TPCs.

Table 2 shows a detailed comparison of the RMSE results in Figures 14–16.

Table 2. RMSE comparison between existing method and proposed method.

Method Data
RMSE

PC0.3 PC0.5 PC1.0 Average

Existing method

First dataset 0.046512 0.072553 0.312398 0.143821
Second dataset 0.048505 0.095210 0.960891 0.368202
Third dataset 0.068228 0.092008 0.982927 0.381054

Average 0.054415 0.086590 0.752072 0.297692

Proposed method

First dataset 0.032825 0.068624 0.210889 0.104113
Second dataset 0.046248 0.088694 0.241081 0.125341
Third dataset 0.062146 0.080355 0.281287 0.141263

Average 0.047073 0.079224 0.244419 0.123572

Through our evaluation, we observed a notable improvement in the digital twinning
performance, as the overall RMSE in the proposed method was significantly reduced.
Specifically, the overall RMSE decreased from 0.297692 to 0.123572, indicating a substantial
reduction of approximately 58.5%. Of particular significance is the improvement observed
in PC1.0, where the average RMSE decreased from 0.752072 to 0.244419, representing a
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significant reduction in RMSE of about 67.5%. This reduction in RMSE highlights the
effectiveness of the proposed method in accurately replicating PC1.0 values. These findings
demonstrate the enhanced performance and accuracy achieved by our proposed method
in digital twinning, providing more reliable replication of PC values and reducing the
discrepancy between the reference device and the embedded device.

Figure 17 shows a comparison of the processing times of the optimal multi-threshold
searching algorithms for the three test datasets.
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Figure 17. Comparison of processing time of optimal multi-threshold searching algorithms.

The execution time of the simplified algorithm was reduced by an average of approxi-
mately 87% from 474.64 to 62.22 for the first dataset, as shown in Figure 14; from 1017.19 to
130.69 for the second dataset, as shown in Figure 15; and from 307.42 to 38.60 for the third
dataset, as shown in Figure 16.

Compared to the existing algorithm that has to repeat the calculation of the PC for the
50 kHz sampling frequency data, the proposed simplified algorithm that requires only one
calculation through the LUT can considerably reduce the execution time. Therefore, it can be
confirmed that the proposed simplified algorithm using LUT not only significantly reduces
the execution time, but also maintains the distribution of PCs, as shown in Figures 14–16.

5. Conclusions

In this study, we aimed to replicate the PCs of a high-cost reference device using a low-
power and low-cost embedded device with a single sensor. To optimize the execution time,
we proposed a simplified multi-threshold search process for calculating TPCs using an LUT.
The experimental results demonstrated that the TPCs calculated using the LUT effectively
preserved the distribution of RPCs and existing TPCs while significantly reducing the
execution time and RMSE by approximately 87% and 58.5% on average, respectively.

The RMSE analysis based on the LUT thresholds revealed that the proposed method
reliably replicated PC0.3, PC0.5, and PC1.0 with optimal thresholds. However, in the case of
PC2.5 or higher PCs, digital twinning was not feasible due to the limited number of samples
in the single-sensor device compared to the reference device. To expand the applicability
of digital twinning, future research should focus on increasing the number of channels or
signal amplification to enable the detection of appropriate thresholds for higher PCs.

Furthermore, the proposed method has limitations in that it was tested under constant
temperature and humidity conditions to minimize the influence of external factors. To
achieve more generalized digital twinning, it is necessary to explore the preprocessing of
RPCs and raw ADC data or post-processing of TPCs to account for changes in temperature
and humidity. Developing a robust PC calculation algorithm that can handle environmental
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variations is crucial, along with analyzing sensor response time, PC calculation execution
time, and minimum processor performance requirements for real-time processing.

The proposed algorithm successfully obtained TPCs by replicating RPCs. As a next
step, future research should focus on obtaining test particulate matter (TPM) by replicating
the unknown transfer function of reference particulate matter (RPM) from RPCs. Consider-
ing the scale difference between RPCs and TPCs in the TPM calculation process will ensure
that RPMs and TPMs have similar scales and distributions. Since PMs are widely used
as indicators of dust concentration, this future research will represent the final stage in
achieving digital twinning of dust sensing systems.
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Abstract: Defocus is an important factor that causes image quality degradation of optoelectronic
tracking equipment in the shooting range. In this paper, an improved blind/referenceless image
spatial quality evaluator (BRISQUE) algorithm is formulated by using the image characteristic
extraction technology to obtain a characteristic vector (CV). The CV consists of 36 characteristic
values that can effectively reflect the defocusing condition of the corresponding image. The image
is evaluated and scored subjectively by the human eyes. The subjective evaluation scores and CVs
constitute a set of training data samples for the defocusing evaluation model. An image database
that contains sufficiently many training samples is constructed. The training model is trained to
obtain the support vector machine (SVM) model by using the regression function of the SVM. In
the experiments, the BRISQUE algorithm is used to obtain the image feature vector. The method of
establishing the image definition evaluation model via SVM is feasible and yields higher subjective
and objective consistency.

Keywords: optoelectronic tracking equipment; image definition; defocus; BRISQUE algorithm;
support vector machine

1. Introduction

The image, which is an important carrier of information, has been widely used in
health, medical community, consumer electronics, etc. However, distortions are inevitably
induced during image acquisition, transmission, processing, and display. The distortions
cause the image quality degradation [1]. Evaluating, comparing, and optimizing the image
quality effectively has gradually become a research hotspot in many fields, such as visual
psychology, image processing, pattern recognition, and artificial intelligence [2–4].

Image distortion occurs, to a certain extent, in the process of acquisition, processing,
compression, transmission, and display. Therefore, it is necessary to establish objective and
effective quality assessment methods to evaluate the image quality [5–7]. At present, the
image quality assessment includes subjective assessment and objective assessment. Image
quality is evaluated by the subjective perception of the human eyes in a subjective evalua-
tion method. As an objective evaluation method of the image quality, the mathematical
models of image quality assessment are established [8,9].

The objective methods of image quality assessment include full reference image
quality assessment (FR-IQA), reduced reference image quality assessment (RR-IQA), and
no reference image quality assessment (NR-IQA), according to whether the reference image
is needed. In the paper, NR-IQA is used to evaluate the image quality [10,11].

The main factors which affect the quality of optical measurement images include
atmospheric disturbance, atmospheric extinction, optical diffraction of optical lens, defo-
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cusing, image motion, camera jitters, noise of image sensor, and so on. The image quality
assessment method of defocused image is mainly studied in this paper.

If the external noises can be ignored, defocus is an important factor in image blur in
the image tracking process of optoelectronic tracking equipment. To estimate the defocus
severity of optoelectronic tracking equipment, image quality is evaluated objectively via an
image quality evaluation algorithm [12,13]. At the same time, image characteristic values,
which reflect the image quality, are obtained. The values can provide a condition for
establishing the model for evaluating the focus performance based on the correlations
between image characteristic values and defocus state parameters.

The optical system of optoelectronic tracking equipment can be regarded as a low-
pass filter and an increase in the defocus is equivalent to a reduction in the filter cut-off
frequency [14–18].

This paper mainly studies image evaluation indices in the defocusing state of opto-
electronic tracking equipment and a method for obtaining the image characteristic values
based on the indices. The characteristic values that are obtained via an image evaluation
algorithm can be used to repair the image quality degradation that is caused by defocused
equipment. The result of the image evaluation algorithm should be consistent with the
subjective perception of the human eyes [19–21].

The causes of image blur also include interference factors, such as image motion of
equipment and data compression, in addition to the defocus of the imaging system. A gen-
eral referenceless image evaluation algorithm should be selected instead of a referenceless
image evaluation algorithm with known distortion [22–24].

Comparisons are performed from two aspects: the theory and the performance of the
evaluation algorithm. The main referenceless image quality evaluation algorithms that per-
form well are as follows: (1) Moorthy’s blind image quality index (BIQI) algorithm, which
is implemented in the wavelet domain [25]; (2) Moorthy’s distortion-identification-based
image verity and integrity evaluation (DIIVINE) algorithm, which is based on the BIQI
algorithm [7]; (3) Saad’s distortion-identification-based image verity and integrity evalu-
ation (DIIVINE) algorithm [26] and the BLIINDS-II improved algorithm [27]; (4) Mittal’s
BRISQE algorithm [28] and the natural image quality evaluator (NIQE) algorithm, which is
referenceless [29]; (5) Li’s general regression neural network (GRNN) algorithm [30]; and
(6) Lintao Han’s combining convolution and self-attention for image quality assessment
network [31].

Spatial distortion directly affects the visual quality of an image. By considering
effective spatial characteristics, image quality evaluation can achieve increased consistency
with subjective evaluation. At the same time, the characteristic values that are obtained via
spatial characteristic extraction lay the foundation for the study of building an evaluation
model for the defocused state.

Ruderman et al. found that the luminance of natural image normalization tends to
follow a normal (Gaussian) distribution [32]. They posit that the distortion of an image
changes the statistical characteristics of the normalization coefficient. By measuring the
changes in the statistical characteristics, the distortion type can be predicted and the image
visual quality can be evaluated [33]. Based on this theory, Mr. Mittal put forward the
BRISQUE algorithm [28], which is based on the image spatial statistical characteristics.
Ronin Institute et al. apply a broad spectrum of statistics of local and global features to
characterize the variety of possible video distortions [34].

Based on the image defocus characteristics of optoelectronic tracking equipment in
this paper, an improved BRISQUE algorithm is used with image characteristic extraction
technology to obtain a characteristic value (CV). The CV includes 36 characteristic values
that effectively reflect the defocus condition of the image [35]. The image is evaluated by
the human eyes and scored subjectively. Subjective evaluation scores and feature vectors
constitute a set of training data samples of the defocus evaluation model. A sufficient
amount of training samples is obtained by calculating the CVs of the image database. Then,
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the evaluation model is obtained by using a machine learning method that is based on
SVM to train the samples [36].

Many studies have employed machine learning models for prediction or classification
in many fields. A convolutional neural network (CNN) is used for robust classification of
PV panel faults [37]. A support vector machine (SVM) has become a common method of
discrimination. In the field of machine learning, it is usually used for pattern recognition,
classification, and regression analysis. For example, CNN- and SVM-based models can
provide doctors with the detection of heart failure using electrocardiogram signals [38].
The SVM and general regression neural networks (GRNN) were used for the diagnosis
of malfunction [39]. The adaptive support vector machine (A-SVM) was introduced for
classification together with the ORICA-CSP method [40].

The defocused image sequences of the optoelectronic equipment are computed via the
BRISQUE algorithm to obtain the CVs. The CVs are inputted into the evaluation model
to calculate the prediction scores. The image sequences are evaluated by the human eyes
subjectively. By considering the subjective and objective consistency of the results of the
evaluation algorithm, the effectiveness of the evaluation algorithm is assessed.

2. Acquiring the CV via the Improved BRISQUE Algorithm

The image database is built and the CVs of image samples from the image database are
obtained via the improved BRISQUE algorithm, which is weighted by a Gaussian function.
The image samples are evaluated subjectively by the human eyes and used as SVM model
training samples.

2.1. Training Image Sample Selection and Database Establishment

Many preliminary studies and experiments have demonstrated that if an image se-
quence of the optoelectronic tracking equipment is used for training directly, the training
model will be inaccurate, which will lead to the failure of forecast evaluation. The main
reason is that it is impossible to cover various details because the target and background
tracking are too monotonous. Using public database images for training is proposed. We
have used three public databases, namely, Laboratory for Image & Video Engineering (IVE),
Categorical Subjective Image Quality (CSIQ), and Tampere Image Database (TID2013).
Table 1 lists the databases that are used in this article and their data types.

Table 1. Image databases for training the model.

Name Num. of Distorted Images Num. of Reference Images Image Type

IVE 235 10 Grey and color
images

TID2013 1700 25 Color images
CISQ 866 30 Color images

According to the defocus characteristics of the device tracking image, an image
database that includes images in a sequence that ranges from defocused to focused and
back to defocused is established and each image is subjectively evaluated and scored. The
scoring principle is that a severely defocused image is assigned a low score and a better
focused image has a higher score. The results of model training demonstrate that the size
of the database should exceed 1000 pictures and the quality of the database directly affects
the application stability.

2.2. BRISQUE Algorithm

Two important advantages of using the BRISQUE algorithm are that the image defini-
tion evaluation score that is obtained by the algorithm can effectively reflect the defocus
state, and the obtained image characteristic vector facilitates the subsequent training and
evaluation of the machine learning model.
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From an image, the BRISQUE algorithm is used to extract 36 characteristic values,
which include the variances of the image brightness and the mean value. These features
are called local normalized brightness statistical characteristics.

Given an intensity image I(i,j), an operation that subtracts the image mean can be
applied to the image to obtain the mean subtracted contrast normalized (MSCN) image Î(i,j):

Î(i, j) =
I(i, j)− μ(i, j)

σ(i, j) + C
(1)

where i = 1, . . . , M and j = 1, . . . , N are spatial indices; M and N are the image height
and width, respectively; C is a constant that prevents instabilities from occurring when the
denominator tends to zero; and μ(i,j) and σ(i,j) are the local mean and standard deviation,
respectively, of I(i,j).

We model the statistical relationship between neighboring pixels using the empiri-
cal distributions of the pairwise products of neighboring MSCN coefficients along four
orientations: horizontal (H), vertical (V), main diagonal (D1), and secondary diagonal (D2).

H(i, j) = Î(i, j) Î(i + 1, j) (2)

V(i, j) = Î(i, j) Î(i, j + 1) (3)

D1(i, j) = Î(i, j) Î(i + 1, j + 1) (4)

D2(i, j) = Î(i, j) Î(i + 1, j − 1) (5)

The statistical properties of the MSCN coefficients are affected by the presence of
distortion. Quantifying these changes will make it possible to predict the type of distortion
that affects an image and its perceptual quality. According to [24], a generalized Gaussian
distribution (GGD) can be used to effectively capture a broader spectrum of distorted image
statistics. The GGD with zero means is expressed as follows:

f
(

x; α, σ2
)
=

α

2βΓ(1/α)
exp

(
−

( |x|
β

)α)
(6)

where

β = σ

√
Γ(1/α)

Γ(3/α)
(7)

and Γ(·) is the gamma function:

Γ(a) =
∞∫
0

ta−1e−tdt a > 0 (8)

The shape parameter, which is denoted as α, controls the ‘shape’ of the distribution,
while σ2 control the variance. The parameters of the GGD (α,σ2) are estimated via the
moment-matching-based approach that was proposed in [41].

The appropriate values of α and σ are calculated via the moment-matching-based
method and are two of the 36 characteristic values to be obtained. The parameters (ν,σl,σr)
and η are calculated based on Equations (9) and (12) for the other four images: H, V, D1,
and D2.

f
(

x; α, σ2
)
=

⎧⎪⎨⎪⎩
ν

(βl+βr)Γ(1/ν)
exp

(
−

(
−x
βl

)ν)
, x < 0

ν
(βl+βr)Γ(1/ν)

exp
(
−

(
−x
βr

)ν)
, x ≥ 0

(9)

where

βl = σl

√
Γ(1/ν)

Γ(3/ν)
(10)
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βr = σr

√
Γ(1/ν)

Γ(3/ν)
(11)

η = (βr − βl)

√
Γ(2/ν)

Γ(1/ν)
(12)

The details of the calculation process are presented in [24]. Via Equations (2)–(12),
we obtain 16 + 2 = 18 characteristic values. The other 18 characteristic values must be
calculated in other ways. The original image is down-sampled with a sampling

The characteristic values of the down-sampled image are calculated by following the
given steps again and we obtain another 18 characteristic values. Now, the calculation of
the 36 characteristic values is complete.

2.3. Improved BRISQUE Algorithm That Is Weighted by a Gaussian Function

Preliminary model training and prediction studies demonstrate that the characteristic
values that were directly obtained via the BRISQUE algorithm cannot stably evaluate the
defocused image sequence. For this particular situation, an improved BRISQUE algorithm
that is weighted by a Gaussian function is selected in this paper.

The pixels of the training image are scanned by using a Gaussian function template
and the center pixel value of the template is replaced with the weighted average gray
value of the pixels in the neighborhood that is determined by the template. The template
parameters of the Gaussian function are shown in Table 2. The image that is obtained by
weighting the training image by the Gaussian function is denoted as VarI. The characteristic
values of the new image are calculated by following the specified steps and we obtain 36
characteristic values, which are the input of machine learning training.

Table 2. Template of the weighted Gaussian function.

Weightiness 1 2 3 4 5 6 7

1 0.000157 0.00099 0.003 0.0043 0.003 0.00099 0.000157
2 0.00099 0.0062 0.0187 0.027 0.0187 0.0062 0.00099
3 0.0043 0.027 0.0813 0.1174 0.0813 0.027 0.003
4 0.003 0.0187 0.0563 0.0813 0.0563 0.0187 0.003
5 0.00099 0.0062 0.0187 0.027 0.0187 0.0062 0.00099
6 0.000157 0.00099 0.003 0.0043 0.003 0.00099 0.000157
7 0.000157 0.00099 0.003 0.0043 0.003 0.00099 0.000157

3. Support Vector Machine Model and Training

SVM is one of the basic methods of machine learning and the most important branch
of machine learning theory [42–44]. It plays an important role in the practical applications
of machine learning. SVM, which is a supervised learning model, is commonly used for
pattern recognition, classification, and regression analysis.

This paper uses the regression function of SVM. The improved BRISQUE algorithm is
used to calculate the CVs and subjective evaluation scores of images in the image database
as the model training sample for obtaining the SVM model. The image definition CVs of
the image database, which are calculated via the improved BRISQUE algorithm, are the
independent variables. The scores of the subjective evaluation are the dependent variables.
The independent and dependent variables are used as model training samples to obtain the
SVM model. The image CVs of optoelectronic tracking equipment are input into the SVM
model and predicted to obtain image evaluation scores. By comparing with the subjective
evaluation of the human eyes, the accuracy and reliability of the evaluation are assessed.
If the evaluation result does not meet the requirements, the above process can be iterated
until a subjective and objective SVM evaluation model is obtained. Another image database
can be used to calculate the characteristic vectors as needed and the image quality is scored
for the inputs of the new training model via SVM.
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This paper calls the LIBSVM library function, which was developed by Professor
Chi-Jen Lin [45] to train and test the SVM model. The LIBSVM library function version is
libsvm-3.23. In this paper, the support vector regression model “ε-SVR” is used in SVM.

The specified training sample can be represented as {(x1,z1), . . . . . . ,(xl,zl)}, where
xi ∈ Rn is the characteristic vector, which is obtained via the improved BRISQUE algorithm
and composed of 36 characteristic values, and zi ∈ R1 denotes the subjective evaluation
score of the image, which is the target output of the training model. When the penalty
parameter C > 0 and the parameter ε > 0, the standard form of the SVR is as expressed in
Equation (13):

min
w,b,ξ,ξ∗

(
1
2

wTw + C
l

∑
i=1

ξi + C
l

∑
i=1

ξ∗i

)
(13)

s.t.
wTφ(xi) + b − zi ≤ ε + ξi (14)

zi − wTφ(xi)− b ≤ ε + ξi (15)

ξi, ξ∗i ≥ 0, i = 1, · · · · · · , l (16)

According to the principle of SVM, Equation (13) is converted to a dual problem to
calculate α. The radial basis function (RBF) is selected as the kernel function, which is
denoted as K(x,z) = φT(x)φ(z); the form of the RBF is as follows:

K(‖x − z‖) = e
−‖x−z‖2

(2×σ)2 (17)

where σ is set to 0.5.
The training parameters of the LIBSVM library function are set as follows: penalty

parameter C is set to 1024, the probability estimate is set to 1, and other parameters use the
default parameter values of the LIBSVM function.

The samples from the image database of Table 1 are input into the SVM model and
model training is completed. The number of support vectors, which is denoted as total_sv,
is 772, and the bias b is −118.247.

4. Defocused Image Acquisition and Image Evaluation Test

4.1. Defocused Image Sequence Acquisition

In the process of tracking the real target using the optoelectronic tracking equipment,
to ensure that the target can be tracked effectively, the focus state cannot be adjusted. The
acquired image samples typically do not contain all image definition features, which makes
it impossible to fully evaluate the performance of the SVM model.

To identify the test images that meet the requirements, in the process of evaluating
the imaging quality of the optoelectronic tracking device, an imaging system is built for
obtaining image samples of various defocus states. A photo of the system is shown in
Figure 1. A Nikon 800 mm/F5.6 fixed-focus lens from the Nikon Corporation of Japan
is used in the imaging system. The piA2400-17 visible light camera is from BASLER
Corporation of Germany. The main properties of the camera are as follows: pixel size:
3.45 μm × 3.45 μm; and the number of pixels: 2448 × 2050.

4.2. Predictive Test of Definition Evaluation of Defocused Images

In this paper, a series of defocused and focused images with continuous change were
obtained by manually controlling the defocused position of the optical lens in the imaging
system. The images are used to test the effectiveness of the definition evaluation algorithm
of defocused images. At the same time, they are also used for algorithm comparison.
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Fixed-focus lens

Camera

 
Figure 1. Photo of the imaging system.

To acquire stable evaluation scores, static scenes are photographed using the imaging
system. Therefore, the image sequences in this paper are very similar to human visual
perception. The major differences between the images are definition and edge sharpness.
Serial numbers of the clear images are given in advance.

The image sequences are inputted into the trained SVM model, and the image def-
inition evaluation scores of defocused image sequences are the outputs of SVM model.
Because the image-focusing process and the serial numbers of the clear images are known,
the image definition evaluation scores can be compared with the defocused states of the
image sequences.

For the image sequences, the larger the score, the clearer the image is. Due to the
evaluation scores related to the CVs obtained by the BRISQUE algorithm, they are not
fixed values. However, the scores can reflect the definition of the image sequence with the
same scene. The image definition scores vary greatly among the image sequences with
different scenes.

4.2.1. Single-Peak Defocused Image Test

The indoor image sequence that was obtained by the experimental imaging system
is shown in Figure 2. The shooting process is from defocus to focus and back to defocus.
The 9th image of the 12 images in Figure 2 has the best visual effect. In the predictive
evaluation test of the 12 pictures via the SVM model, we obtained the curve that is shown
in Figure 3. The X-axis of the curve represents the serial numbers of the pictures and the
Y-axis represents the corresponding image definition evaluation values. The first image has
the largest defocused position, and its evaluation score is only −3.34. The ninth image with
the highest definition has the highest score of 20. The curve is consistent with the clarity of
the real image.

4.2.2. The Test of Algorithm Comparison

The structural similarity (SSIM) is compared with the SVM model in this paper. As
shown in Figure 4, the first image in the image sequence has the largest defocus, and it is
the most blurred image to human visual perception. As the serial number increases, the
image has a higher definition with defocused decreasing. The 14th image is the clearest
to human perception. The evaluation curves with SSIM and the SVM trained model are
shown in Figures 5 and 6, respectively. Due to the different calculation principles of the
two algorithms, the evaluation scores cannot be directly compared.

As shown in Figure 5, the evaluation scores with SSIM increase monotonously in
the range of the first image to the eleventh image, which is consistent with the subjective
evaluation by human eyes. However, the evaluation scores start to fall from the 12th image,
and it is inconsistent with subjective evaluation. As shown in Figure 6, the evaluation scores
with the SVM model increase with the serial numbers of the images in the sequence. Image
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1 has the lowest score of 10.4, and image 14 has the highest score of 65.5. The evaluation
with SVM is completely consistent with human subjective evaluation.

1 2 3 4

5 6 7 8

9 10 11 12

 
Figure 2. Indoor defocused image sequence. Sub-figures (1–12) represent the imaging results of the
laboratory imaging system for the same target. The shooting process is from defocus to focus and
back to defocus. The 9th picture shows the focus state.

Figure 3. Predictive scores of the defocused image sequence.
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Figure 4. Defocused image sequence for comparison. Sub-figures (1–15) shows the imaging effect of
the same target at different degrees of defocus. The first image is the most defocused, and the 15th
image is the clearest.

Figure 5. Evaluation scores of the image sequence in Figure 4 with SSIM.
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Figure 6. Evaluation scores of the image sequence in Figure 4 with the SVM model.

4.2.3. Dual-Peak Defocused Image Test

The dual-peak defocused image sequence is shown in Figure 7. The shooting process
is focus, defocus, focus, and defocus in image 8 and image 21, respectively. According to
the predictive evaluation test of the 28 pictures using the SVM model, the curve in Figure 8
is obtained. The X-axis of the curve represents the serial numbers of the pictures and the
Y-axis represents the corresponding image definition evaluation values. We marked the
two focused peak images with red hexagonal stars. The score of the 8th image is 58.3, and
the score of the 22nd image is 55. The curve is consistent with the subjective evaluation by
the human eyes of the test images. The curve also exhibits dual peaks, which demonstrates
the convergence of the prediction model.

4.2.4. Repeatability Testing of Dual-Peak Defocused Image

Repeated tests were carried out to check the generalization performance of the SVM
model. Another 29 images were acquired by changing the imaging scene and imaging
process. The images were captured in order of focus, defocus, focus, defocus, and focus.
Two randomly selected images in this image sequence are shown in Figure 9, and the
definition evaluation scores of the sequence with the SVM model are shown in Figure 10.
The result shows that the evaluation scores change by the focusing and defocused order, and
the definition evaluation with the SVM model shows stability consistent with perspective
evaluation. The SVM model has good generalization performance.

Through many test experiments, the image feature characteristic vectors are calculated
via the improved BRISQUE algorithm and the evaluation model that is established via the
SVM algorithm is used to evaluate the definition evaluation prediction. The evaluation
results are highly consistent with the subjective evaluation results of the human eyes.
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Figure 7. Dual-peak defocused image sequence (1–28). The shooting process is defocus, focus,
defocus, focus, and defocus respectively. Image 8 and image 22 are in focus.
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Figure 8. Predictive scores of the dual-peak defocused image sequence.

 

Figure 9. Defocused image sequence for repeatability testing (two randomly selected images).

Figure 10. Evaluation scores with the SVM model for repeatability testing.
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5. Discussion

For the purpose of increasing the effect of model training, we improved the BRISQUE
algorithm that is weighted by the Gaussian function, and other weighted functions and
parameters can also be researched in the future. The kernel function is selected as the radial
basis function (RBF) in this paper, and other kernel functions can also be tried. In the future,
the research of image objective evaluation model training based on machine learning will
focus on two aspects. First, we should research and improve the new methods, which is
to characterize the image spatial statistical characteristics. Second, we can introduce new
machine learning algorithms, such as deep learning algorithms, which lead to a model with
stronger self-learning ability.

6. Conclusions

Aiming at the problem of defocusing on large-scale optoelectronic tracking equipment
in the shooting range, the use of image definition indicators for evaluation is proposed in
this paper. An improved BRISQUE algorithm is used to objectively evaluate a defocused
image and a CV that consists of 36 characteristic values are obtained. The CV is input
into a previously trained SVM model to obtain an image definition evaluation score.
Many image samples were obtained using the established imaging experimental system
and experimental tests were carried out. The experimental results demonstrate that the
image definition evaluation method that is used in this paper can effectively evaluate the
defocusing condition of an optoelectronic tracking device, and the obtained image CV can
effectively reflect the image defocus state.

Author Contributions: Conceptualization, N.Z. and C.L.; methodology, N.Z.; software, N.Z. and
C.L.; validation, N.Z. and C.L.; formal analysis, N.Z. and C.L.; investigation, N.Z.; resources, N.Z.;
data curation, C.L.; writing—original draft preparation, N.Z.; writing—review and editing, C.L.;
visualization, N.Z. and C.L.; supervision, N.Z. and C.L.; project administration, N.Z.; funding
acquisition, N.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (NSFC)
(Grant No. 61905243) and Jilin Province Science & Technology Development Program Project in
China (Grant No. 20190103157JH).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the anonymous reviewers for their construc-
tive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, N.; Ma, D.; Ren, G.; Huang, Y. BM-IQE: An Image Quality Evaluator with Block-Matching for Both Real-Life Scenes and
Remote Sensing Scenes. Sensors 2020, 20, 3472. [CrossRef]

2. Takam Tchendjou, G.; Simeu, E. Visual Perceptual Quality Assessment Based on Blind Machine Learning Techniques. Sensors
2021, 22, 175. [CrossRef] [PubMed]

3. Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008—A Database for Evaluation of Full-
Reference Visual Quality Assessment Metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45.

4. Wei, M.-S.; Xing, F.; You, Z. A Real-Time Detection and Positioning Method for Small and Weak Targets Using a 1D Morphology-
Based Approach in 2D Images. Light Sci. Appl. 2018, 7, 18006. [CrossRef]

5. Moorthy, A.K.; Bovik, A.C. Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality. IEEE Trans.
Image Process. 2011, 20, 3350–3364. [CrossRef]

6. Tran, V.L.; Lin, H.-Y. Extending and Matching a High Dynamic Range Image from a Single Image. Sensors 2020, 20, 3950.
[CrossRef]

7. Rahmani, B.; Loterie, D.; Konstantinou, G.; Psaltis, D.; Moser, C. Multimode Optical Fiber Transmission with a Deep Learning
Network. Light Sci. Appl. 2018, 7, 69. [CrossRef]

237



Sensors 2023, 23, 1621
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Abstract: It is important to detect and classify foreign fibers in cotton, especially white and transparent
foreign fibers, to produce subsequent yarn and textile quality. There are some problems in the
actual cotton foreign fiber removing process, such as some foreign fibers missing inspection, low
recognition accuracy of small foreign fibers, and low detection speed. A polarization imaging device
of cotton foreign fiber was constructed based on the difference in optical properties and polarization
characteristics between cotton fibers. An object detection and classification algorithm based on an
improved YOLOv5 was proposed to achieve small foreign fiber recognition and classification. The
methods were as follows: (1) The lightweight network Shufflenetv2 with the Hard-Swish activation
function was used as the backbone feature extraction network to improve the detection speed
and reduce the model volume. (2) The PANet network connection of YOLOv5 was modified to
obtain a fine-grained feature map to improve the detection accuracy for small targets. (3) A CA
attention module was added to the YOLOv5 network to increase the weight of the useful features
while suppressing the weight of invalid features to improve the detection accuracy of foreign fiber
targets. Moreover, we conducted ablation experiments on the improved strategy. The model volume,
mAP@0.5, mAP@0.5:0.95, and FPS of the improved YOLOv5 were up to 0.75 MB, 96.9%, 59.9%, and
385 f/s, respectively, compared to YOLOv5, and the improved YOLOv5 increased by 1.03%, 7.13%,
and 126.47%, respectively, which proves that the method can be applied to the vision system of an
actual production line for cotton foreign fiber detection.

Keywords: deep learning; foreign fiber detection; YOLOv5; polarization imaging; line laser

1. Introduction

Cotton is the largest natural fiber in the textile industry. During the processes of
cotton cultivation, harvesting, transportation, and processing, a large number of foreign
fibers is inevitably mixed in due to various factors, such as cotton hulls, leaves, mulch
films, chemical fibers, and paper pieces. These foreign fibers have adverse effects on the
textile products, not only reducing the spinning efficiency, but also causing fabric defects
and reducing product grade [1]. Therefore, the detection of foreign cotton fibers is an
important and necessary step before spinning. It is time-consuming and inefficient to rely
on workers to manually detect foreign fibers from cotton, and the detection accuracy of
foreign fibers is low [2,3]. In recent years, numerous detection methods for foreign fibers
have been developed, including photoelectric, ultrasonic, and optical detection, according
to the detection principle [4,5]. However, photoelectric detection technology can only detect
colored foreign fibers but not white transparent foreign fibers [6]. Ultrasonic detection
technology can only detect foreign fibers in a large area, and its speed is slower [7]. Presently,
foreign fiber detection mainly uses machine vision technology with high recognition
rate, high detection speed, and low cost. Machine vision technology can be divided into

Sensors 2023, 23, 4415. https://doi.org/10.3390/s23094415 https://www.mdpi.com/journal/sensors
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X-ray imaging technology, ultraviolet fluorescence imaging technology, infrared imaging
technology, line laser imaging technology, hyperspectral imaging technology, and polarized
light imaging technology [8]. Pai et al. [9] identified and classified three types of foreign
fibers in cotton using an X-ray microtomographic imaging system. However, the imaging
speed of the X-ray imaging method is slow, and the equipment cost is high. Luo et al. [10]
proposed a machine vision method combined with UV fluorescence to sort foreign fibers in
cotton. However, UV fluorescence imaging is less effective in detecting foreign fibers that
are similar to cotton in color and without a fluorescence effect. Cai et al. [11] imaged cotton
using 12 types of foreign fibers in the near-infrared band. The infrared imaging method
has a better detection effect for foreign fibers with a significant difference in the absorption
between the near-infrared band and cotton; however, the infrared spectrum camera is slow
and expensive, and the relevant technology is still in the laboratory research stage. Hua
et al. [12] proposed a method to identify foreign fibers based on line laser imaging; solid-
state lasers have been widely used in machine vision detection owing to their low cost, small
volume, and ease of operation. Mustafic et al. [13] employed hyperspectral fluorescence
imaging to identify foreign fiber in cotton; however, hyperspectral imaging technology
requires a high external environment, and the devices are expensive. Zhang et al. [14]
utilized polarization imaging technology to increase the detection rate of transparent films.

The foreign fiber detection algorithm is the core part of foreign fiber recognition and
classification and can be divided into traditional image algorithms and deep learning
image algorithms. Traditional image algorithms rely on the artificial design of foreign fiber
characteristics by the algorithm designer and utilize image preprocessing, feature extraction,
feature selection [15–17], image segmentation [18,19], and image classification [20–22] to
achieve foreign fiber detection. However, traditional image algorithms have limited ability
to recognize and classify multiple types of foreign fiber targets and cope with complex
scenes, whereas deep learning image algorithms have the ability to learn excellent complex
features. He et al. [23–25] achieved the recognition of foreign fibers in seed cotton images
based on a Faster-RCNN. Du et al. [26] and Dong et al. [27] used ResNet-50 and Inception-
ResNet-V2 instead of the original VGG16 of Faster-RCNN to extract the features of foreign
fibers, and the K-means++ algorithm was used to improve the size and number of candidate
boxes to achieve the classification and localization of multiscale foreign fibers. Wu et al. [28]
introduced the MobileNets network and constructed the MobileNets YOLOv3 model to
detect foreign fibers in cotton. Wei [29] implemented a real-time intelligent classifier for
foreign fiber images. On a dataset of 20,000 foreign fiber images, the classification accuracy
reached 95%. Wu et al. [30] combined traditional convolution with depth-wise separable
convolution and introduced a convolutional layer attention mechanism to establish a deep
learning model for recognizing foreign fibers in cotton. The recognition accuracy for five
types of foreign fibers, such as plastic ropes and human hairs, was 91.93% on the test
set. Zhang et al. [31] introduced the residual network as a feature extraction network and
combined it with the feature pyramid to propose an improved Faster R-CNN network for
the detection of six types of foreign fibers, such as feathers and waste paper. The accuracy
and recall rate of this network were 97.6% and 82.4%, respectively, which were higher than
those of the VGG16 and ResNet50 networks. Zhang et al. [32] utilized the YOLOv5 neural
network to perform classification and recognition of weeds, blackjack, and other foreign
fibers that were segmented from images. The content of various foreign fibers was also
measured, and the recognition accuracy reached 98%.

The actual production line of cotton requires an extremely high detection speed and a
lightweight network with a smaller volume and faster detection speed. Moreover, cotton
on the actual production line is carded through a carding machine, and foreign fibers mixed
in the cotton are broken into smaller foreign fibers. These methods fail to consider the
effective detection of foreign fibers in small targets. Therefore, this study is based on the
YOLOv5 algorithm, and improved methods of Shufflenetv2 and PANet are introduced
into YOLOv5. An improved YOLOv5 algorithm combined with an attention mechanism
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module (CA) network is proposed in this paper, which can realize the real-time detection
of foreign fibers of multiple types of small targets.

The following contributions are made by our work:

• A polarization imaging device of cotton foreign fiber was constructed using line laser
polarization imaging technology.

• In order to reduce the model volume and improve the detection speed, the lightweight
network Shufflenetv2 with Hard-Swish function was added as the backbone feature
extraction network.

• In order to increase the detection accuracy of foreign fibers in small targets, an im-
proved PANet was added to YOLOV5.

• The CA module was added before the Head of YOLOv5 to allocate the weight of
the channel features and spatial features to improve the accuracy of foreign fiber
recognition and classification.

In summary, the line laser polarization imaging approach proposed in this study
has an important guiding value for the online identification and classification of cotton
foreign fibers and the control of foreign fiber generation in cotton planting and picking.
Compared with other typical object detection algorithms, our proposed algorithm has a
higher detection speed, smaller model size, and higher detection accuracy and is more
suitable for foreign fiber detection tasks.

2. Materials and Methods

2.1. Experiment Materials

The cotton and foreign fiber samples used in the experiment were provided by the
Henan Fiber Inspection Bureau and originated from the Xinjiang Uygur Autonomous
Region, China. The experiment was conducted using 20 common types of foreign fibers in
cotton, as shown in Figure 1, and the sizes of foreign fibers were categorized as 0.5 mm2,
1 mm2, 1.5 mm2, 3 mm2, and 5 mm2. Group 1 comprised colored foreign fibers, and it was
easier to distinguish them in cotton, whereas Group 2 comprised white transparent foreign
fibers that were more difficult to detect because they are extremely similar to cotton fiber in
color and appearance.

 

Figure 1. Foreign fiber and cotton samples. (1) Dead leaves; (2) cloth; (3) hemp rope; (4) bark;
(5) kraft paper; (6) stalk; (7) PVC; (8) yarn; (9) cottonseed; (10) stone; (11) hair; (12) leaf; (13) sponge;
(14) polypropylene; (15) white paper; (16) polyethylene; (17) feather; (18) foam; (19) chemical fiber;
(20) mulch film.
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2.2. Experiment Equipment

In actual detection, cotton containing foreign fibers was first made into a thin layer
with a width of approximately 10 cm and thickness of approximately 2 mm. The cotton thin
layer sample was irradiated by a uniform line laser, and the scattered light of cotton was
mist-like. Mulch film, plastic and paper pieces, and other white foreign fibers are mostly
dense materials, and the reflected light is approximately a mirror reflection [12].

The experiment found that the characteristic information of cotton foreign fiber image
was the most prominent when the incident angle of the line laser was about 45◦. For
example, when the laser incident angle was 45◦, the average gray value (M(X)) of the
foreign fiber image was larger, and the contrast value (Var(x, y)) was the largest, as shown
in Table 1.

Table 1. Average gray value and contrast value of foreign fiber.

Parameter
Angle of Incidence

45◦ 60◦ 75◦ 90◦

M(X) 85.0056 87.1309 79.0224 96.0166
Var(x, y) 5866.0319 5287.1670 4263.1522 2042.0076

Because of the different polarization characteristics of different foreign fibers, the
reflected light waves have polarization information of the foreign fibers, and different types
of foreign fibers can be distinguished through polarization imaging [14].

A physical image of the cotton foreign fiber polarization imaging detection device is
shown in Figure 2. The sensor of the camera (MV-CH050-10UP, HIKROBOT) was equipped
with four-way (0, 45, 90, 135) pixel-level polarization filters with a resolution of 2448 × 2048
and a target surface size of 2/3” using USB power output. The light source was a 405 nm
line laser (SL-405-35-S-B-90-24V, OSELA) with a power of 35 mW.

Figure 2. Physical image of cotton foreign fiber polarization imaging detection device. (1) Polarized
camera; (2) 405 nm line laser; (3) computer; (4) machine vision frame; (5) electric conveyor belt.
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2.3. Dataset, Environment, and Parameters

The target detection dataset in this study was acquired using the image acquisition sys-
tem shown in Figure 2, containing a total of 3944 foreign fiber target images of 20 categories,
which were divided into training, validation, and test sets. The data were enhanced by
gaussian blur, affine transformation, brightness transformation, dropping pixel transforma-
tion, and flip transformation [33,34]. The enhanced dataset consisted of 21,381 images, and
the data format was JPG. Table 2 lists the statistical information of the dataset.

Table 2. Target statistics of the cotton foreign fiber.

Categories
Number of Targets

Training Set Validation Set Testing Set

Polypropylene 967 112 121
Cloth 966 132 126

Mulch film 551 56 59
Sponge 954 109 137

Chemical fiber 976 111 113
Stem 994 108 98

Dead leaves 1002 102 114
PVC 1005 88 113
Hair 499 59 72

Hemp rope 1025 91 120
Cotton seed 989 108 121
Kraft paper 429 54 51

Foam 972 113 139
Yarn 108 11 16
Stone 974 109 117
Bark 991 101 108
Leaf 968 105 127

Polyethylene 985 115 136
Feather 987 120 117
Paper 975 121 134
Total 17,317 1925 2139

The hardware environment and software versions of the experiments are listed
in Table 3.

Table 3. Experimental environment configuration.

Hardware and Software Configuration Parameter

Computer

Operating System: Windows10

CPU: Intel(R) Core (TM) i9-9900K CPU@3.60GHz

GPU: NVIDIA GeForce RTX 3090

RAM: 16 GB

Video memory: 24 GB

Software version Python3.9.12 + PyTorch1.9.1 + CUDA11.7 + cuDNN8.2.1 + Opencv4.5.5
+Visual Studio Code2022 (1.69.1)

In this study, the SGD (stochastic gradient descent) method was used to optimize
the learning rate, and the epochs were determined by comparing the loss functions of the
training set and validation set. The parameters of the training network are listed in Table 4.
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Table 4. Training network parameters.

Parameter Value

Batch size 64
Learning rate 0.01

Warm-up epochs 3
Number of iterations 120

Momentum parameter 0.937
Image size 640 × 640
Optimizer SGD

2.4. Loss Function and Model Evaluation Metrics

The loss function of YOLOv5 consists of three components, which are confidence loss,
bounding box regression loss, and classification loss. The expression of the YOLOv5 loss
function is shown below:

Losstotal = λ1Lobj + λ2Lbox + λ3Lcls (1)

Lobj, Lbox, and Lcls represent confidence loss, bounding box regression loss, and classi-
fication loss, respectively. λ1, λ2, and λ3 are weight coefficients for the three losses, and
changing these coefficients can adjust the emphasis on the three losses. In YOLOv5, Lbox is
calculated using LCIoU [35], which can improve both the speed and accuracy of bounding
box regression. The expression for LCIoU is shown below:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LCIoU = 1 − IoU +
ρ2(b,bgt)

c2 + αv

IoU =
|b∩bgt|
|b∪bgt|

v = 4
π2

(
arctan wgt

hgt − arctan w
h

)2

(2)

In the above expression, b and bgt represent the predicted box and ground truth box,
respectively; wgt, hgt, w, and h represent the width and height of the ground truth box and
the predicted box, respectively; ρ represents the distance between the centers of the two
boxes; c represents the maximum distance between the boundaries of the two boxes; and α
is a weight coefficient. Both Lobj and Lcls use the BCEWithLogitsLoss, and their calculation
formula is shown below:

Loss = − 1
n∑[yn ln xn + (1 − yn) ln(1 − xn)] (3)

The BCEWithLogitsLoss function includes both the Sigmoid layer and the BCELoss
layer and is suitable for multi-label classification tasks; yn represents the ground truth label,
and xn represents the predicted label.

To verify the superior performance of the improved Yolov5 model, we measured the
mAP, FPS, model volume, etc. Some commonly used metrics of precision (P), recall (R),
average precision (AP), F1 Score (F1), and mean average precision (mAP) were selected to
evaluate the model performance [36], and the metrics were defined as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 =
2 · precision · recall
precision + recall

(6)
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AP =
∫ 1

0
p(r)dr (7)

mAP =
∑N

i=1 APi

N
(8)

TP denotes the positive samples predicted to be correct, FP denotes the negative
samples predicted to be incorrect, FN denotes the positive samples predicted to be incorrect,
and N denotes the number of sample categories.

2.5. Improvement of YOLOv5 Network Architecture
2.5.1. YOLOv5 Network Architecture

YOLOv5 combines the characteristics of YOLOv1, YOLOv2, YOLOv3, and YOLOv4.
YOLOv5 mainly contains four network models, namely, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, and the model size and parameters increase sequentially in the four network
structures. This study was based on the YOLOv5s network structure, as shown in Figure 3.

 

Figure 3. YOLOv5 network structure.

The YOLOv5 network structure consists of a backbone, neck, and head, and the image
input first goes through the backbone for continuous feature extraction. The focus performs
a slice operation on the input image; for example, if the input image size is 640 × 640 × 3,
the slice operation will take a value for every other pixel on the image, and the result will
be stacked on the channel to obtain a feature layer of 320 × 320 × 12. It is commonly
understood to expand the image channel and compress the image height and width. The
focus-module structure is shown in Figure 4.

Figure 4. Focus network structure.
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The second layer of the backbone is the CBS module with a convolution kernel size
of 3 × 3, which performs convolution the calculation, batch standardization calculation,
and SiLU activation function on the input data, adds nonlinearity to the network, and
accelerates the convergence speed of the network. The third layer is the C3 module, which
is mainly composed of n bottleneck modules, three CBS modules, and two convolution
layers of size 1 × 1, it and is designed to better extract the deep features of the image. The
structures of the bottleneck and C3 modules are shown in Figures 5 and 6, respectively.

Figure 5. Bottleneck network structure.

Figure 6. C3 network structure.

The last layer of the backbone is the SPP module. First, the number of channels of
the input image is halved using the first CBS module, and then the feature map output
from the first CBS module is passed through three maximum pool layers of different sizes
(13 × 13, 9 × 9, and 5 × 5), and the residual edges constructed together with the output of
the first CBS module are connected in parallel. Finally, the number of channels is halved by
the second CBS module to ensure that the height and width of the feature map of different
size inputs can be kept consistent after pooling; the structure of the SPP module is shown
in Figure 7.

Figure 7. SPP network structure.

The neck network constructs feature pyramids for enhanced feature extraction to
obtain more contextual information. Three feature maps are generated in the backbone
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network; the three feature layers are 80 × 80, 40 × 40, and 20 × 20 from shallow to deep.
After the three effective feature layers are obtained, the FPN feature pyramid structure is
constructed first, and the 20 × 20 feature layer is upsampled to obtain the 40 × 40 feature
layer and then stacked with the corresponding 40 × 40 feature layers in the backbone
network. A feature layer of 80 × 80 was obtained by upsampling twice in the FPN
structure, and strong semantic features were transferred. Subsequently, the PAN structure
was constructed to convey stronger localization features, and the 80 × 80 feature layer was
downsampled to obtain a 40 × 40 feature layer, which was stacked with a 40 × 40 feature
layer in the FPN network structure. The PAN network structure was downsampled twice,
and the final outputs were 80 × 80, 40 × 40, and 20 × 20 enhanced effective feature layers,
respectively. Finally, we used these three enhanced feature layers to input the Yolo Head to
obtain the regression prediction and classification prediction results.

2.5.2. Proposed Approach: YOLOv5-CFD

This study made corresponding improvements to the backbone, neck, and head of
YOLOv5. First, Shufflenetv2 was introduced as the backbone feature extraction network
under the premise of ensuring detection accuracy. The weight parameter and volume of the
network were reduced, and the lightweight design of the model was realized. Moreover,
because the foreign fibers were mostly small-sized targets, the FPN + PAN structure
was modified to obtain feature maps with more fine-grained information. Finally, the CA
attention module was added to the front of the Yolo Head to improve the detection accuracy.
The improved YOLOv5 (YOLOv5-CFD) network structure is illustrated in Figure 8.

 
Figure 8. Network model of cotton foreign fiber detection.

Improvement of Backbone Network

ShufflenetV2 was proposed by Ma et al. [37] and was based on ShufflenetV1 and
four efficient network design principles. The ShufflenetV2 model excels in speed and
accuracy, making it an ideal lightweight network for deployment in mobile devices. First,
ShufflenetV2 divides the input of the feature channel into two branches by the “Channel
Split” operation. One branch has the same structure, and the other branch consists of
three convolutions with the same input and output channels. The two branches are
concatenated after convolution to keep the number of channels constant. Finally, the
“Channel Shuffle” operation is used to ensure the information exchange between the two
branches. ShufflenetV2 contains a basic unit and a unit for spatial downsampling (2×), as
shown in Figure 9.
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(a) 

 
(b) 

Figure 9. ShufflenetV2 network structure. (a) Basic unit; (b) unit for spatial downsampling (2×).

In this paper, ShufflenetV2 units with stride = 2 and stride = 1 were chosen to construct
a new backbone network, and the output of each stage in the new backbone was connected
to PANet. Moreover, we replaced the activation function in the ShufflenetV2 unit with the
H-swish activation function, as shown in Equation (9):

H-swish(x) =

⎧⎨⎩
0 x ≤ −3
x x ≥ 3

x · (x + 3)/6 −3 < x < 3
(9)

Improvement of PANet Network

Among the three effective features of the FPN + PAN structure output, the 20 × 20
and 40 × 40 feature maps were used to detect larger targets, whereas foreign fibers in
cotton are mostly small-sized targets. Moreover, the image size of our input network
was 2448 × 2048, and the grid pixels corresponding to the 20 × 20 and 40 × 40 feature
maps were 128 × 108 and 64 × 54, respectively, when performing the bounding box
regression. The k-means clustering statistics showed that nearly 75% of the foreign fiber
target pixels were below 60, as shown in Figure 10, with 20 × 20 and 40 × 40 feature maps
corresponding to anchors ([116, 90], [156, 198], [373, 326]) and ([30, 61], [62, 45], [59, 119]).
The anchors were larger, and many operations were useless when performing the bounding
box regression. The 20 × 20 and 40 × 40 feature maps and large target identification frames
were discarded, making the bounding box regression more accurate and minimizing the
model computational cost.

To solve the problem of an excessive number of small targets, the PANet network
connection was improved to obtain a feature map with fine-grained information. A new
160 × 160 feature map was generated by upsampling the output of the backbone network
twice and fusing it with the feature map of the corresponding size of the backbone. Because
the improved backbone network generated three layers of feature mapping of 320 × 320,
160 × 160, and 80 × 80, the FPN did not require secondary upsampling; hence, the final
YOLO detection heads were 160 × 160 and 80 × 80; Figure 11 shows the PANet network
improvement schematic diagram of YOLOv5.
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Figure 10. Cotton foreign fiber width and height distribution.

Figure 11. PANet network improvement schematic diagram of YOLOv5.

CA Module Design

Hou et al. [38] proposed a novel attention mechanism for mobile networks called
“Coordinate Attention” by embedding location information into channel attention in 2021,
as shown in Figure 12.
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Figure 12. Coordinate Attention network structure.

Coordinate Attention focuses on the image width and height and encodes precise
position information. First, the input feature map was divided into the width and height
directions for global averaging pooling to obtain the feature maps in the width and height
directions. The output of the c-th channel with the height and width is expressed as follows:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (10)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (11)

The above equation integrates the features from different directions and outputs a pair
of feature maps with known directions. The module can capture long distance relationships
in one direction while retaining spatial information in the other, helping the network locate
targets more accurately.

Stitching together the feature maps in the width and height directions of the obtained
global perceptual field, the channel is compressed to the original C/r using a 1 × 1 convolu-
tion. Subsequently, the BatchNorm and H-swish activation functions are used for encoding,
followed by a 1 × 1 convolution to adjust the channels of the feature map to be equal to
the number of channels of the input feature map. The attention weights gh and gw of the
feature map on the height and width, respectively, are obtained after the sigmoid function,
as shown below:

gh = σ
(

Fh

(
f h

))
(12)

gw = σ(Fw( f w)) (13)

Finally, a weighted fusion is performed on the original feature map to obtain the final
feature map with attention weights in the height and width directions, as shown in the
following equation:

yc(i, j) = xc(i, j) · gh
c (i) · gw

c (j) (14)

Based on the characteristics of multiple types and small targets with different fibers,
this study added a CA module at the front end of each of the two detection heads of the
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Yolo Head to improve the performance of the network at a low cost, thus improving the
overall accuracy of target detection.

The flow chart of the foreign fiber detection method used in this study is shown in
Figure 13.

Figure 13. Flow chart of the proposed approach of foreign fiber detection.

3. Results and Discussion

Figure 14 shows the loss reduction curves of the YOLOv5-CFD model for the training
and validation sets of foreign fiber images. As can be observed from the loss curve, the loss
value dropped to a relatively small value when the number of training rounds was 20, and
the network stabilized when the number of training rounds was 120.

The confusion matrix of the YOLOv5-CFD model is shown in Figure 15. It can be
observed from the figure that most of the targets of different fiber types were correctly
predicted with a low target miss rate, indicating that the model exhibited good performance.

Figure 16 shows the PR curve of YOLOv5-CFD test set and shows the change curve
of the accuracy and recall of the detection results of twenty kinds of foreign fiber targets.
According to statistics, the overall detection result mAP@0.5 was 96.9%.

3.1. Ablation Experiment

The effect of the improved method on the model performance was analyzed by ablation
experiments. For comparison purposes, the experiment was divided into five groups. The
first group was the original YOLOv5 network. In the second group, the ShufflenetV2 mod-
ule was introduced into the backbone feature extraction network module of the YOLOv5.
The third group modified the PANet network connection method using YOLOv5. In the
fourth group, a CA module was added to the front of each of the two detection heads of
YOLOv5. The last set of experiments was the result of the model used in this study. The
experimental results are listed in Table 5.

As seen in Table 5, the use of the ShufflenetV2 module in the back-bone feature
extraction network reduced mAP@0.5 and mAP@0.5:0.95 by 1.95% and 2.73%, respectively,
but the model volume decreased by 5.89 MB, and the detection speed increased by 200 f/s.
The introduction of the ShufflenetV2 module played an important role in reducing the
model volume and improving the detection speed. The improvement of the PANet network
reduced the model volume by 3.3 MB, increased the mAP@0.5 and mAP@0.5:0.95 by 0.27%
and 4.63%, respectively, and increased the detection speed by 153 f/s. The introduction of
the CA attention module improved the detection accuracy of the model and verified the
effectiveness of the improved PANet and CA modules. In summary, the improved strategy
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based on YOLOv5 proposed in this study is important for facilitating the identification and
detection of cotton foreign fibers in an actual production line.

(a) 

(b) 

Figure 14. Four types of loss curves for each data set. (a) Training set; (b) Validation set.
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Figure 15. Confusion matrix of the YOLOv5-CFD model.

Figure 16. Test accuracy and recall curves of YOLOv5-CFD.
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Table 5. Ablation experiments.

ShuffleNet V2 PANet CA H-Swish
Model Volume

(MB)
mAP@0.5

(%)
mAP@0.5:0.95

(%)
FPS
(f/s)

× × × × 13.82 95.87 52.77 170√ × × × 7.93 93.92 50.04 370
× √ × × 10.52 96.14 57.40 323
× × √ × 13.90 95.98 55.08 180√ √ √ √

0.75 96.90 59.90 385

3.2. Comparison of Different Models

To verify the superiority of the YOLOv5-CFD model in cotton foreign fiber detection,
we compared it with the most advanced foreign fiber detection models, YOLOv5, YOLOv4,
SSD, and Faster-RCNN. The relevant parameters of the experiments were also strictly
controlled using a uniform image size as the input and a uniform training and test set for
experimental testing.

Comparing the overall test results of Faster-RCNN, SSD, YOLOv4, YOLOv5, and
YOLOv5-CFD with mAP@0.5, as shown in Figure 17, it can be seen that YOLOv5-CFD
model had better performance.

 
Figure 17. P–R curves of different detection models.

The pictures used in the comparative experiment in Figure 18 are from the test set of
this paper [39]. Each experiment was conducted in the same environment. Figure 18 shows
the detection effects of different models in different cases. The images contain complex
light environments, small target foreign fibers, and multiple types of foreign fibers, so the
problems of multiple types of small target foreign fibers in a complex light environment
are fully considered, providing a convenient way to fully demonstrate the robustness and
generalization ability of the model.
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From the image detection results, it could be observed that for large foreign fibers, most
of the five models were recognized, and YOLOv5-CFD had the highest correct classification
rate. For small foreign fibers, YOLOv5-CFD had the highest recognition rate and correct
classification rate. For the first image, YOLOv5-CFD was identified and classified correctly.
In the second image, YOLOv5-CFD had the highest recognition rate with only one missed
target, and YOLOv5 and Faster-RCNN had the highest correct classification rate. For
the last image, YOLOv5-CFD, YOLOv5, and Faster-RCNN were all identified correctly,
and only YOLOv5-CFD and SSD were classified correctly; however, the SSD model had
multiple overlapping detection frames in the detection. In summary, the YOLOv5-CFD
model outperformed the other four models in terms of the test results.

As shown in Table 6, the model volume, mAP@0.5, mAP@0.5:0.95, and FPS of the
YOLOv5-CFD were up to 0.75 MB, 96.9%, 59.9%, and 385 f/s, respectively, which were
better than the values of YOLOv5 (13.82 MB, 95.87%, 52.77%, and 170 f/s, respectively),
followed by YOLOv4 (244.78 MB, 93.59%, 50.50%, and 88 f/s, respectively), and SSD (100.29
MB, 83.07%, 39.06%, and 128 f/s, respectively). Furthermore, the results of Faster-RCNN
(108.91 MB, 75.68%, 33.60%, and 9 f/s, respectively) were worse. The results showed that
the overall performance of the proposed YOLOv5-CFD was the best [40].

Table 6. Experimental results of different algorithms.

Model Parameters Model Volume (MB)
mAP@0.5

(%)
mAP@0.5:0.95

(%)
FPS
(f/s)

YOLOv5-CFD 2.97 × 105 0.75 96.90 59.90 385
YOLOv5 7.28 × 106 13.82 95.87 52.77 170
YOLOv4 6.39 × 107 244.78 93.59 50.50 88

SSD 2.41 × 107 100.29 83.07 39.06 128
Faster-RCNN 2.84 × 107 108.91 75.68 33.60 9

The main improvement of the YOLOv5-CFD model is the volume size of the model
and the detection speed; these enhancements meet the high requirements of the actual
production line detection of cotton foreign fibers, and the detection accuracy of YOLOv5-
CFD for small target foreign fibers is also the highest. Based on the above analysis, the
YOLOv5-CFD object detection algorithm proposed in this study improves the detection
speed and accuracy of foreign fiber targets and significantly reduces the model size.

3.3. YOLOv5-CFD Test Results

In order to test the robustness and anti-interference of the YOLOv5-CFD model, this
paper repeatedly tested the miss-recognition rate, misjudgment rate, precision, recall, and
F1 score of the model under different illumination, different incident angles, different
cotton foreign fiber samples, different foreign fiber positions, different foreign fiber sizes,
and different environments. Combined with the sampling frequency of the camera, the
speed of the conveyor belt was set to 4 m/min. The misrecognition rate is the rate of
failure to identify the presence of foreign fibers, and the misjudgment rate is the rate of
judging the position where there is no foreign fiber as the presence rate. For each test
condition, the precision and recall values for each category are first calculated, and then the
averages of the precision and recall values for each category are taken. The test results of
the YOLOv5-CFD model are shown in Table 7.

The experiments of foreign fibers (including mulch film, foam, feather, white paper,
polyethylene, polypropylene, and chemical fiber) detection and classification were made.
The results showed that the environmental light intensity changes had some influence on
the foreign fiber classification, but little effect on the detection. The interference of strong
light such as sunlight caused an increase in the misrecognition rate. The classification
performance of the model was the best under dark conditions and the worst under sunlight
conditions. Foreign fibers were difficult to identify with a small or large incidence angle
such as 15◦ or 90◦. When the incident angle was around 45◦, the detection and classification
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of foreign fibers were optimal. For the different variety of samples, the YOLOv5-CFD
model could generally detect foreign fibers well, and the average F1 score of the three
numbered samples was about 0.69. Under the condition of different positions of foreign
fibers, there were no omissions and misjudgments, and the classification results were the
same. Under the condition of different sizes of foreign fibers, the minimum size of foreign
fibers detected by the YOLOv5-CFD model was 0.5 mm2. Smoke and dust almost had no
interference of linear laser polarization imaging. In summary, the proposed method has
good robustness and anti-interference, meets the basic detection of cotton foreign fibers on
the actual production line, and has practical application value.

Table 7. YOLOv5-CFD model test results.

Different Conditions

Identification Classification

Misrecognition
Rate

Misjudgment
Rate

Precision Recall F1

Illumination
dark 0 0 90.07% 97.03% 0.93

lamplight 0 0 84.42% 92.35% 0.88
sunlight 7.30% 0 72.20% 87.72% 0.79

Incidence angle
15◦ 100% 13.64% 0 0 0
45◦ 0 0 90.07% 97.03% 0.93
90◦ 3.93% 22.07% 67.85% 76.20% 0.72

Different varieties samples
115,549 0 5.54% 73.66% 66.23% 0.69
114,835 0 7.92% 75.39% 70.03% 0.73
114,712 12.87% 0 68.55% 60.34% 0.64

Different positions
upper edge 0 0 90.07% 97.03% 0.93

middle 0 0 90.07% 97.03% 0.93
lower edge 0 0 90.07% 97.03% 0.93

Foreign fiber size

1.5 mm2 0 0 70.79% 77.05% 0.74
1 mm2 0 0 66.54% 78.21% 0.72

0.5 mm2 16.05% 0 60.10% 71.78% 0.65
<0.5 mm2 100% 0 0 0 0

Environment
smog 0 0 90.07% 97.03% 0.93
dust 0 0 90.07% 97.03% 0.93

4. Conclusions

To address the problem of foreign fiber detection in cotton, a polarization imaging
device of cotton foreign fiber was constructed using the difference in optical properties
and polarization characteristics between cotton fibers and foreign fibers. Moreover, an
object detection algorithm for cotton foreign fiber based on the improved YOLOv5 was
proposed, which consisted of three key steps: The lightweight network Shufflenetv2
with the Hard-Swish activation function was used as the backbone feature extraction
network, an improved PANet was added to YOLOV5, and a CA module was added before
the Head of YOLOv5. The robustness and anti-interference of the improved YOLOv5
model under various conditions were also tested. Compared with the YOLOv5 foreign
fiber detection model, the improved YOLOv5 foreign fiber detection model had better
performance in mAP@0.5, mAP@0.5:0.95, and FPS, which increased by 1.03%, 7.13%, and
126.47%, respectively. The improved model is capable of performing online identification
and classification of small foreign fiber targets of various types in cotton transportation.

263



Sensors 2023, 23, 4415

Author Contributions: Conceptualization, R.W. and Z.-F.Z.; methodology, R.W.; software, R.W.;
validation, R.W., Z.-F.Z. and B.Y.; formal analysis, R.W.; investigation, R.W.; resources, Z.-Y.C.; data
curation, R.W.; writing—original draft preparation, R.W.; writing—review and editing, Z.-F.Z. and
K.Y.; visualization, R.W. and H.-Q.X.; supervision, Y.-S.Z., R.-L.Z. and L.-J.G.; project administration,
Z.-F.Z.; funding acquisition, Z.-F.Z., R.-L.Z. and L.-J.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China
(No. 61905223, 11904327), and Henan Science & Technology Development Plan Project (No. 222102210085,
222102210319).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was funded by the National Natural Science Foundation of
China (No. 61905223, 11904327), and Henan Science & Technology Development Plan Project
(No. 222102210085, 222102210319).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, B. Research on the testing technology of cotton foreign fiber content. Mod. Bus. Trade Ind. 2018, 39, 185–186.
2. Zhang, H.; Li, D. Applications of computer vision techniques to cotton foreign matter inspection: A review. Comput. Electron.

Agric. 2014, 109, 59–70. [CrossRef]
3. Yang, W.; Li, D.; Zhu, L.; Kang, Y.; Li, F. A new approach for image processing in foreign fiber detection. Comput. Electron. Agric.

2009, 68, 68–77. [CrossRef]
4. Yue, X. Research on Multi-Parameter Optimization of Heterogeneous Fiber Sorting Machine Detection Rate Based on Neural

Network. Master’s Thesis, Tianjin Polytechnic University, Tianjin, China, 2020.
5. Shi, G. Remark upon foreign matter online detecting and clearing. Shanghai Text. Sci. Technol. 2007, 35, 24–25.
6. Chang, L. The Detecting System of Foreign Fibers in Cotton Based on DSP. Master’s Thesis, Hefei University of Technology, Hefei,

China, 2006.
7. Guo, S.; Kan, Z.; Zhang, R.; Guo, W.; Cong, T. Separation test of electrostatic separating device for machine-harvested seed cotton

and plastic film residue. Trans. Chin. Soc. Agric. Eng. 2011, 27, 6–10.
8. Chen, Y.J.; Wu, T.R.; Shi, S.W.; Zhao, B.; Yang, S.H. Review of Cotton Foreign Fiber Detection Method Using Optical Imaging.

Laser Optoelectron. Prog. 2021, 58, 1600007.
9. Pai, A.; Sari-Sarraf, H.; Hequet, E.F. Recognition of cotton contaminants via X-ray microtomographic image analysis. IEEE Trans.

Ind. Appl. 2004, 40, 77–85. [CrossRef]
10. Luo, D.P.; Zhu, B.T.; Li, X. Fluorescent Effect of Ultra Violet and It’s Application in Detection of Foreign Fibers in Cotton. J. Henan

Univ. Sci. Technol. Nat. Sci. 2007, 2007, 63–66+2.
11. Cai, X.X.; Wu, L.L.; Liang, H.F.; Chen, J. Cotton foreign fiber detection based on near-infrared imaging technology. Cotton Text.

Technol. 2021, 49, 6–10.
12. Hua, C.J.; Su, Z.W.; Qiao, L.; Shi, J. White foreign fibers detection in cotton using line laser. Trans. Chin. Soc. Agric. Mach. 2012,

43, 181–185.
13. Mustafic, A.; Jiang, Y.; Li, C.Y. Cotton contamination detection and classification using hyperspectral fluorescence imaging. Text.

Res. J. 2016, 86, 1574–1584. [CrossRef]
14. Zhang, C.; Sun, S.L.; Shi, W.X.; Zeng, L.; Deng, D.X. Design and test of foreign fiber removal machine based on embedded system.

Trans. Chin. Soc. Agric. Mach. 2017, 48, 43–52.
15. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
16. Goodman, E.D. Introduction to genetic algorithms. In Proceedings of the Fourteenth International Conference on Genetic and

Evolutionary Computation Conference Companion-GECCO Companion’12, Philadelphia, PA, USA, 7–11 July 2012; pp. 671–692.
17. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system:optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B 1996, 26, 29–41. [CrossRef]
18. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. SMC 1979, 9, 62–66. [CrossRef]
19. Liu, S.X.; Wang, J.X.; Zhang, H.; Li, W.; Li, D.L.; Zhang, X.H.; Fan, G.Q. Research on the multi-channel wavelet segmentation

method of faint cotton foreign fibers. Chin. J. Sci. Instrum. 2016, 37, 60–66.
20. He, Y.; Wang, J.F. Rapid nondestructive identification of wood lacquer using Raman spectroscopy based on characteristic-band-

Fisher-K nearest neighbor. Laser Optoelectron. Prog. 2020, 57, 013001. [CrossRef]
21. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data. Technometrics 1988, 32, 227–229.

264



Sensors 2023, 23, 4415

22. Vapnik, V. Statistical Learning Theory. DBLP 1998. [CrossRef]
23. He, X.Y.; Su, Z.W.; Deng, B.Y.; Pan, Y.F.; Chi, Z.Q. An artificial intelligence method for detecting foreign fiber in seed cotton. Cotton

Text. Technol. 2018, 46, 49–52.
24. He, X.Y.; Wei, P.; Zhang, L.; Deng, B.Y.; Pan, Y.F.; Su, Z.W. Detection method of foreign fibers in seed cotton based on deep-learning.

J. Text. Res. 2018, 39, 131–135.
25. Zhang, D. Research on Seed Cotton Foreign Fiber Sorting Recognition Algorithm Based on Deep Learning. Master’s Thesis,

Nanjing Forestry University, Nanjing, China, 2019.
26. Du, Y.H.; Dong, C.Q.; Zhao, D.; Ren, W.J.; Cai, W.C. Application of improved Faster RCNN model for foreign fiber identification

in cotton. Laser Optoelectron. Prog. 2020, 57, 121007.
27. Dong, C.Q. Research on foreign fiber classification method based on improved Faster R-CNN model. Master’s Thesis, Tianjin

Polytechnic University, Tianjin, China, 2020.
28. Wu, M.X.; Wu, J.; Zhang, C.; Zhu, L. Detection of foreign fiber in cotton based on improved YOLOv3. Chin. J. Liq. Cryst. Disp.

2020, 35, 1195–1203. [CrossRef]
29. Wei, W.; Deng, D.X.; Zeng, L. Classification of foreign fibers using deep learning and its implementation on embedded system.

Int. J. Adv. Robot. Syst. 2019, 7, 1729881419867600. [CrossRef]
30. Wu, Z.W.; Shi, H.Y. Recognition of Foreign Fiber in Cotton Based on DSConv and CBAM. Cotton Text. Technol. 2022, 50, 19–23.
31. Zhang, Y.; Zhang, S.J.; Feng, Z.Q. Improved Faster RCNN Target Detection Method for Foreign Fiber in Cotton. Cotton Text.

Technol. 2022, 5, 37–41.
32. Zhang, C.; Li, T.; Li, J. Detection of Impurity Rate of Machine-Picked Cotton Based on Improved Canny Operator. Electronics 2022,

11, 974. [CrossRef]
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Abstract: Wheel flats are amongst the most common local surface defect in railway wheels, which can
result in repetitive high wheel–rail contact forces and thus lead to rapid deterioration and possible
failure of wheels and rails if not detected at an early stage. The timely and accurate detection of
wheel flats is of great significance to ensure the safety of train operation and reduce maintenance
costs. In recent years, with the increase of train speed and load capacity, wheel flat detection is facing
greater challenges. This paper focuses on the review of wheel flat detection techniques and flat
signal processing methods based on wayside deployment in recent years. Commonly used wheel
flat detection methods, including sound-based methods, image-based methods, and stress-based
methods are introduced and summarized. The advantages and disadvantages of these methods are
discussed and concluded. In addition, the flat signal processing methods corresponding to different
wheel flat detection techniques are also summarized and discussed. According to the review, we
believe that the development direction of the wheel flat detection system is gradually moving towards
device simplification, multi-sensor fusion, high algorithm accuracy, and operational intelligence.
With continuous development of machine learning algorithms and constant perfection of railway
databases, wheel flat detection based on machine learning algorithms will be the development trend
in the future.

Keywords: wheel flat detection; wayside signal acquisition method; signal processing method

1. Introduction

Railways are considered to be one of the most important means of transportation
at present. In China, the proportion of railway travel in people’s daily life has increased
year by year. In 2021, China’s railway passenger volume has reached ~2.5 billion with an
increase of 36.6 million over the previous year and a year-on-year increase of 16.9%, as
shown in Figure 1a. In the same year, the total turnover of railway freight transportation
reached ~2995.0 billion tons, with an increase of 255.2 billion tons over the previous year
and a year-on-year increase of 9.3%, as shown in Figure 1b [1].

The demand for railway transportation has increased year by year, and the safety of
railway transportation has become more and more important. According to the statistics of
the United States Federal Railway Administration, 1234 train accidents were reported from
January 2019 to February 2022 [2]. Among them, train derailments are the most common
problems, with a total of 809 cases, accounting for 66% of the total number of failures, as
shown in Figure 2.

As the most important running part of the train, the condition of railway wheels is
closely related to the safety of train operation. Between 2005 and 2010, derailment accidents
caused by rolling stock failures accounted for the highest proportion of accidents (38%) in
14 European countries (Austria, France, Germany, the UK, Sweden, Switzerland, Belgium,
Bulgaria, Czech Republic, Hungary, Italy, the Netherlands, Poland, and Slovenia) [3].
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Wheel flats are the most common local surface defect of railway wheels and are one of
the important causes of train derailment [4]. Huge impact forces will be generated by the
contact between flat wheels and rails, which will cause further damage to vehicles and
rail components (wheel sets, bearings, rail ties, and so on) [5–12]. The excessive wheel–rail
contact forces will increase the risk of train accidents and maintenance costs.

Figure 1. (a) Total railway passenger volume in China in 2021. (b) Total railway freight turnover in
China in 2021.

Figure 2. Main categories of railway failures in the United States from 2019 to 2022.

Wheel flats are caused by the loss of wheel tread material due to wheel slipping
events [13]. Heat is generated as the wheels sliding on the rails, and the resulting temper-
ature increase combined with the rapid cooling of the adjacent material can lead to the
formation of brittle martensite on the wheel tread. Thermal impacts and phase transforma-
tions can generate large residual stresses, which will interact with the rolling contact stress
to promote the formation and growth of cracks on the wheel tread [14]. There are many
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reasons for the wheels to slide on the rails, including (1) The sudden braking of the wheels
when driving at high speed, thus causing the wheels to lock up and slide on the rail while
the train is still moving [15]. (2) There is a local area where the wheel-rail friction becomes
low. When there are foreign objects such as grease and leaves on the track, the wheel–rail
adhesion is reduced, resulting in complete sliding between the wheel and rail [16–19]. In
order to address the issue of wheel flats, the railway department has implemented various
preventive measures, such as installing advanced anti-sliding systems on passenger trains.
Despite these efforts, wheel flats cannot be completely eliminated. Therefore, wheel flat
detection is considered to be an important measure of ensuring railway operation safety
and reducing maintenance costs.

Human inspection has been the most common means of wheel flat detection in past
decades. However, this method is time-consuming and prone to human errors. In-service
testing methods can realize real-time detection of wheel flats without dismantling the
wheelsets, and they have been studied by many researchers in recent years [20–23]. In-
service testing methods can be divided into the on-board method and wayside method,
according to different sensor installation positions. These two methods have their own
advantages and disadvantages, and the selection of the method is based on a comprehensive
consideration of the inspection duration, fault severity level, and so on [24–26]. In the on-
board method, sensors are mounted on the axle box or wheels of a train, and different types
of signals can be obtained by corresponding sensors such as accelerometers, microphones,
etc., for analysis [27–35]. The flat signal obtained by the on-board method has strong
periodicity and better robustness, which is conducive to signal processing and wheel flat
detection. In the wayside method, sensors are usually installed on or nearby both sides of
the track near train entrances or exit stations; the condition of all wheels can be evaluated
as the train passes through the sensor system [36–38]. Unlike the periodic signals collected
by the on-board method, each wheel can only be detected once by the wayside method,
which leads to limited flat information and thus puts forward a high requirement for flat
signal processing algorithms [39–42].

In 2017, Alemi and Corman reviewed the condition monitoring approaches for the
detection of railway wheel defects [43]. In the recent few years, wheel flat detection
has gained the attention of many researchers and flat detection techniques with new
features were proposed, thus the summary and comparison of these techniques are of
great significance. In this paper, the development of wheel flat detection techniques
and corresponding signal processing methods with wayside deployment since 2016 are
reviewed. The rest of this paper is organized as follows. The general structure of wayside in-
service flat detection systems is demonstrated in Section 2. Wheel flat detection techniques
proposed in the past five years is summarized in Sections 3 and 4. In Section 5, the merits
and weaknesses of the mentioned techniques are discussed and concluded.

2. Structure of Wayside In-Service Flat Detection System

Wayside detection systems are commonly used in automated rolling stock inspection
processes [43–46]. The general structure of wayside in-service flat detection systems for
railway vehicles is shown in Figure 3. It can be divided into two main parts: the data
acquisition module and the data analysis module [47]. The data acquisition module is
usually installed in the work room beside the rail to acquire wheel flat information when
the train passes. Cameras, microphones, pressure sensors and other kinds of sensors can be
used in data acquisition the module to sense flat information.
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Figure 3. Wayside in-service flat detection system schematic.

When the train passes the wayside detection system, the sensor installed beside the
rail, such as an optoelectronic switch, will generate a ‘train coming signal’ to start the
system. Automatic equipment identification (AEI) tag readers are often mounted on rails
along with sensors to detect the wagon IDs and identify each wheel. The signal processor
and the control PC then record the data collected from each axle in a database, which are
then transmitted to the railway control center or depot maintenance center for remote
monitoring and diagnosis [48,49]. The data analysis module is usually installed in the
monitoring room beside the track. The signals generated by the data acquisition module are
sent to the data analysis module via wired or wireless data transmission [50]. The signals
are pre-processed to reduce noise interference and processed by wheel flat algorithms to
extract flat information.

3. Stress-Based Wheel Flat Signal Acquisition Method

The most commonly used wheel flat detection method is the stress-based method.
In this method, the dynamic stress of the track when the train passes can be measured
by different stress sensors such as strain gauges, accelerometers, and fiber Bragg gratings
(FBG) [51–65].

In 2016, Matthias Asplund et al. checked the wheel profile parameters measured by
the wayside wheel profile measurement system (WPMS) installed along the Swedish Iron
Ore Line, and correlated them with the warning and alarm indications issued by the wheel
defect detector (WDD) [66]. The WDD measures the force peak generated by static train
load and dynamic load from the wheel defects [67]. WPMS can detect faults related to wheel
profile, such as high flange, wide flange, thin flange, small flange angle, and abnormal
wheel diameter. WDD can detect faults such as flats, large shelling, and severe wheel
polygonization. Unfortunately, none of these systems can successfully capture surface
cracks, spalling, small shelling, low levels of polygonization, or all subsurface defects, nor
can they detect rolling contact fatigue (RCF) in wheels at an early stage [68,69].

In 2018, several vibration transducers were mounted on tracks by Tomasz Nowakowski
et al., to detect the wheel flat as shown in Figure 4 [70]. A vibration signal processing
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method based on time-domain and frequency-domain was proposed. By analyzing the
time signal envelopes of flat-wheel and ordinary-wheel trams, obvious peaks were found in
the time signal envelopes of flat-wheel trams. They measured 15 tram passes with flawless
wheels and 17 tram passes with flat wheels and found the time signal envelope of the flat
wheel tram is characterized by an obvious peak with an amplitude higher than 35 m/s2,
while the time signal envelope of the flawless tram does not have this feature. Experimental
results show that this method has high efficiency in wheel flat detection, and can be applied
to a larger speed range.

Figure 4. A view of the measurement points locations with a basic designation of dimensions
and measurement realization. ω0: rotational velocity of the wheel, PM1~PM4: points of measure-
ments [70].

Liu and Ni developed an FBG-based track-side wheel condition monitoring system
for detecting wheel tread defects [71]. Two FBG strain gauge arrays mounted on the foot
of the track were used to measure the dynamic strain of paired tracks excited by passing
wheelsets. Each FBG array was approximately 3 m in length, slightly longer than the wheel
circumference to ensure full coverage to detect any potential defects on the wheel tread. A
defect detection algorithm was developed that utilizes online monitored rail responses to
identify potential wheel tread defects. Data smoothing techniques were used to detrend
and to pre-process the strain data and outlier analysis was used to perform diagnostics
of responses to normalized data. Local defects can be identified by refined analysis of
responses extracted in diagnostics. According to field tests, the proposed method can
achieve satisfactory accuracy in wheel defect detection when the train running speed was
higher than 30 kph, and some minor defects with a depth of 0.05 mm~0.06 mm were also
successfully detected.

In the same year, Gabriel Krummenacher et al. proposed a wheel flat detection
system based on the measurement of vertical force through wheel load checkpoints (WLC)
installed on the rail [72]. Each WLC consists of four 1 m long measurement bars with four
strain gauges per measurement bar. The strain gauges were installed perpendicular on
the centerline of the rails. An automatic detection and classification method for railway
wheel defects based on vertical force sensors was proposed. Wavelet features of time series
data from sensors were designed and support vector machines were used as classifiers.
Convolutional neural networks (CNN) for different wheel defect types were designed
and trained through deep learning. A cyclic shift invariant artificial neural network was
designed to detect flat and non-round wheels. The proposed method can be used to predict
wheel defects without prior knowledge of how these defects will manifest in measurements.

In 2019, a railway wheel flat detection system based on a parallelogram mechanism
was improved on the basis of the previous research of our group [73]. As the core compo-
nent, the parallelogram mechanism is mainly composed of the measuring ruler, connecting
rods, springs, hydraulic damper, limit block, and eddy current sensor, as shown in Fig-
ure 5. The wheel flat can be quantitatively detected by measuring the vertical displacement
change of the measuring ruler. The depth of the wheel flat can be reflected by the amplitude
of the sensor signal.
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Figure 5. A schematic diagram of the parallelogram mechanism [73].

Wen-Jun Cao et al. used the dynamic signal of rail pad sensors (RPS) to identify the
wheel flats [74]. A method to identify wheel flat dimensions using a dynamic measurement-
based model update strategy was proposed. They used a model falsification approach to
identify the size of the wheel flats, which can interpret high-dimensional time series in the
context of inverse identification. This method has been successfully applied to process time
series data and significantly reduces computation time. The system was field-tested on
a test track at a train station in Singapore and the experimental results showed that the
identified wheel flat size is within the real observation range.

In the same year, Alemi A. et al. proposed a fusion method for wheel defect recognition,
which associates the collected samples with their positions on the wheel circumference
coordinates [75]. As the magnitude of the contact force contains limited information about
wheel defects, this study reconstructs defect signals from discrete samples collected by
multiple sensors, such as WILDs. The obtained results show a considerable similarity
between the contact force and the reconstructed defect signal, which can be used for further
defect identification. The proposed method offers the potential to detect and identify defects
at an early stage, including minor defects and long-wave defects. In addition to wheel
defects, the reconstructed defect signal will also be influenced by other parameters, such
as train velocity, axle load, number of sensors, and wheel diameter. In 2020, they carried
out a parameter study to investigate the impact of these parameters [76]. The research
shows that the fusion method can provide better performance when the signal-to-noise
ratio (SNR) is high. Increasing the number of sensors can improve the results of the fusion
process. Therefore, it is necessary to balance the cost of the interrogator supporting a large
number of sensors with the accuracy and reliability of the fusion results.

In 2020, Chenyi Zhou et al. proposed a long-term monitoring method for wheel flats
based on multi-sensor arrays, as shown in Figure 6 [77]. The dynamic strain response of
the rail was captured efficiently by an array of sensors mounted on the rail web to ensure
that all wheels were evaluated during the passage of the train. In order to realize accurate
recognition and positioning of wheel flats, an algorithm based on multi-source data fusion
was proposed. A vehicle–track system coupling dynamic model was established, and the
sensitivity and reliability of different sensor layout schemes under different wheel flat
conditions can be analyzed according to the model. By conjoint analysis of multi-sensor
signals, the specific moment at which the wheel flat occurred can be precisely identified.
By use of data fusion between multiple sensors, the specific location of wheel defects can
be confirmed.

 

Figure 6. Plans for sensor arrangement [77].
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Our group designed a new wheel flat detection system based on a self-developed
reflective optical position sensor [78]. As shown in Figure 7, the sensor was composed
of a tailed fiber laser, a four-quadrant detector, and a cube-corner prism. A in Figure 7a
represents the light source and detection module composed of a tailed fiber laser and a
four-quadrant detector. B in Figure 7a is a reflection module composed of cube-corner
prism. The reflective optical position sensor is used to detect the vertical deformation of the
rail under wheel–rail contact. The wheel–rail impact force of the entire circumference was
measured by displacement detection of the collimated laser spot. The finite element method
and multibody dynamics method were used to establish the vehicle–track coupled dynamic
analysis model. A quantitative relationship between the sensor signal and the wheel flat
length was established by the model. The system was assessed through simulation and
laboratory investigation, and real field tests were conducted to certify its validity and
correctness.

Figure 7. The schematic diagram of the sensor and the rail vertical deformation: (a) The installation
location of the sensor; (b) The schematic diagram of the sensor; (c) The rail vertical deformation [78].

A vibration signal-based flat detection system was developed by Jyoti Barman and
Durlav Hazarika [79]. In this system, the vibration signal was captured by an ADXL335
vibration sensor connected to the fish-plate of the track and linear time-frequency transform
(wavelet transform) combined with a quadratic time-frequency transform (Wigner-Ville
transform) were used to find the flat signal.

In 2021, Araliya Mosleh et al. proposed a wheel flat detection system based on strain
gauges (SGS) mounted on the trackside which has been tested in several scenarios of
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varying complexity [80]. The layout scheme of the strain gauges is shown in Figure 8.
The numbers in the figure represent the deployment position of the strain gauge on the
rail. A method using envelope spectrum analysis to detect wheel flats was proposed.
Through envelope spectrum analysis, wheel flats at different train speeds can be detected
if a noticeable lag between the amplitudes of the envelope spectrum is observed. In 2021,
they proposed a multi-sensory layout scheme to detect wheel flats on passenger and freight
trains [81]. The effect of sensor type and installation location on the accuracy of the wheel
flat detection system was analyzed and discussed. Experimental results show that using
a layout scheme consisting of accelerometers is clearly more beneficial than using strain
gauges to perform envelope spectrum analysis to detect defective wheels in situations
where the signal is heavily contaminated by noise. Compared with the previous study, the
number of sensors was reduced and the installation positions of sensors were optimized.

Figure 8. Strain gauges’ positions [80].

Ni and Zhang established an FBG-based wayside monitoring system by deploying
two arrays of FBG strain sensors beside the track [82]. Each sensor array includes 21
FBG gauges, and each gauge is evenly spaced at 0.15 m intervals on the rail foot of each
single track. A Bayesian machine learning approach based on trackside strain-monitoring
data was developed for online and quantitative assessment of railway wheel conditions.
The cumulative density functions of the normalized Fourier amplitude spectra of the
rail foot strain response under healthy wheel conditions were extracted as features. The
probabilistic reference model was trained by Sparse Bayesian Learning (SBL). Due to the
sparsity of SBL embedding, overfitting was avoided and the generalization ability was
improved. As only a small number of basic functions were involved in the model, the
computational efficiency of the model was competitive, and fast diagnosis can be realized
in wheel condition assessment. The proposed method is verified by using the in-situ
monitoring data collected by the wayside monitoring system during the train passing
process. The proposed method is verified by comparing the diagnosis results obtained
from the proposed online method and the offline wheel radius deviation measurement.

In 2022, Jian Mu et al. studied the dynamic behavior of the vehicle system and the
contact force between the wheel and the rail [83]. The detection of wheel–rail vertical
contact force was realized by the prototype through rail web strain gauges. Then a vehicle–
rail coupling model considering the modal characteristics of the flexible wheelset and
the track was established. The validity of the fitted curve to determine the flat length
was checked by comparing the simulated plane length with the length calculated for the
wheel–rail contact force.

Araliya Mosleh et al. proposed a data-driven machine learning method based on un-
supervised learning, which can automatically differentiate between defective and healthy
wheels of a train [84]. This method combines sets of acceleration and shear force records
evaluated on the rail to enhance its sensitivity. By taking one or more train passing signals
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with different operating speeds, loading schemes, and track irregularities profiles as input,
an artificial intelligence method was used to identify wheel flats. A continuous wavelet
transform model was employed to extract features from multiple sensors, transforming
time series measurements into alternative data. Then, the extracted features were nor-
malized using Principal Component Analysis techniques, suppressing environmental and
operational variations. Finally, data fusion was employed to merge the features from each
sensor and enhance the sensitivity to detect wheel defects.

4. Sound- or Image-Based Wheel Flat Signal Acquisition Methods

In addition to stress-based methods, many sound- and image-based methods have
also been used to detect wheel flats [85–88].

4.1. Sound-Based Method

When the wheel flat appears on the wheel tread, the wheel–rail contact force will
become uneven and impact rolling noise will be generated. In the sound-based method,
acoustic sensors such as microphones and acoustic emission (AE) sensors are installed on
the side of the track to acquire flat signals. In 2017, Pawel Komorski et al. realized the
identification of wheel flats by detecting collision noise generated by wheel–rail contact [89].
The layout scheme of the measurement system is shown in Figure 9. Three microphones
were installed on one side of the track and spread along the track with a distance of 2.04
m, which is the length of the circumference of each tram wheel. A transmitter-receiver
type photocell was placed between the tracks to measure the cross-section. The joint
time-frequency analysis method (JTFA) was used to process acoustic signals and detect
the flat wheels of trams, which consists of short-time Fourier transform (STFT) analysis
and wavelet transforms. Subsequent studies have shown that the total cost can be reduced
by reducing measurement points [90]. The improved system layout scheme is shown in
Figure 10. The acoustic signal was analyzed according to the Fourier transform and the
Hilbert transform. The novelty of this method is the use of acoustic signals instead of
vibration signals to estimate the diagnostic parameters of the second and third rotational
harmonic frequencies of the wheel. The highest sensitivity was obtained at the level of
13–15 dB.

 
Figure 9. The scheme of measuring positions in the pass-by test; M—Microphones, P—photocells [89].
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Figure 10. The scheme of measuring positions during acoustic pass-by tests; M1–M3—Microphones,
P—Photocells [90].

In 2018, Metin Aktas et al. detected wheel flats based on acoustic emission (AE)
technology and the parametric constraint optimization principle [91]. In the system, a
single AE sensor was used and deployed on rails equipped with magnetic holders. As the
train moves on the rail, the produced acoustic vibration can be measured continuously. A
wheel flat detection algorithm based on parametric constraint optimization principles was
proposed. This method compares the measured defect score curve with the predefined
threshold curve to determine the wheel tread condition. Field tests were conducted and the
results show that the system can effectively detect wheel flats at different train speeds with
an accuracy rate of up to 90%. The challenge of this method is that the measured acoustic
signal may contain the surrounding noise, which limits the method’s accuracy.

4.2. Image-Based Method

With the development of computer vision technology, many image-based wheel flat
detection systems have been designed [92,93]. In these systems, high-speed cameras were
used to acquire a photo of the wheel tread when the train passes by. Then the wheel tread
defects can be identified and localized by corresponding image processing algorithms.

In 2016, Hanieh Deilamsalehy et al. developed a computer-vision-based system for
automatically detecting the sliding wheels and hot bearings from images taken by wayside
thermal cameras [94]. From the acquired thermal images and sliding wheels, it can be seen
that the sliding wheels possess a distinctive heat pattern at the wheel–track contact point. A
method based on histograms of oriented gradients for identifying wheel flats and bearing
parts was proposed. The feature descriptors were used by support vector machines to build
fast classifiers with good detection rates. Simulated images of sliding wheels were used to
train the algorithm. The monitoring method was tested with simulated images and a set of
real thermal images taken on several trains of the Union Pacific Railroad (UPPR). 98% of
the total number of defective wheels were detected without any false alarm. The model
was improved by the author in the follow-up work, and the accuracy reached 100% [95].

In 2017, a system of collecting wheel tread defect images for online running trains
was designed by Guangyu Guo et al. [96]. 16 high speed CCD cameras were used in the
system to acquire the images of the entire wheel tread. By Support Vector Machine (SVM)
classifier and Gaussian kernel, the wheel tread defect areas can be identified and located
accurately. A wheel tread flat detection method was proposed to deal with wheel tread
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images captured by high-speed cameras. In this method, an SVM classifier was employed
to recognize defective areas and a Gaussian kernel was used to locate defect areas. Three
different types of descriptors were extracted to represent the defects, and experimental
results show that compared with distribution vectors and area features, HOG features were
considered to be better features for defect identification.

The image-based method uses vision cameras as flat sensors, which has the character-
istic of non-contact measurement and fast response time. However, the accuracy of this
method depends on image processing algorithms.

5. Summary

The advantages and disadvantages of the three signal acquisition methods are shown
in Table 1. Currently, the sound-based method has been applied widely in non-destructive
tests, but it is not a popular solution for wayside wheel flat detection [90]. The stress-based
method is the most commonly used wheel flat detection method as its advantages of low
cost, convenient installation, and high accuracy [89]. However, the traditional wheel flat
detection system based on the stress method can only detect the wheel–rail contact area,
which will cause more than 70% of the wheel tread area to be undetectable [96]. In addition,
the size of the flat cannot be directly reflected by the acquired waveform, thus it is necessary
to build models to acquire the relationship between flat size and the waveform. As models
do not necessarily reflect the real field conditions, the quantitative measurement of wheel
flats remains a challenge for the stress-based method. Generally, the image-based method
is more expensive due to the use of lasers or cameras. In this method, the wheel flat size
can be identified directly and quantitatively through image processing algorithms.

Table 1. Advantages and disadvantages of stress-based, sound-based, and image-based techniques.

Method Advantages Disadvantages

Stress-based method
Related technologies are more mature It can only detect the condition of the

wheel–rail contact areaSimple installation and maintenance
Low cost Quantitative measurement is difficult

Sound-based method

Acoustic emission method can realize repeated
period measurement Quantitative measurement is difficult

Low cost
Easy to use Relative technology application is less

Image-based method Quantitatively measurable,
Non-contact measurement, Long life High cost

6. Conclusions

This paper discusses the research progress in wayside wheel flat detection since 2016
and compares the advantages and disadvantages of various wheel flat detection methods.
During this period, the stress-based method is the most popular flat detection method.
Strain gauges, accelerometers, and FBG are commonly used stress sensors to extract rail
vibration signals. According to the Literature referenced in this paper, the application
statistics of sensor types in stress-based wayside wheel flat detection systems in the past
few years are shown in Figure 11. Different sensors have different characteristics, which
can be flexibly selected according to the requirements. The strain gauge has the advantages
of low price and high resolution, however it is non-linear and needs regular calibration. In
addition, the measuring results are easily affected by external factors such as train speed,
train weight, and electromagnetic interference. Therefore, more simulation studies are
needed to evaluate the impact of train speed, train weight, and severity reflected in wayside
measurement data. The FBG sensor has high precision and is immune to EMI induced
noise. With wavelength multiplexing capability, multiple FBG sensors can be integrated,
which is convenient for remote monitoring, deployment, and maintenance. The main
challenges faced by FBG sensor applied in wheel flat detection include: 1© Certain cross-
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sensitivity in strain and temperature response exists in FBG sensors; 2© Currently, most
of the systems based on FBG sensing have a measurement speed below 1 kHz. However,
for high-speed measurement scenes such as wheel flat detection, the signal demodulation
speed of FBG sensing-based schemes needs to be further improved. In addition, the study
of new structure and packaging of FBG sensors has important significance. To address
the issue of cross-sensitivity, researchers have put forth several temperature compensation
models and algorithmic solutions [97]. In addition, it is also of great significance to study
new structural designs and packaging options of FBG sensors to solve this problem. At
present, the main factors restricting the detection speed of FBG signals are the modulation
rate of the light source and modulator, and the response frequency of the detector. By
improving the speed level of these devices, high-speed detection ability will be further
improved. For FBG signal demodulation methods, spatial dispersion spectroscopy and
time dispersion spectroscopy with higher sampling rates will be good choices. In addition,
adopting the approach of collecting data first and processing them later can reduce the
requirements for the signal analysis and processing capabilities. The research of effective
installation methods and cost-effective high-performance demodulation systems for FBG
sensors promote the application of FBG in the detection of wayside wheel flats. In addition
to the above usual stress sensors, laser measurement technology has been introduced as a
stress sensor which has brought many new ideas for wheel flat detection.

Figure 11. Usage statistics for different sensors.

Machine learning has been attracting more and more attention in the field of wheel
flat detection. Machine learning algorithms, such as deep learning, can learn patterns from
wheel flat signals, enabling them to realize self-feature extraction which can better capture
flat signals. In addition, they are able to adapt to changing fault conditions, allowing
them to perform more robustly when faced with new fault situations. Compared with
the traditional threshold method, machine learning algorithms have higher accuracy but
slightly lower precision [72]. This means that the threshold method has a low false alarm
rate but is prone to miss detections, resulting in partially flat wheels being ignored after
passing through the detection system. Compared with the traditional threshold method,
machine learning algorithms have a high recall rate, indicating that they are less likely to
miss detections of wheel flats. However, the application of machine learning also faces
challenges. The performance of machine learning algorithms is mainly influenced by
the model structure, the distribution of training data, and hyper parameters. A complex
model structure and a large amount of training data greatly increase the cost of model
training. In the real world, the amount of data for faulty wheels is severely imbalanced
compared to that of normal wheels, with labeled data shortages decreasing the model’s
performance and robustness. Few-shot learning and unsupervised learning models have
great potential in addressing these issues. Additionally, in order to ensure the generalization
ability of machine learning algorithms and to make them applicable to in-service wheel flat
detection on different railways, it is necessary to construct larger and more reasonable data
sets. Appropriate model structures and well-distributed data sets can not only guarantee
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detection accuracy, but also ensure detection robustness by reducing overfitting. This may
promote machine learning algorithms as the main development direction for wayside
wheel flat detection.

In addition, by combining stress-based sensors, which are sensitive but have limited
measurement range, and image-based sensors, which have a large measurement range
but are easily affected by attached objects such as leaves and soil, multi-sensor fusion
measurement can be achieved, which can further improve the sensitivity and accuracy of
the measurement. Multi-sensor fusion can locate the specific position of wheel defects, but
its results are affected by parameters such as the number of sensors and the length of the
effective area [75–77]. By analyzing these parameters, multi-sensor fusion may have greater
development potential in the field of wheel flat detection. The development direction of
the wheel flat detection system may gradually tend to device simplification, multi-sensor
fusion, algorithm accuracy and operation intelligence. In addition to single fault detection,
the detection system is also gradually adopting multi-fault detection to be more efficiently.
Apart from the wheel flat detection system, there are also wheel tread geometric parameter
detection systems, wheel diameter detection systems, and so on [98,99]. Multi-system
combined wheel status detection will become the future development trend.
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Abstract: Frequency-difference-stabilized dual-frequency solid-state lasers with tunable and large
frequency difference have become an ideal light source for the high-accuracy absolute-distance
interferometric system due to their stable multistage synthetic wavelengths. In this work, the
advances in research on oscillation principles and key technologies of the different kinds of dual-
frequency solid-state lasers are reviewed, including birefringent dual-frequency solid-state lasers,
biaxial and two-cavity dual-frequency solid-state lasers. The system composition, operating principle,
and some main experimental results are briefly introduced. Several typical frequency-difference
stabilizing systems for dual-frequency solid-state lasers are introduced and analyzed. The main
development trends of research on dual-frequency solid-state lasers are predicted.

Keywords: dual-frequency solid-state laser; frequency-difference tuning; frequency-difference stabilization;
quadrature-demodulated Pound–Drever–Hall method; synthetic-wave absolute-distance interferometry

1. Introduction

The synthetic-wave absolute-distance interferometric measurement is a kind of high-
accuracy no-guideway ranging technology based on the fraction-coincident method of the
interference fringes, which provides an effective way to solve the technical problems of
precision measurement and ultra-precision measurement of large-dimension workpieces.
At present, the dual-frequency lasers [1,2] and optical-frequency combs [3–6] are normally
used as the light sources for synthetic-wave absolute-distance interferometric systems, in
which dual-frequency lasers have attracted great attention and strong research interests
of scholars worldwide due to the advantages of simple structure and low cost. As the
typical representatives of dual-frequency lasers, the Zeeman dual-frequency He-Ne laser at
632.8 nm [7], the two-longitudinal-mode He-Ne laser at 632.8 nm [8], and the birefringent
dual-frequency He-Ne laser at 632.8 nm [9] have been successfully applied to the synthetic-
wave absolute-distance interferometric system. However, the frequency differences of
these dual-frequency lasers are generally <1 GHz due to the fact that the fluorescence
linewidth of Ne atoms is relatively narrow (about 1500 MHz), and the corresponding
synthetic wavelength is >300 mm; accordingly, it is difficult to improve the accuracy of
the absolute-distance measurement. It is found that the fluorescence linewidth of solid-
state crystals is much wider than that of the He-Ne gas medium, and a dual-frequency
solid-state laser with a frequency difference larger than several tens of GHz or up to several
THz can form much smaller synthetic wavelengths, so that the accuracy of the absolute-
distance measurement can be significantly improved. In addition, the integer order of
the synthetic-wave-interference fringes can be uniquely determined, provided that the
preliminary measurement error of the measured distance is less than one fourth of the
synthetic wavelength; additionally, when the frequency difference of the dual-frequency
laser decreases, the corresponding synthetic wavelength becomes longer, and, accordingly,
the preliminary measurement of the measured distance can be performed easily. Evidently
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different multistage synthetic wavelengths can be generated using a dual-frequency solid-
state laser with tunable and large frequency difference as a light source. A step-by-step
refined measurement method can be used to realize a high-precision absolute-distance
measurement, and the final accuracy of the absolute-distance measurement mainly depends
on the magnitude of the minimum synthetic wavelength and its stability, that is, it is
determined by the maximum frequency difference of the dual-frequency solid-state laser
source and its stability. In order to achieve the absolute-distance measurement accuracy
to an order greater than 10−6, the frequency-difference stability of the dual-frequency
solid-state laser must be an order of 10−7 or better. Therefore, the frequency-difference-
stabilized dual-frequency solid-state laser with tunable and large frequency difference can
be used as an ideal light source for the synthetic-wave absolute-distance interferometric
system [10–13].

Many experts and scholars worldwide have investigated the oscillating principles
and key technologies of dual-frequency solid-state lasers with tunable and large frequency
difference since 2000 [14–19], and they have successfully developed a series of new dual-
frequency solid-state lasers, such as the birefringent dual-frequency solid-state laser [20–30],
the biaxial dual-frequency solid-state laser [31,32], the two-cavity dual-frequency Nd:YAG
laser (TCDFL) [33–40], and so on. Especially in the recent years, our research group
has made important progresses in the research and development of the TCDFL and
its quadrature-demodulated Pound–Drever–Hall (QD-PDH) frequency-stabilizing tech-
nology [41,42], and the QD-PDH frequency-stabilizing method has been applied to the
frequency-difference stabilization of the TCDFL with a frequency difference of 24 GHz
at 1064 nm [43,44]. This frequency-difference-stabilized TCDFL at 1064 nm has been suc-
cessfully used as the light source for a synthetic-wave absolute-distance interferometric
system [45].

2. Simultaneous Oscillation and Frequency-Difference Tuning of Orthogonally and
Linearly Polarized Dual-Frequency Solid-State Laser

It is known that a dual-frequency laser output can be obtained by inserting a longitudinal-
mode-splitting element into the laser cavity for the single longitudinal mode to be split into
two orthogonally polarized components, provided that the laser meets the requirement of
single-longitudinal-mode operation. At present, the commonly used methods of the laser
single-longitudinal-mode selection for solid-state lasers mainly include the birefringent
filter method, Fabry–Perot (F-P) etalon method, short-cavity method, twisted-mode-cavity
method, ring traveling-wave-cavity method, etc. Additionally, the laser longitudinal-mode-
splitting methods for solid-state lasers mainly include the birefringence splitting method
and polarization splitting method. Due to the significant advantages of dual-frequency
solid-state lasers, several different schemes of dual-frequency solid-state lasers have been
designed and experimentally investigated by experts worldwide, which are based on the
principles of single-longitudinal-mode selection by birefringent filter or intracavity F-P
etalon, and the orthogonally and linearly polarized dual-frequency laser with tunable
frequency difference has been simultaneously oscillated and output.

2.1. Birefringent Dual-Frequency Solid-State Lasers
2.1.1. Natural Birefringent Dual-Frequency Solid-State Lasers

Dual-frequency solid-state microchip lasers have the advantages of large frequency
difference, high pumping efficiency, high beam quality, and narrow laser linewidth. To
obtain a dual-frequency laser output with a tunable and large frequency difference, in
2009, the research group of Profs. A. Mckay and J. M. Dawes of Macquarie University
reported a diode-pumped dual-frequency microchip Nd:YAG ceramic laser at 1064 nm [20],
as shown in Figure 1. This laser consisted of a 0.25 mm-long highly doped (4%) ceramic
Nd:YAG plate and two zeroth-order quarter-wave plates, which were optically bonded to
BK7 glass substrates with planar 1064 nm resonator mirror coatings on each waveplate. The
ceramic plate was glued to the input-waveplate mirror, and the output-waveplate mirror
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was positioned close to the ceramic. The overall cavity length was estimated to be 300 μm,
so the laser at 1064 nm was forced to oscillate in single-longitudinal mode. Due to the
natural birefringence effect, the single longitudinal mode was split and the orthogonally
and linearly polarized dual-frequency laser at 1064 nm was oscillated and output. Figure 2
shows the experimentally observed typical spectrums of the two simultaneously lasing
narrow-linewidth-longitudinal modes with approximately equal optical power, in which
Figure 2a–c are the oscillating modes of the dual-frequency laser with different frequency
difference, respectively. At a frequency difference > 120 GHz [see Figure 2c], the optical
power in both polarizations decreased due to the limited gain near the edges of the spectral-
gain linewidth, which ultimately limited the tuning range of the frequency difference. By
tuning the relative angles between the principal axes of the two quarter-wave plates, the
frequency difference was tuned linearly from a few gigahertz to over 150 GHz, as shown in
Figure 3.

 
Figure 1. Schematic diagram of dual-frequency ceramic microchip Nd:YAG laser [20]. QWP: quarter-
wave plate; G: glass.

(a)  (b)  (c)  

Figure 2. Oscillating spectrums of dual-frequency laser with difference frequency differences of
(a) 64.5 GHz, (b) 118 GHz, and (c) 148 GHz [20].
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Figure 3. Tuning of the optical frequency separation between orthogonally polarized modes as a
function of relative quarter-wave-plate angles [20].

In 2007, the research group of Prof. Zhao Changming of the Beijing Institute of Tech-
nology reported a diode-pumped tunable dual-frequency Nd:YAG laser at 1064 nm [21], as
shown in Figure 4, in which an intracavity-fused quartz-made F-P etalon with a thickness
of 0.5 mm was used as the laser longitudinal-mode selector, and two zeroth-order quarter-
wave plates were vertically inserted into the laser cavity. As a result, an orthogonally
polarized dual-frequency laser at 1064 nm was obtained, and the frequency difference of
the dual-frequency laser was tuned by adjusting the relative angles between the princi-
pal axes of the two quarter-wave plates. The experimentally observed oscillating mode
spectrum of the dual-frequency laser at 1064 nm was obtained by the use of a confocal
scanning F-P interferometer, as shown in Figure 5, in which it can be seen that both longitu-
dinal modes oscillated simultaneously in a single-longitudinal-mode, and the frequency
difference of the dual-frequency laser at 1064 nm was tuned in a range from 50 MHz to
1.3 GHz. In 2010, the group also reported a diode-pumped coupled-cavity dual-frequency
Nd:YAG laser at 1064 nm with tunable frequency difference [22], as shown in Figure 6. The
single-longitudinal-mode oscillation was realized from a coupled-cavity setup consisting
of the input-cavity mirror and a fused quartz-fabricated F-P etalon with a thickness of
1 mm and an effective reflectivity of 4%. The two quarter-wave plates were inserted into a
cavity so as to split the laser-longitudinal mode, and the frequency difference was tuned
in a range from 0 to 1.1 GHz by changing the angle between the principal axes of the
two quarter-wave plates.

 
Figure 4. Schematic diagram of dual-frequency Nd:YAG laser [21]. LD: laser diode; F-P etalon:
Fabry–Perot etalon; QWP: quarter-wave plate; OC: output coupler.
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Figure 5. Oscillating spectrum of dual-frequency laser [21].

Figure 6. Diagram of the tunable two-frequency solid-state laser with coupled cavities [22]. LD: laser
diode; λ/4 plate: quarter-wave plate.

In 2001, the research group of Prof. Zhang Shulian of the Tsinghua University reported
a diode-pumped birefringent dual-frequency Nd:YAG laser at 1064 nm [23], as shown
in Figure 7, in which the resonant cavity of the laser contained a piece of crystal-quartz-
made birefringent F-P etalon (BFPE), serving as both a selector and a splitter of laser
longitudinal modes. Because of the intracavity birefringent effect, each longitudinal mode
was split into two linearly and orthogonally polarized components, i.e., ordinary mode
(o-mode) and extraordinary mode (e-mode), and the unique transmission maximum of
the etalon within the overall lasing bandwidth of the Nd:YAG laser was also split into
two transmission maxima, namely ordinary peak (o-peak) and extraordinary peak (e-peak).
The simultaneous operation of the two longitudinal modes could be obtained by making
an o-mode and an e-mode coincide with the central positions of the o-peak and e-peak,
respectively. A piece of BFPE with a geometrical thickness of 645 mm and a cut-angle of
10◦ was designed and fabricated, which was placed in a 40 mm-long cavity of the diode-
pumped Nd:YAG laser. As a result, the orthogonally and linearly polarized dual-frequency
laser at 1064 nm was output by slightly adjusting the tilt angle of the BFPE element, and a
frequency difference of approximately 2 GHz was observed experimentally by a confocal
F-P-scanning interferometer with a free spectral range of 4 GHz.

 

Figure 7. Experimental setup of diode-pumped birefringent dual-frequency Nd:YAG laser [23]. LD:
laser diode; GL: gradient-index lens; BFFP: birefringent Fabry–Perot etalon; OC: output coupler.

In 2018, the research group of Prof. Jiao Mingxing of the Xi’an University of Technology
designed and reported a diode-pumped dual-frequency Nd:YAG laser with a detuning
twisted-mode cavity at 1064 nm [24], as shown in Figure 8, in which the polarizing beam
splitter (PBS) was used as the polarizer and two quarter-wave plates were placed on each
end of the Nd:YAG crystal. The laser oscillated in linearly polarized single-longitudinal-
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mode when the principal axes of the two quarter-wave plates were perpendicular to
each other, and the single-longitudinal-mode was split into two orthogonally and linearly
polarized modes when the twisted-mode cavity was detuned. As a result, an orthogonally
polarized dual-frequency laser at 1064 nm was obtained, and the frequency difference
was continuously tuned over the whole cavity free spectral range by rotating one of the
quarter-wave plates in the plane perpendicular to the cavity axis. The oscillating-mode
spectrum of the dual-frequency laser was observed experimentally by the use of a confocal
scanning F-P interferometer, as shown in Figure 9. The dependence of the mode-splitting
magnitude on the rotation angle of the quarter-wave plate was obtained experimentally, as
indicated in Figure 10, and the largest frequency difference was about 3 GHz, determined
by the laser cavity length.

 

Figure 8. Schematic diagram of dual-frequency Nd:YAG laser with a detuning twisted-mode cav-
ity [24]. LD: laser diode; GL: gradient-index lens; WP: wave plate; PBS: polarizing beam splitter; OC:
output coupler; PZT: piezoelectric tube.

 
Figure 9. Oscillating spectrum of dual-frequency laser [24].

 
Figure 10. Dependence of mode-splitting magnitude on the rotation angle of quarter-wave plate [24].

2.1.2. Electro-Optical and Thermo-Optical Birefringent Dual-Frequency Solid-State Lasers

Compared to the crystal-quartz-made BFPE described above, an electro-optical bire-
fringent F-P etalon (EO-BFPE) can also be used as not only the single-longitudinal-mode
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selector but also as the splitter of the laser-longitudinal mode. On this foundation, in 2007,
the research group of Julien Le Gouet of Thales Research & Technology, France, reported
an electro-optical birefringent dual-frequency Nd:YAG laser [25], as shown in Figure 11, in
which a 400 μm-thick EO-BFPE made from lead zirconate tantalate ceramic was included
in the laser cavity with an optical length of 14 mm. As a result, an orthogonally and linearly
polarized dual-frequency laser at 1064 nm was obtained, and the frequency difference was
discontinuously tuned in a range from 10 to 127 GHz when the direct voltage applied to
the EO-BFPE was changed from 0 to 499 V. The typical oscillating spectrum of the dual-
frequency laser with different frequency difference was observed experimentally, as shown
in Figure 12.

Figure 11. Schematic diagram of electro-optical birefringent dual-frequency Nd:YAG laser [25]. LD:
laser diode; M: mirror; OC: output coupler.

 

Figure 12. Oscillating spectrum of dual-frequency laser with different frequency difference [25].

The research group of Prof. M. Brunel of the Université de Rennes 1 has been devoted
to dual-frequency solid-state laser technologies for a long time (since 1997). Using the
thermo-optical birefringent effect of the intracavity LiTaO3 crystal, in 2005, the group
reported a microchip dual-frequency laser containing an erbium–ytterbium glass medium
with a thickness of 190 μm and a LiTaO3 crystal with a thickness of 130 μm [26], as shown
in Figure 13. The cavity length was less than 0.5 mm; thus, the orthogonally and linearly
polarized dual-frequency laser at 1530 nm was simultaneously oscillated and output, and
the frequency difference of the dual-frequency laser was continuously tuned from a few
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GHz to more than 50 GHz when the temperature of the LiTaO3 crystal changed from nearly
45 to 10 ◦C, as shown in Figure 14.

 

Figure 13. Schematic diagram of thermo-optical birefringent microchip dual-frequency laser [26]. LD:
laser diode; M: mirror; TEC: thermo-electric cooler.

Figure 14. Dependence of oscillating wavelength and its beat frequency on laser temperature [26].

In 2008, the group also reported a diode-pumped dual-frequency solid-state laser [27],
as shown in Figure 15, in which an erbium–ytterbium glass with a thickness of 0.75 mm
was used as the gain medium. This laser also contained a 250 μm-thick F-P etalon acting
as the single-longitudinal-mode selector and a 1 mm-thick LiTaO3 crystal serving as the
longitudinal-mode splitter. As a result, an orthogonally polarized dual-frequency laser at
1530 nm was obtained, and the frequency difference of the dual-frequency laser was tuned
in a range from 100 MHz to 20 GHz when the temperature of the LiTaO3 crystal varied
from 22 to 42 ◦C, as shown in Figure 16.

 
Figure 15. Schematic diagram of dual-frequency erbium–ytterbium glass laser [27]. L: lens; OC:
output coupler.
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Figure 16. Dependence of frequency difference of dual-frequency laser on laser temperature [27].

2.1.3. Stress Birefringent Dual-Frequency Solid-State Lasers

In 2003, the research group of Prof. V. G. Gudelev of the National Academy of Sciences
of Belarus reported a diode-pumped tunable dual-frequency Nd:YAG laser at 1064 nm
with coupled resonators [28], as shown in Figure 17. The coupled resonators consisted
of the two sides of the Nd:YAG crystal and the spherical output coupler of OC, and the
fundamental cavity formed by the left side of the Nd:YAG crystal and the OC was forced to
oscillate in either single-longitudinal mode or two longitudinal modes, depending on the
geometrical cavity length of L. On the one hand, in the circumstance of single-longitudinal-
mode oscillation, the laser mode was split due to the intracavity stress birefringence
induced by the applied force of F to the OC element; therefore, an orthogonally and linearly
polarized dual-frequency laser at 1064 nm was obtained, and the frequency difference
was continuously tuned in a range from 50 MHz to 2.4 GHz when changing the applied
force. The oscillating-mode spectrum of the dual-frequency laser with different frequency
difference was observed experimentally, as shown in Figure 18. On the other hand, in
the circumstance of two-longitudinal-mode oscillation of the fundamental cavity, each
mode was split into two orthogonally and linearly polarized modes when the applied force
existed, the mode-splitting magnitude increased with the applied force. When the mode
splitting magnitude reached to a certain value, the system output a beam of orthogonally
and linearly polarized dual-frequency laser at 1064 nm, the maximum frequency difference
of which being 8.4 GHz, as shown in Figure 19.

 
Figure 17. Schematic diagram of coupled-cavity dual-frequency Nd:YAG laser [28]. OC: output coupler.
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(a)  (b)  

Figure 18. Oscillating spectrum of dual-frequency laser with different frequency difference of (a) 525 MHz
and (b) 170 MHz [28].

 

Figure 19. Oscillating spectrum of orthogonally polarized dual-frequency Nd:YAG laser [28].

In 2019, the research group of Prof. Zhang Shulian of the Tsinghua University reported
a diode-pumped dual-frequency Nd:YAG microchip laser at 1064 nm [29], as shown in
Figure 20, in which a <111>-cut Nd:YAG microchip with 1 ± 0.1% neodymium doping
in a circular shape was included. The diameter of the crystal was 5 ± 0.05 mm and the
thickness of the microchip was 1 ± 0.1 mm to reduce the multiple longitudinal modes
inside the laser output. The two surfaces were parallel and coated with high-reflectivity
dielectric films acting as the laser-cavity mirrors, so the laser at 1064 nm was forced to
oscillate in single-longitudinal mode. Based on the effect of stress birefringence, the single-
oscillated-laser mode was split into two orthogonally polarized components; thus, the
orthogonally and linearly polarized dual-frequency laser output at 1064 nm was obtained,
as shown in Figure 21. It can be seen that the frequency difference was in the scale of
tens of MHz, determined by the internal stress inside the microchip laser. In 2021, the
group also studied a microchip Nd:YAG dual-frequency laser with a frequency difference of
17.4 MHz [30], as shown in Figure 22, which was formed by the stress-induced birefringence
in the microchip itself. The <111>-cut, 1%-doped and quasi-isotropic Nd:YAG crystal was
processed into a plate with a diameter of 2.8 mm and a thickness of 1 mm. Both faces of
the chip were dielectric-coated to form a monolithic-resonant cavity; only one longitudinal
mode resonated in the cavity, which was split into two monofrequency components due
to the stress-induced birefringence in the Nd:YAG crystal. Thus, the laser emitted an
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orthogonally polarized dual-frequency laser with an output power of 4.7 mW at 1064 nm.
The polarization directions of these two components coincided with the principal stress
directions, respectively, and the frequency difference between them was proportional to
the difference between the magnitudes of two principal stresses.

 

Figure 20. Schematic setup of the dual-frequency microchip laser [29]. LD: laser diode; PMF:
polarization-maintaining fiber; GL: grin lens; L1, L2: lenses; WP: half waveplate; HS: heat sink; ML:
Nd:YAG microchip laser; NPBS: nonpolarizing beam splitter; SI: scanning interferometer; PM: power
meter; M: reflective mirror; P: polarizer.

 
Figure 21. Oscillating spectrum of dual-frequency laser (blue trace) and triangular-wave voltage
(black trace) [29].

Figure 22. Schematic of microchip Nd:YAG dual-frequency laser [30]. LD: laser diode; TEC: thermo-
electric cooler; NTC: negative-temperature-coefficient thermistor.

2.2. Biaxial Dual-Frequency Solid-State Lasers

In order to obtain a dual-frequency laser output with a tunable and large frequency
difference, in 2004, the research group of R. Czarny of Thales Research & Technology,
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France, reported a diode-pumped dual-frequency KGd(WO4)2 Yb3+-doped laser for CW-
THz generation [32], as shown in Figure 23, which included a 2 mm-long Yb:KGW active
medium doped with 5% Yb. The 60 mm-long laser cavity was formed by two mirrors of M1
and M2. Spatial separation between the two eigenmodes inside a portion of the cavity was
obtained using an AR-coated 10-mm long YVO4 crystal cut at 45◦ of its optical axes. It led to
two cross-polarized eigenmodes (o-mode and e-mode). The Yb:KGW crystal was oriented
to maximize gain of eigenstate (e), and a quartz-made half waveplate λ/2 was inserted
in the o-mode path. To independently tune the optical frequencies associated to each
polarization eigenstate, two noncoated 150 μm-thick glass etalons of Eo and Ee were placed
in the o-mode path and e-mode path, respectively. The single-longitudinal-mode operation
of both eigenstates was obtained thanks to a quite short cavity (about 60 mm) and an
additional 1 mm-thick glass etalon Ec inserted in the common path; thus, the orthogonally
and linearly polarized dual-frequency laser at 1030 nm was obtained, as shown in Figure 24.
The frequency difference between the two modes was step-tunable from DC to 3.1 THz. A
maximum total optical output power of 120 mW was obtained with a beat-note linewidth
narrower than 30 kHz.

Figure 23. Schematic diagram of dual-frequency Yb:KGW laser [32]. Eo, Ee, Ec: etalon; M1: plane-
dichroic mirror; M2: output coupler.

 
Figure 24. Measured optical spectra of dual-frequency laser when tuned for various frequency
differences [32].

2.3. Two-Cavity Dual-Frequency Solid-State Lasers

According to the principle of single-longitudinal-mode selection by the use of a
birefringent filter, the output of a high-power single-frequency laser is difficult to be
obtained, due to the fact that the mode-selecting ability of the traditional birefringent filter
is too low using a Brewster plate (BP) as a polarizer. Although the mode-selecting ability of
the birefringent filter can be effectively enhanced by increasing the number of BP, some
problems inevitably occur, such as complex laser structure, difficult adjustment of the
laser cavity, etc. To overcome the shortcomings of the limited mode-selecting ability of
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the traditional birefringent filter, in 2006, Prof. Jiao Mingxing proposed a new birefringent
filter in which a PBS was employed as the polarizer, and a TCDFL with a large frequency
difference was invented and investigated [33,34]. Since then, our group have designed and
researched several TCDFLs using different principles of single-longitudinal-mode selection,
such as birefringent filter, F-P etalon, twisted-mode cavity, etc.

2.3.1. TCDFLs Using Birefringent Filter

In order to obtain a tunable dual-frequency laser with a large frequency difference,
our group designed and investigated a diode-pumped dual-frequency Nd:YAG laser with
a tunable frequency difference [35], as shown in Figure 25, using the light-splitting and
polarizing functions of the PBS to form perpendicular linear and right-angle standing-
wave cavities. Both cavities included a birefringent output coupler (BOC) fabricated
from calcite crystal, and they employed a birefringent filter of PBS-BOC acting as laser-
longitudinal-mode selectors. The p and s components of the 1064 nm laser light oscillating
in single-longitudinal-mode were observed experimentally, as shown in Figure 26. The
frequency difference of the dual-frequency laser was tuned by adjusting the tilt angles
of the BOC, and the oscillating spectrums of the dual-frequency laser at 1064 nm were
observed, as shown in Figure 27. It can be seen that the frequency difference was tunable in
a range from 11.9 GHz to 148.4 GHz, and the maximum frequency difference reached the
fluorescence line a width of Nd:YAG.

 
Figure 25. Schematic diagram of dual-frequency Nd:YAG laser system at 1064 nm [35]. LD: laser
diode; GL: gradient-index lens; PBS: polarizing beam splitter; BOC: birefringent output coupler;
M: mirror.

 
Figure 26. Mode patterns of simultaneous dual-frequency oscillation [35].
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(a) (b) 

Figure 27. Oscillating spectra of dual-frequency laser with different frequency differences of
(a) 11.9 GHz and (b) 148.4 GHz [35].

Moreover, a diode-pumped TCDFL with a tunable and large frequency difference at
1064 nm was designed and investigated [36], as shown in Figure 28. Both cavities included
a birefringent filter of PBS-BC, in which the birefringent crystal (BC) was a piece of a
half-wave plate with a thickness of 0.7 mm. The p-polarized and s-polarized components
of the laser at 1064 nm were forced to oscillate simultaneously in single-longitudinal mode
in the linear and right-angle cavities, respectively. As a result, an orthogonally and linearly
polarized dual-frequency laser at 1064 nm was obtained, and the oscillating-mode spectrum
was observed experimentally by the use of a confocal scanning Fabry–Perot interferometer,
as shown in Figure 29.

Figure 28. Schematic diagram of TCDFL based on the principle of longitudinal-mode selection by
birefringent filter [36]. LD: laser diode; OF: optical fiber; GL: gradient-index lens; PBS: polarizing
bean splitter; BC: birefringent crystal; OC: output coupler; M: mirror.

The tilt angle of the BC2 was maintained at a constant 2.5◦, and the frequency difference
of the dual-frequency laser at 1064 nm was tuned by adjusting the tilt angles of the BC1.
The experimental relationship between the frequency difference and the tilt angles of the
BC1 was obtained, as shown in Figure 30. It can be seen that the frequency difference of the
dual-frequency laser at 1064 nm was tuned in a range from 5.2 GHz to 147.3 GHz when
the BC1 was tilted from approximately 1.5◦ to 2.5◦, and the maximum frequency difference
reached nearly to the fluorescence linewidth of the Nd:YAG crystal.
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Figure 29. Oscillating mode spectrum of dual-frequency laser [36].

 
Figure 30. Relationship between frequency difference and tilt angle of the BC1 [36].

In 2016, our group also reported a TCDFL with electro-optical modulators [37], as
shown in Figure 31, which consisted of two standing-wave cavities that shared the same
gain medium of Nd:YAG. An electro-optic birefringent filter consisting of PBS and lithium
niobate (LN) was used not only to select longitudinal mode but also to tune frequency and
frequency difference. As a result, the simultaneous operation of orthogonally and linearly
polarized dual-frequency laser was obtained, as shown in Figure 32. The experimentally
obtained results indicated that the frequency difference was tuned from 0 to 132 GHz
by changing the DC voltages applied to LNs. When the pump power was 900 mW,
the output powers from the linear and right-angle cavities were equal to 20 mW and
26 mW, respectively.

 

Figure 31. Schematic of two-cavity dual-frequency Nd:YAG laser [37]. FCLD: fiber-coupled laser
diode; GL: gradient-index lens; PBS: polarizing bean splitter; LN: lithium niobate; HVS: high-voltage
source; OC: output coupler.
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(a) (b) 

Figure 32. Oscillating spectrum of dual-frequency laser with different frequency differences of
(a) 0 GHz and (b) 132 GHz [37].

2.3.2. TCDFL with a Twisted-Mode Configuration

In order to produce the dual-frequency laser with a tunable frequency difference at
1064 nm, in 2015, our group designed and investigated a diode-pumped TCDFL using a
twisted-mode configuration [38], as shown in Figure 33, the two standing-wave cavities of
which shared the same gain medium Nd:YAG, and the twisted-mode configuration reduced
or even eliminated the spatial hole-burning effect of the gain so that the single-longitudinal-
mode was oscillated in both standing-wave cavities. Thus, the orthogonally and linearly
polarized dual-frequency laser at 1064 nm was obtained, and the oscillating mode spectrum
was observed experimentally by the use of a confocal scanning F-P interferometer, as shown
in Figure 34.

The experimental results showed that both cavities of the Nd:YAG laser oscillated
steadily in single-longitudinal mode, and the frequency difference was tuned in a range
from 0.3 GHz to 3 GHz by changing the cavity length. Theoretically, the maximum frequency
difference was equal to one-half of the sum of both cavities’ longitudinal-mode intervals.

 
Figure 33. Schematic diagram of diode-pumped TCDFL using the twisted-mode configuration [38].
LD: laser diode; GL: gradient-index lens; QWP: quarter-wave plate; PBS: polarizing beam splitter;
OC: output coupler; PZT: piezoelectric transducer; M: mirror.
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Figure 34. Oscillating-mode spectrum of dual-frequency laser [38].

2.3.3. TCDFL Using Intracavity F-P Etalon

The TCDFLs based on the principle of single-longitudinal-mode selection by the
birefringent filter are not only simple but also have a low inserted cost. However, the
spectral linewidths of the dual-frequency laser are not narrow enough due to the fact that
the bandwidth of transmission peak of the birefringent filter is relatively wide, affecting
the coherence lengths of the TCDFLs.

In 2022, our group reported a diode-pumped dual-frequency Nd:YAG laser with
two standing-wave cavities sharing the common gain medium [40], which was based on
the principle of single-longitudinal-mode selection by intracavity F-P etalon, as shown in
Figure 35. With each of the cavities containing a piece of F-P etalon, the p-polarized and
s-polarized components of the laser at 1064 nm were forced to oscillate simultaneously in
single-longitudinal mode in both cavities, respectively. As a result, the orthogonally and
linearly polarized dual-frequency laser at 1064 nm was output. Meanwhile, a coaxially
propagating beam of the dual-frequency laser at 1064 nm escaped from the side of the
intracavity PBS element because the PBS element had somewhat residual reflectance of the
p-polarized beam and residual transmittance of the s-polarized beam.

The experimental results indicated that when both fused quartz F-P etalons with
thicknesses of 0.5 mm and surface reflectivities of 90% were obliquely inserted into both
cavities, respectively, the orthogonally and linearly polarized dual-frequency laser could be
obtained by finely adjusting the tilt angles of the intracavity F-P etalons. The frequency
difference tuning of the dual-frequency laser was realized by continually adjusting the tilt
angles of both F-P etalons, and the typical oscillating spectrums of the dual-frequency laser
were observed, as shown in Figure 36. It can be seen that the frequency difference was
discontinuously tuned in a range from 16 to 76 GHz by finely adjusting the tilt angles of
the intracavity F-P etalons, and theoretically, the maximum frequency difference was up
to the oscillating bandwidth of the Nd:YAG laser. For the diode-pumped TCDFL with a
frequency difference of 24 GHz, the threshold pump powers of the linear and right-angle
cavities were equal to 1.9 W and 2 W, respectively, and the output powers of the linear and
right-angle cavities were up to 229 and 190 mW, respectively.
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Figure 35. Schematic of TCDFL based on the principle of longitudinal-mode selection by single
F-P etalon [40]. LD: laser diode; OF: optical fiber; SMA905: OF connector; OL: optical lens; PBS:
polarizing beam splitter; FP: F-P etalon; OC: output coupler; PZT: piezoelectric transducer.

 
(a) 

 

(b) 

Figure 36. Oscillating spectrum of dual-frequency laser with different frequency differences of
(a) 16 GHz and (b) 76 GHz [40].
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3. Frequency-Difference-Stabilizing Systems for Dual-Frequency Solid-State Lasers

It is known that the accuracy of a synthetic-wave absolute-distance interferomet-
ric measurement ultimately depends on the maximum frequency difference of the dual-
frequency laser and its stability. Therefore, the research on the frequency-difference-stabilizing
technology of dual-frequency solid-state lasers is of great significance.

3.1. Frequency Difference Stabilization of Birefringent Dual-Frequency Solid-State Lasers

As described above, a kind of birefringent dual-frequency solid-state lasers has a
single-axis configuration, and the frequency difference or beat-note stabilization has been
investigated [46–50], the methods of which mainly include frequency-shifted optical feed-
back, saturable absorption, etc.

In 2007, the research group of L. Kervevan of France reported an original approach
to stabilize the beat-note of a 1.53 μm dual-frequency Yb:Er glass laser via an optical
self-injection process [51], as shown in Figure 37, in which the dual-frequency Yb:Er glass
laser could output a dual-frequency laser at 1.53 μm with a beat-note of nearly 170 MHz.
The optical self-injection process consisted of selecting one of the two linear modes as a
master oscillator with a polarization filter, then frequency shifting the optical wave using
an external acousto-optic modulator, and finally, using it to inject the other mode.

 

Figure 37. Schematic of self-injection stabilization process for 1.53 μm dual-frequency phosphate
glass laser [51]. FLD: fiber-pigtailed laser diode; G: Yb:Er glass plate; E: intracavity etalon; L1 and L2:
quarter-wave plates; P1 and P2: linear polarizers; OC: output coupler; BS: beam splitter; FR: Faraday
rotator; AOM: acousto-optic modulator; PD: photodiode; SA: spectrum analyzer; FC: frequency
counters; MFB: optical feedback module; ρ: angular adjustment.

When the frequency-shifted optical beam was correctly reinjected into the oscillating
mode of the laser cavity, the stability of the locking technique was tested by recording the
beat note versus the synthesizer frequency, as shown in Figure 38a. It corresponded to a
slow frequency deviation of about 0.27 mHz/s. A linear fit was applied to the measured
synthesizer frequency [straight line in Figure 38a], and the difference between this reference
line and the optical beat-note was observed in the histogram plotted curve in Figure 38b. It
can be seen that a fitted Gaussian distribution curve allowed for estimating the stability of
the frequency locking to be less than 0.25 Hz.

3.2. Frequency Difference Stabilization of TCDFL

Due to the fact that the TCDFL has both standing-wave cavities with two separate
output couplers, it is easy to actively stabilize the resonant frequency of each cavity to
a common frequency reference so that a high stability of the frequency difference can
be obtained.
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(a) (b) 

Figure 38. Schematic of self-injection stabilization process for 1.53 μm dual-frequency phosphate
glass laser [51]. (a) Instantaneous fluctuations and long-term deviation of the synthesizer frequency
versus time. (b) Histogram of the temporal stability of the beat note between the two orthogonal
modes using the locking technique based on the frequency-shifted optical feedback loop.

As a commonly used method, the PDH frequency-stabilization method integrates with
the technologies of both electro-optic phase modulation and optical heterodyne detection.
In the past few decades, the laser-frequency-stabilizing technologies based on the PDH
method have been widely investigated worldwide due to their advantages of fast servo
response, low noise, and high-frequency stability [52–57].

3.2.1. Double-Modulator QD-PDH Frequency-Difference Stabilizing System for TCDFL

In 2022, our group reported a frequency-difference-stabilizing system for the diode-
pumped TCDFL at 1064 nm using a double-modulator QD-PDH frequency-stabilizing
method [43], as shown in Figure 39, which included two sets of QD-PDH frequency-
stabilizing subsystems (see parts II and III) that shared the same F-P cavity as the frequency
reference, and the magnitude of the frequency difference was required to be an integer
number representing times of the free spectral range (FSR) of the referenced F-P cavity.

 

Figure 39. Schematic diagram of the frequency-difference-stabilizing system for the TCDFL using the
double-modulator QD-PDH frequency-stabilizing method [43]. LD: laser diode; OF: optical fiber; L:
lens; PBS: polarizing beam splitter; FP: F-P etalon; OC: output coupler; PZT: piezoelectric transducer;
M: mirror; ISO: optical isolator; P: polarizer; EOM: electro-optic modulator; DDS: direct digital
synthesizer; A: amplifier; EOM-DR: EOM driver; QWP: quarter-wave plate; BS: beam splitter; F-P:
F-P reference cavity; PD: photodetector; I/V: current-to-voltage; FSA: frequency-selective amplifier;
QDU: quadrature-demodulated unit; D/A: digital-to-analog; PZT-DR: PZT driver.
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A QD-PDH method-based frequency-difference-stabilizing system for the diode-
pumped TCDFL with a frequency difference of 24 GHz at 1064 nm was established and
investigated, in which the free spectral range and the finesse of the referenced F-P cavity
were equal to 375 MHz and 421, respectively. Both frequencies of the TCDFL were suc-
cessfully frequency stabilized to the two different resonant frequencies of the F-P cavity
during a period of about 1 h, the error signals of the two QD-PDH frequency-stabilizing
subsystems were obtained experimentally, as shown in Figure 40, the maximum offset
voltages of the QD-PDH error signals were equal to 77 mV and 74.2 mV, respectively, and
correspondingly, the laser-frequency drifts of the linear and right-angle cavities were deter-
mined to be <0.35 MHz and 0.36 MHz, respectively. The frequency-difference fluctuations
of the frequency-locked TCDFL are shown in Figure 41, and the maximum change in the
frequency difference was <0.55 MHz. According to the Allan variance, the laser-frequency
stabilities of the linear and right-angle cavities were better than 2.3 × 10−11 and 2.7 × 10−11,
respectively, corresponding to a frequency-difference stability better than 4.2 × 10−7.

 
Figure 40. Error signals of the frequency-locked QD-PDH subsystems [43].

 
Figure 41. Frequency difference variation in the frequency-locked dual-frequency Nd:YAG laser [43].
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3.2.2. Single-Modulator QD-PDH Frequency-Difference-Stabilizing System for TCDFL

In 2022, our group proposed a new scheme of the phase modulation of the orthogo-
nally and linearly polarized dual-frequency laser using a single electro-optic modulator
(EOM), and a simple frequency-difference-stabilizing system for the TCDFL using a single-
modulator QD-PDH frequency-stabilizing method was designed [44], as shown in Figure 42,
which included two sets of QD-PDH frequency-stabilizing subsystems (see parts II and III)
that shared the same electro-optic phase modulation unit and the same frequency reference
of the F-P cavity.

 

Figure 42. Schematic diagram of the frequency-difference-stabilizing system for the TCDFL us-
ing the single-modulator QD-PDH frequency-stabilizing method [44]. LD: laser diode; OF: optical
fiber; L: lens; PBS: polarizing beam splitter; FP: F-P etalon; OC: output coupler; PZT: piezoelec-
tric transducer; M: mirror; ISO: optical isolator; EOM: electro-optic modulator; DDS: direct digital
synthesizer; EOM-DR: EOM driver; BS: beam splitter; QWP: quarter-wave plate; F-P: F-P refer-
ence cavity; PD: photodetector; I/V: current-to-voltage; FSA: frequency-selective amplifier; QDU:
quadrature-demodulated unit; D/A: digital-to-analog; PZT-DR: PZT driver.

A QD-PDH frequency-difference-stabilizing system for the same diode-pumped
TCDFL with a frequency difference of 24 GHz at 1064 nm was established and inves-
tigated. Both frequencies of the TCDFL at 1064 nm were successfully frequency-stabilized
to the two different resonant frequencies of the referenced F-P cavity during a period of
about 1 h, the error signals of the two QD-PDH frequency-stabilizing subsystems were ob-
tained experimentally, as shown in Figure 43, the maximum offset voltages of the QD-PDH
error signals were equal to 84.5 mV and 76.7 mV, respectively, and correspondingly, the
laser-frequency drifts of the linear and right-angle cavities were determined to be <0.34
and 0.35 MHz, respectively. The frequency-difference fluctuations of the frequency-locked
TCDFL are shown in Figure 44, and the maximum change in the frequency difference
was <0.51 MHz. According to the Allan variance, the laser-frequency stabilities of the
linear and right-angle cavities were better than 1.6 × 10−11 and 2.0 × 10−11, respectively,
corresponding to a frequency-difference stability better than 2.9 × 10−7.

The experimental results obtained above indicate that compared with the double-
modulator QD-PDH frequency-difference-stabilizing system shown in Figure 39, the single-
modulator QD-PDH frequency-difference-stabilizing system shown in Figure 42 is not
only simple, but also has better performances in the linear-dynamic range, frequency-
discriminating sensitivity, frequency stabilization, and frequency-difference stabilization,
as listed in Table 1.
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Figure 43. Error signals of the frequency-locked QD-PDH subsystems [44].

 

Figure 44. Frequency difference variation in the frequency-locked dual-frequency Nd:YAG laser [44].

Table 1. Comparison of experimental results of two QD-PDH frequency-difference-stabilizing systems [44].

Frequency-
Stabilizing

System
Resonant Cavity

Linear Dynamic
Range/MHz

Frequency-
Discriminating

Sensitivity mV/MHz

Frequency
Stability

Frequency-
Difference
Stability

Single-modulator
QD-PDH

Linear cavity 5.36 251.71 1.6 × 10−11
2.9 × 10−7

Right-angle cavity 5.25 222.34 2.0 × 10−11

Double-modulator
QD-PDH

Linear cavity 5.08 222.72 2.3 × 10−11
4.2 × 10−7

Right-angle cavity 4.87 208.98 2.7 × 10−11

4. Summary and Developing Trends

In order to achieve the high-accuracy synthetic-wave absolute-distance measurement,
a frequency-difference-stabilized dual-frequency solid-state laser with a tunable and large
frequency difference is needed to use as a light source to form a number of stable multistage
synthetic wavelengths. We reviewed the advances in research on different kinds of dual-
frequency solid-state lasers, including birefringent dual-frequency solid-state lasers, biaxial
dual-frequency Yb:KGW lasers, and TCDFLs based on the different principles of single-
longitudinal-mode selection. Additionally, several typical frequency-difference-stabilizing
systems for dual-frequency solid-state lasers have been introduced and analyzed.
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Taking into account of the requirements of synthetic-wave absolute-distance interfer-
ometry and the present research status of dual frequency, we may predict future develop-
ment trends in dual-frequency solid-state lasers, mainly including the following aspects:

First of all, the new oscillating principles and methods of orthogonally and linearly
polarized dual-frequency solid-state lasers will gain attraction for investigation. Especially,
the different principles and methods of single-longitudinal-mode selection should be taken
into account. In addition to the standing-wave TCDFLs described above, traveling-wave
TCDFLs can also be designed and investigated.

Secondly, the new technologies for enlarging the frequency-difference-tuning range
of dual-frequency solid-state lasers will be researched and developed. Intracavity second-
harmonic generation (SHG) can be used to enlarge the frequency-difference-tuning range,
due to the fact that the frequency difference of second-harmonic dual-frequency lasers is
theoretically twice that of fundamental dual-frequency lasers.

Thirdly, the new technologies of the spectral-line narrowing of dual-frequency solid-
state lasers will be researched and developed. The spectral linewidths of dual-frequency
solid-state lasers determine the coherence lengths, which affect the measuring range of the
synthetic-wave absolute-distance interferometry.

Finally, the new technologies of frequency difference stabilization of dual-frequency
solid-state lasers will be researched and developed. The scheme of frequency difference
stabilization depends on the dual-frequency solid-state laser configuration, and for TCDFL,
the frequency difference stability of the dual-frequency laser will be further improved,
provided that some special measurements be taken, such as using a highly stable F-P
reference cavity with high finesse, optimizing the performances of the feedback control
system, etc. It is worth mentioning that the femtosecond optical-frequency comb has a
wide linewidth and a high frequency stability, which can be used as the frequency reference
of the frequency-difference-stabilizing system.
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