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Preface

Soil moisture is well recognized as a pivotal parameter linking the water, energy, and carbon
cycles. Active and passive microwave remote sensing has been well-recognized as the most
promising means to infer soil moisture spatially and temporally. Active microwave remote sensing,
particularly using the synthetic aperture radar (SAR), has a much finer spatial resolution than using
passive sensors but suffers more from geometrical features of the scene (e.g., surface roughness,
vegetation, and topography). Passive microwave remote sensing has higher sensitivity to soil
moisture than active radar but is limited by its coarse spatial resolution. Moreover, active and
passive microwave signals respond differently to soil and vegetation parameters and thus can provide
complementary information for each other.

Over the past several decades, great progress has been made in microwave remote sensing
of soil moisture. Several field or aircraft experiments (e.g., SGP, SMEX, HIWATER, SMAPEXx1-5,
and SMAPVEX) have been organized to support the assessment and refinement of active and
passive microwave soil moisture retrieval algorithms. At the same time, a number of microwave
spaceborne satellites/sensors have been successfully launched to provide valuable opportunities to
obtain soil moisture data at various spatial scales from meters to tens of kilometers. These include
passive microwave instruments, such as the multi-frequency AMSR-E/2 (2002-), FY-3 MWRI (2008-),
L-band SMOS (2009-), and SMAP (2015-), as well as active microwave instruments, such as the
scatterometer-based Metop / ASCAT series (2006-), monostatic ALOS-2 (2014-), Sentinel-1 (2014-), and
Gaofen-3 (2016-), bistatic CYGNSS (2016-), and the P-band Biomass (planned launch in the next few
years). All of these open a wide range of possibilities to estimate soil moisture at regional and global
scales.

In this context, this book aims to present the most advanced theories, models, algorithms, and
products related to microwave remote sensing of soil moisture. The book is aimed at a wide range
of readers, from graduate students, university faculty members, and scientists, to policy makers and
managers.

We acknowledge the funding from the National Natural Science Foundation of China (Grant
No. 41971317, 42271402, 42222109) and the Youth Innovation Promotion Association CAS (Grant No.
Y2022050).

Jiangyuan Zeng, Jian Peng, Wei Zhao, Chunfeng Ma, and Hongliang Ma
Editors
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1. Introduction

Soil moisture is an important component of the global terrestrial ecosystem and has
been recognized as an Essential Climate Variable (ECV) by the Global Climate Observing
System (GCOS) [1]. The change in soil moisture content is a critical representation and
driving factor of the terrestrial water cycle which has a significant impact on the spatial
distribution and intensity of land evapotranspiration, rainfall, and runoff processes, and
thus affects a series of important issues related to sustainable development, such as water
resources and food security, drought and flood disasters, soil erosion, and ecological degra-
dation [2—4]. Therefore, obtaining accurate spatiotemporal distribution of soil moisture is
both necessary and highly interesting.

Microwave remote sensing, in both active and passive forms, is one of the most ef-
fective ways to detect soil moisture content on a large scale. Over the past few decades,
significant efforts have been made to develop empirical /semi-empirical/ theoretical mod-
els, retrieval algorithms, downscaling methods, and validation strategies related to the
microwave remote sensing of soil moisture [5-12]. Following the turn of the century, a
series of microwave-based satellites/sensors have been successfully launched (Figure 1),
such as the passive Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scan-
ning Radiometer-Earth Observing System (AMSR-E), AMSR?2, Fengyun (FY)-3B/C/D, the
active Advanced Scatterometer (ASCAT), Sentinel-1, Advanced Land Observing Satellite-2
(ALOS-2), Gaofen-3 (GF-3), and the active-passive Soil Moisture Active Passive (SMAP),
and Aquarius. Therefore, satellite soil moisture products have become increasingly abun-
dant, greatly promoting the various application of satellite soil moisture datasets [13-15].
Despite numerous studies and achievements in this field, great challenges remain, such as
the spatial resolution, retrieval accuracy, and validation strategies related to satellite soil
moisture datasets.

This Special Issue aims to present the most recent scientific advances in the theories,
models, algorithms, and products associated with the microwave remote sensing of soil
moisture. Ten articles are published in this Special Issue, covering research progress on
the following topics: (1) downscaling passive microwave-based soil moisture products,
(2) estimating soil moisture from active microwave observations, (3) presenting some new
algorithms (freeze-thaw state detection algorithm) and models (soil dielectric models)
that are closely related to the microwave remote sensing of soil moisture, (4) evaluating

Remote Sens. 2023, 15, 4243. https:/ /doi.org/10.3390/rs15174243
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microwave-based soil moisture products, (5) reviewing the state-of-the-art techniques and
algorithms used to estimate and improve the quality of soil moisture estimations.

“ AMSR-E == %» AMSR2

\ FY-3B - -
. &l‘ WindSat & B S ",FY A
Passive 4 B,
m Aquarius -
' SMAP
Scatterometer &2~ ASCAT
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Figure 1. The primary microwave satellites/sensors that have been used to estimate soil moisture
since the 2000. Note that both active and passive microwave sensors are mounted on the SMAP and
Aquarius missions.

2. Highlights of the Research Articles

Brightness temperature has strong sensitivity to soil moisture [16], making passive
microwave remote sensing a valuable tool to estimate soil moisture globally [17]. A number
of passive microwave-based soil moisture products, such as SMAP, SMOS, AMSR2, FY-3,
are available to the public. However, the coarse spatial resolution of such products (often
dozens of kilometers) limits their various applications in the field and at a local scale.
Three papers published in this Special Issue address this issue. Zhao et al. [18] evaluated
four commonly used auxiliary variables, including NDVI (Normalized Difference Vege-
tation Index), LST (Land Surface Temperature), TVDI (Temperature Vegetation Dryness
Index), and SEE (Soil Evaporative Efficiency), against in situ soil moisture in an arid region
of China (Heihe River Basin). They found that SEE was an optimal auxiliary variable
for the scaling and mapping of soil moisture, and the combination of multiple auxiliary
variables (LST, NDVI, and SEE) was recommended for improving the scaling and mapping
accuracy of soil moisture. Llamas et al. [19] proposed a modular spatial inference frame-
work, which was the foundation of a cyberinfrastructure tool named SOil MOisture SPatial
Inference Engine (SOMOSPIE), to downscale ESA CCI soil moisture products to 1 km using
terrain parameters and examined the skill of two modeling methods, i.e., Kernel-Weighted
K-Nearest Neighbor (KKNN) and Random Forest (RF). The results indicated that the SO-
MOSPIE framework provided a feasible approach to downscaling satellite soil moisture
data, and RF performed better in the cross-validation compared to the reference ESA CCI
data, but as part of independent validation, KKNN had a slightly higher consistency with
ground soil moisture observations. In addition, a soil moisture retrieval and spatiotemporal
fusion model (SMRFM) was proposed by Jiang et al. [20] to reduce the dependence of the
method on the optical/thermal infrared data. They successfully downscaled the AMSR-E
soil moisture from 25 km to 1 km using the MODIS-derived soil moisture and the SMRFM
over the Central Tibetan Plateau.

Compared to passive microwave remote sensing, active microwave remote sensing,
e.g., the synthetic aperture radar (SAR), can provide soil moisture estimates with much
finer spatial resolution but are negatively affected by the geometry of the land surface
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(e.g., surface roughness and vegetation structure). Therefore, it is still a challenge to
obtain SM retrievals with a high accuracy via active microwave measurements. In Dong
et al. [21], the response of radar signal to surface parameters was analyzed using the
database simulated from the advanced integral equation model (AIEM), and soil moisture
was retrieved from Sentinel-1 using empirical models and machine learning methods. It
was found the machine learning algorithms performed much better than the empirical
models, and the skill of the RF algorithm surpassed that of the other machine learning
approaches. Two hybrid methodologies, namely improving a change detection approach
with regard to vegetation, and combining a change detection approach with a neural
network algorithm, were proposed and tested using Sentinel-1 and Sentinel-2 data in the
study by Nativel et al. [22]. Their results indicated that using hybrid algorithms (particularly
change detection via a neural network) could improve the accuracy of estimating soil
moisture content.

Furthermore, previous studies generally focused on estimating soil moisture in min-
eral soils since the soil dielectric models used in soil moisture retrieval algorithms were
usually mineral-soil-based models. Zhang et al. [23] compared the performance of nine soil
dielectric models, four of which incorporate soil organic matter (SOM) in organic soil in
Alaska within the framework of the SMAP single-channel algorithm at vertical polarization
(SCA-V). Using the SMAP SCA-V algorithm, they reported that the Mironov 2009 and
Mironov 2019 models were the best choices for mineral soils (SOM < 15%) and organic
soils (SOM > 15%), respectively. Meanwhile, there are large uncertainties in soil moisture
retrievals when the soil becomes frozen. Thus, soil moisture values are often masked in
satellite soil moisture products such as SMAP, SMOS, and AMSR2. In Lv et al. [24], a
new freeze-thaw state detection algorithm was developed based on the daily variation of
the SMAP H-pol brightness temperature. The physical foundation of the algorithm lied
in the fact that the difference in the microwave brightness temperature between 6 a.m.
(descending overpass) and 6 p.m. (ascending overpass) was relatively small over frozen
soil owing to the large penetration depth, resulting in a higher temperature stability in
deeper soils.

Moreover, microwave-based soil moisture products have been extensively evaluated
in previous studies using in situ observations. However, most research has ignored the
possible vertical mismatch between in situ data and satellite retrievals. Yang et al. [25]
investigated the stratification characteristics of in situ soil moisture and assessed SMOS L2,
SMOS-IC SMAP L2, SMAP L4 soil moisture products using multilayer in situ data (5, 10,
20, 5.08, 10.16, 20.32 cm) collected from the International Soil Moisture Network (ISMN).
They discovered that (1) the differences in soil moisture content between layers were
close to or even beyond the 0.04 m® m~> nominal retrieval accuracy of SMOS and SMAP;
(2) satellite products showed the highest correlation and the smallest bias with 5/5.08 cm
in situ data, and the SMAP L4 product was closest to in situ measurements compared to
the other datasets.

In addition, a good summary of the state-of-the-art progress in the microwave remote
sensing of soil moisture is of great interest to the soil moisture research community. Two
review papers were published in this Special Issue. In Wu and Wen [26], the research
progress in observing and simulating L-band microwave emissions, ground soil moisture
measurements, and soil moisture retrieval from L-band passive microwave observations
over the Third Pole, i.e., the Tibetan Plateau, was summarized. Moreover, Liu and Yang [27]
presented a systematic review of the primary methodologies for detecting soil moisture
content and the current approaches used to enhance the quality of soil moisture products.

3. Conclusions and Outlook

This Special Issue entitled “Microwave Remote Sensing of Soil Moisture” covers a wide
range of research on the satellite detection of soil moisture, including developing retrieval
algorithms and downscaling methods, comparing soil dielectric models, freeze—thaw
state detection approaches, and satellite soil moisture products. The theories, methods,
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validations, and applications of satellite soil moisture datasets are reviewed in detail.
Notably, there is much room for improvement regarding algorithms and datasets related to
the microwave remote sensing of soil moisture and their applications in various disciplines.
The selected papers should help the soil moisture research community to better understand
the current development status and future trends of microwave remote sensing of soil
moisture.

The following aspects could be considered in future research: (1) developing new
methods (e.g., upscaling method) for validating satellite soil moisture products, particularly
in regions with high spatial heterogeneity; (2) developing new technologies to identify and
suppress the influence of radio frequency interference and open water to further improve
the quality of microwave signals used for estimating soil moisture; (3) combining active
and passive microwave, multi-polarization, and multi-frequency observations to alleviate
ill-posed problems, and improve the spatial resolution of soil moisture; (4) developing
P-band related theoretical technologies to obtain deeper soil moisture and soil moisture
profile information; (5) using bistatic radar (e.g., upcoming Tandem-L) to decouple the
effects of soil moisture and other perturbing parameters (e.g., surface roughness) to obtain
more reliable soil moisture data with a high spatial resolution.

Author Contributions: Conceptualization, ].Z., ].P., W.Z., CM. and H.M.; formal analysis, ].Z., ].P,
W.Z., CM. and H.M,; investigation, JZ., ].P, W.Z., C.M. and H.M.; writing—original draft preparation,
J.Z.; writing—review and editing, ].P., W.Z., C.M. and H.M.; funding acquisition, J.Z. and C.M. All
authors have read and agreed to the published version of the manuscript.
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Abstract: In this paper, we investigated the vertical distribution characteristics of surface soil mois-
ture based on ISMN (International Soil Moisture Network) multilayer in situ data (5, 10, and 20 cm;
2,4, and 8 in) and performed comparisons between the in situ data and four microwave satellite
remote sensing products (SMOS L2, SMOS-IC, SMAP L2, and SMAP L4). The results showed
that the mean soil moisture difference between layers can be —0.042~—0.024 (for the centimeter
group)/—0.067~—0.044 (for the inch group) m®/m? in negative terms and 0.020~0.028 (for the cen-
timeter group)/0.036~0.040 (for the inch group) m®/m? in positive terms. The surface soil moisture
was found to have very significant stratification characteristics, and the interlayer difference was close
to or beyond the SMOS and SMAP 0.04 m®/m? nominal retrieval accuracy. Comparisons revealed
that the satellite retrievals had a higher correlation with the field measurements of 5 cm/2 in,
and SMAP L4 had the smallest difference with the in situ data. The mean difference caused
by using 10 cm/4 in and 20 cm/8 in in situ data instead of the 5 cm/2 in data could be about
—0.019~—0.018/—0.18~—0.015 m3/m? and —0.026~—0.023/—0.043~—0.039 m?/m3, respectively,
meaning that there would be a potential depth mismatch in the data validation.

Keywords: soil moisture; calibration and validation; Soil Moisture and Ocean Salinity (SMOS); Soil
Moisture Active Passive (SMAP)

1. Introduction

The SMOS (Soil Moisture and Ocean Salinity, ESA, November 2009) and SMAP (Soil
Moisture Active Passive, NASA, January 2015) missions are dedicated to the acquisition of
global soil moisture information. They both use the L band (1.4/1.41 GHz) in the mode
of passive microwave remote sensing, as there would be a greater depth of penetration
due to the longer wavelength [1,2]. The soil moisture products (retrievals and estimates)
nominally released by SMOS and SMAP are the average soil moisture at the top of the
surface, and they are conventionally compared with 5 cm in situ data [3,4]. However, the
response depth of the L band is likely to vary from a very thin surface to a certain deep
layer due to the variety and instability of the observing conditions in practice, which are
difficult or impossible to measure accurately at present [5-7]. The depth mismatch would
potentially be present in the comparisons of SMOS and SMAP soil moisture products
and also in their comparisons with soil moisture field measurements, which is commonly
thought to introduce uncertainties in the validation of multisource data [8-17].

From a data flow perspective, the soil moisture products from SMOS and SMAP
can be considered the comprehensive results of three main processes, namely, brightness
temperature (TB) observation, brightness temperature simulation, and soil moisture re-
trieval [18-23]. The numerical difference presented in validation and comparison can, in
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this context, consist of two parts. The first one would be collectively called the “retrieval
error” and may be caused by upstream phases, including the instruments’ performances,
observing conditions, reconstruction methods, radiative transfer models and parameter
settings, auxiliary information inputs, and iterative computational strategies [24-29]. The
other one is generally referred to as the “verification uncertainty” and is mainly caused by
the difference in scale, depth, and time between the multisource data [30-33]. To some ex-
tent, in order to accurately find out the source of the “retrieval error”, further understand its
propagation mechanism, and make corresponding improvements, one should first exclude
the “verification uncertainty” due to the spatial and temporal mismatch of the multisource
data; in other words, they must adopt a way of tracing back from the downstream stage to
the upstream stage, which is exactly the opposite of the flow of data production.

Based on high-frequency in situ measurements, the soil moisture at 5 cm undergoes
natural fading of a very small magnitude during the time intervals between SMOS and
SMAP, with an average variation (0.003 m3/m? minimum; 0.007 m3/m? maximum), that is
insufficient to be identified using satellites (nominal accuracy 0.04 m3/m3 ), and the tempo-
ral mismatch may not cause external uncertainty and is negligible in data validation [34].
Similarly, by using multilayer in situ data as a reference, the effect of depth mismatch on
the validation of SMOS and SMAP soil moisture products can be assessed to some extent.
This paper attempts to make comparisons between L band microwave remote sensing soil
moisture products and in situ soil moisture measurements, and the main objectives are
as follows:

e To investigate the vertical distribution characteristics of surface soil moisture, the
numerical characteristics of each layer, and the similarities and differences between
the layers;

e To quantify the numerical difference between satellite soil moisture retrievals and
multilayer in situ measurements;

o  To demonstrate the effect of the depth mismatch, the rationality of using in situ data
at one depth as a reference, and the feasibility of using another depth as a substitute.

2. Materials and Methods
2.1. Data

Five datasets were selected, and the time span was set to 1 January 2015~31 December
2020. The ISMN (International Soil Moisture Network) provides multilayer in situ soil
moisture measurements, which were used to study the stratification characteristics and as
a reference for the comparison with satellite products. SMOS L2 and SMAP L2 (passive)
products are soil moisture retrievals; SMOS-IC and SMAP L4 products can be considered
independent retrievals and estimates, respectively.

2.1.1. ISMN In Situ Soil Moisture Data

The ISMN is an international collaboration to establish and maintain a global in situ
soil moisture database. It brings together in situ soil moisture measurements collected and
freely shared by a variety of organizations, harmonizes them in terms of units and sampling
rates, applies advanced quality control, and stores them in a database [35,36]. In addition to
single/multilayer soil moisture, static information (land cover, clay fraction, sand fraction,
etc.) and other dynamic variables (soil temperature, air temperature, precipitation, etc.)
are also included in the ISMN datasets. In general, soil moisture is quantified in terms of
volumetric water content (m3/m?) and an hourly sampling rate.

2.1.2. SMOS L2 Soil Moisture Product

The SMOS L2 Soil Moisture User Data Product (MIR_SMUDP2) consists of swath-
based retrieved information over land surfaces. The base product includes fields for soil
moisture, vegetation water content, calculated brightness temperatures at 42.5 °C, and
dielectric constant from pole to pole. The product is organized in the form of a Discrete
Global Grid (DGG) in the ISEA 4H9 (Icosahedral Snyder Equal Area) grid projection, and
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the average distance between nodes is close to 15 km. The soil moisture retrievals (field:
Soil_Moisture) are volumetric water content in m3/m3, and the accuracy requirement is set
t0 0.04 m3/m? (i.e., 4% volumetric soil moisture) or better [37,38].

2.1.3. SMOS-IC Soil Moisture Product

The SMOS INRA-CESBIO (SMOS-IC) product provides global daily soil moisture and
L band vegetation optical depth (L-VOD) from the ascending and descending orbits at a
spatial resolution of 25 km (EASE grid 2.0). The SMOS-IC corresponds to the SMOS “origi-
nal algorithm”; it is to be as independent as possible from auxiliary data, thus avoiding
circular evaluation/validation [39]. The soil moisture retrievals (field: Soil_Moisture) are
released in m3/m3 and with a dry bias of~—0.045 m3/m? against ISMN in situ sites [40].
The SMOS-IC V2 soil moisture product is the latest release (January 2020), and compar-
isons with in situ measurements and other “official” satellite products may help to better
understand its characteristics.

2.1.4. SMAP L2 Soil Moisture Product

The SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture (L2_SM_P)
product contains gridded data of passive soil moisture retrievals (in the top 5 cm of the
soil column), ancillary data, and quality assessment flags on the 36 km global cylindrical
Equal-Area Scalable Earth (EASE) Grid 2.0 projection and is presented in half-orbit granules.
The soil moisture retrievals (field: Soil_Moisture) are volumetric water content in m3/m3,
with an accuracy requirement of ~3-0.04 m3/md [41,42].

Attention needs to be paid to the SMOS L2 and SMAP L2 soil moisture products.
They are the direct retrieval outputs with Level 1 (L1) instrument brightness temperature
observations as the input, and also the inputs used to generate Level 3 (L3) global daily soil
moisture composites. The L2 products inherit the location and time codes of the L1 products
but do not undergo the spatiotemporal resampling of the L3 products, thus avoiding the
uncertainties introduced by data processing and ensuring reverse traceability from data
validation to error location. For this reason, SMOS and SMAP L2 soil moisture products
were used in this paper.

2.1.5. SMAP L4 Soil Moisture Product

The SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Mois-
ture Geophysical Data (SPL4SMGP) contains global estimates of surface soil moisture
(0-5 cm vertical average), root zone soil moisture (0-100 cm vertical average), and addi-
tional research products (soil temperature, evapotranspiration, etc.), based on the assimila-
tion of SMAP L band brightness temperatures. This product appears on the EASE-Grid
2.0 projection at 9 km grid resolution, the soil moisture estimates (field: SM_Surface) are
3-hourly time-averaged volumetric water content in m®/m?, and the accuracy requirement
is 0.04 m3/m? [43,44]. It should be noted that SMOS also provides the L4 soil moisture
product, but the coverage is limited to European and Mediterranean countries and therefore
could not be used in this research.

The SMAP L4 soil moisture product has greater temporal continuity and spatial integrity
than the L2 soil moisture product and is more application-oriented. The L4 product is
formally at a higher level in the data system because it has more added value, but it is
equivalent to the L2 product in terms of the data collection process because they both use
the L1 product as input. The L2 and L4 products represent the two main ways of obtaining
soil moisture information from satellite remote sensing; they reflect different implementation
concepts, calculation methods, and spatiotemporal visualization systems, but both need to be
verified and evaluated. It is therefore worth including the SMAP 14 soil moisture product in
this study.
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2.2. Methods

There are four parts to this section: the quality control of ISMN multilayer in situ data;
the spatial and temporal matching of SMOS, SMAP products, and ISMN data; methods for
the analysis of the stratification properties of soil moisture; and methods for the verification
of the depth mismatch.

2.2.1. Quality Control of the In Situ Data

The ISMN in situ data of 1871 sites from 42 networks met the download conditions
(global, 1 January 2015~31 December 2020). Although discussions on the accuracy and
reliability of the data are beyond the scope of this article, quality control is still required.
Following the three-level hierarchy of ISMN data storage, from network to site to variable
file, the quality requirements were set as follows: First, networks with more than 10 sites
should be retained. Second, sites should be selected that can provide 5, 10, and 20 cm soil
moisture as well as 5, 10, and 20 cm soil temperature, i.e., there were 6 variables (must
but not limited to) and only one sensor per depth (no multiple observations). It should be
noted that some sites set the observation depth at 2 in, 4 in, and 8 in, which after conversion
are 5.08 cm, 10.16 cm, and 20.32 cm respectively; such sites are also reserved as long as
they have the six variables. Third, for each record (once per hour) in the variable file, it is
considered “valid” if the 6 variables are all marked with “G” (good, ISMN Quality Flag),
the number of such records should exceed 50% per year and every year from 2015 to 2020.
In the end, 83 sites from 3 networks passed the quality check. The 3 networks are USCRN
(U.S. Climate Reference Network), SCAN (Soil Climate Analysis Network), and SNOTEL
(Snow Telemetry), and all 83 sites are located within the continental U.S., as shown in
Figure 1A. Information on land cover, sand fraction, and clay fraction was read from the
static variables file, as shown in Figure 1B.
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Figure 1. The 83 sites that passed the quality control: (A) spatial distribution of the sites;

(B) information on land cover and soil properties of the sites.

2.2.2. Spatiotemporal Matching of In Situ Data and Satellite Products

Discussions on the retrieval and estimation accuracy of satellite products are be-
yond the scope of this article, and thus only the comparative differences between satellite
soil moisture and multilayer in situ soil moisture were examined. As the data have dif-
ferent spatial and temporal characteristics, they had to be matched before performing
any comparison.

The first step was spatial matching. The 83 sites from the 3 networks (USCRN,
SCAN, and SNOTEL) provide hourly multilayer in situ soil moisture measurements; their
locations are marked by longitude and latitude and are usually thought of as points in
space. SMOS L2, SMOS-IC, SMAP 12, and SMAP L4 products are mapped in the ISEA 4H9
(~15 km), EASE-Grid 2.0-25 km, EASE-Grid 2.0-36 km, and EASE-Grid 2.0-9 km systems,
respectively; the grids correspond to a specific area in space; and only the latitude and
longitude of the grid center are given. The spatial matching of satellite products and in situ
data can be performed according to the principle of closest distance. Taking the location of
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each site as a reference, a five-element matching group (ISMN site, SMOS L2 grid center,
SMOS-IC grid center, SMAP L2 grid center, and SMAP L4 grid center) can be formed to
search separately for the satellite grid center that is closest to the site.

It should be noted that no horizontal rescaling processing was applied to the ISMN
sites and satellite grids, and neither their spatial difference nor their representativeness was
considered in this article. The ISMN multilayer in situ soil moisture measurements were
used as a reference for comparison with SMOS and SMAP soil moisture products [45,46].
Although potentially accompanied by the spatial mismatch, this type of absolute difference
could turn into a relative difference similar to a “system bias” when all products were
compared to the same reference object.

The second step was temporal matching. All five types of data have UTC timestamps
but in different formats. Timing can be adjusted to the nearest time by rounding minutes
and seconds to hours. No additional processing was required as the sampling rate of the
in situ data is hourly. The timestamps of the SMOS L2, SMOS-IC, and SMAP L2 products
include minutes and seconds, which were rounded to the nearest hour. The timestamp of
the SMAP L4 product corresponds to the center of the 3 h averaging interval; therefore, it
was mapped to this 3 h time set in a left-closed and right-open fashion. It can be assumed
that the SMAP L4 product is complete on the hourly time axis as there was an estimate
for each hour; the in situ data were nearly complete except for a small number of missing
(invalid) records; and the SMOS L2, SMOS-IC, and SMAP L2 products were discrete due to
their temporal resolution.

There were two temporal matching schemes. The first was matching the in situ
data with the satellite products one at a time. This type of comparison was expected
to independently reflect the numerical characteristics of the satellite soil moisture. The
second was matching all data simultaneously, which can be considered as eliminating the
influence of the temporal mismatch and therefore allowing a comparison between satellite
products [47,48]. The sample size of each matching group is shown in Table 1. It should
be noted that timestamp is only one of the auxiliary information and cannot be utilized to
discuss the temporal representativeness and rationality of the products.

Table 1. Sample size of temporal matching groups.

Temporal Matching Groups Counts
ISMN SMOS 1.2 128,619
ISMN SMOS-IC 86,646
ISMN SMAP L2 123,635
ISMN SMAP L4 3,257,075
ISMN SMOS 1.2 SMOS-IC SMAP L2 SMAP L4 7848

2.2.3. Analysis of the Vertical Distribution Characteristics of Surface Soil Moisture

The overall distribution of soil moisture in each layer can be represented by its mean
value. According to the maximum record of the ISMN data and the nominal retrieval
accuracy of SMOS and SMAP products, the detailed distribution can be expressed by the
segmented statistics of sample size in the total range of 0~0.52 m®/m?. The distribution
analysis was based on all samples without distinguishing the site to which they belong.

The similarity of soil moisture between the layers can be quantified by the (Pearson)
correlation coefficient (R) [49,50]. Three correlation sets were formed, namely, 5/5.08 and
10/10.16 cm (5/5.08 and 10/10.16); 10/10.16 and 20/20.32 cm (10/10.16 and 20/20.32); and
20/20.32 and 5/5.08 cm (20/20.32 and 5/5.08). The correlation coefficient was calculated
separately for each site and was also presented in groups according to the static variables
(land cover, sand fraction, and clay fraction), which were designed to reflect, to some extent,
the potential influence of external environmental factors on the vertical distribution of soil
moisture. It should be noted that the correlation coefficient only indicates the similarity
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between the two sets of samples from a numerical point of view and cannot explain the
coupling mechanism of soil moisture between the layers.

The difference in soil moisture between the layers can be directly expressed by their
actual numerical differences, and the detailed distribution can also be reflected by the seg-
mented statistics of sample size. Three sets were formed, namely, 5/5.08 minus 10/10.16 cm
(5/5.08 — 10/10.16); 10/10.16 minus 20/20.32 cm (10/10.16 — 20/20.32); and 5/5.08 mi-
nus 20/20.32 cm (5/5.08 — 20/20.32). The soil moisture difference was calculated for all
samples without distinguishing the site to which they belonged. The positive and negative
differences were counted separately, as well as the average and the total number of samples
on both sides.

2.2.4. Comparison between the Satellite Products and the In Situ Data

The comparison between the SMOS/SMAP products and the ISMN data was carried
out on the basis of temporal matching (Table 1), using the actual numerical difference as an
indicator to present the difference between them. Similarly, segmented statistics of sample
size were used to visualize the detailed distribution of the differences. The positive and
negative differences were counted separately, as were the mean and total sample sizes on
both sides. The mean difference (MD) and mean absolute difference (MAD) were used as
quantification indices according to the following equations:

Y- (satellite — in_situ)

MD = .
sample size

@

Y-|satellite — in_situ|

MAD = -
sample size

@

3. Results
3.1. Stratification Characteristics of Surface Soil Moisture
3.1.1. Single-Layer Distribution

As shown in Figure 2, there seemed to be a turning point at 0.24~0.28 m3/m?3. For the
5/10/20 cm group, when it was below this range, the distribution of 5 and 10 cm showed some
similarity. With an increase in depth, the peaks of the three layers gradually moved to higher
ranges (0.04~0.08, 0.08~0.12, 0.16~0.20 m3/ m3), especially in the ranges of 0~0.04 m3/m? and
0.16~0.20 m®/m?3, and the low-value characteristics of 5 cm and the high-value characteristics of
20 cm were very significant. However, above this range, a strong similarity was found between
10 and 20 cm, and the distribution difference among the three layers was reduced. For the
5.08/10.16/20.32 cm group, the sample size ranking of the three layers showed opposite trends
below and above the inflection point; the distribution of 5.08 and 10.16 cm was also found to be
similar, and their peaks were both located around 0.20~0.24 m3/m3. The distribution of 20.32 cm
was very different from the other two layers, as its peak appeared at 0.32~0.40 m®/m?® where
the soil moisture was very high. Although the difference in depth was small, the soil moisture
of the two groups behaved quite differently; their means indicated that the soil moisture
of the 5.08/10.16/20.32 cm group was always slightly higher than that of the 5/10/20 cm
group (0.178/0.196,/0.200 vs. 0.200/0.223/0.244 m® /m?®). However, both showed a pattern of
increasing soil moisture with the increase in depth, which appeared to be a stable distribution
state of soil moisture.

The mean values of soil moisture in each layer were compared in groups according
to the static variables of land cover, sand fraction, and clay fraction, and the results are
shown in Figure 3. The general trends of the two sets of curves appear to be similar at first
sight. For the 5/10/20 cm group (Figure 3A), 5 cm soil moisture showed a significantly
low-value characteristic; the mean values of 10 and 20 cm soil moisture were very close,
but the latter was slightly higher. Regardless of the static variables, the order of the three
soil moisture layers from low to high remained unchanged with the increase in depth. For
the 5.08/10.16/20.32 cm group (Figure 3B), 5.08 cm soil moisture was still the lowest, the
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5.08/10.16/20.32 cm group (2, 4, and 8 in).

The difference between the two groups was most obvious in terms of land cover.
The 5.08/10.16/20.32 cm group showed stronger stratification characteristics than the
5/10/20 cm group in grassland, cropland, and shrubland conditions. Although the means
of the three layers were close within each group under the conditions of tree cover and
mosaic (mainly multiple vegetation types), there were large differences between the

two groups.

As the sand and clay fractions increased, soil moisture tended to decrease and increase,
respectively. The three layers differed significantly within and between the two groups,
especially the pair of 10.16 and 20.32 cm. It appeared that the difference in the vertical
distribution of soil moisture between the three layers became smaller with the increase in
sand and larger with the increase in clay. For the 5/10/20 cm group, the influence of soil
properties was slightly higher than that of land cover, but both types of static variables
played a significant role for the 5.08/10.16/20.32 cm group.

3.1.2. Interlayer Correlation

The correlation coefficients of soil moisture between layers were calculated for
each site, and the results are shown in Figure 4. The two groups showed a common
pattern, i.e., the correlation coefficients decreased with increasing depth difference, al-
though those of the 5/10/20 cm group were higher than those of the 5.08/10.16/20.32 cm
group (0.899/0.884/0.813 vs. 0.809/0.767/0.690), and their distributions appeared to be

very different.
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Figure 4. Correlation coefficients of soil moisture between layers: (A) interlayer correlation coeffi-
cients for the 5/10/20 cm group; (B) interlayer correlation coefficients for the 5.08/10.16/20.32 cm
group (2, 4, and 8 in).

For the 5/10/20 cm group (Figure 4A), the distribution of the correlation coefficients
of the three sets all showed an upward trend. Taking 0.8~0.9 as the turning point, in
areas where the correlation coefficient was below 0.8, the order of the number of sites
from small to large was “5&10”, “10&20”, and “20&5”; in areas where the correlation
coefficient was above 0.9, the order was reversed. For the 5.08/10.16/20.32 cm group
(Figure 4B), the three sets were distributed differently and no uniform trend was found.
The downward trend of “20.32&5.08” looked very significant, while both “5.08&10.16”
and “10.16&20.32” had an upward trend, although their peak and trough were located at
0.8~0.9 and 0.7~0.8, respectively. However, it can still be seen that the number of sites of
“5.08&10.16” was highest in the intervals where the correlation coefficient was high, that of
“20.32&5.08” was highest in the intervals where the correlation coefficient was low, and that
of “10.16&20.32” always remained in the middle of the other two sets. This also reflected,
to some extent, the tendency for the interlayer correlation coefficient to decrease as the
depth difference increased.

The correlation coefficients were also grouped according to static variables, as shown in
Figure 5. Firstly, in most cases, the order from lowest to highest was still “20/20.32&5/5.08”,
“10/10.16&20/20.32”, and “5/5.08&10/10.16”, with the difference between the three sets
also increasing as the depth difference increased. Secondly, the correlation coefficients of
the 5/10/20 cm group were always higher than those of the 5.08/10.16/20.32 cm group,
except for the conditions of mosaic and the 75~85 sand fraction. Thirdly, for the 5/10/20 cm
group (Figure 5A), the distribution of “20&5” appeared quite different from the other two
sets, especially in shrubland, the 15~20 sand fraction, and the “49&52” clay fraction; there
was not much difference between “5&10” and “10&20”, and they were almost the same in
some conditions. For the 5.08/10.16/20.32 cm group (Figure 5B), the three sets were quite
different from the 5/10/20 cm group. They seemed to have a good synchronous trend, but
the differences were very pronounced in the land cover condition.

It can be observed that the correlation coefficients of soil moisture between the layers
decreased with the increase in depth difference, where the depth difference was 5/5.08 cm
(10/10.16-5/5.08), 10/10.16 cm (20/20.32-10/10.16), and 15/15.24 cm (20/20.32-5/5.08).
However, this could only indicate that the vertical similarity of soil moisture is related
to the depth difference, but it was not possible to confirm where the depth difference lay.
The correlation coefficients of “5/5.08&10/10.16” might not be the highest if the in situ
measurements of 15/15.24 cm were provided, as there would be two more sets of depth
differences also equal to 5/5.08 cm (15/15.24-10/10.08 and 20/20.32-15/15.24).
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Figure 5. The correlation coefficients grouped according to the static variables: (A) the average
correlation coefficients for the 5/10/20 cm group; (B) the average correlation coefficients for the
5.08/10.16/20.32 cm group (2, 4, and 8 in).

3.1.3. Interlayer Difference

As shown in Figure 6, the two groups reflected two types of vertical distribution
in terms of mean and sample size for both the negative and positive values. For the
5/10/20 cm group, the order of the negative difference from small to large was “10-20",
“5-10”, and “5-20", indicating that the soil moisture of 10 cm was close to that of 20 cm,
and the soil moisture difference between 5 cm and the other two lower layers (10 and
20 cm) increased with the increase in depth difference (—0.32, —0.42 m3/m?). The positive
difference showed a consistent increasing trend (0.020, 0.024, and 0.028 m3/m3), but the
sample size was much smaller than that of the negative difference; perhaps it can be
assumed that this reverse increase with distance between the layers was random rather
than conventional and was probably caused by precipitation. For the 5.08/10.16/20.32 cm
group, the negative difference between the layers became more significant (—0.044, —0.048,
and —0.067 m®/m3), with the sample size on both sides, showing a consistent trend of
increase and decrease. The cases where the upper soil moisture was higher than the lower
can also be explained by the influence of precipitation. The basic characteristics of soil
moisture increasing with depth were more pronounced and showed a uniform variation in
the vertical direction.
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Figure 6. Soil moisture difference between layers: (A) the interlayer difference for the 5/10/20 cm
group; (B) the interlayer difference for the 5.08/10.16/20.32 cm group (2, 4, and 8 in).

In terms of detailed distribution, for the 5/10/20 cm group, the peaks of the three
sets of differences were all within —0.04~0 m3/m3; the upper limit of the positive differ-
ences was the same and did not exceed 0.04~0.08 m®/m?>, while the lower limit of the
negative differences was inconsistent, with the order from small to large being “10-20
(—=0.12~—0.08 m3/m?)”, “5-10 (—0.16~—0.12 m®/m3)”, and “5-20 (<—0.16 m3/m3)”. The
5.08/10.16/20.32 cm group seemed to be spread over a wider range than the other group,
with the peaks moving backward to around —0.08~—0.04 m?®/m?; the maximum positive
difference was all above 0.08 m®/m3, and the descending order of the minimum nega-
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tive difference became “5-10 (—0.12~—0.08 m3/m3)”, “10-20 (—0.16~—0.12 m3/m?)”, and
“5-20 (<—0.16 m3/m3)”.

The mean positive and negative differences under static variables and the difference in
sample size between the two sides were shown in Figure 7. The difference in soil moisture
between the layers at the two sets of depth was very different (Figure 7A,B) and was more
pronounced in cases of low vegetation (grassland, cropland, and shrubland), lower sand
fraction (15~20 and 31~45), and higher clay fraction (21~30, 49, and 52). Consistent with
the difference in soil moisture, the difference in sample size appeared to be greater among
the static variables (Figure 7C,D). The difference in soil moisture between the layers can be
more clearly distinguished not only within each group but also between the two groups,
further demonstrating the influence of land cover and soil properties on the water-holding
capacity. It is worth mentioning that in terms of soil property, although the magnitude of
the two sets of soil moisture difference was very different, the overall trend was similar. The
sand and clay fractions given by ISMN refer to the soil property of 0~30 cm, and if we focus
only on the surface layer of 0~5 cm, the difference in the composition may not be large; in
other words, the soil property may not be the main factor affecting the vertical distribution
characteristics of shallow soil moisture. Based on years of “big data”, it may be possible to
model the behavior of soil moisture under normal and disturbed conditions to provide more
straightforward optimization solutions for soil moisture retrieval algorithms (brightness
temperature simulation, parameter modeling, ancillary information assimilation, etc.).
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Figure 7. The interlayer difference of soil moisture and sample size under static variables; P and N
refer to positive and negative, and P-N refers to positive minus negative: (A) the interlayer difference
for the 5/10/20 cm group; (B) the interlayer difference for the 5.08/10.16/20.32 cm group (2, 4,
and 8 in); (C) the difference of the sample size between the positive and negative sides for the
5/10/20 cm group; (D) the difference of the sample size between the positive and negative sides for
the 5.08/10.16/20.32 cm group (2, 4, 8 and in).

3.2. Comparisons between the Satellite Products and the In Situ Data

The comparison was carried out in two ways based on temporal matching (Table 1).
The first was comparing each type of satellite product separately with the three-layer in situ
data (SMOS L2/SMOS-IC/SMAP L2/SMAP L4—in situ), and the second was comparing all

four types of satellite products simultaneously with each single-layer in situ data (satellite
products—5/5.08/10/10.16/20/20.32 cm).
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3.2.1. Separate Comparison

The correlation coefficients are shown in Table 2. For within groups, it decreased with
the increase in depth. For between groups, the correlation coefficients with the 5/10/20 cm
group were slightly higher than those with the 5.08/10.16/20.32 cm group, and for the
satellite products, the order from small to large was SMOS L2, SMOS-IC, SMAP L2, and
SMAP L4. It can be seen that the satellite soil moisture products correlate better with the
5/5.08 cm in situ data than with the other two layers.

Table 2. Correlation coefficient of satellite soil moisture products and multilayer in situ measurements,

separate comparison.

R 5cm 10 cm 20 cm 5.08 cm 10.16 cm 20.32 cm
SMOS L2 0.461 0.510 0.397 0.462 0.334 0.404
SMOS IC 0.675 0.607 0.610 0.559 0.538 0.493
SMAP L2 0.648 0.629 0.586 0.580 0.524 0.500
SMAP L4 0.701 0.654 0.655 0.613 0.602 0.572

As shown in Figure 8, each satellite product had its own unique performance. For
SMOS L2 (Figure 8A), the peaks of its difference with the in situ data were around —0.04~0
(5 cm), —0.1~—0.04 (5.08, 10, 20 cm), and —0.2~—0.1 m3/m3 (10.16, 20.32 cm), reflecting, to
some extent, the dry bias referred to in the literature. For SMOS-IC (Figure 8B) the peaks
of the difference shifted to —0.2~—0.1 m3/m? for all but 5.08 cm (—0.1~—0.04 m3/m3),
implying an improved dry bias. For SMAP L2 (Figure 8C), the peaks of its difference
with 5, 5.08, and 10 cm in situ data were around 0~0.04 and 0.04~0.1 m3/m?, where the
dry bias started to change to a wet bias. For SMAP L4 (Figure 8D), the difference around
0.1~0.3 m®/m?® was suppressed, and the wet bias was weakened, while the difference
around —0.1~0 m3/m?3 was enhanced, and the dry bias was strengthened.
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Figure 8. Soil moisture difference between satellite and in situ, separate comparison: (A) the difference
between SMOS L2 and in situ; (B) the difference between SMOS-IC and in situ; (C) the difference
between SMAP L2 and in situ; (D) the difference between SMAP L4 and in situ.

There seemed to be a turning point in the distribution of the difference between the
four satellite soil moisture products and the three layers of in situ data. For the 5/10/20 cm
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group, the turning point was around —0.04~0 m3/m? except for SMOS-IC, and for the
5.08/10.16/20.32 cm group, the turning point was around —0.1~—0.04 m3/m? except
for SMAP L4. The order of sample size from large to small was 20/20.32, 10/10.16, and
5/5.08 cm in areas where the difference was below the inflection point, while above the
inflection point, the order was reversed. In general, the difference between the satellite
products and the 5/5.08 cm in situ data was not similar to the other two layers, with
SMOS L2 and SMOS-IC soil moisture lower than the in situ data and SMAP L2 and L4 soil
moisture higher than the in situ data.

The numerical difference between the satellite products and in situ data was further
explored in groups. The first group was based on land cover, sand fraction, and clay
fraction. For each condition, the mean positive and negative difference was calculated
separately, as well as the difference in sample size on both sides, and the results are shown
in Figure 9.
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Figure 9. (A-L) Soil moisture difference between satellite and in situ, grouped by land cover, sand
fraction, and clay fraction, separate comparison; P and N refer to positive and negative, and N — P
refers to positive minus negative.

When comparing the satellite products with the 5/10/20 cm in situ data, the difference
was significantly different in the cropland, tree cover, and mosaic conditions. The largest
negative and positive differences were observed for SMOS-IC in the mosaic condition
(Figure 9D) and SMAP L2 in the tree cover condition (Figure 9G). The negative difference
decreased, and the positive difference increased with the increase in the sand fraction,
while this trend was completely reversed with the increase in the clay fraction. The largest
negative difference was contributed by SMOS-IC in conditions with the “15~20” sand
fraction and “49&52” clay fraction, and the largest positive difference was contributed by
SMOS L2 in conditions with the 75~85 sand fraction and 1~10 clay fraction (Figure 9A).

When compared to the 5.08/10.16/20.32 cm in situ data, none of the differences
between the four satellite products and the in situ data were similar, especially in the tree
cover and mosaic conditions. The negative difference in SMOS-IC (Figure 9E) and the
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positive difference in SMOS L2 (Figure 9B) appeared to be higher than those of the other
products. The trend of increasing and decreasing negative and positive differences could
still be found with variations in sand and clay fractions, but the pattern was not as clear
and consistent. In conditions where the sand fraction was very high, and the clay fraction
was very low, the positive difference in SMOS L2 and SMAP L2 (Figure 9H) increased to
about 0.2~0.3 m3/m3, which can be considered anomalies. In conclusion, regardless of the
group with which the comparison was carried out, the negative difference between the
satellite products and 5/5.08 cm in situ data was the smallest, and it was the largest with
20/20.32 cm; however, a similar pattern of a positive difference could only be found for
SMOS L2, SMOS-IC, and SMAP L2 with their comparison to the 5/10/20 cm group.

The difference in sample size shown in Figure 9 is also revealing. Compared with the
5/10/20 cm in situ data, the sample size distributions of the four satellite products looked
very different in the grassland condition but appeared similar in the mosaic condition.
SMOS-IC (Figure 9F) and SMAP L4 (Figure 9L) were similar in the cropland condition,
with a significantly higher negative than positive sample size, whereas in the tree cover and
shrubland conditions, the sample size bias showed similarities within the SMOS (SMOS
L2 and SMOS-IC) and SMAP (SMAP L2 and SMAP L4) groups, as well as differences
between the groups. In terms of soil properties, the negative bias gradually became
positive as the sand fraction increased, whereas the opposite trend was observed as the
clay fraction increased, with exceptions where the sand fraction was very low (15~20)
and the clay fraction was very high (49&52). Compared with the 5.08/10.16/20.32 cm
in situ data, SMOS-IC in cropland and tree cover conditions and SMAP L4 in grassland
conditions appeared to be significantly different from the other satellite products. The shift
in dominance was still clearly discernible as the sand and clay fraction increased, and its
magnitude slowed down but became more uniform for the SMAP group (SMAP L2, L4).
There was a general pattern in which the difference between negative and positive sample
sizes increased with depth.

The second group was based on the in situ data, and the results are shown in Figure 10.
The mean negative difference increased with the increase in soil moisture, and the order
from largest to smallest was SMOS-IC, SMOS L2, SMAP 12, and SMAP L4. The satellite
products had the smallest negative difference with the 5/5.08 cm in situ data and the largest
with the 20/20.32 cm. The descending order of the positive difference was SMOS L2, SMAP
L2, SMOS-IC, and SMAP L4. A trend of decreasing positive difference with the increase in
soil moisture can be found for SMAP L2 and SMAP L4, especially when comparing SMAP
L2 and 5.08/10.16/20.32 cm in situ data (Figure 10]). However, SMOS L2 and SMOS-IC did
not show such a trend, and the peak of their positive difference occurred mainly around
0.3~0.4 m3/m3, where the soil moisture was at a higher level. In most cases, the positive
difference between the satellite products and 5/5.08 cm in situ data was the smallest.

As the soil moisture increased, the difference in sample size showed a basic pattern
in which the negative difference gradually exceeded the positive one, peaking at about
0.3~0.4 m®/m?3. The sample sizes on both sides became comparable when the soil moisture
was higher than 0.4 m®/m?, but their difference remained positive. However, the compari-
son with the 20 cm in situ data seemed to be quite different from the others, as the difference
between negative and positive values reached a maximum at around 0.1~0.2 m3/m?3, and
then the gap between the two sides narrowed with the increase in soil moisture, but it did
not cross the 0 line. The performance of SMOS-IC was also somewhat peculiar in that the
difference in sample size remained above the 0 line (excluding 20 cm), which meant that
the magnitude of the negative difference was always greater than that of the positive one.
In contrast, SMOS-IC had the least variation in the difference in sample size, while SMAP
L4 had the most; if the degree of variation in the difference was to be ranked from small to
large, the order was 5/5.08, 10/10.16, and 20/20.32 cm.
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3.2.2. Simultaneous Comparison

The SMOS L2, SMOS-IC, SMAP L2, and SMAP L4 soil moisture products were simul-
taneously compared with the in situ data at 5, 5.08, 10, 10.16, 20, and 20.32 cm, and their
correlation coefficients and numerical differences are shown in Table 3 and Figures 11-13.
It should be noted that the representativeness of the results may be limited, as the sample
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size was only 7848 under strict temporal matching (Table 1).

Table 3. Correlation coefficients of satellite soil moisture products and multilayer in situ measure-

ments, simultaneous comparison.

R 5cm 10 cm 20 cm 5.08 cm 10.16 cm 20.32 cm
SMOS L2 0.535 0.557 0.463 0.479 0.381 0.453
SMOS IC 0.685 0.614 0.608 0.549 0.510 0.519
SMAP L2 0.692 0.647 0.617 0.592 0.519 0.555
SMAP L4 0.700 0.693 0.635 0.629 0.541 0.623
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Figure 11. (A-F) Soil moisture differences between satellite and in situ data, simultaneous comparison.

The trends of the separate comparison (Table 2) are also presented in Table 3. Within
the groups, the correlation coefficient decreased with the increase in depth. Between the
groups, the SMOS-IC, SMAP L2, and SMAP L4 products had a higher correlation coefficient
with the 5/10 cm in situ data than with the 5.08/10.16 cm. The ranking of the satellite
products from small to large remained SMOS L2, SMOS-IC, SMAP L2, and SMAP L4, but
they all had a higher correlation coefficient with the 5/5.08 cm in situ data.

The numerical difference between the four satellite products and the in situ data of
each layer is shown in Figure 11, which shows the characteristics of each satellite product
more clearly.

Compared with the 5 cm in situ data (Figure 11A), for SMOS L2, the difference
concentrated within —0.1~0.1 m3/m3, and the negative was slightly higher than the positive.
For SMOS-IC, the difference concentrated within —0.2~0.04 m3/m3, there was a peak
around —0.2~—0.1 m®/m?3, and the negative was much higher than the positive. The
difference for SMAP L2 seemed to be the opposite of SMOS-IC: It concentrated within
—0.04~0.2 m3/m?, and the peak was around 0.04~0.1 m3/m3, with the positive difference
significantly higher than the negative. SMAP 14 seemed to have a normal distribution, as
the difference was concentrated within —0.1~0.1 m3/m?, with a peak around 0~0.4 m3/m?,
and the positive was slightly higher than the negative, probably due to some calibration of
the simulation when the soil moisture was high.

Compared with the 5.08 cm in situ data (Figure 11B), the dry bias of SMOS L2 would
probably disappear since the size of the positive difference exceeded the negative, while the
dry bias of SMOS-IC seemed to become stronger, with the difference narrowly concentrated
within —0.2~0 m3/m3, and the size of the negative difference much higher than the positive.
For SMAP L2, the difference remained positive without weakening. SMAP L4 was also
found to have a remarkable dry bias, with the negative difference taking over and peaking
at around —0.1~—0.04 m3/m3.
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Figure 12. (A-X) Soil moisture differences between satellite and in situ data, grouped according to
land cover and sand and clay fractions, simultaneous comparison; P and N refer to positive and
negative, and N — P refers to positive minus negative.

22



Remote Sens. 2023, 15, 3930

02

& &

én .ée.. g
iy o

A 2 3 » s
L N P SN

ASM, Satellite=10 em (md/m?)

T A 2 3 » s
PN SRS U

L T ST il e Y
In-situ Soil Moisture, 10 cm (m¥m?)

(U]

ASM, Satellite=20 cm (m?/m?)
=

& b

&
@

of 0% a3 PR
Lol S S Pt oY o
In-situ Soil Moisture, 20 cm (m¥m?)

=
=
=
=

03 1000
(B) ©) (D)

0 //}:is\'
o0 /

8

M
2

o1

ASM, Satellite=5.08 cm m*Im?)
ACounts, Satellite=5 cm
ACounts, Satellite=5.08 cm

0.1
y 250 ==
02 1000 +oMos g em e . + 508 L2-508 e P
e pi-rreabigied
S s +-SMAP L4-5 cm, NP AR o500 cm. WP
-0.3 -1500 ¢ =500
A 2 3 » 5 A 3 & s A 2 > s
o0 40T 8P aeh e P “,\.07- o0 gt o g g0 “_.5,41* ot
In-situ Soil Moisture, 5.08 ¢m (m?/m?) In-situ Soil Maisture, 5 cm (m?m?) In-situ Soil Moisture, 5.08 cm (m*/m?)
03 1000 500
(F) (G) e o H)
- B o~
02 E 500 * -~
5 / _/:\ LI /'
T - T 2 o
20 e é P »
3 i° A s
G =500 @ TN
5 z o 8 ¥
g 3 -2%
LR “oSMOS L2-10 cm, N-p 8 MOS L2-10.16 cm, N-P
-02 “LMOSIC_10 cm, N £ SHOSIC10.18 em NP
= SMAP L2-10 . WP +-SMAP L2-10.16 cm. WP
~+SMAP Li-10 om, NP - SHAP La=10 16 cm, NP
T2 2 5 s 5 It 24 PO w0 3 s 5
B Y o GO w0 WO b g0 ek

In-situ Soil Molsture, 10.16 cm (m/m?) In-situ Soil Molsture, 10 cm (m*m?) In-situ Soll Molsture, 10.16 cm (m*/m?)

03 1000 500
T ) ) '\\
™ E s00 . e E o
< - o 250 /
T H =0 8 o .
Y b, Y~ T P / i / ™
g 3 £ —
§ H . o ¥ .
2 g -0 q
S H
a H o
= 8 om0 wsuos o o e g 508 L0 em,
g 4 s iy
g be ]
203
o\ N ~1500 N . -500 N .
S s Sl o oo o pe? uy“‘ o oo e g0 et e

In-situ Soil Moisture, 20.32 cm (m¥/m?) In-situ Soil Moisture, 20 cm (m#m?) In-situ Soil Molsture, 20.32 cm (m?/m?)

Figure 13. (A-L) Soil moisture differences between satellite and in situ data, grouped according to
in situ soil moisture, simultaneous comparison; P and N refer to positive and negative, and N — P
refers to positive minus negative.

Taking the comparison with the 5/5.08 cm in situ data as a reference, the differences
between the four satellite products all moved progressively into the negative direction
with the increase in depth, and the dry bias became stronger, and the distributions of their
differences became more similar (Figure 11E,F). In addition, regardless of the depth to
which the comparison was performed, the descending order of negative differences below
the range of —0.04~0 m?/m°® was SMOS-IC, SMAP L4, SMOS L2, and SMAP L2, and when
the differences were above this range, SMOS L2 had the largest scale of positive difference
and SMOS-IC the smallest.

The differences between the satellite products and in situ data in a simultaneous
comparison were also analyzed in terms of land cover, sand fraction, and clay fraction.
The differences between the four satellite products varied in terms of land cover. In the
comparison with the 5/10/20 cm in situ data (Figure 12A-L), the difference was largest
in the tree cover and smallest in the shrubland, and there was little change in the positive
difference with the increase in depth, but the negative difference gradually increased. The
comparison with the 5.08/10.16/20.32 cm in situ data (Figure 12M-X) seemed to lack
regularity, as there was a large negative difference in the tree cover, shrubland (Figure 12Q),
and grassland (Figure 12U) but a large positive difference in the cropland and mosaic. The
tendency for the negative difference to increase and the positive difference to decrease
with the increase in depth could only be observed under grassland and cropland, with no
common change for the others, and the comparison with the 10.16 cm in situ data seemed
to show a large difference on both sides.

In the grouping of the sand and clay fractions, the trend in which the negative dif-
ference decreased and increased, respectively, as the two parameters increased remained
highly significant compared with the 5/10/20 cm in situ data, and the opposite trend of
the positive difference could also be distinguished. With the increase in depth, the negative
difference continued to increase and reached a large magnitude with a low sand content
and a high clay content (Figure 12] K), while the positive difference was very high with
a high sand content and a low clay content but did not show a clear pattern of variation
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with depth. In comparison with the 5.08/10.16/20.32 in situ data, the trend of variation
differed in each range of sand and clay fractions. There was a large negative difference in
31~45 (Figure 12V) and 75~85 (Figure 12N,R) sand fractions and a large positive difference
in 31~45 sand fractions (Figure 12N,R) and 1~10 clay fractions, whereas the difference did
not show a distinctive pattern of variation with sand and clay fractions but was found to
increase in the negative difference and decrease in the positive difference with the increase
in depth.

Of the four satellite products, SMOS L2 and SMOS-IC had the largest positive and
negative differences, respectively, while SMAP L4 had the smallest positive and negative
differences. The difference in sample size indicates that the deviation between the two sides
can be arranged in descending order as SMOS-IC, SMAP L4, SMOS L2, and SMAP L2, with
SMOS-IC mostly above the 0 line and SMAP L2 remaining below. Some cases are worth
noting: Compared with the 5/10/20 cm in situ data (Figure 12D,H,L), SMAP L4, SMOS
L2, and SMAP showed an increase and a reverse trend in the grassland and 31~45 sand
fraction, and compared with the 5.08/10.16/20.32 cm in situ data (Figure 12P,T,X), there
was a large decrease and a reverse trend in the cropland and 21~30 clay fraction. With the
increase in depth, the distribution became closer to the 0 line and the fluctuation became
weaker, which corresponds well to the trend in Figure 11 in which the magnitude of the
negative difference increased and the predominance of the positive difference decreased.

The difference in depth between 5/10/20 cm and 5.08/10.16/20.32 cm was mainly due
to the different unit settings of the observation depth, i.e., one was in centimeters and the
other in inches. This 1.6% difference is difficult to detect in practice and may therefore be of
little significance at a distance. The fundamental difference lies in the soil conditions and
the type of land cover on which they rest, which will lead to not only an absolute difference
between the networks but also a relative difference between stations within the network; in
a sense, the difference between the satellite products and the two sets of in situ data may
not be comparable. As mentioned before, land cover and soil properties are interdependent,
and together, they drive the distribution characteristics of soil moisture in the vertical
direction. The variety and variation in land cover in terms of temporal and spatial variables
will probably be stronger and faster than those of the sand and clay fractions, and thus it
has a greater influence on soil moisture. To some extent, this also indicates that the satellite
retrieval of soil moisture should be more focused on land cover, especially the response
and interaction with meteorological conditions of transient conditions.

The differences in the simultaneous comparison were also grouped according to the in
situ data, and the results are shown in Figure 13. With the increase in soil moisture, the
negative difference continued to increase, whereas the positive difference first increased
and then decreased, peaking at around 0.3~0.4 m®/m?. SMOS-IC and SMOS L2 had the
highest negative and positive differences, respectively, while SMAP L4 still remained
the smallest on both sides. With the increase in depth, the negative difference showed
an increasing trend, whereas most of the positive differences decreased. On the other
hand, the distribution gradually approached or even crossed the 0 line with the increase
in depth, indicating that the quantitative advantage of the negative difference constantly
increased. SMOS-IC was above the 0 line and had a more negative difference, while SMAP
L2 remained below this line and had a more positive difference, which is consistent with
the results in Figure 11A,B and again confirms the numerical characteristics of the four
satellite products.

3.2.3. The Depth Mismatch

To evaluate the depth mismatch, the mean difference (MD, Equation (1)) and mean
absolute difference (MAD, Equation (2)) between the satellite soil moisture products and
the multilayer in situ soil moisture data were calculated, and the results are presented in
Tables 4 and 5.
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Table 4. Differences between satellite data and in situ data: interlayer differences and separate comparison.

L MD MAD
/
{(m?/m?) SMOSL2 SMOSIC SMAPL2 SMAPL4 SMOSL2 SMOSIC SMAPL2  SMAPL4
Satellite—5 cm 0.018 —0.027 0.055 0.034 0.092 0.086 0.098 0.075
Satellite—10 cm —0.001 —0.045 0.037 0.016 0.097 0.097 0.100 0.079
Satellite—20 em Z0.008 Z0.052 0.031 0.011 0.09 0.103 0.100 0.081
(Satellite—10 cm) — —0.019 —0.018 —0.018 —0.018 0.005 0.011 0.002 0.004
(Satellite—5 cm)
(Satellite—20 cm) — B B B B

e 10 o) 0.007 0.007 0.006 0.005 0.002 0.006 0 0.002

(Satellite—20 cm) — ~0.026 ~0.025 —0.024 —0.023 0.007 0.017 0.002 0.006
(Satellite—5 cm)
Satellite—5.08 cm 0.012 —0.049 0.025 0.005 0.097 0.093 0.086 0.067
Satellite—10.16 cm Z0.006 Z0.064 0.009 Z0011 0.110 0.105 0.098 0.076
Satellite—20.32 cm —0.031 —0.088 —0.016 —0.034 0.115 0.117 0.098 0.078
(Satellite—10.16 cm) — _ _ _ -~

et £ 08 o) 0.018 0.015 0.016 0.016 0.013 0.012 0.012 0.009
(Satellite—20.32 cm) — B B B B

e 1016 0.025 0.024 0.025 0.023 0.005 0.012 0 0.002
(Satellite—20.32 cm) — —0.043 —0.039 —0.041 —0.039 0.018 0.024 0.012 0.011

(Satellite—5.08 cm)

Table 5. Differences between satellite data and in situ data: interlayer difference and simultaneous comparison.

i MD MAD
I
(m?/m?) SMOSL2 SMOS-IC SMAPL2 SMAPL4 SMOSL2 SMOS-IC SMAPL2  SMAP L4
Satellite—5 cm 0.030 —0.027 0.039 0.009 0.092 0.083 0.080 0.058
Satellite—10 cm 0.012 ~0.045 0.021 ~0.009 0.094 0.094 0.081 0.065
Satellite—20 cm 0.009 —0.048 0.018 ~0.012 0.094 0.097 0.080 0.064
(Satellite—10 cm) — ~0.018 ~0.018 ~0.018 —0.018 0.002 0.011 0 0.007
(Satellite—5 cm)
(Satellite—20 cm) — B B B N B B
(Satellite 10 om) 0.003 0.003 0.003 0.003 0 0.003 0.001 0.001
(Satellite—20 cm) — —0.021 —0.021 —0.021 —0.021 0.002 0.014 0 0.006
(Satellite—5 cm)
Satellite—5.08 cm 0.038 ~0.020 0.031 0.001 0.098 0.095 0.075 0.078
Satellite—10.16 cm 0.020 ~0.039 0.012 ~0.017 0.100 0.100 0.080 0.083
Satellite—20.32 cm ~0.001 ~0.060 ~0.008 ~0.038 0.090 0.102 0.069 0.068
(Satellite—10.16 cm) — B B B B
Gatellito—5.08 em) 0.018 0.019 0.019 0.018 0.002 0.005 0.005 0.005
(Satellite—20.32 cm) — B B B -~ . _ B
(Satellite—10.16 cxn) 0.021 0.021 0.020 0.021 0.010 0.002 0011 0015
(Satellite—20.32 cm) — ~0.039 —0.040 —0.039 ~0.039 ~0.008 0.007 —0.006 ~0.010

(Satellite—5.08 cm)

In the separate comparison, MD reflected the numerical characteristics of each satellite
product well. It continued to grow in a negative direction with the increase in depth, regard-
less of whether it started out positive or negative. The dry bias of SMOS L2, the enhanced
dry bias of SMOS-IC, the strong wet bias of SMAP L2, and the modified wet bias of SMAP
L4 were clearly visible. The depth difference between 10 and 5 cm (—0.19~—0.18 m3/m?)
was much larger than that between 20 and 10 cm (—0.07~—0.05 m3/m?3), while the dif-
ference between 20.32 and 10.16 cm (—0.25~—0.23 m®/m?3) was somewhat larger than
that between 10.16 and 5.08 cm (—0.18~—0.15 m3/m?), also reflecting the stratification
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characteristics of soil moisture. The MAD is actually the mean absolute cumulative differ-
ence, which increased slightly with depth. Focusing only on the first two layers, SMAP
L4 always had the smallest MAD, while the largest MAD values were observed for SMAP
L2 in the 5/10 group and SMOS L2 in the 5.08/10.16 group, respectively; the difference
between 5/5.08 cm and 10/10.16 cm was slightly larger than that between 10/10.16 and
20/20.32 cm.

These results were further confirmed in the simultaneous comparison. MD also
showed negative growth with depth, but the four satellite products behaved somewhat
differently than in the separate comparison. SMOS L2 turned the dry bias into a wet bias,
while SMAP L4 showed the opposite trend in the 5/10/20 cm group. SMOS-IC weakened
the dry bias in the 5.08/10.16/20.32 cm group, and SMAP L2 weakened its wet bias in the
5/10/20 cm group. However, the interlayer difference remained stable, suggesting that,
although the samples were screened in strict temporal matching, their inherent pattern
did not change. MAD appeared to be slightly smaller in the simultaneous comparison, a
ranking of the four satellite products could also be established, but there was still a lack
of regularity.

4. Discussion
4.1. The Vertical Distribution Pattern of Surface Soil Moisture

The stratification characteristics of soil moisture (5/10/20, 5.08/10.16/20.32 cm) were
studied from three aspects: single-layer distribution, interlayer correlation, and interlayer
difference. The fact that soil moisture in the upper layers was less than that in the lower lay-
ers seemed to be a stable distribution pattern, as the negative difference (upper-lower) dom-
inated, and to some extent, this can be regarded as a natural response to gravity. The small
increase in the mean positive difference (0.020/0.024/0.028 vs. 0.037/0.036/0.040 m3/m?)
should be noted, as it probably indicated that the soil moisture was close to or at saturation,
in other words, that the maximum water capacity of this layer had been reached. The
reverse growth reflected by the positive difference could be caused by external random
conditions such as precipitation and can be considered an unconventional distribution
pattern. Land cover and soil properties appeared to be the main determinants of the verti-
cal distribution of soil moisture, particularly for shallow layers, where the effect of land
cover may be greater. These two static variables were coupled and together determine the
water-holding capacity of the soil. In conclusion, the absolute values of the positive and
negative differences in soil moisture between the layers were very close to or even greater
than 0.04 m3/m?3, indicating that there was significant stratification in the vertical direction
and that the effect of depth mismatch on the validation and comparison of satellite soil
moisture products should be carefully considered.

4.2. The Difference between the Satellite Products and the In Situ Data

Land cover and soil properties of the sand and clay fractions were considered static
variables and were used as the key parameters in the soil moisture retrieval algorithm.
Quantification of the difference between the satellite soil moisture products and multilayer
in situ measurements under these conditions is expected to provide references for data
validation and algorithm optimization.

According to the separate comparison, the numerical difference showed that the
satellite soil moisture retrievals had lower values than the in situ measurements. The
dominance of the negative difference was likely to be the norm, and the background
causing the positive difference could also be precipitation, as it occurred randomly and
was mostly a persistent process, leading to an inverse distribution of soil moisture in the
vertical direction. Such cases complicate the setting of dynamic conditions and ancillary
information such as precipitation, temperature, and wetness, which in turn complicates the
retrieval of soil moisture. Therefore, the retrieval optimization should more focus on soil
moisture at higher levels, especially when the surface layer is high. It can be seen that the
differences between all four satellite products and the 5/5.08 cm in situ data were smaller

26



Remote Sens. 2023, 15, 3930

than the differences between the four satellite products and 10/10.16 and 20/20.32 cm in
situ data. A common pattern can be observed in which both the correlation coefficient and
the numerical difference increased with the increase in depth.

In terms of simultaneous comparison, it is worth noting that, under each condition,
namely, land cover, sand fraction, clay fraction, and soil moisture background, the difference
between each satellite product varied with depth, but the order between them was roughly
the same at all depths. In each of the products, unique strategies are used for setting these
conditions in the soil moisture retrieval algorithm, which ultimately led to different results.
The depth mismatch can be related to two aspects in the validation of the satellite products.
The first was for the comparison between the satellite products and multilayer in situ data;
their difference varied with depth, and the effect of the mismatch was observed. The second
was for the comparison between the multisource satellite products; there was no significant
change in the relative magnitude of their difference when they were all compared to the
same in situ data at a given depth, and the mismatch effect may not be of concern.

In fact, the brightness temperature (TB, L1) was the common source of the soil mois-
ture product at higher levels (L2 and L4). The reasons for the difference between the
TB observations of SMOS and SMAP may be mainly due to their detection mechanism,
hardware implementation, and reconstruction methods. However, the results of this study
showed that the pattern of difference between the four satellite products and the multilayer
in situ data did not change significantly with land cover, soil properties, and soil moisture
background, which meant that the difference in penetration depth due to the observa-
tion conditions may not be large enough to cause the difference between the satellite soil
moisture products.

5. Conclusions

Based on the ISMN multilayer in situ data (5, 10, 20, 5.08, 10.16, and 20.32 cm), the
stratification characteristics of soil moisture were studied in this paper, and then SMOS
(SMOS L2 and SMOS-IC) and SMAP (SMAP L2 and SMAP L4) soil moisture products were
compared with the in situ data.

It was found that the soil moisture in the lower layers was usually higher than
that in the upper layers, and there was a very significant hierarchical distribution in
the vertical direction. The negative and positive differences of soil moisture between
the layers were —0.042/—0.67~—0.024/—0.44 and 0.020/0.036~0.028/0.040 m3/m?3, re-
spectively, which were close to or even greater than the nominal retrieval accuracy of
0.04 m®/m3 of SMOS and SMAP. The comparison showed that the correlation coefficient
between the satellite products and the 5/5.08 cm in situ data was the highest, and their
numerical difference was the smallest. The mismatch induced by using the 10/10.16 or
20/20.32 cm in situ data as a substitute was about —0.019~—0.018/ —0.18~—0.015 m®/m?
and —0.026~—0.023/—0.043~—0.039 m?/m? in the mean difference, respectively.

The mismatch of multisource data was mainly in the form of temporal, spatial, and
depth mismatch. In previous studies, the influence of the temporal mismatch of SMOS and
SMAP was found to be much smaller than the nominal retrieval accuracy of the satellites
and can be safely ignored. The depth mismatch was analyzed in this study. It appeared to
be larger than the temporal mismatch, according to the numerical differences.

Some shortcomings need to be mentioned. First, under the strict temporal matching,
the sample size was too small to support a comparison of the sensitivity to the depth
mismatch between satellite products. Second, the comparison between satellite products
and multilayer in situ data was only formal, and their numerical differences could be due
to multiple effects caused by external conditions such as precipitation, temperature, and
wind, leaving much room for further research.
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Abstract: Passive microwave remote sensing of soil moisture (SM) requires a physically based
dielectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant.
Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA
Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions.
However, Mironov 2009 suffers a challenge in deriving SM over organic soils, as it does not account for
the impact of soil organic matter (SOM) on the soil bulk dielectric constant. To this end, we presented
a comparative performance analysis of nine advanced soil dielectric models over organic soil in
Alaska, four of which incorporate SOM. In the framework of the SMAP single-channel algorithm
at vertical polarization (SCA-V), SM retrievals from different dielectric models were derived using
an iterative optimization scheme. The skills of the different dielectric models over organic soils
were reflected by the performance of their respective SM retrievals, which was measured by four
conventional statistical metrics, calculated by comparing satellite-based SM time series with in-situ
benchmarks. Overall, SM retrievals of organic-soil-based dielectric models tended to overestimate,
while those from mineral-soil-based models displayed dry biases. All the models showed comparable
values of unbiased root-mean-square error (ubRMSE) and Pearson Correlation (R), but Mironov 2019
exhibited a slight but consistent edge over the others. An integrated consideration of the model
inputs, the physical basis, and the validated accuracy indicated that the separate use of Mironov 2009
and Mironov 2019 in the SMAP SCA-V for mineral soils (SOM <15%) and organic soils (SOM >15%)
would be the preferred option.

Keywords: soil moisture; dielectric models; SMAP; soil organic matter

1. Introduction

Passive microwave remote sensing is considered the most suitable tool for mapping
spatial soil wetness, owing to the negligible atmospheric influence and less interference
from canopy and surface roughness [1,2]. The remarkable performance of soil moisture
(SM) retrievals from spaceborne L-band radiometers (i.e., soil moisture and ocean salinity
(SMOS) [3] and soil moisture active passive (SMAP) [4]) has been substantiated by a number
of validation studies [5-9]. The mechanism that physically bridges the surface emission
at microwave bands and surface SM is based on the contrasting difference between the
dielectric constants of liquid water (~80) and dry soil (~4) [10]. The dielectric model that
quantitatively links the SM with the bulk dielectric constant of the soil-water—air system is
therefore critical in the retrieval algorithms of SMOS and SMAP.

Recently, numerous dielectric models were developed and applied for both spaceborne
microwave radiometers and in-situ electromagnetic sensors [11]. An ideal dielectric model
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is envisioned, to accurately account for the dielectric response of wet soils as a function of
all the relevant factors, including soil compaction, soil composition, the fraction of bound
and free water, salinity, soil temperature, soil particle size distribution, and observation
frequency, etc. [12]. However, the practical dielectric models are often established on a
limited set of soil properties and are unable to approximate proper dielectric constants for all
the surface conditions. Previous studies found that applying mineral-soil-based dielectric
models over organic soils could lead to a substantial underestimation of SM [11]. [13]
revealed a significant drop in SMAP retrieval quality in regions with soil organic carbon
(SOC) exceeding 8.72%. Given that Mironov 2009 [14], currently used in the SMOS and
SMAP operation algorithms, was developed exclusively on samples of mineral soils, an
update on the dielectric model that incorporates the effect of soil organic matter (SOM) is
pressingly required for areas with organic-rich soils.

The influence of SOM on the bulk dielectric constant of the soil-water system is often
summarized in two aspects. First, organic substrates have larger specific surface areas
than minerals, indicating that organic soil has a higher fraction of bound water relative to
mineral soil, when they contain the same amount of water [11,15,16]. As such, at the same
moisture, the dielectric constant of organic soil tends to be lower than that of mineral soil,
as the dielectric constant of bound water is much smaller than that of free water. Second,
organic soil is often marked by a larger porosity than mineral soil, due to its complex
structure [11,15-17]. Based on these principles, several organic-soil-based dielectric models
have been developed in recent years.

Although model developers pointed out the potential applicability of their models in
the retrieval of SM, assessment of the efficacy of these newly developed organic-soil-based
dielectric models in the derivation of passive microwave remote sensing of SM has not
been widely carried out. In light of these considerations, nine advanced dielectric mixing
models were selected and tested in the context of the SMAP single-channel algorithm at
vertical polarization (SCA-V) [18]. This study has two major objectives: (1) present the
differences between the available mineral- and organic-soil-based models, in describing the
complex dielectric behaviors of wet soils under various SOM conditions; and (2) evaluate
their performance in organic-rich soils. The latter was achieved by comparing the SCA-V
SM retrievals from different models against in-situ measurements scattered over Alaska,
where the soils are identified with a noticeably higher SOM (~25%) relative to the global
average level (Figure Al). The dielectric models considered here have been classified as
mineral-soil-based dielectric models, including Wang 1980 [19], the semi-empirical Dobson
1985 modified by Peplinski 1995 [12,20] (hereafter Dobson 1985), the prevalent Mironov
2009 [14], Mironov 2012 [21], and Park 2017 [22], and organic-soil-based dielectric models,
including the natural log fitting model in [11] (hereafter Bircher 2016), Mironov 2019 [23],
Park 2019 [16], and Park 2021 [24].

As introduced earlier, five mineral-soil-based dielectric models were selected for a
comprehensive survey of diverse models in the framework of the SMAP SCA-V algorithm
over organic-rich soils. Two of them, Mironov 2013 and Park 2017, have not been widely
examined under the SMOS and SMAP schemes [22,25]. In contrast, the other three classic
models have been extensively assessed in wide domains covered by mineral soils [26-28].
However, their performances over regions with high SOM proportions have not been
well-studied and compared with those of dedicated organic-soil-based models. In addition
to water volume, mineral-soil-based models primarily focus on the influence of soil texture,
commonly characterized by sand, clay, and silt. Yet, organic-soil-based models place a
greater emphasis on the SOM effect. Mironov 2019, for example, describes all parameters
as functions of SOM rather than the clay percentage used in Mironov 2009 [23]. Therefore,
incorporating more mineral- and organic-soil-based models may also help to construct
an impression of their systematic differences when describing the dielectric behaviors of
organic soils.

The paper is organized as follows. In Section 2, all the data sets and preprocessing
steps are presented. Next are the workflow of in-situ measurements screening and the
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partial SMAP SCA-V retrieval process used to derive the SM from the identical observations
and different models (Section 3). The results of the synthetic experiments, validation conse-
quences over Alaska, and a detailed discussion are subsequently displayed in Section 4.
Finally, the conclusions are followed by a brief summary presented in Section 5.

2. Data
2.1. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8

Launched on 31 January 2015, the SMAP mission was designed to map high-resolution
SM and freeze/thaw state by combining the attributes of L-band radar and radiometer.
However, the SMAP SM products presently rely on radiometer observations alone, due
to an unexpected malfunction of the SMAP radar in July 2015. With an average revisit
frequency of two to three days, the SMAP sensors cross the Equator at the local solar times
of 6 a.m. and 6 p.m.

SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8 (SMAP
V8) [29] was adopted in this study. Here, we only used the descending (6 a.m.) SM retrievals
derived using the SCA-V algorithm. A series of masking procedures were utilized to avoid
the application of SM retrievals of low accuracy and high uncertainty. Specifically, only
the retrievals flagged as the “recommended quality” were retained and employed in the
later analysis. Given Alaska, the focused region of this study, is located in the high-latitude
portion with a long-term frozen duration, we only considered those qualified SM retrievals
within the time intervals from June to August, between 2015 and 2021.

One noticeable improvement in SMAP V8 (relative to the older version) is the update
and extension of gridded soil parameters, ranging from SOC, silt and sand fractions to
bulk density. These newly added soil attributes originate from the SoilGrid 250 m [30] and
replace the earlier patched version composed of the National Soil Data Canada (NSDC),
the State Soil Geographic Database (STATSGO), the Australia Soil Resources Information
System (ASRIS), and the Harmonized World Soil Database (HWSD) [31]. Since these soil
attributes are often necessary inputs for dielectric models of soil, they were also extracted
from the SMAP V8.

2.2. In-Situ Soil Moisture Measurements

Ground-based SM measurements over Alaska were employed as benchmarks to
assess the skills of the diverse dielectric mixing models. Historical files of soil water
content observed by in-situ sensors were first downloaded from the Natural Resources
Conservation Service (NRCS), the National Water and Climate Center (NWCC) homepage
(https:/ /www.nrcs.usda.gov/wps/portal/wcc/home (accessed on 7 April 2022)). At
present, there are more than 40 operating stations from the Snow Telemetry (SNOTEL) [32]
and Soil Climate and Analysis Network (SCAN) [33]. These stations are able to monitor
the sub-daily variations of SM and many other climatic variables in near real time.

However, some typical errors [34] of in-situ SM readings, such as breaks and plateaus,
were found before their application. As a response, the other authoritative data source of
in-situ SM, the International Soil Moisture Network (ISMN) [35,36], was also considered,
aiming at incorporating its flag information. Given the limited stations in Alaska, it is
expected that SM data from the above two sources (NWCC and ISMN) are mostly from the
same set of stations. Additionally, for the same station, the observed SM time series from the
NWCC and ISMN should be identical, as the ISMN only gathers data and harmonizes them
in units and time steps, without extra data processing. Given the frequently abnormal SM
readings (even after adopting the quality flag) and the necessity of checking the consistency
of SM measurements from two different sources, several rigorous pre-checking procedures
were applied (as described in Section 3.1) to filter out those suspicious observations where
possible in advance.
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3. Methodology
3.1. Preliminary Examination of In-Situ Measurements

The quality of in-situ SM data is of great importance, as these ground measurements
are generally seen as the benchmark for evaluating remotely sensed and/or modeled
SM data sets [5-7]. However, monitoring SM dynamics over high-latitude regions is still
challenging, due to the long-term frozen periods and harsh environments. Such difficulties
have been reflected by the flat limbs and breaks frequently occurring in the SM time series
from the Alaskan stations. Given those, a careful examination of in-situ SM measurements
is necessary.

The general workflow of the preliminary examination steps is delineated in Figure 1.
Specifically, the in-situ SM data measured at the local time of 6 a.m. and 6 p.m. (temporally
align with the SMAP overpass time) were first extracted from the NWCC and ISMN
stations. SM measurements with the corresponding land surface temperature below 4 °C
were excluded, as [6] demonstrates that some sensors begin to behave abnormally under
this temperature. Meanwhile, the utilization of such a threshold would also be helpful
to filter out those SM measurements likely obtained during a period of active thawing
and re-freezing, where SM fluctuations are excessively unstable (e.g., Figure 3c in [34]).
Additionally, stations with a distance shorter than 36 km to large water bodies or oceans
were also masked, as the SMAP SM over those regions is likely influenced by water
contamination. The flag information from the ISMN was also incorporated to filter the
in-situ data of low quality.

in-situ SM from the NWCC (49 stations from

in-situ SM from the ISMN (43 stations from

the SCAN and SNOTEL) the SCAN and SNOTEL)

'

l

e pooe

Extract SM at local 6 a.m. and 6 p.m. from June to August for (Smywcc & smygpy)
Retain smygpy and smywee when coincident temperature no smaller than 4 °C
Remove smygyy and smywec smaller than 0.02 m3/m?3

. Distance of station to large water bodies larger than 36 km
Hold smgyy flagged as ‘Good’ quality

a.
b.

C.

Automatic Checking Procedures
At least 30 yearly overlapped samples
Correlation higher than 0.95
The absolute smaller than 0.01 m*/m?

a.

b.

Visual Inspection
Remove the long-term constants and the
breaks
Remove sporadic samples

Yes .
matched station names?

21 stations where the soil
moisture from the NWCC
and ISMN can be considered
as interchangeable

S

Pairing with SMAP

a. At least 30 overlapped yearly samples for the SMAP soil moisture and smygmn/nwee

i

12 stations ready for validation

Figure 1. Flow chart of the preliminary examination of Alaskan in-situ soil moisture obtained from
the NWCC and ISMN.

The matched SM data of the overlapped stations from the NWCC and ISMN are antic-
ipated, and this greater consistency further enhances the reliability of these benchmarks.
Therefore, an automatic consistency checking procedure, constrained by three requirements,
was applied. Since breaks and plateaus still appeared on the SM time series after consis-
tency checking, a manual visual inspection was then performed to screen these suspicious
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measurements. After those, there were 21 qualified stations left, and we assumed that their
SM data from the NWCC and ISMN are interchangeable. Furthermore, pairing with the
SMAP observations removed nine stations, and the remaining 12 stations (Figure S1) were
used in the later validation steps.

3.2. Derivation of Soil Moisture from Various Dielectric Models

In the SCA-V algorithm, the SMAP SM value is determined when there is a minimized dif-
ference between the simulated and the observed reflectivity (rsmap) (reflectivity = 1 — emissivity)
of smooth soil. At each temporal step, the value of Tsmap Over a pixel is fixed, as the SMAP SCA
algorithm determines the radiative contribution from the canopy layer and the impact of surface
roughness before subtracting them from SMAP observed surface brightness temperature (Tg).
Hence, the influence of adopting different dielectric constant models on SM retrievals can be
examined using the iterative feedback-loop procedure, to minimize the difference between the
simulated reflectivity (rest) and Tsmap, and without the need to construct the whole process from
SM to Tp, in consideration of simplicity.

However, rsmap is an intermediate product and unavailable in the original SMAP
data set. Given this, the values of rsmap were first estimated leveraging SMAP SM and
Mironov 2009. With these benchmarks, the SM retrievals of other dielectric models were
then acquired based on the optimization flow described in Figure 2. Notably, the SM
retrieval at a given time point is reproducible when the identical rsmap and model are used.

SMAP L2 soil moisture (SMgmap) New soil moisture estimate (0 to 1 m*/m?) -

. . . New soil moisture estimate corresponded
Dielectric constant derived from . . R
Mi 2009 dielectric constant estimated using other Retry a value
fronov (Esmap) dielectric mixing models (£qg) with a slight
l increment on the
soil moisture in
Vertically-polarized surface reflectivity (Ismap) of Vertically-polarized surface reflectivity (Test) of the last guess
the smooth soil observed by the SMAP smooth soil estimated from ggg

No

Optimized soil moisture (Smye; )
estimation for that dielectric model (x)

!

Evaluation of smye  from each diclectric model by comparing against in-situ measured soil moisture (smyef)

Figure 2. Flow chart that describes the retrieval of soil moisture using different dielectric models,
based on identical SMAP observations.

3.3. Performance Metrics

The capability of the remote sensing SM data set has been described by four conven-
tional metrics, which are bias, root-mean-square error (RMSE), unbiased root-mean-square
error (ubRMSE), and the Pearson Correlation (R) [37]. These metrics could effectively reflect
the discrepancies in terms of magnitude, as well as the links of the temporal evolutions
between the SM estimations and the ground truth. The formulas used to compute these
metrics are shown in Equations (1)-(4), where E [ ... ] represents the arithmetic mean; and
Oopt and oy denote the standard deviations of SM retrievals of the respective dielectric
models and in-situ measured SM.

bias = E[smyet] — E[smye] 1)
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RMSE = \/ E [(smret - smref)ﬂ 2)
ubRMSE = \/ RMSE? — bias? 3)
R— E[(smyet — E[smyet]) (smres—E[sm ¢])] @)

OretOref

4. Results and Discussion
4.1. Simulated Brightness Temperature of Smooth Soil through Synthetic Experiments

Synthetic experiments have the capability to afford complete dielectric responses to a
whole SM range, by artificially controlling all the inputs required for the dielectric models
(Table 1). With the SOM increasing from 0% to 75% at a step of 15%, the differences between
the dielectric constants estimated by mineral- and organic-soil-based dielectric models were
explored. These various dielectric responses were further transferred to their corresponding
thermal radiations of smooth soils, represented by the vertically polarized Tg.

Table 1. Input variables required for the nine dielectric models.

Mineral Soil Based Models Organic Soil Based Models

Model

Inputs Wang Dobson Mironov Mironov Park Bircher Mironov Park Park
14 1980 1985 2009 2013 2017 2016 2019 2019 2021
Volumetric ~ Volumetric ~ Volumetric ~ Volumetric =~ Volumetric =~ Volumetric =~ Gravimetric =~ Volumetric ~ Volumetric
Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil
Moisture Moisture Moisture Moisture Moisture Moisture Moisture Moisture Moisture Moisture
(m?/m?) (m?/m?) (m?/m?) (m?/m?) (m?/m?) (m*/m?) (8/8) (m*/m?) (m?/m?)
Soil Gravimetric ~ Gravimetric ~ Gravimetric
o ot / / / / / / Soil Soil Soil
Nr[g?tmc Organic Organic Organic
€r Matter (%) Matter (%) Matter (%)
Gravimetric ~ Gravimetric ~Gravimetric Gravimetric ~ Volumetric Volumetric ~ Volumetric
Cla Cla Cla Clay Cla Clay / / Clay Clay
y Fraction Fraction Fraction Fraction Fraction Fraction Fraction
(0-1) (0-1) (%) (%) (0-1) (0-1) (0-1)
Gravimetric ~ Gravimetric Volumetric Volumetric ~ Volumetric
Sand San Sand / / Sand / / Sand Sand
Fraction Fraction Fraction Fraction Fraction
(0-1) (0-1) (0-1) (0-1) (0-1)
Volumetric Volumetric ~ Volumetric
. Silt Silt Silt
Silt / / / / Fraction / / Fraction Fraction
(0-1) (0-1) (0-1)
Bulk Bulk Bulk
Dg;lélft Density Density / / / / Density / /
Y (g/cm?) (g/cm?) (g/cm?)
Frequency  Frequency Frequency Frequency  Frequency
Frequency / (Hz) (Hz) / (Hz) / / (Hz) (Hz)
.. Salinity Salinity Salinity
Salinity / / / / (%) / / (%o) (%)
Soil Soil Soil Soil Soil Soil Soil
Tem (:rature / Temperature / Temperature Temperature / Temperature Temperature Temperature
P O O O O O O
Total
Number of 4 6 3 3 7 1 4 8 8
Inputs

Figure 3 presents the Tg curves derived using different dielectric models, across the
range of SM from 0 to 0.8 m3/m3. Generally, the Tg values estimated using organic-
soil-based models are greater than those derived using the mineral-soil-based models,
particularly when SOM exceeds 15% and the SM is higher than 0.1 m3/m3. In other words,
the SM retrievals from organic-soil-based models tend to be wetter than the SM retrievals
from mineral-soil-based models (e.g., Mironov 2009) given the same surface reflectivity (or
Tg) of bare, smooth soil. The discrepancies between the simulated Tg magnitudes from
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300

(a)

mineral- and organic-soil-based models further grow with the increase of SOM (Figure 3).
However, it should be noted that the estimated dielectric constants and their subsequent Tg
values from mineral-soil-based models do not vary with SOM. The higher SM estimations
of organic-soil-based models relative to mineral-soil-based models could be attributed to
the fact that these organic-soil-based models assume a higher volumetric proportion of
bound water [11,15,16]. When the SOM is at 15% (and below), the simulated Tg curves from
all the considered models are clustered together, bounded by Dobson 1985 and Bircher 2016
(Figure 3b). Therefore, the SOM of 15% might be treated as an appropriate demarcation
point for the separate use of mineral- and organic-soil-based dielectric models over mineral
soils and organic soils.
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Figure 3. Simulated brightness temperature of a silty clay with various soil organic matter, and the
accompanying table displays all the input values, where most soil parameters were directly taken
from the sample of silty clay used in [38]. (a—f) represent the simulated brightness temperature curves
variations across various soil organic matter with an increase step of 15%.

Moreover, similar features of the T curves of those considered dielectric models
have been observed when a sandy sample is tested (Figure S2). Such a stable-magnitude
discrepancy between the red curves (organic models) and the blue curves (mineral models)
under contrasting textures (sandy and clay soils) can be attributed to the insensitivity
of the organic-soil-based dielectric models to soil texture. For example, Mironov 2019
only accounts for the effects of soil moisture, SOM, and soil temperature on the dielectric
permittivity of organic soils (Table 1). Although Park 2019 and Park 2021 incorporate both
textural and SOM information, the differences in their estimated Tg values from sandy and
clay samples seem insignificant under the same SOM level (Figures 3 and S2).

Compared to Mironov 2019, the influence of organic content on the simulated Tg
magnitude seem more pronounced for Park 2019 and Park 2021. When the SOM increases
from 0% to 75% and the SM values are smaller than 0.5 m®/m?3, the Tg curve of Park 2021
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jumps from the bottom to the top line, with a varying amplitude on the order of tens of
Kelvins (Figure 3). In contrast, as a response to the growing SOM, the estimations from
Mironov 2019 slowly move upward, approaching the Tg curve of Bircher 2016. According
to Figure 3e,f, there is a rapidly dropping segment on the Tg curve of Park 2019. Such
abnormal dielectric behavior can be attributed to the improper formulas used to calculate
the wilting point and porosity, with a detailed explanation in Section 4.4.

4.2. Evaluation of Dielectric Models over In-Situ Sites in Alaska

Here, SM measurements from 12 sites served as benchmarks to evaluate the skills of the
multiple dielectric models in the setting of SMAP observations and the SCA-V algorithm.
Before inter-comparison, it was found that the assessment metrics of the satellite-based
SM retrievals over the same pixel could vary a lot in different years. Using the time series
in Monument Creek as an instance (Figure 4), the R values ranged from 0.18 (2017) to
0.69 (2015). Hence, the obtained metrics (Tables 2—4) averaged over multiple years of each
station might be underrated, as they may have been compromised by abnormal behavior
in one year. Additionally, the amplitudes and frequencies of in-situ SM variations are
often more pronounced relative to the SM retrievals, as the latter reflects the changes over
a coarse spatial extent (Figure 4). SM variations at local scales often cannot be captured
by the 36 km-scale SM retrievals, due to the omission of spatial variability within the
footprint-scale area. As noted by [39], spatial mismatching between satellite SM retrievals
and point-scale in-situ measurements could adversely impact the perceived accuracy of
SMAP observations.
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Figure 4. Time series of soil moisture derived from satellite observations and in-situ measurements at
Monument Creek (65.18° N, 145.87° W). (a—-g) describe the soil moisture variations of SMAP retrievals
and ground measurements from 2015 to 2021.
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Table 2. Bias of soil moisture retrievals using various dielectric models over in-situ sites in Alaska,
where biases from mineral- and organic-soil-based models tend to underestimate and overestimate
relative to in-situ measurements.

Mineral Soil Based Models

Organic Soil Based Models

Station/Bias - - - -
(m3/md3) N Wang Dobson  Mironov Mironov Park Bircher = Mironov Park Park
1980 1985 2009 2013 2017 2016 2019 2019 2021
GE?V‘Z;“ 72 0.058 0.025 0.046 0.044 0.039 0.195 0.142 0.104 0.085
Spring 37 ~0.108 0153  —0137  —0137  —0139  —0.022  —0.051  —0.105  —0.109
Creek
A;ﬁgn 81 0047  —0.002 0015 0.016 0.009 0.092 0.092 0.044 0.061
Coldfoot 156 —0.085 —0.133 —0.121 —0.121 —0.124 —0.030 —0.036 —0.083 —0.067
Eagle
R 320 —0.028 —0.068 —0.062 —0.061 —0.068 0.014 0.017 —0.033 —0.015
Summit
Ggﬁgrs 262 0.031 —0.010  —0.003  —0.003  —0.007  0.09 0.083 0.039 0.055
M‘Ezi‘a“ 121 ~0.047  —0093  —0076  —0.077  —0.081 0.035 0.009 0029  —0.029
Mé’?e‘g?e“t 405 0018  —002 —0.014 —0014  —0016 0091 0.073 0.029 0.041
Rl;/[;l 194 0.114 0.078 0.082 0.082 0.080 0.196 0.172 0.132 0.142
MR‘;EZ‘;“ 383 0.018 0019  —0.015 —0015  —0016  0.0% 0.075 0.034 0.045
Tokositna )55 0.014 —0.008  —0.006 —0.008  —0008  0.147 0.093 0.062 0.046
Valley
Upper
Nome 283 —0.138 —0.180 —0.171 —0.171 —0.176 —0.086 —0.091 —0.138 —0.120
Creek
Mean 214 —0.009 —0.049 —0.038 —0.039 —0.042 0.069 0.048 0.005 0.011
Where the column of the number in bold font represents the dielectric model with the smallest absolute bias in
that station or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and
in-situ SM measurements used to calculate the bias for each station.
Table 3. ubRMSE of soil moisture retrievals using various dielectric models over in-situ sites in Alaska.
Mineral Soil Based Models Organic Soil Based Models
Station/ubRMSE . . : :
(m3/md) N Wang  Dobson Mironov Mironov  Park Bircher = Mironov Park Park
1980 1985 2009 2013 2017 2016 2019 2019 2021
Gulkana River 72 0.0132 0.0164 0.0156 0.0154 0.0152 0.0209 0.0180 0.0169 0.0138
Spring Creek 37 0.0460 0.0457 0.0452 0.0454 0.0455 0.0408 0.0428 0.0446 0.0462
Atigun Pass 81 0.0311 0.0311 0.0311 0.0311 0.0311 0.0317 0.0311 0.0310 0.0310
Coldfoot 156 0.0736 0.0736 0.0736 0.0736 0.0736 0.0743 0.0737 0.0739 0.0737
Eagle Summit 320 0.0487 0.0490 0.0487 0.0487 0.0487 0.0480 0.0477 0.0482 0.0481
Gobblers Knob 262 0.0665 0.0663 0.0660 0.0662 0.0662 0.0622 0.0643 0.0628 0.0637
Monahan Flat 121 0.0722 0.0721 0.0720 0.0721 0.0721 0.0714 0.0718 0.0715 0.0722
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Table 3. Cont.

Mineral Soil Based Models Organic Soil Based Models
Station/ubRMSE . . : :
(m3/md) Wang Dobson Mironov Mironov  Park Bircher = Mironov Park Park
1980 1985 2009 2013 2017 2016 2019 2019 2021
M"C“r‘éﬁent 405 00510 00509 00508 00508  0.0508 00505 00503 00504  0.0503
Mt. Ryan 194 0.0163 0.0177 0.0173 0.0172 0.0173 0.0262 0.0186 0.0237 0.0187

Munson Ridge 383 0.0499 0.0492 0.0490 0.0492 0.0492 0.0465 0.0475 0.0467 0.0478
Tokositna Valley 253 0.1295 0.1296 0.1295 0.1295 0.1296 0.1298 0.1294 0.1296 0.1296

Uppcerreljl:’me 283 00122 00126 00124 00123 0.0126 0.0196 0.0129 0.0163 0.0160
Mean 214 00509 00512 00509 00510  0.0510 0.0518 0.0507 0.0513 0.0509
Where the column of the number in bold font represents the dielectric model with the best ubRMSE in that station
or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and in-situ SM
measurements used to calculate the ubRMSE for each station.
Table 4. R of soil moisture retrievals using various dielectric models over in-situ sites in Alaska.
Mineral Soil Based Models Organic Soil Based Models
Station/R N Wang Dobson  Mironov Mironov Park Bircher = Mironov Park Park
1980 1985 2009 2013 2017 2016 2019 2019 2021
Gﬁilv‘:;‘a 72 0.605 0.596 0.607 0.604 0.599 0.608 0.621 0.603 0.601
Sé??f 37 0.757 0.737 0.758 0.752 0.745 0.757 0.805 0.752 0.746
A;,;i‘;“ 81 0.342 0.348 0.344 0.344 0.344 0.341 0.333 0.347 0.347
Coldfoot 156 0.205 0.205 0.204 0.204 0.205 0.206 0.199 0.202 0.208
Eagle 320 0.375 0.353 0.372 0.376 0.368 0.376 0.429 0.368 0.372
Summit
Ggﬂgrs 262 0.571 0.557 0.571 0.570 0.564 0.571 0.603 0.575 0.577
M‘E:i‘a“ 121 0.276 0.273 0.275 0.274 0.274 0.277 0.275 0.284 0.276
Mg?;?em 405 0.407 0.401 0.406 0.405 0.404 0.409 0413 0.406 0.418
Rl;/[ath 194 0.604 0.595 0.604 0.601 0.599 0.605 0.624 0.604 0.601
MR‘;EZ‘;“ 383 0.608 0.597 0.606 0.604 0.602 0.610 0.624 0.611 0.611
Tokositna 5y 0.177 0.171 0.174 0.172 0.170 0.172 0.176 0.172 0.171
Valley
Upper
Nome 283 0.416 0.398 0.418 0.420 0.410 0416 0.477 0.421 0.416
Creek
Mean 214 0.445 0.436 0.445 0.444 0.440 0.446 0.465 0.445 0.445

Where the column of the number in bold font represents the dielectric model with the best R in that station
or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and in-situ SM
measurements used to calculate the R for each station.

Assessment metrics of the SM retrievals derived using identical Tsmap Values and
different dielectric models were computed by their temporally paired in-situ measure-
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ments. According to Table 2, the SM estimates from mineral-soil-based models tend to
underestimate, while the organic-soil-based models generally exhibit wet biases compared
to the ground recordings. In terms of both ubRMSE and R (Tables 3 and 4), all the models
show comparable accuracy levels, similar to the previous results in [27], whereas Mironov
2019 displays a slight but consistent edge over the other models. Compared to the other
dielectric models, the modest improvement in R of Mironov 2019 was likely due to its
simultaneous consideration of bulk density and SOM effects [23].

The other aspect that we attempted to evaluate for the predictive power of various
dielectric models was checking the correlations between the SM retrievals of different
models and SMAP observed vertically polarized Tg. If the higher absolute R values between
the time series of SM and SMAP vertically polarized Tg are assumed as a criterion that
reflects the better skill of a dielectric mixing model, Mironov 2019 presents an overwhelming
superiority over the other models in the 765 Alaskan pixels (Figure 5). Table S2 displays
that in-situ measured SM usually has a lower correlation with SMAP vertically polarized Tg
relative to the correlations between satellite-based SM retrievals and SMAP Tg. However,
it should be noted that such correlation-based results were inconclusive and functioned as
a reference only, since the impacts of vegetation disturbance and surface roughness were
entirely ignored.
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Figure 5. Boxplots of the absolute correlations between the soil moisture retrievals from various di-
electric mixing models and the SMAP vertically polarized brightness temperature over the 765 pixels
in Alaska. (a) and (b) represent the boxplots of absolute R values from 2015 to 2018 and 2019 to
2021, respectively.

4.3. A Global Intercomparison between Mironov 2009 and Mironov 2019

Mironov 2009 and Mironov 2019 were selected as the representatives for mineral- and
organic-soil-based dielectric models and were then compared with each other at the global
scale using one-week SMAP observations from 2 July 2018 to 8 July 2018. The one-week
SM retrievals of Mironov 2009 and Mironov 2019 were analyzed over more regions with
abundant SOM and were also used to acquire performance clues for applying Mironov
2019 to mineral soils.

According to Figure 6a,b, satellite-based SM data are usually unavailable in many
areas characterized by organic-rich soils, likely owing to dense boreal forests, steep surface
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0.1

roughness, as well as permanently frozen soils on the land surface [11,40]. The magnitude
differences between Mironov 2009 and Mironov 2019 yielded SM retrievals are commonly
above 0.05 m>/m?3 generally when the SOM is over 10% (Figure 6b,e). In the case of extreme
dryness (SM < 0.1 m®/m?) over mineral soils (SOM < 5%), the SM retrievals from Mironov
2019 are likely lower than those from Mironov 2009. As illustrated in Figure 6d, there
is a limb where the SM retrievals of Mironov 2019 are nearly constant, while those from
Mironov 2009 vary, possibly because of the soil texture.
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Figure 6. A global intercomparison of soil moisture retrievals from Mironov 2009 and Mironov 2019:
(a) the spatial distribution of soil organic matter (SOM) in percentage from a north polar view, (b) the
spatial distribution of mean differences between soil moisture estimations using Mironov 2009 and
Mironov 2019 (bias = SM Mironov2019 — SM Mironov2009), (¢) the probability distribution function of
weekly mean soil moistures derived using the above two models, (d) scatterplot of soil moisture using
both models across the globe, where the color bar shows the number of pixels, and (e) boxplot that
describes the bias variations along with the increase of SOM that was organized into 6 groups (g1-g6).
The organic range of each group is 0-5% (g1), 5-10% (g2), 10-15% (g3), 15-20% (g4), 20-30% (g5), and
>30% (g6).

4.4. Discussion
4.4.1. The Applicable Range of Dielectric Models

Although the above validation results over in-situ sites in Alaska demonstrated the
slightly better performance of Mironov 2019 over the other models, it may be not the best
model across all landscapes and climatic conditions. The accuracy of a dielectric model
heavily depends on its respective applicable range. A dielectric model is likely to acquire a
better performance score when being applied over the samples used to develop it. In other
scenarios, potential degradation of the model skill can be expected. For instance, when
Dobson 1985 is adopted in soils that fall beyond the prototypal soils on which Dobson
1985 was established, some unrealistic dielectric constants were yielded [14]. According to
SMAP configurations and parameters, the frequency is confined to 1.4 GHz, while most
pixels in Alaska show SOM values spanning from 15% to 30%. However, it should be noted
that Mironov 2019 was designed for a surface soil layer with SOM ranging from 35% to
80% [23]. Meanwhile, the natural log calibration function from [11] was proposed for highly
organic soils and the Decagon 5TE (in-situ sensor), which is operated at 70 MHz. Such
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imperfect alignments between the applicable ranges of dielectric models and the actual
settings are surprisingly common, possibly leading to underestimations of the quality of
these dielectric models.

4.4.2. Organic-Soil-Based Dielectric Models

Similar to other empirical dielectric models [41-46] accounting for the influence of
SOM, SOM itself is not treated as a necessary input in Bircher 2016 to derive the dielectric
constants of organic soils. Mironov 2019, however, incorporates the dielectric impacts of
SOM and soil bulk density, while omitting the clay fraction. In contrast, Park 2019 and
Park 2021 consider both mineralogy and SOM. Though comprehensive, the confidence in
representing the dielectric interactions among various soil properties and the quality of
those global-scale soil databases greatly limit the practical uses of Park models. For example,
SOM, as the most critical index for classifying mineral and organic soils, was estimated by
multiplying the SOC content by a fixed factor of 1.724 [23,47]. However, the conversion
factor between SOC and SOM is unlikely a global constant, while [47] pointed out that this
conversion factor would vary from 1.4 to 2.5 across different geographical regions.

Additionally, mineral-soil-based dielectric models are usually based on the assumption
that the soil is composed of sand, silt, and clay, and thus the summation of their fractions is
100% [12,19,22]. However, this assumption is likely inappropriate over organic-rich soils,
where SOM has a great gravimetric contribution. Here, the texture fractions extracted from
the SoilGrids250m [30] were normalized. As a result, the summation of minerals and SOM
currently exceeds 100%, while a further re-normalization is difficult to proceed with, as the
SOM contents (sometimes over 100%) were empirically estimated. Despite these issues,
at this time, these data sets might be the most practical sources to support running those
dielectric models over a wide spatial coverage. Therefore, a soil property data set that
can accurately describe the gravimetric relationship among sand, silt, clay, and SOM is
pressingly needed.

4.4.3. Limitations of In-Situ Benchmarks

Besides the limits of the model applicable range and the quality of input data sets
of soil properties, the other critical factor that directly affects the assessment results is
the quality of the benchmarks, i.e., in-situ SM measurements. As mentioned, breaks,
missing values, and jumps were commonly found during the examination of the in-situ
SM time series. Furthermore, many of the calibration functions used to deduce in-situ SM
values were designed for mineral soils only, due to the unavailability of organic-soil-based
calibration functions over those regions. As a result, in-situ SM values might have an
underestimation issue.

Due to the limited availability of in-situ measurements over Alaska, only one ground
station was selected as the regional benchmark for each validation pixel. However, the
estimated SMAP retrieval performance over these areas was likely degraded given the un-
matched spatial representatives and measuring depths between the passive microwave SM
derivations and ground measurements [39]. Additionally, inconsistent SM variations from
the radiometer snapshots and the ground sensors may have arisen during the transition
period between two years (e.g., from the end of August 2015 to the beginning of June 2016),
adversely affecting the validation metrics. In spite of these factors, this study presents an
evaluation that maximizes the use of existing data sets and can serve as a valuable reference
for further investigations as more data become available.

4.4.4. Characteristics of Park Models

Compared to the other conventional semi-empirical dielectric models [12,16,19,21-23],
Park models describe the fractions of bound water and free water differently [16,22,24].
First, Park models use the wilting point as the beginning point where free water starts to
occur, whereas other models set that value using an independent term, named maximum
bound water fraction. When the volumetric SM is between the maximum bound water
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fraction and porosity, most dielectric models fix the bound water content and the dielectric
contribution of bound water. However, in the same SM range, Park models assume that
the content of bound water and free water alters with the volumetric SM. Specifically, SM
is treated as a weighted summation of the bound water and free water, where the sum of
the weights of bound water (wy,) and free water (wy) is constrained as one. It is assumed
that wy, is one when SM is equal to the wilting point. On the contrary, wy, declines to zero
when SM reaches porosity.

According to Figure 3ef, there are a few rapid drops in the curves of Park 2019 and
Park 2021 when the SOM exceeds 60%. Such scenarios could be explained by the wilting-
point and porosity calculation equations used in Park 2019 and Park 2021. As shown
in Figure S3, the porosity equation of Park 2019 could lead to a porosity greater than
1m3/m?3 when SOM ranges from 30% to 35%. Meanwhile, in Park 2019, the derived wilting
point could surpass the porosity when the SOM is over 60%. Although the above issues
were substantially mitigated for Park 2021 with valid magnitudes of its derived porosity
and wilting point, an evident bending near the wilting point could still be observed in
its simulated T curves at highly organic soils. Therefore, caution should be paid when
applying Park 2019 and Park 2021 over organic-rich soils.

4.4.5. Selection of a Globally Optimal Combination of Dielectric Models

In general, Mironov 2019 can be concluded as the prime dielectric model for use in the
SMAP SCA-V algorithm over organic-rich soils. Similar to [27], such a determination was
not only yielded from the validation results, but also incorporated the input parameters
and configurations of various models. Specifically, Mironov 2019 requires fewer input
parameters compared to Park 2019 and Park 2021, making it less susceptible to the uncer-
tainties introduced by different soil property data sources, while accounting for the SOM
effects. Additionally, Mironov 2019 was developed based on a physically refractive mixing
dielectric model, where the parameters were calibrated and validated across several soil
samples, with a SOM ranging from 35% to 80% [23]. In contrast, Bircher 2016 was derived
from straightforward regression analyses between two measured variables, while Park 2019
and Park 2021 lack effective calibration [11,16,24]. Furthermore, Mironov 2019 consistently
demonstrated a slight edge over the other models, in terms of the averaged ubRMSE and
R. This accuracy advantage of Mironov 2019 would likely extend to other regions with
organic-rich soils (Figure A1), given similar climatic conditions and vegetation types with
Alaska [48,49].

While the operational SMAP retrieval algorithms apply a single dielectric model
globally [50], finding a universal dielectric model that outperforms the other models
across all possible conditions seems overambitious. As described above, mineral-soil-
based dielectric models do not include the SOM effect on soil dielectric constants, whereas
organic-soil-based models often ignore the influence of soil texture. Although Park 2019
and Park 2021 consider both soil texture and SOM, they are prone to higher errors, due
to a few improper formulations and excessive uncertainties introduced by various input
data sources. Hence, based on the previous studies [15,27] and the results obtained here,
the separate use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V algorithm over
mineral and organic soils is proposed. The selection of utilizing Mironov 2009 is somewhat
arbitrary, as Mironov 2009 has not been comprehensively assessed against Mironov 2013
and Park 2017 over mineral soils. The applicability of Mironov 2009 has been extensively
validated, and the use of Mironov 2009 will not further degrade the retrieval quality.

The simultaneous use of Mironov 2009 and Mironov 2019 requires a sophisticated
SOM threshold that can demarcate mineral and organic soils. However, there is presently
no rigorous set of rules for this threshold. [23] state that soil can be categorized into organic
soil if the SOM is more than 20%, whereas [51] and [52] declare that organic soil should
contain a SOM of at least 30% [11]. According to the results of the synthetic experiments, a
SOM of 15% might be an optimal threshold for distinguishing soil types, as the Tg curves
of different models are closely clustered and the divergence between mineral- and organic-
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soil-based models seems to start after a SOM exceeding 15% (Figure 3). Such a threshold
conforms to [53] who classifies soils into organic soil or highly organic soil when the SOM
is more than 15%.

The utilization of an optimal organic-soil-based dielectric model (i.e., Mironov 2019
here) is anticipated to improve the overall precision of SMAP SM retrievals over organic
soils. Since SM is a crucial factor in determining carbon fluxes in boreal regions [18], having
precise knowledge of SM variations can effectively monitor the health of local ecosystems
and predict the trends in carbon storage. In the current context of global warming, the
snow extent has rapidly dropped in the Northern Hemisphere [54]. Consequently, more
snow-covered regions become bare soils, and the period of thawing seasons tends to last
longer. Hence, decreasing SM retrieval uncertainties over these high-SOM areas would
greatly aid in tracking the potential significant hydrologic shifts triggered by climate change
and permafrost thawing [55,56].

Meanwhile, the deficiencies in the quality of soil property products and in-situ data sets
in the Northern environment have been identified. For instance, the universal conversion
formula between SOC and SOM is still rudimentary, occasionally leading to an estimation
over 100%. As such, the limitations discovered in this study offer a strong motivation
and direction for developing soil property data sets with better applicability. Additionally,
the necessity for accurate SM in high-latitude areas highlights the need for more ground
stations and dense SM observation networks over the circumpolar zone.

4.4.6. Future Work

Here, the determination of the SOM threshold at 15%, based solely on synthetic
experiments, likely caused spatial inconsistencies at the boundary of the mineral and
organic soils. Hence, location/time-dependent SOM thresholds may be necessary to
produce smooth SM maps in high-latitude regions. An alternative approach would be the
mixed use of mineral- and organic-soil-based models over each pixel, provided that an
accurate relative proportion of SOM and clay is available in advance.

Although this study evaluated various dielectric models under the SMAP SCA-V algo-
rithm, their use in other radiative transfer model-based algorithms and with observations
from different polarizations, angles, and frequencies remains to be investigated. Of partic-
ular interest is the dual-channel algorithm (DCA), the current SMAP baseline algorithm,
which exhibited moderate edges over agricultural sites [18]. The objective of the DCA
algorithm is to achieve the optimal vegetation optical depth (VOD) and SM simultaneously,
by minimizing the aggregated differences between the simulated and observed brightness
temperatures at both horizontal and vertical polarizations. Thus, the alternation of the
dielectric model could indirectly affect the derived vegetation water content. In addition
to passive microwave remote sensing, the dielectric mixing model is also critical for other
fields, such as SMAP L4 and the European Centre for Medium-Range Weather Forecasts
(ECMWF) Community Microwave Emission Model (CHEM) [57,58]. Radar sensors also
require a dielectric model to simulate the backscatter coefficients [59]. However, there
is currently no clear consensus on the best dielectric model for these platforms, making
further investigations necessary and valuable.

5. Conclusions

In this study, the skills of nine dielectric models over organic soil in Alaska were
evaluated and compared in the context of the SMAP SCA-V algorithm. Four out of nine
models carefully account for the SOM effect on the complex dielectric constant of the
soil-water mixtures, while the remaining models were designed for use in mineral soils.
The dielectric responses (expressed in a form of Tg) of those models to the increasing SOM
were comprehensively investigated through artificially controlling input values. At a given
SM over 0.1 m3/m? and a SOM higher than 15%, the simulated Tp values from organic-
soil-based dielectric models were higher than those estimated from the mineral-soil-based
dielectric models. In other words, relative to mineral-soil-based dielectric models, organic-
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soil-based models are inclined to obtain higher SM estimates from identical observed
radiations. The different magnitudes from the above two types of dielectric model were
relatively stable across soil textures (e.g., silty, clay, and sandy loam), as organic-soil-based
models are less sensitive to the proportions of sand, silt, and clay content. Furthermore,
a SOM threshold of 15% was suggested for the separate use of mineral- and organic-soil-
based dielectric models in the retrieval algorithm, as the divergence of Tg curves of mineral-
and organic-soil models was observed when the SOM exceeded 15%.

The predictive power of each dielectric model was represented using several statistic
metrics computed by comparing the SM retrievals with in-situ measurements. Compared
to satellite products reflecting SM variations over a large spatial extent, in-situ point-based
SM measurements exhibited more temporal variability. Additionally, even over the same
location, the annual correlations between satellite-based SM retrievals and in-situ data
fluctuated a lot. Consistent with the results from the synthetic experiments, organic-
and mineral-soil-based models tended to induce wet and dry biases. In an integrated
evaluation, Mironov 2019 presented a slightly, but consistently, better performance over
the other dielectric models, which showed a mean ubRMSE of 0.0507 m3/m? and a mean R
of 0.465.

Furthermore, an inter-comparison between the SM retrievals within a one-week time
interval from mineral- and organic-soil-based dielectric models was conducted at a global
scale. Such a comparison would be useful to capture clues about the performance of
organic-soil-based models over mineral soils. Mironov 2009 and Mironov 2019 were elected
as the representatives of mineral- and organic-soil-based models, respectively. As a result,
SM estimates from Mironov 2019 were at least 0.05 m®/m? higher than those from Mironov
2009. When the SM was below 0.1 m3/m?3, the SM retrievals from Mironov 2019 were
occasionally smaller than the SM retrievals from Mironov 2009 in mineral soils.

It should be noted that the performance of each dielectric model heavily depends on
its designed application range, the quality of the input data sets, as well as the accuracy of
in-situ benchmarks. Different assessment results might be obtained with the updating of
the dielectric models, in-situ measurements, and soil parameters. Given the contrasting
sensitivity of mineral- and organic-soil-based models to soil texture and SOM, it is of
great importance to ensure a consistent source of soil ancillary data. As such, a routine
evaluation study that incorporates all the potential dielectric models and the most recent
soil auxiliary data sets is recommended. In an integrated consideration of model inputs,
the model physical foundation, and the practical accuracy, the separate use of Mironov
2009 and Mironov 2019 in the SMAP SCA-V algorithm for mineral soils (SOM < 15%) and
organic soils (SOM > 15%) would be the optimal option at this time. Considering the SOM
magnitudes at the 36 km scale, developing a sophisticated dielectric model accounting for
a variable SOM from 10% to 30% is required for passive microwave remote sensing of SM.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /1515061658 /s1, Figure S1: The geographical distributions of all
the 12 stations finally used for validation. Figure S1: Simulated brightness temperature of a sandy
loam with various soil organic matter, and the accompanied table displays all the input values where
most of soil parameters are directly taken from the sample of sandy loam used in [38]. (a)—(f) represent
the simulated brightness temperature curves variations across various soil organic matter with an
increase step of 15%. Figure S2: Variations of wilting point and porosity estimated from Park 2019
and Park 2021 with increasing soil organic matter with assumed volumetric textural compositions.
Table S1: Detailed information of all in-situ stations investigated in this study. Table S2: Annual R
values between soil moisture retrievals from various dielectric models and in-situ measurements and
the SMAP vertically polarized brightness temperature.
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Abstract: Soil moisture is a key factor in the water and heat exchange and energy transformation of
the ecological systems and is of critical importance to the accurate obtainment of the soil moisture
content for supervising water resources and protecting regional and global eco environments. In
this study, we selected the soil moisture monitoring networks of Naqu, Maqu, and Tianjun on the
Qinghai-Tibetan Plateau as the research areas, and we established a database of surface microwave
scattering with the AIEM (advanced integral equation model) and the mathematical expressions for
the backscattering coefficient, soil moisture, and surface roughness of the VV and VH polarizations.
We proposed the soil moisture retrieval models of empirical and machine learnings algorithms
(backpropagation neural network (BPNN), support vector machine (SVM), K-nearest neighbors
(KNN), and random forest (RF)) for the ascending and descending orbits using Sentinel-1 and
measurement data, and we also validated the accuracies of the retrieval model in the research areas.
According to the results, there is a substantial logarithmic correlation among the backscattering
coefficient, soil moisture, and combined roughness. Generally, we can use empirical models to
estimate the soil moisture content, with an R? of 0.609, RMSE of 0.08, and MAE of 0.064 for the
ascending orbit model and an R? of 0.554, RMSE of 0.086, and MAE of 0.071 for the descending orbit
model. The soil moisture contents are underestimated when the volumetric water content is high.
The soil moisture retrieval accuracy is improved with machine learning algorithms compared to the
empirical model, and the performance of the RF algorithm is superior to those of the other machine
learning algorithms. The RF algorithm also achieved satisfactory performances for the Maqu and
Tianjun networks. The accuracies of the inversion models for the ascending orbit in the three soil
moisture monitoring networks were better than those for the descending orbit.

Keywords: soil moisture; AIEM; machine learning algorithms; Sentinel-1; Qinghai-Tibetan Plateau

1. Introduction

Soil moisture is a key factor in the water and heat transfer and energy transposition
in land-atmosphere systems [1], and it is also vital to connecting the water of surface
water, groundwater, and carbon cycles of terrestrial ecosystems [2]. As a crucial parame-
ter in hydrology, meteorology, ecology, and agriculture, researchers use soil moisture in
hydrologic modeling [3], numerical weather forecasting [4], and overland flow predic-
tions [5]. Therefore, the accurate and dynamic monitoring of soil moisture is critical for
environmental protection.
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The main advantages of microwave remote sensing are its real-time detection, high
penetrating power, and the fact that it is not easily influenced by cloudy weather. The
soil volumetric water content has a substantial effect on the variation in the soil dielectric
constant, and the soil dielectric properties are bound up with the brightness temperature
and backscatter coefficient of the microwaves [6]. Consequently, microwave remote sensing
technology is a potential method for soil moisture monitoring [7]. According to different
energy sources, we can divide microwave remote sensing into two types: active and passive.
The resolution of passive microwave radiometers is generally above 10 km, which is helpful
for monitoring surface ecological environmental elements on a global scale and obtaining
essential data for global change research [8]. However, passive microwave remote sensing
cannot represent the changes in the local-scale soil moisture. Active microwave remote
sensing makes up for these deficiencies with its high resolution. The Sentinel-1 can provide
C-band SAR data with repeated observations, the revisit period is 6 days, the spatial
resolution is 10 m, and it has considerable potential for soil moisture inversion [9,10].

The establishment of the microwave surface scattering model and an understanding
of the influence of the soil volumetric moisture content on the SAR parameters are the
prerequisites for soil moisture inversion using SAR data [11]. The interaction between
the electromagnetic waves scattered by random surfaces and ground objects primarily
depends on the system factors (frequency, polarization mode, and incidence angle) of the
microwave sensor, and it is also closely related to the ground roughness and dielectric
properties. Therefore, researchers have proposed empirical and theoretical models to reveal
the relationship between the soil moisture content and SAR factors. The Oh model [12],
Dubois model [13], and Shi model [14] are common empirical models. However, they are
only suitable for special environments and lack universality due to their dependence on
observation data. Researchers widely use theoretical models based on the electromagnetic
wave radiation transfer equation to describe surface scattering due to it good physical
basis. The early theoretical models include the SPM (small perturbation model) [15], GOM
(geometrical optics model) [16], and POM (physical optics model) [17]; however, we can
only apply these models within a certain ground roughness range. Fung developed the
IEM (integral equation model) using the Maxwell equation of electromagnetic waves to
broaden the model’s application [18]. We can use the model to simulate surface scattering
within a large ground roughness range. Chen [19] proposed the AIEM (advanced integral
equation model), which has a higher accuracy and more compact form, by improving the
IEM. We can use the model to simulate surface scattering due to the advantages of its
higher theoretical foundation, clearer structure, and stronger universality. Baghdadi [20]
proposed semiempirical calibration by using the IEM to better reconstruct the surface
scattering characteristics of bare farmland. According to the results, the backscattering
coefficient measured in the experiment coincided with that of the simulation of the semi-
empirical model. The researchers validated the performance of the AIEM through different
correlation length parameterizations [21]. According to the results, we can retrieve the
soil moisture from SAR images based on the AIEM in semiarid districts. However, the
IEM and AIEM achieve good satisfaction only in bare soil, and there are obvious errors in
vegetation-covered areas [19].

Reducing the impacts of the roughness and vegetation on the surface backscattering is
a critical issue in the process of soil moisture inversion using microwave images. Zribi [22]
modified the geometrical features of the local soil framework based on the fractional
Brownian model to estimate the backscattering coefficients of farmlands. The authors
present the theoretical research on the generation and propagation of the roughness error,
and according to the result, the profile extent, profile morphology, profile measurement
number, and profile measurement precision in different directions are the major factors that
affect roughness errors [23]. However, there are still uncertainties in the research on the
roughness parameterization scheme.
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Machine learning algorithms can describe the complicated relationships of variables
and have been introduced to monitor soil moisture at different scales. A method using
an Artificial Neural Network (ANN) has been put forward to model, test, and validate
soil moisture for GMES Sentinel-1 [24]. The brightness temperature, soil moisture, surface
soil temperature, and vegetation water content were employed to simulate global soil
moisture by using a Neural Network technique by Kolassa [25]. The three machine learning
algorithms of random forest (RF), support vector machine (SVM), and K-nearest neighbors
(KNN) were used to research the soil moisture, thus downscaling the presence of seasonal
differences [26]. The data fusion and random forest were used to generate surface soil
moisture over the agricultural field [27]. A new approach combining machine learning
and multi-sensor data was put forward to predict soil moisture in Australia [28], and the
proposed model generated satisfactory performance compared to random forest regression,
support vector machine, and CatBoost gradient boosting regression. Although machine
learning algorithms can effectively explain non-linear problems, the lack of a physical
foundation and the excessive dependence on training samples are their main disadvantages.
Therefore, combining physical models and machine learning algorithms is a valid approach
for modifying soil moisture inversion precision.

The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world [29].
The QTP directly affects the local climate and environment via atmospheric circulation and
hydrology procedures, and it also impacts climate change not only in China and Asia but
also around the globe [30]. The soil moisture, as the critical surface element of the QTP, is
of critical importance to predicting the atmospheric circulation and climate change of the
plateau through the adjustment of the ground evaporation and infiltration, controlling the
surface energy allocation, and influencing the soil freezing and thawing. The soil moisture
also influences the monsoon climate and rainfall forms of the plateau. Therefore, the use of
the active microwave technique to grasp the exact local soil moisture information of the
QTP is essential for understanding the energy exchange of this district and its impacts on
the environments of the surrounding areas.

Therefore, in this study, we selected three soil moisture observation networks in
the QTP as the research areas: Naqu, Maqu, and Tianjun. We used the soil moisture
measurement and Sentinel-1 data with the VV and VH polarizations of the ascending and
descending orbits to model and retrieve the soil moisture. First, we analyzed the response
of the soil moisture and surface roughness to the backscattering coefficient based on the
AIEM, and we established the mathematical expressions for the backscattering coefficient,
soil moisture, and surface roughness of the VV and VH polarizations. Subsequently, we
proposed empirical and machine learning models for the soil moisture retrieval for the
ascending and descending orbits by using the soil moisture measurement data and Sentinel-
1 images from 2017-2019 of the Naqu station. Finally, we obtained the 2020 soil moisture
results of the Naqu station based on the empirical model and machine learning models,
and we also evaluated the accuracies of these models with measurement data. We also
obtained the soil moisture results for Maqu in 2018 and Tianjun in 2020 to further verify
the precision and applicability of the soil moisture retrieval models.

2. Materials and Methods
2.1. Soil Moisture Monitoring Networks

In order to obtain more accurate local soil moisture measurements in the QTP, we
selected three soil moisture monitoring networks as the research areas: Naqu, Maqu, and
Tainjun (Figure 1). The Naqu network is on the central QTP, the Maqu network is on the
eastern QTP, and the Tianjun network is on the northeast QTP.
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Figure 1. Locations of soil moisture monitoring networks on Qinghai-Tibetan Plateau: Naqu, Maqu,
and Tianjun.

2.1.1. Naqu Soil Moisture Monitoring Network

The Naqu network was established in Naqu (29°55'-36°30'N, 83°55'-95°5'E), the Tibet
Autonomous Region, China. The mean elevation is 4650 m, and the terrain is mountainous.
The subrigid semiarid climate is the dominant climate type in the observation area. The
average annual precipitation is about 500 mm, with 75% of the precipitation falling from
May to October. The surface vegetation is mainly alpine grassland. The Naqu network
consists of 56 soil moisture and temperature measurement stations, which were installed
in three different networks to meet different spatial scale needs. At each station, soil
moisture/temperature sensors were inserted horizontally at 5 cm, 10 cm, 20 cm, and 40 cm
soil depths, respectively. The data collection interval is 30 min. The EC-TM and 5 TM
capacitance probes manufactured by Decagon (United States) are used to establish the
monitoring network. The sensors measure soil moisture according to the sensitivity of soil
dielectric permittivity to liquid soil water. The 10 soil samples from different stations were
collected to calibrate the sensor, the soil moisture is measured by the gravimetric method,
and the soil dielectric permittivity is measured by the sensor simultaneously. A calibrated
conversion between the measured soil moisture and the measured dielectric permittivity is
then developed. The measured soil moisture turns out to be in the physical range after the
calibration [31]. The measurements of soil moisture and temperature at different depths
in the Naqu network from 2015 to 2021 are shown in Figure 2. The mean values of soil
moisture and temperature during the observation period were 0.16 m3/m?3 and 3.45 °C,
respectively, and their trends were relatively similar. In order to match the Sentinel-1 data,
we selected 23 soil moisture station measurements from the Naqu network for the soil
moisture modeling and validation for 2017-2020.
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Figure 2. Naqu soil moisture and temperature measurement data for 2015-2021.

2.1.2. Maqu Soil Moisture Monitoring Network

The Maqu network was established in Maqu County (33°6/30""-34°30'15"'N, 100°45'45"' -
102°29'E), the Ganan Tibetan Autonomous Prefecture, Gansu Province, China. The terrain
of Maqu County is high in the northwest and low in the southeast, with elevations ranging
from 3300 m to 4800 m. Maqu has a subrigid semihumid climate, the cold season is
long and cold, and the warm season is short and mild. The average annual temperature
and precipitation in the observation area are 2.9 °C and 611.9 mm, respectively. The
surface vegetation is mainly low grassland. A total of 20 soil moisture and temperature
measurement stations were installed in the Maqu network, and the soil moisture and
temperature at depths of 5 cm, 10 cm, 40 cm, and 80 cm were observed at each station. The
data collection interval is 60 min. Su [32] provides more detailed information on the Maqu
soil moisture monitoring network. We selected 18 soil moisture station measurements from
the Maqu network for the soil moisture validation for 2018.

2.1.3. Tianjun Soil Moisture Monitoring Network

The Tianjun network was established in Tianjun County (36°53'—48°39'12''N, 96°49'42""—
99°41'48'"E), the Haixi Mongolian and Tibetan Autonomous Prefecture, Qinghai Province,
China. The mean elevation of Tianjun County is more than 4000 m in the territory. This
region has a plateau continental climate with low temperatures and an uneven precipitation
distribution. The alpine meadow is the main land cover type. The 58 soil moisture and
temperature measurement stations were installed in the Tianjun network. The soil moisture
and temperature at depths of 5 cm, 10 cm, and 30 cm were observed at each station. The
data collection interval is 30 min. We selected 19 soil moisture station measurements from
the Tianjun network for the soil moisture validation for 2020.

2.2. Remote Sensing Data

The Sentinel-1 is composed of two satellites (A and B), carrying a C-band synthetic
aperture radar that provides continuous images. In this paper, the ground range detected
(GRD) products from the interferometric wide swath (IW) mode in the VV and VH polariza-
tions were employed to inverse the surface soil moisture. We performed the preprocessing
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steps (updating of orbit metadata, removal of border noise, removal of thermal noise
removal, radiometric calibration, terrain correction, normalization of incident angle, and
noise filtering) for Sentinel-1 on the Google Earth Engine (GEE) platform. We used the
range-Doppler approach for the geometric terrain correction, and we introduced 7 x 7 Lee
wave filtering to remove the noise.

2.3. Methods
2.3.1. Advanced Integral Equation Model (AIEM)

Although IEM can simulate real surface backscattering characteristics within a broad
range of ground roughness, its main disadvantages are the dependence on the local in-
cident angle and the inaccurate description of the actual surface roughness. Therefore,
Chen proposed an AIEM by modifying the IEM. In this study, we established the surface
microwave scattering database with the AIEM. The detailed expression of the AIEM is
presented as follows:

k2 2n 2
0 = - exp (=5 (k2 + kea?) ) s S B | W (kex — ey — k) (1)

n
IPP

—ky, —ky) + (k2)"Fpg (—ksz, —ksy) @
2

where pg represents the polarization mode; k; is the free-space wave; s is the root-mean-
square height; W™ (ksy-ky, ksy-ky) is the n factorial Fourier transform of the surface corre-
lation function (k; = kcost;; ksz = kcosOs; ky = ksin®;cos; ksx = ksinfscosqs; ky = ksinf;sing;
ksy = ksinfssings); @ is the incident azimuth; 6 and ¢ are the scattering angle and scattering
azimuth, respectively; F; and f,; are the functions related to the Fresnel reflectance.

ksz)"F,
I, = (k“+kz)”quexp(—szkzksz)+ (sz)" Fpq (

2.3.2. Machine Learning Algorithms

In this study, the four machine learning algorithms including backpropagation neural
network (BPNN), support vector machine (SVM), K-nearest neighbor (KNN), and random
forest (RF) are introduced to retrieve soil moisture.

The backpropagation neural network (BPNN) is one of the common neural networks,
and it is a multilayer feedforward network that is trained by an error backpropagation
algorithm [33]. A complete BPNN consists of three parts: the input layer, hidden layer, and
output layer. The input layer receives the external massage and transports it to the hidden
layer, where the message transformation process is achieved. The output layer outputs the
result. The error backpropagation process is conducted when the actual output does not
match the expected output. The BPNN is continuously adjusted until the variance in the
initial system output and desired output is minimized.

The support vector machine (SVM) is a supervised learning approach that researchers
commonly employ for classification analyses and regression modeling [34]. The princi-
ple is to construct the best fragmenting lineoid in the character interspace based on the
framework risk minimization fundamentals, which globally optimizes the algorithm and
places a particular limit on the anticipated risk in the entire example interspace. Generally,
researchers use SVMs to solve the linear separability problem, for which the linearly insepa-
rable sample of the lower-dimension input interspace is converted to the higher-dimension
characteristic interspace based on a kernel function. The commonly used kernel functions
are the polynomial, Gaussian, and radial basis kernel functions. In this study, we used the
radial basis kernel function (RBKF) for the analysis because, according to previous results,
it achieves more satisfactory effects than the other kernel functions [35].

The K-nearest neighbor (KNN) is a theoretically mature machine-learning algorithm [36].
The basic idea of this method is as follows: When the training data are certain, the K
examples that are closest to the new input example are found in the training data. If the
majority of these K examples are classified into a certain class, then the input example can
also be classified into this class. In addition to classification, we can also use KNNs for
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regression. In the regression process, the K-nearest samples of the target sample are found,
and the average value of these neighbor samples is assigned to the target sample.

Random forest (RF) is one of the typical ensemble algorithms. The samples are
obtained from the raw data collection using the bootstrap resampling approach, and the
decision tree is employed to calculate each bootstrap sample. Then, the prediction results of
the multiple decision trees are combined, and finally, the predicted outcome is obtained by
majority voting [37]. We can use the RF algorithm to solve multidimensional information
and nonlinear issues without making feature selections, and it is also able to overcome
noise and avoid the overfitting issue in practical applications.

2.3.3. Establishment of Surface Microwave Scattering Database with AIEM

The AIEM is deemed to be a theoretical model that can present the actual situation
of the ground scattering well. Therefore, the numerical simulation using the AIEM is con-
ducted to establish the database of the ground microwave scattering. The input parameters
in the AIEM were as follows: a soil temperature of 20 °C; a frequency of 5.405 GHz; sand
and clay contents of 40% and 10%, respectively; a soil moisture content range from 1%
to 40%, with a step of 5%; an incident angle range from 20° to 50°, with a step of 5°; a
root-mean-square height range from 0.1 cm to 2.9 cm, with a step of 0.4 cm; a correlation
length range from 4 cm to 18 cm, with a step of 2 cm; and the surface autocorrelation
function is the exponential autocorrelation function. The simulation of AIEM is shown
in Figure 3. According to the results, there is a substantial logarithmic correlation among
the backscattering coefficient, soil moisture, and combined roughness. In addition, if the
surface roughness is given, then this logarithm relationship is only related to the incident
angle. We present the detailed expression with different polarization patterns as follows:

Tpg = ApgIn(My) + £(s,1) 3)

where pq is the polarization pattern; A is the coefficient that is not related to the surface
roughness when the incident angle is known; f(s,I) is the known surface roughness.

Ground roughness is one of the critical parameters in the process of microwave surface
scattering, and it mainly includes two unknown parameters: the correlation length (1) and
root-mean-square height (s). The backscattering coefficient is affected by both the land s,
and it is difficult to distinguish between their influences on it. Therefore, researchers have
proposed a new parameter that combines the 1 and s [38,39] to decrease the error of the
soil moisture inversion. Zribi [40] found that the model outputs and backscattering had
good consistency under different experimental conditions by combining parameters: the
Zs (Zs = S*/1) and soil moisture. According to the result, there was a substantial logarithmic
relationship between the backscattering coefficient and Zs in the VV and HH polarization
patterns. The detailed expression is presented as follows:

0pg = BpgIn(Zs) + f (o) 4)

where pq represents the polarization pattern; B, is the coefficient that is not related to the
soil moisture when the incident angle is known; f(111,) is the known soil moisture content.

The relationships among the soil moisture, combined roughness, and backscattering
coefficient in the VV and VH polarizations are shown in Figure 4. According to the
results, there was a substantial logarithmic correlation among the backscattering coefficient,
soil moisture, and combined roughness. If the combined roughness is known, then the
backscattering coefficient increases as the soil moisture increases. When the soil moisture is
30%, the change becomes stable, and the sensitivity of the backscattering coefficient to the
soil moisture decreases. When the soil moisture is known, the trend of the backscattering
coefficient increases as the combined roughness initially increases and then decreases.
Consequently, the backscattering coefficient increases with the increase in the soil moisture
content. Moreover, the sensitivity of the backscattering coefficient to the soil moisture
gradually decreases with the increase in the combined surface roughness.
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2.3.4. Construction of Empirical Model

Overall, the relationships between the soil moisture, combined roughness, and backscat-
tering coefficient in the VV and VH polarization are as follows:

oyy = Avv(e) ln(mv) + va(e) h’l(Zs) + va(e) (5)

ovu = Avu(0) In(my) + Byu(0) In(Zs) + Cyvu(0) (6)

where o represents the backscattering coefficient with different polarizations; A(6), B(6),
and C(6) are the coefficients that are only related to the incident angle (we obtained their
values by simulating them in the AIEM database).

Although surface roughness is a critical parameter in soil moisture retrieval, it is
difficult to measure the ground roughness in the actual application. Moreover, the measure-
ment accuracy of the surface roughness also cannot be ensured. Therefore, if the surface
roughness is replaced by other known parameters in the establishment of the empirical
model, then this critical parameter has a substantial influence on and reduces soil mois-
ture retrieval. In other words, the precision of soil moisture inversion will be improved
by reducing the quantity of the unknown parameters or inaccuracy factors in the model.
According to the simulation results of AIEM, the relationships between the backscattering
coefficient, soil moisture, and surface roughness in the VV and VH polarizations are shown
in Equations (5) and (6). When the backscattering coefficients of the VV and VH polariza-
tions are known, the surface roughness (Zs) will be eliminated by combining Equations (5)
and (6), and the final empirical model of the soil moisture retrieval can be obtained. The
detailed expression is drawn as follows:

My = EXP(Avvvr-ovy +Byyvh-ovi+Cyvvh) 7)

where m, is the soil moisture content; oyy and oy are the backscattering coefficients of
the VV and VH polarizations, respectively; Ayyvy, Byyva, and Cyyyy are the coefficients
that are simulated by the modeling data.

3. Results
3.1. Soil Moisture Retrieval Using the Empirical Model

Although we collected soil moisture measurements from 2015 to 2021 at the Naqu
station, we employed the Sentinel-1 synthetic aperture radar data from 2017 to 2019 and
the soil moisture measurements from the corresponding time to establish the soil moisture
retrieval models, which is because the Sentinel-1 images from 2015 to 2016 at the Naqu
station were missing. Finally, we used 240 Sentinel-1 images of the VV and VH polarizations
to construct the soil moisture retrieval models, and we obtained the soil moisture results
from the Naqu station for 2020 from 2020 Sentinel-1 images by using retrieval models. In
Section 3.2, we proposed the empirical models for the ascending and descending orbits
based on the soil moisture measurement data of 5 cm and the backscattering coefficient of
the VV and VH polarizations from Sentinel-1 images from 2017 to 2019 at the Naqu station.
We introduced the least-squares method to calculate the Ayyvyr, Byyvh, and Cyyyy values.
We present the detailed expressions in Equations (8) and (9), respectively:

My = EXP(0.087<va+0.017<£fVH+0.322) (8)
My = EXP(O‘O71'UVV+O‘016UVH7 0.071) (9)

The backscattering coefficients of the VV and VH polarizations from the Sentinel-1
images for 2020 from the Naqu station are put into the empirical models of the ascending
and descending orbits to retrieve the soil moisture content, respectively. The inversion
results of the soil moisture for the ascending and descending orbits at the Naqu station
for 2020 are presented in Figures 5 and 6, respectively, and the comparisons of the soil
moisture between the measured values and retrieved values for the ascending and descending
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orbits are shown in Figure 7. According to the results, we can use the empirical models to
retrieve the surface soil moisture, with an R? of 0.609, RMSE of 0.08, and MAE of 0.064 for
the ascending orbit model, and an R? of 0.554, RMSE of 0.086, and MAE of 0.071 for the
descending orbit model. When the soil moisture is higher than 0.3 m®/m3, the empirical
models underestimate the soil moisture so that it is markedly contrasted with the measured
values. The simulation results of the ascending orbit are better than those of the descending
orbit, which is also consistent with the results of Dabrowska-Zielinska [41], who retrieved the
soil moisture from the Sentinel-1 imagery over wetlands and found that the retrieval result
of the soil moisture achieved a satisfactory performance by using data from the ascending
orbit of the Sentinel-1 images. The regions with high soil moisture are mainly distributed in
mountainous areas, and the regions with low soil moisture are distributed among the flat
terrain areas. The soil moisture contents in June, July, August, and September are substantially
higher than in other months because the Naqu network climate is mainly influenced by the
south Asian monsoon, and the precipitation falls between June and September.
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Figure 5. Soil moisture for ascending orbit of Naqu network for 2020.
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Figure 6. Soil moisture for descending orbit of Naqu network for 2020.
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Figure 7. Comparison between measured and retrieved soil moisture values of Naqu network (The
blue line is fitted line, and the red line is 1:1 line).
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3.2. Soil Moisture Retrieval Using Machine Learning Algorithms

To further improve the accuracy of the soil moisture retrieval, the machine learning
algorithms of SVM, BPNN, KNN, and RF are introduced to inverse the surface soil moisture
of the Naqu network with the AIEM. In the process of machine learning modeling, the
physically meaningful radar parameters in the AIEM are introduced to machine learning
algorithms to establish the soil moisture retrieval model. The backscattering coefficient of
the VV and VH polarizations and the incidence angle are the independent variables. The
dependent variable is the soil moisture measurement data. Therefore, the measurements
(soil moisture, backscattering coefficient of the VV and VH polarizations, and incidence
angle) from the Naqu station for 2017-2019 are employed as the ensemble of training and
testing samples, and the training and testing samples are set to 70% and 30% of the total
number of samples, respectively. The model performances of the machine learning of the
ascending and descending orbits are presented in Table 1. According to the results, the RF
performance is better than those of the other machine learning algorithms, with an R? of
0.753, RMSE of 0.045, and MAE of 0.034 in the ascending orbit, and an R? of 0.671, RMSE of
0.049, and MAE of 0.038 in the descending orbit. In addition, the accuracies of the machine
learning approaches in the ascending orbit are also better than those in the descending
orbit. For the model application, the surface soil moisture contents for the ascending and
descending orbits for 2020 from the Naqu network are retrieved by using different machine
learning algorithms.

Table 1. Training accuracies of the different machine learning algorithms.

R? RMSE MAE Bias
Mean 0.634 0.057 0.046 0.015
SVM
Std 0.025 0.005 0.013 0.008
Mean 0.614 0.058 0.047 0.018
BPNN
Std 0.029 0.006 0.015 0.009
Ascending Mean 0.699 0.051 0.041 0.006
KNN
Std 0.021 0.003 0.009 0.004
Mean 0.753 0.045 0.034 0.004
RF
Std 0.018 0.002 0.005 0.002
Mean 0.548 0.060 0.052 0.021
SVM
Std 0.027 0.006 0.016 0.010
Mean 0.561 0.056 0.048 0.016
BPNN
) Std 0.026 0.005 0.013 0.008
Descending
Mean 0.616 0.053 0.042 0.007
KNN
Std 0.023 0.005 0.044 0.007
Mean 0.671 0.049 0.038 0.006
RF
Std 0.020 0.004 0.007 0.003

The inversion results of the soil moisture retrieval with machine learning algorithms
for the ascending and descending orbits of Naqu station for 2020 are presented in Figure 8,
and we present the comparisons of the soil moisture retrieval of the different models for
the ascending and descending orbits in Figure 9. The result indicates that the performances
of the machine learning algorithms are substantially superior to the empirical model. For
the ascending orbit, the coefficients (R?) of the BPNN, KNN, SVM, RF, and EM (empirical)
models are 0.615, 0.666, 0.626, 0.714, and 0.609, respectively. and the RMSE coefficients of
these models are 0.076, 0.070, 0.078, 0.065, and 0.080, respectively. For the descending orbit,
the coefficients (R?) of the BPNN, KNN, SVM, RF, and EM (empirical) models are 0.590,
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0.612, 0.588, 0.677, and 0.554, respectively, and the RMSE coefficients of these models were
0.080, 0.078, 0.083, 0.072, and 0.086, respectively. According to these results, the combination
of the AIEM and machine learning algorithms can further enhance the precision of soil
moisture retrieval. The inversion accuracies of the soil moisture with different machine
learning algorithms in the ascending orbit are also better than those in the descending orbit.

In addition, the accuracy of the RF algorithm is better than those of the BPNN, SVM, and
KNN models.

i 0.01 m¥m?

Ascending orbit 0.65 m¥Ym* Descending orbit 0.65 m¥m®

Figure 8. Soil moisture inversion results with machine learning algorithms for ascending and
descending orbits of Naqu network for 2020.
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Figure 9. Comparison of soil moisture of different models for ascending and descending orbits.

63



Remote Sens. 2023, 15,153

33°30°N  3IAS'N  3ISIN  3IOSEN  BOIUN 330N IIUSN IISIN  IIOSEN  I4OUN  IIOION 3IASN  AISIN 3SEN  IUN

0.01 m’/m-‘

101°SUE 101°SS'E_102°0'E_102°S'E_10°10'E 102°1S'E 102°20°E  101°SO°'E 101°SS'E_102°0'E._102°S'E_102°10°E 10°1S'E 102°20°E  101°SUE 101°SS'E_102°0'E_10°S'E_102°10°E 102°15°E 102°20'°E.

l.m 101SSE 102°0E 10°F°E 102°10°E 10°15°E 10°20E  101°SO°E 101°SS'E 102°UE 102°5°E 102°10°E 102°1S'E 102°20°E  101°S0'E 101°SS'E 102°0'E 10°5°E 102°10°E 102°1S°E 10°20°E 101°S0°E 101°S8'E 10290 102°5°E 10°10°E 102°1S'E 102°20°F

Although the soil moisture inversion results with the RF in the Naqu network indicate
a satisfactory performance, we also retrieve the soil moisture contents of the Maqu network
in 2018 and of the Tianjun network in 2020 using the RF algorithm to further validate
the precision of the soil moisture retrieval. Figures 10 and 11 present the soil moisture
inversion result for the ascending and descending orbits of the Maqu network for 2018,
respectively. The soil moisture inversion results for the ascending and descending orbits of
the Tianjun network for 2020 are shown in Figures 12 and 13, respectively. The validations
of soil moisture for the ascending and descending orbits in the Maqu and Tianjun networks
are presented in Figures 14 and 15, respectively. The results indicate that the RF algorithm
achieves a satisfactory performance for the ascending and descending orbits in both the
Magqu and Tianjun networks. In the Maqu network, the R?, RMSE, and MAE values for the
ascending orbit are 0.696, 0.062, and 0.052, respectively, and the values of these coefficients
for the descending orbit are 0.648, 0.075, and 0.064, respectively. In the Tianjun network, the
R2, RMSE, and MAE values for the ascending orbit are 0.709, 0.069, and 0.057, respectively,
and the values of these coefficients for the descending orbit are 0.638, 0.074, and 0.063,
respectively. Moreover, the inversion accuracies of the soil moisture for the ascending orbit
are also higher than those for the descending orbit for both the Maqu and Tianjun networks.
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Figure 10. Soil moisture with RF for ascending orbit of Maqu network for 2018.
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Figure 14. Comparision between measured and retrieved soil moisture values for Maqu network
(The blue line is fitted line, and the red line is 1:1 line).
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4. Discussion

The surface roughness is an important parameter in the soil moisture inversion pro-
cess. The measurement of the surface roughness is difficult in practical experiments for
natural and manmade reasons. In addition, the measurement accuracy also substantially
differs from that of the actual conditions. Reducing the input of unknown or unobserv-
able parameters is one of the major methods for optimizing the model. Therefore, the
surface roughness is replaced by other known parameters, and the empirical models for
the ascending and descending orbits are proposed by combining the equations of the VV
and VH polarizations based on the AIEM model to decrease the impact of the surface
roughness. Four machine learning algorithms (BPNN, SVM, KNN, and RF) are used to
further improve the soil moisture retrieval precision in the Naqu network, and these algo-
rithms are commonly applied but have different learning strategies. To further verify the
model accuracy, the surface soil moisture for the ascending and descending orbits of the
Maqu network for 2018 and Tianjun network for 2020 are retrieved using the RF algorithm,
respectively. We found that the retrieval results of these machine learning algorithms are
more consistent compared with the empirical model. However, due to the different learn-
ing schemes, there are still some minor distinctions in the results of the four algorithms.
According to the results of this paper, the RF performance is superior to the other machine
learning approaches because the RF model obtains independent regression trees by ran-
domly testing training data [37]. Therefore, the model can overcome noise and avoid the
overfitting issue in practical applications. Chen [42] estimated the soil moisture of winter
wheat farmlands during the vegetative season based on the machine learning algorithms of
support vector regression, random forests (RF), and gradient boosting regression tree, the
results also indicated that the performance of the RF algorithm is better than those of the
other algorithms. The 12 advanced statistical and machine learning algorithms were used
to estimate soil moisture using the Sentinel-1 data [43], and the result indicated that the RF
algorithm has satisfactory performance compared with those of the other models.

The AIEM is a forward model that is used to calculate the backscattering coefficient
of the bare ground with high estimated precision and low predicted consumption. In this
study, we only considered the single scattering situation and ignored multiple scattering
ones, which is one of the main reasons for the errors in the AIEM simulation process.
Zeng [44] presents the scattering results between the numerical simulations and experi-
mental measurements with the AIEM, which also indicated that multiple scattering has a
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certain effect on backscattering, and that influence on the HH polarization is higher than
that on the VV polarization. Although the penetrability of the C band does not lead to
intensive volume scattering, its influence on the actual scattering process is not neglected.

The vegetation water content is a substantial parameter that affects the soil moisture
retrieval accuracy. In this study, we selected the Naqu, Maqu, and Tianjun soil moisture
monitoring networks as the research areas to achieve surface soil moisture inversion using
Sentinel-1 data. The Sentinel-1 data is a C-band (5.405 GHz) synthetic aperture radar that
provides dual-polarization, and it also has the ability to penetrate the sparse and low
vegetation on the ground surface. Alpine meadow is the main land cover type in the
research areas due to the climate, and the soil moisture inversion result is less affected
by the surface vegetation. However, there is still vegetation water content interference.
Moreover, plant growth is a dynamic process, and its structure and morphology will change
significantly over time; however, we could not use the empirical constants to reveal the
dynamic changes in the vegetation information, which led to some uncertainty regarding
the estimated results.

Although the influence of the surface roughness in this study is reduced by combining
the empirical equations of the soil moisture and VV, and VH polarizations, the surface
roughness is still a key factor in the soil moisture retrieval process. The issue of surface
roughness has received broad attention in recent years, and researchers have proposed
relevant models [38-40]. However, uncertainties still exist in the research on the rough-
ness parameterization scheme. The main reason is that the different models are usually
developed by using different experimental data; in other words, the soil type, soil texture,
and moisture content parameters, and the rough conditions in each model, are different, as
are the hypothesized conditions of the model development (for example, the calculated
method selection of the soil dielectric constant and soil effective temperature). Overall,
every roughness model has its comparative advantages and constrained conditions, and
no model can perform well in all circumstances. Further research on the roughness pa-
rameterization schemes that can be applied to the complex soil conditions of different soil
roughnesses, moistures, soil types, and correlation functions is essential.

The radar response to the soil moisture content is closely related to critical parameters,
such as surface roughness, microwave frequency, and incident angle. Ulaby [45] found that
the radar response seems to be linear within a range of 15-30% moisture content for all an-
gles, frequencies, polarizations, and surface conditions. Theoretically, the Sentinel-1 images
could be employed to inverse soil moisture content well over the range of 15-30% moisture
content. When the soil moisture content is higher than 0.3 m3/m?, the empirical model
markedly underestimates the soil moisture compared to the observation data. Bruckler [46]
also confirms this result. Although machine learning algorithms can improve the inversion
results, how to further improve the inversion accuracy of the soil moisture with high water
content is the next issue to be explored.

5. Conclusions

We select Naqu, Maqu, and Tianjun soil moisture monitoring networks on the QTP as
the research areas. The database of the surface microwave scattering is obtained using the
AIEM to analyze the response of the surface parameters and radar signal. The soil moisture
retrieval models of the empirical and machine learning algorithms for the ascending and
descending orbits are proposed by using the Sentinel-1 and soil moisture measurements.
Finally, the soil moisture retrieval accuracies of the different models are validated in these
research areas.

The major conclusions of this study are abstracted as follows:

(1) The empirical models for the ascending and descending orbits can estimate the
surface soil moisture in the Naqu network, but the soil moisture content is markedly
underestimated in empirical models when the soil moisture is high. The simulation results
of the ascending orbit are better than those of the descending orbit.
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(2) The combination of the AIEM and machine learning algorithms can further enhance
soil moisture inversion precision. The performances of the machine learning algorithms
are substantially superior to that of the empirical model, and the accuracy of the RF model
is higher than those of the BPNN, SVM, and KNN models. The inversion accuracies of the
soil moisture with the different machine learning algorithms in the ascending orbit are also
better than those in the descending orbit.

(8) The RF algorithm achieves a satisfactory performance for the ascending and de-
scending orbits for both the Maqu and Tianjun networks. The rationality and accuracy of
the RF algorithm at different locations and times on the QTP are further verified.
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Abstract: Knowing the freeze-thaw (FT) state of the land surface is essential for many aspects of
weather forecasting, climate, hydrology, and agriculture. Microwave L-band emission contains rather
direct information about the FT-state because of its impact on the soil dielectric constant, which
determines microwave emissivity and the optical depth profile. However, current L-band-based FT
algorithms need reference values to distinguish between frozen and thawed soil, which are often
not well known. We present a new FT-state-detection algorithm based on the daily variation of the
H-polarized brightness temperature of the SMAP L3c FT global product for the northern hemisphere,
which is available from 2015 to 2021. Exploiting the daily variation signal allows for a more reliable
state detection, particularly during the transition periods, when the near-surface soil layer may freeze
and thaw on sub-daily time scales. The new algorithm requires no reference values; its results agree
with the SMAP FT state product by up to 98% in summer and up to 75% in winter. Compared to the
FT state inferred indirectly from the 2-m air temperature and collocated soil temperature at 0-7 cm of
the ERA5-land reanalysis, the new FT algorithm has a similar performance to the SMAP FT product.
The most significant differences occur over the midlatitudes, including the Tibetan plateau and its
downstream area. Here, daytime surface heating may lead to daily FT transitions, which are not
considered by the SMAP FT state product but are correctly identified by the new algorithm. The
new FT algorithm suggests a 15 days earlier start of the frozen-soil period than the ERA5-land’s
estimate. This study is expected to extend the L-band microwave remote sensing data for improved
FT detection.

Keywords: frozen-soil state estimation; passive microwaves; remote sensing; SMAP FT state product

1. Introduction

Spatial patterns and the timing of freeze-thaw (FT) state transitions over land are
highly variable; they strongly impact land—atmosphere interactions and thus the weather;
the climate; and hydrological, ecological, and biogeochemical processes [1-4]. In par-
ticular, FT state transition leads to differences in hydrological and thermal conductivi-
ties/diffusivities, the albedo for shortwave and emissivity for longwave radiation, and
latent/sensible heat fluxes [5-7]. The albedo is, e.g., higher for frozen than for unfrozen
soil, and the water and energy exchange between the land surface and the atmosphere is
reduced because of weaker radiation heating and evaporation while frozen. Changes in
the FT state dynamics can also signal climate change [8,9] and invoke permafrost carbon
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feedback [10]. Moreover, ecosystem responses to seasonal FI-state changes are rapid via
significant changes in evapotranspiration, soil respiration, plant photosynthetic activity,
liquid water availability, vegetation net primary production, and net ecosystem CO, ex-
change (NEE) with the atmosphere [11-15]. Thus, the knowledge of the FT state is required
for modeling work in the above subjects, which invoke different parametrizations for
frozen and unfrozen soil [16-20]. However, FT state estimations from in situ temperature
observations are limited in scale, and it is not straightforward to deduce the state from soil,
skin, or near-surface air temperature.

In contrast, more direct state information results from the very different microwave
dielectric constant for frozen and unfrozen soil [21-23]. Accordingly, microwave brightness
temperatures (TBs) change sharply during FT state transitions. For instance, NASA’s MEa-
SUREs (Making Earth System Data Records for Use in Research Environments) program
provides two global daily products for the land FT state based on a single-channel algo-
rithm [24]. One covers the years 1979 to 2017 and exploits the 37 GHz channels of three
satellite-based passive microwave sensors by exploring the TB values under respective
landscape frozen and thawed reference states [25]: the scanning multichannel microwave
radiometer (SMMR), the special sensor microwave/imager (SSM/I), and the special sensor
microwave imager/sounder (SSMIS). For MEaSUREs, 37 GHz is selected because of its
high correlation with the near-surface air temperature. Moreover, lower-frequency L-band
sensors on SMOS (Soil Moisture and Sea Salinity) and SMAP (Soil Moisture Active and
Passive) are more suitable for FT-change detection because of their deeper penetration
depth and their sensitivity to soil moisture [26,27]. For the L band, the difference leads
to emissivities of ~0.6 for unfrozen and ~0.9 for frozen soil, with a much deeper penetra-
tion depth for the latter [28-30]. The cross-polarized gradient ratio (XPGR) at the L band
between H and V polarization is used to analyze the SMAP observations. Similar to the
higher-frequency single-channel algorithms, the use of XPGR needs reference values for
thawed and frozen-soil states and a threshold value for discrimination between both [23,31].
The baseline F/T detection algorithm of SMAP [32] requires at least 20 days to find refer-
ence values for the frozen state, which can be challenging for short interim frozen periods
induced, e.g., by synoptic-scale cold waves.

Since the XPGR method or the baseline, the F/T detection algorithm of SMAP first
needs to identify the frozen/thawed TB reference values, and these results rely on how to
construct the reference. Instead, we propose a new FT algorithm that builds its parameters
on the TB signal characters. The new FT algorithm has a similar basis to the durinal
amplitude variation (DAV) approach [33] applied to higher frequency passive microwave
measurements for snow and ice sheet applications [34,35]. It has been proved that the DAV
of passive microwave signals are sensitive to FT state changes [33], which are dynamic and
complex and vary continuously in space and time. Estimating the FT state changes from
the DAV signal is functional because the conditions driving FT changes, e.g., radiation
balance and air temperature, change on broad time scales, spanning sub-daily, daily,
synoptic, seasonal, and annually interdecadal [36]. Especially in cold arid regions, which are
prone to experience FT state transitions, soil moisture fluctuations due to evaporation and
precipitation, and their L-band signals, are comparatively low on daily and synoptic scales.

In this study, we use the daily TB cycle and its connection with changing penetration
depths during FT state changes to develop a new FT state-detection algorithm, which
exploits variance-based filtering on DAV signals (|ATB|) at the L band between 6 a.m. and
6 p.m. (local time)—the overpassing times for the SMAP and SMOS satellites. Wherever
data overlap occurs, as is typical at high latitudes, data that were acquired closest to 6 a.m.
and 6 p.m. local solar times are chosen as stated in the SMAP FT product handbook [26].
The method is based on microwave transfer theory and does not need reference values.
The structure of the paper is as follows: Section 2.1 describes the data used and the study
area, including the SMAP FT product and the ERA5-land reanalysis. Section 2.2.1 details
the SMAP FT product, followed by our new method in Section 2.2.2. The statistics required
for implementing the new method are explained in Section 2.3. The results are found in
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Section 3.1 (example at a single site) and 3.2 (the north hemisphere). Section 3.3 evaluates
the new FT algorithm by comparing its result with the current SMAP FT product and using
the categorical triple collocation (CTC) method. Section 3.4 quantifies the uncertainties of
the new method. Conclusions are in Section 4, with a discussion on the relation between
the 2-m air temperature and the soil FT states presented in Section 5.

2. Methodology
2.1. Study Area and Data

We use the following three data sets in this study:

(1) SMAP TB observations and the derived FT-state indicator [26] with 36 km x 36 km
spatial resolution at 6 a.m. and 6 p.m. local time. The SMAP L3 product includes an
FT state indicator besides H and V polarized TB observations at the L band (1.41 GHz).
The data is available starting on 30 March 2015 [26]. The derived FI-state indicator
(SMAP L3c FT product) is available globally from 85.044°S to 85.044°N, and we focus
on the domain from 20°N to 85.044°N. We use the SMAP TBs for the new algorithm
and the binary FT-state indicator for frozen (1) and thawed soil (0), including the
transition direction for its evaluation. Moreover, SMAP also provides a 9-km spatial
resolution FT product. As noted on https://nsidc.org/data/SPL3FTP_E/versions/3
(accessed on 1 April 2021), the 9-km product is derived from SMAP-enhanced Level-
1C brightness temperatures (SPL1CTB_E). For SPL1CTB_E, Backus-Gilbert optimal
interpolation techniques are used to extract enhanced information from SMAP antenna
temperatures before they are converted to brightness temperatures. Since the Backus—
Gilbert optimal interpolation techniques added more noise, we prefer 36 km x 36 km
spatial resolution in this study [37]. Only H-polarization is used in this study because
the DAV signals between H/V polarizations are small.

(2)  Hourly 2m-air (T5;,), skin (Tey), and soil temperatures from the ERA5-land reanalysis
available on https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-land?tab=overview (accessed on 1 April 2021) [38]. ERA5-land provides a consistent
representation of the evolution of land state variables over several decades at a higher
resolution (0.1° x 0.1°) than ERA5 (0.25° x 0.25°). ERA5-land has been produced by
replaying the land component of the ECMWEF ERAS5 climate reanalysis at an enhanced
resolution. ERA5-land also provides soil profile information that is vital to the analysis
of L-band TBs.

Since L-band observations may have—depending on the FT-state—deep penetration
depths, neither particular variable, such as 2m-air, skin, or soil temperatures with diurnal
changes in ERA5-land, is suitable for comparison with the daily FT indicator at a daily scale.
In SMAP FT calibration/validation, the average of the air temperature and soil temperature
at 5 cm is used to infer that the FT state corresponds to the L-band signal. We took the
same scheme as the average of daily 2 m-air temperature (T5,,) and collocated 0-7 cm soil
temperature (ERA-land-assessment data hereafter), which are used as an FT state reference
to evaluate the existing and the new FT algorithms. According to longitude, the hourly
data are interpolated to 6 a.m. and 6 p.m. local time. Considering the detectable range of
the L band, the FT state reference can be inferred from 2-m air/skin/5 c¢cm soil /10 ¢cm soil
temperatures. However, the inferred FT state from these temperatures may contradict each
other at the moment, and it is hard to judge which one represents the signal detected by
the L band.

In SMAP FT Cal/Val, the in situ 2m-air temperature and the soil temperature at 5 cm
are used to validate and calibrate SMAP’s FT state indicator [32]. The in situ soil moisture at
10 cm and the skin temperature are taken as the FT state reference, not as the ground truth in
the SMAP’s FT Cal/Val. Although T5,, is often used to estimate soil FT states [39—41], it shall
be noted that ERA-land-assessment data are not the condition for judging frozen/thawed
soil from the reanalysis but an indicator of the thermal conditions near the surface regarding
the land—atmosphere interaction. In this study, all variables from ERA5-land have been
interpolated with the nearest method to match the 36 km resolution of SMAP products.
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To better demonstrate how the new FT algorithm works, we selected the location of
the Xilinhot site (115.93°E, 42.04°N) [42] already used in other microwave remote sensing
studies [43-45] to illustrate the functioning of the new FT detection algorithm because of
its meteorological conditions, which are typical of regions experiencing FT-state changes.
Xilinhot site grows crops, corn, oat, and buckwheat in summer, and this landscape repre-
sents one of the main surface types on the globe; 31-43% of the land cover in the northern
hemisphere belongs to this climate type [46]. From the ERA5-land reanalysis data, we
use the grid data covering Xilinhot to represent the site’s land surface and meteorological
conditions. From the data for 6 a.m. and 6 p.m. local time (UTC + 08), the daily differences
of Ty, Tekin, and soil temperature at 0-7 cm (st/1), 7-28 cm (st12), 28-100 cm (st[3), and
100-189 cm (st/4) are computed and used for interpreting the satellite-observed TB signals
for the location of the Xilinhot site.

2.2. Methodology
2.2.1. The SMAP F/T Algorithm

The SMAP FT algorithm [26] is based on the so-called relative frost factor FF,,,

FFnpr — FFpy

Fha = =g — FFy,

)

where FFypr is the frost factor defined as the normalized polarization ratio,

TB, — TBy,

TB, + TB, @

FFnpr =
and FFp/FFy, is the reference frost factor for the frozen/thawed state, respectively. FFp
is the average FFnpg for January and February (winter), and FFy, is each year’s average
FFNPR for July and August (summer).

The SMAP FT status (FTsp4p) is derived from FF,,; for each location via

rT [ thaw, if FF, > threshold 3)
SMAP =\ frozen, if FF, < threshold

where a threshold of 0.5 was used globally.

The algorithm relies on the quality of the two reference values FF, and FFy,. Their
estimation requires at least 20 days of relatively stable frozen (or unfrozen) conditions [47].
FFy, is hard to identify at higher latitudes and altitudes where the ground is frozen through-
out the year, while FFy, is hard to determine for the midlatitudes where the soil is not
completely frozen from the surface down to the L-band penetration depth. According
to the SMAP FT handbook [32], FFnpr needs to be larger than an arbitrary value of 0.1,
which excludes relatively dry areas that undergo minor dielectric constant changes during
FT transitions. FT-SCV(Freeze/Thaw algorithm using Single Channel TBV) is used as
an extended algorithm to overcome this defect in FFypr. FI-SCV does not reply to the
freeze/thaw reference derived from the winter/summer period, but it correlates with
surface air temperature from global weather stations [32]. The SMAP freeze/thaw products
contain both FT-SCV and NPR algorithms. When there is enough difference between
freeze and thaw references, the NPR threshold method is applied, and when the reference
difference is too small, a single channel algorithm is adopted.

2.2.2. The New FT Algorithm

The new FT algorithm uses the strong TB variations over the day caused by freezing in
the night and thawing over the day, which happens over a period of days at the beginning
and end of the totally frozen period. For the L band, which is longer than previous DAV
applications, the signal can penetrate ice and snow over the soil surface and be related to
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the FT state of the soil. To retrieve this signal from the microwave transfer theory, we start
with the zeroth-order microwave transfer model given by

TB = eT,ff “)

where ¢ is the emissivity, which depends on the soil dielectric constant and mainly varies
with soil moisture and the FT-state of the soil. Ty is the vertically integrated soil tempera-
ture profile weighted with the soil dielectric profile as (Lv et al. 2016a)

n—1 i—1 n—1
Trp=Ti(1—e ™)+ Zén(l—e*ﬂ)qe*urnn e ®)
i= = =

where T is soil temperature, T is soil optical depth, and the subscripts i and j are the
layer numbers counting from the top of the soil (1) to the bottom of a layered soil slab (1)
influencing TB. Because of the much deeper penetration depth of frozen soil, the attenuation
of radiation emitted from lower layers is strongly reduced [48], which enlarges the depth
down to which the integration for T,y must be performed; thus, the deeper soil layers
with their only minor daily and even seasonally varying temperatures dominate the TBs
of frozen soil (see TB variations during winter in Figure 1). Thus, especially in winter,
the TBs of frozen soil are mostly higher than in summer, containing the influence of soil
temperature and soil dielectric constant.

220 F

By ’:% ;.- .

L B
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Figure 1. SMAP H-polarization TB time series and the derived reference FT state (grey for frozen and
white for unfrozen) extracted for the location of the Xilinhot site (43°30"—45°N, 115°-117°E).

When unfrozen, soil moisture variations due to evaporation lead to TB increases of
only up to 15 K in a day [33]. An exception to significant daily TB changes for unfrozen
soil is precipitation, which can reduce TBs by tens of K. TB can change in the same range
due to daily soil temperature variations via T, ((Equations (4) and (5)). TB changes during
FT transitions are in the range and larger than the precipitation signal because of the
huge ¢ difference between frozen and unfrozen soil. When frozen, emissivity—and thus
TB variations—are very small and only slightly depend on soil composition, such as the
clay/sand fraction and organic matter, which also affect the emissivity of unfrozen soil.
Thus, daily TB changes for unfrozen soil—except for precipitation—are much smaller than
those caused by freezing and thawing. Any FT transition typically begins and ends at
the surface. Thus, L-band radiometers can sense the start and end of FT transitions. The
new FT algorithm exploits the daily TB difference caused by FT state transitions, and we
assume the day without enough SMAP TB (i.e., an absence of TB at 6 a.m., 6 p.m., or both)
interpolated with the nearest FT result.
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We use the following formalism for FT-state detection. Let

{ TBih?éam = 86amTeff76am 6)
TBin_spm = €6pmTeff_6pm

TBin_sam/ TBin_epm are the TBs observed by SMAP at 6 a.m. and 6 p.m. local time on
day i in H-polarization (h) with egam /€6pm the respective soil emissivities and Ty gamypm the
respective Ty The DAV signals between H and V polarizations have few differences [33]
when the soil surface is frozen both at 6 a.m. and 6 p.m., and neglecting the impact of
soil temperature changes on the dielectric constant, i.e., €gam = €6pm = €. On a daily scale,
this is reasonable because other factors, such as the sub-grid open water fraction, terrain
heterogeneity, and tree cover, will not have diurnal changes. Precipitation will be excluded
by air temperature > 0 °C, and snowmelt will lead to large DAV. The TB difference between
both is using Equation (6) given by

ATBi = TBih?épm - TBih 6am

= £<Teff76pm - effjam) %)
1

n— i—1 n—1
=¢|ATi(1—e D)+ ¥ AT;(1—e @) [Je T+ AT, [ e ¥
i=2 j=1 j=1

At 6 a.m./pm, soil temperature and moisture profile gradients are less sharp than at
noon, and ATB; will be much smaller than the temperature differences (AT;) in any layer,
i—1 n—1
sincee <1, (1—e ™) <1, (1—e™)JJe ¥ <land [Te ¥ <1,ie,
j=1 j=1

|ATB;| < max(|AT;|) 8)

Equation (8) takes the daily scale as the diurnal definition DAV approaches. However,
Equation (8) is not valid for unfrozen soil because ¢ will change with soil moisture over
the day due to evaporation and precipitation, which will dominate ATB;. However, ATB;
will also be small when no precipitation happens between both times and when the sky
is cloudy, and low winds reduce evaporation. Thus, ATB; is not enough to infer the FT
state. A sudden heat/cold wave can interrupt a daily FT state transition, which may induce
a large ATB; with soil staying frozen or unfrozen throughout the event. Such synoptical
scale heat/cold waves make identifying the beginning/end of the yearly freezing difficult.
To avoid this problem, as well as the absence of TB in the low latitudes due to the revisit
period of SMAP, we interpolate the DAV absences with the nearest valid values.

Thus, to filter out the influence of synoptic variations and cloudy and/or low wind
days [31], we use, in addition, the ATB; variance over 8 days

1 i=(p—1)/2
var(ATB), = 5 Y. [ATB; — E(ATB))? ©)
i=—(p-1)/2

var(ATB)g is not a new parameter but to keep [ATB] filtering out the synoptic weather
interference. The selection 8 = 7 filters out the impact of atmospheric Rossby waves in the
midlatitudes (3-5 days) at locations experiencing annual FT cycling in the mid-latitudes [49].
This averaging will filter out the impact of days with low ATB; caused by cloudy days
or synoptic weather systems. The days after or before g days will also be checked by
Equation (10) below. In this case, if the freezing or thawing state transition, e.g., due
to synoptic weather systems, lasts for more than five days, we can still find the annual
begins/ends of an FT cycle. Therefore, the influence of synoptic events is excluded.
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Then the new algorithm is
thaw, if var(ATB)g > 92 or |ATB;| > v
FT yew = ; > _ (10)
frozen, if var(ATB)g <~v* and |ATB;[ <1

with 1y a threshold brightness temperature square in terms of both | AT B;| (for instantaneous)
and var(ATB) p (for the synoptic weather scale). By Equations (9) and (10), the new FT
algorithm contains a synoptic time scales background to daily values as variance-based
filtering. For example, sunny days will lead to ATB; > v [33]; cloudy/slow winds days
will be filtered out by var(ATB) = 92 because these days do not last longer than the
period of an atmospheric Rossby wave period in the middle latitudes. We calculate all
|ATB;| from the grid inferred by SMAP FT products as the freeze state (Figure 2) and obtain
7 = 8K by statistically computing |ATB;| and var(ATB) p over the northern hemisphere to
keep 95% confidence for cases where T5,,< 0 °C. The bias of ERA-land-air temperature and
collocated 0-7 cm soil temperature is about 1 K, which provides 95% == 3% uncertainty [50].
Any day that can obtain |ATB;| from SMAP will be checked by Equation (10). For a day
that |ATB;| is not available, it will be filled with an FT value depending on the nearest
FT e In arid regions, ATB; > v would always work because the heat capacity of dry soil
is much smaller than that of wet soil. Equation (10) will treat the arid region as a thawed
state. For wet snow, if there is no more water melted in the daytime, then TB will not be
affected too much. If water is melting, Equation (10) will be treated as a thawed state, and
the wet snow-covered ground will still be part of the land surface FT state.
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Figure 2. |ATB| with 3 =7 by SMAP TB data contained in SMAP L3 radiometer global daily 36 km
EASE-grid freeze/thaw state; data over the northern hemisphere where 95% of samples are within 8 K.

2.3. Evaluation of the New FT-State Detection Algorithm

By Equation (10), one can compute the starting and ending times of the frozen-soil
period in winter, i.e., the first/last freeze state in an annual FT cycle. Applying Equation (9),
it requires at least one FT value per day which affects accuracy in the low latitudes.

Before a comparison with the half-daily SMAP FT products, we have to scale it to
daily resolution by

thaw, if FT statusegsy, =0 or  FT statusepy, =0

frozen, if FT statuseyy, = FT statusey, =1 an

FT spmap—daity = {

Equation (11) produces a bias towards thawed states but matches the concept of the
new FT algorithm because |ATB;| would be smaller when the states at 6 a.m. and 6 p.m.
are consistent. Hence, the agreement is defined as the fraction of days in which the new
method and SMAP FT have the exact daily FT state inference against the total number of
days (see Equation (11)). Specifically, both the SMAP’s FT product and the new algorithm
contain 964 x 203 grids i