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Preface

Soil moisture is well recognized as a pivotal parameter linking the water, energy, and carbon

cycles. Active and passive microwave remote sensing has been well-recognized as the most

promising means to infer soil moisture spatially and temporally. Active microwave remote sensing,

particularly using the synthetic aperture radar (SAR), has a much finer spatial resolution than using

passive sensors but suffers more from geometrical features of the scene (e.g., surface roughness,

vegetation, and topography). Passive microwave remote sensing has higher sensitivity to soil

moisture than active radar but is limited by its coarse spatial resolution. Moreover, active and

passive microwave signals respond differently to soil and vegetation parameters and thus can provide

complementary information for each other.

Over the past several decades, great progress has been made in microwave remote sensing

of soil moisture. Several field or aircraft experiments (e.g., SGP, SMEX, HiWATER, SMAPEx1-5,

and SMAPVEX) have been organized to support the assessment and refinement of active and

passive microwave soil moisture retrieval algorithms. At the same time, a number of microwave

spaceborne satellites/sensors have been successfully launched to provide valuable opportunities to

obtain soil moisture data at various spatial scales from meters to tens of kilometers. These include

passive microwave instruments, such as the multi-frequency AMSR-E/2 (2002-), FY-3 MWRI (2008-),

L-band SMOS (2009-), and SMAP (2015-), as well as active microwave instruments, such as the

scatterometer-based Metop/ASCAT series (2006-), monostatic ALOS-2 (2014-), Sentinel-1 (2014-), and

Gaofen-3 (2016-), bistatic CYGNSS (2016-), and the P-band Biomass (planned launch in the next few

years). All of these open a wide range of possibilities to estimate soil moisture at regional and global

scales.

In this context, this book aims to present the most advanced theories, models, algorithms, and

products related to microwave remote sensing of soil moisture. The book is aimed at a wide range

of readers, from graduate students, university faculty members, and scientists, to policy makers and

managers.

We acknowledge the funding from the National Natural Science Foundation of China (Grant

No. 41971317, 42271402, 42222109) and the Youth Innovation Promotion Association CAS (Grant No.

Y2022050).

Jiangyuan Zeng, Jian Peng, Wei Zhao, Chunfeng Ma, and Hongliang Ma

Editors
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1. Introduction

Soil moisture is an important component of the global terrestrial ecosystem and has
been recognized as an Essential Climate Variable (ECV) by the Global Climate Observing
System (GCOS) [1]. The change in soil moisture content is a critical representation and
driving factor of the terrestrial water cycle which has a significant impact on the spatial
distribution and intensity of land evapotranspiration, rainfall, and runoff processes, and
thus affects a series of important issues related to sustainable development, such as water
resources and food security, drought and flood disasters, soil erosion, and ecological degra-
dation [2–4]. Therefore, obtaining accurate spatiotemporal distribution of soil moisture is
both necessary and highly interesting.

Microwave remote sensing, in both active and passive forms, is one of the most ef-
fective ways to detect soil moisture content on a large scale. Over the past few decades,
significant efforts have been made to develop empirical/semi-empirical/theoretical mod-
els, retrieval algorithms, downscaling methods, and validation strategies related to the
microwave remote sensing of soil moisture [5–12]. Following the turn of the century, a
series of microwave-based satellites/sensors have been successfully launched (Figure 1),
such as the passive Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scan-
ning Radiometer-Earth Observing System (AMSR-E), AMSR2, Fengyun (FY)-3B/C/D, the
active Advanced Scatterometer (ASCAT), Sentinel-1, Advanced Land Observing Satellite-2
(ALOS-2), Gaofen-3 (GF-3), and the active-passive Soil Moisture Active Passive (SMAP),
and Aquarius. Therefore, satellite soil moisture products have become increasingly abun-
dant, greatly promoting the various application of satellite soil moisture datasets [13–15].
Despite numerous studies and achievements in this field, great challenges remain, such as
the spatial resolution, retrieval accuracy, and validation strategies related to satellite soil
moisture datasets.

This Special Issue aims to present the most recent scientific advances in the theories,
models, algorithms, and products associated with the microwave remote sensing of soil
moisture. Ten articles are published in this Special Issue, covering research progress on
the following topics: (1) downscaling passive microwave-based soil moisture products,
(2) estimating soil moisture from active microwave observations, (3) presenting some new
algorithms (freeze–thaw state detection algorithm) and models (soil dielectric models)
that are closely related to the microwave remote sensing of soil moisture, (4) evaluating

Remote Sens. 2023, 15, 4243. https://doi.org/10.3390/rs15174243 https://www.mdpi.com/journal/remotesensing
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microwave-based soil moisture products, (5) reviewing the state-of-the-art techniques and
algorithms used to estimate and improve the quality of soil moisture estimations.

FY-3B

SMOS

Aquarius
SMAP

ASCAT

WindSat

AMSR2

Passive
FY-3C

Scatterometer

SAR

ALOS-2
Sentinel-1ACosmos-SkyMed

TerraSAR-X

Active

Sentinel-1B

2000 2010 2020

GF-3

FY-3D

RADARSAT-2

SMOS

S

AMSR-E

Figure 1. The primary microwave satellites/sensors that have been used to estimate soil moisture
since the 2000. Note that both active and passive microwave sensors are mounted on the SMAP and
Aquarius missions.

2. Highlights of the Research Articles

Brightness temperature has strong sensitivity to soil moisture [16], making passive
microwave remote sensing a valuable tool to estimate soil moisture globally [17]. A number
of passive microwave-based soil moisture products, such as SMAP, SMOS, AMSR2, FY-3,
are available to the public. However, the coarse spatial resolution of such products (often
dozens of kilometers) limits their various applications in the field and at a local scale.
Three papers published in this Special Issue address this issue. Zhao et al. [18] evaluated
four commonly used auxiliary variables, including NDVI (Normalized Difference Vege-
tation Index), LST (Land Surface Temperature), TVDI (Temperature Vegetation Dryness
Index), and SEE (Soil Evaporative Efficiency), against in situ soil moisture in an arid region
of China (Heihe River Basin). They found that SEE was an optimal auxiliary variable
for the scaling and mapping of soil moisture, and the combination of multiple auxiliary
variables (LST, NDVI, and SEE) was recommended for improving the scaling and mapping
accuracy of soil moisture. Llamas et al. [19] proposed a modular spatial inference frame-
work, which was the foundation of a cyberinfrastructure tool named SOil MOisture SPatial
Inference Engine (SOMOSPIE), to downscale ESA CCI soil moisture products to 1 km using
terrain parameters and examined the skill of two modeling methods, i.e., Kernel-Weighted
K-Nearest Neighbor (KKNN) and Random Forest (RF). The results indicated that the SO-
MOSPIE framework provided a feasible approach to downscaling satellite soil moisture
data, and RF performed better in the cross-validation compared to the reference ESA CCI
data, but as part of independent validation, KKNN had a slightly higher consistency with
ground soil moisture observations. In addition, a soil moisture retrieval and spatiotemporal
fusion model (SMRFM) was proposed by Jiang et al. [20] to reduce the dependence of the
method on the optical/thermal infrared data. They successfully downscaled the AMSR-E
soil moisture from 25 km to 1 km using the MODIS-derived soil moisture and the SMRFM
over the Central Tibetan Plateau.

Compared to passive microwave remote sensing, active microwave remote sensing,
e.g., the synthetic aperture radar (SAR), can provide soil moisture estimates with much
finer spatial resolution but are negatively affected by the geometry of the land surface
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(e.g., surface roughness and vegetation structure). Therefore, it is still a challenge to
obtain SM retrievals with a high accuracy via active microwave measurements. In Dong
et al. [21], the response of radar signal to surface parameters was analyzed using the
database simulated from the advanced integral equation model (AIEM), and soil moisture
was retrieved from Sentinel-1 using empirical models and machine learning methods. It
was found the machine learning algorithms performed much better than the empirical
models, and the skill of the RF algorithm surpassed that of the other machine learning
approaches. Two hybrid methodologies, namely improving a change detection approach
with regard to vegetation, and combining a change detection approach with a neural
network algorithm, were proposed and tested using Sentinel-1 and Sentinel-2 data in the
study by Nativel et al. [22]. Their results indicated that using hybrid algorithms (particularly
change detection via a neural network) could improve the accuracy of estimating soil
moisture content.

Furthermore, previous studies generally focused on estimating soil moisture in min-
eral soils since the soil dielectric models used in soil moisture retrieval algorithms were
usually mineral-soil-based models. Zhang et al. [23] compared the performance of nine soil
dielectric models, four of which incorporate soil organic matter (SOM) in organic soil in
Alaska within the framework of the SMAP single-channel algorithm at vertical polarization
(SCA-V). Using the SMAP SCA-V algorithm, they reported that the Mironov 2009 and
Mironov 2019 models were the best choices for mineral soils (SOM < 15%) and organic
soils (SOM ≥ 15%), respectively. Meanwhile, there are large uncertainties in soil moisture
retrievals when the soil becomes frozen. Thus, soil moisture values are often masked in
satellite soil moisture products such as SMAP, SMOS, and AMSR2. In Lv et al. [24], a
new freeze–thaw state detection algorithm was developed based on the daily variation of
the SMAP H-pol brightness temperature. The physical foundation of the algorithm lied
in the fact that the difference in the microwave brightness temperature between 6 a.m.
(descending overpass) and 6 p.m. (ascending overpass) was relatively small over frozen
soil owing to the large penetration depth, resulting in a higher temperature stability in
deeper soils.

Moreover, microwave-based soil moisture products have been extensively evaluated
in previous studies using in situ observations. However, most research has ignored the
possible vertical mismatch between in situ data and satellite retrievals. Yang et al. [25]
investigated the stratification characteristics of in situ soil moisture and assessed SMOS L2,
SMOS-IC SMAP L2, SMAP L4 soil moisture products using multilayer in situ data (5, 10,
20, 5.08, 10.16, 20.32 cm) collected from the International Soil Moisture Network (ISMN).
They discovered that (1) the differences in soil moisture content between layers were
close to or even beyond the 0.04 m3 m−3 nominal retrieval accuracy of SMOS and SMAP;
(2) satellite products showed the highest correlation and the smallest bias with 5/5.08 cm
in situ data, and the SMAP L4 product was closest to in situ measurements compared to
the other datasets.

In addition, a good summary of the state-of-the-art progress in the microwave remote
sensing of soil moisture is of great interest to the soil moisture research community. Two
review papers were published in this Special Issue. In Wu and Wen [26], the research
progress in observing and simulating L-band microwave emissions, ground soil moisture
measurements, and soil moisture retrieval from L-band passive microwave observations
over the Third Pole, i.e., the Tibetan Plateau, was summarized. Moreover, Liu and Yang [27]
presented a systematic review of the primary methodologies for detecting soil moisture
content and the current approaches used to enhance the quality of soil moisture products.

3. Conclusions and Outlook

This Special Issue entitled “Microwave Remote Sensing of Soil Moisture” covers a wide
range of research on the satellite detection of soil moisture, including developing retrieval
algorithms and downscaling methods, comparing soil dielectric models, freeze–thaw
state detection approaches, and satellite soil moisture products. The theories, methods,

3
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validations, and applications of satellite soil moisture datasets are reviewed in detail.
Notably, there is much room for improvement regarding algorithms and datasets related to
the microwave remote sensing of soil moisture and their applications in various disciplines.
The selected papers should help the soil moisture research community to better understand
the current development status and future trends of microwave remote sensing of soil
moisture.

The following aspects could be considered in future research: (1) developing new
methods (e.g., upscaling method) for validating satellite soil moisture products, particularly
in regions with high spatial heterogeneity; (2) developing new technologies to identify and
suppress the influence of radio frequency interference and open water to further improve
the quality of microwave signals used for estimating soil moisture; (3) combining active
and passive microwave, multi-polarization, and multi-frequency observations to alleviate
ill-posed problems, and improve the spatial resolution of soil moisture; (4) developing
P-band related theoretical technologies to obtain deeper soil moisture and soil moisture
profile information; (5) using bistatic radar (e.g., upcoming Tandem-L) to decouple the
effects of soil moisture and other perturbing parameters (e.g., surface roughness) to obtain
more reliable soil moisture data with a high spatial resolution.
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J.Z.; writing—review and editing, J.P., W.Z., C.M. and H.M.; funding acquisition, J.Z. and C.M. All
authors have read and agreed to the published version of the manuscript.
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Abstract: In this paper, we investigated the vertical distribution characteristics of surface soil mois-
ture based on ISMN (International Soil Moisture Network) multilayer in situ data (5, 10, and 20 cm;
2, 4, and 8 in) and performed comparisons between the in situ data and four microwave satellite
remote sensing products (SMOS L2, SMOS-IC, SMAP L2, and SMAP L4). The results showed
that the mean soil moisture difference between layers can be −0.042~−0.024 (for the centimeter
group)/−0.067~−0.044 (for the inch group) m3/m3 in negative terms and 0.020~0.028 (for the cen-
timeter group)/0.036~0.040 (for the inch group) m3/m3 in positive terms. The surface soil moisture
was found to have very significant stratification characteristics, and the interlayer difference was close
to or beyond the SMOS and SMAP 0.04 m3/m3 nominal retrieval accuracy. Comparisons revealed
that the satellite retrievals had a higher correlation with the field measurements of 5 cm/2 in,
and SMAP L4 had the smallest difference with the in situ data. The mean difference caused
by using 10 cm/4 in and 20 cm/8 in in situ data instead of the 5 cm/2 in data could be about
−0.019~−0.018/−0.18~−0.015 m3/m3 and −0.026~−0.023/−0.043~−0.039 m3/m3, respectively,
meaning that there would be a potential depth mismatch in the data validation.

Keywords: soil moisture; calibration and validation; Soil Moisture and Ocean Salinity (SMOS); Soil
Moisture Active Passive (SMAP)

1. Introduction

The SMOS (Soil Moisture and Ocean Salinity, ESA, November 2009) and SMAP (Soil
Moisture Active Passive, NASA, January 2015) missions are dedicated to the acquisition of
global soil moisture information. They both use the L band (1.4/1.41 GHz) in the mode
of passive microwave remote sensing, as there would be a greater depth of penetration
due to the longer wavelength [1,2]. The soil moisture products (retrievals and estimates)
nominally released by SMOS and SMAP are the average soil moisture at the top of the
surface, and they are conventionally compared with 5 cm in situ data [3,4]. However, the
response depth of the L band is likely to vary from a very thin surface to a certain deep
layer due to the variety and instability of the observing conditions in practice, which are
difficult or impossible to measure accurately at present [5–7]. The depth mismatch would
potentially be present in the comparisons of SMOS and SMAP soil moisture products
and also in their comparisons with soil moisture field measurements, which is commonly
thought to introduce uncertainties in the validation of multisource data [8–17].

From a data flow perspective, the soil moisture products from SMOS and SMAP
can be considered the comprehensive results of three main processes, namely, brightness
temperature (TB) observation, brightness temperature simulation, and soil moisture re-
trieval [18–23]. The numerical difference presented in validation and comparison can, in
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this context, consist of two parts. The first one would be collectively called the “retrieval
error” and may be caused by upstream phases, including the instruments’ performances,
observing conditions, reconstruction methods, radiative transfer models and parameter
settings, auxiliary information inputs, and iterative computational strategies [24–29]. The
other one is generally referred to as the “verification uncertainty” and is mainly caused by
the difference in scale, depth, and time between the multisource data [30–33]. To some ex-
tent, in order to accurately find out the source of the “retrieval error”, further understand its
propagation mechanism, and make corresponding improvements, one should first exclude
the “verification uncertainty” due to the spatial and temporal mismatch of the multisource
data; in other words, they must adopt a way of tracing back from the downstream stage to
the upstream stage, which is exactly the opposite of the flow of data production.

Based on high-frequency in situ measurements, the soil moisture at 5 cm undergoes
natural fading of a very small magnitude during the time intervals between SMOS and
SMAP, with an average variation (0.003 m3/m3 minimum; 0.007 m3/m3 maximum), that is
insufficient to be identified using satellites (nominal accuracy 0.04 m3/m3), and the tempo-
ral mismatch may not cause external uncertainty and is negligible in data validation [34].
Similarly, by using multilayer in situ data as a reference, the effect of depth mismatch on
the validation of SMOS and SMAP soil moisture products can be assessed to some extent.
This paper attempts to make comparisons between L band microwave remote sensing soil
moisture products and in situ soil moisture measurements, and the main objectives are
as follows:

• To investigate the vertical distribution characteristics of surface soil moisture, the
numerical characteristics of each layer, and the similarities and differences between
the layers;

• To quantify the numerical difference between satellite soil moisture retrievals and
multilayer in situ measurements;

• To demonstrate the effect of the depth mismatch, the rationality of using in situ data
at one depth as a reference, and the feasibility of using another depth as a substitute.

2. Materials and Methods

2.1. Data

Five datasets were selected, and the time span was set to 1 January 2015~31 December
2020. The ISMN (International Soil Moisture Network) provides multilayer in situ soil
moisture measurements, which were used to study the stratification characteristics and as
a reference for the comparison with satellite products. SMOS L2 and SMAP L2 (passive)
products are soil moisture retrievals; SMOS-IC and SMAP L4 products can be considered
independent retrievals and estimates, respectively.

2.1.1. ISMN In Situ Soil Moisture Data

The ISMN is an international collaboration to establish and maintain a global in situ
soil moisture database. It brings together in situ soil moisture measurements collected and
freely shared by a variety of organizations, harmonizes them in terms of units and sampling
rates, applies advanced quality control, and stores them in a database [35,36]. In addition to
single/multilayer soil moisture, static information (land cover, clay fraction, sand fraction,
etc.) and other dynamic variables (soil temperature, air temperature, precipitation, etc.)
are also included in the ISMN datasets. In general, soil moisture is quantified in terms of
volumetric water content (m3/m3) and an hourly sampling rate.

2.1.2. SMOS L2 Soil Moisture Product

The SMOS L2 Soil Moisture User Data Product (MIR_SMUDP2) consists of swath-
based retrieved information over land surfaces. The base product includes fields for soil
moisture, vegetation water content, calculated brightness temperatures at 42.5 ◦C, and
dielectric constant from pole to pole. The product is organized in the form of a Discrete
Global Grid (DGG) in the ISEA 4H9 (Icosahedral Snyder Equal Area) grid projection, and
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the average distance between nodes is close to 15 km. The soil moisture retrievals (field:
Soil_Moisture) are volumetric water content in m3/m3, and the accuracy requirement is set
to 0.04 m3/m3 (i.e., 4% volumetric soil moisture) or better [37,38].

2.1.3. SMOS-IC Soil Moisture Product

The SMOS INRA-CESBIO (SMOS-IC) product provides global daily soil moisture and
L band vegetation optical depth (L-VOD) from the ascending and descending orbits at a
spatial resolution of 25 km (EASE grid 2.0). The SMOS-IC corresponds to the SMOS “origi-
nal algorithm”; it is to be as independent as possible from auxiliary data, thus avoiding
circular evaluation/validation [39]. The soil moisture retrievals (field: Soil_Moisture) are
released in m3/m3 and with a dry bias of~−0.045 m3/m3 against ISMN in situ sites [40].
The SMOS-IC V2 soil moisture product is the latest release (January 2020), and compar-
isons with in situ measurements and other “official” satellite products may help to better
understand its characteristics.

2.1.4. SMAP L2 Soil Moisture Product

The SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture (L2_SM_P)
product contains gridded data of passive soil moisture retrievals (in the top 5 cm of the
soil column), ancillary data, and quality assessment flags on the 36 km global cylindrical
Equal-Area Scalable Earth (EASE) Grid 2.0 projection and is presented in half-orbit granules.
The soil moisture retrievals (field: Soil_Moisture) are volumetric water content in m3/m3,
with an accuracy requirement of ~±0.04 m3/m3 [41,42].

Attention needs to be paid to the SMOS L2 and SMAP L2 soil moisture products.
They are the direct retrieval outputs with Level 1 (L1) instrument brightness temperature
observations as the input, and also the inputs used to generate Level 3 (L3) global daily soil
moisture composites. The L2 products inherit the location and time codes of the L1 products
but do not undergo the spatiotemporal resampling of the L3 products, thus avoiding the
uncertainties introduced by data processing and ensuring reverse traceability from data
validation to error location. For this reason, SMOS and SMAP L2 soil moisture products
were used in this paper.

2.1.5. SMAP L4 Soil Moisture Product

The SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Mois-
ture Geophysical Data (SPL4SMGP) contains global estimates of surface soil moisture
(0–5 cm vertical average), root zone soil moisture (0–100 cm vertical average), and addi-
tional research products (soil temperature, evapotranspiration, etc.), based on the assimila-
tion of SMAP L band brightness temperatures. This product appears on the EASE-Grid
2.0 projection at 9 km grid resolution, the soil moisture estimates (field: SM_Surface) are
3-hourly time-averaged volumetric water content in m3/m3, and the accuracy requirement
is 0.04 m3/m3 [43,44]. It should be noted that SMOS also provides the L4 soil moisture
product, but the coverage is limited to European and Mediterranean countries and therefore
could not be used in this research.

The SMAP L4 soil moisture product has greater temporal continuity and spatial integrity
than the L2 soil moisture product and is more application-oriented. The L4 product is
formally at a higher level in the data system because it has more added value, but it is
equivalent to the L2 product in terms of the data collection process because they both use
the L1 product as input. The L2 and L4 products represent the two main ways of obtaining
soil moisture information from satellite remote sensing; they reflect different implementation
concepts, calculation methods, and spatiotemporal visualization systems, but both need to be
verified and evaluated. It is therefore worth including the SMAP L4 soil moisture product in
this study.
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2.2. Methods

There are four parts to this section: the quality control of ISMN multilayer in situ data;
the spatial and temporal matching of SMOS, SMAP products, and ISMN data; methods for
the analysis of the stratification properties of soil moisture; and methods for the verification
of the depth mismatch.

2.2.1. Quality Control of the In Situ Data

The ISMN in situ data of 1871 sites from 42 networks met the download conditions
(global, 1 January 2015~31 December 2020). Although discussions on the accuracy and
reliability of the data are beyond the scope of this article, quality control is still required.
Following the three-level hierarchy of ISMN data storage, from network to site to variable
file, the quality requirements were set as follows: First, networks with more than 10 sites
should be retained. Second, sites should be selected that can provide 5, 10, and 20 cm soil
moisture as well as 5, 10, and 20 cm soil temperature, i.e., there were 6 variables (must
but not limited to) and only one sensor per depth (no multiple observations). It should be
noted that some sites set the observation depth at 2 in, 4 in, and 8 in, which after conversion
are 5.08 cm, 10.16 cm, and 20.32 cm respectively; such sites are also reserved as long as
they have the six variables. Third, for each record (once per hour) in the variable file, it is
considered “valid” if the 6 variables are all marked with “G” (good, ISMN Quality Flag),
the number of such records should exceed 50% per year and every year from 2015 to 2020.
In the end, 83 sites from 3 networks passed the quality check. The 3 networks are USCRN
(U.S. Climate Reference Network), SCAN (Soil Climate Analysis Network), and SNOTEL
(Snow Telemetry), and all 83 sites are located within the continental U.S., as shown in
Figure 1A. Information on land cover, sand fraction, and clay fraction was read from the
static variables file, as shown in Figure 1B.

  

Figure 1. The 83 sites that passed the quality control: (A) spatial distribution of the sites;
(B) information on land cover and soil properties of the sites.

2.2.2. Spatiotemporal Matching of In Situ Data and Satellite Products

Discussions on the retrieval and estimation accuracy of satellite products are be-
yond the scope of this article, and thus only the comparative differences between satellite
soil moisture and multilayer in situ soil moisture were examined. As the data have dif-
ferent spatial and temporal characteristics, they had to be matched before performing
any comparison.

The first step was spatial matching. The 83 sites from the 3 networks (USCRN,
SCAN, and SNOTEL) provide hourly multilayer in situ soil moisture measurements; their
locations are marked by longitude and latitude and are usually thought of as points in
space. SMOS L2, SMOS-IC, SMAP L2, and SMAP L4 products are mapped in the ISEA 4H9
(~15 km), EASE-Grid 2.0–25 km, EASE-Grid 2.0–36 km, and EASE-Grid 2.0–9 km systems,
respectively; the grids correspond to a specific area in space; and only the latitude and
longitude of the grid center are given. The spatial matching of satellite products and in situ
data can be performed according to the principle of closest distance. Taking the location of
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each site as a reference, a five-element matching group (ISMN site, SMOS L2 grid center,
SMOS-IC grid center, SMAP L2 grid center, and SMAP L4 grid center) can be formed to
search separately for the satellite grid center that is closest to the site.

It should be noted that no horizontal rescaling processing was applied to the ISMN
sites and satellite grids, and neither their spatial difference nor their representativeness was
considered in this article. The ISMN multilayer in situ soil moisture measurements were
used as a reference for comparison with SMOS and SMAP soil moisture products [45,46].
Although potentially accompanied by the spatial mismatch, this type of absolute difference
could turn into a relative difference similar to a “system bias” when all products were
compared to the same reference object.

The second step was temporal matching. All five types of data have UTC timestamps
but in different formats. Timing can be adjusted to the nearest time by rounding minutes
and seconds to hours. No additional processing was required as the sampling rate of the
in situ data is hourly. The timestamps of the SMOS L2, SMOS-IC, and SMAP L2 products
include minutes and seconds, which were rounded to the nearest hour. The timestamp of
the SMAP L4 product corresponds to the center of the 3 h averaging interval; therefore, it
was mapped to this 3 h time set in a left-closed and right-open fashion. It can be assumed
that the SMAP L4 product is complete on the hourly time axis as there was an estimate
for each hour; the in situ data were nearly complete except for a small number of missing
(invalid) records; and the SMOS L2, SMOS-IC, and SMAP L2 products were discrete due to
their temporal resolution.

There were two temporal matching schemes. The first was matching the in situ
data with the satellite products one at a time. This type of comparison was expected
to independently reflect the numerical characteristics of the satellite soil moisture. The
second was matching all data simultaneously, which can be considered as eliminating the
influence of the temporal mismatch and therefore allowing a comparison between satellite
products [47,48]. The sample size of each matching group is shown in Table 1. It should
be noted that timestamp is only one of the auxiliary information and cannot be utilized to
discuss the temporal representativeness and rationality of the products.

Table 1. Sample size of temporal matching groups.

Temporal Matching Groups Counts

ISMN SMOS L2 128,619

ISMN SMOS-IC 86,646

ISMN SMAP L2 123,635

ISMN SMAP L4 3,257,075

ISMN SMOS L2 SMOS-IC SMAP L2 SMAP L4 7848

2.2.3. Analysis of the Vertical Distribution Characteristics of Surface Soil Moisture

The overall distribution of soil moisture in each layer can be represented by its mean
value. According to the maximum record of the ISMN data and the nominal retrieval
accuracy of SMOS and SMAP products, the detailed distribution can be expressed by the
segmented statistics of sample size in the total range of 0~0.52 m3/m3. The distribution
analysis was based on all samples without distinguishing the site to which they belong.

The similarity of soil moisture between the layers can be quantified by the (Pearson)
correlation coefficient (R) [49,50]. Three correlation sets were formed, namely, 5/5.08 and
10/10.16 cm (5/5.08 and 10/10.16); 10/10.16 and 20/20.32 cm (10/10.16 and 20/20.32); and
20/20.32 and 5/5.08 cm (20/20.32 and 5/5.08). The correlation coefficient was calculated
separately for each site and was also presented in groups according to the static variables
(land cover, sand fraction, and clay fraction), which were designed to reflect, to some extent,
the potential influence of external environmental factors on the vertical distribution of soil
moisture. It should be noted that the correlation coefficient only indicates the similarity
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between the two sets of samples from a numerical point of view and cannot explain the
coupling mechanism of soil moisture between the layers.

The difference in soil moisture between the layers can be directly expressed by their
actual numerical differences, and the detailed distribution can also be reflected by the seg-
mented statistics of sample size. Three sets were formed, namely, 5/5.08 minus 10/10.16 cm
(5/5.08 − 10/10.16); 10/10.16 minus 20/20.32 cm (10/10.16 − 20/20.32); and 5/5.08 mi-
nus 20/20.32 cm (5/5.08 − 20/20.32). The soil moisture difference was calculated for all
samples without distinguishing the site to which they belonged. The positive and negative
differences were counted separately, as well as the average and the total number of samples
on both sides.

2.2.4. Comparison between the Satellite Products and the In Situ Data

The comparison between the SMOS/SMAP products and the ISMN data was carried
out on the basis of temporal matching (Table 1), using the actual numerical difference as an
indicator to present the difference between them. Similarly, segmented statistics of sample
size were used to visualize the detailed distribution of the differences. The positive and
negative differences were counted separately, as were the mean and total sample sizes on
both sides. The mean difference (MD) and mean absolute difference (MAD) were used as
quantification indices according to the following equations:

MD =
∑(satellite − in_situ)

sample size
. (1)

MAD =
∑|satellite − in_situ|

sample size
. (2)

3. Results

3.1. Stratification Characteristics of Surface Soil Moisture
3.1.1. Single-Layer Distribution

As shown in Figure 2, there seemed to be a turning point at 0.24~0.28 m3/m3. For the
5/10/20 cm group, when it was below this range, the distribution of 5 and 10 cm showed some
similarity. With an increase in depth, the peaks of the three layers gradually moved to higher
ranges (0.04~0.08, 0.08~0.12, 0.16~0.20 m3/m3), especially in the ranges of 0~0.04 m3/m3 and
0.16~0.20 m3/m3, and the low-value characteristics of 5 cm and the high-value characteristics of
20 cm were very significant. However, above this range, a strong similarity was found between
10 and 20 cm, and the distribution difference among the three layers was reduced. For the
5.08/10.16/20.32 cm group, the sample size ranking of the three layers showed opposite trends
below and above the inflection point; the distribution of 5.08 and 10.16 cm was also found to be
similar, and their peaks were both located around 0.20~0.24 m3/m3. The distribution of 20.32 cm
was very different from the other two layers, as its peak appeared at 0.32~0.40 m3/m3 where
the soil moisture was very high. Although the difference in depth was small, the soil moisture
of the two groups behaved quite differently; their means indicated that the soil moisture
of the 5.08/10.16/20.32 cm group was always slightly higher than that of the 5/10/20 cm
group (0.178/0.196/0.200 vs. 0.200/0.223/0.244 m3/m3). However, both showed a pattern of
increasing soil moisture with the increase in depth, which appeared to be a stable distribution
state of soil moisture.

The mean values of soil moisture in each layer were compared in groups according
to the static variables of land cover, sand fraction, and clay fraction, and the results are
shown in Figure 3. The general trends of the two sets of curves appear to be similar at first
sight. For the 5/10/20 cm group (Figure 3A), 5 cm soil moisture showed a significantly
low-value characteristic; the mean values of 10 and 20 cm soil moisture were very close,
but the latter was slightly higher. Regardless of the static variables, the order of the three
soil moisture layers from low to high remained unchanged with the increase in depth. For
the 5.08/10.16/20.32 cm group (Figure 3B), 5.08 cm soil moisture was still the lowest, the
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difference between 10.16 cm and 20.32 cm became larger, and in some cases, 10.16 cm soil
moisture was higher.

  

Figure 2. Soil moisture distribution in each layer: (A) the distribution at 5, 10, and 20 cm; (B) the
distribution at 5.08, 10.16, and 20.32 cm (2, 4, and 8 in).

  

Figure 3. Mean soil moisture under static variables: (A) for the 5/10/20 cm group; (B) for the
5.08/10.16/20.32 cm group (2, 4, and 8 in).

The difference between the two groups was most obvious in terms of land cover.
The 5.08/10.16/20.32 cm group showed stronger stratification characteristics than the
5/10/20 cm group in grassland, cropland, and shrubland conditions. Although the means
of the three layers were close within each group under the conditions of tree cover and
mosaic (mainly multiple vegetation types), there were large differences between the
two groups.

As the sand and clay fractions increased, soil moisture tended to decrease and increase,
respectively. The three layers differed significantly within and between the two groups,
especially the pair of 10.16 and 20.32 cm. It appeared that the difference in the vertical
distribution of soil moisture between the three layers became smaller with the increase in
sand and larger with the increase in clay. For the 5/10/20 cm group, the influence of soil
properties was slightly higher than that of land cover, but both types of static variables
played a significant role for the 5.08/10.16/20.32 cm group.

3.1.2. Interlayer Correlation

The correlation coefficients of soil moisture between layers were calculated for
each site, and the results are shown in Figure 4. The two groups showed a common
pattern, i.e., the correlation coefficients decreased with increasing depth difference, al-
though those of the 5/10/20 cm group were higher than those of the 5.08/10.16/20.32 cm
group (0.899/0.884/0.813 vs. 0.809/0.767/0.690), and their distributions appeared to be
very different.

13



Remote Sens. 2023, 15, 3930

  
Figure 4. Correlation coefficients of soil moisture between layers: (A) interlayer correlation coeffi-
cients for the 5/10/20 cm group; (B) interlayer correlation coefficients for the 5.08/10.16/20.32 cm
group (2, 4, and 8 in).

For the 5/10/20 cm group (Figure 4A), the distribution of the correlation coefficients
of the three sets all showed an upward trend. Taking 0.8~0.9 as the turning point, in
areas where the correlation coefficient was below 0.8, the order of the number of sites
from small to large was “5&10”, “10&20”, and “20&5”; in areas where the correlation
coefficient was above 0.9, the order was reversed. For the 5.08/10.16/20.32 cm group
(Figure 4B), the three sets were distributed differently and no uniform trend was found.
The downward trend of “20.32&5.08” looked very significant, while both “5.08&10.16”
and “10.16&20.32” had an upward trend, although their peak and trough were located at
0.8~0.9 and 0.7~0.8, respectively. However, it can still be seen that the number of sites of
“5.08&10.16” was highest in the intervals where the correlation coefficient was high, that of
“20.32&5.08” was highest in the intervals where the correlation coefficient was low, and that
of “10.16&20.32” always remained in the middle of the other two sets. This also reflected,
to some extent, the tendency for the interlayer correlation coefficient to decrease as the
depth difference increased.

The correlation coefficients were also grouped according to static variables, as shown in
Figure 5. Firstly, in most cases, the order from lowest to highest was still “20/20.32&5/5.08”,
“10/10.16&20/20.32”, and “5/5.08&10/10.16”, with the difference between the three sets
also increasing as the depth difference increased. Secondly, the correlation coefficients of
the 5/10/20 cm group were always higher than those of the 5.08/10.16/20.32 cm group,
except for the conditions of mosaic and the 75~85 sand fraction. Thirdly, for the 5/10/20 cm
group (Figure 5A), the distribution of “20&5” appeared quite different from the other two
sets, especially in shrubland, the 15~20 sand fraction, and the “49&52” clay fraction; there
was not much difference between “5&10” and “10&20”, and they were almost the same in
some conditions. For the 5.08/10.16/20.32 cm group (Figure 5B), the three sets were quite
different from the 5/10/20 cm group. They seemed to have a good synchronous trend, but
the differences were very pronounced in the land cover condition.

It can be observed that the correlation coefficients of soil moisture between the layers
decreased with the increase in depth difference, where the depth difference was 5/5.08 cm
(10/10.16–5/5.08), 10/10.16 cm (20/20.32–10/10.16), and 15/15.24 cm (20/20.32–5/5.08).
However, this could only indicate that the vertical similarity of soil moisture is related
to the depth difference, but it was not possible to confirm where the depth difference lay.
The correlation coefficients of “5/5.08&10/10.16” might not be the highest if the in situ
measurements of 15/15.24 cm were provided, as there would be two more sets of depth
differences also equal to 5/5.08 cm (15/15.24–10/10.08 and 20/20.32–15/15.24).
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Figure 5. The correlation coefficients grouped according to the static variables: (A) the average
correlation coefficients for the 5/10/20 cm group; (B) the average correlation coefficients for the
5.08/10.16/20.32 cm group (2, 4, and 8 in).

3.1.3. Interlayer Difference

As shown in Figure 6, the two groups reflected two types of vertical distribution
in terms of mean and sample size for both the negative and positive values. For the
5/10/20 cm group, the order of the negative difference from small to large was “10–20”,
“5–10”, and “5–20”, indicating that the soil moisture of 10 cm was close to that of 20 cm,
and the soil moisture difference between 5 cm and the other two lower layers (10 and
20 cm) increased with the increase in depth difference (−0.32, −0.42 m3/m3). The positive
difference showed a consistent increasing trend (0.020, 0.024, and 0.028 m3/m3), but the
sample size was much smaller than that of the negative difference; perhaps it can be
assumed that this reverse increase with distance between the layers was random rather
than conventional and was probably caused by precipitation. For the 5.08/10.16/20.32 cm
group, the negative difference between the layers became more significant (−0.044, −0.048,
and −0.067 m3/m3), with the sample size on both sides, showing a consistent trend of
increase and decrease. The cases where the upper soil moisture was higher than the lower
can also be explained by the influence of precipitation. The basic characteristics of soil
moisture increasing with depth were more pronounced and showed a uniform variation in
the vertical direction.

  

Figure 6. Soil moisture difference between layers: (A) the interlayer difference for the 5/10/20 cm
group; (B) the interlayer difference for the 5.08/10.16/20.32 cm group (2, 4, and 8 in).

In terms of detailed distribution, for the 5/10/20 cm group, the peaks of the three
sets of differences were all within −0.04~0 m3/m3; the upper limit of the positive differ-
ences was the same and did not exceed 0.04~0.08 m3/m3, while the lower limit of the
negative differences was inconsistent, with the order from small to large being “10–20
(−0.12~−0.08 m3/m3)”, “5–10 (−0.16~−0.12 m3/m3)”, and “5–20 (≤−0.16 m3/m3)”. The
5.08/10.16/20.32 cm group seemed to be spread over a wider range than the other group,
with the peaks moving backward to around −0.08~−0.04 m3/m3; the maximum positive
difference was all above 0.08 m3/m3, and the descending order of the minimum nega-
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tive difference became “5–10 (−0.12~−0.08 m3/m3)”, “10–20 (−0.16~−0.12 m3/m3)”, and
“5–20 (≤−0.16 m3/m3)”.

The mean positive and negative differences under static variables and the difference in
sample size between the two sides were shown in Figure 7. The difference in soil moisture
between the layers at the two sets of depth was very different (Figure 7A,B) and was more
pronounced in cases of low vegetation (grassland, cropland, and shrubland), lower sand
fraction (15~20 and 31~45), and higher clay fraction (21~30, 49, and 52). Consistent with
the difference in soil moisture, the difference in sample size appeared to be greater among
the static variables (Figure 7C,D). The difference in soil moisture between the layers can be
more clearly distinguished not only within each group but also between the two groups,
further demonstrating the influence of land cover and soil properties on the water-holding
capacity. It is worth mentioning that in terms of soil property, although the magnitude of
the two sets of soil moisture difference was very different, the overall trend was similar. The
sand and clay fractions given by ISMN refer to the soil property of 0~30 cm, and if we focus
only on the surface layer of 0~5 cm, the difference in the composition may not be large; in
other words, the soil property may not be the main factor affecting the vertical distribution
characteristics of shallow soil moisture. Based on years of “big data”, it may be possible to
model the behavior of soil moisture under normal and disturbed conditions to provide more
straightforward optimization solutions for soil moisture retrieval algorithms (brightness
temperature simulation, parameter modeling, ancillary information assimilation, etc.).

  

  

Figure 7. The interlayer difference of soil moisture and sample size under static variables; P and N
refer to positive and negative, and P-N refers to positive minus negative: (A) the interlayer difference
for the 5/10/20 cm group; (B) the interlayer difference for the 5.08/10.16/20.32 cm group (2, 4,
and 8 in); (C) the difference of the sample size between the positive and negative sides for the
5/10/20 cm group; (D) the difference of the sample size between the positive and negative sides for
the 5.08/10.16/20.32 cm group (2, 4, 8 and in).

3.2. Comparisons between the Satellite Products and the In Situ Data

The comparison was carried out in two ways based on temporal matching (Table 1).
The first was comparing each type of satellite product separately with the three-layer in situ
data (SMOS L2/SMOS-IC/SMAP L2/SMAP L4—in situ), and the second was comparing all
four types of satellite products simultaneously with each single-layer in situ data (satellite
products—5/5.08/10/10.16/20/20.32 cm).
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3.2.1. Separate Comparison

The correlation coefficients are shown in Table 2. For within groups, it decreased with
the increase in depth. For between groups, the correlation coefficients with the 5/10/20 cm
group were slightly higher than those with the 5.08/10.16/20.32 cm group, and for the
satellite products, the order from small to large was SMOS L2, SMOS-IC, SMAP L2, and
SMAP L4. It can be seen that the satellite soil moisture products correlate better with the
5/5.08 cm in situ data than with the other two layers.

Table 2. Correlation coefficient of satellite soil moisture products and multilayer in situ measurements,
separate comparison.

R 5 cm 10 cm 20 cm 5.08 cm 10.16 cm 20.32 cm

SMOS L2 0.461 0.510 0.397 0.462 0.334 0.404

SMOS IC 0.675 0.607 0.610 0.559 0.538 0.493

SMAP L2 0.648 0.629 0.586 0.580 0.524 0.500

SMAP L4 0.701 0.654 0.655 0.613 0.602 0.572

As shown in Figure 8, each satellite product had its own unique performance. For
SMOS L2 (Figure 8A), the peaks of its difference with the in situ data were around −0.04~0
(5 cm), −0.1~−0.04 (5.08, 10, 20 cm), and −0.2~−0.1 m3/m3 (10.16, 20.32 cm), reflecting, to
some extent, the dry bias referred to in the literature. For SMOS-IC (Figure 8B) the peaks
of the difference shifted to −0.2~−0.1 m3/m3 for all but 5.08 cm (−0.1~−0.04 m3/m3),
implying an improved dry bias. For SMAP L2 (Figure 8C), the peaks of its difference
with 5, 5.08, and 10 cm in situ data were around 0~0.04 and 0.04~0.1 m3/m3, where the
dry bias started to change to a wet bias. For SMAP L4 (Figure 8D), the difference around
0.1~0.3 m3/m3 was suppressed, and the wet bias was weakened, while the difference
around −0.1~0 m3/m3 was enhanced, and the dry bias was strengthened.

  

  

Figure 8. Soil moisture difference between satellite and in situ, separate comparison: (A) the difference
between SMOS L2 and in situ; (B) the difference between SMOS-IC and in situ; (C) the difference
between SMAP L2 and in situ; (D) the difference between SMAP L4 and in situ.

There seemed to be a turning point in the distribution of the difference between the
four satellite soil moisture products and the three layers of in situ data. For the 5/10/20 cm
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group, the turning point was around −0.04~0 m3/m3 except for SMOS-IC, and for the
5.08/10.16/20.32 cm group, the turning point was around −0.1~−0.04 m3/m3 except
for SMAP L4. The order of sample size from large to small was 20/20.32, 10/10.16, and
5/5.08 cm in areas where the difference was below the inflection point, while above the
inflection point, the order was reversed. In general, the difference between the satellite
products and the 5/5.08 cm in situ data was not similar to the other two layers, with
SMOS L2 and SMOS-IC soil moisture lower than the in situ data and SMAP L2 and L4 soil
moisture higher than the in situ data.

The numerical difference between the satellite products and in situ data was further
explored in groups. The first group was based on land cover, sand fraction, and clay
fraction. For each condition, the mean positive and negative difference was calculated
separately, as well as the difference in sample size on both sides, and the results are shown
in Figure 9.

   

   

   

   

Figure 9. (A–L) Soil moisture difference between satellite and in situ, grouped by land cover, sand
fraction, and clay fraction, separate comparison; P and N refer to positive and negative, and N − P
refers to positive minus negative.

When comparing the satellite products with the 5/10/20 cm in situ data, the difference
was significantly different in the cropland, tree cover, and mosaic conditions. The largest
negative and positive differences were observed for SMOS-IC in the mosaic condition
(Figure 9D) and SMAP L2 in the tree cover condition (Figure 9G). The negative difference
decreased, and the positive difference increased with the increase in the sand fraction,
while this trend was completely reversed with the increase in the clay fraction. The largest
negative difference was contributed by SMOS-IC in conditions with the “15~20” sand
fraction and “49&52” clay fraction, and the largest positive difference was contributed by
SMOS L2 in conditions with the 75~85 sand fraction and 1~10 clay fraction (Figure 9A).

When compared to the 5.08/10.16/20.32 cm in situ data, none of the differences
between the four satellite products and the in situ data were similar, especially in the tree
cover and mosaic conditions. The negative difference in SMOS-IC (Figure 9E) and the
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positive difference in SMOS L2 (Figure 9B) appeared to be higher than those of the other
products. The trend of increasing and decreasing negative and positive differences could
still be found with variations in sand and clay fractions, but the pattern was not as clear
and consistent. In conditions where the sand fraction was very high, and the clay fraction
was very low, the positive difference in SMOS L2 and SMAP L2 (Figure 9H) increased to
about 0.2~0.3 m3/m3, which can be considered anomalies. In conclusion, regardless of the
group with which the comparison was carried out, the negative difference between the
satellite products and 5/5.08 cm in situ data was the smallest, and it was the largest with
20/20.32 cm; however, a similar pattern of a positive difference could only be found for
SMOS L2, SMOS-IC, and SMAP L2 with their comparison to the 5/10/20 cm group.

The difference in sample size shown in Figure 9 is also revealing. Compared with the
5/10/20 cm in situ data, the sample size distributions of the four satellite products looked
very different in the grassland condition but appeared similar in the mosaic condition.
SMOS-IC (Figure 9F) and SMAP L4 (Figure 9L) were similar in the cropland condition,
with a significantly higher negative than positive sample size, whereas in the tree cover and
shrubland conditions, the sample size bias showed similarities within the SMOS (SMOS
L2 and SMOS-IC) and SMAP (SMAP L2 and SMAP L4) groups, as well as differences
between the groups. In terms of soil properties, the negative bias gradually became
positive as the sand fraction increased, whereas the opposite trend was observed as the
clay fraction increased, with exceptions where the sand fraction was very low (15~20)
and the clay fraction was very high (49&52). Compared with the 5.08/10.16/20.32 cm
in situ data, SMOS-IC in cropland and tree cover conditions and SMAP L4 in grassland
conditions appeared to be significantly different from the other satellite products. The shift
in dominance was still clearly discernible as the sand and clay fraction increased, and its
magnitude slowed down but became more uniform for the SMAP group (SMAP L2, L4).
There was a general pattern in which the difference between negative and positive sample
sizes increased with depth.

The second group was based on the in situ data, and the results are shown in Figure 10.
The mean negative difference increased with the increase in soil moisture, and the order
from largest to smallest was SMOS-IC, SMOS L2, SMAP L2, and SMAP L4. The satellite
products had the smallest negative difference with the 5/5.08 cm in situ data and the largest
with the 20/20.32 cm. The descending order of the positive difference was SMOS L2, SMAP
L2, SMOS-IC, and SMAP L4. A trend of decreasing positive difference with the increase in
soil moisture can be found for SMAP L2 and SMAP L4, especially when comparing SMAP
L2 and 5.08/10.16/20.32 cm in situ data (Figure 10J). However, SMOS L2 and SMOS-IC did
not show such a trend, and the peak of their positive difference occurred mainly around
0.3~0.4 m3/m3, where the soil moisture was at a higher level. In most cases, the positive
difference between the satellite products and 5/5.08 cm in situ data was the smallest.

As the soil moisture increased, the difference in sample size showed a basic pattern
in which the negative difference gradually exceeded the positive one, peaking at about
0.3~0.4 m3/m3. The sample sizes on both sides became comparable when the soil moisture
was higher than 0.4 m3/m3, but their difference remained positive. However, the compari-
son with the 20 cm in situ data seemed to be quite different from the others, as the difference
between negative and positive values reached a maximum at around 0.1~0.2 m3/m3, and
then the gap between the two sides narrowed with the increase in soil moisture, but it did
not cross the 0 line. The performance of SMOS-IC was also somewhat peculiar in that the
difference in sample size remained above the 0 line (excluding 20 cm), which meant that
the magnitude of the negative difference was always greater than that of the positive one.
In contrast, SMOS-IC had the least variation in the difference in sample size, while SMAP
L4 had the most; if the degree of variation in the difference was to be ranked from small to
large, the order was 5/5.08, 10/10.16, and 20/20.32 cm.
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Figure 10. (A–P) Soil moisture difference between satellite and in situ, grouped according to in situ
soil moisture, separate comparison; P and N refer to positive and negative, and N − P refers to
positive minus negative.

3.2.2. Simultaneous Comparison

The SMOS L2, SMOS-IC, SMAP L2, and SMAP L4 soil moisture products were simul-
taneously compared with the in situ data at 5, 5.08, 10, 10.16, 20, and 20.32 cm, and their
correlation coefficients and numerical differences are shown in Table 3 and Figures 11–13.
It should be noted that the representativeness of the results may be limited, as the sample
size was only 7848 under strict temporal matching (Table 1).

Table 3. Correlation coefficients of satellite soil moisture products and multilayer in situ measure-
ments, simultaneous comparison.

R 5 cm 10 cm 20 cm 5.08 cm 10.16 cm 20.32 cm

SMOS L2 0.535 0.557 0.463 0.479 0.381 0.453

SMOS IC 0.685 0.614 0.608 0.549 0.510 0.519

SMAP L2 0.692 0.647 0.617 0.592 0.519 0.555

SMAP L4 0.700 0.693 0.635 0.629 0.541 0.623
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Figure 11. (A–F) Soil moisture differences between satellite and in situ data, simultaneous comparison.

The trends of the separate comparison (Table 2) are also presented in Table 3. Within
the groups, the correlation coefficient decreased with the increase in depth. Between the
groups, the SMOS-IC, SMAP L2, and SMAP L4 products had a higher correlation coefficient
with the 5/10 cm in situ data than with the 5.08/10.16 cm. The ranking of the satellite
products from small to large remained SMOS L2, SMOS-IC, SMAP L2, and SMAP L4, but
they all had a higher correlation coefficient with the 5/5.08 cm in situ data.

The numerical difference between the four satellite products and the in situ data of
each layer is shown in Figure 11, which shows the characteristics of each satellite product
more clearly.

Compared with the 5 cm in situ data (Figure 11A), for SMOS L2, the difference
concentrated within −0.1~0.1 m3/m3, and the negative was slightly higher than the positive.
For SMOS-IC, the difference concentrated within −0.2~0.04 m3/m3, there was a peak
around −0.2~−0.1 m3/m3, and the negative was much higher than the positive. The
difference for SMAP L2 seemed to be the opposite of SMOS-IC: It concentrated within
−0.04~0.2 m3/m3, and the peak was around 0.04~0.1 m3/m3, with the positive difference
significantly higher than the negative. SMAP L4 seemed to have a normal distribution, as
the difference was concentrated within −0.1~0.1 m3/m3, with a peak around 0~0.4 m3/m3,
and the positive was slightly higher than the negative, probably due to some calibration of
the simulation when the soil moisture was high.

Compared with the 5.08 cm in situ data (Figure 11B), the dry bias of SMOS L2 would
probably disappear since the size of the positive difference exceeded the negative, while the
dry bias of SMOS-IC seemed to become stronger, with the difference narrowly concentrated
within −0.2~0 m3/m3, and the size of the negative difference much higher than the positive.
For SMAP L2, the difference remained positive without weakening. SMAP L4 was also
found to have a remarkable dry bias, with the negative difference taking over and peaking
at around −0.1~−0.04 m3/m3.
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Figure 12. (A–X) Soil moisture differences between satellite and in situ data, grouped according to
land cover and sand and clay fractions, simultaneous comparison; P and N refer to positive and
negative, and N − P refers to positive minus negative.

22



Remote Sens. 2023, 15, 3930

    

    

    

Figure 13. (A–L) Soil moisture differences between satellite and in situ data, grouped according to
in situ soil moisture, simultaneous comparison; P and N refer to positive and negative, and N − P
refers to positive minus negative.

Taking the comparison with the 5/5.08 cm in situ data as a reference, the differences
between the four satellite products all moved progressively into the negative direction
with the increase in depth, and the dry bias became stronger, and the distributions of their
differences became more similar (Figure 11E,F). In addition, regardless of the depth to
which the comparison was performed, the descending order of negative differences below
the range of −0.04~0 m3/m3 was SMOS-IC, SMAP L4, SMOS L2, and SMAP L2, and when
the differences were above this range, SMOS L2 had the largest scale of positive difference
and SMOS-IC the smallest.

The differences between the satellite products and in situ data in a simultaneous
comparison were also analyzed in terms of land cover, sand fraction, and clay fraction.
The differences between the four satellite products varied in terms of land cover. In the
comparison with the 5/10/20 cm in situ data (Figure 12A–L), the difference was largest
in the tree cover and smallest in the shrubland, and there was little change in the positive
difference with the increase in depth, but the negative difference gradually increased. The
comparison with the 5.08/10.16/20.32 cm in situ data (Figure 12M–X) seemed to lack
regularity, as there was a large negative difference in the tree cover, shrubland (Figure 12Q),
and grassland (Figure 12U) but a large positive difference in the cropland and mosaic. The
tendency for the negative difference to increase and the positive difference to decrease
with the increase in depth could only be observed under grassland and cropland, with no
common change for the others, and the comparison with the 10.16 cm in situ data seemed
to show a large difference on both sides.

In the grouping of the sand and clay fractions, the trend in which the negative dif-
ference decreased and increased, respectively, as the two parameters increased remained
highly significant compared with the 5/10/20 cm in situ data, and the opposite trend of
the positive difference could also be distinguished. With the increase in depth, the negative
difference continued to increase and reached a large magnitude with a low sand content
and a high clay content (Figure 12J,K), while the positive difference was very high with
a high sand content and a low clay content but did not show a clear pattern of variation
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with depth. In comparison with the 5.08/10.16/20.32 in situ data, the trend of variation
differed in each range of sand and clay fractions. There was a large negative difference in
31~45 (Figure 12V) and 75~85 (Figure 12N,R) sand fractions and a large positive difference
in 31~45 sand fractions (Figure 12N,R) and 1~10 clay fractions, whereas the difference did
not show a distinctive pattern of variation with sand and clay fractions but was found to
increase in the negative difference and decrease in the positive difference with the increase
in depth.

Of the four satellite products, SMOS L2 and SMOS-IC had the largest positive and
negative differences, respectively, while SMAP L4 had the smallest positive and negative
differences. The difference in sample size indicates that the deviation between the two sides
can be arranged in descending order as SMOS-IC, SMAP L4, SMOS L2, and SMAP L2, with
SMOS-IC mostly above the 0 line and SMAP L2 remaining below. Some cases are worth
noting: Compared with the 5/10/20 cm in situ data (Figure 12D,H,L), SMAP L4, SMOS
L2, and SMAP showed an increase and a reverse trend in the grassland and 31~45 sand
fraction, and compared with the 5.08/10.16/20.32 cm in situ data (Figure 12P,T,X), there
was a large decrease and a reverse trend in the cropland and 21~30 clay fraction. With the
increase in depth, the distribution became closer to the 0 line and the fluctuation became
weaker, which corresponds well to the trend in Figure 11 in which the magnitude of the
negative difference increased and the predominance of the positive difference decreased.

The difference in depth between 5/10/20 cm and 5.08/10.16/20.32 cm was mainly due
to the different unit settings of the observation depth, i.e., one was in centimeters and the
other in inches. This 1.6% difference is difficult to detect in practice and may therefore be of
little significance at a distance. The fundamental difference lies in the soil conditions and
the type of land cover on which they rest, which will lead to not only an absolute difference
between the networks but also a relative difference between stations within the network; in
a sense, the difference between the satellite products and the two sets of in situ data may
not be comparable. As mentioned before, land cover and soil properties are interdependent,
and together, they drive the distribution characteristics of soil moisture in the vertical
direction. The variety and variation in land cover in terms of temporal and spatial variables
will probably be stronger and faster than those of the sand and clay fractions, and thus it
has a greater influence on soil moisture. To some extent, this also indicates that the satellite
retrieval of soil moisture should be more focused on land cover, especially the response
and interaction with meteorological conditions of transient conditions.

The differences in the simultaneous comparison were also grouped according to the in
situ data, and the results are shown in Figure 13. With the increase in soil moisture, the
negative difference continued to increase, whereas the positive difference first increased
and then decreased, peaking at around 0.3~0.4 m3/m3. SMOS-IC and SMOS L2 had the
highest negative and positive differences, respectively, while SMAP L4 still remained
the smallest on both sides. With the increase in depth, the negative difference showed
an increasing trend, whereas most of the positive differences decreased. On the other
hand, the distribution gradually approached or even crossed the 0 line with the increase
in depth, indicating that the quantitative advantage of the negative difference constantly
increased. SMOS-IC was above the 0 line and had a more negative difference, while SMAP
L2 remained below this line and had a more positive difference, which is consistent with
the results in Figure 11A,B and again confirms the numerical characteristics of the four
satellite products.

3.2.3. The Depth Mismatch

To evaluate the depth mismatch, the mean difference (MD, Equation (1)) and mean
absolute difference (MAD, Equation (2)) between the satellite soil moisture products and
the multilayer in situ soil moisture data were calculated, and the results are presented in
Tables 4 and 5.
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Table 4. Differences between satellite data and in situ data: interlayer differences and separate comparison.

(m3/m3)
MD MAD

SMOS L2 SMOS-IC SMAP L2 SMAP L4 SMOS L2 SMOS-IC SMAP L2 SMAP L4

Satellite−5 cm 0.018 −0.027 0.055 0.034 0.092 0.086 0.098 0.075

Satellite−10 cm −0.001 −0.045 0.037 0.016 0.097 0.097 0.100 0.079

Satellite−20 cm −0.008 −0.052 0.031 0.011 0.099 0.103 0.100 0.081

(Satellite−10 cm) −
(Satellite−5 cm) −0.019 −0.018 −0.018 −0.018 0.005 0.011 0.002 0.004

(Satellite−20 cm) −
(Satellite−10 cm) −0.007 −0.007 −0.006 −0.005 0.002 0.006 0 0.002

(Satellite−20 cm) −
(Satellite−5 cm) −0.026 −0.025 −0.024 −0.023 0.007 0.017 0.002 0.006

Satellite−5.08 cm 0.012 −0.049 0.025 0.005 0.097 0.093 0.086 0.067

Satellite−10.16 cm −0.006 −0.064 0.009 −0.011 0.110 0.105 0.098 0.076

Satellite−20.32 cm −0.031 −0.088 −0.016 −0.034 0.115 0.117 0.098 0.078

(Satellite−10.16 cm) −
(Satellite−5.08 cm) −0.018 −0.015 −0.016 −0.016 0.013 0.012 0.012 0.009

(Satellite−20.32 cm) −
(Satellite−10.16 cm) −0.025 −0.024 −0.025 −0.023 0.005 0.012 0 0.002

(Satellite−20.32 cm) −
(Satellite−5.08 cm) −0.043 −0.039 −0.041 −0.039 0.018 0.024 0.012 0.011

Table 5. Differences between satellite data and in situ data: interlayer difference and simultaneous comparison.

(m3/m3)
MD MAD

SMOS L2 SMOS-IC SMAP L2 SMAP L4 SMOS L2 SMOS-IC SMAP L2 SMAP L4

Satellite−5 cm 0.030 −0.027 0.039 0.009 0.092 0.083 0.080 0.058

Satellite−10 cm 0.012 −0.045 0.021 −0.009 0.094 0.094 0.081 0.065

Satellite−20 cm 0.009 −0.048 0.018 −0.012 0.094 0.097 0.080 0.064

(Satellite−10 cm) −
(Satellite−5 cm) −0.018 −0.018 −0.018 −0.018 0.002 0.011 0 0.007

(Satellite−20 cm) −
(Satellite−10 cm) −0.003 −0.003 −0.003 −0.003 0 0.003 −0.001 −0.001

(Satellite−20 cm) −
(Satellite−5 cm) −0.021 −0.021 −0.021 −0.021 0.002 0.014 0 0.006

Satellite−5.08 cm 0.038 −0.020 0.031 0.001 0.098 0.095 0.075 0.078

Satellite−10.16 cm 0.020 −0.039 0.012 −0.017 0.100 0.100 0.080 0.083

Satellite−20.32 cm −0.001 −0.060 −0.008 −0.038 0.090 0.102 0.069 0.068

(Satellite−10.16 cm) −
(Satellite−5.08 cm) −0.018 −0.019 −0.019 −0.018 0.002 0.005 0.005 0.005

(Satellite−20.32 cm) −
(Satellite−10.16 cm) −0.021 −0.021 −0.020 −0.021 −0.010 0.002 −0.011 −0.015

(Satellite−20.32 cm) −
(Satellite−5.08 cm) −0.039 −0.040 −0.039 −0.039 −0.008 0.007 −0.006 −0.010

In the separate comparison, MD reflected the numerical characteristics of each satellite
product well. It continued to grow in a negative direction with the increase in depth, regard-
less of whether it started out positive or negative. The dry bias of SMOS L2, the enhanced
dry bias of SMOS-IC, the strong wet bias of SMAP L2, and the modified wet bias of SMAP
L4 were clearly visible. The depth difference between 10 and 5 cm (−0.19~−0.18 m3/m3)
was much larger than that between 20 and 10 cm (−0.07~−0.05 m3/m3), while the dif-
ference between 20.32 and 10.16 cm (−0.25~−0.23 m3/m3) was somewhat larger than
that between 10.16 and 5.08 cm (−0.18~−0.15 m3/m3), also reflecting the stratification
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characteristics of soil moisture. The MAD is actually the mean absolute cumulative differ-
ence, which increased slightly with depth. Focusing only on the first two layers, SMAP
L4 always had the smallest MAD, while the largest MAD values were observed for SMAP
L2 in the 5/10 group and SMOS L2 in the 5.08/10.16 group, respectively; the difference
between 5/5.08 cm and 10/10.16 cm was slightly larger than that between 10/10.16 and
20/20.32 cm.

These results were further confirmed in the simultaneous comparison. MD also
showed negative growth with depth, but the four satellite products behaved somewhat
differently than in the separate comparison. SMOS L2 turned the dry bias into a wet bias,
while SMAP L4 showed the opposite trend in the 5/10/20 cm group. SMOS-IC weakened
the dry bias in the 5.08/10.16/20.32 cm group, and SMAP L2 weakened its wet bias in the
5/10/20 cm group. However, the interlayer difference remained stable, suggesting that,
although the samples were screened in strict temporal matching, their inherent pattern
did not change. MAD appeared to be slightly smaller in the simultaneous comparison, a
ranking of the four satellite products could also be established, but there was still a lack
of regularity.

4. Discussion

4.1. The Vertical Distribution Pattern of Surface Soil Moisture

The stratification characteristics of soil moisture (5/10/20, 5.08/10.16/20.32 cm) were
studied from three aspects: single-layer distribution, interlayer correlation, and interlayer
difference. The fact that soil moisture in the upper layers was less than that in the lower lay-
ers seemed to be a stable distribution pattern, as the negative difference (upper–lower) dom-
inated, and to some extent, this can be regarded as a natural response to gravity. The small
increase in the mean positive difference (0.020/0.024/0.028 vs. 0.037/0.036/0.040 m3/m3)
should be noted, as it probably indicated that the soil moisture was close to or at saturation,
in other words, that the maximum water capacity of this layer had been reached. The
reverse growth reflected by the positive difference could be caused by external random
conditions such as precipitation and can be considered an unconventional distribution
pattern. Land cover and soil properties appeared to be the main determinants of the verti-
cal distribution of soil moisture, particularly for shallow layers, where the effect of land
cover may be greater. These two static variables were coupled and together determine the
water-holding capacity of the soil. In conclusion, the absolute values of the positive and
negative differences in soil moisture between the layers were very close to or even greater
than 0.04 m3/m3, indicating that there was significant stratification in the vertical direction
and that the effect of depth mismatch on the validation and comparison of satellite soil
moisture products should be carefully considered.

4.2. The Difference between the Satellite Products and the In Situ Data

Land cover and soil properties of the sand and clay fractions were considered static
variables and were used as the key parameters in the soil moisture retrieval algorithm.
Quantification of the difference between the satellite soil moisture products and multilayer
in situ measurements under these conditions is expected to provide references for data
validation and algorithm optimization.

According to the separate comparison, the numerical difference showed that the
satellite soil moisture retrievals had lower values than the in situ measurements. The
dominance of the negative difference was likely to be the norm, and the background
causing the positive difference could also be precipitation, as it occurred randomly and
was mostly a persistent process, leading to an inverse distribution of soil moisture in the
vertical direction. Such cases complicate the setting of dynamic conditions and ancillary
information such as precipitation, temperature, and wetness, which in turn complicates the
retrieval of soil moisture. Therefore, the retrieval optimization should more focus on soil
moisture at higher levels, especially when the surface layer is high. It can be seen that the
differences between all four satellite products and the 5/5.08 cm in situ data were smaller
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than the differences between the four satellite products and 10/10.16 and 20/20.32 cm in
situ data. A common pattern can be observed in which both the correlation coefficient and
the numerical difference increased with the increase in depth.

In terms of simultaneous comparison, it is worth noting that, under each condition,
namely, land cover, sand fraction, clay fraction, and soil moisture background, the difference
between each satellite product varied with depth, but the order between them was roughly
the same at all depths. In each of the products, unique strategies are used for setting these
conditions in the soil moisture retrieval algorithm, which ultimately led to different results.
The depth mismatch can be related to two aspects in the validation of the satellite products.
The first was for the comparison between the satellite products and multilayer in situ data;
their difference varied with depth, and the effect of the mismatch was observed. The second
was for the comparison between the multisource satellite products; there was no significant
change in the relative magnitude of their difference when they were all compared to the
same in situ data at a given depth, and the mismatch effect may not be of concern.

In fact, the brightness temperature (TB, L1) was the common source of the soil mois-
ture product at higher levels (L2 and L4). The reasons for the difference between the
TB observations of SMOS and SMAP may be mainly due to their detection mechanism,
hardware implementation, and reconstruction methods. However, the results of this study
showed that the pattern of difference between the four satellite products and the multilayer
in situ data did not change significantly with land cover, soil properties, and soil moisture
background, which meant that the difference in penetration depth due to the observa-
tion conditions may not be large enough to cause the difference between the satellite soil
moisture products.

5. Conclusions

Based on the ISMN multilayer in situ data (5, 10, 20, 5.08, 10.16, and 20.32 cm), the
stratification characteristics of soil moisture were studied in this paper, and then SMOS
(SMOS L2 and SMOS-IC) and SMAP (SMAP L2 and SMAP L4) soil moisture products were
compared with the in situ data.

It was found that the soil moisture in the lower layers was usually higher than
that in the upper layers, and there was a very significant hierarchical distribution in
the vertical direction. The negative and positive differences of soil moisture between
the layers were −0.042/−0.67~−0.024/−0.44 and 0.020/0.036~0.028/0.040 m3/m3, re-
spectively, which were close to or even greater than the nominal retrieval accuracy of
0.04 m3/m3 of SMOS and SMAP. The comparison showed that the correlation coefficient
between the satellite products and the 5/5.08 cm in situ data was the highest, and their
numerical difference was the smallest. The mismatch induced by using the 10/10.16 or
20/20.32 cm in situ data as a substitute was about −0.019~−0.018/−0.18~−0.015 m3/m3

and −0.026~−0.023/−0.043~−0.039 m3/m3 in the mean difference, respectively.
The mismatch of multisource data was mainly in the form of temporal, spatial, and

depth mismatch. In previous studies, the influence of the temporal mismatch of SMOS and
SMAP was found to be much smaller than the nominal retrieval accuracy of the satellites
and can be safely ignored. The depth mismatch was analyzed in this study. It appeared to
be larger than the temporal mismatch, according to the numerical differences.

Some shortcomings need to be mentioned. First, under the strict temporal matching,
the sample size was too small to support a comparison of the sensitivity to the depth
mismatch between satellite products. Second, the comparison between satellite products
and multilayer in situ data was only formal, and their numerical differences could be due
to multiple effects caused by external conditions such as precipitation, temperature, and
wind, leaving much room for further research.
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Abstract: Passive microwave remote sensing of soil moisture (SM) requires a physically based
dielectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant.
Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA
Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) missions.
However, Mironov 2009 suffers a challenge in deriving SM over organic soils, as it does not account for
the impact of soil organic matter (SOM) on the soil bulk dielectric constant. To this end, we presented
a comparative performance analysis of nine advanced soil dielectric models over organic soil in
Alaska, four of which incorporate SOM. In the framework of the SMAP single-channel algorithm
at vertical polarization (SCA-V), SM retrievals from different dielectric models were derived using
an iterative optimization scheme. The skills of the different dielectric models over organic soils
were reflected by the performance of their respective SM retrievals, which was measured by four
conventional statistical metrics, calculated by comparing satellite-based SM time series with in-situ
benchmarks. Overall, SM retrievals of organic-soil-based dielectric models tended to overestimate,
while those from mineral-soil-based models displayed dry biases. All the models showed comparable
values of unbiased root-mean-square error (ubRMSE) and Pearson Correlation (R), but Mironov 2019
exhibited a slight but consistent edge over the others. An integrated consideration of the model
inputs, the physical basis, and the validated accuracy indicated that the separate use of Mironov 2009
and Mironov 2019 in the SMAP SCA-V for mineral soils (SOM <15%) and organic soils (SOM ≥15%)
would be the preferred option.

Keywords: soil moisture; dielectric models; SMAP; soil organic matter

1. Introduction

Passive microwave remote sensing is considered the most suitable tool for mapping
spatial soil wetness, owing to the negligible atmospheric influence and less interference
from canopy and surface roughness [1,2]. The remarkable performance of soil moisture
(SM) retrievals from spaceborne L-band radiometers (i.e., soil moisture and ocean salinity
(SMOS) [3] and soil moisture active passive (SMAP) [4]) has been substantiated by a number
of validation studies [5–9]. The mechanism that physically bridges the surface emission
at microwave bands and surface SM is based on the contrasting difference between the
dielectric constants of liquid water (~80) and dry soil (~4) [10]. The dielectric model that
quantitatively links the SM with the bulk dielectric constant of the soil–water–air system is
therefore critical in the retrieval algorithms of SMOS and SMAP.

Recently, numerous dielectric models were developed and applied for both spaceborne
microwave radiometers and in-situ electromagnetic sensors [11]. An ideal dielectric model

Remote Sens. 2023, 15, 1658. https://doi.org/10.3390/rs15061658 https://www.mdpi.com/journal/remotesensing
31



Remote Sens. 2023, 15, 1658

is envisioned, to accurately account for the dielectric response of wet soils as a function of
all the relevant factors, including soil compaction, soil composition, the fraction of bound
and free water, salinity, soil temperature, soil particle size distribution, and observation
frequency, etc. [12]. However, the practical dielectric models are often established on a
limited set of soil properties and are unable to approximate proper dielectric constants for all
the surface conditions. Previous studies found that applying mineral-soil-based dielectric
models over organic soils could lead to a substantial underestimation of SM [11]. [13]
revealed a significant drop in SMAP retrieval quality in regions with soil organic carbon
(SOC) exceeding 8.72%. Given that Mironov 2009 [14], currently used in the SMOS and
SMAP operation algorithms, was developed exclusively on samples of mineral soils, an
update on the dielectric model that incorporates the effect of soil organic matter (SOM) is
pressingly required for areas with organic-rich soils.

The influence of SOM on the bulk dielectric constant of the soil–water system is often
summarized in two aspects. First, organic substrates have larger specific surface areas
than minerals, indicating that organic soil has a higher fraction of bound water relative to
mineral soil, when they contain the same amount of water [11,15,16]. As such, at the same
moisture, the dielectric constant of organic soil tends to be lower than that of mineral soil,
as the dielectric constant of bound water is much smaller than that of free water. Second,
organic soil is often marked by a larger porosity than mineral soil, due to its complex
structure [11,15–17]. Based on these principles, several organic-soil-based dielectric models
have been developed in recent years.

Although model developers pointed out the potential applicability of their models in
the retrieval of SM, assessment of the efficacy of these newly developed organic-soil-based
dielectric models in the derivation of passive microwave remote sensing of SM has not
been widely carried out. In light of these considerations, nine advanced dielectric mixing
models were selected and tested in the context of the SMAP single-channel algorithm at
vertical polarization (SCA-V) [18]. This study has two major objectives: (1) present the
differences between the available mineral- and organic-soil-based models, in describing the
complex dielectric behaviors of wet soils under various SOM conditions; and (2) evaluate
their performance in organic-rich soils. The latter was achieved by comparing the SCA-V
SM retrievals from different models against in-situ measurements scattered over Alaska,
where the soils are identified with a noticeably higher SOM (~25%) relative to the global
average level (Figure A1). The dielectric models considered here have been classified as
mineral-soil-based dielectric models, including Wang 1980 [19], the semi-empirical Dobson
1985 modified by Peplinski 1995 [12,20] (hereafter Dobson 1985), the prevalent Mironov
2009 [14], Mironov 2012 [21], and Park 2017 [22], and organic-soil-based dielectric models,
including the natural log fitting model in [11] (hereafter Bircher 2016), Mironov 2019 [23],
Park 2019 [16], and Park 2021 [24].

As introduced earlier, five mineral-soil-based dielectric models were selected for a
comprehensive survey of diverse models in the framework of the SMAP SCA-V algorithm
over organic-rich soils. Two of them, Mironov 2013 and Park 2017, have not been widely
examined under the SMOS and SMAP schemes [22,25]. In contrast, the other three classic
models have been extensively assessed in wide domains covered by mineral soils [26–28].
However, their performances over regions with high SOM proportions have not been
well-studied and compared with those of dedicated organic-soil-based models. In addition
to water volume, mineral-soil-based models primarily focus on the influence of soil texture,
commonly characterized by sand, clay, and silt. Yet, organic-soil-based models place a
greater emphasis on the SOM effect. Mironov 2019, for example, describes all parameters
as functions of SOM rather than the clay percentage used in Mironov 2009 [23]. Therefore,
incorporating more mineral- and organic-soil-based models may also help to construct
an impression of their systematic differences when describing the dielectric behaviors of
organic soils.

The paper is organized as follows. In Section 2, all the data sets and preprocessing
steps are presented. Next are the workflow of in-situ measurements screening and the

32



Remote Sens. 2023, 15, 1658

partial SMAP SCA-V retrieval process used to derive the SM from the identical observations
and different models (Section 3). The results of the synthetic experiments, validation conse-
quences over Alaska, and a detailed discussion are subsequently displayed in Section 4.
Finally, the conclusions are followed by a brief summary presented in Section 5.

2. Data

2.1. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8

Launched on 31 January 2015, the SMAP mission was designed to map high-resolution
SM and freeze/thaw state by combining the attributes of L-band radar and radiometer.
However, the SMAP SM products presently rely on radiometer observations alone, due
to an unexpected malfunction of the SMAP radar in July 2015. With an average revisit
frequency of two to three days, the SMAP sensors cross the Equator at the local solar times
of 6 a.m. and 6 p.m.

SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8 (SMAP
V8) [29] was adopted in this study. Here, we only used the descending (6 a.m.) SM retrievals
derived using the SCA-V algorithm. A series of masking procedures were utilized to avoid
the application of SM retrievals of low accuracy and high uncertainty. Specifically, only
the retrievals flagged as the “recommended quality” were retained and employed in the
later analysis. Given Alaska, the focused region of this study, is located in the high-latitude
portion with a long-term frozen duration, we only considered those qualified SM retrievals
within the time intervals from June to August, between 2015 and 2021.

One noticeable improvement in SMAP V8 (relative to the older version) is the update
and extension of gridded soil parameters, ranging from SOC, silt and sand fractions to
bulk density. These newly added soil attributes originate from the SoilGrid 250 m [30] and
replace the earlier patched version composed of the National Soil Data Canada (NSDC),
the State Soil Geographic Database (STATSGO), the Australia Soil Resources Information
System (ASRIS), and the Harmonized World Soil Database (HWSD) [31]. Since these soil
attributes are often necessary inputs for dielectric models of soil, they were also extracted
from the SMAP V8.

2.2. In-Situ Soil Moisture Measurements

Ground-based SM measurements over Alaska were employed as benchmarks to
assess the skills of the diverse dielectric mixing models. Historical files of soil water
content observed by in-situ sensors were first downloaded from the Natural Resources
Conservation Service (NRCS), the National Water and Climate Center (NWCC) homepage
(https://www.nrcs.usda.gov/wps/portal/wcc/home (accessed on 7 April 2022)). At
present, there are more than 40 operating stations from the Snow Telemetry (SNOTEL) [32]
and Soil Climate and Analysis Network (SCAN) [33]. These stations are able to monitor
the sub-daily variations of SM and many other climatic variables in near real time.

However, some typical errors [34] of in-situ SM readings, such as breaks and plateaus,
were found before their application. As a response, the other authoritative data source of
in-situ SM, the International Soil Moisture Network (ISMN) [35,36], was also considered,
aiming at incorporating its flag information. Given the limited stations in Alaska, it is
expected that SM data from the above two sources (NWCC and ISMN) are mostly from the
same set of stations. Additionally, for the same station, the observed SM time series from the
NWCC and ISMN should be identical, as the ISMN only gathers data and harmonizes them
in units and time steps, without extra data processing. Given the frequently abnormal SM
readings (even after adopting the quality flag) and the necessity of checking the consistency
of SM measurements from two different sources, several rigorous pre-checking procedures
were applied (as described in Section 3.1) to filter out those suspicious observations where
possible in advance.
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3. Methodology

3.1. Preliminary Examination of In-Situ Measurements

The quality of in-situ SM data is of great importance, as these ground measurements
are generally seen as the benchmark for evaluating remotely sensed and/or modeled
SM data sets [5–7]. However, monitoring SM dynamics over high-latitude regions is still
challenging, due to the long-term frozen periods and harsh environments. Such difficulties
have been reflected by the flat limbs and breaks frequently occurring in the SM time series
from the Alaskan stations. Given those, a careful examination of in-situ SM measurements
is necessary.

The general workflow of the preliminary examination steps is delineated in Figure 1.
Specifically, the in-situ SM data measured at the local time of 6 a.m. and 6 p.m. (temporally
align with the SMAP overpass time) were first extracted from the NWCC and ISMN
stations. SM measurements with the corresponding land surface temperature below 4 ◦C
were excluded, as [6] demonstrates that some sensors begin to behave abnormally under
this temperature. Meanwhile, the utilization of such a threshold would also be helpful
to filter out those SM measurements likely obtained during a period of active thawing
and re-freezing, where SM fluctuations are excessively unstable (e.g., Figure 3c in [34]).
Additionally, stations with a distance shorter than 36 km to large water bodies or oceans
were also masked, as the SMAP SM over those regions is likely influenced by water
contamination. The flag information from the ISMN was also incorporated to filter the
in-situ data of low quality.

Figure 1. Flow chart of the preliminary examination of Alaskan in-situ soil moisture obtained from
the NWCC and ISMN.

The matched SM data of the overlapped stations from the NWCC and ISMN are antic-
ipated, and this greater consistency further enhances the reliability of these benchmarks.
Therefore, an automatic consistency checking procedure, constrained by three requirements,
was applied. Since breaks and plateaus still appeared on the SM time series after consis-
tency checking, a manual visual inspection was then performed to screen these suspicious
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measurements. After those, there were 21 qualified stations left, and we assumed that their
SM data from the NWCC and ISMN are interchangeable. Furthermore, pairing with the
SMAP observations removed nine stations, and the remaining 12 stations (Figure S1) were
used in the later validation steps.

3.2. Derivation of Soil Moisture from Various Dielectric Models

In the SCA-V algorithm, the SMAP SM value is determined when there is a minimized dif-
ference between the simulated and the observed reflectivity (rsmap) (reflectivity = 1 − emissivity)
of smooth soil. At each temporal step, the value of rsmap over a pixel is fixed, as the SMAP SCA
algorithm determines the radiative contribution from the canopy layer and the impact of surface
roughness before subtracting them from SMAP observed surface brightness temperature (TB).
Hence, the influence of adopting different dielectric constant models on SM retrievals can be
examined using the iterative feedback-loop procedure, to minimize the difference between the
simulated reflectivity (rest) and rsmap, and without the need to construct the whole process from
SM to TB, in consideration of simplicity.

However, rsmap is an intermediate product and unavailable in the original SMAP
data set. Given this, the values of rsmap were first estimated leveraging SMAP SM and
Mironov 2009. With these benchmarks, the SM retrievals of other dielectric models were
then acquired based on the optimization flow described in Figure 2. Notably, the SM
retrieval at a given time point is reproducible when the identical rsmap and model are used.

 

Figure 2. Flow chart that describes the retrieval of soil moisture using different dielectric models,
based on identical SMAP observations.

3.3. Performance Metrics

The capability of the remote sensing SM data set has been described by four conven-
tional metrics, which are bias, root-mean-square error (RMSE), unbiased root-mean-square
error (ubRMSE), and the Pearson Correlation (R) [37]. These metrics could effectively reflect
the discrepancies in terms of magnitude, as well as the links of the temporal evolutions
between the SM estimations and the ground truth. The formulas used to compute these
metrics are shown in Equations (1)–(4), where E [ . . . ] represents the arithmetic mean; and
σopt and σref denote the standard deviations of SM retrievals of the respective dielectric
models and in-situ measured SM.

bias = E[smret]− E[smref] (1)
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RMSE =

√
E
[
(smret − smref)

2
]

(2)

ubRMSE =

√
RMSE2 − bias2 (3)

R =
E[(smret − E[smret])(smref−E[sm ref])]

σretσref
(4)

4. Results and Discussion

4.1. Simulated Brightness Temperature of Smooth Soil through Synthetic Experiments

Synthetic experiments have the capability to afford complete dielectric responses to a
whole SM range, by artificially controlling all the inputs required for the dielectric models
(Table 1). With the SOM increasing from 0% to 75% at a step of 15%, the differences between
the dielectric constants estimated by mineral- and organic-soil-based dielectric models were
explored. These various dielectric responses were further transferred to their corresponding
thermal radiations of smooth soils, represented by the vertically polarized TB.

Table 1. Input variables required for the nine dielectric models.

Model
Inputs

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Soil
Moisture

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Gravimetric
Soil

Moisture
(g/g)

Volumetric
Soil

Moisture
(m3/m3)

Volumetric
Soil

Moisture
(m3/m3)

Soil
Organic
Matter

/ / / / / /

Gravimetric
Soil

Organic
Matter (%)

Gravimetric
Soil

Organic
Matter (%)

Gravimetric
Soil

Organic
Matter (%)

Clay
Gravimetric

Clay
Fraction

(0–1)

Gravimetric
Clay

Fraction
(0–1)

Gravimetric
Clay

Fraction
(%)

Gravimetric
Clay

Fraction
(%)

Volumetric
Clay

Fraction
(0–1)

/ /
Volumetric

Clay
Fraction

(0–1)

Volumetric
Clay

Fraction
(0–1)

Sand
Gravimetric

Sand
Fraction

(0–1)

Gravimetric
Sand

Fraction
(0–1)

/ /
Volumetric

Sand
Fraction

(0–1)
/ /

Volumetric
Sand

Fraction
(0–1)

Volumetric
Sand

Fraction
(0–1)

Silt / / / /
Volumetric

Silt
Fraction

(0–1)
/ /

Volumetric
Silt

Fraction
(0–1)

Volumetric
Silt

Fraction
(0–1)

Bulk
Density

Bulk
Density
(g/cm3)

Bulk
Density
(g/cm3)

/ / / /
Bulk

Density
(g/cm3)

/ /

Frequency / Frequency
(Hz)

Frequency
(Hz) / Frequency

(Hz) / / Frequency
(Hz)

Frequency
(Hz)

Salinity / / / / Salinity
(‰) / / Salinity

(‰)
Salinity

(‰)

Soil
Temperature /

Soil
Temperature

(◦C)
/

Soil
Temperature

(◦C)

Soil
Temperature

(◦C)
/

Soil
Temperature

(◦C)

Soil
Temperature

(◦C)

Soil
Temperature

(◦C)

Total
Number of

Inputs
4 6 3 3 7 1 4 8 8

Figure 3 presents the TB curves derived using different dielectric models, across the
range of SM from 0 to 0.8 m3/m3. Generally, the TB values estimated using organic-
soil-based models are greater than those derived using the mineral-soil-based models,
particularly when SOM exceeds 15% and the SM is higher than 0.1 m3/m3. In other words,
the SM retrievals from organic-soil-based models tend to be wetter than the SM retrievals
from mineral-soil-based models (e.g., Mironov 2009) given the same surface reflectivity (or
TB) of bare, smooth soil. The discrepancies between the simulated TB magnitudes from
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mineral- and organic-soil-based models further grow with the increase of SOM (Figure 3).
However, it should be noted that the estimated dielectric constants and their subsequent TB
values from mineral-soil-based models do not vary with SOM. The higher SM estimations
of organic-soil-based models relative to mineral-soil-based models could be attributed to
the fact that these organic-soil-based models assume a higher volumetric proportion of
bound water [11,15,16]. When the SOM is at 15% (and below), the simulated TB curves from
all the considered models are clustered together, bounded by Dobson 1985 and Bircher 2016
(Figure 3b). Therefore, the SOM of 15% might be treated as an appropriate demarcation
point for the separate use of mineral- and organic-soil-based dielectric models over mineral
soils and organic soils.

 

Figure 3. Simulated brightness temperature of a silty clay with various soil organic matter, and the
accompanying table displays all the input values, where most soil parameters were directly taken
from the sample of silty clay used in [38]. (a–f) represent the simulated brightness temperature curves
variations across various soil organic matter with an increase step of 15%.

Moreover, similar features of the TB curves of those considered dielectric models
have been observed when a sandy sample is tested (Figure S2). Such a stable-magnitude
discrepancy between the red curves (organic models) and the blue curves (mineral models)
under contrasting textures (sandy and clay soils) can be attributed to the insensitivity
of the organic-soil-based dielectric models to soil texture. For example, Mironov 2019
only accounts for the effects of soil moisture, SOM, and soil temperature on the dielectric
permittivity of organic soils (Table 1). Although Park 2019 and Park 2021 incorporate both
textural and SOM information, the differences in their estimated TB values from sandy and
clay samples seem insignificant under the same SOM level (Figures 3 and S2).

Compared to Mironov 2019, the influence of organic content on the simulated TB
magnitude seem more pronounced for Park 2019 and Park 2021. When the SOM increases
from 0% to 75% and the SM values are smaller than 0.5 m3/m3, the TB curve of Park 2021
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jumps from the bottom to the top line, with a varying amplitude on the order of tens of
Kelvins (Figure 3). In contrast, as a response to the growing SOM, the estimations from
Mironov 2019 slowly move upward, approaching the TB curve of Bircher 2016. According
to Figure 3e,f, there is a rapidly dropping segment on the TB curve of Park 2019. Such
abnormal dielectric behavior can be attributed to the improper formulas used to calculate
the wilting point and porosity, with a detailed explanation in Section 4.4.

4.2. Evaluation of Dielectric Models over In-Situ Sites in Alaska

Here, SM measurements from 12 sites served as benchmarks to evaluate the skills of the
multiple dielectric models in the setting of SMAP observations and the SCA-V algorithm.
Before inter-comparison, it was found that the assessment metrics of the satellite-based
SM retrievals over the same pixel could vary a lot in different years. Using the time series
in Monument Creek as an instance (Figure 4), the R values ranged from 0.18 (2017) to
0.69 (2015). Hence, the obtained metrics (Tables 2–4) averaged over multiple years of each
station might be underrated, as they may have been compromised by abnormal behavior
in one year. Additionally, the amplitudes and frequencies of in-situ SM variations are
often more pronounced relative to the SM retrievals, as the latter reflects the changes over
a coarse spatial extent (Figure 4). SM variations at local scales often cannot be captured
by the 36 km-scale SM retrievals, due to the omission of spatial variability within the
footprint-scale area. As noted by [39], spatial mismatching between satellite SM retrievals
and point-scale in-situ measurements could adversely impact the perceived accuracy of
SMAP observations.

Figure 4. Time series of soil moisture derived from satellite observations and in-situ measurements at
Monument Creek (65.18◦ N, 145.87◦ W). (a–g) describe the soil moisture variations of SMAP retrievals
and ground measurements from 2015 to 2021.
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Table 2. Bias of soil moisture retrievals using various dielectric models over in-situ sites in Alaska,
where biases from mineral- and organic-soil-based models tend to underestimate and overestimate
relative to in-situ measurements.

Station/Bias
(m3/m3)

N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Gulkana
River 72 0.058 0.025 0.046 0.044 0.039 0.195 0.142 0.104 0.085

Spring
Creek 37 −0.108 −0.153 −0.137 −0.137 −0.139 −0.022 −0.051 −0.105 −0.109

Atigun
Pass 81 0.047 −0.002 0.015 0.016 0.009 0.092 0.092 0.044 0.061

Coldfoot 156 −0.085 −0.133 −0.121 −0.121 −0.124 −0.030 −0.036 −0.083 −0.067

Eagle
Summit 320 −0.028 −0.068 −0.062 −0.061 −0.068 0.014 0.017 −0.033 −0.015

Gobblers
Knob 262 0.031 −0.010 −0.003 −0.003 −0.007 0.096 0.083 0.039 0.055

Monahan
Flat 121 −0.047 −0.093 −0.076 −0.077 −0.081 0.035 0.009 −0.029 −0.029

Monument
Creek 405 0.018 −0.022 −0.014 −0.014 −0.016 0.091 0.073 0.029 0.041

Mt.
Ryan 194 0.114 0.078 0.082 0.082 0.080 0.196 0.172 0.132 0.142

Munson
Ridge 383 0.018 −0.019 −0.015 −0.015 −0.016 0.096 0.075 0.034 0.045

Tokositna
Valley 253 0.014 −0.008 −0.006 −0.008 −0.008 0.147 0.093 0.062 0.046

Upper
Nome
Creek

283 −0.138 −0.180 −0.171 −0.171 −0.176 −0.086 −0.091 −0.138 −0.120

Mean 214 −0.009 −0.049 −0.038 −0.039 −0.042 0.069 0.048 0.005 0.011

Where the column of the number in bold font represents the dielectric model with the smallest absolute bias in
that station or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and
in-situ SM measurements used to calculate the bias for each station.

Table 3. ubRMSE of soil moisture retrievals using various dielectric models over in-situ sites in Alaska.

Station/ubRMSE
(m3/m3)

N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Gulkana River 72 0.0132 0.0164 0.0156 0.0154 0.0152 0.0209 0.0180 0.0169 0.0138

Spring Creek 37 0.0460 0.0457 0.0452 0.0454 0.0455 0.0408 0.0428 0.0446 0.0462

Atigun Pass 81 0.0311 0.0311 0.0311 0.0311 0.0311 0.0317 0.0311 0.0310 0.0310

Coldfoot 156 0.0736 0.0736 0.0736 0.0736 0.0736 0.0743 0.0737 0.0739 0.0737

Eagle Summit 320 0.0487 0.0490 0.0487 0.0487 0.0487 0.0480 0.0477 0.0482 0.0481

Gobblers Knob 262 0.0665 0.0663 0.0660 0.0662 0.0662 0.0622 0.0643 0.0628 0.0637

Monahan Flat 121 0.0722 0.0721 0.0720 0.0721 0.0721 0.0714 0.0718 0.0715 0.0722
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Table 3. Cont.

Station/ubRMSE
(m3/m3)

N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Monument
Creek 405 0.0510 0.0509 0.0508 0.0508 0.0508 0.0505 0.0503 0.0504 0.0503

Mt. Ryan 194 0.0163 0.0177 0.0173 0.0172 0.0173 0.0262 0.0186 0.0237 0.0187

Munson Ridge 383 0.0499 0.0492 0.0490 0.0492 0.0492 0.0465 0.0475 0.0467 0.0478

Tokositna Valley 253 0.1295 0.1296 0.1295 0.1295 0.1296 0.1298 0.1294 0.1296 0.1296

Upper Nome
Creek 283 0.0122 0.0126 0.0124 0.0123 0.0126 0.0196 0.0129 0.0163 0.0160

Mean 214 0.0509 0.0512 0.0509 0.0510 0.0510 0.0518 0.0507 0.0513 0.0509

Where the column of the number in bold font represents the dielectric model with the best ubRMSE in that station
or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and in-situ SM
measurements used to calculate the ubRMSE for each station.

Table 4. R of soil moisture retrievals using various dielectric models over in-situ sites in Alaska.

Station/R N

Mineral Soil Based Models Organic Soil Based Models

Wang
1980

Dobson
1985

Mironov
2009

Mironov
2013

Park
2017

Bircher
2016

Mironov
2019

Park
2019

Park
2021

Gulkana
River 72 0.605 0.596 0.607 0.604 0.599 0.608 0.621 0.603 0.601

Spring
Creek 37 0.757 0.737 0.758 0.752 0.745 0.757 0.805 0.752 0.746

Atigun
Pass 81 0.342 0.348 0.344 0.344 0.344 0.341 0.333 0.347 0.347

Coldfoot 156 0.205 0.205 0.204 0.204 0.205 0.206 0.199 0.202 0.208

Eagle
Summit 320 0.375 0.353 0.372 0.376 0.368 0.376 0.429 0.368 0.372

Gobblers
Knob 262 0.571 0.557 0.571 0.570 0.564 0.571 0.603 0.575 0.577

Monahan
Flat 121 0.276 0.273 0.275 0.274 0.274 0.277 0.275 0.284 0.276

Monument
Creek 405 0.407 0.401 0.406 0.405 0.404 0.409 0.413 0.406 0.418

Mt.
Ryan 194 0.604 0.595 0.604 0.601 0.599 0.605 0.624 0.604 0.601

Munson
Ridge 383 0.608 0.597 0.606 0.604 0.602 0.610 0.624 0.611 0.611

Tokositna
Valley 253 0.177 0.171 0.174 0.172 0.170 0.172 0.176 0.172 0.171

Upper
Nome
Creek

283 0.416 0.398 0.418 0.420 0.410 0.416 0.477 0.421 0.416

Mean 214 0.445 0.436 0.445 0.444 0.440 0.446 0.465 0.445 0.445

Where the column of the number in bold font represents the dielectric model with the best R in that station
or mean, and ‘N’ in the second column represents the total number of paired SMAP retrievals and in-situ SM
measurements used to calculate the R for each station.

Assessment metrics of the SM retrievals derived using identical rsmap values and
different dielectric models were computed by their temporally paired in-situ measure-
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ments. According to Table 2, the SM estimates from mineral-soil-based models tend to
underestimate, while the organic-soil-based models generally exhibit wet biases compared
to the ground recordings. In terms of both ubRMSE and R (Tables 3 and 4), all the models
show comparable accuracy levels, similar to the previous results in [27], whereas Mironov
2019 displays a slight but consistent edge over the other models. Compared to the other
dielectric models, the modest improvement in R of Mironov 2019 was likely due to its
simultaneous consideration of bulk density and SOM effects [23].

The other aspect that we attempted to evaluate for the predictive power of various
dielectric models was checking the correlations between the SM retrievals of different
models and SMAP observed vertically polarized TB. If the higher absolute R values between
the time series of SM and SMAP vertically polarized TB are assumed as a criterion that
reflects the better skill of a dielectric mixing model, Mironov 2019 presents an overwhelming
superiority over the other models in the 765 Alaskan pixels (Figure 5). Table S2 displays
that in-situ measured SM usually has a lower correlation with SMAP vertically polarized TB
relative to the correlations between satellite-based SM retrievals and SMAP TB. However,
it should be noted that such correlation-based results were inconclusive and functioned as
a reference only, since the impacts of vegetation disturbance and surface roughness were
entirely ignored.

Figure 5. Boxplots of the absolute correlations between the soil moisture retrievals from various di-
electric mixing models and the SMAP vertically polarized brightness temperature over the 765 pixels
in Alaska. (a) and (b) represent the boxplots of absolute R values from 2015 to 2018 and 2019 to
2021, respectively.

4.3. A Global Intercomparison between Mironov 2009 and Mironov 2019

Mironov 2009 and Mironov 2019 were selected as the representatives for mineral- and
organic-soil-based dielectric models and were then compared with each other at the global
scale using one-week SMAP observations from 2 July 2018 to 8 July 2018. The one-week
SM retrievals of Mironov 2009 and Mironov 2019 were analyzed over more regions with
abundant SOM and were also used to acquire performance clues for applying Mironov
2019 to mineral soils.

According to Figure 6a,b, satellite-based SM data are usually unavailable in many
areas characterized by organic-rich soils, likely owing to dense boreal forests, steep surface
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roughness, as well as permanently frozen soils on the land surface [11,40]. The magnitude
differences between Mironov 2009 and Mironov 2019 yielded SM retrievals are commonly
above 0.05 m3/m3 generally when the SOM is over 10% (Figure 6b,e). In the case of extreme
dryness (SM < 0.1 m3/m3) over mineral soils (SOM < 5%), the SM retrievals from Mironov
2019 are likely lower than those from Mironov 2009. As illustrated in Figure 6d, there
is a limb where the SM retrievals of Mironov 2019 are nearly constant, while those from
Mironov 2009 vary, possibly because of the soil texture.

Figure 6. A global intercomparison of soil moisture retrievals from Mironov 2009 and Mironov 2019:
(a) the spatial distribution of soil organic matter (SOM) in percentage from a north polar view, (b) the
spatial distribution of mean differences between soil moisture estimations using Mironov 2009 and
Mironov 2019 (bias = SM Mironov2019 − SM Mironov2009), (c) the probability distribution function of
weekly mean soil moistures derived using the above two models, (d) scatterplot of soil moisture using
both models across the globe, where the color bar shows the number of pixels, and (e) boxplot that
describes the bias variations along with the increase of SOM that was organized into 6 groups (g1–g6).
The organic range of each group is 0–5% (g1), 5–10% (g2), 10–15% (g3), 15–20% (g4), 20–30% (g5), and
>30% (g6).

4.4. Discussion
4.4.1. The Applicable Range of Dielectric Models

Although the above validation results over in-situ sites in Alaska demonstrated the
slightly better performance of Mironov 2019 over the other models, it may be not the best
model across all landscapes and climatic conditions. The accuracy of a dielectric model
heavily depends on its respective applicable range. A dielectric model is likely to acquire a
better performance score when being applied over the samples used to develop it. In other
scenarios, potential degradation of the model skill can be expected. For instance, when
Dobson 1985 is adopted in soils that fall beyond the prototypal soils on which Dobson
1985 was established, some unrealistic dielectric constants were yielded [14]. According to
SMAP configurations and parameters, the frequency is confined to 1.4 GHz, while most
pixels in Alaska show SOM values spanning from 15% to 30%. However, it should be noted
that Mironov 2019 was designed for a surface soil layer with SOM ranging from 35% to
80% [23]. Meanwhile, the natural log calibration function from [11] was proposed for highly
organic soils and the Decagon 5TE (in-situ sensor), which is operated at 70 MHz. Such
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imperfect alignments between the applicable ranges of dielectric models and the actual
settings are surprisingly common, possibly leading to underestimations of the quality of
these dielectric models.

4.4.2. Organic-Soil-Based Dielectric Models

Similar to other empirical dielectric models [41–46] accounting for the influence of
SOM, SOM itself is not treated as a necessary input in Bircher 2016 to derive the dielectric
constants of organic soils. Mironov 2019, however, incorporates the dielectric impacts of
SOM and soil bulk density, while omitting the clay fraction. In contrast, Park 2019 and
Park 2021 consider both mineralogy and SOM. Though comprehensive, the confidence in
representing the dielectric interactions among various soil properties and the quality of
those global-scale soil databases greatly limit the practical uses of Park models. For example,
SOM, as the most critical index for classifying mineral and organic soils, was estimated by
multiplying the SOC content by a fixed factor of 1.724 [23,47]. However, the conversion
factor between SOC and SOM is unlikely a global constant, while [47] pointed out that this
conversion factor would vary from 1.4 to 2.5 across different geographical regions.

Additionally, mineral-soil-based dielectric models are usually based on the assumption
that the soil is composed of sand, silt, and clay, and thus the summation of their fractions is
100% [12,19,22]. However, this assumption is likely inappropriate over organic-rich soils,
where SOM has a great gravimetric contribution. Here, the texture fractions extracted from
the SoilGrids250m [30] were normalized. As a result, the summation of minerals and SOM
currently exceeds 100%, while a further re-normalization is difficult to proceed with, as the
SOM contents (sometimes over 100%) were empirically estimated. Despite these issues,
at this time, these data sets might be the most practical sources to support running those
dielectric models over a wide spatial coverage. Therefore, a soil property data set that
can accurately describe the gravimetric relationship among sand, silt, clay, and SOM is
pressingly needed.

4.4.3. Limitations of In-Situ Benchmarks

Besides the limits of the model applicable range and the quality of input data sets
of soil properties, the other critical factor that directly affects the assessment results is
the quality of the benchmarks, i.e., in-situ SM measurements. As mentioned, breaks,
missing values, and jumps were commonly found during the examination of the in-situ
SM time series. Furthermore, many of the calibration functions used to deduce in-situ SM
values were designed for mineral soils only, due to the unavailability of organic-soil-based
calibration functions over those regions. As a result, in-situ SM values might have an
underestimation issue.

Due to the limited availability of in-situ measurements over Alaska, only one ground
station was selected as the regional benchmark for each validation pixel. However, the
estimated SMAP retrieval performance over these areas was likely degraded given the un-
matched spatial representatives and measuring depths between the passive microwave SM
derivations and ground measurements [39]. Additionally, inconsistent SM variations from
the radiometer snapshots and the ground sensors may have arisen during the transition
period between two years (e.g., from the end of August 2015 to the beginning of June 2016),
adversely affecting the validation metrics. In spite of these factors, this study presents an
evaluation that maximizes the use of existing data sets and can serve as a valuable reference
for further investigations as more data become available.

4.4.4. Characteristics of Park Models

Compared to the other conventional semi-empirical dielectric models [12,16,19,21–23],
Park models describe the fractions of bound water and free water differently [16,22,24].
First, Park models use the wilting point as the beginning point where free water starts to
occur, whereas other models set that value using an independent term, named maximum
bound water fraction. When the volumetric SM is between the maximum bound water
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fraction and porosity, most dielectric models fix the bound water content and the dielectric
contribution of bound water. However, in the same SM range, Park models assume that
the content of bound water and free water alters with the volumetric SM. Specifically, SM
is treated as a weighted summation of the bound water and free water, where the sum of
the weights of bound water (wb) and free water (wf) is constrained as one. It is assumed
that wb is one when SM is equal to the wilting point. On the contrary, wb declines to zero
when SM reaches porosity.

According to Figure 3e,f, there are a few rapid drops in the curves of Park 2019 and
Park 2021 when the SOM exceeds 60%. Such scenarios could be explained by the wilting-
point and porosity calculation equations used in Park 2019 and Park 2021. As shown
in Figure S3, the porosity equation of Park 2019 could lead to a porosity greater than
1m3/m3 when SOM ranges from 30% to 35%. Meanwhile, in Park 2019, the derived wilting
point could surpass the porosity when the SOM is over 60%. Although the above issues
were substantially mitigated for Park 2021 with valid magnitudes of its derived porosity
and wilting point, an evident bending near the wilting point could still be observed in
its simulated TB curves at highly organic soils. Therefore, caution should be paid when
applying Park 2019 and Park 2021 over organic-rich soils.

4.4.5. Selection of a Globally Optimal Combination of Dielectric Models

In general, Mironov 2019 can be concluded as the prime dielectric model for use in the
SMAP SCA-V algorithm over organic-rich soils. Similar to [27], such a determination was
not only yielded from the validation results, but also incorporated the input parameters
and configurations of various models. Specifically, Mironov 2019 requires fewer input
parameters compared to Park 2019 and Park 2021, making it less susceptible to the uncer-
tainties introduced by different soil property data sources, while accounting for the SOM
effects. Additionally, Mironov 2019 was developed based on a physically refractive mixing
dielectric model, where the parameters were calibrated and validated across several soil
samples, with a SOM ranging from 35% to 80% [23]. In contrast, Bircher 2016 was derived
from straightforward regression analyses between two measured variables, while Park 2019
and Park 2021 lack effective calibration [11,16,24]. Furthermore, Mironov 2019 consistently
demonstrated a slight edge over the other models, in terms of the averaged ubRMSE and
R. This accuracy advantage of Mironov 2019 would likely extend to other regions with
organic-rich soils (Figure A1), given similar climatic conditions and vegetation types with
Alaska [48,49].

While the operational SMAP retrieval algorithms apply a single dielectric model
globally [50], finding a universal dielectric model that outperforms the other models
across all possible conditions seems overambitious. As described above, mineral-soil-
based dielectric models do not include the SOM effect on soil dielectric constants, whereas
organic-soil-based models often ignore the influence of soil texture. Although Park 2019
and Park 2021 consider both soil texture and SOM, they are prone to higher errors, due
to a few improper formulations and excessive uncertainties introduced by various input
data sources. Hence, based on the previous studies [15,27] and the results obtained here,
the separate use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V algorithm over
mineral and organic soils is proposed. The selection of utilizing Mironov 2009 is somewhat
arbitrary, as Mironov 2009 has not been comprehensively assessed against Mironov 2013
and Park 2017 over mineral soils. The applicability of Mironov 2009 has been extensively
validated, and the use of Mironov 2009 will not further degrade the retrieval quality.

The simultaneous use of Mironov 2009 and Mironov 2019 requires a sophisticated
SOM threshold that can demarcate mineral and organic soils. However, there is presently
no rigorous set of rules for this threshold. [23] state that soil can be categorized into organic
soil if the SOM is more than 20%, whereas [51] and [52] declare that organic soil should
contain a SOM of at least 30% [11]. According to the results of the synthetic experiments, a
SOM of 15% might be an optimal threshold for distinguishing soil types, as the TB curves
of different models are closely clustered and the divergence between mineral- and organic-
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soil-based models seems to start after a SOM exceeding 15% (Figure 3). Such a threshold
conforms to [53] who classifies soils into organic soil or highly organic soil when the SOM
is more than 15%.

The utilization of an optimal organic-soil-based dielectric model (i.e., Mironov 2019
here) is anticipated to improve the overall precision of SMAP SM retrievals over organic
soils. Since SM is a crucial factor in determining carbon fluxes in boreal regions [18], having
precise knowledge of SM variations can effectively monitor the health of local ecosystems
and predict the trends in carbon storage. In the current context of global warming, the
snow extent has rapidly dropped in the Northern Hemisphere [54]. Consequently, more
snow-covered regions become bare soils, and the period of thawing seasons tends to last
longer. Hence, decreasing SM retrieval uncertainties over these high-SOM areas would
greatly aid in tracking the potential significant hydrologic shifts triggered by climate change
and permafrost thawing [55,56].

Meanwhile, the deficiencies in the quality of soil property products and in-situ data sets
in the Northern environment have been identified. For instance, the universal conversion
formula between SOC and SOM is still rudimentary, occasionally leading to an estimation
over 100%. As such, the limitations discovered in this study offer a strong motivation
and direction for developing soil property data sets with better applicability. Additionally,
the necessity for accurate SM in high-latitude areas highlights the need for more ground
stations and dense SM observation networks over the circumpolar zone.

4.4.6. Future Work

Here, the determination of the SOM threshold at 15%, based solely on synthetic
experiments, likely caused spatial inconsistencies at the boundary of the mineral and
organic soils. Hence, location/time-dependent SOM thresholds may be necessary to
produce smooth SM maps in high-latitude regions. An alternative approach would be the
mixed use of mineral- and organic-soil-based models over each pixel, provided that an
accurate relative proportion of SOM and clay is available in advance.

Although this study evaluated various dielectric models under the SMAP SCA-V algo-
rithm, their use in other radiative transfer model-based algorithms and with observations
from different polarizations, angles, and frequencies remains to be investigated. Of partic-
ular interest is the dual-channel algorithm (DCA), the current SMAP baseline algorithm,
which exhibited moderate edges over agricultural sites [18]. The objective of the DCA
algorithm is to achieve the optimal vegetation optical depth (VOD) and SM simultaneously,
by minimizing the aggregated differences between the simulated and observed brightness
temperatures at both horizontal and vertical polarizations. Thus, the alternation of the
dielectric model could indirectly affect the derived vegetation water content. In addition
to passive microwave remote sensing, the dielectric mixing model is also critical for other
fields, such as SMAP L4 and the European Centre for Medium-Range Weather Forecasts
(ECMWF) Community Microwave Emission Model (CHEM) [57,58]. Radar sensors also
require a dielectric model to simulate the backscatter coefficients [59]. However, there
is currently no clear consensus on the best dielectric model for these platforms, making
further investigations necessary and valuable.

5. Conclusions

In this study, the skills of nine dielectric models over organic soil in Alaska were
evaluated and compared in the context of the SMAP SCA-V algorithm. Four out of nine
models carefully account for the SOM effect on the complex dielectric constant of the
soil–water mixtures, while the remaining models were designed for use in mineral soils.
The dielectric responses (expressed in a form of TB) of those models to the increasing SOM
were comprehensively investigated through artificially controlling input values. At a given
SM over 0.1 m3/m3 and a SOM higher than 15%, the simulated TB values from organic-
soil-based dielectric models were higher than those estimated from the mineral-soil-based
dielectric models. In other words, relative to mineral-soil-based dielectric models, organic-
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soil-based models are inclined to obtain higher SM estimates from identical observed
radiations. The different magnitudes from the above two types of dielectric model were
relatively stable across soil textures (e.g., silty, clay, and sandy loam), as organic-soil-based
models are less sensitive to the proportions of sand, silt, and clay content. Furthermore,
a SOM threshold of 15% was suggested for the separate use of mineral- and organic-soil-
based dielectric models in the retrieval algorithm, as the divergence of TB curves of mineral-
and organic-soil models was observed when the SOM exceeded 15%.

The predictive power of each dielectric model was represented using several statistic
metrics computed by comparing the SM retrievals with in-situ measurements. Compared
to satellite products reflecting SM variations over a large spatial extent, in-situ point-based
SM measurements exhibited more temporal variability. Additionally, even over the same
location, the annual correlations between satellite-based SM retrievals and in-situ data
fluctuated a lot. Consistent with the results from the synthetic experiments, organic-
and mineral-soil-based models tended to induce wet and dry biases. In an integrated
evaluation, Mironov 2019 presented a slightly, but consistently, better performance over
the other dielectric models, which showed a mean ubRMSE of 0.0507 m3/m3 and a mean R
of 0.465.

Furthermore, an inter-comparison between the SM retrievals within a one-week time
interval from mineral- and organic-soil-based dielectric models was conducted at a global
scale. Such a comparison would be useful to capture clues about the performance of
organic-soil-based models over mineral soils. Mironov 2009 and Mironov 2019 were elected
as the representatives of mineral- and organic-soil-based models, respectively. As a result,
SM estimates from Mironov 2019 were at least 0.05 m3/m3 higher than those from Mironov
2009. When the SM was below 0.1 m3/m3, the SM retrievals from Mironov 2019 were
occasionally smaller than the SM retrievals from Mironov 2009 in mineral soils.

It should be noted that the performance of each dielectric model heavily depends on
its designed application range, the quality of the input data sets, as well as the accuracy of
in-situ benchmarks. Different assessment results might be obtained with the updating of
the dielectric models, in-situ measurements, and soil parameters. Given the contrasting
sensitivity of mineral- and organic-soil-based models to soil texture and SOM, it is of
great importance to ensure a consistent source of soil ancillary data. As such, a routine
evaluation study that incorporates all the potential dielectric models and the most recent
soil auxiliary data sets is recommended. In an integrated consideration of model inputs,
the model physical foundation, and the practical accuracy, the separate use of Mironov
2009 and Mironov 2019 in the SMAP SCA-V algorithm for mineral soils (SOM < 15%) and
organic soils (SOM ≥ 15%) would be the optimal option at this time. Considering the SOM
magnitudes at the 36 km scale, developing a sophisticated dielectric model accounting for
a variable SOM from 10% to 30% is required for passive microwave remote sensing of SM.
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//www.mdpi.com/article/10.3390/rs15061658/s1, Figure S1: The geographical distributions of all
the 12 stations finally used for validation. Figure S1: Simulated brightness temperature of a sandy
loam with various soil organic matter, and the accompanied table displays all the input values where
most of soil parameters are directly taken from the sample of sandy loam used in [38]. (a)–(f) represent
the simulated brightness temperature curves variations across various soil organic matter with an
increase step of 15%. Figure S2: Variations of wilting point and porosity estimated from Park 2019
and Park 2021 with increasing soil organic matter with assumed volumetric textural compositions.
Table S1: Detailed information of all in-situ stations investigated in this study. Table S2: Annual R
values between soil moisture retrievals from various dielectric models and in-situ measurements and
the SMAP vertically polarized brightness temperature.
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Appendix A

Figure A1. Global distribution of soil organic matter (SOM), where the inset describes the probability
distribution function (PDF) of SOM at the global scale and in Alaska.
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Abstract: Soil moisture is a key factor in the water and heat exchange and energy transformation of
the ecological systems and is of critical importance to the accurate obtainment of the soil moisture
content for supervising water resources and protecting regional and global eco environments. In
this study, we selected the soil moisture monitoring networks of Naqu, Maqu, and Tianjun on the
Qinghai–Tibetan Plateau as the research areas, and we established a database of surface microwave
scattering with the AIEM (advanced integral equation model) and the mathematical expressions for
the backscattering coefficient, soil moisture, and surface roughness of the VV and VH polarizations.
We proposed the soil moisture retrieval models of empirical and machine learnings algorithms
(backpropagation neural network (BPNN), support vector machine (SVM), K-nearest neighbors
(KNN), and random forest (RF)) for the ascending and descending orbits using Sentinel-1 and
measurement data, and we also validated the accuracies of the retrieval model in the research areas.
According to the results, there is a substantial logarithmic correlation among the backscattering
coefficient, soil moisture, and combined roughness. Generally, we can use empirical models to
estimate the soil moisture content, with an R2 of 0.609, RMSE of 0.08, and MAE of 0.064 for the
ascending orbit model and an R2 of 0.554, RMSE of 0.086, and MAE of 0.071 for the descending orbit
model. The soil moisture contents are underestimated when the volumetric water content is high.
The soil moisture retrieval accuracy is improved with machine learning algorithms compared to the
empirical model, and the performance of the RF algorithm is superior to those of the other machine
learning algorithms. The RF algorithm also achieved satisfactory performances for the Maqu and
Tianjun networks. The accuracies of the inversion models for the ascending orbit in the three soil
moisture monitoring networks were better than those for the descending orbit.

Keywords: soil moisture; AIEM; machine learning algorithms; Sentinel-1; Qinghai–Tibetan Plateau

1. Introduction

Soil moisture is a key factor in the water and heat transfer and energy transposition
in land–atmosphere systems [1], and it is also vital to connecting the water of surface
water, groundwater, and carbon cycles of terrestrial ecosystems [2]. As a crucial parame-
ter in hydrology, meteorology, ecology, and agriculture, researchers use soil moisture in
hydrologic modeling [3], numerical weather forecasting [4], and overland flow predic-
tions [5]. Therefore, the accurate and dynamic monitoring of soil moisture is critical for
environmental protection.
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The main advantages of microwave remote sensing are its real-time detection, high
penetrating power, and the fact that it is not easily influenced by cloudy weather. The
soil volumetric water content has a substantial effect on the variation in the soil dielectric
constant, and the soil dielectric properties are bound up with the brightness temperature
and backscatter coefficient of the microwaves [6]. Consequently, microwave remote sensing
technology is a potential method for soil moisture monitoring [7]. According to different
energy sources, we can divide microwave remote sensing into two types: active and passive.
The resolution of passive microwave radiometers is generally above 10 km, which is helpful
for monitoring surface ecological environmental elements on a global scale and obtaining
essential data for global change research [8]. However, passive microwave remote sensing
cannot represent the changes in the local-scale soil moisture. Active microwave remote
sensing makes up for these deficiencies with its high resolution. The Sentinel-1 can provide
C-band SAR data with repeated observations, the revisit period is 6 days, the spatial
resolution is 10 m, and it has considerable potential for soil moisture inversion [9,10].

The establishment of the microwave surface scattering model and an understanding
of the influence of the soil volumetric moisture content on the SAR parameters are the
prerequisites for soil moisture inversion using SAR data [11]. The interaction between
the electromagnetic waves scattered by random surfaces and ground objects primarily
depends on the system factors (frequency, polarization mode, and incidence angle) of the
microwave sensor, and it is also closely related to the ground roughness and dielectric
properties. Therefore, researchers have proposed empirical and theoretical models to reveal
the relationship between the soil moisture content and SAR factors. The Oh model [12],
Dubois model [13], and Shi model [14] are common empirical models. However, they are
only suitable for special environments and lack universality due to their dependence on
observation data. Researchers widely use theoretical models based on the electromagnetic
wave radiation transfer equation to describe surface scattering due to it good physical
basis. The early theoretical models include the SPM (small perturbation model) [15], GOM
(geometrical optics model) [16], and POM (physical optics model) [17]; however, we can
only apply these models within a certain ground roughness range. Fung developed the
IEM (integral equation model) using the Maxwell equation of electromagnetic waves to
broaden the model’s application [18]. We can use the model to simulate surface scattering
within a large ground roughness range. Chen [19] proposed the AIEM (advanced integral
equation model), which has a higher accuracy and more compact form, by improving the
IEM. We can use the model to simulate surface scattering due to the advantages of its
higher theoretical foundation, clearer structure, and stronger universality. Baghdadi [20]
proposed semiempirical calibration by using the IEM to better reconstruct the surface
scattering characteristics of bare farmland. According to the results, the backscattering
coefficient measured in the experiment coincided with that of the simulation of the semi-
empirical model. The researchers validated the performance of the AIEM through different
correlation length parameterizations [21]. According to the results, we can retrieve the
soil moisture from SAR images based on the AIEM in semiarid districts. However, the
IEM and AIEM achieve good satisfaction only in bare soil, and there are obvious errors in
vegetation-covered areas [19].

Reducing the impacts of the roughness and vegetation on the surface backscattering is
a critical issue in the process of soil moisture inversion using microwave images. Zribi [22]
modified the geometrical features of the local soil framework based on the fractional
Brownian model to estimate the backscattering coefficients of farmlands. The authors
present the theoretical research on the generation and propagation of the roughness error,
and according to the result, the profile extent, profile morphology, profile measurement
number, and profile measurement precision in different directions are the major factors that
affect roughness errors [23]. However, there are still uncertainties in the research on the
roughness parameterization scheme.
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Machine learning algorithms can describe the complicated relationships of variables
and have been introduced to monitor soil moisture at different scales. A method using
an Artificial Neural Network (ANN) has been put forward to model, test, and validate
soil moisture for GMES Sentinel-1 [24]. The brightness temperature, soil moisture, surface
soil temperature, and vegetation water content were employed to simulate global soil
moisture by using a Neural Network technique by Kolassa [25]. The three machine learning
algorithms of random forest (RF), support vector machine (SVM), and K-nearest neighbors
(KNN) were used to research the soil moisture, thus downscaling the presence of seasonal
differences [26]. The data fusion and random forest were used to generate surface soil
moisture over the agricultural field [27]. A new approach combining machine learning
and multi-sensor data was put forward to predict soil moisture in Australia [28], and the
proposed model generated satisfactory performance compared to random forest regression,
support vector machine, and CatBoost gradient boosting regression. Although machine
learning algorithms can effectively explain non-linear problems, the lack of a physical
foundation and the excessive dependence on training samples are their main disadvantages.
Therefore, combining physical models and machine learning algorithms is a valid approach
for modifying soil moisture inversion precision.

The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world [29].
The QTP directly affects the local climate and environment via atmospheric circulation and
hydrology procedures, and it also impacts climate change not only in China and Asia but
also around the globe [30]. The soil moisture, as the critical surface element of the QTP, is
of critical importance to predicting the atmospheric circulation and climate change of the
plateau through the adjustment of the ground evaporation and infiltration, controlling the
surface energy allocation, and influencing the soil freezing and thawing. The soil moisture
also influences the monsoon climate and rainfall forms of the plateau. Therefore, the use of
the active microwave technique to grasp the exact local soil moisture information of the
QTP is essential for understanding the energy exchange of this district and its impacts on
the environments of the surrounding areas.

Therefore, in this study, we selected three soil moisture observation networks in
the QTP as the research areas: Naqu, Maqu, and Tianjun. We used the soil moisture
measurement and Sentinel-1 data with the VV and VH polarizations of the ascending and
descending orbits to model and retrieve the soil moisture. First, we analyzed the response
of the soil moisture and surface roughness to the backscattering coefficient based on the
AIEM, and we established the mathematical expressions for the backscattering coefficient,
soil moisture, and surface roughness of the VV and VH polarizations. Subsequently, we
proposed empirical and machine learning models for the soil moisture retrieval for the
ascending and descending orbits by using the soil moisture measurement data and Sentinel-
1 images from 2017–2019 of the Naqu station. Finally, we obtained the 2020 soil moisture
results of the Naqu station based on the empirical model and machine learning models,
and we also evaluated the accuracies of these models with measurement data. We also
obtained the soil moisture results for Maqu in 2018 and Tianjun in 2020 to further verify
the precision and applicability of the soil moisture retrieval models.

2. Materials and Methods

2.1. Soil Moisture Monitoring Networks

In order to obtain more accurate local soil moisture measurements in the QTP, we
selected three soil moisture monitoring networks as the research areas: Naqu, Maqu, and
Tainjun (Figure 1). The Naqu network is on the central QTP, the Maqu network is on the
eastern QTP, and the Tianjun network is on the northeast QTP.
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Figure 1. Locations of soil moisture monitoring networks on Qinghai–Tibetan Plateau: Naqu, Maqu,
and Tianjun.

2.1.1. Naqu Soil Moisture Monitoring Network

The Naqu network was established in Naqu (29◦55′–36◦30′N, 83◦55′–95◦5′E), the Tibet
Autonomous Region, China. The mean elevation is 4650 m, and the terrain is mountainous.
The subrigid semiarid climate is the dominant climate type in the observation area. The
average annual precipitation is about 500 mm, with 75% of the precipitation falling from
May to October. The surface vegetation is mainly alpine grassland. The Naqu network
consists of 56 soil moisture and temperature measurement stations, which were installed
in three different networks to meet different spatial scale needs. At each station, soil
moisture/temperature sensors were inserted horizontally at 5 cm, 10 cm, 20 cm, and 40 cm
soil depths, respectively. The data collection interval is 30 min. The EC-TM and 5 TM
capacitance probes manufactured by Decagon (United States) are used to establish the
monitoring network. The sensors measure soil moisture according to the sensitivity of soil
dielectric permittivity to liquid soil water. The 10 soil samples from different stations were
collected to calibrate the sensor, the soil moisture is measured by the gravimetric method,
and the soil dielectric permittivity is measured by the sensor simultaneously. A calibrated
conversion between the measured soil moisture and the measured dielectric permittivity is
then developed. The measured soil moisture turns out to be in the physical range after the
calibration [31]. The measurements of soil moisture and temperature at different depths
in the Naqu network from 2015 to 2021 are shown in Figure 2. The mean values of soil
moisture and temperature during the observation period were 0.16 m3/m3 and 3.45 ◦C,
respectively, and their trends were relatively similar. In order to match the Sentinel-1 data,
we selected 23 soil moisture station measurements from the Naqu network for the soil
moisture modeling and validation for 2017–2020.
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Figure 2. Naqu soil moisture and temperature measurement data for 2015–2021.

2.1.2. Maqu Soil Moisture Monitoring Network

The Maqu network was established in Maqu County (33◦6′30′ ′–34◦30′15′ ′N, 100◦45′45′ ′–
102◦29′E), the Ganan Tibetan Autonomous Prefecture, Gansu Province, China. The terrain
of Maqu County is high in the northwest and low in the southeast, with elevations ranging
from 3300 m to 4800 m. Maqu has a subrigid semihumid climate, the cold season is
long and cold, and the warm season is short and mild. The average annual temperature
and precipitation in the observation area are 2.9 ◦C and 611.9 mm, respectively. The
surface vegetation is mainly low grassland. A total of 20 soil moisture and temperature
measurement stations were installed in the Maqu network, and the soil moisture and
temperature at depths of 5 cm, 10 cm, 40 cm, and 80 cm were observed at each station. The
data collection interval is 60 min. Su [32] provides more detailed information on the Maqu
soil moisture monitoring network. We selected 18 soil moisture station measurements from
the Maqu network for the soil moisture validation for 2018.

2.1.3. Tianjun Soil Moisture Monitoring Network

The Tianjun network was established in Tianjun County (36◦53′–48◦39′12′ ′N, 96◦49′42′ ′–
99◦41′48′ ′E), the Haixi Mongolian and Tibetan Autonomous Prefecture, Qinghai Province,
China. The mean elevation of Tianjun County is more than 4000 m in the territory. This
region has a plateau continental climate with low temperatures and an uneven precipitation
distribution. The alpine meadow is the main land cover type. The 58 soil moisture and
temperature measurement stations were installed in the Tianjun network. The soil moisture
and temperature at depths of 5 cm, 10 cm, and 30 cm were observed at each station. The
data collection interval is 30 min. We selected 19 soil moisture station measurements from
the Tianjun network for the soil moisture validation for 2020.

2.2. Remote Sensing Data

The Sentinel-1 is composed of two satellites (A and B), carrying a C-band synthetic
aperture radar that provides continuous images. In this paper, the ground range detected
(GRD) products from the interferometric wide swath (IW) mode in the VV and VH polariza-
tions were employed to inverse the surface soil moisture. We performed the preprocessing
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steps (updating of orbit metadata, removal of border noise, removal of thermal noise
removal, radiometric calibration, terrain correction, normalization of incident angle, and
noise filtering) for Sentinel-1 on the Google Earth Engine (GEE) platform. We used the
range-Doppler approach for the geometric terrain correction, and we introduced 7 × 7 Lee
wave filtering to remove the noise.

2.3. Methods
2.3.1. Advanced Integral Equation Model (AIEM)

Although IEM can simulate real surface backscattering characteristics within a broad
range of ground roughness, its main disadvantages are the dependence on the local in-
cident angle and the inaccurate description of the actual surface roughness. Therefore,
Chen proposed an AIEM by modifying the IEM. In this study, we established the surface
microwave scattering database with the AIEM. The detailed expression of the AIEM is
presented as follows:
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where pq represents the polarization mode; k1 is the free-space wave; s is the root-mean-
square height; Wn(ksx-kx, ksy-ky) is the n factorial Fourier transform of the surface corre-
lation function (kz = kcosθi; ksz = kcosθs; kx = ksinθicosϕ; ksx = ksinθscosϕs; ky = ksinθisinϕ;
ksy = ksinθssinϕs); ϕ is the incident azimuth; θ and ϕs are the scattering angle and scattering
azimuth, respectively; Fpq and fpq are the functions related to the Fresnel reflectance.

2.3.2. Machine Learning Algorithms

In this study, the four machine learning algorithms including backpropagation neural
network (BPNN), support vector machine (SVM), K-nearest neighbor (KNN), and random
forest (RF) are introduced to retrieve soil moisture.

The backpropagation neural network (BPNN) is one of the common neural networks,
and it is a multilayer feedforward network that is trained by an error backpropagation
algorithm [33]. A complete BPNN consists of three parts: the input layer, hidden layer, and
output layer. The input layer receives the external massage and transports it to the hidden
layer, where the message transformation process is achieved. The output layer outputs the
result. The error backpropagation process is conducted when the actual output does not
match the expected output. The BPNN is continuously adjusted until the variance in the
initial system output and desired output is minimized.

The support vector machine (SVM) is a supervised learning approach that researchers
commonly employ for classification analyses and regression modeling [34]. The princi-
ple is to construct the best fragmenting lineoid in the character interspace based on the
framework risk minimization fundamentals, which globally optimizes the algorithm and
places a particular limit on the anticipated risk in the entire example interspace. Generally,
researchers use SVMs to solve the linear separability problem, for which the linearly insepa-
rable sample of the lower-dimension input interspace is converted to the higher-dimension
characteristic interspace based on a kernel function. The commonly used kernel functions
are the polynomial, Gaussian, and radial basis kernel functions. In this study, we used the
radial basis kernel function (RBKF) for the analysis because, according to previous results,
it achieves more satisfactory effects than the other kernel functions [35].

The K-nearest neighbor (KNN) is a theoretically mature machine-learning algorithm [36].
The basic idea of this method is as follows: When the training data are certain, the K
examples that are closest to the new input example are found in the training data. If the
majority of these K examples are classified into a certain class, then the input example can
also be classified into this class. In addition to classification, we can also use KNNs for
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regression. In the regression process, the K-nearest samples of the target sample are found,
and the average value of these neighbor samples is assigned to the target sample.

Random forest (RF) is one of the typical ensemble algorithms. The samples are
obtained from the raw data collection using the bootstrap resampling approach, and the
decision tree is employed to calculate each bootstrap sample. Then, the prediction results of
the multiple decision trees are combined, and finally, the predicted outcome is obtained by
majority voting [37]. We can use the RF algorithm to solve multidimensional information
and nonlinear issues without making feature selections, and it is also able to overcome
noise and avoid the overfitting issue in practical applications.

2.3.3. Establishment of Surface Microwave Scattering Database with AIEM

The AIEM is deemed to be a theoretical model that can present the actual situation
of the ground scattering well. Therefore, the numerical simulation using the AIEM is con-
ducted to establish the database of the ground microwave scattering. The input parameters
in the AIEM were as follows: a soil temperature of 20 ◦C; a frequency of 5.405 GHz; sand
and clay contents of 40% and 10%, respectively; a soil moisture content range from 1%
to 40%, with a step of 5%; an incident angle range from 20◦ to 50◦, with a step of 5◦; a
root-mean-square height range from 0.1 cm to 2.9 cm, with a step of 0.4 cm; a correlation
length range from 4 cm to 18 cm, with a step of 2 cm; and the surface autocorrelation
function is the exponential autocorrelation function. The simulation of AIEM is shown
in Figure 3. According to the results, there is a substantial logarithmic correlation among
the backscattering coefficient, soil moisture, and combined roughness. In addition, if the
surface roughness is given, then this logarithm relationship is only related to the incident
angle. We present the detailed expression with different polarization patterns as follows:

σ0
pq = Apq ln(Mv) + f (s, l) (3)

where pq is the polarization pattern; Apq is the coefficient that is not related to the surface
roughness when the incident angle is known; f(s,l) is the known surface roughness.

Ground roughness is one of the critical parameters in the process of microwave surface
scattering, and it mainly includes two unknown parameters: the correlation length (l) and
root-mean-square height (s). The backscattering coefficient is affected by both the land s,
and it is difficult to distinguish between their influences on it. Therefore, researchers have
proposed a new parameter that combines the l and s [38,39] to decrease the error of the
soil moisture inversion. Zribi [40] found that the model outputs and backscattering had
good consistency under different experimental conditions by combining parameters: the
Zs (ZS = S2/l) and soil moisture. According to the result, there was a substantial logarithmic
relationship between the backscattering coefficient and Zs in the VV and HH polarization
patterns. The detailed expression is presented as follows:

σ0
pq = Bpq ln(Zs) + f (mv) (4)

where pq represents the polarization pattern; Bpq is the coefficient that is not related to the
soil moisture when the incident angle is known; f(mv) is the known soil moisture content.

The relationships among the soil moisture, combined roughness, and backscattering
coefficient in the VV and VH polarizations are shown in Figure 4. According to the
results, there was a substantial logarithmic correlation among the backscattering coefficient,
soil moisture, and combined roughness. If the combined roughness is known, then the
backscattering coefficient increases as the soil moisture increases. When the soil moisture is
30%, the change becomes stable, and the sensitivity of the backscattering coefficient to the
soil moisture decreases. When the soil moisture is known, the trend of the backscattering
coefficient increases as the combined roughness initially increases and then decreases.
Consequently, the backscattering coefficient increases with the increase in the soil moisture
content. Moreover, the sensitivity of the backscattering coefficient to the soil moisture
gradually decreases with the increase in the combined surface roughness.
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Figure 3. Response of backscattering coefficient to the surface parameters with AIEM (mv is soil
moisture content).

Figure 4. Relationships between soil moisture, combined roughness, and backscattering coefficient in
VV and VH polarizations.
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2.3.4. Construction of Empirical Model

Overall, the relationships between the soil moisture, combined roughness, and backscat-
tering coefficient in the VV and VH polarization are as follows:

σVV = AVV(θ) ln(mv) + BVV(θ) ln(Zs) + CVV(θ) (5)

σVH = AVH(θ) ln(mv) + BVH(θ) ln(Zs) + CVH(θ) (6)

where σ represents the backscattering coefficient with different polarizations; A(θ), B(θ),
and C(θ) are the coefficients that are only related to the incident angle (we obtained their
values by simulating them in the AIEM database).

Although surface roughness is a critical parameter in soil moisture retrieval, it is
difficult to measure the ground roughness in the actual application. Moreover, the measure-
ment accuracy of the surface roughness also cannot be ensured. Therefore, if the surface
roughness is replaced by other known parameters in the establishment of the empirical
model, then this critical parameter has a substantial influence on and reduces soil mois-
ture retrieval. In other words, the precision of soil moisture inversion will be improved
by reducing the quantity of the unknown parameters or inaccuracy factors in the model.
According to the simulation results of AIEM, the relationships between the backscattering
coefficient, soil moisture, and surface roughness in the VV and VH polarizations are shown
in Equations (5) and (6). When the backscattering coefficients of the VV and VH polariza-
tions are known, the surface roughness (Zs) will be eliminated by combining Equations (5)
and (6), and the final empirical model of the soil moisture retrieval can be obtained. The
detailed expression is drawn as follows:

mv = EXP(AVVVH·σVV+BVVVH·σVH+CVVVH) (7)

where mv is the soil moisture content; σVV and σVH are the backscattering coefficients of
the VV and VH polarizations, respectively; AVVVH, BVVVH, and CVVVH are the coefficients
that are simulated by the modeling data.

3. Results

3.1. Soil Moisture Retrieval Using the Empirical Model

Although we collected soil moisture measurements from 2015 to 2021 at the Naqu
station, we employed the Sentinel-1 synthetic aperture radar data from 2017 to 2019 and
the soil moisture measurements from the corresponding time to establish the soil moisture
retrieval models, which is because the Sentinel-1 images from 2015 to 2016 at the Naqu
station were missing. Finally, we used 240 Sentinel-1 images of the VV and VH polarizations
to construct the soil moisture retrieval models, and we obtained the soil moisture results
from the Naqu station for 2020 from 2020 Sentinel-1 images by using retrieval models. In
Section 3.2, we proposed the empirical models for the ascending and descending orbits
based on the soil moisture measurement data of 5 cm and the backscattering coefficient of
the VV and VH polarizations from Sentinel-1 images from 2017 to 2019 at the Naqu station.
We introduced the least-squares method to calculate the AVVVH, BVVVH, and CVVVH values.
We present the detailed expressions in Equations (8) and (9), respectively:

mv = EXP(0.087·σVV+0.017·σVH+0.322) (8)

mv = EXP(0.071·σVV+0.016·σVH− 0.071) (9)

The backscattering coefficients of the VV and VH polarizations from the Sentinel-1
images for 2020 from the Naqu station are put into the empirical models of the ascending
and descending orbits to retrieve the soil moisture content, respectively. The inversion
results of the soil moisture for the ascending and descending orbits at the Naqu station
for 2020 are presented in Figures 5 and 6, respectively, and the comparisons of the soil
moisture between the measured values and retrieved values for the ascending and descending
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orbits are shown in Figure 7. According to the results, we can use the empirical models to
retrieve the surface soil moisture, with an R2 of 0.609, RMSE of 0.08, and MAE of 0.064 for
the ascending orbit model, and an R2 of 0.554, RMSE of 0.086, and MAE of 0.071 for the
descending orbit model. When the soil moisture is higher than 0.3 m3/m3, the empirical
models underestimate the soil moisture so that it is markedly contrasted with the measured
values. The simulation results of the ascending orbit are better than those of the descending
orbit, which is also consistent with the results of Dabrowska-Zielinska [41], who retrieved the
soil moisture from the Sentinel-1 imagery over wetlands and found that the retrieval result
of the soil moisture achieved a satisfactory performance by using data from the ascending
orbit of the Sentinel-1 images. The regions with high soil moisture are mainly distributed in
mountainous areas, and the regions with low soil moisture are distributed among the flat
terrain areas. The soil moisture contents in June, July, August, and September are substantially
higher than in other months because the Naqu network climate is mainly influenced by the
south Asian monsoon, and the precipitation falls between June and September.

Figure 5. Soil moisture for ascending orbit of Naqu network for 2020.
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Figure 6. Soil moisture for descending orbit of Naqu network for 2020.

  

Figure 7. Comparison between measured and retrieved soil moisture values of Naqu network (The
blue line is fitted line, and the red line is 1:1 line).
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3.2. Soil Moisture Retrieval Using Machine Learning Algorithms

To further improve the accuracy of the soil moisture retrieval, the machine learning
algorithms of SVM, BPNN, KNN, and RF are introduced to inverse the surface soil moisture
of the Naqu network with the AIEM. In the process of machine learning modeling, the
physically meaningful radar parameters in the AIEM are introduced to machine learning
algorithms to establish the soil moisture retrieval model. The backscattering coefficient of
the VV and VH polarizations and the incidence angle are the independent variables. The
dependent variable is the soil moisture measurement data. Therefore, the measurements
(soil moisture, backscattering coefficient of the VV and VH polarizations, and incidence
angle) from the Naqu station for 2017–2019 are employed as the ensemble of training and
testing samples, and the training and testing samples are set to 70% and 30% of the total
number of samples, respectively. The model performances of the machine learning of the
ascending and descending orbits are presented in Table 1. According to the results, the RF
performance is better than those of the other machine learning algorithms, with an R2 of
0.753, RMSE of 0.045, and MAE of 0.034 in the ascending orbit, and an R2 of 0.671, RMSE of
0.049, and MAE of 0.038 in the descending orbit. In addition, the accuracies of the machine
learning approaches in the ascending orbit are also better than those in the descending
orbit. For the model application, the surface soil moisture contents for the ascending and
descending orbits for 2020 from the Naqu network are retrieved by using different machine
learning algorithms.

Table 1. Training accuracies of the different machine learning algorithms.

R2 RMSE MAE Bias

Ascending

SVM
Mean 0.634 0.057 0.046 0.015

Std 0.025 0.005 0.013 0.008

BPNN
Mean 0.614 0.058 0.047 0.018

Std 0.029 0.006 0.015 0.009

KNN
Mean 0.699 0.051 0.041 0.006

Std 0.021 0.003 0.009 0.004

RF
Mean 0.753 0.045 0.034 0.004

Std 0.018 0.002 0.005 0.002

Descending

SVM
Mean 0.548 0.060 0.052 0.021

Std 0.027 0.006 0.016 0.010

BPNN
Mean 0.561 0.056 0.048 0.016

Std 0.026 0.005 0.013 0.008

KNN
Mean 0.616 0.053 0.042 0.007

Std 0.023 0.005 0.044 0.007

RF
Mean 0.671 0.049 0.038 0.006

Std 0.020 0.004 0.007 0.003

The inversion results of the soil moisture retrieval with machine learning algorithms
for the ascending and descending orbits of Naqu station for 2020 are presented in Figure 8,
and we present the comparisons of the soil moisture retrieval of the different models for
the ascending and descending orbits in Figure 9. The result indicates that the performances
of the machine learning algorithms are substantially superior to the empirical model. For
the ascending orbit, the coefficients (R2) of the BPNN, KNN, SVM, RF, and EM (empirical)
models are 0.615, 0.666, 0.626, 0.714, and 0.609, respectively. and the RMSE coefficients of
these models are 0.076, 0.070, 0.078, 0.065, and 0.080, respectively. For the descending orbit,
the coefficients (R2) of the BPNN, KNN, SVM, RF, and EM (empirical) models are 0.590,
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0.612, 0.588, 0.677, and 0.554, respectively, and the RMSE coefficients of these models were
0.080, 0.078, 0.083, 0.072, and 0.086, respectively. According to these results, the combination
of the AIEM and machine learning algorithms can further enhance the precision of soil
moisture retrieval. The inversion accuracies of the soil moisture with different machine
learning algorithms in the ascending orbit are also better than those in the descending orbit.
In addition, the accuracy of the RF algorithm is better than those of the BPNN, SVM, and
KNN models.

  

Figure 8. Soil moisture inversion results with machine learning algorithms for ascending and
descending orbits of Naqu network for 2020.

Figure 9. Comparison of soil moisture of different models for ascending and descending orbits.

63



Remote Sens. 2023, 15, 153

Although the soil moisture inversion results with the RF in the Naqu network indicate
a satisfactory performance, we also retrieve the soil moisture contents of the Maqu network
in 2018 and of the Tianjun network in 2020 using the RF algorithm to further validate
the precision of the soil moisture retrieval. Figures 10 and 11 present the soil moisture
inversion result for the ascending and descending orbits of the Maqu network for 2018,
respectively. The soil moisture inversion results for the ascending and descending orbits of
the Tianjun network for 2020 are shown in Figures 12 and 13, respectively. The validations
of soil moisture for the ascending and descending orbits in the Maqu and Tianjun networks
are presented in Figures 14 and 15, respectively. The results indicate that the RF algorithm
achieves a satisfactory performance for the ascending and descending orbits in both the
Maqu and Tianjun networks. In the Maqu network, the R2, RMSE, and MAE values for the
ascending orbit are 0.696, 0.062, and 0.052, respectively, and the values of these coefficients
for the descending orbit are 0.648, 0.075, and 0.064, respectively. In the Tianjun network, the
R2, RMSE, and MAE values for the ascending orbit are 0.709, 0.069, and 0.057, respectively,
and the values of these coefficients for the descending orbit are 0.638, 0.074, and 0.063,
respectively. Moreover, the inversion accuracies of the soil moisture for the ascending orbit
are also higher than those for the descending orbit for both the Maqu and Tianjun networks.

 
Figure 10. Soil moisture with RF for ascending orbit of Maqu network for 2018.
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Figure 11. Soil moisture with RF for descending orbit of Maqu network for 2018.

Figure 12. Soil moisture with RF for ascending orbit of Tianjun network for 2020.
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Figure 13. Soil moisture with RF for descending orbit of Tianjun network for 2020.

  

Figure 14. Comparision between measured and retrieved soil moisture values for Maqu network
(The blue line is fitted line, and the red line is 1:1 line).
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Figure 15. Comparision between measured and retrieved soil moisture values for Tianjun network
(The blue line is fitted line, and the red line is 1:1 line).

4. Discussion

The surface roughness is an important parameter in the soil moisture inversion pro-
cess. The measurement of the surface roughness is difficult in practical experiments for
natural and manmade reasons. In addition, the measurement accuracy also substantially
differs from that of the actual conditions. Reducing the input of unknown or unobserv-
able parameters is one of the major methods for optimizing the model. Therefore, the
surface roughness is replaced by other known parameters, and the empirical models for
the ascending and descending orbits are proposed by combining the equations of the VV
and VH polarizations based on the AIEM model to decrease the impact of the surface
roughness. Four machine learning algorithms (BPNN, SVM, KNN, and RF) are used to
further improve the soil moisture retrieval precision in the Naqu network, and these algo-
rithms are commonly applied but have different learning strategies. To further verify the
model accuracy, the surface soil moisture for the ascending and descending orbits of the
Maqu network for 2018 and Tianjun network for 2020 are retrieved using the RF algorithm,
respectively. We found that the retrieval results of these machine learning algorithms are
more consistent compared with the empirical model. However, due to the different learn-
ing schemes, there are still some minor distinctions in the results of the four algorithms.
According to the results of this paper, the RF performance is superior to the other machine
learning approaches because the RF model obtains independent regression trees by ran-
domly testing training data [37]. Therefore, the model can overcome noise and avoid the
overfitting issue in practical applications. Chen [42] estimated the soil moisture of winter
wheat farmlands during the vegetative season based on the machine learning algorithms of
support vector regression, random forests (RF), and gradient boosting regression tree, the
results also indicated that the performance of the RF algorithm is better than those of the
other algorithms. The 12 advanced statistical and machine learning algorithms were used
to estimate soil moisture using the Sentinel-1 data [43], and the result indicated that the RF
algorithm has satisfactory performance compared with those of the other models.

The AIEM is a forward model that is used to calculate the backscattering coefficient
of the bare ground with high estimated precision and low predicted consumption. In this
study, we only considered the single scattering situation and ignored multiple scattering
ones, which is one of the main reasons for the errors in the AIEM simulation process.
Zeng [44] presents the scattering results between the numerical simulations and experi-
mental measurements with the AIEM, which also indicated that multiple scattering has a
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certain effect on backscattering, and that influence on the HH polarization is higher than
that on the VV polarization. Although the penetrability of the C band does not lead to
intensive volume scattering, its influence on the actual scattering process is not neglected.

The vegetation water content is a substantial parameter that affects the soil moisture
retrieval accuracy. In this study, we selected the Naqu, Maqu, and Tianjun soil moisture
monitoring networks as the research areas to achieve surface soil moisture inversion using
Sentinel-1 data. The Sentinel-1 data is a C-band (5.405 GHz) synthetic aperture radar that
provides dual-polarization, and it also has the ability to penetrate the sparse and low
vegetation on the ground surface. Alpine meadow is the main land cover type in the
research areas due to the climate, and the soil moisture inversion result is less affected
by the surface vegetation. However, there is still vegetation water content interference.
Moreover, plant growth is a dynamic process, and its structure and morphology will change
significantly over time; however, we could not use the empirical constants to reveal the
dynamic changes in the vegetation information, which led to some uncertainty regarding
the estimated results.

Although the influence of the surface roughness in this study is reduced by combining
the empirical equations of the soil moisture and VV, and VH polarizations, the surface
roughness is still a key factor in the soil moisture retrieval process. The issue of surface
roughness has received broad attention in recent years, and researchers have proposed
relevant models [38–40]. However, uncertainties still exist in the research on the rough-
ness parameterization scheme. The main reason is that the different models are usually
developed by using different experimental data; in other words, the soil type, soil texture,
and moisture content parameters, and the rough conditions in each model, are different, as
are the hypothesized conditions of the model development (for example, the calculated
method selection of the soil dielectric constant and soil effective temperature). Overall,
every roughness model has its comparative advantages and constrained conditions, and
no model can perform well in all circumstances. Further research on the roughness pa-
rameterization schemes that can be applied to the complex soil conditions of different soil
roughnesses, moistures, soil types, and correlation functions is essential.

The radar response to the soil moisture content is closely related to critical parameters,
such as surface roughness, microwave frequency, and incident angle. Ulaby [45] found that
the radar response seems to be linear within a range of 15–30% moisture content for all an-
gles, frequencies, polarizations, and surface conditions. Theoretically, the Sentinel-1 images
could be employed to inverse soil moisture content well over the range of 15–30% moisture
content. When the soil moisture content is higher than 0.3 m3/m3, the empirical model
markedly underestimates the soil moisture compared to the observation data. Bruckler [46]
also confirms this result. Although machine learning algorithms can improve the inversion
results, how to further improve the inversion accuracy of the soil moisture with high water
content is the next issue to be explored.

5. Conclusions

We select Naqu, Maqu, and Tianjun soil moisture monitoring networks on the QTP as
the research areas. The database of the surface microwave scattering is obtained using the
AIEM to analyze the response of the surface parameters and radar signal. The soil moisture
retrieval models of the empirical and machine learning algorithms for the ascending and
descending orbits are proposed by using the Sentinel-1 and soil moisture measurements.
Finally, the soil moisture retrieval accuracies of the different models are validated in these
research areas.

The major conclusions of this study are abstracted as follows:
(1) The empirical models for the ascending and descending orbits can estimate the

surface soil moisture in the Naqu network, but the soil moisture content is markedly
underestimated in empirical models when the soil moisture is high. The simulation results
of the ascending orbit are better than those of the descending orbit.
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(2) The combination of the AIEM and machine learning algorithms can further enhance
soil moisture inversion precision. The performances of the machine learning algorithms
are substantially superior to that of the empirical model, and the accuracy of the RF model
is higher than those of the BPNN, SVM, and KNN models. The inversion accuracies of the
soil moisture with the different machine learning algorithms in the ascending orbit are also
better than those in the descending orbit.

(3) The RF algorithm achieves a satisfactory performance for the ascending and de-
scending orbits for both the Maqu and Tianjun networks. The rationality and accuracy of
the RF algorithm at different locations and times on the QTP are further verified.
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Abstract: Knowing the freeze-thaw (FT) state of the land surface is essential for many aspects of
weather forecasting, climate, hydrology, and agriculture. Microwave L-band emission contains rather
direct information about the FT-state because of its impact on the soil dielectric constant, which
determines microwave emissivity and the optical depth profile. However, current L-band-based FT
algorithms need reference values to distinguish between frozen and thawed soil, which are often
not well known. We present a new FT-state-detection algorithm based on the daily variation of the
H-polarized brightness temperature of the SMAP L3c FT global product for the northern hemisphere,
which is available from 2015 to 2021. Exploiting the daily variation signal allows for a more reliable
state detection, particularly during the transition periods, when the near-surface soil layer may freeze
and thaw on sub-daily time scales. The new algorithm requires no reference values; its results agree
with the SMAP FT state product by up to 98% in summer and up to 75% in winter. Compared to the
FT state inferred indirectly from the 2-m air temperature and collocated soil temperature at 0–7 cm of
the ERA5-land reanalysis, the new FT algorithm has a similar performance to the SMAP FT product.
The most significant differences occur over the midlatitudes, including the Tibetan plateau and its
downstream area. Here, daytime surface heating may lead to daily FT transitions, which are not
considered by the SMAP FT state product but are correctly identified by the new algorithm. The
new FT algorithm suggests a 15 days earlier start of the frozen-soil period than the ERA5-land’s
estimate. This study is expected to extend the L-band microwave remote sensing data for improved
FT detection.

Keywords: frozen-soil state estimation; passive microwaves; remote sensing; SMAP FT state product

1. Introduction

Spatial patterns and the timing of freeze–thaw (FT) state transitions over land are
highly variable; they strongly impact land–atmosphere interactions and thus the weather;
the climate; and hydrological, ecological, and biogeochemical processes [1–4]. In par-
ticular, FT state transition leads to differences in hydrological and thermal conductivi-
ties/diffusivities, the albedo for shortwave and emissivity for longwave radiation, and
latent/sensible heat fluxes [5–7]. The albedo is, e.g., higher for frozen than for unfrozen
soil, and the water and energy exchange between the land surface and the atmosphere is
reduced because of weaker radiation heating and evaporation while frozen. Changes in
the FT state dynamics can also signal climate change [8,9] and invoke permafrost carbon
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feedback [10]. Moreover, ecosystem responses to seasonal FT-state changes are rapid via
significant changes in evapotranspiration, soil respiration, plant photosynthetic activity,
liquid water availability, vegetation net primary production, and net ecosystem CO2 ex-
change (NEE) with the atmosphere [11–15]. Thus, the knowledge of the FT state is required
for modeling work in the above subjects, which invoke different parametrizations for
frozen and unfrozen soil [16–20]. However, FT state estimations from in situ temperature
observations are limited in scale, and it is not straightforward to deduce the state from soil,
skin, or near-surface air temperature.

In contrast, more direct state information results from the very different microwave
dielectric constant for frozen and unfrozen soil [21–23]. Accordingly, microwave brightness
temperatures (TBs) change sharply during FT state transitions. For instance, NASA’s MEa-
SUREs (Making Earth System Data Records for Use in Research Environments) program
provides two global daily products for the land FT state based on a single-channel algo-
rithm [24]. One covers the years 1979 to 2017 and exploits the 37 GHz channels of three
satellite-based passive microwave sensors by exploring the TB values under respective
landscape frozen and thawed reference states [25]: the scanning multichannel microwave
radiometer (SMMR), the special sensor microwave/imager (SSM/I), and the special sensor
microwave imager/sounder (SSMIS). For MEaSUREs, 37 GHz is selected because of its
high correlation with the near-surface air temperature. Moreover, lower-frequency L-band
sensors on SMOS (Soil Moisture and Sea Salinity) and SMAP (Soil Moisture Active and
Passive) are more suitable for FT-change detection because of their deeper penetration
depth and their sensitivity to soil moisture [26,27]. For the L band, the difference leads
to emissivities of ~0.6 for unfrozen and ~0.9 for frozen soil, with a much deeper penetra-
tion depth for the latter [28–30]. The cross-polarized gradient ratio (XPGR) at the L band
between H and V polarization is used to analyze the SMAP observations. Similar to the
higher-frequency single-channel algorithms, the use of XPGR needs reference values for
thawed and frozen-soil states and a threshold value for discrimination between both [23,31].
The baseline F/T detection algorithm of SMAP [32] requires at least 20 days to find refer-
ence values for the frozen state, which can be challenging for short interim frozen periods
induced, e.g., by synoptic-scale cold waves.

Since the XPGR method or the baseline, the F/T detection algorithm of SMAP first
needs to identify the frozen/thawed TB reference values, and these results rely on how to
construct the reference. Instead, we propose a new FT algorithm that builds its parameters
on the TB signal characters. The new FT algorithm has a similar basis to the durinal
amplitude variation (DAV) approach [33] applied to higher frequency passive microwave
measurements for snow and ice sheet applications [34,35]. It has been proved that the DAV
of passive microwave signals are sensitive to FT state changes [33], which are dynamic and
complex and vary continuously in space and time. Estimating the FT state changes from
the DAV signal is functional because the conditions driving FT changes, e.g., radiation
balance and air temperature, change on broad time scales, spanning sub-daily, daily,
synoptic, seasonal, and annually interdecadal [36]. Especially in cold arid regions, which are
prone to experience FT state transitions, soil moisture fluctuations due to evaporation and
precipitation, and their L-band signals, are comparatively low on daily and synoptic scales.

In this study, we use the daily TB cycle and its connection with changing penetration
depths during FT state changes to develop a new FT state-detection algorithm, which
exploits variance-based filtering on DAV signals (|ΔTB|) at the L band between 6 a.m. and
6 p.m. (local time)—the overpassing times for the SMAP and SMOS satellites. Wherever
data overlap occurs, as is typical at high latitudes, data that were acquired closest to 6 a.m.
and 6 p.m. local solar times are chosen as stated in the SMAP FT product handbook [26].
The method is based on microwave transfer theory and does not need reference values.
The structure of the paper is as follows: Section 2.1 describes the data used and the study
area, including the SMAP FT product and the ERA5-land reanalysis. Section 2.2.1 details
the SMAP FT product, followed by our new method in Section 2.2.2. The statistics required
for implementing the new method are explained in Section 2.3. The results are found in
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Section 3.1 (example at a single site) and 3.2 (the north hemisphere). Section 3.3 evaluates
the new FT algorithm by comparing its result with the current SMAP FT product and using
the categorical triple collocation (CTC) method. Section 3.4 quantifies the uncertainties of
the new method. Conclusions are in Section 4, with a discussion on the relation between
the 2-m air temperature and the soil FT states presented in Section 5.

2. Methodology

2.1. Study Area and Data

We use the following three data sets in this study:

(1) SMAP TB observations and the derived FT-state indicator [26] with 36 km × 36 km
spatial resolution at 6 a.m. and 6 p.m. local time. The SMAP L3 product includes an
FT state indicator besides H and V polarized TB observations at the L band (1.41 GHz).
The data is available starting on 30 March 2015 [26]. The derived FT-state indicator
(SMAP L3c FT product) is available globally from 85.044◦S to 85.044◦N, and we focus
on the domain from 20◦N to 85.044◦N. We use the SMAP TBs for the new algorithm
and the binary FT-state indicator for frozen (1) and thawed soil (0), including the
transition direction for its evaluation. Moreover, SMAP also provides a 9-km spatial
resolution FT product. As noted on https://nsidc.org/data/SPL3FTP_E/versions/3
(accessed on 1 April 2021), the 9-km product is derived from SMAP-enhanced Level-
1C brightness temperatures (SPL1CTB_E). For SPL1CTB_E, Backus–Gilbert optimal
interpolation techniques are used to extract enhanced information from SMAP antenna
temperatures before they are converted to brightness temperatures. Since the Backus–
Gilbert optimal interpolation techniques added more noise, we prefer 36 km × 36 km
spatial resolution in this study [37]. Only H-polarization is used in this study because
the DAV signals between H/V polarizations are small.

(2) Hourly 2m-air (T2m), skin (Tskin), and soil temperatures from the ERA5-land reanalysis
available on https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-land?tab=overview (accessed on 1 April 2021) [38]. ERA5-land provides a consistent
representation of the evolution of land state variables over several decades at a higher
resolution (0.1◦ × 0.1◦) than ERA5 (0.25◦ × 0.25◦). ERA5-land has been produced by
replaying the land component of the ECMWF ERA5 climate reanalysis at an enhanced
resolution. ERA5-land also provides soil profile information that is vital to the analysis
of L-band TBs.

Since L-band observations may have—depending on the FT-state—deep penetration
depths, neither particular variable, such as 2m-air, skin, or soil temperatures with diurnal
changes in ERA5-land, is suitable for comparison with the daily FT indicator at a daily scale.
In SMAP FT calibration/validation, the average of the air temperature and soil temperature
at 5 cm is used to infer that the FT state corresponds to the L-band signal. We took the
same scheme as the average of daily 2 m-air temperature (T2m) and collocated 0–7 cm soil
temperature (ERA-land-assessment data hereafter), which are used as an FT state reference
to evaluate the existing and the new FT algorithms. According to longitude, the hourly
data are interpolated to 6 a.m. and 6 p.m. local time. Considering the detectable range of
the L band, the FT state reference can be inferred from 2-m air/skin/5 cm soil/10 cm soil
temperatures. However, the inferred FT state from these temperatures may contradict each
other at the moment, and it is hard to judge which one represents the signal detected by
the L band.

In SMAP FT Cal/Val, the in situ 2m-air temperature and the soil temperature at 5 cm
are used to validate and calibrate SMAP’s FT state indicator [32]. The in situ soil moisture at
10 cm and the skin temperature are taken as the FT state reference, not as the ground truth in
the SMAP’s FT Cal/Val. Although T2m is often used to estimate soil FT states [39–41], it shall
be noted that ERA-land-assessment data are not the condition for judging frozen/thawed
soil from the reanalysis but an indicator of the thermal conditions near the surface regarding
the land–atmosphere interaction. In this study, all variables from ERA5-land have been
interpolated with the nearest method to match the 36 km resolution of SMAP products.
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To better demonstrate how the new FT algorithm works, we selected the location of
the Xilinhot site (115.93◦E, 42.04◦N) [42] already used in other microwave remote sensing
studies [43–45] to illustrate the functioning of the new FT detection algorithm because of
its meteorological conditions, which are typical of regions experiencing FT-state changes.
Xilinhot site grows crops, corn, oat, and buckwheat in summer, and this landscape repre-
sents one of the main surface types on the globe; 31–43% of the land cover in the northern
hemisphere belongs to this climate type [46]. From the ERA5-land reanalysis data, we
use the grid data covering Xilinhot to represent the site’s land surface and meteorological
conditions. From the data for 6 a.m. and 6 p.m. local time (UTC + 08), the daily differences
of T2m, Tskin, and soil temperature at 0–7 cm (stl1), 7–28 cm (stl2), 28–100 cm (stl3), and
100–189 cm (stl4) are computed and used for interpreting the satellite-observed TB signals
for the location of the Xilinhot site.

2.2. Methodology
2.2.1. The SMAP F/T Algorithm

The SMAP FT algorithm [26] is based on the so-called relative frost factor FFrel,

FFrel =
FFNPR − FFf r

FFth − FFf r
(1)

where FFNPR is the frost factor defined as the normalized polarization ratio,

FFNPR =
TBv − TBh
TBv + TBh

(2)

and FFfr/FFth is the reference frost factor for the frozen/thawed state, respectively. FFfr
is the average FFNPR for January and February (winter), and FFth is each year’s average
FFNPR for July and August (summer).

The SMAP FT status (FTSMAP) is derived from FFrel for each location via

FT SMAP =

{
thaw, i f FFrel > threshold
f rozen, i f FFrel ≤ threshold

(3)

where a threshold of 0.5 was used globally.
The algorithm relies on the quality of the two reference values FFfr and FFth. Their

estimation requires at least 20 days of relatively stable frozen (or unfrozen) conditions [47].
FFth is hard to identify at higher latitudes and altitudes where the ground is frozen through-
out the year, while FFfr is hard to determine for the midlatitudes where the soil is not
completely frozen from the surface down to the L-band penetration depth. According
to the SMAP FT handbook [32], FFNPR needs to be larger than an arbitrary value of 0.1,
which excludes relatively dry areas that undergo minor dielectric constant changes during
FT transitions. FT-SCV(Freeze/Thaw algorithm using Single Channel TBV) is used as
an extended algorithm to overcome this defect in FFNPR. FT-SCV does not reply to the
freeze/thaw reference derived from the winter/summer period, but it correlates with
surface air temperature from global weather stations [32]. The SMAP freeze/thaw products
contain both FT-SCV and NPR algorithms. When there is enough difference between
freeze and thaw references, the NPR threshold method is applied, and when the reference
difference is too small, a single channel algorithm is adopted.

2.2.2. The New FT Algorithm

The new FT algorithm uses the strong TB variations over the day caused by freezing in
the night and thawing over the day, which happens over a period of days at the beginning
and end of the totally frozen period. For the L band, which is longer than previous DAV
applications, the signal can penetrate ice and snow over the soil surface and be related to
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the FT state of the soil. To retrieve this signal from the microwave transfer theory, we start
with the zeroth-order microwave transfer model given by

TB = εTe f f (4)

where ε is the emissivity, which depends on the soil dielectric constant and mainly varies
with soil moisture and the FT-state of the soil. Teff is the vertically integrated soil tempera-
ture profile weighted with the soil dielectric profile as (Lv et al. 2016a)

Te f f = T1
(
1 − e−τ1

)
+

n−1

∑
i=2

Ti
(
1 − e−τi

)i−1

∏
j=1

e−τj + Tn

n−1

∏
j=1

e−τj (5)

where T is soil temperature, τ is soil optical depth, and the subscripts i and j are the
layer numbers counting from the top of the soil (1) to the bottom of a layered soil slab (n)
influencing TB. Because of the much deeper penetration depth of frozen soil, the attenuation
of radiation emitted from lower layers is strongly reduced [48], which enlarges the depth
down to which the integration for Teff must be performed; thus, the deeper soil layers
with their only minor daily and even seasonally varying temperatures dominate the TBs
of frozen soil (see TB variations during winter in Figure 1). Thus, especially in winter,
the TBs of frozen soil are mostly higher than in summer, containing the influence of soil
temperature and soil dielectric constant.

Figure 1. SMAP H-polarization TB time series and the derived reference FT state (grey for frozen and
white for unfrozen) extracted for the location of the Xilinhot site (43◦30’–45◦N, 115◦–117◦E).

When unfrozen, soil moisture variations due to evaporation lead to TB increases of
only up to 15 K in a day [33]. An exception to significant daily TB changes for unfrozen
soil is precipitation, which can reduce TBs by tens of K. TB can change in the same range
due to daily soil temperature variations via Teff ((Equations (4) and (5)). TB changes during
FT transitions are in the range and larger than the precipitation signal because of the
huge ε difference between frozen and unfrozen soil. When frozen, emissivity—and thus
TB variations—are very small and only slightly depend on soil composition, such as the
clay/sand fraction and organic matter, which also affect the emissivity of unfrozen soil.
Thus, daily TB changes for unfrozen soil—except for precipitation—are much smaller than
those caused by freezing and thawing. Any FT transition typically begins and ends at
the surface. Thus, L-band radiometers can sense the start and end of FT transitions. The
new FT algorithm exploits the daily TB difference caused by FT state transitions, and we
assume the day without enough SMAP TB (i.e., an absence of TB at 6 a.m., 6 p.m., or both)
interpolated with the nearest FT result.
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We use the following formalism for FT-state detection. Let

{
TBih_6am = ε6amTe f f _6am
TBih_6pm = ε6pmTe f f _6pm

(6)

TBih_6am/TBih_6pm are the TBs observed by SMAP at 6 a.m. and 6 p.m. local time on
day i in H-polarization (h) with ε6am/ε6pm the respective soil emissivities and Teff_6am/pm the
respective Teff. The DAV signals between H and V polarizations have few differences [33]
when the soil surface is frozen both at 6 a.m. and 6 p.m., and neglecting the impact of
soil temperature changes on the dielectric constant, i.e., ε6am = ε6pm = ε. On a daily scale,
this is reasonable because other factors, such as the sub-grid open water fraction, terrain
heterogeneity, and tree cover, will not have diurnal changes. Precipitation will be excluded
by air temperature > 0 ◦C, and snowmelt will lead to large DAV. The TB difference between
both is using Equation (6) given by

ΔTBi = TBih_6pm − TBih_6am

= ε
(

Te f f _6pm − Te f f _6am

)

= ε

[
ΔT1(1 − e−τ1) +

n−1
∑

i=2
ΔTi(1 − e−τi )

i−1
∏
j=1

e−τj + ΔTn
n−1
∏
j=1

e−τj

] (7)

At 6 a.m./pm, soil temperature and moisture profile gradients are less sharp than at
noon, and ΔTBi will be much smaller than the temperature differences (ΔTi) in any layer,

since ε < 1, (1 − e−τ1) < 1, (1 − e−τi )
i−1
∏
j=1

e−τj < 1, and
n−1
∏
j=1

e−τj < 1, i.e.,

|ΔTBi| < max(|ΔTi|) (8)

Equation (8) takes the daily scale as the diurnal definition DAV approaches. However,
Equation (8) is not valid for unfrozen soil because ε will change with soil moisture over
the day due to evaporation and precipitation, which will dominate ΔTBi. However, ΔTBi
will also be small when no precipitation happens between both times and when the sky
is cloudy, and low winds reduce evaporation. Thus, ΔTBi is not enough to infer the FT
state. A sudden heat/cold wave can interrupt a daily FT state transition, which may induce
a large ΔTBi with soil staying frozen or unfrozen throughout the event. Such synoptical
scale heat/cold waves make identifying the beginning/end of the yearly freezing difficult.
To avoid this problem, as well as the absence of TB in the low latitudes due to the revisit
period of SMAP, we interpolate the DAV absences with the nearest valid values.

Thus, to filter out the influence of synoptic variations and cloudy and/or low wind
days [31], we use, in addition, the ΔTBi variance over β days

var(ΔTB)β =
1
β

i=(β−1)/2

∑
i=−(β−1)/2

[ΔTBi − E(ΔTBi)]
2 (9)

var(ΔTB)β is not a new parameter but to keep |ΔTBi| filtering out the synoptic weather
interference. The selection β = 7 filters out the impact of atmospheric Rossby waves in the
midlatitudes (3–5 days) at locations experiencing annual FT cycling in the mid-latitudes [49].
This averaging will filter out the impact of days with low ΔTBi caused by cloudy days
or synoptic weather systems. The days after or before β days will also be checked by
Equation (10) below. In this case, if the freezing or thawing state transition, e.g., due
to synoptic weather systems, lasts for more than five days, we can still find the annual
begins/ends of an FT cycle. Therefore, the influence of synoptic events is excluded.
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Then the new algorithm is

FT new =

{
thaw, i f var(ΔTB)β ≥ γ2 or |ΔTBi| ≥ γ

f rozen, i f var(ΔTB)β < γ2 and |ΔTBi| < γ
(10)

with γ a threshold brightness temperature square in terms of both |ΔTBi| (for instantaneous)
and var(ΔTB)β (for the synoptic weather scale). By Equations (9) and (10), the new FT
algorithm contains a synoptic time scales background to daily values as variance-based
filtering. For example, sunny days will lead to ΔTBi ≥ γ [33]; cloudy/slow winds days
will be filtered out by var(ΔTB)β ≥ γ2 because these days do not last longer than the
period of an atmospheric Rossby wave period in the middle latitudes. We calculate all
|ΔTBi| from the grid inferred by SMAP FT products as the freeze state (Figure 2) and obtain
γ = 8K by statistically computing |ΔTBi| and var(ΔTB)β over the northern hemisphere to
keep 95% confidence for cases where T2m< 0 ◦C. The bias of ERA-land–air temperature and
collocated 0–7 cm soil temperature is about 1 K, which provides 95% ± 3% uncertainty [50].
Any day that can obtain |ΔTBi| from SMAP will be checked by Equation (10). For a day
that |ΔTBi| is not available, it will be filled with an FT value depending on the nearest
FTnew. In arid regions, ΔTBi ≥ γ would always work because the heat capacity of dry soil
is much smaller than that of wet soil. Equation (10) will treat the arid region as a thawed
state. For wet snow, if there is no more water melted in the daytime, then TB will not be
affected too much. If water is melting, Equation (10) will be treated as a thawed state, and
the wet snow-covered ground will still be part of the land surface FT state.

Figure 2. |ΔTB| with β = 7 by SMAP TB data contained in SMAP L3 radiometer global daily 36 km
EASE-grid freeze/thaw state; data over the northern hemisphere where 95% of samples are within 8 K.

2.3. Evaluation of the New FT-State Detection Algorithm

By Equation (10), one can compute the starting and ending times of the frozen-soil
period in winter, i.e., the first/last freeze state in an annual FT cycle. Applying Equation (9),
it requires at least one FT value per day which affects accuracy in the low latitudes.

Before a comparison with the half-daily SMAP FT products, we have to scale it to
daily resolution by

FT SMAP−daily =

{
thaw, i f FT status6am = 0 or FT status6pm = 0
f rozen, i f FT status6am = FT status6pm = 1

(11)

Equation (11) produces a bias towards thawed states but matches the concept of the
new FT algorithm because |ΔTBi| would be smaller when the states at 6 a.m. and 6 p.m.
are consistent. Hence, the agreement is defined as the fraction of days in which the new
method and SMAP FT have the exact daily FT state inference against the total number of
days (see Equation (11)). Specifically, both the SMAP’s FT product and the new algorithm
contain 964 × 203 grids in the latitude between the equator to 83.6320◦N and 2148 days
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after 31 March 2015. Instead, “agreement” computes the percentage of pairs (one from
the new FT and the other from SMAP) that are consistent along longitude/latitude/time.
SMAP also adopts a similar FT product-accuracy assessment method to Equation (11) [32].
The difference is that SMAP needs to compare at 6 a.m./pm instead of the daily scale.

With the above steps, the categorical triple collocation (CTC) method [51,52] is used
for validating the binary FT state. Triple collocation (TC) is a method to verify the accuracy
of three sets of observations without surface measurements. The method assumes the
following relationship between the observed quantity (M) and the true value (X):

Mi = Ai + BiX + εi (12)

This method assumes that each group of observations is independent of the other
and that observations and errors are separate. However, for binary variables (such as the
freeze–thaw state of soil), Equation (12) should be rewritten as

Mi = X + εi (13)

CTC is based on triple collocation (TC) [53,54] by relaxing the assumptions of TC
sufficiently to allow its application to binary and categorical variables. CTC provides
relative performance rankings but not absolute values of performance metrics.

The CTC method evaluates the estimation accuracy of binary variables by introducing
equilibrium accuracy (α)

αi =
1
2
(ψi + ηi) (14)

In the formula, ψ is the probability of being correctly estimated as thawed, and η is
the probability of being correctly estimated as frozen. The following relationship exists
between the covariance matrix (Q) of the static variable and the equilibrium accuracy α,

Qij = Cov
(

Mi, Mj
)
=

{
1 − E(E(Mi))

2, f or i = j
Var(X)(2αi − 1)

(
2αj − 1

)
, f or i �= j

(15)

This relationship is extended to non-static variables with noticeable seasonal changes
(such as a freeze–thaw state):

Qij = Cov
(

Mi, Mj
)
=

{
1 − E(E(Mi/t))2, f or i = j
4E(p(t))(1 − E(p(t)))(2αi − 1)

(
2αj − 1

)
, f or i �= j

(16)

In the formula p(t) ≡ pM (M = 1|t), t is time (unit is day). The CTC algorithm requires
that the random errors between each group of observation systems are conditionally
independent if the relative accuracy Wi is defined as

Wi = 2(2αi − 1)
√

E(p(t))(1 − E(p(t))) (17)

Three groups of different observation systems in Equation (17) can form three equa-
tions, as follows:

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
Q12Q13

Q23√
Q12Q23

Q13√
Q23Q13

Q12

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

Since Wi is a monotonically increasing function with αi as the independent variable,
the ordering of W represents the ordering of the observation system errors from small
to large. The relative error between different observation systems can be obtained by
arranging the W vector calculated by Equation (18) in descending order [54].
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3. Results

3.1. The Demonstration of the New Method at the Xilinhot Site

Figure 3a shows the in situ air temperatures and the SMAP TB observed at or near the
Xilinhot site from March 2015 to March 2021. The green lines are the beginnings and ends of
the annual freezing cycles inferred from the new FT algorithm. The intervals between green
lines in summer indicate the thawed state, and in winter for the frozen state. TB ranges
between 240 K and 280 K in the thawed soil state. The seasonal TB amplitude more or less
follows the variation of air, skin, and upper soil temperatures without phase delay. Under
frozen conditions, TB does not exhibit a clear seasonal variation because of a more stable
soil emissivity. Figure 3b proves the inference from Equation (8): |ΔTskin| is the maximum
difference between the 6 p.m. and 6 a.m. calculated from skin temperature (Tskin) in the
ERA5-land (Figure 3a). |ΔTskin| is relatively stable, about 10–15 K through the years, while
|ΔTBi| in winter is two times smaller than in summer.

Figure 3. (a) Time-series of 2-meter air temperature T2m, and SMAP TB at the Xilinhot site; (b) time
series of |ΔTB| computed from the SMAP TBs and max|(ΔTERA5−land)|. The vertical green dashed
lines indicate the beginning and ending day of the soil frozen state as inferred from the new FT
algorithm. The gray shades the frozen state inferred from SMAP FT product.
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The ΔTBi time series in (Figure 4) shows mostly a substantial intra-annual variation in
summer from −40 K to 40 K due to soil moisture variations, which is mainly influenced
by the precipitation connected to the East Asia Monsoon. In winter, ΔTBi varies only
from −8 K to 8 K. However, there are |ΔTBi| ≤ 8 K is summer as well. To filter out these
isolated small |ΔTBi| cases in summer, var(ΔTB)β is constructed as in Equation (9). In
Figure 4, var(ΔTB)β is close to zero but ranges from 0 to 200 K in summer. By comparison
with ΔTBi, var(ΔTB)β=7(the red line in Figure 4) successfully filters out the small ΔTBi of
summer cases. Figure 4 also shows the sudden changes of both ΔTBi and var(ΔTB)β=7 in
the beginning and ending time of the frozen-soil period according to the new algorithm.

Figure 4. An illustration of diagnosis example at the Xilinhot site. The time series of ΔTB (Equation (7))
is represented by the black line from April 2015 to March 2021. The red line represents its seven-day
moving variance as in Equation (9). The green dashed lines represent the beginning/ending of the
soil frozen state inferred from the new FT algorithm.

At the beginning and after the end of an annual frozen-soil period (Figure 4), TBih_6pm is
often less than TBih_6am(valley in the time series), while the soil and air temperatures have
opposite behavior due to solar heating during daylight hours. Days with TBih_6pm < TBih_6am
can be explained by daytime melting of the uppermost few centimeters of the soil, which
reduces the topsoil emissivity. According to [55], intra-daily FT state transitions between
the completely thawed and frozen-soil state may last for tens of days at the Maqu site on
the Tibetan plateau [55]. The new FT detection algorithm takes this peculiarity during the
transition phase into account and identifies the FT state of the bulk soil rather than of a
thin surface layer as detected by the existing TB-based algorithms. Moreover, the new FT
detection algorithm requires no local reference values.

3.2. Result over the Northern Hemisphere

Figures 5 and 6 show, respectively, the beginnings between August and December
and the endings between January and May of the frozen-soil periods from 2015–2021. For
most of the northern hemisphere, there are hardly any frozen-soil states in the northern
hemisphere during June and July.

Siberia and Tibet experience the earliest soil freezing. In East Asia, the beginning of
soil freezing follows the latitude and the East Asia Summer Monsoon [56] propagation in a
meridional direction. Regions with an earlier retreat of the East Asia Summer Monsoon
also freeze earlier, i.e., the region reaching from Mongolia to southern China shows a

82



Remote Sens. 2022, 14, 4747

northwest–southeast freezing beginning gradient in November [57]. Over Europe, the
gradient direction of the start times exhibits a southwest–northeast pattern towards Siberia.
The freezing begins about two months later than in other regions with the same latitude
(40◦N~60◦N) [58]. In North America, the freezing starts in October in the north and invades
the south in December. Winter 2015–2016 and winter 2017–2018 show more severe soil
freezing than other winters. Deep blue colors along 120◦W mark the Rocky Mountains.

 

Figure 5. The beginning of the frozen-soil periods of the six winters as inferred by the new FT
algorithm over the northern hemisphere (latitude > 20◦N).

The pattern of the frozen-soil ending dates (Figure 6) is similar to the one of the starting
dates. The frozen-soil period lasted the longest in Siberia, Tibet, and the Rocky Mountains.
Winter 2017–2018 has the latest ending time of the frozen-soil period in North America
and Europe. The contours of the frozen-soil period’s beginning vary by tens of days from
year to year. Parts of Siberia and Tibet never have unfrozen soil (deep blue colors); the soils
are also frozen during June and July, which are not shown in the figures. Color transitions
in Figure 6 are smoother and more continuous than in Figure 5 and show a gentler date
gradient. For instance, the gradient over Eurasia is spotted spatially in Figure 5. An air
temperature drop may explain the jagged color contours in Figure 5. These delicate patterns
reflecting topography, sea-land distribution, and climatological types are not observed in
Figure 6, implying a more gradual and slower heating process in spring.

By combining Figures 5 and 6, we obtain the duration of the annual frozen cycle as in
Figure 7. The most extended frozen-soil period (>200 days) is located near the North Pole
and over some regions in Tibet (Figure 7). The sharpest gradient in the length of the frozen
period stretches from the eastern part of Siberia to the northeast part of China following
the latitudes; here, the freezing duration decreases from more than 300 days to 90 days in
about ten days per latitude degree. The freezing duration does not change much between
the years and exhibits similar patterns.
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Figure 6. The ending of the frozen-soil periods of the six winters as inferred by the new FT algorithm.

Figure 7. The duration of the frozen period inferred from the SMAP L3 global H-polarization
brightness temperature product.
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3.3. The Comparison with the SMAP FT Products

In this section, we will compare the results from the new FT algorithm with SMAP’s
regarding time variation and spatial distribution. An average of 2-m air temperature and
collocated 0–7 cm soil temperature will also be used as a reference and compared with both
FT results.

Figure 8 shows the zonal average agreement evolution along the annual FT transition
zones between 30◦N and 80◦N. Although the SMAP FT product contains the data in
0◦N–30◦N, the zones that are supposed to be freeze-free or permanently frozen (>83◦N) are
not included in Figure 8. The new FT detection algorithm results mostly agree well with
the SMAP FT product (Figure 8). In a transition zone, the overall agreement is only 0.6–0.7.
The agreement of the detected beginning and ending times in the 30◦N–40◦N latitude belt
is lower than the zones above 40◦N because of the Tibet Plateau (25◦N–40◦N, see Figure 9a).
The agreement between the two algorithms can be below 0.5 in winter (the blue area in
Figure 8, especially ≥80◦N).

 

Figure 8. The fraction of agreement time series along the latitudes.

In summer, both agree up to 0.98 and 0.70–0.75 in the wintertime. However, the
lowest agreement does not happen in the deep winter but some time ahead and after
January by showing the two valleys as seen for each year in Figure 8. These valleys
are the freezing/thawing transition period in the northern hemisphere that obtains the
lowest agreement.

The difference in Figure 8 is due to the hypothesis in both algorithms. The SMAP
FT algorithm requires FFfr and FFth; their estimate needs sufficiently long periods of wet
and frozen soil, which becomes increasingly difficult with decreasing latitude. Thus, FFfr
and FFth can be unreliable for the transition zones where the frozen emission character
is not typical and may have interannual changes. For instance, the FFfr and FFth change
variation can reach 4% and 20%, respectively, and strongly depends on the samples. Table 1
illustrates FFfr and FFth variation at the Xilinhot site by adopting different samples every
year. Another reason for the difference in Figure 8 is the assumption adopted by the new
algorithm. For one side, the new algorithm cannot identify a frozen-soil period shorter
than seven days (as shown in Equation (9)). This leads to the thawed/frozen error in the
new FT algorithm where the 3–5 days heat/cold events may result in different FT states
from the two algorithms.

Figure 9a compares the SMAP FT state product and the new algorithm regarding the
spatial distribution of the agreement. The Tibetan Plateau shows the lowest agreement
value in Asia, especially its southern margin close to the Himalayas Mountains. While for
most of the plateau, the agreement stays above 0.7, it is below 0.5 at some points organized
in a belt in an east–west direction, probably due to the complex terrain that affects the ERA5-
land quality [59]. The area downstream of the plateau, including the center parts of China,
also shows strong disagreement between both estimates. A zone with a low agreement
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(0.7–0.8) is found between 50 and 60◦N, especially in the Lake Baikal region, northern
Europe, and the east coast of Canada and Alaska. A zone with high agreement is found in
eastern China, central Asia, southwestern Europe, and the southern U.S. Figure 9b,c shows
the same agreement map between the new/SMAP’s FT algorithm and the FT stated inferred
from ERA-land-assessment data by a binary judgment of the freezing point (273.15 K),
i.e., T < 273.15 K is frozen, and T > 273.15 K is thawed. Figure 9b,c shows that despite some
mismatch between the results of the new algorithm and the SMAP FT, both overall agree
by more than 70%. The new FT state detection better agrees with T2m in the mid-latitudes
than the SMAP FT algorithm but is worse in latitudes above 60◦N and low latitudes below
30◦N. Figure 9c also shows the influence of SMAP’s NPR threshold method and the single
channel algorithm with a clear boundary between high/low latitudes.

 

Figure 9. The spatial pattern of the fraction of agreement in the northern hemisphere between (a) the
new method and SMAP L3 FT state products; (b) the new method and ERA-land-assessment data;
(c) the SMAP L3 FT state products and ERA-land-assessment data; and (d) the difference by b minus
c. The red cross marks the location of Xilinhot, and the red line is the boundary between SMAP’s
NPR threshold method and the single channel algorithm.
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Table 1. FFf r and FFth from SMAP’s algorithm at Xilinhot site.

Summer 2015 2016 2017 2018 2019

FFth 0.1085 0.1118 0.1078 0.1095 0.1074
winter 2015–2016 2015–2016 2015–2016 2015–2016 2015–2016

FFf r 0.0251 0.0277 0.0302 0.0274 0.0295

Figure 10 shows the CTC result, i.e., the new method F/T, ERA-land F/T, and SMAP
F/T. SMAP F/T is confidently ranked the highest at high latitudes (≥60N◦, Figure 10a).
There are no dominant products that represent the FT state truth in the northern hemisphere
in Rand Second (Figure 10c). However, for the mid-latitudes in East Asia, which includes
the XInlinhot site, the new FT is more confident than SMAP’s FT product (Figure 10c).

 
Figure 10. Map of the measurement system ranked first (a), second (b), and third (c) in the northern
hemisphere (≥20N◦) using CTC.
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3.4. Sensitivity Test

Parameters β and γ in the new FT state detection have been selected based on the
typical length of synoptic weather systems and the 95% confidence level outcome. β (days)
is the window length (days) over which the variance in Equation (9) is estimated and used
as a decision criterium in Equation (11), which filters out sporadic changes by weather
events. γ is a threshold temperature to judge if the observed SMAP TB signal is related to
frozen soil in Equation (10). The values for these parameters have been set in an ad hoc
fashion; here, we analyze the sensitivity of the results against the soil freeze/thaw state
inferred from ERA-land-assessment data to the variation of these parameters by varying β
from 5 to 11 K (Figures 11a and 12a,b) and γ from 3 to 11 days (Figures 11b and 12c,d).

 

Figure 11. The time-series of the fraction of agreement between the new method and the FT state
inferred from ERA-land-assessment data in the northern hemisphere regarding (a) β, the window
length for the variance; and (b) γ, the threshold temperature difference.

When only changing one parameter, the degree of agreement between the new FT
estimates and T2m changes significantly only in winter (Figure 11). The impact of changing
only β is also larger in winter than in summer (Figure 11a). A smaller β reduces the
agreement from above 0.73 (at β = 7) to 0.65 when β = 3, while a larger β only barely
increases the agreement between both estimates. A smaller γ improves the agreement in
winter (Figure 11b) by more than 0.1. Overall, the variation of the two parameters leads
only to significant changes in the agreement between both estimates in the thawing period.
The spatial distribution of the change of agreement between both FT state estimates relative
to the default values for the two parameters is shown in Figure 12. The Tibetan Plateau
and some Northern Europe areas behave opposite to Siberia, the western coast of North
America, and the region around latitude 30◦N.
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Figure 12. The spatial pattern of the fraction of agreement difference compared to Figure 9b for β = 3 (a),
β = 11 (b), γ = 5 (c), and γ = 11 (d).

4. Discussion

Although the result reveals the potential for retrieving the FT state from the DAV sig-
nals at the L band, several issues need to be addressed for further development as fellows,

The primary issue of the FT product-accuracy assessment of passive microwave remote
sensing FT products is how to measure and define the FT on the ground, especially for
a deeper penetrated band such as the L band. We lack a precise “ground truth” of the
soil’s freeze/thaw state. The SMAP FT team uses WMO’s air temperature, and WMO’s air
temperature is also vulnerable in the agreement assessment. For instance, what is the best
way to deal with the scale mismatch between the weather station and SMAP’s footprint?
How do we account for sub-grid open water fraction, terrain heterogeneity, tree cover,
precipitation, snowmelt, and so on with the weather station data? These problems can be
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avoided by taking an average of ERA5-landland–air temperature and collocated 0–7 cm soil
temperature in the evaluation, and we are aware that the ERA5-landland–air temperature
and collocated 0–7 cm soil temperature are not appropriate for validation which needs
FT ground profile truth for sure. ERA-land-assessment data FT inference is used in this
study, and SMAP uses a more complicated scheme by considering T2m, Tskin, T5cm, and
T10cm. Some studies use soil temperature to evaluate SMAP FT products, and with 0–5 cm,
the soil temperature at SMAP grids containing CVS stations is about 70% [60]. Since in
situ T2m is usually to either infer the ground FT states or those used in the FT products
accuracy assessment, it is interesting to know the relationship between air temperature and
FT state on a global scale. However, when it comes to soil temperatures such as Tskin, T5cm,,
T10cm, or more profound layers, it is hard to say which layer can correspond to the TB signal
best. Another option is in situ soil temperature at 5 cm, as in SMAP’s FT product-accuracy
assessment. However, either the detectable depth or the footprint of SMAP’s radiometer
does not match ERA5-land. Indeed, the soil temperature from a particular layer cannot
compare with SMAP’s FT product because the penetration depth of the L-band signal
is dynamic [61,62], especially for frozen soil that may range from a few centimeters to
meters. Thus, the comparison in this study, such as Figures 9–12, is hard to consider as an
evaluation of the new FT algorithm or SMAP’s. Still, the comparison shows that the new
FT algorithm can capture FT signals as well as the SMAP’s official one.

Since ERA-land-assessment data is adopted in this study, Figure 13 shows the frozen
land cover and annual accumulations inferred from the new FT state algorithm and the
thermal conditions near the surface from T2m < 273.15 K in the northern hemisphere. Both
are very similar, while the maxima reached for both data sets are different due to their
different grid sizes; SMAP data are given in area-equal grids 36 km in diameter (about
1300 km2), while ERA-land-assessment data used a 1◦ × 1◦ lat-lon grid (0 to 1000 km2).
However, the frozen land area detected by the new FT algorithm is about 15 days in advance
of T2m, especially in spring (the shift of black lines). It coincides with the challenges in
using ERA-land-assessment data as an accuracy assessment for L-band-derived estimates
of FT since the radiometer measurements are sensitive to the near-surface soil layer. The
time lag in springs is reasonable because soil absorbs the solar radiation and then heats
air temperature. The accumulated frozen land areas are also different. Usually, the air
temperature will lead to more frozen soil flags, except for the year 2019. Figure 13 shows
that T2m is also more appropriate to be the “ground truth” in the beginning than the
ending of an annual FT cycle. A similar situation exists for Tskin, T5cm,, T10cm, or more
profound layers. The penetration depth of the L-band detection varies severely during
the FT transitions; thus, it would not be suitable to evaluate the FT algorithm with a
static depth. Moreover, the penetration depth and sensing depth issues for soil moisture
retrieving from L band are still unclear [28,62–65]. The problem is more complex for frozen
soil because the dielectric profile is not continuous if freeze–thaw transitions happen in a
profile’s middle layers, and a complete frozen soil profile shall theoretically have much
deeper penetration. Thus, we cannot even get a precise penetration depth for the case of a
freeze–thaw transition. By using the air temperature, we avoid this complicated situation.
Otherwise, selecting which layer and according to what standard compared with the SMAP
FT products would be vulnerable. In this study, we use the same method as the SMAP
handbook, which is considered the state-of-art in this topic, to obtain the agreement.

Thus, clarifying the “ground truth” is critical to developing the FT remote sensing
algorithm at the L band. Future work needs more in situ accuracy assessment activities in
the field experiment, not only for the satellites but from tower-based or airborne platforms.
The L-band TB detected by the satellites covers the FT states in tens of kilometers, and most
importantly, the FT has a vertical structure. The field experiment is expected to identify
the sensing depth, which is also a vague concept for soil moisture remote sensing at the L
band during the FT transition periods. Instead, the ERA-land-assessment data makes the
temporal and spatial scales more comparable with the FT result in this study. Specifically,
(1) the vertical scale: the air temperature is a composite indicator of the FT state for a certain
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layer; (2) the temporal scale: the resolution of the DAV values is daily. It is reliable to use
daily air temperature and collocated 0–7 cm soil temperature, not instant soil temperature,
in the assessment.

 

Figure 13. The cover of the frozen land detected by the new FT algorithm and T2m < 273.15 K.

Besides lacking appropriate ground truth, another limitation of the new algorithm is
the absence of the DAV data in the low latitudes (≤45◦N). The orbits of SMAP and SMOS
make the revisit period over in the low latitudes more frequent than two times a day but
only one value in 3 days. The new FT algorithm is based on a DAV signal as in Equation (8)
and further extends to the synoptic scale by the parameter β. Thus, a lot of data are absent
in the low latitudes area. To overcome this drawback, we have to define the annual FT
scale’s beginning and ending times and fill the DAV absence with the nearest interpolation.
This produces dummy signals that affect the accuracy in low latitudes. In all cases, the
daily L3_FT products incorporate (AM and PM satellite overpasses) data for the current
day, as well as past days’ information (to a maximum of 3 days, necessary only near the
southern margin of the FT domain) to ensure complete coverage of the FT domain in each
day’s product.

5. Conclusions

We developed a new FT state-detection algorithm based on the difference in the
microwave brightness temperature between 6 a.m. descending and 6 p.m. ascending
half-orbit passes that are relatively small over frozen soil due to the large penetration depth
leading to an effective temperature dominated by stable deeper soil temperatures. The
new FT state detection agrees well with SMAP’s FT state detection, with a minimum of
above 0.72 in winter. The new algorithm can reach a comparable agreement regarding
the spatial distribution as the SMAP FT product does against ERA-land-assessment data
FT inference in the northern hemisphere. The algorithm is rather stable to variations of
its ad hoc set parameters. The limitation is that this algorithm is only applicable to the L
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band, considering its penetration depth and corresponding soil effective temperatures; it
cannot be applied to other bands. The new algorithm presented in this study is expected
to extend the application of L-band passive microwave remote sensing data in freezing-
thawing conditions.

Since the sensitivity of the L-band signal to the F/T state varies in terms of land cover
type and climate regions, the new algorithm shall be validated with in-site FT observations
at various sites. For instance, the sub-grid open-water fraction, tree cover, precipitation,
and snowmelt critical to TB signals at the L band shall be checked. These dynamics will
enlarge/reduce the DAV signals and further the efficiency of parameters β and γ. On
the other hand, the terrain is a significant factor because we can see Tibet and the Rocky
Mountains in Figure 9. Although the new algorithm shows comparable agreement with
SMAP’s FT products, further optimization, and validation work, should be carried out in
the future.
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Abstract: Soil moisture is one of the core hydrological and climate variables that crucially influences
water and energy budgets. The spatial resolution of available soil moisture products is generally
coarser than 25 km, which limits their hydro-meteorological and eco-hydrological applications
and the management of water resources at watershed and agricultural scales. A feasible solution
to overcome these limitations is to downscale coarse soil moisture products with the support of
higher-resolution spatial information. Although many auxiliary variables have been used for this
purpose, few studies have analyzed their applicability and effectiveness in arid regions. To this
end, we comprehensively evaluated four commonly used auxiliary variables, including NDVI
(Normalized Difference Vegetation Index), LST (Land Surface Temperature), TVDI (Temperature
Vegetation Dryness Index), and SEE (Soil Evaporative Efficiency), against ground-based soil moisture
observations during the vegetation growing season in the Heihe River Basin, China. Performance
metrics indicated that SEE is most sensitive (R2 ≥ 0.67) to soil moisture because it is controlled by soil
evaporation limited by the available soil moisture. The similarity of spatial patterns also showed that
SEE best captures soil moisture changes, with the STD (standard deviation) of the HD (Hausdorff
Distance) less than 0.058 when compared with PLMR (Polarimetric L-band Multi-beam Radiometer)
soil moisture products. In addition, soil moisture was mapped by RF (Random Forests) using both
single auxiliary variables and 11 types of multiple auxiliary variable combinations. SEE was found to
be the best auxiliary variable for scaling and mapping soil moisture with accuracy of 0.035 cm3/cm3.
Among the multiple auxiliary variables, the combination of LST, NDVI, and SEE was found to best
enhance the scaling and mapping accuracy of soil moisture with 0.034 cm3/cm3.

Keywords: soil moisture; auxiliary variable; Hausdorff Distance; Random Forests; scaling; mapping

1. Introduction

Soil moisture plays a key role in the water cycle and heat exchange of surface–
vegetation–atmosphere columns [1–3]. Information about the spatiotemporal distribution
of soil moisture is essential for drought monitoring [4], evapotranspiration forecasting [3,5],
water resource management [6–8], and crop yield estimation [9]. In recent years, advances
in active and passive microwave remote sensing have made this the main technique for
measuring soil moisture distribution at regional and global scales [10,11].

Over the past years, several global soil moisture products based on satellite-based
passive microwave sensors have become available [12]. Among these, the Advanced
Microwave Scanning Radiometer Earth Observing System (AMSR-E) has a finer spatial
resolution of 25 km [13–15], while Soil Moisture and Ocean Salinity (SMOS) [16], launched
in 2009, has a resolution of 40 km, and the Soil Moisture Active Passive (SMAP) [17,18],
launched in 2015, has a resolution of 36 km. These passive microwave remote sensing
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products aim to map global soil moisture within an accuracy of 0.04 cm3/cm3 to satisfy
hydro-climatological and hydro-meteorological requirements and the management of water
resources at watershed and agricultural scales.

For practical applications, however, soil moisture maps with spatial resolutions higher
than 10 km are urgently required at watershed scales because soil texture and structure,
vegetation coverage, and topography lead to high soil moisture spatial variability [19]. For
example, Pan and Wood (2010) found that a higher spatial resolution of soil moisture can
improve hydrology assimilations [20]. Agricultural applications often require a finer spatial
resolution than 1 km [21], and weather forecasting and hydrological applications also need a
higher spatial resolution than 10 km. In recent years, the downscaling of soil moisture has thus
received wide attention to satisfy watershed-scale research and application needs [22–25]. To
obtain a finer distribution of soil moisture, auxiliary variables at a higher spatial resolution are
indispensable for capturing the spatial pattern of soil moisture in remote sensing pixels. For
example, a combination of high-resolution Normalized Difference Vegetation Index (NDVI),
albedo, and Land Surface Temperature (LST) data can be used to downscale soil moisture
from 25 km to 1 km [26].

Auxiliary variables are also beneficial for the upscaling of multi-point ground-based
soil moisture observations. Generally, the footprint of a remote sensing pixel is much larger
than the representative area of in situ soil moisture measurement, which leads to a huge
scale gap when validating soil moisture remote sensing products, especially when the
spatial heterogeneity of soil moisture is increased by the compound influences of precipita-
tion, soil texture, vegetation cover, and topography. At present, Wireless Sensor Network
(WSN) [27] and COsmic-ray Soil Moisture Observing System (COSMOS) [28] are two
promising methods capable of overcoming the scale mismatch between point observations
and remote sensing pixels. Various upscaling methods have been developed to upscale the
multi-points soil moisture observations, including Bayesian linear regression [29], ridge
regression [30], and Kriging [30–32]. Introducing auxiliary variables related to soil moisture
into the upscaling process does not only compensate the weak spatial representation of the
sparse in situ soil moisture measurements, but also takes into account the trend of change
of soil moisture with time, improving upscaling accuracy [11].

Until now, multispectral remote sensing data ranging from visible, near-infrared,
thermal-infrared to microwave bands have been used directly or indirectly as auxiliary
variables relative to soil moisture. Because of the different remote sensing principles (reflec-
tion, radiation, and scattering properties) in different wavelengths, each type of auxiliary
variable reflects soil moisture at different depths and under different vegetation cover
conditions. Optical remote sensing indirectly takes advantage of the strong absorption
in the visible bands and strong reflection in the near-infrared bands of vegetation; the
relationship between soil moisture and spectral reflectance in the visible/near-infrared
bands can be used to determine the soil moisture at the surface or in the top millimeters
of soil. In general, the absorption in the visible bands increases with soil moisture. Re-
cently, a series of vegetation indices based on optical remote sensing was developed to
scale soil moisture via vegetation health conditions and water stress. During the entire
vegetation growing season, there is an obvious positive correlation between NDVI [33]
and soil moisture. Based on NDVI, the Vegetation Condition Index (VCI) [34,35], Anomaly
Vegetation Index (AVI) [36], Temperature Condition Index (TCI) [35], and Temperature Veg-
etation Index (TVI) [37] were developed to comprehensively reflect soil water deficiencies
in different years. However, soil moisture retrieval is limited in these bands due to their
limited capability to penetrate clouds and vegetation, and the careful correction required to
eliminate atmospheric effects [38].

Monitoring soil moisture with LST observed by a thermal-infrared remote sensor can
be traced back to the 1970s. LST was utilized as a feasible proxy to infer soil moisture in
drought-affected areas [39] thanks to soil thermal properties. Researchers demonstrated
that, in cloudless conditions, LST reflects soil moisture when the land surface is bare [40].
Both the Crop Water Stress Index (CWSI) [6] and the Apparent Thermal Inertia (ATI) [41] are

96



Remote Sens. 2022, 14, 3373

based on land surface emissivities and LSTs for estimating the variability of soil moisture
under bare soil and low vegetation coverage conditions. The Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived ATI has been successfully used to map soil moisture
(1 km) with an accuracy of 0.031 cm3/cm3 in the Babao River Basin, China, where the land
cover type is primarily alpine meadow [31]. Because of the limited sensitivity of LST to
soil moisture over vegetated areas, auxiliary variables such as the Temperature Vegetation
Dryness Index (TVDI) [42] and the Vegetation Temperature Condition Index (VTCI) [43]
were proposed to estimate soil moisture and monitor drought. For example, Kang et al.
(2015) found that the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) TVDI describes the heterogeneity of soil moisture within a microwave pixel [44].
Peng et al. (2015) utilized the VTCI calculated from MODIS to downscale the Climate
Change Initiative (CCI) soil moisture from 0.25◦ to 5.6 km [45], while the result showed
reasonable agreement with soil moisture observations. However, building the TVDI or
VTCI feature space requires not only a large number of samples to cover the extremely
dry to humid conditions, but also stable and uniform meteorological conditions in the
study area. Additionally, there is uncertainty in the determination of wet and dry edges.
Due to the close coupling relationship between soil moisture and evapotranspiration in a
water limited region, the Soil Evaporative Efficiency (SEE) [46], defined as the ratio of the
actual to potential soil evaporation, was employed to reflect soil moisture in last decades.
Merlin et al. (2009) utilized the SEE to downscale the SMOS soil moisture product from a
40 km resolution to 10 km/4 km resolution [22]. However, calculation of soil evaporation
directly from remote sensing is difficult, and its uncertainty increases with precipitation
and irrigation.

Microwave remote sensing, which utilizes radiative and scattering signals to monitor
hydrological variables, maps soil moisture based on the microwave dielectric sensitivity.
The combination of active and passive L-band microwave remote sensing holds strong po-
tential for improving the spatial resolution of soil moisture. Active microwave remote sens-
ing can provide much higher spatial resolution, and passive sensors can provide frequent
observations, albeit with coarser spatial resolution. With the support of high-resolution
microwave backscattering as an auxiliary variable, higher resolution microwave brightness
temperature data can be easily obtained by decomposing the passive microwave brightness
temperature of the L-band; thus, higher resolution soil moisture can be retrieved [47].
However, both soil surface roughness and soil structure are the main limitations for soil
moisture estimation [48] with these methods.

Recently, researchers combined land surface variables estimated from optical, thermal-
infrared, and microwave sensors to scale soil moisture with satisfactory accuracy and resolu-
tion [49–52]. For example, many researchers have combined land surface albedo and brightness
temperature to retrieve soil moisture with a high accuracy (RMSE ≤ 0.048 cm3/cm3) [53,54].
Knipper et al. (2017) compared the roles of albedo and onboard brightness temperature in im-
proving the resolution of soil moisture products (1 km) and found that brightness temperature
provides optimal precision for the spatial variability of soil moisture [55].

A variety of auxiliary variables used to scale soil moisture have been explored during
the past decades. However, a systematic evaluation of their applicability and contribution
to the scaling transformation of soil moisture, especially in croplands, is still missing.
Therefore, in this study, four auxiliary variables quantified from remote sensing images,
including NDVI, LST, TVDI, and SEE, were analyzed to show their applicable conditions,
the sensitivity to soil moisture, correlations, and sensing depth to soil moisture, and to
provide useful information for the scale conversion of soil moisture. Random Forest (RF)
was then applied to identify the auxiliary variable that is most suitable for mapping soil
moisture, eventually trying to use RF to solve the problems of nonlinearity between soil
moisture and auxiliary variables, and mutual correlation between variables, and hoping to
use optimal auxiliary variable to guide RF to obtain high-precision of soil moisture.

The paper is organized as follows. Section 2 briefly describes the study area and the
key datasets supporting the analysis, including remote sensing images and the Hydro-
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meteorological Observation Network and Ecohydrological Wireless Sensor Network (EHWSN).
Section 3 describes in detail four auxiliary variables closely related to soil moisture and evalu-
ates their performance with in situ soil moisture, the spatial consistency evaluation method
between the auxiliary variables and the Polarimetric L-band Multi-beam Radiometer (PLMR)-
retrieved soil moisture products are introduced to thoroughly demonstrate the selected
optimal auxiliary variable, and Random Forests (RF) is introduced to map soil moisture.
Section 4 presents the results and discussions, and is followed by conclusions in Section 5.

2. Study Area and Materials

2.1. Study Area

The middle reach of the Heihe River Basin (HRB) in the arid region of northwest
China has been selected as the experimental study area thanks to its rich observation
infrastructure maintained by the Heihe Watershed Allied Telemetry Experimental Research
(HiWATER) project, which includes 21 Automatic Meteorological Stations (AMSs) and
50 WATERNET nodes located in an observation matrix (5.5 km × 5.5 km) [56]. Additionally,
HiWATER provides synchronous space–sky–ground observation datasets that satisfy the
experimental requirements.

The extent of the study area ranges from latitude 38.75◦N to 39.00◦N and from longi-
tude 100.20◦E to 100.55◦E with elevations of 850–2000 m (Figure 1). The land cover types
mainly include farmland, orchard, village, road, irrigation channel, bare land, and desert.
The major crops are seed maize, wheat, and vegetables [56]. The climate of the study
region is dry with long and cold winters, while the summer is hot and short; occasional
sandstorms occur in the period from March to May. The annual mean air temperature is
6 ◦C, and the mean maximum and minimum temperatures generally occur in July and
January, respectively. The annual precipitation is about 100–250 mm, and 70% occurs from
June to September. The potential evapotranspiration is as high as 1200–1800 mm per year.
Within the research area, the irrigation districts of Daman and Yingke have a complete
irrigation infrastructure with densely distributed main canals, branch canals, lateral canals,
field ditches, and sublateral canals. The crops are irrigated approximately once every
twenty days during the growing season with water from rivers and supplemented by wells.
The significant spatiotemporal variations of soil moisture and evapotranspiration in this
region result in both the fractured landscape and a rotational irrigation system.

2.2. Materials

All data in this study were provided freely by the HiWATER project (http://westdc.
westgis.ac.cn/hiwater, accessed on 1 June 2017), which is a multi-scale integrated obser-
vation experiment relying on satellites, aerial sensors, and ground observations started in
the HRB in 2012 [56]. The data used in this study include remote sensing images and the
Hydro-meteorological Observation Network data and Ecohydrological Wireless Sensor
Network (EHWSN) data.

2.2.1. Remote Sensing Images

ASTER reflectivity and its LST products [57,58] were utilized to estimate the auxil-
iary variables. Nine ASTER L1B images (15 June, 24 June, 10 July, 2 August, 11 August,
18 August, 27 August, 3 September, and 12 September of 2012) were applied after a geomet-
ric and radiative calibration. The visible and near-infrared bands (band 2 and band 3) of
ASTER were used to calculate the Vegetation Index (VI). Other auxiliary indices, such as
TVDI and SEE, were derived based on VI and ASTER LST products.

The soil moisture products (700 m) of PLMR [59] were used as a reference to evaluate
the spatial distribution patterns of the auxiliary variables. The PLMR soil moisture products
on 30 June, 7 July, 10 July, 26 July, and 2 August of 2012 were retrieved from six L-band
microwave channels (three incident angles at 7◦, 21.5◦, 38.5◦, and dual-polarizations) by
the Levenberg–Marquardt (LM) optimal algorithm. The product’s accuracy is better than
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0.04 cm3/cm3 compared with WATERNET observations, which is suitable for the study of
soil moisture scale conversion and validation of remote sensing products.

Figure 1. The location of the study area and the distribution of observation instruments (left is the
HRB DEM, and right is the land use/land cover of 10 July 2012).

2.2.2. Hydro-Meteorological Observation Network

The hydro-meteorological network in the middle reach of HRB, located in the south-
west of the Zhangye City, includes a Daman superstation (AMS_15) and 20 ordinary AMSs
(Figure 1). The Daman superstation includes a multiscale observation system for surface
fluxes and soil moisture profiles equipped with a 40 m boundary layer tower, one lysimeter,
two Eddy Covariance (EC) systems (4.5 m and 17 m), four groups of Large Aperture Scin-
tillometer (LAS), one cosmic-ray probe, and one stable isotopic observation system. The
difference is that the ordinary AMSs lack a layer of EC (one EC system) compared with the
Daman superstation [60].

2.2.3. Ecohydrological Wireless Sensor Network (EHWSN)

The EHWSN was installed in the intensive observation matrix of 5.5 km × 5.5 km extent
(Figure 1), located in the hydro-meteorological network [27]. The EHWSN includes 50 soil
moisture/temperature WATERNET nodes. Their distributions were spatially optimized with
the stratified non-homogeneity method [61,62] to capture the spatiotemporal variations of soil
moisture, soil temperature, and land surface temperature in the heterogeneous surface.
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The soil moisture at the depths of 4 cm and 10 cm measured by each WATERNET
node and AMS (Daman superstation and 20 ordinary AMSs) were combined to evaluate
the applicability of remote sensing auxiliary variables to construct the RF training samples
and to verify the RF mapped soil moisture. The 0 cm soil temperature observations were
utilized to verify the component temperature of ASTER LST.

3. Methodology

The ASTER images were first introduced to calculate four frequently used auxiliary
variables, including NDVI, LST, TVDI, and SEE. The performance metrics between time
series of these auxiliary variables and soil moisture observations at 4 cm and 10 cm were
evaluated to quantitatively determine their representativeness. The Hausdorff Distance
(HD) method was introduced to evaluate the spatial consistency between these auxiliary
variables and PLMR-retrieved soil moisture products to validate the feasibility of the
auxiliary variables at large scales. Eventually, the machine learning method RF was used to
map soil moisture using both single auxiliary variables and multiple auxiliary variables
combinations, respectively.

3.1. Auxiliary Spatial Variables
3.1.1. Normalized Difference Vegetation Index (NDVI)

NDVI synthetically reflects the differences in chlorophyll absorption features between
visible and near-infrared bands [33]. This auxiliary variable is sensitive to changes in
chlorophyll in plant leaves, and is an indirect indicator of soil water content. Due to the
influence of vegetation, soil moisture, and atmosphere, NDVI shows large seasonal and
regional variations.

3.1.2. Land Surface Temperature (LST)

Due to its key role in surface–atmosphere interactions, LST is one of the essential
variables in hydrology, meteorology, climatology and ecology [39]. Generally, there is a
negative correlation between LST and soil moisture due to the soil heat capacity changing
with soil moisture. In this study, the LST remote sensing products (15 m) were from the
dataset named “HiWATER: ASTER LST dataset in 2012 in the middle reaches of the HRB”.
The products were obtained by the temperature and emissivity separation algorithm, after
the atmospheric calibration of ASTER L1B data using the MODIS atmospheric profile
product (MOD07) and the radiative transfer model MODTRAN (MODerate spectral res-
olution atmospheric TRANsmittance algorithm and computer model). These products
demonstrated a reasonable accuracy, with an average bias of 0.5 K and average RMSE less
than 2 K [57].

3.1.3. Temperature Vegetation Dryness Index (TVDI)

The estimation of TVDI [40,42,63] is based on a two-dimensional feature space con-
structed by NDVI and LST (Figure 2). The construction of the feature space requires that
the study area is large enough to cover canopy coverages ranging from bare soil to dense
vegetation, and surface soil moisture varying from dry to saturated. The scatter plots
of NDVI and LST generally form a triangle or trapezoid space (Figure 3) in which the
location of a pixel represents a certain soil moisture and evapotranspiration. Therefore,
TVDI is more suitable for the estimation of soil moisture in arid regions. The Formula (1) to
calculate TVDI is:

TVDI =
LSTNDVI − LSTNDVI,min

LSTNDVI,max − LSTNDVI,min
(1)

where LSTNDVI (K) is the land surface temperature at a pixel; LSTNDVI,max and LSTNDVI,min
are the maximum and minimum LST (2) in the study area, respectively, under the same
NDVI conditions of LSTNDVI . LSTNDVI,max under differing vegetation cover is assumed
to represent pixels with unavailable soil moisture content, and forms a “dry edge” at the
upper boundary of the feature space. LSTNDVI,min slowly increases with vegetation cover
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and describes pixels close to potential evapotranspiration, which form a lower, nearly
horizontal, “wet edge” [64–67]. Generally, linear regression is performed to fit the dry and
wet edge: {

LSTNDVI,max = a1 + b1 × NDVI
LSTNDVI,min = a2 + b2 × NDVI

(2)

where a1 and b1 are the intercept and slope for the wet edge, while a2 and b2 are those
for the dry edge, respectively. At the dry edge (TVDI = 1), soil moisture is close to the
wilting point; latent heat flux is assumed to be 0 W/m2 and the sensible heat flux reaches its
maximum. The wet edge is usually simplified as a line parallel to the NDVI axis (Figure 2)
when the slope of the wet edge is close to 0, and the soil water content is near to field
capacity. For a pixel in Figure 2, the ratio of section A and B is defined as TVDI, where A is
the vertical distance between the pixel and the wet edge, whereas B is the vertical distance
between the dry and wet edge. If the pixel (NDVI, LST) is closer to the dry edge, the TVDI
is higher and the soil moisture is lower. Otherwise, the situation is reversed.

Figure 2. Definition of the TVDI [42].

The algorithm described in this section was applied to all nine ASTER data acquired
over our study area. Figure 3 shows the plots of LST against NDVI in a two-dimensional
space for the data acquired on 15 June, 24 June, 10 July, 2 August, 11 August, 18 August,
27 August, 3 September, and 12 September of 2012, and the corresponding dry and wet
edges determined automatically. Each feature space constructed by the LST changed under
the NDVI with a step of 0.005. Furthermore, the dry and wet edges were fitted by maximum
and minimum LST under corresponding NDVI. The maximum LST gradually decreased,
whereas the minimum LST slowly increased with the NDVI. This figure confirms that the
pixels in the study area form a triangle or trapezoid space in the two-dimensional feature
space NDVI/LST, and the dry and wet edges are determined on the basis of the triangle or
trapezoid space. The negative slope associated with the wet edge might result from the
high rate of evapotranspiration from canopies compared with bare soil surfaces under a
non-limiting water situation.
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Figure 3. NDVI/LST triangle or trapezoid scatter plots derived by ASTER LST and NDVI at the
middle reach of HRB.

3.1.4. Soil Evaporation Efficiency (SEE)

SEE is defined as the ratio of actual to potential soil evaporation. The rationale for
choosing SEE as fine-scale information is based on its strong correlation with surface soil
moisture [22]. However, there are large difficulties and uncertainties in estimating soil
evaporation directly from remote sensing due to the influence of atmospheric conditions,
surface soil moisture, vegetation coverage, and soil texture. Therefore, Nishida et al.
(2003) put forward a method to indirectly estimate SEE using surface soil temperature
and vegetation fraction over heterogeneous surfaces [46]. SEE is a function of surface soil
temperature (3):

SEE =
Ts,max − Ts

Ts,max − Ts,min
(3)

where Ts,max and Ts,min are the maximum and minimum surface soil temperature, respec-
tively. Ts is the surface soil temperature obtained by decomposing the ASTER LST based
on NDVI [68] as following:

(I) When NDVI < 0.2, the pixel mainly consists of bare soil and the ASTER LST is
considered as the surface soil temperature (4):

Ts = LST (4)

(II) When 0.2 ≤ NDVI < 0.5, the land surface is regarded as a compound of bare soil and
vegetation, where the LST is a combination of vegetation canopy temperature and
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surface soil temperature. The surface soil temperature Ts (5) was obtained based on
the vegetation fraction and vegetation canopy temperature:

Ts =

[
ε × LST4 − εc × (Tc)

4 × fc

εs × (1 − fc)

] 1
4

(5)

Tc = ε × LST (6)

fc = 1 −
(

NDVI − NDVImin
NDVImax − NDVImin

)K
(7)

ε = εc × fc + εs × (1 − fc) (8)

where Tc is the vegetation canopy temperature (6), fc is the vegetation fraction (7),
ε is the surface emissivity (8), εs and εc are the emissivities of the bare soil and
full vegetation covered surface, and NDVImin and NDVImax are the minimum and
maximum NDVI, respectively.

(III) When NDVI ≥ 0.5, the pixels are regarded as fully vegetated, the canopy temper-
ature is substituted by LST (9), and the surface soil temperature is obtained with
Equation (6).

Tc = LST (9)

The components temperature decomposed from ASTER LST are verified with the
observed 0 cm soil temperature by the Hydro-meteorological Network. The result demon-
strates that there is a good consistency (R2 = 0.91, RMSE ≤ 3.10 K) between the decomposed
surface soil temperature and observed 0 cm soil temperature (Figure 4), which is superior
to the retrieved surface soil temperature with accuracy of 4 K [69,70]. Kustas and Norman
(1999) developed a simple two-source model for modeling surface soil temperature with
4 K lower than the radiometric temperature observations [69]. Zhao et al. (2014) utilized
the radiative transfer theory to estimate the RMSEs within 4 K between the retrieved and
observed surface soil temperature [70]. Therefore, it is considered that the component
temperature decomposition method in this paper is reliable and the decomposed 0 cm soil
temperature can be used for SEE calculation.

Figure 4. Scatterplot of the decomposed (Tsdec) and observed (Ts0cm) 0 cm soil temperature.

3.2. Performance Metrics

Correlation analysis was employed to compare the sensibilities of the auxiliary vari-
ables to soil moisture at depths of 4 cm and 10 cm during the entire vegetation growing
season from 15 June to 12 September, 2012. The coefficient of determination (R2) was used
to evaluate the strength of the relationship. According to the overpass time of ASTER,
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the soil moisture observations at GMT 04:10 were selected as reference to quantitatively
analyze the applicability of each auxiliary variable.

3.3. Hausdorff Distance (HD)

The HD method was introduced to evaluate the consistency of the spatial distribution
between the auxiliary variables and the PLMR-retrieved soil moisture products. The HD
is a type of maximum and minimum distance that compares two finite point sets A and
B (10). HD has higher tolerance to perturbations in the locations of the points than the
binary correlation technique because it measures their proximity rather than their exact
correspondence [71]. Unlike most shape comparison methods that require constructing
point-to-point correspondences between two images, HD can be calculated without the
explicit pairing of points and only requires calculating the maximum distance between two
datasets [72,73]. If the values of HD are floating in a small range of a certain median, there
is a good spatial consistency between the A and B.

HD is defined as:
H(A, B) = max(h(A, B), h(B, A)) (10)

h(A, B) = max
a∈A

min
b∈B

‖a − b‖ (11)

h(B, A) = max
b∈B

min
a∈A

‖b − a‖ (12)

where A = {a1, a2, · · · , am} and B = {b1, b2, · · · , bn} are the point datasets of two images,
and ai and bi are the pixels value of A and B. h(A, B) is the directed HD from A to B (11), and
h(B, A) is that from B to A (12). ‖·‖ is the Euclidean norm of a vector. In this study, A and B
are the auxiliary variables and the PLMR soil moisture product, respectively, both covering
the extent between latitudes 38.75◦N to 39.00◦N and longitudes 100.20◦E to 100.55◦E in the
middle reach of HRB. Two representative images (10 July and 2 August of 2012) of PLMR
soil moisture products were selected to compare data accessibility and consistency. The
auxiliary variables were normalized to the PLMR soil moisture product based on (13) to
make their units and range of values comparable:

X =
x − xmin

xmax − xmin
(PLMRmax − PLMRmin) (13)

where X is the normalized value, x is the auxiliary variable’s value, xmax and xmin are the
maximum and minimum values of the auxiliary variable, and the PLMRmax and PLMRmin
are the maximum and minimum values of PLMR product, respectively.

3.4. Random Forests (RF)

The RF [74,75] is a machine learning algorithm based on the bagging integrated learn-
ing theory [76] and the random subspace method [77]. RF has high prediction accuracy and
tolerance for anomalies and noise in the data, with rare over-fitting in practical application.
RF has been widely used in various applications, such as data mining [78–80], bioinformat-
ics research [81,82], and information classification [82–84]. RF’s application accuracy can be
enhanced further by fusing multi-source information.

Similar to other classifier models, such as deep learning and artificial neural networks,
RF is based on a dataset of decision trees that is determined by more than one variable.
Assuming that there is a multi-decision tree classification model {h(X, Θk), k = 1, 2, 3, · · ·},
{Θk} is an independent identically distributed random vector and k is the count of decision
tree models included. Hence, for any given variables X, each tree casts a unit vote for the
most popular class and the final RF classifier is determined.

The RF method was introduced to map soil moisture by the recommended auxiliary
variable. Multiple auxiliary variables combinations were also used to map soil moisture
by RF and compare them with a single auxiliary variable. Four single auxiliary variables
and 11 types (C2

4 + C3
4 + C4

4) of auxiliary variables combinations A (LST, NDVI), B (LST,
TVDI), C (LST, SEE), D (NDVI, TVDI), E (NDVI, SEE), F (TVDI, SEE), G (LST, NDVI, TVDI),
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H (LST, NDVI, SEE), I (LST, TVDI, SEE), J (NDVI, TVDI, SEE), and K (LST, NDVI, TVDI,
SEE) were selected for mapping. For all single auxiliary variables and their combinations, a
30 times and 30 folds cross-train were used for the training samples.

The procedure of RF in this study was as follows:

(I) The training dataset p was constituted by the 4 cm-depth soil moisture observed
by AMS and WATERNET. The bootstrap sampling method was used to extract the
samples from the auxiliary variables with the condition that the volume of the samples
dataset was same as that of the training dataset.

(II) Decision trees were constructed by the sample dataset and then p types of correspond-
ing classification results were achieved.

(III) Each tree in the RF casts a unit vote for the most popular class. The final soil moisture
products were predicted by the mean of ballot vote according to the p types of
classification results.

(IV) Correlation analysis and RMSE between the predicted and observed soil moisture
were carried out to quantitatively evaluate the RF mapping accuracy.

4. Results and Discussion

4.1. Correlation between Auxiliary Variables and Soil Moisture Observations

Four auxiliary variables (NDVI, LST, TVDI, and SEE) were correlated with observed
soil moisture measured over heterogeneous surfaces in the arid area.

Based on the R2 values, the strengths of the correlations between the auxiliary variables
and soil moisture at the superficial zone and the root zone were in the order of SEE > TVDI
> LST > NDVI (Figure 5). The auxiliary variable with a higher R2 value with soil moisture
performed better in the scaling transformation of soil moisture. There was an expected but
moderate relationship between NDVI and soil moisture during the vegetation growing season
(Figure 5a). In contrast, there was a negative but slightly stronger correlation (R2 = 0.49)
between LST and soil moisture (Figure 5b) than with NDVI due to the rapid rise of LST
with water stress. There was also a negative correlation between TVDI and soil moisture
(Figure 5c), as this auxiliary variable can better reflect the soil moisture status at a depth of
10 cm (R2 = 0.68) than that at a depth of 4 cm (R2 = 0.63). The higher the TVDI, the lower
the soil moisture, and thus TVDI can indicate a water deficiency in agricultural production.
Compared with these three auxiliary variables, the data points of SEE and soil moisture were
more concentrated (Figure 5d). The correlations between SEE and soil moisture were better
than for other auxiliary variables. The R2 between the SEE and soil moisture was 0.67 at 4 cm
depth, and was 0.74 at 10 cm depth.

In an arid environment, soil moisture links surface phenology with subsurface water
storage, and strongly influences the surface water cycle and energy partitioning due
to the strong coupling effect between soil moisture and evapotranspiration. Moreover,
soil moisture in the root zone also controls vegetation health and percent coverage [85].
Vegetation health is closely related to transpiration, which is limited by soil moisture
in the arid region of HRB. As an important characteristic of vegetation health, NDVI
reflects vegetation transpiration by reflectivity, and is mainly used to represent the growth
conditions of vegetation in the ecosystem. Therefore, NDVI always indirectly represents
soil moisture changes. Nevertheless, because of the heterogeneous surface, the distribution
of soil moisture and NDVI varied widely in HRB, leading to a weak correlation (R2 = 0.41)
between NDVI and soil moisture (Figure 5a). As a key factor of vegetation growth, stomatal
resistance to transpiration is significantly affected by LST and is partly controlled by soil
moisture availability. Suitable LST and soil moisture ensure vegetation health transpiration.
LST is always influenced by the soil heat capacity and conductivity. These two thermal
properties are functions of soil type and change with soil moisture. As a consequence,
soil moisture largely controls LST through the energy balance of the land surface. The
higher the soil moisture, the less energy is available for sensible heat flux of the surface [42].
Generally, soil heat capacity decreases with soil moisture increase, and this leads to a
decrease in LST. Therefore, LST always indirectly reflected the extent to which vegetation
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absorbs root zone soil moisture (Figure 5b). However, the correlation between LST and soil
moisture (R2 = 0.49) was also influenced by the impact of land surface heterogeneity, soil
types, climate conditions, and vegetation coverage.

Figure 5. The scatter plots of four auxiliary variables and soil moisture at 4 cm (black) and 10 cm
(blue). (a–d) represent the correlations and fitting relationships between NDVI, LST, TVDI, SEE and
soil moisture, respectively.

TVDI, derived based on the two-dimensional feature space formed by LST and NDVI,
has the advantages of both NDVI and LST. Therefore, TVDI could reflect soil moisture
more accurately (R2 ≥ 0.63) than LST (R2 = 0.41) or NDVI (R2 = 0.49) (Figure 5c). However,
the TVDI method requires a dry limit in the NDVI/LST triangle space [64] and unsaturated
soil moisture.

Evaporation is controlled by soil temperature, vapor pressure deficit, soil moisture
content, and other meteorological factors. To accurately simulate soil moisture content,
it is essential to estimate the evaporation rate from the land surface. In wet conditions,
soil evaporation approaches potential evaporation because it occurs at the surface of the
soil and the deep moisture rises up through the capillaries and reaches the soil surface. In
general, soil moisture content changes below field capacity and a dry layer exists at the soil
surface. When soil evaporation occurs, soil moisture diffuses to the surface soil through
the soil pores to replenish it. Therefore, soil evaporation is mainly controlled by the soil
moisture content. In contrast, the SEE is a direct function of soil evaporation, so it was
more sensitive (R2 ≥ 0.67) to soil moisture (Figure 5d). In the NDVI/LST triangle space,
the surface soil temperature corresponds to soil evaporation whereas the LST corresponds
to the land surface evapotranspiration with changes of NDVI. Notably, the LST is closer to
the surface soil temperature when the NDVI is smaller. Therefore, the SEE is more sensitive
to soil moisture than the TVDI by considering the parameterization of SEE (Equation (3)).
Having described all of above, the SEE is presented as a more sensitive agency variable to
soil moisture than other three variables (Figure 5).

4.2. Consistency of Spatial Pattern between Auxiliary Variables and PLMR Soil Moisture Products

The consistency in spatial patterns of the auxiliary variables and PLMR soil moisture
products was measured with HD. Box and whisker plots (Figure 6) showed that the HDs
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between four auxiliary variables and PLMR soil moisture products were stable (normally
distributed). However, the HD of NDVI and SEE converged more (maximum and minimum
intervals) than the LST and TVDI. In contrast, the outliers of SEE were minimal and one-
sided by comparison with NDVI. At the same time, the minimum HDs of SEE were less
than for the other three auxiliary variables. Besides, the standard deviations (STD) of HD
(Table 1) also demonstrated that the HD of SEE to soil moisture were closer (STD ≤ 0.058)
to the median values than in the NDVI, LST, and TVDI. These features comprehensively
indicated that there was a better spatial consistency between the SEE and the PLMR soil
moisture than that with other auxiliary variables. The spatial pattern distribution also
showed that the variation ranges of SEE were basically consistent with that of PLMR soil
moisture (Figure 7). In summary, the SEE is strongly recommended as the most optimal
auxiliary variable for representing the distribution of soil moisture based on the HDs
(Figure 6), the correlation coefficients (Figure 5), and visual interpretation (Figure 7).

Figure 6. Box and whisker plots of HD between the auxiliary variables and PLMR soil moisture
products on the days of 10 July (a) and 2 August (b) of 2012 (five parameters: median, lower, and
upper extremes, and lower and upper quartiles are shown in the figure. The median is plotted as a
red line and the box is delimited by the quartiles and the whiskers by the extremes, and the red ‘+’
indicates outliers).

Table 1. The standard deviations (STD) of Hausdorff Distance (HD) on 10 July and 2 August, 2012.

Indices NDVI LST TVDI SEE

HD STD (20120710) 0.073 0.067 0.066 0.058
HD STD (20120802) 0.073 0.065 0.061 0.056

4.3. Mapping Soil Moisture by Random Forests (RF)

To evaluate the feasibility of using the selected auxiliary variable for soil moisture
inversion, we mapped soil moisture by RF with each single auxiliary variable including
NDVI, LST, TVDI, and SEE separately (Figure 8). The soil moisture mapping results
accuracies were relatively poorer for NDVI (R2 = 0.58, RMSE = 0.058 cm3/cm3), LST
(R2 = 0.72, RMSE = 0.048 cm3/cm3), and TVDI (R2 = 0.77, RMSE = 0.043 cm3/cm3). The
performance of SEE was optimal (R2 = 0.86, RMSE = 0.035 cm3/cm3) compared with
observations. This result indicates that the recommended auxiliary variable SEE, which
is controlled by soil surface evaporation and is limited by the available soil moisture,
can be used to accurately reflect soil moisture.
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Figure 7. Comparison of the SEE and PLMR soil moisture products (SMPLMR) on 10 July and
2 August 2012.

Figure 8. Scatter plots of the observed soil moisture and RF mapped soil moisture with single
auxiliary variables.
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Eleven types of multiple auxiliary variables combinations were also used to map soil mois-
ture. The Taylor diagram (Figure 9) shows the R, RMSE, and STD of the RF mapping results
compared with observed soil moisture at 4 cm by Daman superstation, ordinary AMSs, and
WATERNETs. The results showed that multiple auxiliary variable combinations all performed
well for mapping soil moisture, with 0.90 < R < 0.93, 0.033 cm3/cm3 < RMSE < 0.038 cm3/cm3,
and 0.068 cm3/cm3 < STD < 0.074 cm3/cm3 between mapped and observed soil moisture
(Table 2). This performance can be explained by the fact that all auxiliary variables combi-
nations contain both NDVI, which reflects the variability of the land cover, and LST, which
reflects the complicated soil properties. However, combinations C, H, and K, which contain
the auxiliary variable SEE, were better (R2 = 0.86, RMSE = 0.034 cm3/cm3) than other com-
binations. The main reason is that the SEE is closely related to soil evaporation and better
reflects soil moisture. Therefore, considering the limitations of accuracy, sample calculation
and complexity of the feature space construction of TVDI, combination H was found to be
optimal to map soil moisture by RF. Additionally, comparing the mapping of soil moisture
with four single auxiliary variables and their combinations demonstrated that SEE better
reflects soil moisture than most multi-variable combinations (e.g., combination A). However,
the combination H (R2 = 0.86, RMSE = 0.034 cm3/cm3) performed similarly to SEE (R2 = 0.86,
RMSE = 0.035 cm3/cm3). Whether the SEE or the combination H was used for soil moisture
mapping, the accuracies were less than the SMAP and SMOS soil moisture products’ accuracy
of 0.04 cm3/cm3. Therefore, we can conclude that SEE is an optimal auxiliary variable for soil
moisture mapping and the multiple auxiliary variables combination H (LST, NDVI, and SEE)
is expected to enhance mapping accuracy.

Figure 9. Taylor diagram of the comparison of the RF mapped and observed soil moisture. A (LST,
NDVI), B (LST, TVDI), C (LST, SEE), D (NDVI, TVDI), E (NDVI, SEE), F (TVDI, SEE), G (LST, NDVI,
TVDI), H (LST, NDVI, SEE), I (LST, TVDI, SEE), J (NDVI, TVDI, SEE), and K (LST, NDVI, TVDI, SEE).

Table 2. The coefficient of determination (R2), root mean square errors (RMSE), and standard
deviations (STD) between RF results by each multiple auxiliary variables combination and observed
soil moisture.

Group A B C D E F G H I J K

R2 0.84 0.85 0.86 0.85 0.83 0.83 0.85 0.86 0.85 0.84 0.86

RMSE 0.037 0.035 0.034 0.036 0.037 0.037 0.035 0.034 0.035 0.036 0.034

STD 0.069 0.073 0.071 0.070 0.070 0.071 0.070 0.070 0.072 0.070 0.071
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The performance of using the combination H to map soil moisture in the middle reach of
HRB was evaluated. The scatter plots of in situ observed (except for 11 August because of
lack of observations) and RF-mapped soil moisture (Figure 10) showed that the correlations
between the two datasets were 0.80 ≤ R2 ≤ 0.91, 0.021 cm3/cm3 ≤ RMSE ≤ 0.046 cm3/cm3.
The mean RMSE (0.034 cm3/cm3) was smaller than 0.04 cm3/cm3, which is the SMAP/SMOS
accuracy and satisfies the research of drought monitoring and water resource management.

Figure 10. Scatter plots of the observed soil moisture and RF mapped soil moisture with the combina-
tion H (LST, NDVI, and SEE).

The RF-mapped soil moisture agrees well with the observations at 4 cm of Daman
Superstation (Figure 11). The statistical analysis showed that soil moisture mapped by
RF using the combinations C, H, and K compared to the observations with an RMSE
of 0.034 cm3/cm3. The soil moisture mapped by SEE alone had the lowest RMSE of
0.035 cm3/cm3. Precipitation observations at Daman Superstation recorded significant
rainfall on 5 June, 17 June, 27 June, 6 July, 16 July, 20 July, 29 July, 6 August, 12 August,
17 August, 31 August, and 23 September. Irrigation events took place on 7 June, 3 July,
28 July, and 25 August. Considering both the region’s size and the uniform crop distribution,
we concluded that precipitation or irrigation occurred in the whole study area. RF-mapped
soil moisture based on combination H with a resolution of 15 m (Figure 12) was consistent
with both precipitation and irrigation events in the study area. For example, soil moisture
mapping results indicated that there was higher soil moisture on 2 August due to the
residual moisture from the irrigation event of 28 July. Soil moisture on 18 August and
3 September was relatively higher due to the strong rainfall that occurred one or three
days before. Whereas the values were comparatively lower on 10 July because land surface
evapotranspiration removed most of the water from the irrigation and precipitation that
occurred on 3 July and 6 July, respectively. In addition, on 15 June and 12 September, the
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soil moisture values were lowest due to the lack of precipitation or irrigation. However,
due to the uneven distribution of the sampling points in the study area, some biases existed
in the RF mapping results. For example, the RF samples lacked points in both the river
and desert zones, and thus the RF mapping results do not reflect soil moisture changes
in these zones. Therefore, an even distribution of representative in situ observations and
multi-source information, such as other high-precision remote sensing data, will be needed
for future RF samples.

Figure 11. Comparison of the RF mapped with the observed soil moisture at 4 cm of Daman
Superstation (SMobs: observed soil moisture, SMA to SMK: RF mapped soil moisture with 11 types
of multiple auxiliary variables combinations, SMNDVI, SMLST, SMTVDI, and SMSEE: RF-mapped soil
moisture with single auxiliary variables including NDVI, LST, TVDI, and SEE separately).

4.4. Discussion

A variety of auxiliary variables have been used to scale soil moisture during the
past decades. However, a systematic evaluation of their applicability is still missing. We
analyzed four auxiliary variables quantified from ASTER images, including NDVI, LST,
TVDI, and SEE from the trend consistency and spatial pattern. The auxiliary variables that
reflected soil moisture at the depths of either 4 cm or 10 cm were, in order of performance,
SEE > TVDI > LST > NDVI. Using only NDVI or LST did not reflect overall soil moisture
because of the strong heterogeneity of the land surface, saturated soil hydraulic conductivity,
soil texture, and climate conditions. NDVI saturates at higher vegetation density, not
reflecting changes in soil moisture. NDVI often indicates the vegetation amount and
chlorophyll content rather than water status and it is a rather conservative indicator of
water stress [10]. LST often closely follows vegetation transpiration and can rise rapidly
with water stress. TVDI is assumed to reflect soil moisture as it incorporates the advantages
of both NDVI and LST. However, the construction of the NDVI/LST feature space requires
that the study area is large enough to capture canopy coverages ranging from bare soil to
dense vegetation and surface soil moisture varying from dry to saturated. Based on the
performance metrics between these auxiliary variables and observed soil moisture and by
virtue of the HD maximum and minimum distances between the auxiliary variables and
PLMR soil moisture, the SEE, which is controlled by soil surface evaporation and contained
more information than the other auxiliary variables, was found to be an optimal auxiliary
variable for scaling and mapping of soil moisture.
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Figure 12. The results of soil moisture mapping by RF based on combination H (LST, NDVI, and SEE).

The RF machine learning method has high prediction accuracy and tolerance for
anomalies and noise in the data, with rare over-fitting in practical application. RF has the
advantage of learning the relationships between soil moisture and auxiliary variables, espe-
cially nonlinear, indirect relationships, based on a large number of samples. Physics-based
relationships between the variables and soil moisture and machine learning gradually
showed a trend of integration. Physics-based relationships constraining machine learn-
ing can improve the training efficiency. Physics-based relationships may guide machine
learning methods to obtain high-precision of soil moisture. We introduced the RF both to
evaluate the feasibility of the selected optimal auxiliary variable and to map soil moisture.
Soil moisture mapped by each single auxiliary variable indicated that an optimal accu-
racy (R2 = 0.86, RMSE = 0.035 cm3/cm3) existed in the SEE-based mapping soil moisture
and in situ observations due to the SEE’s close relation to soil evaporation. Soil moisture
mapped by multiple auxiliary variables combinations indicated that each combination can
reflect soil moisture, with 0.90 < R < 0.93, 0.033 cm3/cm3 < RMSE < 0.038 cm3/cm3, and
0.068 cm3/cm3 < STD < 0.074 cm3/cm3 because multiple auxiliary variables combinations
contain more information about soil moisture than a single auxiliary variable. However,
combination H (LST, NDVI, SEE) was relatively better (R2 = 0.86, RMSE = 0.034 cm3/cm3)
than the others (R2 < 0.85, RMSE > 0.035 cm3/cm3) at reflecting soil moisture with an accu-
racy of 0.034 cm3/cm3, which is less than the SMAP/SMOS required soil moisture accuracy
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(0.04 cm3/cm3). Soil moisture (15 m) mapped by combination H in the middle reach of the
HRB was consistent with the spatiotemporal changes of irrigation or precipitation.

The optimal auxiliary variable (SEE) and the multiple auxiliary variables combination
H (LST, NDVI, and SEE) screened in this study are based on the middle reach of HRB,
which has complex surface heterogeneity, variable climate, and significant water and heat
exchange. The study spans the entire vegetation growing season proved the feasibility of
the method by using the optimal auxiliary variable and combination of auxiliary variables
selected for soil moisture mapping. Therefore, for other surfaces, the selected optimal
auxiliary variable and combination of auxiliary variables are also applicable under the
ground data constraints.

5. Conclusions

To support scaling and mapping of soil moisture for producing mid- and high-
resolution soil moisture estimates and validating satellite remote sensing products, the
applicability of four auxiliary variables (NDVI, LST, TVDI, and SEE) was quantitatively
evaluated in the arid region of China.

The auxiliary variables that reflected soil moisture at the depths of either 4 cm or 10 cm
were, in order of performance, SEE > TVDI > LST > NDVI. Based on the performance
metrics between these auxiliary variables and observed soil moisture and by virtue of the
HD maximum and minimum distances between the auxiliary variables and PLMR soil
moisture, the SEE was found to be an optimal auxiliary variable for scaling and mapping
of soil moisture.

The RF machine learning method was introduced both to evaluate the feasibility of the
selected optimal auxiliary variable and to map soil moisture. Soil moisture mapped by SEE
and auxiliary variables combination H (LST, NDVI, and SEE) are respectively more optimal
than others at reflecting soil moisture with accuracies of 0.035 cm3/cm3 and 0.034 cm3/cm3,
which are less than the SMAP/SMOS required soil moisture accuracy (0.04 cm3/cm3). In
addition, soil moisture (15 m) mapped by combination H in the middle reach of the HRB
was consistent with the spatiotemporal changes of irrigation or precipitation.

SEE is recommended as an optimal auxiliary variable for scaling and mapping of
soil moisture. The multiple auxiliary variables combination H (LST, NDVI, and SEE) is
recommended for enhancing the scaling and mapping accuracy of soil moisture. Future
studies should evaluate the use of SEE for scaling soil moisture. However, two factors may
lead to inaccurate SEE calculations. First, from the definition of SEE, directly estimating
evaporation using remote sensing observations presents substantial difficulties and uncer-
tainties. Second, the accuracy of surface soil temperature is influenced by vegetation cover.
These problems will need to be solved in future research. In addition, multi-source data,
such as high-precision remote sensing data as well as evenly distributed and representative
in situ observations, should be fused into the RF sample construction to obtain an accurate,
high-resolution soil moisture product.
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Abstract: Soil moisture is an important parameter that regulates multiple ecosystem processes
and provides important information for environmental management and policy decision-making.
Spaceborne sensors provide soil moisture information over large areas, but information is commonly
available at coarse resolution with spatial and temporal gaps. Here, we present a modular spatial
inference framework to downscale satellite-derived soil moisture using terrain parameters and test
the performance of two modeling methods (Kernel-Weighted K-Nearest Neighbor <KKNN> and
Random Forest <RF>). We generate monthly and weekly gap-free spatial predictions on soil moisture
at 1 km using data from the European Space Agency Climate Change Initiative (ESA-CCI; version 6.1)
over two regions in the conterminous United States. RF was the method that performed better in cross-
validation when comparing with the reference ESA-CCI data, but KKNN showed a slightly higher
agreement with ground-truth information as part of independent validation. We postulate that more
heterogeneous landscapes (i.e., high topographic variation) may be more challenging for downscaling
and predicting soil moisture; therefore, moisture networks should increase monitoring efforts across
these complex landscapes. Future opportunities for development of modular cyberinfrastructure
tools for downscaling satellite-derived soil moisture are discussed.

Keywords: soil moisture; downscaling; ESA-CCI; SOMOSPIE; spatial inference; KKNN; random forest

1. Introduction

The top layer of soil is critical for the root system of plants and the available water that
sustains most of the vegetation and controls many soil processes. Due to its importance, soil
moisture has been recognized as an Essential Climate Variable [1], and in conjunction with
variables, such as land cover, is critical in shaping Earth system dynamics. Soil moisture
importance relies not only on its role within the water cycle, but also on its relationship
with other ecological processes, such as runoff generation, sediment transport and energy
balance [2–4], drought occurrence [5,6], plant and soil respiration [7–9], regulation of
greenhouse gas fluxes from soils to the atmosphere [10–12], and plant growth, which
influences the terrestrial carbon budget [4,7,13]. Water content in the top centimeters of the
soil also serves as a retardant for wildfires, regulates runoff during extreme rain events,
and provides information for flash floods and drought early warning systems [14–17].
Additionally, soil moisture information is a key input for agricultural planning [6,18],
regional stewardship [19], and multiple models used in weather forecasting or climate
variability and change [20–22].

Traditionally, soil moisture information was acquired from point measurements using
instruments, such as Time–Domain Reflectometers (TDR), which offer instantaneous values
of soil water content based on information of electric and dielectric properties within a
small volume of soil [23]. However, the availability of soil moisture data from these ground
sensors across large areas is often limited [24,25]. At the global scale, the International Soil
Moisture Network [26,27] provides ground-truth information, and within the United States,
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the Soil Climate Analysis Network (SCAN) [28] and the North American Soil Moisture
Database (NASMD) [29] provide soil moisture information derived from ground sensors.
However, due to large spatial and temporal variability in soil moisture, this information,
although invaluable, is not enough to address multiple applications where detailed spatial
and temporal variability in soil moisture is required.

To address the limited spatial coverage of ground-based soil moisture networks, alter-
native approaches can be applied to estimate soil moisture. Satellite-based sensors offer
a feasible way to estimate soil moisture over large areas on a regular basis, ranging from
3 to ~36 km [30–33]. Satellite sensors estimate soil moisture using radar instruments or
radiometers, which are based on the dielectric constant and temperature emissivity of the
soil, respectively [33,34]. Various satellite sensors are used to estimate soil moisture, some
specifically conceived for this purpose, such as SMAP (Soil Moisture Active Passive) [30] or
SMOS (Soil Moisture and Ocean Salinity mission) [35], while others, such as the European
Space Agency Climate Change Initiative (ESA-CCI) soil moisture [15], Sentinel [36] and
GPS-aided values [37], can be used to indirectly derive soil moisture information. These
satellite-based efforts aim to provide global soil moisture values at high temporal resolution
(1~3 days). The ESA-CCI offers the longest available global records at the daily scale,
beginning in November 1978, with improved accuracy since 1991 due to a combination
of information from active and passive sensors [38]. These efforts have provided unprece-
dented information, but they have two important limitations: they have coarse spatial
resolution, and they have spatial and temporal gaps.

Various approaches have been used to downscale satellite-derived soil moisture values.
These approaches can be categorized as (1) satellite-based, (2) geoinformation-based, and
(3) model-based [39]. Satellite-based approaches include various techniques, such as
Active and Passive Microwave Data Fusion and Optical/Thermal and Microwave Fusion [39].
Geoinformation-based methods have explored the known correlation of soil moisture with
topography, soil attributes, and vegetation characteristics [39]. Model-based methods include
other approaches, such as statistical models, integration of a Land Surface Model, statistical
downscaling, and data assimilation [39].

Here, we present a geoinformation-based approach, considering the relationship
between soil moisture and topography to downscale and gap-fill satellite-based soil mois-
ture information at the regional scale [39,40]. Topography has been explored previously
as a meaningful environmental variable for downscaling soil moisture at the catchment
scale [41–43] and across the United States [44]. We used a modular spatial inference
framework, which is the foundation of a cyberinfrastructure tool named SOil Moisture
SPatial Inference Engine (SOMOSPIE) [45–47]. We tested the performance of two modeling
methods coupled with geoinformation from terrain parameters to downscale satellite-
derived soil moisture. Specifically, SOMOSPIE framework combines publicly available
satellite-derived soil moisture information to generate fine-grained and gap-free predictions
(from 0.25 degrees (which is about 27 km) to 1 km) using different modeling methods: a
kernel-based approach (Kernel-Weighted k-Nearest Neighbors (KKNN), and a tree-based
approach (Random Forests or RF).

We tested our framework across two contrasting regions of interest (ROIs) within the
conterminous United States at monthly and weekly time scales in 2010 and 1 km spatial
resolution. We found that RF was consistently the method that performed better at the
monthly and weekly scales when compared with the reference ESA-CCI data. In contrast,
KKNN showed a slightly higher agreement with ground-truth information as part of
independent validation. We postulate that differences in model performance are influenced
by the multivariate space of topographic features, where more heterogeneous landscapes
(i.e., high topographic variation) may be more challenging to downscale and predict
soil moisture. Finally, we demonstrate that our framework is a flexible, transparent, and
replicable approach to downscale satellite-derived soil moisture at different temporal scales.
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2. Materials and Methods

2.1. Regions of Interest

Our study was conducted over two regions of interest (ROI) within the conterminous
United States (CONUS; Figure 1a). Each region encompasses a polygon of 7.5◦ × 3.75◦
(450 pixels with 30 columns and 15 rows in the native resolution of the ESA-CCI soil
moisture product), and each ROI was aligned to the original edges of the ESA-CCI grid.
Both areas were selected as they offer a contrast in climatic and topographic conditions,
and anthropogenic activities such as different agricultural and forestry practices.

 

Figure 1. (a) Regions of interest (ROIs) for soil moisture downscaling; (b) West ROI; (c) Midwest ROI.

The West region (Figure 1b) comprises an area of 275,516 km2 with heterogeneous
topographic features and a wide diversity of climate conditions ranging from the central
valley of California in the West, passing through the densely forested areas in the Rocky
Mountains, and water-limited ecosystems across California, Nevada, Utah, and Arizona.

The Midwest region (Figure 1c) comprises an area of 283,499 km2. This region lacks
extensive mountainous areas (except for the Ouachita Mountains) and has a large influence
of agricultural activity that strongly influences the dynamics of soil moisture. This region
was also selected because of the extensive availability of ground-truth data [48] from the
monitoring network MESONET [49], mainly over Oklahoma.

2.2. Input Data
2.2.1. Satellite-Derived Soil Moisture Data

We use information from the ESA-CCI soil moisture product Version 6.1 (revised in
September 2021) which is the latest release by ESA-CCI [50]. ESA-CCI product merges
daily data derived from C-band scatterometers (e.g., ERS- 1

2 , METOP) and data from multi-
frequency radiometers (e.g., SMMR, SSM/I, TMI, AMSR-E, Windsat, AMSR-2, SMOS,
SMAP, GPM, and FengYun-3B) at 0.25 degrees spatial resolution [51]. Based on daily soil
moisture values, we calculated mean values for each pixel at the monthly and weekly scales
for each ROI. Thus, obtaining 12 monthly layers and 52 weekly layers of mean soil moisture
for the year 2010.

2.2.2. Terrain Parameters

Topographic information was derived from a digital elevation model (DEM) [52]
and we extracted hydrologically meaningful terrain parameters for each ROI following a
standardized approach [53]. Briefly, an initial set of 15 terrain parameters was calculated
using the terrain analysis module in RSAGA [54], which implements SAGA GIS [55] in R
statistical platform [56]. The original terrain parameters were: Aspect, Analytical Hillshading,
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Channel Network Base Level, Convergence Index, Cross Sectional Curvature, Catchment Area,
Elevation, Flow Accumulation, Longitudinal Curvature, Length-Slope Factor, Relative Slope
Position, Slope, Topographic Wetness Index, Valley Depth, and Vertical Distance to Channel
Network. To reduce model complexity, identify the best prediction parameters, and avoid
redundancy of information, we predicted soil moisture at 1 km over CONUS using different
combinations of terrain parameters and geographic coordinates (i.e., latitude and longitude).
This test was performed using a KKNN algorithm, combinations of the aforementioned
predictors, and the ESA-CCI soil moisture annual mean of 2010 as the training dataset.
Based on correlation and error values from cross-validation automatically performed
during model training and evaluation, we identified the combination of predictors that best
represented soil moisture reference values. Our results identified geographic coordinates
(latitude and longitude) and 4 terrain parameters (elevation, aspect, slope, and topographic
wetness index) as the best predictors for our study. Results of cross-validation from all the
predictor combinations tested are included in Supplementary Material S1.

2.2.3. Data Used for Independent Validation

We validated downscaled soil moisture predictions using independent data from
ground-truth soil moisture records from the North American Soil Moisture Database
(NASMD). The NASMD integrates data from 33 observation networks, as well as 2 short-
term monitoring campaigns that put together over 1800 observation sites across the United
States, Canada, and Mexico [29]. We reiterate that data from the NASMD was not used
for downscaling satellite-derived soil moisture, and only used for independent validation
purposes.

We selected all the available stations for the year 2010 with daily records of soil
moisture in the top 5 cm of the soil layer for the two ROIs. The maximum number of
available stations within CONUS was 743 (Figure 2a), while a maximum of 39 stations
were available for the West region (Figure 2b) and a maximum of 116 were available for the
Midwest region (Figure 2c). The number of stations available at the monthly and weekly
scales ranged from ~26 to 39 in the West region, and from ~110 to 116 in the Midwest region
(Supplementary Material S2). Monthly and weekly means of top 5 cm soil moisture records
were calculated for each field station, to generate the reference data to validate monthly
and weekly downscaled soil moisture predictions.

 

Figure 2. (a) North American Soil Moisture Database (NASMD) stations over the two ROIs available
in 2010; (b) West ROI; and (c) Midwest ROI.
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2.3. Data Preparation
2.3.1. Training Matrices

We generated a set of training matrices to obtain model parameters required by KKNN
and RF. We selected the coordinates of the centroid of each original pixel (0.25 degrees) from
the ESA-CCI product and assigned the soil moisture values to those coordinates. Then, we
extracted the values of the 4 predefined terrain parameters at the finer resolution (1 km)
that overlapped the ESA-CCI pixels centroids, and we added them to the training matrix.
In each matrix, 70% of the available sampling points were randomly selected to conform
the training dataset to build the models, and the 30% of remaining sampling points were
set aside for further validation of models’ outputs.

Our final training matrices represent 12 monthly and 52 weekly files for each ROI,
containing up to 315 records (70% of the maximum number of pixels available for each ROI
that included soil moisture values and 6 predictors (4 terrain parameters, and latitude and
longitude values)).

2.3.2. Prediction Matrices

We generated one matrix for each ROI to predict soil moisture at 1 km spatial resolution.
We extracted all available records of the 4 predefined terrain parameters (predictors) at
1 km and added their corresponding coordinates to the prediction matrices. We integrated
a total of 273,840 point locations into each of the two final prediction matrices; this number
corresponds to the extension of the two ROIs in square kilometers, encompassing areas of
652 km (X-axis) by 420 km (Y-axis; Figure 1).

2.4. Downscaling Soil Moisture

We used the modular framework of SOMOSPIE to predict soil moisture on a user-
defined temporal (e.g., daily, monthly, annual) and spatial resolution (i.e., spatial gran-
ularity) to provide gap-free information within an ROI. The SOMOSPIE framework is
composed of three main modules that include (1) preprocessing data from: satellite-derived
soil moisture, predictive terrain parameters in the target resolution for downscaling (e.g.,
1 km spatial resolution), and ground-truth reference data for independent validation pur-
poses; (2) model construction: definition of optimal parameters for each modeling method
(i.e., KKNN, RF); and (3) soil moisture prediction: application of model parameters de-
fined in the previous module to predict soil moisture at the target resolution, as well as
cross-validation and independent ground-truth validation (Figure 3).

We implemented our framework with two modeling methods (i.e., Kernel-Weighted
K-Nearest Neighbors (KKNN) and Random Forest (RF)) to downscale soil moisture at 1 km
over the two ROIs at monthly and weekly scales. We used the cloud-based cluster “Cavi-
ness” at the University of Delaware High Performance Computing (HPC) [57]. Caviness is
a distributed-memory Linux cluster with 126 compute nodes representing 4536 cores with
24.6 TiB of RAM and 200 TB of storage.
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Figure 3. Framework for soil moisture prediction at 1 km spatial resolution derived from coarse
resolution ESA-CCI values; (a) data preprocessing; (b) model construction; (c) soil moisture prediction
and validation.

2.4.1. Kernel-Weighted K-Nearest Neighbors (KKNN)

K-nearest neighbors (KKNN) in its traditional form is a regression technique that
builds many simple models from local data [58], and is based upon decision rules that
classify an unsampled point, based on the values of the nearest set of previously classified
points or reference values in the sampling space [59]. This method assumes a different
level of influence in the prediction space, where the nearest k-points to the target location
are the ones with the most relevant influence, while the influence in the construction of
the prediction model decreases with distance [45]. To assign distance-related relevance to
predict soil moisture, a weighted mean of the k-nearest soil moisture ratios is calculated.
This variant is based on the definition of kernel functions (i.e., Triangular, Epanechnikov,
Gaussian, Optimal) that serve to find the number of neighbors (k) to be used in the
prediction. The number of neighbors and the optimal kernel function are automatically
selected through 10-fold cross validation [44,45].

The KKNN code used in the SOMOSPIE framework has been described previously [45]
and has been successfully used to downscale satellite-derived soil moisture at different
spatial scales [44]. The code is based on the ‘kknn’ package [60] developed for the R-
statistical platform [56]. The definitions of optimal parameters found for each monthly and
weekly layer in 2010, over the two ROIs, are shown in Supplementary Material S2.

2.4.2. Random Forest (RF)

Random Forest (RF) in the SOMOSPIE framework has been described previously [45]
and is based on the ‘quantregForest’ package [61] developed for the R-statistical plat-
form [56]. It is based on an ensemble of decision trees through a “bootstrap aggregation”
process (bagging), which is a method to generate multiple versions of a predictor and
then uses these versions to generate an aggregated predictor that depends on the values
of a random vector independently sampled and weighed [62,63]. To predict values at an
unsampled location, all decision trees in the ensemble are queried and their prediction
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outputs are combined through a weighted arithmetic mean. Techniques such as RF do
not assume any particular geometric or functional form of the model and are suitable for
sampling spaces with sparse data [45].

The definition of optimal parameters for soil moisture prediction with RF in SO-
MOSPIE considers two main values: (1) the number of trees to grow in the ensemble of
regression trees and (2) the number of covariates randomly selected at each level of tree
growth. The maximum number of trees allowed was 500, while the number of covariates
changes in relation to the number of predictors defined as input (6 predictors for this
study: latitude, longitude, elevation, aspect, slope, and topographic wetness index). The automatic
variable selection is performed by ‘quantregForest’ through a cross-validation process. The
optimal parameters selected for each monthly and weekly layer of 2010 over the two ROIs
are reported in Supplementary Material S2.

2.5. Validation

To test the two modeling methods (i.e., KKNN and RF), we first used cross-validation
with reference satellite-derived soil moisture data not used in the construction of the models,
and then we used independent ground-truth soil moisture from the NASMD. We reiterate
that the NASMD data was not used to parameterize any model and was only used for
independent validation. Predicted soil moisture values were extracted from the 12 monthly
and 52 weekly layers over the two ROIs, taking overlapping locations with the centroids of
the ESA-CCI soil moisture reference data, and the point-locations of the NASMD available
stations for each month and week, respectively.

2.5.1. Cross-Validation with Reference Satellite-Derived Soil Moisture Data

We calculated the correlation and root mean square error (RMSE) values based on
matrices containing the predicted and reference values (from ESA-CCI data). The input
data for this validation approach corresponds with the 30% of the sampling points set
aside during the generation of the training matrices and were not used in the definition of
the models’ parameters. The cross-validation data matrices contained up to 135 records,
depending on the number of available reference points from the ESA-CCI mean values for
each month and week.

The values of each predicted soil moisture pixel at a finer spatial resolution (i.e., 1 km)
were compared with the reference values of satellite-derived soil moisture values at their
original spatial resolution. The results from these analyses for each month and week over
the two ROIs are reported in Supplementary Material S3.

2.5.2. Independent Validation with Ground-Truth Data

For these independent analyses, we calculated the overall correlation and RMSE
between the predicted downscaled values from each method with the point-based ground-
truth data from the NASMD. The results of correlation and RMSE between fine spatial
resolution predicted soil moisture values and the point-based ground-truth data for each
month and week over the two ROIs are reported in Supplementary Material S3.

2.5.3. Spatial Distribution of Prediction Outputs and Errors

To evaluate the performance of the two methods, we compared the mean values
of all monthly and weekly predictions (12 monthly and 52 weekly outputs) in the two
ROIs. We generated maps showing the mean values of ESA-CCI values at 0.25 degrees
of spatial resolution and the mean values of our 1 km predictions over the set of 30%
sampling points set aside for testing in each monthly and weekly scale. Thus, none of
the points used in this approach to describe the spatial distribution of error were used to
define the models’ parameters. We calculated the absolute difference between the mean of
predicted soil moisture and the mean of ESA-CCI values at all our monthly and weekly
scales over all the centroid coordinates of the ESA-CCI pixels. In a similar approach for
all monthly and weekly scales, we calculated the absolute difference between the mean
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predicted soil moisture at 1 km and the mean values of the point-scale ground-truth records
at the coordinates of all available NASMD stations during our time frame. Thus, we aim to
observe the similarities in the spatial distribution between ESA-CCI data and the outputs
of the two methods tested, as well as the distribution of the prediction errors.

3. Results

In this section, we present our 1 km soil moisture prediction results and evaluate
the performance of the two methods used. We compared the predicted soil moisture
values with the reference ESA-CCI values, and with independent values from the NASMD.
The final soil moisture predictions at monthly and weekly scales over the two ROIs are
available at the Consortium of Universities for the Advancement of Hydrologic Science
data repository (HydroShare; doi:10.4211/hs.96eeb0d796a64b578f24e8154c166988) [64].

3.1. Optimal Model Parameters for Each Method

In the case of KKNN, we found that the automatic generation of model parameters
defined a number of K-neighbors between 6 and 29 in the Midwest ROI for all models at
monthly and weekly scales. Correlation ranged from 0.489 to 0.894, and RMSE from 0.03 to
0.046. In the West ROI, the number of K-neighbors ranged from 3 to 49, with correlation
from 0.244 to 0.785, and RMSE from 0.025 to 0.055.

In the generation of RF models, we found that the number of covariates used as
predictors in every model in the Midwest ROI ranged from two to six (out of six possible
predefined predictors for this study). Correlation ranged from 0.537 to 0919, and RMSE
from 0.028 to 0.043. In the West ROI, the number of covariates ranged from two to six.
Correlation ranged from 0.413 to 0.833, and RMSE from 0.023 to 0.047.

All individual KKNN and RF models’ parameters are included in Supplementary
Material S2.

3.2. Evaluation of Models’ Outputs

To evaluate the performance of each method tested, we present a series of Taylor
Diagrams [65] that show the similarity of our predictions with both data from the ESA-CCI
soil moisture values and independent ground-truth records from the NASMD. Taylor
diagrams quantify the correspondence between reference observed data and predicted
values by means of Pearson correlation coefficient, RMSE and the standard deviation.

3.2.1. Evaluation with Reference Satellite-Derived Soil Moisture Values

We found that RF was consistently the best method in predicting monthly soil moisture
when compared against the reference values from the ESA-CCI values (Figure 4). RF corre-
lation and RMSE values ranged from 0.566 to 0.856, and from 0.027 to 0.037, respectively, in
the Midwest ROI. In the West ROI, RF correlation and RMSE values ranged from 0.443 to
0.78, and from 0.023 to 0.056, respectively. Regardless of the ROI, values predicted with RF
showed the highest correlation and the lowest RMSE in every month, except in January in
the West ROI.

Predictions with KKNN showed a consistent lower prediction performance than RF,
with monthly correlation and RMSE values ranging from 0.508 to 0.844 and, 0.028 to 0.037,
respectively, in the Midwest ROI. KKNN correlation and RMSE values in the West ROI
ranged from 0.405 to 0.712 and from 0.023 to 0.054, respectively.
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Figure 4. Taylor diagrams showing cross-validation between monthly 1 km predicted soil moisture
and ESA-CCI reference data; (a) monthly cross-validation of the Midwest ROI; (b) monthly cross-
validation of the West ROI.

Similar to monthly predictions, we report the weekly performance of the two methods
tested, grouping 52 weeks into four 3-month periods (Figure 5). Like monthly predictions,
RF consistently showed better performance in all 3-month periods and in both ROIs.
Correlation and RMSE values with RF ranged from 0.764 to 0.846, and 0.031 to 0.033,
respectively, in the Midwest ROI, and from 0.634 to 0.785, and 0.026 to 0.041 in the West
ROI. In contrast, correlation and RMSE values with KKNN in the Midwest region ranged
from 0.726 to 0.823, and 0.033 to 0.036, while in the West ROI, these values ranged from
0.555 to 0.746, and 0.028 to 0.043, respectively.

All correlation and RMSE values shown in Figures 4 and 5 are included in Supplemen-
tary Material S3.
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Figure 5. Taylor diagrams showing cross-validation between weekly 1 km predicted soil moisture and
ESA-CCI reference data, the 52 weekly predictions are grouped in four 3-month periods; (a) weekly
cross-validation of the Midwest ROI; (b) weekly cross-validation of the West ROI.

3.2.2. Evaluation with Independent Ground-Truth Information

In Figure 6, we show the results of independent validation of monthly soil moisture
predictions with ground-truth information from the NASMD. In the Midwest ROI, a similar
correspondence between our predicted values and the reference data in all months was clear,
except in August, where the ESA-CCI reference better corresponded with ground-truth
records. Although the correlation and RMSE values for our two methods are consistently
clustered in Figure 6a, RF showed a better correspondence with ground-truth data, and it
was closer to the correlation and RMSE values of the reference satellite-derived values. A
similar prediction performance was obtained for the West ROI (Figure 6b), where RF had
consistently better agreement with the ground-truth reference data. However, the general
agreement between ground-truth data, the reference satellite derived data and the models’
outputs was evidently lower in the West ROI.

The reference satellite-derived data monthly correlation and RMSE values with the
ground-truth data ranged from 0.331 to 0.637 and 0.054 to 0.07 in the Midwest ROI, and from
−0.953 to 0.272, and 0.078 to 0.167 in the West ROI, respectively. Monthly RF correlation
and RMSE values in the Midwest ROI ranged from 0.216 to 0.55, and 0.052 to 0.073, while
in the West ROI, these values ranged from −0.194 to 0.279, and 0.079 to 0.137, respectively.
KKNN consistently showed the lowest correspondence with ground-truth data, except in
October in the West ROI. KKNN correlation and RMSE values ranged from 0.3 to 0.603,
and 0.051 to 0.069 in the Midwest ROI, and from −0.173 to 0.259, and 0.077 to 0.147 in the
West ROI.

128



Remote Sens. 2022, 14, 3137

Figure 6. Taylor diagrams showing validation between monthly 1 km predicted soil moisture and
ESA-CCI values, and ground-truth data from the NASMD; (a) monthly ground-truth validation of
the Midwest ROI; (b) monthly ground-truth validation of the West ROI.

In the ground-truth validation of the weekly predictions (Figure 7), we found that
the two methods showed similar correlation and RMSE values with ground truth data
as the reference ESA-CCI in the Midwest ROI. Although there was not a clear pattern
of better performance for either of the two methods tested, RF showed slightly better
performance for the four 3-month periods in the Midwest ROI. In the West ROI, there was
a consistent decrease in the correspondence between ground-truth data, our predictions,
and the ESA-CCI values, although RF still showed a better performance in three of the four
3-month periods.

For weekly validation, ESA-CCI reference values exhibited the best correspondence
with ground-truth data, with correlation and RMSE values ranging from 0.46 to 0.53, and
0.064 to 0.07 in the Midwest ROI, and from −0.195 to 0.166, and 0.097 to 0.132 in the West
ROI. RF correlation and RMSE values ranged from 0.445, to 0.46, and 0.062 to 0.071 in
the Midwest ROI, and from −0.041 to 0.158, and 0.091 to 0.126 in the West ROI. KKNN
correlation and RMSE values, ranged from 0.464 to 0.494, and 0.06 to 0.069 in the Midwest
ROI, and −0.077 to 0.154, and 0.09 to 0.126 in the West ROI.
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All correlation and RMSE values shown in Figures 6 and 7 are included in Supplemen-
tary Material S3.

 
Figure 7. Taylor diagrams showing validation between weekly 1 km predicted soil moisture and
ESA-CCI values, and ground-truth data from the NASMD, the 52 weekly layers are grouped in four
3-month periods; (a) weekly ground-truth validation of the Midwest ROI; (b) weekly ground-truth
validation of the West ROI (correlation and RMSE values in the week 1 to 13 period were consistently
negative and values are described in Section 3.2.2).

3.3. Spatial Distribution of Prediction Errors

As we display in Figure 8c,d for the Midwest ROI, the spatial patterns of soil moisture
values exhibited a similar behavior as the reference ESA-CCI values (Figure 8b). Similar
to the ESA-CCI, the lowest soil moisture values were distributed over the west part of
the ROI, and highest values over the east section. Low values were also consistent in
the south-central portion, and high values in the central-north. The absolute differences
between the 30% of sampling points set aside for testing in all layers derived from ESA-CCI
values at 0.25 degrees and their spatially correspondent predicted soil moisture values
in all layers at 1 km using the two methods tested are shown in Figure 8e,f. Difference
values were distributed between 0 and 0.03 for both methods, with highest values in the
western portion of the ROI. KKNN was the method with the lowest difference values over
most of the ROI. In Figure 8g,h, we present the absolute differences between predicted
soil moisture and ground-truth data. Difference values were constantly higher for the two
methods in the Midwest ROI. Unlike the comparison between predicted soil moisture and
reference ESA-CCI data, the performance of the two methods was similar when compared
to ground-truth information. The lowest differences ranged between 0 and 0.04 m3 m−3,
and the highest values were up to 0.14 m3 m−3. Although there was not a clear spatial
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distribution of the absolute differences, the distribution of low and high values was similar
across the two methods.

Figure 8. (a) Midwest ROI and distribution of NASMD stations throughout 2010; (b) mean soil
moisture values of 12 monthly and 52 weekly layers based on the reference ESA-CCI values at
0.25 degrees of spatial resolution; (c,d) mean values of 1 km soil moisture predictions with KKNN
and RF; (e,f) spatial distribution of mean absolute differences between ESA-CCI sampling points at
0.25 degrees and their spatially correspondent predicted soil moisture values in all layers at 1 km
with KKNN and RF; (g,h) spatial distribution of mean absolute differences between all monthly and
weekly soil moisture values from NASMD and predicted values at 1 km using the two methods tested.

Figure 9 shows the spatial distribution of soil moisture predicted values and absolute
differences with ESA-CCI values, and ground-truth data in the West ROI. Similar to ESA-
CCI soil moisture, the lowest predicted values were distributed from the south-center to
the north-west of the ROI (Figure 9c,d). However, low soil moisture values described a
pattern not as dry as in the ESA-CCI data (between 0.05 and 0.1 m3 m−3). The highest
predicted values with both methods were consistently located in two south-east to north-
west lines, along the highest elevations of the Rocky Mountains and the central valley of
California, ranging from 0.18 to 0.28 m3 m−3. Absolute differences between the 30% of test
sampling points from ESA-CCI values at 0.25 degrees and their spatially correspondent
prediction output values in all layers at 1 km in the West ROI can be observed in Figure 9e,f.
Overall, the differences were consistently higher in the West ROI than in the Midwest
ROI. The lowest difference values in the West ROI ranged between 0 and 0.045 m3 m−3,
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and highest values reached an absolute difference of 0.13 m3 m−3. Unlike the absolute
differences shown in the Midwest ROI, in the West ROI, there was not a clear pattern in
the spatial distribution of errors between ESCA-CCI and predicted values with our two
methods. Absolute differences between predicted soil moisture and ground-truth data
were consistently higher, regardless of the method used (Figure 9g,h). The distribution of
the absolute differences across the locations with ground-truth data was similar for the two
methods, although RF generally showed lower differences than KKNN. In contrast to the
Midwest ROI, the absolute differences between predicted soil moisture and ground-truth
information were significantly higher, ranging from 0.015 up to 0.21 m3 m−3.

Figure 9. (a) West ROI and distribution of NASMD stations throughout 2010; (b) mean soil moisture
values of 12 monthly and 52 weekly layers based on the reference ESA-CCI values at 0.25 degrees of
spatial resolution; (c,d) mean values of 1 km soil moisture predictions with KKNN and RF; (e,f) spatial
distribution of mean absolute differences between ESA-CCI sampling points at 0.25 degrees and
their spatially correspondent predicted soil moisture values in all layers at 1 km with KKNN and RF;
(g,h) spatial distribution of mean absolute differences between all monthly and weekly soil moisture
values from NASMD and predicted values at 1 km using the two methods tested.
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4. Discussion

Our work shows the performance of two methods within the SOMOSPIE framework
for downscaling satellite-derived soil moisture values. We used two ROIs with different
topographic and climatic characteristics to compare the performance of the framework.
Given the limitations in obtaining field-based measurements of soil moisture over large
areas, flexible and adaptable frameworks are alternatives to obtain spatially and tempo-
rally detailed information. The SOMOSPIE framework offers an alternative approach to
downscale satellite-derived soil moisture and to traditional predictions based on simple
extrapolation and interpolation using information from monitoring networks [14,66,67].

Our framework demonstrates that it is possible to obtain soil moisture across different
spatial and temporal scales, in relation to the resolution of the predictors and the temporal
availability of the input satellite data. In our work, we used 1 km terrain parameters
as predictors, but this framework could be extended to use topographic information at
different spatial resolutions as input for further predictions. It is known that topography
has different levels of influence on the spatial distribution of soil moisture [39], as previous
studies have explored the impact of terrain characteristics at watershed and regional
scales [40,42,44,45,68], and here, we showed that terrain parameters are suitable predictors
at the regional scale. Although other environmental covariates, such as soil texture, surface
temperature, and vegetation characteristics, are known to be correlated with the spatial
and temporal distribution of soil moisture [3,39,40,69–72], these covariates did not offer
significant advantages in our approach. First, soil texture is highly dependent on site-
specific conditions [69] rather than our regional approach, while surface temperature and
vegetation features might introduce bias that would hinder the effect of using solely terrain
parameters as downscaling predictors [44].

We identified that latitude and longitude values, along with Aspect, Elevation, and
Topographic Wetness Index, were the most suitable parameters to predict soil moisture
at 1 km when using the two proposed methods. This aligns with previous studies that
identified similar terrain parameters as relevant factors to derive soil moisture based on their
relation with lateral distribution of water in the surface soil layer [40,43,73–76]. In general,
we obtained better results with both algorithms in the Midwest ROI, where topographic
characteristics are more homogenous than in the West ROI, with more complex terrain.
Additionally, we saw similar patterns of soil moisture spatial distribution across coarse
and fine scales, supporting previous work in downscaling satellite-derived soil moisture
that found that spatial variability agrees with landscape heterogeneity [77]. We highlight
that there is increasing evidence on how terrain parameters are useful for modeling soil
moisture [39,74], but other environmental factors, such as precipitation, temperature, land
cover, and soil properties [69,70,78], should be considered across different scenarios.

The SOMOSPIE framework takes advantage of daily values from the ESA-CCI soil
moisture product, being able to predict soil moisture at different temporal scales (e.g.,
monthly, weekly). The comparison of predicted soil moisture across different periods helps
to identify any temporal biases or patterns related to different environmental conditions
throughout the year and identify emerging relationships with environmental factors at
different points during wet-up and dry-down cycles [79,80]. In autumn and spring, topog-
raphy becomes a more relevant indicator, whereas its importance decreases during summer
and winter due to the influence of evapotranspiration, as well as extensive saturation and
porosity control, respectively [74]. This might support the lower prediction performance
observed during January and February in the West ROI, where topography plays a more
important role in the spatial variability. Additionally, several studies have shown that
more homogenous patterns of satellite-derived soil moisture occur under dry conditions,
leading to an improved accuracy in satellite retrievals [81,82]. In this regard, the higher
prediction accuracy we observed in the Midwest ROI might be linked to a lower retrieval
error from ESA-CCI. This contrasts with the prediction accuracy in the West ROI, which
might be impacted by a higher retrieval error of ESA-CCI, linked to more heterogeneous
environmental conditions.
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In general, we found that RF performed better at the monthly and weekly scales across
both ROIs. This could be explained because this technique does not assume any particular
geometric or functional form of the model. Furthermore, it is suitable in sampling spaces
with sparse data [45], such as satellite-derived soil moisture in a coarse resolution, where
the distance between pixels’ centroids yields substantial separation between data points. In
contrast, although KKNN showed a lower prediction performance than RF, this technique
still offers advantages for soil moisture downscaling in other regions with high density
of sample points based on its ability to build many simple models when more data are
available [59].

We observed that the two methods tested showed a similar correspondence to ground-
truth information as the original ESA-CCI values in most of the monthly and weekly periods
in our experiments. However, KKNN predictions showed a slightly better correspondence
with ground-truth information in comparison with RF (values reporting the absolute
correlation and RMSE differences between ground-truth information and ESA-CCI, as well
as ground-truth and KKNN and RF outputs, are presented in Supplementary Materials S3).
Differences in correlation and RMSE values between the two ROIs might be related to
the sparse and uneven spatial distribution of available ground-truth stations in the West
region (Figure 2). Previous studies found that the optimal number of ground-truth points
for validating satellite-derived soil moisture products ranges from 10 to 20 per pixel [75],
which is far from the desirable distribution of field stations available in the West ROI.

Although our work aimed at identifying the effect of terrain parameters in down-
scaling satellite-derived soil moisture information, other parameters, such as surface tem-
perature, vegetation indexes, surface albedo, land cover, and rainfall, have been widely
considered in previous research [3,39,40,71,72,75,83,84] and represent an opportunity to
evaluate the flexibility of the SOMOSPIE framework.

5. Conclusions

Based on our analysis, we conclude that there is no “best” method that can be defined
for every place in the world, as different methods perform differently in each ROI. As has
been acknowledged in previous research, different downscaling methods have their own
applicability under certain purposes, closely linked to differences in surface and climate
conditions, and every method must be calibrated before its implementation elsewhere [39].
Thus, we believe that SOMOSPIE is a flexible framework that should include the methods
tested in our work but is able to expand to incorporate additional methods to be tested in
other regions around the world.

Despite the advantages of modeling techniques, such as KKNN and RF, in predicting
soil moisture at a fine spatial resolution, it is also important to consider the computational
resources needed when selecting these methods. When the ROI does not represent a large
number of locations where soil moisture will be predicted, the two methods can be applied
with no major challenges, but when the sampling space surpasses hundreds of thousands
of locations, the selection of the modeling method and the use of computational resources
become more important. The understanding of suitable cyberinfrastructure to work with
more extensive regions and soil moisture predictions at finer spatial scales (e.g., 100 m,
30 m), along with the implementation of additional modeling methods in SOMOSPIE, is
still being addressed through current efforts.

Our research contributes an alternative approach for downscaling satellite-derived soil
moisture using a modular spatial inference framework. Here, we tested two methods, but
the framework is flexible so multiple algorithms can be included [58,85]. Additional efforts
to improve the SOMOSPIE framework include developing a containerized environment that
will facilitate the deployment and management of the entire workflow in High-Performance
Computing (HPC) or cloud environments [86].
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14133137/s1, Supplementary Materials S1: Selection of most relevant terrain parameters used
as predictors to estimate soil moisture at 1 km spatial resolution over the conterminous United States.
Refs. [44,45,52,54–60,87] are cited in the Supplementary Materials S1. Supplementary Materials S2:
Number of North American Soil Moisture Database available stations in 2010 over the two regions
of interest. Supplementary Materials S3: Cross-validation and ground-truth validation tables of
monthly and weekly soil moisture predictions.
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Abstract: The coarse scale of passive microwave surface soil moisture (SSM) is not suitable for
regional agricultural and hydrological applications such as drought monitoring and irrigation man-
agement. The optical/thermal infrared (OTI) data-based passive microwave SSM downscaling
method can effectively improve its spatial resolution to fine scale for regional applications. However,
the estimation capability of SSM with long time series is limited by OTI data, which are heavily
polluted by clouds. To reduce the dependence of the method on OTI data, an SSM retrieval and
spatio-temporal fusion model (SMRFM) is proposed in the study. Specifically, a model coupling in
situ data, MODerate-resolution Imaging Spectro-radiometer (MODIS) OTI data, and topographic
information is developed to retrieve MODIS SSM (1 km) using the least squares method. Then the
retrieved MODIS SSM and the spatio-temporal fusion model are employed to downscale the passive
microwave SSM from coarse scale to 1 km. The proposed SMRFM is implemented in a grassland dom-
inated area over Naqu, central Tibet Plateau, for Advanced Microwave Scanning Radiometer—Earth
Observing System sensor (AMSR-E) SSM downscaling in unfrozen period. The in situ SSM and Noah
land surface model 0.01◦ SSM are used to validate the estimated MODIS SSM with long time series.
The evaluations show that the estimated MODIS SSM has the same temporal resolution with AMSR-E
and obtains significantly improved detailed spatial information. Moreover, the temporal accuracy
of estimated MODIS SSM against in situ data (r = 0.673, μbRMSE = 0.070 m3/m3) is better than the
AMSR-E (r = 0.661, μbRMSE = 0.111 m3/m3). In addition, the temporal r of estimated MODIS SSM
is obviously higher than that of Noah data. Therefore, this suggests that the SMRFM can be used
to estimate MODIS SSM with long time series by AMSR-E SSM downscaling in the study. Overall,
the study can provide help for the development and application of microwave SSM-related scientific
research at the regional scale.

Keywords: long time series; microwave surface soil moisture downscaling; MODIS scale;
spatio-temporal fusion model

1. Introduction

Surface soil moisture (SSM) of a depth less than 5 cm is an important part of the
Earth’s water resources and is a key factor controlling the energy and water exchange
between the surface and the atmosphere [1,2]. It plays a vital role in the processes of
precipitation, runoff, infiltration, evapotranspiration, and agricultural application [3–5].
How to accurately monitor SSM dynamic change on the Earth’s surface is a hot topic in
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geoscience. Due to its characteristics of large coverage of surface changes, long duration,
relatively low cost, and real-time dynamic monitoring [6,7], satellite remote sensing has
become one of the effective technology approaches for SSM monitoring.

Microwave remote sensing has the advantages of wide range of Earth observation
and all-weather monitoring of the real surface situation. Moreover, it is not disturbed by
clouds and can penetrate the depth of surface soil to about 5 cm (e.g., C band) [8]. Since
the 1970s, a series of active and passive microwave sensors have been utilized to monitor
global SSM [3,8]. Based on the observed data of microwave remote sensing, microwave
SSM products with varied spatial coverage, varied time coverage, and varied accuracy
have been retrieved and released. The widely used global products are as follows: the Soil
Moisture Active Passive (SMAP, 3 km, 9 km and 36 km) [9,10] and the Advanced Microwave
Scanning Radiometer—Earth Observing System sensor (AMSR-E) datasets (25 km) released
by the National Aeronautics and Space Administration (NASA) [11,12], the Soil Moisture
and Ocean Salinity (SMOS, 25 km) [13,14] and the Climate Change Initiative (CCI, 0.25◦)
datasets released by the European Space Agency [3,15], the Advanced Microwave Scanning
Radiometer 2 (AMSR2, 0.25◦) dataset released by the Japan Aerospace Exploration Agency
(JAXA) [16], and the FengYun-3 dataset (25 km) released by the China Meteorological
Administration [17,18]. The revisit interval of the above satellites/sensors is 1–3 days. For
the radar failure of SMAP, the C band Sentinel-1 data was to substitute the SMAP radar for
global scale 3 km and 1 km SSM estimation. However, the temporal resolution degrades
from 3 days to 12 days [10]. In addition, the coarse spatial resolution (tens of kilometers in
pixel size) of passive microwave SSM products makes it difficult to meet the applications
(e.g., drought monitoring and irrigation management) at the regional scale. Therefore, it is
urgent to carry out research on passive microwave SSM downscaling, improve its spatial
resolution, and upgrade the applications of passive microwave SSM from global scale to
regional scale.

At present, passive microwave SSM downscaling mainly relies on high spatial reso-
lution auxiliary data including optical/thermal infrared (OTI), radar, terrain, and other
data [19–24]. The empirical and physical models between passive microwave SSM and
auxiliary data are built for downscaling and for spatial resolution improvement. OTI
data are seriously polluted by clouds [25], which means that the traditional downscaling
methods often lack OTI data for spatial resolution improvement in long time series. In
other words, the traditional downscaling method only realizes the downscaling of mi-
crowave soil moisture on some dates and does not make effective use of the long time series
characteristics of microwave data. Therefore, the traditional microwave SSM downscaling
methods struggle to estimate OTI-scale SSM with long time series effectively. In general,
there is a compromise between temporal and spatial in remote-sensing data. To alleviate
the temporal and spatial compromise contradiction faced by remote-sensing data, Gao
et al. [26] proposed a spatio-temporal fusion model (STFM) in 2006. It assumes that the
temporal change is the same at the varied scales. Once proposed and optimized, the model
has been widely used in phenological analysis [27], vegetation monitoring [28], urban heat
island monitoring [29,30], and other research fields, because it can estimate the OTI-scale
data with long time series of many surface parameters, such as vegetation index [31],
surface temperature [32], reflectance [33,34], and evapotranspiration [35,36]. However,
STFM for OTI-scale SSM estimation is rarely reported due to the lack of OTI-scale (no more
than 1 km in pixel size) SSM.

In the study, a SSM retrieval and fusion model (SMRFM) is proposed to estimate
the OTI-scale SSM with long time series by passive microwave SSM downscaling. The
proposed SMRFM will reduce the limitations of traditional microwave SSM downscaling
method caused by the availability of OTI data. The SMRFM is implemented in two steps:
the first step is to build an empirical equation to retrieve the MODerate-resolution Imaging
Spectro-radiometer (MODIS) scale SSM using MODIS OTI data; the second step is to
construct the SSM STFM using paired AMSR-E and MODIS SSM for the estimation of
MODIS SSM (1 km) with long time series. The proposed SMRFM is implemented over the
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Naqu, central Tibet Plateau. The estimated MODIS SSM by SMRFM is validated by the in
situ data and Noah land surface model 0.01-degree SSM. Moreover, the estimated MODIS
SSM not only can be used to understand the coupling process of land water, energy, and
carbon cycles on a more precise scale [9], but also can be helpful for the practical application
of regional moisture monitoring, crop production status monitoring, and yield estimation.
Therefore, it can be considered that the study will provide convenience for the long time
series and MODIS SSM estimation at the regional scale and will have important theoretical
and practical significance.

2. Materials and Methods

2.1. Materials
2.1.1. Study Area and In Situ Surface Soil Moisture Data

The study area is located in Naqu, central Tibet Plateau (Figure 1a). The in situ SSM
data used are from the Soil Moisture and Temperature Monitoring Network (SMTMN) in
Naqu, which is deployed by Yang et al. [37]. The SMTMN covers 1◦ × 1◦ geographical
space (91.5◦ E–92.5◦ E, 31◦ N–32◦ N), which contains 57 in situ sites. The real time SSM
of 0–5, 10, 20, and 40 cm is measured in volumetric water content using the EC-TM and
5TM monitoring equipment, which is manufactured by Decagon. The sensors measure
SSM according to the sensitivity of soil dielectric permittivity to liquid soil water with
an accuracy of 0.001 m3/m3. The SSM data is recorded every 30 min, and each record
reflects the average of SSM over the past half-hour. A total of 48 SSM records are collected
per day. The in situ data of SMTMN has been shared to the International Soil Moisture
Network (https://ismn.geo.tuwien.ac.at/en/networks/?id=CTP_SMTMN, accessed on
15 September 2021), and the time range is from 2008 to 2016. The first layer (0–5 cm) of
in situ data was selected in this study. Regarding soil texture of SMTMN, silt and sand
are dominant components with a comparable magnitude, while clay content consistently
maintains at a low level (less than 10%). The range of altitudes of in situ sites is 4450–5000 m
and is grassland-dominated. The relatively homogeneous area is convenient for MODIS
SSM retrieval. This area belongs to the sub-frigid climate zone. According to a previous
study [38], the period from October to May is defined as the frozen period, as the land
surface temperature (LST) is below 0 ◦C most of the time. Meanwhile, the other period of
the year (June to September) is the unfrozen period. Soil freezing in frozen period has an
adverse impact on SSM monitoring. To improve the reliability of the study, the proposed
SMRFM is only implemented in unfrozen period.

2.1.2. Aqua AMSR-E Soil Moisture

The multi-frequency dual polarization AMSR-E sensor mounted on the Aqua satellite
is developed by JAXA and can be used to monitor the changes of SSM [39,40]. The ascending
and descending time of AMSR-E are 01:30 PM and 01:30 AM local time, respectively. The
spatial resolution of SSM released by AMSR-E is ~25 km. The expected accuracy of AMSR-E
is 0.06 m3/m3 in low-to-medium vegetation coverage areas [11]. A variety of products
have been retrieved and released based on AMSR-E observations [41], the most notable
of which are released by NASA and JAXA. The root mean square error (RMSE) of JAXA
AMSR-E SSM (<0.12 m3/m3) is lower than NASA data (>0.16 m3/m3) in the study area
shown in previous study [12]. Therefore, JAXA AMSR-E SSM is used for SSM downscaling
in the study. For the sensor failure, AMSR-E could not continuously observe the Earth
and release the SSM product after October 2011 [16]. It was officially retired after nearly
ten years of in-orbit operation. The time range of SSM products released by AMSR-E data
is from May 2002 to October 2011. The Shizuku satellite equipped with AMSR2 sensor
was launched by JAXA for the replacement of AMSR-E in May 2012. It continues to carry
out Earth observation and release global ~25 km SSM products [16]. To match the pixel
size of MODIS data, AMSR-E data were resampled to 1 km using the cubic convolution
interpolation method in ArcGIS software.
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Figure 1. Location of the study area in southwest China (a) and the 57 in situ soil moisture sites (b).
All in situ sites (in black and blue triangle) data is used for MODIS soil moisture retrieval and daily
evaluation. The selected 29 in situ sites (in black triangle) data is used for temporal evaluation.
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2.1.3. Aqua MODIS Optical and Thermal Infrared Data

MODIS sensors are carried on Terra and Aqua satellites. Aqua MODIS data is selected
to reduce the adverse impact of AMSR-E and MODIS on observation time mismatch. The
MYD11A1 daily 1 km LST data and the MYD13A1 8-day 500 m composited Normalized
Difference Vegetation Index (NDVI) data are used to fit the empirical equation for MODIS
SSM retrieval. Because of the composited product of MODIS NDVI, it assumes that the
NDVI is constant in the 8-day composited date [42]. The LST gradients are normally
reduced at nighttime, which is more beneficial to SSM retrieval [3]. Therefore, the Aqua
MODIS LST at nighttime is used to eliminate the observation time difference between the
two datasets for improved MODIS SSM retrieval. As the visible light cannot be used at
nighttime, the Aqua MODIS NDVI data (visible light data) is used at daytime.

2.1.4. SRTM DEM Data

The SRTM digital elevation model (DEM) data, produced by NASA originally, are a
major breakthrough in the digital mapping of the world. The 90 m SRTM DEM (version 4)
used was downloaded from https://srtm.csi.cgiar.org/srtmdata/ (accessed on 12 October
2021) in this study. For more information about the used SRTM DEM, refer to [43]. After
data mosaicking and clipping, the 90 m STRM DEM were resampled to 1 km pixel size
using the cubic convolution interpolation method in ArcGIS software. As altitude (m) and
slope (◦) extracted from STRM DEM data play an important role in the redistribution of
SSM, they were selected for MODIS SSM retrieval in the study.

2.1.5. Noah Land Surface Model L4 Central Asia Daily Soil Moisture

As OTI data are seriously polluted by clouds, it is difficult for traditional microwave
SSM downscaling methods to effectively estimate MODIS SSM with long time series.
Therefore, it is inappropriate to compare the SMRFM method proposed in the study
with the traditional microwave SSM downscaling methods. Alternatively, the SSM data
simulated by the land surface model were used as comparative data to verify the MODIS
SSM with long time series estimated by SMRFM. The comparative data were acquired from
the FLDAS Noah Land Surface Model L4 Central Asia Daily dataset (version 001) [44],
which is simulated from the Noah 3.6.1 model in the Famine Early Warning Systems
Network Land Data Assimilation System, adapted from Land Information System. This
dataset contains a series of land surface parameters in a 0.01-degree spatial resolution
over the Central Asia region (30–100◦ E, 21–56◦ N) from October 2000 to present. The
four layers SSM data were comprised by the daily dataset and the top layer (0–10 cm)
SSM in volumetric water content was used as the comparative dataset in the study. The
0.01-degree simulated SSM is resampled and then clipped to 1-km size for matching the
pixel of fused MODIS SSM. In November 2020, all FLDAS Noah data were post-processed
with the MOD44 MODIS land mask, so the simulated SSM data were missing over inland
water in the study.

All data used in this study are shown in Table 1. As the temporal coverage of different
data is different, the temporal intersection of AMSR-E and MODIS data in unfrozen period
(1 August–31 September 2010 and 1 June–31 September 2011, six months in total) was used
as the study period.

2.2. Methods

The MODIS SSM with long time series is estimated by downscaling AMSR-E SSM
from coarse scale using proposed SMRFM. A reference MODIS SSM is retrieved from the
coupling of in situ data, MODIS OTI data and topographic information. Then, the long
time series AMSR-E SSM is downscaled to MODIS scale using the reference MODIS SSM
and STFM. Therefore, SMRFM solves the difficulty of MODIS SSM acquisition in STFM
and can be taken as an improvement for STFM in SSM.
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Table 1. A general description of data used in the study. OTI is optical/thermal infrared, DEM is dig-
ital elevation model, AMSR-E is the Advanced Microwave Scanning Radiometer—Earth Observing
System sensor, MODIS is the Moderate-resolution Imaging Spectro-radiometer, LST and NDVI is the
land surface temporal and Normalized Difference Vegetation Index, SSM is the surface soil moisture.

Microwave Data OTI Data Noah Data DEM Data In Situ Data

Sensor AMSR-E MODIS / SRTM EC-TM, 5TM
Data Type JAXA SSM LST, NDVI simulated SSM altitude, slope in situ SSM

Temporal coverage May 2002 to
1 October 2011 May, 2002 to now October 2000 to now / August 2010 to

September 2016
Spatial resolution ~25 km 1 km/500 m 0.01◦ 90 m /

Temporal resolution 1–3 days daily daily Static daily
unit m3/m3 / m3/m3 m, ◦ m3/m3

2.2.1. Data Pre-Processing

The average daily in situ SSM is used for further analysis. As the in situ SSM is
0–0.6 m3/m3 in SMTMN [37,39], AMSR-E data higher than 0.6 m3/m3 is excluded in the
study. In addition, the pre-processing manners of in situ data are different for different
application scenarios in the study. For reference MODIS SSM retrieval and daily evaluation,
the daily 57 in situ data (the triangle shown in Figure 1b) is used. For temporal evaluation,
the in situ data is selected according to the following four conditions: (1) the data quality
of in situ data should be marked “G” (Good); (2) the monitored surface soil depth should
be less than 5 cm at first layer; (3) the temporal correlation between in situ SSM and the
corresponding AMSR-E SSM should be positive and pass the hypothesis test (p-value is
less than 0.05). After the selection, 29 in situ sites (the black triangle shown in Figure 1b)
are used for temporal evaluation in the study.

2.2.2. Spatio-Temporal Fusion Model

The SSM STFM (Figure 2) takes the known MODIS SSM and the corresponding AMSR-
E SSM as the paired reference data at t0 date and then again to fuse tk date AMSR-E
SSM for the unknown MODIS SSM estimation at the date. Notably, the date of reference
data is taken as the reference date. The estimation needs to excavate the spatio-temporal
correlation characteristics between AMSR-E and MODIS SSM without the help of other
additional remote sensing auxiliary data. In practice, one or more paired reference datasets
can be used to estimate MODIS SSM at tk date. The more paired reference data that is
used, the more restrictive the conditions of the model. As the main aim of the study is to
verify the feasibility of the proposed SMRFM, only one paired reference dataset is used in
the STFM.

From the reference date t0 to the prediction date tk, temporal variation of SSM can be
fitted by a linear equation. For AMSR-E SSM (SSMM), the linear equation is as follows:

SSMM(tk) = a(x, y, Δt)× SSMM(t0) + b(x, y, Δt) (1)

where Δt = tk − t0, a and b are the regression coefficients of the linear equation that are
calculated by the least-squares method. As the model assumes that SSM has the same
temporal change at different scales [45], the regression coefficients estimated at AMSR-E
scale can be applied to MODIS scale. Thus, the MODIS SSM at date tk can be estimated
using Equation (2).

SSMF(tk) = a(x, y, Δt)× SSMF(t0) + b(x, y, Δt) (2)
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Figure 2. Schematic diagram of surface soil moisture spatio-temporal fusion model.

The change of SSM in each pixel may be different with the change of time. The
fixed regression coefficients for the remotely sensed image may have a negative impact on
prediction. To make the prediction result more accurate, the information of similar pixels in
the neighborhood moving sliding window (e.g., 5 × 5) is used in the model. The prediction
expression is as follows,

SSMF(xw/2, yw/2, tk) =
l

∑
i=1

W(xi, yi, t0)× [a(x, y, Δt)× SSMF(t0) + b(x, y, Δt)] (3)

where w and w/2 are the size and center of moving window, respectively, (xi, yi) indicates
similar pixels, and l is the number of similar pixels. Thus, the regression coefficients of
each pixel may be different for MODIS SSM estimation. For the selection of similar pixels
and the calculation of linear regression coefficients in the fusion model, please refer to [33]
for details.

From the above equations, it can be seen that the paired AMSR-E and MODIS SSM
at reference date t0 and the AMSR-E SSM at tk are used to predict the MODIS SSM at tk.

In this process, there is no need to rely on other remote-sensing auxiliary data. However,
the MODIS SSM at reference date t0 is also unknown in most cases. Therefore, the Aqua
MODIS LST and NDVI data are used for SSM retrieval in the study and then again to
estimate the MODIS SSM at reference date t0.

2.2.3. Aqua MODIS Surface Soil Moisture Retrieval

OTI data cannot penetrate clouds, vegetation, and soil surface layers, and do not
meet the conditions of the remote-sensing radiation transfer equation for SSM retrieval.
Therefore, the SSM retrieval from OTI data lacks physical basis. In many cases, the use
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of OTI data to monitor SSM is mainly based on the correlation between SSM and remote-
sensing surface parameters such as vegetation index, surface temperature [46], thermal
inertia [47], surface reflectance [48], drought index [49,50]. Then, empirical equations
between SSM and the remotely sensed surface parameters are established to retrieve
regional SSM. The study develops a MODIS SSM retrieval model using in situ data, OTI
data (LST and NDVI), altitude, and surface slope data which are calculated by the DEM
data (Equation (4)).

SSMF = a1 × LST + a2 × NDVI + a3 × altitude + a4 × Slope + a5 (4)

where ai (i = 1, 2, 3, 4, 5) are regression coefficients fitted by the least-squares method. To
weaken the uncertainty caused by the spatial matching between the in situ SSM data and
the remotely sensed pixel data, a 3 × 3 neighborhood average of the pixel corresponding to
the in situ site location is taken as the matching value. Moreover, neighborhood average can
weaken the information distortion that may exist in the single pixel value corresponding to
the in situ site location. This can improve the robustness of MODIS SSM retrieval model
(Equation (4)).

To estimate MODIS SSM using Equation (4), MODIS LST should meet the following
two conditions: cloud-free and temperature higher than 0 ◦C (unfrozen soil). In general,
the more training samples, the higher probability of the accuracy and stability of the fitting
formula. To achieve this goal, the percentage of uncontaminated pixels in daily MODIS LST
during the study period was calculated (Figure 3). This showed that the number of days
for which the percentage of uncontaminated pixels is greater than 80% does not exceed
21 days. This suggests that number of days is relatively small for SSM estimation using
Equation (4) in the study period. After careful screening, it was found that only 5 days of
MODIS LST data were 100% uncontaminated. At the same time, the number of in situ sites
for the days was counted. It was found that the number of effective in situ sites was the
largest on 24 July 2011 among the 5 days, reaching as many as 48. Therefore, the MODIS
SSM on 24 July 2011 is retrieved by Equation (4).

Figure 3. The histogram of percentage of uncontaminated pixels in daily MODIS LST at unfrozen period.

To avoid over-fitting of SSM retrieval equation (Equation (4)) using least-squares
method, the 48-sample dataset (in situ data and its corresponding remote sensing data) on
24 July 2011 is sorted by in situ SSM in ascending order. Then, the dataset is divided into
five subsets at an interval of five, and the second subset with a sample size of ten is taken
as the validation dataset, and the remaining 38 samples are taken as the training dataset.
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Theoretically, the average value of regional SSM should not change with the varied
scale. AMSR-E SSM has a stronger theoretical basis than that of SSM retrieved from OTI
data. Therefore, the regional SSM retrieved by microwave data should be better than that
of OTI data in theory. To ensure the same regional average SSM between AMSR-E and
MODIS SSM, the AMSR-E SSM is taken as the benchmark and is used to correct retrieved
MODIS SSM using Equation (5).

SSMFC =
SSMF

average(SSMF)
× average(SSMM) (5)

where SSMFC is the corrected MODIS SSM, average () is the average of SSM. The corrected
MODIS SSM is taken as the reference SSM in the STFM.

2.2.4. Evaluation Methods

The correlation coefficient (r), RMSE, bias, and the unbiased RMSE (μbRMSE) are used
as the indicators for accuracy evaluation.

r =

n
∑

i=1
(SSMpixel,i − SSMpixel)× (SSMre f ,i − SSMre f )√

n
∑

i=1
(SSMpixel,i − SSMpixel)

2 × n
∑

i=1
(SSMre f ,i − SSMre f )

2
(6)

RMSE =

√√√√√ n
∑

i=1
(SSMpixel,i − SSMre f ,i)

2

n
(7)

bias = SSMpixel − SSMre f (8)

μbRMSE =
√

RMSE2 − bias2 (9)

where SSMpixel,i and SSMpixel are the pixel SSM and the average pixel SSM, and SSMre f ,i

and SSMre f are the reference SSM and the average reference SSM. The direct and indirect
evaluations are implemented to evaluate the accuracy of pixel SSM and to investigate the
feasibility of the proposed SMRFM for MODIS SSM estimation.

The in situ data are taken as the reference SSM and then again to directly compare
the difference between the in situ SSM and the pixel SSM neglecting the spatial matching
difference. This method is often used for accuracy evaluation of the satellite based SSM
in previous studies [23,51,52]. The in situ sites for temporal evaluation (the black triangle
shown in Figure 1b) are evenly distributed throughout the study area, and their average
value can be considered as the SSM at SMTMN scale. Therefore, the fused MODIS SSM,
AMSR-E SSM, and Noah SSM are evaluated against in situ SSM at SMTMN scale. It
can be used to evaluate the overall temporal accuracy of pixel SSM. To demonstrate the
individual difference of pixel SSM at each in situ site, the temporal accuracy of pixel SSM
against in situ data is calculated at MODIS scale. Like the evaluation at SMTMN scale,
the temporal variation of pixel SSM is used to directly compare in situ data. Instead of
using overall average of all selected in situ data, the observed temporal SSM is used at
each site. In addition, the daily evaluation of pixel SSM against in situ data is also explored
at MODIS scale in the study, so as to display all daily accuracies in pixel SSM. In general,
the focus of temporal variation accuracy evaluation and daily accuracy evaluation are
different. The former focuses on depicting temporal variation of SSM, and the temporal
characteristics are emphasized. Therefore, the evaluation index pays more attention to
temporal r and μbRMSE. Meanwhile, the latter focuses on describing spatial variation of
SSM, and the characteristics of absolute value change are emphasized. The evaluation
index pays more attention to RMSE and bias. Therefore, it is more convincing to carry out
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the evaluations in view of temporal variation and absolute value of pixel SSM at SMTMN
scale and MODIS scale.

In fact, there is a spatial matching error between in situ data and pixel SSM, although
evaluations based on in situ data are widely used. To eliminate the uncertainty of spatial
matching, the triple collocation (TC) method is used for further evaluation. The TC method
was proposed by Stoffelen [53] and was used to evaluate wind and wave height obser-
vations in oceanography. It was later introduced into remote-sensing SSM observation
error estimation. For example, TC method is used to evaluate the global errors for ASCAT,
AMSR-E, and ERA reanalysis SSM [54], which has shown that TC method is robust and can
generate objective error estimates. There are four assumptions of TC method for temporal r
estimation in the case of unknown truth values [55]: (1) there is a linear correlation between
the three kinds of SSM and the unknown truth SSM; (2) the error is stable and does not
change with temporal variation; (3) the errors of the three kinds of SSM are independent
of each other; (4) the errors of the three kinds of SSM are independent of unknown truth
values. As fused MODIS SSM and AMSR-E SSM are related to each other, a triplet pattern
of in situ, Noah, and remote sensing SSM is built for the TC evaluation in the study. Two
kinds of TC triplets are constructed: in situ Noah-fused MODIS SSM (TC1) and in situ
Noah-AMSR-E SSM (TC2), so as to compare the temporal accuracy difference of the three
kinds of pixel SSM at MODIS scale.

3. Results

3.1. Accuracy Analysis of MODIS Surface Soil Moisture Retrieval

The training and validation accuracy of the equation fitting for the retrieval of MODIS
SSM is shown in Table 2.

Table 2. Fitting accuracy of MODIS surface soil moisture retrieval equation.

RMSE (m3/m3) r

Training accuracy 0.073 0.656
Validation accuracy 0.088 0.669

Table 2 shows that the fitted equation (Equation (4)) has a good robustness for the
comparable accuracy of training and validation datasets. The RMSE is less than 0.09 m3/m3

and the r is higher than 0.65. This indicates that the fitted equation can estimate MODIS
SSM well. Then, the fitted equation is applied to retrieve MODIS SSM on 24 July 2011
(Figure 4) in the study.

The spatial distribution of the AMSR-E and MODIS SSM is consistent as a whole, but
there are still certain spatial and numerical differences between them (Figure 4). The range
of AMSR-E is 0.132–0.548 m3/m3, with an average of 0.323 m3/m3. The range of retrieved
MODIS SSM is 0.036–0.690 m3/m3, with an average of 0.365 m3/m3. The coefficient of
variation for AMSR-E is 0.259, and for retrieved MODIS SSM is 0.189. This suggests that
the AMSR-E is more discrete than the retrieved MODIS SSM.

The average values of the AMSR-E and MODIS SSM are different, which is consistent
with our expectation. Thus, the corrected SSM is calculated using Equation (5). The spatial
distribution of the corrected MODIS SSM (Figure 4c) has not changed obviously when
compared to Figure 4b in visual representation. However, the spatial fitness between
AMSR-E and MODIS SSM is slightly improved. RMSE between them has decreased
from 0.112 m3/m3 to 0.099 m3/m3 after correction. Therefore, the corrected MODIS SSM
(Figure 4c) and AMSR-E SSM (Figure 4a) are used to construct the paired reference datasets
of STFM in the study.
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Figure 4. Surface soil moisture on 24 July 2011 in 1 km pixel size: (a) AMSR-E data resampled
to MODIS scale; (b) the retrieved MODIS surface soil moisture; (c) the corrected MODIS surface
soil moisture.

3.2. Fused MODIS Surface Soil Moisture

The long time series MODIS SSM is fused by SMRFM using one fixed paired reference
dataset and the corresponding AMSR-E SSM at the unfrozen period. To validate the spatial
downscaling ability of SMRFM, the spatial distribution of fused MODIS SSM at different
dates is shown in Figure 5.

More detailed spatial information is presented in the fused MODIS SSM. It suggests
that the SMRFM can improve the spatial resolution of AMSR-E SSM from microwave
scale to MODIS scale well. The enhanced spatial information of fused MODIS SSM will
be beneficial for applications at the regional scale. Meanwhile, the AMSR-E and fused
MODIS SSM have relatively good consistency in the spatial distribution, indicating that the
STFM can downscale AMSR-E SSM to fine scale from coarse scale well under large spatial
resolution differences. For the large difference in spatial resolution of the two kinds of SSM
(the paired reference data), there may be some inconsistencies in the fused results. It is
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mainly that the spatial variation of MODIS SSM in special areas cannot be well represented
in AMSR-E SSM.

Figure 5. The spatial distribution of AMSR-E SSM (upper), fused MODIS SSM (middle) and Noah
SSM at different dates in 1 km pixel size; (a,c,e) are data at 31 August 2010; (b,d,f) are data at 13
September 2011.
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There are many spatial void data for Noah SSM, as they are masked by the land
surface data, and the other two kinds of SSM are not masked. However, this does not
affect the presentation of the results. In addition, the spatial distributions of AMSR-E and
fused MODIS SSM are quite different when compared to Noah SSM. Nevertheless, the
variation characteristics in temporal are still captured by the three kinds of SSM, but each
SSM has some deviation in its depiction. This suggests the three kinds of SSM all have
certain uncertainty, consistent with previous studies on satellite-based SSM [10,15,16].

3.3. Evaluations against In Situ Data at SMTMN Scale

The fused MODIS SSM, AMSR-E SSM, Noah SSM, and in situ SSM are aggregated
to the SMTMN scale. Then the in situ site-based temporal variation differences between
the three kinds of pixel SSM are compared (Figure 6). It shows that the pixel SSM can
well monitor the temporal variations of regional SSM and display a good consistency in
unfrozen period compared to in situ data. Nevertheless, the temporal variation of the
four kinds of SSM differs greatly. The range of in situ data is 0.182–0.403 m3/m3, AMSR-E
SSM is 0.106–0.601 m3/m3, fused MODIS SSM is 0.152–0.557 m3/m3 and Noah SSM is
0.238–0.455 m3/m3 at SMTMN scale. The ability of the fused MODIS SSM to capture in
situ data is between AMSR-E and Noah SSM. As the fused MODIS SSM is downscaled by
AMSR-E, there is high consistency in temporal variation curves.

Figure 6. Comparison of the in situ, AMSR-E, Noah, and the fused MODIS SSM at SMTMN scale in
unfrozen period. The gap between the two solid black lines is the frozen period. The in situ data are
represented by line symbol and the pixel SSM is represented by point symbol.

The quantitative evaluation results (Table 3) show that the fused MODIS SSM is slightly
higher than AMSR-E SSM and obviously higher than Noah SSM in terms of temporal r
(0.673). Meanwhile, it presents lower temporal μbRMSE (0.070 m3/m3) than AMSR-E SSM
against in situ data. Noah data present the lowest μbRMSE, however, it also gets the lowest
temporal r. As the highest temporal r and the moderate temporal μbRMSE of fused SSM, it
shows that the fused data have more advantages than the other pixel data against in situ
data. Compared to improving the temporal r of AMSR-E, the fused MODIS SSM has more
advantages in decreasing the temporal RMSE of AMSR-E. This suggests that the fused SSM
has higher accuracy than AMSR-E SSM in overall temporal variation at SMTMN scale.
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Table 3. Temporal accuracy evaluations of the AMSR-E, Noah, and the fused MODIS SSM against in
situ data at SMTMN scale in unfrozen period.

r RMSE (m3/m3) bias (m3/m3) μbRMSE (m3/m3)

AMSR-E 0.661 ** 0.112 0.017 0.111
Fused 0.673 ** 0.078 0.034 0.070
Noah 0.438 ** 0.062 0.030 0.054

Note: ** indicates the temporal r passed the p-value < 0.01.

3.4. Evaluations against In Situ Soil Moisture at MODIS Scale

In terms of overall temporal accuracy at SMTMN scale, it can be considered that the
fused MODIS SSM outperforms AMSR-E in describing temporal variation of in situ data.
However, the accuracy difference between the pixel SSM is still unclear at the MODIS scale
and needs to be further explored.

3.4.1. Daily Accuracy Evaluation

To calculate the daily evaluation of pixel SSM against in situ data effectively, all the
available daily pixel SSM and in situ SSM are collected at MODIS scale during unfrozen
period. The scatter plots between them are shown in Figure 7. It shows that the fitting
line of the scatter between in situ and fused MODIS SSM is closest to the 1:1 line. Noah
and in situ SSM present the lowest slope of fitting line. Among quantitative indexes, fused
MODIS SSM presents the highest r (0.714) and the lowest RMSE (0.117 m3/m3) compared
to AMSR-E and Noah SSM. It reveals that the fused MODIS SSM gets the best evaluation
indexes at the MODIS scale indicating the advantages of SMRFM.

Figure 7. Scatter plots between in situ soil moisture and AMSR-E (a), fused MODIS (b), and Noah
surface soil moisture (c).

3.4.2. Temporal Accuracy Evaluation

To further demonstrate the difference between the three kinds of pixel SSM, the
temporal accuracy is investigated at MODIS scale. The fused MODIS SSM, AMSR-E SSM,
and Noah SSM are extracted based on the selected 29 in situ sites. Then they are directly
temporal evaluated against the in situ data. The evaluation results at the 29 in situ sites
were obtained in the study (Figure 8), and the average values are shown in Table 4.
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Figure 8. Temporal accuracy evaluation of AMSR-E, Noah, and the fused MODIS SSM against each
in situ data at MODIS scale.
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Table 4. Average of temporal variation evaluations against in situ data at MODIS scale.

r (No. of
p-Value > 0.05)

RMSE (m3/m3) bias (m3/m3) μbRMSE (m3/m3)

AMSR-E 0.547 (0) 0.167 0.017 0.126
Fusion 0.557 (0) 0.119 0.035 0.087
Noah 0.348 (5) 0.131 0.031 0.071

In terms of temporal r, the range of fused MODIS SSM is 0.243–0.722 with an average
of 0.557, the range of AMSR-E SSM is 0.275–0.728 with an average of 0.547, and the range
of Noah SSM is −0.143–0.759 with an average of 0.348. For temporal RMSE, the range of
fused MODIS SSM is 0.073–0.276 m3/m3 with an average of 0.119 m3/m3, the range of
AMSR-E SSM is 0.097–0.314 m3/m3 with an average of 0.167 m3/m3, and the temporal
RMSE range of Noah SSM is 0.067–0.248 m3/m3 with an average of 0.131 m3/m3. For
temporal bias, the range of fused MODIS SSM is −0.243–0.151 m3/m3 with an average
of 0.035 m3/m3, the range of AMSR-E SSM is −0.301–0.204 m3/m3 with an average of
0.017 m3/m3, and the range of Noah SSM is −0.237–0.191 m3/m3 with an average of
0.031 m3/m3. For temporal μbRMSE, the range of fused MODIS SSM is 0.053–0.152 m3/m3

with an average of 0.087 m3/m3, the range of AMSR-E SSM is 0.074–0.176 m3/m3 with an
average of 0.126 m3/m3, and the range of Noah SSM is 0.037 −0.134 with an average of
0.071 m3/m3.

In most cases, the temporal r of Noah SSM is lower than AMSR-E and fused SSM
(Figure 8). The negative correlation of Noah SSM at L35 site indicates that it could not
describe the temporal variation of in situ data well. The temporal r of fused MODIS SSM is
higher than AMSR-E at 17 in situ sites. The temporal bias is positive at most sites, indicating
that the pixel SSM overestimates the in situ data. For temporal RMSE and μbRMSE, the
similar change characteristics are displayed. The higher RMSE and μbRMSE are obtained
by AMSR-E at each site. Meanwhile, the difference between fused MODIS SSM and Noah
SSM is not very large in the temporal RMSE and μbRMSE at each site.

Compared to the temporal evaluation at SMTMN scale, the fused SSM presents bet-
ter evaluation indexes than the AMSR-E in terms of temporal r, RMSE and μbRMSE
(Tables 3 and 4). Meanwhile, Noah SSM presents the lowest average temporal r and tempo-
ral μbRMSE at MODIS scale, which is consistent with the temporal evaluation at SMTMN
scale. Notably, the temporal r of five sites failed the hypothesis test (p-value > 0.05) for
Noah SSM.

3.5. Evaluations Based on Triple Collocation Method

Referring to previous studies [45,55], the valid number of data points should be greater
than 100 for each pixel SSM in the TC triplet. Like the temporal evaluation against in situ
data, the TC evaluations are still carried out at the selected 29 in situ sites (the black triangle
shown in Figure 1b). The boxplot of TC1 (in situ Noah-Fusion TC triplet) and TC2 (in situ
Noah-AMSR-E TC triplet) evaluations is shown in Figure 9.

The average temporal r of in situ SSM is the best in each TC triplet. The ranges of
temporal r for in situ data, Noah SSM, and fused SSM are 0.526–0.990, 0.361–0.837, and
0.623–0.991, with averages of 0.762, 0.521, and 0.761 in TC1. Meanwhile, the ranges of
temporal r for in situ data, Noah SSM, and AMSR-E SSM are 0.563–0.990, 0.348–0.826, and
0.602–0.991, with averages of 0.766, 0.518, and 0.755 in TC2. The average temporal r of in
situ data is comparable in each TC triplet, as is the Noah SSM. Thus, direct comparison
can be implemented between the TC temporal r of AMSR-E and the fused MODIS SSM.
Therefore, the average temporal r of the four kinds of SSM can be sorted as follows: in
situ SSM > the fused MODIS SSM > AMSR-E SSM > Noah SSM. This suggests that the
proposed SMRFM can be used to estimate fine-scale SSM with long time series and that
the estimated SSM is better than the AMSR-E SSM in temporal variation evaluated by TC
method at MODIS scale in the study.
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Figure 9. TC evaluations of the two triplets. TC1 indicates in situ Noah-Fusion TC triplet and TC2
indicates in situ Noah-AMSR-E TC triplet.

4. Discussion

The SMRFM is proposed to downscale AMSR-E SSM to MODIS scale with long time
series in this study. To evaluate the accuracy of estimated MODIS SSM, the r, RMSE, bias,
and μbRMSE are used in the study. A higher r indicates a higher explained variability and
a lower RMSE indicates a higher agreement between the pixel SSM and in situ data in
absolute value. Positive bias indicates that the in situ data are overestimated by pixel SSM.
The lower μbRMSE indicates a higher agreement between the pixel SSM and in situ data
in relative value. Therefore, the high accuracy of pixel SSM indicates the high r, the low
RMSE, and μbRMSE.

For the spatial mismatch between pixel and in situ SSM, the direct comparison between
them has always been controversial [3,7,9]. To evaluate the pixel SSM better using in
situ data, the upscaling methods are developed and used in the previous studies [47,56].
Nevertheless, the direct comparison is still the most basic evaluation for pixel SSM, as the
in situ data are first-hand real data and can more directly express the changes of actual
SSM. Moreover, the effect of spatial mismatch on absolute value comparison of SSM is
higher than that of temporal variation [45]. More importantly, the TC method is used for
SSM evaluation under the unknown true data. There are two TC triples for evaluations
in the study. Both of them show that the in situ data present the highest temporal r
(Figure 9). Therefore, it is reasonable to evaluate the pixel SSM using the in situ data in
temporal variation. As there is only one in situ site in each MODIS pixel, the daily accuracy
evaluations in Section 3.4.1 may be a compromise way to evaluate the absolute SSM in the
case of absent true pixel SSM.

There are two keys for MODIS SSM estimation using proposed SMRFM. One is the
OTI-data-based fine-scale SSM retrieval, another is the STFM. The training and validation
accuracies of Equation (4) are comparable in the study. The RMSE of retrieved fine-scale
SSM was less than 0.09 m3/m3 on 24 July 2011. Meanwhile, the RMSE of AMSR-E and Noah
were 0.128 m3/m3 and 0.122 m3/m3 against in situ data on that day. The RMSE of AMSR-E
is no less than 0.11 m3/m3 [39] and the downscaled AMSR-E [39] and SMAP SSM [24] is
no less than 0.08 m3/m3 at Naqu, central Tibet Plateau. It can be concluded that the RMSE
of retrieved OTI-based SSM is better than the AMSR-E SSM and is comparable with the
downscaled SSM. The slope and altitude information of topographic attributes are used to
fit the Equation (4). The impact of topographic changes on soil moisture may not be fully
considered in the study. Therefore, the index characterizing the information of topographic
wetness [57] for OTI-data-based SSM retrieval will be explored in future research.
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The fused MODIS SSM significantly improves the spatial detailed information of
AMSR-E SSM. Meanwhile, the evaluation indexes of fused data are better than AMSR-E
SSM at SMTMN and MODIS scale. There may be several reasons for this result. The key
reason may be that the neighborhood information is used by SMRFM for fine-scale SSM
estimation. This is equivalent to denoising remote-sensing images using spatial filtering
methods [33], which weakens the outliers in temporal variation of SSM. Thus, the temporal
variation of estimated data is much smoother than the AMSR-E SSM (Figure 6). The
reference MODIS SSM of SMRFM is estimated by Equation (4), which is fitted by the
MODIS OTI data, in situ SSM, and the topographic information. Then, the SMRFM is used
to estimate MODIS SSM with long time series using the fixed reference data. Therefore,
the estimated MODIS SSM by SMRFM can be considered as coupled with the in situ SSM
information. This may be another reason for the high accuracy of fused MODIS SSM.
According to the basic principles of STFM [26,33], the smaller the difference in temporal
variation, the better that MODIS SSM can be estimated [45]. The dominate land cover
type of the study area is grassland, and the implementation of SMRFM should not exceed
one-and-a-half years. This indicates that the spatial and temporal pattern of SSM will not
change much in a relatively long time under the homogeneous land type. This may be a
possible factor in the high accuracy of fused MODIS SSM.

There is an assumption that the temporal change is scale-invariant in STFM. The
assumption was proposed in 2006 for surface reflectance estimation [26] and was then
applied for other surface parameters estimation [27–32]. It is used as a downscaling
method for long time series MODIS SSM estimation in the study. Similar with STFM, the
scale-invariant assumption also exists in traditional microwave SSM downscaling, but
it refers to scale-invariance of the relation between microwave SSM and other remotely
sensed parameters for traditional methods in most cases [22,24]. It has been shown that
the downscaling capability of STFM is better than that of the traditional downscaling
method [45], although the scale-invariant assumption of temporal change is fitted by a
linear equation. This may reveal that the scale-invariant assumption in temporal change is
more reasonable than scale-invariance in the relation.

To investigate the relation between surface parameters and SSM, the correlations
between LST, NDVI, altitude, and slope are calculated in Table 5. It shows that the corre-
lations between SSM and the first two factors (LST and NDVI) are obviously better than
the last two (altitude and slope). The correlation of the factors can be sorted as follows:
NDVI > LST > Slope > Altitude. This suggests that the topographic factors may be limited
in SSM estimation in this study.

Table 5. The correlations between SSM and LST, NDVI, altitude, and slope.

LST NDVI Altitude Slope

In Situ 0.714 ** 0.725 ** 0.072 ** 0.145 **
AMSR-E 0.647 ** 0.737 ** 0.092 ** −0.014
Fusion 0.586 ** 0.701 ** 0.182 ** 0.250 **
Noah 0.715 ** 0.676 ** 0.007 ** −0.029 *

Note: * and ** indicate the correlation passed p-value < 0.05 and p-value < 0.01, respectively.

Since MODIS SSM is downscaled from AMSR-E data using SMRFM, they have the
same temporal resolution. Nevertheless, the effectiveness of proposed SMRFM in estimat-
ing SSM in highly heterogeneous areas and longer time series needs to be further explored.
Notably, the premise of SMRFM for SSM estimation is to estimate the reference SSM. In
the study, the OTI data are used for reference SSM retrieval. As OTI data cannot penetrate
the surface, the use of Sentinel-1 and OTI data in SMRFM framework may enhance the
accuracy and spatial resolution of estimated SSM. Therefore, the SMRFM has the potential
to estimate long time series finer-scale (less than 1 km) SSM with the finer-scale reference
SSM provides.
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5. Conclusions

Given the difficulty of taking into account the long time series characteristics of current
downscaling method, which integrates microwave SSM data and OTI data to estimate fine
scale SSM, an SSM retrieval-and-fusion model named SMRFM is proposed to downscale
AMSR-E SSM for MODIS SSM with long time series estimation in the study. The method
was applied to the SMTMN over Naqu, central Tibet Plateau to obtain the MODIS SSM
with long time series characteristics of microwave data. To validate the SMRFM, in situ
data and Noah land surface model 0.01-degree SSM were used in the study. The main
conclusions of the study are as follows:

(1) A method that integrates in situ data, remote sensing OTI data, and terrain data was
developed for MODIS SSM retrieval, and the estimated MODIS SSM by this method
obtains an RMSE of less than 0.09 m3/m3.

(2) The MODIS SSM fused by the SMRFM can well maintain the spatial distribution
and temporal variation of AMSR-E data, although there are certain differences in the
special distinction between the two kinds of pixel SSM.

(3) Six months of MODIS SSM in unfrozen period were fused by the proposed SMRFM.
The evaluations show that the fused MODIS SSM has better temporal accuracy than
that of AMSR-E at SMTMN and MODIS scale. Compared to Noah SSM, the fused
SSM presents higher temporal r and slightly lower μbRMSE. In addition, the fused
SSM has better daily accuracy than AMSR-E and Noah SSM. Therefore, it can be
considered that the proposed SMRFM can be used to estimate fine-scale SSM with
long time series and that the estimated SSM is better than AMSR-E SSM in temporal
variation. This will promote the development of research and applications with long
time series SSM at regional scale.
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Abstract: Soil moisture is an essential parameter for a better understanding of water processes
in the soil–vegetation–atmosphere continuum. Satellite synthetic aperture radar (SAR) is well
suited for monitoring water content at fine spatial resolutions on the order of 1 km or higher.
Several methodologies are often considered in the inversion of SAR signals: machine learning
techniques, such as neural networks, empirical models and change detection methods. In this
study, we propose two hybrid methodologies by improving a change detection approach with
vegetation consideration or by combining a change detection approach together with a neural network
algorithm. The methodology is based on Sentinel-1 and Sentinel-2 data with the use of numerous
metrics, including vertical–vertical (VV) and vertical–horizontal (VH) polarization radar signals, the
classical change detection surface soil moisture (SSM) index ISSM, radar incidence angle, normalized
difference vegetation index (NDVI) optical index, and the VH/VV ratio. Those approaches are tested
using in situ data from the ISMN (International Soil Moisture Network) with observations covering
different climatic contexts. The results show an improvement in soil moisture estimations using the
hybrid algorithms, in particular the change detection with the neural network one, for which the
correlation increases by 54% and 33% with respect to that of the neural network or change detection
alone, respectively.

Keywords: soil moisture; Sentinel-1; Sentinel-2; change detection; artificial neural network

1. Introduction

Soil moisture is a key parameter for understanding different processes related to the
transfer of the soil–vegetation–atmosphere flux [1–3]. It is also an essential parameter in the
management of water resources, particularly for optimizing irrigation [4,5]. In this context,
remote sensing has greatly contributed to allowing the spatial and temporal monitoring of
this parameter at different spatial scales from global to local [6,7].

Most of the currently available operational surface soil moisture products are on a
global scale with spatial resolutions of several kilometers. They are essentially based on
active and passive microwave measurements [8–12]. In passive microwaves, these are
mainly products based on SMOS [8] and SMAP [9] missions dedicated to monitoring
soil moisture with L-Band measurements and other non-dedicated sensors using higher
frequency bands. In active microwaves, these are measurements based on acquisitions with
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a scatterometer, particularly data acquired by the ASCAT/METOP satellite series [13]. The
European Space Agency (ESA) Climate Change Initiative (CCI) soil moisture project also
provides long time series by merging soil moisture estimations from active and passive
sensors [14].

For soil moisture estimation at high spatial resolution, we identify products with an
average resolution at approximately 1 km or at the plot scale [15–24]. There have been
various studies that have developed methodologies based on low-resolution data disaggre-
gation techniques, notably with measurements acquired in thermal infrared (MODIS) [25]
or, more recently, data acquired by SAR sensors. The Synthetic Aperture Radar (SAR) tech-
nique offers a high spatial resolution estimate of the radar signal adapted to applications
at agricultural field scale. The measured signal is dependent on the radar configurations
(frequency, incidence angle, and polarization) and the dielectric and geometric properties
of the surface. After numerous demonstration space missions (ERS, ASAR/ENVISAT,
RADARSAT, etc.), the arrival of Sentinel-1 constellation [26] in the context of the Coperni-
cus program has enabled exponential growth in the use of these signals for monitoring soil
moisture and the dynamics of the vegetation cover. Other soil moisture products are then
offered only based on Sentinel-1 data, with three types of methodologies: one based on the
direct inversion of physical or semiempirical models [27–29]; one based on the application
of machine learning approaches and particularly neural networks [30–32]; and one based
on the change detection technique [33–35]. For example, at plot scale, El Hajj et al. [31]
presented an Artificial Neural Network (ANN) approach with training using the coupling
of the Integral Equation Model (IEM) and the Water Cloud Model (WCM) to provide an
estimate of soil moisture at the scale of the agricultural plot. Gao et al. [35] also proposed an
approach at the plot scale with greater consideration of the vegetation cover and its effect
on the temporal variation of the radar signal. Bauer-Marschallinger et al. [33] proposed
a change detection approach very close to the initial approach proposed with data from
ASCAT scatterometers [13] at a 1 km scale.

For these products, which are highly useful for regional hydrology, the validation
of existing products, despite the very interesting potential, still shows some limitations
in different contexts, in particular that of dense vegetation covers but also in relatively
complex contexts with strong heterogeneities in terms of land use and topography [36].

In this context, this study proposes to test hybrid approaches to soil moisture retrieval
at a 1 km scale with the objective of improving the estimation accuracy of soil moisture.
The approaches consider hybrid methodologies with a combination of a change detection
approach with empirical modeling or machine learning.

Section 2 presents in the first subsection the database used in this study in terms of soil
moisture data and satellite measurements. The second subsection presents the methodolo-
gies tested and proposed in this study. Section 3 illustrates the results. Section 4 includes
the discussion of the proposed applications. The conclusions are presented in Section 5.

2. Materials and Methods

2.1. Database
2.1.1. ISMN Soil Moisture Data

The training and validation of the proposed methods are conducted based on data
from the International Soil Moisture Network (ISMN) [37]. The data are available in con-
junction with additional datasets of Koppen–Geiger climate classes, ESA’s CCI land cover,
and soil characteristics. The upper soil layer (0–10 cm) moisture measurements are har-
monized as fractional volumetric soil moisture (m3/m3) and converted into Coordinated
Universal Time (UTC). After data quality verification, some ISMN networks suffer from a
lack of measurements. Therefore, we considered 21 networks among a total of 71 spatially
distributed as shown in Figure 1. The data of each station should cover a period of two years
with at least 20 dates between the start and the end date of acquisitions—1 January 2015
and 19 August 2021, respectively. Consequently, in the same network, we retain only
stations with valid dataset as detailed in Table 1.
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Figure 1. The global distribution of the International Soil Moisture Network (ISMN).

Table 1. Overview of the considered ISMN networks.

Network Country
Number of

Selected Stations
SM

Sensors
References

AMMA-CATCH Benin, Niger 7 CS616

Cappelaere et al. [38]; De
Rosnay et al. [39]; Lebel
et al. [40]; Mougin et al.
[41]; Pellarin et al. [42];

Galle et al. [43].

BIEBRZA-S-1 Poland 8 GS-3 Musial et al. 2016 [44]

COSMOS USA 2 Cosmic-ray-Probe Zreda et al. [45];
Zreda et al. [46]

HOBE Denmark 3 Decagon-5TE Bircher et al. [47];
Jensen et al. [48]

FLUXNET-
AMERIFLUX USA 4

CS655,
ThetaProbe-ML3

ThetaProbe-ML2X,

FR-Aqui France 3 ThetaProbe ML2X Al-Yaari et al. [49];
Wigneron et al. [50]

GROW UK 20 Flower-Power
Zappa et al. [51]; Xaver
et al. [52]; Zappa et al.

2020 [53]

HOAL Austria 32 SPADE-Time-Domain-
Transmissivity

Vreugdenhil M. et al. [54];
Blöschl, Günter, et al. [55]

IPE Spain 2 CS655,
ThetaProbe-ML2X Alday et al. [56]
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Table 1. Cont.

Network Country
Number of

Selected Stations
SM

Sensors
References

MAQU China 1 ECH20-EC-TM Su et al. [57];
Dente et al. [58]

MOL-RAO Germany 1 TRIME-EZ Beyrich F. and
Adam W.K. [59]

NAQU China 5 5TM Su et al. 2011 [60]

REMEDHUS Spain 13 Stevens-Hydra-Probe Gonzalez-Zamora
et al. [61]

RISMA Canada 5 Hydraprobe-II-Sdi-12
Canisius F. [62];

L’Heureux J. [63];
Ojo et al. [64]

RSMN Romania 19 5TM

SCAN USA 130 Hydraprobe-Sdi-
12/Ana Schaefer et al. [65]

SMOSMANIA France 15 ThetaProbe ML2X Calvet et al. [66]; Albergel
et al. [67]; Calvet et al. [68]

SNOTEL USA 84 Hydraprobe-Analog-
(2.5-Volt) Leavesley et al. [69]

TAHMO Ghana 3 TEROS10, TEROS12

TERENO Poland 4 Hydraprobe-II-Sdi-12
Zacharias et al. [70];

Bogena et al. [71];
Bogena et al. [72]

USCRN USA 77 Stevens-Hydraprobe-II-
Sdi-12 Bell et al. [73]

2.1.2. Sentinel-1

The first S-1A satellite was launched on 3 April 2014 and was followed by the S-1B
Sentinel satellite on 25 April 2016. This dual-satellite constellation offers a 6-day repeat
frequency for all regions of the globe [74]. The SAR payloads use a C-band frequency of
5.4 GHz and have the following standard operating modes: stripe map (SM), interferomet-
ric wide swath (IW), extra wide swath (EW), and WaVe (WV). In the present study, IW S-1
images are analyzed. They are characterized by a 10 m × 10 m spatial resolution and dual
VV and VH polarization measurements. All of the images were generated from the high-
resolution, Level-1 Ground Range Detected (GRD) product. The calibration is designed to
convert the digital values of the raw images into backscattering coefficients (σ0).

2.1.3. Sentinel-2

After the launch of Sentinel-2 A and B on 23 June 2015 and 7 March 2017, respec-
tively, optical data became free and open access with a spatial resolution varying between
10 m × 10 m and 60 m × 60 m and a revisit time of up to 5 days in 13 spectral bands
at visible and mid-infrared wavelengths. In the present study, we used Sentinel-2 sur-
face reflectance products downloaded from the Theia site (https://www.theia-land.fr/,
accessed on 16 May 2022), already orthorectified and atmospherically corrected with a mask
of clouds and shadows owing to the MAJA algorithm [75]. On each acquisition date and us-
ing red visible and near infrared bands with center wavelengths of approximately 665 and
833 nm, respectively, we calculated the Normalized Difference Vegetation Index (NDVI)
and averaged this index for each studied station as expressed in the following equation:

NDVI =
RNIR − RRed
RNIR + RRed

(1)
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where RNIR and RRed are the surface reflectance in the two bands, near infrared and red
visible, respectively.

2.1.4. Satellite Data Processing

Both radar backscattering coefficients and NDVI time series are identified at each
station. A temporal linear interpolation of NDVI data is proposed to estimate the NDVI at
each radar acquisition date. In this averaging, a filter is applied to the optical pixels to only
consider data between 0.15 and 0.8 of NDVI to avoid urban areas and water covers with
low NDVI or strong NDVI corresponding mainly to dense forests.

The radar signal is averaged over a radius of 500 m around each station. For a given
station, if more than 50% of the Sentinel-1 pixels are excluded, the processing of radar data
is not considered for the analyzed data.

2.2. Methodology
2.2.1. Change Detection Algorithm

The classic change detection SSM index ISSM is defined as [76]:

ISSM =
SSMt − SSMmin

SSMmax − SSMmin
=

σVV − σVVmin
σVVmax − σVVmin

(2)

where SSMt is the soil moisture content at time t; SSMmin and SSMmax are the minimum
and maximum values of in situ soil moisture, respectively; σVV is the radar signal at time t;
and σVVmin and σVVmax are the minimum and maximum values of the radar signal time
series, respectively. An index equal to 1 corresponds to the wettest context, and an index
equal to 0 corresponds to the driest context.

To convert this index ISSM to volumetric soil moisture at time t SSMt, we intro-
duce [77]:

SSMt = ISSM × (SSMmax − SSMmin) + SSMmin (3)

2.2.2. Improved Change Detection Approach

For the classic detection approach, radar signal change is linked to soil moisture
change. It can be written as:

ΔVV = α ΔSSM (4)

where the soil moisture changes and the radar signal change in VV polarization are ex-
pressed in Equations (5) and (6), respectively.

ΔSSM = SSMt − SSMmin (5)

ΔVV = σVV − σVVmin (6)

This relationship is adapted from [35,78]. It considers as a hypothesis that the differ-
ence between two radar signals acquired on two different dates is mainly related to the
change in the hydric state of the soil.

Here, we propose an improved change detection methodology by using a hybrid
change detection and empirical approach in which the effect of the vegetation is taken into
account thanks to a vegetation-related variable V1. Using this approach, the radar signal
change is related to the soil moisture change by the following expression:

ΔVV = (α − β V1) ΔSSM (7)

Unlike forward modeling approaches such as the WCM, the radar signal and the
soil moisture are introduced as the difference between the radar signal at time t and the
minimum signal corresponding to the minimum moisture and the difference between the
soil moisture and the minimum moisture value, respectively.
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The main objective of introducing the change as a function of time is to reduce the
dependency to other variables affecting the radar signal such as soil roughness, which
can be very important, particularly in the context of strong topography or even important
spatial changes in microtopography, that change little with time for a given site, in contrast
to soil moisture. Two vegetation-related quantities were tested for the V1 parameter: the
optical vegetation index NDVI estimated from Sentinel-2 data, as illustrated in Section 2.3,
and the VH/VV ratio, considered to be strongly linked to the dynamics of the vegetation
cover. This second option could be particularly interesting in the context of a humid climate
with limited optical data.

2.2.3. Artificial Neural Network Hybrid Approach

The multilayer perceptron (MLP), which is a multilayer feed-forward ANN, is one of
the most widely used ANNs, mainly in the field of water resources [79,80]. A multilayer
perceptron has one or more hidden layers between its input and output layers. The neurons
are organized in layers such that neurons of the same layer are not interconnected and that
the connections are directed from lower to upper layers. Each neuron returns an output
based on a weighted sum of all inputs and according to a nonlinear function called the
transfer or activation function. The input layer, made up of different metrics from Sentinel-
1 and Sentinel-2 data, is connected to the hidden layer(s), which is made up of hidden
neurons. The final estimates of the ANN are given by an activation function associated
with the final layer called the output layer, using a sum of the weighted outputs of the
hidden neurons.

The ANN model architecture consists of three hidden layers of 20 neurons with a
rectified linear function (ReLu) as activation functions and an output layer with a single
neuron with a linear activation function. The mean square error was used as the loss
function and the gradient backpropagation was carried out using a first order stochastic
gradient-based optimizer (Adam).

Different predictors based on Sentinel-1 and Sentinel-2 were tested to estimate soil
moisture: VV, VH, incidence angle, VH/VV, NDVI, and ISSM.

1. The VV and VH signals are identified for their high sensitivity to soil moisture.
2. The classical change detection SSM index ISSM is calculated as a function of radar

backscattering coefficients in VV polarization to use it for soil moisture estimation.
3. The incidence angle has an effect on the contribution of soil and vegetation compo-

nents on the radar signal.
4. The NDVI index is identified to take into account the effect of vegetation cover on the

backscattering signal.
5. The VH/VV ratio is identified to take into account the effect of vegetation cover on

the backscattering signal [81].
6. SSMt estimated from the classic change detection approach described in Section 3.1,

Equation (2) is also considered as input.

The ANN models were trained using in situ soil moisture measurements retrieved
from the ISMN as target. The training of the ANN models was conducted using 70% of the
data samples. Thirty percent were kept for validation.

2.3. Statistical Parameters for Accuracy Assessment

Datasets are randomly subdivided into two parts: 70% of the database for model
calibration and 30% for validation. The training data are used to calculate the different
parameters to be estimated in the empirical and semiempirical models.

The Bias, root mean square error (RMSE) and Pearson’s correlation (R) are considered
to estimate the precision of the models.

Bias = Pestimated
i − Pmeasured

i (8)
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RMSE =

√
1
N ∑N

i=1

(
Pestimated

i − Pmeasured
i

)2 (9)

where N is the number of data samples, Pestimated
i is the estimated value of sample i, and

Pmeasured
i is the measured value of sample i.

R =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

(10)

where xi and yi are individual samples taken at points indexed with the variable i.

3. Results

3.1. Improved Change Detection Approach

The empirical improved change detection approach has a double objective, taking into
account the effect of vegetation and limiting the effect of surface geometry. The calibration
of α and β parameters were conducted by using 70% of the dataset selected randomly
(23869 samples). For the validation, the remaining 10,229 samples of the dataset were used.

Figure 2 illustrate the validations of the different algorithms described in Section 3.2
tested with ISMN data. The proposed results show an improvement in accuracy by con-
sidering the effect of vegetation cover in the tested relationships. The RMSE (R) values
decrease (increase) from 0.074 m3/m3 (0.58) from the change detection approach (Equation
(2), Figure 2a) to 0.073 m3/m3 (0.59) for the improved change detection approach (Equation
(7)) when the VH/VV ratio is used as the V1 parameter and to 0.068 m3/m3 (0.63) when
NDVI is used as the V1 (Figure 2b).

 
(a) (b) 

Figure 2. Scatterplots of the retrieved surface soil moisture (SSM) as a function of in situ SSM
measurements colored according to NDVI value variation using two change detection approaches:
(a) classic approach and (b) new approach expressed in Equation (7), where V1 is the NDVI.

3.2. Neural Network Hybrid Approach

The different combinations of input metrics are tested to estimate soil moisture.
Figure 3 illustrates the results of validations applied for 30% of the database, for each
case of combination with the statistical parameters RMSE and R.
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 3. Scatterplots of the retrieved SSM as a function of in situ SSM measurements using the
ANN approach using multiple combinations of features: (a) VV, NDVI, (b) VV, NDVI, the incidence
angle, (c) NDVI, the incidence angle, ISSM, (d) VV, NDVI, the incidence angle, ΔVV , (e) VV, NDVI,
the incidence angle, ΔVV , ISSM, (f) VV, NDVI, the incidence angle, ΔVV , ISSM, VH/VV ratio, (g) VV,
NDVI, the incidence angle, ΔVV , SSMt, (h) VV, NDVI, the incidence angle, ΔVV , ISSM, SSMt, (i) VV,
NDVI, the incidence angle, ΔVV , ISSM, VH/VV ratio, SSMt.
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For the first six predictor combinations (Figure 3a–f), we observe relatively close
precision with RMSE values in the range of 0.095 m3/m3 and 0.083 m3/m3 and R of
0.3–0.6. The introduction of moisture estimated by the classic change detection algorithm
(Equation (3)) as input to ANN allows a strong improvement in the accuracy of soil
moisture estimation with an RMSE equal to 0.063 m3/m3 and R = 0.76 when we consider
the predictors: VV, NDVI, the incidence angle, ΔVV , and SSMt. By adding the VH/VV
ratio and ISSM, the RMSE value decreases to 0.062 m3/m3, and the correlation coefficient
reaches a value of approximately 0.79. This result confirms the contribution of the hybrid
approach to estimating soil moisture. This first estimated soil moisture strongly contributes
to a better estimate of soil moisture by the ANN.

Figure 4 illustrates the accuracy of intercomparisons between in situ measurements
and satellite estimates for the optimal case for different tested networks, where we represent
the RMSE and R parameters by blue and orange boxes. The RMSE values vary from
0.03 m3/m3 to 0.09 m3/m3, and R-values fluctuate between 0.37 and 0.84.

Figure 4. Boxplots of statistical parameters (R and RMSE) of soil moisture retrieval as a function of
ISMN-considered networks using the hybrid methodology of change detection and ANN.

Good consistency is generally observed for networks such as AMMA-CATCH, COS-
MOS, MAQU, RSMN, HOAL, HOBE, IPE, BIEBRZA S-1, TAHMO, REMEDHUS and
RISMA, and RMSE values are under or equal to 0.05 m3/m3. The NAQU network is
characterized by the lowest RMSE value of 0.03 m3/m3 and R value of 0.77.

Within the same soil moisture in situ network, the accuracy of soil moisture retrieval
varies from one station to another. For the REMEHDUS case characterized by an RMSE
equal to 0.05 m3/m3, RMSE values per station range between 0.03 m3/m3 and 0.09 m3/m3,
and R values vary between 0.34 and 0.69, as represented in Figure 5.
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Figure 5. Scatterplots of the estimated soil moisture as a function of ISMN measurements in the
REMEDHUS network per considered station.

4. Discussion

The proposed hybrid approaches have allowed more or less strong improvements
compared to the initial estimates based on change detection or a separate ANN approach.
With an improved change detection method, we observe a negligible contribution of the
considered vegetation cover compared to a basic approach directly linking the radar signal
to soil moisture. This can be explained by the highly diversified context at the scale of many
soil moisture stations with very varied landscape contexts (crops, trees, bare soils, etc.) and
different vegetation densities, which can generate significant noise in the modeling of the
scattered signal that is difficult to take into account without a more precise description in
terms of land use. This noise is particularly observed with the VH/VV index, which is
very sensitive to the dynamics of the vegetation cover in a homogeneous context [81], but
it could also mix different effects and particularly those of soil roughness [82].

To better analyze proposed results, we examined the time series of the in situ and
retrieved soil moisture per station and network. Figure 6 displays the time series of the radar
signal (VV), NDVI, and soil moisture SSMt. The in situ soil moisture measurements are
illustrated in blue, and the hybrid approach results are drawn in red. The intercomparison
between the proposed approach performance within the LasBodegas and Canizal stations
reveals RMSE values of 0.04 m3/m3 and 0.07 m3/m3, respectively. The two stations belong
to the same climatic region of the arid steppe and characterize a clay fraction interval
of approximately 35%. The performance difference may be induced by the land cover,
where the Canizal station is occupied by shrubs and the LasBodegas station is covered by
trees. The aforementioned land cover may impact the accuracy of soil moisture retrieval
due to the vegetation volume impact on the radar signal in the C-band. Additionally, the
measured soil moisture values are lower than 0.3 m3/m3 at the LasBodegas station, and
higher values reach 0.4 m3/m3 at the Canizal station. Hence, the soil water content retrieval
is more accurate in the first case due to the saturation of the C-band signal at high values of
soil moisture.
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(a) 

(b) 

Figure 6. Scatterplots of the temporal evolution of radar signals in VV polarization, NDVI, and the
predicted and in situ measurements of soil moisture using the hybrid methods within two stations of
the REMEHDUS network: (a) LasBodegas station, (b) Canizal station.

However, the approach has difficulties for certain stations, as shown for FLUXNET-
AMERFLUX, GROW, SNOTAL, and SMOSMANIA networks, where the RMSE values
reach a maximum of 0.09 m3/m3. The analysis of these cases generally leads to contexts of
dense vegetation cover that can induce a low sensitivity of the radar signal to soil moisture.

In Figure 7, we scatterplot the statistical parameters as a function of NDVI values. Ac-
cording to Figure 7a,b, we observe the increase of RMSE and Bias values as a function of the
increase of NDVI values where RMSE can reach 0.10 m3/m3. The vegetation development
may induce a Bias between −0.06 m3/m3 and 0.04 m3/m3, where NDVI values exceed
0.5. This behavior may be explained by the C-band potential which is otherwise limited in
dense canopies where NDVI values are higher than 0.5.
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(a) (b) 

Figure 7. Scatterplots of statistical parameters of the hybrid approach performance to retrieve SSM as
a function of NDVI values stations: (a) RMSE, (b) Bias.

This is difficult to take into account in a general approach based on a neural net-
work trained on stations with different types of surface conditions, such as the case of the
FLUXNET-AMERFLUX network. The station land covers are a mixture of grasslands, tem-
porary crops followed by harvest and bare soil periods, and woody savanna characterized
by forest canopy cover between 30% and 60% and vegetation height exceeding 2 m. In
this land cover context, the vegetation volume impacts the radar signal and complicates
the soil moisture retrieval. We observe the vegetation impact within many stations in the
SMOSMANIA network, such as the Mazan-Abbaye, Cabriers Avignon, and Ville Vieille
stations occupied by trees or shrubs.

Furthermore, the use of NDVI as a vegetation descriptor may induce other limits,
such as the availability of data in regions with temperate climates. The presence of clouds
contaminates the surface reflectance, which damages the radiometric information. As a
result, many time series suffer from gaps and lack data, which complicates the training and
validation of the proposed model, such as the case of some stations of the USCRN network,
where the mean RMSE value is equal to 0.06 m3/m3.

By considering the GROW network data, the RMSE is equal to 0.07 m3/m3. This
relatively low accuracy in retrieving soil moisture may be linked to the predominant cold
climate of the considered stations. This low-temperature climate may impact the radar
signal, especially with the freeze–thaw phenomenon. This change in the physical state of
the soil water content generates a fast variability in the Sentinel-1 signal, as discussed for
agricultural plots in metropolitan France by Baghdadi et al. [83] and Fayad et al. [84].

5. Conclusions

Different approaches have been proposed for SSM estimation from space. The goal is to
improve estimates by combining change detection logic with empirical or other approaches
based on an ANN. The study is based on Sentinel-1 and Sentinel-2 data tested on the ISMN
moisture network.

Relationships between temporal changes in radar signals and temporal changes in soil
moisture are tested. Improved change detection relationships combine these effects with
the contribution of vegetation through two optical and radar indices (NDVI and VH/VV
ratio). The integration of the effect of vegetation slightly improves the precision with an
RMSE that decreases slightly from 0.074 m3/m3 to 0.073 m3/m3 and 0.068 m3/m3 for
VH/VV and NDVI, respectively.

Testing an ANN approach through numerous metrics based on radar and optical (VV,
VH, VH/VV, NDVI, ΔVV, incidence angle, etc.) time series illustrates precision within a
0.08 m3/m3–0.09 (m3/m3) range. These results are greatly improved with the integration
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as input of soil moisture estimated from the change detection approach. Thus, we move
on to precision below the bar of 0.07 m3/m3 for the different possible combinations of
metrics. Thus, it seems highly useful to propose this combination to improve the precision
of the estimated soil moisture. Despite this improvement, there are some limitations at
some stations, particularly related to the vegetation density and presence of forests or
extreme climates with cold conditions. In the future, it would be very useful to propose a
spatialization of this approach by considering auxiliary information of soil properties and
land use for a better application of the proposed algorithms and improvement of proposed
precision. In fact, this allows us to distinguish effects due more precisely to vegetation for
which volume and attenuation scattering are different from one cover to another. For a
high-resolution scale, this aspect, which is generally not considered for a low-resolution
scale, seems important.
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Abstract: L-band passive microwave remote sensing (RS) is an important tool for monitoring global
soil moisture (SM) and freeze/thaw state. In recent years, progress has been made in its in-depth
application and development in the Tibetan Plateau (TP) which has a complex natural environment.
This paper systematically reviews and summarizes the research progress and the main applications
of L-band passive microwave RS observations and associated SM retrievals on the TP. The progress
of observing and simulating L-band emission based on ground-, aircraft-based and spaceborne
platforms, developing regional-scale SM observation networks, as well as validating satellite-based
SM products and developing SM retrieval algorithms are reviewed. On this basis, current problems
of L-band emission simulation and SM retrieval on the TP are outlined, such as the fact that current
evaluations of SM products are limited to a short-term period, and evaluation and improvement
of the forward land emission model and SM retrieval algorithm are limited to the site or grid
scale. Accordingly, relevant suggestions and prospects for addressing the abovementioned existing
problems are finally put forward. For future work, we suggest (i) sorting out the in situ observations
and conducting long-term trend evaluation and analysis of current L-band SM products, (ii) extending
current progress made at the site/grid scale to improve the L-band emission simulation and SM
retrieval algorithms and products for both frozen and thawed ground at the plateau scale, and
(iii) enhancing the application of L-band satellite-based SM products on the TP by implementing
methods such as data assimilation to improve the understanding of plateau-scale water cycle and
energy balance.

Keywords: L-band; passive microwave RS; land emission model; SM retrieval; TP

1. Introduction

As an essential climate variable, soil moisture (SM) is an important state variable
for quantifying water, energy, and carbon exchange processes in the soil–vegetation–
atmosphere system [1–4]. It plays an important role in regulating processes such as the
partitioning of surface sensible and latent heat flux, surface water budget, and vegetation
transpiration [5–8]. This further affects the dynamical and thermal processes in the plane-
tary boundary layer, which in turn impacts the atmospheric state and climate change [9].
SM is also an important factor affecting the growth of vegetation and an important indicator
of crop drought, and the effective monitoring of SM can help to accurately implement irri-
gation measures on farmland [10–12]. Due to its important role in the whole Earth system,
SM information is important for a wide range of applications, including climatic modeling,
hydrologic modeling, and agriculture growth and drought monitoring. Therefore, effective
and large-scale monitoring of SM is important for accurate forecasting of weather and
guidance of farming-related measures in the agricultural sector.
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The Tibetan Plateau (TP), known as the Third Pole of the World, is one of the most
sensitive areas to global climate change due to its special topographic and climatic char-
acteristics. The thermal and dynamic effects of the TP have a very important impact on
regulating the weather and climate around the plateau, in Asia, and in the Northern Hemi-
sphere [13]. The TP is also known as the Water Tower of Asia, where the Yellow River,
Yangtze River, and Lancang River originate, and its water retention capacity is inextricably
linked to the maintenance of ecosystems around the plateau and in Asia. SM, as an im-
portant component of the water cycle, is important for understanding and studying the
water cycle on the TP [6–8]. In addition, the TP is a typical alpine region with extensive
permafrost distribution, and the coexistence of ice and unfrozen water in permafrost can
greatly change the soil’s hydraulic and thermal properties, thus affecting the regional water
and heat exchange and runoff processes [14,15]. Therefore, monitoring SM and freeze–thaw
changes on the TP is of great significance for the in-depth understanding of the plateau
moisture cycle and energy balance processes.

A ground-based observation network consisting of multiple SM observation sites
can provide accurate and long-term SM observations, but its spatial representativeness is
limited. At present, several regional-scale SM observation networks have been built on
the TP [16–18]. However, due to the complex climate and topographic characteristics of
the TP, the SM presents strong spatial heterogeneity, and the regional scale observation
networks are insufficient to completely characterize the spatial and temporal distribution
of SM across the whole TP.

Since the 1970s, the development of satellite observation technology has provided a
new way to monitor SM on a large scale. At present, the technologies commonly used for
SM monitoring include visible optical satellites, thermal infrared satellites, and microwave
satellites. Research shows that the visible optical remote sensing (RS) and the thermal
infrared RS are more frequently influenced by the atmosphere, clouds, and vegetation
when retrieving the SM, and the detection depth is only within a few millimeters of the
surface soil. On the contrary, the microwave RS not only has the advantage of all-weather
and all-day observation capacity but also shows a stronger penetration ability to clouds,
rain, snow, and vegetation, which is thus more sensitive to the SM dynamics. Therefore,
microwave RS is often treated as the more suitable method to monitor large-scale and
long-term SM variations [19,20].

The commonly used microwave RS bands include L-(1–2 GHz), C-(4–8 GHz), and
X-band (8–12 GHz). Compared to the C- and X-band, the L-band has a longer wavelength
and stronger penetration ability that is more sensitive to SM changes. Therefore, the
L-band is usually considered the best band for monitoring global surface SM [20]. In
recent years, several L-band microwave RS satellites have been launched worldwide,
such as the Soil Moisture and Ocean Salinity (SMOS) satellite of the European Space
Agency (ESA) [21], as well as NASA’s Aquarius satellite [22] and Soil Moisture Active
Passive (SMAP) satellite [23]. In addition, the Global Water Cycle Observation (WCOM)
satellite program proposed by Chinese scientists [24] will be expected to achieve continuous
observation of L-band microwave RS and to provide higher accuracy and long time series
of SM and freeze/thaw state datasets.

Based on satellite observations, researchers around the world have developed a series
of L-band microwave emission models and SM retrieval algorithms, which have gone
through the process from ground-based validation of theoretical models/algorithms to cali-
bration and validation of satellite observations to global operational monitoring of SM [20].
For the validation of L-band microwave RS observations and products, numerous ground-
based and airborne experiments have been conducted in a variety of land conditions and
climatic regions around the world, such as the MELBEX III experiment at a Vineyard site
in Valencia, Spain [25], the SMOS airborne validation experiment in the Jehol and Erfurt
river basins, Germany [26], and the SMAPEx [27] and SMAPVEX15 [28] experiments in
Australia and the United States, respectively, which have contributed to the evaluation
and improvement of SMOS and SMAP satellite products [20]. Similar experiments have
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been conducted in China, such as the Heihe Watershed Allied Telemetry Experimental
Research (HiWATER) [29] in the Heihe River basins and the L-band SM active-passive
thematic experiment in the Luan River basins [30]. In addition, the SMAP satellite team has
selected several ground-based core validation networks in various vegetation types and
climate regions across the world to calibrate and validate the performance of its products,
including the Maqu SM observation network located on the TP [31].

Complex topographic characteristics, the extensive distribution of lakes, the existence
of frozen ground with distinct seasonal freeze–thaw transitions, and the lack of accurate
soil data have posed many challenges to SM retrievals on the TP. In addition, the impact of
Radio Frequency Interference (RFI), topographic relief, and field of view blending has led
to the poor quality of satellite observations such as SMOS [32]. To further improve SMOS
and SMAP satellite products, Zheng et al. [33] set up an L-band microwave radiometer,
i.e., ELBARA-III, in the Maqu SM observation network, which has collected more than five
years of consecutive ground-based bright temperature (Tp

B ) observations up to now [34,35].
Currently, many studies have been conducted to evaluate L-band satellite-based SM prod-
ucts and retrieval algorithms based on several SM observation networks on the TP. For
example, Dente et al. [36] and Chen et al. [37] evaluated the applicability of SMOS and
SMAP SM products on the TP, respectively. Zheng et al. [38,39] evaluated and improved
the vegetation and surface roughness parameterizations implemented in the current SMAP
SM retrieval algorithm and developed a new algorithm for retrieving unfrozen (liquid)
water content in the frozen ground. These research efforts related to product validation and
algorithm improvement have further promoted the development of L-band microwave RS
and the application of L-band satellite products on the TP.

This paper systematically reviews and summarizes the research progress and main
applications of L-band passive microwave RS and associated SM retrieval algorithms and
products on the TP in recent years. On this basis, the current problems of L-band emission
simulation and SM retrieval on the TP are outlined, and relevant suggestions and prospects
for addressing the existing problems are finally put forward. Section 2 introduces the
study area. In Section 3, we introduce the airborne and ground-based L-band microwave
passive RS experiments carried out on the TP and the preliminary validation of satellite-
based L-band observations and summarize the research progress in simulating microwave
emission on the TP; Section 4 presents the existing SM observation networks on the TP
and summarizes the research progress of evaluation and improvement of SM products
and retrieval algorithms based on the L-band microwave RS on the TP. On this basis,
Section 5 summarizes the main problems of SM retrieval research on the TP and provides
related outlooks.

2. Study Area

Known as the Third Pole of the World, the TP is the highest plateau in the world, with an
average elevation of over 4000 m. The mountain ranges of the TP extend across Afghanistan,
Pakistan, India, China, Bhutan, Myanmar, and Nepal, and more than 4,000,000 km2 is mainly
composed of high-elevation rugged terrain. It is generally high in the northwest and low in
the southeast. Grasslands are widely distributed and dominate the vegetation type on the
TP. The climate is humid in the southeast and arid in the northwest. In addition, the TP
has strong solar insolation and sufficient sunshine, but the overall temperature is low, and
the diurnal amplitude of temperature is large. The TP is often regarded as the Asian water
tower since more than 10 of the largest rivers in Asia originate from this region, including
the Yellow River, the Yangtze River, the Mekong river, the Brahmaputra river, and the Indus
river, providing freshwater supply for more than a fifth of the world’s population.

3. Progress of L-Band Microwave Emission Observation and Simulation on the TP

In recent years, researchers have validated the satellite observations using L-band
observations collected from airborne and ground-based platforms on the TP and have
conducted studies related to L-band emission simulation. This section will introduce
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in detail L-band microwave observation experiments on the TP, including airborne and
ground-based experiments and evaluation of satellite observations, and summarize the
current forward land emission model adopted by the L-band satellite missions and their
applications and improvements in the TP.

3.1. L-Band Microwave Emission Observation
3.1.1. Airborne and Ground-Based Observation Experiments Conducted in the TP

In order to promote observational studies of L-band microwave emission on the TP,
airborne and ground-based experiments were carried out in the Heihe River Basin in the
northeastern part of the TP and the Maqu area in the southeastern part of the Yellow River
source region, respectively [29,33]. In order to improve the observation capability of hydro-
logical and ecological processes at the watershed scale and to establish a leading watershed
observation system around the world, an ecohydrological remote sensing experiment, i.e.,
Heihe Watershed Allied Telemetry Experimental Research (HiWATER), was carried out
via combining ground-based, airborne remote sensing, and satellite observation meth-
ods [29,40]. Among them, in order to develop passive microwave RS-based SM retrieval
products at the watershed scale, several airborne PLMR (Polarimetric L-band Multibeam
Radiometer) radiometer-based observations were carried out from 29 June to 2 August 2012
to collect multi-angle dual-polarized Tp

B data in the middle and upper regions of the Heihe
River basin. The flight altitude of the airborne experiment was 0.3–3 km, corresponding
to a ground resolution of 0.1–1 km, and the incidence angles of the radiometer were ±7◦,
±21.5◦, and ±38.5◦, respectively, with a center frequency of 1.41 GHz.

To validate the SMOS and SMAP satellite Tp
B observations and develop microwave

emission models as well as SM retrieval algorithms, Zheng et al. [33] deployed an L-
band microwave radiometer (i.e., ELBARA-III) in the Maqu SM observation network at
the beginning of 2016. The radiometer was mounted on a 4.8 m height tower with the
antenna centered at approximately 6.5 m above the ground, and the antenna beam was
generally oriented to the south. The Tp

B observations at both horizontal (TH
B ) and vertical

(TV
B ) polarizations were collected every 30 min in steps of 5◦ from 40◦ to 70◦ scanning

angles [33,35]. Micro-meteorological observations were also set up near the radiometer to
measure a variety of micro-meteorological elements. In late 2016, a rain gauge and an eddy
covariance observation system were installed near the radiometer. In addition, vertical
SM profile observation probes were added in August 2016 to automatically collect SM
observations at 20 soil depths ranging from 2.5 to 100 cm every 15 min [35]. Based on the
ELBARA-III microwave radiometer observations, Zheng et al. [33–35,41] conducted several
studies on the L-band microwave passive RS of soil freeze–thaw transitions, including the
development of a microwave emission model for frozen ground, a new retrieval algorithm
for retrieving unfrozen (liquid) soil water content in frozen ground, and a new finding that
the sampling depth of L-band microwave radiometry is about 2.5 cm for both frozen and
thawed soil conditions.

3.1.2. Satellite Observations and Accuracy Assessment

After a long period of development, three satellites carrying L-band microwave ra-
diometers were successfully launched worldwide, including ESA’s SMOS, NASA’s Aquar-
ius, and SMAP. The main information about these three satellites is shown in Table 1.

Table 1. Basic information of SMOS, Aquarius, and SMAP satellites.

Satellite
Missions

Space
Agency

Launched
Time

Instruments
Incidence

Angle
Overpass
Time (d)

Spatial
Resolution (km)

SMOS ESA 2009.11 L-band Radiometry 0–55◦ 1–3 35–50

Aquarius
NASA

2011.06 L-band Radiometry
and Scatterometer

28.7◦/37.8◦/
45.6◦ 7 76 × 94/84 ×

120/96 × 156

SMAP 2015.01 L-band Radiometry
and SAR 40◦ 2–3 40
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The SMOS satellite is the world’s first L-band passive microwave RS satellite, and
one of its main objectives is to provide global surface SM products with an accuracy of
about 0.04 m3 m−3 [21,42]. The SMOS satellite carries an L-band microwave radiometer
(1.41 GHz) in a sun-synchronous orbit at a mean altitude of 757 km, providing ascending
and descending data corresponding to passages through the equator at 6:00 and 18:00
of local solar time, respectively. The microwave radiometer uses a Y-shaped antenna
that provides Tp

B observations at incidence angles of 0–55◦. SM is retrieved using multi-
angular and dual-polarization SMOS Tp

B observations via inverting the L-MEB model in
combination with an iterative inversion algorithm [42].

The Aquarius/SAC-D is an ocean observation satellite mission aiming to provide
data such as monthly ocean surface salinity for the study of ocean circulation, coupling
between global water cycle and climate, and others [22,43]. The observation system consists
of three dual-polarized L-band radiometers (1.41 GHz) and one fully polarized L-band
scatterometer (1.26 GHz). The orbit of the Aquarius is a sun-synchronous orbit at 657 km,
which passes the equator at 6:00 (descending orbit) and 18:00 (ascending orbit) local solar
time and covers the globe every 7 days. The Aquarius mission was terminated on 8 June
2015 due to a failure of the power supply and altitude control system. SM is retrieved using
Aquarius Tp

B observations at the horizontal polarization using the single channel retrieval
algorithm [43].

The SMAP satellite aims to provide high precision and high resolution of SM and
freeze/thaw state data on a global scale [23,44]. It carries an L-band microwave radiome-
ter (1.41 GHz) and a synthetic aperture radar (SAR) (1.26 GHz) to obtain simultaneous
measurements of Tp

B and backscatter coefficients. The SMAP satellite orbit is in a sun-
synchronous orbit at 685 km and passes through the equator at 6:00 (descending orbit)
and 18:00 (ascending orbit) local solar time. On 7 July 2015, the SMAP radar stopped
working due to a malfunction, and so far, the SMAP radiometer is still working stably. SM
is retrieved using SMAP Tp

B observations at vertical polarization using the single channel
retrieval algorithm [44].

To validate the accuracy of satellite-based L-band Tp
B observations in the TP, the SMAP

and SMOS Tp
B observations are compared to the in situ ELBARA-III observations in the

Maqu SM observation network. Figure 1 show the comparison of SMAP, SMOS, and
ELBARA-III Tp

B observations from August 2016 to July 2017 for the evening overpass. It can
be found that the Tp

B is significantly correlated with soil dryness and wetness and freeze–
thaw transitions. For example, the Tp

B increases during the soil freezing period (November
to February) and then decreases as the unfrozen (liquid) soil water increases with soil
thawing. As shown in the figure, the variations of SMOS and SMAP Tp

B observations are
generally consistent with the ELBARA-III measured trends, whereby the SMAP observa-
tions are more consistent with the ELBARA-III observations. The correlation coefficients
between SMAP and ELBARA-III Tp

B observations are greater than 0.87, and the RMSE and
ubRMSE for the TV

B observations are smaller than these of TH
B . Good performance of SMAP

observations was also reported in ref. [39,45]. Compared to the performance of SMAP Tp
B

data, the SMOS data show degraded accuracy and larger fluctuating, which may be related
to the influence of RFI and the stability of the radiometer [36]. To further investigate the
impact of RFI on the SMOS Tp

B observation, Figure 2 provide the root-mean-square error
(RMSE) computed between the SMOS Tp

B observations and simulations produced by the
CMEM model for both descending and ascending overpasses performed by the authors.
From the figure, it can be found that the RMSE for the SMOS Tp

B observation in the TP is as
high as 10–20 K, indicating that the SMOS satellite may be seriously affected by RFI in the
TP. A similar finding was also reported by Dente et al. [36].
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Figure 1. Time series of SMAP and ELBARA-III measured (a) TH
B and (b) TV

B , and SMOS and
ELBARA-III measured (c) TH

B and (d) Tp
B during the evening overpasses between August 2016 and

July 2017. (a,b) are modified from Zheng et al. [39].

Figure 2. RMSE computed between the SMOS Tp
B observations and simulations produced by the

CMEM model for both (a) ascending and (b) descending overpasses.

3.2. L-Band Microwave Emission Simulation
3.2.1. Forward Land Emission Model Adopted by Current Satellite Missions

The current three L-band satellite missions, i.e., SMAP, SMOS, and Aquarius, all
use the zero-order forward microwave emission model, i.e., τ-ω model, developed by
Mo et al. [46] for Tp

B simulations. Tp
B generally consists of three components: (1) direct

upwelling vegetation emission; (2) downwelling vegetation emission reflected by the
soil and attenuated by the canopy layer; (3) upwelling soil emission attenuated by the
canopy [38,46]. The model is expressed as follows:

Tp
B = (1 − ωp)(1 − γp)TC + (1 − ωp)(1 − γp)γprpTC + (1 − rp)γpTG, (1)

γp = exp(−τp/cos(ψ)), (2)
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where the superscript p represents the polarization (p = V for vertical polarization and p =
H for horizontal polarization), ωp, γp, and τp are the single scattering albedo, transmittance,
and optical depth of vegetation, respectively, TC and TG are the effective temperatures of
vegetation and soil, respectively, rp is the reflectivity of rough surface, and ψ is the satellite
observation angle.

Table 2 summarize the main parameterizations used in the current forward land emis-
sion models for SMOS, Aquarius, and SMAP satellite missions, including the simulation of
rough surface reflectivity rp, soil permittivity εs, effective soil temperature TG, vegetation
temperature TC, single scattering albedo ω, and vegetation optical depth τp. Usually, the
vegetation single scattering albedo ω is determined by the specific vegetation type that is
independent of the polarization. For instance, ω = 0 for sparse vegetation and ω = 0.06–0.08
for forest in the SMOS mission. For the simulation of vegetation optical depth τp, which
is a function of the leaf area index (LAI) in the SMOS mission (see Table 2) [20], whereby
the parameters b′ and b” depend on the structures of the specific vegetation type. For the
Aquarius and SMAP missions, the τp is linearly related to the vegetation water content
(VWC) [47], whereby the VWC is determined by the normalized vegetation difference
index (NDVI) and vegetation type.

The h-Q-N model is adopted by the three satellite missions to simulate the rough
surface reflectivity rp as [48,49]:

rp =
[
(1 − Q)rs

p + Qrq
s

]
exp

(
−hcosN(ψ)

)
, (3)

where rs
p and rq

s (p = H, V; q = V, H) are the smooth surface reflectivity, which is related
to the soil permittivity εs and can be obtained by the Fresnel equation. Parameter h is the
roughness height parameter, which is related to the type of land cover, e.g., h = 0.1 for
sparsely vegetated subsurface and h = 0.3 for forested subsurface in the SMOS mission.
In the Aquarius mission, h is taken as a constant value of 0.1. Parameter Q denotes the
polarization mixing factor, which is usually assumed as 0 at L-band. Parameter N represents
the angular effect of observation angle, which is introduced to better account for multi-angle
and dual-polarization measurements. In the SMOS mission, N is related to the polarization,
while it is taken as a constant value of 2 in both Aquarius and SMAP missions.

Various soil dielectric constant models have been developed for passive microwave
remote sensing, such as the Dobson model [50], the Wang and Schmugge model [51],
and the Mironov model [52]. Currently, the Mironov model [52] is implemented by both
SMOS and SMAP satellite missions, and the Wang and Schmugge model is adopted for
the Aquarius satellite mission. However, these models are only applicable to unfrozen soil
conditions, resulting in the inability of current satellite missions to retrieve the unfrozen
(liquid) soil water content under frozen soil conditions [38].

Table 2. Parameterizations adopted by the SMOS, Aquarius, and SMAP satellite missions for key
parameters in the forward land emission model.

Parameters SMOS (L2 and L3) Aquarius (L2) SMAP (L2)

rp

h-Q-N model
h = 0.1 for sparse vegetation,

and h = 0.3 for forest h = 0.1 h = f(IGBP)

Q = 0; NV = 0, NH = 2 Q = 0; Np = 2 Q = 0; Np = 2

εs
Mironov model [52] Wang and Schmugge model [51] Mironov model [52]

εs = f(SM, TG, % clay)
TG TG = f(Tsoil_surf, Tsoil_deep)

CT = (SM/W0)b0 CT = 0.246

TC
Skin temperature from

ECMWF land surface model TC = TG

ω
ω = 0 for sparse vegetation,
and ω = 0.06–0.08 for forest ω = 0.05 ω = f(IGBP)

τp τp = b′ ·LAI + b′′ τp = b·VWC, VWC = f(NDVI, IGBP)
b = 0.8 b = f(IGBP)
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The estimation of TG is related to the profile soil temperature, which can be estimated
as [53]:

TG = Tsoil_sur f −
(

Tsoil_sur f − Tsoil_deep

)
CT , (4)

where Tsoil_surf and Tsoil_deep are the soil temperatures at the surface (~5 cm) and deep layers
(~50 cm), respectively. Currently, the SMOS satellite mission uses the soil temperature
simulations of the first and third soil layers obtained from the land surface model of the
European Centre of Medium Range Weather Forecasting (ECMWF) as the Tsoil_surf and
Tsoil_deep, and both Aquarius and SMAP missions use the soil temperature simulations of the
first and second layers obtained from NASA GEOS-5 (Goddard Earth Observation System
Model Version 5) as the Tsoil_surf and Tsoil_deep [20]. In addition, CT is a fitting parameter,
which is related to SM and parameters W0 and b0 in the SMOS satellite mission, where the
standard values of parameters W0 and b0 are taken as 0.3 m3 m−3 and 0.3, respectively. The
value of CT is taken as 0.246 for both Aquarius and SMAP missions [20]. Both Aquarius
and SMAP satellite missions assume that the atmosphere, vegetation, and near-surface soil
are in thermal equilibrium during the satellite overpasses, then the TC is approximately
equal to the TG, while the SMOS mission uses the surface temperature output from the
ECMWF land surface model as the TC [20].

3.2.2. Progress of L-Band Microwave Emission Simulation on the TP

In the past few years, researchers have used a combination of airborne, ground-based,
and satellite-based L-band microwave observations to evaluate the applicability of the
widely used τ-ω model and its parameterizations on the TP. Based on this, new parameteri-
zations for surface roughness, vegetation optical depth, and soil permittivity have been
developed specifically for the TP conditions, improving microwave emission simulations
across different climatic and land conditions of the TP. Zheng et al. [38,54] used the SMAP
Tp

B observations to evaluate the applicability of the forward land emission model adopted
by the SMAP satellite mission to the desert (Ngari SM observation network) and grassland
(Maqu SM observation network) conditions. The results showed that the default SMAP land
emission model tends to underestimate the effect of surface roughness and overestimate
the effect of vegetation, resulting in the underestimation of year-round Tp

B in the Ngari area.
Overestimation of Tp

B during the warm season and underestimation of TV
B during the cold

season in the Maqu area was also found. Based on this, Zheng et al. [38,54] used the surface
roughness parameterizations developed by Wigneron et al. [55] to improve the underestima-
tion of Tp

B in both the Ngari and Magu regions. A new vegetation parameterization based
on simulations produced by a discrete microwave radiative transfer model was further
developed to reduce the simulation bias in the Maqu region. The newly developed surface
roughness and vegetation parameterizations were adopted by Wu et al. [45] to implement
the two-stream microwave emission model developed by Schwank et al. [56] to simulate
the Tp

B in the TP. In comparison to the τ-ω model, the two-stream microwave emission
model presents comparable simulations, which consider multiple scattering and reflection
and remove the assumption of a “soft layer” that is physically more correct than the τ-ω
model [45,56]. In addition, Wu and Zheng [57] firstly investigated the impact of surface
roughness on multi-angular Tp

B simulation using the in situ ELBARA-III Tp
B observations

conducted in the Maqu SM observation network. The results showed that the multi-angular
Tp

B simulation could be improved via site-specific calibration of the h-Q-N model, leading
to a nonzero value for the parameter Q. As such, the noncoherent emission contribution to
cross-polarization mixing can be accounted for by the h-Q-N model. This indicates that
consideration of polarization mixing is necessary for L-band Tp

B simulation [57].
In addition to the currently widely used τ-ω model, researchers have conducted a lot

of research on L-band microwave emission simulation on the TP based on the physically
based discrete microwave radiative transfer model developed at the Tor Vergata University
of Rome (hereafter “Tor Vergata model”) [33,35,41,52–58]. Wang et al. [58] used the Tor
Vergata model to simulate the active and passive observation signals of the Aquarius
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mission in the Magu SM observation network. They found that the correlation coefficients
computed between the simulated Tp

B and backscatter coefficients produced by the Tor Ver-
gata model and the corresponding Aquarius satellite observations are about 0.86 and 0.68,
demonstrating the applicability of the Tor Vergata model in the Magu region. Bai et al. [59]
simultaneously simulated the SMAP observed Tp

B and backscatter coefficients using the
calibrated Tor Vergata model considering the sensitive parameters and found that the
simulation results of the combined active–passive model are in good agreement with the
SMAP observations. For the Tp

B simulation under frozen soil conditions, Zheng et al. [33]
introduced a four-phase dielectric mixing model [60] to the Tor Vergata model. The results
showed that the developed model simulates the εs and Tp

B for both frozen and thawed soil
conditions well, extending the application of the Tor Vergata model on the TP. Recently,
Zheng et al. [41] used the Tor Vergata model in combination with the four-phase dielectric
mixing model to explore the active and passive microwave characteristics of diurnal soil
freeze–thaw transitions. The results further confirmed the ability of the improved Tor
Vergata model to reproduce diurnal variations of ground-based observed Tp

B and backscat-
ter coefficients as well as to quantify their relationships at different observation angles
and frequencies. To further explore the impact of SM and soil temperature (SMST) profile
dynamics on the diurnal L-band Tp

B observation signatures of frozen soil, an integrated
land emission model was developed by Zheng et al. [35]. The model was developed by
combining the improved Tor Vergata model with a multilayer soil scattering model devel-
oped based on integrating the Wilheit [61] and the advanced integral equation method
(AIEM) [62]. The results showed that the Fresnel simulations with a sampling depth of
2.5 cm fit best with the multilayer Wilheit results, indicating that the diurnal L-band Tp

B
observation signatures of frozen soil are mainly dominated by the SMST dynamics at the
surface layer. A similar finding was recently reported by Wu et al. [63].

In summary, two distinguishing features can be drawn related to the L-band mi-
crowave emission simulation on the TP. One is that the polarization mixing effect should be
considered in simulating the L-band Tp

B observations on the TP. Figure 3 show the angular
dependence of averaged ELBARA-III Tp

B observations and corresponding simulations pro-
duced by the h-Q-N model with/without a zero Q value as well as the parameterized model
developed by Shi et al. [64] based on the IEM simulations. Overestimations are noted for
the simulations produced by the h-Q-N model with a zero Q value and the parameterized
model, especially at the vertical polarization, which also becomes larger with increasing
incidence angles. The above deficiency is largely addressed by the calibrated h-Q-N model
with a nonzero Q value, indicating the necessity to consider the polarization mixing effect
in L-band emission modeling on the TP. The other feature is that the diurnal L-band Tp

B
observation signatures of both frozen and thawed soil conditions are primary dominated by
the SMST dynamics at the surface layer of around 2.5 cm. Figure 4 show the comparisons
between both TH

B and TV
B simulations produced by the τ-ω model configured either with

the multilayer Wilheit [61] model or with the single Fresnel model considering three depths
of SMST profile at 2.5 (Sim1), 5 (Sim2) and 10 cm (Sim3) for both warm (from 7 August to
30 September) and cold (from 1 January to 15 March) periods. The Fresnel simulations with
input of SMST at 2.5 cm (i.e., Sim1) fit best with the multilayer Wilheit simulations at both
polarizations for both periods, indicating that the sampling depth of L-band radiometry is
close to 2.5 cm for both frozen and thawed soil conditions on the TP. A similar finding was
also reported by Zheng et al. [34].
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Figure 3. Angular dependence of ELBARA-III Tp
B observations and corresponding simulations

produced by the h-Q-N model with/without a zero Q value as well as the parameterized model
developed by Shi et al. [57] based on the IEM simulations. The figure is modified from Wu and
Zheng [57].

Figure 4. Comparisons of TH
B (a,c) and TV

B (b,d) simulations produced by the τ-ω model configured
either with the multilayer Wilheit [12] model or with the single Fresnel model considering three
depths of SMST profile at 2.5 (Sim1), 5 (Sim2), and 10 cm (Sim3) for (a) cold (from 1 January to
15 March) and (b) warm (from 7 August to 30 September) periods. The figure is modified from
Wu [63].

4. Progress of SM Observation and Retrieval Using L-Band Passive Microwave RS on
the TP

SM retrieval algorithms for L-band microwave RS show certain errors and limitations
for their applications to the TP. In order to obtain higher accuracy of SM products for
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the TP, further evaluation and improvement of satellite-based SM products and retrieval
algorithms are necessary. Among them, in situ data collected by multiple SM observation
networks established on the TP are the key basis for the evaluation of L-band SM products
and the improvement of retrieval algorithms. In this section, the details of SM observation
networks in the TP and the research progress of validating the L-band SM products and
improving the corresponding retrieval algorithms are reviewed.

4.1. SM Observation Networks on the TP

Due to the high spatial variability of SM and the large error in using a single station
observation to represent the true value of regional-scale SM, several regional-scale SM
observation networks have been established on the TP, including the upper Heihe River
Basin, Maqu, Naqu, Pali, and Ngari observation networks [16–18,40,65–68] (Figure 5).
Dense SM observation stations are distributed within these networks to provide SM data of
different soil layers. In addition, by means of soil sampling and laboratory measurements,
these observation networks also provide information on soil texture and organic carbon
content across the observation stations. Table 3 summarize the basic information of the five
SM observation networks on the TP, such as the number of stations deployed, climate type,
land cover type, the temporal resolution of observation, and observation depth for each
network. A brief description of the five observation networks is provided below.

Figure 5. Locations of (a) upper Heihe River Basin, (b) Maqu, (c) Naqu, (d) Pali, and (e) Ngari SM
observations networks and corresponding deployed SM observation stations on the TP.
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Table 3. Basic information of SM observation networks on the TP.

Network
Establish

Time
Station

Number
Climate

Land
Cover

Temporal
Resolution

Observation
Depth (cm)

Reference

upper Heihe
River Basin 2012 40

Humid Alpine
Meadow

5 min 4, 10, 20 [66]

Maqu 2008 20 + 6 * 15 min 5, 10, 20,
40, 80 [16,17]

Naqu 2010 56
Semi-Arid 30 min 5, 10, 20, 40 [18,37]

Pali 2015 25 Alpine
Steppe

Ngari 2010 20 + 5 * Arid Desert 15 min 5, 10, 20,
40, 60 [16,17]

The number with * indicates the newly established stations.

The Heihe River is the second largest inland river in China, and a variety of land cover
types such as oasis, desert, and grassland are distributed across the river basin [29]. The
upper reaches of the Heihe River basin have an average elevation of 4869 m, which belong
to a humid climate with precipitation mainly falling from May to September. The area is
widely covered by permafrost and seasonally frozen ground, and the main land cover is
alpine meadows [66]. In 2012, 40 wireless SM observation stations were set up within the
framework of the HiWATER experiment [29]. At each station, sensors were installed at soil
depths of 4, 10, and 20 cm to collect SM data every 5 min. The relevant data were published
on the website of the HiWATER experiment (http://westdc.westgis.ac.cn/data/df372e4a-
7da8-4c9d-8479-75cafb44007f (accessed on 22 August 2022)).

The Maqu SM observation network [16,17] is located in the source area of the Yellow
River in the northeastern part of the TP, with altitudes ranging from 3400 to 3800 m. The
climate type is characterized as cold and humid with rainy summers and cold, dry winters.
The average annual temperature is about 1.2 ◦C, and the annual precipitation is about
600 mm. The main land cover type is alpine meadows. In 2008, 20 observations were
originally installed, which a covered area of about 40 × 80 km2. In 2014, six new stations
were installed due to the damage to several old monitoring sites caused by local people or
animals [16]. Decagon 5TM ECH2O probes were used to measure SM at depths of 5, 10,
20, 40, and 80 cm with a temporal resolution of 15 min. The relevant data were published
by the National Tibetan Plateau Data Center (http://www.tpdc.ac.cn/en/data/d323f0b2
-dada-4ed5-aa00-57564da788d2/ (accessed on 22 August 2022)).

The Naqu SM observation network [18,37] is located in the central part of the TP
with an average altitude of 4650 m. The climate type is characterized as cold and semi-
arid, and the main land cover type is alpine meadows with low vegetation coverage.
The soil includes high soil organic carbon content. The mean annual precipitation in the
Naqu region is around 500 mm, and 75% of the precipitation is concentrated between
May and October due to the impact of South Asian monsoons. There are 56 stations
established in the observation network, with 38, 22, and 9 stations distributed in the spatial
grids of 1.0◦, 0.3◦, and 0.1◦, respectively, to provide an observational basis for the study
of SM upscaling and downscaling. The stations are also equipped with Decagon 5TM
ECH2O probes at observation depths of 5, 10, 20, and 40 cm with a temporal resolution
of 30 min. The relevant data were published by the National Tibetan Plateau Data Center
(https://www.tpdc.ac.cn/en/data/ef949bb0-26d4-4cb6-acc2-3385413b91ee/ (accessed on
22 August 2022)).

The Pali SM observation network [37] is located in the southern part of the TP that is
near the northern slope of the Himalayas, with an average altitude of 4486 m. The climate
type is characterized as semi-arid, and the main land cover types are sparse grassland and
bare soil. The average annual precipitation in the Pali region is less than 400 mm, and
about 85% of the precipitation is concentrated between May and October due to the impact
of South Asian monsoons. The Pali SM observation network consists of 25 stations with
Decagon 5TM ECH2O probes installed at depths of 5, 10, 20, and 40 cm to collect SM data at
a temporal resolution of 30 min. The relevant data were published by the National Tibetan
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Plateau Data Center (https://www.tpdc.ac.cn/en/data/ef949bb0-26d4-4cb6-acc2-3385413
b91ee/ (accessed on 22 August 2022)).

The Ngari SM observation network [16,17] is located in the western part of the TP
with an average elevation of 4869 m. The climate is characterized as cold and arid, and
the land cover is bare soil and desert. Twenty SM observation stations were established
in June 2010 in the Ngari area, of which four stations were set up in the desert area,
and the rest were located near the city of Shiquanhe. In 2016, five new stations were
installed due to the damage to several old monitoring sites caused by local people or
animals [16]. Each station was equipped with Decagon 5TM ECH2O probes at depths
of 5, 10, 20, 40, and 60 cm to collect SM observations with a temporal resolution of
15 min. The relevant data were published by the National Tibetan Plateau Data Center
(http://www.tpdc.ac.cn/en/data/d323f0b2-dada-4ed5-aa00-57564da788d2/ (accessed on
22 August 2022)).

4.2. Validation of SM Products Retrieved from the L-Band Passive RS on the TP

Due to the impact of different instruments, operational modes, and retrieval algorithms
adopted by the three different L-band satellite missions (i.e., SMOS, Aquarius and SMAP,
see Tables 1 and 2), the performances of SM products retrieved using the Tp

B observations
collected from these three satellites present distinct characteristics for different climate and
land cover conditions on the TP. Therefore, it is necessary to validate the performance of
these satellite-based SM products on the TP using SM measurements collected from the
five in situ SM observation networks (see Figure 5 and Table 3). Table 4 summarize the
error statistics for the validations of L-band satellite-based SM products performed on the
TP in recent years, which mainly include correlation coefficient (R), bias, and RMSE.

For SMOS SM products, Su et al. [17] firstly made a preliminary evaluation of L2
SM products using measurements collected from the Maqu network and found that the
correlation coefficient can reach 0.72 and the RMSE is about 0.09 m3 m−3. Zhao et al. [69]
further evaluated their performances using measurements collected from the Naqu network
and found that the L2 and L3 SM products show greater uncertainty at the SMOS original
grid (15, 25 km), and the correlation coefficient between SM products and observations
can be improved through averaging the values of SM products to the spatial resolution of
100 km. Zeng et al. [70] thoroughly evaluated the performance of L3 SM products using SM
measurements collected from both the Maqu and Naqu networks and found that SMOS
products show large noise and bias, especially at the descending overpass. They further
pointed out that the presence of RFI can be an important factor causing bias. In addition, it
was found that the performance of SMOS products in the Naqu network is better than that
of the Maqu network covered by denser vegetation. A similar finding was also reported by
Chen et al. [37], who found that the L3 SM product performs well in the Naqu network with
correlation coefficients of about 0.67 and 0.73 for the ascending and descending overpasses,
respectively. Recently, Liu et al. [71] thoroughly evaluated the performance of multiple
satellite-based SM products using data from the five in situ SM observation networks for
the first time. They found that the SMOS-IC products were affected by RFI with a slight
underestimation. Liu et al. [72] further evaluated the performance of SMOS-IC products
using the three-corned hat method and also found that it is strongly influenced by the
presence of RFI. In general, SMOS SM products can reflect SM conditions across the TP to
some extent, but the performance is inconsistent in different areas of the TP. In addition,
there is a slight dry bias in most areas, and the uncertainty of SM products is high due to
the influence of RFI presence.

Relatively less work has been carried out to validate the SM products of the Aquarius
satellite mission. Li et al. [73] used data from the Naqu network to evaluate the Aquarius
L3 SM product and found that the correlation coefficient could reach 0.77 with an RMSE
of about 0.08 m3 m−3. It was also shown that the Aquarius SM product could generally
reflect the spatial and temporal variations of SM. It is worth noting that the revisit period
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of the Aquarius satellite is 7 days, resulting in a limited number of SM retrievals within the
study time frame.

Regarding SMAP SM products, Chen et al. [37] evaluated the performance of L3
passive SM products using data from both Naqu and Pali networks and found that the
products could capture the amplitude and temporal variation of SM observations well. Liu
et al. [71] thoroughly evaluated the L3 passive SM products using data from the five in
situ SM observation networks on the TP and found that the SMAP product correlates well
with SM observations with smaller RMSE and bias in comparison to other products. They
also showed that the SMAP product shows higher accuracy in relatively sparsely vegetated
areas. A similar finding was also reported by Zeng et al. [74]. Li et al. [75] further evaluated
the performance of both L3 original and enhanced passive SM products using data from the
Naqu and Magu networks and found that both products capture the temporal variability
and spatial distribution characteristics of SM observations with strong correlation. They
also showed that the enhanced product presents a higher correlation and provides more
details of SM variability. Ma et al. [76] thoroughly evaluated the performance of passive,
active, and combined active–passive SM products with resolutions of 3, 9, and 36 km using
data from the upper and middle reaches of the Heihe River basin. They found that SMAP
products are able to capture spatial and temporal variability of SM observations and typical
precipitation events in most of the study areas, with passive SM products performing
best. In addition, it was found that SMAP SM products perform better in bare soil areas
than the vegetated areas. In general, SMAP SM products can better reflect the spatial and
temporal variations of SM in multiple observation network areas of the TP with relatively
high accuracy in comparison to other products.

Three distinct features can be drawn from the summary of validating the three L-
band SM products on the TP (see Table 4): (1) the applicability of the three satellite-based
SM products varies in different climatic and land cover regions, while in most cases
they can capture the amplitude and temporal changes of SM observations; (2) through
comprehensive analysis, it is found that the SMAP satellite products perform the best, and
the SMOS retrieval results have large deviation and relatively high uncertainty due to the
presence of RFI; (3) different vegetation cover types show different degrees of influence
on the satellite-based soil moisture retrievals, and generally speaking, the accuracy of the
products in bare soil areas is better than that in vegetation cover areas.

4.3. Improvement and Development of SM Retrieval Algorithms Using the L-Band Passive RS on
the TP

Based on the τ-ω model, researchers have developed many SM retrieval algorithms for
the L-band passive microwave RS, including the iterative inversion algorithm based on the
L-MEB forward model [42], Single Channel Algorithm (SCA) [44], Dual Channel Algorithm
(DCA) [44], and Land Parameter Retrieval Model (LPRM) [77]. The SMOS satellite uses the
iterative inversion algorithm based on the L-MEB forward model as the default algorithm.
This method takes into account a priori information on the retrieved parameters and mini-
mizes the cost function by a generalized least squares iterative algorithm to retrieve both
SM and τ [42]. Currently, the default algorithms implemented by the Aquarius and SMAP
satellite missions are based on the SCA using the TH

B (i.e., SCA-H) and TV
B (i.e., SCA-V) ob-

servations, respectively. The SCA firstly converts the Tp
B observation into emissivity using

the effective soil temperature and then removes the impact of vegetation and surface rough-
ness based on certain parameterizations to obtain soil emissivity, which finally uses the
Fresnel equation in combination with a soil dielectric constant model to obtain SM [20,44].
In general, the errors of satellite-based SM products are mainly sourced from adopted for-
ward land emission models and input parameters [20,71,74]. Our review of the progress of
L-band microwave emission simulation on the TP (see Section 3.2) reveals that the forward
land emission models adopted by current L-band satellite missions still show deficiencies
in their applications to the TP, such as underestimation of effective soil temperature and
surface roughness effects, overestimation of vegetation effects, and the inapplicability of
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the adopted dielectric constant models for frozen soil conditions [33,35,45,54,57], etc. Based
on this, researchers have improved the relevant parameterizations adopted in the current
SM retrieval algorithm, as well as developed a new SM retrieval algorithm to obtain high
accuracy of SM retrievals for the TP environment.

Table 4. Summary of error statistics for the validations of L-band satellite-based SM products
performed on the TP.

Satellite
SM

Product
Spatial

Resolution
SM Network

Error Statistics *
Reference

R Bias (m3 m−3) RMSE (m3 m−3)

SMOS

L2_SM 25 km Maqu 0.72 - 0.09 Su et al. [17]
L2_SM 15 km Naqu 0.41 a/0.41 d −0.02 a/0.00 d - Zhao et al. [69]
L3_SM 25 km 0.26 a/0.17 d −0.06 a/0.03 d -

L3_SM 25 km
Maqu 0.24 a/0.20 d −0.03 a/0.25 d 0.14 a/0.37 d

Zeng et al. [70]
Naqu 0.54 a/0.43 d −0.07 a/0.00 d 0.10 a/0.14 d

L3_SM 25 km
Naqu 0.67 a/0.73 d −0.02 a/−0.01 d 0.07 a/0.06 d

Chen et al. [37]
Pali 0.31 a/0.37 d −0.02 a/−0.04 d 0.09 a/0.08 d

SMOS-IC 25 km

Heihe 0.18 a/0.30 d −0.04 a/−0.12 d 0.12 a/0.14 d

Liu et al. [71]
Naqu 0.43 a/0.47 d −0.13 a/−0.05 d 0.18 a/0.14 d

Pali 0.60 a/0.52 d −0.06 a/−0.03 d 0.07 a/0.09 d

Maqu 0.49 a/0.64 d −0.01 a/−0.07 d 0.08 a/0.11 d

Ngari 0.12 a/0.10 d −0.02 a/0.00 d 0.09 a/0.12 d

Aquarius L3_SM 1◦ Naqu 0.77 −0.07 0.08 Li et al. [73]

SMAP

L3_SM_P 36 km
Naqu 0.87 d −0.03 d 0.06 d

Chen et al. [37]
Pali 0.67 d −0.03 d 0.04 d

L3_SM_P 36 km

Heihe 0.64 a/0.78 d −0.11 a/−0.10 d 0.11 a/0.11 d

Liu et al. [71]
Naqu 0.84 a/0.82 d −0.00 a/−0.02 d 0.08 a/0.07 d

Pali 0.67 a/0.62 d −0.03 a/−0.05 d 0.05 a/0.06 d

Maqu 0.72 a/0.81 d −0.07 a/−0.07 d 0.09 a/0.08 d

Ngari 0.57 a/0.34 d −0.04 a/−0.05 d 0.05 a/0.05 d

L3_SM_P_E 9 km
Naqu 0.88 0.00 0.06

Li et al. [75]
Maqu 0.65 0.11 0.13

L3_SM_P 36 km
Naqu 0.88 0.00 0.06
Maqu 0.64 0.12 0.13

L3_SM_P 36 km
Maqu 0.55 d 0.07 d 0.12 d

Zeng et al. [74]Naqu 0.78 d −0.01 d 0.06 d

Pali 0.73 d −0.05 d 0.06 d

L2_SM_A 3 km
Heihe

0.21~0.78 −0.12~0.09 0.03~0.17
Ma et al. [76]L2_SM_P 36 km 0.55~0.78 −0.00~0.09 0.03~0.09

L2_SM_AP 9 km 0.39~0.81 −0.20~0.03 0.04~0.81

* The superscripts a and d represent the SM products retrieved using the Tp
B observations collected during the

ascending and descending overpasses.

For instance, current commonly used soil dielectric constant models (e.g., Dobson
model [50], Wang and Schmugge model [51], and Mironov model [52]) are unable to
simulate the dielectric constant of frozen soils, leading to the failure of retrieving unfrozen
(liquid) water content for frozen ground based on current L-band satellite missions. Zheng
et al. [38,39] validated the applicability of the four-phase dielectric mixing model for
estimating the soil permittivity of frozen ground on the TP, which divides the components
of wet soil into the air, ice, matrix, and liquid water and is able to simulate the dielectric
constants of soils under both frozen and thawed conditions [56]. Later on, Zheng et al. [35]
compared the performance of three dielectric mixing models that are suitable for both
frozen and thawed soil conditions on the TP, i.e., the four-phase dielectric mixing model
and another two models developed by Zhang et al. [78] and Mironov [79]. The results
showed that the four-phase dielectric mixing model is more suitable for the TP condition.
On this basis, Zheng et al. [38,54] further improved the underestimation of the surface
roughness effect in the SMAP SM retrieval algorithm by adopting a new surface roughness
parameterization, thus improving the accuracy of SM retrievals in desert areas (e.g., Ngari
network) and in vegetated areas during the freezing period (e.g., Maqu network) on the TP.
Furthermore, Zheng et al. [38,39] introduced a new vegetation parameterization and found
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that the SM retrieval in the Maqu network can be further improved with ubRMSE reduced
by more than 40%. Recently, Wu et al. [45] introduced the four-phase dielectric mixing
model and the new parameterizations of surface roughness and vegetation developed by
Zheng et al. [38,39] to the two-stream microwave emission model that is physically more
correct than the τ-ω model [56]. The improved two-stream microwave emission model
was further adopted to replace the τ-ω model adopted by the SMAP default SM retrieval
algorithm to improve the SM retrievals on the TP. Figure 6 show the time series of θliq
measurements and retrievals obtained by the SCA-V and DCA based on the improved
two-stream microwave emission model using the SMAP Tp

B measurements during the
descending and ascending overpasses for the period from August 2016 to July 2017. The
SMAP SM products are also shown for comparison purposes, which are only available for
the warm season due to the fact that the Mironov model [52] adopted by the current SMAP
SM retrieval algorithm (see Table 2) is only suitable for thawed soil conditions. On the
contrary, the SCA-V and DCA developed based on the improved two-stream microwave
emission model with the implementation of a four-phase dielectric mixing model are
able to retrieve unfrozen (liquid) water content θliq under both frozen and thawed soil
conditions. The two methods are generally comparable to each other and are better than
the SMAP product, whereby the latter tends to underestimate the θliq. Therefore, usage
of the improved two-stream microwave emission model configured with the four-phase
dielectric mixing model to replace the τ-ω model implemented by the current SMAP SM
retrieval algorithm has improved the accuracy of SM retrievals and extended the retrieval
algorithm to the frozen ground that widely covers the TP. In summary, three distinct
features can be drawn from the abovementioned efforts made to improve the accuracy
of SM retrievals on the TP using the algorithms implemented by current L-band satellite
missions. First, a new soil dielectric mixing model was introduced and validated to fill
the gap in retrieving unfrozen water content in frozen soil. Second, surface roughness
and vegetation parameterizations embedded with default algorithms of current satellite
missions were updated for the TP environment, which leads to better SM retrievals. Third,
a more physical-based forward land emission model was implemented to release the
assumptions made by the current widely used τ-ω model, providing the potential to
retrieve SM from more complex land conditions.

Figure 6. Time series of θliq measurements and retrievals obtained by the SCA-V and DCA based on
the improved two-stream (2S) microwave emission model using the SMAP Tp

B measurements during
the (a) descending and (b) ascending overpasses. The values derived from the SMAP SM products
are also shown. The figure is modified from Wu [45].

In addition to improving the default retrieval algorithms implemented by current satel-
lite missions, researchers also improved the current SM retrieval accuracy by developing
new retrieval algorithms. Wang et al. [58,80] developed a new SM retrieval algorithm based
on the physical-based Tor Vergata model to retrieve SM in the Maqu network based on
the combination of Aquarius active and passive observations. The obtained SM retrievals
were found to be able to reflect SM variations in the study area, providing a new way for
the simultaneous use of active and passive observations to retrieve SM. Recently, Zeng
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et al. [81] developed a physical-based SM Index (SMI), which was shown to be able to
reproduce measured θliq dynamics for both frozen and thawed conditions in the Naqu and
Pali networks. The developed SMI shows great potential to produce better θliq retrievals
on the TP based on the SMAP Tp

B measurements.

5. Conclusions

L-band passive microwave RS observation is an important tool for monitoring global
SM and its freeze/thaw state, which can provide large-scale and long time series SM prod-
ucts for the TP in a complex natural environment. In recent years, researchers conducted
ground-based and airborne L-band microwave radiometry observation experiments and
established regional-scale in situ SM observation networks on the TP. In addition, a lot of
work has been carried out to evaluate and improve the accuracy of current forward land
emission models and SM retrieval algorithms to further improve the applicability of L-band
satellite-based SM products to the TP condition. Progress related to L-band microwave
emission modeling on the TP have highlighted the necessity to consider the impact of polar-
ization mixing. For the first time, it was reported that the diurnal Tp

B observation signatures
of both frozen and thawed soil conditions are primarily dominated by SMST dynamics at
the surface layer around 2.5 cm. To further address the deficiencies in retrieving SM on the
TP, such as lack of product under frozen ground, new parameterizations of soil permittivity,
surface roughness, and vegetation are developed or introduced, which largely improve
the accuracy of current SM retrievals. Moreover, to overcome the deficiency of the current
widely used τ-ω model, more physical-based models such as the Tor Vergata model and
the two-stream emission model are validated and implemented to develop new algorithms
to better retrieve SM on the TP.

In short, progress has been made via the abovementioned efforts, which greatly
promotes the in-depth application and development of L-band passive microwave RS
technology in the TP. However, there are still many problems in the current research. For
example, most work focuses on evaluating the accuracy of satellite-based SM products
for a short-term period (e.g., less than 5 years), while the evaluation and improvement
of the forward land emission model and SM retrieval algorithm are limited to the site or
grid scale. There is still a lack of evaluating and improving both the land emission model
and SM retrieval algorithms/products at the whole plateau scale, and the operational
monitoring of unfrozen (liquid) water content in frozen ground is still missing. In view
of the above research problems, in order to further enhance and expand the application
of L-band passive microwave RS technology in the TP, the following research should be
strengthened in the future.

Firstly, SMOS and SMAP satellite missions have provided long time series SM products
for more than 12 and 7 years, respectively, while current work is mainly focused on
evaluating the performance of these products for selected limited years. It is still unknown
how accurate these products can capture the long-term trend of SM variations on the TP.
Therefore, additional work is still needed to carry out long-term trend evaluation and
analysis, whereby the long-term in situ SM dataset recently released by Zhang et al. [16]
can be used as the ground reference for such assessment.

Secondly, to carry out the evaluation of the microwave emission model at the plateau
scale. Specifically, to further validate and improve the parameterizations of the soil dielec-
tric constant model, surface roughness and vegetation optical thickness are developed at
the site or grid-scale for their applications to the whole plateau and to enhance the accuracy
of microwave emission simulation at the plateau scale.

Thirdly, large amounts of research have been carried out to improve SM retrieval
algorithms and products at the plateau scale based on the improved plateau-scale land
emission model in combination with SM retrieval algorithms improved or newly developed
at the site or grid scale. In addition, work has also been conducted to improve and develop
SM products for a complete time series of consecutive years (including freezing periods)
based on the L-band passive microwave RS observation via implementation of the four-
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phase dielectric mixing model that is applicable to both frozen and thawed soil conditions
on the TP.

Finally, research has been conducted to further enhance the application of L-band
satellite-based SM products on the TP, to assimilate satellite-based SM products or Tp

B
observations to improve the simulation accuracy of plateau-scale water cycle and energy
balance, and to evaluate and improve satellite-based precipitation products based on
improved SM products. In addition, further work can be conducted to monitor drought
changes and vegetation growth response to wet and dry transitions based on SM products,
further expanding the application of L-band passive microwave RS products in the TP.
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Abstract: Soil moisture is a crucial component of land–atmosphere interaction systems. It has a
decisive effect on evapotranspiration and photosynthesis, which then notably impacts the land
surface water cycle, energy transfer, and material exchange. Thus, soil moisture is usually treated as
an indispensable parameter in studies that focus on drought monitoring, climate change, hydrology,
and ecology. After consistent efforts for approximately half a century, great advances in soil moisture
retrieval from in situ measurements, remote sensing, and reanalysis approaches have been achieved.
The quality of soil moisture estimates, including spatial coverage, temporal span, spatial resolution,
time resolution, time latency, and data precision, has been remarkably and steadily improved. This
review outlines the recently developed techniques and algorithms used to estimate and improve
the quality of soil moisture estimates. Moreover, the characteristics of each estimation approach
and the main application fields of soil moisture are summarized. The future prospects of soil
moisture estimation trends are highlighted to address research directions in the context of increasingly
comprehensive application requirements.

Keywords: soil moisture; estimation method advances; applications; prospects

1. Introduction

Soil moisture (SM), the moisture content in the soil, is a crucial component in the hy-
drological cycle; it links atmospheric precipitation and underground water and is also an
important parameter of energy exchange between the land surface and the atmosphere [1–4].
Consequently, SM is recognized as an essential element in studies aimed at analyzing and
understanding Earth system processes, such as climate change and ecological evolution.
Specifically, the available water content, which is essential for vegetation growth, is one of
the most important components of soil and has crucial guiding significance for agricultural
production. Currently, both ground and spaceborne sensors are used to derive the original
SM information [2,5,6]. Numerous technologies, such as statistical models, data fusion, ma-
chine learning, and assimilation approaches, are widely used to improve SM quality [7–10].
Additionally, SM datasets with high spatial-temporal resolution are valuable for boosting
agricultural production in terms of drought and flood monitoring, crop growth analysis,
and yield estimation.

Significant efforts have been devoted to SM acquisition and estimation techniques
during the past decades, and numerous global-scale SM estimates have been generated
and are available for scientific studies [11–13]. To fulfill the increasingly comprehensive
requirements for SM estimates, their quality, including spatial coverage, temporal span,
spatial resolution, temporal resolution, time latency, and data precision, is notably improved
through advanced methods. However, there is still a long way to go so as to further
enhance the spatiotemporal integrity, accuracy, and stability of estimated SM. Therefore, it
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is necessary to rigorously summarize these data acquisition methods, progress in advanced
techniques, and point out future challenges for SM retrieval.

The remainder of this paper is organized as follows. Section 1 introduces the meaning
of improving SM products and the two main original SM data acquisition methods. Sec-
tion 2 provides a comprehensive and systematic review of the methods for improving the
quality of both ground- and satellite-observed SM products. The principles, advantages,
and limitations of these methods are presented. Section 3 presents the application fields of
SM products. Section 4 presents future prospects for advancing global SM products, and
Section 5 concludes the article.

Currently, there are two main data acquisition methods:

(1) Point-scale original data acquisition: in situ measurements

Considering the scientific significance and application value of SM, the Soviet Union
and Mongolia have started to record ground SM using monitoring sensors to retrieve
national soil water content through networks since the 1950s [14–16]. In situ measurements
can conveniently monitor SM at precise sites, depths, and hourly or sub-hourly frequencies.
Both the sensors and networks are easily accessible and affordable. However, as various
institutes have different research objectives, each SM network has its own station density,
observation frequency, monitoring depth, sensor type, spatial coverage, and temporal
period. SM can be expressed as a gravimetric unit (g/cm3), volumetric unit (m3/m3), or
a function of the field capacity according to usage habits [17]. Every SM network has its
own method of sharing data, usually through a website in its own language. Therefore, it
is difficult for researchers to derive SM records from different observation networks.

Facing these difficult problems, the International Soil Moisture Network (ISMN, https:
//ismn.geo.tuwien.ac.at/en/, accessed on 31 July 2022) is devoted to performing as a
centralized data hosting facility for global in situ SM measurements [5,18,19]. This platform
is initiated to collect global SM from operational networks and validation campaigns,
standardize the techniques and protocols and make them available to users. Currently
(June 2022), 73 networks and more than 2800 stations are located in Europe, North America,
South America, Asia, Africa, Australia, and Oceania, which are collected by the ISMN
and available to the public. In addition to SM, ISMN also integrates and provides SM-
related meteorological variables, such as soil temperature and precipitation, which serve as
critical supplementary references for the comprehensive analysis of soil water evolution
characteristics. Currently, the ISMN is an increasingly popular data source for studies
focused on SM validation worldwide [14,20–26]. With continuous network expansion and
data updates, the ISMN has become an energetic and well-acknowledged global-scale SM
ground observation database. Additionally, the National Soil Moisture Network has been
established in the contiguous United States. There are 24 networks, and the SM data are
retrieved in a timely manner with a one-day latency (http://nationalsoilmoisture.com/,
accessed on 31 July 2022).

However, despite the increasingly standardized and abundant in situ measurements,
it is still difficult for point-scale data to represent large-area SM conditions. Limited time
and space coverage greatly restrict the application of in situ measurements in large-scale,
long-term scientific studies and explorations. As a result, in situ measurements usually
serve as a crucial reference for the evaluation of multi-scale SM estimates.

(2) Large-scale data acquisition: spaceborne remote-sensing technology

There is an urgent demand for access to near-real-time soil moisture data on a global
scale. Since the 1970s, spaceborne remote sensing technology has gradually become a
promising approach for obtaining global-scale continuous time-series surface SM data. The
abundance of satellite-retrieved soil moisture data provides an unprecedented opportunity
to conduct related analyses and applications.

A number of remotely sensed data, including optical, thermal infrared, and microwave
bands, were employed to retrieve SM estimates [27]. In terms of optical and thermal infrared
remote sensing data, soil surface spectral reflectance characteristics, soil surface emissivity,
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and surface temperature are mainly used to estimate SM [28]. However, retrieval models
are mostly established on the basis of empirical relationships between SM and land surface
condition indexes, that is, vegetation condition index [29], normalized difference vegetation
index (NDVI) [30], temperature vegetation drought index (TVDI) [31], and soil wetness
index [32], which can hardly satisfy large-scale and multi-climate zone applications. In
addition, both optical and thermal remote sensing are vulnerable and sensitive to cloudy
and rainy weather, dense vegetation coverage, and aerosol optical depth. Optical remote
sensing can only measure reflection and emission from the land surface at a depth of 1 mm.
For hydrological and agricultural analyses, SM data could be far more meaningful at a
depth of several centimeters than at a mere 1 mm.

In comparison, microwave signals are impervious to rainy and cloudy weather, and
their penetration depth can reach 0–5 cm, showing prominent advantages in SM retrieval.
Microwave remote sensing technology can be divided into active and passive microwaves
based on the working modes of different sensors. Active microwave sensors transmit sig-
nals to the detection targets and receive backscattered signals after the interaction between
the signals and targets, whereas passive microwave sensors receive signals reflected and
emitted from the underlying surface [33–35]. Currently, both active and passive microwave
signals are employed to derive land surface soil water content. As shown in Table 1, a
large number of spaceborne microwave SM products have been retrieved and published
in the past half-century. Through their application in various hydrology-related scientific
explorations, they efficiently boosted the understanding of spatial-temporal evolution
characteristics of SM and the mechanism by which SM influences climate change across the
globe. In addition to the listed global SM products, there are also studies and programs
focused on SM deriving in a certain vegetation cover or climate zone to acquire regional
SM with high accuracy [9,36,37].
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Specifically, active microwave-derived data have high spatial and low temporal res-
olution, although they are susceptible to surface roughness and vegetation cover. Com-
paratively, passive microwave-derived data often have high temporal resolution and low
spatial resolution and can behave insensitively to surface roughness and vegetation cover.
Additionally, both active and passive microwaves suffer from radio-frequency interference
(RFI) [68,69]. Direct broadcast and communication satellites cause considerable RFI above
the microwave band, which can be a critical reason for outliers and gap regions in satellite-
retrieved SM products [70,71]. Basically, all single spaceborne microwave SM retrievals
have large gap regions induced by RFI, dense vegetation coverage, veil of ice, and the
relative motion between satellite revolution and Earth rotation [62], seriously impeding
their spatiotemporal integrity.

Despite the enormous number of multi-source SM products mentioned above, sci-
entific explorations and experiments pursuing high quality are ongoing. Attempts have
mainly focused on improving the completeness, spatial representativeness, spatial reso-
lution, and accuracy of currently accessible SM retrievals. Therefore, this review aims to
provide an auxiliary reference for readers to understand the history and emerging trends
of global SM retrieval methods.

2. Models to Improve the Quality of SM Products

2.1. Statistical Model

A statistical model can be established based on the significant statistical or empirical
relationship between SM and land surface elements (such as surface temperature, vegeta-
tion index, evapotranspiration (ET), and albedo). These convenient and simple statistical
models have been widely employed since inception and are mainly used for regional SM
gap-filling and downscaling in terms of different research emphases [36,72–75]. Because of
the variable coupling relationship along with various underlying surface hydrothermal
features, the statistical model always has inter-regional applicability limitations. Further-
more, it is difficult to ensure the robustness and accuracy of statistical model-derived
large-scale results.

2.1.1. Triangular (Tri)-Based Method

The Tri-based method can provide nonlinear solutions for SM estimation. Among
the various statistical models, the Tri-based method is a classic method that estimates
SM based on its close coupling relationship with land surface temperature (LST) and
vegetation conditions [76–78]. Sandholt et al. [79] proposed a triangular feature space
constructed using the LST and NDVI. The wet edge is composed of the lowest LST under
different vegetation conditions, which indicates the maximum humidity. The dry edge,
which indicates the minimum surface ET, is formed by the scatter of the highest LST under
different NDVI values. As shown in Figure 1, if vegetation cover in a certain region ranges
from bare soil to dense coverage and SM ranges from extreme drought to extreme humidity,
the NDVI-LST scatter diagram is triangular in shape. A drought index, referred to as the
TVDI, was defined and tightly linked to SM [80]. Then, a method was suggested to simulate
SM using the combination of LST and NDVI based on the triangular feature space of TVDI.
The Tri method equations are as follows.

Soil Moisture = aij

4

∑
i=0

LST∗i
4

∑
j=0

NDVI∗j (1)

where aij is the correlation coefficient of every term in the polynomial, which is calculated
using multiple regression. LST∗ is calculated as follows:

LST∗ = LST − LSTmin
LSTmax(NDVI)− LSTmin

(2)
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where LSTmax(NDVI), LSTmin are the maximum and minimum values of the LST dataset
calculated from NDVI, respectively. NDVI∗ is calculated as follows:

NDVI∗ = NDVI − NDVImin
NDVImax − NDVImin

(3)

where NDVImax, NDVImin are the maximum and minimum values, respectively, of the
NDVI dataset.

Figure 1. Triangular feature space of TVDI (figure reprinted from [72]).

Zhao et al. [36] systematically tested the performances of different vegetation indexes
in the Tri model through a case study at the northeastern part of the Tibetan Plateau.
The results demonstrated the advantage of NDVI in constructing the Tri model. The SM
estimated by the NDVI-based model showed higher accuracy than those estimated by
models constructed from the enhanced vegetation index (EVI) and soil-adjusted vegetation
index (SAVI).

Many studies have attempted to estimate SM using the Tri method. The LST and NDVI
datasets were acquired from high-resolution, remotely sensed products, and the established
model could be effectively employed to improve the coarse-resolution SM [72,81–83].
Additionally, the Tri model neither requires any ancillary atmospheric data nor is it sensitive
to atmospheric parameters. In general, this method is appropriate for flat regions with
moderate vegetation coverage because NDVI is easily saturated in densely vegetated areas
such as forests. This solution tends to exhibit better performance in regions with a single
climate type and minimal artificial interference. Additionally, sufficient pixels are necessary
to construct the “universal” triangular feature space. Sufficient pixels are also crucial for
the accurate identification of wet and dry edges.

Apart from the classic vegetation and temperature combination, there are new ap-
proaches to parameterizing the Tri model. Shafian et al. [84] used thermal data and ground
cover from Landsat imagery to establish the feature space to retrieve a perpendicular soil
moisture index, which reduced the expense and complexity of the SM estimation. Sun [85]
proposed a two-stage trapezoid to construct a feature space. This approach was established
based on the theory that the vegetated surface temperature should vary after the bare soil
surface temperature, as vegetation can absorb water from a deep soil layer to maintain
transpiration. In addition, this two-stage method explicitly expresses the evolution of the
feature space from a triangular to trapezoidal form.

2.1.2. Disaggregation Based on Physical and Theoretical Scale Change (DISPATCH) Algorithm

DISPATCH is another well-known and widely used algorithm capable of improving
the spatial resolution of surface SM [86–90]. This approach was developed based on the
tight interaction between surface SM and LST during the ET process. The DISPATCH
method equation is a first-order Taylor series expansion and is expressed as follows [91]:

SMD = SMO + (δSEE /δSM )−1
O (SEED − SEEO) (4)

206



Remote Sens. 2022, 14, 3741

where SMD is the downscaled high-pixel resolution SM; SMO is the original low-spatial
resolution SM; SEED and SEEO are the high- and low-resolution soil evaporative efficiency
(SEE), respectively. (δSEE/δSM)−1

O is the inverse of the partial derivative of low-resolution
SEE(SM). SEE is calculated as

SEE = STmax − ST/STmax − STmin (5)

where ST is the surface soil temperature. STmax and STmin correspond to the SM under
extremely dry (SEE = 0) and extremely humid (SEE = 1) conditions, respectively. All ST
were derived from the linear decomposition of LST into soil and vegetation using the
following equation:

ST = LST − PvegTveg/1 − Pveg (6)

where Pveg is the vegetation coverage percent, and Tveg is the vegetation temperature.
Merlin et al. [92] first proposed this algorithm and successively disaggregated the

SMOS from 40 to 1 km with favorable accuracy. Then, they conducted a case study using
DISPATCH to downscale SMOS SM in southeastern Australia [93]. This study found
that the quality of the disaggregated product was good in summer and poor in winter. In
addition, the coupling level in semi-arid areas was evidently stronger than that in temperate
zones, and both vegetation coverage and vegetation water stress could influence ST retrieval.
Hence, it is suggested that DISPATCH could perform better in low-vegetated semi-arid
areas than in densely vegetated temperate regions. To enhance the disaggregation accuracy,
Merlin et al. [94] designed a yearly SEE self-calibration model that could effectively make
the DISPATCH algorithm more robust. This study proved the competence of DISPATCH in
multi-scale SM downscaling through an evaluation study at 3 km and 100 m resolution in
Spain. To extend the applicability of the DISPATCH approach, Ojha et al. [91] used TVDI
instead of SEE in their model to include more densely vegetated areas. The results showed
that the adoption of TVDI obviously increased the coverage percentage of the case study
region, and the downscaled SM from the EVI-derived model displayed a higher correlation
against in situ measurements than the one from the NDVI-derived model over vegetated
areas. Apart from disaggregation, DISPATCH can also be utilized for coarse-resolution SM
product evaluation [95].

2.2. Data Fusion

The data fusion method integrates multi-source remotely sensed data to produce SM
estimations with higher accuracy, completeness, and reliability than the single satellite
information source-retrieved ones. Through the fusion of multi-band, sensor working
mode, and transit time remote sensing information, the quality of SM, including data
accuracy, spatial coverage rate, temporal scope, and day-scale representativeness, can be
efficiently improved. The Essential Climate Variable Soil Moisture (ECV SM), Soil Moisture
Operational Product System (SMOPS), and Soil Moisture Active Passive (SMAP) are three
well-known multiple microwave information-fused SM products. Because of their high
performance in depicting soil water content conditions, they have received considerable
attention since their inception.

(1) ECV SM

The ESA launched the ECV program, also known as the Climate Change Initiative,
to monitor global climate evolution tendencies in 2010, and SM was simultaneously rec-
ognized as an ECV at the same time. The ECV SM, with global coverage, 0.25◦ pixel size,
and daytime scale temporal resolution, was derived from the fusion of numerous satellite-
based microwave products [96]. There are 13 versions available to the public to date, each
updated with new sensors and an extended time series (https://esa-soilmoisture-cci.org/,
accessed on 31 July 2022). Currently, the latest one is v07.1, which spans over 40 years from
1 November 1978 to 31 December 2021, combining information from 4 active and 12 passive
microwave sensors. The ECV SM provides three SM estimations, which are derived from
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active sensors (ERS 1, ERS 2, Advanced Scatterometer on MetOp-A (ASCAT MetOp-A),
and Advanced Scatterometer on MetOp-B (ASCAT MetOp-B)), passive sensors (Scanning
Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I),
TRMM TMI, Windsat/Coriolos, AMSR-E, AMSR-2, SMOS, FY-3B, FY-3C, FY-3D, SMAP,
and GPM GMI), and their combinations.

The merging scheme of the ECV SM is described as follows: First, all the sensor
retrievals are unified to a 0.25◦ grid and daily time stamps (00:00 UTC) through a hamming-
window method and a nearest neighbor search. Then, the active estimation is retrieved
using the TU Wien Water Retrieval Package, which is a change detection method to de-
rive SM, as well as the official method to retrieve ASCAT L2 SM products [97]. Passive
estimation is generated through the land parameter retrieval model, which is a forward
model based on the radiative transfer model and has its own advantage of good frequency
compatibility and a vegetation optical depth analytical solution [98]. The Global Land Data
Assimilation System (GLDAS) Noah 2.1 was used for the active-passive combined estima-
tion by offering a consistent climatology. The combined SM was finally derived through
GLDAS Noah-based scaling, error characterization, and merging of each microwave sensor
product. For more details about the merging algorithms of ECV SM and their evolutionary
history, readers are referred to [99].

A number of studies have comprehensively and systematically evaluated the per-
formance of ECV SM and almost consistently concluded that: (1) ECV SM expresses
a good fitting degree to both ground observations and reanalysis products [100–102].
(2) The accuracy and robustness of ECV SM are steadily enhanced when the version is up-
dated [99,103]. (3) Combined products are superior to the corresponding active and passive
products [103,104]. (4) The spatiotemporal integrity and accuracy of the combined ECV SM
display similar or better performances than each single microwave sensor retrieval [22,24].

(2) SMOPS

Although the ECV SM reveals a favorable capability in depicting land surface soil
humidity conditions, the prevalent gap regions still hinder its spatial coverage integrity.
The NOAA initiated the SMOPS program in 2012, which is dedicated to creating a global
seamless SM product from accessible microwave satellite observations [105]. The first
version of SMOPS-blended SMOS, ASCAT MetOp-A, and Windsat/Coriolos generated a
6 h and daily SM simultaneously. In 2016, the upgraded version 2 product with an extended
time series introduced ASCAT MetOp-B and AMSR-2 into the system. Windsat/Coriolos
were excluded. Both SMOPS V1.0 and V2.0 were generated using the single-channel
retrieval algorithm, which could convert the brightness temperature of a single channel
to emissivity [106]. The SM estimation can then be derived through the Fresnel equation
by calculating the dielectric constant and dielectric mixing model. SMOPS V3.0, which
contained 6 h and daily (00:00 UTC) SM products with a 0.25◦ grid, was developed in 2016,
and SMAP was added to the blending system [107]. Moreover, a near real-time level-1
brightness temperature other than the officially released products was employed to satisfy
the latency requirements.

SMOPS provides an almost seamless SM across the globe with high spatial coverage,
which is a notable advantage compared to most satellite-based SM products. Small gap
areas are mainly distributed in frozen (i.e., ice, snow) or dense vegetation-covered regions.
Numerous studies have objectively assessed the quality of SMOPS and indicated that:
(1) compared to the individual satellite-retrieved SM products, SMOPS exhibits much
higher data availability; (2) the accuracy of SMOPS is continuously improved along with
updated versions; (3) ECV shows higher accuracy, whereas SMOPS has superior spatial
coverage [102,105,108].

(3) SMAP

Considering the merits of the L-band and fusion of active and passive microwave
signals, NASA launched the SMAP program in 2010, utilizing L-band radar and radiometer
instruments onboard the same spacecraft to detect surface SM conditions [66,67]. One of
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the main tasks of SMAP is to acquire an active and passive blended product to advance
SM mapping by combining its strengths. Radar signals can achieve high pixel resolution;
however, they are vulnerable to surface roughness and vegetation, which could significantly
influence signal accuracy. In contrast, radiometer signals usually have coarse resolution, but
they can be sensitive to SM and insensitive to surface roughness and vegetation. Therefore,
the combined SMAP SM was expected to be capable of accurately expressing the surface
soil water level with a relatively intermediate resolution. The brightness temperature
disaggregation and time-series methods were used in the combination process. First,
a linear relationship was established between variations in brightness temperature and
radar backscatter using time-series approaches. This relationship was then employed to
disaggregate brightness temperature. Finally, SM can be derived from the disaggregated
brightness temperature and the corresponding retrieval algorithms. The 9 km combined
SM has been validated by many scholars, and they found that it performed well in terms
of fitting degree in the forested region [109]. However, on 7 July 2015, the radar failed
irreparably after 3 months of operation. Although the time series of the combined SMAP
SM product was only 86 days, it acted as a valuable precedent for SM merging using
SMAP retrievals.

Many attempts have been made to renew the mission of generating a high-resolution
SMAP SM product, and the signal from C-band SAR onboard Sentinel-1A/1B has been
found to be an adequate substitute for the irreparable SMAP radar signal. By merging with
Sentinel-1A/1B, a high-spatial-resolution SM product at 3 and 1 km has been generated.
Meanwhile, the swath width of Sentinel-1A/1B is approximately 250 km, whereas that of
SMAP can reach 1000 km. Because of this large difference, the overlap spatial coverage of
SMAP and Sentinel is remarkably reduced, which then reduces the revisit interval from the
original 3 days to 12 days. During the fusion process, the resampled 1 km Sentinel-1A/1B
backscatter and the 9 km SMAP passive enhanced brightness temperature were input to-
gether as original data. The 1 km brightness temperature was obtained using the snapshot
retrieval approach [110] on the overlapped area. Then, the high-resolution SM can be
retrieved using the tau-omega model [111], together with the brightness temperature and
ancillary datasets. For more details about the merging approaches of the SMAP/Sentinel
SM product, readers can refer to [112]. Both 1 and 3 km resolution SMAP/Sentinel SM prod-
ucts have been validated against hundreds of in situ measurements, including dense and
sparse networks across the globe. These encouraging results suggest that SMAP/Sentinel
SM estimations could considerably match ground observations, demonstrating their capa-
bility to express soil water content with good accuracy and high resolution [112,113].

2.3. Assimilation and Reanalysis

The assimilation approach could effectively overcome the spatial scope and represen-
tativeness limitation of ground observations, overcome the depth limitation of spaceborne
microwave-derived data, and achieve complete multi-depth coverage SM with definite
physical meaning. It is efficient for the integration and improvement of SM from multiple
independent sources [114]. Hence, spatial-temporal continuous SM profile information
can be efficiently derived by assimilation systems [115,116]. The assimilation algorithm
is an important part of the entire process that connects the observed and predicted data
to optimize the estimation values. Commonly used SM assimilation methods include
step-by-step correction [117], optimal interpolation [118], variational constraints [119],
Kalman filters [120], and particle filters [121,122]. Recent studies note that deriving al-
gorithms of filtering (i.e., ensemble Kalman filter) [123,124] and variational constraints
(i.e., four-dimensional variational) [119,125] express favorable performance in estimating
model parameters. As the central part of the assimilation process, the land surface model
(LSM) simulates the physical processes occurring between the ground and atmosphere
in the exchange of matter and energy. Many LSMs, such as Noah [126], the Community
Land Model (CLM) [127], the Simple Biosphere Model [128], and the Boreal Ecosystem
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Productivity Simulator [129], are frequently employed in the assimilation of land surface
parameters (including SM).

Table 2 shows that many LSM-based SM estimations are released for various hydro-
meteorological applications. It is worth noticing that the spatial extent of many LSM-based
retrievals merely covers the specific nation or region the development organizations belong
to, which remarkably restricts their scopes of application. In comparison, GLDAS, being
one of the few global-scale assimilation systems, is well acknowledged as an eminent land
surface modeling framework to produce optimal fields of land surface states and fluxes in
near-real time across the world [130–133].

The SM profile information can also be retrieved from reanalysis approaches. The
reanalysis process takes all available observations (i.e., ground- and spaceborne-based
datasets) to calibrate the results from model running, whereas the assimilation process
refers specifically to adding observation data for correction when the physical model is
running. Many reanalysis retrievals have been released to simulate the global SM profile
information (Table 2). ERA5 has attracted extensive attention since its advent as a fifth-
generation reanalysis product of ECMWF. ERA5 is capable of generating higher spatial
resolution (9 km) and temporal resolution (1 h for every atmospheric variable) retrievals
than other reanalysis systems. In addition, it uses more satellite-based observations that are
available to optimize the output results. Previous studies have revealed that the ERA5 SM
exhibits higher skills than the other reanalysis products and a significant improvement over
its predecessor [134], which may imply a promising application prospect for the ERA5 SM.

Table 2. A brief summary of assimilated and reanalyzed SM products and their basic properties.

Type Program LSM
Assimilation

Algorithm
Spatial
Extent

Spatial
Resolution

Time
Range

Temporal
Resolu-

tion
Publisher

Detailed
Infor-

mation

Assimila-
tion

Global Land Data
Assimilation

System (GLDAS)

Mosaic,
CLM, Noah

Ensemble Kalman
filter, extended
Kalman filter,

optimal
interpolation

global
0.25◦ ×

0.25◦ , 1◦ ×
1◦

1948.1.1
ongoing

3 h, 1 day,
1 month NASA GSFC [130]

North American
Land Data

Assimilation
System (NLDAS)

Mosaic,
CLM, Noah

Ensemble Kalman
filter, extended
Kalman filter,

optimal
interpolation

67◦W–
125◦W,
25◦N–
53◦N

0.125◦ ×
0.125◦

1979.1.1
ongoing

1 h, 1
month NASA GSFC [135,

136]

European Land
Data Assimilation
System (ELDAS)

Lokal
Modell,

ISBA and
TERRA,
TESSEL

Four-dimensional
variational, Kalman

filter, optimal
interpolation

15◦W–
38◦E,
35◦N–
72◦N

0.2◦ × 0.2◦ ,
1◦ × 1◦

1999.10–
2000.12 3 h, 1 day

The
European
Centre for
Medium-

Range
Weather
Forecasts
(ECMWF)

[137,
138]

CMA Land Data
Assimilation

System (CLDAS)

The
Common

Land Model,
CLM, Noah

Three-dimensional
variational, optimal

interpolation

60◦E–
160◦E,

0–65◦N

0.0625◦ ×
0.0625◦

2012.1.1
ongoing 3 h, 1 day CMA [139,

140]

Satellite
Application Facility

on Support to
Operational

Hydrology and
Water Management

(H SAF)

The
Hydrology

Tiled
ECMWF

Scheme for
Surface

Exchanges
over Land

Four-dimensional
variational Global

1 km × 1 km;
12.5 km ×
12.5 km;

25 km × 25
km;

2005
ongoing 1 day

European
Organiza-

tion for the
Exploitation
of Meteoro-

logical
Satellites
(EUMET-

SAT)

[26,141]

The National
Centers for

Environmental
Prediction/the

National Center for
Atmospheric

Research
(NCEP/NCAR)

The
T62/28-level
NCEP global
operational

spectral
model

Three-dimensional
variational,

four-dimensional
variational, optimal

interpolation, SSI

Global 2.5◦ × 2.5◦ 1948.1.1
ongoing

6 h, 1 day,
1 month

The NOAA
Earth

System
Research

Laboratory
Physical
Sciences

Laboratory

[142,
143]
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Table 2. Cont.

Type Program LSM
Assimilation

Algorithm
Spatial
Extent

Spatial
Resolution

Time
Range

Temporal
Resolu-

tion
Publisher

Detailed
Infor-

mation

Reanalysis

NCEP Climate
Forecast System

Reanalysis (CFSR)

NCEP
Coupled
Climate
Forecast
System

Dynamical
Model, the
Seasonal
Forecast
Model

Three-dimensional
variational, GSI Global 0.5◦ × 0.5◦ ,

2.5◦ × 2.5◦
1979.1.1–
2011.3.31

1 h, 6 h, 1
month

The NOAA
National

Centers for
Environmen-

tal
Information

[144]

ECMWF Reanalysis
v5 (ERA5)

Land-
surface
model

(HTESSEL),
ocean wave

model

Four-dimensional
variational Global 9 × 9 km2,

30 × 30 km2
1950.1

ongoing
1 h, 1 day,
1 month ECMWF [145,

146]

Modern Era
Retrospective-
Analysis for

Research and
Applications

(MERRA)

The GEOS-5
atmospheric

general
circulation

model

Three-dimensional
variational,

Gridpoint Statistical
Interpolation (GSI)

Global

1/2◦ × 2/3◦ ,
1.25◦ ×

1.25◦ , 1◦ ×
1.25◦

1979–
2016.2

1 h, 3 h, 6
h NASA GSFC [147]

the Japan
Meteorological
Agency (JMA)

MRI/NPD
unified non-
hydrostatic

model

Four-dimensional
variational Global 10 × 10 km2 1958–2013 6 h, 1 day

The Japan
Meteorologi-

cal
Agency

[148]

CMA Reanalysis
(CRA) Noah

EnKF,
three-dimensional

variational
Global ~34 × 34

km2 1979–2018 6 h CMA [149,
150]

2.4. Machine Learning

Recently, machine learning techniques have demonstrated great potential for simu-
lating patterns and gaining insights into Earth’s systems from scientific data. Machine-
learning-based approaches exhibit notable competence in the simulation of nonlinear
complex mapping relationships, such as SM. Machine learning algorithms are currently
employed in SM estimation studies [151,152]. In terms of the different scale transition
processes, the simulation can be divided into gap filling, downscaling, and upscaling
(Figure 2). Gap filling means no scale transition during the entire simulation process, and
the output estimations are dedicated to filling the gaps in the original SM products to
improve spatial completeness. Great efforts have been made to downscale fields to acquire
high pixel resolution SM estimations, which could depict regional SM spatial heterogeneity
in detail and then be applied in the agricultural sector at the field scale. Comparatively,
upscaling is usually dedicated to transferring point-scale in situ measurements to pixel-
scale estimations, retrieving spatially continuous and representative SM products. Table 3
introduces the application of machine-learning methods to improve the performance of
SM products. Meanwhile, an increasing number of published papers clearly state that
machine-learning-based SM research is becoming a hot topic at present.

2.4.1. Traditional Machine Learning

Because of their greater ability in nonlinear and complex relationship simulations
than traditional statistical regression methods, considerable attention has been devoted
to using machine learning methodologies for enhancing SM products [7]. As shown in
Table 3, several approaches, such as artificial neural networks (ANN), Bayesian, classifica-
tion and regression trees (CART), extreme gradient boost (XGB), gradient boost decision
trees (GBDT), K-nearest neighbor (KNN), random forest (RF), and support vector ma-
chine (SVM), are employed for both regional and global SM mapping [9,14,17,152–155].
Liu et al. [14] systematically compared the performance of six traditional machine learning
approaches in surface SM downscaling from 0.25◦ to 1 km in four case study areas with
different climates and land cover types. The results showed that the multi-regression
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tree-based RF achieved high performance with high goodness of fit and low regression
bias, whereas the downscaled data from the ANN, CART, and SVM models occasionally
showed abnormal values. Among the different case study regions, it was found that regions
located in a single climate zone, with mild topographic variation and medium vegetation
coverage tended to produce high-accuracy results. The contribution of each explanatory
variable varied remarkably across the case study regions owing to their diverse complex
hydrothermal and physical geographical conditions. On this basis, Liu et al. [154] further
explored the capability of multiple regression tree-based machine learning algorithms to
explicitly illuminate their characteristics in multi-scale surface SM disaggregation. Through
inter-comparison among RF, GBDT, XGB, and CART, it was suggested that the best result
was derived from GBDT in grasslands with a high correlation coefficient and low error,
and both RF and XGB achieved favorable performances as well. Additionally, XGB was
applied in multi-layer high-resolution SM estimation over the United States, and the down-
scaled SM favorably captured the temporal dynamics of in situ measurements with high
accuracy [156]. The RF model was employed in a spatiotemporally continuous surface SM
downscaling process at a field scale of 30 m resolution and displayed good performance in
generating accurate SM estimations [9]. The GBDT algorithm was used for SM downscaling
over the Tibetan Plateau and effectively improved the resolution of the SMAP SM from 36
to 1 km. High-resolution SM can preserve the accuracy of the original SMAP and express
detailed spatial SM variability simultaneously [157]. Apart from the abovementioned
studies, there is a host of research using multi-regression tree-derived machine learning
methods to improve the resolution and spatial-temporal continuity of SM [65,158–161].

Figure 2. Flowchart of SM simulation using machine learning algorithms.

In general, great efforts have been made to clarify the performance of each member of
the huge machine-learning family in simulating SM across various underlying surfaces.
Among the numerous methodologies, multi-regression tree-derived approaches, such as
RF, XGB, and GBDT, have revealed favorable capabilities in simulating and reconstructing
SM products with good accuracy and fitting degree. Thus, this finding provides important
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guidance for the selection of machine learning methods in SM regression. Feature extraction,
as a critical pre-processing step, could be very important in decreasing dimensionality
and redundancy, increasing learning accuracy, and improving the understandability of
results. However, for traditional machine-learning algorithms, the feature extraction
and model training processes of classical machine-learning methods are two separate
processes. The extracted features are used directly in subsequent calculations without any
return adjustment, which results in error propagation. Under the joint action of climatic
and human factors, the pattern of SM presents spatial-temporal distribution regularities.
Classical machine learning methods only support the input of sample data in the form of
discretization and rarely exploit the spatial-temporal dependencies of samples [162].

2.4.2. Deep Learning

In comparison, deep learning techniques are capable of constructing multi-layer neural
networks by simulating the mechanism of the human brain, automatically extracting the
spatial-temporal features of data, and then conducting spatial-temporal modeling and
prediction based on deep understanding and mining [163–165]. Deep-learning methods
can behave much better in learning high-dimensional features than classical machine-
learning methods. A series of studies and applications have been carried out in the field of
spatial data mining using deep learning methods, and relatively ideal results have been
achieved in recent years [162]. Deep learning shows good potential for texture extraction
and reconstruction. As presented in Table 3, many scholars have attempted to retrieve
qualified SM estimations through deep learning algorithms, such as convolutional neural
networks (CNN), gated recurrent units (GRU), long short-term memory (LSTM), deep
feedforward neural networks (DFNN), and H2O models. Liu et al. [166] designed a novel
LSTM-based multi-scale scheme for estimating surface SM by integrating remotely sensed
data and in situ measurements over the United States. The model directly learned spatial-
temporal patterns from in situ measurements, and the derived 9 km SM presented better
accuracy than the 9 km products of the SMAP mission. This upscaling study revealed the
significance of ground observations despite the availability of numerous satellite-retrieved
products. Li et al. [167] tested the performance of CNN, LSTM, and ConvLSTM (a model
integrating the merits of CNN and LSTM) in improving SMAP SM over China. The
ERA5 SM information was transferred to SMAP to improve the prediction accuracy. The
results illustrate that ConvLSTM outperformed CNN and LSTM in terms of a higher fitting
degree and lower error. The transfer-based models exhibited better accuracy than the
models without transfer learning, except in winter. ConvLSTM, combined with a physical
model, was applied to estimate root-zone SM [168]. The GLDAS SM products were used
as prediction data, and the spatiotemporal continuous root-zone SM derived from the
physical model and in situ measurements were treated as target data. The estimated SM
achieved high fitting coefficients compared with the original GLDAS SM, especially for the
deep layers. Zhao et al. [169] investigated the capability of the deep belief network (DBN),
improved DBN model, and residual network (ResNet) model in SM downscaling on the
Tibetan Plateau. It was shown that the deep learning models had the advantage of fitting
detailed SM texture patterns compared with RF. Compared to the DBN models, ResNet
displayed an extraordinary ability to learn and simulate SM textures with high robustness.

The results and conclusions of these studies indicate that deep learning methods
are suitable for SM simulations. Further, the well-designed deep learning model could
outperform RF in SM estimation, suggesting the huge potential of deep learning methods
in improving the quality of SM. The multiple deep learning algorithm-fused model usually
behaved better than the single ones. In addition, because there are a number of algorithms
inside the deep learning framework, more deep learning method-based explorations are
necessary to determine comparatively eminent algorithms for SM estimation.
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3. Applications

SM is a sensitive component of the Earth system that interacts with the atmosphere and
Earth’s surface at every moment. Although the in situ measured SM can precisely reflect the
soil water content, the confined extent and point-scale value remarkably restrict its applica-
bility. Moreover, the original remotely sensed SM can hardly provide high-resolution and
spatial-temporal continuous SM records because of the inherent limitations of spaceborne
microwave sensors. Comparatively, advanced SM products provide unprecedented oppor-
tunities for deriving datasets with improved spatial coverage, multi-depth information,
high resolution, and extended time sequence from the 1950s to future scenarios. These
multi-model improved SM products are broadly applied to advance the understanding
of Earth system processes, which mainly include drought monitoring, climate change,
hydrology, and ecology.

3.1. Drought Monitoring

Drought is usually induced by a deficiency of precipitation and excess ET, which
jointly cause varying degrees of decline in SM. As drought can seriously affect crop growth
and yield, agricultural departments have always attached great importance to real-time
drought monitoring. Therefore, a wide variety of studies have explored the potential of
SM for drought monitoring. First, for regions renowned for their advanced plant product
industries, more ground stations could be arranged in cropland when establishing SM
networks [18,179,180]. This arrangement style reflects the emphasis attached to cultivation-
related drought monitoring by acquiring multi-depth SM recordings in real-time. Second,
in regional- or national-scale drought forecasting studies, both in situ measurements and
raster SM estimations are employed simultaneously to ensure data accuracy and spatial
coverage [181–183]. Third, coarse-resolution SM products, retrieved from spaceborne sen-
sors or LSMs, are mainly utilized for depicting large-scale (i.e., continental, global) drought
characteristics [16,184]. In these studies, SM and other related auxiliary components, such
as vegetation fraction, temperature, and precipitation, were used together in drought appli-
cations. These variables are co-converted to representative indices, such as the SM drought
index [183], soil water deficit index [182], SM use efficiency [184], perpendicular drought
index [16], modified perpendicular drought index [181], and enhanced combined drought
index [185], to comprehensively indicate the duration, trend, intensity, and severity of
drought conditions.

3.2. Climate Change

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change
was released in 2021 [186]. This unequivocally revealed a serious warning of unprece-
dented warming trends and increasingly frequent extreme weather events. Because every
component inside the climate system constantly interacts with each other, the spatial and
temporal patterns of SM are derived from the combined actions of all members. Con-
sequently, SM products based on spaceborne sensors and LSMs have been widely used
in climate-variability experiments and analyses. Dorigo et al. [187] evaluated the global
trend in harmonized multi-satellite surface SM from 1988 to 2010 and found drying and
wetting trends in different regions. Qiu et al. [188] compared the performance of satellite-
and reanalysis-based SM products. The two types of products exhibit coincident patterns
in non-irrigated areas. Moreover, the discrepancy was mainly induced by artificial in-
terference such as irrigation and harvest. On the basis of ECV SM v4.2, Pan et al. [189]
conducted seasonal and annual scale analysis, and the results revealed that “wet seasons
get wetter, and dry seasons get dryer,” proving the gradual extremity tendency. In addition
to analyzing the evolutionary features of SM, integrated climate variability studies were
carried out in terms of interactions and feedbacks between ET, temperature, precipitation,
and SM [190–192].
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3.3. Hydrology

SM plays an important role in the circulation of land–atmosphere hydrology and
energy balance. It could “remember” exceptional signals from the land–atmosphere system
and provide effective feedback to other components of the cycle, such as ET, precipitation,
underground water, and runoff [193]. The Food and Agriculture Organization of the
United Nations Irrigation and Drainage Paper No. 56 on crop Evapotranspiration listed
SM availability as a key factor that could influence crop ET estimation [194]. Allam
et al. [195] estimated evaporation over the upper Blue Nile Basin and used least-squares
data assimilation methods to estimate soil water storage. SM datasets from the ECV,
Climate Prediction Center, and Gravity Recovery and Climate Experiment terrestrial water
storage were considered essential inputs during the assimilation procedure. The Global
Land Evaporation Amsterdam Model v3 uses SM products retrieved from both spaceborne
sensors (ECV and SMOS) and LSM (GLDAS Noah) to estimate terrestrial evaporation [196].
Previous studies have suggested a strong coupling between precipitation and SM [197,198].
By inverting the soil–water balance equation, an SM2RAIN algorithm was developed and
used to estimate basin- and global-scale precipitation with satisfactory accuracy using in
situ and satellite SM observations [199,200]. Swenson et al. [201] detected groundwater
variability using in situ measurements in Oklahoma, U.S., and a time series of groundwater
anomalies was successfully acquired after removing SM variability in the unsaturated
zone. Additionally, remotely sensed SM has been proven capable of efficiently calibrating
groundwater-land surface models [202]. Moreover, it is widely acknowledged that the
spatial variability of SM and soil properties may have a dominant and complex impact
on runoff in terms of changing storm size [203]. Therefore, multi-source SM products are
widely utilized in advancing runoff models to help set the initial conditions and reduce
prediction uncertainties [204,205].

3.4. Ecology

SM is a crucial regulator of the basic processes in terrestrial ecosystems. Its variability
can remarkably impact the operational patterns of terrestrial ecosystems. SM can directly
influence photosynthesis and the net primary productivity (NPP) of ecosystems by affecting
the occurrence, intensity, and duration of vegetation water stress [96,206]. In addition, both
nitrogen and carbon cycles are tightly linked to soil water movement [207]. Therefore, SM
plays a significant role in ecosystem processes. Reich et al. [208] explicitly demonstrated
the effect of SM on photosynthesis using in situ measurements. The results assumed
that low SM may limit photosynthesis in boreal tree species during the growing season,
despite warming temperatures. The impact of drought on NPP variability on a global
scale was investigated, and a strong positive relationship between available moisture and
NPP in arid and seasonally dry regions was demonstrated [209]. The SM balance was
calculated using the Carnegie-Ames-Stanford approach and then converted to a water
stress factor to express its impact on the NPP. In addition, dozens of global NPP estimation
models have treated multi-depth SM (ranging from 0 to 2.5 m) as an important input
parameter [210]. Li et al. [207] analyzed SM and other supplementary datasets from 1980 to
2015 in China’s dryland derived from TerraClimate [211]. They found that water and soil
conservation projects, such as reforestation, evidently increased the net primary production.
However, SM continuously decreased, suggesting that the existing ecosystem was unlikely
to be sustained. Satellite-derived SM together with related environmental drivers were
employed to analyze the evaporation decline in the U.S. from 1961 to 2014, and a significant
evaporation decrease of approximately 6% was detected [212].

4. Outlook

This study provides a brief introduction to the main types, deriving methodologies,
quality-improving techniques, and applications of multi-source SM products. Generally,
through development for more than half a century, great contributions and advancements
have been made in SM acquisition and employment. However, to persistently enhance the
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performance and applicability of SM products, there is still a long way to go. Based on this
review, we propose the following research priorities for future SM estimations.

4.1. Improved Spatial Coverage

Many studies employing SM as a key analysis object used seamless products to ensure
complete coverage of the study area. Fortunately, assimilation- and reanalysis-based SM
estimations have already overcome this problem in terms of the strength of numerous
hydrological models. However, gap regions are prevalent for remotely sensed data. Owing
to the limitation of microwave penetration, spaceborne sensors are unable to detect signals
in frozen or dense vegetation (≥5 kg/m2)-covered regions. However, it is crucial to access
spatial-temporal continuous SM over forests, which would enhance the understanding of
the mechanisms by which forest structure affects soil water conditions. Forests have a sig-
nificant impact on water movement in nature as well as the regulation of SM, precipitation,
evaporation, runoff, and hydrological cycles. Unexpected RFI typically result in exceptional
values. Moreover, the rotation difference between the satellite and the Earth could result in
a strip-gap region. Hence, it is necessary to explore the capability of gap-filling methods
(i.e., classical statistical algorithms and artificial approaches) and determine an adequate
method to update the present products on the values of gap regions [72,171]. Data fusion
is also an effective approach for improving spatial integrity by blending the quantities
of qualified SM information. For example, the multi-source information-merged ECV
and SMOPS SM products show an evidently higher coverage percentage than the single
sensor-derived ones [102].

4.2. Higher Spatial Resolution

Compared to coarse-resolution SM products, fine-resolution SM products can be
more appropriate for landscape scale, watershed scale, and field scale applications; for
instance, hydrological simulation over the scale of drainage basins or SM spatial variability
analysis on a field scale. Many studies have been conducted on SM downscaling using
statistical models, data fusion, assimilation, and machine-learning algorithms. These works
obtained good results by integrating high-resolution ancillary data collections from MODIS,
Landsat, and Sentinel [11,14,113,176]. Moreover, machine learning approaches have notable
advantages in terms of simplicity, efficiency, and competence. It was found that the multi-
regression tree-based models could accurately reproduce SM with a downscaled resolution;
however, these models did not consider spatial texture features. Comparatively, the advent
of deep learning techniques provides an unparalleled opportunity for the simulation of
spatially autocorrelated objects, such as SM. Therefore, it would be beneficial to develop
a suitable model to estimate SM among the large deep-learning family [162]. In addition,
high-resolution land surface observations from well-known optical sensors and SAR could
serve as qualified explanatory variables for SM downscaling to hundreds or even dozens
of meter grids [17,213].

4.3. Longer Time Span

It can be beneficial to analyze evolutionary trends over decades or even hundreds of
years in climate change fields to capture the laws of climate origination and evolution. Thus,
it is valuable that the time span of SM datasets can be continuously prolonged. Both satellite-
based and assimilated SM products begin when the corresponding observation programs
begin. For the sake of continuous acquisition of SM data, on the one hand, observations
in existence should be maintained and ensured to work properly; on the other hand, new
ground networks and satellites to provide continuous monitoring of SM are indispensable
for extending time series. For instance, the National Satellite Meteorological Center of
China launched the FY-3E satellite on 5th July 2021, which is dedicated to networking
with FY-3C and FY-3D in orbit to observe SM and other meteorological parameters [214].
Additionally, forecasting SM with the help of future scenarios and hydrologic models could
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also provide access to acquire SM predictions, which may favor the investigation of future
climate variations [190,215].

4.4. Higher Temporal Resolution

In addition to pursuing a high spatial resolution, improving the frequency would
also be a key research priority for future SM products. Hourly monitoring data can be of
great benefit in investigating subtle SM fluctuations induced by artificial irrigation, rainfall,
and ET within a day, which is valuable for agricultural and land–atmosphere interaction
applications [195,199,200,216]. At present, both in situ measurements and LSMs are capable
of providing sub-hourly and sub-daily observations. Additionally, the SMAP publishes
three-hourly surface and root zone SM estimates with ~2.5-day latency, which are derived
from the assimilation of both ascending and descending brightness temperature data into
the catchment LSM [217]. It is suggested that LSM is an effective and promising approach
for generating high temporal resolution SM estimates. Furthermore, with an increasing
number of satellites launched with different transit moments from each other, it would be
promising to acquire observations more and more times per day across the globe [214].

4.5. Shorter Time Latency

It is imperative to access real-time or near-real-time SM recordings to conduct drought
monitoring and early flood warning. Croplands also have high timeliness requirements
for SM product availability to arrange irrigation or drainage without delay. In situ mea-
surement data can be quickly collected through sensors and the internet. However, in
terms of remotely sensed and assimilated products, there is always a latency of dozens
of hours. For instance, the SMOPS data latency for 6-h products is 3 h and that for daily
products is 6 h. The SMAP data latency for available data products is as follows: (1) Level
1 products, within 12 h of acquisition; (2) Level 2 products, within 24 h of acquisition;
(3) Level 3 products, within 50 h of acquisition; and (4) Level 4 products, within 7 days
for SM [129]. ERA5 is continuously updated with a latency of approximately 5 days [145].
Consequently, there is an urgent need to accelerate and optimize the processes of data
transmission, algorithm operation, and data distribution, which should include, but not be
limited to, the improvement of related equipment, techniques, and methodologies.

4.6. Developing Multi-Depth Products

Land surface and root-zone SM recordings are of equal importance for advancing the
understanding of Earth’s system processes. Furthermore, root-zone SM counts more than
top-layer SM in vegetation growth. It is critical to develop multi-depth SM products to com-
prehensively master the soil wetness profile. In situ measurements can detect multi-depth
SM using probes at different depths [18]. Assimilation- and reanalysis-based products
can effectively describe soil water movement and then generate root-zone SM estimates
to fulfill the requirements of considerably progressing hydrological and agricultural ap-
plications [145]. In addition, satellite-based programs have started to produce root-zone
values through a data assimilation system. For instance, the SMAP project integrates its
own observations with complementary information into an LSM and produces 3 h and
9 km surface (0–5 cm) and root-zone (0–100 cm) SM estimations through both spatial and
temporal interpolations and extrapolations [66,218]. The ECV program also initiated a
program to develop root-zone SM products using Noah-MP and ISBA LSMs, which are
dedicated to linking vegetation phenology and biomass carbon allocation to moisture
availability in the soil.

4.7. Higher Data Accuracy

Significant efforts have been devoted to reducing errors to continuously close the gap
between SM estimations and real SM conditions. In a previous study, ground probes were
periodically calibrated and maintained to ensure their operation under good conditions [18].
AMSR-2 retrieves SM using an X-band signal and applies a neighboring C-band to escape

219



Remote Sens. 2022, 14, 3741

RFI [58]. The SMAP program designed effective L-band SM detection sensors together
with advanced anti-RFI devices and improved algorithms to detect and remove harmful
interference in the L-band [68,219]. A series of developments in model physics, core
dynamics, and data assimilation have been steadily achieved, which have contributed
to significant improvements in SM consistency [145]. Despite this progress, there is still
considerable room to pursue higher accuracy. Artificial intelligence-driven algorithms
display great potential for simulating the SM model. Increasing SM datasets will become
available as more ground networks and satellite programs are being planned. A significant
benefit can be expected from combining these advanced technologies and datasets.

4.8. Better Model Performance and Interpretability

In recent decades, numerous models have been built and updated to estimate SM,
and the overall quality of the corresponding products has been evidently enhanced. Tra-
ditional physical models are widely employed in spaceborne and assimilation systems to
retrieve SM. These sophisticated and exquisite models are carefully designed and theo-
retically interpretable [145,146]. In comparison, artificial intelligence-driven approaches,
especially the deep learning family, exhibit outstanding capabilities in SM regression and
prediction [17,162]. In addition, they have the advantages of being highly efficient, simple,
and convenient. However, their inner operational mechanisms are difficult to explain.
Consequently, it could be favorable to develop hybrid models by combining physical and
artificial intelligence methods, which would be able to exploit the strengths and discard
the weaknesses of both methods. The hybrid model is expected to improve both model
performance and interpretability.

5. Conclusions

Much attention has been paid to SM monitoring since ancient times. Before the ex-
istence of modern technology and equipment, subjective perceptions were prevalently
employed to detect local SM conditions for proper irrigation arrangements. With the
emergence of advanced probes, spaceborne sensors, and algorithms, spatial-temporal
continuous SM records are becoming increasingly easily available. Because SM plays an
important role in the land–atmosphere interaction system, vast amounts of multi-source SM
datasets have been utilized in numerous studies on drought monitoring, climate change,
ecology, and hydrology. However, the current status and characteristics of SM estimates
should be clarified before they can be used in practical applications. The review of SM has
generally been limited to certain retrieval algorithms, scale-conversion techniques, or appli-
cations. Therefore, there is an urgent need for a relatively comprehensive demonstration of
advances in the quality of global SM products.

In this study, we introduce the primary retrieval methodologies of SM and the current
approaches used to enhance the quality of SM products. Owing to the complex driving
mechanism of its spatial-temporal distribution and evolution, great efforts have been made
to advance retrieval methods. Numerous statistics, data fusion, assimilation, and machine
learning-based approaches have been continuously designed and improved to enhance the
reliability (including spatial-temporal completeness, resolution, and accuracy) of retrieved
SM products. Although some of the established models are explainable, whereas others
remain unexplainable in mechanism, they basically give renewed impetus to advancing the
quality of SM estimations. In addition, a large quantity of SM-related original datasets and
land–atmosphere parameters collected from different sensors, bands, and time nodes have
been taken as ancillary references during the retrieval process to promote the reasonability
of the response of SM to land–atmosphere variation.

Despite the steady progress in SM estimation models, there is still a large margin for
improvement, such as pursuing higher spatial coverage, finer spatial resolution, longer
time span, higher temporal resolution, shorter time latency, multi-depth products, higher
data accuracy, and better model performance and interpretability. Moreover, it is critical
to propose targeted solutions to mitigate the influences of various vegetation canopies
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and human activity interference, which could fundamentally improve the accuracy of
spaceborne received signals and retrieved SM.

This review is expected to provide a reference for understanding the advances achieved
in global SM estimation in terms of different approaches. Although many previous studies
are referred to in this review, it could be difficult to include all publications on this topic.
More complete research is necessary to contribute to the generalization of studies focused
on SM in the future.
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AMSR-2 the Advanced Microwave Scanning Radiometer 2
AMSR-E the Advanced Microwave Scanning Radiometer for the Earth observing system
ANN Artificial Neural Network
ASCAT MetOp-A the Advanced Scatterometer on MetOp-A
ASCAT MetOp-B the Advanced Scatterometer on MetOp-B
CART Classification and Regression Trees
CFSR the NCEP Climate Forecast System Reanalysis
CLDAS the CMA Land Data Assimilation System
CMA China Meteorological Administration
CRA the CMA Reanalysis
CLM the Community Land Model
CNN Convolutional Neural Network
CYGNSS Cyclone Global Navigation Satellite System
DEM Digital Elevation Model
DBN Deep Belief Network
DFNN Deep Feedforward Neural Network
DISPATCH Disaggregation based on physical and theoretical scale change
ECV SM the Essential Climate Variable Soil Moisture
ECMWF the European Centre for Medium-Range Weather Forecasts
ELDAS the European Land Data Assimilation System
ENVISAT the Environmental Satellite
ERA5 the ECMWF Reanalysis v5
ERS-1 the European Remote-Sensing Satellite-1
ERS-2 the European Remote-Sensing Satellite-2
ESA the European Space Agency
ET Evapotranspiration
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
EVI enhanced vegetation index
FY-3B FengYun-3B
FY-3C FengYun-3C
GBDT Gradient Boost Decision Tree
GLDAS the Global Land Data Assimilation System
GPM GMI the Global Precipitation Measurement Microwave Imager
GRU Gated Recurrent Unit
GSFC Goddard Space Flight Center
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H SAF
Satellite Application Facility on Support to Operational Hydrology and Water
Management

ISMN the International Soil Moisture Network
JMA the Japan Meteorological Agency
KNN K Nearest Neighbor
LSM the Land Surface Model
LST land surface temperature
LSTM Long Short Term Memory
MERRA the Modern Era Retrospective-Analysis for Research and Applications
MODIS the Moderate Resolution Imaging Spectroradiometer

NCEP/NCAR
the National Centers for Environmental Prediction/the National Center for
Atmospheric Research

NDVI Normalized Difference Vegetation Index
NLDAS the North American Land Data Assimilation System
NPP Net Primary Productivity
NSIDC the National Snow and Ice Data Center
ResNet Residual Network
RF Random Forest
RFI Radio Frequency Interference
SAR Synthetic Aperture Radar
SAVI Soil Adjusted Vegetation Index
SEE the Soil Evaporative Efficiency
SM Soil Moisture
SMMR the Scanning Multichannel Microwave Radiometer
SMAP the Soil Moisture Active Passive
SMOPS the Soil Moisture Operational Product System
SMOS the Soil Moisture and Ocean Salinity
SSM/I the Special Sensor Microwave Imager
ST Soil Temperature
SVM Support Vector Machine
Tri the Triangular-Based Method
TRMM TMI the Tropical Rainfall Measuring Mission Microwave Imager
TVDI Temperature Vegetation Drought Index
UTC Coordinated Universal Time
XGB Extreme Gradient Boost
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