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Preface

Acoustic sensors have an extremely wide range of applications in many fields, including

underwater acoustics, architectural acoustics, engineering acoustics, physical acoustics,

environmental acoustics, psychoacoustics, and so on. The signals collected by high-sensitivity

acoustic sensors contain a large amount of valid information that facilitates further processing of the

collected acoustic signals. In particular, detection and feature extraction, as two important measures

of acoustic sensor signal processing, can capture more information regarding the target and extract

features with separability.

Yuxing Li and Luca Fredianelli

Editors
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Detection and Feature Extraction in Acoustic Sensor Signals
Yuxing Li 1,2,* and Luca Fredianelli 3

1 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
2 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing,
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luca.fredianelli@cnr.it
* Correspondence: liyuxing@xaut.edu.cn

Our advances in detection and feature extraction in the processing of acoustic signals
allow us to capture more information about a target and extract features with separability.
Various trends suggest that detection and feature extraction play increasingly important
roles in the processing of acoustic sensor signals. The eleven papers in this Special Issue
and an Editorial signed by the book’s Editors cover a number of important topics and
innovative approaches towards acoustic transducer signal processing, providing valuable
techniques and ideas for related research.

The first work [1] in this volume focuses on seafloor Scholte waves. The authors
proposed a method to detect these waves in an acoustic pressure field and found it to be
effective even with sediment layers present. This study is important for understanding
and detecting seafloor Scholte waves, and it provides valuable techniques for researching
acoustic wave propagation in marine environments.

In reference [2], the authors proposed a deep learning hydroacoustic recognition
method using the channel attention mechanism to address the issue of Doppler frequency
shift in underwater targets caused by their motion speed and trajectory. The experimental
results reveal that this method has significant advantages over other methods.

For conduit ranging and temperature measurements, the authors proposed an acous-
tic time-of-flight (TOF) estimation method based on digital lock-in filtering (DLF). The
experimental results show the effectiveness of the proposed DLF method under different
tube length and temperature conditions. The method has higher accuracy and robustness
compared to conventional methods [3].

The fourth study proposes a delay estimation optimisation algorithm based on SVD
and improved GCC-PHAT-ργ for efficient delay estimation under low signal-to-noise ratio
conditions. The algorithm improves the signal quality via noise reduction and weighting
methods and determines the delay difference using peak detection. The experiments
confirmed that the algorithm significantly improved the delay estimation accuracy under a
low signal-to-noise ratio with excellent performance [4].

Ascari, et al. [5] described methods to assess the effectiveness of low-noise pavements:
the Close Proximity Index (CPX) methods allows measure noise near the wheels through
sensors, while the Sound Pass-By (SPB) solves the problem through real-time events and
roadside data feature extraction. The authors proposed a methodology improvement
with the U-SPB, allowing to evaluate low-noise pavements in urban areas through unat-
tended measurements and laboratory procedures. It considers long-term noise levels and
traffic parameters.

Reference [6] describes the application of a partially updated adaptive algorithm PU
to an extremely demanding structural active noise control ANC system to achieve global
noise reduction and save computational power. The study discusses an improvement in the
ANC system using the PU algorithm and verifies its high performance in the laboratory.
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The seventh paper [7] proposes an FrFB-based inverse convolution beamforming
method to improve the spatial resolution of DOA estimation by converting the signal to
fractional-order Fourier domain via fractional-order Fourier transform, followed by delay
and beamforming. The experimental results show that the method has higher resolution at
low signal-to-noise ratios.

This study presents a new rolling bearing fault diagnosis method using dual-optimisation
of WSO-HSlopEn and WSO-SVM [8]. By introducing HSlopEn as a new feature and dual-
optimisation HSlopEn and SVM using WSO, the method demonstrates a high fault recognition
rate in both single and multi-feature cases. The highest recognition rate is up to 100% [8].

For composite fault diagnosis of metro traction motor bearings, the authors used
multi-signal fusion, MTF and optimised ResNet to improve both accuracy and effectiveness
under complex working conditions. The method is able to extract the composite fault
features under complex working conditions and improve the diagnostic accuracy and
efficiency [9].

In the tenth [10] study presented in this paper, the authors proposed an adaptive
parametric bearing fault detection method. By improving the grey wolf optimisation
algorithm and optimising the structural parameters of the multi-stable stochastic resonance,
the effective detection of bearing fault signals was achieved.

In order to improve the estimation accuracy problem of the cost reference particle filter
(CRPF), the authors proposed an intelligent cost reference particle filtering algorithm based
on multiple swarm co-operation. The simulation results show that the method has lower
RMSE and MAE, reduces sensitivity to the initial values of the particles and improves the
diversity of particles during resampling [11].

Conflicts of Interest: The authors declare no conflict of interest.
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An Intelligent Cost-Reference Particle Filter with Resampling
of Multi-Population Cooperation
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Abstract: Although the cost-reference particle filter (CRPF) has a good advantage in solving the state
estimation problem with unknown noise statistical characteristics, its estimation accuracy is still
affected by the lack of particle diversity and sensitivity to the particles’ initial value. In order to solve
these problems of the CRPF, this paper proposed an intelligent cost-reference particle filter algorithm
based on multi-population cooperation. A multi-population cooperative resampling strategy based
on ring structure was designed. The particles were divided into multiple independent populations
upon initialization, and each population generated particles with a different initial distribution. The
particles in each population were divided into three different particle sets with high, medium and
low weights by the golden section ratio according to the weight. The particle sets with high and
medium weights were retained. Then, a cooperative strategy based on Gaussian mutation was
designed to resample the low-weight particle set of each population. The high-weight particles of the
previous population in the ring structure were randomly selected for Gaussian mutation to replace
the low-weight particles in the current population. The low-weight particles of all populations were
resampled in turn. The simulation results show that the intelligent CRPF based on multi-population
cooperation proposed in this paper can reduce the sensitivity of the CRPF to the particles’ initial value
and improve the particle diversity in resampling. Compared with the general CRPF and intelligent
CRPF with adaptive MH resampling (MH-CRPF), the RMSE and MAE of the proposed method
are lower.

Keywords: state estimation; unknown statistical characteristics of noise; cost-reference particle filter;
multi-population cooperation; intelligent resample; Gaussian mutation

1. Introduction

State estimation has interested scholars around the world for a long time. It is an
important problem in the fields of parameter detection, automatic control, fault diagnosis
and navigation guidance [1–3]. A particle filter (PF) is a recursive Bayesian estimation
method based on the Monte Carlo idea. This method approximates the posterior probability
distribution of the system by sampling a large number of particles (random samples).
The weighted sum of these particles is used instead of the high-dimensional integral for
system state estimation. Due to its good solving ability for nonlinear non-Gaussian systems,
the application scope of filtering technology in state estimation is greatly expanded [4–6].
However, the particle filter and its improved algorithms can only obtain good filtering
results when the statistical characteristics of the process noise and measurement noise are
known [7]. In practical applications, such as the growth of single-crystal silicon by the
Czochralski method and the prediction of lithium–ion’s remaining lifetime, the system state
measured by the sensor contains noise. Due to the interference of some variable factors
or the external environment, the noise statistical characteristics are difficult to identify.
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The standard particle filter may reduce the accuracy of state estimation, which affects the
analysis and control of the system [8]. In view of the fact that the statistical characteristics
of the noise are unknown, the cost-reference particle filter (CRPF) was proposed for the first
time [9]. This method does not need to know the statistical characteristics of process noise
and measurement noise [10]. It calculates the weight of each particle by a self-defined cost
function and risk function, and then resamples according to the weight. Finally, the system
state is approximated by the set of resampled particles. Since the cost-reference particle filter
does not need to know the statistical characteristics of the noise, it has been widely used
since it was proposed. It has gradually become an effective method to solve the problem
of filtering nonlinear systems with unknown noise statistical characteristics. However,
the CRPF still uses traditional polynomial resampling. The particles are selected according
to the weight: the particles with high weights are copied in high numbers and the particles
with low weights are eliminated. Therefore, the particles are concentrated in the same area,
and the number of the same particles gradually increases, resulting in the loss of offspring
diversity. The particles cannot completely cover the posterior probability distribution, that
is, there is a lack of particle diversity, so that the filtering results have a large deviation.
In addition, the CRPF is sensitive to the initial value of the particle distribution. Filtering
results of the CRPF will further deteriorate when the initial value of the particle is unknown.
Therefore, how to develop an efficient and reliable resampling method under the framework
of the CRPF, to further improve the diversity of particles when the initial distribution of
particles is unknown, and then improve the accuracy of the CRPF, becomes an important
issue in the research of the CRPF.

At present, many scholars have conducted a significant amount of research and pro-
posed some improved resampling algorithms to solve the problem of lack of particle
diversity. The paper [11] proposed a deterministic resampling strategy. Instead of blindly
copying particles with high weights and discarding particles with low weights as in tradi-
tional resampling methods, this strategy replicates particles selectively. It divides particles
based on their state values and weights. Therefore, the number of effective particles in this
method was improved. The paper [12] proposed a particle filter algorithm based on error
ellipse resampling. In this method, the particle set is divided hierarchically by defining
an error ellipse, and then the particles are copied according to the level of division. These
resampling methods suppress the problem of lack of particle diversity to a certain extent.
However, they still adopt the traditional resampling framework and replace the abandoned
particles by copying the existing particles, which cannot fundamentally solve the prob-
lem. In recent years, the development of swarm intelligence optimization algorithms has
provided new ideas for improving the particle diversity. In the literature [13–15], the ar-
tificial fish swarm algorithm, the firefly algorithm and the self-controlled bat algorithm
are, respectively, used in the particle filter, attempting to optimize all the particles in each
resampling by the swarm intelligence optimization method. Although these methods have
a certain effect on increasing the diversity of the particles, they will increase the complexity
of the algorithm and seriously reduce its real-time performance. In addition, these methods
run the risk of introducing the problem of falling into a local optimum that exists in most
swarm intelligence optimization methods, which affects the estimation accuracy of the
particle filter. In 1997, the paper [16] proposed that the particle filter and evolutionary
algorithm have a similar structure, and introduced the crossover operation of the genetic
algorithm into the particle filter to increase the diversity of the particles. The paper [17]
proposed an intelligent particle filter algorithm based on a real-coded crossover and muta-
tion strategy. This method uses a real-coded crossover and mutation strategy to increase
the diversity of the particles. Based on this idea, the paper [18] proposed a sequential
evolutionary filtering algorithm without traditional resampling, which improved the run-
ning speed of the algorithm. Subsequently, the paper [19] introduced selection, crossover
and mutation operators into resampling, which enriched the resampling strategy based
on genetic operation and further improved the particle diversity. Although the resam-
pling method based on the crossover and mutation strategy can improve the diversity
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of the particles, it is difficult to obtain an ideal particle distribution due to the dynamic
change in particle distribution. Therefore, the estimation accuracy of the particle filter
needs to be further improved. The paper [20] proposed an adaptive resampling particle
filter based on Student’s t distribution. The two subsets divided according to the weight
are adaptively crossed. After that, some particles are mutated randomly to improve the
diversity of the particles. The paper [21,22] also proposed an adaptive genetic particle
filter and enhanced mutation particle filter, respectively. They improved the efficiency
of particle resampling by adaptively adjusting the mutation rate. The above methods
introduce the crossover and mutation operations of the genetic algorithm to increase the
diversity of the particles. Although this is of great significance for the development of
resampling algorithms, it seriously affects the computational complexity and realizability
of the algorithm. As the resampling strategy improves, the number of parameters to set
increases. The paper [23] proposed an adaptive Metropolis–Hastings (M–H) resampling
algorithm, which introduced the accept–reject mechanism of M–H into resampling. It
adaptively selected Gaussian mutation or crossover of the high weight and low weight to
resample particles according to the particle distribution, effectively improving the diversity
of the particles. The above methods have made good progress in improving resampling,
but they are all based on the traditional particle filter and have not been extended to the
CRPF. Therefore, they still assume that the particles’ initial value and noise distribution
are known. However, in practice, the particles’ initial value and noise distribution are
often not accurately obtained, which affects the estimation accuracy. Since the particle
filter and swarm intelligence evolutionary algorithm have the same structure, the latest
research results in swarm intelligence methods can provide a new development direction
for the research of resampling strategy [24], such as the multi-swarm cooperation mecha-
nism. The multi-population cooperative mechanism means that the population is divided
into several populations in the evolution process, each population evolves independently
and then the information is shared among the populations. Thus, the convergence speed
of the algorithm is improved and the algorithm is kept from falling into local optimum.
The multi-population cooperation mechanism provides a new idea for further improving
the diversity of particles and solving the problem of low estimation accuracy, when the
initial values of the particles and the statistical characteristics of the noise are unknown.

Therefore, this paper proposes an intelligent resampling method based on multi-
population cooperation, which improves the previous resampling method and further
improves the particle diversity. The new resampling method is applied in the cost-reference
particle filter (CRPF) to solve the problem of lack of particle diversity and sensitivity to
the particles’ initial value in the CRPF, which is good at estimating the system state when
the statistical characteristics of noise are unknown. Firstly, the particles are divided into
several independent populations, and each population performs importance sampling
using the distribution of different initial values. Then, the particles of each population are
sorted according to the weight from large to small, and the golden section ratio is used
to divide the particle set into three parts: high, medium and low weight; while retaining
the set of particles with high and medium weights, Gaussian mutation is performed
on the particles with high weights with a certain probability. By using the cooperative
strategy, the low weight particles in the current population are replaced by the high weight
particles after mutation in the previous population, so as to realize the resampling of
the low weight particle set in turn. In this paper, a new method is proposed to realize
information sharing among populations through the ring coordination mechanism, which
makes the particles in the population closer to the posterior probability density of the state.
The superimposed Gaussian mutation effectively increases the diversity of the particles in
the resampling process. The final state estimate is obtained according to all particles and
their corresponding weights. Finally, the effectiveness of the proposed method was verified
by common one-dimensional and multidimensional models.
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2. Materials and Methods

Suppose the nonlinear discrete system model is described as follows:

xk = f (xk−1) + wk (1)

yk = h(xk) + vk (2)

where, x ∈ Rnx and y ∈ Rny are system state vector and observation vector at time k .
w ∈ Rnx is process noise, v ∈ Rny is observation noise, f (xk−1) and h(xk) are bounded
nonlinear mappings, respectively.

Unlike the traditional particle filter, the CRPF does not need to know the statistical
characteristics of noise when estimating the state. Instead, it proposes a cost function and a
risk function, and finally calculates the weight of the particle by them. The cost function of
the i-th particle xi

k at time k is defined as follows:

Ci
k = λCi

k−1 + ∆Ci
k (3)

∆Ci
k = ∆C

(
xi

k | yk

)
=
∥∥∥yk − h

(
xi

k

)∥∥∥
q

(4)

In the formula, 0 ≤ λ < 1 is the forgetting factor, q ≥ 1. The risk function of the i-th
particle at time k is defined as follows:

<i
k = λCi

k−1 +
∥∥∥yk − h

(
f
(

xi
k−1

))∥∥∥
q

(5)

According to Equations (3)–(5), when the particle is closer to the true state value,
the cost due to the estimation error is smaller. This indicates that the risk to be taken when
selecting the particle is smaller, so the probability that the particle is selected to be retained
is larger. That is, its weight is higher. The algorithm steps for the standard CRPF are as
Algorithm 1.

According to the above steps of the CRPF algorithm, the process noise and measure-
ment noise of the system are not used in the whole process of system state estimation.
Instead, it is achieved through the cost function and risk function defined by the CRPF algo-
rithm. Therefore, compared with the conventional particle filter, the CRPF has a significant
advantage in solving the state estimation problem with unknown noise statistical properties.

Although the CRPF has a good filtering effect when the statistical characteristics of
noise are unknown, it still uses the traditional resampling method. It copies high-weight
particles and discards low-weight particles, so the problem of lack of particle diversity also
exists in the CRPF. When the particles with high weight are copied and most particles with
small weight are discarded, this leads to the result of state estimation deviating from the
real state, due to the entire set of particles being unable to completely cover the posterior
distribution, as shown in Figure 1. At the same time, the initial value of the particle cannot
be accurately obtained in practical problems, which makes the problem more prominent in
the estimation process of the CRPF. Therefore, how to improve the resampling algorithm of
the CRPF, so that it can effectively suppress the lack of particle diversity and improve the
estimation accuracy when the particles’ initial value is not accurate, has become a key issue
in the study of the CRPF algorithm.
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Algorithm 1 The algorithm steps for the standard CRPF.

(1) Initialize k = 0
(1) N particles are extracted from the initial distribution p(x0), the initial cost is

set to 0;
(2) The initial particle set is

{
xi

0, Ci
0
}N

i=1, where p(x0) is uniformly distributed;

(2) Resample
(1) The risk function value of the particle is calculated by Formula (5);
(2) The weight of the particle is calculated from the risk function value according

to the following formula:

wi
k =

(
<i

k
)−β

∑N
i=1
(
<i

k
)−β

(6)

where β > 1 ;
(3) Polynomial resampling is performed on the particle according to the weight

value, and the particle set after resampling is
{

x̄i
k, C̄i

k
}N

i=1;

(3) Update
(1) Carry out particle update according to the following formula:

xi
k ∼ N

(
f
(

x̄i
k

)
, Σ
)

(7)

(2) Update particle cost by Formula (3) and (4);
(3) Calculate the updated particle weight according to the following formula:

wi
k =

(
Ci

k
)−β

∑M
i=1
(
Ci

k
)−β

(8)

(4) State estimation
The estimated system status is

x̂k =
N

∑
i=1

xi
kwi

k (9)

Figure 1. Schematic diagram of traditional resampling particle distribution.

3. Intelligent CRPF Based on Multi-Population Cooperation
3.1. Multi-Population Cooperative Intelligent Resampling Mechanism Based on Ring Structure

In order to solve the problem of low estimation accuracy due to the lack of particle
diversity in the CRPF when the initial value is not accurate, an intelligent cooperative
resampling mechanism based on ring structure is proposed in this paper. The structure of
the intelligent cooperative resampling mechanism is shown in Figure 2. The particles are

7
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extracted from the importance distribution of M different initial values, and the extracted
particles form a population with N particles which are mutually independent. The particles
in each population were sorted according to their weights and divided into three parts
according to the golden proportion. The golden proportion is strictly proportional, artistic
and harmonious, and is considered to be the most ideal proportion in architecture and
art. The first 0.382N particle set is Xs

H with a larger weight, the 0.382N particle set is Xs
L

with the smallest weight and the remaining particle set is Xs
M with a middle weight, where

s = 1, 2, . . . M. The high weight particle set Xs
H and medium weight particle set Xs

M with
a larger weight in each population are directly retained. However, since the particles in
Xs

L have little influence on the estimated results, all the particles in it are resampled using
the cooperative strategy. In order to ensure the particle resampling order and particle
diversity, the cooperation strategy between various swarms is completed based on the ring
structure. When the low-weight particles of the s-th population are resampled, the high-
weight particles of the s−1 population are selected for cooperation. When s = 1, then
the particles are drawn from the set of high-weight particles of the M-th population for
cooperation, and the details of the cooperation strategy will be described in Section 3.2.
After resampling all the particles with low weights in M populations, the weights of the
particles are recalculated. The weighted sum of all particles in each population is used to
obtain the state estimate value, and then the final state estimate value of the whole particle
set is obtained.

coordination ……

Initial 

value 1

Initial 

value 2

Initial 

value M

Weight from 

large to small

Population 1 Population 2 Population M

1

HX
2

HX H

MX

1

MX

1

LX

2

MX

2

LX

M

MX

L

MX

coordination

coordination

Figure 2. Intelligent resampling mechanism based on ring structure.

Different from the traditional resampling methods used in the CRPF, new resampling
mechanisms are proposed in this paper. Instead of simply copying the high-weight particles
to replace the low-weight ones, this method adopts an intelligent cooperative strategy to
improve the diversity of the particles. Compared with the previous intelligent resampling
methods, the intelligent cooperative resampling mechanism adopts a multi-population ring
cooperative structure. Each population uses the importance distribution of different initial
values to generate particles, which reduces the sensitivity of the particle filter to the initial
values. In addition, the collaborative strategy was used to exchange high-weight particle
information between different populations, which improved the information sharing ability
of the particles and effectively improved the diversity of the particles. At the same time,
the traditional resampling step is canceled to reduce the complexity of the algorithm.
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3.2. Cooperative Strategy Based on Gaussian Mutation

Since the particles in the high weight and medium weight particle sets have large
weights and are all effective particles, these sets must be retained when resampling the par-
ticles. Only the low weight particles in each population are resampled by the collaborative
strategy. This can not only improve the efficiency of resampling, but also increase the diver-
sity of the particles. However, the traditional resampling method can no longer be used for
cooperative operation. Copying particles with high weight and directly replacing particles
with low weight will cause the same particles to be copied in large numbers, resulting in
the serious loss of particle diversity and the reduction in particle filtering accuracy.

In this paper, a collaborative strategy based on Gaussian mutation is designed to
resample low-weight particles in each population, avoiding blindly copying high-weight
particles to improve the diversity of the particles. This strategy is based on the ring structure
of Section 3.1. Particles are randomly selected from the high-weight particle set of the
previous population, and Gaussian mutation is performed on them. Then, the low-weight
particles of the local population are replaced with the mutated particles.

Gaussian mutation is calculated as follows:

xls
kS = xns−1

kH + q∗λ (10)

In Formula (10), xls
ks is the particle after mutation at time k, l = 1, 2, . . . , Ns

kL and Ns
kL

are the particle numbers of the low-weight particle set in the s-th population at time k,
xis−1

kH is the particle number of the high-weight particle set randomly selected from the

(s−1)-th population at time k, n ∈
{

1, 2, . . . , Ns−1
kH

}
and Ns−1

kH are the particle numbers of
the high-weight particle set in the (s−1)-th population at time k, while λ ∼ N(0, 1) and q
are the mutation rate.

According to the above equation, when q is set appropriately, the particle with Gaus-
sian mutation must be located near the particle with high weight. Different from the
existing high-weight particles, this method can effectively improve the diversity of the
particles and ensure the quality of the whole set of particles. At the same time, q should
not be too large; otherwise, the newly generated particles will be far away from the high
probability region, and then reduce the accuracy of filtering. The organic integration of co-
operative strategy and ring structure ensures that the information of high-weight particles
generated by different importance distributions of each population is shared. After several
iterations, the particles generated by the importance distribution far away from the true
posterior distribution are gradually abandoned, and more and more particles close to
the posterior distribution are retained. This strategy effectively improves the diversity of
the particles, thereby reducing the impact of inaccurate initial value settings on the state
estimation results.

3.3. Steps of Intelligent CRPF Algorithm Based on Multi-Population Cooperation

The multi-population cooperative intelligent resampling proposed above is intro-
duced into the CRPF algorithm to obtain the intelligent CRPF based on multi-population
cooperation. The algorithm steps are as Algorithm 2.

9
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Algorithm 2 Steps of Intelligent CRPF Algorithm Based on Multi-Population Cooperation.

(1) Initialize
(1) Set the population number M, the particle number N of each population

and the uniform distribution parameter [as, bs] of each population, s =
1, 2, . . . , M;

(2) Randomly extract the initial particle of each population from the uniform
distribution xis

0 , i = 1, 2, . . . , N; and set the initial value corresponding to

each particle to 0, that is Cis
0 = 0, to obtain the particle-cost set

{
xis

0 , Cis
0
}N

i=1;

(2) Resample

(1) The risk function <is
k of each particle is calculated according to Formula (5),

and the particle weight wis
k is calculated according to Formula (6);

(2) Arrange the particles in each population according to the weight from large
to small, and retain Xs

kH and Xs
kM in each population;

(3) Resampling the particle xis
kL in the low-weight particle set Xs

kL of each pop-
ulation according to Formula (10) and Section 3.2 to obtain the particle set
Xs

kS. If s = 1, the high-weight particle is extracted from XM
kH for resampling

according to Formula (10);
(4) The high-weight particle set Xs

kH and medium-weight particle set Xs
kM of

each population are combined with the resampling particle set Xs
kS to obtain

the new set of each population, while each population remains independent;
(3) Update

(1) The resampled particles are updated according to Formula (7), the updated
particle cost Cis

k is calculated according to Formulas (3) and (4) and the
updated particle weight ωis

k is calculated according to Formula (8);
(2) Calculate the estimated value x̂s

k of each population according to Formula (9);
(3) Finally, calculate the final state estimate of the system according to the

estimated value x̂s
k of each population according to the formula below:

x̂k =
1
M

M

∑
s=1

x̂s
k (11)

4. Results and Discussion

In order to verify the effectiveness of the proposed method, three simulations were
designed. The standard CRPF and the adaptive MH resampling-CRPF (MH-CRPF, In-
telligent CRPF) are used as comparison algorithms, and each experiment was indepen-
dently repeated 100 times. The three simulation models are the mathematical model of
one-dimensional non-stationary economic growth [17,18], the one-dimensional nonlinear
univariate time series model [3,21] and the lithium–ion battery remaining life prediction
model [1], respectively. Due to their strong nonlinear characteristics, these models are
widely used to verify the effectiveness of the particle filter. Meanwhile, root mean square
error (RMSE) and mean absolute error (MAE) are selected to evaluate the performance of
the algorithm [25]. RMSE and MAE are, respectively, calculated according to the follow-
ing formula:

RMSE =

√√√√ 1
KL

K

∑
i=1

L

∑
k=1

(x̂k,i − xk,i)
2 (12)

MAE =
1

KL

K

∑
i=1

L

∑
i=1
|x̂k,i − xk,i| (13)
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where K represents the number of repeated experiments, L is the length of time series, x̂k,i
and xk,i are, respectively, the estimated value and the real value of the system state at the
time k in the i-th simulation.

4.1. Mathematical Model of One-Dimensional Non-Stationary Economic Growth

The one-dimensional non-stationary economic growth mathematical model has the
characteristics of being strong nonlinear and bimodal, and it is difficult to estimate its
system state, so the model is widely used to verify the effectiveness of the particle filter. Its
model is described as follows:

xk =
1
2

xk−1 +
25xk−1

1 + x2
k−1

+ 8 cos[1.2(k− 1)] + wk (14)

yk =
1
20

x2
k + vk (15)

where wk ∼ N
(
0, σ2

w
)

and vk ∼ N
(
0, σ2

v
)

are process noise and observation noise, respectively.
In this simulation, σ2

v = 1 , σ2
w is the random number subject to uniform distribution

U(0, 9), and the initial value of xk, x0 is the random number subject to uniform distribution
U(0, 12). Each independent repeated experiment is randomly generated. The population
number of this method is M=3, and the particle number of each population is N = 80. The initial
state values of the three populations are x1

0 ∼ U(0, 4), x2
0 ∼ U(4, 8) and x3

0 ∼ U(8, 12),
respectively, and the variation rate of Gaussian mutation is 2. The particle numbers of the
standard CRPF and MH-CRPF are both 240, and the initial particle values are random numbers
that follow uniform distribution U(0, 12).

Figure 3 shows the comparison of the average value of the 100-time state estimation
results of the mathematical model of one-dimensional non-stationary economic growth by
the three methods, and Figure 4 shows the RMSE comparison of the 100-time estimation
results of the three methods. It can be seen from Figures 3 and 4 that the three methods can
track the real state, but the RMSE of the CRPF and MH-CRPF (Intelligent CRPF) is larger
than that of the proposed method. Table 1 shows RMSE and MAE of 100-time estimation
results of the mathematical model of one-dimensional non-stationary economic growth
by the three methods. According to Table 1, compared with the other two comparison
methods, the RMSE and MAE of the method in this paper are both minimal. According
to these experimental results, the proposed method in this paper adopts a resampling
strategy based on multi-population cooperation. It strengthens the interaction of high-
weight particle information between different populations and reduces the dependence
of the algorithm on the initial state value. This strategy can improve the diversity of the
particles and the accuracy of the CRPF. Therefore, compared with the standard CRPF and
MH-CRPF (Intelligent CRPF), the proposed method has higher estimation accuracy when
the initial distribution of the particles is unknown.

Table 1. State estimation results of the three methods of model Section 4.1.

Performance Index Multi-CRPF
(Proposed)

MH-CRPF
(IntelligentCRPF) CRPF

RMSE 2.6220 3.2517 4.2156
MAE 1.9961 2.5345 3.5527
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Figure 3. Comparison of three methods for state estimation of model Section 4.1.

Figure 4. RMSE of state estimation results of three methods of model Section 4.1.

4.2. One-Dimensional Nonlinear Univariate Time Series Model

The one-dimensional nonlinear univariate time series model is also widely used to
verify the effectiveness of the particle filter due to its strong nonlinearity. The model is
described as follows:

xk = 1 + sin(0.04πt) + 0.5xk−1 + wk (16)

yk =

{
0.2x2

k + vk k ≤ 30
0.5xk − 2 + vk k > 30

(17)

where wk ∼ N
(
0, σ2

w
)

and vk ∼ N
(
0, σ2

v
)

are process noise and observation noise, respectively.
In this simulation, σ2

ω, σ2
v and the initial values x0 of xk as well as other parameter

settings are consistent with those in Section 4.1.
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Figure 5 shows the comparison of the average values of the 100-time state estimation
results of the one-dimensional nonlinear univariate time series model by the three methods.
Figure 6 shows the RMSE comparison of the 100-time state estimation results of the three
methods. It can be seen from Figures 5 and 6 that the proposed method can track the real
state well, but MH–CRPF (Intelligent CRPF) has a certain error in the estimation process,
while the CRPF has a large error. Table 2 shows the RMSE and MAE of 100 independent
repeated experiments estimated by the three methods for the one-dimensional nonlinear
univariate time series model. As can be seen from Table 2, the RMSE and MAE of the
proposed method are always the smallest, followed by MH-CRPF (Intelligent CRPF) and
the largest CRPF. Therefore, when the initial state value is unknown, the state estimation
accuracy of the proposed method for the one-dimensional nonlinear univariate time series
model is higher than that of the other two methods, due to the multi-population intelligent
cooperative resampling mechanism.

Table 2. State estimation results of the three methods of model Section 4.2.

Performance Index Multi-CRPF
(Proposed)

MH-CRPF
(IntelligentCRPF) CRPF

RMSE 2.4747 2.6284 2.8030
MAE 1.8861 2.0164 2.1852

Figure 5. Comparison of three methods for state estimation of model Section 4.2.

Figure 6. RMSE of state estimation results of three methods of model Section 4.2.
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4.3. Lithium–Ion Battery Remaining Useful Life Prediction Model

Due to the high-dimensional, nonlinear and non-Gaussian characteristics of the re-
maining useful life prediction model of a lithium–ion battery, the nonlinear filtering algo-
rithm is usually used to predict the remaining life of a lithium–ion battery. Therefore, this
model can also be used to verify the effectiveness of the filtering algorithm. The model is
described below.

xk = xk−1 + wk (18)

Qk = ak exp(bk ∗ k) + ck exp(dk ∗ k) + vk (19)

xk−1 =




ak−1
bk−1
ck−1
dk−1


 (20)

where k is the number of cycles of a lithium–ion battery, Qk is the capacity of the lithium–
ion battery at the k-th cycle, wk ∼ N

(
0, σ2

w
)

and vk ∼ N
(
0, σ2

v
)

are process noise and
observation noise, respectively.

This simulation selects the data of the B0007 lithium–ion battery, which is widely
used in the verification experiment of lithium battery remaining life prediction [26]. These
data from NASA laboratories are common to international simulation experiments. In this
simulation, the population number and particle number are the same as in Section 4.1,
the rate of Gaussian mutation is

√
0.05, the particle number of the other two methods is

240 and the process variances are all U(0, 1.5) random numbers.
Figure 7 shows the comparison curve of prediction results of 100 independent repeated

experiments on the remaining life of the B0007 lithium battery by the three methods. It can
be seen from Figure 7 that the three methods can track the actual curve well. However,
with the increase in the service cycles, the CRPF and MH-CRPF gradually deviate from the
actual curve. The proposed method in this paper can always track the actual curve well.
Figure 8 shows the comparison of the MAE of the remaining life prediction results of the
B0007 lithium battery by the three methods. As can be seen from Figure 8, the deviation
between the CRPF and MH-CRPF keeps increasing with the increase in time. The deviation
of the proposed method (Multi-CRPF) is smaller than that of the other two methods.
The proposed method shows better prediction accuracy. Table 3 shows the RMSE and MAE
of 100 independent repeated experiments predicted by the three methods for the remaining
life of the B0007 lithium battery. As can be seen from Table 3, the RMSE and MAE of the
predicted results of the proposed method are both smaller than those of the other two
methods. It can be concluded that, compared with the standard CRPF and MH-CRPF,
the proposed method has better performance in predicting the remaining useful life of
lithium batteries, especially when the initial value of the system state is unknown.

According to the above three simulation results, each population uses different initial
state value to generate particles, and the multi-population cooperative intelligent resam-
pling mechanism based on ring structure and Gaussian mutation strategy is proposed in
this paper. It can effectively reduce the dependence of state estimation results on the initial
state value. In addition, the high-weight particle information of each population is shared
to other populations based on the ring structure. The high-weight and medium-weight
particles of each population are retained, and the low-weight particles are resampled,
which can effectively improve the diversity of the particles, so as to improve the estimation
accuracy of the CRPF.
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Figure 7. Prediction results of model Section 4.3 by three methods.

Figure 8. Comparison of state estimation MAE by three methods of model Section 4.3.

Table 3. Prediction results of remaining useful life of lithium battery by three methods.

Performance Index Multi-CRPF
(Proposed)

MH-CRPF
(IntelligentCRPF) CRPF

RMSE 0.0363 0.0503 0.0646
MAE 0.0258 0.0360 0.0574

5. Conclusions

When the statistical characteristics of noise are unknown, the CRPF shows good
filtering performance. An intelligent CRPF method based on multi-population cooperation
is proposed to solve the problem of low estimation accuracy caused by the lack of particle
diversity in the CRPF when the initial value of the particles is not set accurately.
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The main contribution of this method is that the multi-population cooperative intel-
ligent resampling method based on ring structure and the cooperative strategy based on
Gaussian mutation are introduced into the CRPF. The particles are divided into several inde-
pendent populations with different initial state values, and after the importance sampling
is completed, the resampling process of low-weight particles is improved based on the ring
structure. This method promotes the cooperation of particles among various populations
and enhances the interaction ability of particle information. At the same time, Gaussian
mutation is introduced to improve the particle diversity. The results of three simulation
experiments show that, compared with the standard CRPF and MH-CRPF, the proposed
method can effectively improve the estimation accuracy of the CRPF when the initial value
of the state is not set accurately.

Although the proposed method has good estimation results, how to better set the
particle initial value of each population and the mutation rate of Gaussian mutation,
and how to enrich the cooperative strategy between multiple populations, so as to achieve
more accurate estimation results, are the future research directions and research goals.
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Abstract: In an effort to overcome the problem that the traditional stochastic resonance system cannot
adjust the structural parameters adaptively in bearing fault-signal detection, this article proposes an
adaptive-parameter bearing fault-detection method. First of all, the four strategies of Sobol sequence
initialization, exponential convergence factor, adaptive position update, and Cauchy–Gaussian
hybrid variation are used to improve the basic grey wolf optimization algorithm, which effectively
improves the optimization performance of the algorithm. Then, based on the multistable stochastic
resonance model, the structure parameters of the multistable stochastic resonance are optimized
through improving the grey wolf algorithm, so as to enhance the fault signal and realize the effective
detection of the bearing fault signal. Finally, the proposed bearing fault-detection method is used to
analyze and diagnose two open-source bearing data sets, and comparative experiments are conducted
with the optimization results of other improved algorithms. Meanwhile, the method proposed in
this paper is used to diagnose the fault of the bearing in the lifting device of a single-crystal furnace.
The experimental results show that the fault frequency of the inner ring of the first bearing data
set diagnosed using the proposed method was 158 Hz, and the fault frequency of the outer ring of
the second bearing data set diagnosed using the proposed method was 162 Hz. The fault-diagnosis
results of the two bearings were equal to the results derived from the theory. Compared with the
optimization results of other improved algorithms, the proposed method has a faster convergence
speed and a higher output signal-to-noise ratio. At the same time, the fault frequency of the bearing
of the lifting device of the single-crystal furnace was effectively diagnosed as 35 Hz, and the bearing
fault signal was effectively detected.

Keywords: multistable stochastic resonance; adaptive parameter; improved grey wolf algorithm;
bearing fault detection

1. Introduction

The failure rate of rolling bearings accounts for about 30% of all rotating machinery
failures, which is the main reason affecting the operating efficiency, productivity, and
life of mechanical equipment. Almost all rolling bearing fault signals are in a very noisy
environment, resulting in early weak faults that are difficult to find. Therefore, how to
enhance the signal-to-noise ratio of fault signals under extreme conditions has become a
key issue in the direction of fault diagnosis. At the same time, monitoring the status of
rolling bearings, promptly identifying faults, and conducting equipment maintenance are
of great practical significance for ensuring the smooth working of rotating machinery sys-
tems [1]. Nowadays, the main methods used for rolling bearing fault detection are: wavelet
decomposition [2], empirical mode decomposition [3], variational mode decomposition [4],
principal component analysis [5], stochastic resonance [6], etc. The stochastic resonance
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algorithm overturns the view that noise is harmful for a long time. It uses the resonance
principle to transfer noise energy to the fault signal, thus improving the detection and
diagnosis of the fault signal, and opening up a new method and idea for weak bearing
fault-signal detection submerged in strong noise.

Benzi raised the concept of stochastic resonance (SR) in 1981 when studying the
changes of the Earth’s ice ages [7]. After 40 years of development, SR theory has been
widely used in fault diagnosis [8], optics [9], medicine [10], image denoising [11], and
other fields, and has achieved many remarkable results. The SR algorithm makes use
of the synergy generated by the joint excitation of nonlinear systems, input signals, and
noise to make Brownian particles oscillate, improve the output signal-to-noise ratio, and
effectively detect the measured signal, which is a typical method to enhance the measured
signal. Therefore, it is widely concerned with the domain of signal detection [12]. Classical
bistable and monostable SR models have been extensively used in the study of signal
detection [13]. However, for the signal to be measured with ultra-low amplitude, due to
the potential function structure constraints, particles are often unable to effectively jump
between potential wells, and SR-detection methods for bistable and monostable models are
also powerless. When studying multistable stochastic resonance systems, Li et al. found
that the multistable model can better enhance the output signal-to-noise ratio and improve
the noise utilization ratio than the bistable and monostable models [14]. Therefore, more
and more scholars have carried out relevant research on multistable SR [15]. For example,
Zhang et al. proposed a piecewise unsaturated multistable SR (PUMSR) method which
overcomes the weakness of tri-stable SR output saturation and enhances the ability of weak
signal detection [16].

However, whether it is a monostable, bistable, or multistable SR algorithm, it is in-
evitably difficult to select model parameters in practical applications. Mitaim et al. [17]
put forward the adaptive SR theory to enhance useful signals by automatically adjusting
the structural parameters of nonlinear systems. But, the adaptive SR method, which takes
a single parameter of the system as the optimization object, often ignores the interaction
between the parameters of the system. With the rise of the swarm intelligence optimization
algorithm, finding the global optimal solution through the swarm intelligence algorithm
can solve the limitations of traditional adaptive SR systems, and this concept has been
extensively used in the domain of bearing fault detection [18]. However, in the existing
research results, the adaptive selection of SR model parameters still depends on the per-
formance of intelligent optimization algorithms, so there are generally issues such as a
low solving accuracy and being prone to falling into local optima [19]. Therefore, the
feasible method to effectively enhance the parameter performance of adaptive selection
of SR systems is to improve the defects of the intelligent optimization algorithm, so that
it can more quickly and accurately optimize the parameters of the SR system. The grey
wolf optimization algorithm can find the optimal solution by simulating the tracking,
encircling, pursuit, and attack stages of the group predation behavior of the grey wolf.
With few parameters and a simple structure, it is easy to integrate with other algorithms
for improvement, but there are also the problems that it is easy to fall into local optimal
solutions and low computational efficiency [20]. Therefore, it is of great research value
to improve the basic grey wolf algorithm and improve its optimization performance [21].
Vasudha et al. proposed a multi-layer grey wolf optimization algorithm to further achieve
an appropriate equivalence between exploration and development, thereby improving the
efficiency of the algorithm [22]. Rajput et al. proposed an FH model based on the sparsity
grey wolf optimization algorithm, which helps to minimize the computational overhead
and improve the computational accuracy of the algorithm [23].

This article takes bearing fault-signal detection as the research object. Aiming at the
problem of difficult parameter selection of multistable SR systems, a bearing fault-detection
method based on an improved grey wolf algorithm to optimize multistable SR parameters
is raised. This method improves the basic grey wolf optimization algorithm. Firstly,
considering the quality of the initial solution, a Sobol-sequence initialization population
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strategy is proposed to make the distribution of the initial grey wolf population more
uniform. Secondly, a convergence-factor adjustment strategy based on exponential rules
is proposed to coordinate the global exploration and local development stages of the
algorithm. Meanwhile, an adaptive position-update strategy is proposed to improve the
accuracy of the algorithm, and Cauchy–Gaussian mixture mutation is used to enhance the
algorithm’s ability to escape from local optima. Experimental verification is conducted
on the performance of the improved grey wolf algorithm using fifteen benchmark test
functions from the CEC23 group of commonly used test functions. The verification results
display that the multi-strategy improved grey wolf optimization algorithm (MSGWO)
has a faster convergence speed and a higher convergence accuracy. Then, on the basis
of the model of the multistable SR system, the parameters of the multistable SR system
are optimized through the MSGWO, so as to enhance the fault signal and realize the
effective detection of the bearing fault signal. Finally, the bearing fault-detection method
raised in this article is used to analyze and diagnose a bearing data set from Case Western
Reserve University (CWRU) and a bearing data set from the Mechanical Fault Prevention
Technology Association (MFPT), and is compared with the optimization results of other
improved algorithms. Meanwhile, the method raised in this article is used to diagnose the
fault of the bearing of the lifting device of a single-crystal furnace. The test results display
that the bearing fault-detection method raised in this article has a fast convergence speed
and a large output signal-to-noise ratio, and can detect bearing fault signals accurately
and efficiently.

The rest of this article is arranged as below: The Section 2 introduces the specific cases
of bearing failure in rotating machinery in different industries. The Section 3 introduces
the basic principle of multistable SR. The Section 4 introduces the principle of the basic
grey wolf optimization algorithm and the MSGWO, and compares it with some basic
optimization algorithms and improved optimization algorithms, respectively. At the same
time, the population diversity and the exploration and development stage of the MSGWO
are analyzed. The Section 5 introduces the bearing fault-diagnosis method based on the
MSGWO to optimize the multistable SR parameters, and uses the proposed method to
analyze and diagnose the bearing data sets from CWRU and the MFPT. Meanwhile, the
raised method is used to diagnose the bearing fault of the monocrystal furnace lifting
device. The Section 6 is the summary.

2. Specific Cases of Bearing Failure

Due to the diverse working environments of bearings during the operation of rotating
machinery, they are easily affected by wear, corrosion, and other factors, making it easy for
various faults to occur. For example, in June 1992, during the overspeed test of a 600 MW
supercritical active generator set at the Kansai Electric Power Company Hainan Power
Plant in Japan, the bearing failure of the unit and the critical speed drop caused strong
vibration of the unit, resulting in a crash accident and economic losses of up to JPY 5 billion.
From September 2003 to October 2004, the China Railway Beijing–Shanghai Line, Shitai
Line, and Hang-gan Line had a total of five traffic incidents. According to relevant statistics,
four of these accidents were caused by train bearing-fatigue fracture, with a total economic
loss of up to CNY 2 billion. In April 2015, China Dalian West Pacific Petrochemical Co.,
LTD., due to the serious distortion and fracture of the inner ring of the driving end bearing
and the serious wear and deformation of the bearing ball, the seal of the bottom pump of
the stripping tower of a hydrocracking unit quickly failed, and the medium leaked, which
caused a fire. The accident caused three pumps, the frame above the pump, and a small
number of meters and power cables to set fire; a local pipeline to crack; and direct economic
losses of CNY 166,000. In 2018, the US Navy’s “Ford” aircraft carrier had to return to the
shipyard for maintenance due to a thrust bearing failure during a mission. In August
2019, when a drone was spraying pesticides at a farm in Hebei, China, its motor rolling
bearing failed, causing the drone to lose control, and a large amount of pesticides were
spilled into the river, causing serious pollution. In December 2021, there were two recessive
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cracks in the bearing of unit #33 of a wind farm in Liaoning, China. Due to the limited
installation position, the appearance inspection could not find them. As a result, the shaft
cracks were promoted by the wind wheel’s alternating load during operation, resulting in
a spindle fracture and the impeller’s overall fall. Therefore, the research on fault-diagnosis
technology of rolling bearings is very necessary and has great practical significance.

3. Basic Principles of Multistable SR
3.1. The Basic Theory of Multistable SR

The principle of SR is that weak characteristic signals can be enhanced and detected
by noise transfer mechanism under the action of nonlinear system. In general, when
interpreting the SR model, we should first consider Langevin’s dynamic equation [24],
which is as follows:

d2x
dt2 +

dx
dt

= −U′(x) + s(t) + n(t) (1)

where x is the system response of SR, U(x) is a class of nonlinear multistable potential
function, s(t) is the external incentive, n(t) is the noise excitation, m is the mass of the
particle, and k is the drag coefficient.

The definition formula of the nonlinear multistable potential function is:

U(x) =
a
2

x2 − 1 + a
4b

x4 +
c
6

x6 (2)

In the formula, a, b, and c are parameters of the nonlinear multistable model, and
they are all greater than 0. The potential function model image of the multistable system is
displayed in Figure 1.
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Substitute the potential function of the multistable model into Formula (1), add noise
with intensity D in the system, and then obtain the Langevin equation of the nonlinear
multistable system as follows:

dx
dt

= −ax +
1 + a

b
x3 − cx5 + s(t) +

√
2Dn(t) (3)

When periodic signal and noise signal are used as excitation simultaneously, the
inclination of potential well in the multistable system will increase. In addition, the
periodic signal will also make the potential well depth of the three potential wells of
the multistable potential function change periodically, and can guide the noise signal to
switch synchronously. When the signal, noise, and multistable SR system reach a certain
matching relationship, particles can make periodic transitions between potential wells, so
that the components of the system output with the same frequency as the input signal
are strengthened.
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3.2. System Parameters’ Range

The fourth order Runge–Kutta formula was used to solve the multistable SR model.
The specific calculation formula is:





k1 = h(−ax(n) + 1+a
b x3(n)− cx5(n) + s(n))

k2 = h(−a(x(n) + k1
2 ) +

1+a
b (x(n) + k1

2 )
3 − c(x(n) + k1

2 )
5
+ s(n))

k3 = h(−a(x(n) + k2
2 ) +

1+a
b (x(n) + k2

2 )
3 − c(x(n) + k2

2 )
5
+ s(n))

k4 = h(−a(x(n) + k3) +
1+a

b (x(n) + k3)
3 − c(x(n) + k3)

5 + s(n))
x(n + 1) = x(n) + 1

6 (k1 + 2k2 + 2k3 + k4)

(4)

where x(n) is the nth sampling value of the system output, s(n) is the nth sampling value
of the noise-added input signal, h is the sampling step, and ki(i = 1, 2, 3, 4) is the slope of
the output response at the relevant integration point.

Normally, due to noise, particles jump over higher barrier heights by accumulating
energy, so b, c, and h take the real numbers of [0, 10]. As the target signal is relatively weak,
the interval in [25] is quoted; the range of a is set to [0, 0.5].

4. Multi-Strategy Improved Grey Wolf Optimization Algorithm
4.1. The Primary Theory of Grey Wolf Optimization Algorithm

Grey Wolf Optimizer (GWO) is a new intelligent swarm optimization algorithm
proposed by Mirjalili et al. [26], whose main ideas are the leadership hierarchy and group
hunting mode of grey wolf groups. The grey wolf population has a strict hierarchy. The
head of the population is α, which represents the most coordinated individual in the wolf
pack, and is mainly responsible for the decision-making affairs of the group’s predation
behavior. The β wolf is second only to α in the population, and its role is to serve the α
wolf to make decisions and deal with the behavior of the population. The third rank in
the population is the δ wolf, which obeys the instructions issued by the α and β, but has
command over other bottom individuals. The lowest individual in the group, known as ω,
is submissive to the instructions of other higher-ranking wolves and is primarily responsible
for balancing the relationships within the group. GWO defines the three solutions with
the best fitness as α, β, and δ, while the remaining solutions are defined as ω. The hunting
process (optimization process) is guided by α, β, and δ to track and hunt the prey (position
update), and finally complete the hunting process, that is, obtain the optimal solution. Grey
wolf groups gradually approach and surround their prey through several formulas:

D =
∣∣C · Xp(t)− X(t)

∣∣ (5)

X(t + 1) = Xp(t)− A · D (6)

where t represents the number of iterations, X(t) and Xp(t) represent the position vector
between the wolf and its prey, A and C represent the cooperation coefficient vector, and D
is the distance between the individual wolf pack and the target. The formula for calculating
coefficient vectors A and C is:

A = 2 f · r1 − f (7)

C = 2 · r2 (8)

where, as the number of iterations increases, f decays linearly from 2 to 0. To enable some
agents to reach an optimal position, r1 and r2 take values between [0, 1].

When hunting, GWO thinks that α, β, and δ are better at predicting the location of
prey. Therefore, individual grey wolves will judge the distance Dα, Dβ, and Dδ between
themselves and α, β, and δ; calculate their moving distances X1, X2, and X3 toward the
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three, respectively; and finally move within the circle of the three. The moving formula is
shown in Equation (9). 




Dα = |C1 · Xα − X(t)|
Dβ =

∣∣C1 · Xβ − X(t)
∣∣

Dδ = |C1 · Xδ − X(t)|
(9)





X1 = Xα − A · Dα

X2 = Xβ − A · Dβ

X3 = Xδ − A · Dδ

(10)

X(t + 1) = (X1 + X2 + X3)/3 (11)

4.2. Multi-Strategy Improved Grey Wolf Optimization Algorithm
4.2.1. Sobol-Sequence Initialization Population Strategy

In the swarm intelligence algorithm, whether the initial population distribution is
uniform will have a great impact on the optimization performance of the algorithm. GWO
initializes the population randomly, resulting in the distribution of the initial population
being extremely scattered, which will have a great impact on the algorithm’s solving speed
and optimization accuracy. Therefore, this paper initializes population individuals through
the Sobol sequence. The Sobol sequence is a kind of low difference sequence [27], which is
based on the smallest prime number, two. To produce a random sequence X ∈ [0, 1], an
irreducible polynomial of the highest order k in base two is first required to produce a set
of predetermined directional numbers V = [V1, V2, · · · , Vk], and then the index value of the
binary sequence i = (· · · i3i2i1)2 is required; then, the nth random number generated by
the Sobol sequence is:

Xi = i1V1 ⊕ i2V2 ⊕ · · · i = (· · · i3i2i1)2 (12)

The distribution of individuals with the same population size in the same dimensional
space is shown in Figure 2. From Figure 2, it can be seen that the distribution of the
population initialized using the Sobol sequence is more uniform than that generated
randomly, which enables the population to traverse the entire search space better.
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4.2.2. Exponential Rule Convergence-Factor Adjustment Strategy

The parameter A is an important parameter regulating global exploration and local
development in GWO, which is mainly affected by convergence factor f . In GWO, when
|A| > 1, the grey wolf population searches the entire search domain for potential prey, and
when |A| ≤ 1, the grey wolf population will gradually surround and capture prey.

In GWO, the value of convergence factor f decreases linearly from 2 to 0 with the
increase in the number of iterations, which cannot accurately reflect the complex random
search process in the actual optimization process. In addition, in the process of algorithm
iteration, the same method was used to calculate the enveloping step length for grey wolf
individuals with different fitness, which did not reflect the differences among individual
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grey wolves. Therefore, this paper introduces an updated mode of convergence factor
based on exponential rule changes, whose equation is as follows:

f ′ = 2e−t/T (13)

The curves of the linear convergence factor and exponential regular convergence factor
proposed in this paper with the number of iterations are shown in Figure 3. As can be seen
from Figure 3, the convergence factor f in GWO decreases linearly with the increase in
iterations, resulting in incomplete prey searches in the early stage and slow convergence
in the later hunting process. The convergence factor f ′, which varies exponentially, can
thoroughly search for prey in the early stages of the algorithm, thereby enhancing its global
optimization performance.
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4.2.3. Adaptive Location-Update Strategy

In GWO, the initializing α, β, and δ solutions are recorded and retained until they are
replaced by a better-fitting individual in the iterative process. In other words, if there is no
better α, β, and δ solution in the population than that recorded in the t generation, the new
population will still update its position toward wolves α, β, and δ. But when these three
are in the local optimal area, then the whole population cannot obtain the optimal solution.
Moreover, the average value of X1, X2, and X3 in GWO cannot show the importance of α, β,
and δ. Therefore, a new adaptive location-update strategy is proposed, which is expressed
as follows: 




W1 = |X1|
|X1|+|X2|+|X3|+ε

W2 = |X2|
|X1|+|X2|+|X3|+ε

W3 = |X3|
|X1|+|X2|+|X3|+ε

(14)

g =
T − t

T
(ginitial − g f inal) + g f inal (15)

where g is the inertia weight. The mathematical expression of grey wolf position update is
shown in Equation (16).

X(t + 1) =
W1X1 + W2X2 + W3X3

3
g + X1

t
T

(16)

4.2.4. Cauchy–Gaussian Hybrid Mutation Strategy

In order to avoid the local optimization of the basic GWO algorithm, this paper
introduces the Cauchy–Gaussian hybrid mutation strategy combining Cauchy and Gaus-
sian distribution, and gives the best individuals the Cauchy–Gaussian perturbation. The
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Cauchy–Gaussian operator can generate a large step length to avoid the algorithm falling
into local optimality, and its expression is as follows:

X∗new(t) = X∗(t) · (1 + λ1cauchy(0, 1) + λ2Gauss(0, 1)) (17)

λ1 = 1− t2

T2
max

(18)

λ2 =
t2

T2
max

(19)

where X∗new(t) is the value obtained using Cauchy–Gaussian perturbation, cauchy(0, 1) is
the Cauchy operator, and Gauss(0, 1) is the Gaussian operator.

The pseudocode of MSGWO is shown in Figure 4.
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4.3. Improved Performance Test of Grey Wolf Optimization Algorithm

CEC23 sets of commonly used test functions are important examples of testing algo-
rithm performance [28]. In an effort to test the performance of the MSGWO raised in this
article, fifteen test functions in the CEC23 group of commonly used test functions were
selected for verification, in which F1 to F7 were single-peak benchmark functions, F8 to F13
were multi-peak benchmark functions, and F14 to F15 were fixed-dimensional multi-peak
test functions. The computing platform performance was based on IntelI CITM) i5-6500
CPU, 3.20 GHz main frequency, and 8 GB memory. The details of the test function are
shown in Table 1.
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Table 1. Benchmark functions.

Function Dim Range Optima

F1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
n−1
∑

i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
30 [−30, 30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])

2
30 [−100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

F8(x) =
n
∑

i=1
−xi sin(

√
|xi |) 30 [−500, 500] −418.98 × Dimn

F9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

F10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4
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



k(xi − a)m xi > a
0 − a < xi < a

k(−xi − a)m xi < −a
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F13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]

}

+
n
∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50] 0

F14(x) =


 1

500 +
25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6




−1

2 [−65, 65] 1

F15(x) =
11
∑

i=1

[
ai − x1(b2

i +b1x2)

b2
i +b1x3+x4

]2
4 [−5, 5] 0.1484

4.3.1. Comparison Experiment between MSGWO and Standard Optimization Algorithm

In an effort to objectively verify the performance of MSGWO, the population size was
set to 30 times, the maximum number of iterations was set to 500 times, and each algorithm
was run independently 30 times. Algorithms to be compared in the experiment included
the bat optimization algorithm (BOA) [29], whale optimization algorithm (WOA) [30],
grey wolf optimization algorithm (GWO), gravity search algorithm (GSA) [31], particle
swarm optimization algorithm (PSO) [32], and artificial bee colony algorithm (ABC) [33].
The parameters of all the comparison algorithms in the experiment were the same as
those recommended in the original literature. The mean value and standard deviation of
the optimal value of the simulation results were taken as the evaluation indexes of the
algorithm performance, and the results are shown in Table 2. The test results shown in bold
black in Table 2 are the best for comparison.

It can be seen from the data in Table 2 that MSGWO obtained the optimal mean and
variance in functions F1–F4, F7, F9–F13, and F15. In the function F5, MSGWO obtained the
best average value, but its stability was worse than BOA. In the function F6, MSGWO
obtained the best average value, but its stability was worse than WOA and GWO. In the
function F8, MSGWO achieved the best average, but its stability was the worst. In the
function F14, MSGWO obtained the best average value, but its stability was worse than that
of the ABC algorithm. It can be seen that MSGWO obtained the optimal average value in
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all the selected test functions. Although the stability of the algorithm was worse in some
individual functions than that of some comparison algorithms, MSGWO still had better
optimization performance on the whole.

Table 2. The compared results of MSGWO and standard optimization algorithms.

F Index WOA GWO BOA GSA PSO ABC MSGWO

F1
mean 4.97 × 10−74 1.04 × 10−27 4.06 × 10−4 98.91 11.65 3.54 0

std 2.49 × 10−73 1.37 × 10−27 8.97 × 10−5 106.42 5.28 1.26 0

F2
mean 2.46 × 10−52 9.51 × 10−17 4.54 × 10−9 4.46 11.69 0.16 0

std 5.61 × 10−52 7.47 × 10−17 1.26 × 10−9 4.47 3.64 0.05 0

F3
mean 3.87 × 104 3.15 × 10−5 1.25 × 10−11 1.31 × 103 7.25 × 102 3.37 × 104 0

std 1.48 × 104 9.68 × 10−5 8.97 × 10−13 4.14 × 102 5.27 × 102 5.45 × 103 0

F4
mean 59.16 7.78 × 10−7 6.15 × 10−9 10.07 6.73 51.08 0

std 23.48 8.85 × 10−7 4.28 × 10−10 1.71 1.26 5.48 0

F5
mean 27.90 28.44 28.94 3.26 × 102 1.87 × 103 1.40 × 105 27.08

std 0.48 0.82 0.03 2.51 × 102 1.15 × 103 6.78 × 104 0.42

F6
mean 0.42 0.90 5.75 52.25 9.89 3.96 0.35

std 0.48 0.38 0.72 60.45 3.57 0.98 0.54

F7
mean 2.54 × 103 2.07 × 103 1.39 × 103 1.36 0.68 0.25 6.58 × 10−5

std 2.30 × 10−3 7.10 × 10−4 7.65 × 10−4 2.63 0.33 0.08 6.62 × 10−5

F8
mean −1.04 × 104 −5.70 × 103 −3.77 × 104 −2.48 × 103 −2.22 × 103 −4.98 × 103 −5.47 × 1058

std 1.73 × 103 1.18 × 103 3.80 × 102 5.29 × 102 5.89 × 102 3.55 × 102 1.81 × 1059

F9
mean 0.15 3.63 6.72 38.94 92.15 2.33 × 102 0

std 0.83 4.07 36.10 10.12 16.83 15.05 0

F10
mean 5.51 × 10−15 1.03 × 10−13 5.81 × 10−9 0.55 5.43 1.89 8.88 × 10−16

std 2.77 × 10−15 2.23 × 10−14 7.12 × 10−10 0.61 1.18 0.57 0

F11
mean 0.03 3.02 × 10−3 5.22 × 10−12 1.01 × 103 0.45 1.02 0

std 0.09 5.70 × 10−3 2.40 × 10−12 11.85 0.12 0.03 0

F12
mean 0.05 0.07 0.66 3.12 4.40 17.54 0.05

std 0.13 0.27 0.16 1.10 1.98 8.64 0.10

F13
mean 0.51 0.71 2.91 27.43 22.29 1.49 × 104 0.43

std 0.29 0.24 0.18 10.75 16.15 2.36 × 104 0.14

F14
mean 2.90 4.53 1.68 6.66 2.05 1.69 1.55

std 3.20 4.03 0.94 4.61 1.63 0 0.70

F15
mean 6.13 × 10−4 2.47 × 10−3 4.39 × 10−4 1.17 × 10−2 6.15 × 10−4 7.04 × 10−4 3.46 × 10−4

std 3.04 × 10−4 6.00 × 10−3 1.73 × 10−4 6.30 × 10−3 4.65 × 10−4 5.80 × 10−4 1.69 × 10−4

The simulation results show that MSGWO had better optimization performance under
different benchmark test functions. This shows that compared with GWO, MSGWO
enhances the local search ability, thus increasing the solution accuracy, and for multi-modal
test functions, MSGWO has a strong local optimal avoidance ability, and can better find the
optimal solution. When other algorithms have low optimization accuracy or even cannot
converge, MSGWO still has high solving accuracy.

In order to explore the influence of improvement strategies on the algorithm conver-
gence speed, the convergence curves of each algorithm under 15 benchmark test functions
are shown in Figure 5. As can be seen from Figure 5, MSGWO has high precision and
the fastest convergence rate of the optimal solution in the comparison algorithm, which
effectively saves the optimization time.

4.3.2. Comparison Experiment between MSGWO and Improved Optimization Algorithm

In an effort to further test the performance of the MSGWO, the population size was set
to 30 times, the maximum number of iterations was set to 500 times, and each algorithm was
independently run 30 times. Comparative experimental analysis was conducted between
MSGWO and GWO, MEGWO [34], mGWO [35], IGWO [36], and MPSO [37]. The mean
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value and standard deviation of the optimal value of the simulation results were taken as
the evaluation indexes of the algorithm performance, and the results are shown in Table 3.
The test results shown in bold black in Table 3 are the best for comparison.
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Table 3. Comparison of experimental results between MSGWO and improved algorithms.

F Index GWO MEGWO mGWO IGWO MPSO MSGWO

F1
mean 1.04 × 10−27 4.30 × 10−64 1.04 × 10−18 1.33 × 10−209 2.61 × 10−26 0

std 1.37 × 10−27 2.09 × 10−63 2.97 × 10−18 0 1.12 × 10−25 0

F2
mean 9.50 × 10−17 1.70 × 10−43 2.65 × 10−12 6.12 × 10−21 1.40 × 10−16 0

std 6.40 × 10−17 5.77 × 10−43 1.99 × 10−12 6.67 × 10−21 2.86 × 10−16 0

F3
mean 3.15 × 10−5 0.23 0.68 2.73 × 10−5 9.63 × 102 0

std 9.68 × 10−5 0.48 0.81 9.57 × 10−5 4.81 × 102 0

F4
mean 7.78 × 10−7 2.06 × 10−5 0.68 2.93 × 10−7 2.05 × 10−10 0

std 8.85 × 10−7 5.68 × 10−5 0.85 1.78 × 10−7 4.81 × 10−10 0

F5
mean 28.44 27.94 27.92 27.64 88.91 27.08

std 0.82 9.97 0.58 0.32 1.89 × 102 0.42

F6
mean 0.90 0.49 0.41 0.43 0.41 0.36

std 0.38 1.14 0.25 0.19 0.22 0.54

F7
mean 2.07 × 10−3 1.01 × 10−3 4.68 × 10−3 2.80 × 10−3 1.68 × 10−3 6.58 × 10−5

std 7.10 × 10−4 9.10 × 10−4 1.90 × 10−3 1.10 × 10−3 8.87 × 10−4 6.62 × 10−5

F8
mean −5.70 × 103 −1.26 × 104 −5.33 × 103 −8.28 × 103 −8.12 × 103 −5.47× 1058

std 1.18 × 103 2.15× 10−12 1.11 × 103 1.69 × 103 1.12 × 103 1.81 × 1059

F9
mean 3.63 0 37.94 27.09 23.92 0

std 4.07 0 30.01 22.81 22.64 0

F10
mean 1.03 × 10−13 5.27 × 10−15 1.26 × 10−10 6.25 × 10−14 6.22 × 10−15 8.88× 10−16

std 2.23 × 10−14 1.50 × 10−15 9.69 × 10−11 8.96 × 10−15 7.38 × 10−15 0

F11
mean 3.02 × 10−3 0 3.83 × 10−3 3.37 × 10−3 0 0

std 5.70 × 10−3 0 9.40 × 10−3 6.00 × 10−3 0 0

F12
mean 0.07 0.05 0.05 6.58 × 10−2 0.42 0.05

std 0.27 0.56 0.04 2.00 × 10−3 0.73 0.10

F13
mean 0.71 0.46 0.63 0.66 0.45 0.43

std 0.24 0.15 0.22 0.16 0.25 0.13

F14
mean 4.53 1.78 2.00 1.70 1.99 1.55

std 4.03 2.91 2.76 0.76 0.36 0.71

F15
mean 2.47 × 10−3 3.07 × 10−4 1.04 × 10−3 8.62 × 10−4 5.68 × 10−4 3.46 × 10−4

std 6.00 × 10−3 3.42 × 10−15 3.60 × 10−3 3.00 × 10−3 3.36 × 10−4 1.69 × 10−4

It can be seen from the data in Table 3 that for the optimization accuracy of the
algorithm, MSGWO obtained the optimal average value in the function F1–F15. In terms of
algorithm stability, the stability of the MSGWO was worse than that of the IGWO algorithm
in F5; worse than those of the GWO, mGWO, IGWO, and MPSO algorithms in F6; the worst
in F8; worse than those of the mGWO and IGWO algorithms in F12; worse than that of the
MPSO algorithm in F14; and worse than that of MEGWO in F15. However, in the other nine
test functions, its stability was better than the comparison algorithm, so the overall stability
was still the best.

The convergence curves of the MSGWO algorithm and improved algorithms under
15 benchmark functions are shown in Figure 6. It can be seen from the convergence curves of
each test function in Figure 6 that MSGWO has better local extreme value escape ability, overall
optimization coordination, and convergence performance than the comparison algorithm.
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Figure 6. The convergence curves are compared between MSGWO and the improved algorithm.
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4.3.3. Wilcoxon Rank Sum Test

In order to verify whether there were significant differences between MSGWO and
other comparison algorithms, the Wilcoxon rank sum test was used for statistical analysis
of the experimental data. For each test function, the results of 30 independent optimiza-
tions of MSGWO were compared with the 30 independent optimizations of the standard
optimization algorithms (WOA, GWO, BOA, GSA, PSO, ABC) and improved optimiza-
tion algorithms (MEGWO, mGWO, IGWO, MPSO) using the Wilcoxon rank sum test at
a significance level of 5%. The population size of all algorithms was set to 30, with 500
iterations. The p value of the test result was less than 0.05, indicating that there were
significant differences between the comparison algorithms. The symbols “+”, “−”, and “=“
of R indicate that the performance of MSGWO was better than, worse than, and equivalent
to the comparison algorithm, respectively, and N/A indicates that a significance judgment
could not be made. The test results are shown in Tables 4 and 5, respectively.

Table 4. Wilcoxon rank sum test results for MSGWO and standard algorithms.

F Index MSGWO–WOA MSGWO–GWO MSGWO–BOA MSGWO–GSA MSGWO–PSO MSGWO–ABC

F1
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F2
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F3
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F4
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F5
P 1.06 × 10−4 2.88 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F6
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.69 × 10−6 1.73 × 10−6 9.37 × 10−3

R + + + + + +

F7
P 2.13 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F8
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F9
P 1.73 × 10−6 2.53 × 10−6 1.82 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F10
P 2.57 × 10−6 1.61 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F11
P 2.57 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F12
P 1.73 × 10−6 1.73 × 10−6 1.97 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

F13
P 1.73 × 10−6 1.73 × 10−6 0.0021 1.73 × 10−6 1.92 × 10−6 0.0047
R + + + + + +

F14
P 1.73 × 10−6 1.73 × 10−6 4.45 × 10−5 4.86 × 10−5 1.92 × 10−6 0.0023
R + + + + + +

F15
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + + +

Table 5. Wilcoxon rank sum test results for MSGWO and improved algorithms.

F Index MSGWO–GWO MSGWO–MEGWO MSGWO–mGWO MSGWO–IGWO MSGWO–MPSO

F1
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +
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Table 5. Cont.

F Index MSGWO–GWO MSGWO–MEGWO MSGWO–mGWO MSGWO–IGWO MSGWO–MPSO

F2
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F3
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F4
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F5
P 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−3

R + + + + +

F6
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 9.37 × 10−3 1.73 × 10−6

R + + + + +

F7
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F8
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F9
P 2.53 × 10−6 0.012 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + = + + +

F10
P 1.61 × 10−6 3.99 × 10−7 1.73 × 10−6 1.47 × 10−6 1.01 × 10−7

R + + + + +

F11
P 1.73 × 10−6 0.012 1.22 × 10−4 7.8 × 10−3 0.012
R + = + + =

F12
P 1.73 × 10−6 0.012 1.22 × 10−4 1.73 × 10−6 2.9 × 10−3

R + = = + +

F13
P 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F14
P 1.73 × 10−6 3.59 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

R + + + + +

F15
P 1.73 × 10−6 1.73 × 10−6 1.7 × 10−3 3.11 × 10−5 1.73 × 10−6

R + + + + +

As can be seen from Table 4, comparing the optimization results of MSGWO with
those of WOA, GWO, BOA, GSA, PSO, and ABC on 15 test functions, the p values of
the test results are all less than 0.05, and the R values are all +, indicating that the opti-
mization results of MSGWO are significantly different from those of other six algorithms.
Additionally, MSGWO is significantly better, which shows the superiority of the MSGWO
algorithm statistically.

As can be seen from Table 5, compared with the optimization results of the five
improved algorithms on 15 test functions, the p values of the test results of MSGWO are
all less than 0.05, and R is +/=, which indicates that the optimization results of MSGWO
are significantly different from the optimization results of the five improved algorithms,
and MSGWO is significantly better. This result shows the superiority of the MSGWO
algorithm statistically.

4.3.4. Population Diversity Analysis of MSGWO

In an effort to further illustrate the effectiveness of the proposed algorithm, the diver-
sity of population particles during evolution was analyzed. Population diversity measure-
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ments can accurately evaluate whether a population is being explored or exploited [38],
and the specific calculation formula is as follows:

IC(t) =

√√√√ N

∑
i=1

D

∑
d=1

(xid(t)− cd(t))
2 (20)

cd(t) =
1
D

N

∑
i=1

xid(t) (21)

where IC represents the dispersion between the population and the center of mass cd in
each iteration, and xid represents the value of the d dimension of the ith individual at the
time of iteration t.

A small population diversity measure indicates that particles converge near the pop-
ulation center, that is, develop in a small space. A large population diversity measure
indicates that the particles are far from the center of the population, that is, they explore
in a larger space. Unimodal function F1 and multi-modal function F15 of the commonly
used test functions of CEC23 were selected as representatives to analyze the population
diversity measurements of MSGWO and GWO, respectively. The experimental results are
shown in Figure 7a,b.
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As can be seen from Figure 7, the population diversity measure of the GWO algorithm
decreased at the fastest speed in F1 and F15, which is not conducive to sufficient space
exploration in the early stage and is easy to fall into local optimization. In F1, the MSGWO
algorithm maintained a high level of population diversity in the early stage of evolution,
fully satisfying the exploration of particles in the whole space, while the population di-
versity decreased rapidly in the middle and late stages of evolution, indicating that the
algorithm has a good development ability. In F15, MSGWO population diversity fluctu-
ated greatly and remained at a high level, indicating that the algorithm has a good global
exploration ability.

5. Bearing Fault Detection
5.1. Parameter Adaptive Multistable Stochastic Resonance Strategy

In SR performance measurement indicators, signal-to-noise ratio (SNR) is commonly
used and plays an important role. In this paper, the SNR is used as the target of optimization,
that is, the fitness function. The formula for calculating the SNR is as follows [39]:

SNR = 10 log10
At

N/2
∑

n=0
An

(22)
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where At is the amplitude of the target frequency, An is the amplitude of frequencies other
than the target frequency in the input signal, and N is the number of samples.

Based on the above analysis, the flow chart of the bearing fault-detection method
proposed in this paper is shown in Figure 8, and its specific steps are as follows:
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Figure 8. The flow diagram of the proposed algorithm.

Step 1: Input noisy signals and initialize MSGWO parameters. The range of a is [0, 0.5];
the range of b, c, and h are [0, 10]. The maximum number of iterations is 200 and the
number of grey wolf populations is 30.

Step 2: Run the MSGWO, calculate the SNR according to Equation (22), then update
the individual position, iterate to the maximum number of iterations, and finally terminate
the iteration.

Step 3: Substitute the optimal solutions of a, b, c, and h into the SR system for operation,
and subject the output of the SR system to fast Fourier transform to obtain the frequency
domain. Then, analyze the output of the SR according to the frequency domain, and capture
the fault frequency.

5.2. CWRU Bearing Data Set

In an effort to verify the applicability of the raised method in actual fault-signal
detection, the open bearing-fault data set of CWRU was selected for the experiment [40],
and the driving end bearing model 6205-2RS was used. Since the rotating speed of the
bearing was 1750 rpm, the fault characteristic frequency of the inner ring was calculated
to be 158 Hz. In the experiment, the sampling frequency was set to 12 kHz, and the data
length of the signal was 12,000. The time domain and frequency domain waveforms of the
input signal are shown in Figure 9, and the output signal-to-noise ratio was SNR = −37.77.
As can be seen from Figure 9, the fault frequency of the original signal was difficult to
capture in its frequency domain due to the influence of environmental noise. In order to
ensure the accuracy of the experimental results, the average method of 30 experiments
was adopted. The optimal parameters optimized by MSGWO were as follows: a = 0.033,
b = 0.567, c = 0.082, and h = 0.086. We substituted the four parameters a, b, c, and h
into the SR system to obtain the frequency domain waveform of its output, as shown in
Figure 10. The output signal-to-noise ratio was SNR = −26.92, which was 10.85 dB higher
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than that of the input. According to the frequency domain waveform diagram in Figure 10,
it can be observed that there was a clear spike at the target frequency, and the amplitude of
the peak frequency was much larger than the amplitude of other surrounding frequencies.
It can be seen that the method in this paper can effectively detect the bearing fault signal.
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In the case of the same parameters, the raised method was compared with five bearing
fault-detection methods based on the improved algorithms to optimize the SR parameters.
In an effort to ensure the accuracy of the experimental results, the method of averaging
30 experiments was adopted. The comparison experiment results are shown in Table 6. The
test results shown in black bold in Table 6 are the best results for comparison.

Table 6. Comparison of experimental parameter results based on CWRU dataset.

GWO IGWO MEGWO mGWO MPSO MSGWO

a 0.077 0.080 0.065 0.101 0.055 0.033
b 4.197 6.581 6.305 6.571 8.418 0.567
c 7.206 2.830 6.028 7.417 6.160 0.082
h 0.755 0.888 0.792 0.757 0.763 0.086

Time 15.37 14.24 15.25 15.92 10.58 14.72
SNR −28.35 −28.51 −28.27 −28.37 −28.32 −26.92

According to the data in Table 6, compared with five bearing fault-detection methods
based on improved algorithms to optimize SR parameters, the raised method had the
highest SNR, but the convergence speed was slower than that of bearing fault-detection
methods based on IGWO and MPSO. Since the SNR was taken as the evaluation index in
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bearing fault detection, the proposed method had some advantages over the five bearing
fault-detection methods based on the improved algorithm to optimize the SR parameters.

5.3. MFPT Bearing Data Set

In an effort to further verify the applicability of the raised method in actual fault-signal
detection, the bearing data set of the MFPT in the United States was selected as the research
object [41] to detect the outer-ring signal of the faulty bearing. The input shaft speed of
the selected outer ring fault signal was 25 Hz, the load was 25, and the fault characteristic
frequency was calculated to be 162 Hz. The time domain and frequency domain waveform
of the input signal are shown in Figure 11. According to Figure 11, due to the influence of
ambient noise, the fault frequency of the original signal was submerged in the noise and
was difficult to be captured in its frequency domain. In an effort to ensure the accuracy of
the experimental results, the average method of 30 experiments was adopted. The optimal
parameters optimized by MSGWO were as follows: a = 0.500, b = 9.571, c = 0.019, and
h = 0.409. We substituted the four parameters a, b, c, and h into the SR system to obtain
the frequency domain waveform of its output, as shown in Figure 12. According to the
frequency domain waveform diagram in Figure 12, it can be observed that the amplitude of
the target frequency was the largest in its frequency domain and was much larger than the
amplitude of other surrounding frequencies. This further proves that the raised method
can detect the bearing fault signal effectively.
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In the case of the same parameters, the raised method was compared with five bearing
fault-detection methods based on the improved algorithms to optimize the SR parameters.
In an effort to ensure the accuracy of the experimental results, the method of averaging
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30 experiments was adopted. The comparison experiment results are shown in Table 7.
The test results shown in black bold in Table 7 are the best results for comparison.

Table 7. Comparison of experimental parameter results based on MFPT dataset.

GWO IGWO MEGWO mGWO MPSO MSGWO

a 0.500 0.495 0.500 0.472 0.052 0.500
b 10.00 2.173 8.554 8.247 8.968 9.571
c 0.025 0.488 0.054 3.728 1.287 0.019
h 0.328 0.185 0.257 0.069 0.122 0.409

Time 21.51 25.35 35.52 34.79 22.91 19.95
SNR −26.56 −27.75 −26.82 −27.21 −27.62 −26.42

According to the data in Table 7, compared with five bearing fault-detection methods
based on the improved algorithms to optimize SR parameters, the method raised in this
article had a larger SNR and better time performance. Therefore, the method proposed in
this article has certain advantages over the comparative method.

5.4. Bearing-Fault Diagnosis of Crystal Growing Furnace

In this paper, the crystal lifting and rotating mechanism of a crystal growing furnace
was taken as the actual test object, as shown in Figure 13. The crystal growing furnace is
the major equipment for producing wafers. The mechanism is composed of two Mitsubishi
HG-KR73 servo motors, the crystal lift motor is used to lift the crystal upward, and the
crystal rotating motor is used to drive the crystal to spin during the growth process. Because
the stability of crystal rotating is an important factor to determine the crystal formation
and crystal quality, it is necessary to accurately monitor the fault of the crystal rotating
motor. The experiment object was the motor of a certain type of electronic-grade silicon
single-crystal growing furnace. The purpose was to detect the failure frequency of the
crystal rotating motor. A certain type of three-dimensional vibration sensor was used
in the experiment, and its connection with the motor is shown in Figure 14. As shown
in Figure 14, the vibration sensor was adsorbed on the motor, and information such as
vibration displacement, vibration speed, and vibration frequency can be collected. The
deceleration ratio of the crystal rotating system was 100:1, that is, when the crystal rotating
speed was 10 rad/min, the speed of the crystal rotating motor was 1000 rad/min.
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Figure 14. Vibration sensor installation position.

The vibration signal of the motor collected by the vibration sensor is shown in Figure 15.
As can be seen from Figure 15, the time domain signal of the actual motor fault collected by
the vibration sensor is very weak, completely submerged in the noise, and the frequency
domain signal cannot distinguish the fault frequency. The method proposed in this paper
was used to detect the fault frequency of the crystal rotating motor, and the test results are
shown in Figure 16. It can be seen from Figure 16 that the algorithm increased the frequency
domain amplitude of the fault signal and effectively detected that the fault frequency of
the crystal motor was 35 Hz.
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6. Conclusions

Taking bearing fault-signal detection as the research object, this paper proposes a
bearing fault-detection method based on an improved grey wolf algorithm to optimize mul-
tistable stochastic resonance parameters, aiming at the problems that multistable stochastic
resonance system parameters are difficult to select and basic grey wolf optimization algo-
rithm is prone to local optimization and low convergence accuracy. This method improved
the grey wolf optimization algorithm. Firstly, the Sobol sequence was used to initialize the
grey wolf population to improve the diversity of the population. Secondly, the exponential
rule convergence factor was used to balance the global search and local development stages
of the algorithm. At the same time, the adaptive position-update strategy was introduced
to improve the accuracy of the algorithm. Additionally, we used Cauchy–Gaussian hybrid
variation to improve the ability of the algorithm to escape from the local optimal area. The
performance of the proposed algorithm was verified using experiments with 15 benchmark
test functions in the CEC23 group of common test functions. The results show that the
multi-strategy improved grey wolf optimization algorithm has better optimization perfor-
mance. Then, the improved grey wolf optimization algorithm was used to optimize the
parameters of the multistable stochastic resonance algorithm, so as to realize the detection
of bearing fault signals. Finally, the bearing data sets of Case Western Reserve University
and the Association for Mechanical Fault Prevention Technology were analyzed and diag-
nosed with the proposed bearing fault-detection method, and the optimization results were
compared with other improved algorithms. At the same time, the method proposed in this
paper was used to diagnose the fault of the bearing of the lifting device of a single-crystal
furnace. The experimental results show that this method can be used to detect the bearing
fault signal and can effectively enhance the fault signal in the noise. Compared with other
optimized bearing fault-detection methods based on improved intelligent algorithms, the
proposed method has the advantages of fast convergence, high parameter optimization
accuracy, and strong robustness.

In the future, this paper will study the following two aspects: Firstly, the MSGWO
needs to be further improved to improve its stability due to its poor stability in individual
test functions. Secondly, the bearing fault-detection method proposed in this paper will be
applied to the bearing fault detection of rotating machinery in different industries, and the
corresponding improvement will be made according to the actual detection results, so as to
improve the applicability of the bearing fault-detection method proposed in this paper to
different industries.
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Abstract: Existing diagnosis methods for bearing faults often neglect the temporal correlation of
signals, resulting in easy loss of crucial information. Moreover, these methods struggle to adapt to
complex working conditions for bearing fault feature extraction. To address these issues, this paper
proposes an intelligent diagnosis method for compound faults in metro traction motor bearings. This
method combines multisignal fusion, Markov transition field (MTF), and an optimized deep residual
network (ResNet) to enhance the accuracy and effectiveness of diagnosis in the presence of complex
working conditions. At the outset, the acquired vibration and acoustic emission signals are encoded
into two-dimensional color feature images with temporal relevance by Markov transition field.
Subsequently, the image features are extracted and fused into a set of comprehensive feature images
with the aid of the image fusion framework based on a convolutional neural network (IFCNN).
Afterwards, samples representing different fault types are presented as inputs to the optimized
ResNet model during the training phase. Through this process, the model’s ability to achieve
intelligent diagnosis of compound faults in variable working conditions is realized. The results of the
experimental analysis verify that the proposed method can effectively extract comprehensive fault
features while working in complex conditions, enhancing the efficiency of the detection process and
achieving a high accuracy rate for the diagnosis of compound faults.

Keywords: metro traction motor bearings; multisignal fusion; Markov transition field; optimized
deep residual network; diagnosis of compound faults

1. Introduction

As the power source of metro trains, the quality of the traction motor bearings directly
affects the normal operation of the motor. The frequent starting and stopping of the metro
causes alternating changes in the speed of the traction motor bearings and the loads they
are subjected to. With long-term harsh working conditions, the inner and outer rings of
bearings and rolling elements will produce varying degrees of pitting, cracking and more
complex forms of failure. The adverse vibrations generated by a faulty bearing, when input
into the entire system over an extended period, not only damage the traction motor but
also pose a risk to other structural components. This poses a serious threat to the safety and
reliability of metro trains. The intelligent diagnosis of bearings fault in complex working
conditions enables the timely identification of fault types, facilitating early maintenance
intervention and providing significant engineering value for practical applications.

Conventional approaches for bearing fault diagnosis predominantly rely on signal
processing techniques. To address the issue of noise interference during feature extraction,
wavelet thresholding was employed to effectively eliminate significant noise components
from the raw data [1,2]. In an effort to enhance the signal-to-noise ratio, ref. [3,4] adopted
empirical mode decomposition (EMD) to decompose the signal into multiple intrinsic mode
functions. Furthermore, ref. [5] introduced an optimized variational mode decomposition
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(VMD) method to facilitate the selection of intrinsic mode functions containing pertinent
fault information. Despite the promising outcomes achieved by these traditional methods
in bearing fault diagnosis, they are accompanied by inherent limitations. These drawbacks
encompass restricted generalization capability, challenges in extracting deep fault features,
and complexities associated with parameter optimization. Signal analysis technology, as a
research hotspot, has been receiving attention from scholars. Subsequently, the introduction
of new methods has successfully addressed many challenges [6,7].

With the development of artificial intelligence technology, machine learning and deep
learning [8] have gained significant attention in various fields, and numerous researchers
have started extracting deeper features and making notable contributions [9–11]. A con-
volutional neural network (CNN), as one of their important representatives, possesses a
powerful adaptive feature extraction capability. Moreover, CNN has demonstrated remark-
able performance in the field of image processing. As such, scholars have increasingly
introduced CNN into the field of fault diagnosis and conducted a series of research studies
in this area. Ref. [12] has recently proposed a CNN model that utilizes widened convo-
lutional kernels to improve the feature extraction efficiency of the network. Ref. [13] has
deployed a CNN to extract features from Mel spectrum generated from the voiceprint
signals of motors. Ref. [14] has presented a multiscale CNN model that effectively extracts
signal features at different frequencies. This advanced model is further combined with
LSTM to identify fault types. In the field of medical imaging, ref. [15] proposed an improved
CNN model architecture for the identification of a lung nodule and early-stage cancer di-
agnosis by comparing multiple photos. In big data environments, to reduce the costs
associated with data collection and processing, some researchers have explored unsuper-
vised learning techniques. To synchronously extract local and global structural information
from the raw unlabeled industrial data, ref. [16] proposed a new multiple-order graphical
deep extreme learning machine (MGDELM) algorithm. Ref. [17] proposed a novel self-
training semi-supervised deep learning (SSDL) approach to train a fault diagnosis model
together with few labeled and abundant unlabeled samples. The previously discussed
research studies have made notable advances in fault diagnosis. However, because of their
reliance on single-sensor signals, there may be limitations in accurately characterizing fault
information, which could ultimately reduce their overall reliability.

Multisignal fusion technology enables the simultaneous processing of time-series data
obtained from multiple sensors, thereby capturing a broader range of system variability
while offering heightened complementarity and fault tolerance. In one study, feature
extraction was performed on original vibration and acoustic signals, which were subse-
quently fused using a 1DCNN-based network model [18]. Another approach proposed a
frequency-domain multilinear principal component analysis to effectively identify faults
by integrating diverse vibration and acoustic signals [19]. Similarly, a two-dimensional
matrix was constructed from multi-axial vibration signals, and an enhanced 2DCNN model
was employed for fault diagnosis [20]. These methods have demonstrated commendable
enhancements in diagnostic accuracy. However, it is worth noting that a limitation common
to these approaches is the omission of time correlation among signals, which may result in
the loss of crucial fault-related information.

Upon a comprehensive analysis of existing literature, it has been observed that di-
agnostic approaches leveraging deep learning techniques frequently employ increasing
network depths to enhance the model’s learning capacity and improve diagnostic perfor-
mance. Nevertheless, the utilization of progressively deeper networks may give rise to
challenges such as the vanishing or exploding gradient problem. To address this issue,
deep residual networks were introduced [21], effectively mitigating the aforementioned
problem. Furthermore, an innovative activation function named STAC-tanh was proposed
by [22], which enables adaptive feature extraction in the bearing system by employing
the hyperbolic tangent function with slope and threshold adaptivity. Another compelling
approach involved the fusion of Gramian angular field (GAF) with ResNet, leading to
notable advancements in bearing fault diagnosis [23]. Additionally, ref. [24] combined
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transfer learning with ResNet, utilizing a pretrained ResNet model on ImageNet as a fault
feature extractor, which yielded remarkably accurate results. These aforementioned studies
have demonstrated promising outcomes in the realm of bearing fault diagnosis. However,
certain limitations persist, including the sole reliance on a single sensor signal and the
absence of experimental verification through the use of a purpose-built platform.

In summary, most of the studies are based on open source datasets with simple
working conditions and failure forms, but the actual working conditions of bearings are
complex and can present different parts and degrees of failure. To address the challenges
faced in compound bearing fault diagnosis under complex working conditions, such as
the low reliability of single sensor signals, the tendency for traditional data processing
methods to result in important information loss, the degradation of diagnostic models
with increasing network depth, and the difficulty of feature extraction, this paper proposes
an intelligent diagnosis method for compound bearing faults in metro traction motors by
combining MTF-processed acoustic-vibration signals using IFCNN for feature fusion along
with an optimized version of ResNet. The main contributions of the paper are expressed
as follows:

1. The application of IFCNN in compound bearing fault diagnosis allows for the fusion
of multiple signal features, reducing the limitations of single sensor signals and
providing more reliable diagnostic results.

2. The optimized ResNet model improves the efficiency of feature extraction by address-
ing the vanishing gradient problem. Combined with the MTF data processing method,
it can effectively extract complex bearing fault features under varying working condi-
tions with good accuracy and stability.

3. The construction of a test platform for metro traction motor bearings was completed,
and intelligent diagnosis of composite faults under variable working conditions was
conducted, validating the effectiveness of the proposed methods.

The remaining sections of this paper are arranged as follows: In Section 2, the data
processing method used in this study and the construction of the dataset are introduced.
Section 3 focuses on the multisignal fusion technology used in this study. Section 4 provides
a detailed description of the fault diagnosis model and the corresponding diagnostic
process. Section 5 explains the specific experimental design, as well as the diagnostic
scheme adopted in this study. Section 6 analyzes the experimental results and carries out
a series of method comparisons to validate the effectiveness of the proposed approach.
Section 7 summarizes the main content of the paper and draws conclusions.

2. Data Preprocessing

In this study, a signal acquisition system will be built to obtain a large amount of raw
data using acoustic emission sensors, vibration sensors and PCI acquisition cards. The
research focuses on compound faults, with pitting as the main defect. The location of the
defect is used as a classification criterion. A total of eight fault types including normal
bearings are designed and labeled for subsequent study, using different fault locations as
classification indicators. The fault types and labels are shown in Table 1.

Table 1. Label settings for different fault types.

Fault Types

Normal Inner
Ring

Outer
Ring

Rolling
Element

Inner Ring +
Outer Ring

Inner Ring +
Rolling
Element

Outer Ring +
Rolling Element

Inner Ring +
Outer Ring +

Rolling Element

Label 0 1 2 3 4 5 6 7

2.1. Dataset Construction

The vibration and acoustic emission signals were acquired using a PCI data acquisition
card with a sampling frequency of 50 kS/s and a sampling time of 10 s, giving a total
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of 5 × 105 sampling points. In this experiment, the minimum speed of the bearing is
determined to be 800 rpm. Based on this speed, the number of sampling points obtained
from one cycle of bearing rotation can be calculated to be 3750. In order to ensure the
completeness of the sampled fault information, it is recommended that the number of
sampling points be at least twice that of the calculated value, resulting in a sampling
length of 8192 (213). With a limited amount of data, the vibration and acoustic emission
signals were data augmented using overlapping sampling so that each fault type under
each working condition contained 1000 samples for a total of 8000 samples, which were
randomly divided into a training set and a testing set at 9:1. Under fixed working conditions,
the dataset is divided as shown in Table 2.

Table 2. Dataset partitioning under fixed working conditions.

Data Set

Sample Size for Different Fault Types

Normal Inner
Ring

Outer
Ring

Rolling
Element

Inner Ring +
Outer Ring

Inner Ring +
Rolling
Element

Outer Ring
+ Rolling
Element

Inner Ring +
Outer Ring +

Rolling Element

Training Set 900 900 900 900 900 900 900 900
Testing Set 100 100 100 100 100 100 100 100

2.2. MTF Image Encoding

In this paper, MTF is used to process vibration signals and acoustic emission signal
data, converting the acquired data samples into image samples. MTF is an image encoding
method that converts original vibration or acoustic emission signals into time series two-
dimensional images through Markov transition probabilities [25].

Suppose a discretized segment of time series data X = {x1, x2, · · · , xn} is partitioned
into intervals of its value domain by quantile Q. Each xt in the sequence can be mapped
to the corresponding interval qn(n ∈ [1, Q]). By calculating the state transfer probabilities
through the Markov chain principle, a state transfer probability matrix W of size Q× Q
can be obtained, with an expression, as shown in Equation (1), where wij denotes the
probability that a sample point in interval qj at moment t is transferred to interval qi at
moment t + 1 [26].

W =




w11|P(xt+1∈q1|xt∈q1)
· · · w1Q|P(xt+1∈q1|xt∈qQ)

w21|P(xt+1∈q2|xt∈q1)
· · · w2Q|P(xt+1∈q2|xt∈qQ)

...
. . .

...
wQ1|P(xt+1∈qQ |xt∈q1)

· · · wQQ|P(xt+1∈qQ |xt∈qQ)




(1)

By incorporating the temporal information into the state transfer probability matrix W
and arranging each state transition probability wij in time sequence, a Markov transition
field (MTF) matrix M of size n× n is obtained as expressed in shown Equation (2) where
mij denotes the transition probability wij between the intervals (qj → qi) in which the
sample points are located in time sequence.

M =




m11 m12 · · · m1n
m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn


 =




wij|x1∈qi ,x1∈qj
· · · wij|x1∈qi ,xn∈qj

wij|x2∈qi ,x1∈qj
· · · wij|x2∈qi ,xn∈qj

...
. . .

...
wij|xn∈qi ,x1∈qj

· · · wij|xn∈qi ,xn∈qj




(2)

The elements mij in the MTF matrix are transformed as pixel points into a two-
dimensional feature image with temporal correlation. As the number of sample points
selected directly affects the size of the generated coded image, it is clearly inappropriate for
an image with too large a size to be used directly as input to the CNN. To improve compu-
tational efficiency, a fuzzy kernel

{
1

m2

}
m×m

is used to pixel average each region without
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overlap. Figure 1 shows images of different fault types after encoding each sample, consist-
ing of 8192 sampling points, using MTF image encoding and subsequently subjecting them
to pixel averaging processing. Compared to traditional time domain analysis methods,
MTF encoding images preserve time-related information and enable clearer differentiation
of various fault types in rolling bearings.
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methods, MTF encoding images preserve time-related information and enable clearer dif-
ferentiation of various fault types in rolling bearings. 
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Figure 1. MTF-encoded images of 8 types of fault: (a) normal; (b) inner ring; (c) outer ring; (d) roll-
ing element; (e) inner ring + outer ring; (f) inner ring + rolling element; (g) outer ring + rolling ele-
ment; (h) inner ring + outer ring + rolling element. 
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processing can establish correlations between multiple signal sources. Usually, infor-
mation fusion can be divided into three levels: data-level fusion, feature-level fusion, and 
decision-level fusion. Considering that the sample data in this study consist of MTF en-
coded images of different fault types, it is advantageous to employ CNN for image pro-
cessing. Therefore, this paper adopted the IFCNN for feature-level fusion of the data. 
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Figure 1. MTF-encoded images of 8 types of fault: (a) normal; (b) inner ring; (c) outer ring; (d) rolling
element; (e) inner ring + outer ring; (f) inner ring + rolling element; (g) outer ring + rolling element;
(h) inner ring + outer ring + rolling element.

3. Multisignal Fusion

To enhance system stability and increase diagnostic reliability, this article collected
vibration signals and acoustic emission signals and fused them for processing. This fusion
processing can establish correlations between multiple signal sources. Usually, information
fusion can be divided into three levels: data-level fusion, feature-level fusion, and decision-
level fusion. Considering that the sample data in this study consist of MTF encoded images
of different fault types, it is advantageous to employ CNN for image processing. Therefore,
this paper adopted the IFCNN for feature-level fusion of the data.

IFCNN consists of three modules, namely, the feature extraction module, the fea-
ture fusion module and the feature reconstruction module [27], and the structure of this
framework is shown in Figure 2.
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Figure 2. The structure of IFCNN.
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The feature extraction module consists of two convolutional layers. The first layer
uses the first convolutional layer of the ResNet101 network model, pretrained on the
ImageNet dataset. This layer includes 64 convolutional kernels with a size of 7 × 7 and
retains the training parameters, enabling effective extraction of image features. The second
convolutional layer includes 64 convolutional kernels with a size of 3 × 3, which are used
to adjust the features extracted by the first layer in order to adapt to feature fusion. For
this study, the feature fusion module adopts an element-wise maximum fusion strategy.
The final module is the image reconstruction module, in which the third convolutional
layer includes 64 convolutional kernels with a size of 3 × 3. This layer adjusts the fused
convolutional features and plays an important role in reconstructing the image. The fourth
convolutional layer reconstructs the feature map with three-channel output, and it includes
3 convolutional kernels with a size of 1 × 1.

This framework uses the mean squared error (MSE) as the basic loss function and
adds a perceptual loss to optimize the model. The expression for the perceptual loss (Ploss)
is as follows:

Ploss =
1

C f H f W f
∑
i,x,y

[
f i
p(x, y)− f i

g(x, y)
]2

(3)

where fp and fg are the feature maps of the predicted fused image and the true fused image,
respectively; i is the feature map channel index; C f , H f and W f are the number of channels,
height and width of the feature map, respectively. The expression for the basic loss (Bloss) is
as follows:

Bloss =
1

3HgWg
∑
i,x,y

[
Ii
p(x, y)− Ii

g(x, y)
]2

(4)

where Ip and Ig are the predicted fused image and the true fused image, respectively; i is
the RGB image channel index; Hg and Wg are the height and width of the true fused image,
respectively. The expression for the total loss (Tloss) is as follows:

Tloss = w1Bloss + w2Ploss (5)

where w1 and w2 are the weighting coefficients. For the fusion of MTF-encoded images in
this study, the sums are both set to 1.

4. Fault Diagnosis Method
4.1. Optimized Deep Residual Network

ResNet is built on the basis of CNN and solves the gradient vanishing problem by
adding skip connections between the input and output of each convolutional layer. The
classic residual module structure is shown in Figure 3.
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The structure contains two mappings, the part of the main path is called the residual
mapping and the part of the bypass connection is called the constant mapping. The final
output of the residual block is therefore the superposition of the outputs obtained from the
two mappings:

H(x) = F(x) + x (6)

The structure of the residual network model constructed in this study is shown in
Table 3. It includes an input layer, a maximum pooling layer, convolutional layers, an
average pooling layer, a fully connected layer and a softmax classifier. Conv2, Conv3,
Conv4 and Conv5 are residual modules.

Table 3. ResNet model structure.

Layer Name Kernel Size Channel Stride Padding Output

Input Image - - - - 3 × 224 × 224
Conv1 7 × 7 64 2 3 64 × 112 × 112

Maxpool 3 × 3 64 2 1 64 × 56 × 56

Conv2

Conv2_1 3 × 3 64 1 1 64 × 56 × 56
Conv2_2 3 × 3 64 1 1 64 × 56 × 56
Conv2_3 3 × 3 64 1 1 64 × 56 × 56
Conv2_4 3 × 3 64 1 1 64 × 56 × 56

Conv3

Conv3_1 3 × 3 128 2 1 128 × 28 × 28
Conv3_2 3 × 3 128 1 1 128 × 28 × 28
Conv3_3 3 × 3 128 1 1 128 × 28 × 28
Conv3_4 3 × 3 128 1 1 128 × 28 × 28

Conv4

Conv4_1 3 × 3 256 2 1 256 × 14 × 14
Conv4_2 3 × 3 256 1 1 256 × 14 × 14
Conv4_3 3 × 3 256 1 1 256 × 14 × 14
Conv4_4 3 × 3 256 1 1 256 × 14 × 14

Conv5

Conv5_1 3 × 3 512 2 1 512 × 7 × 7
Conv5_2 3 × 3 512 1 1 512 × 7 × 7
Conv5_3 3 × 3 512 1 1 512 × 7 × 7
Conv5_4 3 × 3 512 1 1 512 × 7 × 7

Avgpool - - - - 512 × 1 × 1

Fc, Softmax

Convolutional layers are the core of CNNs, responsible for extracting features from
large amounts of input data. Typically, convolutional layers can be described by the
following expression:

xl
j = σ(∑i∈Mj

xl−1
j ∗ kl

ij + bl
j) (7)

where xl−1
j is the input of the (l − 1)-th layer of the network; xl

j is the output of the l-th

layer of the network; kl
ij is the weight matrix of the convolutional kernel; bl

j is the bias term;
Mj is the set of input feature maps; σ is the nonlinear activation function; and ∗ represents
the convolution operation.

Pooling aims to reduce the size of feature maps while retaining the most important
feature information. It can effectively reduce computational complexity and improve the
model’s robustness and generalization capabilities. The pooling process involves four steps:
input feature map, sliding window coverage, feature aggregation, and output feature map.
The pooling process can be described by the following expression:

xl
j = σ(βl

jdown(xl−1
j ) + bl

j) (8)
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where xl−1
j is the input of the (l − 1)-th layer of the network; xl

j is the output of the l-th

layer of the network; bl
j is the bias term; σ is the nonlinear activation function; down(·) is

the down-sampling function; and βl
j is the weight.

To improve the efficiency of fault diagnosis, a convolutional block attention module
(CBAM) is introduced to optimize the model by focusing it more on important features [28].
CBAM consists of channel attention module, which captures the connections between
channels of the feature map, and spatial attention module, which captures the connections
between spatial regions of the feature map.

The channel attention module feeds the features Fc
avg and Fc

max obtained after using
average pooling and max pooling in the channel dimension into the convolutional network,
respectively, and sums the results and outputs them. The process is described as:

Mc(F) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))) (9)

where σ is a sigmoid function; W0 and W1 are convolution operations with a convolution
kernel size of 1 × 1.

The spatial attention module performs a convolution operation on the features Fs
avg

and Fs
max obtained after stitching using average pooling and max pooling in the channel

dimension. The process is described as:

Ms(F) = σ( f 7×7([Fs
avg; Fs

max])) (10)

where σ is a sigmoid function; f 7×7 is convolution operation with a convolution kernel size
of 7 × 7.

This study introduced CBAM into ResNet without changing the overall structure of the
network. The input data are MTF feature images of size 224 × 224. After passing through
the first convolutional layer with a kernel size of 7 × 7 and a stride of 2, the image size is
reduced to 112 × 112. This is followed by a max pooling layer with a stride of 2, which
further reduces the data dimensionality and the image size to 56× 56. The channel attention
and spatial attention modules are added sequentially after the batch normalization (BN)
layer at the end of the residual modules Conv2, Conv3, Conv4 and Conv5, respectively.
After passing through the Conv2, which has 64 channels and convolutional kernels of
size 3 × 3 with a stride of 1, deeper features are extracted while maintaining the same
image size as the previous layer. The channels in Conv3, Conv4, and Conv5 are doubled
successively to 128, 256 and 512. At the same time, down-sampling is implemented in
the first convolutional layer with a stride of 2 in each residual module. This results in
output image sizes that progressively decrease to 28 × 28, 14 × 14 and 7 × 7, respectively.
Afterwards, the network passes through an average pooling layer to reduce the number
of parameters and mitigate the occurrence of overfitting. Then, a fully connected layer is
used for nonlinear combination of the extracted features, followed by a softmax classifier
to produce the final output.

The proposed model uses a cross-entropy loss function to evaluate the error between
the predicted and true values, avoiding gradient dispersion, which is defined in the context
of a multiclassification problem as:

L =
1
N ∑

i
Li =−

1
N ∑

i

M

∑
c=1

yic log(pic) (11)

where M is the number of categories; yic is the sign function, taking 1 if the true value of
sample i is equal to c and 0 otherwise; and pic is the predicted probability that sample i
belongs to category c.

An initial test was carried out with a constant speed of 1600 rpm and a load of 7 kN,
the number of epochs was set to 50 and the loss and accuracy (Acc) in training are shown
in Figure 4.
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Overall, from the graph, it can be seen that when the epoch reaches 40, the loss
and accuracy have basically converged, and the accuracy has reached nearly 100%. This
indicates that the model performs well on the training set and has good generalization
ability, which also verifies that the model structure and parameters chosen in this paper
are correct. Setting the number of epochs too large can significantly prolong the training
time and even cause overfitting, while setting it too small may not find the global optimal
solution. After multiple tests, this paper set the learning rate to 0.001 and the number of
epochs to 40, which is a good choice. To intuitively demonstrate the advantages of the
proposed method in extracting fault features, this paper utilized the uniform manifold
approximation and projection (UMAP) algorithm to perform dimensionality reduction
on the data and visualize the results. Taking the steady state condition with a speed
of 1600 rpm and a load of 7 kN as an example, this paper conducted a layer-by-layer
analysis of ResNet models with and without CBAM and extracted the output features of
the intermediate layers for calculation. Then, UMAP is utilized to reduce the dimensionality
of the extracted features to two dimensions. This paper extracted the fault features from
the avgpool layer and visualized the results using a scatter plot where different fault types
are marked with different colors. The visualization is shown in Figure 5.
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As can be seen from the figure above, there is a significant difference in the clustering
degree of data samples between the two models, and introducing CBAM to ResNet can
yield more obvious clustering effect in the avgpool layer. Therefore, it can be concluded
that the proposed optimized ResNet has excellent abilities in extracting fault features under
complex working conditions.

4.2. Fault Diagnosis Process

This paper proposes a compound fault diagnosis method of rolling bearings based
on multisignal fusion and MTF-ResNet. The fused MTF-encoded images are input into
the ResNet model for training, and the fault is intelligently diagnosed under different
working conditions. The basic process is shown in Figure 6, and the main steps are as
follows: (1) acquire vibration and acoustic emission signals; (2) generate feature images of
size 224 × 224 by MTF encoding of the original data to build a training set and a test set;
(3) fuse the MTF encoded images of the two signals using IFCNN; (4) input the training set
into the optimized ResNet model built for training, and save the optimal parameters; and
(5) test the test samples and output the results to complete the intelligent fault diagnosis.
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5. Fault Diagnosis Experiment
5.1. Experimental Design

The experimental bearing was selected as NU216 cylindrical roller bearing. Defects
were artificially introduced to the inner and outer rings, as well as the rolling elements using
a YLP-MDF-152 laser marking machine from Han’s Laser. Taking into account the failure
mechanism of bearings in actual working environments, alternating loads can cause cracks
to form at a certain depth below the surface, which may then propagate to the surface and
cause spalling. Fatigue spalling increases vibration and noise during rotation and is usually
the main form of rolling bearing failure. Therefore, pitting was produced on the surface of
the bearing at different locations to simulate early defects. The pitting diameter was set to
40 µm and the depth was set to 30% of the laser energy. Eight types of faults, as described
in Section 2, were designed using different fault positions as classification criterion.

In order to simulate the working conditions of metro traction motors, three addi-
tional speeds and three additional loads were included in the experimental design. In
consideration of both actual working conditions and minimizing the impact of bearing
degradation on the experiment, gradient speeds of 800 rpm (low), 1600 rpm (medium) and
2400 rpm (high) were chosen, along with gradient equivalent dynamic loads of 5 kN (light),
7 kN (medium) and 9 kN (heavy) as the radial loads. There are a total of 72 (8 × 3 × 3)
subexperiments. The experimental arrangement is shown in Table 4.

Table 4. Experimental arrangement.

Speed/rpm

Radial Loads for Different Fault Types/kN

Normal Inner
Ring

Outer
Ring

Rolling
Element

Inner Ring +
Outer Ring

Inner Ring +
Rolling
Element

Outer Ring
+ Rolling
Element

Inner Ring +
Outer Ring +

Rolling Element

800 5 5 5 5 5 5 5 5
800 7 7 7 7 7 7 7 7
800 9 9 9 9 9 9 9 9

1600 5 5 5 5 5 5 5 5
1600 7 7 7 7 7 7 7 7
1600 9 9 9 9 9 9 9 9
2400 5 5 5 5 5 5 5 5
2400 7 7 7 7 7 7 7 7
2400 9 9 9 9 9 9 9 9

5.2. Construction of the Signal Acquisition System

This study utilized the intelligent testing platform for comprehensive bearing per-
formance, jointly developed by Henan University of Science and Technology, Luoyang
Bearing Research Institute, and Intelligent Numerical Control Equipment Henan Provincial
Engineering Laboratory, as the signal acquisition system. The testing machine allows for
a maximum inner diameter of 120 mm, a maximum speed of 5000 r/min, a maximum
radial load of 300 kN, and a maximum axial load of 200 kN for the bearing. The platform is
equipped with a PCI-8 acoustic emission transmitter, two R50S-TC acoustic emission sen-
sors, two LC0151T acceleration sensors, two LC0201-5 signal conditioners, and a PCI8510
data acquisition card.

During the experiment, a healthy bearing and a faulty bearing were installed at both
ends of the testing machine’s spindle, and vibration and acoustic emission signals were
collected from both bearings simultaneously. The loading system applies radial loads to
the spindle via a pair of NU2218 cylindrical roller bearings, which in turn are transferred
to the test bearings at both ends of the spindle. The sensor signals are amplified and
conditioned by signal amplifiers, signal conditioners, and input to the computer through a
PCI acquisition card. The principle of the signal acquisition system is shown in Figure 7.
The physical set-up of the system is shown in Figure 8.
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This study utilized the intelligent testing platform for comprehensive bearing perfor-

mance, jointly developed by Henan University of Science and Technology, Luoyang Bear-
ing Research Institute, and Intelligent Numerical Control Equipment Henan Provincial 
Engineering Laboratory, as the signal acquisition system. The testing machine allows for 
a maximum inner diameter of 120 mm, a maximum speed of 5000 r/min, a maximum ra-
dial load of 300 kN, and a maximum axial load of 200 kN for the bearing. The platform is 
equipped with a PCI-8 acoustic emission transmitter, two R50S-TC acoustic emission sen-
sors, two LC0151T acceleration sensors, two LC0201-5 signal conditioners, and a PCI8510 
data acquisition card. 

During the experiment, a healthy bearing and a faulty bearing were installed at both 
ends of the testing machine’s spindle, and vibration and acoustic emission signals were 
collected from both bearings simultaneously. The loading system applies radial loads to 
the spindle via a pair of NU2218 cylindrical roller bearings, which in turn are transferred 
to the test bearings at both ends of the spindle. The sensor signals are amplified and con-
ditioned by signal amplifiers, signal conditioners, and input to the computer through a 
PCI acquisition card. The principle of the signal acquisition system is shown in Figure 7. 
The physical set-up of the system is shown in Figure 8. 

 
Figure 7. Schematic diagram of the signal acquisition system. Figure 7. Schematic diagram of the signal acquisition system.
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5.3. Diagnostic Scheme Design

To further validate the effectiveness of the proposed method, three types of diagnostic
schemes were designed for single working condition changes, compound working condi-
tion changes, and generic working conditions, considering two different factors (speed and
load) that affect the test results.

When studying single working condition changes, first control the speed to be constant,
put data of two different loads in the training set, and put data of another load in the test
set to verify the robustness of the model. When controlling the load to be constant, the
method is similar to the above. The specific diagnostic program is shown in Table 5.
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Table 5. Diagnostic scheme for single working condition change.

Fixed Variable Variable Training Set Testing Set

Speed/rpm Load/kN
5, 7 9
5, 9 7
7, 9 5

Load/kN Speed/rpm
800, 1600 2400
800, 2400 1600

1600, 2400 800

When studying the change of compound working condition, it is required that the
training set contains data with different speeds and loads at the same time. For generic
working conditions, it is required that all fault types data under all conditions exist in both
the training and testing sets.

6. Experimental Results and Comparison of Methods

During the operational process of a metro system, variations in bearing speed and load
are inevitable. While previous steady-state tests have certain limitations, it becomes crucial
to analyze the results of variable working condition tests to validate the effectiveness of the
proposed method. To further explore the changes in compound working conditions, an
additional analysis comparing the fusion of acoustic emission and vibration signals with a
single signal was incorporated to emphasize the advantages of the proposed method. In the
generic working condition tests, the feature extraction capabilities of four models, namely
the proposed model, RepVGG, CBAM-CNN and ResNet, were compared to evaluate
their performance.

6.1. Single Working Condition Changes

Based on the fault diagnosis method proposed in Section 5.3, with the control of
constant speed and load, the training set was input into the model constructed in this paper,
and fault diagnosis was performed on the test set. The diagnostic results are shown in
Table 6.

Table 6. The diagnostic results for single working condition changes.

No. Speed of
Training Set/rpm

Load of
Training Set/kN

Speed of
Testing Set/rpm

Load of
Testing Set/kN

Diagnostic
Accuracy/%

1 800 5, 7 800 9 99.5
2 800 5, 9 800 7 100
3 800 7, 9 800 5 93
4 1600 5, 7 1600 9 100
5 1600 5, 9 1600 7 99.4
6 1600 7, 9 1600 5 92.4
7 2400 5, 7 2400 9 100
8 2400 5, 9 2400 7 100
9 2400 7, 9 2400 5 94

10 800, 1600 5 2400 5 100
11 800, 2400 5 1600 5 100
12 1600, 2400 5 800 5 78
13 800, 1600 7 2400 7 98.6
14 800, 2400 7 1600 7 90.4
15 1600, 2400 7 800 7 81
16 800, 1600 9 2400 9 98.8
17 800, 2400 9 1600 9 99.4
18 1600, 2400 9 800 9 83

Based on a comprehensive examination of the aforementioned table, it is observed that
when maintaining a constant speed while altering the load, the fault diagnosis accuracy
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reaches nearly 100%. Conversely, in cases where the load remains constant but the speed
varies, a decrease in fault diagnosis accuracy is observed, indicating a substantial influence
of rotational speed on diagnostic outcomes. Subsequent analysis reveals that the accuracy
of items numbered 12, 15 and 18 is significantly low, whereas items numbered 3, 6 and
9 demonstrate accuracy close to 100%, albeit slightly lower than other items within the
initial nine numbers. This discrepancy can be attributed to the fact that fault characteristics
extracted under medium- to high-speed and medium to heavy load conditions are more
discernible compared to those under low-speed and light load conditions.

6.2. Compound Working Condition Changes

Mixed data with different speeds and loads were included in the training set and
used to train the model proposed for fault diagnosis on the testing set. Subsequently, a
comparison was made between the fusion of acoustic emission and vibration signals and
using a single signal. The diagnostic results are shown in Table 7.

Table 7. The diagnostic results for compound working condition changes.

No.
Speed of Training

Set/rpm
Load of Training

Set/kN
Speed of Testing

Set/rpm
Load of Testing

Set/kN

Diagnostic Accuracy/%

Vibration Acoustic
Emission Fusion

1 800, 1600 5, 7, 9 2400 5, 7, 9 90 82 94.1
2 800, 2400 5, 7, 9 1600 5, 7, 9 93.4 88.1 97.6
3 1600, 2400 5, 7, 9 800 5, 7, 9 71.4 66 75
4 800, 1600, 2400 5, 7 800, 1600, 2400 9 98 90.5 100
5 800, 1600, 2400 5, 9 800, 1600, 2400 7 96.5 85 99.4
6 800, 1600, 2400 7, 9 800, 1600, 2400 5 97.1 83.4 98.6

The table clearly indicates that the diagnostic results of items numbered 4 to 6 surpass
those of items numbered 1 to 3. Notably, the training and testing sets for items numbered 1
to 3 encompass varying rotation speeds, whereas items numbered 4 to 6 involve different
loads. It is observed that the diagnostic accuracy of items numbered 4 to 6 remains relatively
stable, whereas item numbered 3 exhibits significantly lower accuracy compared to items
numbered 1 and 2. The underlying reason behind this phenomenon aligns with the findings
presented in Section 6.1 of this paper.

From the standpoint of signal acquisition, the fusion of acoustic emission and vibration
signals yields higher diagnostic accuracy in fault diagnosis compared to utilizing a single
signal. This finding provides further substantiation that the application of multisignal
fusion technology can effectively enhance system stability and diagnostic accuracy. Further-
more, it is evident that employing a single vibration signal for diagnostics yields superior
results in comparison to employing a single acoustic emission signal. This can be attributed
to the fact that the acoustic emission acquisition system exhibits heightened sensitivity to
environmental noise, primarily stemming from the operational testing equipment, which
poses challenges in noise elimination.

6.3. Generic Working Conditions

To evaluate the performance of the proposed fault diagnosis model, all fault samples
involving three different speeds and three different loads were included in both the training
and testing sets. The sample ratio between the two sets was set to 9:1 to ensure the training
set was large enough to enable the model to effectively learn the fault data while still
reserving an adequate number of samples for testing. Subsequently, the model was applied
to diagnose faults on the testing set. To visualize the diagnostic results, a confusion matrix
was employed, providing an intuitive and reliable representation of classifications made by
the model. The confusion matrix is presented in Figure 9.
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signals is almost 100%. However, the diagnosis accuracy rate for label 6, which corre-
sponds to the “outer Ring + rolling element pitting” fault type, is relatively low. The model 
misclassified three test samples as “rolling element pitting”. Further analysis revealed that 
the two types of faults have similar features, making it difficult to extract differences be-
tween them. By comparing (a–c) in Figure 9, the results further confirm that multisignal 
fusion technology has higher reliability and accuracy compared to a single signal, espe-
cially under changing working conditions. 

To compare the feature extraction capabilities of different models, the training and 
testing sets samples of above-mentioned generic working conditions were respectively 
input into RepVGG, CBAM-CNN and ResNet models for diagnosis. Two types of faults 
were selected as examples: label 1 (corresponding to “inner ring pitting”) with better di-
agnostic results and label 6 (corresponding to “outer ring + rolling element pitting”) with 

Figure 9. The diagnostic results for generic working condition: (a) based on vibration signal (with
an accuracy rate of 97%); (b) based on acoustic emission signal (with an accuracy rate of 94.88%);
(c) based on the fusion of acoustic emission and vibration signals (with an accuracy rate of 99.25%).

The confusion matrix provides a clear and intuitive visualization of the model’s mis-
classifications and the types of errors. It can be seen that the overall diagnostic performance
is good, and the accuracy rate for the fusion of acoustic emission and vibration signals is
almost 100%. However, the diagnosis accuracy rate for label 6, which corresponds to the
“outer Ring + rolling element pitting” fault type, is relatively low. The model misclassified
three test samples as “rolling element pitting”. Further analysis revealed that the two types
of faults have similar features, making it difficult to extract differences between them. By
comparing (a–c) in Figure 9, the results further confirm that multisignal fusion technology
has higher reliability and accuracy compared to a single signal, especially under changing
working conditions.

To compare the feature extraction capabilities of different models, the training and
testing sets samples of above-mentioned generic working conditions were respectively
input into RepVGG, CBAM-CNN and ResNet models for diagnosis. Two types of faults
were selected as examples: label 1 (corresponding to “inner ring pitting”) with better
diagnostic results and label 6 (corresponding to “outer ring + rolling element pitting”)
with poorer results. The precision–recall (PR) curves and receiver operating characteristic
(ROC) curves were generated for the optimized ResNet, RepVGG, CBAM-CNN and ResNet
models and evaluation indicators, such as average precision (AP) and area under the curve
(AUC) were introduced.
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The precision–recall (PR) curve is a graphical representation of the performance of
a binary classification model, with recall on the x-axis and precision on the y-axis. It
illustrates the trade-off between precision and recall at various classification thresholds.
The relevant theoretical formulas for the PR curve are as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

where TP represents the number of true positive instances; FP represents the number of
false positive instances; and FN represents the number of false negative instances.

The principle of average precision (AP) is to summarize the Precision-Recall (PR)
curve by calculating the average precision value. It can be obtained by computing the
area under the PR curve. It provides a comprehensive assessment of how well the model
balances precision and recall across different recall levels.

The receiver operating characteristic (ROC) curve is a tool used to evaluate the perfor-
mance of binary classification models. It plots the false positive rate (FPR) on the x-axis and
the true positive rate (TPR) on the y-axis. The principle of the ROC curve can be described
using the following formulas:

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

where FP represents the number of negative instances incorrectly classified as positive; TN
represents the number of negative instances correctly classified as negative; TP represents
the number of positive instances correctly classified as positive; and FN represents the
number of positive instances incorrectly classified as negative.

Area under the curve (AUC) is obtained by calculating the area under the ROC curve.
The resulting AUC value ranges from 0 to 1, where 0.5 represents a random classifier and 1
represents a perfect classifier. A higher AUC value indicates better classifier performance.

The diagnostic results are presented in the form of PR and ROC curves in Figures 10
and 11. The overall accuracy rate, AP and AUC for all fault types were calculated for the
four models, and the weighted average values were recorded in Table 8.
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Table 8. The accuracy evaluation indicators of the four models.

Model
Evaluation Indicator

Accuracy/% AP AUC

Proposed 99.25 0.989 1.000
RepVGG 96.72 0.967 0.996

CBAM-CNN 94.16 0.953 0.993
ResNet 88.35 0.935 0.988

Generally, the closer the PR curve in Figure 10 is to the upper right corner, the larger
the AP value, and the better the model performance. The closer the ROC curve in Figure 11
is to the upper left corner, the larger the AUC value, and the better the model performance.
Observing the figure above, it can be seen that for the two selected fault types with different
diagnostic effects, the PR and ROC curves of proposed model are both closer to the right-
angle edge than those of RepVGG, CBAM-CNN and ResNet, indicating better performance.
Combined with the data in Table 8, the three accuracy evaluation indicators of the proposed
model are higher than those of the compared models, validating the good feature extraction
ability of the proposed model.

7. Conclusions

This paper focused on the study of the feature extraction ability of the model for
complex working conditions, using the metro traction motor bearings as the research
object. On the basis of ResNet, CBAM was introduced to optimize the ResNet model.
Nine different working conditions and eight compound fault types were designed for
experimentation. In addition, a dataset was constructed using MTF image encoding and
IFCNN image fusion technology. During the model training process, UMAP was used
for visualization to intuitively demonstrate the feature extraction effect of the proposed
model. After the experiment, three evaluation indicators were used for objective evaluation
of the feature extraction ability of the optimized ResNet, RepVGG, CBAM-CNN and
ResNet models.

The results of the experiment show that the MTF-ResNet model with multisignal fusion
performs well under complex working conditions, with a diagnostic accuracy rate of up to
99.25%. Based on the results, some important conclusions can be drawn. Specifically, in
terms of sensors, using only vibration signals produces better diagnostic results than using
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only acoustic emission signals. In addition, compared with a single signal, using acoustic
emission and vibration signal fusion can provide more comprehensive and integrated
information, while reducing misclassifications caused by the limitations of a single signal,
thereby improving fault diagnosis accuracy and making the diagnosis result more reliable.
In terms of data processing, MTF image encoding technology is a simple data processing
method that retains the time correlation of the data, making it easier for the model to extract
more comprehensive fault features. For feature extraction models, introducing CBAM after
the batch normalization layers of the ResNet model can make the model more focused
on capturing important features, quickly distinguishing different types of fault features,
and improving diagnostic efficiency. Furthermore, the ResNet structure can effectively
alleviate the gradient disappearance phenomenon that occurs as the network deepens,
thereby preventing model degradation.

Undoubtedly, this study presents several avenues for future research in the proposed
methodologies. Firstly, the inclusion of additional sensors or exploration of different sensor
types holds promise. For instance, incorporating multidirectional vibration sensors or tem-
perature sensors could offer a more comprehensive spectrum of fault information, thereby
enhancing diagnostic fault tolerance. Secondly, exploring more advanced data processing
techniques warrants investigation to enhance the quality of input signals. The acoustic
emission signals acquired in this study exhibited significant levels of environmental noise
that proved challenging to eliminate. Therefore, employing sophisticated techniques may
substantially improve the value derived from these acoustic emission signals. Moreover,
conducting model testing on larger datasets utilizing more complex compound faults can
effectively confirm the feature extraction capabilities and generalization of the model. This
approach will serve as a more robust means of validation. Furthermore, future research
focusing on feature extraction models should prioritize the development of lightweight
and efficient models to facilitate practical implementation.

Despite the inherent limitations of the methods proposed in this paper, they exhibit com-
mendable feature extraction capabilities within intricate operational scenarios. Consequently,
these methods hold potential for application in fault diagnosis tasks related to metro traction
motor bearings, thereby possessing appreciable value in engineering applications.
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Abstract: Slope entropy (SlopEn) has been widely applied in fault diagnosis and has exhibited
excellent performance, while SlopEn suffers from the problem of threshold selection. Aiming to
further enhance the identifying capability of SlopEn in fault diagnosis, on the basis of SlopEn, the
concept of hierarchy is introduced, and a new complexity feature, namely hierarchical slope entropy
(HSlopEn), is proposed. Meanwhile, to address the problems of the threshold selection of HSlopEn
and a support vector machine (SVM), the white shark optimizer (WSO) is applied to optimize both
HSlopEn and an SVM, and WSO-HSlopEn and WSO-SVM are proposed, respectively. Then, a dual-
optimization fault diagnosis method for rolling bearings based on WSO-HSlopEn and WSO-SVM is
put forward. We conducted measured experiments on single- and multi-feature scenarios, and the
experimental results demonstrated that whether single-feature or multi-feature, the WSO-HSlopEn
and WSO-SVM fault diagnosis method has the highest recognition rate compared to other hierarchical
entropies; moreover, under multi-features, the recognition rates are all higher than 97.5%, and the
more features we select, the better the recognition effect. When five nodes are selected, the highest
recognition rate reaches 100%.

Keywords: fault diagnosis; hierarchical slope entropy; white shark optimizer; optimized support
vector machine; bearing signals

1. Introduction

Rolling bearings, as a key component in rotating machinery, serve a very significant
role in modern industry. However, because of the increasingly sophisticated and com-
plex structure of bearings and their common use in harsh working environments, rolling
bearings are very prone to failures, which can lead to economic losses and even endanger
personal safety [1–3]. Therefore, aiming to ensure the normal work of rotating machinery
and reduce maintenance costs, it is of great importance to carry out fault diagnoses of
rolling bearings [4–6].

Since bearing vibration signals contain rich state information about the bearing during
operation, a vibration analysis method is broadly applied to rolling bearing faults [7,8]. In
general, the method mainly consists of two steps: feature extraction and fault classification,
in which valid feature extraction is crucial for accurate fault diagnosis. As the bearing
vibration signal has nonlinear dynamic characteristics, traditional feature extraction meth-
ods based on Fourier transform and statistical analysis only characterize features from
the time domain or frequency domain, and they cannot detect potential faults through
changes in the complexity of the system to achieve effective and accurate extractions of
fault features [9,10].
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In recent years, nonlinear dynamic methods, such as sample entropy (SE) [11], permu-
tation entropy (PE) [12], and dispersion entropy (DE) [13], have been widely used in the
feature extraction of bearing signals and have presented superior performance. Han et al.,
used SE to extract bearing fault feature information effectively [14], but SE calculation is
complicated and not suitable for real-time monitoring. As PE has the strengths of fast
calculation and good stability, Xue et al., proposed a bearing fault diagnosis method based
on PE and further improved the effectiveness of fault diagnosis [15]. While PE does not
consider amplitude information, Dhandapani et al., applied DE to the feature extraction
osf rolling bearing faults and considered the amplitude information of bearing signals [16].
Unlike the above entropies, slope entropy (SlopEn) is a new entropy estimator proposed
based on symbolic patterns and magnitude information [17] and has been applied in the
underwater acoustic field and medical field many times [18–21]. In 2022, SlopEn was intro-
duced into the field of bearing fault diagnosis for the first time, and experimental results
showed that, compared with PE and DE, SlopEn could better extract fault information [22].
However, all the above-mentioned entropy-based bearing fault diagnosis methods suffer
from two defects: (i) the methods extract only the fault information of the low-frequency
component for the bearing signal, and (ii) there is the problem of threshold selection for
SlopEn, and the thresholds usually need to be optimized using an optimization algorithm.

Aiming at extracting the bearing fault information more comprehensively, some schol-
ars have proposed fault diagnosis methods based on hierarchical entropy [23–25]. The
authors of [26] proposed the concept of hierarchical permutation entropy (HPE) and em-
ployed it successfully for fault diagnosis. Moreover, Ref. [27] used hierarchical permutation
entropy (HDE) to extract the fault information in both high- and low-frequency compo-
nents. Diagnosis methods based on hierarchical entropy have proved that they can obtain
diagnosis-related information of the whole frequency band and have strong noise resis-
tance and stability; in addition, no scholars have introduced the concept of hierarchy to the
SlopEn and used optimization algorithms to optimize the thresholds.

After feature extraction, the next step is fault classification. Commonly used fault clas-
sification methods mainly include k-nearest neighbor (KNN) [28], random forest (RF) [29],
and the support vector machine (SVM) [30]. The SVM has been widely used in fault diagno-
sis because of its suitability for small sample classification and its simple structure [31]. Yet,
since the parameter penalty factors and kernel functions of SVM models have an impact
on fault diagnosis, some existing optimization algorithms have optimized the parameters
of SVMs and improved the performance of fault classification, such as the genetic algo-
rithm (GA) [32], particle swarm algorithm (PSO) [33], and whale optimization algorithm
(WOA) [34]. Compared to common optimization algorithms, the white shark optimizer
(WSO) is a new meta-heuristic optimization algorithm based on deep-sea foraging by great
white sharks, proposed in 2022 for solving optimization problems on continuous search
spaces [35]; in addition, the results of the basis function tests show that WSO is better than
the common optimization algorithm in terms of optimization and has not yet been applied
to optimize SVMs.

Based on the analysis above, a dual-optimization fault diagnosis method for rolling
bearings is put forward, and the main novelties and contributions of this paper are pre-
sented as follows:

(1) To extract the fault information of bearing signals more comprehensively, on the
basis of SlopEn, this paper adds the concept of hierarchy and is the first to propose
hierarchical slope entropy (HSlopEn).

(2) Since the thresholds of HSlopEn have a relatively large impact on the entropy value
and the selection of suitable parameters of an SVM is particularly important for the
classification, this paper applies the WSO to optimize the parameters of HSlopEn and
an SVM and proposes WSO-HSlopEn and WSO-SVM, respectively.

(3) Targeting the application of bearing fault diagnosis under different operating con-
ditions, this paper proposes a dual-optimization fault diagnosis method for rolling
bearings based on HSlopEn and an SVM synergized with the WSO.
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The remaining parts of this paper are structured as follows. Section 2 presents the
basic concepts of algorithms. Section 3 introduces the steps of the proposed fault diagnosis
method. Section 4 carries out the single-feature and multi-feature extraction experiments
for bearing signals, and Section 5 summarizes the conclusions of this study.

2. Methodology
2.1. Slope Entropy

Slope entropy (SlopEn) is an algorithm proposed in 2019 to calculate the complexity
of time series. It is based on symbolic patterns and magnitude information. The main
calculation steps are listed below:

(1) For a given time series X = {x1, x2, · · · , xN}, according to the embedding dimen-
sion m, extract the subsequences:X1 = {x1, x2, · · · , xm}, X2 = {x2, x3, . . . ,xm−1}, . . . ,
Xk = {xk, xk+1, . . . ,xN}, of which k = N −m + 1.

(2) Two threshold parameters, γ and δ, are used to delimit the symbolic patterns including
(+2, +1, 0, −1, −2) between two consecutive samples xi+1 − xi of the subsequence
X1, X2, · · · , Xk. When |xi+1 − xi|≤ δ , the symbol is 0; when δ < xi+1 − xi < γ, the
symbol is +1; when −γ < xi+1 − xi < −δ, the symbol is −1; when γ < xi+1 − xi,
when symbol is +2; when xi+1 − xi < −γ, the symbol is −2, where γ > δ > 0.
Figure 1 displays the symbol allocation of SlopEn.
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(3) According to the symbol pattern of step (2), divide all the subsequences X1, X2, · · · , Xk,
and obtain the symbol pattern sequences Y1 = {y1, y2, . . . ,ym−1}, Y2 = {y2, y3, · · · , ym},
. . . , Yk = {yk, yk+1, · · · , yN−1}, where y1 is obtained from x2 − x1 through step (2), y2
is obtained from x3 − x2 through step (2), . . . , and yN−1 is obtained from xN − xN−1
through step (2).

(4) The total number of types of symbol pattern sequences is recorded as r = 5m−1,
and the number of occurrences of each symbol pattern sequence is s1, s2, · · · , sr,
respectively. Hence, the probability of each symbol pattern sequence appearing is
P1 = s1

r , P2 = s2
r , . . . , Pr =

sr
r , respectively.

(5) On the basis of Shannon information entropy, the definition formula of SlopEn is

SlopEn(X, m, γ, δ) = −
r

∑
i=1

PrlnPr (1)
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2.2. Hierarchical Slope Entropy

Since SlopEn only considers the low-frequency components of the time series, aiming
to describe the time series more comprehensively, on the basis of SlopEn and combined with
the concept of hierarchy, this paper proposes a new complexity feature, namely hierarchical
slope entropy (HSlopEn). The specific process of HSlopEn is as follows:

(1) First, given a time series X = {x(i), i = 0, 1, · · · , N, N = 2n} of length N, define an
average operator Q0(x) and a difference operator Q1(x), which can be expressed as

Q0 =
x(2j) + x(2j + 1)

2
, j = 0, 1, 2, · · · , 2n−1 (2)

Q1 =
x(2j)− x(2j + 1)

2
, j = 0, 1, 2, · · · , 2n−1 (3)

where the Q0(x) and Q1(x) operators are the low-frequency part and high-frequency part,
respectively, of the original given time series after hierarchical decomposition and n is a
positive integer.

(2) The operators Qj(j = 0 or 1) in matrix form is defined as

Qj =




1
2

(
−1
2

)j
0 0 · · · 0 0

0 0 1
2

(
−1
2

)j
· · · 0 0

0 0 0 0 · · · 1
2

(
−1
2

)j




2n−1×2n

(4)

(3) The l-dimension vectors [u1, u2, . . . , ul ] ∈ {0, 1}(lεN) are constructed, and an integer
e can be expressed:

e =
l

∑
j=1

uj2l−j (5)

where, for a positive e, there is a unique set of l-dimension vectors [u1, u2, . . . , ul ] ∈ {0, 1}
and the positive integer e represents the sequence number of the node at each layer, where
0 6 e 6 2n−1.

(4) The hierarchical decomposition of a given time series X yields a hierarchical compo-
nent corresponding to the node e at the Kth level, defined as

XK,e = Qul ∗Qul−1 ∗ · · · ∗Qu1(x) ∗ X (6)

(5) By calculating the SlopEn of nodes on different layers, the HSlopEn can be expressed as

HSlopEn(X, m, K, γ, δ) = SlopEn(Xn,e, m, γ, δ) (7)

where K is the number of layers of decomposition, γ and δ are the two thresholds of SlopEn,
and m is the embedding dimension.

As displayed in Figure 2, the hierarchical decomposition structure diagram when
K = 3 is shown. SlopEn is calculated on each node after the hierarchical decomposition.

In Figure 2, X indicates the original time series, x1,1 is the first node of the first layer,
x2,1 is the first node of the second layer, and so on.
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2.3. Analysis of the Parameters for HSlopEn

The main parameters of HSlopEn include the number of decomposition layers K,
embedding dimension m, two threshold parameters γ and δ, and time delay d. First, the
number of decomposition layers K determines the number of nodes in the hierarchical
decomposition. When the number of decomposition layers is too large, the number of
nodes decomposed is too large, resulting in a large number of calculations for SlopEn
values of all nodes; when the value is too small, resulting in a small number of decomposed
nodes, there are insufficient frequency bands for the given time series. Referring to other
references, the default number of decomposition layers K is 3 in this paper. Then, the
embedding dimension m is used to extract the subsequence of a given time series. If it is
too small, it is difficult to determine the dynamic changes of the time series; if it is too large,
it is difficult to capture the subtle changes in the time series. After that, the two threshold
parameters γ and δ are used to divide the symbol pattern of a given subsequence, which
affects the change in entropy value. Lastly, the default time delay d is 1, as important
information about frequency may be lost at that time if d > 1. The effect of embedding
dimension and thresholds on the performance of the HSlopEn is investigated below by
analyzing the noisy signals.

To investigate the effect of embedding dimension on the entropy value of hierarchical
slope entropy, 50 sets of white Gaussian noise (WGN) of signal length 2048 are used, with
the embedding dimension m varying from 2 to 5 and the two threshold parameters γ and δ
defaulting to 0.1 and 0.001, respectively. Figure 3 shows the mean and standard deviation
(SD) of the HSlopEn values for different embedding dimensions in every node.
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Figure 3. The mean and standard deviation (SD) of HSlopEn values for different embedding dimen-
sions in every node.

As shown in Figure 3, as the embedding dimension m becomes larger, the entropy
value of the HSlopEn also becomes larger, but the entropy value of each node for HSlopEn
is close to others at different embedding dimensions, and the difference between the mean
and SD is small, which indicates that the change in the embedding dimension affects the
size of the entropy value, but the stability of the HSlopEn hardly changes. The embedding
dimension m is set to 3 in this paper.

65



Sensors 2023, 23, 5630

In addition, to further study the effect of thresholds γ and δ on the entropy of the
HSlopEn, 50 independent pink noise (PN) and WGN signals are selected, where each noise
is sampled at 2048 Hz and the embedding dimension m is 3. The three sets of thresholds
(γ, δ) for HSlopEn are manually set, which are (0.1, 001), (0.3, 0.1), and (0.8, 0.3), and the
mean and standard deviation (SD) of the HSlopEn values for the three sets of thresholds in
every node are displayed in Figure 4.
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Figure 4. The mean and SD of HSlopEn values for three sets of thresholds in every node.

It can be seen in Figure 4 that, as the threshold changes, the entropy values of the
two types of noise signals change; at the same time, the ability to discriminate between the
noise signals is constantly changing, so the threshold has a significant effect on the entropy
of the HSlopEn. The WSO is used in the paper to optimize the thresholds to avoid taking
values based on artificial experience and further improve the fault diagnosis.

2.4. WSO-HSlopEn and WSO-SVM

Following the principle of the HSlopEn algorithm, the two threshold parameters γ and
δ of the HSlopEn are used to divide the sign pattern of a given time sequence subsequence.
Thus, the two threshold parameters have a great influence on the HSlopEn value. At the
same time, the classification effect of the support vector machine (SVM) mainly depends
on the selection of the penalty factor (C) and kernel function parameters (g), and it is
generally difficult to take the values based on manual experience. Hence, the selection of
an appropriate penalty factor and kernel function parameters is also particularly important
for the classification and recognition accuracy of the SVM.

To enhance the performance of the fault diagnosis effect, in this paper, taking the
recognition rate as the fitness function, the white shark optimizer (WSO) is used to optimize
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the parameters of HSlopEn and the SVM, and WSO-HSlopEn and WSO-SVM are proposed,
respectively, where the WSO is a new meta-heuristic optimization algorithm based on deep-
sea foraging by great white sharks, proposed in 2022 for solving optimization problems on
continuous search spaces. The main process of optimizing the parameters of HSlopEn and
the SVM is shown in Figure 5, and the specific process is as follows:
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Figure 5. The main process of optimizing the parameters of the HSlopEn and SVM. Figure 5. The main process of optimizing the parameters of the HSlopEn and SVM.

(1) Set the initial parameter ranges of HSlopEn (γ, δ) and the SVM (C, g).
(2) Initialize the WSO parameters, such as population size, number of iterations I, posi-

tion, and speed of white sharks.
(3) Calculate the fitness function, and update the white sharks’ position and speed.
(4) Evaluate the fitness function, and update the optimal white shark position
(5) Update the position and speed of the white shark.
(6) Judge whether the current iteration number reaches the maximum iteration number.

If so, return to update the speed and position of the white shark and repeat the above
steps; otherwise, output the best-optimized parameters (γ, δ) and (C, g).

3. The Proposed Method for Fault Diagnosis of Rolling Bearing

Combining the concept of hierarchical structure, the new complexity feature HSlopEn
is proposed, and the parameters of both HSlopEn and the SVM are optimized using the
WSO algorithm, and WSO-HSlopEn and WSO-SVM are proposed, respectively. Then, a
dual-optimization fault diagnosis method for rolling bearings based on WSO-HSlopEn and
WSO-SVM is proposed. Figure 6 presents the flowchart of the proposed fault diagnosis
method, and the method mainly includes the following steps:
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Figure 6. The flowchart of proposed dual-optimization fault diagnosis method for rolling bearings,
based on WSO-HSlopEn and WSO-SVM.

(1) The different bearing signals are input. In this paper, each type of bearing signal has
100 samples with 1024 data points.

(2) The WSO algorithm is applied to optimize the parameters of HSlopEn (γ, δ) and
the SVM (C, g) by taking the final recognition rate as the fitness function, and the
optimized parameters are obtained. At the same time, other optimization algorithms,
including SO, marine predator algorithm (MPA), and sparrow search algorithm (SSA),
are used for comparison.

(3) Different types of bearing signals are decomposed into several layers, and the nodes
are obtained. In this paper, bearing signals are decomposed into three layers.

(4) The nodes of WSO-HSlopEn are calculated, and then single-feature and multi-feature
extraction experiments for bearing signals are carried out. Meanwhile, comparisons
with some classical entropies, such as HFE, HPE, HSE, and HRDE, are conducted.

(5) WSO-SVM is applied to classify bearing signals, and the recognition results are output.
In this paper, for each type, select 25 sample signals as training samples and 75 sample
signals as test samples.

4. Experiments and Results

In this chapter, two comparative experiments are implemented to examine the effec-
tiveness of the proposed method in fault diagnosis: (1) In optimizing both HSlopEn and
SVM parameters using the WSO, we compare different optimization algorithms, including
SSA, MPA, and SO. (2) In extracting the WSO-HSlopEn of nodes, we compare classical
hierarchical entropy metrics, including HPE, HSE, HFE, and HRDE.
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4.1. Fault Diagnosis of Rolling Bearing Signal

The dataset used in this section was derived from the Bearing Data Center of Case
Western Reserve University [36], which is an internationally recognized standard dataset
for fault diagnosis of rolling bearings. The schematic of the test rig (Cleveland, USA) is
shown in Figure 7.
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Figure 7. The schematic of test rig.

As shown in Figure 7, the test rig consisted of an induction motor, drive-end bearing,
self-aligning coupling, and accelerometer dynamometer. An accelerometer was installed
on the base of the motor, which was used to detect the vibration acceleration of the faulty
bearing at a sampling frequency of 12 kHz. The dataset divided the fault data into four
categories: normal data (NOR), ball faults (BFs), outer race faults (ORFs), and inner race
faults (IRFs). Among them, BFs, ORFs, and IRFs were simulated faults with single-point
damage as an electric spark. The damage diameters were divided into 0.007, 0.014, and
0.021 inches. At the same time, the processed faulty bearing was reloaded into the test
motor, and the vibration acceleration signal data were recorded under the load working
conditions of 0, 1, 2, and 3 horsepower.

In this section, bearing signals with ten conditions were collected from the drive-end
bearings, including rolling bearings in normal condition and those with damage to the
inner race, the outer race, and the ball element. Bearings with various damage diameters
were considered under a speed of 1730 rpm with a load of 3 horsepower. Table 1 illustrates
the fault diagnosis sample collection of bearing signals. Each fault signal was divided
into three types according to the fault diameter. We sampled from point 1001, and each
condition had 100 samples with 1024 sampling points. Time-domain waveforms for each
state bearing signals are displayed in Figure 8.

Table 1. Fault diagnosis sample collection of bearing signals.

Bearing Condition Defect Size (Inches) Sample Label

NOR - 1
IRF1 0.007 2
IRF2 0.014 3
IRF3 0.021 4
BF1 0.007 5
BF2 0.014 6
BF3 0.021 7

ORF1 0.007 8
ORF2 0.014 9
ORF3 0.021 10
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Figure 8. Time-domain waveforms for each state bearing signals.

4.2. Comparison of Different Optimization Algorithms

Designed to verify the performance advantages of the WSO in optimizing HSlopEn
and the SVM, this section introduces different optimization algorithms to optimize the
parameters of HSlopEn and the SVM, and compares recognition rates of single-feature
and multi-feature extractions with those of other optimization algorithms [37–39]. In this
experiment, 10 different bearing signal conditions were sampled from the 1001 point as
the starting point, and 100 samples were selected. Each sample had 1024 data points.
First, the parameters of HSlopEn were set as follows: hierarchical layer K = 3, embedding
dimension m = 3, and threshold parameters γ and δ were adaptively determined using
different optimization algorithms. HSlopEn with optimized parameters of bearing signals
was extracted. Then, the sample set was divided into the training set and test set, and the
select single feature or multi-features were input to optimize the SVM. The penalty factor
and kernel function parameters of the SVM were also adaptively determined using the
WSO algorithm. Figure 9 presents the fitness iteration curves of different optimization
algorithms to optimize HSlopEn and the SVM. These are the fitness iteration curves of
different optimization algorithms in the case of extracting five nodes.
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It can be found in Figure 9 that, in the condition of extracting five nodes, the highest
recognition rate of these ten types of bearing signals reached 100% using the WSO to
optimize HSlopEn. At the same time, the convergence speed of the WSO was relatively
faster than other optimization algorithms. In addition, the early convergence of the WSO
is quick. Its fitness curve eventually converged to a bigger value. To further demonstrate
the significant advantages of WSO, we calculated the recognition rate of bearing signals
based on using different optimization algorithms to optimize HSlopEn and the SVM under
the situation of extracting the single feature and multi-features. The recognition rates of
HSlopEn for all single-feature nodes are shown in Tables 2 and 3, and the highest recognition
rates of HSlopEn for multi-features for the four types of optimization algorithms are shown
in Table 4.

Table 2. The recognition rate of HSlopEn for each single-feature node (nodes 1–7).

Optimization Algorithm
Recognition Rate for Each Node (%)

1 2 3 4 5 6 7

WSO 78.40 79.20 70.13 78.00 73.47 79.33 45.73
SO 77.47 74.80 67.87 76.32 72.27 75.43 43.28

MPA 74.00 75.87 62.93 71.20 66.93 76.53 40.40
SSA 74.67 73.07 68.53 71.87 70.67 75.60 45.07

Table 3. The recognition rate of HSlopEn for each single-feature node (nodes 8–14).

Optimization Algorithms
Recognition Rate for Each Node (%)

8 9 10 11 12 13 14

WSO 51.60 72.27 59.60 66.93 62.80 69.07 70.93
SO 48.37 70.26 58.23 65.27 60.80 68.27 69.73

MPA 39.87 70.80 56.53 60.13 56.13 67.87 65.47
SSA 50.40 69.73 57.73 63.87 60.93 68.42 69.57

Table 4. The highest recognition rate of HSlopEn for multi-features for four types of optimization
algorithms.

Optimization Algorithms Parameter
Number of Extracted Features

2 3 4 5

WSO Highest recognition rate (%) 97.87 99.60 99.87 100
SO Highest recognition rate (%) 87.60 90.80 93.87 96.20

MPA Highest recognition rate (%) 67.87 84.37 86.67 89.47
SSA Highest recognition rate (%) 64.13 70.40 74.67 83.27

According to the recognition rate of different types of bearing signals, we can find
that no matter how many features are extracted, the advantages of the WSO algorithm
are obvious. In the case of extracting a single feature, the recognition rate of the WSO
reaches 79.33% on node 6, which is much higher than that of other optimization algorithms.
Under the circumstances of extracting multi-features, as the number of selected nodes
increases, the recognition rate also improves. When we select five features, it realizes the
correct identification of all samples. The recognition rate of other optimization algorithms,
including SO, MPA, and SSA, is, respectively, 3.8%, 10.53%, and 17.73% lower than that of
WSO. Above all, we prove that using the WSO to optimize HSlopEn and the SVM is feasible.
Therefore, in this paper, the WSO is used to optimize HSlopEn and SVM parameters.

4.3. Comparison of Different Hierarchical Entropies

Aiming to demonstrate the superiority of WSO-HSlopEn in fault diagnosis, we com-
pared it to other classical hierarchical entropies, including HSE, HFE, HPE, and HRDE.
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The single-feature approach was first used to extract the fault feature and compare it with
HFE, HSE, HPE, and HRDE. The parameters of HSlopEn were as follows: hierarchical
layer K = 3, embedding dimension m = 3, time delay d = 1, and threshold parameter γ
and δ were adaptively determined using the WSO algorithm. For a fair comparison, the
parameter settings of other hierarchical entropies were the same as those in the HSlopEn
method. Among them, the similarity tolerances of HSE and HFE were set as r = 0.2, and
the category number of HRDE was set as c = 3. The entropy distributions of an optimal
node for the single-feature extraction of bearing signals are shown in Figure 10.
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Figure 10a presents that there was no aliasing phenomenon between the features
of the three fault types of NOR, ORF3, and IRF1 and other fault types in the entropy
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distribution of WSO-HSlopEn. ORF2 only had a few samples of entropy close to BF2, and
the entropy values of the samples of the other fault types show a severe overlap. Based
on the single-feature extraction shown in Figure 10b–e, compared with other hierarchical
entropies, WSO-HSlopEn is not as serious as the aliasing of the distributions of other
hierarchical entropies. The entropy values of several types of samples in the ten conditions
of bearing signals are quite different from the other types. Relatively speaking, the distance
between the various types of samples in the distribution of the entropy of WSO-HSlopEn is
relatively large.

After using the WSO-HSlopEn as the fault feature of the bearing signal, the bearing
fault diagnosis sample set was divided into a training set and a test set, and the training set
was input into the WSO-SVM to train the model, and then the test set was input into the
model to finish the fault diagnosis of bearings. The Gaussian kernel function was selected
as the kernel function of the SVM. The penalty factor and kernel function parameters of the
SVM were also adaptively determined by the WSO algorithm. Recognition rates of single
features for the five types of hierarchical entropies are displayed in Tables 5 and 6.

Table 5. Recognition rates of single features for the five types of hierarchical entropies (nodes 1–7).

Entropies
Recognition Rates of Each Node (%)

1 2 3 4 5 6 7

WSo-HSlopEn 78.40 79.20 70.13 78.00 73.47 79.33 45.73
HFE 57.07 55.06 37.73 55.33 42.67 59.73 32.53
HPE 43.73 52.53 24.80 40.93 38.13 46.53 18.80
HSE 39.07 47.60 23.87 36.27 21.07 46.67 18.40

HRDE 55.73 65.47 33.87 53.87 42.40 54.53 30.67

Table 6. Recognition rates of single features for the five types of hierarchical entropies (nodes 8–14).

Entropies
Recognition Rates of Each Node (%)

8 9 10 11 12 13 14

WSo-HSlopEn 51.60 72.27 59.60 66.93 62.80 69.07 70.93
HFE 27.07 43.73 36.40 38.93 36.40 45.73 40.27
HPE 14.80 29.60 22.27 29.07 20.80 32.27 26.40
HSE 20.40 28.67 20.40 21.60 20.53 37.33 25.87

HRDE 25.07 45.60 37.87 42.93 37.07 50.13 48.93

Tables 5 and 6 illustrate that, when using WSO-HSlopEn, the recognition rate of node
6 was the highest, which was 79.33%. Compared with other hierarchical entropies, under
each node, the recognition rate based on WSO-HSlopEn was always the highest, which
shows the effectiveness of WSO-HSlopEn as a fault diagnosis feature of bearing signals.

Through observation, when single-feature extraction is used to extract the fault feature,
there is still overlap between the features of different conditions of the bearing signals. Fur-
thermore, the recognition rate of the best node was low, and there were many misclassified
samples based on single-feature extraction. Aiming to further improve the recognition
rate of different conditions of the bearing signals, double features were used to extract the
bearing signals. All parameters used in the experiments were the same as those listed in the
single-feature extraction. The entropy distribution on the optimal node for double-feature
extractions of bearing signals is shown in Figure 11, where the abscissa and ordinate are
the entropy values of the two nodes, respectively. For example, in Figure 11a, the abscissa
is the SlopEn of node 1, and the ordinate is the SlopEn of node 5.
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Figure 11. Double-features distribution of ten types of bearing signals.

As can be observed from Figure 11, in the case of double-feature extraction, the WSO-
HSlopEn distribution of sample signals belonging to the same type is relatively concentrated
compared to other hierarchical entropies; for the other four types of hierarchical entropies,
the bearing signals between different types are more divergent, and the entropy values of
different types of bearing signals are very close.

To further improve the recognition performance, triple features were used to extract
bearing fault features on various hierarchical entropies. The parameters for calculating vari-
ous hierarchical entropies were the same as those of double features. Figure 12 presents the
triple-feature distributions of ten types of bearing signals for different hierarchical entropies.
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It can be seen from Figure 12 that there is almost no overlap based on the WSO-
HSlopEn, but the feature distributions of the BF2 and IRF2 samples are relatively low in
clustering; for the other hierarchical entropies, the clustering of the feature distributions of
the samples are very poor because of their approximate entropy distributions. Nevertheless,
the entropy distribution of WSO-HSlopEn is more dispersed, and WSO-HSlopEn of differ-
ent fault types are quite different, which effectively verifies the validity of WSO-HSlopEn
as a feature extraction method for ten types of bearing signals.

Next, WSO-SVM is used to construct a fault diagnosis model. The highest recognition
rate is calculated for the five types of hierarchical entropies under multi-feature extraction,
as shown in Table 7, where (1,5) indicates the combination of nodes with the highest
recognition rate for two features are node 1 and node 5, (1,5,6) indicates the combination of
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nodes with the highest recognition rate for three features are node 1, node 5 and node 6,
and so on.

Table 7. Highest recognition rate for the five types of hierarchical entropies for multi-features.

Entropy Parameter
Number of Extracted Nodes

2 3 4 5

WSo-HSlopEn Highest recognition rate (%) 97.87 99.60 99.87 100
Choose the node (1,5) (1,5,6) (1,5,6,7) (1,5,6,7,11)

HFE
Highest recognition rate (%) 87.60 90.80 93.87 96.20

Choose the node (2,6) (2,5,13) (1,3,4,6) (2,5,6,12,14)

HPE
Highest recognition rate (%) 67.87 84.37 86.67 89.47

Choose the node (2,4) (1,2,14) (2,3,5,10) (1,5,7,12,14)

HSE
Highest recognition rate (%) 64.13 70.40 74.67 83.27

Choose the node (2,5) (1,2,6) (1,2,3,6) (2,3,7,12,14)

HRDE
Highest recognition rate (%) 80.60 89.87 93.87 95.87

Choose the node (1,2) (1,2,3) (1,2,4,6) (2,5,6,11,12)

Table 7 shows that no matter how many features are extracted, the recognition rate of
these ten types of bearing signals using WSO-HSlopEn is higher than that of other hierar-
chical entropies; additionally, the more features we select, the better the recognition effect
we obtain; in the circumstances of multi-features, the recognition rates of WSO-HSlopEn
are all higher than 97.5%, yet the highest recognition rates of other hierarchical entropies
are all significantly below 97.5%; for WSO-HSlopEn, when five nodes are selected, that is,
choosing nodes (1,5,6,7,11), the highest recognition rate of these ten types of bearing signals
reaches 100%; however, the highest recognition rate of other entropies is, respectively,
3.80%, 10.53%, 16.73%, and 4.13% lower than that of WSO-HSlopEn. Through the above
comparison, we can clearly find the significant advantages of the proposed method based
on WSO-HSlopEn, and the recognition results applied to diagnose faults of rolling bearings
are higher than those of classic methods.

5. Conclusions

This paper puts forward a dual-optimization fault diagnosis method for rolling bear-
ings based on WSO-HSlopEn and WSO-SVM. The effectiveness of the proposed methods
is verified by comparing them with the classical methods. The main innovations and
conclusions are as follows:

(1) On the basis of SlopEn, combined with the idea of hierarchical decomposition,
HSlopEn is proposed and introduced into the feature extraction of bearing signals for
the first time; at the same time, WSO is used to optimize both HSlopEn and the SVM,
and WSO-HSlopEn and WSO-SVM are proposed.

(2) In the case of single-feature extraction, the proposed method based on WSO-HSlopEn
has the highest recognition rate of 79.33% on node 6, which is, respectively, 19.47%,
26.67%, 31.60%, and 13.73% higher than those of HFE, HPE, HSE, and HRDE.

(3) In the case of extracting multi-features, the recognition rates are higher than 97.5%,
which is a significant improvement compared with the single-feature extraction
method; moreover, with the different number of features, the recognition rate based
on WSO-HSlopEn is always high than the other hierarchical entropies.

(4) For the proposed dual-optimization fault diagnosis method for rolling bearings,
based on WSO-HSlopEn and WSO-SVM, the more features we select, the better the
recognition effect we obtain. When five nodes are selected, the highest recognition
rate reaches 100%.

The proposed WSO-HSlopEn and WSO-SVM solve the problem of dependent parame-
ter settings for SlopEn and the SVM, respectively, and their superiority has been confirmed
in fault diagnosis. Therefore, WSO-HSlopEn and WSO-SVM are expected to be applied
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to other fields in future work, such as underwater acoustic signal processing and medical
signal classification.
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Abstract: To estimate the direction of arrival (DOA) of a linear frequency modulation (LFM) signal
in a low signal-to-noise ratio (SNR) hydroacoustic environment by a small aperture array, a novel
deconvolved beamforming method based on fractional Fourier domain delay-and-sum beamforming
(FrFB) was proposed. Fractional Fourier transform (FrFT) was used to convert the received signal into
the fractional Fourier domain, and delay-and-sum beamforming was subsequently performed. Noise
resistance was acquired by focusing the energy of the LFM signal distributed in the time–frequency
domain. Then, according to the convolution structure of the FrFB complex output, the influence of
the fractional Fourier domain complex beam pattern was removed by deconvolution, and the target
spatial distribution was restored. Therefore, an improved spatial resolution of DOA estimation was
obtained without increasing the array aperture. The simulation and experimental results show that,
with a small aperture array at low SNR, the proposed method possesses higher spatial resolution
than FrFB and frequency-domain deconvolved conventional beamforming.

Keywords: deconvolved beamforming; fractional Fourier transform; direction of arrival estimation;
linear frequency modulation signal

1. Introduction

Linear frequency modulation (LFM) signals are widely used in hydroacoustic com-
munication and detection, and direction of arrival (DOA) estimation is important [1,2].
To estimate received signal DOA, beamforming methods represented by conventional
beamforming (CBF) [3] and minimum variance distortionless response (MVDR) [4] were
proposed. However, those methods cannot directly estimate the wideband signal DOA due
to the steering vector being frequency-dependent [5].

An intuitive approach to extend those narrowband beamforming methods to wide-
band beamforming is dividing the wideband signal into a set of narrowband signals in
the frequency domain. Following this idea, two classical frameworks, the incoherent
signal-subspace method (ISM) [6] and the coherent signal-subspace method (CSM) [7],
were proposed. The ISM framework processes each subband signal separately and obtains
a comprehensive result by combining all subband results. The CSM framework aligns each
subband datum to a reference frequency by focusing matrices and obtains a result via the
focused data. Those two frameworks solve the problem that a single-frequency steering
vector cannot perform beamforming on wideband signals but fail to make full use of the
time–frequency characteristics of LFM signals [8]. Various time–frequency analysis tools
were introduced to utilize the characteristics of LFM signals. Wigner–Ville distribution
(WVD)-based methods [9,10] possess a good estimation performance but suffer from the
cross terms between multiple targets [11]. Spatial time–frequency distribution (STFD)-
based methods [12,13] can directly exploit the nonstationarity information of LFM signals
but are highly dependent on time–frequency point selection [12]. Matched filtering (MF)-
based methods [14,15] possess a high noise resistance by treating MF as pre-processing or
post-processing of beamforming.
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The fractional Fourier transform (FrFT) [16–19] is a generalization of the classical
Fourier transform. FrFT can be regarded as the chirp basis decomposition [20], which
means it is an extremely effective time–frequency analysis tool for LFM signals. Fractional
Fourier domain (FrFD) beamforming methods [8,21,22] can utilize the energy-focusing
characteristic of LFM signals by FrFT. The LFM signals are transformed into narrowband
signals in the FrFD, and the DOA can be estimated by narrowband beamforming methods.
The performance of FrFD beamforming methods is significantly better than that of ISM-
based and CSM-based methods, especially at low SNRs [8,23]. Different from the classical
time–frequency domain, there are no cross terms in FrFD. The selection of a time–frequency
point can be easily achieved by peak search [24]. FrFT has also shown several advantages
over MF regarding robustness against distortion [25]. Therefore, beamforming methods
based on FrFT are the best in terms of making full use of the time–frequency characteristics
of LFM signals. Among all FrFD beamforming methods, fractional Fourier domain delay-
and-sum beamforming (FrFB) is one of the most popular methods. FrFB inherits high
robustness from CBF but suffers from wide beamwidth, high sidelobes, and limited spatial
resolution [8].

Yang proposed deconvolved conventional beamforming (DCBF) to improve the DOA
estimation performance of CBF without increasing the array aperture [26]. By regarding
the CBF spatial spectrum as the beam pattern convolution with the target spatial distribu-
tion, the Richardson–Lucy (R-L) [27] algorithm can be used to restore a high-resolution
spatial spectrum. In recent years, DCBF has been widely used for various arrays [28–38].
Deconvolution is also used as postprocessing for other beamforming methods, such as
Chebyshev weighting beamforming [39] and frequency-difference beamforming [40], to
optimize their spatial spectrum and to improve resolution.

The abovementioned deconvolved beamforming methods all obtain a spatial spectrum
with a narrow beamwidth and low sidelobes, which effectively improves the spatial resolu-
tion. However, the beam pattern used in deconvolution is a function of frequency, which
is applicable to only narrowband signals. A direct wideband deconvolved beamforming
method, named ISM-DCBF in this paper, is to divide the LFM signals into several narrow-
band signals in the frequency domain following the ISM and to use DCBF for each subband
signal. In ISM-DCBF, the deconvolution is repeated multiple times and the computational
complexity increases linearly with the number of subbands. In addition, the noise signifi-
cantly reduces the optimizing ability of the deconvolution for the spatial spectrum when
the SNR is low [41]. Therefore, ISM-DCBF suffers from weak DOA estimation performance
at low SNRs (as verified by the simulation and experimental results of this paper).

To achieve high-resolution LFM signal DOA estimation with a small aperture array in a
low SNR hydroacoustic environment, a novel deconvolved fractional Fourier domain beam-
forming (DFrFB) method is proposed. The proposed method includes the following three
steps. First, the LFM signals are focused in the FrFD by FrFT. Accordingly, time-domain
broadband signals with low SNRs are transformed into FrFD narrowband signals with
high SNRs. Second, CBF is performed to obtain a robust low-resolution spatial spectrum.
Third, the high-resolution spatial spectrum is generated by a deconvolution algorithm.

Due to the coherence of LFM signals that are focused at the same time–frequency point
in the FrFD, instead of deconvolving the spatial spectrum by the R-L algorithm, a monotone
fast iterative shrinkage thresholding algorithm (MFISTA) [42] is introduced to realize the
deconvolution of FrFB complex output. Since the FrFB complex output is not converted into
beam power, the effect of cross terms between coherent sources on deconvolution can be
avoided. The high-resolution DFrFB spatial spectrum is obtained by calculating the power
of the deconvolution result of the FrFB complex output. The simulation and experiment
show that the proposed DFrFB possesses a narrower beamwidth, lower sidelobes, and
higher spatial resolution compared with FrFB and ISM-DCBF.

The remainder of this paper is organized as follows. Section 2 describes the FrFD array
signal model. Section 3 introduces the FrFB and proposes the DFrFB. The convolution
structure of the FrFB complex output and the shift-invariance of the complex beam pattern
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are also proven in Section 3. The performance of the DFrFB is demonstrated by simulations
and experiments separately in Sections 4 and 5. Section 6 is the summary of this paper.

2. The Fractional Fourier Domain Array Signal Model

An LFM signal with initial frequency f0 and frequency modulation rate µ can be
expressed as

s(t) = exp
[

j2π( f0t + 0.5µt2)
]

(1)

where t ∈ [−T/2, T/2] and T denotes the time duration. According to the definition of
FrFT in [18], the FrFT of s(t) can be expressed as

S(α, u) = F p[s(t)](u)

=
√

1− j cot α · exp(jπu2 cot α) ·
∫ T/2

−T/2
exp

[
j(2π( f0 − u csc α)t + π(µ + cot α)t2)

]
dt

(2)

where p = 2α/π is the order of FrFT (α 6= nπ and n ∈ Z), F p denotes the FrFT operator
of order p, α is the counterclockwise rotation angle (in radians) of the signal coordinate
axis, and u is the peak location in the FrFT spectrum. Assume an LFM signal concentrates
at (α0, u0) in the FrFD, i.e., S(α0, u0) is the maximum of S(α, u), which means 2π( f0 −
u csc α)t + π(µ + cot α)t2 = 0 holds for any t. Thus, α0 and u0 can be derived as

{
α0 = −arccotµ
u0 = f0 sin α0

(3)

In this case, Equation (2) can be expressed as

S(α0, u0) = F p0 [s(t)](u0)

=
√

1− j cot α0 · exp(jπu2
0 cot α0) · T

(4)

where p0 denotes the optimal order of FrFT (α0 6= nπ and n ∈ Z).
Consider a uniform linear array (ULA) with M isotropic hydrophones and an LFM

signal with an incidence direction of θ. The signal received at the mth hydrophone is
denoted by s(t− τm), where τm = (m− 1)d cos θ/c, (m = 1, 2, · · · , M) is the time delay
for the signal to travel from the reference hydrophone to the mth hydrophone, d represents
the distance between adjacent hydrophones, and c is the speed of sound. Then, the received
signal at the mth hydrophone can be expressed as

xm(t) = s(t− τm) + nm(t)

= exp(j2π(0.5µτ2
m − f0τm − µτmt)) · s(t) + nm(t)

(5)

In Equation (5), the noise is denoted by nm(t), which is uncorrelated and independent
of the source signal. The orientation vector of an LFM signal is time-variant and frequency-
dependent, and the conventional individual frequency steering vector is inapplicable.
Therefore, a frequency-independent steering vector used in the FrFD needs to be derived.

Assuming s(t− τm) concentrates at (αm, um), then the FrFT of xm(t) can be derived as

Xm(αm, um) = F pm [xm(t)](um)

= F pm [s(t− τm)](um) +F pm [nm(t)](um)

=
√

1− j cot αm · exp(jπu2
m cot αm) · T · exp(jπ(−2 f0τm + µτ2

m)) + Nm(αm, um)

(6)

where Nm(αm, um) = F pm [nm(t)](um) represents the FrFT of nm(t). When s(t) is delayed,
the initial frequency changes from f0 to f0 − µτm, but the frequency modulation rate µ
remains the same. Thus, αm and um can be represented by
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{
αm = α0
um = u0 + τm cos α0

(7)

Substituting Equation (7) into Equation (6) and replacing f0, µ by α0, u0, Xm(αm, um)
can be derived as

Xm(αm, um) = Xm(α0, u0 + τm cos α0)

= A(τm)S(α0, u0) + Nm(α0, um)
(8)

where A(τm) = exp[−j(2πτmu0 sin α0 + πτ2
m sin α0 cos α0)] is the frequency-independent

orientation coefficient in the FrFD. Then, A(τm) can be expressed as a function of θ:

Am(θ) = exp(−j2π(m− 1)d cos θu0 sin α0/c) · exp(−jπ(m− 1)2d2 cos2 θ sin α0 cos α0/c2) (9)

3. Deconvolved Beamforming in the Fractional Fourier Domain

In this section, we utilize beamforming and deconvolution in the FrFD. For the sim-
plicity of expression, one LFM target is modeled at the beginning. Then, the multitarget
model is discussed when the LFM signals are concentrated on the same point.

3.1. Fractional Fourier Domain Delay-and-Sum Beamforming

According to the formation of Equation (9), the steering vector of an LFM signal in the
FrFD can be written as

v = [v1(ϑ), v2(ϑ), · · · , vM(ϑ)]T (10)

vm(ϑ) =
1
M

exp(−j2π(m− 1)d cos ϑu0 sin α0/c) · exp(−jπ(m− 1)2d2 cos2 ϑ sin α0 cos α0/c2) (11)

where ϑ represents the beam scanning angle. Based on the aforementioned analysis, the
FrFD delay-and-sum beamforming complex output is

Y(ϑ) = vHX

= YS(ϑ) + YN(ϑ)
(12)

In Equation (12), X = [X1(α1, u1), X2(α2, u2), · · · , XM(αM, uM)]T is the matrix of the
peak value in the FrFD, YN(ϑ) = vH [N1(α1, u1), N2(α2, u2), · · · , NM(αM, uM)]T is the beam-
forming complex output of noise, superscript (·)H denotes the conjugate transpose, and
the beamforming complex output of the LFM signal can be expressed in detail as

YS(ϑ) = vH [A1(θ) A2(θ) · · · AM(θ)]TS(α0, u0)

=
S(α0, u0)

M

M

∑
m=1

[exp(−j2π(m− 1)d(cos θ − cos ϑ)u0 sin α0/c) · exp(−jπ(m− 1)2d2(cos2 θ − cos2 ϑ) sin α0 cos α0/c2)]
(13)

Then, the spatial spectrum of the FrFB can be given by Equation (14), and the ϑ
corresponding to the peak of PFrFB(ϑ) is the estimated DOA.

PFrFB(ϑ) =|Y(ϑ)|2 (14)

For the multitarget scenario, several LFM signals will focus on different points when
they have different time–frequency characteristics. In this circumstance, each target derives
a corresponding spatial spectrum. The DOA is given by the unique peak of each spatial
spectrum [8]. There is no need to discuss spatial resolution further, which will not be
discussed in this paper. If the LFM signals from different targets possess the same time–
frequency characteristics, they will focus on the same time–frequency point. Multiple

82



Sensors 2023, 23, 3511

LFM signals are superimposed onto each other in the FrFD. In this circumstance, the FrFB
complex output can be expressed as

Y(ϑ) =
K

∑
k=1

YS,k(ϑ) + YN(ϑ) (15)

YS,k =
Sk(α0, u0)

M

M

∑
m=1

[exp(−j2π(m− 1)d(cos θk − cos ϑ)u0 sin α0/c) · exp(−jπ(m− 1)2d2(cos2 θk − cos2 ϑ) sin α0 cos α0/c2)] (16)

In Equation (16), YS,k denotes the FrFB complex output of the kth LFM signal. The
spatial spectrum of FrFB for the multitarget scenario can be expressed as

PFrFB(ϑ) =

∣∣∣∣∣
K

∑
k=1

YS,k(ϑ) + YN(ϑ)

∣∣∣∣∣

2

(17)

Although FrFB can effectively estimate LFM signal DOA at low SNRs, it generates
a spatial spectrum with a wide mainlobe and high sidelobes because of the CBF. If two
LFM signals with the same time–frequency characteristics are closely located, they will be
difficult to be distinguished. A typical method for overcoming this problem is to deconvolve
the spatial spectrum by the R-L algorithm. However, due to the coherence of LFM signals
that focus on the same time–frequency point, this paper introduces the MFISTA algorithm
to deconvolve the complex output so that the influence of cross terms between coherent
sources on the spatial spectrum can be avoided.

3.2. Deconvolution of the Beamforming Complex Output

In this section, deconvolution is used as postprocessing for the FrFB complex output
to obtain a high-resolution spatial spectrum with narrow beamwidth and low sidelobes.
First, the FrFB complex output is shown to have a form of convolution, and the complex
beam pattern is proved to be shift-invariant. Then, the MFISTA algorithm is introduced to
realize deconvolution.

In Equation (16), the quadratic time delay term (m− 1)2d2(cos2 θ − cos2 ϑ)/c2 is pro-
portional to the inverse of the sound speed, which is small enough to be omitted [22,43,44].
Therefore, exp(−jπ(m− 1)2d2(cos2 θ − cos2 ϑ) sin α0 cos α0/c2) ≈ 1 and Equation (16) can
be derived as

YS,k(ϑ) =
Sk(α0, u0)

M

M

∑
m=1

exp(−j2π(m− 1)d(cos θk − cos ϑ)u0 sin α0/c)

= Sk(α0, u0)
sin(πMd(cos ϑ− cos θk)u0 sin α0/c)
M sin(πd(cos ϑ− cos θk)u0 sin α0/c)

exp(j(M− 1)d(cos ϑ− cos θk)u0 sin α0/c)

(18)

For the LFM signals, which concentrate at (α0, u0) in the FrFD, the complex beam
pattern can be proposed as Equation (19), according to the FrFB complex output given by
Equation (18).

YP(ϑ|θ) =
sin(πMd(cos ϑ− cos θ)u0 sin α0/c)
M sin(πd(cos ϑ− cos θ)u0 sin α0/c)

exp(j(M− 1)d(cos ϑ− cos θ)u0 sin α0/c) (19)

Assuming the true DOA is ψ, the source spatial distribution corresponding to a specific
LFM signal is defined as follows:

D(θ) , S(α0, u0)δ(cos θ − cos ψ) (20)

δ(cos θ − cos ψ) = 0, cos θ 6= cos ψ,
∫

δ(cos θ − cos ψ)d cos θ = 1 (21)

Since the complex beam pattern YP(ϑ|θ) is a function of cos ϑ− cos θ, it can be regarded as
a shift-invariant function on the angle cosine, i.e., YP(cos ϑ|cos θ) = YP(cos ϑ− cos θ) . There-

83



Sensors 2023, 23, 3511

fore, YP(cos ϑ|cos θ) is shift-invariant. Hence, the complex output of LFM signals can be
expressed in a convolution formation as

YS(cos ϑ) =
∫

YP(cos ϑ− cos θ)D(cos θ)d cos θ (22)

Therefore, the deconvolution algorithm can be utilized to restore D(cos θ), with
the knowledge of YS(cos ϑ) and YP(cos ϑ − cos θ). Considering that both YS(cos ϑ) and
YP(cos ϑ − cos θ) are complex values, the typical R-L algorithm is no longer applicable.
The deconvolution of Equation (22) is converted into a sparse-constrained optimization
problem, as shown in Equation (23).

argmin
D̂∈CG

1
2

∥∥YS − YPD̂
∥∥2

2 + λ
∥∥D̂
∥∥

1 (23)

YP = [YP(θri|θci)]G×G (24)

In Equation (23), YS, D̂ ∈ CG are the FrFB output vector and the target signal space
distribution vector, respectively. YP ∈ CG×G is the complex beam pattern matrix, λ ∈ R
is the regularization coefficient, and G is the number of discrete angles. In Equation (24),
ri, ci ∈ [1, G] ⊂ Z+ represent the indices of the row and column in the matrix, respectively,
and [θ1, θ2 · · · , θG] represents the set of discrete angles. The solution to Equation (23) can
be obtained by the MFISTA Algorithm 1, which is given as follows.

Algorithm 1: MFISTA algorithm.

Input: FrFB complex output YS, complex beam pattern YP, regularization coefficient λ, iteration
times I, and initial value D̂0;
Output: the estimation of source signal distribution D̂I ;
1. set l1 = 1 and y1 = D̂0;
2. for i = 1 to I
3. zi = Sλ/L(

1
L YH

P (YS − YPyi) + yi);
4. D̂i = argmin

D̂∈{zi ,D̂i−1}
1
2

∥∥YS − YPD̂
∥∥2

2 + λ
∥∥D̂
∥∥

1;

5. li+1 = (1 +
√

1 + 4l2
i )/2;

6. yi+1 = D̂i +
li−1
li+1

(D̂i − D̂i−1) +
li

li+1
(zi − D̂i);

7. end

In Step 3 of Algorithm 1, L denotes the step size, and the shrinkage-thresholding
function Sλ/L(x) is defined for arbitrary x = [x1, x2, · · · , xG]

T ∈ CG by

Sλ/L(xg) =





0
∣∣xg
∣∣ < λ

L

xg − λxg

L|xg|
∣∣xg
∣∣ ≥ λ

L
(25)

After obtaining the estimation D̂I using Algorithm 1, the DFrFB spatial spectrum can
be expressed as

PDFrFB =
∣∣D̂I
∣∣2 (26)

The flowchart of the proposed DFrFB is shown in Figure 1. A coarse-to-fine searching
strategy [24] is utilized to obtain the optimal order of the FrFT. The discrete FrFT is imple-
mented using the algorithm proposed in [16]. In the MFISTA deconvolution algorithm,
the step size is set to the maximum eigenvalue of the covariance matrix of YP, and the
regularization coefficient λ is set to 0.5.
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Figure 1. Flowchart of the proposed DFrFB method.

4. Simulation Results

In this section, the performance of DFrFB is verified by five simulations. The same
simulations are performed for FrFB and ISM-DCBF for reference. The root mean square
error (RMSE) of the DOA estimation and resolution probability (RP) are calculated to
evaluate the spatial resolution. The beamwidth and maximum sidelobe level are recorded
to evaluate the optimization of the space spectrum. When the estimated DOAs θ̂1, θ̂2 and
the real DOAs θ1, θ2 satisfy Equation (27), two targets are considered to be successfully
discriminated. Assuming Ntotal times Monte Carlo experiments are performed and Nsuccess
times experiments satisfy Equation (27), the RP is defined as Nsuccess/Ntotal . The RMSE
is calculated only when the RP is 1. The beamwidth is also referred to as the half-power
beamwidth, i.e., the width of the mainlobe at −3 dB.

∣∣θ̂1 − θ1
∣∣+
∣∣θ̂2 − θ2

∣∣ < |θ1 − θ2| (27)

The LFM signals emitted by different targets are identical, and the detailed parameters
are given in Table 1. The noise signal is Gaussian white noise, and the noise signal received
on each hydrophone is independently identically distributed and unrelated to the target
signals. The SNR is defined by Equation (28), where PS,k denotes the power of the kth
target signal and PN denotes the power of the noise.

SNR = 10 log10(
K

∑
k=1

PS,k/PN) (28)
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Table 1. Parameters of LFM signal.

Parameter Value

beamwidth 1 kHz
center frequency 7.5 kHz

frequency modulation rate 20 kHz
time duration 0.05 s
sampling rate 62.5 kHz

All time-domain snapshots are processed together by fast Fourier transform (FFT)
or FrFT in the corresponding methods. In ISM-DCBF, the received signal is divided into
four subbands, and MFISTA is also used as the deconvolution algorithm. Unless stated
otherwise, the number of deconvolution iterations is 5000 in ISM-DCBF and DFrFB. The
number of iterations of ISM-DCBF refers to that of one subband, and each subband has
the same number of iterations. A ULA with 10 hydrophones is used as the received array,
whose element spacing is 0.1 m. The sound speed is 1500 m/s. The number of Monte
Carlo simulations in Sections 4.2–4.5 is 100. All simulations in this paper are conducted by
MATLAB R2020a.

4.1. Spatial Spectrum

The spatial spectra of the FrFB, ISM-DCBF, and DFrFB at 0 dB are given in Figure 2.
The cross symbol represents the real DOA of the target, which is 75◦ and 85◦. The estimated
DOAs, beamwidth, and sidelobe levels are given in Table 2. As shown in Figure 2, the three
methods are all successful in identifying two targets. The estimation error of DFrFB is the
smallest, ISM-DCBF is the second smallest, and FrFB is the largest. By deconvolving the
complex output of the FrFB, the beamwidth is reduced by 75%, and the sidelobe level is
reduced by 17.7 dB, resulting in a much cleaner DFrFB spatial spectrum.
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Figure 2. Spatial spectra of the simulation. Figure 2. Spatial spectra of the simulation.

Table 2. The performance of the simulation.

Indicators FrFB ISM-DCBF DFrFB

DOA (deg) 72, 87 74, 86 75, 85
beamwidth (deg) 9.3 3.6 2.3

sidelobe level (deg) −9.6 −13.9 −27.3

Since the energy of the LFM signal is highly concentrated in the FrFD whereas the
noise is not [24], noise shows less influence on DFrFB. In contrast, noise shows a large
influence on each ISM-DCBF subband signal. Thus, the number and intensity of DFrFB
sidelobes are smaller than those of ISM-DCBF. It is demonstrated that DFrFB can effectively
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improve the spatial spectrum of FrFB and has better performance than ISM-DCBF, which is
based on frequency-domain signal processing.

4.2. The Number of Deconvolution Iterations

The influence of the number of iterations in the MFISTA algorithm on DFrFB and
ISM-DCBF is discussed in this section. The source direction and SNR are consistent with
Section 4.1. The RMSE, beamwidth, and sidelobe level with the number of iterations
are given in Figure 3a, Figure 3b and Figure 3c, respectively. Note that FrFB requires no
deconvolution, and its data are independent of the number of iterations but still plotted
in Figure 3 as a reference. The RP of all three methods is 1 regardless of the number of
iterations, so the RP figure with the number of iterations is not given.
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All the indicators of DFrFB and ISM-DCBF rapidly improve with the increase in
iterations when the number is less than 5000. DFrFB performs better than ISM-DCBF for the
same number of iterations. However, the effect of noise is magnified by the deconvolution
algorithm when the number of iterations exceeds 5000. Only beamwidth can be reduced
further. For DFrFB, the RMSE and sidelobe level no longer improve with increasing
iterations but deteriorate slightly. For ISM-DCBF, the optimization of RMSE and sidelobe
level is minimal and almost stagnant. Figure 3 shows that the DFrFB performs better than
ISM-DCBF when the number of iterations is appropriate. However, the number of iterations
should not be too large; otherwise, the DFrFB performance will deteriorate in turn.
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4.3. SNR

This section investigates the effect of noise on the spatial resolution with the SNR
ranging from −20 dB to 20 dB. The real DOAs of the two targets remain 75◦ and 85◦. As
shown in Figure 4a, the FrFB is insensitive to noise, and its RMSE fluctuates slightly with
the SNR. However, the estimation error is large regardless of the SNR. The RMSEs of
DFrFB and ISM-DCBF decrease with increasing SNR. The DFrFB accuracy is better than
that of ISM-DCBF, showing better noise resistance. In Figure 4b, benefiting from the FrFT
energy-focusing property, the RP of FrFB and DFrFB remains 1 even if the SNR is as low
as −20 dB. In contrast, ISM-DCBF reaches an RP of 1 only when the SNR is higher than
−12 dB. The DFrFB based on FrFD signal processing demonstrated better spatial resolution
at low SNRs compared with ISM-DCBF based on frequency-domain signal processing.
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Figure 4. The performances of FrFB, ISM-DCBF, and DFrFB versus the SNR of the received signal.
(a) The RMSE; (b) the RP.

4.4. The Number of Hydrophones

In this section, the effect of the number of hydrophones on the spatial resolution of the
DFrFB is studied. The SNR is 0 dB, and the real DOAs of the two targets are the same as in
Section 4.3. The RMSE and RP for the number of hydrophones varying from 3 to 15 are
shown in Figure 5. DFrFB obtains the smallest DOA estimation error in Figure 5a. As shown
in Figure 5b, to reach an RP of 1, DFrFB needs at least six hydrophones, while ISM-DCBF
needs eight and FrFB needs nine. DFrFB can realize more accurate DOA estimations with
fewer hydrophones. It is shown that DFrFB can obtain a high spatial resolution with a
small aperture array.
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Note that the RMSE of DFrFB does not decrease steadily with the increase in hy-
drophones. The ideal peak location um given by Equation (7) is most likely not an integer.
However, the peak location selected in practice is an integer due to the received signal being
discrete in the time domain. This leads to a roundoff error of um and a model mismatch
when deconvolution is applied. When the number of hydrophones changes, the roundoff
error also changes accordingly. Hence, the roundoff error leads to obvious fluctuations in
the RMSE of DFrFB. Nevertheless, DFrFB still obtains the most accurate DOAs.

4.5. Angular Interval

Various angular intervals are simulated in this section to verify the adjacent target
discrimination capability of the proposed DFrFB. One target is fixed at 85◦, and another
target moves from 84◦ to 70◦ so that the angular interval gradually changes from 1◦ to
15◦. The number of hydrophones in the ULA is 10. Figure 6a,b show the RMSE and RP
with various angular intervals when the SNR is 0 dB. The reason for the fluctuations in the
RMSE of DFrFB is similar to that in Section 4.4, which is not redescribed here.
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In Figure 6a, despite the apparent fluctuations, DFrFB obtains the most accurate DOA
estimations regardless of the angular interval. The minimum discriminable angular interval
of the DFrFB is 6◦, while that of the ISM-DCBF and FrFB is 7◦ and 9◦, respectively. It is
demonstrated that DFrFB possesses the highest adjacent target discrimination capability.

5. Experimental Results

The DFrFB performance is verified by an experiment conducted at Jingye Lake, Tianjin,
China. Jingye Lake is broadly rectangular in shape, approximately 126 m long, 80 m wide,
and 3 m deep on average. The average sound speed is 1476 m/s, measured by a Valeport
miniSVP. In the experiment, the target source continuously emits multiple frames of the
same LFM signal, and the time interval between two adjacent frames is 0.25 s, so that
no interference between different frames can be guaranteed. The detailed LFM signal
parameters can be seen in Table 1. The real DOAs of the two targets are 92.2◦ and 116.5◦,
measured by the NTS− 382R6 total station. The receiving ULA consists of eight Brüel &
Kjær 8104 hydrophones with an element spacing of 0.8 m. The receiving array is deployed
horizontally. Both the receiving and transmitting ends are deployed at 1 m depth to ensure
that the target and the array are in the same plane. The received signal is processed by
a digital filter with a passband of 7~8 kHz, and the filtered SNR is approximately 4.1 dB.
Only the received signal containing the LFM signal is beamformed, and the pure noise
received signal is not involved in the calculation. The deconvolution iterations of DFrFB
and ISM-DCBF are still 5000.
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The spatial spectrum of a one-frame LFM signal is given in Figure 7, where the cross
symbols represent the real target DOAs. All three methods yield relatively accurate DOAs
for the target located at 116.5◦. However, the sidelobe of ISM-DCBF is so significant that
it affects the estimation of another target. The sidelobes of DFrFB, in contrast, show no
significant effect on detecting the two targets. Due to the complexity of the hydroacoustic
channel in the lake and the inaccuracy of the hydrophone installation positions, a slight
model mismatch occurs and the spatial spectral optimization capability of both the DFrFB
and ISM-DCBF is reduced.
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The DOA estimations of nine consecutive frames are given in Figure 8, where the
vertical lines represent the real DOAs. The average RMSE, beamwidth, and sidelobe level
are listed in Table 3. DFrFB effectively optimizes the spatial spectrum of FrFB under
experimental conditions. Compared with FrFB, DFrFB reduces the beamwidth by 77% and
the sidelobe by 6.0 dB, resulting in more accurate DOA estimations. Compared with ISM-
DCBF, DFrFB yields more stable and accurate DOA estimations, as well as a cleaner spatial
spectrum. It is demonstrated that the proposed DFrFB possesses the best performance
among the three methods.

Sensors 2023, 23, x FOR PEER REVIEW  16  of  18 
 

 

 

 

Figure 8. The estimated DOAs of nine frames of LFM signals received in the experiment. 

Table 3. The performance of the experiment. 

Indicators  FrFB  ISM‐DCBF  DFrFB 

RMSE (deg)  3.5  2.8  15.1 

beamwidth (deg)  14.5  5.7  3.3 

sidelobe level (dB)  −10.1  −7.3  −16.1 

6. Summary 

The proposed DFrFB can achieve high-resolution LFM signal DOA estimation by a 

small aperture array in a low SNR hydroacoustic environment. In this paper, the FrFD 

array signal model is established. The FrFB complex output is proven to be the convolu-

tion of the shift-invariant complex beam pattern with the source signal spatial distribu-

tion. The MFISTA deconvolution algorithm  is  introduced to solve the deconvolution of 

complex values. Additionally, a robust high-resolution spatial spectrum is obtained. The 

results of the simulation and experiment show that the proposed DFrFB can effectively 

improve the FrFB performance and achieve a high-resolution DOA estimation of multiple 

LFM signals.  In addition, DFrFB possesses better performance compared with directly 

performing DCBF for the LFM signal frequency-domain subbands. 

Author Contributions: Conceptualization, Z.L. and X.F.; formal analysis, Z.L.; resources, W.S.; val-

idation, Z.L. and Q.T.; writing—original draft preparation, Z.L. and Q.T.; writing—review and ed-

iting, W.S. and X.F. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Natural Science Foundation of Tianjin, China under Grant 

21JCQNJC00650. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are available on request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lee, D.-H.; Shin, J.-W.; Do, D.-W.; Choi, S.-M.; Kim, H.-N. Robust LFM target detection in wideband sonar systems. IEEE Trans. 

Aerosp. Electron. Syst. 2017, 53, 2399–2412. https://doi.org/10.1109/TAES.2017.2696318. 

2. Liu, D.L.; Qu, H.R.; Wang, W.; Deng, J.J. Multiple targets detection of linear frequency-modulated continuous wave active sonar 

using fractional Fourier transform. Integr. Ferroelectr. 2020, 209, 1–10. https://doi.org/10.1080/10584587.2020.1728798. 

Figure 8. The estimated DOAs of nine frames of LFM signals received in the experiment.

Table 3. The performance of the experiment.

Indicators FrFB ISM-DCBF DFrFB

RMSE (deg) 3.5 15.1 2.8
beamwidth (deg) 14.5 5.7 3.3

sidelobe level (dB) −10.1 −7.3 −16.1
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6. Summary

The proposed DFrFB can achieve high-resolution LFM signal DOA estimation by a
small aperture array in a low SNR hydroacoustic environment. In this paper, the FrFD
array signal model is established. The FrFB complex output is proven to be the convolution
of the shift-invariant complex beam pattern with the source signal spatial distribution. The
MFISTA deconvolution algorithm is introduced to solve the deconvolution of complex
values. Additionally, a robust high-resolution spatial spectrum is obtained. The results of
the simulation and experiment show that the proposed DFrFB can effectively improve the
FrFB performance and achieve a high-resolution DOA estimation of multiple LFM signals.
In addition, DFrFB possesses better performance compared with directly performing DCBF
for the LFM signal frequency-domain subbands.
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Abstract: Adaptive signal processing algorithms play an important role in many practical applications
in diverse fields, such as telecommunication, radar, sonar, multimedia, biomedical engineering and
noise control. Recently, a group of adaptive filtering algorithms called partial update adaptive
algorithms (partial updates) has gathered considerable attention in both research and practical
applications. This paper is a study of the application of PUs to very demanding, structural active
noise control (ANC) systems, which are of particular interest due to their ability to provide for a global
noise reduction. However, such systems are multichannel, with very high computational power
requirements, which may be reduced by the application of partial updates. The paper discusses the
modifications necessary to apply PUs in structural ANC systems and the potential computational
power savings offered by this application. As a result, leaky versions of the PU LMS algorithms are
introduced to the general public. The paper also presents two simulation examples, based on real
laboratory setups, confirming high performance of the proposed algorithms.

Keywords: partial updates; least mean squares; Leaky LMS; structural active noise control

1. Introduction

Many applications of adaptive filtering are computationally too expensive to be imple-
mented in real time, even using modern hardware. Examples of such applications include
wireless communication systems [1], radar systems [2], adaptive beamforming of radio
signals [3], and active noise control [4,5]. Partial updates are an effective and modern way
of reducing this computational effort [6,7]. Partial updates are particularly well-suited for
those real-time applications that require a huge number of operations to be performed in a
single sampling interval. For example, the Least Mean Square (LMS) algorithm applied
to an acoustic echo cancellation and updating a finite impulse response (FIR) filter with
L coefficients requires at least 2L multiply-and-accumulate (MAC) operations, L signal read,
L coefficient read and L coefficient store operations [8]. Other applications, e.g., active noise
control, can be even more expensive, computation-wise. For long adaptive FIR filters, these
numbers may be too high to fit into one sampling period. For this and other reasons, there
is a desire to develop and apply effective algorithms with a smaller number of operations.

Generally, the idea of partial updates can be applied to any iterative descent algorithm,
e.g., Recursive Least Squares (RLS). However, in this publication, we will concentrate on the
application of partial updates to the family of LMS algorithms. The purpose of this paper is
to extend the idea of PU LMS algorithms over the group of LMS algorithms with leakage. To
the best of our knowledge, a general analysis of such a combination has not been presented
to the general public yet (except for the author’s local conference communications [5,9]). In
the following chapter, the basic facts about the PU LMS algorithms are presented for the
convenience of the reader (for an extended introduction and analysis, we recommend [6]).
Then, the PU LMS algorithms with leakage are introduced in Section 3. Section 4 introduces
one of the possible applications of such algorithms in the form of a multichannel active
noise control system, and presents the results of simulations. Finally, conclusions are
presented in Section 5.
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2. Partial Update LMS Algorithms

The idea of partial updates is not new, as the first publications within this category are
dated back to 1994 [10]. A good summary of scientific achievements concerned with PUs
was presented in 2008 [6]. The purpose of this section is to present a short summary of PU
LMS algorithms for the convenience of the reader.

There are two main groups of PU LMS algorithms: time-domain algorithms and
transform-domain algorithms. This publication is concerned only with the first group.
Time-domain PU LMS algorithms can be further divided into data-independent and data-
dependent algorithms. An interesting observation is that while application of a data-
independent algorithm always results in performance degradation (here we consider the
performance to be a combination of the convergence speed and the final error level after
a predefined period of time), the application of a data-dependent algorithm does not
necessarily result in such degradation. Moreover, under some circumstances, it can even
result in performance improvement [8]. On the other hand, data-independent algorithms
offer the best computational power savings, requiring no additional operations to analyze
the data.

Data-dependent PU algorithms analyze the input data to select those filter coefficients,
which will result in the best filter improvement after the update. This operation usually
involves sorting of the input vector u(n) (see below). Fortunately, computationally effi-
cient sorting algorithms are now available, especially in cases when the input vector is
constructed from a tapped-delay line, where only one vector element is exchanged in each
sampling period [6,11].

The only disadvantage of data-independent PU LMS algorithms is slower convergence
rate; therefore, those algorithms cannot be used in applications where fast convergence is
critical. The level of convergence rate decrease depends on the number of an adaptive filter
weights excluded from update. The disadvantage of data-dependent algorithms, on the
other hand, is the necessity of implementation of the sorting (or finding the maximum).
In this case, the number of parameters excluded from the update must be high enough to
overcompensate the computational power of the sorting. This will probably be hard to
achieve in case of short adaptive filters.

In this publication, we will focus our attention on the following, popular PU algorithms:

• Data-independent algorithms:

– Periodic partial update LMS algorithm (periodic LMS),
– Sequential partial update LMS algorithm (sequential LMS),
– Sequential partial update NLMS algorithm (sequential NLMS),
– Stochastic partial update LMS algorithm (stochastic LMS),

• Data-dependent algorithms:

– M-max partial update LMS algorithm (M-max LMS),
– M-max partial update normalized LMS algorithm (M-max NLMS),
– Selective partial update (normalized) LMS algorithm (selective NLMS),
– One tap update LMS algorithm (OTU LMS).

The periodic LMS algorithm is probably the most intuitive of all: it updates all the
filter coefficients once per several sampling periods. The properties and behavior of this
algorithm are very similar to the full update LMS algorithm (except for the convergence
rate); therefore, it will not be considered below.

The one tap update LMS algorithm is in fact the selective NLMS with the extreme
selection of an update of a single filter tap only in every sampling period. It was enumerated
separately due to a very important property: instead of sorting the whole input vector, this
algorithm is based on finding the maximum absolute value of this vector. As searching for
a maximum value is computationally more efficient than sorting [11], this algorithm offers
the best computational power savings among all the data-dependent algorithms.
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Before describing each of the above PU LMS algorithms, we will recall the (full update)
Leaky LMS (LLMS) algorithm, which is given by [12]:

w(n + 1) = γw(n) + µ(n) u(n) e(n), (1)

where γ is called the leakage factor and µ(n) is called the step size. The latter can be either
constant (µ(n) = µ̃, historically the original LMS algorithm [13]) or variable. The filter tap
vector and the input vector u(n) are given by:

w(n) = [w0(n) w1(n) . . . wL−1(n)]
T , (2)

u(n) = [u(n) u(n− 1) . . . u(n− L)]T . (3)

Thus, the input vector contains samples from a single source of a signal, delayed in
time—such a vector is usually referred to as the tap-delayed vector. As mentioned above,
this specific structure can be utilized to sort the input vector more efficiently. For details,
refer, e.g., to [11].

The error signal e(n) is usually calculated as:

e(n) = d(n)− y(n) = d(n)−
L−1

∑
l=0

wl(n)u(n− l), (4)

where d(n) is the desired signal, the values of which should be approximated by the filter
output y(n) in a way that minimizes the expected value of the squared error.

3. PU LMS Algorithms with Leakage

The general equation describing PU LMS algorithms with leakage discussed in this
paper, which applies to all but the periodic LMS, can be given as:

w(n + 1) = GM(n)w(n)− µ(n)IM(n)u(n)e(n), (5)

where GM(n) is the leakage matrix and IM(n) is the coefficient selection matrix.
The coefficient selection matrix IM(n) is a diagonal matrix with elements on the

diagonal equal to 1, if a corresponding coefficient is selected for update, or to 0, if not:

IM(n) =




i0(n) 0 · · · 0
0 i1(n) · · · 0
...

...
. . .

...
0 · · · 0 iL−1(n)


, (6)

where

ik(n) ∈ {0, 1},
L−1

∑
k=0

ik(n) ≤ M. (7)

In each iteration, the elements on the diagonal of the selection matrix are selected as equal
to 0 or 1, according to the following formula:

ik(n) =

{
1 if k ∈ IM(n)

0 otherwise
; (8)

where IM(n) denotes a set of the filter weight indexes that define the coefficients to be
updated in the n-th iteration; the number of the elements in such set is equal to, or less than
M. At least one of the sets has the number of elements equal to M, which is the maximum
number of filter weights updated in any iteration.
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Similarly, the leakage matrix GM(n) is a diagonal matrix and is defined as:

GM(n) =




g0(n) 0 · · · 0
0 g1(n) · · · 0
...

...
. . .

...
0 · · · 0 gL−1(n)


, (9)

where
gk(n) ∈ {1, γ}. (10)

Specifically, the matrix contains elements equal to 1 in the rows corresponding to 0-s in
the IM(n) matrix, and a selected value of the leakage γ in the rows corresponding to 1-s
in the coefficient selection matrix. In this way, the leaky version of the PU-LMS algorithm
in Equation (5) applies leakage in a particular iteration only to those coefficients, which
are updated in this iteration. Otherwise, the advantage of processing of only a subset of
parameters would be ruined.

The difference between particular PU LMS algorithms is in the way the elements of
the coefficient selection matrix (and the leakage matrix) are selected, as described below.

3.1. Sequential LLMS

The sequential LLMS organizes the filter weights into several subsets, which are
then updated sequentially [10]. The number of subsets the filter is partitioned with can be
calculated as:

B = dL/Me; (11)

where d·e denotes the ceil operation. The way the filter weights are assigned to a specific
subset depends on the implementation. For example, consider a simple case with L = 2M,
e.g., the algorithm updates half of the filter weights in each sampling period. In such a
case, it is possible to update the parameters with even indexes in one iteration, and the
parameters with odd indexes in the next iteration. The weights selection matrix (6) can
than be written as:

IM(n) =diag(1, 0, 1, 0, 1, 0 . . .)

IM(n + 1) =diag(0, 1, 0, 1, 0, 1 . . .). (12)

Another possibility is to update the first half of the weights in one iteration, and the second
half in the next iteration:

IM(n) =diag(1, 1, 1 . . . 0, 0, 0 . . .)

IM(n + 1) =diag(0, 0, 0 . . . 1, 1, 1 . . .). (13)

Other choices are also possible.
The Sequential LLMS algorithm operates with a constant step size (µ(n) = µ̄). A

property of this LLMS algorithm is that the subsets created by particular partitioning of the
weights vector and defined by the weights selection matrix are processed in a sequence.
Therefore, after B iterations, all the weights are updated.

3.2. Sequential LNLMS

The sequential LLMS algorithm can also be used with the step size normalization.
Similarly to the (full update) NLMS algorithm, the normalization can either be considered
as a modification of the LLMS algorithm, with the step size dependent on the energy of
the input signal, or may be developed formally as a solution of a constrained optimization
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problem [14]. Regardless of the approach, the resulting algorithm operates with a variable
step size given by:

µ(n) =
µ̄

uT(n)u(n)
. (14)

Otherwise, the algorithm is identical to the sequential LLMS. We will refer to this algorithm
as the sequential Leaky Normalized LMS (sequential LNLMS).

3.3. Stochastic LLMS Algorithm

It may be proved that the sequential LLMS algorithm is permanently unstable (regard-
less of the step size) for some input signals, e.g., for cyclostationary signals [6]. Therefore,
the stochastic LMS algorithm was developed, which selects the subsets of the weights to
be updated on a random basis. The random selection should be organized in a way that
selects each of the subsets with equal probability. For such algorithm, the set of filter weight
indexes from Equation (8) is defined as:

P
(

M(n) = k
)
= πk, k = 1, . . . B,

B

∑
k=1

πk = 1; (15)

where P denotes the probability density function of an independent random process M(n),
and B = dL/Me.

Please note that it is necessary to randomize the subset selection rather than the
decision if to update every individual parameter. This assures that the complexity reduction
is attained during each sampling period. Please note also that the computational cost of
the Stochastic LMS algorithm is slightly higher than in case of the Sequential LMS, as the
random selection mechanism requires more time than the sequential selection. For further
details, refer to [15].

Provided the simulation time is long and the random selection is uniform, the stochas-
tic LLMS algorithm properties and behavior are similar to the sequential LLMS, with the
exception of avoiding instability for some signals. Therefore, the algorithm will not be
included in the experiments presented below.

3.4. M-Max LLMS Algorithm

One of the simplest ideas about the data-dependent PU algorithms could be to select
M those entries of the input vector u(n), which result in the largest magnitude changes of
the filter weights. The algorithm thus constructed is called the M-max LMS algorithm [16],
and its weights selection matrix (6) entries can be defined as:

ik(n) =

{
1 if |u(n− k + 1)| ∈ max

1≤l≤L
(|u(n− l + 1)|, M)

0 otherwise
; (16)

where maxl(ul , M) denotes a set of M maxima of the elements ul [6]. In case of this
algorithm, the step size is constant: µ(n) = µ.

The M-max LLMS algorithm requires ranking (sorting) of the input vector elements,
based on their absolute values. Therefore, the time savings this algorithm offers are smaller
than in case of the data-independent algorithms. On the other hand, computationally
efficient sorting algorithms can be applied to lessen the sorting computational burden [11].

3.5. M-Max LNLMS Algorithm

Similarly to the sequential LNLMS, the idea of M-max PU can be applied together with
the step size normalization. In this case, the weights selection matrix is defined identically
as in the case of M-max LLMS algorithm (Equation (16)), and the step size is normalized as
in Equation (14).
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3.6. Selective LLMS Algorithm

The M-max LNLMS algorithm has a subtle drawback: it uses the power of the whole
input vector to normalize the step size in spite of the fact that only some of its elements
are used for the actual weight update. To correct this issue, it is possible to calculate the
normalized step size as:

µ(n) =
µ̄

uT(n)IM(n)u(n)
. (17)

This results in the algorithm known as the selective LLMS algorithm.
It is also possible to derive the selective LLMS algorithm as a result of instantaneous

approximation of the Newton’s method, or as an application of the minimum disturbance
principle [6]. Both the derivations result in the update Equation (5) and the step-size
normalization given by Equation (17).

The difference between the selective LLMS and the M-max LNLMS algorithms may
appear to be small, but it will be shown that it results in substantial differences in perfor-
mances of both the algorithms.

3.7. One Tap Update LLMS Algorithm

As previously mentioned, the selective LLMS algorithm with the extreme choice of
M = 1 will be considered separately and will be referred to as the One Tap Update LLMS
(OTU LLMS). By combining Equations (5) and (17) and using M = 1, we notice that the
algorithm is given by:

w(n + 1) = G1(n)w(n) +
µ̄

u2
max(n)

I1(n)u(n)e(n), (18)

where umax(n) = max |u(n)| denotes the maximum absolute value in the input vector at a
discrete time n. The maximum absolute value umax(n) is assumed to be unique, and if it is
not, a single element corresponding to one of the maximum absolute values in the input
vector is selected for the update at a random basis.

Remembering that wk(n) denotes the k-th filter coefficient, the algorithm may be
expressed as:

wk(n + 1) =





γwk(n) +
µ̄e(n)

u(n− k)
, if |u(n− k)| = max |u(n)|

wk(n), otherwise
. (19)

To conclude, this simple update algorithm developed by Douglas [17], updates only one
coefficient—the coefficient that corresponds to the input sample with the maximum abso-
lute value.

Considering the shift structure of the input vector, the maxline algorithm [11] can be
used for finding its maximum absolute value. The worst case computational complexity
of this algorithm is L + 1 comparisons, and only one multiplication, one division and one
addition per iteration. However, it has been shown in [11] that the average number of
comparisons, in case of a random input data with the uniform distribution, is approximately
equal to 3 and does not increase with the filter length. Of course, calculation of the filter
output still requires L multiplications and L− 1 additions.

3.8. Computational Power Requirements and Implementation

The computational demands of the discussed algorithms are given in Table 1. To
calculate the requirements for the data-dependent algorithms, it was assumed that the
input vector is a tap-delayed vector, and the sortline algorithm can be used to sort this
vector. Therefore, the cost of the sorting was assumed to be 2dlog2 Le+ 2 comparisons. For
further details, refer to [6], but also note that the leakage requires additional multiplications
in the number equal to the number of updated weights (L for full update and M for PUs).
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Practical implementation of the leaky PU algorithms is similar to the implementation
of other LMS-family algorithms. The architecture of modern microprocessors, especially
those which are referred to as “digital signal processors”, is optimized to perform the
MAC operation [18]; therefore, the implementation of the actual filtering (expressed by the
summation on the right-hand side of Equation (4)), is usually highly effective. The practical
implementation of the adaptation, on the other hand, is quite different from straightforward
implementation of Equation (5) in a programming language. The equation suggests the
use of two matrices (IM and GM), which are in fact omitted, because they are only used
to define indexes of those filter weights, which are selected for updates by a particular
PU algorithm. Thus, the algorithm loops through all the selected indexes and performs
updates by application of the leakage γ and subtraction of the product of the step size µ(n),
error e(n) and a corresponding value from the input vector u(n). For more details on the
whole digital signal processing path consult, e.g., [19].

As was already mentioned, the data-dependent algorithms require sorting or calcula-
tion of a maximum value of a vector. Practical aspects of implementation of such algorithms
are discussed in [6].

Table 1. Computational complexity of the discussed PU algorithms.

Algorithm Multiply Add Div Compare

LLMS 3L + 1 2L
LNLMS 3L + 2 2L + 2 1

Sequential LLMS L + 2M + 1 L + M
Sequential LNLMS L + 2M + 2 L + M + 2 1

mMax LLMS L + 2M + 1 L + M 2dlog2 Le+ 2
mMax LNLMS L + 2M + 2 L + M + 2 1 2dlog2 Le+ 2
Selective LLMS L + 2M + 2 L + M + 2 1 2dlog2 Le+ 2
OTU LNLMS L + 2 L + 1 1 3 *

* The average number of comparisons for uniformly distributed data. In the worst-case scenario, the number of
comparisons is the same as with the other data-dependent algorithms.

4. Multichannel Active Noise Control Problem

Noise is one of major civilizational issues and therefore is of great scientific atten-
tion [20]. Passive noise control techniques have been used for years and are very effective
when it comes to attenuation of high-frequency noise. Unfortunately, low-frequency noise
is more difficult to attenuate passively; for this reason, active noise control (ANC) methods
were developed [18,21].

Structural ANC systems are the systems that apply active control to the noise-emitting
structure rather than to an additional loudspeaker [22,23]. These methods have earned a
lot of attention among the scientific community due to the fact that they allow to achieve
a global noise reduction, hard to obtain using different methods [24,25]. Unfortunately,
structural ANC belongs to the group of the most demanding algorithms, when it comes
to the computational power [19]. This is due to the fact that controlling even a simple
structure usually requires more than one sensor and actuator, even if the structure is only a
single panel or wall. To present a more realistic example, consider a system controlling the
noise propagating from a device with a cuboid enclosure. The numbers of walls to control
differs from 3 (for the device positioned in a corner of a room) to 5 (for the device standing
far from the walls of a room). Suppose the device is positioned close to a wall (but not in a
corner), so that 4 devices walls are to be controlled, and each is controlled using 4 actuators.
Suppose there are 5 error sensors in the room—the number of active filters to consider will
be equal to 80 (4 walls times 4 actuators times 5 error sensors). The hardware demands
of such a multichannel system operating with a reasonable sampling frequency and even
short filter lengths (e.g., 128) are enormous; therefore, only adaptation algorithms with low
computational power demands can be considered for such a case and the alike. Partial
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updates belong to the group of such algorithms, and we will demonstrate by the means of
simulations that leaky PU LMS algorithms can be successfully used.

Several techniques can be used to lower the computational demand. The most intuitive
way is to use shorter adaptive filters, but this attitude may result in poor attenuation
results for noises more complicated than sinusoidal signals. Another attitude is to use a
computational power saving algorithm. There are a few such algorithms, e.g., the switched
error algorithm [26]; however, the partial updates can also be used, as reported in previous
research [4,7] and this communication. Two experimental setups, based on existing, real
laboratory stands, will be used to demonstrate by simulations that PU algorithms with
leakage are particularly well-suited for structural ANC.

4.1. Experimental Setup 1: Active Casing

The first experimental setup consists of an active casing with rigid corners and 1 mm
thick aluminum plates, with 420 × 420 mm dimensions, as presented in Figure 1. Each
plate was equipped with three electrodynamic Monacor EX-1 5 Watt actuators, mounted
in carefully selected positions to improve controllability of the system. The casing was
placed in the laboratory room a little distance off the walls so five sides of the casing were
available and an error sensor (microphone) was positioned in front of each side [22].

Figure 1. The rigid casing used in Experimental Setup 1.

The above setup consists of 15 actuators and 5 error microphones; thus, the number of
secondary paths to consider is 75. The models of those secondary paths were identified
in the form of finite impulse response (FIR) filters with 256 parameters. The identification
experiments were performed using white noise as an excitation and using the sampling
frequency of 2 kHz. In addition, a loudspeaker was placed inside the casing and the
primary paths were identified as well, in the same form. Finally, a reference signal path
was identified between the loudspeaker and a microphone placed inside the casing.

The identified transfer functions (TF) were used to design a simulation system allowing
for rapid testing of adaptation algorithms. A part of the block diagram of this system,
associated with one of the casing walls, is presented in Figure 2. According to this figure,
the noise to be attenuated u(n) is filtered through the reference path TF X(z−1), to produce
the reference signal, x(n). The reference signal forms the input to the primary path TF
Pj(z−1), where j is the corresponding error microphone number. This reference signal forms
the input signal to the control filters—three such filters, W1(z−1), W2(z−1), and W3(z−1),
associated with the front plate are presented in Figure 2. Each control filter produces the
output yj(n), which is then filtered with five different secondary path TFs; one of these
TFs for each of the presented filters is visible in the figure. The secondary path TFs are
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denoted as Si,j(z−1), where i is the actuator number (i ∈ {1 . . . 15}), and j is again the error
microphone number. Three secondary path TFs, i.e., S1,1(z−1), S2,1(z−1), and S3,1(z−1), are
presented in Figure 2, while the remaining twelve belong to the other error signal paths. In
consequence, each error signal is a sum of 16 signals: one primary signal and 15 signals
coming from the 15 actuators.

All 5 error signals are used by each of the adaptation algorithms, denoted as LMS in
Figure 2 [18,27]. In addition, each of the adaptation algorithms uses 5 reference signals,
each filtered through a different secondary path TF estimate, e.g., Ŝ1,1–Ŝ1,5 in case of the
algorithm associated with the W1(z−1) control filter. The simulation system is then fairly
advanced and requires 165 filtrations and 15 adaptations in each simulation iteration.

Figure 2. Block diagram of the simulated active casing system.

Exemplary frequency characteristics of the secondary path TFs from one of the actua-
tors mounted on the front plate to all the five error microphones are illustrated in Figure 3.
From the figure, it can be noticed that the magnitude of the presented TFs is similar in the
average; however, large variations of magnitude for all the five TFs are observed at several
particular frequencies. For example, S1,4(z−1) and S1,5(z−1) have a very low magnitude at
115 Hz, the difference between S1,5(z−1) and S1,3(z−1) is around 40 dB at this frequency.

Figure 4 presents the frequency characteristics of the secondary path TFs from the
three top plate actuators to one of the error microphones. In this case, the magnitudes of the
presented TFs differ much more from each other than those presented in Figure 3. Moreover,
similar differences were observed for the TFs to the other four error microphones. Special
attention should be paid to the S11,y(z−1) TF, which has the lowest average magnitude
among all the secondary path TFs.
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Figure 3. Secondary path transfer functions from the first actuator on the front plate to all the five
error microphones.

Figure 4. Secondary path transfer functions from the top plate actuators to the left plate error microphone.

Both the above mentioned figures suggest that the identified models are accurate and
contain a variety of phenomena present in real environment, contrary to some other, simpli-
fied models (e.g., TF of 16 order) used in simulations presented in the literature. Moreover,
the secondary path TF estimates (Ŝx,y(z−1) in Figure 2) used in the simulations presented
below were not perfect. Instead, all the models were truncated down to 128 parameters,
and each impulse response parameter was disturbed with a small, random value.

The simulations described in this section, unless otherwise specified, were performed
using the following setup. The sampling frequency was assumed to be 2 kHz. The noise
signal was generated as a sum of two sinusoids, with frequencies 112 and 191 Hz, shifted
in phase by π/4. A white noise sequence was also generated of the same length and
was filtered with a band-pass filter with pass band between 100 and 500 Hz, resulting
with a sequence for which the variance was equal to 0.4. Such noise was added to the
two-sine signals to present a more realistic signal. The active filter length was set at 256.
Three different step sizes were used: 1 × 10−5 for the algorithms with a constant step size,
8 × 10−3 for the algorithms with the step size normalization, except for the selective LLMS
(including the One Tap Update LLMS), for which the step size was equal to 4 × 10−3. The
leakage factor used was 0.999999, except for the eleventh active filter—the filter associated
with the second sensor on the top plate—for which the leakage factor was 0.99999. The
step sizes and leakage factors were determined by trial and error, with an intention to
achieve fast adaptation and robust performance (the robust performance was confirmed
by simulation of combinations of different frequencies, within the band 100–300 Hz). The
simulations were repeated 50 times, with different white noise sequences, to achieve
smoother mean square error (MSE) curves.
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4.2. Simulation Results

The reasons for using the algorithms with leakage are presented in Figures 5 and 6,
where the results of simulation of the NLMS algorithm without leakage are presented.
The figures present the output signals from the adaptive filters only (the final attenuation
towards the end of this simulation was around 37 dB). From the figures, it is clear that
some of the output signals have substantially higher levels than the others. For example,
y1 output level reaches ±15, y10 output stays within ±20, and y11 exceeds ±100. On the
other hands, the majority of signals are bounded by ±5. It can be also noticed that some
of the signals did not achieve a steady state even after 500 s of the simulation, and are
still growing slowly. Both the facts suggest that the described algorithm without leakage
is not suitable for practical applications, because it would probably result in exceeding
the digital-to-analog converters limits, and it would probably be unstable after longer
periods of operation. Therefore, all the remaining simulations presented in this paper use
algorithms with leakage.

The results also suggest that a lower value of the leakage should be applied for those
filters that give higher output values. Unfortunately, particular values of the leakage
factor are hard to determine in a way other than by trial end error. In practical ANC
applications, this is usually done based on observation of the filter parameters, which
should be approximately constant in the steady state.

Figure 5. Selected outputs of the adaptive filters for the simulations of the NLMS algorithm without
the leakage.

Figure 6. Selected outputs of the adaptive filters for the simulations of the NLMS algorithm without
the leakage.

Figures 7 and 8 present the mean squared error (MSE) obtained on the selected error
microphones during simulations of algorithms without and with the step size normaliza-

103



Sensors 2023, 23, 1169

tion, respectively. The PU algorithms were simulated with M = 16, i.e., 16 adaptive filter
parameters out of 256 were updated in each simulation step. The full update LLMS and
LNLMS algorithms were added to the simulations for a reference. The attenuation level
was calculated based on the MSE during the last 50 s of each simulation.

The figures show that all the algorithms are stable and converge at different speeds,
reaching noticeable attenuation levels towards the end of the simulation. Among the
algorithms without the step size normalization (Figure 7), the full update algorithm is
the fastest to converge, and attains the highest level of attenuation; however, the M-max
LLMS algorithm converges only a little slower, and attains the same level of attenuation.
The sequential LLMS algorithm converges very slowly (approximately 16 times slower);
therefore, it achieves only 24 dB of attenuation within the simulation window.

Figure 7. Active noise control results on the third error microphone for the algorithms without the
step size normalization and M = 16. Final attenuation level for each algorithm is given in the legend.

The algorithms with the step-size normalization (Figure 8) are capable of achieving
even better performance: converge faster and achieve higher levels of attenuation. It is
interesting to notice that all the PU algorithms except the sequential LNLMS algorithm
show similar performance than the full update LNLMS. The selective LNLMS algorithm
shows the fastest initial convergence speed and attains an attenuation level only slightly
worse than the full update. However, the OTU LNLMS algorithm is the third, reaching an
impressive attenuation level of 36 dB despite the fact that it updates only one filter weight
in each simulation step.

Figure 8. Active noise control results on the first error microphone for the algorithms with the step
size normalization and M = 16. Final attenuation level for each algorithm is given in the legend.
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The final attenuation levels obtained for all five error microphones for all the simulated
algorithms are presented in Table 2. From the table, it is clear that the attenuation level
calculated based on e3 was the best, while the attenuation for e5 was the worst. The latter
fact can be explained based on the geometry of the laboratory, where the fifth microphone,
corresponding to the back panel, was close to the room wall.

Figure 9 presents selected output signals obtained during simulation of the LNLMS
algorithm, corresponding to those in Figure 6. It can be observed that introduction of the
leakage prevented the output signals from reaching very high levels—this fact is especially
visible in case of y11.

Table 2. Active casing attenuation levels obtained for each error microphone for M = 16.

Algorithm e1 e2 e3 e4 e5

LLMS 33.6 dB 29.1 dB 37.2 dB 26.4 dB 24.8 dB
LNLMS 37.8 dB 30.0 dB 40.5 dB 28.1 dB 25.3 dB

Sequential LLMS 21.8 dB 19.8 dB 24.5 dB 18.5 dB 18.7 dB
Sequential LNLMS 28.4 dB 22.2 dB 31.4 dB 20.9 dB 20.5 dB

mMax LLMS 33.6 dB 30.2 dB 37.1 dB 26.0 dB 22.4 dB
mMax LNLMS 37.2 dB 31.3 dB 40.7 dB 28.3 dB 24.0 dB
Selective LLMS 36.9 dB 33.4 dB 39.1 dB 31.5 dB 27.1 dB
OTU LNLMS 36.2 dB 34.0 dB 38.6 dB 32.7 dB 27.7 dB

Figure 9. Selected outputs of the adaptive filters for the simulations of the LNLMS algorithm
with leakage.

Figure 10 and Table 3 present the results of simulations with M = 8 (eight filter taps
updated in each simulation step). The figure shows only the algorithms with the step size
normalization, which show better performance. The table does not include the algorithms
which do not use the M parameter (i.e., full update algorithms and the OTU LNLMS). It
can be noticed that updating only eight parameters results in slightly worse performance,
compared to simulations with M = 16, but the results are still acceptable in the means of
both the convergence speed and the attenuation level.

Table 3. Active casing attenuation levels obtained for each error microphone for M = 8.

Algorithm e1 e2 e3 e4 e5

Sequential LLMS 19.9 dB 18.0 dB 22.2 dB 16.9 dB 16.7 dB
Sequential LNLMS 24.2 dB 18.8 dB 26.1 dB 18.3 dB 19.0 dB

mMax LLMS 31.9 dB 28.1 dB 34.7 dB 24.1 dB 20.6 dB
mMax LNLMS 35.1 dB 28.4 dB 39.4 dB 26.1 dB 21.8 dB
Selective LLMS 37.7 dB 34.4 dB 41.1 dB 32.0 dB 29.8 dB
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Figure 10. Active noise control results on the third error microphone for the algorithms with the step
size normalization and M = 8. Final attenuation level for each algorithm is given in the legend.

4.3. Experimental Setup 2: Washing Machine

The second experimental setup uses a commercial washing machine, as presented
in Figure 11. The device was placed in the laboratory close to one of the walls; therefore,
only four walls of the machine were available. Thirteen 5 W electrodynamic actuators
were placed on the machine: three on each of the three side walls and four on the top wall
(contrary to the Figure, which was taken before the final mount). The reference sensor was
placed inside the washing machine, below the drum. The laboratory room was equipped
with eight microphones, positioned in a quarter-sphere arrangement, used as error sensors
(the final application will probably use other type of sensors, e.g., accelerometers attached
to the device, and using the Virtual Microphone technique [28]). As was described in [22],
examination of the results of attenuation on the eight error microphones allows us to
determine the global attenuation effect.

Figure 11. The washing machine used in the experiments.

Similar to the case of the first experimental setup, impulse responses of primary and
secondary paths were identified, each with 256 parameter. There were eight primary paths
from the reference microphone to the error sensors, and 104 secondary paths, from the
13 actuators to each of the error sensors. The same sampling frequency of 2 kHz was used.
Again, the simulation system was implemented in the Matlab environment with the block
diagram similar to this presented in Figure 2. This system was used to produce the results
presented below.
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The simulations were performed using a signal recorded during the washing machine
spinning cycle, which is the loudest part of each washing. The spectrogram of this signal
is presented in Figure 12, where the variety of the spinning signal harmonic components
can be observed. For example, the spinning frequency is constant and equal to 1140 rpm
between 5th and 8th minute of the cycle; therefore, the 19 Hz component and its products
are easily distinguishable. Nevertheless, it should be noted that the signal is nonstationary:
the washing machine increases the rotation speed slowly or even sometimes abruptly (as
right before the 5th min), maintains a constant speed for an amount of time, and then slowly
reduces the speed. The simulations presented below used only a part of this recording,
approximately between minute 3 and 8.

Figure 12. Spectrogram of the signal recorded during the washing machine final spinning phase.

The active filter length used in the following simulations was 256. Based on the results
obtained with the rigid casing, it was assumed that it will be sufficient to update eight
filter parameters in each iteration (M = 8). Three different step sizes were used: 1 for
the algorithms with constant step size, 4 × 10−3 for the algorithms with the step size
normalization, except for the selective LLMS (including the One Tap Update), for which
the step size was equal to 1 × 10−3. The leakage factor used was 0.999999 for all the
filters. Again, the step sizes and leakage factors were determined by trial and error, with
an intention to achieve fast adaptation and robust performance. The simulations were
repeated five times without resetting the filter weights to avoid zero initial conditions, and
the results of only the last run are presented below.

4.4. Simulation Results

The adaptation process of a filter that does not start with zero initial conditions does
not produce results similar to those presented in Figures 7 and 8: the MSE level is low from
the beginning of the simulation, and increases only a little during the attenuated signal
rapid changes. Additionally, the MSE cannot be smoothed by averaging several runs, since
each single run uses exactly the same spinning cycle recording. Therefore, Figures 13 and 14
present only time plots of signals simulated on a selected error microphone: the primary
noise (blue) and the attenuated signal (orange). The fifth error microphone was selected
because it produced the most spectacular results; however, substantial attenuation was
recorded on each of the 8 error microphones. Table 4 presents the results of attenuation
for every simulated algorithm on each of the error microphones. The attenuation was
calculated from the ratio of the primary noise variance and the attenuated signal variance
during the last 10% (29 s) of the simulation experiment.

By analyzing the results, we conclude that all the PU Leaky LMS algorithms are
capable of achieving good attenuation levels, from 8 dB in the worst-case scenario, up to
almost 30 dB. Of course, the sequential algorithms result in the poorest attenuation levels,
but it must be remembered that these algorithms offers the best computational power
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savings. What can be surprising is the fact that two PU algorithms, namely the selective
LNLMS and the OTU LNLMS algorithms achieved better results than the full update
LNLMS. However, it must be remembered that the step size used with these algorithms
was slightly different (0.004 for the full update vs. 0.001 for the PU algorithms), which
might have given a little advantage to the PU algorithms. Nevertheless, the results obtained
with the algorithm that updates only 1 filter weight out of 256 (OTU) are impressive.

Figure 13. Primary noise and the attenuated signal on the error microphone 5—part 1.

Figure 14. Primary noise and the attenuated signal on the error microphone 5—part 2.
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Table 4. Washing machine attenuation levels obtained for each error microphone for M = 8.

Algorithm e1 e2 e3 e4 e5 e6 e7 e8

LLMS 14.0 dB 13.6 dB 17.7 dB 12.7 dB 26.5 dB 16.9 dB 21.0 dB 19.6 dB
LNLMS 14.2 dB 13.3 dB 15.4 dB 12.8 dB 26.2 dB 16.3 dB 20.9 dB 20.6 dB

Sequential LLMS 10.4 dB 9.5 dB 14.3 dB 8.3 dB 21.0 dB 12.9 dB 16.4 dB 12.0 dB
Sequential LNLMS 9.8 dB 9.8 dB 11.0 dB 8.7 dB 19.8 dB 12.1 dB 15.1 dB 14.6 dB

M-max LLMS 12.9 dB 13.2 dB 17.2 dB 12.4 dB 26.6 dB 15.9 dB 20.8 dB 20.2 dB
M-max LNLMS 13.5 dB 12.8 dB 15.2 dB 12.5 dB 26.5 dB 15.9 dB 20.7 dB 20.8 dB
Selective LLMS 15.9 dB 16.1 dB 17.2 dB 15.6 dB 29.5 dB 17.4 dB 23.1 dB 24.9 dB
OTU LNLMS 15.8 dB 16.8 dB 17.1 dB 16.0 dB 28.9 dB 17.0 dB 22.8 dB 24.9 dB

Figures 15 and 16 show the spectrograms of the primary noise and the attenuated
signal in the most interesting frequency range from 0 to 500 Hz, for the selective LNLMS
algorithm and the fifth error microphone. The spectrogram of the attenuated signal confirms
that the attenuation is obtained during the full simulated period of time, for all the spectral
components of the noise signal.

Figure 15. Spectrogram of the primary noise on the error microphone 5, Selective LNLMS algorithm.

Figure 16. Spectrogram of the attenuated signal on the error microphone 5, Selective LNLMS algorithm.

Finally, Figures 17 and 18 present power spectral densities of the noise signal and the
attenuated signal during the last 10% of the simulation time, for the OTU LNLMS algorithm
and error microphones where the best and the worst attenuation was obtained, i.e., e5 and
e4. In Figure 17 we observe very good attenuation of almost all harmonic components,
except for the lowest frequency component (17 Hz). Fortunately, such low frequency is
already outside the normal human hearing frequency range. The figure also shows a good
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attenuation of broadband noise present in the recorded signal. On the other hand, Figure 18
shows that some lower frequency harmonic components were not attenuated sufficiently
in the error microphone 4 location. Observe, however, that the whole level of the signals
from the fourth microphone is lower than in case of the fifth microphone. Considering this,
the final levels of both the attenuated signals are similar.

Figure 17. Powers spectral density without and with ANC for the microphone with the highest
attenuation, OTU LLMS algorithm.

Figure 18. Powers spectral density without and with ANC for the microphone with the poorest
attenuation, OTU LLMS algorithm.

5. Conclusions

The goal of the research presented in this paper was to study usefulness of several
partial updated LMS algorithms in a very demanding application to structural ANC. From
a practical implementation point of view, overestimated multichannel ANC systems usually
require adaptation algorithms with leakage, because leakage allows us to equalize indi-
vidual actuator control efforts, thus resulting in stable adaptation and higher attenuation
levels. Therefore, to allow for application of PU LMS algorithms in such systems, leaky
versions of the algorithms were introduced. In case of PU algorithms, the leakage must
be implemented in a way that does not ruin the computational power savings. The main
contribution of this paper is the presentation of the proper attitude towards solution of this
problem, and the presentation of the resulting leaky PU LMS algorithms (the sequential
LLMS, sequential LNLMS, M-max LLMS, M-max LNLMS, selective LLMS and One Tap
Update LLMS). The computational power savings offered by these algorithms with the
respect to the full update LLMS algorithm are also presented and discussed.

To test the proposed algorithms in a rapid development environment, two simulation
systems were constructed, based on the structural ANC real laboratory setups. The first
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system was based on an active casing with rigid walls; five panels were controlled by three
actuators on each wall. The second was based on a commercial washing machine placed
close to the laboratory room wall, so four washing machine walls were controlled with
a total of 13 actuators. Both the systems were multichannel, with 75 and 104 secondary
paths, respectively. Contrary to many other publications, the secondary path estimates
used in these simulations were not perfect. The simulated noises included two sinusoids
embedded in noise and a real recording of a washing machine spinning cycle.

The simulations confirmed that the proposed leaky PU algorithms can be used in
structural ANC systems. All the leaky PU LMS algorithms tested were capable of providing
between 8 and 40 dB of attenuation. It must be emphasized that in case of the simulated
structural ANC system, the attenuation effect is global and is not concerned only with the
error microphone location. Therefore, the obtained results are satisfactory and prove the
leaky PU LMS algorithms have a high potential for real application.

The main disadvantage of PU LMS algorithms is possible degradation of the con-
vergence speed, which is an inherent feature of all data-independent PUs. Therefore,
data-independent algorithms should be used with caution when fast convergence is impor-
tant. Data-dependent algorithms, on the other hand, do not result in the convergence speed
decrease, but require the implementation of sorting of the input vector. This in turn lowers
the computational power savings these algorithms offer. An interesting compromise may
be the leaky One Tap Update algorithm, which instead of sorting utilizes maximum values
searching—the algorithms that can be implemented in a very optimal way.
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Abstract: Low-noise surfaces have become a common mitigation action in the last decade, so much so
that different methods for feature extraction have been established to evaluate their efficacy. Among
these, the Close Proximity Index (CPX) evaluates the noise emissions by means of multiple runs at
different speeds performed with a vehicle equipped with a reference tire and with acoustic sensors
close to the wheel. However, signals acquired with CPX make it source oriented, and the analysis
does not consider the real traffic flow of the studied site for a receiver-oriented approach. These
aspects are remedied by Statistical Pass-By (SPB), a method based on sensor feature extraction with
live detection of events; noise and speed acquisitions are performed at the roadside in real case
scenarios. Unfortunately, the specific SPB requirements for its measurement setup do not allow an
evaluation in urban context unless a special setup is used, but this may alter the acoustical context
in which the measurement was performed. The present paper illustrates the testing and validation
of a method named Urban Pass-By (U-SPB), developed during the LIFE NEREiDE project. U-SPB
originates from standard SPB, exploits unattended measurements and develops an in-lab feature
detection and extraction procedure. The U-SPB extends the evaluation in terms of before/after data
comparison of the efficiency of low-noise laying in an urban context while combining the estimation
of long-term noise levels and traffic parameters for other environmental noise purposes, such as noise
mapping and action planning.

Keywords: SPB method; sound pass-by; low-noise surfaces; noise modeling; road traffic noise;
unattended noise measurement procedure; traffic measurements; noise emission; environmental
noise; sound

1. Introduction

The “Noise in Europe 2020” report [1] by the European Environment Agency con-
firmed that road traffic is the most dominant source of environmental noise, with an
estimated 113 million Europeans affected by noise levels greater than 55 dB(A) of Lden
(day–evening–night level). Moreover, at least 20% of the EU population lives in areas where
road traffic noise levels are high, and it is likely that the inhabitants underestimate the
well-known long-term effect on health that prolonged exposure can produce.

Among the many different mitigation actions that can be applied, the laying of new
low-noise pavement (LNP) [2,3], such as open-graded pavement, rubber asphalts or poroe-
lastic surfaces, has become popular as it significantly affects a wider area and a greater
number of citizens compared to other actions focused on a single building. LNP is defined
as a road surface which can reduce sound emissions to some extent compared to a refer-
ence pavement. The most widely used definition of LNP is “pavement able to provide a
reduction of 3 dB(A) with respect to a Dense Asphalt Concrete (DAC)” [4].

Noise barriers have visive impact that reduces their acceptability [5,6], and the instal-
lation of soundproof windows is much more expensive in cases where there are multiple
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receivers to mitigate [6,7]. Moreover, new windows do not completely solve the problem
as citizens leave them open in summertime [8].

The laying of LNP is now a common mitigation action in the EU, and a few methods
have been established by technical norms that have emerged over the years in order to
evaluate the performances of road surfaces. Among these, the Close Proximity Index (CPX),
according to ISO 11819-2:2017 [9], the Statistical Pass-By (SPB-ISO), according to ISO/DIS
11819-1 [10], and the ISO 13472-1:2022 [11], are all non-intrusive methods requiring on-site
measurements, unlike ISO 10534-1:1996 [12], which applies in-lab Kundt tube tests to
asphalt samples. However, different studies in the past demonstrated that these standard
monitoring techniques are not sufficient to reliably evaluate the pavement acoustic efficacy
or to directly compare the properties of different ones [13,14].

CPX has been applied and improved over the years, reaching the status of a well-
recognized methodology [15–18], and its indicators are mentioned within the minimum
environmental levels given by the EU Green Public Procurement Criteria (GPP), which were
finally defined in 2016 for Europe [19]. The quality of new LNP should then be guaranteed
by a mandatory evaluation of its noise emission through CPX measurements, as it is the
method that is more directly focused on evaluating the source emission by measuring noise
with microphones next to the reference tire of a lab-moving vehicle.

On the contrary, SPB-ISO is the right method to identify the sound emitted by real
flow or for different vehicle categories, as it is based on noise and traffic data measurements
performed at the roadside and at a standard distance. It provides an indicator of noise
perceived for a single vehicle and may help to verify the noise efficacy of the pavement
or to introduce policies for specific category restrictions or speed limits in contrast to
methodologies which acquire the overall noise. Moreover, SPB-ISO is also very helpful for
the definition of noise models in the noise mapping and action plan phases. This method is
also able to characterize new categories, such as, for example, electric vehicles, which are
an emerging issue the definition of which is left open even in the noise mapping official
method CNOSSOS-EU [20]. In particular, a variation of the SPB-ISO, the Controlled Pass-By
(CPB) [21] is being used in the ongoing LIFE Project E-VIA, aiming to assess the noisiness of
electric vehicles on specific-noise pavements [22]. In fact, low-noise pavements can reduce
rolling noise; thus, their effect is maximal for electric vehicles [23], whilst it is reduced
for heavy vehicles and mopeds. Low-noise surfaces were also recently under study in a
combined solution with Intelligent Transportation Systems (ITS) in order to maximize their
mitigation effect with more focused traffic [24].

Even though both CPX and SPB-ISO are widely performed around the world [25–27],
they have been shown to not fit perfectly into the urban environment, especially the
standard SPB methodology [13]. In addition, the SILENCE project contributed to the
development of the Backing Board variant (ISO 11819-4 [28]), the measurement of which is
still influenced by the real world in front of the microphone.

SPB-ISO measurements not only require a free field around the mics, which is rare in
an urban context, but also single vehicles passing within a sufficient time spacing. Such a
condition almost never happens on urban roads during the daytime, especially on the major
and most impactful roads that have high traffic flow. Traffic lights, pedestrian crossing and
roundabouts are also urban issues that group vehicles together, especially during daytime,
which is the period when attended SPB-ISO should be carried out.

Thus, a method able to determine vehicle noise on road pavements in any urban
context was still being looked for when the LIFE NEREiDE [29] project was conceived.
The project, among others, also aims to develop innovative measurement protocols and
new methods to verify the efficacy of low-impact surfaces to improve soundproofing
performances and reduce annoyance in the urban context, such as through the use of
P-U sensors [30]. Therefore, the NEREiDE project intends to improve the existing mea-
surement protocol of SPB in order to provide institutions with more reliable data from
monitoring campaigns.
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The present work presents a methodology to determine average noise levels emitted
by vehicles categories in an urban context. The outcome is called Urban Pass-By (U-SPB)
and mixes standard long-term noise measurement with the SPB-ISO method. It has the
advantages of an easy setup of common instrumentation, and, most importantly, it can
be unattended during the data acquisition, thus, sparing man hours. The developed
algorithms allow the elaboration of the measurements to obtain a U-SPB index that is
comparable with the SPBI set by ISO/DIS 11819-1. Finally, the most important advantage
is that this procedure implements statistical pass-by in an urban context, ascribing value to
such results for mitigation purposes.

The present paper details the measurement setup and the analysis procedure of U-SPB.
The testing and validation phases are based on specific measurement campaigns performed
in Tuscany, Italy, and application to monitor the noise performances of new surfaces in an
urban context is also shown.

The locally estimated values are not generalizable for all road surfaces, making the
U-SPB a method that is not developed enough to label road surfaces over their entire
stretch as the CPX does. However, this behavior turned out to be a pro in different contexts,
such as the local evaluation of a road noise mitigation action or the evaluation of the
effectiveness of traffic reduction measures (times of prohibition of freight transport, bus
lines, electric vehicle policies, speed limits, etc.) on the noise impact. This aspect represents
an added value for policy makers and allows the correct planning of traffic route policies
such as freight-banning times, bus routes, electric vehicle policies, speed limits, etc. The
procedure also allows the estimation of long-term Lden according to a relation based on
measured road traffic flows only. This allows the avoidance of spurious events or unwanted
noise sources in the evaluation of people exposed to the noise specifically emitted by the
investigated road.

2. Background

In 2006, the Tuscany region planned the LEOPOLDO project with the intent to develop
innovative noise mitigation techniques for action plans relating to road infrastructure
to find the best surface criteria based on the surroundings of the laying and to develop
measurement protocols useful for assessing road surface effectiveness and time stability
in terms of both acoustical and safety characteristics. SPB-ISO and CPX were applied
within the LEOPOLDO project, and improved protocols for measurements and for data
postprocessing were developed [31,32]. An improved version of SPB was developed (SPB-
L) using a different noise metric than the original version. The SPB-L procedure was based
on measuring the acoustical energy of the passing vehicle; it uses the Sound Exposure Level
(SEL or LE), calculated according to the ISO 1996-1 [33], and the pass-by event is the signal
part in which LAfmax exceeds the background noise by more than 10 dB(A), as defined in
ISO/DIS 11819-1 [10].

A scientific debate was raised at that time [34–37], and different metrics were proposed
for SPB analysis, which led the LEOPOLDO project to adopt SEL instead of LAfmax as a
metric in its SPB-L method. Later, the ROSANNE project [38] found good correlation
between LAfmax and SEL. Although SEL is considered more sensitive to ground effects, it is
still considered as a relevant option for helping the definition of common noise modeling
methods [39].

The SPB-L followed the HARMONOISE [35] and IMAGINE [36] projects, which
introduced a second measurement position placed at 3.0 m height and 7.5 m distance from
the center of the road lane (SPB-HI). This improved the evaluation of the influence of the
local context by avoiding the roadside ground influence that was not negligible with only
the 1.2 m height position.

Thus, SPB-L measurements include two microphone heights. Thus, the statistical
sample of many single passages constitutes the dataset for the logarithmic regression
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(Equation (1)) between the measured speed v and the SEL, which estimates the level at the
reference speed v0, in accordance with SPB-HI.

SEL = a + b·log
(

v
v0

)
(1)

where a is the SEL at reference speed (typically 50 km/h), and b is a speed-related correction.
A further improvement of SPB-L was the introduction of the use of statistical data

binning since the SPB-HI procedure fails when speed data are collected around a single
value, such as the speed limit. In fact, the variability due to driver behavior and to vehicle
characteristics dominates when the speeds are almost the same. Data then have a cloud-like
shape, and those falling outside the cloud influence the fit algorithm. This influence is
avoided through statistical data binning applied to the whole dataset and a minimum
chi-square fit of central values with their uncertainties.

In more detail, data are grouped in velocity classes, or bins, about 10 km/h in width.
The actual width is chosen to minimize the total chi-square of the final fit. The mean and
standard deviations of data in each class are computed with the hypothesis of a Poissonian
distribution of the vehicles data, with each class represented by the triplet: central velocity
of the class and the mean and standard deviation of the SEL data contained in each class.
These triplets are used as inputs in the best fit between SEL and speed. In this way, the
information of data spread out, and the numerousness in each speed bin is taken into
account by means of the uncertainty associated with the central values.

Within the NEREiDE project, a further improvement of SPB was looked for in order to
simplify SPB measurement and analysis protocol, especially sparing man time on site. The
U-SPB protocol, presented in the present work, intends to derive indexes able to represent
pavement efficacy in their implementation context and to derive a method able to identify
the contribution that a new pavement might provide in that context, taking into account
the fleet composition, average speed and surrounding additional noise sources.

In Table 1, the characteristics of U-SPB are compared to the different adaptations of the
SPB-ISO method in order to clarify the different approaches mentioned in the present work.

Table 1. Summary of SPB method adaptations mentioned in the paper and their characteristics.

SPB-ISO SPB-HI SPB-L U-SPB

Reference ISO/DIS 11819-1
[10]

HARMONOISE/IMAGINE
[35,36]

LEOPOLDO
[31,32]

NEREIDE
[29]

Parameter LAmax SEL SEL SEL
Microphone heights 1 mic at 1.2 m height 2 mics at 1.2 m and 3 m

height
2 mics at 1.2 m and 3 m

height 1 mic at 4 m height
Measurement distance

from road lane 7.5 m 7.5 m 7.5 m 3–15 m

Measurement conditions Attended Attended Attended Unattended

Events triggering On site On site On site In lab by use of counter
traffic

Fitting technique Linear fit Linear fit Binning linear fit Binning linear fit

3. Materials and Methods

An improved SPB methodology that is able to provide similar indicators but avoids the
need for the measurements to be attended is defined on the basis of literature review and
previous experiences. The methodology described in the next chapter consists of obtaining
the pass-by index directly from the noise monitoring station that is usually installed for
law requirement purposes. The microphone used for noise level acquisition is placed on
the roadside at 4 m height. The single-vehicle passages, required by SPB-ISO, can be easily
identified in the noise time histories acquired during the nighttime, when traffic flows and
background noise are lower. After its definition, the methodology is finalized according to
the following phases:

• Testing, including a feasibility test, performed to confirm the hypothesis, and a con-
trolled comparison with the SPB-L method;
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• Validation: comparison of the results obtained by the application of the U-SPB and
SPB-L methods;

• Application: within the NEREiDE project, U-SPB is applied to the sites where new low-
noise surfaces have been laid in order to evaluate both ante- and post-operam conditions.

Each phase is based on measurement campaigns specifically performed in Tuscany (Italy),
which are summarized in Table 2 together with a summary of their most peculiar features.

Table 2. Summary of measurement campaigns.

Step Code Site Methods Measurement Conditions Results

Testing T0 SR 439
Capannori (LU) U-SPB Extra urban road, low-noise surface,

data previously acquired Feasibility confirmed

Testing T1 SP 224
Marina di Pisa (PI)

U-SPB,
SPB-L

Urban road, worked surface, data
acquired at roadside day and night,

with 6 h controlled situations

Calculated parameter
chosen and comparison

test performed and passed

Validation V Viale Togliatti Sesto
Fiorentino (FI)

U-SPB,
SPB-L

Urban road, low-noise surface, full
measurement protocol applied Validation completed

Application A SR 439
Massarosa (LU) U-SPB Extra urban road,

ante-/post-operam measurements Surface evaluated

3.1. Testing

The work started with a preliminary analysis of previously gathered data, performed
in order to verify the applicability of the main idea. The dataset was retrieved from a noise
measurement campaign carried out in SR 439 (Capannori, LU, Italy) for the monitoring
of a one-year-old low-noise pavement (ISO 10844 optimized texture, commonly used by
the Tuscany region in its road action plan). In this case, the acquisitions were originally
performed with a noise monitoring station at the roadside, 10 m from the center lane,
in order to verify law requirements in terms of ante- vs. post-operam noise levels. As
these data were not acquired ad hoc, a preliminary procedure was applied in order to
link night traffic acquired passages with noise levels acquired with a short time interval
(50 ms). The pass-by events were identified, and those surpassing the background noise
by at least 10 dB(A) in the noise time history were selected. According to vehicle length,
categories were established, setting appropriate thresholds for two wheelers and light and
heavy vehicles. This preliminary test was intended to verify the feasibility of deriving a
model predicting the noise emitted by categories of vehicles by means of fits for speed
vs. the different noise metrics (SEL, LAmax, LAeq) of a single vehicle passing in front of
the measurement station. Distances from the monitoring station to the center lanes were
known, and data were corrected for distance using a linear divergence model [37,40] in
order to enable comparison with the standard requirements (1.2 m height, 7.5 m distant
from center lane). Such a technique is valuable for a comparison at different sites and can
provide indexes that are comparable with standard ones. A linear correction is mandatory
to compare techniques, i.e., the single moving vehicle passing by has to be represented as a
linear source, and divergence rules are applied, as in Equation (2).

NM = NMmeas + 10 log

√
d2 + 42

√
7.52 + 1.22

(2)

where NM is the selected noise metrics.
Once the feasibility was achieved, a procedure was then established for acquiring data.

A comparative analysis with the standard method was also performed in order to:

• Define which sound level metric should be fitted with speed (SEL, LAmax, Leq);
• Verify if categorization with a traffic counter is comparable with a man-made one or if,

at least, outliers are not relevant;
• Verify the influence of microphone height and position on the results’ quality and the

ability of the instrumentation to detect both lanes.
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A simple, straight road with free field conditions and a standard pavement (dense
asphalt concrete) was selected for this phase. The site was chosen for the performance of
both standard SPB and U-SPB in a short time. Figures 1 and 2 report the measurement
location and measurement setup as an example.
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The test compared the U-SPB with SPB-L on two different sets of data; the first set
compared the morning traffic flow sample acquired with SPB-L and at the monitoring
station, while the second set compared the SPB morning measured data with nighttime
data on the monitoring station, identified by the traffic counter, i.e., applied the U-SPB
procedure as detailed in the following chapter.

This phase was also dedicated to demonstrating the feasibility of estimating noise lev-
els at a roadside from an SEL vs. speed model. In fact, a simulated, hourly, A-weighted Leq
(LAeq,h) was derived using flows acquired with the traffic counter, and the noise model for
SEL was obtained. Namely, the LAeq,h was estimated according to the following equation:

LAeq,h = ⊕
i

(
10· log(Qi) + ai + bi· log

( vi
50

))
− 10· log(3600) (3)
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where the symbol ⊕ means the energetic sum, Qi is the traffic flow and vi is the average
speed of the ith category at the specific hour.

3.2. Validation

After the positive outcomes of the testing phase, a validation on low-noise pavements
was carried out to increase the statistics of the U-SPB application. The objective of the
validation was to confirm the validity of the methodology results through a comparison
with other standard on-site methods and to provide a definitive protocol for the urban pass-
by methodology, including measurements, a to-do list and analysis guidelines. This phase
was carried out by applying the complete protocol to a new area where a mitigation was in
force and where the local urban configuration also allowed a full standard application of
SPB-L. On the chosen sites, SPB-L, U-SPB and noise equivalent level measurement methods
were tested. Noise level estimation through the SEL models was performed and compared
with a standard measurement technique in the validation phase.

3.3. Application

Finally, the procedure was applied to 4 other pavements in SR 439, corresponding
to the NEREiDE project ones. This meant applying the procedure to the data acquired
during the ante- and post-operam campaigns and deriving U-SPB values and verifying
noise level estimations over a long-term campaign. While the NEREiDE project studied a
total of 12 stretches, the present paper only considered the stretches referenced as nos. 1, 3,
5 and 6 in the project [41].

4. U-SPB Procedure

The applied U-SPB measurement procedure is derived from the SPB-L
experimental protocol.

The procedure intends to combine data from a traffic counter and a standard moni-
toring station to catch single passages, as in the SPB-L. Then, the statistical data binning
is applied and data fitted according to the procedure followed in the LEOPOLDO project,
and the SPB index (SPBI) is derived accordingly.

4.1. Measurement Setup

The monitoring station includes a microwave traffic counter system, a sound level
meter, a power system and a weather station to exclude periods with a wind speed higher
than 5 m/s or rainy periods. The traffic counter acquires single-vehicle passage data, such
as vehicle length, velocity, transit time and time distance from the previous vehicle passage.
The devices should be carefully synchronized in time in order to simplify analysis. The
sound level meter should fulfill the ISO 1996-2 requirements and should be positioned
preferably 7.5 m away from the centerline. If impossible, the distance from the roadside
should not be less than 3 m in order to avoid source directivity problems and be no more
than 15 m away in order to avoid ground and spurious reflection issues. In this way, the
sight angle of the road is maximized without going too far from centerline and avoiding
measuring a lower sound signal.

The sound meter level should be placed at 4 m height and should be set to acquire:

• LAeq, in fast 50 ms;
• Third-octave band spectrum.

The microwave traffic counter should be installed at the roadside, positioned in order
to acquire traffic data of all lanes, and should be set to acquire vehicle length accurately in
order to identify the different vehicle categories.

The sound level meter and the traffic counter should be positioned as close to each
other as possible in order to avoid speed differences between the acquisitions.

A brief on-site observation is suggested at the beginning of the setup to fix category
length limits for both lanes, thus, minimizing category mismatching.
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A fixed length for the measurement is not fixed and depends on the flow, but a
two-night duration is generally enough to obtain a sufficient number of transits.

4.2. Data Analysis

The analysis procedure starts from the raw data obtained in the measurement phase
by matching traffic counter flows with noise data (sensor acquisition phase). Measurement
periods are filtered according to the national law requirements for weather conditions.

The feature detection phase starts with downloading traffic counter data into a spread-
sheet. Then, a time interval between consecutive passages has to be fixed to identify valid
transits. The choice of the time interval depends on the source distance and source average
speed. For the purpose of this study, a time interval between 3.5 and 4 s is applied since all
the roads have 50 km/h as a speed limit. The candidate transits are highlighted by condi-
tional formatting on the spreadsheet. Analogous conditional formatting is performed over
vehicle lengths returned by the traffic counter to discriminate between vehicle categories.
Then, single candidates are identified in the time history of sound pressure level, and
events are selected if LAfmax exceeds the background noise by at least 10 dB(A); otherwise,
the event is discarded.

For valid events, the noise average spectrum is acquired in the LAfmax–10 dB(A) time
interval. The analysis spreadsheet is designed to be able to count valid events per direction
and categories so that it is possible to stop analysis as soon as the minimum requirements
are fulfilled. A diagram of the event selection procedure is reported in Figure 3.
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The event extraction phase starts by collecting the average spectrum together with
speed and direction and storing them in order to collect all the events. The average
spectrum is then fitted according to Equation (1).

Thus, the statistical sample of many single passages constitutes the dataset for the
statistical data binning developed in SPB-L. In Figure 4, an example of statistical data
binning is provided according to Zei et al. [42] and Lafferty et al. [43].

The analysis with data binning provides regression of SEL values and each frequency
band as a function of speed. An example is reported in Figure 4. In case of fits with fewer
than 10 events, fits are carried out without statistical data binning.

If enough events are acquired, at least 100 light and 30 heavy vehicles, the SPBI can be
estimated according to Equation (3), taken from the ISO/DIS 11819-1 for low-speed roads:

SPBI = 10 log
[

W110(
L1
10 ) + W2

(
v1

v2

)
10(

L2
10 ) + W3

(
v1

v3

)
10(

L3
10 )

]
(4)
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where Li is the vehicle sound levels for the ith vehicle categories; Wi is the weighting factors
determined by compositions of traffic flow and are established by the ISO.
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5. Results

The present chapter describes the obtained results in the different phases of testing,
validation and application of the U-SPB method.

5.1. Testing

The feasibility test provided results for SEL, LAeq and LAmax. The pros and cons of
each of the metrics are briefly described:

• SEL was chosen by the NORDTEST method, HARMONOISE, IMAGINE and the
Italian LEOPOLDO projects for its representativeness in noise models and its ability
to estimate the overall noise levels. A potential weakness is represented by its partial
dependence on the 10 dB(A) cut made by the operator [41];

• On the contrary, LAeq is weakly dependent on the 10 dB(A) cut, but it is representative
of average vehicles only when their speed variation is small and when the time of
passage is almost the same for all vehicles. These conditions are especially difficult
to achieve at nighttime, which is when data are intended to be collected, because
single-passage events are more frequent;

• LAmax is the ISO/DIS 11819-1 parameter and does not depend on cut, but it is strongly
dependent on the local peculiarities of the road (such as potholes, bumps, etc.), which
lack homogeneity, and vehicle discrepancies. Thus, its results tend not to be stable
even for the same vehicle and pavement.

The data analysis revealed a relevant difference between fits performed by plotting
speed against SEL, LAeq (recomputed by the average spectrum) and LAmax (from spectrum
on maximum) for the light vehicle category.

Then, the model in Equation (4), which is a generalization of Equation (2), with f being
one of the three tested parameters, was applied to the measured dataset:

f = a + b·log
( v

50

)
(5)

Table 3 shows the results obtained in T0 (Capannori) for each lane and fit values for
the light vehicle category. As mentioned in the previous chapter, the near lane direction
was the lane closest to the noise monitoring station, and the far lane was the opposite
one. Distances from microphones to center lanes were known, and data were corrected for
distance using a linear divergence model in order to allow comparison with the standard
requirements (1.2 m height, 7.5 m distant from center lane) and between lanes.
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Table 3. Coefficients of the fit of data measured in T0. a and b units are dB(A).

Near Lane Far Lane

Metric a± da b± db χ2 a± da b± db χ2

SEL 69.5 ± 0.4 19.2 ± 4.5 0.42 68.6 ± 0.4 18.0 ± 5.6 0.10
LAeq 62.8 ± 0.4 25.8 ± 4.6 0.69 60.5 ± 0.4 25.2 ± 5.7 0.23

LAmax 66.8 ± 0.4 25.2 ± 4.5 0.78 64.7 ± 0.4 26.4 ± 5.7 0.42

The SEL slope results were lower than the other metrics, probably because they already
considered time/speed effect. The near lane was noisier according to LAmax and LAeq, while
it was not for SEL.

The preliminary test also showed that pass-by parameters can be derived with good
fit agreement in terms of χ2 by starting from data acquired with the monitoring station,
and the noisiness of a single vehicle category can be determined as a function of speed.

Then, the testing measurement in T1 (Marina di Pisa) allowed a comparison of the
SPB-L and the U-SPB applied over the same sample flows. The test intended to address
whether there were differences due to the microphones’ positions, regardless of the speed
and sample variability. The three parameters were once again tested. U-SPB data were
grouped into the morning common sample, which was intended to be the passages col-
lected on the monitoring station at the same time as the attended SPB-L, and the night
independent sample.

Table 4 reports the results for the light vehicle category for each indicator in the first
U-SPB dataset. Linear correction for distance was applied to the monitoring station and to
the 3 m microphone to allow comparisons.

Table 4. Results with the morning common sample acquired in T1 for light vehicles. a and b units
are dB(A).

Lane Coefficient Monitoring Station Mic 1.2 m Mic 3 m

SEL

near a± da 75.1 ± 0.6 72.6 ± 0.6 75.4 ± 0.6
b± db 22.8 ± 4.5 22.3 ± 4.5 21.6 ± 4.5

far
a± da 76.3 ± 0.5 76.4 ± 0.6 76.4 ± 0.6
b± db 18.9 ± 5.4 20.5 ± 5.4 20.2 ± 5.4

LAeq

near a± da 68.7 ± 0.6 67.2 ± 0.6 69.6 ± 0.3
b± db 31.3 ± 4.5 30.1 ± 4.5 29.6 ± 1.2

far
a± da 69.2 ± 0.5 71.3 ± 0.5 70.7 ± 0.6
b± db 26.5 ± 5.4 28.6 ± 5.5 28.7 ± 5.5

LAmax

near a± da 72.7 ± 0.6 70.9 ± 0.6 73.1 ± 0.6
b± db 30.4 ± 4.5 29.3 ± 4.9 28.6 ± 4.9

far
a± da 73.3 ± 0.5 75.6 ± 0.5 75.3 ± 0.6
b± db 26.3 ± 5.3 29.1 ± 5.4 26.1 ± 5.5

Some relevant differences emerged for each microphone, with lower values for the
near lane and higher values for the far lane from the 1.2 m SPB-L microphone. This might
be due to the specific location, which presented a small, green hedge at the roadside that
might have partially screened noise from the near lane at low heights. The far lane might
have been noisier because of some bumps and because of a more reflective pavement
than the one in the parking area where the microphones for the near lane were located.
Moreover, the levels for all metrics at the 3 m microphone and at the monitoring station
were more similar between the lanes, as they were not as affected by ground reflections as
the standard microphone at 1.2 m height. As reported in Figure 5, the acquisitions with the
microphone at 3 m and with the station were compared in terms of the difference between
the two lanes. LAmax was greatly different between lanes for both microphones, confirming
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that LAmax is more sensitive to local bumps than other indicators and is highly dependent
on microphone position. Thus, the LAmax was discarded for its sensitivity to local issues.
LAeq difference highly depends on microphone position due to the duration of the event,
which can vary significantly with the sight angle. As expected, the SEL difference was
similar at both microphones.
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SEL, as from Equation (1), can also be used to estimate the annual averaged A-weighted
equivalent sound levels LAeq from the annual averaged traffic flow, as explained in Equa-
tion (2). This represents an additional advantage that should drive the sound pass-by
methodology to be optimized for this indicator. On the other hand, SEL depends on time
interval above 10 dB(A), while LAeq is not corrected by the time length of the passage. Thus,
as well as being corrected by the distance, the two lanes were differently influenced by the
time length for the LAeq indicator. The greater difference with this indicator resides in the
directivity of the source and the geometry of the measurement setup; as the acquisition was
next to the source, a shorter time interval was needed to identify a 10 dB(A) cut compared
to an acquisition at a greater height from the ground. Thus, the SEL is the one with less
influence on position in general, and it can be considered as more reliable. As reported in
Table 5, the fits’ parameters of the night dataset with SEL were compared with SPB-L for the
three vehicle categories. Table 6 reports the number of events considered for the fits during
one-night acquisition for light vehicles and two-night acquisition for the other categories.

The differences between SPB-L and U-SPB appear to be mainly due to the sample when
statistics were low, but a good agreement was achieved for light vehicles. Some differences
could be due to category mismatching, especially mismatching in identification of small
trucks (potentially long light vehicles) and short light vehicles (potentially two wheelers).

Even though the measurement period was very short, a model was built to compare
measured hourly LAeq with estimated ones according to Equation (1) (calculated with the
night dataset). Figure 6 reports the estimate obtained with U-SPB and measurement over
a 24 h monitoring period. The results show that the model is in very good agreement
with the measurement, confirming the possibility of estimating noise levels with U-SPB. In
particular, the calculated equivalent noise level for reference period day–evening–night
Lden and for night period Lnight resulted in values only 0.4 dB(A) and 0.7 dB(A) lower than
the measured data, respectively.
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Table 5. SEL fits comparison for night U-SPB and SPB in T1. a and b units are dB(A).

Category Lane Parameter
U-SPB SPB-L

Monitoring
Station Mic. 1.2 m Mic. 3 m

Light
near

a± da 75.1 ± 0.5 72.6 ± 0.6 75.2 ± 0.6
b± db 20.0 ± 4.4 22.3 ± 4.5 21.6 ± 4.5

χ2 0.100 0.228 0.082

far
a± da 75.7 ± 0.6 76.4 ± 0.6 76.1 ± 0.6
b± db 23.8 ± 4.5 20.5 ± 5.4 20.2 ± 5.4

χ2 0.215 0.371 0.252

Two wheelers

near
a± da 76.6 ± 1.1 72.2 ± 0.8 73.9 ± 0.7
b± db 20.2 ± 11.0 15.2 ± 5.4 15.7 ± 5.4

χ2 94 75 74

far
a± da 76.4 ± 0.7 74.3 ± 1.0 73.1 ± 1.0
b± db 20.4 ± 5.7 30.1 ± 12 30.9 ± 12

χ2 26 61 61

Heavy
near

a± da 78.2 ± 1.0 74.4 ± 0.5 76.9 ± 0.4
b± db 22.4 ± 8.4 46.5 ± 8.4 44.2 ± 6.3

χ2 107 17 10

far
a± da 80.8 ± 0.7 78.4 ± 1.2 78.2 ± 1.3
b± db 17.0 ± 3.0 34.5 ± 16 32.1 ± 17

χ2 44 52 55

Table 6. Number of analyzed pass-bys in T1 (night dataset and SPB-L).

Category Lane No. of Events SPB-L No. of Events U-SPB

Light near 114 129
far 102 98

Two wheelers
near 13 15
far 11 12

Heavy near 10 15
far 11 20
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5.2. Validation

The validation phase was performed in V (Sesto Fiorentino), where a long, straight
road section with a free field condition was available to correctly perform SPB measurement
with a suitable sample for a daytime, attended section. The road was paved with a low-
noise surface. The number of acquired events is reported in Table 7. A single night
acquisition was needed for U-SPB analysis of light vehicles and two nights for the heavy
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and two wheeler categories. A further differentiation of heavy vehicles into two-axis and
multi-axis vehicles is reported since it came out that such a distinction improved the result
on this road.

Table 7. Number of analyzed pass-bys in V.

Category Lane No. of Events SPB-L No. of Events U-SPB

Light near 65 120
far 35 114

Two wheelers
near 13 31
far 9 34

Heavy near 8 two axes + 3 multiple axes 12 two axes + 10 multiple axes
far 8 two axes 13 two axes + 12 multiple axes

The identification of truck classes at the monitoring station was performed based on
vehicle length, a procedure that can give some unfortunate mismatching. This further
differentiation led us to consider a further category and to compare SPB-L with only two-
axis trucks of U-SPB since the number of multi-axis vehicles in the SPB-L sample was lower.
Table 8 shows the fit results according to Equation (2).

Table 8. SEL fit comparison for night U-SPB and SPB-L in V. a and b units are dB(A).

Category Lane Parameter Monitoring Station Mic 1.2 m

Light

near
a± da 69.3 ± 0.5 69.5 ± 0.6
b± db 17.7 ± 4.0 14.7 ± 9.3

χ2 1.2 0.5

far
a± da 68.5 ± 0.4 69.0 ± 0.8
b± db 17.3 ± 4.6 14.5 ± 10.8

χ2 3.6 0.2

Two wheelers

near
a± da 73.9 ± 1.2 73.4 ± 0.6
b± db 8.7 ± 10.9 9.3 ± 4.6

χ2 0.2 40

far
a± da 74.5 ± 0.8 73.5 ± 0.9
b± db 21.7 ± 7.4 15.7 ± 9.5

χ2 2.4 44

Heavy

near
a± da 72.0 ± 0.9 74.3 ± 1.5
b± db 11.5 ± 10.3 9.3 ± 4.6

χ2 108 183

far
a± da 70.6 ± 1.0 73.5 ± 0.9
b± db 15.8 ± 9.4 15.7 ± 9.5

χ2 113 39

The two methods’ results were equivalent in terms of the A parameter, apart from the
heavy vehicle category in the far lane. Some buses were included in the SPB sample that
were not clearly identified in the U-SPB one.

With all the information, it was possible to estimate the SPBI with Equation (3),
calculating for a low-speed road, i.e., with a reference speed equal to 50 km/h, as reported
in Table 9.

Table 9. SPBI comparison for U-SPB and SPB standard in V. Values in dB(A).

Lane SPBI (U-SPB) SPBI (SPB-L)

near 71.1 ± 3.5 70.6 ± 12.5
far 70.4 ± 7.6 69.7± 5.4

SPBI values results were equivalent, with a less than 1 dB(A) difference, even if
associated uncertainties were high due to the low number of heavy vehicle events. Thus,
the procedure can also be considered as validated on a low-noise pavement.
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Finally, the authors decided to also verify the coherence between pass-by and noise
level measurements, including for the heavy vehicle category. An estimation based on
flows was performed using the estimated SEL of each category; heavy vehicle categories
were considered using the average SEL of two-axis and multi-axis trucks and the summed
flow. The estimated level was compared with the measurement, as shown in Figure 7; while
the U-SPB model underestimated the night levels due the influence of other sources (such
as birds, roadside fluorescent lamps, etc.), on the measured ones, a substantial equivalence
was achieved during the day between the estimated and measured experimental levels, as
for the test in T1 (SP 224).
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The comparison of noise equivalent level indicators estimated with measurement
(hereafter Lmeas) and the pass-by model according to Equation (1) (Lmodel) is reported in
Table 10. Apart from night levels, when other sources might be relevant, the model was
an efficient way to estimate noise levels, with prediction always being slightly lower than
measured, as expected.

Table 10. Noise levels according to measurements and pass-by model.

Noise Metric Lmeas
(dB(A))

Lmodel
(dB(A))

Lmeas − Lmodel
(dB(A))

LD 62.0 61.8 0.2
LE 59.1 58.3 0.8
LN 54.0 52.4 1.6

LDEN 63.0 62.1 0.9

5.3. Application

The measurement procedure was then applied on LIFE NEREiDE sites, where six
different pavements (named stretches 1 to 6) were implemented, and their effects in terms
of local fleet (ante- and post-operam values) were evaluated in the project. U-SPB was used
to solve the problem while it also allowed the evaluation of the local influence on the overall
measured noise brought by other noise sources. This was made possible by comparing the
differences between the U-SPB-derived model for road traffic noise with the Lden and Lnight
measured values. The model derived from U-SPB parameters for each stretch was applied
to Equation (1), taking into account measured traffic flows. The comparison is reported in
the present chapter for four stretches among those laid in the project (note that ante-operam
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values for stretches 2 and 4 were unavailable, so their contribution was eliminated from
the present work). Tables 11 and 12 show that the model was able to sufficiently predict
the measured level with small differences both ante- and post-operam. In terms of noise
mitigation action, its efficiency was also demonstrated since almost all the noise was due to
the traffic on the main road, i.e., the one where the noise mitigation was implemented. At
night, some differences were seen for stretches 3 and 6, and they might be explained by the
presence of a T intersection and a parking area, respectively.

Table 11. Lden values ante- and post-operam in Massarosa. Levels in dB(A).

Ante-Operam Post-Operam

Stretch Lmeas Lmodel Lmeas − Lmodel Lmeas Lmodel Lmeas − Lmodel
1 67.8 66.5 1.3 64.8 64.5 0.3
3 70.5 69.1 0.6 65.5 63.6 1.9
5 72.7 72.4 0.3 69.4 68.5 0.9
6 71.8 71.0 0.8 67.6 67.2 0.4

Table 12. Ln values ante- and post-operam in Massarosa. Levels in dB(A).

Ante-Operam Post-Operam

Stretch Lmeas Lmodel Lmeas − Lmodel Lmeas Lmodel Lmeas − Lmodel
1 59.4 58.1 1.3 56.7 56.7 0.0
3 62.6 61.2 1.4 57.4 55.8 1.6
5 64.8 64.1 0.7 61.1 60.1 1.0
6 63.8 62.4 1.4 59.7 59.1 0.6

6. Discussion and Conclusions

Evaluating the efficacy of low-noise surfaces has started to be a highly demanded
activity since the publication of the European minimum environmental criteria. As a conse-
quence, the measurement procedure involved deserves the highest degree of confidence
and should be applicable in all contexts. Among the different methods, the Statistical
Pass-By (SPB-ISO) method evaluates road traffic noise by means of microphone and speed
acquisitions at the roadside in real traffic flow conditions. The original measurement setup
does not allow its application in urban areas, which is where most inhabitants live and,
thus, where the noise mitigation would have a larger effect.

The present paper reported a method for on-field acquisitions, named the Urban Pass-
By (U-SPB) method, which adapts the SPB-ISO to urban context. The event detection and
their extraction are performed in lab, as well as the consequent analysis. The evolution the
method represented allows the performance of measurements of vehicle pass-bys without
the presence of operators, with a consequent saving of man hours. The method also uses
the good achievements of previous attempts to adapt the method, such as:

• The use of higher acoustic sensor position and the use of an SEL indicator instead of
LAmax, as suggested in the HARMONOISE/IMAGINE projects;

• The use of statistical data binning before fit, as in the LEOPOLDO project.

The testing, validation and application of U-SPB were based on multiple measurement
campaigns performed for different sites and road conditions. The results of the procedure
were in good agreement with the standard ones, with the additional advantage of needing a
reduced time to produce them. In fact, as an unattended methodology, U-SPB can use data
acquired even during the night and then reduce the overall time required for monitoring.
Furthermore, the availability of night noise and traffic data allows the estimation of long-
term Lden from long-term traffic counts or statistics, without the need for long noise
measurement campaigns, and the evaluation of the presence of other sources influencing
local disturbance. Such an estimation is more than a noise model as it is calibrated on site.

It must be pointed out that the procedure can be used as before/after evaluation
of mitigation measurement, allowing the comparison of levels measured in the same
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place in different traffic conditions. However, attention should be paid to possible factors
influencing results, such as long queues, which might cause category mismatching, and
temperature [25] and, more generally, seasons. Indeed, the predominance of specific vehicle
categories such as mopeds can influence results when looking only at SPBI.

U-SPB can also be used to estimate the contribution of different sources to the overall
measured sound level in cases where more than one road source is present. For this
eventuality, traffic flows for each of the investigated roads are required. The same approach
can be extended to the traffic composition evaluation, leading U-SPB to also be suitable for
pointing out whether the noisiness is mainly due to light or heavy traffic or no traffic at
all. In this regard, the method results are a valid support in driving the noise mitigation
evaluation. Further applications of the method on different road types will allow the
establishment of a sound methodology for better event detection and feature extraction; in
particular, a possible improvement would be to use more precise methods such as the ones
proposed in [24] to distinguish between vehicle categories and to find a specific minimum
separation time interval for road type.

Finally, while extending the evaluation of the efficiency of low-noise laying in an urban
context, U-SPB combines the possibility of estimating long-term noise levels and traffic
information for other environmental noise purposes, such as noise mapping and action
planning, proving to be a useful tool in environmental noise management.

Further developments of the method could also test the ability to tune conventional
prediction models to the local fleet based on U-SPB measurements. Application can be cru-
cial in specific contexts where the fleet is different from the one assumed in the conventional
model, i.e., a predominance of old vehicles or of electric vehicles.
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Abstract: The accuracy of time delay estimation seriously affects the accuracy of sound source
localization. In order to improve the accuracy of time delay estimation under the condition of
low SNR, a delay estimation optimization algorithm based on singular value decomposition and
improved GCC-PHAT weighting (GCC-PHAT-ργ weighting) is proposed. Firstly, the acoustic signal
collected by the acoustic sensor array is subjected to singular value decomposition and noise reduction
processing to improve the signal-to-noise ratio of the signal; then, the cross-correlation operation is
performed, and the cross-correlation function is processed by the GCC-PHAT-ργ weighting method
to obtain the cross-power spectrum; finally, the inverse transformation is performed to obtain the
generalized correlation time domain function, and the peak detection is performed to obtain the
delay difference. The experiment was carried out in a large outdoor pool, and the experimental data
were processed to compare the time delay estimation performance of three methods: GCC-PHAT
weighting, SVD-GCC-PHAT weighting (meaning: GCC-PHAT weighting based on singular value
decomposition) and SVD-GCC-PHAT-ργ weighting (meaning: GCC-PHAT-ργ weighting based on
singular value decomposition). The results show that the delay estimation optimization algorithm
based on SVD-GCC-PHAT-ργ improves the delay estimation accuracy by at least 37.95% compared
with the other two methods. The new optimization algorithm has good delay estimation performance.

Keywords: delay estimation; singular value decomposition; GCC-PHAT-ργ weighting; generalized
cross-correlation

1. Introduction

In recent years, time delay estimation technology [1–7] has been widely used in
navigation and positioning, underwater AUV, radar detection and other fields. Especially
in the research of sound source localization, the localization method based on time delay
estimation has become the most commonly used and important method due to its low
cost and reliable accuracy. The accuracy of time delay estimation directly determines the
accuracy of sound source localization.

The generalized cross-correlation method [8–14] has the advantages of simple prin-
ciple, high stability, and a small amount of computation when dealing with the delay
estimation problem, so it has received extensive attention. However, this method has poor
anti-noise ability. As the signal-to-noise ratio decreases, the peak value of the correlation
function is no longer sharp, and the performance of the delay estimation drops sharply.
However, there will be large noise interference in many practical scenarios, so the noise
reduction processing is particularly important.

Based on the above research, it can be seen that there are two keys to improving the
accuracy of delay estimation: one is how to effectively reduce noise to improve the signal-
to-noise ratio; the other is how to improve the weighting function to make the correlation
peak sharper. Reference [15] introduces an improved wavelet threshold function for
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signal denoising and reconstruction, and uses the GCC method for delay estimation. This
method overcomes the shortcomings of traditional soft and hard threshold functions and
improves the performance of delay estimation. However, based on the wavelet threshold,
the denoising of the signal is restricted by factors such as wavelet base selection and
decomposition scale. Reference [16] proposed a data processing method combining wavelet
packet noise reduction algorithm and EMD decorrelation algorithm, which can effectively
suppress modal aliasing and white noise interference at the same time, but lacks the means
of suppressing impulse noise. Reference [17] used the cepstral method to separate the glottal
impulse mechanism and the vocal tract response, and combined the spectral subtraction
method to design an effective scheme to distinguish the useful frequency bands of noisy
signals. Finally, using the spectral characteristics of the eigenmode function after empirical
mode decomposition and signal reconstruction, this method significantly improves the
anti-noise performance of the delay estimation algorithm, but the algorithm is complex, the
application scenario is single, and performance testing in different scenarios is required.

The singular value decomposition method has the advantages of an obvious denoising
effect and strong stability. Using this method for signal preprocessing can not only preserve
the signal deformation information, but also better filter out the noise pollution. The
collected sound source signals are mixed with various environmental noise interference sig-
nals. Therefore, the singular value decomposition is to construct a matrix that also contains
noise, and the elements in the non-zero singular value matrix represent the distribution
of signal and noise energy concentration. Large non-zero singular values represent useful
signals, and small ones are interfering noise. The purpose of eliminating noise can be
achieved by zeroing the smaller one. For underwater shock signals, the energy of the useful
signal segment is relatively high. When the singular value decomposition method is used
for noise reduction, the energy distribution of the signal represented by the elements in
the non-zero singular value matrix and the noise are obviously different. Therefore, the
singular value decomposition method can obtain a good noise reduction effect.

In sound source localization, the accuracy of time delay estimation is very important,
which plays a decisive role in the final localization accuracy. Therefore, improving the
accuracy of time delay estimation is of great significance to improve the accuracy of sound
source localization. However, in some actual measurement environments, the collected
acoustic signal contains a lot of noise information, which will have a great impact on the
accuracy of time delay estimation. Therefore, it is very important to preprocess the signal
with noise reduction first. Secondly, in the time-delay estimation algorithm, because there
may be some correlation between noise and noise in the measured signal and between
the target signal and noise, the traditional cross-correlation time-delay estimation method
based on correlation analysis has difficulty obtaining a more accurate time-delay estimation
value, and it is also of great significance to optimize the time-delay estimation method.

The papers [18,19] study the generalized cross-correlation time-delay estimation method
based on singular value decomposition, and [20] studies the generalized cross-correlation
time-delay estimation method based on improved Phat weighting, which can improve the
time-delay estimation accuracy.

This paper combines the two and proposes a time delay estimation optimization
algorithm based on singular value decomposition noise reduction. The method first uses
singular value decomposition to preprocess the signal to improve the signal-to-noise ratio;
secondly, it uses the GCC-PHAT-ργ weighting function to process the cross power spectrum
and sharpen the correlation peak to improve the accuracy of delay estimation.

2. Theoretical Introduction of Delay Estimation Optimization Algorithm
2.1. TDOA Signal Model

In the actual scenario of positioning based on TDOA delay estimation, the signal
model [21–23] can be expressed as:

x1(n) = s(n) + n1(n) (1)
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x2(n) = As(n− D) + n2(n) (2)

where s(n) is the target signal, x1(n) and x2(n) are the two acquisition signals, and n1(n)
and n2(n) are noise. Assuming that the noise and the target signal are uncorrelated, D is
the time delay and A is the attenuation factor.

2.2. Singular Value Decomposition Noise Reduction Theory

The singular value decomposition [24–32] method is referred to as the SVD method,
which is an important matrix decomposition method when dealing with mathematical prob-
lems. The noise reduction principle is to decompose the matrix on the basis of phase space
reconstruction, set the singular value corresponding to the noise to zero, and then use the
inverse operation to reconstruct the signal, so as to achieve the purpose of noise reduction.

Select the Hankel matrix as the trajectory matrix of singular value decomposition, set
the noisy signal X = [x(1), x(2), · · · x(N)], construct the Hankel matrix Am×n:

A =




x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

...
x(m) x(m + 1) · · · x(N)


 (3)

The value range of n is N/20− N/2, m + n− 1 = N, and n is taken as N/2 in this
paper. Matrix A is an m× n matrix with rank r. There are m×m orthogonal matrix U and
n× n orthogonal matrix V, so that A = UΛVT .

Λ =

[
Σ 0
0 0

]
=




δ1 0 0 · · · · · · · · · 0
0 δ2 0

0
. . . 0

... δr
...

... 0
...

...
. . .

...
0 0 0 · · · · · · · · · 0




(4)

The diagonal elements of matrix Λ are singular values of matrix A, and it satisfies
δ1 � δ2 � · · · � δr > 0, where different singular values reflect different energy concentra-
tions. The law of singular values corresponding to different signals is analyzed, the singular
value corresponding to noise is set to zero, the appropriate singular value is selected to
reconstruct the signal, and the effective signal can be restored to achieve the purpose of
denoising. There are three ways to select singular values:

(1) Singular value difference spectrum method

After the Hankel matrix is decomposed, δ1, δ2, · · · , δr are formed. If the first k singular
values are significantly larger than the last r− k singular values, that is, the singular value
mutates at the k-th point, the first k singular values are the ideal signals to be extracted.

bi = δi − δi+1, i = 1, 2, · · · , r− 1 (5)

The bi sequence is called the difference spectrum of singular values. The difference
spectrum can effectively and automatically determine the maximum mutation point bk,
set the following rk singular values to zero, reconstruct the matrix, and realize the noise
reduction of the signal.

(2) Feature mean method

The singular values δ1, δ2, · · · , δr obtained by the decomposition of the Hankel matrix
are the square roots of the eigenvalues λ1, λ2, · · · , λr of the square matrix AAT . The
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eigenvalues smaller than the mean of all eigenvalues are set to zero, and the matrix is
reconstructed to realize the denoising of the signal.

δi =
√

λi, i = 1, 2, · · · , r (6)

(3) Singular value median method

Arrange the singular values δ1, δ2, · · · , δr obtained by the decomposition of the Hankel
matrix in ascending or descending order, obtain the median value of the sequence, set the
eigenvalues less than the median value of all singular values to zero, reconstruct the matrix,
and realize the noise reduction of the signal.

In the following, for the same noise-containing signal, the singular value differ-
ence spectrum method, the characteristic mean method and the median method are
used for processing, to compare the noise reduction effect. The simulated signal source
is: x = sin3πt · cos10πt + sin(20πt + sin30πt) + α(n), where α(n) is Gaussian white noise
with variance 0.3 and mean 0, and the sampling time is 0.005 s. The mean square error and
the signal-to-noise ratio are used to measure the noise reduction effect, and the definitions
are as shown in Equations (7) and (8). Among them, x is the actual signal, y is the signal
after noise reduction, and n is the signal length. The difference in the noise reduction effect
of the three methods is shown in Table 1.

RMSE =

√
∑(xi − yi)2

n
(7)

SNR = 10× lg
∑ x2

i
∑(xi − yi)2 (8)

Table 1. Comparison of noise reduction effects of three methods.

Method RMSE SNR

Singular value difference spectrum method 0.6722 2.8962
Feature mean method 0.2487 11.5337

Singular value median method 0.1429 16.3440

It can be seen from Table 1 that the singular value median method has the highest
SNR of 16.3440 and the smallest mean square error of 0.1429. The singular value median
method has a significant denoising effect, and can restore the original characteristics of the
signal well, and the noise reduction effect is better than the other two methods. Figure 1
shows the effect of noise reduction processing using three methods, respectively.

2.3. Improved PHAT Weighted Generalized Cross-Correlation Delay Estimation Algorithm

The GCC-PHAT weighting method [12,33–36] can achieve better delay estimation
results when the signal-to-noise ratio is high and the reverberation is weak. This leads to
false peaks and increases the delay estimation error. In order to solve this problem, the
parameter ρ is introduced, and the value of ρ is determined according to the signal-to-noise
ratio in the actual environment. On the other hand, because the signal energy is small
under the condition of low signal-to-noise ratio, using GCC-PHAT weighting will make
the denominator of the weighting function approach 0, which will bring greater error, so
consider adding a coherence factor γ12(ω) to the denominator of the weighting function.
The new weighting function is given below:

ψ12(ω) =
1

|G12(ω)|ρ +
∣∣γ2

12(ω)
∣∣ , 0 ≤ ρ ≤ 1 (9)
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In the formula, γ12(ω) = G12(ω)√
G11(ω)G22(ω)

is the coherence factor, G11(ω) is the self-

power spectrum of the signal x1(t), G22(ω) is the self-power spectrum of the signal x2(t),
G12(ω) is the cross-power spectrum of the signals x1(t) and x2(t) .

Figure 1. Effect diagram of three methods of noise reduction.

3. Principle of Delay Estimation Optimization Algorithm

The flowchart of the improved time delay estimation algorithm is shown in Figure 2.
The calculation process of the improved time delay estimation algorithm is as follows:

(1) Performing singular value decomposition noise reduction processing on the original
signals x1 and x2 to obtain denoised signals x′1 and x′2;

(2) Performing cross-correlation on the denoised signals x′1 and x′2 to obtain the cross-
correlation function R12;

(3) Using the improved PHAT weighting function to process the cross-correlation func-
tion, the power spectrum function is obtained;

(4) Performing inverse Fourier transform on the power spectrum function to obtain the
generalized cross-correlation time-domain function;

(5) Performing peak detection on the generalized cross-correlation time-domain function
to obtain the delay difference.

135



Sensors 2022, 22, 7254

Figure 2. Flow chart of improved time delay estimation algorithm.

4. Simulation Analysis of Analog Signals

This chapter uses the test library speech signal numbered MSJS1-SI869.WAV in the
TIMIT standard library as the sound source signal, the signal sampling frequency is
16,000 Hz, and Gaussian white noise is added manually to verify the delay estimation
accuracy of the optimization algorithm in this paper. The time-domain diagram, spec-
trogram, time-frequency spectrum and Hilbert spectrum of the MSJS1-SI869 test library
speech signal are shown in Figure 3. After manually adding Gaussian white noise, SNR = 0,
and the time-domain diagram of the noisy signal is shown in Figure 4. The singular value
median method is used to process the noisy signal, the eigenvalues of the Hankel matrix
are shown in Figure 5, and the comparison between the noise reduction result and the
original signal is shown in Figure 6.

Figure 3. Original signal time-frequency analysis.
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Figure 4. Time domain figure of noisy original signal.

Figure 5. Eigenvalue figure of Hankel matrix.

Figure 6. Comparison of SVD noise reduction results and original signals.

It can be seen that the noise reduction effect of the singular value median method is
obvious, and the signal-to-noise ratio is greatly improved. In order to verify the time delay
estimation performance of the three methods of GCC-PHAT weighting, SVD-GCC-PHAT
weighting and SVD-GCC-PHAT-ργ weighting, the original signal was manually delayed
by 50 sampling points and then Gaussian white noise was added. The signal-to-noise
ratio variation range is −20 dB–10 dB. The results are shown in Figures 7–10. The abscissa
represents the number of delay points, and the ordinate represents the degree of correlation.
Fifty random experiments were performed, and Figure 11 shows the root mean square
error curves of the three methods under different signal-to-noise ratio conditions.
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Figure 7. Comparison of delay estimation peak values of three methods when SNR = −20.

Figure 8. Comparison of delay estimation peak values of three methods when SNR = −10.

Figure 9. Comparison of delay estimation peak values of three methods when SNR = 0.

Figure 10. Comparison of delay estimation peak values of three methods when SNR = 10.
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Figure 11. RMSE of three methods for delay estimation.

It can be seen from Figures 7–10 that under the condition of high signal-to-noise ratio,
GCC-PHAT weighting, SVD-GCC-PHAT weighting and SVD-GCC-PHAT-ργ weighting can
all accurately estimate the delay difference. However, as the signal-to-noise ratio decreases,
interference gradually appears around the weighted peak of GCC-PHAT, the correlation
peak is no longer sharp, and even false peaks appear, resulting in a large delay estimation
error. The weighted estimation accuracy of SVD-GCC-PHAT also gradually deviates,
but compared with the GCC-PHAT weighting method, the singular value decomposition
method is used to denoise the original signal, and the delay estimation error is lower
than that of the GCC-PHAT weighting method. The SVD-GCC-PHAT-ργ weighting not
only uses SVD to denoise the signal, but also improves the weighting function, which
strengthens the useful components in the signal and sharpens the correlation peak. A more
accurate delay difference value is obtained, which shows certain advantages. It can also
be seen from Figure 11 that as the SNR increases, the delay estimation accuracy of the
three methods improves, but under the condition of low SNR, the delay estimation of the
SVD-GCC-PHAT-ργ weighting method has more superior performance.

5. Experiment and Performance Analysis
5.1. Experimental System Construction

In this chapter, the actual pool experiment was carried out, and the measured signal
was analyzed and processed to verify the reliability of the method in this paper.

The experiment was carried out in a larger outdoor pool, which was about 120 m long,
70 m wide and 3 m high. A three-element linear acoustic sensor array with an array element
spacing of 5 m is arranged on the wall of a broad side of the pool, and the depth of the
three hydrophones is about 2 m. The underwater sound signal is generated by throwing
heavy objects at different points in the pool, the schematic diagram of the experimental
arrangement is shown in Figure 12, the experimental site is shown in Figure 13. The
sensitivity of the acoustic sensor is less than −200 dB when detecting the sound source in
the frequency range of 10–50,000 Hz, the sampling frequency of the acquisition instrument
is 128 kHz, and each acquisition time is set to 10 s. The day of the experiment was sunny,
breezy, and the water surface of the pool was calm.
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Figure 12. Schematic diagram of experimental layout.

Figure 13. Experimental site diagram.

5.2. Experimental Signal Processing

The collected acoustic signals are analyzed according to the following steps:

(1) Firstly, time-frequency domain analysis is performed to analyze the characteristics of
the acquired signal;

(2) Then, the singular value decomposition process is performed to obtain the denoised
signal, and the difference between the acquired signal and the denoised signal is
compared, and the reliability and correctness of the singular value decomposition
noise reduction are verified by the frequency domain analysis of the denoised signal;
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(3) Finally, based on the GCC-PHAT-ργ-weighted delay estimation algorithm, the three-
way signal is estimated for pairwise delays, and the delay difference is obtained, which
is compared with the theoretical delay difference.

Taking the acoustic signal emitted at a position near (120 m, 90◦) as an example, analyze
and process the signal according to the above steps.

As can be seen from Figures 14–16, the impact signal generated by throwing heavy objects
into the pool in the three-way signal is very obvious, occurring between 4–5 s. The singular
value median method is used for noise reduction processing. Figure 17 is a comparison effect
diagram of the original value of the three-way signal and the noise reduction processing value.
Figure 18 is a comparison effect diagram of the original spectrum of the three-channel signal
and the spectrum after noise reduction.

It can be seen from Figure 17 that the denoising effect of the singular value median
method is obvious, which not only removes the interference of noise, but also fully retains
the characteristics of the shock signal, which is beneficial to the subsequent delay estimation.
It can be seen from Figure 18 that the signal after noise reduction by the singular value
median method almost completely retains the characteristics of the effective signal, and there
is no distortion phenomenon. Figures 17 and 18 both verify the reliability and correctness of
singular value decomposition noise reduction processing of the shock signal.

5.3. Algorithm Verification and Analysis

In order to further verify the important role of the research in this paper in improving
the accuracy of delay estimation, the acoustic signal in the previous section is analyzed,
and the delay estimation performance of the three methods is compared: direct generalized
cross-correlation (GCC-PHAT) weighting, generalized cross-correlation (SVD-GCC-PHAT)
weighting after SVD processing, and improved generalized cross-correlation (SVD-GCC-
PHAT-ργ) weighting after SVD processing. For the improved generalized cross-correlation
weighting method after SVD processing (SVD-GCC-PHAT-ργ), the value range of ρ is 0 to
1, and its value is related to the signal-to-noise ratio of the measured environment. In this
paper, the selection of a value of ρ is as follows: set a certain step, traverse ρ from 0 to 1, and
select the value of ρ corresponding to the smallest delay estimation error as the final value.

Figure 14. First-channel acquisition signal processing and analysis.
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Figure 15. Second-channel acquisition signal processing and analysis.

Figure 16. Third-channel acquisition signal processing and analysis.
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Figure 17. Comparison of the original value of the three-channel signal and the noise reduction value.

Figure 18. Comparison of the original spectrum of the three-channel signal and the spectrum after
noise reduction.

The delay estimation results are shown in Table 2. The performance evaluation index
is the number of delay points.
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Table 2. Comparison of results of different time delay estimation methods.

Method τ12 (Points) τ13 (Points) τ23 (Points)

Theoretical delay value −9.27 −37.03 −27.76
GCC-PHAT weighting −3 −21 −22

SVD-GCC-PHAT weighting −4 −24 −22
SVD-GCC-PHAT-ργ weighting −6 −31 −26

It can be seen from Figure 19 that as the signal undergoes singular value noise reduc-
tion processing and weighting function improvement, the peak sharpness of the correlation
function increases significantly, the resolution becomes more and more accurate, and the
accuracy of delay estimation is greatly improved.

Figure 19. Delay estimation performance of GCC-PHAT weighting, SVD-GCC-PHAT weighting and
SVD-GCC-PHAT-ργ weighting.

Compared with the direct PHAT weighted delay estimation method (GCC-PHAT), the
delay estimation method based on singular value decomposition noise reduction and im-
proved PHAT weighting function (SVD-GCC-PHAT-ργ) improves the estimation accuracy
of τ12, τ13 and τ23. They were increased by 47.85%, 62.38%, and 69.44%, respectively. Com-
pared with the time delay estimation method based on singular value decomposition noise
reduction and PHAT weighting (SVD-GCC-PHAT), τ12, τ13 and τ23 estimation accuracy
increased by 37.95%, 53.72%, and 69.44%, respectively. The improvement of time delay
estimation accuracy fully demonstrates the significance of singular value noise reduction
and improved PHAT weighting function.

6. Conclusions

In this paper, an optimization algorithm for delay estimation based on singular value
decomposition and GCC-PHAT-ργ weighting is proposed. The proposed delay estimation
method improves anti-noise performance and sharpens correlation peaks. The time de-
lay estimation performance and anti-noise performance of the three methods are verified
through the analysis and processing of the simulated signal. By analyzing and process-
ing the measured outdoor data, and comparing the three methods based on GCC-PHAT
weighting, SVD-GCC-PHAT weighting and SVD-GCC-PHAT-ργ weighting, the accuracy of
delay estimation of the new algorithm in this paper is verified. Compared with the time-
delay estimation method based on basic correlation analysis, this method does not greatly
increase the calculation amount, but the accuracy of time-delay estimation is improved, the
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research in this paper can be applied to the actual scene of TDOA sound source localization,
which is of great significance for target detection, localization and tracking based on time
delay estimation, and has certain application prospects.
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Abstract: Accurate ranging and real-time temperature monitoring are essential for metrology and
safety in electrical conduit applications. This paper proposes an acoustic time-of-flight (TOF) es-
timation method based on the digital lock-in filtering (DLF) technique for conduit ranging and
thermometry. The method establishes the relationship between the frequency and the time domain by
applying a linear frequency modulated Chirp signal as the sound source and using the DLF technique
to extract the first harmonic of the characteristic frequencies of the transmitted and received signals.
Acoustic TOF estimation in the conduit is then achieved by calculating the mathematical expectation
of the time difference between each characteristic frequency in the time-frequency relationship of
the two signals. The experimental results with enhanced noise interference on different conduit
lengths and various temperature conditions, proved that the proposed DLF method can establish
a robust linear time-frequency relationship according to the characteristics of the Chirp signal, and
the measurement accuracy of TOF has also been confirmed. Compared to the conventional method,
the DLF method provides the lowest absolute error and standard deviation for both distance and
temperature measurements with an enhanced robustness.

Keywords: acoustic ranging; acoustic thermometry; digital lock-in filtering; electrical conduit; time-
of-flight estimation

1. Introduction

In conduit construction and the maintenance process in the power industry, the indirect
calculation of the conduit length is required. Generally, the conduits buried underground or
in complex systems are long and mostly bent. Accurate length measurement and real-time
temperature monitoring are challenging and indispensable technical safeguards in conduit
laying and maintenance processes.

Traditional contact measurement methods such as scale and thermocouple cannot
be applied to lengthy underground conduits. Ranging and thermometry methods based
on laser [1,2] and imaging [3,4] technologies are constrained because light can only travel
in straight line, so it is unsuitable for lengthy, curved underground pipeline applications.
Ultrasonic and microwave ranging [5,6] and thermometry [7,8] methods require consider-
able power for long-distance measurements due to their shorter wavelengths and faster
attenuation, while increased power means an increased size of the sensor, and hence they
are inconvenient for such application, particularly for small diameter conduits. The acoustic
method has its advantages over the mentioned techniques above.

For convenience, the audio range with an operating frequency falling between 20 Hz
and 20 kHz is referred to as acoustic hereinafter in distinction from ultrasound. Different
from the laser and camera imaging, when a sound wave propagates in a curved conduit

147



Sensors 2022, 22, 5519

encountering local obstructions such as sludge, pipe bulge, and cable obstacles, the propa-
gation can continue through diffraction. The advantages of the acoustic method also lay in
its low cost and high anti-interference natures.

According to the measurement mode, acoustic-based ranging and thermometry are
mainly divided into two methods, namely the resonance method [9–11] and the pulsed
time difference method [12,13]. In the pulsed time difference method [14,15] the length and
temperature are measured by estimating the acoustic time-of-flight (TOF) in the conduit,
which is the focus of this paper.

In the acoustic TOF estimation, the cross-correlation algorithm is widely used, in
which the time delay is computed by identifying the similarity of transmitted and received
signals. Based on the direct cross-correlation (DCC) algorithm [16], there have been various
transformations and developments. The generalized cross-correlation (GCC), weighted
cross-correlation [17], and phase-corrected cross-correlation [18] are such examples to men-
tion. However, these algorithms have a common requirement of wide signal bandwidth,
because it is inversely related to the measurement error for TOF. Another well-known
method is the least mean-square time delay estimation (LMSTDE) [19,20], in which an
adaptive FIR filter is used to model the time difference and interpolate the filter weights
to obtain the time delay. Many adjustments and deformations [21,22] have been made to
LMSTDE in order to reduce the effect of noisy input caused by the limited filter length, how-
ever an accurate TOF could still not be achievable under a low signal-to-noise ratio (SNR)
if a small number of filter taps are used. The higher-order statistical time-delay estimation
algorithm [23,24] has an advantage to suppress the smoothly correlated Gaussian white
noise and extract the signal amplitude and phase information by extending the higher-order
spectrum of the multidimensional Fourier transform [25]. However, to achieve a reliable
accuracy, strict requirements on the sampling length and resolution of the A/D converter
must be satisfied. For other techniques such as the over-zero detection method [26,27],
the amplitude squared coherence function method [28], the phase spectrum estimation
method [29,30], and the adaptive TOF estimation method [31], although they have been
found various applications, none of them are suitable for conduit length measurement and
temperature monitoring in relatively harsh field conditions due to inferior and unreliable
measurement results at low SNR, limitations on sampling period and accuracy, and high
computational load.

Conduits for field applications are generally buried underground or in a complex
system close to a production or auxiliary equipment, transportation line or building site.
Hence a variety of noise and vibration interferences in a conduit can be expected. Moreover,
the bending of a conduit, the obstruction of internal cables, and the sand and dirt mixture
left inside during construction pose severe challenges to the acoustic measurement method.
It is critical for the acoustic method [32] to be able to suppress noise and overcome physical
obstacle interference while ensuring the accuracy and precision of acoustic TOF estimation.

This paper proposes a novel acoustic TOF estimation method based on a digital
lock-in filter (DLF) to improve the accuracy of electrical conduit length measurement and
temperature monitoring. A linear frequency modulated Chirp signal as the acoustic source
is used and the relationship between the first harmonic of the multi-frequency component
and the Chirp signal moment is established through digital phase-locking and low-pass
filtering of the signal. The acoustic TOF estimation in the conduit is achieved by calculating
the mathematical expectation of the time difference between the received and transmitted
signals at each characteristic frequency. The accuracy of the DLF method for conduit length
and temperature monitoring is verified experimentally by comparison with the classical
GCC and GCC-SCOT algorithms. The robustness of the method is tested at various levels
of noise intensity with different time spans. The results confirm that both the accuracy and
robustness are improved and satisfactory.
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2. Principle of Acoustic Ranging and Thermometry

In an electrical conduit system shown in Figure 1, although there are some stones, sand,
dents, and joints in the conduit, the sound wave will be transmitted from the loudspeaker
(the transmitter) at one end to the microphone (the receiver) fixed at the other end of the
conduit through the gas medium due to continuity of the gas in the conduit. The length
and temperature of the conduit can be found indirectly by estimating the TOF between the
transmitted and received signals at the source and at the receiver by calculation of the time
delay algorithm.
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Figure 1. Schematic of the acoustic ranging and thermometry method for electric conduits.

Since there is little variation in the enclosed conduit’s electromagnetic, gas state, and
composition, the acoustic wave can be assumed to be a linear propagation process. As
expressed in Equation (1), in the pre-construction stage, the conduit length L is calculated
at ambient temperature through the product of the sound speed c and the TOF τ. Once the
construction of the conduit is completed, online measurement of conduit temperature [33,34]
can be achieved based on the calibrated conduit length.

L = τc = τ

√
γR
m

T (1)

where γ is the isentropic exponent of the medium, R is the universal gas constant, m is the
molar mass, and T is the gas temperature inside the conduit.

It can be found from Equation (1) that the accurate estimation of the acoustic TOF
is the priority either for both distance calculating and temperature monitoring. Since the
proposed DLF and other time delay estimation methods have already been elaborated
elsewhere with the acoustic source parameters, only the sound source signal model will be
introduced in Section 2.1.

2.1. Acoustic Source Signal Model

The signal model with linear variation in frequency [33,34] has been proven to differ-
entiate signal better from noise hence leading to improved SNR. In this research, the sound
source signal is modulated with the widely used linear frequency Chirp. Assuming the
presence of additive noise in both the transmitted and received signals of the loudspeaker:

{
x1(t) = s(t) + µ1(t)
x2(t) = ξs(t− τ) + µ2(t)

(2)

where s(t) is the acoustic source signal. µ1(t) and µ2(t) are the random noises contained
in the signals. ξ is the attenuation coefficient of the acoustic signal. τ denotes the TOF
between the two signals. s(t), µ1(t), and µ2(t) are assumed to be uncorrelated.

The transmitted signal x1(t) is:

x1(t) = A cos(2π fLineart + ∆ϕ) + µ1(t) t ∈ [0, τs] (3)
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where A is the signal amplitude, τs is the pulse width, ∆ϕ is the signal phase. f Linear denotes
the sweeping frequency of the signal, which is expressed as:

fLinear = f0 +
Bw

τs
t t ∈ [0, τs] (4)

where f 0 is the starting frequency at t = 0, Bw is the bandwidth in hertz.
In order to avoid overlap of the source signal with the low-frequency noise in the

field and in line with the best frequency response of the loudspeaker, in this research, the
starting frequency and bandwidth of the source signal are set to 4 kHz. The frequency
change with time is shown in Figure 2, where the amplitude A of the sound source signal is
1 V, and the waveform is a continuously varying cosine from 0 s to 0.2 s. The instantaneous
frequency of the signal increases linearly with the time. The frequency varies linearly from
4 kHz to 8 kHz in 0.2 s.
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2.2. The DLF-Based Acoustic Time-of-Flight Estimation Method

The digital lock-in filtering technique is a versatile signal processing method with
a wide range of applications in spectroscopy [2], electricity [35], and magnetism [36] to
extract signals at specific frequencies from harsh interference environments. Based on the
DLF technique, this paper proposes a novel method that can be used to accurately estimate
the TOF.

Once the acoustic signal propagates through the conduit, its waveform may be dis-
torted and attenuated. The intrinsic mode decomposition [37,38] of the acoustic signal
reveals that its frequency characteristics generally remain unchanged. By analyzing the
instantaneous frequency of the received signal, a new time-frequency relationship can be
derived, from which, it can be seen that the offset between the two time-frequency relation-
ships is the acoustic TOF. Traditional frequency domain analysis methods are constrained
by the Fourier transform characteristics so an accurate relationship between the time and
frequency domains cannot be established. In this paper, digital lock-in filtering techniques
are adopted to extract the instantaneous frequencies of the transmitted and received signals,
respectively, which can better characterize the local features of the two acoustic signals at
different moments.

The DLF method can be used to demodulate the amplitude and phase of each com-
ponent of the same frequency in the received and transmitted signals by means of the
phase-sensitive detection principle. The proposed TOF estimation method uses digital
phase-locking and low-pass filtering to extract the first harmonics of the different character-
istic frequencies of the acoustic signal. It demodulates the moment of occurrence at that
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frequency by detecting the peak of the first harmonic, thus establishing the time-frequency
relationship of multiple characteristic frequencies. The procedure for calculating the time
difference at each characteristic frequency is shown in Figure 3.
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In the DLF method, the reference signal Z1(t) and its orthogonal signal Z2(t) with 90◦

phase shift are assumed to be:
{

Z1(t) = B sin(2π fmt)
Z2(t) = B cos(2π fmt)

(5)

where B is the amplitude of the reference and orthogonal signals with characteristic fre-
quency fm ranging from f 0 to Bw + f 0. Since the first harmonic detection range is determined
from the transmitted signal, the expressions for the reference and orthogonal signals
are known.

In the DLF method, first the acoustic signal with the reference phase is multiplied by
the orthogonal signals to realize the function of phase-sensitive detection. For illustrative
purposes, the following is an example of the transmitted signal x1(t), which goes through
the multiplier as follows:

X1 f (t) =x1(t) ∗ Z2(t) =
AB
2

[cos(2π fLineart + 2π fmt + ∆ϕ) + cos(2π fLineart− 2π fmt + ∆ϕ)] + B cos(2π fmt)µ1(t) (6)

Y1 f (t) =x1(t) ∗ Z1(t) =
AB
2

[sin(2π fLineart + 2π fmt + ∆ϕ)− sin(2π fLineart− 2π fmt + ∆ϕ)] + B sin(2π fmt)µ1(t) (7)

When the characteristic frequencies of the reference and orthogonal signals are the
same as the signal to be detected, i.e., f Linear = fm, Equations (6) and (7) can be simplified as:

X1 f (t) =
AB
2

[cos(2π fmt + ∆ϕ) + cos(∆ϕ)] + B cos(2π fmt)µ1(t) (8)

Y1 f (t) =
AB
2

[sin(2π fmt + ∆ϕ)− sin(∆ϕ)] + B sin(2π fmt)µ1(t) (9)

After being low-pass filtered, the output of the two signals is obtained as:

X1 f (t) =
AB
2

cos(∆ϕ) (10)

Y1 f (t) =
AB
2

sin(∆ϕ) (11)

Therefore, the magnitude of the first harmonic R1f can be calculated as:

R1 f =
√

X2
1 f + Y2

1 f (12)
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The moment t corresponding to the characteristic frequency fm is obtained from the
peak detection of the first harmonic:

t f m = argmax
t

(R1 f ) (13)

Therefore, the time delay for each frequency fm is expressed as:

τm = treceived_ fm − ttransmitted_ fm (14)

where treceived_fm and ttransmitted_fm are the moment of the received and transmitted signals
at the mth frequency fm, respectively.

The m time-frequency relationships tfm are obtained by detecting the time differences
at all m number of characteristic frequencies. TOF can then be obtained by calculating
the mathematical expectation of the time difference between the received and transmitted
signals over the passband Bw.

τ = E(τm) =
1

Bw

f0+Bw

∑
fm= f0

(τm) (15)

The Chirp signal frequency varies linearly over the pulse width. The analysis of the
dynamics of the received acoustic signals by means of nonlinear dynamics metric [39,40]
shows that if the loudspeaker’s response is inadequate, this can result in intermodulation
distortion of the output acoustic signal. The signal conditioner also causes harmonic
distortion of the signal after it has been received by the microphone, leading to a non-
linear [41] relationship between frequency and time of the acoustic signal. Due to the
known time-frequency characteristics of this pair of acoustic signals, the relationship is
fitted linearly by means of a least-squared-based regression method in order to minimize
the effects of non-linearity. The linear nature of the Chirp signal is combined to improve
the fitting accuracy of the time-frequency relationship by minimizing the sum of squares of
the errors. Assume that the linear equation of the time-frequency relationship is:

fi = b + kti + ε (16)

where b and k are the intercept and slope, respectively, and ε is the residual between the
actual and the fitting frequency values. The residual sum of squared error ∆f (b,k) can be
determined as follows:

∆ f (b, k) =
n

∑
i=1

ε2 =
n

∑
i=1

( fi − b− kti)
2 (17)

where fi is the actual value. b + kti is the targeting value. By making the partial derivatives
of the residual sum ∆f (b,k) relative to b and k zeros, the optimized b and k can be identified
to achieve the minimum ∆f (b,k).

In order to present the process of estimating TOF with the DLF method, an example
of an acoustic signal sampled at a conduit length of 3 m is shown in Figure 4. The signal
sampling rate is 200 kS/s, the sampling period is 0.22 s, and the starting frequency and
bandwidth of the acoustic source signal are 4 kHz.
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the received signal and time-frequency relationships of transmitted and received signals. (b) The
acoustic spectrogram of the received signal. (c) Normalized first harmonic shown at 0.5 kHz intervals
within the signal bandwidth from the starting frequency.

Figure 4a shows that the received acoustic signal is distorted in waveform amplitude
compared to the source signal in Figure 2 after propagating 3 m inside the conduit. The
effective pulse width is 0.2 s, which is consistent with the acoustic source. The time lag at the
front of the waveform is the acoustic TOF. Corresponding to Figure 4a, the acoustic spectrum
of the received signal is depicted in Figure 4b. The acoustic spectrogram is essentially a
short-time Fourier transform, which does not provide for both time and frequency resolution
of the analyzed signal, but the overall trend of the signal time-frequency correspondence
can be clearly seen from this figure. Shown in Figure 4a, the frequency of the received
signal varies linearly from 4 kHz to 8 kHz with time over the pulse width, which is the
same as the frequency-time relationship of the source signal, except that there is a significant
hysteresis in between. The multiple characteristic frequencies of the received signal are
digitally phase-locked and filtered. Figure 4c shows the normalized first harmonics at
0.5 kHz intervals from the starting frequency. The peak of the first harmonic coincides
with the moment at which that frequency is located. Hence, it can be concluded that a
discrete sequence of time-frequency relationships can be derived by detecting the peaks
of multiple first harmonics, and the linear interpolation can be assumed between discrete
points. The time-frequency relationship of the received signal in Figure 4a is determined
with the least-squares-based regression fitting method detailed with Equations (16) and (17).

Similarly, the time-frequency relationship of the transmitted signal is also shown
in Figure 4a. Thus, each eigenfrequency corresponds to a time delay as described in
Equation (14). The TOF of the acoustic wave can be estimated based on the mathematical
expectation of the time delays corresponding to the multiple eigenfrequencies.

2.3. Cross-Correlation Time-of-Flight Estimation Method

The cross-correlation algorithm is widely used in the study of acoustic TOF estimation.
The operation result reflects the similarity strength of the two signals, and the time delay of
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the two signals is detected when the similarity is most potent, where the peak position of
the cross-correlation function occurs.

Compared to the traditional DCC algorithm, the generalized cross-correlation (GCC)
is more flexible in its operation [17]. The cross-power spectrum is obtained by performing a
Fourier transform on the two time-domain acoustic signals and, if necessary, pre-processing
the cross-power spectrum in the frequency domain by weighting. The inverse Fourier
transform is then applied to the cross-power spectrum. The process is as follows:

Gx1x2(ω) = F[x1(t)]F∗[x2(t)] (18)

Rx1x2(τ) = F−1[Gx1x2(ω)] (19)

where Gx1x2(ω) is the cross-power spectrum of the two signals; F[·] stands for Fourier
transform; * denotes the complex conjugate; Rx1x2(τ) is the GCC function; F−1[·] represents
inverse Fourier transform function.

The GCC algorithm is whitened and pre-weighted in the frequency domain to enhance
the suppression of noise interference. The weighting process of the Smoothed Coherent
Transform (SCOT) [42] has a significant suppression effect on noise and is widely used for
accurate time delay estimation. The SCOT weighting function is essentially an improvement
on the ROTH weighting function [17], which is expressed as follows:

ψx1x2(ω)SCOT = [Gx1x1(ω)Gx2x2(ω)]−1/2 (20)

where Gx1x1(ω) and Gx2x2(ω) are the self-power spectra of transmitted and received signals,
respectively. Therefore, the GCC-SCOT function is defined as:

RSCOT
x1x2

(τ) = F−1[ψx1x2(ω)SCOTGx1x2(ω)] (21)

Described with Equation (22), in GCC, the accurate estimation of the acoustic TOF is
determined by detecting the peak position of the cross-correlation function, and so is in the
GCC-SCOT.

τ = argmax
τ

[Rx1x2(τ)] (22)

3. Results Analysis and Discussion

Following the sequence of electrical conduit construction and testing requirements,
the calibration measurements of geometric distances were first carried out for different
electrical conduits. A laser distance meter (LDM) was used to measure the length of the
electrical conduit chosen for the experiments in its straightened state. The measurement
was repeated several times to determine the reference standard. The same conduit was
measured with the acoustic waveform when the conduit was bent to verify the applicability
and feasibility of the proposed DLF method. The experimental study of continuous online
monitoring of the conduit temperature was also carried out under disturbing conditions of
different noise energy levels, and with mud and gravel inside at different temperatures, by
doing so, to validate the method in practical application environments. As a comparison,
the GCC, GCC-SCOT, and DLF methods are employed for calculation simultaneously.

3.1. Experiment Setup

The experiment measurement system shown in Figure 5 was set up to better imitate the
field conditions of the conduit in the laboratory. A linear frequency modulated Chirp signal
with a starting frequency and bandwidth of 4 kHz was used as the sound source, sent from
the data acquisition card to the loudspeaker via a power amplifier with adjustable gain.
At one end of the conduit, the acoustic sound and noise were emitted by Loudspeakers
S1 and S2 respectively and transmitted through the conduit. The microphone at the other
end was used to receive the signals. The loudspeakers and the microphone were installed
utilizing fixed-size acoustic waveguides. The acoustic waveguide installed with S1 and S2
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was an internal tee structure. The microphone was 1/2-inch in diameter, with a sensitivity
of 50.4 mV/Pa, and a dynamic range of 20 dB to 136 dB, its frequency response range was
from 20 Hz to 20 kHz.
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The inner diameter of the conduit was 45 mm. A ribbon heater was uniformly wound
around the pipe, which was wrapped with insulation material to create different tempera-
ture experiment environments. Six type K thermocouples (GG-K-30-SLE made in Shanghai
Yaogeng Automation Instrument Co., Shanghai, China) with a diameter of 0.255 mm were
evenly spaced 250 mm apart inside the conduit. As can be seen in the cross-sectional view
in Figure 5, the thermocouples were wrapped in a breathable glass fiber cloth with a wire
diameter of 1 mm in order to avoid direct contact with inner pipe wall to prevent mismea-
surement. The gas pressure inside the conduit was kept almost constant when the conduit
was closed, and the average value obtained from several thermocouples was used as a
reference or standard temperature. The model of the laser distance meter (LDM) was Fluke
404E (Made in Fluke Co., Beijing, China), with a range of 0.2 m to 40 m and measurement
precision of ±2.0 mm + 5 × 10−5 *L. It was used to calibrate the length of the conduit when
it was in the straightened condition. The noise transmitted by S2 was to simulate the noise
disturbance from construction, equipment, and traffic in field applications. Also included
in the system were: a data acquisition card NI USB6356 (Made in National Instruments Co.,
Austin, TX, USA) with a sampling rate of 1.25 MS/s and a resolution of 16 bits; a signal
conditioner containing phantom power unit and signal amplification circuit.

3.2. System Error Calibration

As shown in Figure 5, the distance between the sound output of the loudspeaker and
the coil-wrapped sound diaphragm results in a systematic error in the acoustic ranging and
thermometry. Since both the measurement system and the loudspeaker structure remain
unchanged, this systematic error can be calibrated employing the least-squares method.

Lr = ςLe + ∆L (23)

where Lr is the reference length measured by the LDM, Le is the estimated length calculated
through the acoustic method, ∆L is the system error, and ς is a scale factor by reason that
the acoustic signal distortion loss due to conduit bends and obstacles in the pipe. In the
experiment, the correction factor and system error were 1.0024 and 8.16 mm, respectively,
so the correct distance could be calculated.
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3.3. Analysis of the Measurement Results
3.3.1. Acoustic Ranging and TOF Estimation in Different Conduit Length

Following the construction of the electrical conduits, the different conduit lengths
were first measured using three different time-delay estimation algorithms to investigate
the accuracy of the proposed DLF method for different TOF. The internal temperatures of
the closed conduits with different lengths were kept the same and maintained during the
measurements and the six thermocouples arranged at the ends of the conduits were used to
indicate the actual temperature. The electrical conduits were cut into 8 different pieces with
the lengths of 0.503 m, 1.021 m, 2.032 m, 3.022 m, 4.017 m, 5.023 m, 6.993 m, and 10.022 m,
respectively, based on LDM measurements at their straight states. Once the experimental
bench and sensors were all installed and arranged, the temperature in the conduit was
monitored using thermocouples, and as the experiments for length measurement using
acoustic methods were carried out the temperature became stable. The average temperature
of the six thermocouples was 26.31 ◦C when the thermal equilibrium was reached, and the
theoretical speed of sound in the conduit was 345.82 m/s.

The length for each of the mentioned conduit above was measured in the pre-construction
phase, which was free from noise and vibration interference. The Chirp acoustic waves were
transmitted from S1, and received by the microphone to estimate the acoustic TOF across
each of eight different conduits over their full lengths. The number of measurements for each
conduit was 200.

In the example of the propagated acoustic signal travelling a conduit of 7 m, it can be
seen from Figure 6a that a slight waveform distortion occurred due to the conduit bending,
gravel, obstruction of the thermocouple wire, and gas attenuation. A significant time delay
of the received signal to the transmitted signal is clearly shown, this time is the TOF to
be estimated. From the acoustic spectrum of the two signals in Figure 6b,c, it is evident
that the attenuation of the waveforms did not affect the time-frequency relationship of the
received signals. This time delay is also obviously reflected in the corresponding acoustic
spectrum of the received signal in Figure 6c. This phenomenon provides an explanation of
the proposed DLF method.
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The DLF, GCC, and GCC-SCOT methods were used to process the acoustic signals
obtained from the eight conduits with different lengths mentioned above. Figure 7 shows
the time-frequency relationship for each conduit at the given length calculated using the
DLF method. The time frequency graphs of TOF are parallel for different conduit lengths,
indicating the distinct time taken for the acoustic wave travelling a given journey.
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Figure 7. The time-frequency relationships of different lengths of conduits are extracted by the
DLF method.

Figure 8 provides the details of the analysis, where the measured TOFs were converted
to length for the three acoustic methods. Taking the lengths determined with LDM measure-
ments as references, the relative error (RE) and standard deviation (SD) of the three acoustic
methods were compared. The results are depicted in Figure 8. Apparently, the graphs
in this figure confirm that both RE and SD for all three different methods increase with
distance, and both errors with the GCC-SCOT are slightly smaller than with the GCC over
the entire range. The DLF method has the best performance in this regard, the maximum
RE under DLF is 6.26%, and 16.99% smaller than that derived with GCC and GCC-SCOT,
respectively. The DLF method therefore offers the best measurement accuracy, and the
lowest SD also demonstrates the best stability over multiple repeated measurements.
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3.3.2. Experiments on Temperature Monitoring with Noise Interference at Different
Energy Levels

The production or auxiliary equipment, transport, and building construction close
to an electrical conduit can generate various noises and vibrations inside, which can
interfere with the temperature monitoring by acoustic methods. The vibration effect is not
considered in this paper as underground vibrations are mainly low frequency, well below
the bandwidth of the signal used for measurement. The previous studies have shown that
the noise in underground power conduits is mainly Gaussian white noise [9]. The noise
immunity of the DLF method was verified by adding Gaussian white noise to the conduit
via S2 and the noise energy level was set by adjusting the power amplifier’s gain. In this
section, the thermocouples were evenly aligned in a conduit of 3 m length. The experiments
were carried out without heating at seven interfering SNR levels, and the results are shown
in Figure 9. The number of measurements at each SNR level was 200.
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Figure 9. Temperature measurement results in different SNR conditions.

Due to the closeness of the measured results from the three acoustic methods and the
tendency for the error bars to overlap, Figure 9 displays them separately for clarity. The
graphs show that the results based on all of the three acoustic thermometry are lower than
that given by the thermocouple. The temperature measured by the thermocouple increases
by approximately 0.3 ◦C as the measurement time increases, and the trend is followed by
the acoustic measurement results. But the temperatures measured using the DLF method
is closest to that obtained using the thermocouple. The maximum absolute error of the
DLF is 16.7% and 16.3% lower than that of GCC and GCC-SCOT methods. Thus, it can be
concluded that DLF provided the best measurement accuracy.

3.3.3. Experiments on Temperature Monitoring at Different Temperatures

The use of cables in electrical conduits is accompanied by heat generation, which
can be dangerous when too much heat builds up. In the experiments, the temperature
of the ribbon heater was adjusted utilizing a temperature controller to produce different
temperature conditions. The temperature conditions are shown in Figure 10, each of which
was measured after the temperature controller had been adjusted and a steady temperature
reading was reached. The noise was added in the experiments to simulate interference
signal. The SNR of the experiment environment was approximately equal to −9.380 dB,
and the number of measurements per temperature condition was 200.
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Figure 10. Temperature results of the four methods in different temperature conditions.

Since the upper limit of the temperature controller is 65 ◦C, seven different temperature
conditions were set up ranging from 30 ◦C up to 60 ◦C. Figure 10 shows that the thermo-
couple readings are higher than that of acoustic methods and have small spread (indicated
by shorter error bars), probably due to the fact that the glass fibers wrapped around the
thermocouple were in contact with the inner conduit wall for a long time, resulting in the
temperature being closer to the wall by heat transfer while the acoustic method measured
the gas temperature inside the conduit and therefore gave lower results than the thermocou-
ple. The DLF temperature results were higher than the GCC and GCC-SCOT methods with
maximum temperature differences of 6.8% and 5.7% times higher and were closest to the
thermocouple measurements. The GCC-SCOT results were better than the GCC method
in terms of temperature and error. The DLF method had the lowest error, with maximum
errors of 9.5% and 7.2% lower than the GCC and GCC-SCOT methods, respectively, and
had the best measurement stability.

4. Conclusions

This paper proposes a new acoustic time-of-flight estimation method to achieve high
accuracy in ranging and thermometry systems. The proposed DLF method is more inter-
ference immune which can extract the first harmonics of time-domain signals of low SNR
from various noise and vibration disturbing environments. The relationship between time
and frequency signals is established by harmonic peak detection. As both the transmitted
and received signals have highly similar time-frequency characteristics, an accurate estima-
tion of the acoustic TOF is required that can be attained by solving for the mathematical
expectation of the time difference between the two signals so that the conduit length and
the temperature can be calculated.

In order to simulate more closely to the on-site conduit conditions, an experiment
platform and system for length and temperature measurement were constructed in the
laboratory. The signal interference encountered in the field measurement due to physical
disturbances from sand, gravel, and mud in the conduit, as well as caused by nearby
construction and traffic, and different temperature environments was assumed to be Gaus-
sian white noise. Compared with the conventional TOF estimation methods GCC and
GCC-SCOT, the proposed DLF method can give more accurate measurement for conduit
length and temperature where the temperature may fluctuate. The DLF method has the
advantages of an extensive measurement range, higher accuracy, and robustness so it is
more suitable for field applications.
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Abstract: The core of underwater acoustic recognition is to extract the spectral features of targets.
The running speed and track of the targets usually result in a Doppler shift, which poses significant
challenges for recognizing targets with different Doppler frequencies. This paper proposes deep
learning with a channel attention mechanism approach for underwater acoustic recognition. It is
based on three crucial designs. Feature structures can obtain high-dimensional underwater acoustic
data. The feature extraction model is the most important. First, we develop a ResNet to extract
the deep abstraction spectral features of the targets. Then, the channel attention mechanism is
introduced in the camResNet to enhance the energy of stable spectral features of residual convolution.
This is conducive to subtly represent the inherent characteristics of the targets. Moreover, a feature
classification approach based on one-dimensional convolution is applied to recognize targets. We
evaluate our approach on challenging data containing four kinds of underwater acoustic targets with
different working conditions. Our experiments show that the proposed approach achieves the best
recognition accuracy (98.2%) compared with the other approaches. Moreover, the proposed approach
is better than the ResNet with a widely used channel attention mechanism for data with different
working conditions.

Keywords: feature extraction; target recognition; neural networks; underwater acoustic signals

1. Introduction

The traditional methods of target recognition include feature extraction techniques
based on mathematical modeling [1]. Using the entropy theory [2,3] as a feature to extract
the radiation noise of a ship is one of the most common mathematical modeling methods.
Additionally, a critical approach to recognition is to analyze the peaks of the spectrum to
obtain the physical features, such as the propeller speed cavitation noise of the engine [4,5].
The spectrum will be distorted because of the Doppler effect when the ship moves toward
the hydrophone receivers [6]. Wang proposes the multi-method spectra based on audi-
tory feature extraction from the human ear and effectively extracts stable feature points
under the Doppler effect [7]. Modeling the Doppler power spectrum of non-stationary
underwater acoustic channels is another method to reduce the impact of the Doppler effect
in underwater acoustic target recognition [8]. The information extracted by traditional
methods is limited when the spectrum of signal changes with the Doppler effect. Li [9] uses
the square root unscented Kalman filter to attenuate the Doppler phenomena in underwater
acoustic signals.

Deep learning has an advantage in extracting the spectrum feature compared with
the traditional method. However, it is often difficult to collect enough underwater acoustic
signal data for training, which significantly limits the performance of deep neural networks
in underwater target recognition. Nevertheless, researchers are still exploring the applica-
tion of deep learning in underwater target recognition with the constraints of the available
underwater acoustic data. Yang [10] et al. use deep auto-encoder networks combined with
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long short-term networks to extract target features and set different gates according to the
temporal characteristics of underwater acoustic to extract feature information effectively.
Auto-encoder networks can downscale high-dimensional data to low-dimensional data
while retaining sufficient feature information, but the number of parameters is enormous.
The convolution neural network (CNN) method can significantly reduce the number of
parameters compared with DNN. Hence, CNN is better for underwater acoustic signals
with limited samples. Hu [11] uses CNN to reduce the number of parameters and obtain
better experimental results. Wang [12] investigates the intrinsic mechanism of convo-
lution networks for underwater acoustic signals and displays the relationship between
the waveform of the original data and the convolution kernel. Hu builds an underwater
acoustic recognition model based on separable convolution operations according to the
information collection mechanism of the auditory system, which is the first time grouped
convolution models are applied in underwater acoustic recognition. Tian [13] applies a
deep convolution stack to optimize CNN networks, which solves the lack of depth and
structural imbalance of the networks. However, the above CNN model extracts single-scale
features with the fixed size of the convolution kernel, which lose a lot of feature informa-
tion. Hong [14] proposes a deep convolution stack network with a multi-scale residual
unit (MSRU) to extract multi-scale features while exploring using generative adversarial
networks (GAN) to synthesize underwater acoustic waveforms. The method modifies two
advanced GAN models and improves their performance. GAN network with generators
model and adversaries model uses the idea of the game to optimize the network. The
generators can generate underwater acoustic samples when reaching the Nash equilibrium
between the generators and adversaries models. We propose [15] an underwater acous-
tic target recognition model based on GAN, optimizing the recognition model with two
model adversaries. The experiment verifies the better recognition ability of GAN than the
other networks with small samples. The number of neural network layers has increased
due to the urgent need to identify underwater acoustic data under different spatial and
temporal conditions. Doan [16] applies the dense convolutional neural network to identify
the target class, which addresses the over-fitting problem in a deep convolutional neural
network with a limited number of samples. Gao [17] increases the number of samples using
the GAN model, extracting underwater acoustic features with small samples in deeper
network layers. To solve the recognition problem with a limited number of samples in
deep networks, He [18,19] first proposes a ResNet model in image recognition, which
uses the residual function to eliminate the gradient disappearance effectively. Wu [20]
conducts deeper research in terms of the depth and width of ResNet models. Liu [21]
applies the ResNet model to the study of underwater acoustic signals and acquires good
experimental results.

Hu [22] first proposes the SE (squeeze and excitation) network, which uses channel
weighting to discriminate the importance of information in different channels of ResNet.
This network is a channel attention mechanism approach that can assign weights to differ-
ent channel information according to their effectiveness and effectively remove channels
with similar features. The channel attention mechanism can again adaptively optimize the
neural network models, and different channel attention mechanisms for different research
objects are required. Because of the low-pass filtering properties of the underwater acous-
tic channel, the high-frequency spectrum of the signal is decreased when increasing the
distance between the target signal and the hydrophone. So, the underwater acoustic signal
contains the spectrum of low frequency and the continuous spectrum. The continuous
spectrum contains the ocean background noise signal, and the spectrum of low frequency
contains the ship’s radiation noise, propeller noise, machine noise, and other hull self-noise.
Yang [23,24] uses an auditory inspired for ship type classification. The core of the under-
water acoustic target recognition method is to extract the low-frequency spectrum [25,26].
However, the distance changes between the target and the hydrophone lead to a Doppler
shift, which makes the information in the low-frequency spectrum disappear. This paper
designs a camResNet (ResNet with channel attention mechanism) model to extract the
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low-frequency spectrum of underwater acoustic signals when the Doppler shift occurs.
The channel attention mechanism of camResNet is divided into two parts. First, the signal
channels are weighted by analysis of channel information. Second, the valid information
points in each channel are extracted, and the complete information is weighted.

This paper is organized as follows. Section 2 introduces the structure of the SE_ResNet
network. Section 3 describes the details of the underwater acoustic target recognition method
based on camResNet. Section 4 describes the experimental data and shows the experimental
results. Section 5 concludes the advantages and disadvantages of the proposed method.

2. Structure of ResNet

The ResNet model deals with network degradation caused by network layer deepening
using residual learning methods. Hong [27] studied the characteristics of underwater
acoustic signals and increased the recognition rate with an 18-layer residual network
(ResNet18), which contains an embedding layer.

The ResNet model consists of many residual modules; the input of the modules is
x, and the output of the convolutional structure of multi-layer stacking is H(x), called
the learned features. The learned features are difficult to optimize by backward gradient
propagation with a network having too many layers, even if the nonlinear activation
function performs very well. He finds that function F(x) = H(x)− x, called the residual
function, is easier to optimize H(x). The output of residual modules is the complex feature
function F(x) + x, which is the residual function learned by the network summed with the
original signal, and the output of residual modules is the input of the following residual
modules. Figure 1 shows the architecture of the ResNet model, in which H(x) is the
residual function, and the mathematical expression is defined as

H(x) = x + wNδ(wN−1(δ(. . . δ(w1x)))) (1)

The w1 · · ·wN in this equation denotes the weight of each module in the residual
network. The function for x mathematical expression is defined as

∂H(x)
∂x

= 1 +
∂(wNδ(wN−1(δ(· · · δ(w1x)))))

∂x
(2)

The first term of Equation (2) equals 1, and the second term is the gradient value of
the weight function to x. Since it contains 1, the function ∂H(x)

∂x will not equal 0, even if the
second term is small.
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Figure 1. The architecture of the ResNet model.

3. Architecture of camResNet in Underwater Acoustic Target Recognition Method
3.1. Architecture of camResNet

The camResNet model is excellent for extracting classification-related feature infor-
mation because it adds the channel attention mechanism based on the ResNet model. The
process of the camResNet model includes three steps: feature structure building, feature
extraction, and feature classification, as shown in Figure 2.
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The low-dimensional underwater acoustic signal limits the ability of convolution net-
works to extract high-dimensional abstract features. So, the feature structure building mod-
ule decomposes the input acoustic signal into base signals using a set of one-dimensional
convolutions as deep convolution filters, which can obtain high-dimensional input data.
Different convolution kernels of N are set in the deep convolution filters F(F1, F2 · · · FN),
and each convolution layer contains a two-dimensional convolution kernel. The output of
the feature module contains 16 groups of signals, so 16 one-dimensional convolution layers
are needed. The specific formula is as follows:

ym
i = f (xm ×ωm

i + bm
i ) (3)

where xm is the m-th input sample, ωm
i denotes the convolution kernel of the i-th out-

put channel of the m-th sample, bm
i denotes the bias function of the i-th output channel

of the m-th sample, and ym
i is the i-th channel output value of the m-th sample. The

symbol ×means dot product. Finally, the output feature group of the i-th layer is ym
i ,

formed through the ReLU function f (·).
The number and frequency of the spectrum are the primary basis for underwater

acoustic signal target recognition. The spectrum energy that will shift with the change of
distance between the target and the hydrophone is called unstable spectra. The spectrum
energy that will not shift with the change of distance between the target and the hydrophone
is called stable spectra. The camResNet model can extract the stable spectrum of the
underwater acoustic target as the feature to recognize the target category accurately when
the spectra of the target are shifted due to the Doppler effect. The stable spectra contain
many harmonic signals. The fundamental frequency is the shaft frequency signal of the
propeller, and the relationship of the harmonic groups is the multiplier. For a B-bladed
propeller, each B is a set of pulses with a period T, and the repetition period of the pulses is
T/B. The 2N + 1st set of pulses in the time domain signal is selected, and its k-th Fourier
transform is denoted as Fk

N(ω). The specific formula of power spectral density by this
random process is as follows [28]:

s(ω) = E{sk(ω)} = E
{

lim
N→∞

1
(2N + 1)T

∣∣∣F(k)
N (ω)

∣∣∣
2
}

= |g(ω)|2
{
(2N + 1)(U1 −U2) +

2N
∑

p=−2N
(2N + 1− |p|) cos ωpT[U2 + U3 · 2 cos ω(T/2) + U4 · cos ω(T/4)]

} (4)

where E{·} is the expected value, ω denotes angular frequency g(ω) Fourier spectrum,
representing the time domain waveform. The specific formula of U is as follows:
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



U1 = a2
0 + a2

1 + a2
2 + a2

3
U2 = a2

0 + a2
1 + a2

2 + a2
3

U3 = a0 · a1 + a1 · a3
U4 = a0 · a1 + a1 · a2 + a2 · a3 + a3 · a0

(5)

where ai denotes the amplitude of the pulse number i in a set of signals. ai denotes the
average value of ai. The fundamental frequency and the first group of harmonic signals
can be used as stable signal characteristics because the modulation spectrum of the actual
vessel radiation noise decays rapidly with the increasing number of groups of spectra. The
obtained multidimensional information with the feature structure building module is called
the original information, which is the input of the feature extraction module. The feature
extraction module contains two ResNet models with the channel attention mechanism. A
convolution kernel size of 1× 64 is a good trade-off between the quality of the recognition
and the computational cost of the model for underwater acoustic. The first layer of the
residual network contains two convolutions. Each convolution operation maps 16 sets of
base signals to another 16 sets of base signals to extract the deep features of the signal. The
convolution operation consists of 16 convolution layers, each containing 16 different filters
F(F1, F2 · · · FN). So, 16× 16 one-dimensional convolution layers are needed. The specific
formula is as follows:

ym
i =

N

∑
k=1

f (xm
k ×ωm

ik + bm
ik) (6)

where xm
ik denotes the input value of the k-th channel in the m-th sample, ωm

ik denotes the
k-th convolution kernel of the i-th layer convolution of the m-th sample, bm

ik denotes the k-th
bias function of the i-th layer convolution of the m-th sample, and ym

ik is the output of the
i-th layer convolution of the m-th sample. The symbol ×means dot product. The output
feature group of the k-th convolution of the i-th convolution layer is formed through the
activation function f (·), which uses the ReLU function.

Finally, all the convolution outputs in the i-th layer are summed up as the convolution
output value of the i-th layer. The second convolution is the same as the first convolution
operation in order to obtain deeper underwater acoustic features. A channel attention
mechanism is added to each one-residual network to enhance the stable spectrum features
and further enhance the network’s performance in extracting underwater acoustic signals.

Section 3.2 describes the channel attention mechanism of the feature structure building
module in detail.

The feature classification uses a fully convolutional network to map the high-dimensional
features from the output of the feature extraction module to a lower dimension with the
size of the classification class. The details are listed as follows.

Stage 1: In feature structure, the data shape of the input layer is a four-dimensional
matrix 64× 1× 1× 800. The shape changes from 64× 16× 1× 800 to 64× 16× 1× 800
by convolutional layer. The batch normalization layer is applied, followed by a ReLU
activation function and max pooling with the stride of 2 × 1.

Stage 2: The feature extraction module contains two residual modules, called block-1
and block-2. The input shape of block-1 is 64× 1× 1× 400. The shape changes from
64× 16× 1× 400 to 64× 16× 1× 400 by two convolutions with a convolution kernel of
64× 1 and a stride of 1× 1. Batch normalization is applied after each convolution and
connected between the two convolutions using the activation function ReLU. Finally, add
the channel attention mechanism, marked with the dashed yellow box in Figure 2, which
will be described in detail in Section 3.2 of the paper. The obtained data are summed with
the original data as the output of block-1.

Stage 3: The input shape of block-2 is 64× 1× 1× 400. The shape changes from
64× 16× 1× 400 to 64× 16× 1× 200 by convolution with a convolution kernel 64× 1
and a step of 2× 1. Batch normalization and a ReLU activation function are applied. The
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second convolution does not change the shape of the data and adds the channel attention
mechanism. The obtained data are summed with the original data as the output of block-2.

Stage 4: This paper uses a fully convolutional networks model, in which a cubic
convolutional network is used to map high-dimensional features to low-dimensional
features in the decision module.

3.2. Structure of Channel Attention Mechanism Based on Underwater Acoustic of camResNet

The changes in the distance between the target and the hydrophone lead to a Doppler
effect, which is the frequency move. The Doppler frequency compensation is challenging,
as the underwater acoustic channel is low-frequency filtering. The method in this paper
can extract the stable spectral features under the Doppler frequency shift by the channel
attention mechanism, which can automatically acquire the critical information in each
feature channel by learning to enhance the valuable features and suppress the less useful
features for the current task.

The amount of information on the channels is different, and the channel attention
mechanism increases the weight to that of the channel with high information. It can
improve the model’s capability. First, squeeze the information out of each channel and
then add a lightweight gating system to optimize the channel information and output
the channel weights. The channel attention mechanism of this paper is divided into two
parts. Figure 3 shows the channel attention mechanism model. The first part is the primary
part, which weighs each channel, and the second part is the auxiliary part of formation
extraction, which is another channel information after transposing the information.
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The first part analyzes the waveform features in each channel separately. First, process
the data with a convolution kernel H ×W and the stride of W; the shape changes from
H×W × C to 1× 1× C. Where H represents the length of the input data, W represents the
width of the input data. The specific formula is as follows:

x(m) =
M

∑
i=1

N

∑
k=1

f
(

x(m)
k ×ω

(m)
ik + b(m)

ik

)
(7)

where x(m)
k denotes the k-th channel data in the input information of the channel attention

mechanism module, ω
(m)
ik denotes the weight of the k-th channel of the i-th layer of convo-

lution, b(m)
ik denotes the bias of the k-th channel of the i-th layer of convolution, and x(m+1)

denotes the output value of x(m) after one convolution.
The data of each channel characterize the global features of each channel. In order

to be able to learn the nonlinear characteristics between the channels independently, this
paper uses a gating system with an activation function. The specific formula is as follows.

x(m+3) =
M

∑
i=1

N

∑
k=1

σ
(

δ
(

x(m+1)
k ×ω

(m+1)
ik + b(m+1)

ik

)
×ω

(m+2)
ik + bm+2

ik

)
(8)
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where x(m+1)
k is the global feature of size 1× 1× C. ω

(m+1)
ik and ω

(m+2)
ik are the weights of

the network mapping. In order to obtain the features of the network channel, convolutional
mapping is used, and the feature points before mapping are r times after mapping, so
ω
(m+1)
ik ∈ R

c
r×c, ω

(m+2)
ik ∈ Rc× c

r . δ is the ReLU activation function, and σ is the sigmoid
activation function.

The second part synthesizes the signal characteristics in all channels. Process the data
with a convolution kernel 1× 64 and the stride of 1; the shape changes from H ×W × C to
H ×W × 1. The multi-layer convolutional network has a solid ability to extract sufficient
recognition information, and the output of the network contains a large number of stable
signals with a small number of unstable signals. One-dimensional data of the same size are
extracted from the network’s output as the channel weights of the original signal, which
can effectively enhance the spectrum energy contained in the channel.

The two parts of the channel attention mechanism weigh the signal features from
different perspectives. Finally, the two weighted pieces of information are fused as the
output of the channel attention mechanism.

4. Model Evaluation
4.1. Dataset

The eight hydrophones are fixed at the same level in eight different places at the same
interval. This paper randomly selects four sets of hydrophones at equal intervals as input
data. The data used in the experiments contain four classes of vessels, and the third of the
four types of signals is the radiated noise of the iron vessel, while the first, second and
fourth types are vessels of the same material and similar hull size.

To study the recognition effect of camResNett under different Doppler frequency shifts,
four different working conditions were intercepted in each class of experimental data. Each
class of the data obtained has four modes of operation: straight ahead at a constant speed,
straight forward acceleration, straight-ahead deceleration, and turning. Figure 4 shows the
spectrogram of different working conditions by the fourth type of vessel.
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Figure 4a is the time-frequency relationship of the signal by the vessel of straight
motion. It shows that there is acceleration when the vessel is just starting, and the frequency
shifts to high frequency. The speed reaches stability within a brief period, and a stable
spectrum characteristic appears, which contains line and continuous spectra. The formula
with the Doppler shift is as follows:

f = f0 ·
1

1− u cos θ
v

(9)

where f0 is the original frequency of the vessel, v is the speed of the underwater acoustic
signal propagating in the channel, u is the speed of the vessel motion, and f is the frequency
after the Doppler shift. θ is the angle between the line of the vertical distance connecting
the ship and the hydrophone and the line connecting the ship and the hydrophone. The
signal will have a stable frequency shift when the vessel movement speed is constant. In
the passive recognition process, the stable spectrum feature after the frequency shift is the
primary information for recognizing the target. However, when the target accelerates, the
u keeps changing, and the f varies with the change of u. Figure 4b,c are time-frequency
diagrams of the ship in the motion state of acceleration and deceleration. The low-frequency
spectra are the stable spectra, and the spectrum above 400 Hz will change with time.
Figure 4d is the time-frequency diagram by the vessel of turning, and a large number of
unstable spectra appear in the time-frequency diagram because the θ keeps changing.

To further observe the energy distribution of the frequencies with the vessel for
different operating conditions, Figure 5 shows the power spectral density for the different
operating conditions by the fourth type of vessel, which is the Fourier transform of the
correlation function with the 0.5 s window length.
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Figure 5 shows the power spectrum density by the fourth type of vessel. A set of
resonant waves at a fundamental frequency of 200 Hz occur stably under four different
operating conditions. High-frequency points are shifted when the vessel is in an accelerated
motion. The high-frequency spectral density varies significantly, and the low-frequency
spectral density is more stable than the high frequency under different working conditions.
Figure 5b,c show the acceleration and deceleration. Compared with Figure 5a, the power
spectral density in high frequency is higher than in the straight motion, and some frequency
points in the high frequency are changed. Figure 5d shows turning, and many spectral
density power spikes appear in the high frequency compared with Figure 5a.

The same class of targets contains different Doppler shift signals, which will increase
the difficulty of recognition, with the original signal compressed or broadened. This method
extracts the stable features of the same class of vessels under different working conditions.

To study the difference between the categories with four types, the straight motion
working condition of each type of vessel is chosen to exhibit a time-frequency relationship.
Figure 6 shows the pictures and time-frequency diagrams of the four types of vessels,
containing class I, class II, and class III and IV vessels. The background noise of the four
vessels has relatively apparent differences, but there are similar low-frequency spectra.

As can be observed in Figure 6b,d, a clear line spectrum in the low-frequency band is
very similar. Figure 6h has two precise line spectra, respectively, similar to the line spectra
in Figure 6b,d. No clear line spectrum is observed in Figure 6f, but the energy distribution
at low frequencies is similar to that in Figure 6h. Figure 6 shows that the spectrum is very
similar to the different vessel types, in which the spectrum energy is concentrated in the
low frequency and continuous. So, it is difficult to distinguish the vessel category with the
traditional method.

4.2. Data Pre-Processing

There are 800 feature points (0.1 s) for a frame and no overlap between frames. If
the maximum feature point of the sample is less than 0.1, eliminate the small value frame
sample, ensuring that the recognition results are not affected by the particular sample
points. After eliminating the small samples, the samples contain 7097 samples. Use 1/4 of
the data as the test set and 3/4 of the data as the training set after normalizing the samples.
The prepared data have 5322 samples as the training set and 1774 samples as the test set.
In total, 200 samples are randomly selected as the validation set in each class, and the
validation set contains 800 samples in total. The training method is a batch method, in
which 64 samples are randomly selected in each batch, and the selected samples will not be
used as alternative samples in the next batch.

4.3. Experimental Results
4.3.1. Discussion of Model Structure

This reports the experimental results of the model with Doppler shifts signals. The
straight condition is considered a signal without a Doppler shift. The other conditions are
considered a Doppler shift. The experiment chose four conditions as input data.

The first experiment illustrates the relationship between the recognition rate and the
number of residual layers, where the size of the number of residual layers changes in the set
of {1,2,3,4}. According to the results in Table 1, two residual layers have the best recognition
effect, and the recognition rate will decrease by increasing the number of residual layers.

Table 1. Recognition rate for different numbers of residual layers.

Residual Layers. 1 2 3 4

Recognition rate of test set 96.3% 98.2% 96.5% 91.4%
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Two residual layers are appropriate for the number of samples in the experiment, and
the different number of samples matches the different number of layers. If the ResNet
network is not over-fitted or under-fitted, the over-fitting phenomenon will occur and
decrease the recognition accuracy when adding the channel attention mechanism. If the
ResNet network is under-fitted, adding the channel attention mechanism will compensate
for this under-fitting phenomenon. The number of model parameters needs to match the
number of samples, and the number of parameters increases after adding the channel
attention mechanism.

The second experiment illustrates the relationship between the recognition rate and
the size of the convolutional kernel. The size of the 1D convolutional kernel varies in the
set of {3, 5, 7, 9, 11, 15, 17, 21, 25, 33, 41, 49, 57, 64, 75, 85, 95}. Table 2 shows that a kernel
size of 64 is best for the recognition rate. The scale size of the target needs to match the
actual perceptual field after the addition of convolutional kernels because the underwater
acoustic target is submerged in background noise, and a large amount of ocean background
noise is extracted if there is no match.

Table 2. Recognition rate for convolution kernels of different sizes.

Convolution Kernels Recognition Rate of Validated Set Recognition Rate of Test Set

1× 3 91.6% 91.1%
1× 5 92.0% 91.5%
1× 7 94.3% 92.1%

1× 11 97.1% 92.3%
1× 15 98.2% 93.1%
1× 17 97.9% 93.5%
1× 21 97.8% 95.3%
1× 25 98.1% 95.3%
1× 33 98.1% 95.9%
1× 41 98.2% 96.1%
1× 49 98.3% 96.3%
1× 57 99.5% 97.4%
1× 64 99.9% 98.2%
1× 75 98.9% 97.1%
1× 85 98.3% 96.4%
1× 95 99.5% 95.9%

4.3.2. Classification Experiment Results

In the experimental data, four-vessel classes are used to train different deep-learning
network models, and the information of each network model is described below.

(1) The DBN model has an input layer, three hidden layers, and one output layer. The
number of nodes in the input layer is 199, the number of nodes in the three hidden
layers is 100, 50, and 20, and the number of nodes in the output layer is the number of
sample categories. Each pair of adjacent layers constitutes an RBM network, and the
three RBM networks are trained separately first, followed by the whole network. A
batch method with a batch size of 64 is used for training. A gradient descent algorithm
with a learning rate of 0.01 is used to optimize the training process.

(2) The GAN network model consists of two modules: generation and discrimination.
The generation module consists of three convolutional layers, and the discrimination
module consists of convolutional layers. The generative module comprises three
convolutional layers, with 64, 128, and 800 filters with a filter size of 1× 4 and a step
size of 4. The discriminative model is a single-layer convolutional neural network
with 16 filters with a filter size of 1× 4 and a step size of 4. Batch training with a batch
size of 64 is used, and the learning rate is 0.001.

(3) The DenseNet model is made up of three modules, each of which has three layers of a
convolutional neural network. The data are normalized before each convolutional
operation, and after convolution, the data are nonlinearly mapped using the elu
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activation function. The convolutional operation with a convolutional kernel size of
1× 64 and a step size of 1 is chosen. The batch method with a batch size of 64 is used
for training. The optimization method is chosen during training using a gradient
descent method, and the learning rate is 0.001. For optimization, the gradient descent
algorithm is used.

(4) The U_Net model is made up of three down-sampling modules and three up-sampling
modules. Each down-sampling module contains two convolutional layers and a
pooling layer of the specified size of 1× 2. There is a splicing layer, a deconvolution
layer, and a pooling layer with a pooling size of 1× 1 in each up-sampling module.
The batch method is used for training, with a batch size of 64 and an optimization
method of gradient descent with a learning rate of 0.001.

(5) The SE ResNet network is set up and trained in the same way as the camResNet
UAS model network, with the exception that the channel attention mechanism is a
three-layer auto-encoder network model.

A test set was used to evaluate the model’s recognition ability. Table 3 shows the
recognition rate with straight motion and four different working conditions. The recog-
nition rate of amRestNet and SE_ResNet are similar when the data contain straight data.
The recognition rate of amRestNet is higher than SE_ResNet when the data contain four
different working conditions. Both amRestNet and SE_ResNet can extract valid feature
information when the data contain a single working condition. However, the SE_ResNet is
not as effective as amRestNet in extracting stabilization features when different working
conditions are included and have different Doppler frequencies.

Table 3. Recognition rate of proposed model and compared models with straight motion data and
four different working conditions.

The Input Models
Recognition Rate

Straight Motion Data Four Different Working Conditions

Time domain signal camResNet 98.9% 98.2%
Frequency domain signal DBN 85.6% 82.4%

Time domain signal GAN 96.6% 96.3%
Frequency domain signal DenseNet 97.3% 96.1%

Time domain signal U_Net 93.9% 93.6%
Time domain signal SE_ResNet 98.8% 97.1%

Table 3 shows that the camResNet model has a recognition rate of 98.2%, which is
1.1–15.8% higher than the other networks. The DBN model is a basic neural network model
based on probabilistic statistics, and its input signal is a frequency domain signal. The
GAN model is the adversarial model, which mainly contends with small-sample data, and
its input signal is the time domain signal. The DenseNet model can simplify the network
complexity and reduce network parameters by designing the dense block, and its input
signal is the frequency domain signal. The ResNet model uses residual learning to update
the network parameters, and its input signal is the time domain signal. The U_Net model
uses up-sampling and down-sampling to extract multi-scale features, which can improve
the recognition effect, and its input signal is the time domain signal.

The DBN model has different optimization methods compared to other models, which
use probabilistic models to optimize the parameters, so the recognition rate of the DBN
model is lower than other networks. The recognition rate of U_Net is lower than the GAN
model and the DenseNet model because the up-sample and down-sample can lose some
feature information. The SE_ResNet model has an excellent performance in recognition
rate because the ResNet model has the balance between network depth and recognition
rate of small samples. The camResNett model is better than the other models in terms
of the recognition rate because the channel attention mechanism deals with underwater
signals’ sparsity and multi-scale characteristics.
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In the display of recognition experiment results, we use recognition accuracy, recall
rate, precision, and F1-score to evaluate the recognition performance of the networks. The
formulae for each indicator are as follows.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

F1-score =
2TP

2TP + FP + FN
(13)

TP, TN, FP, and FN are true positive, true negative, false positive, and false negative. Table 4
shows the precision, recall rate, F1-score, and accuracy of the test sample, while Table 5
shows the confusion matrix.

Table 4. Recognition results of camResNet.

Precision Recall F1-Score Accuracy

Class I vessel 0.996 0.991 0.993 0.996
Class II vessel 0.984 0.981 0.982 0.991
Class III vessel 0.978 0.982 0.980 0.990
Class IV vessel 0.993 0.998 0.995 0.997

Table 5. Confusion matrix of camResNet.

Class I Vessel Class II Vessel Class III Vessel Class IV Vessel

Class I vessel 1783 1 7 9
Class II vessel 2 1764 32 2
Class III vessel 3 24 1772 1
Class IV vessel 2 0 1 1769

Class I of the vessel includes three acceleration signals, three deceleration signals,
five straight-ahead signals, and seven turn signals. Class II of the vessel includes three
acceleration signals, three deceleration signals, three straight-ahead signals, and six turn
signals. Class III consists of three acceleration signals, deceleration signals, straight-ahead
signals, and five turn signals. Class IV consists of three acceleration signals, deceleration
signals, straight-ahead signals, and turn signals. The vessels of the different categories
have similar sizes but different materials, and the third category material is significantly
different to the materials from the other three. In Table 5, the probability of incorrectly
recognizing Class II of the vessel as Class III of the vessel is the highest. This is followed by
the probability of incorrectly recognizing Class III of the vessel as Class II of the vessel. This
indicates that camResNet extracts shallow physical features and deep category features,
which is related to the Doppler effect. Class II of the vessel and Class III of the vessel contain
the most similar samples in the composition structure of working conditions, resulting in
many samples with similar Doppler shifts. Table 4 shows that the recognition effects of
Class I of the vessel and Class IV of the vessel are better than Class II of the vessel and
Class III of the vessel, which may appear confusing.

The precision of Class I of the vessel is the highest, and the probability of incorrectly
recognizing Class I of the vessel as Class I of the vessel is the highest because Class I of
the vessel contains many straight samples and has a prominent stable spectrum without a
Doppler shift. Class IV of the vessel has the highest recall, which indicates that the samples
of different working conditions in Class IV are more balanced than the others and have
more stable Doppler shift characteristics than the others.
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4.3.3. Visualization of Energy Distribution by the Architecture of camResNet
Power Spectral Density

To further assess the feature extraction capability of the camResNet model, the trained
camResNet model was fed by Class IV of the vessel because the spectrogram and the
power spectral density are displayed in Figures 4 and 5. Figure 7 shows the time-frequency
diagram and the power spectral density of the output.
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Figure 7. The spectrogram and power spectrum density of Class IV with camResNet. (a,c,e) The
spectrogram of extracted features for Class IV vessel by camResNet; (b,d,f) The power spectrum
density of extracted features for Class IV vessel by camResNet.

Figure 7a,c,e show the signal after the camResNet model by Class IV of the vessel, and
Figure 4 shows the spectrogram of the original signal from Class IV vessel. The comparison
indicates that the energy of the feature is still concentrated in the low frequency after the
camResNet model. Figure 7b,d,f show the power spectrum density of Class IV of the
vessel after processing the camResNet model, and Figure 5 shows the power spectrum
density of the original signal for Class IV of the vessel. The comparison indicates that the
apparent fundamental frequency signal in the original signal still exists after processing
the camResNet model. In Figure 7, the camResNet model’s output contains not only stable
signals but also some high-frequency signals, which indicates the camResNet model can
avoid extracting unstable signals that are quickly Doppler shifted and recovers stable
signals that are submerged in high frequencies.
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t-SNE Feature Visualization Graphs

The above experiment shows that the camResNet model can extract signals of stable
frequencies in underwater acoustic signals. To further analyze the ability to extract features
by camResNet, the distance of the original features and camResNet output features is
visualized using the t-SNE method. Figure 8 shows the distance characteristics of the
original signal and the output of the camResNet model when different working conditions
are used as the input data. Figure 8a shows the t-SNE of the original underwater acoustic
signal, which indicates that the original underwater acoustic signal has weak separability.
Figure 8b shows the t-SNE of the output signals with the input of four different working
conditions in the camResNet model. Figure 8c–f show the t-SNE of the output signals
after putting straight motion, acceleration, deceleration, and turning conditions into the
camResNet model, respectively.
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Figure 8. The t-SNE visualized graphs. (a) The t-SNE visualized graphs of original hydroacoustic
signal; (b) The t-SNE visualized graphs’ output by camResNet; (c) The t-SNE visualized graphs of
straight motion by camResNet; (d) The t-SNE visualized graphs of accelerating motion by camResNet;
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From the figures, it can be seen that the camResNet model can classify all the working
condition signals well and classify each kind of working condition signals well. In particular,
the camResNet model can still classify the signals of acceleration conditions well when
the acceleration conditions contain a large number of unstable Doppler shift signals. The
classification maps show that the camResNet model can extract abstract and stable internal
features under different conditions.

4.3.4. Recognition Results for Different Data of camResNet

Three different network models were used to compare the recognition results of
underwater acoustic signals, which contained four working conditions. The models of
DenseNet and SE_ResNet have a more extraordinary ability to recognize and were used for
comparison with the camResNet model. The training method determines that the training
and test data are the same—one of four working conditions. The recognition results were
averaged by repeating the test five times, and the obtained experimental results are shown
in Figure 9. The solid blue line is the recognition rate, which uses the data of straight motion
working conditions as the training data and test data. The blue dotted line is the recognition
rate, which uses the data of turn working conditions as the training data and test data. The
solid red line is the recognition rate, which uses the data of deceleration working conditions
as the training data and test data. The yellow dashed line is the recognition rate, which
uses the data of acceleration working conditions as the training data and test data.

(1) The recognition rate of the camResNet model is higher than that of both the DenseNet
model and the SE_ResNet model. The camResNet model can extract stable features
that are effective for recognition.

(2) The recognition rate of the camResNet model under the straight motion condition is
higher than under the other conditions, which indicates that the Doppler shift can
affect the recognition of camResNet.

(3) There are different recognition rates with different working conditions containing
different Doppler shifts. The maximum recognition rate of camResNet is 0,998; the
minimum recognition rate is 0.994. The maximum recognition rate of DenseNet is
0.985, and the minimum recognition rate is 0.971. The decrease in recognition rate
due to different Doppler shifts is smaller in the camResNet model than in the other
models, which shows that the camResNet model has a better extraction of signals
with Doppler shifts.
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Figure 9. Recognition rate of cooperation targets.

The network is trained and tested using data under one working condition, which is
easy to overfit by a deeper model of DenseNet. The SE_ResNet model uses self-coding to
compress channel features but does not consider the sparse characteristics of underwater
acoustic targets. The camResNet model builds two different channel attention mechanisms,
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which fully consider the sparsity of underwater acoustic signal and the continuity spectrum,
and they have better recognition results than the other models.

The distributions of the training and test sets in the above experiments were identical.
To further verify the recognition performance of the camResNet model, three network mod-
els were trained using four working conditions and tested under one working condition.
The recognition results were averaged by repeating the test five times, and the obtained
experimental results are shown in Figure 10. The solid blue line is the recognition rate,
which uses the data of straight motion working conditions as the test data. The blue dotted
line is the recognition rate, which uses the data of turn working conditions as the test
data. The solid red line is the recognition rate, which uses the data of deceleration working
conditions as the test data. The yellow dashed line is the recognition rate, which uses the
data of acceleration working conditions as the test data.

(1) The maximum recognition rate of camResNet is 0,976; the minimum recognition rate
is 0.965. The maximum recognition rate of DenseNet is 0.957, and the minimum
recognition rate is 0.95. The recognition rate of the camResNet model is higher than
that of the DenseNet model and the SE_ResNet model, and the performance is most
evident under the deceleration condition.

(2) The recognition rates of the three network models vary smoothly under different
working conditions, indicating that all three network models can extract stable signals
from the initial signals and remove unstable frequency shifts. The camResNet model
has the most robust ability from the recognition results.

(3) Compared with identical distributions of the training and test sets, the decrease in
recognition rate due to different Doppler shifts becomes more prominent when the
distributions of the training and test sets are not identical. This indicates that the
recognition capabilities of the camResNet model with a Doppler shift are related to
the distribution of training and test sets.
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Figure 10. Recognition rate of non-cooperation targets.

SE_ResNet uses compressed information to obtain channel weights to obtain certain
stable features, so the recognition ability under different working conditions is better than
that of DenseNet. The stable signal of the Doppler shift represents multi-scale information,
which causes extract information with one scale to lose helpful information. The camResNet
model uses convolution operation to extract channel information from two aspects. The first
part uses the convolution kernel superposition to expand the perceptual field and extract
features of different scales. The second part extracts the feature from the local features of
all information. Fusing the two features as the weights of channels can comprehensively
extract the stable features under the Doppler frequency shift. Hence, the camResNet model
has better recognition results for different working conditions data containing the Doppler
frequency shift information.
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5. Conclusions

The camResNet model adds a channel attention mechanism to the ResNet model based
on the characteristics of underwater acoustic signals. This channel attention mechanism can
enhance the stable spectral features and remove the unstable signals caused by the Doppler
shifts. The experiments compare the recognition ability of six different deep-learning
models under different Doppler shift frequencies. The results show that the recognition rate
of the camResNet model is higher than that of the other network models. The camResNet
model has a recognition rate of 98.2%, which is 1.1–15.8% higher than the other networks.
The precision, recall rate, F1-score, and accuracy are used to demonstrate that the data
used in the experiments are balanced between the classes and that the experimental results
are valid. Test the effectiveness of the proposed method with the same distribution and
different distributions for the training and test sets. The three network models with
better recognition results are selected for testing. In the same training set and test set
distribution, the recognition rate of camResNet varies from 0.003 to 0.023 for different
working conditions. In contrast, the recognition rate of DenseNet varies from 0.015 to
0.019 for different distributions of the training set and test set. The results show that the
proposed method is more suitable when the training and test sets are identically distributed.
Further, using visualization methods to learn the features of the signal extracted by the
camResNet model, the results show that the camResNet model can extract the stable
multi-group harmonic signals and restore some weak high-frequency stable signals in the
original signal.

The camResNet model can effectively extract the features of underwater acoustic
signals with the Doppler shift. The following work will use the camResNet model to
recognize the underwater acoustic signals with the Doppler shift for small samples, solving
the problem of data-driven underwater acoustic signals in deep learning.
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Abstract: Scholte waves at the seafloor have significant potential for underwater detection and
communication, so a study about detecting Scholte waves is very meaningful in practice. In this paper,
the detection of Scholte waves at the seafloor is researched theoretically and experimentally. Acoustic
models with the multilayer elastic bottom are established according to the ocean environment, and a
tank experiment is designed and carried out to detect Scholte waves. Different from detecting Scholte
waves in the seismic wavefield, a technique for detecting Scholte waves in the sound pressure field is
proposed in this paper. The experimental results show that the proposed technique can detect Scholte
waves effectively, and there are no problems such as seabed coupling and the effect of wave speeds.
Furthermore, the results also show that this detection technique is still effective in conditions with a
sediment layer. The existence of sediment layers changes the acoustic field conditions and affects the
excitation of Scholte waves.

Keywords: Scholte wave detection; multilayer elastic bottom; acoustic pressure field; source depth;
propagation distance

1. Introduction

In marine settings, the waves trapped near the fluid–solid interface are called Scholte
waves [1]. Scholte waves are a kind of interface wave, and they are expected to have a longer
traveling path or less transmission loss than waves in water [2,3]. These characteristics
make Scholte waves a great prospect in underwater detection and communication, leading
to research interests in ocean acoustics. Currently, Scholte waves have been applied in
many areas, such as geoacoustic inversion [4–8], acoustic source localization [9,10], and
imaging [11]. Therefore, how to detect Scholte waves effectively has significant meaning in
ocean detection.

In existing methods, the seismic field is often applied to detect Scholte waves. Seismic
measurement equipment such as Ocean Bottom Seismometers (OBSs) [12–14] and geo-
phones [6,9] is used to record the seismic signal at the ocean bottom. Then, the velocity
characteristics in the fields can be extracted from the recorded signal [2,8]. Finally, Scholte
waves are identified according to the velocity characteristics.

In the measurement process, the seismic measurement equipment mainly records
the seismic wave signal on the seafloor through the coupling between the equipment and
seafloor, so their measurements are susceptible to the bottom type and seafloor topogra-
phy [15,16]. Compared with seismic equipment, the hydrophone is immune to these issues,
making it more suitable for measuring underwater acoustic signals.

In the stage of signal processing, the velocity characteristics of Scholte waves are
used to identify Scholte waves as mentioned above. The velocities of Scholte waves have
two features. One is slower speed, and their speeds are slower than other waves in
the acoustic field. A later arriving signal with high energy can be observed in the time
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series [9,12,17,18]. Another is that the velocities of Scholte waves are dispersive in the
waveguide [12]. Investigators have proposed many practical techniques to extract the
dispersion curve of Scholte waves, the most extensive of which is the approach based on
domain transformation [5,7,8,19–21]. The extracted dispersion curve can be used to identify
Scholte waves at the seafloor. These velocity-based approaches can identify Scholte waves
effectively when the Scholte wave velocity differs largely from the acoustic waves in water.
However, they will be invalid when the velocities are close to each other.

This paper introduces a new technique to detect Scholte waves based on acoustic
pressure field measurement and researches the detection of Scholte waves theoretically
and experimentally. Acoustic models with the multilayer elastic bottom are established.
The Scholte wave is identified according to the excitation and propagation characteristics.
Scaled-down tank experiments for detecting Scholte waves are designed and carried out.
Firstly, the detection principle is introduced. The characteristics of Scholte waves that
vary with the source depth and propagation distance are researched. Then, the scaled-
down experiment is introduced in detail. Acoustic field features in the water tank are
analyzed. Measurement and analysis results of this experiment are presented. Furthermore,
the research in conditions with sediment layers is introduced. Finally, the summary and
conclusions are presented.

2. Detection Principle
2.1. Acoustic Model

Ocean acoustic studies generally assume the ocean bottom as the fluid bottom [22],
but this assumption is not suitable for the research in this paper. The elastic bottom plays
an indispensable role in the excitation and propagation of Scholte waves, so the ocean
bottom is an elastic medium with shear waves in this research. The marine environment is
simplified into a three-layer model consisting of seawater, basalt, and peridotite, as shown
in Figure 1, based on Hamilton’s studies [23] and the results of geological surveys [24].

海水

沉积层

玄武岩层

基底层

海冰

z

x

1H

2H

Water 1 1 1, ,c 

Basalt 2 2 2 2 2, , , ,p sc c  

Peridotite 3 3 3 3 3, , , ,p sc c  

Figure 1. Schematic of the acoustic model for the marine environment. H1 and H2 are the interface
depth for “water–basalt” and “basalt–peridotite”.

The typical deep ocean environment is researched in this study. Referring to related
research [25], the media parameters in the model are shown in Table 1. The KRAKENC
program is used to analyze the acoustic field in this model. The phase velocities of the
Scholte wave and normal modes at 10 Hz are calculated and listed in Table 2. The Scholte
wave in the acoustic field is treated as the zeroth mode. These data show that the velocities
of the Scholte wave and normal modes are extremely close, which means that the Scholte
wave in the field cannot be identified using velocity features.
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A new technique is proposed to detect Scholte waves according to the excitation and
propagation characteristics.

Table 1. Parameters of the marine environment.

Media Layer i Depth ρ (g/cm3) cp (m/s) cs (m/s)

Seawater 1 3000 1 1500 -
Basalt 2 3100 2.7 5250 2500

Peridotite 3 - 3.28 6500 4000

Table 2. Phase velocities of the Scholte wave and normal modes at 10 Hz.

Order Phase Velocity (m/s)

0 1489.741
1 1500.537
2 1502.139
3 1504.784
4 1508.457

2.2. Elastic Normal Modes

In order to interpret the detection principle, an elastic normal mode solution is pre-
sented for this range-independent model with the elastic bottom. Assume that all layers
in the marine environment are isotropic media. Subscripts i = 1, 2, 3 are used to repre-
sent acoustic parameters in seawater, basalt, and peridotite, respectively. ρi is density; c1
is seawater sound velocity; cp2 and cp3 are compressional wave velocities (P wave); cs2
and cs3 are shear wave velocities (S wave). H1 and H2 represent the interface depths for
“water–basalt” and “basalt–peridotite”.

The acoustic field is expressed by velocity potentials. φ1 is the potential in water; φi
and Ψi~ey (i = 2, 3) are compressional and shear potentials in the elastic bottom, respectively.
Potentials in the water and bottom satisfy the wave equations [26].

∂2φ1

∂z2 +
∂2φ1

∂x2 =
1
c2

1

∂2φ1

∂t2 (1)

∂2φi
∂z2 +

∂2φi
∂x2 =

1
c2

pi

∂2φi
∂t2 (2)

∂2ψi
∂z2 +

∂2ψi
∂x2 =

1
c2

si

∂2ψi
∂t2 (3)

A time–harmonic plane wave with the time dependence e−iωt is considered. Subse-
quently, all potentials can be represented as follows:

φi = Zi(z)ei(kx−ωt) (4)

ψi = Zsi(z)ei(kx−ωt) (5)

where ω=2π f is the angular frequency and k = ω/c is the wavenumber. Zi(z) and
Zsi(z) are depth-dependent functions for compressional and shear waves; they satisfy the
homogeneous depth-separated wave equations.

[
d2

dz2 + (k2
i − k2)

]
Zi(z) = 0 (6)

[
d2

dz2 + (k2
si − k2)

]
Zsi(z) = 0 (7)
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The general solutions for potentials can be obtained by the free surface condition and
radiation condition at infinity.

φ1 = −2A sinh(kξ1z)ei(kx−ωt) (8)

φ2 =
(

B1e−kξ2z + B2ekξ2z
)

ei(kx−ωt) (9)

ψ2 =
(

C1e−kξs2z + C2ekξs2z
)

ei(kx−ωt) (10)

φ3 =
(

De−kξ3z
)

ei(kx−ωt) (11)

ψ3 =
(

Ee−kξs3z
)

ei(kx−ωt) (12)

where k2
i − k2 ≡ −k2ξ2

i , k2
si − k2 ≡ −k2ξ2

si, and k1 = ω/c1 is the wavenumber in water,
ki = ω

/
cpi, i = 2, 3 are compressional wavenumbers, and ksi = ω/csi, i = 2, 3 are shear

wavenumbers in the elastic seabed. A, B1, B2, C1, C2, D, and E are undetermined coefficients
for potentials.

Here, it is assumed that u is the displacement and T is the stress tensor. uix is the
horizontal displacement; uiz is the vertical displacement; Tizz is the normal stress; Tizx is
the shear stress.

The displacements are determined from the velocity potentials as follows:

uix =
1
−iω

(
∂φi
∂x
− ∂ψi

∂z

)
, uiz =

1
−iω

(
∂φi
∂z

+
∂ψi
∂x

)
(13)

According to the stress–strain constitutive relation, the following equations can
be obtained:

Tizz = ρic2
pi

(
∂uix
∂x

+
∂uiz
∂z

)
− 2ρic2

si
∂uix
∂x

, Tizx = ρic2
si

(
∂uix
∂z

+
∂uiz
∂x

)
(14)

The boundary condition at the interface between water and basalt (z = H1) is satisfied
by the continuity of the normal displacement, normal stress, and zero tangential stress.

T1zz = T2zz, u1z = u2z, T2xz = 0 (15)

The boundary condition at the interface between basalt and peridotite (z = H2) is
satisfied by the continuity of displacements and stresses.

u2z = u3z, u2x = u3x, T2zz = T3zz, T2xz = T3xz (16)

Substituting the general solutions for potentials into the boundary conditions,
Equations (15) and (16), a system of homogeneous linear equations can be obtained. Here,
we present the equations in matrix form:




a11 a12 a13 a14 a15 0 0
a21 a22 a23 a24 a25 0 0
0 a32 a33 a34 a35 0 0
0 a42 a43 a44 a45 a46 a47
0 a52 a53 a54 a55 a56 a57
0 a62 a63 a64 a65 a66 a67
0 a72 a73 a74 a75 a76 a77







A
B1
B2
C1
C2
D
E




=




0
0
0
0
0
0
0




(17)

Elements in the first matrix represent the known coefficients in the equations of the
boundary conditions. They are a function of k such that Equation (17) can be simplified
as follows:
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G(k)M=O (18)

O represents the zero vector. M represents the undetermined coefficients for the
potentials, and the values cannot be zero. The non-zero solutions for the coefficients in
vector M exist only when the determinant of matrix G(k) (det|G(k)| = 0) is zero. The
values of k that make det|G(k)| = 0 are therefore the eigenvalues for this question. Once
an eigenvalue has been found, the undetermined coefficients in M can be calculated by
solving the linear equations. There have been many methods for figuring out the values
of k, such as the Newton method [27] and bisection [25]. In order to accurately determine
the wavenumber k, the KRAKENC program [28] is used. Substituting the wavenumber
k into Equation (17), the undetermined coefficients in M can be calculated by solving the
equations. Then, the normal stresses, Tzz, can be computed by the relations between the
stresses and potentials. Acoustic pressure in water is just the negative of Tzz, according
to the definition of acoustic pressure, p = 1

iω ρ1cp1
2∇2φ1. Eventually, the pressure mode

shape function for each k can be calculated. This processing of obtaining the pressure mode
shape function will be used in subsequent analysis.

The pressure field for a single point source can be represented as a sum of the normal
modes. The Scholte wave is treated as the zeroth mode. Then, the pressure can be written
as [25]:

p(r, z) =
∞

∑
m=0

Φm(r)Ψm(z) (19)

where Ψm(z) is a mode shape function, Φm(r) is a mode coefficient, and the subscript m
is the order of modes. Here, the variable Φ0(r) is used to represent the amplitude of the
Scholte wave in the acoustic field. We assume that there is no continuous spectrum so that
the modes form a complete set. The coefficient Φm(r) can be calculated by applying the
operator (Equation (20)) to Equation (19), where ρ(z) is the media density.

∫ ∞

0
(·)Ψm(z)

ρ(z)
dz (20)

Mode analyses based on the elastic normal mode solution are applied to the acoustic
field in the model. The pressure mode shape functions Ψm(z) at a source frequency of
f = 10 Hz are illustrated in Figure 2, and the normal stress Tzz is shown in the basalt and
peridotite layer. The mode shape of the Scholte wave shows that a part of the energy is
distributed in the pressure field in seawater. It can be indicated that the excitation intensity
of Scholte waves Φ0(r) can be affected by source depths and propagation distances.

Water

Basalt

Peridotite

(a) (b) (c)

Figure 2. Pressure mode shape functions for a 10 Hz source in the ocean acoustic model. (a) Scholte
wave. (b) Mode 1. (c) Mode 2.
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The finite element method software, COMSOL Multiphysics [29], was applied to
simulate the acoustic field in the constructed model. The environmental parameters in
the simulation were kept in line with Table 1. The source frequency was f = 10 Hz, and a
vertical receiving array was set to obtain pressure in water and normal stress in the bottoms
at intervals of 10 m from 0 m to 3500 m. It should be noted that the upper limit of the
integral in Equation (20) is infinity, but in this model, it can be found from the mode shape
function in Figure 2 that the model distribution at a depth of 3500 m is approximate zero, so
it is reasonable to truncate at this depth. Then, the Scholte wave amplitude in the pressure
field can be obtained using the mode decomposition method. Figure 3a shows Scholte
wave amplitudes, with different source depths, at a 3000-m horizontal distance from the
source. The result indicates that the excitation intensity of the Scholte wave increases
gradually with the increase of the source depth. It could also explain that Scholte waves
can be excited efficiently when the source is at the seafloor or very close to the seafloor.
Moreover, Scholte wave amplitudes can vary with range during propagation. When the
source depth is SD = 2950 m, the Scholte amplitudes drop monotonically with propagation
distance increasing, as shown in Figure 3b.

(a) (b)

Figure 3. (a) Scholte wave amplitude versus source depth. The red dotted line is the mode shape
for the Scholte wave and the black line is the simulation result. (b) Scholte wave amplitude versus
propagation distance.

The simulation results indicate that the amplitude of the Scholte wave increases with
an increase in source depths and decreases with an increase in propagation distance. These
two characteristics can be applied to detect the Scholte wave, and a water tank experiment
is designed according to this principle.

3. Tank Experiment
3.1. Acoustic Field Analysis for the Laboratory Environment

The acoustic model in Figure 1 is scaled down to laboratory size based on the similarity
principle. Due to the close velocities, basalt and peridotite in the seabed are modeled by
brass and iron slabs. Table 3 lists a scale model presented at a scale of 1:5000, where the
depth and frequency were appropriately modified. Here, the source frequency is 50 kHz,
and the water depth is 0.6 m.
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Table 3. Parameters of the marine environment.

Media Layer i Depth ρ (g/cm3) cp (m/s) cs (m/s)

Water 1 0.6 1 1485 -
Brass 2 0.62 8.54 4640 2050
Iron 3 0.64 7.7 5850 3230

Figure 4 shows the pressure mode shape functions Ψm(r) of the Scholte wave and
normal modes for a 50 kHz source in the water tank. It is illustrated that the mode shape
functions in two environments agree well by comparing the results in Figures 2 and 4.
Moreover, it reveals that the parameters for the scale model experiment are correct.

(a) (b) (c)

Figure 4. Pressure mode functions for a 50kHz source; the red circles represent the receiver positions.
(a) Scholte wave. (b) Mode 1. (c) Mode 2.

3.2. Experiment Settings

The scale model experiment was performed in a water tank (L:3 m × W:2 m × H:1
m). Reflection waves from the tank’s walls are absorbed by absorbing wedges. The tank is
filled with water to a height of 0.6 m, where the sound speed in water is measured to be
1485 m/s. A spherical transducer, the source level of which is measured at approximately
140 dB (re 1 µPa.m/V) in the frequency range used in the experiment, is used as the source.
An RHCA-7 hydrophone is used as the receiver. The sensitivities of the hydrophones
are about −210 dB (re 1 V/µPa) in the frequency range from 20 to 100 kHz. The vertical
array, including 119 receiver elements, is obtained by the synthetic aperture method. The
source and receiver hydrophones are positioned in water using a robotic apparatus (with
an accuracy of 0.01 mm), which allows for accurate positioning. The hydrophone measures
depth from 0.5 to 59.5 cm; the depth interval is 0.5 cm. Figure 4 shows the receiver
positions in the form of red circles, and the configuration of the experiment equipment is
demonstrated in Figure 5.

3.3. Experimental Data Analysis

The source radiates ten cycles of sine waves at a frequency of f = 50 kHz in 1 s time
intervals. Figure 6a shows the output signal of a power amplifier, which is used as a
reference signal for a measurement with a vertical array of 119 hydrophones. Figure 6b
demonstrates the received waveform of a hydrophone, which represents the temporal
correlation between the received sound pressure by the hydrophone and the reference
signal. By the temporal correlation, the virtual receiving array plays the same role as real
receiving arrays of the same length. Therefore, the received waveforms by the virtual array
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are used to obtain the complex sound pressure required for identifying Scholte waves. To
eliminate the effects of reverberation in the water tank, received waveforms are truncated
by assuming that the pulse duration of the received signal from the source is almost the
same for each hydrophone, and the truncated waveform is shown in Figure 6c.

Brass

Iron

sand

NI equipment

Data Collection

AFG1022

Signal Generator

L6

Amplifier

0.6m

1.5m hydrophonetransducer

AST-2 Acoustic Wedge

Stepper Motor

Figure 5. Diagram of the experimental system setup.

(a)

(b)

(c)

Figure 6. (a) Reference signal for a vertical array measurement; (b) the received waveform of a
hydrophone with a source depth of SD = 55 cm (temporal correlation between the received sound
pressure and the reference signal); (c) the truncated waveform adopted for identifying Scholte waves.

By the fast Fourier transform of truncated waveforms, we obtain the sound pressure
p(r, z) for the hydrophone at different positions. The sound pressure at 50 kHz is extracted
to compose the matrix P, including 119 elements in the depth direction. The mode shape
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functions in the water tank are demonstrated in Figure 4. Finally, the amplitudes of the
Scholte waves can be extracted using the mode decomposition.

Ten positions were set evenly for the source in the depth range from 0.1 to 0.55 m; the
hydrophone array was at a horizontal distance of 0.6 m away from the source. The result
in Figure 7a shows the normalized amplitudes of the Scholte wave and normal modes for
a source depth of SD = 55 cm. It was demonstrated that the Scholte wave has the largest
amplitude for this source depth, and the amplitudes of each mode in the experiment are
in excellent agreement with the simulation result. This result shows that the water tank
experiment is feasible and the processing for experimental data is correct. The Scholte wave
amplitudes in the experiment field that vary with source depth are presented in Figure 7b.
The results reveal that the tendency of the excitation amplitudes of Scholte waves in the
experiment is consistent with the theoretical calculations.

(a) (b)

Figure 7. (a) Normalized amplitudes of the Scholte wave (0th order) and normal modes for the source
depth, SD = 55 cm. The blue circle is the result of the water tank experiment and the red line is the
simulation result. (b) Normalized amplitudes of the Scholte wave versus source depth. The blue
cross is the result of the water tank experiment; the black line is the simulation result; the red dotted
line is the mode shape function of the 0th mode.

Seven positions were set evenly for the receiving array within the horizontal range of
0.15–1.05 m away from the source, and the source was maintained at a depth of SD = 0.55 m.
Scholte wave amplitudes in the experiment field that vary with the propagation distance
are presented in Figure 8. It is shown that the Scholte wave amplitudes decrease as the
propagation distance increases. The tendency of Scholte wave amplitudes in the experiment
agrees well with the simulation result. These results show that the detection technique
proposed in this paper can detect the Scholte wave at the seafloor successfully.

Figure 8. Scholte wave amplitude versus propagation distance. The blue cross is the result of the
water tank experiment, and the black line is the simulation result.
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4. Sediment Effect
4.1. Experiment Setting

In practice, there are many types of seafloor sediments. Here, silt was used as the
sediment in the water tank experiment. Two cases, a sediment layer thickness of 1 mm
and 12 mm, were considered in this research. The corresponding thickness is 5 m and
60 m in the ocean environment according to the scale of 1:5000. The sediment layer in
the experiment was very thin, so it was treated as a liquid sediment layer. The model
parameters for a 1 mm thickness are listed in Table 4. Here, the thickness of silt is 1 mm.
The sediment layer in the water tank experiment and the result of thickness measurement
are shown in Figure 9.

Table 4. Media parameters and sizes in the tank experiment.

Media Layer i Depth ρ (g/cm3) cp (m/s) cs (m/s)

Seawater 1 0.6 1 1500 -
Silt 2 0.601 1.2 1600 -

Basalt 3 0.621 8.54 4640 2050
Peridotite 4 0.641 7.7 5850 3230

(a) (b)

Figure 9. (a) The silt sediment layer in the water tank experiment. (b) Silt sediment with a thickness
of 1 mm.

The study above proved that the detection technique is valid for detecting Scholte
waves at the seafloor. The same technique was applied to the condition with a sediment
layer. Mode shapes in this acoustic model can be obtained by the elastic mode solution
presented in the theoretical analysis. The process of experimental measurement is similar
to the previous experiment, so no more details are provided here.

4.2. Experimental Results

Figure 10 shows the dependence of the mode amplitude for the Scholte wave and
normal modes in the sound field on source depth. The hydrophone array was at a horizontal
distance of 0.6 m away from the source. Here, the theory is the mode shape function Ψm(r)
for each mode. It can be seen from the figure that the results of the experiment and theory
agree well with each other. This result indicates that treating the silt as fluid sediment is
reasonable, and the Scholte wave can still be excited under this condition.

The experiment was repeated by changing the thickness of the sediment layer to
12 mm. Figure 11 shows the experimental results for the thickness of the sediment layer
being 12 mm. It can be found that no Scholte wave is excited in the sound field under this
condition, and the experimental results of normal waves in water are in good agreement
with the theory.
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(a) (b) (c)

Figure 10. Mode amplitude versus source depth for the Scholte wave and normal modes (thickness
of sediment is 1 mm, source frequency f = 50 kHz). The blue cross is the experimental result, and the
black line is the theoretical result (mode shape function). (a) Scholte wave. (b) Mode 1. (c) Mode 2.

(a) (b) (c)

Figure 11. Mode amplitude versus source depth for the Scholte wave and normal modes (thickness
of sediment is 12mm, source frequency f = 50 kHz). The blue cross is the experimental result, and the
black line is the theoretical result (mode shape function). (a) Mode 1. (b) Mode 2. (c) Mode 3.

The presented results show that the sediment will affect the excitation of Scholte
waves. When the sediment layer is thin (the thickness of sediment is 1 mm, and the acoustic
wavelength is about 3 cm), the existence of the sediment layer does not affect the excitation
of Scholte waves. When the thickness of the sediment layer increases, there is no Scholte
wave mode in the acoustic field. Moreover, The results also show that the Scholte wave
detection method proposed in this paper is feasible in the sedimentary layer environment.

5. Discussion

Unlike existing methods, this paper proposed a new detection technique based on
the acoustic pressure field measurement for identifying Scholte waves according to the
excitation and propagation characteristics of Scholte waves. The experimental results show
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that the detection technique can detect Scholte waves at the seafloor. There are certain
discrepancies in the details between the experiments and calculations in this study. Here,
the error analysis was performed. Due to the amplitudes of Scholte waves being extracted
by mode decomposition in this research, the orthogonality between Scholte and normal
modes waves is essential for the results’ accuracy. Theoretically, the upper limit of the
integral in Equation (20) is infinity, but only the range of the water depth can be measured
in practice, so the modes cannot be strictly orthogonal. Figure 12 shows the orthogonal
coefficients of the Scholte mode (0th mode) and each mode in the water column. The
Scholte mode is not strictly orthogonal to higher-order normal modes. Therefore, this could
be the cause of errors in the amplitudes of Scholte waves.
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Figure 12. Orthogonal coefficients of the Scholte mode (0th mode) and each mode in water.

The acoustic field in this experiment would change when the sediment is added to
the model as one layer of the multilayer medium. The normal modes were also changed
due to the existence of the sediment layer. This problem still needs further theoretical and
experimental research for different seafloor environmental conditions.

6. Conclusions

This paper introduces a new detection technique for Scholte waves at the seafloor. Ac-
cording to the actual ocean environment, a series of laboratory experiments with the scaled
model of the elastic ocean bottom were designed and performed to detect Scholte waves
at the seafloor. The study shows that Scholte wave amplitudes depending on different
source depths and propagation distances are in good agreement with the theoretical results.
These results indicate that the Scholte wave at the seafloor was detected successfully by
the technique.

Furthermore, treating the silt layer in the laboratory experiment as fluid sediment is
valid in this study. Some conclusions about the effect of sediment can be reached. When
the sediment layer is thin, the existence of the sediment layer does not affect the excitation
of Scholte waves. When the thickness of the sediment layer increases, there is no Scholte
wave mode in the acoustic field. Moreover, The results also show that the Scholte wave
detection method proposed in this paper is feasible in the sedimentary layer environment.
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