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Abstract: This Special Issue focuses on the data, methods, techniques, and empirical outcomes of
urban heat island studies from a time and space perspective. We showcase research papers, empirical
studies, conceptual or analytic reviews, and policy-related tasks to help achieve urban sustainability.
We are interested in target methodologies and datasets capturing urban heat island phenomena,
including novel techniques for urban heat island monitoring and forecasting with the integration
of remote sensing and GIS, the spatial relationship between urban heat island intensity and land
use/cover distribution in metropolitan areas, the geographical patterns and processes of urban
heat island phenomena in large cities, spatial differences in urban heat island intensity between
developing and developed countries, urban heat island disaster mitigation and adaptation for future
urban sustainability, and prediction and scenario analysis of urban heat island formation for policy
and planning purposes.

Keywords: urban remote sensing; land surface temperature; urbanization; sustainable cities; impervious
surface; spatial analysis

1. Introduction

The urban heat island (UHI) phenomenon, which is related to rapid urbanization,
has attracted considerable attention from academic scholars and governmental policy-
makers because of its profound influence on citizens’ daily lives [1]. The UHI effect
has negative human impacts, including indirect economic loss, poor air quality, reduced
comfort, imbalanced public health, and increased mortality rates [2,3]. The temperature
difference between the center and the periphery is expanding, especially in large cities,
which may result from land use/cover composition changes and increasing anthropogenic
heat sources [4]. According to a United Nations estimate, nearly 54% of the world’s
population currently resides in urban regions, and by 2050, that number is expected to
rise to 66% [5]. Urbanization is expected to add another 2.5 billion people to the global
population by 2050, with Asia and Africa accounting for more than 90% of the growth.
If traditional city planning continues without considering environmental factors, living
conditions may be seriously degraded.

Therefore, the monitoring and modeling of urban heat island formation is important
for management and sustainable development, especially in developing countries. This
Special Issue focuses on the data, methods, techniques, and empirical outcomes of urban
heat island studies from a geographical perspective, i.e., a time and space viewpoint. A
total of 14 articles and 1 review paper are included in this Special Issue, all contributing
to the field of sustainable urban development. The included studies highlight four points
of importance:

(1) The spatial relationship between urban heat island intensity and land use/cover
distribution in metropolitan areas;
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(2) Geographical patterns and processes of urban heat island formation in large cities
based on empirical studies;

(3) Spatial differences in urban heat island intensity between developing and devel-
oped counties;

(4) Useful methodologies and datasets for capturing urban heat island phenomena.
This Special Issue discusses the latest developments in these subjects, providing a

review of recent geographical research on UHI effects. In the editorial, we first examine
current UHI trends and discuss the impact factors of the land surface temperature (LST)
in various case studies. The selected papers highlight the regional climatic parameters,
topography, size, and population of each city, as well as urban materials and the distribution
of green spaces, all of which affect changes in UHI intensity. Finally, we emphasize the
significance and contribution of urban environmental studies and discuss sustainable
development prospects for future UHI studies.

2. Current Trends in UHI Formation

With the rapid pace of industrialization and urbanization in recent decades, the UHI
effect has gradually harmed our daily lives. Therefore, scientists and planning authorities
have increasingly focused on mitigating the impact of UHIs by allocating land use/cover
distribution and considering air ventilation in urban center planning. As a result, a growing
number of UHI studies have been conducted.

Most UHI mitigation research concentrates on urban landscapes and building design in
an effort to avoid intensive development that causes the loss of green spaces and an increase
in impervious surfaces, which cause overheating in urban centers [6,7]. Considering that
spatial structure and urban growth are not consistent across cities, long-term spatiotemporal
monitoring should be carried out for various types of cities [8].

Twenty-one cities from four nations were targeted as case studies in this Special Issue.
All included studies have one thing in common: population growth and urban expansion
exacerbated UHI phenomena. However, water and green spaces were found to lessen the
effects, especially in the central area.

Each study examined the spatial influence on UHIs by employing a different method-
ology. For example, Wang et al. created 12 functional construction land zones based on
various social and economic indicators to examine how they contributed to the changes in
the urban thermal environment [9]. We can deepen our understanding of urban thermal
warming mechanisms by exploring diverse functional land zones. Another study proposed
new macro-perspectives for reducing UHI phenomena by redistributing land use/cover.
Zheng et al. attempted to detect cooling effects and scales using Landsat 8 Operational Land
Imager/Thermal Infrared Sensor (OLI/TIRS) and Sentinel-2 data [10]. They demonstrated
the application of a distance–LST scatter diagram and a multiple linear regression method,
taking two inner city lakes as study objects. According to their findings, a high density
of green spaces, combined with dispersed, modest structures, may aid in extending the
cooling effect of inner lakes.

Shi et al. compared daytime and nighttime LSTs to explore the general spatial distribu-
tion of urban thermal environments [11]. They provided a valuable method to characterize
the UHI effect more effectively and illustrate its evolution during the day. Moreover,
Zhou et al. investigated the driving factors based on the temporal and spatial variation
in LSTs in Zhengzhou [12]. Their findings showed a positive correlation between human
activity and LSTs, accelerating the UHI effect. Although the cooling effect of vegetation
and water was superior to that of topography, the role of albedo on LSTs confirmed the
geographical variation.

Investigations into how the design and layout of the landscape may impact the LST on
the city scale are vital. Sarif et al. examined the influence of land indices on the dynamics of
LSTs from the city center to the periphery to debate the directional profiling of LSTs [13]. In
Prayagraj City, the LST distribution was lower in the forested regions than in the built-up
areas, bare soils, and sands. Meng et al. highlighted that various land cover patterns
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are considerably influenced by the spatial distribution of LST [14]. Karunaratne et al.
conducted a study on the temperate mountain valley metropolis of Kathmandu, Nepal [15].
Similar to other studies, where the mean LST tended to shift in an east–south–north–west
pattern, consistent with urban growth, the mean LST tended to be higher in the city’s core.
In Kathmandu, the LST pattern is influenced by both valley wind and urban heat island
circulation. The valley wind is affected by the heat island circulation in a specific way,
demonstrating that during the daytime, the valley wind speed slows down, and the LST
difference reduces between the metropolitan region and the mountain slopes. On the other
hand, mountain wind speeds rise at night, and the LST differential between them tends
to increase.

Derdouri et al. examined the relationship between land use/cover changes and surface
UHI in large cities [4]. In a systematic review, the authors attempted to synthesize, contrast,
and critically evaluate numerous empirical studies conducted between 2001 and 2020,
including regional characteristics, data sources, techniques for classifying land use/cover
and quantifying surface UHI, and mechanisms of interaction between surface UHI intensity
and land use/cover. Finally, by discussing spatial and temporal changes in land use/cover,
they suggested concrete alleviation actions. Such a study can support decision-making and
pave the way for future academic research, particularly in vulnerable cities that have not
received considerable attention to date.

3. Prospects of UHI Formation

We can identify two directions for future UHI research: mitigating the impact of UHI
formation and adapting to UHI effects on sustainability.

Over the past two decades, UHI-related studies have shown remarkable progress [4].
However, case studies of UHIs are more than just a distinction between developed and de-
veloping cities because architecture and urban design vary among cities. Many researchers
have discovered that urban patches with varying densities of vegetation significantly im-
pact LST formation, although this phenomenon has not been investigated scientifically
in detail.

Zhang et al. discussed the relationship between urban vegetation components and
LST distribution in Xuzhou City, China [16]. Their findings demonstrate that essential
aspects in controlling the thermal environment include spatial distribution features such
as patch proportion, natural connection degree, predominance degree, shape complexity,
and aggregation degree of areas with a high vegetation density. The distribution, scale, and
heat-reducing properties of different landscapes should be analyzed to capture the future
trends in UHI patterns. In addition to water and wetlands, surface and roof materials
should be re-investigated for their cooling effects.

One of the primary concerns with UHIs in geographical studies is that climate change
adaptation may be more costly in urban compared to non-urban locations, owing to the
increase in UHI intensity. Therefore, future UHI research is expected to evaluate the urban
thermal security pattern and suggest future planning strategies that provide a favorable
layout based on sustainable development goals to mitigate the consequences of UHIs.

Sismanidis et al. explored the differences in the seasonal hysteresis of surface urban
heat island intensity (SUHII) between climates [17]. They offer a thorough typology
of the daytime and nighttime SUHII hysteresis loops. The analysis results reveal that
the seasonal hysteresis of the SUHII exhibits twisted, flat, and triangle-like patterns, in
addition to concave up and down forms. Furthermore, Hu et al. proposed a regional
heat island network based on circuit theory simulation [18]. They discussed the locational
characteristics of UHI patches and the spatial patterns of collaborative optimization in
Wuhan City, China.

With the acceleration in urbanization, urban areas continue to spread out, with a
decreasing distance between urban core areas. As a result, urban agglomeration or conurba-
tion has developed with accompanying UHI formation. An integrated research framework
to assess the spatial effects of multiple environmental circumstances on habitat quality was
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developed by Liu et al. [19]. By highlighting the connections and interactions between
various environmental challenges in urban agglomerations and ecosystems, the authors
discussed the importance of the designed multidimensional sustainability and co-benefits.
Liu et al. also investigated urban agglomeration, taking the Pearl River Delta, China, as
the study area [20]. Compared with cities with low urbanization rates, the authors showed
that the effect of land cover and socioeconomic determinants on the daytime LST was more
significant in highly urbanized cities.

Integrating machine learning algorithms with remote sensing data is an important
topic that has received considerable attention. Applying regression analysis and machine
learning algorithms, Garzón et al. evaluated modeling techniques to assess the impact of
various elements on surface UHIs [21]. In this paper, an attempt was made to illustrate the
applicability of machine learning algorithms in the surface mapping of UHI intensities by
quantifying surface UHIs using different contributing parameters.

4. Contributions to Future UHI Studies

To summarize this editorial, we chart the progress in related UHI studies. The UHI
phenomenon is prevalent in various cities. An effective urban design reduces UHI for-
mation while simultaneously achieving the objectives of sustainable development. As
is customary, remote sensing serves as the primary data source for the analysis of the
correlation between UHI intensity and urban dispersion. However, a considerable debate
continues about whether the data sources are reliable enough to accurately reflect the
features of cities (e.g., 2D or 3D building data). Do we need to focus on gathering actual
big datasets for each building (such as building type and building height), or does the
suitable size of the urban area suffice? These and other concerns are addressed, in part, in
this editorial (Section 3), although they remain challenges to be solved in the future.

For researchers and city planners, we hope that this Special Issue will inspire novel
concepts and methods that can lead to theoretical comprehension and practical application
with respect to UHI formation and effects.
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Abstract: An urban heat island (UHI) is a serious phenomenon associated with built environments
and presents threats to human health. It is projected that UHI intensity will rise to record levels
in the following decades due to rapid urban expansion, as two-thirds of the world population is
expected to live in urban areas by 2050. Nevertheless, the last two decades have seen a considerable
increase in the number of studies on surface UHI (SUHI)—a form of UHI quantified based on
land surface temperature (LST) derived from satellite imagery—and its relationship with the land
use/cover (LULC) changes. This surge has been facilitated by the availability of freely accessible five-
decade archived remotely sensed data, the use of state-of-art analysis methods, and advancements in
computing capabilities. The authors of this systematic review aimed to summarize, compare, and
critically analyze multiple case studies—carried out from 2001 to 2020—in terms of various aspects:
study area characteristics, data sources, methods for LULC classification and SUHI quantification,
mechanisms of interaction coupled with linking techniques between SUHI intensity with LULC
spatial and temporal changes, and proposed alleviation actions. The review could support decision-
makers and pave the way for scholars to conduct future research, especially in vulnerable cities that
have not been well studied.

Keywords: urban heat island (UHI); land use land cover (LULC); land surface temperature (LST);
spatiotemporal changes; SUHI-contributing factors; satellite imagery; literature review

1. Introduction

Since the start of the industrial revolution in Great Britain circa the 1780s [1], substan-
tial urban expansion and population growth have been observed in industrialized countries.
To put things in perspective, there were fewer than 50 cities with over 100,000 residents in
1800, there were approximately 900 cities in 1950 [2], and there were thousands of cities
in 2019 [3]. In fact, by the end of the last century, almost 370 cities had over one million
inhabitants worldwide, which increased to 584 in 2018, and it is estimated to reach 706 cities
by the end of 2030 [4]. Though these accelerated trends have contributed to economic
growth and social development in many parts of the world, they have also led to several
environmental issues at different scales. Urban heat islands (UHIs) are perhaps the most
evident and most documented manifestation of these radical anthropogenic activities.

UHI, also known as an “urban heat sink” or an “oasis effect” [5], refers to the phe-
nomenon that occurs in urban areas (UAs) that involves an excessive increase in interrelated
air, subsurface, and surface temperatures compared to those observed in underdeveloped
surroundings [6]. The common term “heat island”—reportedly coined by British climatolo-
gist Gordon Manley in 1958 [7]—was given its name because the resulting spatial shape of
the isotherms creates one or more island-like features [8]. The UHI phenomenon was first
documented by Luke Howard over 200 years ago in his study of London’s climate, where
he found fluctuations in temperatures measured in the city and its rural surroundings
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during daytimes and nighttimes—the city had 3.7 ◦F warmer nights and 0.34 ◦F colder
days than the countryside [9]. Statistically, UHIs have been documented in over 1400 cities
across the globe in all continents without exception [10].

Urbanization has been highlighted in numerous studies as the leading culprit behind
UHIs. Economic growth usually drives new UAs to accommodate new industrial and
commercial hubs and ultimately build connecting transportation networks and new res-
idences, especially for a floating population hoping for stable life away from numerous
hardships and the lack of opportunities associated with rural areas. Perhaps, urbanization
leads to social stability and economic prosperity; on the other hand, land cover conversion
to urban uses has detrimental effects on the balance of the natural environment. Natural
surfaces, including vegetation and water bodies, contribute to the balance of energy heat
fluxes because they are excellent solar radiation absorbers. Vegetation uses a significant
amount of the absorbed radiation through evapotranspiration to release water vapor that
subsequently helps to cool the air in their proximity [11].

Additionally, vegetation reduces surface temperatures by offering a shading layer that
shields land surfaces from direct sun radiation [12]. Water bodies provide cooling effects,
much as vegetation does, as they provide a source for moisture capable of lowering nearby
ambient temperatures. By contrast, impervious surfaces (ISs) such as concrete (buildings)
and asphalt (streets) halt the interchange of heat between different environmental compo-
nents because of their low reflectivity and capacity to absorb solar radiation [13], leading to
heat imbalance and, consequently, local climate change. Ultimately, the alteration of previ-
ous surfaces to ISs introduces perturbations into the balance of the local climate, resulting
in UHIs. Moreover, the heat emitted by traffic, industries, factories, and air conditioners
contributes to increasing the local temperature [14]. Additionally, the amount of airflow is
reduced as narrow streets and tall buildings trap heat, thereby intensifying the heat island
effect [14].

In the short and long term, UHIs have severe implications for many areas of life on
earth, including socioeconomic and environmental issues. Air pollution may increase
because of UHIs, daytime temperatures become warmer, and nighttime cooling becomes
less effective [15]. These alterations lead to discomfort and an increase in human premature
mortality rates due to excessive heat. In fact, extreme heat is a primary contributor to
the rise in weather-related human mortality [16–18]. Between 1991 and 2018, 37% of the
world’s heat-related fatalities may have been linked to human-caused global warming [19].
Additionally, because of UHIs, urban rain islands can form, resulting in greater precip-
itation during the flood season in flood-prone places and leading to waterlogging at a
regional scale [20]. In Jinan City, for instance, it has been proven that the URI effect is
spatially correlated with that of the UHI, resulting in an increased frequency and severity
of short-duration precipitation episodes [21]. During the rainy season, areas with intensive
construction receive more rain. With so much rain concentrated in urbanized areas, which
are characterized by low surface infiltration capacities, the city has become more and more
vulnerable to floods.

The UHI phenomenon is also an obstacle to achieving sustainable development. In
2015, the United Nations provided the 17 Sustainable Development Goals (SDGs), four
of which are directly or indirectly related to UHIs. UHIs comprise one of the significant
reasons for apparent temperature increases, which have the potential to be particularly
serious for heat-associated deaths (SDG 3 (Good Health and Well-Being)), and people who
are living in high-temperature areas also have increased electricity bills (SDG 7 (Affordable
and Clean Energy)). Additionally, high-rise and -density buildings lead to UHIs and can
affect the quality of eco-environments in living areas (SDG 11 (Sustainable Cities and
Communities)). UHIs can also influence urban microclimates, and in the long run, their
effects could indicate global warming (SDG 13 (Climate Action)). According to the United
Nations, 60% of the world’s people (around 5 billion) will live in UAs by 2050. The increase
in urban populations will be the cause of urban agglomeration, and then UHIs will become
more obvious. Therefore, the proper awareness and analysis of the relationship between
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UHIs and land use land cover (LULC) changes, as well as how to relieve the UHI effect by
urban planning, are crucial for achieving the SDGs.

Broadly, UHIs can be categorized into two types: surface UHIs (SUHIs) and atmo-
spheric UHIs (AUHIs). Several aspects differentiate the two UHI forms, as summarized
by Sharma and Joshi [22]: (i) day/night prominence: during daytimes and nighttimes,
SUHIs are prominent, while AUHIs are mainly noticeable at night [23]; (ii) seasonal vari-
ations: during wintertime, AUHIs are more intense than SUHIs and vice versa in the
summertime [24,25]; (iii) UHI intensity (UHIi): SUHI intensity generally tends to be much
higher than AUHI intensity [26]; (iv) data sources: while AUHI measurements are mostly
retrieved from ground-based meteorological stations network and field surveys, SUHI
measurements are quantified using airborne or satellites thermal data [27,28]; and (v) ideal
observation time: nighttimes under a clear sky and calm conditions are the best times for
investigating AUHIs, but thermal data taken during the daytimes are more suitable for
investigating SUHIs [29].

Furthermore, Oke distinguished two types of AUHIs [30]: the urban canopy layer
(UCL) and the urban boundary layer (UBL). A UCL is formed by microscale activities
occurring in urban streets—often referred to as “canyons”—that connect buildings situated
under the roofline [31]. By contrast, a UBL is a localized mesoscale phenomenon that is
influenced by the nature of the urban topography above the roofline [31]. Fixed and mobile
instruments can be used to observe UBLs and UCLs. While the most common devices used
to monitor UCLs are fixed screens and automobiles, UBLs can be observed using fixed tower
sodars or aircrafts and tetroons [32]. However, these instruments and techniques are time-
and budget-consuming, especially when focusing on city-, metropolitan-, or mega-city-scale
and regional studies. Moreover, the availability of historical or up-to-date measurements is
another obstacle that hinders investigating historical trends of AUHIs. Conversely, using
satellite-derived data, spatiotemporal studies of SUHI distribution may be conducted in a
cost-effective and time-saving manner [33] at local and regional scales.

The use of remotely sensed data to study urban climate started in the 1970s as a result
of successful observational satellite programs such as Television InfraRed Observational
Satellite (TIROS), Nimbus, Environmental Science Services Administration Satellite (ESSA),
and Landsat, resulting in the launch of several satellites—notably TIROS-1 (1960), Nim-
bus series (1964–1978), ESSA-1 (1966), and Landsat series (since 1972). Reportedly, Rao
may have been the first to show that satellite imagery can be used to investigate urban
climate [34]. Through his study, he investigated surface temperature trends in cities across
the Mid-Atlantic coast of the US using the infrared radiometer (IR) data of TIROS-I. Sub-
sequently, other studies using similar approaches followed. For instance, Matson et al.
used NOAA-5 satellite data to identify nocturnal UHIs in the Midwest and Northwestern
US [35], and Price investigated UHIs in New York City and the New England region [36].
Taking advantage of the significant advancements in computing software and hardware in
the last two decades, researchers have been able to concisely investigate SUHIs and their
driving factors vis-à-vis LULC in different regions of the world, relying on sophisticated
developed techniques to retrieve land surface temperatures (LSTs) and extract LULC infor-
mation from freely accessible historical satellite data covering almost half a century of data.
Particularly, Landsat series data have been extensively used to evaluate the connection
between LULC and LST.

Several review studies have been published in recent years that summarize our knowl-
edge on SUHIs from multiple perspectives, including LST retrieval methods from thermal
sensors [37], exploring factors amplifying its intensity [38], and mitigation strategies [39].
Deilami et al., for instance, focused on how spatial factors (e.g., LULC and urban form),
dynamics, and temporal variations (e.g., yearly and seasonal) impact SUHIs. The authors
reviewed studies published between 1965 and 2017 [38]. In a broad yet comprehensive
review, Zhou et al. explored several aspects based on the literature published from 1972
to 2018 [10]. The authors investigated the popular thermal sensors and methods used to
retrieve SUHIs from them in addition to the main drivers of SUHI variations. While most
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review studies have focused on a worldwide geographic scope, others have focused on a
concise geographic scale limited to a region or even a country. Kotharkar et al., for instance,
concentrated their review on South Asian cities because the region hosts approximately 15%
of the world’s population [40]. The authors reviewed published papers between 1973 and
2017, with a primary focus on investigating empirical measurements of UHIs, observation,
modeling, their impact, and proposed mitigation strategies.

In this review paper, however, we focus on how spatial and temporal changes of
different factors, in particular those related to LULC, have impacted SUHIs in cities across
the globe from the turn of the 21st century till the present. In addition to the characteristics
of the reviewed literature in terms of annual trends, sources, and geographical coverage,
a detailed key points analysis that concerns five critical topics was conducted: (1) the
primary data sources and methods employed for extracting LULC and retrieving LST infor-
mation, (2) the methods used for evaluating LULC and SUHIs, (3) the most common factors
deemed critical in affecting SUHI magnitude across time and space, (4) an overview of the
proposed mitigation strategies, and finally (5), the main limitations and future directions.

With that in mind, the overall structure of this review takes the form of five sections,
excluding this introductory section. Section 2 is concerned with the followed review
methodology, specifically the selection criteria of the reviewed literature and the main
considered databases. Section 3 presents a general synopsis of the findings of the review,
focusing on the synthesis of the literature and geographical coverage of the reviewed
studies. In Section 4, a detailed analysis of the obtained results focusing on seven key ele-
ments is presented: (i) the main satellite data sources, (ii) the methods of LULC extraction,
(iii) the methods of SUHI quantification, (iv) the assessment methods of the relationship
between LULC and SUHIs, (v) the main factors affecting UHIs, (vi) the proposed mitigation
strategies, and lastly (vii), the future challenges and areas for further research. Section 5
summarizes the findings.

2. Review Methodology

In this review, we concentrated on the literature focusing on connections between
LULC spatiotemporal changes and UHIs, specifically SUHIs extracted from satellite images.
For that reason and because satellite images have become more accessible, we concen-
trated on studies published in the last two decades—precisely between January 2001 and
November 2020. The management of remotely sensed data has become easy, thanks to the
advancement of GIS in terms of software and hardware (computer performance). Three
databases were explored, namely: Scopus, Web of Science, and Google Scholar. Further-
more, only peer-reviewed journal articles written in English were retained. Conference
papers, book chapters, reports, and other types were excluded.

Regarding the followed inclusion strategy, we employed a four-step approach (Figure 1)
to screen the existing literature. First, we identified published papers based on a broad
search query. Considering the varying terminology employed by researchers, we built
search queries by combining possible variants of key terms including: “UHI”, “urban
heat island”, “land use”, “LULC”, “spatiotemporal”, and “satellite image”. Second, we
conducted an initial assessment of the resulting papers based on their titles and abstracts.
We excluded unrelated papers, including health- and energy-focused and climatology-related
papers—notably those concerning simulation and numeric modeling. Third, a deeper
screening was conducted to further refine the resulting papers from the previous screening
based on the content of each paper, following the filtering out of duplicated papers collected
from the three considered indexing databases. Through this deep screening, we ensured
that the included manuscripts satisfied the following requirements:

• At least two-date satellite images were used to analyze changes of LULC and SUHIs.
• The authors explicitly assessed the relationship between the different LULC classes

and SUHIs.
• The study was city-focused; district-level and regional-level studies were excluded.
• For multicity studies, we considered each city as a case study.
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Figure 1. Methodological flowchart.

This process yielded a total of 110 eligible papers out of 1300 (duplicates included)
initially found, based on selection queries. Three other studies that fit our inclusion
criteria were added because they were not included in the query-based search results.
Relevant attributes for each retained manuscript—including author(s), title, source, year of
publication, and keywords—were collected. Additionally, we gathered the characteristics
of the target area(s), namely: country, climate region, type (i.e., landlocked or coastal), and
size (via population and/or spatial extent). Information related to spatiotemporal LULC
changes was also recorded. We focused on study period, data sources, considered seasons,
day/night, and LULC extraction method(s). A detailed list of all included studies with a
brief description of used methods, the characteristics of the study area(s), and results is
presented in the Supplementary Materials.

3. General Findings

This section presents a descriptive statistical analysis of the gathered literature.
Section 3.1 describes the statistical results regarding the yearly growth and publication
sources of the selected papers. Section 3.2 provides insights regarding the investigated
cities in terms of their geographical distribution concerning their physical characteristics
(e.g., climate and topography). Section 3.3 describes the general characteristics of the
reviewed publications in terms of the selected study areas and study periods.

3.1. Literature Synopsis: Trends and Source

Figure 2 shows the yearly counts of published papers investigating the relationship
between LULC changes and SUHIs. Two noteworthy findings emerge from these counts.
First, the usage of satellite images to investigate UHIs vis-à-vis spatiotemporal LULC
changes is still in its initial phase, which is reflected by the short period and a small
number of annually published studies (25 at most). It should be noted that the lower
number of studies was possibly due to the selection criteria we adopted, as we required
at least two dates to analyze LULC changes and, subsequently, SUHIs. The reader is
referred to a more inclusive review by Zhou et al. regarding a longer coverage time range
and looser inclusion criteria [10]. Second, a generally increasing tendency in the annual
numbers can be seen, especially since 2010, suggesting a rising interest in this research
topic. This could be attributed to the fact that medium-spatial-resolution Landsat data
have been made freely accessible since then. Furthermore, the significant optimization of
computing capabilities (e.g., big data storage and short execution/processing timing) in
the last two decades, together with the significant and constant improvement in GIS and
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remote sensing methods, has attracted a growing number of researchers to contribute to
this important topic.

Figure 2. Annual trends of the published literature regarding studies’ investigations of SUHI/LULC changes.

In terms of publication sources, the selected literature appeared in 61 journals. A
vast majority of studies were published in Sustainability (10.8%) and Urban Climate (9.6%).
Other top leading journals included the International Journal of Remote Sensing, Remote
Sensing, and Sustainable Cities and Society, with 7.2% each. About 6% of articles were
published in the International Journal of Applied Earth Observation and Geoinformation and
ISPRS Journal of Photogrammetry and Remote Sensing.

3.2. Geographical Coverage and Cities Characteristics

Figure 3 displays the geographical distribution of the investigated studies. It should
be noted that the number of studies does not correspond to the number of cities, as
several considered studies analyzed multiple cities at once, notably [41], where the authors
investigated the interlacement between LULC changes and the magnitude of UHIs in
10 Indian cities.

From a geographical standpoint, SUHI–LULC links investigated in 133 cities of
27 countries worldwide were reported. Figure 3 illustrates the spatial distribution of
the total numbers of the considered studies in every country. Investigations focusing on
Asian cities were predominant (83.2%). Few studies focused on cities in Africa (6.6%),
South America (3.6%), North America (2.9%), Europe (2.2%), and Oceania (1.5%).

In terms of climatological characteristics, the spatial distribution and percentage of
investigated cities based on their zones on the Köppen–Geiger climate system—according
to a recent update published in [42]—are illustrated in Figure 3 and Table 1. Most investi-
gated cities (42%) are characterized by a temperate climate. Specifically, those located in
humid subtropical (Cfa) and dry-winter humid subtropical (Cwa) were found to represent
23.4% and 12.4% of all investigated cities, respectively. Most of these cities are located in
Asia, such as Shanghai, Fuzhou, and Wuhan for Cfa and Guangzhou, Shenzhen, and Hanoi
for Cwa. These climates are generally characterized by mild-to-warm summers and cool-to-
cold winters [43]. Desert-climate cities were also found to be common target areas, as about
25% of all cities are located in such climate regions, most likely because UHIs thrive in such
climates due to limited vegetation cover and water resources. Researchers have mainly
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focused on cities with hot arid (BWh) and hot semiarid (BSh) climates, with each of them
representing 10% of the total considered cities. Another 23% of the examined cities belong
to the tropical climates, with a focus on cities enjoying Aw (tropical savanna) climate (14%).
Constant high temperatures typically characterize a tropical climate. Continental-climate
cities were found to be the least investigated, with a share of only 10%, and approximately
7% of these studies focused on the Dwa (hot summer continental) climate. This climate has
warm months that average between 10 and 20 ◦C, and its cold months are at or below 0 ◦C.

Figure 3. Spatial distribution of case studies aggregated based on countries where cities are located with regard to the
world’s Köppen climate classification according to [42] (licensed under CC BY 4.0). The circle size on the left indicates the
range of papers count per country.

Overall, cities with hot summers (BSh, BWh, and Dwa), and humid/dry winters (Cfa,
Cwa, and Aw) were found to be the most investigated cities. The focus on cities under these
specific climates is attributed to many reasons. First, increasing SUHI magnitudes directly
impacts climate change and urban expansion, especially since most cities under these
climate regimes are situated in developing countries. Second, in contrast to tropical and
continental cities, satellite data covering desert cities are not ruined by high percentages of
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clouds during most seasons of the year. This specific issue, which is discussed in detail in
Section 4.7.1, is the most challenging obstacle facing studies investigating SUHIs in general
and particularly those focusing on connections between SUHIs and LULC over wide areas
and long time.

Table 1. Share of studies regarding the climate regions classified based on Köppen climate classification.

Temperate Arid Tropical Continental

41.6% 24.8% 23.4% 10.2%

Cfa Cwa Csa Csb Cwb BSh BWh BSk BWk Aw Am Af Dwa Dfa

23.4% 12.4% 4.4% 0.72% 0.72% 10.2% 10.2% 3.6% 0.7% 13.9% 5.1% 4.4% 7.3% 0.7%

3.3. General Characteristics: Study Periods and Target Areas

The use of historical remotely sensed data going back to the 1970s has made it possible
to study decadal LULC spatiotemporal changes, as well as their impact on LST. Over half of
the studies used research durations of more than 10 years, as shown in Figure 4. Selecting
such lengthy periods helped provide distinct contrasts between past and current trends.

Figure 4. Timeline of study periods considered in the reviewed literature along with the percentage
of studies based on different decadal time intervals.

To accommodate explosive population increases in developing countries while en-
suring faster economic growth, urbanization rates in such countries are generally faster
than those observed in developed countries. Previous studies have affirmed that urban
expansion is one of the leading drivers of SUHI development in UAs. These facts are
reflected in the number of target areas in developing countries presented in Figure 5,
illustrating the number of reviewed studies per country categorized according to their
development indexes [44]. In detail, compared to 7.3% in developed countries, 92.7%
of investigations were reported in developing nations. Chinese and Indian cities have
been the most investigated. Shanghai was ranked first, with nine publications [20,45–52],
followed by Delhi [22,53–56] and Beijing [48,57–60], with five publications each.
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Figure 5. The number of studies that focused on cities in developed and developing nations.

4. Content Key Focuses

This section focuses on the key elements used in the literature to study the interlace-
ments between LULC changes and SUHIs. Firstly, we identify and compare the main data
sources used in terms of offered advantages and limitations (Section 4.1). Secondly, we
detail the most common techniques of LULC extraction (Section 4.2) and SUHI calculation
(Section 4.3). Thirdly, qualitative and quantitative methods for analyzing the association of
LULC and UHI changes in cities are detailed (Section 4.4). Next, we provide an overview
of the factors affecting SUHIs (Section 4.5). Finally, the mitigation strategies recommended
in the considered literature (Section 4.6), followed by the limitations and future directions
(Section 4.7), are summarized.

4.1. Data Sources

Table 2 shows the most common satellite data sources used to extract LULC changes
and/or LST retrieval. Landsat series satellite data were found to have been dominant
among researchers (95.5%), followed by MODIS (10.9%) and ASTER (4.5%). Only one
study relied on HJ-1B data (0.9%). Other sources of imagery were found to include
high-resolution satellites mainly used for LULC classification validation purposes such as
IKONOS [61], SPOT [62,63], IRS LISS-III [64], and Sentinel 2A [65]. Additionally, Table 2
shows the percentage of studies based on the considered study periods. Landsat data are
often used for all study period ranges—specifically for periods between 10 and 20 years
(37%). MODIS data, on the other hand, are generally used in medium-study-period studies
(50%). Regarding high-resolution imagery, they were used extensively in studies focusing
on medium-period studies (43%). It should be noted that this imagery type is generally
used for validation of LULC classification rather than LULC changes analysis.

Landsat series satellite data were used in approximately 95.9% of the considered
literature for LULC extraction, LST retrieval, or (mostly) for both. More than half of
reviewed studies (77.6%) were found to have used Landsat series data to investigate
medium-to-very-long (more than 10 years) LULC changes between 1980 and 2020 (Table 2).
As a cooperation program between the National Aeronautics and Space Administration
(NASA) and the United States Geological Survey (USGS), the series has been operating
since 1972 and consists of eight satellites that can image the earth in moderate resolution.
They are considered to comprise the longest-running optical remote-sensing-based satellite
constellation for monitoring the earth. The Landsat Multispectral Scanner (MSS) was used
on Landsat 1–5. For Landsats 4 and 5, the Thematic Mapper (TM) sensor was also mounted.
Landsat 6 was an upgraded version of its predecessors, carrying MSS and the Enhanced
Thematic Mapper (ETM). However, it did not reach orbit. Landsat 7 was launched in
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1999 with the ETM plus (ETM+) on board. While the satellite is active, its resulting scenes
have missed approximately 22% of the data due to failure in the Scan Line Corrector since
May 2003. The primary sensors on Landsat 8 are the Operational Land Imager (OLI) and
the Thermal Infrared Sensor (TIRS). Though LULC information could be extracted from
early images, temperature information retrieval was made possible in July 1982 when the
TM sensor was introduced to Landsat 4 and others onward.

Table 2. Share of studies regarding the satellite data source used/study period considered categorized based on
imagery resolution.

Spatial Resolution Satellite/Sensor and Total Studies (%)
Use Per Study Period Length

Classification * Total (%)

High resolution All sources (13.6%) including IKONOS, SPOT, GeoEye,
and QuickBird

Short 28.6
Medium 42.9

Long 21.4
Very long 7.1

Medium resolution
Landsat Series

(95.5%)
ASTER (4.5%) HJ-1B (0.9%)

Short 22.4
Medium 31.8

Long 37.4
Very long 8.4

Low resolution MODIS (10.9%)

Short 25.0
Medium 50.0

Long 25.0
Very long 0.0

* Study period length is classified based on the following: Short = [>10]; Medium [≥10 and <20]; Long [≥20 and <30]; and Very long [≥30].

Landsat data are popular among researchers for many reasons. First, the data have
been provided at no cost since January 2009, when the USGS made all Landsat data free to
the public (Landsat 7 data were made free in October 2008). Before that, a single scene’s
costs varied between $20 and $4000 [66]. This has been beneficial, especially for studies
focusing on developing nations characterized by fast urbanization trends and population
growth. Second, Landsat data are considered to comprise the genuine global archive that
has constantly been updated for almost half a century following a strategy of regular
imagery acquisition rather than the limited acquisition on images of interest or ready for
purchase [66]. Third, the characteristics of the latest satellites and their imagery, mainly
those related to spatial resolution, revisiting cycle, and swath dimensions (Table A1) (which
are described as moderate), are convenient for most LULC and SUHI studies focusing on
cities. Generally, one scene per city is needed. However, depending on the geographic
location of some cities with regard to the path and row of the satellite, mosaicking multiple
scenes may be required (see [67]). Fourth, the extensive use of Landsat imagery has been
an incentive to develop well-documented techniques for optimal use.

MODIS: The second commonly used satellite imagery for LULC/SUHI studies is that
of MODIS (10.9%). In general, MODIS data have been used in SUHI studies focusing on
medium study periods (between 10 and 20 years) (Table 2) and/or seasonal variations.
MODIS is an acronym that stands for Moderate Resolution Imaging Spectroradiometer.
It is a NASA Earth Observing System (EOS) sensor that flies on NASA’s Terra (1999) and
Aqua (2002) satellites. Terra’s orbit crosses the equator from north to south in the morning,
and Aqua crosses the equator from south to north in the afternoon, providing worldwide
coverage every 1–2 days. The EOS satellites have a scanning pattern of 55 degrees and
orbit at the height of 705 km, with a swath width of 2330 km.

ASTER: ASTER imagery has been used in 4.5% of studies, making it the third most
popular source. ASTER is another sensor mounted on the Aqua satellite launched into orbit
in 1999. Given its capabilities, ASTER is usually used for nighttime analysis [54]. Satellite
datasets of Terra ASTER level-1B contain radiometrically calibrated and geometrically
registered data for all ASTER channels [54].
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HJ-1B: Another imagery source used in the considered literature is HJ-1B, an optical
minisatellite (2008) that forms the HJ-1 (Huan Jing = Environment) constellation along
with another two small satellites—optical HJ-1A (2008) and radar HJ-1C (2012). The instru-
ments onboard HJ-1B include two charge-coupled device (CCD) cameras and an infrared
(IRS) camera whose spatial resolution range is between 30 and 300 m [68]. Although the
minisatellite constellation is primarily designed for environmental monitoring and disaster
risk assessment such as floods and forest fires [68,69], HJ-1B imagery was used to assess
the relationship of LULC and SUHIs in [70].

4.2. LULC Classification: Types, Methods, and Indices

In this subsection, we shed light on the procedure of extracting LULC information from
satellite data, focusing on (i) regularly adopted LULC classification schemes, (ii) LULC
extraction methods including supervised and unsupervised methods, and (iii) indices
used in tandem with LULC classification to identify the composition or configuration of
target areas.

4.2.1. LULC Types

In the considered literature, authors often opted for different LULC classifications
depending on several factors, including the geographical settings of the study area, the main
focus of the study, and the quality of remotely sensed data. While the terminology used to
depict each varies from one study to another, it was observed that the four classes most
often present in most cases were UA, vegetation, water, and bare land.

In most cases, LULC types are defined based on the authors’ or experts’ knowledge of
the geographic settings of the targeted area. In [71], for instance, the authors selected LULC
classes as a result of consultation with an expert familiar with the city of Erbil to better assess
the associations between LULC and LST. Another approach for determining LULC classes
is to rely on the classification scheme provided by governmental or scientific agencies.
For example, several studies focusing on Chinese cities used the land use classification
system by the China National Committee of Agricultural Divisions dated back to 1984 [72]
or by the Chinese Academy of Sciences (as in [73]). In comparative studies focusing on
cities with similar characteristics (e.g., climate and landscape configuration) that are not
necessarily located within the same country or region, authors have preferred to use a
unified classification system such as the USGS 24-category land use categories. Fan et al.,
for example, used USGS 24 to compare the impacts of the spatiotemporal variations of
LULC on UHIs in five desert cities located on three different continents (North America,
Africa, and Asia) [5]. Additionally, there have been instances where authors used ready
LULC classes based on inventories published by scientific agencies. An example of such an
occurrence could be found in the study on the Polish city of Poznań [74], where the authors
used the Europe-focused CORINE Land Cover inventory, with a total of 44 classes, updated
and maintained regularly within the Copernicus Programme [75]. The same classification
scheme was also followed in a comparative study of the effects of SUHIs in seven big
Turkish cities [76].

A few studies were found to combine LULC types into few representative classes, as
in [77], where the authors combined multiple LULC types into what they called “functional
zones”. For instance, a functional zone labeled as “dense green space” was created as a
result of the combination of several types of forests (indigenous, plantations, and thicket),
water bodies, and wetlands. Besides the high multiplicity of LULC types and the small
spatial extent of certain types, the main rationale behind this approach, according to the
authors, was the similarity of the properties of the combined types. Huang and Wang
opted for a similar approach by defining “urban functional zones” (UFZs), which are
abstracted from typical LULC types to depict human activities [78]. On the other hand,
it was observed that authors generally tended to expand typical LULC types to more
representative classes to evaluate their impacts on SUHIs. For instance, vegetation classes
were classified into several types based on their density [79,80] or types [79]. In the same
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vein, urban development types were expanded to further understand the impact of different
types of urban expansion on the worsening of UHIs.

In addition to typical LULC classes such as IS, vegetation, water, and cropland, Tran
et al. classified urbanized areas into different categories to reflect their actual development
types [80]: (i) infill, which refers to newly developed constructions surrounded by older
built-up areas; (ii) extension, depicting new constructions intersecting with older built-
up areas; and (iii) leapfrog development, describing new built-up areas separated from
old UAs. The authors found that infill development exhibits the highest LST, followed
by extension and (lastly) by leapfrog development, which is attributed to the high-LST
LULC types surrounding infill and the good planning policies followed when constructing
leapfrog UAs, which require proximity to public spaces such as parks and water bodies. It
is evident that selecting convenient LULC classes for SUHI studies is a crucial step that
might provide new insight and improve the understanding of the influence of different
LULC types on SUHIs.

4.2.2. Extraction Methods

Pixel-, subpixel-, and object-based classifications have been used in revised studies
using parametric and nonparametric methods. Though parametric methods, including
the maximum likelihood classifier (MLC) and iterative self-organizing data analysis (ISO-
DATA), are the most used, nonparametric machine-learning algorithms were found to
have gained ground in recent SUHI-related publications. Such methods include sup-
port vector machine (SVM; [61,76,81–83]), random forest (RF; [81–85]), k-nearest neighbor
(kNN; [81–83]), and neural networks (NNs; [81–83]). Nonparametric techniques present
the advantage of being able to be used without a priori assumption on data distribution.
This advantage has enabled researchers to evaluate several algorithms to determine which
one has the highest accuracy scores. For instance, in [83], the authors compared four
different classification techniques: SVM, kNN, RF, and NN. SVM outperformed all in terms
of overall accuracy and kappa statistic. A similar approach and identical set of algorithms
were employed in [81,82].

Regarding accuracy, studies relying on supervised methods have typically used a
confusion matrix, also known as an error matrix, which encompasses statistics comparing
the count of real samples and the corresponding predicted ones. Overall accuracy is the
generally used metric to assess classification results, which correspond to the percentage
of correctly predicted samples of all classes. Two other metrics reflecting the accuracies
of different classes have also been calculated: the user’s accuracy and the producer’s
accuracy [31,41,80,86–99]. Another measure used in tandem with the aforementioned
accuracy metrics or alone is the kappa statistic [100], the values of which range between
0 and 1. The lowest values indicate slight to nonagreement between two datasets. In
detail, according to Monserud and Leemans, values below 0.4 indicate poor or very poor
agreement, values between 0.4 and 0.55 indicate fair agreement, values between 0.55 and
0.7 indicate good agreement, values between 0.7 and 0.85 indicate very good agreement,
and values above 0.85 indicate excellent agreement between images [101].

For most studies, the minimum required for the overall classification accuracy was
85%, following the recommendations of [102,103]. More recent studies have applied an even
stricter accuracy threshold of 90% for both overall accuracy and kappa statistic, as suggested
in [104]. These demanding requirements may be attributed to the decreasing spatial
resolution of recent remotely sensed data, along with the advancements of classification
techniques. Nevertheless, it was difficult to reach such high accuracies in some cases.
Fan et al., for example, employed an object-based classifier to perform eight-class LULC
classification in five desert cities [5]. The authors succeeded in achieving accuracies superior
to 85% for all three target years in the considered cities except for those of the Indian city
of Jodhpur—which ranged between 80% and 82.57%. They attributed this relatively
low accuracy to the complex spatial distribution of different LULC classes alongside the
similarity of spectral responses in several of these classes. For this reason, unsupervised
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classification is usually first conducted by using satellite data to determine the spectral
separability of the LULC classes [54]. Unsupervised methods include ISODATA alone or
as a hybrid method with a supervised algorithm [105]. The initial use of a hybrid approach
initially allows authors to gain insight into the number of major spectral differences [77].
Other studies have solely relied on an unsupervised approach [92,99,106].

Samples for validation purposes have been collected through field surveys using
GPS [54,93,107,108] and aerial photos [51,72], as well as being extracted from the commercial
imagery of high-resolution satellites such as IKONOS [58,109], SPOT [51,52,63,72,107,110,111],
QuickBird [20,58], GeoEye [111], and GaoFen-1 [112] provided by private companies.
However, researchers are moving away from these methods for several reasons. First,
fieldwork is a time- and budget-consuming task that requires hefty effort. Second, high-
resolution images are costly, which has led to issues related to the availability of historical
data in many regions in the world. In recent years, however, the free-of-charge Google Earth
has offered a reliable alternative for these traditional sources to extract balanced validation
points using sampling techniques such as stratified random sampling [76,99,113–115].

4.2.3. Indices as LULC Proxy

The use of indices calculated from different sensors bands or other indices was found
to be common in the reviewed literature. Authors have used these indices to further
assess the relationship between LST and different characteristics of target areas including
biophysical properties, landscape composition and/or configuration, and (less frequently),
an alternative approach to the supervised/unsupervised methods for extracting LULC
types. Table A2 lists the most employed indices in the reviewed studies, as well as the
proportion of each category of indices. Broadly, the employed indices were found to fall
into five categories: vegetation, built-up, water, bare land, and landscape metrics.

There are several vegetation-related indices. However, the normalized difference
vegetation index (NDVI) and fractional vegetation cover (FVC) remain the most employed
indices, accounting for 52.5% and 8.2%, respectively, of SUHI research. The NDVI has
been solely used to extract emissivity values for LST retrieval (Section 4.3.1) in several
studies; as a result, these studies were not included in this analysis. A few other studies
relied on the soil-adjusted vegetation index (SAVI), transformed difference vegetation index
(TDVI), and enhanced vegetation index (EVI), which were used together only in 4.5% of
reviewed studies.

The built-up indices were found to be second in terms of frequency of use in the
reviewed studies. While several new indices, including the enhanced built-up and bareness
index (EBBI), index-based built-up index (IBI), and normalized difference impervious
surface index (NDISI)—accounting for 2.7%, 0.9%, and 0.9%, respectively—have been in-
troduced in recent studies, the normalized difference built-up index (NDBI) was employed
in almost 24.5% of studies to represent built-up areas. Water was mostly represented by the
modified difference water index (NDWI) in about 7.3% of studies, followed by the modified
normalized difference water index (MNDWI) with a share of 6.4%. Of the studies, only
0.8% relied on the land surface water index (LSWI) and normalized difference moisture
index (NDMI) each. Two indices were used as proxies of bare lands: the normalized
difference bareness index (NDBaI) and dry bare-soil index (DBSI), which were found to
account for, respectively, 4.9% and 2.1% of studies. Landscape metrics, both compositional
and configurational, were employed in approximately 5.7% of studies.

4.3. SUHI Calculation Methods

In this subsection, we shed light on the approaches employed in the considered litera-
ture to quantify SUHIs. The approaches roughly fall into two categories: the first consists of
methods using retrieved LST as a proxy, and the second is based on the calculation of SUHI
intensity defined as LST differences between UAs and less developed areas (e.g., rural).
Numerous studies combined both approaches. Though LST retrieval is a critical step in the
process, a detailed description of the different methods used is beyond the scope of this
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review. Instead, the reader is referred to a published review by Li et al. for a comprehensive
summary of the methodologies and algorithms developed for LST retrieval [116].

4.3.1. LST as a Proxy of SUHI

LST is regarded as the land surface’s radiative skin temperature [117], which is consid-
ered a key element in the physics of the land surface through energy and water exchanges
with the atmosphere [109]. Though LST is believed to be more adequate for quantifying
UHIs at urban canopy layers [6], SUHIs tend to follow the same patterns as AUHIs accord-
ing to several previous studies [118–120]. In most of the considered literature, LST was
used as the sole proxy of SUHIs to analyze their spatial variability concerning different
LULC classes, which can be attributed to the fact that LST is highly correlated with surface
properties [121]. Chen et al., for instance, classified the retrieved LST information into five
categories (very low, low, medium, high, and very high), reflecting its magnitude, based
on the deviation from the mean value [112]. The relationships between LST and different
LULC data are further detailed in the following section. In this section, an overview of the
methods of LST retrieval from satellite thermal data is presented as a critical step in the
reviewed literature.

The retrieval of LST from satellite thermal data is a complex but critical procedure in
SUHI studies. Its complexity resides not only in the multiple processes that are involved,
including radiometric sensor calibrations and the required adjustments for air and surface
emissivity [109] but also in the number of parameters that need to be accurately known,
such as emissivity transmittance and atmospheric temperature [114].

In general, efforts to retrieve surface temperature (ST) from the thermal data of
satellite sensors have been made since the late 1960s, when Anding and Kauth introduced
a method known as the split window (SW) that was capable of estimating sea surface
temperature [122]. Since then, numerous attempts were made to extend the SW technique
to obtain LST before the algorithm was extended to be able to retrieve it [123,124]. A wide
range of other algorithms and techniques have been additionally proposed to retrieve LST.

According to Li et al., LST-retrieval methods fall into three broad categories depending
on whether land surface emissivity (LSE) and atmospheric quantities are known [116]:
(i) retrieval methods with known LSE including single-channel (SC) algorithms, multichan-
nel (MC) algorithms, and multiangle algorithms; (ii) retrieval methods with unknown LSE
including the classification-based emissivity method (CBM) and NDVI-based emissivity
methods (NBEMs); and (iii) retrieval methods with unknown emissivity and unknown
atmospheric quantities. Among these methods, SC algorithms, characterized by their
simplicity, were found to have been widely used in the reviewed literature. As their name
suggests, they are used to extract LST from the thermal data of sensors with a single TIR
channel (e.g., Landsat 4–5 (TM) and 7 (ETM+)).

Various variants of the single-channel method have been proposed, notably the algo-
rithm (often referred to as the mono-window algorithm (MWA)) specifically developed
for the thermal band of Landsat 5 TM channel 6 by Qin et al. [125], which was applied
in multiple reviewed studies [14,94,112,114,126,127]. The MWA generally requires three
parameters: emissivity, transmittance, and effective mean atmospheric temperature [112].
Jiménez-Muñoz and Sobrino developed a universal single-channel (USC) algorithm capa-
ble of retrieving LST from any TIR channel requiring two parameters, such as atmospheric
moisture content and emissivity [128]. Similar to the MWA, the USC algorithm has been
applied in the considered literature across different cities [45,111]. SC algorithms, how-
ever, are limited in their applicability due to a variety of criteria that have been deemed
difficult, if not impossible, to meet—notably, the a priori knowledge of the emissivity of
each pixel [116] and detailed information about atmospheric profiles during the satellite
overpass of a given target area [51,116]. In contrast to SC algorithms, MC algorithms,
known as split-window algorithms, have been employed to retrieve LST from sensors with
multiple adjacent thermal bands, including Landsat 8 TIRS, ASTER, and MODIS without
the need for accurate atmospheric profile data at acquisition time.
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4.3.2. SUHI Intensity

SUHIi is the second most common approach that has been used to quantify SUHI
magnitudes in cities. Generally, SUHIi is the difference between retrieved LST means
calculated in UAs and their surroundings, often underdeveloped, including suburban or
rural areas. The boundary that has to be established to distinguish between the two regions
is problematic to define. Broadly, two methods have been employed in the literature.

The first heuristic approach relies on city features such as traffic rings, administrative
boundaries, and buffer zones. In a Shanghai-focused study [51], the authors divided the
target area into three sublevels based on the inner and outer traffic rings surrounding the
city: (i) the city proper located within the inner traffic ring, (ii) a periurban area within the
inner and outer traffic rings, and (iii) a region beyond the outer traffic ring, which is a rural
area with low-to-moderately dense residential areas, farmland, and natural surroundings.
After considering this layout, the authors calculated seasonal and interannual variations
of two SUHI intensity indices: the first was between the city center and surrounding
rural areas, and the other was between urban fringe and surrounding rural areas. A
similar approach has been employed in other cities such as Jinan city [107] and Fuzhou
city [72]. Another way to delineate urban and rural areas found in the literature consists
of using administrative boundaries [129]. Buffer zoning while centering the city core is
an alternative approach found in the literature to extract urban/rural areas. Rasul et al.
defined rural areas with a 10 km buffer zone beyond the city core [71]. However, the
authors did not report how the core was delineated. It should be noted that this approach
was applied to an arid city with outskirts characterized by quasi similar land cover classes.
Nonetheless, these heuristic approaches might not be suitable for studies focusing on the
decadal monitoring of SUHIi due to major changes in landscapes.

Other studies have opted to rely on LULC classification as a way to differentiate urban-
and nonurban-labeled pixels. Ultimately, the LST means of areas classed as nonurban
are subtracted from areas identified as nonurban, including vegetation (grass, forest, etc.)
and bare land. Numerous studies were found to have followed this approach [130,131].
Following the same concept, other studies employed ISs as proxies of UAs, and rural areas
have been represented by green space (GS) in most cases. This approach was applied, for
instance, by Estoque and Murayama to calculate the SUHIi in the tropical mountain of
Baguio, Philippines [12]. The authors calculated the SUHIi as the mean LST difference
between ISs and GSs. Furthermore, in an attempt to replicate the concept of the inter-zone
UHI intensity comparison proposed in [132], which involves an initial classification of the
landscape into urban or local climate zones followed by inter-zone temperature differences,
the authors distinguished two types of GS in addition to IS: a GS1 that includes forest and
shrubland and a GS2 that includes grassland and cultivated land. Subsequently, the SUHI
magnitude between the IS and other zones (GS, GS1, and GS2) was calculated. The same
approach was applied in Kandy City, Sri Lanka [83].

4.4. Relationship Assessment of LULC and SUHIs

Various methods have been employed to assess the relationship between LULC
changes and SUHI changes. Some studies used more than one method for the analysis,
either for comparison or validation purposes.

Regression analysis tops the list with approximately 20.9% of manuscripts. Ordi-
nary least square (OLS) regression has been used more frequently to characterize the
relationship between LST and LULC based on several indices presented in Section 4.2.3.
Though popular among researchers, OLS estimators present a major limitation; according
to Deilami et al. [133], they do not account for spatial variability, which leads to issues
associated with spatial autocorrelation and nonstationarity. Due to this limitation, the
geographically weighted regression (GWR) was used in several studies as a potential
alternative to counter OLS limitations. In GWR models, the spatial variability between the
response variable (LST) and explanatory variables (e.g., indices and other factors detailed in
Section 4.5) is taken into consideration. A GWR model generates estimates for every point
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in space based on local linear regression estimators that depend on a subset of information
from neighboring points [134]. Although it was found that GWR models outperform OLS
models in multiple studies [108,133–135], both procedures have their own benefits. In
contrast to GWR, which is more effective at the local level, OLS has been found to aid in
quantifying the impacts of various factors of SUHIs at the regional level [133,134].

Chart analysis, which relies on the zonal statistics method and is presented in the form
of charts to illustrate the relationship between LULC and SUHIs over time, was found to
come second (19.8%). Among the selected papers, 11 analyzed the mean LST for each LULC
category and compared the LST change in different years. Overall, the trend of mean LST
was found to be increasing in all LULC categories, and the built-up always had the highest
LST among all LULC categories [54]. Moreover, vegetation coverage is an essential factor
that can help cool cities and reduce the impact of LST. However, the benefit of vegetation
has not been given sufficient attention. For example, the percentage of vegetation was
found to have decreased from 6.3% to 1.9% over 25 years in Shiraz city, Iran [136]. At the
same time, the mean LST of vegetation changed from 35.1 ◦C in 1993 to 39.5 ◦C in 2018,
which proved that the cooling power of vegetation was affected by the total quantity. More
accurate analyses would help to better identify the impact of different LULC types on LST.
For instance, some authors plotted the space lattice of the LST, NDVI, and LULC, and the
results showed that the LST values of water and green spaces were lower than those of
built-up and cropland spaces [137].

Correlation analysis was found to be the third most common method (8%), and it
has often been used together with regression analysis. We distinguish three types of cor-
relations used in reviewed studies: (i) Pearson correlation, (ii) Kendall rank correlation,
and (iii) canonical correlation analysis. Pearson correlation was used in most of the stud-
ies [11,45,52,97,99]. Only two studies opted for the other two types. Lo and Quattrochi used
both canonical and Pearson correlations analyses to investigate the relationship between
LST spatial patterns and those of volatile organic compounds (VOC) and nitrogen oxide
(NOx) emissions in Atlanta, US [31]. Kendall rank correlation was used in [5] to detect the
monotonic dependence between SUHIs and relative urban-rural vegetation differences—a
metric that measures the difference of NDVI means in urban and rural areas—concerning
the populations and UAs of five desert cities. The authors argued that Kendall’s coefficient
offers resistance against outliers and missing values in addition to its capability to iden-
tify any type of monotonic relationship—not just linear dependence, as measured by the
Pearson coefficient.

Calculating the contribution index (CI) was found to be another common approach
(8%) used to evaluate the impacts of different LULC types on LST variations. The CI
measures the thermal contribution of various LULC categories on the LST by multiplying
the proportion of a given LULC type to the entire study area by the difference between the
mean LST of the LULC type in the question and that of the whole study area. Positive CI
values of an LULC type indicate a direct influence on enhancing SUHIs, whereas negative
values indicate a negative effect on SUHIs [138]. The index was first employed by Chen
et al. to assess the impact of 10-year LUCL spatiotemporal changes on SUHIs at a regional-
scale level in the Pearl River Delta located in Guangdong Province and a city-scale level
in Shenzhen city [87]. It was then used in multiple studies in different research areas,
including Shenyang, China [94]; Ethekwini, South Africa [77]; Wuhan, China [139]; Malda,
India [138]; and Delhi, India [55]. Based on the obtained CI values of different LULC
types, Pramanik and Punia further calculated another index called the landscape index
(LI), defined as the quotient of the CI of SUHI sink (i.e., croplands, vegetation, and water
bodies) and source (i.e., built-up, fallow, and bare lands) landscapes [55].

Though fewer, other noteworthy methods such as the ANOVA test [61], the crossover
comparison method [12,83], grid-level analysis [11], centroid movement analysis [45,140],
temperature vegetation index space [55,141], and hot-spot analysis [80] have also been
used in studies.
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4.5. Factors Affecting SUHIs

Various factors contribute to variations in SUHI magnitude over space and time. While
the examined literature mainly focused on the impacts of LULC types and their interannual
dynamics, the effects of additional variables were also investigated. Figure 6 shows the
main factors that were found to have been used in the reviewed literature, as well as the
most common combinations between them. These variables fall into four broad categories:
(i) LULC types and their spatiotemporal dynamics, (ii) landscape composition and configu-
ration, (iii) terrain characteristics, and (iv) socioeconomic factors. In the following section,
we provide a detailed explanation of the main factors included in each category.

Figure 6. The main SUHI-contributing factors along with the frequency of their combinations, often considered when
analyzing SUHI evolutions in the reviewed literature. FG refers to the main group each factor belongs to as follows: FG1:
LULC types and their spatiotemporal dynamics; FG2: landscape composition and configuration; FG3: terrain characteristics;
and FG4: socioeconomic factors.

4.5.1. LULC Types and Their Spatiotemporal Dynamics

The conversion of land cover to urban land uses across space and over time has been
singled out in most reviewed studies as the primary cause for the increase in recorded
LST values in UAs and ultimately high SUHI intensity in cities across the globe, regardless
of their climates or geographic settings. In the tropical Malaysian capital city of Kuala
Lumpur, for instance, Amanollahi et al. found that the LSTs of areas previously covered by
forest and light vegetation before being transformed into UAs as a result of a 16-year urban
sprawl (1990–2006) had increased by 4 and 3 ◦C, respectively [142]. Similar observations
were reported in [97] for the temperate Indian municipality of English Bazar, where the
LULC dynamics of 23 years (1991–2014) resulted in the radical transformation of multiple
land cover classes into the built-up areas of water, agricultural lands, and Mango orchards,
which led to increases in LST values by 1.9, 1.4, and 1.5 ◦C, respectively. In Beijing, a
continental-climate city, Guo et al. noticed an 8% increase in ISs from 2005 to 2015, resulting
in the mean LST of ISs being about 2 ◦C higher than that recorded in green areas [59]. In
an arid climate, El-Hattab et al. found an increase of approximately 1.6 ◦C in Cairo from
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1984 to 2015 as a result of a heavy urban expansion and vegetation cover loss [143]. In
mountain cities, identical tendencies were also observed. Increases in SUHIi were reported,
for instance, in Baguio (+0.7 ◦C between 1987 and 2015) [12] and Kandy (+2.3 ◦C between
1996 and 2017) [83].

The resulting LULC spatial structure has been found to predominantly affect the
spatial patterns of the recorded LST and to intensify SUHI effects [80]. By examining
various studies carried out in different cities across the globe, we compiled a list of the
LULC types with considerable influence on SUHIs including ISs/UAs, vegetation, water
bodies, and seasonal variations.

• IS/UA: UAs, along with pavements and road networks, form ISs. A substantial
body of research points to the fact that ISs have strong warming effects in cities [20],
regardless of the reigning climate (tropical, desert, etc.) or the geographical settings
(topography, elevation, etc.). While some studies have focused on ISs, others have
separately investigated the effects of UAs, roads, and pavements on UHI. However,
both sets of studies concluded that the highest LST values are exhibited by either UAs
or ISs [11,14,41,45,72,74,80,97,111,112,115,126,133]. Regarding association, it has been
found that both ISs and UAs have strong and significant linear positive correlations
with LST [80,87,99,112] during all seasons [97]. This is attributed to the fact ISs absorb
more solar radiation and have greater thermal capacities and conductivities, allowing
heat to be retained during the day and released at night [143]. Ultimately, urban
expansion exacerbates this process. Tran et al. estimated that a 1% increase in UAs in
the Hanoi inner city could raise the surface temperature anywhere between 0.075 and
0.108 ◦C [80]. Urban expansion, however, does not only concern the size of UAs (i.e.,
footprint areas), due not only to their low albedo roofing materials (e.g., concrete and
asbestoses)—as observed in [11,33,106,113]—but also the buildings’ heights [56,76],
UA density [112], porosity (defined as the ratio of total open space to total built-up
areas [133]), and UA development level [74]. Another IS component, which consists
of pavements such as parking lots and harbor jetty covered with dark materials such
as asphalt, was found to be a significant contributor to UHIs [33]. Roads, on the other
hand, have been found to increase SUHI impacts in two ways: first through their
paved surfaces that absorb shortwave radiation and store heat throughout the day and
release it slowly at night [99] (similarly to other pavements) and second via emissions
produced by traffic passing through them.

• Vegetation: In contrast to ISs, vegetation absorbs solar radiation and removes a
great amount of stored heat via evapotranspiration—a process that releases water
vapor into the ambient air and subsequently contributes to cooling surrounding
areas [11,12]. The relationship between LST and vegetation cover is complex. It
depends on many considerations related to the study area (e.g., seasonal variations and
landscape topography) and the characteristics of the vegetation cover itself (e.g., the
nature of species, heights, and density). Numerous studies in the reviewed literature
reported a negative linear relationship between LST and vegetation, as quantified
through multiple indices (refer to Section 4.2.3 for a detailed list), most notably the
NDVI [11,45,53,87,88,98,111,126,136,144–149] and FVC [53]. Rotem-Mindali et al. even
found an exponential relationship between the NDVI and LST [150]. A few other
studies reported negligible correlation due to various possible causes. Rasul et al.,
for instance, found a weak yet significant inverse relationship between LST and the
NDVI during the summer season in the city of Erbil, Iraq, which is characterized by a
temperate climate [71]. After considering seasonal variations in the Chinese city of
Jinan, Meng and Liu concluded that FVC is negatively correlated with LST during
all seasons except for winter [107]. Likewise, Wang et al. argued that variations of
seasons were a possible cause of their obtained weak correlation between LST and the
NDVI in Shanghai [20]. After exploring the reviewed case studies, however, it became
evident that a fast rate of urban expansion to the detriment of vegetation cover leads
to the weakening of the impact of vegetation on LST in comparison to the influence
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exerted by ISs. This can be concluded from the weak correlation between LST and
vegetation when compared with LST and ISs, as reported in [20,96].

• Water: As with vegetation, water bodies have a cooling effect due to their ability to absorb
heat and release it in the form of water vapor, leading to lower ambient temperatures in
their vicinities. In an investigation of the Chinese city of Wuhan, in which water accounts
for over 25% of the total area of the central district—including two rivers (the Yangtze
River and Han River), East Lake (the largest urban lake in China), and dozens of other
lakes—Wu et al. found that both the area and the spatial distribution of water bodies
contributed to significant distributions in the effects caused by SUHIs [70]. Moreover,
the findings reported in multiple studies have affirmed that water bodies exhibit
the lowest LSTs [11,20,41,45,47,60,73,78,79,88,90,93,97,98,111,112,115,138,139,151–153],
along with vegetation cover. Furthermore, water has generally been found to have
a negative correlation with LST [20,111,154], except for a few circumstances due to
various reasons primarily related to the climate characteristics of cities. For instance,
in [99], the authors attributed the lack of a significant relationship between LST
variations and water bodies’ changes that occurred in desert city Phoenix between
2000 and 2014 to the scarcity of large and evenly distributed open-air water bodies in
the target area, along with possible LULC classification errors. In comparison with
vegetation, water usually has a less significant association with LST [20].

• Seasonal variations: Seasonal variations have significant impacts on the spatial and
temporal distribution of SUHIs. While the bulk of research has focused on interannual
variations, seasonal fluctuations were also taken into account in several manuscripts,
particularly in those with short study durations (less than 10 years). An illustration
of such investigations was reported in [107], where the authors analyzed SUHI vari-
ations in all seasons for the Chinese city of Jinan. Based on LST data derived from
Landsat images acquired between 1992 and 2011, they calculated two SUHIi indices
(while considering rural areas) based on the two traffic rings surrounding Jinan urban
center. Their findings showed that both SUHIi indices were stronger during summer
(0.98–1.75 ◦C) and spring (0.40–0.85 ◦C) and weaker during autumn (0.16–0.37 ◦C)
and winter (from −0.05 to −0.03 ◦C). These results are aligned with those reported
in [52] for Shanghai. In the tropical Indian city of Delhi, Sharma and Joshi also found
that summer had the maximum SUHIi (16.2 ◦C), followed by monsoon and spring
seasons with SUHIi values of 13.8 and 12 ◦C, respectively [22]. On the other hand,
the post-monsoon and winter seasons exhibited the lowest SUHIi values of 10.5 and
7.4 ◦C, respectively. The dominant factors impacting SUHI levels depend on seasonal
changes. For instance, Zhang et al. determined that water, vegetation, and developed
lands are the major drivers during all seasons except for summer in Shanghai [52].
These results partly agree with those reported in [77], where the authors found that
the functional zone “dense green spaces” (including different types of forests, water
bodies, and wetlands) in Ethekwini, South Africa, had a major heat contribution in the
autumn, winter, and spring seasons. On the other hand, Song et al. reported that ISs
had higher mean LSTs during all seasons except for winter in the Chinese temperate
city of Hangzhou [155].

4.5.2. Landscape Composition and Configuration

In addition to LULC’s different types and their dynamics, several studies have ana-
lyzed the relationships between urban climate and landscape patterns. A wide range of
metrics has been developed to characterize these patterns and relate them with ecological
processes [156]. As described in Section 4.2.3, these metrics can be categorized into two gen-
eral groups: compositional and configurational. Metrics for landscape composition assess
the existence and quantity of various patch types in the landscape without specification on
its spatial characteristics, whereas those for landscape configuration measure the spatial
distribution of patches within the landscape [50]. An illustration of such investigation was
reported in [50], the authors analyzed the impacts of landscape structure on SUHIs in the
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Shanghai metropolitan area in early spring (March 2001) and summer (July 2001). Eight
landscape metrics—compositional (PLAND, SHEI, and SHDI) and configurational (ED, PD,
LSI, CI, and CONTAGION)—were selected to investigate the relationship between LST and
landscape patterns with regard to the LULC types of residential, public facilities, industrial,
traffic, green land, water, agricultural, and other land uses including under-construction
sites, cemeteries, and historic relics. High correlations were found between LST and land-
scape metrics for residential and urban green, with significant fluctuations observed due to
alterations in SUHI spatial configurations induced by seasonal changes affecting vegetation
patterns. Furthermore, residential areas’ contributions to LST were found to be significantly
influenced by their morphological characteristics. High-rise residential areas were found to
have lower LSTs than low-rise residential areas for many reasons. First, low-rise residential
zones have more horizontal active surfaces than high-rises. Second, smaller structures
with lower thermal inertia produce shorter shadows than high ones. Third, when wind
speed rises with height, the lower boundary layer’s aerodynamics vary considerably. As
a result, high-rise structures have a greater aerodynamic conductance than low-rise ones.
Finally, the temperature of the lower boundary layer drops with height. The top of the high
rise is cooler than the bottom. The proposed methodology was further expanded in [78],
where the authors selected 2D and 3D building metrics related to shape, arrangement,
composition, and distribution (in addition to landscape metrics) to evaluate the association
between SUHIs and 2D/3D urban morphology in Wuhan, China. Two functional zones
were considered: built-up (including residential, industrial, commercial, open space, and
public services) and non-built-up (including urban green areas, agricultural lands, forests,
rivers, and lakes). The findings of the study can be summarized as follows: (1) during
the summer daylight, four LULC classes, namely buildings, other ISs (e.g., pavements,
open areas, and squares), grass/shrubs, and trees, have significant effects on intraurban
LST variation at a fine-scale; (2) the proportion of trees is the primary element affecting
LST cooling via evapotranspiration and shade casting; and (3) during summer daylight,
3D urban morphology has an effect on LST, although the correlations are not as tight as
those for 2D urban morphology. It was found that the most significant 3D metrics are the
mean height (MH) and the sky view factor (SVF)—a metric measuring the extent of 3D
open space that ranges from 0 (no sky in sight) to 1 (no obstacles in sight). A negative
correlation was found between MH and LST in summer, indicating that high-rise buildings
may help counteract SUHIs throughout the day. The SVF impact on LST is complex because
it depends on the surrounding environment and relates to enhancing air circulation in the
case of a higher SVF and reducing incoming solar radiation in the case of a lower SVF.

4.5.3. Terrain Characteristics

Generally speaking, most of the investigated cities in the reviewed literature are
located in flat areas with slight or barely noticeable topographic variations. For that reason,
few researchers have considered topography-related factors. On the other hand, researchers
who focused on mountain cities or those dotted with varied landscapes concluded the
importance of topography in understanding the spatial variability of LST. In a study that
focused on exploring the spatial variations of LST between 2000 and 2010 in the tropical
Malaysian capital Kuala Lumpur, Amanollahi et al. concluded that its elevated landscape
plays a significant role in stabilizing the heat island in the city in two ways [142]. First, the
expansion of ISs has resulted in fragmented vegetation cover—mainly consisting of forests
in the study area—which has led to increases in surface temperatures; second, forests
located at high elevations were recorded to have the lowest temperatures. The rise of
LST due to fragmented forests had been somewhat regulated by the low LST recorded
in high-elevated forests, resulting in the highest standard deviation of LST values of any
LULC type. Second, the Titiwangsa mountain range with peaks over 2500 m above sea
level (asl), located to the east, northeast, and north of the city, acts as a dam that stops
winds coming from the north and east from blowing in the directions toward the city
which, according to the authors, stabilizes the heat island in Kuala Lumpur. These findings
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relatively correspond to those reported in [157], in which the author partly attributed the
lowest LST values observed in forests to their highest altitudes in the Czech city of Brno.
Even in cities with a dry climate and relatively low landscape, such as Cairo, topography
has been deemed a key factor influencing LST [106]. The author found that the mean
LST at the highest region, El-Mokatam Plateau at 500 m asl, was 37 ◦C in comparison to
the 39 ◦C value recorded at 100 m—which indicates an LST increase of 0.5 ◦C for each
100 m elevation. In the tropical mountain city of Baguio, the Philippines, Estoque and
Murayama investigated the effects of topography on UHIs through additional parameters
including elevation, slope, aspect, and hill shade [12]. Empirical analysis showed that these
parameters, together with those of landscape composition, were capable of explaining a
great deal of LST spatial variability in three different years of 1987, 2001, and 2015.

4.5.4. Socioeconomic Factors

Though relatively limited in occurrence, socioeconomic factors have also been con-
sidered as potential variables that contribute to elevated LST in cities, especially from
the perspective that anthropogenic activities of residential, industrial, and/or commercial
natures are responsible for enhancing surface temperatures.

• Population density (PD): PD has been introduced in several studies as a factor im-
pacting SUHIs. For example, Zhang et al. investigated the links between PD and
SUHIs in Nanchang, China [115]. The authors found significant positive correlations
between PD and mean LST in 2000 and 2013, concluding that as PD increases, LST
also increases. This result is consistent with that found in other studies carried out
in different cities such as Wuhan [129], Fuzhou [72], Brisbane [133], Shanghai [45],
Zhengzhou [73], and Hefei [158]. However, a PD-induced LST increase does not con-
cern the total number of people located in a given area as much as it is related to the
socioeconomic activities carried out by people daily in houses or places of work (e.g.,
industrial centers) [115]. This was confirmed in [129], where the authors concluded
that, in contrast to PD variations that have been found to be somewhat correlated
with LST, Wuhan population changes from 2000 to 2009 had no direct relationship
with LST.

• Other socioeconomic factors: Our investigation shows that socioeconomic factors
are often overlooked, generally because of a lack of data. Nevertheless, several re-
searchers introduced such variables and assessed their impact on SUHI development.
These include (i) emissions such as those of VOC and NOx [31], waste gas emis-
sions [46], and carbon dioxide (CO2) [115]; (ii) electricity [76,96]; (iii) employment
density [61,133]; (iv) night light [45]; (v) gross domestic product (GDP, [46]); and (vi)
house rent [159].

4.6. An Overview of Proposed Mitigation Strategies

In light of the findings of the reviewed studies, the magnitude of SUHIs can be said to
be associated with rapid urban sprawl to the detriment of green areas. Several suggestions
have been proposed in the literature to alleviate SUHI impacts. We present a compiled list
of the main strategies suggested:

• Promoting greenery: Implementing policies encouraging more green areas [11,73,99,115],
preferably within the urban premise and beyond, is one of the most suggested SUHI
mitigation strategies given that increases in SUHI magnitude are highly associated
with depletion of vegetation cover. Within UAs, greening concepts need to be imple-
mented in both the horizontal and vertical directions [82]. Kleerekoper et al. described
four forms of vegetation that can be fostered: parks, trees along streets, green in private
gardens, and green roofs or facades [160]. Regarding the cooling effect, Wong et al. re-
ported that ground greenery often lowers the surface temperature by 2–9 ◦C, whereas
roofs or buildings walls covered with green layers reduce surface temperature by
approximately 17 ◦C [161]. Additionally, the type of planted vegetation makes a great
difference in cooling effects. For instance, Zhang compared the cooling effects of five
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regionally common shrubs in Guangzhou, China [162]. According to the author, only
one vegetation type, Murraya exotica L., showed excellent cooling effects. Furthermore,
various studies have emphasized other parameters deemed critical for maximizing
SUHI mitigation gains, including park shape [110,161], park size [110,161], and plant
placement [161]. Thus, such considerations need to be considered by urban planners
prior to implementing a strategy for optimal outcomes in the long run. Beyond UAs,
the use of greenbelts surrounding cities is an effective way to combat SUHIs. In [94],
the authors demonstrated the cooling effects of the greenbelt surrounding the Chinese
city of Shenyang based on an investigation of LULC changes on SUHIs from 1986 to
2007, although this effect had started to fade because of urban sprawl. In desert cities,
greenbelts are highly recommended, as seen in [106], where the authors recommended
expanding greenbelts to protect new urban communities in the Cairo metropolitan
area against SUHIs amplified by air pollution caused by dust and suspended aerosols.

• Safeguarding water bodies: Similar to vegetation, the reviewed studies reported that
changes in water bodies had had substantial effects on SUHI mitigation [50,87,163],
concluding that alleviating SUHIs necessitates safeguarding water bodies. In Wuhan
city, Wu et al. found considerable spatial variations in SUHI effects, which they
attributed to water bodies’ distribution [70]. In a study carried out on the tropical city
of Kuala Lumpur, Amanollahi et al. recommended increasing the number of retention
ponds and adding new vegetation areas [142]. Among various advanced materials
and techniques, Cai et al. suggested using waterscapes in the city of Fuzhou to counter
the impacts of SUHIs [72]. While it has been reported that the impacts of water bodies
on SUHIs are generally less effective than those of vegetation cover [164], combining
both approaches would be a good strategy to reduce SUHI impacts.

• Using cool roofing/paving materials: Though the increase in green and blue areas may
be feasible in cities under moderate climates (i.e., temperate, tropical, and continental),
such measures are difficult, if not impossible, to implement in desert cities due to
scarcity of water resources, as reported in the case of Phoenix [99]. Reducing ISs’
properties to absorb solar radiation by using reflective materials [11,33,165] is an
alternative option in cities with harsh and moderate climates alike. That can be
conducted using highly emissive materials to prevent heat retention and by painting
roofs and pavements with white paint [11].

• Other notable measures: Regarding LULC changes, the aforementioned measures
have been the most suggested ones in the reviewed literature to alleviate SUHIs. A
few studies suggested other ways such as (i) relying more and more on renewable
energy (e.g., solar and wind) at the expense of fossil-fuel-based energy to reduce
carbon emissions [11] and (ii) promoting incentive programs such as “carbon credits”
targeting polluting companies to reduce emitted anthropogenic gases [11].

In summary, mitigation measures depend on the characteristics of the target area,
mainly in terms of the reigning climate, local topography, size, and geographical set-
tings. It is worth noting that this review only covers commonly suggested mitigation
strategies in the considered literature. Policy and technology responses developed for
the alleviation of UHI impacts are not discussed. For more information, one may refer
to a study by Kleerekoper et al. [160] or a recent and more focused review conducted by
Degirmenci et al. [39].

4.7. Limitations and Future Directions

In this subsection, the limitations or obstacles facing studies focusing on the associa-
tions between LULC spatiotemporal changes and SUHIs are discussed. This is followed by
the proposed future paths that such a topic may be directed toward.

4.7.1. Limitations

Though studies focusing on the historical trends of SUHIs in relation to LULC changes
have helped our understanding, several critical limitations have been pinpointed in the
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reviewed literature and need to be addressed in future research. These limitations concern
the used data, executed methods, or a principal combination of both.

Perhaps the biggest challenge that limits such studies is the incapacity to validate
satellite-derived LSTs using in situ measurements collected from field surveys or historical
data collected via climatological station networks. The lack of such networks in targeted
areas and the time- and budget-consuming fieldwork are the main obstacles that have
hindered the validation process of satellite-derived LSTs in numerous case studies. The
deployment of reliable networks usually comes with huge expenses, as it requires continu-
ous maintenance. Even when available, in situ records may be incomplete due to various
reasons, such as the forced relocation of stations (as reported in [144]), which makes them
inadequate for studies focusing on the long-period monitoring of SUHI and LULC changes.
In addition, high costs or privacy barriers may hinder researchers from accessing such
valuable data. Nevertheless, numerous researchers have been able to confirm small dif-
ferences between SUHIs and AUHIs, as illustrated in [54], where the authors found an
error of 2–3 ◦C between satellite-derived mean LSTs and average temperatures based on
in situ measurements. Error fluctuations were found to vary depending on the LULC
type, while vegetation averaged 28.7 ◦C based on field measurements and 30.8 ◦C based
on estimation via satellite data; UAs averaged 30.1 ◦C based on field measurements, and
satellite estimations indicated 32.7 ◦C. In the city of Zhengzhou, quasi-identical results
were described by Min et al., who found differences ranging between 2.7 and 4.7 ◦C, based
on historical meteorological data [73]. Similarly, using records from four climatological
stations, Nguyen et al. found that these differences varied between 0.3 and 3.34 ◦C, with
higher differences observed in UAs and lower differences observed in rural areas [96]. A
different approach was used in [22], where the authors conducted a field survey intending
to collect over 200 ground observations across Delhi during the spring season. A high cor-
relation (0.89), along with a relatively high coefficient of multiple determination (r2 = 0.79)
and quasi-equal standard deviation (0.72 ◦C), was reported between the two sets, thus
indicating that the LST estimated from satellite thermal sensor data was as precise as those
measured in situ. These findings are partly aligned with those reported in [97], in which
the authors found a significant correlation between air temperatures (measured at 137 sites)
and satellite-estimated LST during the winter (January 2014) and pre-monsoon (April 2014)
seasons in the city of Malda. Aside from validation using meteorological station data or
field survey measurements, LST data retrieved from satellite sensors have been used for
comparison against each other. This was described in [126], where the authors used the
MODIS LST product to validate LST estimated from Landsat imagery in different years
(2006, 2009, and 2016). Empirical analysis showed the existence of moderate-to-strong
correlations ranging from 0.44 and 0.55 between the LST estimated from Landsat (5 TM
and 8 TIRS) and MODIS. According to Swain et al. [166], the refined MODIS LST products
were reliable because they had already been validated using ground observations; they
cited [167] as a reference paper where the authors demonstrated that their accuracy was
better than 1 K in 39 out of 47 cases, with all 47 cases having a root mean squares of
differences less than 0.7 K. A similar approach was used by Chaka and Oda to validate
Landsat 8 TIRS data in the city of Hawassa, Southern Ethiopia [79].

A second limitation observed in the reviewed literature is related to the limited number
of dates that were considered for analyzing the links between SUHIs and LULC changes,
especially those monitoring long periods. This might hinder the provision of a true picture
of the trends of the impacts of different LULC changes on SUHIs in cities during such a long
timeframe, specifically those related to seasonality [22] or the occurrence of rare abnormal
events (e.g., drought and cold waves) that might lead to misleading interpretations. A
study by Feng et al. in Xiamen city, China, revealed that a cold wave that occurred in
1992 may have been the cause behind water bodies exhibiting the highest LST that year,
despite being one of the coolest LULC types in other years (1987, 1997, and 2007) [121].
Moreover, in [111], the authors partly attributed the high temperature recorded in 2015
observed in the mountain city of Yan’an city, China, to the significant climatic impact
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of the global El Niño phenomenon. Another rare event impacting SUHIs was described
in [166], where the authors reported an unusual increase in MODIS-derived mean LST
recorded in 2009 in agricultural lands, which resulted in a small difference between rural
areas and UAs. These anomalies were attributed to the severe drought that affected the
region in 2009, which impacted the vegetation cover and soil moisture content. From this
perspective, while it requires massive efforts and resources, relying on imagery data with
higher temporal frequency to monitor interannual [83] and seasonal [22] SUHI variations is
highly recommended because it would improve our understanding of the impacts of LULC
spatial and temporal changes and prevent misleading interpretations. An example of such
investigations was illustrated in [168]; using 507 Landsat images, the authors analyzed
historic LULC changes—which occurred in Atlanta between 1984 and 2011—and explored
their effects on thermal landscape patterns.

The third challenge that faces SUHI/LULC studies is related to the quality of archived
remotely sensed data. It is evident that multiple data sources are available, as presented
in Section 4.1, which have allowed researchers to carry out studies in different cities
across the globe. However, a serious limitation that impedes the use of satellite data is
the high percentage of cloud cover, notably in tropical regions. This issue was illustrated
in [114], where the authors described cloud coverage as a “curse” for optical remote sensing
following their struggle to find Landsat data of the Kuala Lumpur metropolitan city with
minimal cloud cover. Subsequently, the authors could finally collect images during the
summer seasons of five years between 1997 and 2013, covering percentages ranging from
4% to 24%. In the same study area, Amanollahi et al. found the same issue regarding
the collection of cloud-free Landsat imagery, leading the authors to somewhat limit their
investigation of SUHIs to only two dates (1990 and 2006) [142]. Though the two collected
images were over 95% cloud-free, the authors noticed that 90% of clouds were clustered
above the vegetated area, leading the authors to classify them as vegetation. Clouds not
only contribute to less accurate LULC classification [142] but also affect the estimation of
LST. This was further detailed in [169], where the authors used over 80 Landsat images
to monitor SUHI evolution in the tropical metropolitan area of Rio de Janeiro between
1984 and 2015. It was found that in addition to the limited number of collected cloud-free
imagery, LST changes were affected by cloud-induced noise from undetectable clouds,
cloud shadows, and aerosols.

4.7.2. Future Directions

The findings of this study indicate that the majority of SUHI research has been concen-
trated in South Asian nations (Section 3.2), namely China and India, with less attention paid
to cities in developing countries in other continents, particularly Africa and South America.
Nine studies were interested in cities of six African countries—Cairo [5,106,113,143], Ethek-
wini [77], Hawassa [79], Akure [153], Osogbo [130], and Accra [170]. Only Brazilian cities,
including Rio de Janeiro [8,169], Cuiaba-Varzea Grande [171], and Paço do Lumiar [172],
were investigated in South America. More SUHI studies targeting cities in the African and
South American continents are highly recommended.

There is no doubt that SUHIs are heavily impacted by the spatial and temporal dynam-
ics of LULC. The increase witnessed in SUHI magnitude in several cities is attributed to IS
horizontal expansion to the detriment of previous green and blue areas as a result of popu-
lation growth and rising anthropogenic activities. As demonstrated in Section 4.5, however,
other critical factors, such as seasonal variations, landscape composition and configuration,
terrain characteristics in hilly and mountainous cities, and socioeconomic variables, highly
contribute to the development of SUHIs. Nonetheless, it has been observed that only a few
studies incorporated such important variables into their analyses. While acquiring data
associated with some variables would be challenging in certain target areas, it is important
to consider the changes of as many variables as possible while investigating SUHIs.

In the considered literature, most studies focused on exploring the past trends of SUHIs
in regard to LULC changes. However, recent studies, although few (four publications),
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have started to pay more attention to simulating future trends based on past ones. From this
perspective, Tran et al. estimated future urban climate patterns based on predicted LULC
changes in the Hanoi inner city [80]; the authors employed a nonparametric regression
to predict future LST values in 2023 based on past LST spatial variations with respect to
spatiotemporal changes witnessed within five LULC types (i.e., urban, vegetation, cropland,
water, and bare land). The examined two scenarios regeared whether future development
growth would be low or high. From 2015 to 2023, the hotter LST zones (≥40 ◦C) were
found to be likely to grow, while the cooler LST zones (≤38.5 ◦C) were found to tend
to decline. From low-to-high growth scenarios, the same pattern was found to persist,
albeit less pronounced. Guo et al. simulated two possible 2025 future scenarios in which
LULC and LST in Beijing fluctuate depending on whether or not the city’s population is
controlled [59]. The authors used the conversion of land use and its effect at the small
regional extent (CLUE-S) model to simulate LST based on land use demand that was
estimated using a linear extrapolation of population and land use type. The population-
controlled scenario had a projected reduction in future IS demand of 7.69%, resulting in a
reduction of 1.1 ◦C in the average LST. Another investigation of the sort was reported by
Wang et al. for the Chinese city of Nanjing [137], in which the authors simulated LULC
patterns using the cellular automata-Markov chain model and estimated LST of the years
2030 and 2050 based on past trends (2000–2018); they subsequently defined areas of high
and moderate risk depending on estimated LST values. The model predicted that high
LST risk regions would increase, assuming urbanization is maintained from 2018 to 2050.
A similar approach using the multilayer perceptron-Markov chain model was applied to
Lahore city, Pakistan, to detect how future LULC changes would impact LST [173]. The
findings suggested that if vegetation cover decreases by 3% in the next 15 years, there
would be a rise of roughly 2 ◦C by 2035. The results of these studies are more relevant
in the context that they provide concrete information to planners and decision-makers
regarding future trends. Thus, future studies of this kind are strongly recommended.

5. Summary and Concluding Remarks

Since the turn of the century, research focused on historical and current SUHI trends
with respect to LULC spatiotemporal changes in cities has significantly increased. This
review shows that although case studies are growing, they have been geographically
skewed. These studies have focused on South Asian cities, but other cities in emerging
African or Latin American nations with fast urbanization trends have been less studied.
Thus, more studies are highly required, especially in these cities, because gaining an
accurate picture of SUHIs’ long-term impacts is a crucial first step toward minimizing
their consequences.

The increasing trend in SUHI studies is attributed to the free access to a multidecadal
archive of satellite imagery data and the development of robust techniques for LULC
extraction, LST retrieval, and the relationship assessment between the two. In terms of
the used data, the Landsat series was the main source in most reviewed studies due to its
long-term archived data dated back to the 1970s. On the other hand, MODIS and ASTER
data were primarily used to assess SUHIs regarding day and night variations. Several
methods to extract LULC from these datasets, notably the MLC, have been employed.
In contrast to LULC extraction, LST retrieval is a complicated task due to the lack of a
universal method that applies to all thermal sensors and the demanding nature of existing
methods. Regression analysis was found to have been the most common way to evaluate
LULC changes and LST.

SUHIs are strongly influenced by the spatial and temporal dynamics of LULC. The rise
in SUHI magnitude seen in many cities is primarily linked to the horizontal expansion of ISs
at the expense of formerly green and blue regions as a consequence of population growth
and increased human activity. However, other important factors such as seasonal changes,
landscape composition and configuration, topographical characteristics (especially in hilly
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and mountainous cities), and socioeconomic determinants all play significant roles in the
formation of SUHIs.

Specific mitigation measures to alleviate SUHIs are target area-specific, as they depend
on geographical settings and climatic conditions. Nonetheless, four common strategies
have been proposed in the revised literature: promoting greenery via planting and vertical
greening, safeguarding waterbodies, utilizing solar-blocking materials for roofing and
pavements, and adopting optimal urban designs.

The most significant limitation of SUHI studies concerns the inability to verify satellite-
derived LSTs with in situ measurements from field surveys or historical data from clima-
tological station networks. Another obstacle is related to the high cloud cover in remote
sensing data, particularly in tropical cities. In addition, it was found that few papers
included other critical factors (e.g., socioeconomic variables, topography, and landscape
metrics) in their analysis to assess SUHI evolution.

In terms of prospects for SUHI research, the addition of other characteristics such as
geography and socioeconomic variables will provide more insight into how SUHIs are
evolving. This will enable the more realistic modeling of future SUHI trends based on
historical patterns. The results of such research will be useful to planners and decision-
makers because they will provide specific information regarding future trends.
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Appendix A

Table A1. Characteristics of the satellite data sources used in SUHI studies.

Thermal Sensors MSS/TM/ETM+/TIRS MODIS ASTER

Carrier Satellite Landsat Series Aqua and Terra Terra

Resolution
Spatial 30 m 1

250 m (bands 1–2)
500 m (bands 3–7)

1000 m (bands 8–36)

VNIR: 15 m
SWIR: 30 m
TIR: 90 m

Temporal 16 days 1–2 days 1–16 days

Coverage Swath

L4: 170 × 183 km
L5: Width (185 km)
L7: Width (185 km)
L8: 185 × 180 km

2330 × 10 km 60 × 60 km
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Table A1. Cont.

Thermal Sensors MSS/TM/ETM+/TIRS MODIS ASTER

Temporal

L4: 1982–2001
L5: 1984–2013

L7: 1999–ongoing
L8: 2013–ongoing

Terra: since 1999
Aqua: since 2002 1999–ongoing (Terra)

Sensors

L4: MSS and TM
L5: MSS and TM

L7: ETM+
L8: OLI and TIRS

Terra MODIS (1999)
Aqua MODIS (2002) Terra ASTER (1999)

1 The spatial resolution of thermal infrared band 6 of L4 is 120 m.

Table A2. List of the most common indices employed in the reviewed literature.

Index Category Index Name Reference Studies Share

Biophysical

Vegetation

NDVI Normalized Difference Vegetation Index [174] 58.2%
FVC Fractional Vegetation Cover [175] 9.1%
SAVI Soil-Adjusted Vegetation Index [176] 2.7%
TDVI Transformed Difference Vegetation Index [177] 0.9%
EVI Enhanced Vegetation Index [178] 0.9%

Built-Up

NDBI Normalized Difference Built-Up Index [179] 32.9%
IBI Index-Based Built-Up Index [180] 1.2%

EBBI Enhanced Built-Up and Bareness Index [181] 3.7%
NDISI Normalized Difference Impervious Surface Index [182] 1.2%

DBI Dry Built-up Index [183] 1.2%

Water

NDWI Modified Difference Water Index [184,185] 9.8%
MNDWI Modified Normalized Difference Water Index [186] 8.5%

LSWI Land Surface Water Index [187] 1.2%
NDMI Normalized Difference Moisture Index Used in [85,154] 1.2%

Bare Land
NDBaI Normalized Difference Bareness Index [188] 7.3%
DBSI Dry Bare-Soil Index [183] 2.4%

Landscape Composition
PLAND Percentage of Landscape area

[189] 8.5%

SHEI Shannon’s Evenness Index
SHDI Shannon’s Diversity Index

Landscape Configuration

ED Edge Density
PD Patch Density
LSI Landscape Shape Index
CI Clumpiness Index

CONTAG Contagion
COHESION Patch Cohesion Index
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Abstract: Background: Urban green space (UGS) has been shown to play an important role in
mitigating urban heat island (UHI) effects. In the context of accelerating urbanization, a better
understanding of the landscape pattern mechanisms affecting the thermal environment is important
for the improvement of the urban ecological environment. Methods: In this study, the relationship
between land surface temperature (LST) and the spatial patterns of green space was analyzed
using a bivariate spatial autocorrelation and spatial autoregression model in three seasons (summer,
transition season (spring), and winter) with different grid scales in Fuzhou city. Results: Our results
indicated that the LST in Fuzhou City has a significant spatial autocorrelation. The percentage of
landscape and patch density area were negatively correlated with surface temperature. The results of
our indicators differed according to the season, with population density and distance to the water
indicators not being significant in the winter. The coefficient of determination was higher at the 510 m
grid scale on this study’s scale. Conclusion: This study extends our understanding on the influence
of UHI effects after accounting for different seasonal and spatial scale factors. It also provides a
reference for urban planners to mitigate heat islands in the future.

Keywords: land surface temperature; greenspace spatial patterns; landscape metrics; spatial autore-
gressive model; seasonal variation

1. Introduction

China is currently experiencing rapid urbanization, with the urbanization rate ex-
pected to reach 70% by 2030. As urbanization accelerates, the subsequent expansion of
roads and buildings has led to the reduction of green space, resulting in a significant
increase in the temperature of the city relative to the peripheral suburbs, a phenomenon
also known as the urban heat island (UHI) effect [1]. Not only does the UHI effect affect the
local and regional climate [2], it also affects water resources, air quality [3,4], the growth
of plants [5], biodiversity, and the ecosystem in general [6]. It also has an adverse impact
on the health of urban residents [7,8]. Developing effective adaptation measures and
mitigation strategies for UHI effect is thus a common challenge that urban planners and
climatologists are currently facing.

Rapid urbanization has significantly affected land cover characteristics. This change
affects the characteristics of surface radiation, heat, and water in urban areas, and increases
the urban surface temperature. On the one hand, remote sensing collected by satellites
or airborne platforms has been proven effective in evaluating large-scale and local-scale
land surface temperature (LST) [9]. By monitoring the relationship between the spatial
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change of LST and UHI combined with satellite images, it is found that impervious surfaces
and urban green space (UGS) are highly related to LST. The average LST of impervious
surfaces is 4–6 ◦C higher than that of green space, which indicates that urban expansion
is the fundamental reason behind the UHI effect [10–15]. At the same time, urbanization
has led to land use/land cover (LULC) change on the surface, while the transformation
of forest land for commercial land use intensified the change in surface temperature and
humidity [16,17].

UGS has been proven to be an important measure for alleviating the UHI effect [12],
given that increasing vegetation coverage in urban areas has been proven to effectively
reduce LST [18–20]. As such, many scholars have carried out research on the shape [21],
area, structure, composition, and configuration of green space [22]. It has been found
that the connectivity [23], complexity [24], and fragmentation of greenfield patches are all
strongly correlated with LST [25–27]. It is confirmed that the structure and configuration
of green space can effectively reduce urban temperature by rational optimization [28].

As a fast-growing city in China, Fuzhou’s rapid urban expansion has led to a large
reduction in wetlands and woodlands, which has earned Fuzhou the title of a “burning
stove” in recent years [18]. Therefore, studying the spatial distribution and composition
of UGS in Fuzhou City and analyzing the changes in its landscape patterns can guide
us toward alleviating the urban heat island effect. However, the cooling effect of the
UGS spatial pattern differs regionally [29]. Thus, further research is needed to optimize
the effect of UGS on UHI and clarify the effect of UGS on UHI mitigation in different
cities. Considering the changes in UGS, the relationship between UGS landscape patterns
and LST is mostly analyzed via correlation or linear regression [20,30], which ignores the
spatial heterogeneity of the two. Moreover, due to the difference in landscape patterns, the
relationship between landscape patterns of different geographical environments and LST
is not consistent [12,31]. Therefore, while considering the spatial patterns of green space by
combining spatial autocorrelation and spatial regression models, this paper analyzes the
spatial relationship between green space landscape patterns and LST in different seasons
and scales in Fuzhou, while adding further discussion on the impact mechanism of green
space on the thermal environment.

2. Methods

2.1. Study Area and Data Source

Fuzhou is the capital of Fujian Province in China, which is located at 25◦15′–26◦39′
N, 118◦08′–120◦31′ E, and has a subtropical monsoon climate. The urbanization process
of Fuzhou has been particularly obvious in recent years. According to data from the
Fuzhou Bureau of Statistics, by the end of 2017, the population of Fuzhou was 7.21 million,
with 5.105 million urban residents; the urbanization rate of Fuzhou had already exceeded
70 percent (70.8 percent). The conversion of water bodies and UGS into major built-up
areas amounted to 13.3 and 20.2 km2. From 1985 to 2015, the area of built-up areas
doubled. Large UGS losses during urbanization are the main impact of the urban thermal
environment [18,32]. The study area covers a total of 1448.479 km2 (Figure 1).

Fuzhou has a subtropical monsoon climate, which is marked by longer summers
and shorter winters. Spring starts in March and ends in June, while autumn starts in
October and ends in November. After analyzing the temperature changes in Fuzhou from
2000–2020 (Figure 2), we found that the temperature distributions in spring and autumn
were relatively similar, and that there was little difference in temperature between April
and May in spring, and October and November in autumn. Therefore, the study divided
the seasons in Fuzhou into three types: summer, transitional seasons, and winter [33–35].
Landsat8 image data (11 December 2019, 16 March 2020, and 22 July 2020) for three different
periods were selected from the USGS (https://espa.cr.usgs.gov/index/ accessed on 18
March 2021) and radiometric and geometric corrections were applied [36]. Based on the
atmospheric correction method, LST was retrieved from the thermal band of Landsat8
images to characterize the LST of different seasons.
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Figure 1. Study area: (a) Fujian Province, China; (b) Fuzhou City, Fujian Province; (c) the land
classification of Fuzhou City in this study area.

Figure 2. Violin plot of the monthly average air temperature in Fuzhou City during 2000–2020.

Land use data were obtained using the 2018 Gaofen-1 satellite (GF-1) image, which
has a panchromatic resolution of 2 m and a multispectral resolution of 8 m [37]. Using
eCognition software (Definiens Imaging, Inc., Munich, Germany), five main landscape
types were extracted based on an object-oriented classification approach—green space,
built-up area, water body, cropland, and unused land—and combined with high-resolution
historical images from Google Earth™, they were used as a reference layer to assess
classification accuracy for all land types. The classification accuracy assessment was
calculated based on a confusion matrix of 100 randomly selected points, with an overall
classification accuracy of 88.19%. At the same time, the results of land use classification
were further used to analyze the landscape metrics of UGS.
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2.2. Retrieving Land-Surface Temperature (LST)

This research is based on the atmospheric correction method, and the Landsat8 TIRS
was used to retrieve the surface temperature with a data accuracy of 30 m × 30 m.

Lλ = [εB(Ts) + (1 − ε)Ld]τ + Lμ (1)

In Equation (1), Lμ is the upwelling radiance, Ld is the downwelling radiance, ε Lλ is
the top-of-atmosphere (TOA) radiance, where ε is the surface emissivity, B(Ts) is the black
body heat radiation brightness, and τ is the transmittance of the atmosphere in the thermal
infrared band. Thus, the radiance of a black body with a temperature of T in the thermal
infrared band B(Ts) is:

B(Ts) =
Lλ − Lμ − τ(1 − ε)Ld

τε
(2)

Ts is the true surface temperature (LST) (◦C), which can be obtained by the function of
Planck’s formula:

Ts =
K2

ln(K1/B(Ts) + 1)
(3)

For Landstat8, K1 = 774.89 W/(m2·μm·sr), K2 = 1321.08 K.

2.3. Influencing Factors Selection

The landscape metrics can effectively quantify the structural composition and spatial
configuration characteristics of the patch [38], given that studies have proven landscape
composition and configuration to have a significant impact on LST [39]. Based on the
results of previous studies, six commonly used landscape indicators were selected as
explanatory variables for LST changes [30]. To account for the correlation between the
various landscape metrics, to fully reflect the landscape pattern of green space, and to avoid
potential correlations caused by redundant metrics, we selected percentage of landscape
(PLAND), patch density (PD), edge density (ED), aggregation index (AI), mean patch size
(AREA_MN), and mean shape index (SHAPE_MN) as our key indicators [40] to analyze the
relationship between green space landscape pattern and LST. These indicators reflect the
main characteristics of green space patterns. Generally, PLAND and AREA_MN represent
the patch area, PD and ED are indicator density and patch boundary, while SHAPE_MN is
the patch shape index and AI represents the spread of landscape patches.

We used the grid analysis method to analyze the green landscape pattern metrics using
the FRAGSTATS 4.2 software [31]. However, the appropriate grid scale is still argued in
the literature, and previous studies have proved that the green space cooling effect is scale-
dependent [41], while the optimal scale varies depending on study area [12]. To explore the
suitable grid scale in Fuzhou, we applied four grid scales: 360 m × 360 m, 510 m × 510 m,
720 m × 720 m, and a 960 m × 960 m grid scale (all grid scales are integer multiples of 30 m
accuracy of landsat8 images) [25,42–44]. By extracting the green landscape metrics of each
grid, a grid image of each green landscape metric were obtained. We then used ArcGIS 10.2
(ESRI, Redlands, CA, USA) software to calculate the average LST and landscape metrics
for each grid. We normalize the indicator results before analysis. Considering the impact
of the water bodies and population density on LST [11,45–47], we also added closest
distance to a water (water_distance) [17] and population density as research variables
(https://www.worldpop.org/ accessed on 30 June 2021). The accuracy of the population
density map was 100 m × 100 m (Table 1). We applied the Pearson correlation to check the
strength of the association between LST and each variable indicator.
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Table 1. Descriptions of the variables used in this study [48].

Variables Description Formula Unit

Percentage of
landscape (PLAND)

The proportional abundance of
each patch type in the

landscape within an analysis
unit.

PLAND = pi =
∑n

j=1 aij

A ∗ 100
Percent

Patch density (PD)

Density of landscape patches
within an analysis unit, reflects

the degree of fragmentation
and spatial heterogeneity of

landscape patches.

PD =
Ni
A (10000) ∗ (100) n/km2

Edge density (ED)

The total perimeter of
landscape patches per ha

within an analysis unit, reflects
the degree of fragmentation of

the patch.

ED =
m
∑

k=1
eik × 10000

A
m/ha

Aggregation Index
(AI)

Aggregating degree of the
corresponding patches within

an analysis unit.
AI =

∣∣∣ gii
max−gii

∣∣∣ ∗ 100 Percent

Mean patch area
(AREA_MN)

The average area of landscape
patches within an analysis unit.

AREA_MN =
1

10000×n × n
∑

i=1
aij

Hectares

Mean patch shape
index (SHAPE_MN)

The average shape index of
landscape patches within an

analysis unit, for reflecting the
complexity of individual patch

shapes.

SHAPE_MN =
1
n × 0.25pij√aij

unitless

Water_distance
Analyze the Euclidean distance

of each unit to the water
bodies.

Km

Population density The population density within
an analysis unit. People/km2

A, total landscape area (m2); aij, area (m2) of patch ij; Ni , number of patches in the landscape of patch type (class);
n, number of patches pi , proportion of the landscape occupied by patch type (class) i; eik, total length (m) of
edge in landscape involving patch type (class) i; pij, perimeter (m) of patch ij; gii , number of like adjacencies
(joins) between pixels of patch type (class) i based on the single-count method; max-gii , maximum number of like
adjacencies (joins) between pixels of patch type (class) i based on the single-count method.

2.4. Spatial Autocorrelation and Spatial Autoregressive Model

Spatial autocorrelation analysis reveals whether the variables are spatially correlated,
and the degree of autocorrelation [49]. Spatial autocorrelation includes global spatial
autocorrelation and local spatial autocorrelation, and here we use global Moran’s I (the
spatial correlation of the whole study area) and local indicators of spatial association
(LISA) (the spatial correlation of each spatial unit and its neighboring units for a certain
attribute) to describe the above results [50,51]. Moran’s I values range from −1 to 1, with
negative values indicating negative spatial autocorrelation, and positive values indicating
positive spatial autocorrelation. LISA plots depict the results of five scenarios: clusters
of high values (high-high), clusters of low values (low-low), outliers where high values
are surrounded by low values (high-low), and outliers where low values are surrounded
by high values (low-high) and have no significant local autocorrelation (not-significant).
It determines the degree of spatial clustering present in the data (p-value). Additionally,
the bivariate spatial autocorrelation analysis was used to analyze the spatial correlation of
different variables with LST [52]. The GeoDa (v.1.14.0; Luc Anselin, AZ, USA) software
was used for the above-mentioned spatial correlation analysis.
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The formula for global spatial autocorrelation can be expressed as:

I =
n
S0

∑n
i=1 ∑n

j=1 wi,jzizj

∑n
i=1 z2

i
(4)

where n is the total number of spatial units, zi is the attribute of element i with its mean
(xi-x), wi,j is the spatial weight value between i,j, and S0 is the aggregation of all spatial
weights.

S0=
n

∑
i=1

n

∑
j=1

wij, (5)

The zx score for the statistic is given by:

zx =
I − E[I]√

V[I]
(6)

where
E[I] =

−1
(n − 1)

(7)

V[I] = E
[

I2
]
− E[I]2 (8)

A traditional ordinary least squares (OLS) model was employed to examine the effect
of each variable on the change in LST.

y = Xβ + u (9)

where X is the matrix of explanatory variables, β denotes a vector of slopes, and u represents
a vector of random error terms.

Spatial lag model (SLM):
y = ρWy + Xβ + u (10)

where ρ is a spatial autocorrelation parameter, W is the spatial weight matrix, Wy is the
spatial lag operator, and β is the unknown coefficient vector.

Spatial error model (SEM):

y = Xβ + γWε + δ (11)

where γ is the spatial autocorrelation parameter, Wε denotes the spatial weight matrix, and
δ represents a vector of the error terms.

The spatial error model and the spatial lag model were determined using Lagrangian
multiplier diagnostics (LM) [36,44]. The LM and robust LM values of the SEM model are
larger than that of SLM, indicating that SEM performed better than SLM. Results show that
the spatial error model was suitable for the data in this study (Table A1).

3. Results

3.1. Spatial Characteristics of LST

In general, the spatial distribution characteristics of LST in Fuzhou during different
seasons tend to be consistent. High-temperature areas were mainly concentrated in the
city center (Figure 3). As Fuzhou is surrounded by mountains on three sides (Gushan
Mountain to the east, Wuhu Mountain to the south, and Qishan Mountain to the west), the
vegetation coverage is high and the forests are relatively abundant. Thus, low-temperature
areas mainly surround the urban areas. In summer, the temperature in Fuzhou can reach
above 50 ◦C (with an average of 43 ◦C) (Table 2), which is quite different from the other
two seasons and can seriously affect daily travel [53].
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(a) (b) 

(c) 

Figure 3. The three images represent the spatial distribution of land surface temperature (LST, ◦C) in (a) summer, (b) transi-
tional season, and (c) winter, respectively.

Table 2. Temperature in different seasons.

Season Data Date Local Time Minimum Maximum Average Std. Dev.

Summer 22 July 2020 02:32:25 20.473 62.633 43.417 5.556
Transition season 16 March 2020 02:32:22 11.674 46.229 22.305 3.168

Winter 11 December 2019 02:32:49 2.843 36.573 18.225 1.901

Through the analysis of the study area, the LST distribution of global Moran’s I
is positively autocorrelated (Table 3). The overall distribution of LST and the spatial
autocorrelation of LST were also significant at the 0.01 level, indicating that the spatial
distribution of LST exhibited aggregation. With an increase in the grid scale, the larger the
scale, the lower the correlation to a certain extent. At the same time, the global Moran’s I of
LST in summer and the transition season was greater than that in winter. It can be seen
from (Figure A1) that the spatial aggregation distribution trends of all scales in the study
area are basically the same. The low-low cluster (L-L) is distributed in the forest areas to
the west, east, and north, while the proportion of high-high clusters (H-H) is relatively
large and distributed mostly in the urban center and a little to the south. With a decrease in
temperature, the L-L distribution in the urban area decreased. The distribution proportions
of the high-low cluster (H-L) and low-high cluster (L-H) were small and sporadic. In winter,
H-H accumulation in the urban center decreased significantly, but increased in the east.
The distribution of L-L increased with a decrease in temperature, especially in the south.
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Table 3. Global Moran’s I (Equation (4)) of land surface temperature (LST).

Scale (m)
Global Moran’s I

Summer Transition Season Winter p-Value

360 m 0.766 0.773 0.653 <0.01
510 m 0764 0772 0668 <0.01
720 m 0.664 0.673 0.546 <0.01
960 m 0.620 0.644 0.548 <0.01

3.2. LST and UGS Spatial Pattern Analysis
3.2.1. Analysis of the Spatial Pattern of Green Space

By comparing the cities around Fuzhou [54], the patch density (PD) and edge den-
sity (ED) in Fuzhou were higher than the surrounding cities, and the mean patch area
(AREA_MN) value was lower. The higher the patch density, the higher the fragmentation
of the landscape; the higher the edge density, the lower the aggregation of patches at the
edge of the landscape, while the small average patch area indicates that there are many
small green areas with a certain degree of fragmentation in the Fuzhou UGS. Meanwhile,
the global Moran’s I is also greater than 0.7 (Table 4), thus indicating that the green space
has obvious spatial aggregation.

Table 4. Green space landscape metrics and global spatial autocorrelation analysis.

Landscape Metrics
Moran’s I

PLAND (%) PD (n/km2) ED (m/ha) AI (%) AREA_MN (ha) SHAPE_MN

58.379 33.869 65.510 82.582 10.222 1.197 0.869

3.2.2. Bivariate Analysis of Green Space Landscape Pattern Index and LST

Pearson’s correlation coefficient and bivariate spatial autocorrelation analysis showed
that the relationship between each indicator and LST was more significant in summer and
transition seasons than in winter (Figure 4). The correlations of PLAND, AI, AREA_MN,
and water_distance were all negative. Among the negative indicators, PLAND and
AREA_MN were more strongly correlated with LST, indicating that the increase in the
proportion of green patches can have a cooling effect. ED, SHAP_MN, and population
density were positive numbers. This indicates that the increase of patch edge density leads
to the fragmentation of green areas. Under different grid scales, the correlation between
the positive indexes SHAPE_MN and ED increases with an increase in the grid scale, while
the negative index AI is the opposite. The larger the grid, the lower the correlation. There
was no strong correlation between PD and spatial autocorrelation (see Figure 4b).

3.2.3. Spatial Autoregressive Analysis

Spatial autoregressive analysis was carried out using LST as the dependent variable.
At the same time, before performing spatial regression analysis, all indicators passed the
collinearity test with variance inflation factor (VIF) values less than 10, indicating that there
was no problem with collinearity among the indicators.

From the results of the OLS analysis (Table 5), the correlation of the overall indicators
is the highest in the transition season and lowest in winter. The contribution of PLAND and
PD to LST cooling is larger (especially PLAND), while ED, AI, and population density are
obviously positive. At the same time, the correlation of PLAND decreased from summer
to winter, while PD remained relatively stable. In terms of positive correlation indicators,
the LST interpretation rates of ED, AI, and population density increased with an increase
in temperature. Water distance is positively correlated in summer and transition seasons,
while negatively correlated in winter. AREA_MN loses explanatory significance as the
temperature decreases. On the grid scale, as the grid scale increases, the fit of each index
(R2) in different seasons grows higher under the OLS model.
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(a) 

(b) 

Figure 4. Pearson correlation analysis at different scales and bivariate spatial autocorrelation. Values without significant
correlation were excluded from the graph. (a) Pearson correlation analysis; (b) bivariate spatial autocorrelation.

However, it was found through the results that the residuals of the OLS model Moran’s
I had significant spatial clustering (Table A1), and the traditional OLS regression model
may have ignored the spatial correlation of the indicators, so the SEM model was used for
further analysis (Table 6).

Specifically, the coefficients of ED, AI were significantly positive. The coefficients for
PLAND and PD were significantly negative. SHAPE_MN was not statistically significant.
The correlation of overall indicators was better in the summer and transition season than
in the winter. Under the standardized coefficient, the indexes of PLAND and PD make a
great contribution to the reduction of LST; with the increase in grid scale, the effect of index
on LST is enhanced. At the same time, with the increase in scale, the correlation between
AREA_MN, water_distance, population density, and LST disappeared. From the fitting
results, the fitting effect (R2) of the 510 m scale is higher than that of the other scales in
this study. Compared with the OLS model, the interpretation degree of the SEM index for
seasonal changes is lower, but the overall fitting effect of the index is better than that of
OLS.
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4. Discussion

4.1. Spatial Variation of LST

Urban LST decreases with the change from summer to winter. Owing to the character-
istics of urban development in Fuzhou, the suburbs are basically surrounded by mountains
and less developed, which is why the distribution characteristics of the high-temperature
areas across the whole study area are obvious and H-H accumulation is mainly distributed
in the urban center where the population is concentrated. Urban expansion leads to the
continuous reduction of green space and the continuous expansion of construction land,
man-made emissions, etc., resulting in high LST. L-L aggregation is mainly distributed
around the suburbs. With the decrease in LST, the aggregation degree of H-H decreased,
while the L-L aggregation in the suburbs increased significantly.

4.2. Differences in the Impact of UGS on UHI Mitigation

Our OLS analysis showed that the indexes which contributed greatly to the cooling of
LST under the standardized coefficient are PLAND and PD. This supports the claim that
PLAND has great explanatory significance for cooling [55]. ED, AI, and population density
also had significant effects on LST. At the same time, the effect of model fitting increased
with an increase in the grid scale.

The results of the index analysis by the SEM model were slightly different from those
of the OLS model. The coefficient of determination (R2) for each variable at the 510 m grid
scale is higher than the other three scales of this study. With an increase in scale, the value
of each index coefficient increases. The landscape metrics PLAND and PD of green space
showed an obvious negative correlation with LST, which is consistent with the research
results of [40,55]. This shows that an increase in green space area, a larger patch area, and
more patch quantity can reduce LST, given that green space can produce cold island effects
through evapotranspiration, as well as shade to prevent the surface from being directly
heated by the sun [56]. At the same time, the more aggregated the patch area, the better the
connectivity and interaction between vegetation, and the better the cooling effect on the
area [57]. However, the results of ED contradicted some previous studies. LST was found
to decrease with an increase in the complexity of plant shape and edge density, probably
because the shape complexity of edge density can increase the area of shadow provided
by plants and reduce LST [40]. Although the patch edge density in Fuzhou was high,
there were many small patches in Fuzhou and the green space distribution was relatively
scattered, which weakened the cooling capacity of the green space and reduced the cooling
effect [58–60]. Several studies have pointed out that population density is an important
reason for the rise in LST. The more densely populated an area is, the more anthropogenic
heat emissions there are, and the higher the UHI [34,61]. The heat island effect is more
pronounced closer to the urban center. In the summer and transition seasons, the effect of
population density on LST was positively correlated, but the correlation was not obvious
in winter.

At the same time, different seasons have a significant impact on indicators. The nearest
distance to the water was positively correlated with LST in the summer and transition
seasons, but not in winter. It may be that rivers are scattered, mainly distributed around
roads and urban areas, and are seriously disturbed by human factors. This shows that
the distance and area of the water from the urban area are different, the degree of impact
of human activities is different, and the impact on LST is different in different seasons.
Because of the low temperature in winter, the temperature difference between the water
body and the surface decreases, so the factors affecting LST will also decrease and the
cooling effect will not be so obvious [33,62]. Overall, the research shows that the impact of
the index in summer and transition season is higher than that in winter; in summer, the
heat brought by the reduction of thermal radiation and evaporation is greater than that in
winter, the temperature in winter is low, the impact of vegetation on LST is reduced [62],
and the amount of solar thermal radiation is small [36,62,63].
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4.3. UHI Mitigation Implications by Urban Greening

Our findings help planners to implement differentiated UGS management strategies
for LST alleviation in specific regions. From the analysis, it is clear that increasing the
UGS coverage is the most effective way to promote cooling effects. However, with the
acceleration of urbanization in Fuzhou, green space resources are gradually being reduced,
while the spread of impervious surfaces has also reduced the aggregation of green space
patches and dispersed them. Under limited circumstances, it is difficult to conduct greening
in large areas, thus optimizing space allocation and improving space utilization, such as
increasing roof greening and pocket parks [20] in undeveloped urban suburbs, is necessary.
During the construction process, the patch areas of green space can be increased, and a
certain scale of parks and green spaces can be built to improve the evapotranspiration of
plants and reduce the development intensity of the city and the aggregation of buildings.
With the urbanization of Fuzhou in recent years, a large number of UGS have been reduced,
which have resulted in many scattered patches [18]. The edge density of these patches is
large, which results in a low cooling effect. Therefore, improving the connectivity between
patches and reducing the fragmentation of patches can improve the mitigation effect of
green spaces on UHIs. At the same time, Fuzhou has a rich network of urban waterways
since it has a significant effect on reducing LST. With the optimization and rational use of
the water system and the protection of existing wetlands from damage, we can alleviate
the negative impact of the thermal environment [32,64].

4.4. Limitations and Future Research

The changes in urban ecosystems and land use/land cover caused by accelerated
urbanization have largely exacerbated the UHI effect [20]. Combining land use data from
multiple years can better identify the changing patterns of LST; this study only used one
year’s worth of data to analyze the spatial characteristics of green space and LST in Fuzhou.
Meanwhile, there are many factors affecting LST, and the study failed to comprehensively
analyze the interactions between multiple LST influencing elements. By analyzing the
LST temperature changes across different years using the long-time series and multi-cycle
data analysis in combination with different indicators in the future, the UHI effect can be
analyzed more comprehensively. Incorporating it with the above analysis in future studies
can also help us study and alleviate the heat island effects in Fuzhou more comprehensively.

5. Conclusions

Taking Fuzhou as the study area, this paper used a bivariate spatial autocorrelation
and spatial autoregression model to analyze the spatial relationship between different green
landscape elements and LST in different seasons from multiple grid scales. The results
showed that the percentage of landscape and patch density were negatively correlated with
LST, while edge density and aggregation index were positively correlated with LST. Mean
patch shape index had no correlation. At the same time, the dominant factors affecting LST
differed according to the season. Distance to the water body and population density had
positive impact on LST during the summer, but the correlation weakened in the transition
season and winter. With the decrease of seasonal temperature, the explanatory effect of
each index on LST decreased accordingly. Because the factors affecting LST in the winter
differed from the other seasons, this indicates that more factors need to be considered in
the analysis of LST, and mitigation measures need to be taken for different seasons. At
the same time, it was found that the coefficient of the spatial error model was lower than
that of the OLS regression model, indicating that SEM considers the spatial autocorrelation
of each index. The fitting effect of SEM is better than that of OLS, which proves it can
better explain the spatial relationship between the greenspace landscape pattern and LST.
This study also analyzed the impact of landscape indicators on LST in different seasons at
different grid scales to identify seasonal changes that can promote development and guide
urban planning, and ultimately reduce the UHI effect.
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Appendix A

Local indicators of spatial association (LISA) at different grid scales in the study area.

Figure A1. (a) 360 m × 360 m; (b) 510 m × 510 m; (c) 720 m × 720 m; (d) 960 m × 960 m. (1) High- high
means spatial clustering of similarly high values, (2) low-low means spatial clustering of similarly
low values, (3) low-high cluster means low values surrounded by high neighboring values, and
(4) high-low cluster means high values surrounded by low values. (5) no significant value.
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Appendix A

Table A1. Lagrange multiplier (LM) diagnostics for spatial dependence.

Value p-Value

Scale (m) Summer
Transition

Season
Winter Summer

Transition
Season

Winter

360 m LM (SLM) 17,669.722 17,554.956 14,749.657 0.000 0.000 0.000
Robust LM (SLM) 751.682 817.425 335.424 0.000 0.000 0.000

LM (SEM) 18,289.119 17,995.990 15,079.633 0.000 0.000 0.000
Robust LM (SEM) 1371.078 1258.459 665.401 0.000 0.000 0.000
Moran’s I (error) 0.638 0.633 0.576 0.000 0.000 0.000

510 m LM (SLM) 8980.604 8785.118 8081.876 0.000 0.000 0.000
Robust LM (SLM) 315.210 375.142 134.112 0.000 0.000 0.000

LM (SEM) 9733.919 9383.335 8577.889 0.000 0.000 0.000
Robust LM (SEM) 1068.525 973.335 630125 0.000 0.000 0.000
Moran’s I (error) 0.646 0.634 0.606 0.000 0.000 0.000

720 m LM (SLM) 2777.740 2600.889 2244.589 0.000 0.000 0.000
Robust LM (SLM) 164.529 165.802 62.053 0.000 0.000 0.000

LM (SEM) 2892.608 2658.432 2314.228 0.000 0.000 0.000
Robust LM (SEM) 279.137 223.345 131.692 0.000 0.000 0.000
Moran’s I (error) 0.506 0.485 0.453 0.000 0.000 0.000

960 m LM (SLM) 1229.250 1196.510 1335.168 0.000 0.000 0.000
Robust LM (SLM) 52.147 77.669 38.198 0.000 0.000 0.000

LM (SEM) 1393.353 1308.945 1443.972 0.000 0.000 0.000
Robust LM (SEM) 216.250 190.104 147.002 0.000 0.000 0.000
Moran’s I (error) 0.466 0.451 0.474 0.000 0.000 0.000

Note: p-value is the probability of observing an event at least as extreme as the test statistic.
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Abstract: Anthropogenic interferences through various intensive social-economic activities within
construction land have induced and strengthened the Urban Heat Island (UHI) effects in global
cities. Focused on the relative heat effect produced by different social-economic functions, this
study established a general framework for functional construction land zones (FCLZs) mapping and
investigated their heterogeneous contribution to the urban thermal environment, and then the thermal
responses in FCLZs with 12 environmental indicators were analyzed. Taking Shenzhen as an example
city, the results show that the total contribution and thermal effects within FCLZs are significantly
different. Specifically, the FCLZs contribution to UHI regions highly exceeds the corresponding
proportions of their area. The median warming capacity order of FCLZs is: Manufacture function
(3.99 ◦C) > Warehousing and logistics function (3.69 ◦C) > Street and transportation function (3.61 ◦C)
> Business services function (3.06 ◦C) > Administration and public services function (2.54 ◦C) > Green
spaces and squares function (2.40 ◦C) > Residential function (2.21 ◦C). Both difference and consistency
coexist in the responses of differential surface temperature (DST) to environmental indicators in
FCLZs. The thermal responses of DST to biophysical and building indicators in groups of FCLZs
are approximately consistent linear relationships with different intercepts, while the saturation
effects shown in location and social-economic indicators indicate that distance and social-economic
development control UHI effects in a non-linear way. This study could extend the understanding of
urban thermal warming mechanisms and help to scientifically adjust environmental indicators in
urban planning.

Keywords: functional construction land zones; urban thermal environment; differential surface
temperature; environmental indicators; Shenzhen

1. Introduction

Intensive social-economic activities in urban areas have produced severe and irre-
versible interferences on natural landscape patterns and climate conditions in the urbaniza-
tion processes [1–3]. According to [4], more than two-thirds of the world population will
live in cities and modern towns by 2050. Over the decades, Urban Heat Islands (UHI) has
already received critical attention [5,6]. Due to the induced heat threats and health risks to
urban residents [7,8], UHI has become one of the key issues in the realization of sustainable
urban development goals (SDG11) [9,10].

As a proxy in the social-ecological process of human activities on the natural envi-
ronment, land use and land cover change (LUCC) have been considered the main drivers
of UHI effects. The existing literature on UHI has revealed that urban land use and the
resulting changes in surface biophysical properties of the landscape have led to the energy
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unbalance of the thermal environment [11–13], and the thermal difference between urban
and rural areas in local regions have been the main object in UHI studies. To date, var-
ious studies have investigated the relationship between UHI and urban climate-related
properties from different perspectives from urban land cover and land use differences. For
example, the local climate zones (LCZ) framework [14] provides a basic framework to map
land surface into 17 types of urban climate zones according to urban physical structure
parameters [15–17] and evaluate UHI effects [18–20]. Urban Function Zones (UFZ) [21] is
another LUCC scheme in UHI studies that divides the whole urban area into sub-zones
in consideration of similar social-economic activities in the local blocks. General findings
that the causes and characteristics of UHI are closely related to the landscape patterns
and environmental parameters of the land surface have been demonstrated in many aca-
demic publications [22]. It has been argued that the spatial heterogeneity of land surface
temperature (LST) across LCZ or UFZ is influenced by scale [5], composition [23], and
patterns [24,25] in categories of the surface landscape. Conclusions about differentiated
thermal effects between impervious surfaces [26] and green-blue landscapes [27] have been
applied to provide empirical planning strategies to alleviate UHI effects.

However, there are still limitations in UHI planning practice and research. Landscape
with natural cooling effects such as the waterbody [28], vegetation [29], and artificial green
infrastructures (GI) [13,27,30,31] could help to alleviate urban heat island effects with
natural-based solutions, while the fixed location and scale of areas of forests, rivers, and
lakes mean that these methods are only locally effective and show a lack of extensibility in
the whole area. The effects and causes of UHI have already been investigated at the block
level in recent studies, however, blocks divided by road networks are frequently used as
the basic research units in LCZ and UFZ frameworks, researchers may lose the delicate
insight into the construction land of different functions in a single block caused by different
sizes of the blocks in the real world. In addition, the quantitative distinction between
anthropogenic and environmental heat in UHI studies remains unclear. The difference
between anthropogenic and natural heat still needs further study. Therefore, it is crucial to
measure the thermal contribution in urban construction land.

Understanding human activities in urban land and the resulting quantitative thermal
effects would help to regulate human behaviors to control artificial heating effects on the
urban environment. Nowadays, crowdsourced data like points of interest (POIs) are gradu-
ally used to promote urban mapping due to its directivity to specific social and economic
activities and the lower cost and more convenient access than field surveys [32,33]. Com-
pared to the visual features in remote sensing images [17,34–36], categories or tags of POIs,
which are collected in the searching requirements of daily life and travel activities, could
better quantify the patterns of human activities in the region [37,38] and provide a good
option for anthropogenic heat measurement. However, they are established in different
classification systems by commercial firms, e.g., AMap [39], Baidu Map [40], and Google
Maps [41]. They are also usually inconsistent with the land use standards in the urban
planning field. Moreover, the absolute difference in quantity across different categories of
POIs and different research objectives make it a problem to determine the function in the
research unit just by the quantities or densities [42]. Thus, we still need to integrate the
advantages of POIs for the mapping of social-economic functions of construction land for
urban planning and management in a more spatial-continuous way. When relocating and
resizing the natural cooling area is diseconomy and impossible for the whole city [43], rea-
sonable allocation of the function of construction land, after understanding its diversified
thermal capacity and contribution to the urban thermal environment, may provide new
scientific pathways for heat island effect reduction.

After more than 40 years of rapid development under the Reform and Opening
policy, the urbanization rate of Shenzhen has continued to take the lead in China in the
recent decade [44]. Thus, Shenzhen has become a megacity with high risks of the UHI
effects [45] and limited natural cooling areas [46,47]. Taking Shenzhen as an example city,
three questions are focused on: (1) Are there differential thermal effects within urban
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construction land among various social-economic functions? (2) What are the contributions
of construction land with different social-economic functions to the UHI effect? (3) What
are the response processes of thermal effects to the environmental factors in construction
land? In this study, we proposed an extensible framework to map urban construction
land for social-economic functions at the grid level into functional construction land zones
(FCLZs) using POIs and then evaluated the relative thermal effects based on differential
surface temperature (DST) among urban areas to the surrounding areas. This study aims to
provide implications for the regulation of the anthropogenic influences in UHI reduction in
both the natural and social solutions for urban social-ecological problems.

2. Materials and Methods

2.1. Study Area

Shenzhen is a hilly megacity (21◦25′N~24◦30′N, 111◦12′E~115◦35′E) with a population
of 17.56 million. Situated on the south coastline of China’s mainland and adjutant to the
Peral River in the west, Shenzhen has a subtropical monsoon climate with a rainy and hot
summer for 8 months and dry winter of less than 1 month during average recent years.
The highly utilized construction land with a wide range of functional types is now widely
distributed around woody hills and water bodies in the city (Figure 1), even if under the
control of the urban master plan. Therefore, Shenzhen is one of the first cities to face
not only insufficient space for urban development but also many severe urban ecological
problems, e.g., an urban heat island.

 
Figure 1. Location of Shenzhen: limited hilly woodland and waterbody distribution in the city.

2.2. Data Sources

In this study, we used points of interest (POIs) data collected from AMap [48] in June
2019 to recognize FCLZ types. The Landsat 8 Collection 2 Level 2 Science Product (L2SP)
data processed based on Landsat 8 OLI/TIRS images (Table 1) were downloaded from the
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USGS website [49] due to similar higher air temperature and less cloud cover (<5%). To
obtain the natural land surface temperature in non-construction areas, we extracted the
waterbody and woodland cover from GlobeLand30 (2020) dataset [50]. Building survey
data with shape and floor were provided by the Planning and Natural Resources Bureau of
Shenzhen [51]. DEM data from ASTER GDEMV2 [52], night light data from Visible Infrared
Imaging Radiometer [53], and population data from Landscan [54] were also employed to
take into account the influences of building, topography, urban economic development,
and demographic factors to the urban thermal environment, respectively.

Table 1. Information about the Landsat images used in this study.

Scene ID Path/Row
Air Temperature of

the Day (◦C)

Average Air
Temperature for Ten

Days (◦C)

Satellite Transit Time
(UTC + 8)

LC81220442021035LGN00 122/44 16/24 18 10:45:33.11 a.m.
LC81210442019071LGN00 121/44 19/24 20 10:52:14.37 a.m.

2.3. Methods

As shown in Figure 2, based on social sourced and remote sensing data, the research
framework of this study consisted of three main steps.

 

Figure 2. The research framework of heterogeneous thermal contribution analysis in urban construc-
tion areas.
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First, functional construction land zoning (FCLZ) was implemented through the pro-
cess of data cleaning, division of study area, spatial term frequency-inversed patches
frequency (STF-IPF) model evaluation, and a results validation. Then, urban surface indica-
tors including land surface temperature and four groups of environmental parameters, i.e.,
biophysical indicators, building indicators, location, and social-economic indicators, were
retrieved and reprocessed across FCLZS using domain-based approaches. Finally, statistical
analysis methods were used to explore the relationship between DST and environmental
parameters in FCLZs. Next, those key processes are described in detail.

2.3.1. Functional Construction Land Zoning

1. Division of study area

To depict the actual functional construction land in a more precise way, the first step
was to divide the whole urban space into continuous grids at a certain scale to break the
traditional boundary divided by road networks (Figure 3). An appropriate grid scale
should be able to make the recognition results of functional constructional land as close as
possible to reflect the spatial distribution and the focused problems. It was considered that
500 m might be enough distance to capture neighboring POIs in cities [55,56]. Therefore,
we divided Shenzhen into 8575 grids at a scale of 500 m.

Figure 3. Patches diagrams in continuous grids (left) and road level blocks (right).

2. Matching POIs attributions to functional construction land zones

To facilitate the FCLZs to guide urban planning and construction land use, we reclas-
sified the POIs collected from AMap according to [57] into 7 types of construction land
use by their defined categories and tags (Table A1), i.e., Residential function (R), Adminis-
tration and public services function (A), Business services function (B), Green spaces and
squares function (G), Street and transportation function (S), Manufacture function (M), and
Warehousing and logistics function (W).

3. Calculation of POIs representativeness in patches

Different types of POIs usually correspond to various degrees of public awareness
although they have differences in quantity. For instance, the commercial service facilities
such as stores, supermarkets, catering, and so on, are always around some places in large
numbers while the more concerned POIs in urban planning, e.g., railway stations, logistics
parks, or large-scale residential communities may have only one or several POIs. As
a consequence, density and frequency methods [42,58] (Equation (1)) often mistakenly
identify the functional construction land zone type based on biased quantity observation
caused by differences in the number of collected points.

POI_Densityi,j =
Count o f POI matched to f unction j in Patch i

Total Count o f POI in Patch i
(1)

Inspired by the Term Frequency-Inversed Document Frequency (TF-IDF) model
(Equation (2)) [59] in the field of Natural Language Process (NLP), we proposed a Spatial
Term Frequency-Inversed Patches Frequency (STF-IPF) model in consideration of both the
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amount and the global significance to recognize representative functional construction land
types (Equation (3)).

TF_IDF =
Count o f word occurances
Total words in document

× log
Total number o f docs

Number o f docs word is in
(2)

STF_IPF = Count o f POI matched to speci f ic f unction
Total number o f POI in patches

×log Total number o f patches
Number o f patches where speci f ic POI are in

(3)

Given a study area divided into patches with a total number of m and a set of POIs
matched to m kinds of functional construction land, then the vector UNumpj and the
matrix NU could be defined as the following Equations (4) and (5), where Nui,j is the
number of POIs in the patch i matched functional construction land type j.

UNumpj = (Nu1,j, Nu2,j, . . . , Num−1,j, Num,j

)
(4)

NU = (UNump1
T , UNump1

T , . . . , UNumpn−1
T , UNumpn

T
)

(5)

Then the normalized STF-IPF value for function j in patch i could be calculated
according to Equation (6), which takes both numbers and repetitiveness into account by
combining Equations (1) and (3).

STF_IPFi,j =
Nui,j ∗ Nui,j

∑n
j=1 Nui,j

∗ log m
COUNT(UNumpj ,Num,j>0)

∑m
i=1 Nus

i,j ∗ Nui,j

∑n
j=1 Nui,j

∗ log m
COUNT(UNumpj ,Num,j>0)

(6)

where COUNT(UNumpj, Num,j > 0) calculates the counts of patches where the func-
tional construction land zone type j is not null. Higher normalized STF_IPFi,j means that
functional construction land zone type j in patch i is more dominant and distinct from
other types.

4. Recognition vectors evaluation

As shown in Equation (7), an FCLZ recognition vector for patch i could be constructed
after sorting the value of normalized STF_IPF values in the descending order with the
corresponding functional zone type index j′.

Rec_veci =
(

STF_IPFmax
i,j, STF_IPFsecondary

i,j′ , . . . , STF_IPFmin
i,j′′
)

(7)

The corresponding functions in the vector whose cumulative percentage is greater than
a threshold value ε (0~100%) are defined as the functions of the patches, and the function
with the maximal value is the main function in the patch. If there is no POI in the patch, the
type is set to a non-construction area (N). According to suggestions on compatible types
and proportions of urban construction land [57], ε was set to 70%. Therefore, we could infer
the FCLZs types in each patch by evaluating the recognition vectors, and then describe the
mixed status of FCLZs by calculating the mixed entropy in each patch by Equation (8).

Mixed_entropy =
n

∑
j=1

(STF_IPFj ∗ ln STF_IPFj) (8)

In this study, we implemented the above processes in python scripts.

2.3.2. Urban Surface Temperature Retrieval

The land surface temperature (LST) data were derived from Landsat 8 Collection 2
Level 2 Science Product (L2SP) [49]. This product provides thermal infrared bands using
the Radiative Transfer Equation method [60] after radiometric calibration and atmospheric
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correction. Digital numbers (DN) were converted to land surface temperature (LST) using
Equation (9).

LST = DN × SF + AF − 273.15 (9)

where DN is the digital number for a given pixel. SF and AF are the multiplicative and
additive scale factors of ST products, and their values are 0.00341802 and 149, respectively.
The item −273.15 is the additive factor that converts LST value from Kelvin to Celsius.

As there is no rural area in this concept but many forests in Shenzhen, we used the
average LST in the woodland (LSTwood) to reflect the natural surface land temperature
because of the low impact of human activities. Then DST could be calculated using
Equation (10), which is a more reprehensive and comparable indicator to quantify the
urban thermal environment change induced by human activities.

DST = LST − LSTwood (10)

2.3.3. Urban Environmental Indicators Retrieval

5. Biophysical indicators

L2SP also provides surface reflectance (SR) data in 9 bands processed by the LaSRC
algorithm after calibration and atmospheric correction routines [61]. Similar to Equation (9),
the SR data was converted from DN value to reflectance using Equation (11).

SRi = DN × SF + AF (11)

where SRi is the digital number for a given pixel in band i. SF = 0.0000275, AF = −0.2.
The valid value range for each band except band 6 (1~65,535) is from 7272 to 43,636.

Then based on the previous findings, the normalized difference vegetation index
(NDVI), normalized difference water index (NDWI), and normalized building index (NDBI)
were calculated as indicators to quantify the surface bio-physical characters considering
vegetation cover [26,62], moisture content [28,63], and building materials [64,65] in the
land surface.

6. Building indicators

Buildings are still the most important feature in the construction area [25,66,67], thus
we designed four building indicators (Table 2) using building survey data to quantify the
building characters in the land grid.

Table 2. Definition of building indicators in construction land grid.

Indicator Definition Diagram Explanation

Floor_avg

The ratio of the sum of the
total area of buildings to the

sum of the base area of
buildings

 
Floor_avg = H1×S1+H2×S2

S1+S2

Building_density = S1+S2
S0

Building_intensity = H1×S1+H2×S2
S0

Building_density
The ratio of the sum of the

base area of buildings to the
area of the grid.

Building_intensity

The ratio of the sum of the
total building area of

buildings to the area of the
grid.

Note: S0 means the area of the land grid. S1,S2, . . . means the projected area of the buildings, while H1,H2, . . .
means the average height of the corresponding building.
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7. Location and social-economic indicators

DEM, Euclidean distance from the waterbody (Eud_Water) and wood (Eud_Wood)
were used as location and neighborhood factors that would influence the urban thermal
environment [19,68,69]. Night light data (VIIRS_Value) and Landscan data (Population)
were indirect but explicit indicators to reflect the intensity of the economic development
density and social activities intensity [70,71].

They were all extracted or calculated, resampled, and matched to the grids under the
ArcGIS 10.2 platform.

2.3.4. Statistical Analysis

The Shapiro-Wilk normality test [72] was used to explore the distributions of DST
among FCLZs, and the Kruskal-Wallis H test [73] was applied to find if there was a signifi-
cant thermal difference between FCLZs. The Dunn test with Holm-Bofferoni correction [74]
was used as a post hoc method in multiple comparisons to verify the specific difference
in each pair of FCLZs. Then Spearman coefficients [75] between DST and environmental
indicators among various types of FCLZs were calculated to figure out factors influencing
the difference in thermal contribution capacity. Finally, multiple simple regression analyses
were conducted to quantify the response processes of DST on environmental indicators.

3. Results

3.1. Mapping of FCLZs

According to the main functional type in each grid, grids with functional construction
land of the 7 types are unevenly distributed in the 10 districts in Shenzhen (Figure 4).

Figure 4. The main type of functional construction land zone recognition results at a 500 m grid
scale. A: Administration and public services function; B: Business services function; G: Green spaces
and squares function; S: Street and transportation function; M: Manufacture function; R: Residential
function; W: Warehousing and logistics function.

To be more specific, the function of the most widely distributed grids which are
agglomerated and distributed in clusters and strips is the Business services function (B),
accounting for 41.62% of the total area of construction land. Grids of Administration
and public services function (A), Street and transportation function (S), and Manufacture
function (M) are clustered in patches of different sizes and show the aggregated distribution
in each district, which takes up 19.77%, 14.90%, and 11.98% in the construction area,
respectively. Residential function (R) and Green spaces and squares function (G) grids hold
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lesser area proportions of 6.94% and 4.16%, while they both show scattered distribution
across districts. Warehousing and logistics function (W) grids with an area proportion of
only 0.64% are significantly lower than others, which are distributed mainly at the edge
and the center of every district.

As Figure 5 shows, the mixed entropy (ME) of functional construction land in each
grid was calculated and showed obvious spatial aggregation. The natural breaks (Jenks)
method [76] was used to divide the mixing entropy values into three groups (0–0.62,
0.62–0.98, >0.98), representing the mixed degree of low, medium, and high, respectively.
Most grids with a high mixed degree are concentrated in Futian, Luohu, Nanshan, and
southern Baoan, which shows a similar distribution as grids of Business services function
(B) and Street and transportation function (S).

Figure 5. Mixed entropy distribution of functional construction land zones at 500 m grid scale.

In addition, the grids along the center of other districts are also with a high-level
mixed degree, as it can be inferred that the grids with a high mixed degree are usually the
regions with mature commercial activities and convenient traffic lines. Meanwhile, the
grids with a medium mixed degree are mainly distributed in northern Baoan, Longhua,
Pingshan, Longgang, and Yantian, where there is Manufacture function (M) and Residential
function (R) grids are mainly distributed. Besides, the grids with a low mixed degree are
mainly concentrated in mountainous areas, e.g., northern Yantian, Dapeng, and northern
Nanshan, where there is less construction land but more ecological land (woodland and
waterbody) distributed.

3.2. Differential Surface Temperature in FCLZs

The LSTP images cannot cover the study area in a single scene due to the satellite orbits
across both the two paths in different periods (Figure 6a,b), thus we scattered the retrieved
LST values in the overlapping areas to find the relationship between them. The fitting
curve and regression coefficient (Figure 6c) showed a high degree of linear consistency
between the two images. Therefore, we finally obtained the DST data (Figure 6d) covering
the whole area of Shenzhen computed based on mosaicking the two LST images after
linear adjustment.

To reflect the DST difference in more detail, the mean-standard deviation method [77,78]
was used to classify the DST data into five urban thermal effect levels, which correspond to
the significant cooling effect region (SCR), the unnoticeable thermal difference region (UTR),
the weak heat effect region (WHR), the moderate heat effect region (MHR), and the significant
heat effect region (SHR) in Table 3 and Figure 7. It could be seen from the comparison between
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Figures 6 and 7 that the regions with different levels of heat effect (WHR, MHR, and SHR)
show a spatial distribution of high similarity to that of FCLZs. While SCR presents a spatial
conjugate relationship to heat effect regions, UTR is mainly distributed in the mountainous
woodland area and places adjacent to the waterbody areas.

 

Figure 6. Urban surface temperature results in Shenzhen. (a) land surface temperature re-
trieved from scene LC81220442021035LGN00; (b) land surface temperature retrieved from scene
LC81210442019071LGN00; (c) scatter plot and regression between (land surface temperature) LST of
the overlap region in 2019 and 2021. (d) Distribution of differential surface temperature (DST) (◦C).

Table 3. Area Proportion (%) of functional construction land zones (FCLZs) in each thermal effect
level region.

Thermal Effect
Region

DST Range (◦C)
Region

Area

Functional Construction Land Zones Non-
Construction

Areas
A B G M R S W

SCR DST < −2.96 5.21 5.29 2.66 0.00 0.00 0.24 0.29 0.00 91.53
UTR −2.96 ≤ DST < −0.23 17.87 6.35 5.80 1.33 0.14 1.46 1.07 0.00 83.85
WHR −0.23 ≤ DST < 2.51 33.40 11.11 27.64 2.77 3.86 3.38 6.16 0.17 44.91
MHR 2.51 ≤ DST < 5.25 34.75 13.84 43.96 3.17 11.46 3.66 8.79 0.57 14.54
SHR 5.25 ≤ DST 8.77 10.69 32.63 1.98 20.01 2.26 13.49 1.57 17.37
Total / 100 10.87 28.54 2.44 7.05 2.87 6.50 0.39 41.33

Note: SCR: significant cooling effect region; UTR: unnoticeable thermal difference region; WHR: weak heat effect
region; MFR: moderate heat effect region; SHR: significant heat effect region.
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Figure 7. Thermal effect levels distribution in Shenzhen. SCR: significant cooling effect region; UTR:
unnoticeable thermal difference region; WHR: weak heat effect region; MFR: moderate heat effect
region; SHR: significant heat effect region.

Meanwhile, we calculated the area proportion of heat effect regions in both construc-
tion land and non-construction areas to explore the contribution of various types of FCLZs
to the urban thermal environment. Results (Table 3) show that although it is clear that
construction land contributes more to heat effect regions than non-construction areas, both
the different degree of contribution between various FCLZs and the contribution from
non-construction areas (at least >14.54%) cannot be ignored.

The Shapiro-Wilk test results (Table 4) show all DSTs in each functional construction
land zone and non-construction areas were not statistically normal distributions except for
functions G and R. The results of the Kruskal-Wallis H test and the multiple comparisons
(Table 5) prove significant differences of DST among different FCLZs.

Table 4. The statistics and Shapiro-Wilk test of DST in urban land (◦C).

Statistics
Functional Construction Land Zone Non-

Construction
Areas

A B G M R S W

Avg 2.33 2.98 2.27 3.97 2.22 3.42 4.00 0.18
Std 2.27 1.91 2.10 1.77 1.95 2.14 2.44 2.73

Med 2.54 3.06 2.40 3.99 2.21 3.61 3.69 −0.06

p-value 0.000
***

0.000
** 0.5816 0.000

*** 0.1345 0.000 ** 0.0229 * 0.000 ***

Note: *** indicates p < 0.001; ** indicates p < 0.01; * indicates p < 0.05.

Table 5. Dunn test of DST with Holm-Bofferoni correction among FCLZs.

Functional Land
Type

A B G M R S W

A / / / / / / /
B 0.000 *** / / / / / /
G 0.876 0.000 / / / / /
M 0.000 *** 0.000 0.000 / / / /
R 0.354 0.000 1.000 0.000 / / /
S 0.000 *** 0.000 0.000 0.000 0.000 / /
W 0.006 ** 0.334 0.004 1.000 0.001 0.568 /

Note: *** indicates p < 0.001; ** indicates p < 0.01.
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Although there were no significant differences in DST between functional land G and
R, either W or M; it was significantly different for most pairs of construction land types.
The above results indicate that the DST distribution in functional land G and R is similar to
that in functional A, while the functional land W showed similar characteristics in DST of
functional B, M, and S.

3.3. DST Relationships with Surface Environmental Indictors

Figure 8 shows that the coefficients in functions A, G, and R are more consistent with
non-construction areas while the building factors in function types B, M, S, and W present
opposite effects to those in non-construction areas at a significant level of 0.05, which also
supports the results in Table 5 from another quantitative perspective. Similar coefficients
suggest similar relationships between DST to environmental indicators, while the different
sizes of the coefficients indicate there are diversified differences in thermal capacity in
construction land. Furthermore, according to the results of statistical differences (Table 5)
and coefficients (Figure 8), we divided 7 types of construction land functional areas into 2
groups (group A, G, and R; group B, M, S, and W).

Figure 8. Spearman correlation coefficients of DST with 12 biophysical and social-economic indicators
in seven types of functional construction land zones and non-construction areas.

With different intercepts in the linear and approximate linear relationships between
thermal responses of the three biophysical indicators to DST, it is found that the main
differences are in the degree rather than the mode.

DST in two groups of FCLZs shows a downward trend on the whole (Figure 9a,b),
even if an insignificant upward trend is shown when the NDVI value is small (<0.2). In
the non-construction areas, the first-increase and then-decreasing trends are more obvious
(Figure 9c). As for NDWI in both groups FCLZs and non-construction areas, a consistent
linear decline appears simultaneously. Although the increase of NDWI reduces the size
of DST in group B, M, S, and W, it is consistently found that the increase of NDWI cannot
offset the warming effect (Figure 9e). While the cooling effect (DST < 0 ◦C) of NDWI is
found both in the group for functions of A, G, and R and in non-construction areas when
the values are larger than 0.15 and 0.1, respectively (Figure 9d,f). Similar findings are
observed in the warming effect of NDBI. DST presents similar linear growing trends in
both groups of FCLZs and the non-construction areas (Figure 9g–i) with the increase of
NDBI. However, the same value of NDBI has different warming effects in the two groups,
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while in non-construction areas, the warming effect (DST > 0 ◦C) is coexisting with the
cooling effect (DST > 0 ◦C) with a boundary value ~−0.25.

Figure 9. Single-factor scatter plots and fitting curves of DST to three surface biophysical indicators.
Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group of functions
for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is the median
value and the black one is the mean value of the corresponding independent variables; the horizontal
red dotted line is the zero value of DST.

Figure 10 shows that the responses of DST to building indicators present different
trends between the group of functions for A, G, and R and the group of functions for
B, M, S, and W. The increases in Building_density and Building_intensity finally display
stable warming effects with DST above 2.0 ◦C, however, the trends of curves indicate that
intensifying and heightening buildings weaken the warm effects in the group of functions
for B, M, S, and W (Figure 10b,e) but makes little significant contribution to the DST change
in the group of function for A, G, and R (Figure 10a,d). A slight reduction of warming
effects is also shown with the increase of Floor_avg in the group of functions for B, M, S,
and W while in the group of functions for A, G, and R, the increase of Floor_avg leads to
the DST increase first and then tends to be stable.

As is shown in Figure 11c, DST in the two groups both presents a short rising stage
with the increase of elevation (DEM) before the altitude is less than average values (~25 m)
and the cooling effect appears in the non-construction areas with the increase of DEM value.
When the elevation is larger than median values (~30 m), the DST in the group of functions
for A, G, and R shows a declining trend of warming effect and finally presents cooling
effects when the elevation is larger than ~150 m. However, a stable state of warming effect
at 2.75 ◦C after a rapid decline is also shown in the group of functions for B, M, S, and W.
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Figure 10. Single-factor scatter plots and fitting curves of DST to three surface building indicators.
Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group of functions
for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is the median
value and the black one is the mean value of the corresponding independent variables; the horizontal
red dotted line is the zero value of DST.

 
Figure 11. Single-factor scatter plots and fitting curves of DST to three surface location indicators.
Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group of functions
for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is the median
value and the black one is the mean value of the corresponding independent variables; the horizontal
red dotted line is the zero value of DST.
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The comparison of the other two location indicators (Eud_Water and Eud_Wood)
represents the responses of DST to the distances from these two types of cooling areas.
Different from the natural distance effects in non-construction areas (Figure 11f,i), DST
increases then tend to be stable after different values as the increase of distance from cooling
areas in different groups of FCLZs, showing that the limited spatial ranges of cooling effect
are diversified (Figure 11d–h). Besides, the stable points of Eud_Water and Eud_Wood to
the group functions for A, G, and R and B, M, S, and W are close to the median distances
with values of ~1000 m and ~300 m, respectively.

Further analysis revealed there is a saturation effect with similar trends in social-
economic indicators like that with location indicators and the thresholds for saturation
likewise varied between the groups of FCLZs (Figure 12). As with the increases of VI-
IRS_Value, DST increases at first and then tends to be stable below 4.0 ◦C for all FCLZs
(Figure 12a,b) and in the non-construction areas, there is a linear increase trend (Figure 12c).
The stable points are ~30 in the group of functions for B, M, S, and W, and ~60 in the
group of functions for A, G, R. The increase in population (Figure 12d–f) would cause
the warming effect to reach saturation points (3~4 ◦C for construction land and 2.5 ◦C
for non-construction areas) at about 3000~5000 people per grid (0.25 square kilometers).
Curves in Figure 12g,h indicate that even the same level of the mixed utilization of urban
construction land (Unit_MixedEntropy) could lead to a stronger warming effect in FCLZs.

 
Figure 12. Single-factor scatter plots and fitting curves of DST to three surface social-economic
indicators. Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group
of functions for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is
the median value and the black one is the mean value of the corresponding independent variables;
the horizontal red dotted line is the zero value of DST.

4. Discussion

4.1. Consistency Analysis of Recognized FCLZs

In this study, 4755 grids were identified as functional construction land zones and 3820
are non-construction areas (Figure 4). Comparing the total amount of construction land and
manual discrimination of random samples could evaluate the effectiveness of recognized
FCLZs quantitatively and qualitatively. Calculated with the functional proportion in each
grid, the total area of functional construction land zones is 1171.1 square kilometers, of
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which the difference is 16.4% from the construction land area (1005.9 square kilometers)
in the official report by the Planning and Natural Resources Bureau and Statistics Bureau
of Shenzhen [51]. In addition, considering that the area of new construction land in 2019
was likely to increase according to the government’s land supply plan and development
demands, the actual smaller difference suggests the method of FCLZs could measure the
construction land total amount with relative quantity accuracy at a low cost and in a fast
way. Moreover, the degree of mixed functional construction land zones in Shenzhen is
closely related to the development status of the region, i.e., the higher the mixed degree
of the grid indicates the more diverse human activities and land use patterns (Figure 5).
Through random sampling and manual interpretation (Figure A1), we verified that different
social-economic functions and the characteristic of mixed-use of construction land within
the indistinguishable image features could be identified and reflected through FCLZs.

FCLZs map the attributes of POIs to the corresponding social function on a particular
unit of space, which is different from land use and land cover types because the classification
of construction land is more research-goal oriented due to the diversity and versatility
of human activities in urban construction land. POIs or any other data with location
information referring to functional land could be used and patches could be any spatial
unit with valid meaning and shape besides grids or blocks. However, the grid size has a
great influence on the final recognition result of urban functional land because the functional
types of each grid unit are determined through the spatial distribution and quantities of
POIs contained in each grid. Due to the limited number of POIs in real life, if the grid scale
is too small or lower than the precision of the coordinates of POIs, the functional types
inferred will not be meaningful due to collection errors. At the same time, too large a grid
scale will make it difficult to show the transition and differences of regional changes in
different types of functional construction land zones.

4.2. Differential Thermal Contribution in FCLZs

The non-parametric methods were used in the difference test, as the DST distributions
in FCLZs except G and R followed left-skew distribution rather than a normal distribu-
tion [79]. FCLZs were divided into two groups according to the Dunn test (Table 5) and
environmental indicators correlation validation (Figure 8), which indicates similarity and
difference coexist in the thermal effects of urban construction land among various func-
tional types. The results proved that the UHI is not only caused by construction land [66,80]
but also has significant inner differences due to functions [70,79]. Although LCZ could
divide the urban land through buildings and image characteristics [16], it lacks the detailed
reflection of social-economic functions and is usually applied to study the problems caused
by the physical environment in the heat island issues [14,15].

The thermal contribution proportions of different FCLZs are usually affected by the
area size in terms of the total contribution, however, the thermal contribution at urban
thermal effect levels is not completely consistent with the area. We found that the Business
services function (B) contributes most with proportions of 32.63~43.96% to the considerable
heat effect regions (MHR and SHR), which should be given priority in UHI control and
mitigation in Shenzhen. Meanwhile, the non-construction areas (N) cannot be ignored,
of which the contribution to WHR is 44.91%. All of the contribution proportions to heat
effect regions for Street and transportation function (S), Manufacture function (M), and
Warehousing and logistics function (W) increase rapidly from weak thermal effect to
significant thermal effect.

DST between the FCLZs shows significantly different thermal capacity in construction
land. The thermal difference in degrees among various FCLZs (Table 4) caused by social
functions was measured. We found that the median thermal effects ranked from strong
to weak are as follows: M (3.99 ◦C)> W (3.69 ◦C) > S (3.61 ◦C) > B (3.06 ◦C) > A (2.54 ◦C)
> G (2.40 ◦C) > R (2.21 ◦C) > N (−0.06 ◦C), in which the ranks are similar to a case study
conducted in Beijing [36] and thus it shows consistency in the degree of the thermal effect
of social functions between cities in different climate zones [79]. In addition, it is noticeable
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that the minimum warming effect (R) is about 36.8 times that of non-construction areas in
degrees, which indicates that regardless of the intensity and the way, the relative change
of urban surface temperature induced by human activities is huge enough to increase hot
extremes [81].

4.3. Differential Responses of DST to Environmental Indicators

Response processes of DST to environmental indicators have been key points to
understand and regulate urban thermal effects. The indicators including the fraction of
impervious surface have been discussed in previous studies [34,63,82], but the similarities
and differences within construction land have not been clarified in detail. Our research
investigated and refined the difference and consistency of various environmental indicators
on DST in FCLZs. To further figure out the impacts of indicators on DST, we used the
median resampled values to reduce random errors rather than the mean values because of
the non-normality of DST data [79]. Equivalent repeated observation experiments were
constructed by reorganizing the original grid-level data to ordered DST and corresponding
indicator pairs. Scatter plots and single factor regression analyses were carried out on
each pair of resampled values in the two groups of FCLZs with non-construction areas as
the controlled group, to preliminarily explore the effect of each indicator on DST. On the
whole, most of the indicators show similar trends but distinguished degrees of the effects
on DST in the two groups, which proves that these indicators have similar effect modes [65]
across the scale from a single city to global cities [26]. Non-linear relationships suggest
the saturation effects exhibit in both distance and corresponding values of social-economic
levels, for location indicators and social-economic indicators, respectively.

4.4. Potential Implication and Future Directions

This study investigated the thermal effects in construction land through a continuous
division of social-economic functions at a 500-m grid-level using the FCLZs framework,
which could extend the UHI analyses routine based on LUCC with more details about
human-induced thermal contribution to the urban environment [10]. Our results show
that urban heat island is not only mostly caused by the amount of different land use or
land cover types, but there are also still significant differences within construction land
induced by their social functions. Both similarities and differences exist in the responses
to environmental indicators among FCLZs. Therefore, when the cooling capacities of
GITs and [47,68,69] are insufficient or there are limits in maintaining and appropriately
increasing green space and water bodies [27,68], except for controlling the expansion of
urban areas [44], the relocation of the construction land with different social-economic
functions and configuration with cooling and warming indicators at appropriate thresholds
may be helpful ways to alleviate urban heat island problems.

The limitation of this work is that FCLZs do not have clear boundaries in reality
because of fuzzy positions of POIs, and it is hard to get an absolute ground truth map
to calculate a confusion matrix for absolute accuracy comparison. Random sampling for
verification and comparison with official statics is the currently limited method to compare
relative accuracy. Due to the different response processes among FCLZs, the tradeoff
and synergies between environment indicators in construction should be the focus of
future research.

5. Conclusions

This research established a general framework for functional construction land zones
(FCLZs) mapping based on multi-sourced data to investigate their different contribution to
the urban thermal environment in Shenzhen, China. The thermal environment is character-
ized by DST extracted from land surface temperature data. Based on the difference test of
DST, FCLZs were then divided into groups of functions for A, G, and R and groups of func-
tions for B, M, S, and W to analyze the thermal response with 12 environmental indicators
considering surface biophysics, buildings, location, and social-economic development.
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We found that: (1) The thermal effect and total contribution FCLZs are significantly
different. Although construction land leads to an obvious warming effect with a median
value of 2.94 ◦C in the urban environment, thermal contribution in FCLZs is significantly
different. FCLZs contribute to MHR and SHR (moderate and significant heat regions)
with a proportion of 82.63~85.46%, which highly exceeds the corresponding proportion
in non-construction areas. As for weaker warming effect regions, the contribution of non-
construction areas cannot be ignored because of the size (44.91%). The median thermal
effects of various FCLZs are as follows: M (3.99 ◦C)> W (3.69 ◦C) > S (3.61 ◦C) > B (3.06 ◦C)
> A (2.54 ◦C) > G (2.40 ◦C) > R (2.21 ◦C), and the minimum thermal warming effect of R is
about 36.8 times than unnoticeable thermal effect (−0.06 ◦C) in the non-construction areas.
(2) Difference and consistency coexist in responses of DST to various environmental indica-
tors in FCLZs. Different intercepts in the consistent linear and approximate linear relation-
ships indicated the differences between thermal responses of biophysical indicators (NDBI,
NDVI, and NDWI) in FCLZs were mainly in degree rather than mode. Buildings indicators
(Building_density, Building_intensity, and Floor_avg) showed weak inversed relationships
with DST in the two groups. The saturation effects shown in response of DST to location
(DEM, Eud_Water, and Eud_Wood) and social-economic indicators (Unit_MixedEnropy,
VIIRS_Value, and Population) proved that distance and social-economic development
contribute to the nonlinear change of urban thermal environment. The stable points for
the two groups are ~1000 m and ~300 m, respectively, both of which are almost double
the distances from the cooling region than the truing points in non-construction areas.
Social-economic indicators would have no more impact on the thermal environment when
reaching stable points.

It is an attempt to measure the differences in thermal environment in view of functional
construction land zones. The findings of this research could extend the understanding of
urban thermal warming mechanisms from the different social-economic activities reflected
by the agent of FLCZs and provide new macroscopic perspectives on reducing the nega-
tive impacts of urban heat islands by combining scientific adjustment of environmental
indicators according to their responses processes with the allocation of construction land in
urban planning.
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Appendix A

Table A1. Reclassification system of POIs to functional construction land zones.

Functional Class Sub-Functional Class Class Code Tag of POIs

Residential Function — R Residential community, villas, community centers

Administration and public
services Function

Administration A1

Government agency, Industrial and commercial
bureau, public security bureau, procuratorates, courts,

democratic Parties, social organization, public
institutions

Cultural facilities A2
Public library, museum, science, and technology

museum, art gallery, archives center, exhibition center,
convention center

76



Remote Sens. 2022, 14, 1851

Table A1. Cont.

Functional Class Sub-Functional Class Class Code Tag of POIs

Administration and public
services Function

Education and
research development A3

Colleges and universities, technical secondary school,
high school, middle school, primary school, research,

and development institution
Sports A4 Gymnasium, court, sports training sites

Medical Treatment and
Public Health A5

Health care services, general hospital, specialized
hospital, clinic, emergency center, disease prevention

agency

Public welfare A6 Welfare house, nursing home, orphanage

Conservation of
historic landmarks and

sites
A7 Scenic spots and historical sites, tourist attractions,

revolutionary site

Religious facilities A9 Church, mosque, temple

Business
Services Function

(B)

Commercial Facilities B1

Retail business (shopping malls, supermarkets, shops,
etc.)

Wholesale market

Catering services (restaurant, bar, tea house, cake
shop, cafe, cold drink, and dessert shop)

Accommodation services (hotels, guest houses, and
resorts)

Business Facilities B2

Financial insurance (banking and insurance company,
ATM, securities company, financial and insurance

service organization)

Art Media (Media organizations such as music, fine
arts, film, television, advertising, network media, art

groups)

Other business facilities companies

Recreation facilities B3

Entertainment facilities (theatre, concert hall, cinema,
song, dance hall, Internet cafe, amusement park)

Recreation and Sports facilities (Golf Driving Range
Racecourse Skating Rink Skydiving Range Motorcycle

Range Shooting Range)

Public utilities B4

Refueling and filling stations (refueling and filling
stations and other energy stations)

Public facilities business outlets (telecommunications,
postal service, water supply, gas supply, heat supply,

etc.)

Others B9

Scientific, educational and cultural services (training
institutions) medical and health services (clinics,

medical and health sales shops, animal medical places)
automobile services life services funeral services

Green spaces and squares (G)
park green space G1 Park, zoo, botanical garden

street and square
green area G3 City square
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Table A1. Cont.

Functional Class Sub-Functional Class Class Code Tag of POIs

Street and transport function
(S)

Transport hub S3 Railway station, long distance bus station, port and
pier

Transport stations S4 Transport facilities (car parks, bus stops, MTR stations)

Others S9 Car training ground

Manufacture Function
(M) – – Industrial park, factory

Warehousing and logistics
Function (W) – – Logistics warehouse

Figure A1. Random sampling grids for functional construction land zones manual verification.
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Abstract: The rapid urbanization worldwide has brought various environmental problems. The
urban heat island (UHI) phenomenon is one of the most concerning issues because of its strong
relation with daily lives. Water bodies are generally considered a vital resource to relieve the UHI.
In this context, it is critical to develop a method for measuring the cooling effect and scale of water
bodies in urban areas. In this study, West Lake and Xuanwu Lake, two famous natural inner-city lakes,
are selected as the measuring targets. The scatter plot and multiple linear regression model were
employed to detect the relationship between the distance to the lake and land surface temperature
based on Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) and Sentinel-
2 data. The results show that West Lake and Xuanwu Lake massively reduced the land surface
temperature within a few hundred meters (471 m for West Lake and 336 m for Xuanwu Lake) and
have potential cooling effects within thousands of meters (2900 m for West Lake and 3700 m for
Xuanwu Lake). The results provide insights for urban planners to manage tradeoffs between the
large lake design in urban areas and the cooling effect demands.

Keywords: cooling effect; distance analysis; landscape pattern; urban heat island; urban lake

1. Introduction

Due to the rapid urbanization and high-density population, various environmental
changes occurred in urban areas [1]. The urban heat island (UHI) is one of the most
significant climate changes caused by human activities [2]. UHI, firstly mentioned by
Howard [3], refers to the common phenomenon in which the temperatures in urban areas
are higher than that in the surrounding non-urbanized areas [4]. The high temperatures
caused by the UHI phenomenon not only change the local climate environment resulting
in extreme weather conditions [5], increased energy and water consumption [6,7], but
also raise the risk of human health issues [8,9]. Thus, UHI mitigation strategies should
be studied and incorporated into future city design and planning to reduce the adverse
effects.

UHI represents the temperature difference between urban and suburban areas [10].
There are mainly three ways to measure the temperature for UHI studies, including
meteorological station observation records [11,12], thermometers mounted on vehicles [13],
and remote sensing observation of the surface temperature [14–16]. Among them, the
meteorological stations provide detailed records but fail to show the spatial distribution
characteristics of the temperature on a large scale. The vehicle’s temperature records are
limited in space and biased since the readings are made on the spot where the equipment is
situated [17]. The land surface temperature (LST) derived from remote sensing observations
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provides easy access and large-scale temperature data and gradually becomes the primary
way to assess the UHI effect [18,19]. For example, Khorchani et al. explored the temporal
and spatial distributing characteristics of LST in peninsular Spain based on advanced
very high resolution radiometer (AVHRR) data [20]. Clinton and Gong used the moderate
resolution imaging spectroradiometer (MODIS) sensor to obtain global surface temperature
and surface greenness at 1 km resolution [19]. Chen et al. utilized the Landsat thematic
mapper (TM) and enhanced thematic mapper plus (ETM+) thermal infrared (TIR) data
with 120 m and 60 m spatial resolutions, respectively, for local-scale studies of UHI [21].
Satellite-derived LST measurements have been conducted primarily by MODIS [18,19,22]
and AVHRR data for large-scale regional (including national, continental, and even global)
LST studies [23]. On the other hand, Landsat data provide better resolution and less
frequent LST observations, and have been widely used in city-level studies [17].

Urbanization changes the surface temperature in cities by modifying the characteristics
of the natural surface [24]. Landscape composition and configuration are considered two
main factors in LST variation [25–28]. Of these impact factors, large water bodies in urban
areas (e.g., lakes, rivers, and streams) are regarded as an effective resource to reduce
the UHI [29]. The specific heat capacity of water bodies is more remarkable than other
materials [30]. Thus, they have a lower warming-up speed than the surrounding areas,
resulting in “cool islands” during the daytime [31]. Urban lakes play a significant role
in regional climate regulation, maintenance of ecosystem balance, and diversification of
urban derivatives [32]. Thus, it is crucial to quantitatively evaluate the cooling effects
of the urban lakes and determine their cooling scale. In previous studies, the distances-
LST scatter diagram has been widely used to qualitatively describe the cooling effects of
lakes [25,33]. However, the cooling effects of the lake can be affected by surrounding land
covers (e.g., trees, grasses, buildings and pavements) and the urban landscape patterns [11].
It is still a lack of explicit discussion on the impact of surrounding urban landscape patterns
on the urban lake cooling effect. To bridge this knowledge gap, this article proposed a
scientific method to assess the urban lake cooling effects and the potential cooling effect
scale based on multiple linear regression methods by considering the urban landscape
patterns surrounding the lakes with multi-source remote sensing images.

Here, two famous Lakes (West Lake in Hangzhou, Zhejiang province; Xuanwu Lake in
Nanjing, Jiangsu province) were selected as the targets to quantitatively evaluate the cool-
ing effect of the large natural inner-city lakes by considering their surrounding landscape
patterns. West Lake, located in Hangzhou, is among the 55 United Nations Educational,
Scientific and Cultural Organization (UNESCO) World Heritage sites in China [34]. Xu-
anwu Lake, the largest imperial garden lake in China, is located in Nanjing. As two of the
highest gross domestic product (GDP) capitals of provinces, Hangzhou and Nanjing suffer
from high temperatures during summer. Both of them are listed in the top 10 hottest cities
in China (http://www.cma.gov.cn/) (accessed on 26 January 2021). As the landmarks of
the two cities, West Lake and Xuanwu Lake are regarded as the typical inner-city lakes to
detect the cooling scale of water bodies in cities.

This study aims to quantify the cooling effect and scale of urban lakes based on
landscape patterns and provide important insights on landscape design and urban planning
in the perspective of relieving UHI intensity. To achieve the primary purpose, the study has
three sub-objectives, including (1) detect the variables affecting the LST in the surrounding
areas of the urban lake; (2) build the regression models for LST in different scales; and (3)
determine the cooling scale and the corresponding importance of lake for relieving the LST
in the neighborhoods.

2. Materials and Methods

2.1. Study Area

Hangzhou, the capital of Zhejiang province, is situated in the southern wing of the
Yangtze River Delta, with a latitude of 29◦11′ N to 30◦34′ N and a longitude of 118◦20′ E to
120◦37′ E) (Figure 1). Hangzhou has a subtropical monsoon climate with clearly divided
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four seasons. Hangzhou owns the natural environment that integrates rivers, lakes, and
hills. As one of the three core cities (Shanghai, Nanjing, and Hangzhou) in the Yangtze
River Delta urban agglomerations, Hangzhou boasts a population of 10.36 million and
steady economic growth of a local GDP of RMB 1.54 trillion in 2019 [35]. The world-famous
scenic spot, West Lake, lies in Hangzhou city’s main urban area, 1.4 km away from the city
center (Wulin Square). It is an oval-shaped lake covering a water area of 6.38 km2, with its
three sides surrounded by the mountains, one side by the urban area. The bottom of West
Lake is relatively flat, with an average water depth of 2.27 m.

Figure 1. Location of the study area. (a) Map of China; (b) map of Hangzhou; (c) map of Nanjing; (d) Sentinel-2 image of
West Lake and its neighboring areas; and (e) Sentinel-2 image of Xuanwu Lake and its neighboring areas. The sentinel-2
images were displayed in true color composite (Red—Band 4; Green—Band 3; and Bule—Band 2).

As the capital of Jiangsu province, Nanjing is located at the lower reaches of the
Yangtze River (31◦14′ N–32◦37′ N, 118◦22′ E–119◦14′ E) (Figure 1). Nanjing is in the
monsoon climate area of the north subtropical zone, with four distinct seasons. In terms of
topographic conditions, Nanjing is connected with the vast Jianghuai (the Yellow River and
Huai River) Plain to the north and the prosperous Yangtze River Delta to the east. Owing to
its superior natural condition, Nanjing is one of the fastest urbanized cities in China. At the
end of 2019, Nanjing has a population of 8.5 million and a GDP of RMB 1.40 trillion [36].
Xuanwu Lake is 2.7 km from the city center of Nanjing (Xinjiekou), with Zijin Mountain in
the east. Xuanwu Lake is diamond-shaped, with a water area of 3.78 km2 and an average
water depth of 1.14 m.

Hangzhou and Nanjing are suffering from high temperatures during summer. In 2019,
Hangzhou suffered 38 days of high temperature (>35 ◦C), with the highest temperature
reaching 39.4 ◦C. In contrast, there were 18 days of high temperature (>35 ◦C) in Nanjing,
with the highest temperature reaching 38.3 ◦C. The two cities are all in great need of
reducing the temperature in summer.
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2.2. Data Source and Pre-Processing

The Landsat 8 OLI/TIRS images provided by the United States Geological Survey
(USGS) were employed to estimate the LST. Since the impact of the high-temperature
weather mainly occurs in summer, one cloud-free image in the summer season was selected
to capture the LST dynamics for each study area [37]. The acquisition dates of the images
covering Hangzhou and Nanjing were the 22nd of July 2020 (path/row 119/39) and
the 13th of September 2019 (path/row 120/38), respectively. Within the environment
for visualizing images (ENVI), radiometric calibration and atmospheric correction were
applied to the multispectral bands. Moreover, the thermal bands were pre-processed into
an analysis-ready radiance format using radiometric calibration.

Two Sentinel-2 Level 1C products were downloaded from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/) (accessed on 20 January 2021) shared by the
European Satellite Agency (ESA). The date of the selected products was close to that of the
Landsat 8 OLI/TIRS images with no clouds cover the study area (Table 1). The publicly
available ESA command-line program Sen2Cor was used to convert the top-of-atmosphere
(TOA) Level-1C tiles to the bottom-of-atmosphere (BOA) Level-2A tiles [38]. The spatial
resolution of the 13 spectral bands of Sentinel 2 varies from 10 m to 60 m. Herein, four
bands (bands 2, 3, 4, and 8) with 10 m resolution and six bands (bands 5, 6, 7, 8a, 11, and
12) with 20 m resolution were used. The 20 m bands were up-sampled to 10 m resolution
using nearest-neighbor interpolation [39]. Bands 1, 9, and 10 at 60 m spatial resolution,
dedicated to atmospheric correction and cirrus detection, were discarded [40,41].

Table 1. Information of the remote sensing data used in this study.

Study Area Platform Resolution Acquisition Data Local Time

West Lake
Landsat 8 30 m 22 July 2020 10:31:30
Sentinel-2 10 m 22 July 2020 10:35:51

Xuanwu Lake
Landsat 8 30 m 13 September 2019 10:37:38
Sentinel-2 10 m 19 September 2019 10:45:51

2.3. Overall Workflow

This study attempted to detect the cooling effects and scales of urban lakes using
Landsat 8 OLI/TIRS and Sentinel-2 data. Herein, to accomplish this objective, the overall
workflow was designed as follows (Figure 2), with four main procedures including: (1) LST
inversion based on Landsat 8 OLI/TIRS images; (2) supervised maximum likelihood classi-
fication based on Sentinel-2 images; (3) landscape metrics measurement; and (4) multiple
regression modeling of LST based on Euclidean distance maps, landscape composition and
configuration indices, and digital elevation model (DEM).

2.4. LST Retrieval

The retrieval of LST followed the radiative transfer equation (RTE) method. The
equation used to compute the thermal infrared radiance received by the sensor (Lλ) is
mentioned as given [42,43]:

Lλ = [εB(TS) + (1 − ε)Latm ↓]τ + Latm ↑ (1)

where ε is the land surface emissivity, B(TS) is the blackbody radiance (W/(m2·sr·μm)), TS
is the LST (K), τ is atmospheric transmittance and Latm ↑ and Latm ↓ are upwelling and
downwelling atmospheric radiance (W/(m2·sr·μm)), respectively. τ, Latm ↑ and Latm ↓
can be calculated on the Atmospheric Correction Parameter Calculator.

B(TS) is computed according to Equation (1). Subsequently, the LST is derived by
Equation (2) [44]:

TS =
K2

ln
(

K1
B(TS)

+ 1
) (2)
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where K1 is conversion constant 774.8853 W/(m2·sr·μm) and K2 is conversion constant
1321.0789 K.

The land surface emissivity of water is 0.995, and the values of buildings and soil are
obtained by the following equations [45]:

εbuilding = 0.9589 + 0.0860Pv − 0.0671P2
v (3)

εsoil = 0.9625 + 0.0614Pv − 0.0461P2
v (4)

where PV is the vegetation proportion calculated by Equation (5) [46]:

PV =
NDVI − NDVISoil

NDVIVeg − NDVISoil
(5)

where NDVI is the normalized difference vegetation index, NDVISoil is the NDVI value of
bare soil, NDVIVeg is the NDVI value of the area completely covered by vegetation. The
equation of NDVI is [47]:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(6)

where ρNIR refers to the surface reflectance of NIR band (band 5, 0.845–0.885 μm ), ρRed
refers to the surface reflectance of Red band (band 4, 0.630–0.680 μm ).

In addition, the LST data was up-sampled to 10 m resolution by nearest-neighbor
interpolation to match the spatial resolution of Sentinel-2 data.

 

Figure 2. Overall workflow of this study. Green, yellow, and blue represent data, operations, and software, respectively.

87



Remote Sens. 2021, 13, 1526

2.5. Land Cover Classification

The land cover classification was derived from the pre-processed Sentinel-2 images
using the maximum likelihood supervised classification method. The land cover classifi-
cation system developed by Cadenasso et al. [48] was adopted to classify the land cover
into five categories, namely coarse-textured vegetation (CV), fine-textured vegetation (FV),
impervious surface (IS), bare lands (BL), and water. The detailed information of these cate-
gories is shown in Table 2. The accuracy of classification was evaluated using 500 random
points located in each classified land-cover map with reference to the ground-truth data
in Google Earth. The results showed that the overall accuracies [49] of the classifications
were 91.20% for Hangzhou and 91.67% for Nanjing. The kappa coefficients were 0.878 for
Hangzhou and 0.883 for Nanjing.

Table 2. Land cover categories and their detailed information.

Category Description

CV Coarse-textured vegetation which includes forest, woodland and shrub land
FV Fine-textured vegetation which includes cropland and grassland
IS Impervious surface which includes buildings and pavements
BL Bare lands which include bare soil and bare rock

Water Water bodies which include natural-flowing river and lake as well as artificial
pond and reservoir

2.6. Landscape Metrics-Based Analysis

Numerous landscape metrics have arisen as a method to quantify landscape pat-
terns [50]. Herein, five commonly used class-level landscape metrics [51–54] were em-
ployed to relate the spatial variability of LST with the landscape patterns, including one
composition metric: percentage of landscape (PLAND), and four configuration metrics:
(1) Largest patch index (LPI); (2) Mean shape index (SHAPE_MN); (3) Aggregation index
(AI); and (4) Patch density (PD) (Table 3). These metrics were selected according to the fol-
lowing principles [55,56]: (1) importance in both theory and practice; (2) simplicity in both
calculation and interpretation; and (3) minimal redundancy. Fragstats Version 4.2.1 was
employed to calculate the selected metrics. The uniform tiles method was adopted to subdi-
vide the landscape into square tiles representing sub-landscapes. Bartesaghi-Koc et al. [57]
proposed that a 50 m × 50 m grid size is proper for local-scale studies if very-high res-
olution data are available. In comparison, studies employing data with coarser spatial
resolutions (>10 m) may require larger grid resolutions (>100 m). Masoudi et al. [58] and
Masoudi and Tan [59] recommended an optimal grid size of 240 × 240 m to explore the re-
lationship between LST and the spatial pattern of urban green spaces. Herein, considering
that the resolutions of LST and land cover maps are 10 m, the side length was chosen as
integer multiples of 100 m (10 × 10 pixels).

Table 3. Landscape metrics used in this study [60].

Metrics
(Abbreviation)

Equation
(Unit)

Description

Percentage of landscape
(PLAND) PLAND = Pi =

∑n
j=1 aij

A × 100
The percentage of the landscape consisting of the

corresponding patches.
Largest patch index

(LPI) LPI =
max(aij)

A × 100
The percentage of the landscape comprised by the

largest patch.
Mean shape index

(SHAPE_MN) SHAPE_MN = ∑n
j=1

0.25pij√aij

Mean shape index of the corresponding patches
within an analysis unit.

Aggregation index
(AI) AI =

[
gii

max(gii)

]
× 100

The degree of the corresponding patches’
aggregation within an analysis unit.

Patch density
(PD) PD = ni

A × 106 The ratio of the corresponding patches’ number to
the total landscape area within an analysis unit.

Pi = proportion of the landscape occupied by patch type (class) i. aij = area (m2) of patch ij. A = total landscape area (m2). pij = perimeter
(m) of patch ij. gii = number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count method. max(gii)
= maximum number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count method. ni = number of
patches in the landscape of patch type (class) i.
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2.7. Statistical Analysis

The scatter diagram has been widely employed for qualitatively discussing the rela-
tionships between LST and the distance to the water bodies in previous studies [33,61].
In addition, the affecting scale was acquired by seeking the stationary point of the fitting
function of the scatter diagram [4].

Relationships between LST and multiple influencing factors (i.e., the distance to the
lakes, landscape metrics, and elevation) were quantitatively examined through the multiple
linear regression (MLR) (Equation (7)) [62].

Y = β0 + ∑n
i=1 βiXi + ε (7)

where n is the number of the independent variable, β0 is the intercept, βi is the regression
coefficient for Xi, and ε is the error term of the model.

To reduce the redundancy, a stepwise regression approach was adopted to identify
closely linked variables with LST from the MLR models and provide their predictive im-
portance for LST [6]. The significance levels at 0.05 and 0.1 were adopted as thresholds for
adding and removing predictor variables, respectively. Additionally, in order to get more
stable predictions, the variance inflation factor (VIF) was employed to detect multicollinear-
ity. A VIF value equal to or larger than ten means near collinearity [63], indicating that the
corresponding variables should be excluded. The remaining variables were analyzed again
by the above-mentioned regression analysis until the absence of multicollinearity amongst
selected variables.

We took 100 m as the step length and gradually added samples according to the
distance to the lake, which was defined as the nearest distance to the lake shoreline. In
other words, as the distance to the lake increased by 100 m, the samples covered by a
certain distance were added to the existing samples. The process continued until the
distance to the lake was not considered an independent variable of the stepwise regression
model, indicating the influence of the target lakes on LST can be neglected. Each variable
was pre-processed using the normalization method (Equation (8)) before the regression
analysis [64].

X̂i =
Xi − Xmin

Xmax − Xmin
(8)

where Xi, Xmin, and Xmax are the original, minimum, maximum value of a variable, respec-
tively. The regression analyses were carried out with the Statistical Package for the Social
Sciences (SPSS) Version 26.

3. Results

3.1. Spatial Distributions of Land Cover and LST

The spatial distribution of LST in Hangzhou and Nanjing were shown in Figure 3.
The LST of Hangzhou ranged from 15.37 to 57.96 ◦C, with an average of 37.21 ◦C. The
LST of Nanjing was between 28.28 and 50.72 ◦C, with an average of 36.45 ◦C. Temperature
variation over impervious surface tended to be more variable, while the water-covered
surface showed the opposite trend due to its high heat capacity. In Hangzhou, the north
and east side of West Lake, mainly occupied by built-up areas, owned the highest LST. On
the other hand, the south and west parts, dominated by CV, had lower LST. In addition,
the Qiantang River passed through the southeast of the study area showing the lowest LST.
For the case of Nanjing, Xuanwu Lake and the adjacent Zijin Mountain were the low-value
areas of LST. The Yangtze River in the northwest of the study area owned the lowest LST,
while the urban areas dominated by buildings had the highest LST.
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(a) (b) 

Figure 3. The land surface temperature (LST) maps of (a) West Lake and its neighboring areas in Hangzhou, and (b)
Xuanwu Lake and its neighboring areas in Nanjing.

Similar LST patterns were observed in Hangzhou and Nanjing despite the different
temperature conditions of the cities (Figure 4). The study areas were mainly covered
by built-up areas, coarse-textured vegetation, and water body. The high-temperature
region corresponding to the area was dominated by built-up, and the low-temperature
region corresponding to the area were covered with water and coarse-textured vegetation.
Compared with the average temperature (37.21 ◦C for Hangzhou and 36.45 ◦C for Nanjing),
impervious surface (40.25 ◦C for Hangzhou and 38.30 ◦C for Nanjing) and bare land
(38.45 ◦C for Hangzhou and 38.16 ◦C for Nanjing) had higher LST (Figure 5). In contrast,
the LST of coarse-textured vegetation (35.62 ◦C for Hangzhou and 35.51 ◦C for Nanjing),
fine-textured vegetation (35.42 ◦C for Hangzhou and 35.76 ◦C for Nanjing), and water
(28.32 ◦C for Hangzhou and 30.27 ◦C for Nanjing) fell below the average line (Figure 5).

3.2. Drivers of LST Variations in the Lakes and Their Surrounding Areas

The results of the scatter diagrams showed an increasing trend of LST in response to
the increase in distance to the lake within a certain scale (741 m for West Lake and 336 m
for Xuanwu Lake) (Figure 6). The maximum cooling effects for West Lake and Xuanwu
Lake were 4.86 ◦C and 4.78 ◦C, respectively. Additionally, the correlation analysis showed
significant positive correlations between mean LST and the distance to the lake inside a
certain scale. The Pearson correlation coefficients were 0.637 (p < 0.01) for West Lake, and
0.841 (p < 0.01) for Xuanwu Lake, respectively (Figure 6).
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(a) (b) 

Figure 4. The land cover maps of (a) West Lake and its neighboring areas in Hangzhou, and (b) Xuanwu Lake and its
neighboring areas in Nanjing (CV: coarse-textured vegetation; FV: fine-textured vegetation; IS: impervious surface; BL: bare
lands; Water: water).

 
(a) (b) 

Figure 5. LST of land cover categories in (a) West Lake and its neighboring areas in Hangzhou, and (b) Xuanwu Lake and
its neighboring areas in Nanjing (CV: coarse-textured vegetation; FV: fine-textured vegetation; IS: impervious surface; BL:
bare lands; Water: water).
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(a) (b) 

Figure 6. Mean LST at different distances to (a) West Lake in Hangzhou and (b) Xuanwu Lake in Nanjing.

The scatter diagrams showed the relationships between LST and the distance to the
water bodies intuitively but not quantitatively. Based on the above-mentioned affecting
scale, multiple linear regression models were established to present the relationships
quantitatively, and the significance tests were listed in Tables 4 and 5. The models for
Hangzhou (R2 > 0.81) and Nanjing (R2 > 0.65) were all of desirable goodness-of-fit.

Table 4. Significance tests of the multiple linear regressions in Hangzhou.

Model R2 ΔR2 AIC F Model R2 ΔR2 AIC F

700 m 0.817 0.815 −3642.549 475.977 *** 1900 m 0.854 0.853 −12,057.291 1468.306 ***
800 m 0.820 0.819 −4197.190 425.007 *** 2000 m 0.850 0.849 −12,793.736 1519.813 ***
900 m 0.828 0.826 −4821.972 561.296 *** 2100 m 0.843 0.843 −13,502.545 1546.701 ***

1000 m 0.835 0.834 −5454.464 670.202 *** 2200 m 0.840 0.839 −14,323.481 1607.948 ***
1100 m 0.844 0.842 −6161.756 677.878 *** 2300 m 0.833 0.833 −15,061.922 1510.684 ***
1200 m 0.848 0.847 −6838.319 780.868 *** 2400 m 0.829 0.828 −15,915.979 1555.192 ***
1300 m 0.851 0.850 −7501.743 816.920 *** 2500 m 0.825 0.825 −16,762.030 1728.390 ***
1400 m 0.856 0.855 −8228.796 933.408 *** 2600 m 0.823 0.822 −17,648.922 1792.588 ***
1500 m 0.858 0.857 −8975.791 1318.902 *** 2700 m 0.820 0.820 −18,556.259 1858.858 ***
1600 m 0.858 0.857 −9772.715 1128.923 *** 2800 m 0.815 0.815 −19,416.599 1894.329 ***
1700 m 0.857 0.856 −10,546.830 1301.174 *** 2900 m 0.807 0.806 −20,228.078 1751.485 ***
1800 m 0.856 0.855 −11,318.390 1393.030 ***

*** p < 0.001. R2 = determinant coefficient; ΔR2 = adjusted R2; AIC = Akaike information criterion; F = F-test.

The multiple linear regressions showed that the distance to West Lake had significantly
positive effects on LST in the range of 2900 m at the 5% significance level (Table 4 and
Figure 7a). The distance to the Xuanwu Lake was a significant influencing factor in the
range of 3700 m at the 5% significance level (Table 5 and Figure 7b).
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Table 5. Significance tests of the multiple linear regressions in Nanjing.

Model R2 ΔR2 AIC F Model R2 ΔR2 AIC F

300 m 0.664 0.661 −864.991 182.782 *** 2100 m 0.714 0.713 −9074.115 568.348 ***
400 m 0.662 0.658 −1203.617 151.728 *** 2200 m 0.718 0.717 −9736.086 620.828 ***
500 m 0.654 0.651 −1586.683 191.253 *** 2300 m 0.722 0.721 −10,431.697 629.963 ***
600 m 0.658 0.655 −1985.280 241.875 *** 2400 m 0.724 0.723 −11,123.377 725.120 ***
700 m 0.681 0.676 −2398.239 159.392 *** 2500 m 0.726 0.725 −11,801.854 778.349 ***
800 m 0.678 0.675 −2793.519 233.355 *** 2600 m 0.727 0.726 −12,514.335 829.313 ***
900 m 0.690 0.687 −3208.182 207.705 *** 2700 m 0.729 0.728 −13,217.408 884.023 ***

1000 m 0.700 0.697 −3624.970 248.397 *** 2800 m 0.732 0.731 −13,957.272 949.271 ***
1100 m 0.708 0.706 −4062.281 321.778 *** 2900 m 0.737 0.737 −14,753.843 1030.338 ***
1200 m 0.718 0.715 −4504.243 269.532 *** 3000 m 0.744 0.743 −15,557.309 1120.447 ***
1300 m 0.721 0.719 −4969.837 354.215 *** 3100 m 0.748 0.747 −16,436.357 1206.056 ***
1400 m 0.726 0.724 −5491.625 369.638 *** 3200 m 0.750 0.750 −17,272.656 1281.379 ***
1500 m 0.723 0.721 −5968.423 399.837 *** 3300 m 0.752 0.752 −18,154.546 1358.456 ***
1600 m 0.717 0.715 −6443.835 424.270 *** 3400 m 0.754 0.754 −19,048.449 1438.198 ***
1700 m 0.710 0.708 −6883.467 482.297 *** 3500 m 0.757 0.757 −19,956.757 1526.397 ***
1800 m 0.704 0.703 −7324.604 468.843 *** 3600 m 0.763 0.762 −20,979.320 1646.591 ***
1900 m 0.699 0.698 −7808.448 495.792 *** 3700 m 0.766 0.766 −21,943.199 1749.128 ***
2000 m 0.707 0.706 −8408.943 551.379 ***

*** p < 0.001. R2 = determinant coefficient; ΔR2 = adjusted R2; AIC = Akaike information criterion; F = F-test.

 
(a) (b) 

Figure 7. Radar diagrams showing the standardized coefficients of the multiple linear regressions for (a) West Lake and its
neighboring areas, and (b) Xuanwu Lake and its neighboring areas. The significance levels of the coefficients are all less
than 0.05 except for DEM (sig. = 0.058) from the 700 m model in Hangzhou, FV_AI (sig. = 0.067) from the 700 m model in
Nanjing, FV_AI (sig. = 0.063) from the 900 m model in Nanjing, FV_PD (sig. = 0.062) from the 1200 m model in Nanjing and
BL_PD (sig. = 0.050) from the 1400 m model in Nanjing.

As expected, the distance to the lake in both cities was positively related to LST
regardless of the scale (Figure 7, Tables S1 and S2). Moreover, it is quite observant that
as we examined LSTs at increasingly larger spatial extents, the standardized coefficients
of distance generally had a decreasing trend, indicating that the explanatory power of
distance parameters declined. The coefficients fluctuated between 0.078 and 0.110 in the
first 1400 m around West Lake and kept decreasing in the extent of 1400 to 2900 m. For
the Xuanwu Lake, the coefficients varied from 0.064 to 0.132 in the first 1200 m from the
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shoreline and showed a decreasing trend when the distance from the lake was more than
1200 m.

Although results from the MLRs showed that the distance to the lakes is an essential
predictor of LST, the spatial configuration of impervious surface has a more significant
effect on LST. The coefficients of the PLAND of IS were maintained at a high level both
for West Lake (range from 0.811 to 0.867) and Xuanwu Lake (range from 0.639 to 0.779). In
addition, with the decrease of the coefficients of distance, the coefficients of SHAPE_MN
of IS showed higher values and tended to be stable after a certain distance (1800 m for
West Lake and 1400 m for Xuanwu Lake). The coefficient values of PD of IS were steadily
higher than that of distance after a certain distance (1500 m for West Lake and 1200 m
for Xuanwu Lake). After 1500 m from Xuanwu Lake, the AI of IS also showed the same
trend. The CV’s coefficients of SHAPE_MN (range from −0.077 to −0.036 for West Lake
and −0.121 to −0.048 for Xuanwu Lake), PD (range from −0.051 to −0.027 for West Lake
and −0.153 to −0.076 for Xuanwu Lake), and AI in Xuanwu Lake (range from −0.086 to
−0.047) were negative regardless of the scale. DEM was negatively related to LST, and its
coefficients varied greatly in the model with different scales. With the expansion of the
spatial extent, the coefficients of DEM decreased first and then increased, and bottomed
out at −0.150 in the model with a spatial extent of 1500 m for West Lake. On the scale of
600 m around Xuanwu Lake, DEM was not selected as the models’ variable, indicating that
topography was not the main factor affecting LST. The first five models (600 m to 1100 m)
that considered DEM as a dependent variable saw a dramatic fall in the coefficients of DEM,
to a low of −0.204 in the model of 1100 m. Moreover, the coefficients of DEM dwindled to
−0.231, after the rise to −0.152 in the extent of 1100 m to 3700 m.

4. Discussion

West Lake and Xuanwu Lake, located in the central areas of Hangzhou and Nanjing,
showed a significant reduction of the LST in the surrounding areas up to a certain distance
(741 m for West Lake and 336 m for Xuanwu Lake), demonstrating the ability of urban lakes
in cooling the environment. Within the scale, the maximum cooling effects for West Lake
and Xuanwu Lake were 4.86 and 4.78 ◦C, respectively. The cooling effect occurs when the
thermal energy absorbed by the water is converted from sensible heating to latent heating
with the production of water vapor [61]. Moreover, due to the high thermal capacity, the
lakes own a lower temperature than the impervious surface during the daytime, which
provides a higher pressure gradient for convective heat transfer [65]. Horizontal cooler air
is generated above the lake and transported to the neighboring environment by the wind.
The intensity of the processes decreases with the increasing distance to the lake, leading to
the limited influence of the lakes on LST.

The ability of water bodies to adjust surrounding temperatures is determined both by
the distance and its interactions with the surrounding environment [31]. However, most of
the studies one-sidedly considered the distance to the water bodies, with little discussion
on the integrated dynamics between the two features. Moyer and Hawkins [12] assessed
the cooling effect of a fairly large river using urban temperature sensors deployed near the
river. They reported that the UHI decreased by 0.6 ◦C to 0.3 ◦C for every 1000 m increase
in distance from the river, depending on the season. Wu and Zhang [25] revealed that the
horizontal cooling distance of Suzhou Bay could reach 800 m, and the maximum cooling
effect was 3.02 ◦C. Cheval et al. [66] detected that the temperature regularly increases with
the distance from the lake shoreline. Compared with these studies, our work underscored
the necessity of considering the influence of its surrounding landscape patterns when
quantifying the effects of the distance to the lakes on LST. In fact, most of the studies only
focused on the scatter diagrams of LST to determine the cooling scale [4,33,61]. In contrast,
after confirming the turning point from scatter diagrams, we continuously conducted a
step-by-step multiple linear regression to detect the cooling potential of the two lakes
on a much larger scale. The affecting scale obtained by seeking the stationary point of
the fitting function of the scatter diagram was considered to be the region where the
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urban lakes massively lower the LST. The scale obtained by the multiple linear regression
considering the influence of landscape patterns was deemed as the region where the urban
lakes showed a significant capacity in cooling the environment. Although this study is
conducted for West Lake and Xuanwu Lake, the general analysis procedure is flexible and
can be extended to the case studies of urban lakes in other cities.

The regression results showed that although Xuanwu Lake was smaller in size, the
maximum cooling scale could reach 3700 m, which was much larger than West Lake
(2900 m). The cooling effect difference results from the surrounding landscape patterns,
topography, and wind conditions (including wind directions and wind speed). It is demon-
strated in Figure 8 that the PD of CV and the SHAPE_MN of IS around Xuanwu Lake were
obviously higher than those of West Lake. High-density of trees and shrubs around the lake
was conducive to forming a solid local circulation. The small and scattered architectural
composition was instrumental in the formation of effective urban ventilation corridors [67],
resulting in the expansion of the cooling range. In addition, large and dense buildings
lead to significant heat effects [68,69]. To maximize the cooling potential of urban lakes,
urban planners are suggested to arrange more trees and shrubs in the area around the
lake and control the concentration of buildings. Meanwhile, West Lake is neighbored by
mountains and is strongly impacted by a mountain valley breeze. Hence, the valley breeze
in the northeast direction prevails in West Lake during the day [70], leading to the limited
cooling effect on the urban area on the east side. Xuanwu Lake is mainly affected by east
and southeast winds [71], which helps transport cooler air from the lake surface to the
urban area.

 
(a) (b) 

Figure 8. Mean (a) patch density (PD), and (b) SHAPE_MN at different distances to the lakes.

Furthermore, as a famous tourist spot, West Lake, which ranked No.1 in the 2018 China
National Scenic Spot Popularity Index Ranking, received 833,700 tourists only one day on
3 October 2018 [72]. The overloaded West Lake tourism was also considered a contribution
to the emergence of heat islands in West Lake and its neighboring areas. Previous studies
have shown the significant cooling effects of urban greenspace on LST [73–75]. Nonetheless,
the PLAND of CV, which corresponds closely to the LST [76–78], was not considered as
a predictor variable in the linear regression models. This is because a large number of
samples in the study were composed of residential buildings and the greening around the
buildings, resulting in a significant negative correlation between the PLAND of IS and CV
(r = −0.738 and −0.670 in Hangzhou and Nanjing, respectively, p < 0.01). The VIF values of
partial variables were much more significant than 10 when the PLAND of IS and CV were
both considered as independent variables, indicating the existence of multicollinearity.
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In order to get satisfactory results in model accuracy and applicability, the problem of
multicollinearity was eliminated by excluding the factor, the PLAND of CV.

Several limitations of this work should be addressed for future research avenues. First,
the influence of the inherent properties of lakes (e.g., the size, shape, and water volume) on
their cooling effect is not considered due to the limited number of lakes. Moreover, it is
found that the relationship between landscape metrics and LST varies with the change of
grid size. In this context, multi-scale analysis is needed in further studies to explore the
cooling effects of urban lakes fully. Finally, this study was conducted in two cities with
similar climatic conditions. The results may differ for other cities with a different climate.
Thus, future studies involving other urban lakes with different climatic conditions are
expected.

5. Conclusions

This study applied a distance—LST scatter diagram and multiple linear regression
method to detect the cooling effect and scale of urban lakes based on Landsat 8 OLI/TIRS
and Sentinel-2 data. Taking two famous city inner lakes, West Lake and Xuanwu Lake, as
the study sites, the cooling effect and the potential cooling scale of large inner-city lakes
were quantitatively analyzed. Meanwhile, the landscape patterns in the surrounding areas
of the urban lake were considered as independent variables to detect the relationship in
different scales. The whole research flow provides a complete procedure to detect the
maximum cooling distance of a large cooling resource and can be applied not only to
lakes but also to other specific complete cooling resources such as a park, a river, and a
wetland. The results show that West Lake and Xuanwu Lake massively reduced the land
surface temperature of surrounding areas within a certain distance (471 m for West Lake
and 336 m for Xuanwu Lake) and had potential cooling effects on a larger scale (2900 m for
West Lake and 3700 m for Xuanwu Lake). The results proved that the turning point in the
temperature diagram could not reflect the cooling scale, and the exact cooling scale could
be much larger. In addition, from the comparative study between Hangzhou and Nanjing,
we detect the phenomenon that the surrounding landscape composition and configuration
could strongly affect the maximum cooling scale. In detail, the high density of trees and
shrubs, together with small and scattered buildings, could contribute to the extension of
the cooling scale of inner lakes. However, to completely show the influencing factors for
the cooling intensity and scale, future studies are suggested to consider more samples
and consider the size and shape of lakes. In general, this research expands our scientific
understanding of urban lakes’ cooling effects, especially the potential cooling scale. These
findings provide insights for urban planners to arrange the landscape of surrounding areas
of large inner-city lakes to pursuit better environmental outcomes.
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Lake. The bold and italic rows are standardized coefficients.
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Abstract: An urban thermal environment is an area receiving special attention. In order to effec-
tively explore its spatio-temporal characteristics during hot summer days, this study introduced the
standard deviational ellipse (SDE) to construct an urban heat island index to describe the general
spatial character of an urban thermal environment, and then used local Moran’s I to identify its local
spatial cluster characteristics. Finally, the regressions of ordinary least squares (OLS) and spatial lag
model (SLM) were adopted to explore the effect of woodland, water body and impervious surface
on the thermal environment. Taking the city of Wuhan as a study area and using the air temper-
ature on seven consecutive days, from 17 July to 23 July in 2018, from the China Meteorological
Administration Land Data Assimilation System (CLDAS-V2.0), the results show that the urban heat
island index can effectively represent the general characteristics of the thermal environment. The
general trends of heat island intensity decrease first and then increase from 00:00 to 24:00. The heat
island intensity is at its minimum from 10:00 to 16:00, and at its maximum from 22:00 to 4:00 the
next day. Local Moran’s I values indicate that the clusters of high air temperature at 06:00 and at
22:00 are associated with the impervious surface and the water body. This is further illustrated by the
regression analysis of OLS, which can explain 50–60% of the spatial variation of the air temperature.
Then, the fitness of the SLM is greatly improved; the coefficients of determination at 06:00 and at
22:00 are all not less than 0.97. However, the explanation of the local land uses accounting for the
spatial variation of the air temperature becomes lower. The regression analysis also shows that the
woodland always has the effect of decreasing air temperature at 06:00, 14:00 and 22:00, implying that
increasing the vegetation may be the most effective way to mitigate the adverse circumstance of the
urban thermal environment.

Keywords: thermal environment; heat island intensity; spatio-temporal characteristics; local spatial
pattern; land use; regression analysis

1. Introduction

Human activities, especially urbanization, have gradually changed the Earth’s surface
landforms, and then caused changes in the urban thermal environments. Urban heat island
(UHI) effect, a phenomenon according to which urban areas have higher air temperatures
than the surrounding rural areas, is a prominent problem of the urban thermal environment.
The effect of UHI on heat wave intensifies during the period of prolonged extreme heat [1],
and the synergy [2] between the two even causes an increased heat stress that is higher
than the combined effect of the background UHI and heat waves [3], which may increase
the mortality related to high temperatures in urban areas [4] and have a profound impact
on the human living environments [5].

Land cover change through urban sprawl and cultivated land degradation has a
dramatic effect on UHI intensity [6], as the city with a higher urban land cover usually has
the higher UHI intensity [7]. Moreover, the urban radiant heat is varied and depends largely
on the type of land cover and urban surface [8]. Different land uses have different effects on
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UHI [9]. The lack of vegetation may contribute to higher temperatures in industrial parks,
while the temperatures go up by up to 2 ◦C in commercial districts on weekends [10]. It
is found that the impervious surface area (ISA) is the most significant factor causing the
increasing temperature [11], while the land surface temperature (LST) generally increases
in parallel with the ISA [12]. Then, the urban green space and its spatial configurations,
such as larger patches, simpler shapes, being more connected and less fragmented, have a
significant effect on the LST [13]; in particular, they contribute to a lower LST [14,15].

Effective water resources management is also of great significance to reduce the heat
island effect [16]. Studies have found that the intensity of the UHI effect decreases by
11.33% with the increase in water-body coverage by 10% during the daytime [17]. However,
the water will increase the UHI effect after the evening, for its high heat capacity inhibits
its circulation and makes it remain at relatively high temperatures [18].

There are many types of UHIs [19], of which the most commonly used are surface UHI
(SUHI), based on LST, and canopy UHI (CUHI), based on air temperature within the urban
canopy layer. These two types of UHI depict the thermal environment characteristics in
different vertical layers of the urban structure. The approaches to measure the two types of
UHI both have advantages and disadvantages [20]. Most of the studies focus on SUHIs
because the LST data are easy to obtain from remote sensing, but the uncertainty of the LST
is too great to obtain reliable urban thermal trends [21]. Moreover, the CUHIs described by
using air temperature, which is obtained through meteorological field measurements, is
more relevant to public health [22] and is a key parameter for studying the UHI effect [23].

Although there are a large number of studies focusing on UHI, some problems with
respect to it are still ambiguous. The UHI intensity is conventionally defined as the
difference in temperature between an urban and rural area [24]. The traditional detection of
intensity is conducted at two fixed in situ stations in urban and rural regions [25]. Similarly,
the calculation of the surface UHI is conducted over selected pixels located in the urban
and rural regions based on remote sensing data [26]. The estimations both depend on the
determination of urban and rural stations or pixels [23,27]. However, the air temperatures
of the urban area are heterogeneous in space, and the choice of a rural area also affects
the quantification. There are some modified methods to improve the estimation [28–32],
such as calculating the average temperature of the corresponding areas, but the spatial
characteristics of the urban thermal environment are still not good enough to present. In
addition, the studies on the evolution of the spatio-temporal characteristics of the urban
thermal environment during a day are scarce.

Thus, this study focuses on the air temperature and introduces the standard deviational
ellipse (SDE) to explore the general spatial distribution of an urban thermal environment.
We then further construct an UHI index to characterize UHI intensity. This index is not
just determined by the air temperatures of two points but with the purpose of effectively
reflecting the general spatial character of the urban thermal environment. Taking the city
of Wuhan as a study area, and using the air temperature data of seven consecutive days
with sunny and cloudy weather conditions in the hot summer of 2018, we first analyzed
the general spatial thermal character and calculated the UHI index every two hours during
the seven days. Then, we chose three time points in each day and used local Moran’s I to
explore the local spatial pattern of the thermal environment in the study area. Furthermore,
the regression analysis including ordinary least squares (OLS) and the spatial lag model
(SLM) are adopted to explore the land uses that contribute to the spatial variation of
air temperature. The efforts of this work are aimed at trying to provide a method to
characterize the spatial distribution of the thermal environment and the UHI effect more
effectively as well as to illustrate their evolutions with the high temporal resolution during
a day.

102



Remote Sens. 2022, 14, 6084

2. Materials and Methods

2.1. Study Area and Data Source

Wuhan, the capital of Hubei Province, is the city with the largest population in Central
China, between the latitudes 29◦58′19.04”N and 31◦21′44.07”N and between the longitudes
113◦41′32.86”E and 115◦4′55.70”E, covering a total area of approximately 8624.69 km2

(Figure 1a), and with an average elevation of about 37 m above sea level. The city possesses
the distinctive character of having a large number of water bodies (Figure 1b), which is why
it was once called “the city of a thousand lakes”. According to Köppen climate classification,
the study area has a Cfa climate with abundant rainfall, cool winters and hot summers.
As one of the Four Furnaces of China, Wuhan is always suffering heat waves and high air
temperatures in the summertime.

 

Figure 1. Study area. (a) Grid points of the air temperature; (b) Land uses.

In this study, we focused on the days that are the hottest in the summer. Additionally,
both sunny and cloudy days are included in our analysis to compare the differences in
thermal environmental characteristics between the two weather conditions. Thus, we
chose the days from 17 July to 23 July in 2018 as the study period. The weather of the
middle three days in the study area was sunny, while for the four other days it was cloudy,
which is illustrated in Table 1. The air temperature (2 m above the land surface) of these
seven days was obtained from the China Meteorological Administration (CMA) Land
Data Assimilation System (CLDAS) version 2.0 dataset, called “CLDAS-V2.0” dataset, in
China Meteorological Data Service Centre. The “CLDAS-V2.0” dataset is a grid fusion
analysis dataset with the resolution of 0.0625◦ × 0.0625◦ and 1 h. There are 207 grid
points in the city of Wuhan; the distance between two adjacent grid points in the east–
west direction is about 6.0 km and that in the north–south direction is about 6.9 km
(Figure 1a). The dataset is developed by using a multiple-grid variational assimilation
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called Space and Time Mesoscale Analysis System (STMAS), along with physical inversion,
terrain correction based on the ground, satellite observations from various sources and
CLM3.5, CoLM, Noah-MP land surface model. Evaluated by 2400 in situ national automatic
stations of the China Meteorological Administration (CMA), the RMSE of the 2 m air
temperature of the dataset is 0.88 ◦C; the bias is −0.13 ◦C; and the correlation coefficient is
0.97 (http://data.cma.cn/en/?r=data/detail&dataCode=NAFP_CLDAS2.0_NRT, accessed
on 16 November 2020). Studies evaluating the near-surface air temperature of CLDAS
also show that it has a high reliability in China and is significantly correlated with the
observations [33,34]. The dataset has been widely used in various studies [35–38].

Table 1. Weather conditions of the study area in the study period.

Date Weather Condition

17 July Cloudy
18 July Cloudy
19 July Sunny
20 July Sunny
21 July Sunny
22 July Cloudy
23 July Cloudy

The land use data of the study area are from Resource and Environment Science and
Data Center, Chinese Academy of Sciences (https://www.resdc.cn, accessed on 17 October
2021). The data include 6 major categories of cropland, woodland, water body, impervious
surface and bare land as well as 25 secondary classes, with a resolution of 30 m by 30 m
(Figure 1b). The overall accuracy of the data is about 95% for 25 secondary land use
classes [39].

2.2. Standard Deviational Ellipse and Urban Heat Island Index

The standard deviational ellipse (SDE) is a technique to explore spatial distributions.
It was first introduced in study of geographic density in sociology, such as population
distribution [40], and is now widely used to estimate spatial distribution evolutions and
trends [41,42]. We employed this technique in this study. Moreover, we further developed
a new index based on it.

The analysis of the SDE includes weighted SDE and non-weighted SDE. The steps of
calculating the weighted SDE are as follows. The first is to calculate the weighted mean
center of the point set, which is given by:

xw =

n
∑

i=1
wixi

n
∑

i=1
wi

, yw =

n
∑

i=1
wiyi

n
∑

i=1
wi

, (1)

where xi and yi are the coordinates of the ith point; n is the total number of the points; wi is
the weight of the ith point. Thereafter, the transformed coordinates, which are the different
metric spaces between the ith point and the weighted mean center, are given as follows:

x′i = xi − xw, y′i = yi − yw. (2)

Then, the angle of rotation, measured clockwise from North to the long axis of the
ellipse, can be calculated by:
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Finally, the standard distances of the ellipse on x and y directions can be produced by:

σx =

√√√√√√√
n
∑

i=1

(
wix′i cos θ − wiy′i cos θ

)2

n
∑

i=1
w2

i

, (4)
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(
wix′i cos θ + wiy′i cos θ

)2

n
∑

i=1
w2

i

. (5)

When wi = 1 in the above equations, the results of the weighted SDE are the same as
the non-weighted SDE. In this study, we use the weighted SDE to explore the spatial distri-
bution of air temperature and combine its results with those of the non-weighted SDE for
further analysis. Evidently, the weight of a point relates to the air’s temperature. However,
if the weight is set equal to the air temperature of the point, the weight discrimination is
very small for the minor difference between the air temperature of the maximum and the
minimum in the study area, which is about 5 ◦C or even less, whereas the air temperature
of the point is generally around 30 ◦C. Therefore, we introduce the air temperature of an
area identified as rural and use it combined with the air temperature of the grid point to
construct the weight. Since the weight cannot be negative, the functional form of the weight
is constructed as:

wi = f (Tai, Tar) = exp(Tai − Tar), (6)

where Tai is the air temperature (◦C) of the ith point and Tar indicates the air temperature
(◦C) of the rural area. Therefore, what an area is considered as rural, distinguished from
the urban area, is a key point. We first analyzed the air temperature isotherm and the
air temperature profile of an extended area covering the city of Wuhan. Then, based on
combined analysis of air temperature distribution and land use configuration, we identified
a typical area as rural. Thereafter, we calculated the mean value of the air temperature with
respect to the grid points in the typical rural area and used this mean value as the Tar. Since
a higher wi is obtained with a higher Tai, it is evident that the higher the Tai near the center
of the study area, the smaller the standard distances of the ellipse in Equations (4) and (5).
This suggests that the smaller the area of the weighted SDE, the more intensive the heat
island effect. As for the non-weighted SDE, it is equivalent to considering all the grid points
to have equal weights; that is to say, all the grid points with the same air temperature,
representing the state of having no heat island effect in the study area. Therefore, we
construct an UHI index that reflect the heat island intensity, as follows:

I =
SSDE−nonW

SSDE−W
=

πσx−nonWσy−nonW

πσx−Wσy−W
=

σx−nonWσy−nonW

σx−Wσy−W
, (7)

where SSDE−nonW, σx−nonW and σy−nonW are the area and standard deviations on x and y
directions of the non-weighted SDE, respectively; SSDE−W, σx−W and σy−W are those of
the weighted SDE. When the value of this index is larger than 1, this indicates that the
corresponding area presents the state of the heat island effect. Moreover, the weaker the
heat island effect of the study area, the closer the value of this index is to 1, and the more
intensive the heat island effect, the larger the value of the index. Conversely, a value of the
UHI index less than 1 suggests that the weights of the grid points near the center are lesser
than those far from the center. Since the wi monotonically increases with the Tai base on
Equation (6), the air temperature has the same spatial distribution trend as the weights,
therefore representing the state of cool island.
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2.3. Spatial Pattern Analysis

Spatial autocorrelation refers to the potential interdependence of observed data of
some variables within the same distribution area. Moran’s I is a commonly used spatial
autocorrelation statistic to describe the concentration or dispersion of variables in space.
Moran’s I can be divided into global Moran’s I and local Moran’s I. Global Moran’s I shows
whether there exists aggregation or outliers in a space, and is then used for exploring the
global correlation between regions. The local Moran’s I [43], a statistic to measure the local
spatial autocorrelation index, is used to reflect the characteristics of agglomeration and
differentiation of related variables in a small-scale spatial structure, which is used in this
study to analyze the spatial pattern of the air temperature of the study area. It can be
expressed as follows:

Ii = ZiWZi , (8)

where

Zi =
Tai − Ta

S
, (9)

WZi =
n

∑
j=1,j 
=i

w∗
ijZj =

n

∑
j=1,j 
=i

w∗
ij

(
Taj − Ta

S

)
, (10)

where Tai is the air temperature of grid point I; Ta and S are the mean and the standard
deviation of the air temperatures of all grid points in the study area, respectively; n is
the total number of the grid points; and wij* is a normalized spatial weight of point j
with respect to point i, derived from a non-normalized spatial weight. In this study, the
non-normalized spatial weight is defined as the inverse of the distance squared, which is
given by:

wij =

{
1/d2

ij, dij ≤ b
0, dij > b

, (11)

where dij is the distance between grid point i and j; b is a distance bandwidth. In
this study, b is specified with the value of 11 km, which implies that only the grid points
surrounding the grid point i have weights larger than 0, with other grid points given the
weights of 0. Usually, there are 8 points surrounding a grid point, but less than 8 points for
each of the points at the edge of the study area. Thereafter, the normalized spatial weight is
given by:

w∗
ij = wij/

n

∑
j=1,j 
=i

wij . (12)

In Equations (8)–(10), Zi describes the air temperature of point i in deviations from
the mean of air temperature of the study area and WZi represents the weighted summation
of air temperature deviations of the grid points surrounding point i from the mean of air
temperature. Through the analysis of local Moran’s I, the patterns of spatial clusters of
grid points and the outliers with a statistically significance can be obtained. If Zi > 0 and
WZi > 0, this means the grid point and the outliers have high values (relative to the mean
value), called the cluster of high values (HH). If Zi < 0 and WZi < 0, this means the grid
point and the outliers have low values (relative to the mean value), called the cluster of low
values (LL). The other two patterns are the grid point having a high value and surrounded
by grid points with low values (HL), with Zi > 0 and WZi < 0, and the grid point having a
low value and surrounded by grid points with high values (LH), with Zi < 0 and WZi > 0.

2.4. Regression Analysis

Linear regression analysis is a common method to analyze the relationship of a de-
pendent variable driven by other factors. In this study, the dependent variable is the air
temperature of the grid point, and the independent variables are the proportions of the
land uses in the area with respect to the Thiessen polygon of each grid point. The ordinary
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least squares (OLS) model, involving a global multiple linear regression (MLR) in this study,
is formed as:

Ta = Xβ + ε, (13)

where Ta is a vector with respect to the air temperature of the grid points of the study area;
X is a matrix containing intercept (a vector of ones with the length equal to the total number
of the grid points) and values of land use fractions of the Thiessen polygon corresponding
to each grid point; β is a vector of the regression coefficients; and ε is a vector of random
errors. Additionally, stepwise regression technology is used to select the proper explanatory
variables from the proportions of the six land use types illustrated in Figure 1b.

Usually, there are spatial autocorrelations with geographical variables. Thus, spatial
regression models may be more effective in explaining the relationship of the variables
compared with the OLS model. Spatial lag model (SLM) and spatial error model (SEM) are
two common types of spatial regression model [44]. Since SLM is mostly suitable to deal
with the problem associated with spatial diffusion, a characteristic of heat, we adopt SLM
to further analyze air temperature with driving factors. The SLM adds an autocorrelation
term of the air temperature of the grid points to the right of Equation (13). Additionally,
the driving factors that we use for the model are the final selected explanatory variables
based on the stepwise regression analysis. The model is described as follows:

Ta = ρWTa + Xβ + ε, (14)

where ρ is the parameter characterizing the contribution of spatial autocorrelation; W
is a row-sum standardized spatial weight matrix with the elements of wii* = 0 and wij*
calculated by Equation (12); and WTa represents the spatially lagged response of the air
temperature of the grid points.

3. Results

3.1. General Spatio-Temporal Distribution of the Thermal Environment

We calculated the mean air temperature of the grid points in an extended area includ-
ing the city of Wuhan during the nighttime (20:31 the day before to 06:30) and the daytime
(06:31 to 20:30) from 17 July to 23 July. We then plotted the air temperature isotherms,
which are illustrated in Figure 2. It can be seen that the islands of air temperature protrude
above the surrounding air temperature field both during nighttime and daytime, revealing
that heat islands are present in the city of Wuhan. The center of the heat island is slightly
southwest of the city center during the nighttime, and slightly west of the city center
during the daytime. The northern region is relatively cool compared to the entire city.
Furthermore, we analyzed the air temperature profile along the line of AB in Figure 2. The
profiles of the air temperature are shown in Figure 3. Based on the combined analysis of air
temperature distribution and land use configuration, we chose a typical rural area located
to the northwest of the city of Wuhan, illustrated in Figure 2. The air temperature of the
designated rural area is flat, which means that the change rate is small, as seen from the
profiles (Figure 3), and the air temperature gradient on the designated rural area boundary
toward the city center is uphill and increased. On the other hand, as seen in Figure 1b, the
designated rural area is dominated by the cropland and contains some woodland and a
small amount of impervious surface. All these temperature and land use characteristics are
typical of rural areas. Therefore, we used the mean air temperature of the grid points in
this area to represent the rural air temperature.
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Figure 2. The mean air temperature isotherm of an extended area including the city of Wuhan from
17 July to 23 July. (a) Nighttime; (b) daytime.

Figure 3. The mean air temperature profiles along line AB.

After determining the rural air temperature, the weights of the grid points were
obtained according to Equation (6). Then, we took the 207 grid points in the city of Wuhan
for the SDE analysis. Furthermore, based on Equation (7), the values of the UHI index for
every two hours from 00:00 on 17 July to 00:00 on 24 July were derived, which are shown in
Figure 4. The trends of the UHI index within each day are very similar, generally decreasing

108



Remote Sens. 2022, 14, 6084

from 04:00 to 10:00 and increasing from 16:00 to 22:00. The UHI index minimum of each day
occurs between 10:00 and 16:00, and the maximum occurs between 22:00 and 04:00 the next
day. Additionally, the difference between the UHI index minimum of these seven days is
very small. However, the peak values of the UHI index curve from the evening of 19 July to
the early morning of 22 July are obviously higher than those of the other days. The weather
from 19 July to 21 July is sunny, while the other days it is cloudy, which indicates that sunny
days enhance the heat island effect at night compared to cloudy days, but the heat island
effect with respect to the two weather conditions during the day is not much different.

Figure 4. UHI index of the city of Wuhan in the summer of 2018.

The non-weighted SDEs and the weighted SDEs at 06:00, 14:00 and 22:00 of the seven
days are illustrated in Figure 5. The center of the non-weighted SDEs represents the
geographical center of the study area, and that of the weighted SDEs represents the center
of the thermal field. It is evident that the centers of the thermal fields in the morning and
at night are southwest of the geographical center of the city. Moreover, the shape of the
weighted SDEs can reflect the dispersion of air temperature. Similar to the spatially normal
distribution, the ellipse of the one standard deviation encompasses approximately 68% of
the cumulate air temperature weights (wi in Equation (6)) in the area. Except for 21 and
23 July, the weighted SDEs at 06:00 and 22:00 each day are close in shape, position and size.
This illustrates that the spatial distributions of the thermal characteristics at 06:00 and at
22:00 are very similar. Likewise, the weighted SDE at 14:00 and the non-weighted SDEs
are close in shape, position and size except for 17 and 22 July. Since the non-weighted SDE
is considered as having no heat island effect, the results illustrate that the heat islands at
14:00 are weak. On the contrary, as shown in Figure 5, the distinction of the weighted SDEs
at 06:00 and at 22:00 from the non-weighted SDEs are broad, especially in size and position,
indicating that the heat island effect is intense at these two time points.

3.2. Local Spatial Pattern of the Thermal Environment

A local spatial analysis of the air temperature distribution is performed at 06:00, 14:00
and 22:00 on the seven days. Identified by calculating local Moran’s I values, the spatial
clusters and the outliers of the grid points at the three time points are, respectively, shown
in Figures 6–8. Only the HH and LL clusters are of statistical significance in the study
area at the three time points on all the seven days. The areas, except for the HH and LL
clusters, are of no significance. These results indicate that the air temperature distribution
has similarly high or low values in neighboring zones; there is no grid point with high air
temperature surrounded by grid points with low air temperature nor grid point with low
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air temperature surrounded by grid points with high air temperature. This also implies
that the air temperature of a grid point is affected by the surrounding points.

Figure 5. The SDEs of the city of Wuhan. (a) 17 July; (b) 18 July; (c) 19 July; (d) 20 July; (e) 21 July;
(f) 22 July; (g) 23 July.

Figure 6. Local spatial pattern of the air temperature at 06:00 (significant level at 0.05). (a) 17 July;
(b) 18 July; (c) 19 July; (d) 20 July; (e) 21 July; (f) 22 July; (g) 23 July.
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Figure 7. Local spatial pattern of the air temperature at 14:00 (significant level at 0.05). (a) 17 July;
(b) 18 July; (c) 19 July; (d) 20 July; (e) 21 July; (f) 22 July; (g) 23 July.

Figure 8. Local spatial pattern of the air temperature at 22:00 (significant level at 0.05). (a) 17 July;
(b) 18 July; (c) 19 July; (d) 20 July; (e) 21 July; (f) 22 July; (g) 23 July.
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As seen from Figure 6, the local spatial patterns of the thermal characteristic at 06:00
on seven days mostly overlap, especially on 18 and 19 July. As for 22:00 (Figure 8), the
local spatial patterns from 17 July to 19 July mostly overlap and those on 21 and 22 July
mostly overlap. Additionally, the overlap proportion of the HH clusters at 06:00 and 22:00
is large in general. However, the HH clusters at 14:00 are substantially different from
those at 06:00 and 22:00. Additionally, the corresponding weighted SDEs are displayed in
Figures 6–8. It can be seen that the results of the SDE analysis are consistent with the local
spatial pattern analysis. The shape, position, and size of the weighted SDEs at 06:00 and
22:00 are dominantly determined by the distribution of the HH cluster.

A further analysis regarding the land uses is illustrated in Figure 9, which shows
the proportions of the land uses within the HH clusters, LL clusters and no significance
clusters. In the HH clusters (Figure 9a), there are four time points at which the proportion
of impervious surface is the largest (22:00 on 17 July; 06:00 on 18 July; 06:00 and 22:00
on 19 July), whereas the proportion of the cropland is the largest at the other time points.
However, the proportion of cropland is always the largest in the LL clusters (Figure 9b) and
no significance clusters (Figure 9c). This probably suggests that cropland is not associated
with either high air temperature or low air temperature. The large proportion of cropland
in the HH clusters and LL clusters may be due to the fact that the air temperature over
cropland is easily affected by neighboring with other land uses. When excluding cropland,
as in the HH clusters at 06:00 and 22:00, the proportions of the impervious surface and
water bodies are the two largest; additionally, the proportion of impervious surface is
generally larger than that of water bodies, except for 22:00 on 20 July and 06:00 on 21 July,
which are approximately equal. This may suggest that the HH clusters at 06:00 and 22:00
are associated with the impervious surface and water bodies. Since the proportion of water
bodies in the no significance clusters is not very small, this may indicate that the association
of the water bodies with the HH clusters at 06:00 and 22:00 is weak. As for the HH clusters
at 14:00, the proportion of water bodies is larger than that of impervious surface on five
out of seven days; however, these proportions of water bodies is not fairly larger and even
sometimes less than those in the no significance clusters. Thus, the water bodies may
even be more weakly associated with the HH clusters at 14:00. When considering the land
uses in the LL clusters after excluding cropland, the proportion of woodland is always
the largest; moreover, the proportion of woodland in the HH clusters and no significance
clusters is always very small. This suggests that the LL clusters are strongly associated
with woodland (mainly distributed in the northern part of the city).

3.3. Land Uses Contributing to Air Temperature Variation

We used a regression analysis to analyze the contribution of land uses to the special
distribution of air temperature. We carried out the ordinary least squares (OLS) regression
analysis of the air temperature of the grid points with the proportions of land uses with
respect to the Thiessen polygons of the grid points. Additionally, stepwise regression
technology was used to select the proper variables and eliminate the variables without
significance (at the significant level of 0.05).

Among the proportions of the six land use types illustrated in Figure 1b, the main
variables contributing to the variation of air temperature are the proportion of woodland
area (PWDA), the proportion of water body area (PWBA) and the proportion of impervious
surface area (PISA); more details of the OLS regression results are shown in Table 2. The
stepwise regression technology can mitigate the collinearity of the predictor variables in
the model to some extent. Moreover, the variance inflation factors (VIFs) for the predictors
in the final regression model were evaluated and the maximum VIF is presented (Table 2).
All the values of the maximum VIF are less than 2, indicating essentially no collinearity.
Therefore, the predictor variables could independently predict the value of the dependent
variable. The coefficients of PWDA are all significant and all negative at 06:00, 14:00 and 22:00
from 17 July to 23 July, which means that by increasing the proportion of woodland area,
the air temperature will decrease. As for PWBA and PISA, both coefficients are significant
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and positive at 06:00 and 22:00 on the seven days; however, at 14:00, the coefficients of
PWBA are only significant on two days and those of PISA are only significant on three days.
This means that in the morning and evening, increasing the proportions of water body
area and impervious surface area will increase the air temperature. However, at noon, the
effects of the water body and the impervious surface may require further consideration, for
the coefficients of PWBA and PISA are not always significant.

Figure 9. Proportions of land uses in the local spatial patterns. (a) HH cluster; (b) LL cluster; (c) no
significance cluster.

When considering the fitness of the OLS model varying in time (R2 in Table 2), it can
be seen that the R2 value at 22:00 is larger than that at 06:00 each day, and that the R2 value
at 06:00 is larger than that at 14:00. With the exception of 22 July, the OLS model can explain
more than 50% of the variation in the spatial distribution of air temperature at 22:00; at 06:00,
there are three days on which more than 50% of the variation can be explained by the model.
However, at 14:00, the model can explain not more than 40% of the variation, with the
exception of 17 and 22 July, and even less than 20% on 21 July. This suggests that there are
some other factors affecting the spatial distribution of air temperature. Moreover, we used
the spatial lag model (SLM) with the same independent variables than for the regression
analysis. The results are shown in Table 3. The R2 of the model is very high at all the time
points, much larger than that of the OLS model. None of the R2 values at 06:00 and 22:00 are
lesser than 0.97; only the R2 values at 14:00 on 19 and 23 July are slightly lesser than 0.90, but
also greater than 0.89. This means that the explanation of the SLM is improved. However,
the absolute values of the coefficients of the explanatory variables become smaller. This is
because some variation of the dependent variable explained by the independent variable is
substituted by the spatially lagged term (WTa in Equation (14)). When the absolute value
becomes very small and close to zero, it may not even be statistically significantly different
from the zero value. As seen from Table 3, all the coefficients with absolute values of less than
0.1 are not significant. Two of the coefficients of PISA that are significant in the OLS model
become not significant. Even the coefficients of PWBA all become not significant. Conversely,
the Lag coefficients of the SLM are very high (higher than 0.95) and extremely significant at
all the time points, which indicates that the contribution of spatial autocorrelation to the
spatial variation of air temperature is very high and that the air temperature of one grid
point is greatly affected by its neighboring points. This implies that the effect of spatial
diffusion is significant in the spatial distribution of air temperature.
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Table 2. Coefficients of the OLS regression with respect to air temperature.

Date Time Constant PWDA PWBA PISA Max VIF R2 Adjusted
R2

17 July
06:00 26.77 *** −1.202 *** 1.223 *** 2.594 *** 1.207 0.430 0.422
14:00 35.67 *** −0.963 *** 1.026 *** 1.145 *** 1.207 0.408 0.399
22:00 30.33 *** −2.247 *** 1.175 *** 2.756 *** 1.207 0.614 0.608

18 July
06:00 27.12 *** −1.590 *** 1.279 *** 3.009 *** 1.207 0.499 0.492
14:00 37.02 *** −1.517 *** - - - 0.329 0.326
22:00 30.82 *** −2.860 *** 1.287 *** 2.877 *** 1.207 0.555 0.548

19 July
06:00 27.19 *** −1.749 *** 1.488 *** 2.995 *** 1.207 0.522 0.515
14:00 37.45 *** −1.061 *** - 0.327 ** 1.068 0.335 0.328
22:00 30.75 *** −2.710 *** 1.749 *** 3.367 *** 1.207 0.523 0.516

20 July
06:00 27.10 *** −2.375 *** 1.742 *** 3.160 *** 1.207 0.504 0.497
14:00 37.68 *** −1.568 *** - −0.634 *** 1.068 0.373 0.367
22:00 30.47 *** −3.102 *** 2.048 *** 2.960 *** 1.207 0.546 0.539

21 July
06:00 27.34 *** −2.751 *** 1.630 *** 2.902 *** 1.207 0.591 0.585
14:00 38.34 *** −0.895 *** - - - 0.169 0.165
22:00 30.99 *** −3.622 *** 2.528 *** 3.152 *** 1.207 0.526 0.519

22 July
06:00 26.84 *** −2.669 *** 2.176 *** 2.658 *** 1.207 0.487 0.479
14:00 36.63 *** −1.862 *** - - - 0.473 0.471
22:00 30.44 *** −2.325 *** 1.862 *** 2.431 *** 1.207 0.495 0.487

23 July
06:00 26.97 *** −2.218 *** 1.847 *** 2.715 *** 1.207 0.463 0.455
14:00 36.72 *** −0.923 *** 0.362 *** - 1.113 0.355 0.349
22:00 30.15 *** −2.300 *** 0.882 *** 2.147 *** 1.207 0.535 0.528

*** Significant at p < 0.001, ** significant at p < 0.01.

Table 3. Coefficients of the SLM regression with respect to the air temperature.

Date Time
Lag

Coefficient
Constant PWDA PWBA PISA R2

17 July
06:00 0.986 *** 0.358 * −0.264 *** 0.068 0.154 * 0.977
14:00 0.962 *** 1.368 *** −0.289 *** 0.071 0.068 0.962
22:00 0.965 *** 1.057 *** −0.373 *** 0.040 0.221 *** 0.986

18 July
06:00 0.984 *** 0.429 * −0.299 *** 0.051 0.199 ** 0.981
14:00 0.964 *** 1.356 *** −0.395 *** - - 0.934
22:00 0.972 *** 0.862 *** −0.388 *** 0.016 0.202 *** 0.990

19 July
06:00 0.982 *** 0.476 ** −0.329 *** 0.049 0.184 ** 0.982
14:00 0.956 *** 1.682 *** −0.388 *** - −0.009 0.892
22:00 0.980 *** 0.611 ** −0.348 *** 0.029 0.235 *** 0.990

20 July
06:00 0.981 *** 0.497 ** −0.341 *** 0.041 0.214 ** 0.985
14:00 0.962 *** 1.456 *** −0.420 *** - −0.119 ** 0.934
22:00 0.970 *** 0.894 ** −0.301 *** 0.099 0.254 *** 0.989

21 July
06:00 0.963 *** 1.005 *** −0.404 *** 0.077 0.215 *** 0.987
14:00 0.973 *** 1.074 ** −0.331 *** - - 0.900
22:00 0.979 *** 0.643 ** −0.329 *** 0.041 0.207 *** 0.993

22 July
06:00 0.980 *** 0.514 ** −0.322 *** 0.099 0.188 ** 0.989
14:00 0.941 *** 2.167 *** −0.457 *** - - 0.941
22:00 0.974 *** 0.793 ** −0.340 *** −0.003 0.213 *** 0.984

23 July
06:00 0.980 *** 0.531** −0.320 *** −0.004 0.191 *** 0.990
14:00 0.947 *** 1.952 *** −0.334 *** 0.011 - 0.891
22:00 0.969 *** 0.927 ** −0.353 *** 0.035 0.134 * 0.970

*** Significant at p < 0.001, ** significant at p < 0.01, * significant at p < 0.05.
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4. Discussion

4.1. Advantage of the UHI Index

Figure 10 displays the standard deviation of air temperature (Ta-SD) of the grid points,
its trend generally corresponding to that of the UHI index (Figure 4). It may be supposed
that the UHI index is simply determined by the variation of air temperature with respect to
the grid points. However, this is not exactly true. In order to illustrate this issue, we first
calculated the difference in the UHI index and the difference in the Ta-SD in 2 h steps. We
then calculated the quotient of the differences, which is shown in Figure 10. As it can be
seen, the difference quotient is positive most of the time, but there are still some times when
the difference quotient is negative. This means that at some time points, not very few, the
change trend of the UHI index is opposite to that of the Ta-SD. As the UHI index is derived
from an SDE analysis, it considers not only the value distribution of air temperature, but
also the spatial distribution. With the same Ta-SD, the spatial distribution could be different,
so the values of the UHI index may be distinct. In specific situations, with the same Ta-SD,
an area may present the state of heat island or the state of cool island. However, these
situations can be distinguished by the UHI index, for its value of the former is greater than
1 and that of the latter less than 1. Thus, the UHI index has an advantage in characterizing
the spatial distribution of the thermal environment and the UHI effect.

Figure 10. Comparison of UHI index and the standard deviation of the air temperature (Ta-SD) in the
study area.

4.2. Thermal Environment in Relation to Weather Condition

The weather conditions of the seven days on which we analyzed the thermal environ-
mental characteristics are cloudy and sunny. As it can be seen, the UHI index from 10:00
to 16:00 does not vary much on these seven days. However, the values of the UHI index
at 22:00 and at 24:00 on the three sunny days are all greater than those on the four cloudy
days. These results are in accordance with the other literature. There is wide consensus
that the UHI effect is strong during the nighttime but weak or even disappears during the
daytime [45–48]. Thus, the influence of weather conditions on the UHI effect is slight dur-
ing the daytime. However, during the nighttime, previous studies have demonstrated that
that the UHI intensity in clear conditions is evidently greater than in overcast conditions
during the nighttime [47,49,50].

Conventionally, UHI intensity is usually the difference between urban peak air tem-
peratures and rural air temperatures. In this study, the curve of the UHI index reflects that
the air temperature difference between urban center and the outskirts of the city during the
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nighttime on sunny days is generally greater than that on cloudy days, implying that the
spatial heterogeneity of thermal environmental characteristics increases in sunny days.

4.3. Limitations of the Regression Models

In this study, we attribute the spatial variation of the air temperature to local land
uses by using a regression analysis. In fact, wind is also an important factor affecting air
temperature, which is not considered in the regression model. This may be a reason why
the coefficients of the determination with respect to the OLS model are not very satisfactory.
Yet, the magnitude of the variation in air temperature explained by the land use regression
model is also not very satisfactory in previous studies [51–54]. However, it is difficult
to consider the contribution of wind in a global regression model, for the effect of wind
on local air temperature is complex. Even if the wind remains in a constant direction, it
may decrease the air temperature in one local area but may increase the air temperature in
another local area, not to mention that the wind’s direction frequently changes. Thus, it
may not be suitable to consider the contribution of wind to local air temperature in space
when using the OLS model. When the SLM is adopted, the coefficients of the determination
greatly improve. Since the SLM can reflect the effect of spatial diffusion, it can be supposed
that the model takes into account the effect of the wind to some extent. However, this
comes at the cost of losing the explanation of the local independent variables, namely
the proportion of land uses, for the absolute values of the regression coefficients become
smaller and some of them are even without significance.

5. Conclusions

In the light of the ambiguous measurements in UHI intensity and the scarce studies
on the spatial characteristics’ evolution of the urban thermal environment with the high
temporal resolution during a day, this study introduces the SDE method to depict the
general spatial character of the urban thermal environment and constructs an UHI index
to evaluate the UHI intensity based on the SDE. Taking the city of Wuhan as a study area,
the results illustrate that the UHI index can effectively represent the general characteristics
of the thermal environment in the study area. The trends of the UHI intensity generally
decrease from midnight to midday, and generally increase from midday to evening. The
local spatial pattern analysis through local Moran’s I shows that there are only high–high
clusters and low–low clusters of air temperature with statistical significance in the study
area. The former clusters are mainly associated with the imperious surface, and are also
associated with water bodies in the morning and the evening. The latter clusters are mainly
associated with woodland. This can be further demonstrated by a regression analysis.
The regression analysis of the SLM also indicates that the effect of spatial diffusion has a
significant influence on the distribution of air temperature in space.

Furthermore, the regression analysis indicates that the effects of water body on air
temperature are mostly not statistically significant at noon according to the OLS model
and are even all insignificant in the morning, noon and evening according to the SLM
model. Nevertheless, woodland always has a cooling effect in the morning, at noon and in
the evening, implying that increasing the vegetation may be the most effective strategy to
mitigate the urban thermal environment. The regression results also show that the OLS
model could not fit the spatial distribution of air temperature well enough, while the fitness
of the SLM is greatly improved. However, the explanation of the proportion of the local land
uses accounting for the spatial variation of air temperature becomes lower. An improved
model is still required to explain the spatial distribution of the urban air temperature.
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Abstract: Rapid urbanization is an important factor leading to the rise in surface temperature. How
to effectively reduce the land surface temperature (LST) has become a significant proposition of
city planning. For the exploration of LST and the urban heat island (UHI) effect in Zhengzhou,
China, the LST was divided into seven grades, and the main driving factors of LST change and their
internal relations were discussed by correlation analysis and gray correlation analysis. The results
indicated that LST showed an upward trend from 2005 to 2020, and a mutation occurred in 2013.
Compared with 2005, the mean value of LST in 2020 increased by 0.92 ◦C, while the percentage of
LST-enhanced areas was 22.77. Furthermore, the spatial pattern of UHI was irregularly distributed,
gradually spreading from north to south from 2005 to 2020; it showed a large block distribution in
the main city and southeast in 2020, while, in the areas where woodlands were concentrated and in
the Yellow River Basin, there was an obvious “cold island” effect. In addition, trend analysis and
gray correlation analysis revealed that human factors were positively correlated with LST, which
intensified the formation of the UHI effect, and the influence of Albedo on LST showed obvious
spatial heterogeneity, while the cooling effect of vegetation water was better than that of topography.
The research results can deepen the understanding of the driving mechanism of the UHI effect, as well
as provide scientific support for improving the quality of the urban human settlement environment.

Keywords: temporal and spatial variation; land surface temperature; Zhengzhou city; urban heat island

1. Introduction

The continuous growth of the urban area and population has brought a series of urban
environmental problems, such as the urban heat island effect, heat waves, and extreme
climate. The thermal environment of cities directly affects people’s quality of life, and
it is closely related to the urban climate, which has always been a research hotspot [1,2].
Because the increase in land surface temperature (LST) can affect people’s life and the
environment in multiple ways, the urban heat island (UHI) phenomenon not only affects
the local climate, vegetation growth, and air quality, but also affects people’s health [3–5].
Therefore, it is a common challenge for climatologists and urban planners to formulate
effective mitigation strategies for the UHI effect [6]. Determining the potential driving
factors of LST is very important to reduce the urban heat island effect, promote regional
sustainable development, and improve the quality of life of city dwellers [7].

According to the method of measuring temperature, the heat island can be divided
into canopy layer heat island (UCL), boundary layer heat island (UBL), and surface UHI
(SUHI) [8]. Among them, UCL is composed of air between rough elements (such as build-
ings and tree crowns), and its upper boundary is just below the roof level. UBL is located
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above UCL, and its lower boundary is affected by the urban surface [9]. Traditionally,
the study of heat island usually depends on the on-site measurements of independent
stations [10]. For example, LST is usually collected by measuring the air temperature in the
urban canopy [11]. This can produce accurate and time-continuous observation results [12];
however, the spatial representation of meteorological stations limits its application, hin-
dering the effective identification of the spatial pattern of LST. The development of remote
sensing (RS) technology has provided an effective means to estimate LST from local to
global scales [13,14]. Remote sensing inversion using Landsat (30 m–20 m) allows obtain-
ing the fine LST; however, its temporal resolution is approximately every 16 days [15,16].
Moreover, the Moderate Resolution Imaging Spectroradiometer (MODIS) can provide
high-resolution global LST data products, which can be directly used for mesoscale surface
temperature research [17,18]. Thus, RS data can help researchers study the temporal and
spatial changes of LST, and the development of RS technology has greatly promoted the
progress of UHI research [19].

The interaction between influencing factors and LST leads to its spatial heterogene-
ity [7]; hence, exploring this internal driving relationship can provide effective strategies
for alleviating the UHI phenomenon [20]. The factors that cause urban temperature change
mainly include two types [21]: natural factors, such as topography, vegetation cover, and
water body [22], and human factors, including urban construction intensity and socioe-
conomic activity index [23,24]. Furthermore, researchers have used various models and
mathematical analyses to study the relationship between the spatial and temporal changes
of the urban thermal environment and various index variables [25]. The main analysis
models include Pearson correlation analysis, ordinary least squares regression analysis,
principal component analysis, gray correlation analysis, spatial regression model (spatial
lag model and spatial error model), and geographic weighted regression model [26–28].
However, existing studies typically focused on one or a few influencing factors, such as
building layout, land-use change, and landscape pattern, whereas comprehensive analyses
are scarce [29].

According to consensus, an increase in impermeable surfaces in cities reduces vegeta-
tion coverage and transpiration, increases the absorption of solar radiation, and leads to
changes in the thermal climate and the warming of cities [30,31]. For example, Knight Teri
et al. conducted a systematic review on the influence of vegetation on LST. The research
showed that the surface temperature of city green space tends to be cooler than city non-
green space, and the cooling effect of green space or parks can expand to 1.25 km outside its
boundaries [32,33]. Furthermore, taking Shanghai as an example, Yang et al. analyzed the
influence of impervious surface (IS) and vegetation cover (VC) on the intensity of the UHI.
The results showed that there were obvious differences between urban and rural areas in
the gradient distribution of regional land cover and surface temperature, and the heating
effect of IS was more obvious than that of VC [34], whereas vegetation and water bodies
had obvious cooling effects [35,36]. Liu et al. compared the influence of topography and
urban form factors on the urban heat island in Chengdu and Chongqing, indicating that
natural factors such as vegetation and water had a similar influence on and contribution to
the UHI effect. Nevertheless, the unique topography and urban form played a key role in
the difference in UHI between the two cities [37].

Owing to the many factors that can influence the formation of the UHI, a method to
qualify the contributions and identify the key factors would help to alleviate the UHI effect
and slow down the rising trend, especially for fast-developing cities with high construction
intensity and continued growth of non-green spaces [38]. In order to explore the internal
relationship between the driving factors of the UHI effect from two aspects of natural and
human factors, we chose Zhengzhou as the research area. Zhengzhou is the main economic
development center of Henan Province in China; thus, the large number of human activities
can easily cause the phenomenon of UHI in this area [39]. However, there has been little
research on SUHI in Zhengzhou, while mostly single driving factors were investigated,
long timeseries of remote sensing data were not evaluated [40]. Through the analysis of

120



Remote Sens. 2022, 14, 4281

the temporal and spatial variation of land surface temperature and the driving factors of
the UHI effect in Zhengzhou, the results of this research can make up for the deficiency
of this field, providing a theoretical basis and decision support for the improvement of
urban construction and environmental quality of human settlements, as well as providing
a reference for future urban planning and design in Zhengzhou.

2. Materials and Methods

2.1. Study Area

The study area was Zhengzhou (112◦42′E–114◦14′E, 34◦16′N–34◦58′N), the capital of
Henan Province in China, located in the hinterland of China, with the Yellow River in the
north, Huanghuai Plain in the southeast, and Songshan Mountain in the west. As shown in
Figure 1, the terrain is high in the west and low in the east. D1-D12 are districts, which are
Huiji, Zhongyuan, Jinshui, Guancheng Hui, Erqi, Xingyang, Shangjie, Gongyi, Zhongmu,
Xinmi, Dengfeng and Xinzheng respectively. Zhengzhou’s total population in 2020 reached
1.2601 × 107, representing a densely populated mega city (Statistics Bureau of Zhengzhou,
http://tjj.zhengzhou.gov.cn/, accessed on 20 May 2022). In addition, Zhengzhou is located
at the intersection of the Beijing–Guangzhou urban development belt and the Longhai
urban development belt. It is the central city of the Central Plains urban agglomeration,
an important node city in the Zheng–Bian–Luo Industrial Corridor, and one of the most
representative cities in urban development in China.

 
Figure 1. The location map of Zhengzhou.

2.2. Data Resources

The DEM (digital elevation model) data and land-use data in 2020 were obtained from
the Resource and Environmental Science Data Center of China, with a spatial resolution
of 205 m and 30 m, respectively (http://www.resdc.cn, accessed on 5 March 2022 and
14 March 2022). The Landsat8 OLI_TIRS remote sensing image of 22 May 2020 came from
the geospatial data cloud with a cloud content of 6.12% and a spatial resolution of 30 m. The
NDISI (normalized difference impervious surface index), NDBBI (normalized difference
bareness and built-up index), and MNDWI (modified normalized difference water index)
were calculated using the Landsat8 OLI_TIRS remote sensing image (downloaded from
http://www.gscloud.cn/#page1/1, accessed on 8 March 2022). The LST, NDVI (normal-
ized difference vegetation index), and Albedo MODIS data products were downloaded
from https://modis.gsfc.nasa.gov (accessed on 1 March 2022 and 14 March 2022). The
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MODIS data characteristics are shown in Table 1. Zhengzhou POI data in 2020 came from
Gaode map (https://ditu.amap.com, accessed on 15 March 2022), including 11 points
of interest: catering, living and entertainment, shopping centers, public service facilities,
scenic spots, companies and enterprises, government agencies, medical care, commer-
cial housing, accommodation, and sports and leisure, which could be used to represent
socioeconomic activities.

Table 1. MODIS data items and descriptions.

Data Items Spatial Resolution Time Resolution Data Resource

LST 1 km 8 days MYD11A2
NDVI 250 m 16 days MYD13Q1

Albedo 500 m Daily MCD43A3

In this study, the timeseries data mainly included MDOSI LST data from 2005 to
2020, which were used to analyze the trend of surface temperature in Zhengzhou. The
cross-sectional data included the Landsat 8 OLI_TIRS remote sensing image, which was
used to calculate the NDISI, NDBBI, and MNDWI. In addition, the NDVI, DEM, Albedo,
and POI were used to analyze the driving relationship between LST and the influencing
factors. In order to study the relationship between LST and the raster data of influencing
factors in Zhengzhou, the raster-to-point tool in ArcGIS was used to convert LST raster
data into point data, and then the influencing factor data of corresponding points were
extracted using a multivalue extraction to point tool.

2.3. Research Methodology
2.3.1. Nonparametric Mann–Kendall Trend Test

The nonparametric Mann–Kendall trend test (M–K test) [41,42] was used to test
changes in LST over time from 2005 to 2020. The principle is described below [43].

(1) According to the timeseries X1, X2, . . . , Xn, construct an ordered sequence as follows:

SK = ∑K
i=1 Ri, Ri =

{
1, Xi > Xj
0, Xi ≤ Xj

, (K = 1, 2, 3, . . . , n). (1)

(2) Calculate the mean and variance of SK as follows:

E(SK) = n(n + 1)/4. (2)

Var(SK) = n(n − 1)(2n + 5)/72. (3)

(3) Standardize SK as follows:

UFK =
SK − E(SK)√

Var(SK)
(K = 1, 2, . . . , n). (4)

Here, UFk is the standard normal distribution, given a significance level α (gener-
ally α = 0.05, UFα = ±1.96); |UFk|> U∝ indicates a significant trend change. UFk > 0
indicates an upward trend, and vice versa. The X-series is inverted to obtain a new time-
series Xn, Xn−1, . . . , X1, and the above process is repeated to obtain UBK = −UFK, where
UB1 = 0, K = n, n − 1, . . . , 1.

2.3.2. Calculation of Surface Information Index

NDISI can be used to represent the impervious surface. Impervious surface refers
to artificial ground objects that are impervious to water, and its changing trend can di-
rectly or indirectly evaluate the development of a city. The area of impervious surface
in a city increases greatly, which can lead to serious urban waterlogging, the UHI effect,
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and environmental resource pollution [44]. The calculation equation of NDISI is shown
below [26,45].

NDISI =
TIRS1 − (MNDWI + N + SWIR1)/3
TIRS1 + (MNDWI + N + SWIR1)/3

. (5)

MNDWI is an improved normalized difference water body index, which is used to
represent water body information.

MNDWI =
G − SWIR1
G + SWIR1

. (6)

NDBBI can be used to obtain the information of urban bare land and built land.

NDBBI =
1.5SWIR2 − (N + G)/2
1.5SWIR2 + (N + G)/2

, (7)

where G, N, SWIR1, SWIR2, and TIRS1 correspond to bands 3, 5, 6, 7, and 10, respectively,
in Landsat8 OIL-TIR.

Land surface albedo represents the reflective ability of the Earth’s surface to solar
radiation, and its magnitude is influenced by many factors such as solar altitude angle, land-
use type and coverage, and surface roughness. It is an important dynamic dimensionless
surface parameter to study the balance of land energy and global climate change [46].

Slope refers to the angle between the actual ground and the horizontal plane, which
was calculated using the slope analysis tool in ArcGIS10.5 software.

The socioeconomic activity index can directly reflect the development level of urban
areas and indirectly represent the impact of human activities on UHI. In this study, it was
expressed using the POI kernel density.

2.3.3. Correlation Analysis and Linear Trend Analysis

In statistics, the Pearson correlation coefficient, also known as the Pearson product-
moment correlation coefficient (PPMCC), is used to measure the relationship between two
variables X and Y, with values ranging from −1 to +1, and it is widely used in academic
research to measure the strength of linear correlation between two variables [47]. The
Pearson correlation coefficient between two variables is defined as the quotient of the
covariance of these two variables and the product of their standard deviations.

ρX,Y =
cov(X, Y)

σXσY
=

E[(X − μX)(Y − μY)]
σXσY

. (8)

Equation (8) defines the overall correlation coefficient. The Pearson correlation coeffi-
cient can be obtained by estimating the covariance and standard deviation of the sample,
which is commonly represented by r.

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
. (9)

Furthermore, r can be estimated using the standard score mean of (Xi, Yi) sample
points, and the equivalent expression of Equation (9) can be obtained as follows:

r =
1

n − 1

n

∑
i=1

(
Xi − X

σX

)(
Yi − Y

σY

)
, (10)

where Xi−X
σX , X, and σX are the standardized variable, sample mean, and sample standard

deviation, respectively.
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In this study, Pearson correlation analysis was used to explore the correlation and
interaction between LST and influencing factors, and SPSS software was used to analyze
the results.

2.3.4. Gray Relational Analysis Model

Gray correlation analysis [48,49] is a gray process based on the gray system, which
compares the timeseries between factors to determine the most influential leading factors.
The magnitude of the correlation degree is an external expression of the mutual influence
and interaction among factors, and the order of the correlation degree reflects the relative
influence of each factor on the reference factor. The principle of gray relational degree
analysis is described below [27].

(1) Suppose the original timeseries Xi = {Xi(K)|K = 1, 2 . . . , n; i = 0, 1, 2, . . . , m − 1}
is composed of n evaluation samples of m evaluation indicators. First, the original
timeseries is averaged to obtain the sequence Xi.

Xi(k) =
Xi(k)

Xi
, K = 1, 2 . . . , n; i = 0, 1, 2, . . . , m − 1, (11)

where X0 is the reference sequence, and the others are comparison sequences; i 
= 0
unless otherwise specified.

(2) Calculate the absolute difference between X0 and Xi at time K.

Δi(K) = |X0(K)− Xi(K)|, i = 1, 2, . . . , m − 1. (12)

(3) Calculate the correlation coefficient ξi(K).

ξi(K) =
min

i
min

k
Δi(K) + ρmax

i
max

k
Δi(K)

Δi(K) + ρmax
i

max
k

Δi(K)
, (13)

where min
i

min
K

is the minimum difference between two poles, and max
i

max
K

is the

maximum difference between two poles. Furthermore, as the resolution coefficient,
ρ ∈ (0, 1), a smaller ρ indicates a greater resolution, which is generally 0.5.

(4) Calculate the gray correlation degree γi.

γi =
1
n

n

∑
k=1

ξi(K). (14)

By sorting the gray correlation degree γi in order of magnitude, the relative influence
degree of various factors on the reference factor can be obtained. The framework of this
study is shown in Figure 2.
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Figure 2. Framework of this study.

3. Results

3.1. Characteristics of Urban Thermal Environment Evolution
3.1.1. Interannual Variation Characteristics of LST

As can be seen from Figure 3A, the interannual variation trend of surface temperature
in Zhengzhou from 2005 to 2020 was small, and the variation trends of the mean and
maximum values were similar, but they all showed an overall upward trend. From 2005
to 2020, the mean value of LST increased by 0.92 ◦C, and the maximum value increased
by 0.85 ◦C. Moreover, the mean value and maximum value both reached the maximum in
2019 (26.59 ◦C and 31.58 ◦C, respectively).
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Figure 3. Variation of LST in Zhengzhou from 2005 to 2020 and M–K test values: (A) interannual
variation; (B) M–K mean; (C) M–K maximum; (D) M–K minimum (yellow: mean, red: maximum,
green: minimum).

Figure 3B–D show the M–K test values of the interannual variation of the land surface
temperature in Zhengzhou. As can be seen from Figure 3B–D, the UF curve was in a
downward trend before 2013, and the trend change was not obvious. In the second half of
2013, it began to show an upward trend, while there was a significant upward trend in the
second half of 2019. The UF curve of LST maximum and minimum values began to show
an upward trend in 2013, while, after 2019, the upward trend was significant.

3.1.2. Surface Temperature Classification

To identify the reason for the difference in LST in the study area, the mean-variance
method was used to classify the LST into seven categories, as shown in Table 2: extremely
high temperature, high temperature, relatively high temperature, medium temperature,
relatively low temperature, low temperature, and extremely low temperature [26]. The first
three categories were considered UHI zones in this study.

Table 2. Classification of LST.

Temperature
Rating

Extremely High-
Temperature

Zone

High-Temperature
Zone

Relatively High
-Temperature

Zone

Medium-
Temperature

Zone

Relatively Low-
Temperature

Zone

Low-Temperature
Zone

Extremely Low-
Temperature

Zone

Temperature
range t ≥ u + 2.5 std u + 1.5 std ≤ t <

u +2.5 std
u + 0.5 std ≤ t <

u + 1.5 std
u − 0.5 std ≤ t <

u + 0.5 std
u − 1.5std ≤ t <

u − 0.5 std
u − 2.5 std ≤ t < u

− 1.5 std t < u − 2.5 std

Note: u represents the mean value of LST; std represents the standard deviation of LST.

3.1.3. Spatial Evolution Characteristics of Urban Thermal Environment

Figure 4 shows the spatial evolution of the urban heat island in Zhengzhou in 2005,
2013, and 2020. As shown in Figure 4, the UHI area was irregular and gradually spread
from north to south, and it was distributed in the main city and southeast in 2020. High
temperature mainly occurred in the main city areas and densely built areas, while low tem-
perature was most concentrated in the areas covered by rivers, grasslands, and woodlands.
The spatial distribution characteristics of UHI were similar in the three periods, showing
an obvious “cold island” effect in the Yellow River basin and the concentrated distribution
area of woodland. The extremely high-temperature zone, relatively high-temperature zone,
and high-temperature zone continued to expand along densely populated areas from 2005
to 2020.
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Figure 4. Spatial evolution of UHI in Zhengzhou in 2005, 2013, and 2020: (A) 2005, (B) 2013, (C) 2020.

3.1.4. Temporal Evolution Characteristics of Urban Thermal Environment

As shown in Table 3, the changes in LST grades in 2005, 2013, and 2020 were calculated.
Table 3 indicates that the percentage area with weakened LST grades in Zhengzhou from
2005 to 2020 was 23.51%, while unchanged areas accounted for 53.72%, and the enhanced
areas accounted for 22.77%. From 2005 to 2013, 20.83% of the area was represented by
weakened LST grades, in contrast to 57.48% for unchanged areas and 21.69% for enhanced
areas. From 2013 to 2020, the percentage area with weakened LST grades was 21.20%, an
increase of 0.37% over the previous period. The percentage area with a constant LST level
was 58.43%, which was 0.95% higher compared to the previous period. The percentage area
with an enhanced LST level was 20.37%, which was 1.32% lower than that of the previous
period. Through the above analysis, it was found that, in the last 15 years, the LST grade
in Zhengzhou changed to different degrees. Compared with 2013–2020, the proportion of
areas with weakened and unchanged LST grades in 2005–2013 showed an upward trend,
while the enhanced areas showed a downward trend.

Table 3. LST grade change detection statistics in 2005–2013, 2013–2020, and 2005–2020.

Category Range

2005–2013 2013–2020 2005–2020

Grade
Percentage

Class
Percentage

Grade
Percentage

Class
Percentage

Grade
Percentage

Class
Percentage

Weaken

−6 0.00%

20.83%

0.00%

21.20%

0.00%

23.51%

−5 0.00% 0.00% 0.00%
−4 0.00% 0.00% 0.00%
−3 0.00% 0.01% 0.00%
−2 1.24% 0.57% 1.07%
−1 19.59% 20.62% 22.44%

Constant 0 57.48% 57.48% 58.43% 58.43% 53.72% 53.72%

Enhance

1 20.46%

21.69%

19.73%

20.37%

20.95%

22.77%

2 1.17% 0.63% 1.70%
3 0.06% 0.01% 0.12%
4 0.00% 0.00% 0.00%
5 0.00% 0.00% 0.00%
6 0.00% 0.00% 0.00%
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In order to better research the temporal and spatial evolution of the urban heat is-
land in Zhengzhou, the proportions of different temperature grades in 2005, 2013, and
2020 were calculated. As shown in Table 4, in 2005, 2013, and 2020, the proportions of
extremely low-temperature area, low-temperature area, and relatively high-temperature
area in Zhengzhou showed an upward trend, with the proportion of relatively high-
temperature area increasing by 4.03%. On the other hand, extremely high-temperature,
high-temperature, and low-temperature areas showed a downward trend, with the high-
temperature and relatively low-temperature areas decreasing by 1.72% and 3.22%, respec-
tively, whereby the high-temperature area, extremely high-temperature area, and relatively
low-temperature area transformed into relatively high-temperature areas. By 2020, the
proportion of the relatively high-temperature zone reached 30.47%, and it was concentrated
in the southeast, with a small distribution in the west and southwest. In addition, in 2005,
2013, and 2020, the heat island area accounted for 30.88%, 32.93%, and 32.96%, respectively,
showing a 2.08% increase from 2005 to 2020.

Table 4. Proportion of different temperature grades (%) in 2005, 2013, and 2020.

Year Extremely High High Relatively High Medium Relatively Low Low Extremely Low

2005 0.27 4.17 26.44 43.44 18.02 5.63 2.03
2013 0.12 3.01 29.80 43.98 13.8 6.61 2.67
2020 0.04 2.45 30.47 43.48 14.80 6.00 2.78

3.2. Analysis of Driving Factors of Urban Thermal Environment
3.2.1. Correlation Analysis

According to the analysis of the thermal environment effect in Zhengzhou in 2005,
2013, and 2020, the heat island effect was the most obvious in 2020. Therefore, the in-
fluencing factors were analyzed on the basis of the LST data in 2020. In this research,
according to the city location and terrain characteristics of Zhengzhou, the relevant human
and natural factors were selected for analysis, as shown in Table 5. Among them, the
human factors included urban construction intensity (NDISI, NDBBI, and Albedo) and the
socioeconomic activity index (POI kernel density), while the natural factors included water
body, vegetation, and topographic landforms.

Table 5. Influencing factors of urban thermal environment.

First Level Indicators Second Level Indicators Third Level Indicators

Natural
factors

Water body
Vegetation and

MNDWI
NDVI

Topographic
features

Slope
DEM

Human
factors

Intensity of
urban construction

NDISI
NDBBI
Albedo

Socioeconomic activities POI

The LST data and impact factor data of the study area were extracted in GIS using
the grid turning point tool before conducting correlation analysis. The Pearson correlation
coefficients among indices (Table 6) and the Pearson correlation coefficients between LST
and each index (Table 7) were obtained. It can be seen from Tables 6 and 7 that the
factors influencing LST in Zhengzhou showed weak and moderate correlation at the
0.01 significance level, and the absolute value range of the correlation coefficient R was
between 0.045 and 0.761. Moreover, the eight influencing factors were correlated with LST at
the 0.01 significance level, with correlation coefficients |R| ∈ [0.027, 0.574]. Among them, as
shown in Table 7, LST had a significant negative correlation with DEM, MNDWI, NDVI, and
Slope, indicating that vegetation, water, and high terrain had a cooling effect, which could
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alleviate the UHI effect. LST had a significant positive correlation with POI, NDBBI, NDISI,
and Albedo. The results show that human activities and the intensity of urban construction
affected the urban thermal environment, and the heat generated by high-intensity human
activities did not dissipate well, causing the urban heat island phenomenon.

Table 6. Pearson correlation among influencing factors.

Factor NDVI MNDWI DEM Slope NDISI NDBBI Albedo POI

NDVI 1 −0.379 ** 0.368 ** 0.330 ** −0.301 ** −0.385 ** −0.659 ** −0.338 **
MNDWI −0.379 ** 1 −0.241 ** −0.197 ** 0.687 ** −0.293 ** 0.249 ** 0.182 **

DEM 0.368 ** −0.241 ** 1 0.761 ** −0.208 ** −0.330 ** −0.701 ** −0.136 **
Slope 0.330 ** −0.197 ** 0.761 ** 1 −0.185 ** −0.349 ** −0.641 ** −0.110 **
NDISI −0.301 ** 0.687 ** −0.208 ** −0.185 ** 1 −0.045 ** 0.136 ** 0.187 **
NDBBI −0.385 ** −0.293 ** −0.330 ** −0.349 ** −0.045 ** 1 0.430 ** 0.057 **
Albedo −0.659 ** 0.249 ** −0.701 ** −0.641 ** 0.136 ** 0.430 ** 1 0.180 **

POI −0.338 ** 0.182 ** −0.136 ** −0.110 ** 0.187 ** 0.057 ** 0.180 ** 1

Note: ** indicates that the correlation was significant at the level of 0.01 (detection < 0.01).

Table 7. Correlation coefficients between factors and LST.

— NDVI MNDWI DEM Slope NDISI NDBBI Albedo POI

LST −0.301 ** −0.027 ** −0.574 ** −0.568 ** 0.141 ** 0.457 ** 0.527 ** 0.195 **

Note: ** indicates that the correlation was significant at the level of 0.01 (detection < 0.01).

Figure 5 reflect the linear relationship between LST and various influencing factors.
As shown in Figure 5, LST showed a downward trend under the action of NDVI, MNDWI,
DEM, and Slope, with the downward trends of DEM and Slope being more obvious
(R2 = 0.3297 and 0.3222, respectively). Furthermore, LST was increased under the action
of NDISI, NDBBI, Albedo, and POI. The trend analysis was consistent with the corre-
lation analysis. Furthermore, the interaction between LST and Albedo showed spatial
heterogeneity due to the complex effects of surface cover, elevation, and other factors [50].
Generally speaking, LST and Albedo were on the rise, which was related to the rise in
surface temperature, the increase in vegetation and soil water stress, and the decrease in
water content, which led to the increase in surface albedo. Moreover, the rise in surface
temperature, vegetation growth, and increase in reflectivity in the near-infrared band also
led to a significant increase in surface albedo. However, LST and Albedo showed a down-
ward trend in the interval of 0.2–0.3, and these points were mainly distributed in rivers and
grasslands. With the increase in Albedo, the light radiation energy absorbed by the surface
decreased, resulting in a decrease in LST (Figure 5G).

Figure 6 shows the spatial distribution of each index in Zhengzhou. NDVI was
basically consistent with the vegetation distribution in the study area. The improved
MNDWI distribution was basically consistent with the water distribution in Zhengzhou.
The southwest elevation of Zhengzhou is large, and the slope had a positive correlation
with the elevation. The spatial distribution of NDBBI, Albedo, and NDISI was related to
the type of urban underlying surface, with high values concentrated in the built-up areas.
High POI values were concentrated in the main city area.
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Figure 5. Linear relationship between influencing factors and LST in Zhengzhou: (A) NDVI;
(B) MNDWI; (C) DEM; (D) Slope; (E) NDISI; (F) NDBBI; (G) Albedo; (H) POI.

Figure 6. Spatial distribution of indicators in Zhengzhou: (A) NDVI; (B) MNDWI; (C) DEM; (D) Slope;
(E) NDISI; (F) NDBBI; (G) Albedo; (H) POI.

3.2.2. Gray Correlation Analysis

The correlation between the above eight indices and LST was analyzed, but the
correlation coefficient does not represent the contribution of each index to the change in
LST. Because the correlation coefficient between variables indicates how close they are
to each other, when there are many factors, this correlation only reflects their compound
relationship, while it does not represent the relative influence degree or effect of each factor
on the change in heat island intensity [27,51]. Thus, in order to reveal the contribution of
the eight indices to LST, this study took LST as the reference series and the other eight
influencing factors as the comparison series, before calculating their gray correlation degree.
The results are shown in Table 8.
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Table 8. The correlation of LST with each index.

Impact Factor Correlation Sort

NDISI 0.99978 1
Albedo 0.99965 2
NDVI 0.99943 3

MNDWI 0.99919 4
DEM 0.99834 5

NDBBI 0.99831 6
Slope 0.99718 7
POI 0.98030 8

As can be seen from Table 8, there were some differences in the order of correlation co-
efficient between these eight indices and LST. Because the correlation degree in gray theory
reflects the correlation degree of independent variables compared with dependent vari-
ables, it can explain the dependent variable through the transmission of other independent
variables without considering one independent variable [27,52]. In addition, the correlation
degrees between the eight indices and LST were all above 0.98, and the difference between
the maximum value and minimum value was only 0.01948. This shows that, although the
indices were ranked sequentially, they were highly correlated with LST. According to the
order of correlation degree, the contribution degree of the urban construction intensity
and vegetation water body to LST change was the largest, and the correlation degree was
above 0.999. This indicted that these four factors had a high degree of synchronous change
with LST in the process of development and change; therefore, they were the most direct
factors leading to the change in heat island intensity. However, the correlation of DEM,
NDBBI, and Slope with LST was between 0.996 and 0.999, indicating that these three factors
contributed extensively to the change in urban LST. In fact, NDBBI was also indirectly
reflected in NDISI. Moreover, the correlation degree of social economic activity index POI
was the lowest, but its value was 0.98030, indicating that it also had a high impact on the
change in LST.

4. Discussion

Urbanization leads to changes in urban atmospheric dynamic characteristics and land
use/land cover types, thereby affecting the formation of the urban heat island effect [26].
Furthermore, the spatial heterogeneity of LST may be affected by topography in different
areas [36]. The terrain of Zhengzhou is high in the west and low in the east. The results
showed that the UHI effect in Zhengzhou had obvious spatial differentiation characteristics.
Cold islands mainly occurred in the west, densely forested areas, and Yellow River Basin,
whereas heat islands were mainly distributed in southeast plains and built-up areas, where
the population was dense, and the proportion impervious water surfaces rapidly increased,
thus hindering the dissipation of heat and forming a large area of high temperature.
Therefore, LST had the characteristics of “low on the periphery and high in the middle”.

A city is a complex dynamic system composed of social connections, human activities,
and infrastructure. The UHI is the result of multiple factors of local climate and human
activities [26]. The interaction between surface temperature and vegetation dynamics under
different land-cover types leads to changes in the spectral radiance and texture of surface
temperature, resulting in the spatial pattern of urban heat island [8]. Moreover, impervious
surfaces (such as concrete, cement, and asphalt) usually show lower emissivity and higher
heat capacity than natural surfaces [53]. In the analysis of LST driving factors in Zhengzhou,
the urban construction intensity contributed the most to the formation of the UHI effect,
and the expansion of the urban impermeable water surface increased the absorption of
solar radiation, resulting in a rapid increase in the land surface temperature [54]. On the
other hand, vegetation and water bodies are effective tools to restrain the UHI effect and
reduce the LST [55], while controlling the impervious surface percentage of construction
land at a low level (e.g., below ~49%) can effectively alleviate the impact of the SUHI [54].
Therefore, this represents a strategic measure to effectively alleviate the UHI effect and
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build an ecologically livable city by controlling the proportion of impermeable water
surface, increasing the urban vegetation coverage area, and rationally utilizing the water
distribution, topography, and other features.

This research used multiple sources of data to study the temporal and spatial dis-
tribution characteristics and driving factors of Zhengzhou’s thermal environment, while
correlation analysis, trend analysis, and gray correlation analysis were applied to reveal
the correlation between natural and human influencing factors. This study can be help-
ful for planners to understand the causes and mitigation measures of the UHI effect in
Zhengzhou, through reasonably controlling the layout of buildings, effectively utilizing
the distribution of vegetation and water, and actively guiding urban ventilation, so as to
achieve the purpose of reducing LST and building a livable city. From this perspective,
follow-up research can enable planners to more comprehensively understand the driving
factors of the UHI effect.

5. Conclusions

Exploring the mitigation strategies of land surface temperature in Zhengzhou is of
great significance for sustainable development and environmental quality. In this study,
the main conclusions were as follows:

(1) The annual changes in LST in Zhengzhou from 2005 to 2020 were small, with a
mutation point in 2013. Furthermore, compared with 2005, in 2020, the mean value of
LST increased by 0.92 ◦C, the percentage of LST-enhanced areas was 22.77%, and the
area of the heat island increased by 2.08%.

(2) The spatial pattern of the urban heat island showed an irregular block distribution,
gradually spreading from north to south from 2005 to 2020; in 2020, there was a large
block distribution in the main city and southeast. In addition, high temperatures
mainly occurred in the main urban areas and densely built areas, whereas there was
an obvious “cold island” effect in the concentrated distribution areas of forest land
and the Yellow River basin.

(3) The results of correlation analysis, trend analysis, and gray correlation analysis
showed that human factors (NDISI, NDBBI, Albedo, and POI) were positively corre-
lated with LST, which intensified the formation of the UHI effect, with the influence
of Albedo on LST showing obvious spatial heterogeneity. Natural factors (NDVI,
MNDWI, DEM, and Slope) were negatively correlated with LST. Among them, the
intensity of urban construction had the highest contribution to the formation of
the UHI effect, and the cooling effect of vegetation and water was better than that
of topography.

Generally, the UHI strength of Zhengzhou City revealed a significant increasing trend
from 2005 to 2020. Zhengzhou’s altitude is high in the west and low in the east, and
there was a negative correlation of DEM and Slope with LST. Therefore, it is possible to
reasonably control the layout of urban buildings as a function of the topography, such
that mountain wind and cold air can smoothly enter the city and accelerate the air flow.
In addition, the cooling effect of vegetation and water was obviously better than that of
topography. In urban planning, connecting vegetation, water, and road networks in the
urban ventilation corridor represents an effective measure to alleviate the urban heat island
effect. As the economic center of Henan Province, Zhengzhou’s comprehensive influence
of human activities and urban construction intensity on the urban underlying surface is
an important factor mediating the UHI. These results can help decision makers and urban
planners to make rational and scientific decisions and promote the sustainable development
of cities such as Zhengzhou in the future.
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Abstract: LST has been fluctuating more quickly, resulting in the degradation of the climate and
human life on a local–global scale. The main aim of this study is to examine SUHI formation and
hotspot identification over Prayagraj city of India using seasonal Landsat imageries of 1987–2018.
The interrelationship between six land indices (NDBI, EBBI, NDMI, NDVI, NDWI, and SAVI) and
LST (using a mono-window algorithm) was investigated by analyzing correlation coefficients and di-
rectional profiling. NDVI dynamics showed that the forested area observed lower LST by 2.25–4.8 ◦C
than the rest of the city landscape. NDBI dynamics showed that the built-up area kept higher LST by
1.8–3.9 ◦C than the rest of the city landscape (except sand/bare soils). SUHI was intensified in the city
center to rural/suburban sites by 0.398–4.016 ◦C in summer and 0.45–2.24 ◦C in winter. Getis–Ord Gi*
statistics indicated a remarkable loss of areal coverage of very cold, cold, and cool classes in summer
and winter. MODIS night-time LST data showed strong SUHI formation at night in summer and
winter. This study is expected to assist in unfolding the composition of the landscape for mitigating
thermal anomalies and restoring environmental viability.

Keywords: LST; mono-window algorithm; land indices; correlation coefficients; directional profiling;
SUHI; hotspots (Getis–Ord Gi* statistics); MODIS night-time LST; Prayagraj city

1. Introduction

Globally, 55% of the total populace resided in urban areas in 2018, and prediction
statistics show that if this trend continues, then the urban population will account for 68%
of the total in 2050 [1]. Recently, the IPCC revealed in its report that the global mean surface
temperature (GMST) increased by 1.53 ◦C and the global mean air temperature (GMAT)
[both land and ocean] increased by 0.87 ◦C during the preindustrial period (1850–1900)
and recent postindustrial period (2006–2015) [2]. The rise in land surface temperature (LST)
has severe environmental consequences because unplanned urbanization will deteriorate
climate equilibrium and hamper human life and health from microscale to macroscale [3,4].
In its AR6 2021 report, IPCC revealed that we are on the way to reaching 1.5 ◦C more
global warming in the next 20 years. The unprecedented changes in the recent past have
been highly challenging and alarming, leading to uncertain precipitation, increased glacier
melting, mean sea level rising, floods, droughts, damage to agricultural land, and food
shortage affecting every region of the globe [5].

The presence of Earth surface objects, such as asphalt, stones, pebbles, and sand, over
the city landscape has diverse electromagnetic behavior in terms of evaporation, absorption,
and radiation. Longwave radiation, as well as prevailing winds, assimilates into massive
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heat discharge from the Earth’s surface [6]. These surface objects weaken evapotranspira-
tion and accelerate sensitivity [7]. Consequently, a difference in LST has been observed in
city landscapes where core city space experiences higher LST than suburban/rural sites.
This distinctive LST characteristic is defined by the surface urban heat island (SUHI). The
SUHI has emerged because of the conversion of natural land into built-up space at the cost
of water bodies, bare land, and forest [8,9].

LST intensification in urban setups is a perilous factor responsible for deteriorating
urban climate and degrading human life and living [10,11]. Much attention is now given to
mitigating its severity and threats to varied aspects of the environment by policymakers,
health authorities, urban planners, climatologists, and environmentalists [12–14]. In the
recent past, researchers have been engrossed in the interrelationship between LST and
different land indices, such as the normalized difference built-up index (NDBI), enhanced
built-up and bareness index (EBBI), normalized difference vegetation index (NDVI), and
normalized difference moisture index (NDMI). Worldwide, scientists have been intensively
focused on how, where, and what magnitude of land use/land cover (LULC) or land indices
dynamics have been influencing the climatic conditions as a result of LST intensification
and SUHI, which directly or indirectly make the environment uncomfortable and unhealthy
for all animals and plants. Some studies rigorously found similar facts in Taipei city of
Taiwan [15], Phoenix city of the United States of America (USA) [16], Singapore [10], Dhaka
city of Bangladesh [17], Kathmandu valley of Nepal [18], Nanjing city of China [19], Beijing
city of China [20], Tokyo city of Japan [21], Tehran city of Iran [13], 70 selected cities of
Europe [22], Hong Kong [23], Baltimore–DC metropolitan area of the USA [24], and Cairo
city of Egypt [25]. At the same time, researchers have discussed how their changing aspects
affect and transform the environment of the city landscape in various Indian cities, such
as Kolkata [26], Delhi and Mumbai [27], Chandigarh [28], Hyderabad [29], Noida [30],
Lucknow [31], and Raipur [32].

Mal et al. (2020) conducted a study on the relationship of LST with LULC and
elevation in the Ganga River basin, which includes major cities such as Kolkata, Patna,
Allahabad (now Prayagraj), Varanasi, Lucknow, Kanpur, New Delhi, and Kathmandu
during 2001–2019 using 1 km of MODIS Terra datasets [33]. Other studies over the Ganga
River basin were also carried out for different cities such as Delhi [34], Kolkata [35], Kanpur
and Patna [36], and Lucknow [30] using the MODIS/Landsat database. However, this
study lacked a city-level analysis of LST profiling and SUHI information, especially for
Prayagraj city. Furthermore, this study lacked effective land indices such as the NDBI, EBBI,
NDVI, NDMI, normalized difference water index (NDWI), and soil-adjusted vegetation
index (SAVI) to unfold the land dynamics and their role in the LST increase. Furthermore,
the analytical results did not show details for thermal state analysis, including land indices
dynamics and SUHI information, on a long spatiotemporal scale for Prayagraj city of India.

UN-Habitat (2018) introduced 17 sustainable development goals (SDGs). SDG-11 has
stresses the city’s resilience and sustainability and focuses on the significance of green-
ery and open spaces in bringing environmental viability and prosperity by coping with
adverse local climate change and intense landscape transformation [37]. Various studies
have shown that two main approaches help study the LST of urban climate, i.e., ground
observations (GOBs) and satellite observations (SOBs). The GOB involves conventional
data calculation of air temperature using urban and rural meteorological stations. The
SOB has spatiotemporal resolutions with a mathematical background for estimating LST,
and they are required to study the spatial variations of SUHI [3]. Therefore, in this study,
we plan to use spatiotemporal Landsat imageries (1987–2018) to derive land indices, LST,
and SUHI information in Prayagraj city using summer season (May–June) and winter
season (December–January) datasets. We selected these times for our study on the basis
of the finest spectral signature availability and albedo because of haze-free and cloud-free
skies [38].

The primary aim of this present work is to examine the interrelations with LST dy-
namics using directional profiling on the summer/winter seasons during 1987–2018 in
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Prayagraj city of India by investigating local level climate change through a long spatiotem-
poral analysis of six land indices (NDBI, EBBI, NDVI, NDMI, NDWI, and SAVI). In this
connection, the tasks are (i) to assess the thermal state over the city landscape along with
six land indices, (ii) to explore the interrelationship between six land indices and LST,
(iii) to delineate the role of the six different land indices in LST increase using urban–rural
directional profiling, (iv) to extract the SUHI state both at daytime and night-time, and
(v) to extract the hotspots using Getis–Ord Gi* statistics. The dynamics of six land indices,
LST, and their correlation are investigated to achieve these tasks. Then, the scenario of
SUHI formation is discussed using directional profiling of LST by assessing how these
six land indices impact the dynamics of LST in eight directions, namely, west, east, north,
south, southwest, northeast, northwest, and southeast (center of the city to periphery).
Next, the interrelationships between land indices and LST dynamics are validated using
Google Earth images. Lastly, we delineate the hotspots to find warming or cooling spaces
scattered over the city landscape.

2. Materials and Methods

2.1. Study Area

We selected Prayagraj city as a study area because this city was selected as a smart city
by the MoHUA, i.e., the Ministry of Housing and Urban Affairs, Government of India (GoI),
in 2015 [39]. This city is one of the biggest in terms of size, as well as historically enriched
cities, in Uttar Pradesh state in India. Its location ranges from 25◦23′7′′N to 25◦32′14′′N
latitude and 81◦43′57′′E to 81◦53′59′′E longitude, where the mean elevation is 93.77 m
(Figure 1). The study area covers 72.98 km2. This city is located over the holy place called
Sangam (confluence of Ganga, Yamuna, and invisible Saraswati rivers) [40,41]. The sides
of these rivers (Ganga and Yamuna) have been enriched by eroded materials from the
Vidhyan uplands and Himalayas mountains [42]. The study area has a CWG-type climate,
i.e., monsoon type with dry winters based on Koppen’s climatic regions (KCR) scheme in
India [43], and it has 744.1 mm of mean annual rainfall and 20–32.6 ◦C of mean annual
temperature [44]. This city is widely known for religious gatherings at 6 year intervals,
Maha Kumbh Mela and Ardha Kumbh Mela, where >100 million pilgrims congregate to
make it the largest congregation in Asia [40].

2.2. Data Used

This study uses Landsat 5 (TM) and Landsat 8 (OLI/TIRS) satellite imageries with
a spatial resolution of 30 m. These are employed for four distinct time points for distinctive
seasons in summer and winter. The summer time points (STP) are (i) 4 June 1988 (S1) of
Landsat 5 (TM), (ii) 12 May 1997 (S2) of Landsat 5 (TM), (iii) 10 May 2008 (S3) of Landsat 5
(TM), and (iv) 22 May 2018 (S4) of Landsat 8 (OLI/ TIRS). The winter time points (WTP)
are (i) 11 December 1987 (W1) of Landsat 5 (TM), (ii) 3 December 1996 (W2) of Landsat
5 (TM), (iii) 16 January 2007 (W3) of Landsat 5 (TM), and (iv) 16 December 2018 (W4) of
Landsat 8 (OLI/TIRS). We selected about 10 years of the gap to depict the dynamics of LST
and land indices seasonally (summer and winter).

This study uses night-time LST derived from MODIS (Terra) satellite datasets to
investigate summer/winter seasonal LST dynamics and SUHI state at night-times from
2007 to 2018 only as this satellite has been providing imagery since 2000. Before 2000, there
were no available data on night-time LST. Table 1 shows the satellite datasets used in this
study. The software, ERDAS IMAGINE 2014 was used for preprocessing these satellite
images. The same dry summer and dry winter seasons were selected for obtaining the
cloud-free data with the finest spectral information.
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Figure 1. Map of Prayagraj city (India).

Table 1. Summary of the data used.

Satellite
(Sensor)/Ancillary Data Path/Row Resolution/Scale Season

Acquisition
Date

Time
(GMT)

Constants of Thermal
Conversion Source

K1 K2

Landsat-5 (TM)

143/42 30 m Summer

04-06-1988 04:31:36 607.76
(Band 6)

1260.56
(Band 6)

United States
Geological Survey
(USGS) web portal

(https://earthexplorer.
usgs.gov/, accessed on

15 January 2019)

12-05-1997 04:29:21 607.76
(Band 6)

1260.56
(Band 6)

10-05-2008 04:49:45 607.76
(Band 6)

1260.56
(Band 6)

Landsat-8 (OLI/TIRS) 22-05-2018 05:00:01 774.8853
(Band 10)

1321.0789
(Band 10)

Landsat-5 (TM)

143/42 30 m Winter

11-12-1987 04:29:34 607.76
(Band 6)

1260.56
(Band 6)

03-12-1996 04:22:45 607.76
(Band 6)

1260.56
(Band 6)

16-01-2007 04:55:59 607.76
(Band 6)

1260.56
(Band 6)

Landsat-8 (OLI/TIRS) 16-12-2018 05:00:58 480.8883
(Band 11)

1201.1442
(Band 11)

MODIS (Terra)

-
1 km Summer

11-05-2008

Night–time

- -

- 22-05-2018 - -

-
1 km Winter

17-01-2007 - -

- 15-12-2018 - -

ASTER - 30 m - 13-09-2017 - - -

Ward boundary map - 1:21,600 - - - - - Prayagraj Nagar Nigam

Political map - 1:4 M - 2014 - - - Survey of India

140



Remote Sens. 2023, 15, 179

2.3. Methods

Figure 2 shows the overall methodological framework for the execution process. All
the methods were discussed under subsequent heads.

Figure 2. Overall framework of the present research procedure [23,45,46].

2.3.1. Land Indices
NDBI

In the evaluation of urban climate, NDBI is an important indicator. It ranges from −1 to
+1. A higher positive value specifies bare soils. Lower positive and negative values adjacent
to 0 show the dominance of built-up space. Higher negative values specify vegetation and
water bodies. NDBI is calculated using Equation (1).

NDBI =
[

MIRBand − NIRBand
MIRBand + NIRBand

]
, (1)

where, in Landsat 5 TM, NIRBand is band 4, and MIRBand is band 5, whereas, in Landsat 8,
NIRBand is band 5 and MIRBand is band 6.

EBBI

EBBI is widely used as a significant indicator in assessing urban climate. It ranges
from 0 to +1. A higher positive value (perceived threshold > 0.1) specifies bare soils.
A lower positive value (perceived threshold between 0.06 and 0.1) specifies built-up space.
m positive value (perceived threshold < 0.06) adjacent to 0 specifies water bodies and
vegetation. EBBI is calculated using Equation (2) [17].

EBBI =
[

MIRBand − NIRBand

10
√

MIRBand + TIRBand

]
, (2)

where, in Landsat 5 TM, NIRBand is band 4, MIRBand is band 5, and TIRBand is band 6,
whereas, in Landsat 8, NIRBand is band 5, MIRBand is band 6, and TIRBand is band 10.

NDMI

Another critical indicator in urban climate assessment is NDMI. It ranges from −1 to
+1. A positive value specifies vegetation and water bodies. A negative value indicates bare
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soils and built-up areas. It provides information on the moisture present in the landscape.
NDMI is calculated using Equation (3) [47].

NDMI =
[

NIRBand − MIRBand
NIRBand + MIRBand

]
(3)

where, in Landsat 5 TM, NIRBand is band 4, and MIRBand is band 5, whereas, in Landsat 8,
NIRBand is band 5, and MIRBand is band 6.

NDVI

NDVI ranges from −1 to +1. A higher positive value specifies vegetation. A lower
positive value indicates bare soils or built-up areas. The negative values specify water
bodies. NDVI is calculated using Equation (4) [12].

NDVI =
[

NIRBand − RedBand
NIRBand + RedBand

]
(4)

where Landsat 5 TM defines NIRBand as band 4 and RedBand as band 3, whereas Landsat 8
OLI/TIRS defines NIRBand as band 5 and RedBand as band 4.

NDWI

NDWI ranges from −1 to +1. A positive value specifies water bodies. A lower positive
value adjacent to 0 specifies vegetation space. Negative values specify bare soils and
built-up areas. NDWI is calculated using Equation (5) [48].

NDWI =
[

GreenBand − NIRBand
GreenBand + NIRBand

]
(5)

where, in Landsat 5 TM, GreenBand is band 2, and NIRBand is band 4, whereas, in Landsat 8,
GreenBand is band 3, and NIRBand is band 5.

SAVI

SAVI ranges from −1 to +1. A positive value specifies vegetation. A lower positive
value adjacent to 0 specifies water bodies. Negative values specify bare soils and built-up
space. It is calculated using Equation (6) [49].

SAVI =
[

NIRBand − RedBand
NIRBand + RedBand + L

× (L + 1)
]

(6)

where Landsat 5 TM defines NIRBand as band 4 and RedBand as band 3, whereas Landsat
8 OLI/TIRS defines NIRBand as band 5 and RedBand as band 4. L is the soil brightness
correction factor, and it is a constant 0.5.

2.3.2. LST Retrieval
Landsat-Based LST Calculation

Several algorithms are available for retrieving LST for distinct satellite sensors. The
most popular algorithms are the mono–window algorithm (MWA) [50], radiative transfer
equation (RTE) algorithm [51], split-window algorithm (SWA) [52–54], and single-channel
algorithm (SCA) [55,56] for retrieving LST using thermal bands of Landsat. RTE cannot
be considered for use if the information of the atmospheric profile is not available on
in situ parameters at the satellite pass [57]. The SWA provides accurate results but was
not selected for use in the study area as it is specific to band 10 of Landsat 8 (OLI/TIRS)
data only for LST computation because of its better calibration. The MWA and SCA also
give good results [33,58]. In this study, we selected MWA for LST computation from
multitemporal Landsat images because MWA shows significant accuracy for computing
LST, with three essential parameters being indispensable to LST retrieval, i.e., the ground
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emissivity, the atmospheric transmittance (AT), and the effective mean temperature of the
atmosphere [59], calculated using Equations (7)–(9), respectively.

Ts =
{a(1 − C − D) + [b(1 − C − D) + C + D]× Tb − D × Ta}

C
(7)

C = ε × τ (8)

D = (1 − τ)× [1 + (1 − ε)τ] (9)

where Ts defines the LST (K), Ta defines the mean atmospheric temperature (K), Tb defines
the at-sensor pixel brightness temperature (K), C and D algorithm parameters are estimated
through land surface emissivity (LSE) and AT, ε defines LSE, τ defines AT, and a and b are
constants of the algorithm (−67.355351 and 0.458606, respectively). The following steps are
needed to calculate Equations (7)–(9).

Step 1: The TIR band’s pixels are converted into radiance. The radiance is computed
using Equation (10) for band 6 of Landsat 5 (TM) and Equation (11) for band 10 of Landsat 8
(OLI/TIRS).

Lλ = Λ × QCAL + Γ (10)

Lλ =
Lmax − Lmin

QCALmax − QCALmin
× (QCAL − QCALmin)− Lmin (11)

where Lλ represents spectral radiance at the top of atmosphere (TOA) (W/(m2·sr·μm)),
Λ represents the multiplicative rescaling factor for each specific band in the metadata, Γ
represents the additive rescaling factor for each specific band in the metadata, and QCAL
represents the quantized and calibrated digital number (DN) values of standard product.
QCALmax and QCALmin represent the maximum and minimum DN values of the images,
respectively. Lmax and Lmin represent the TIR band’s spectral radiance at QCALmax and
QCALmin, respectively. These values of the rescaling factor are available in the metadata of
respective Landsat images.

Then, the at-sensor brightness temperature (BT) is computed using Equation (12).

Tb =

⎡⎣ K2

ln
(

K1
Lλ

+ 1
)
⎤⎦ (12)

where Tb represents the at-sensor BT (K), and K1 and K2 (Wm−2) are thermal conversion
constants (prelaunch calibration) mentioned in the metadata (Table 1) of the respective
sensors of Landsat datasets.

Step 2: To compute LST, LSE is one of the indispensable parameters [60]. The NDVI
threshold (NDVITHR) method was selected to calculate the LSE because of its significance
in segregating pixels of vegetation, water, and soil [45]. LSE can be computed using
Equations (13)–(15).

ε = εvPv + εs(1 − PV) + C (13)

Pv =

[
NDVI − NDVIS

NDVIV − NDVIS

]2
(14)

C = (1 − εs)εvF(1 − PV) (15)

where ε represents LSE, εv represents vegetation emissivity, εs represents soil emissivity,
PV represents proportionate of vegetation, C represents constant of surface characteristics,
NDVIs represents NDVI of pure soil, NDVIv represents NDVI of pure vegetation, and F
represents a geometric factor commonly considered as 0.55 [45,61].
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The constant values of LSE were calculated using Equation (16) for Landsat 5 (TM)
and Equation (17) for Landsat 8 (OLI/TIRS) [61], where ρRed represents the reflectance
value of respective red bands of the imageries.

ε =

⎧⎨⎩
0.979 + 0.035ρRed → NDVI < 0.2

0.004PV + 0.986ρRed → 0.2 ≤ NDVI ≥ 0.5
0.99 → NDVI > 0.5

(16)

ε =

⎧⎨⎩
0.979 + 0.046ρRed → NDVI < 0.2

0.989PV + 0.977ρRed → 0.2 ≤ NDVI ≥ 0.5
0.987 + C → NDVI > 0.5

(17)

Step 3: The AT is another indispensable parameter to calculate LST. Before calculating
AT, water vapor content should be calculated on the basis of the atmospheric profile (Table 2)
using Equation (18) [59,61]. Then, AT is computed using Equation (19).

w = 0.0981 ×
[

10 × 0.6108 × exp
(

17.27 × (T0 − 273.15)
237.3 + (T0 − 273.15)

)
× RH

]
+ 0.1697 (18)

where w represents the water vapor content (g/cm2), RH represents the relative humidity,
and T0 represents the near-surface temperature. These atmospheric parameters (RH and T0)
were obtained from the Prediction of Worldwide Energy Resource (POWER) Project of the
National Aeronautics and Space Administration (NASA) (https://power.larc.nasa.gov/,
accessed on 27 November 2022).

τ = 1.031412 − 0.11536w (19)

Table 2. Estimation equations of atmospheric transmittance.

Atmospheric Profile
Water Vapor (w)

(g/cm2)
Equation for

Transmittance Estimation
Squared

Correlation (R2)
Standard Error

High air temperature (summer) 0.4–1.6 τ = 0.974290 − 0.08007w 0.99611 0.002368

High air temperature (summer) 1.6–3.0 τ = 1.031412 − 0.11536w 0.99827 0.002539

Low air temperature (winter) 0.4–1.6 τ = 0.982007 − 0.09611w 0.99463 0.003340

Low air temperature (winter) 1.6–3.0 τ = 1.053710 − 0.14142w 0.99899 0.002375

Step 4: The effective mean atmospheric temperature is another indispensable parame-
ter for computing LST (Table 3). It can be computed using Equation (20).

Ta = 16.0110 + 0.92621T0 (20)

Table 3. The estimation equation for effective mean atmospheric temperature in four standard atmospheres.

Standard Atmosphere Estimation Equation (Kelvin)

For USA 1976 Ta = 25.9396 + 0.88045T0

For tropical Ta = 17.9769 + 0.91715T0

For mid-latitude summer Ta = 16.0110 + 0.92621T0

For mid-latitude winter Ta = 19.2704 + 0.91118T0

Lastly, Equation (21) is applied to get LST in degrees Celsius, where Ts(Kelvin) is
converted into Ts(◦C).

Ts(
◦C) = Ts(Kelvin)− 273.15 (21)

Furthermore, we validated the LST and weather information with NASA’s POWER
project over selected sample location (Latitude: 25.4495 and Longitude: 81.8417) of selected
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time points between 1987 and 2018 for this study area, Prayagraj city, which are available
in an excel sheet provided as a Supplementary Materials.

MODIS-Based Night-Time LST Calculation

Night-time LST was retrieved using MODIS night-time datasets. First of all, the
MODIS night-time dataset reprojection was changed. Then, cloud-affected areas were
eliminated using preprocessed quality control. Each pixel DN value was then converted
into LST (◦C) using Equation (22) [46].

Ts(
◦C) = DN × 0.02 − 273.15 (22)

2.3.3. Influence of Land Indices on LST

Pearson’s correlation coefficient (r)-based analysis was incorporated to assess the
distinct effect of land indices (NDBI, EBBI, NDVI, NDMI, NDWI, and SAVI) on the intensi-
fication of LST. Accordingly, scatter plots were prepared for all four distinct summer time
points, i.e., S1, S2, S3, and S4, and all four distinct winter time points, i.e., W1, W2, W3,
and W4. In this analysis, ‘r’ represents the relationships, i.e., LST vs. NDBI, LST vs. EBBI,
LST vs. NDMI, LST vs. NDVI, LST vs. NDWI, and LST vs. SAVI, where the dependent
variable is the LST, and the independent variables are land indices (NDBI, EBBI, NDVI,
NDMI, NDWI, and SAVI). Pearson’s ‘r’ is calculated using Equation (23) [62,63].

r = ∑n
i (xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(23)

where xi defines the values of land indices (NDBI, EBBI, NDVI, NDMI, NDWI, and SAVI),
and yi defines the LST values.

2.3.4. Intensity of SUHI Calculation

The SUHI is defined by the observed difference of LST between the urban space and
the suburban/rural space over a city landscape. It was previously well defined by Oke and
East [64] and Oke [65] using Equation (24), which is very popular in the literature [9,13].

TU−R = TU − TR (24)

where TU−R is the intensity of the SUHI, TU represents the LST of urban space, and TR
represents the LST of suburban/rural space.

2.3.5. Hotspot Analysis (Getis–Ord Gi*)

The spatial LST distribution over the city landscape was examined using hotspot
analysis (Getis–Ord Gi*) to characterize both hot and cold spots over the city using each
feature (LST value) on the basis of its neighboring features. Hotspots are the clustered areas
of high values of the feature, whereas cold spots are the clustered areas of low values of the
feature. The Getis–Ord Gi* statistic is derived from Equations (25)–(27) [66].

G∗
i =

n
∑

j=1
wi,jxj − X

n
∑

j=1
wi,j

S

√√√√ n
n
∑

j=1
w2

i,j−
(

n
∑

j=1
wi,j

)
n−1

2
(25)

X =

n
∑

j=1
xj

n
(26)
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S =

√√√√√ n
∑

j=1
x2

j

n
− X2 (27)

where xj is defined by the feature attribute value of j, wi,j is defined by the spatial weight
between features i and j, and n is defined by the total number of features.

3. Results

3.1. Seasonal Spatiotemporal LST Dynamics

The summer spatiotemporal distribution of LST dynamics for Prayagraj city is shown
in Figure 3a for summer time points S1, S2, S3, and S4 with boxplots in Figure 3b and
their statistics in Table 4. The mean LST witnessed was 38.20 ◦C in S1, which increased to
40.44 ◦C in S2, but declined to 37.49 ◦C in S3, before again inclining to 38.09 ◦C in S4. In
S1, the foremost area of warm temperature was northeast, and that of cool temperature
was southeast. In S2, the foremost area of warm temperature was west (except barren
land in the northwest at 8–8.5 km), and that of cool temperature was southeast (except
for the area of Ganga River flow in the east at 8–9 km). In S3, the foremost area of warm
temperature was southwest, and that of cool temperature was northwest (except for the
area of the Ganga River flow in the northeast at 8–9 km). However, in S4, the foremost
area of warm temperature was the northeast. The foremost area of cool temperature was
the northwest (except for vegetation coverage area in the northeast at 1.5–2.5 km). We
recommend further research on the surface types or land use/land cover (LULC) classes of
the city landscape in Sarif and Gupta (2022) to additionally determine their distribution
over the city landscape [67].

Table 4. Summer/winter seasonal LST dynamics of Prayagraj city (1987–2018).

Summer LST Dynamics

Date Minimum (◦C) Maximum (◦C) Mean (◦C) Standard Deviation

04-06-1988 29.72 42.90 38.20 1.83

12-05-1997 26.67 46.66 40.44 2.47

10-05-2008 27.52 44.85 37.49 2.15

22-05-2018 30.84 44.21 38.09 1.66

Winter LST Dynamics

Date Minimum (◦C) Maximum (◦C) Mean (◦C) Standard Deviation

11-12-1987 13.26 24.11 19.72 1.14

03-12-1996 13.80 23.68 19.41 1.15

16-01-2007 13.31 24.11 18.06 1.47

16-12-2018 13.77 25.11 19.84 1.24

The winter spatiotemporal LST is mapped in Figure 4a showing the distribution of
LST dynamics. Their statistics are presented in Table 4 and Figure 4b. The mean LST
witnessed was 19.72 ◦C in W1, which declined to 19.41 ◦C in W2. It further declined to
18.06 ◦C in W3. However, again, it inclined to 19.84 ◦C in W4. In W1, the foremost area
of warm temperature was the northwest, and that of cool temperature was North (except
for the area of the Ganga River flow in the northeast at 8–9 km). In W2, the foremost
area of warm temperature again was the northwest, and that of cool temperature was the
east (except for the area of the Ganga River flow in the northeast at 8–9 km). In W3, the
foremost area of warm temperature was the northwest, and that of cool temperature was
the northeast. In W4, the foremost area of warm temperature was the southeast, and that
of cool temperature was the northwest (except for the area of vegetation coverage in the
northeast at 1.5–2.5 km).
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Figure 3. Spatiotemporal dynamics of LST in the summer season over Prayagraj city: (a) LST maps
during 1988–2018 (five rural/suburban areas shown here used for computing SUHI) and (b) boxplots
of LST dynamics during 1988–2018.
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Figure 4. Spatiotemporal dynamics of LST (◦C) in winter season over Prayagraj city: (a) LST maps
during 1987–2018 (five rural/suburban areas shown here used for computing SUHI) and (b) boxplots
of LST dynamics during 1987–2018.

3.2. Seasonal Magnitude of LST Based on Multiple Ring Profiling

The magnitude of the summer mean LST difference between the periods based on
multiple ring profiling was extracted at 0.5 km intervals from the city’s center to the city’s
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periphery (Table 5 and Figure 5). It was detected that each zone at each period witnessed
a higher temperature in comparison to its preceding time points (except for the period
between S2 and S3) by a significant amount. Substantial temperature intensification was
experienced in each distinct zone from the city center to the periphery. However, a declining
trend was observed in the period of S1–S2.

Figure 5. Magnitude of the summer mean LST in different periods (1988–2018).

Between S1 and S2, the mean LST observed amplifying pattern ranged from 0.94 ◦C
to 3.62 ◦C, wherein the lowest intensified zone was 12 (5.5–6 km) by 0.94 ◦C because there
was existence of grass and forest land. The highest intensified zone was 0 (city center)
by 3.62 ◦C because of the presence of highly dense, impervious land. Between S2 and

S3, the difference in mean LST observed a declining pattern which ranged from −1.80 ◦C
to −3.88 ◦C, wherein the lowest decline zone was 12 (5.5–6 km) by −1.80 ◦C because of
the dominance of grass and forest land, but the highest declined zone was 15 (7–7.5 km)
by −3.88 ◦C because of the dominance of sand and barren land. Between S3 and S4, the
difference in mean LST was found in an amplifying pattern that ranged from 0.33 ◦C
to 2.65 ◦C, wherein the lowest intensified zone was 22 (10.5–11 km) by 0.33 ◦C because
of the presence of grassland. The highest intensified zone was again 0 (city center) by
2.65 ◦C because of the presence of highly dense, impervious land. Between S1 and S4, the
difference in mean LST showed an increasing pattern which ranged from 0.12 ◦C to 2.45 ◦C
except for zone 11 (5–5.5 km), in which the magnitude of mean LST declined by −0.10 ◦C
because of forest and grassland, wherein the lowest intensified zone was 17 (8–8.5 km) by
0.12 ◦C because of the presence of the Ganga River flow. The highest intensified zone again
was 0 (city center) by 2.45 ◦C because of the presence of highly dense, impervious land.

The magnitude of the winter mean LST difference distributional pattern between
distinctive periods on the basis of multiple ring profiling was also extracted at 0.5 km
intervals from the center of the city to the periphery of the city (Table 5 and Figure 6). It
was detected that each zone at each period witnessed lower temperatures in comparison to
its preceding time points by a significant amount except for the period between W3 and
W4. This means that a substantial temperature reduction was experienced in each zone
from the city center to the periphery. However, an amplifying trend was observed during
the period of W3–W4.
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Table 5. Periodical LST magnitudes based on multiple ring buffers from the city center to the
periphery at 0.5 km of intervals in Prayagraj city (1987–2018).

Zones
Distance from the City Center at

0.5 km of Interval
Periodical Difference of Mean LST (◦C)

Summer Magnitude S1–S2 S2–S3 S3–S4 S1–S4

0 Center 3.62 −3.82 2.65 2.45

1 0.5 3.31 −3.57 1.90 1.64

2 1 3.21 −3.78 1.85 1.28

3 1.5 3.14 −3.48 1.91 1.57

4 2 2.91 −3.29 1.86 1.48

5 2.5 2.57 −3.21 1.99 1.34

6 3 2.46 −2.98 1.66 1.14

7 3.5 2.37 −3.09 1.89 1.18

8 4 2.30 −3.22 1.96 1.04

9 4.5 2.30 −2.69 1.24 0.85

10 5 2.02 −2.87 1.71 0.86

11 5.5 0.99 −2.90 1.81 −0.10

12 6 0.94 −1.80 2.18 1.32

13 6.5 2.09 −2.39 1.07 0.77

14 7 2.42 −2.78 2.14 1.77

15 7.5 3.08 −3.88 2.03 1.23

16 8 2.50 −3.50 1.46 0.45

17 8.5 2.58 −3.53 1.07 0.12

18 9 2.05 −3.65 1.92 0.32

19 9.5 3.20 −3.52 1.17 0.84

20 10 3.30 −3.03 1.18 1.45

21 10.5 3.20 −2.61 1.21 1.79

22 11 2.91 −1.88 0.33 1.36

Winter Magnitude W1–W2 W2–W3 W3–W4 W1–W4

0 Center 0.45 −2.24 2.44 0.64

1 0.5 0.22 −1.49 1.89 0.62

2 1 −0.03 −1.62 1.88 0.22

3 1.5 −0.05 −1.47 1.83 0.31

4 2 −0.09 −1.59 1.96 0.29

5 2.5 −0.15 −1.74 2.09 0.20

6 3 −0.16 −1.61 1.87 0.10

7 3.5 −0.25 −1.72 2.00 0.03

8 4 −0.03 −1.71 1.76 0.02

9 4.5 −0.54 −0.98 1.15 −0.36

10 5 −0.17 −1.20 1.72 0.34

11 5.5 −0.76 −1.34 1.88 −0.21

12 6 −0.49 −1.38 2.45 0.58

13 6.5 −0.20 −0.78 1.41 0.42

14 7 −0.28 −1.04 1.81 0.49

15 7.5 −0.71 −1.04 1.20 −0.55

16 8 −0.68 −0.90 1.17 −0.42

17 8.5 −0.51 −1.02 0.64 −0.89

18 9 −0.70 −1.33 1.35 −0.67

19 9.5 −0.65 −0.86 0.95 −0.56

20 10 −0.36 −0.48 1.11 0.27

21 10.5 −0.53 −1.07 1.99 0.38

22 11 −0.28 −1.14 2.48 1.06
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Figure 6. Magnitude of the winter mean LST in different periods (1987–2018).

Between W1 and W2, the difference in mean LST showed a declining pattern (except
zone 1 by 0.45 ◦C and zone 2 by 0.22 ◦C) which ranged from −0.76 ◦C to −0.03 ◦C, wherein
the lowest decline zone was 2 (0.5–1 km) by −0.03 ◦C because there was the existence of
high-density impervious land. The highest decline zone was 11 (5–5.5 km) by −0.76 ◦C
because of the presence of forest and grassland. Between W2 and W3, the difference in
mean LST was found to decline, which ranged from −2.24 ◦C to −0.48 ◦C, wherein the
lowest decline zone was 20 (city center) by −0.48 ◦C because of the presence of bare soil
with scattered grassland. The highest decline zone was 0 (city center) by −2.24 ◦C because
of the high moisture content over scattered vegetation in the high-density impervious land.
Between W3 and W4, the difference in mean LST was found amplified in the range 0.64 ◦C
to 2.48 ◦C, wherein the lowest intensified zone was 17 (8–8.5 km) by 0.64 ◦C because of
the presence of Ganga River flow. The highest intensified zone was 22 (10.5–11 km) by
2.48 ◦C because of the dominant barren land. Between W1 and W4, the difference in mean
LST exhibited a very interesting amplifying pattern [except for zone 9 (4–4.5 km), zone 11
(5–5.5 km), and zone 15 to zone 19 (7–9.5 km), which ranged from −0.89 ◦C to −0.21 ◦C
as these zones had forest and grassland, as well as Ganga River flow] which ranged from
0.02 ◦C to 1.06 ◦C, wherein the lowest intensified zone was 8 (3.5–4 km) by 0.02 ◦C because
there was the existence of impervious land. The highest intensified zone again was 22
(10.5–11 km) by 1.06 ◦C due to the dominant barren land.

3.3. Spatiotemporal Dynamics of Land Indices and LST, and Their Relationships
3.3.1. NDBI Dynamics and Its Connection with LST

The spatial NDBI distributional dynamics maps of Prayagraj are shown in Figure 7a,b
for the summer season for S1, S2, S3, and S4 time points and the winter season for W1, W2,
W3, and W4, respectively. The statistics of all the six land indices and their relationship
with LST for all the summer and winter time points are presented in Table 6. Furthermore,
Figure A1 shows whisker boxplots of all the land indices for the summer/winter seasons.
The analysis found that summer mean NDBI witnessed a decrease of −0.023 in S1 which
amplified to −0.015, −0.02, and 0.02 in S2, S3 and S4, respectively. The winter mean NDBI
witnessed −0.036 in W1 which amplified to −0.012 in W2 but declined to −0.018 in W3
and further to −0.039 in W4.
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Table 6. Statistics of the six land indices and their relationship with LST for all the summer and
winter time points.

Season Time Points Land Indices Minimum Maximum Mean Standard Deviation Correlation with LST® Significance (p)

S
u

m
m

e
r

S1

NDBI −0.324 0.130 −0.023 0.055 0.668 <0.001

EBBI 0.051 0.240 0.158 0.027 0.623 <0.001

NDMI −0.130 0.324 −0.023 0.055 −0.668 <0.001

NDVI −0.098 0.521 0.134 0.068 −0.459 <0.001

NDWI −0.463 0.132 −0.168 0.057 0.285 <0.001

SAVI −0.048 0.363 0.088 0.043 −0.425 <0.001

S2

NDBI −0.407 0.184 −0.015 0.073 0.6758 <0.001

EBBI 0.010 0.276 0.149 0.038 0.640 <0.001

NDMI −0.184 0.407 −0.015 0.073 −0.6758 <0.001

NDVI −0.196 0.661 0.180 0.093 −0.266 <0.001

NDWI −0.575 0.274 −0.202 0.080 0.070 <0.001

SAVI −0.070 0.462 0.111 0.057 −0.259 <0.001

S3

NDBI −0.366 0.189 −0.020 0.058 0.6757 <0.001

EBBI 0.042 0.263 0.153 0.033 0.751 <0.001

NDMI −0.189 0.366 −0.020 0.058 −0.6757 <0.001

NDVI −0.096 0.562 0.143 0.080 −0.376 <0.001

NDWI −0.492 0.136 −0.160 0.070 0.227 <0.001

SAVI −0.041 0.391 0.091 0.049 −0.345 <0.001

S4

NDBI −0.339 0.188 0.020 0.060 0.636 <0.001

EBBI 0.043 0.292 0.154 0.034 0.751 <0.001

NDMI −0.188 0.339 0.020 0.060 −0.636 <0.001

NDVI 0.003 0.538 0.205 0.077 −0.277 <0.001

NDWI −0.445 0.215 −0.202 0.056 0.272 <0.001

SAVI 0.002 0.392 0.138 0.051 −0.215 <0.001

W
in

te
r

W1

NDBI −0.783 0.249 −0.036 0.107 0.308 <0.001

EBBI 0.000 0.184 0.074 0.026 0.520 <0.001

NDMI −0.249 0.783 −0.036 0.107 −0.308 <0.001

NDVI −0.305 0.683 0.217 0.117 0.113 <0.001

NDWI −0.477 0.526 −0.065 0.107 −0.259 <0.001

SAVI −0.072 0.358 0.089 0.051 0.191 <0.001

W2

NDBI −0.814 0.243 −0.012 0.115 0.467 <0.001

EBBI 0.000 0.190 0.075 0.027 0.564 <0.001

NDMI −0.243 0.814 −0.012 0.115 −0.467 <0.001

NDVI −0.271 0.611 0.183 0.103 −0.072 <0.001

NDWI −0.512 0.399 −0.159 0.094 −0.074 <0.001

SAVI −0.060 0.314 0.072 0.041 −0.003 <0.001

W3

NDBI −0.597 0.210 −0.018 0.098 0.536 <0.001

EBBI 0.000 0.203 0.081 0.029 0.685 <0.001

NDMI −0.210 0.597 −0.018 0.098 −0.536 <0.001

NDVI −0.165 0.594 0.134 0.083 0.159 <0.001

NDWI −0.512 0.249 −0.110 0.080 −0.369 <0.001

SAVI −0.046 0.322 0.058 0.037 0.215 <0.001

W4

NDBI −0.694 0.352 −0.039 0.108 0.503 <0.001

EBBI 0.000 0.554 0.079 0.032 0.749 <0.001

NDMI −0.352 0.694 −0.039 0.108 −0.503 <0.001

NDVI −0.282 0.623 0.163 0.110 0.032 <0.001

NDWI −0.524 0.367 −0.148 0.102 −0.186 <0.001

SAVI −0.145 0.560 0.125 0.081 0.080 <0.001
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Figure 7. Seasonal NDBI dynamics in Prayagraj city (1987–2018): (a) summer and (b) winter.

Most of the highly dense impervious/built-up area was intensely concentrated in
the city center to the south in S1 and W1, which further expanded in the south in S2, W2,
S3, and W3. In S4 and W4, the highly dense built-up area spread in the southwest and
northeast in S4 and W4, respectively. Therefore, it is apparent that the built-up area is
mostly concentrated in the southwest and northeast up to 8 km.

The correlations between LST and all six land indices for the summer and winter
seasons are presented in Figures 13 and 14, respectively. In the summer/winter seasons, the
correlations between LST vs. NDBI were found to be positive at all distinctive time points.
On the basis of the values of correlation coefficients, it can be found that the NDBI’s role
in LST intensification in the summer was higher than in the winter. Further, the built-up
intensity effect was amplified over the city landscape, resulting in increased temperature
growth because of the conversion of forests and water bodies into built-up land.

3.3.2. EBBI Dynamics and Its Connection with LST

The spatiotemporal maps of EBBI dynamics are shown in Figure 8a,b for the sum-
mer/winter seasons, respectively, for all the distinctive summer/winter time points (how-
ever, summer/winter seasonal statistics are shown in Figure A1). The summer mean EBBI
witnessed an amplifying trend in the summer/winter seasons at all time points. The highly
dense impervious/built-up area was mostly concentrated in the city center to 4 km of its
periphery, and the bare land was mostly concentrated to 6–8 km and 9.5–11 km in both S1
and W1. Then, the highly dense impervious/ built-up area expanded in the south and north
up to 6 km in S2 and W2, and bare land mostly remained concentrated in the northeast
(6–8 km) and southwest (6–8 km). In S3 and W3, the highly-dense impervious/built-up
area expanded in the south and north up to 7 km, and bare land mostly remained con-
centrated in northeast (6–8 km) and southwest (7–9 km). However, the highly dense
impervious/built-up area expanded in the southwest, northeast, and northwest up to 8 km
in S4 and W4, and bare land mostly remained concentrated on northeast (6–8 km) and
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southwest (8–9 km). Therefore, it is apparent that the impervious/built-up area mostly
existed in the southwest and northeast up to 7 km.

Figure 8. Seasonal EBBI dynamics in Prayagraj city (1987–2018): (a) summer and (b) winter.

A positive correlation was detected between LST vs. EBBI at all distinctive sum-
mer/winter time points (Figures 13 and 14). The role of EBBI in LST intensification
remained high in both the summer and the winter (Table 6). This indicates that the
impervious/built-up and bare land intensity effect was amplified over the city landscape,
resulting in increased temperature growth due to the conversion of forests, water bodies,
and agricultural land into built-up land and bare land settings.

3.3.3. NDMI Dynamics and Its Relationship with LST

Seasonal NDMI dynamics are shown in Figure 9a,b for the summer and winter seasons,
respectively (however, summer/winter seasonal statistics are shown in Figure A1). The
summer mean NDMI witnessed a nonuniform pattern where it first amplified in S1 and
S2 but declined in S3, before again amplifying in S4. In contrast, the winter mean NDMI
shows an increasing pattern in W1 and W2 but a decreasing one in W3 and W4.

This may be attributed to the fact that the high moisture content area was concentrated
in the northwest and northeast in S1 and W1. A decrease was observed in the moisture
content area in the northwest in S2 and W2 which further diminished in S3 and W3.
However, the high moisture content in the northwest and southeast was again amplified in
S4 and W4. In fact, the forest, grassland, and Ganga River with high moisture content were
primarily present in the city landscape.

In both seasons, the correlation between LST vs. NDMI was found to be negative at
all time points (Figures 13 and 14), while the correlation coefficient values (Table 6) indicate
that the role of NDMI in decreasing LST was higher in the summer season than in the
winter season.
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Figure 9. Seasonal NDMI dynamics in Prayagraj city (1987–2018): (a) summer and (b) winter.

3.3.4. NDVI Dynamics and Its Relationship with LST

The NDVI maps of Prayagraj are shown in Figure 10a,b for the summer and winter
seasons, respectively (however, summer/winter seasonal statistics are shown in Figure A1).
An increase was observed in the summer mean NDVI at S2, followed by a decrease in S3
but again an increase in S4. However, the winter mean NDVI witnessed a decline in W2
and W3 but an increase in W4.

Figure 10. Seasonal NDVI dynamics in Prayagraj city (1987–2018): (a) summer and (b) winter.
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The analysis shows that high-density vegetation was concentrated in the northwest in
S1 and W1, showing a diminishing trend in S2, W2, S3, and W3 but an amplification in S4
and W4. It was found that the forest and grassland were mainly dominant in the northwest
direction from the city center.

In the summer season, the correlations between LST vs. NDVI were found to be
negative at all summer time points (Figure 13), while, in the winter season, the correlation
between LST vs. NDVI was also positive at all winter time points except for W2 (Figure 14).
This reflects that NDVI played a significant role in decreasing LST in the summer season,
but its role was very weak in the winter.

3.3.5. NDWI Dynamics and Its Relationship with LST

The NDWI maps of Prayagraj are shown in Figure 11a,b for the summer and winter
seasons for all time points, respectively (however, summer/winter seasonal statistics are
shown in Figure A1). The summer and winter mean NDWI followed a similar pattern,
first declining in S2 and W2, then amplifying in S3 and W3 before again declining in S4
and W4.

Figure 11. Seasonal NDWI dynamics in Prayagraj city (1987–2018): (a) summer and (b) winter.

High-density water bodies were concentrated in the northeast (8–9.5 km) due to the
Ganga River flow in S1 and W1. The high-density vegetation was concentrated in the
northwest and southeast, which decreased in S2, W2, S3, and W3. Then, high-density
vegetation increased in the northwest and southeast in S4 and W4, respectively. Therefore,
it is apparent that the forest and grassland were mainly dominant in the northwest direction
from the city center.
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In both summer and winter seasons, the correlations between LST vs. NDWI was
positive at all times except in W2 but with relatively low correlation coefficient values
(Figures 13 and 14). This means that NDWI played an insignificant role in decreasing LST
in both summer and winter because the whole city exhibited a lack of water bodies except
for 8–9.5 km in the northeast direction of the Ganga River flow.

3.3.6. SAVI Dynamics and Its Relationship with LST

The distributional dynamics maps of SAVI are shown in Figure 12a,b for the summer
and winter seasons, respectively (however, summer/winter seasonal statistics are shown
in Figure A1). The summer mean SAVI amplified in S2 but declined in S3 before again
amplifying in S4. The winter mean SAVI declined in W2 and W3 but amplified in W4.

Figure 12. Seasonal SAVI Dynamics in Prayagraj city (1987–2018): (a) summer and (b) winter.

It can be observed that high-density forest and grassland were concentrated in the
northwest and southeast in S1 and W1, which was reduced in S2 and W2. The high-density
forest and grassland concentrated in the northwest diminished in S3 and W3. However,
the high-density forest and grassland concentrated within the northwest and southeast
increased in S4 and W4. Therefore, it was observed that the forest and grassland mostly
dominated in the northwest direction from the city center.

In the summer season, the correlation between LST vs. SAVI was found to be negative
at each distinctive summer time point (Figure 13), while, in the winter season, the corre-
lation between LST vs. SAVI was found to be positive at all winter time points except in
W2 (Figure 14). This means that SAVI played a noteworthy role in decreasing LST in the
summer season, but its role was very weak in the winter.
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3.4. Effects of Land Indices on LST Distribution

The effect of spatiotemporal seasonal dynamics of all six land indices (i.e., NDBI, EBBI,
NDMI, NDVI, NDWI, and SAVI) on LST profiling for summer/winter seasons from the
city center to the periphery in eight different directions, i.e., north to south, northeast to
southwest, northwest to southeast, and west to east was extracted on the city landscape.
The effect of these six land indices on the LST in the summer and winter seasons is presented
in Figures 15 and 16, respectively.

Figure 13. Correlation between the LST and the six land indices of Prayagraj city in the summer
season (1988–2018).
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Figure 14. Correlation between the LST and the six land indices of Prayagraj city in the winter
season (1987–2018).
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Figure 15. Effects of the land indices on the distribution of LST dynamics in the summer season in
Prayagraj city (1988–2018).
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Figure 16. Effects of the land indices on the distribution of LST dynamics in the winter season in
Prayagraj city (1987–2018).
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3.4.1. North to South

In summer, from the city center in both the north and the south directions, the mean
LST followed a declining trend (up to 11 km) of 0.2 ◦C–2.75 ◦C except for 6.5–11 km in the
north direction and 9–11 km in the south direction (Figure 15). The higher mean LST at the
city center was because of the impervious/built-up land (high mean NDBI by −0.04 to 0.04).
The decline in mean LST witnessed at 1–2 km in the north and 4.5–6.5 km in the south
was due to the existence of forest land/grassland (higher mean NDVI by 0.02–0.10), as
well as the availability of higher moisture content (higher mean NDMI and mean SAVI).
However, the increase in mean LST at 6.5–7.5 km and 10–11 km in the north and 6.5–11 km
in the south was because of the existence of barren land/bare soils (higher mean EBBI by
0.01–0.08). The mean NDWI was found to be negative (<−0.1) at all consecutive summer
time points, which means that its role was insignificant due to the unavailability of water
bodies of large size (except rivers) to impact the reduction in mean LST.

In winter, from the city center in both the north and the south directions, the mean
LST witnessed declining inclination up to 11 km by 0.2 ◦C–3.6 ◦C except for 6.5–9.5 km
in the north, and 5–9 km and 10–11 km in the south (Figure 16). The higher mean LST in
the city center was due to the built-up land presence (high mean NDBI by −0.04 to 0.04).
In contrast, the decline in mean LST witnessed at 1–2 km and 9.5–11 km in the north and
9–10 km in the south was because of the presence existence of grassland/forest land (higher
mean NDVI by 0.02–0.25) coupled with high moisture content availability, as reflected by
high mean NDMI and mean SAVI values. The existence of barren land/bare soils (higher
mean EBBI by 0.01–0.08) at 6.5–9.5 km in the north and at 5–9 km and 10–11 km in the
south resulted in a spike in mean LST. However, as in the summer season, mean NDWI had
negative values in the winter season also [<0 in the north and south (except at city center
and 1.5–2 km in the south)] at all consecutive winter time points, signifying its insignificant
role in the reduction in mean LST.

3.4.2. Northeast (NE) to Southwest (SW)

In summer, in both the NE and the SW directions from the city center, mean LST
detected a declining pattern up to 11 km by 0.2 ◦C–5.8 ◦C except for 6–7.5 km in the NE
and 6.5–11 km in the SW, where a reverse trend was witnessed. The decline in mean LST
witnessed at 1–3 km in the NE and 6.5–7.5 km and 9.5–10.5 km in the SW was because
of the availability of grassland/forest land (higher mean NDVI by 0.02–0.13) and high
moisture, as the mean NDMI and mean SAVI also witnessed a similar pattern to mean
NDVI. The availability of barren land/bare soils (higher mean EBBI by 0.01–0.1) resulted
in the increase in mean LST at 6.5–7.5 km in the NE and 7.5–9.5 km in the SW. The mean
NDWI showed negative values in the summer, indicating that its role was insignificant due
to the unavailability of water bodies. However, 7.5–8 km in the NE showed the reverse
trend due to the Ganga River flow.

In winter, in both the NE and the SW directions from the city center, the mean LST
witnessed a declining pattern up to 11 km by 0.2 ◦C–4.5 ◦C except for 6–7.5 km in the NE
direction and 10–11 km in the SW direction where the mean LST witnessed an increasing
trend (Figure 16). The city center had high-density built-up land (higher mean NDBI by
−0.04 to 0.04), leading to higher mean LST which witnessed a decline at 1–3 km in the NE
and 4.5–6 km and 10–11 km in the SW because of the existence of grassland/forest land
(higher mean NDVI by 0.02–0.2). The mean NDMI and mean SAVI also witnessed a similar
pattern to that of mean NDVI, indicating the availability of higher moisture due to the
presence of forest/grassland, which helped in the decline in mean LST. However, the mean
LST high spikes at 6–7.5 km in the NE direction and at 10–11 km in the SW direction were
due to barren land/bare soils (higher mean EBBI by 0.01–0.08) at these locations. However,
in summer, the role of NDWI was insignificant except for 7.5–8.5 km in the NE due to
Ganga River.
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3.4.3. Northwest (NW) to Southeast (SE)

In summer, in both the NW and the SE directions from the city center, it was detected
that the mean LST witnessed a declining pattern up to 9 km in the NW and 8 km in the
SE by 0.1 ◦C–2.6 ◦C because of the existence of grassland/forest land (higher mean NDVI
by 0.01–0.15) coupled with high moisture availability due to high mean NDMI and mean
SAVI (Figure 15). However, an increasing pattern was witnessed in the zones of 3.5–4.5 km
and 6–9 km in the NW and 6.5–8 km in the SE because of the presence of barren land/bare
soils (higher mean EBBI by 0.01–0.2). The role of the mean NDWI was insignificant due to
negative values (<0.1) at all consecutive summer time points.

In winter, in both the NW and the SE directions from the city center, the mean LST
witnessed a declining pattern up to 11 km by 0.1 ◦C–3.5 ◦C except for 3–5 km and 6.5–9
in the NW direction and 5–8 km in the SE direction, where the mean LST witnessed an
increasing pattern. The decline in mean LST at 1–3 km in the NW and 4.5–6.5 km and
3–5 km in the SE was because of the presence of grassland/forest land (higher mean NDVI
by 0.02–0.23) and the high peaks of mean NDMI and mean SAVI (Figure 16). The barren
land/bare soils resulted in an increase in mean LST inclination at 3–5 km and 6.5–9 km
in the NE and at 5–8 km in the SE (higher mean EBBI by 0.01–0.06). Again, the role of
NDWI was insignificant due to negative values of the mean NDWI [except the city center
to 1.5 km in the SE at W1, where the mean LST was >0] at all consecutive time points.

3.4.4. West to East

In summer, the mean LST witnessed a higher peak at the city center in comparison to
nearby surroundings because of the presence incidence of high-density impervious/built-
up land (higher mean NDBI by −0.04 to 0.04). Then, the mean LST followed a declining
pattern up to 11 km by 0.1 ◦C–1.75 ◦C in both the west (in particular, at 1–3 km and
5.5–6.5 km) and the east (in particular, 3–5 km and 8–9.5 km) due to forest land/grassland
(higher mean NDVI by 0.02–0.10) coupled with high moisture availability (Figure 15). The
mean LST witnessed an increasing pattern in 4–5.5 km and 6.5–11 km in the west and 6–7.5
and 9.5–11 km in the east because of barren land/bare soils (higher mean EBBI by 0.01–
0.2). However, mean NDWI was found to have negative values (<–0.1) at all consecutive
summer time points, which means that its role was insignificant due to the unavailability
of many water bodies.

In winter, the city center again witnessed higher LST compared to its surroundings.
However, the mean LST witnessed declining inclination up to 11 km by 0.1 ◦C–1.6 ◦C
[except 4–5.5 km and 6.5–11 km in the west and 5.5–7.5 km and 9.5–11 km in the east] in
both the west and the east directions. The decline in mean LST witnessed at 1.5–3 km and
5.5–6.5 km in the west and 4–6 km and 8.5–9.5 km in the east was because of the existence
of grassland/forest land (higher mean NDVI by 0.02–0.22). The mean NDMI and mean
SAVI also witnessed a similar pattern to the mean NDVI, which means that higher moisture
was available where forest/grassland was present, consequently helping the decline in
the mean LST (Figure 16). However, the mean LST inclination at 4.5–5 km and 6.5–11 km
in the west direction and at 5.5–7.5 km and 9.5–11 km in the east direction was because
of barren land/bare soils presence (higher mean EBBI by 0.01–0.05). However, the mean
NDWI was found to have negative values [<0 in the north and south (except at city center
to 0.5 km in the west)] at all consecutive winter time points, which means that its role
was insignificant due to the unavailability of water bodies large in size, which may have
impacted the reduction in the mean LST.

3.5. SUHI Dynamics
3.5.1. Urban and Rural/Suburban Point Location-Based SUHI

The distribution of SUHI dynamics was evaluated in the summer season at all
four time points (S1, S2, S3, and S4), as well as in the winter season at all four time
points (W1, W2, W3, and W4) over Prayagraj city. For this purpose, five rural/suburban
point locations, well distributed over the study area (shown in Figures 3 and 4) for sum-
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mer/winter seasons, were selected to study the actual variation in LST between urban and
rural/suburban areas. The seasonal SUHI dynamics for all time points of the summer and
winter seasons at five rural/suburban locations in Prayagraj city are shown in Figure 17.
Furthermore, the statistics of point location-based SUHI are presented in Table 7. It can be
observed that these five case points showed strong SUHI evidence for the summer and
the winter.

Figure 17. Seasonal SUHI dynamics at five case point locations in Prayagraj city (1987–2018) for all
time points: (a) summer and (b) winter.

Table 7. Seasonal SUHI magnitude based on rural/suburban point locations in Prayagraj city.

Season LST (◦C) Difference [TU–R]

Summer SUHI S1 S2 S3 S4

Case Point 1 1.195 3.840 1.962 1.887

Case Point 2 0.794 3.064 2.358 2.639

Case Point 3 1.194 1.524 1.175 1.151

Case Point 4 4.016 3.840 1.174 1.368

Case Point 5 0.398 3.064 2.358 1.709

Winter SUHI W1 W2 W3 W4

Case Point 1 1.80 2.24 1.82 1.61

Case Point 2 1.35 2.24 0.90 1.66

Case Point 3 0.67 0.89 0.45 0.90

Case Point 4 0.90 1.34 0.57 0.52

Case Point 5 1.35 2.24 1.36 1.64

3.5.2. Directional Ring Profiling of LST for Investigation of SUHI

In the present work, directional ring profiling was used to delineate the actual differ-
ence of LST from the city center to its periphery by taking eight-directional ring profiling,
i.e., north to south, NE to SE, NW to SE, and west to east. The distribution of LST dynamics
was evaluated to investigate the SUHI state in the summer and winter at all four time
points over Prayagraj city. Figure A2 shows the seasonal LST profiling for SUHI formation
in Prayagraj city (1987–2018) for both the summer and the winter seasons.

North to South

In summer, at S1, the mean LST was higher in the city center than in both the north
and the south directions by ~0.75–1.5 ◦C [except for 5–11 km in the north and 6.5–11 km in
the south because these areas were constituted mostly of sands and bare soil]. At S2, the
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mean LST was higher in the city center than in both the north and the south directions by
~0.2–2.75 ◦C [except for 9.5–10.5 km in the north and 7–11 km in the south because these
areas were mostly sands and bare soils]. At S3, the mean LST was higher at the city center
than in both the north and the south directions by ~0.2–2 ◦C [except for 6.5–7 km, 8–8.5 km,
and 9.5–10.5 km in the north, and 10–11 km in the south because these areas were mostly
sands and bare soils]. At S4, the mean LST was higher at the city center than in both the
north and the south directions by ~0.2–2.2 ◦C except for 6.5–7.5 km and 9.5–10.5 km in the
north, and 6.5 km and 10–11 km in the south because these areas were mostly sands and
bare soils.

In winter, at W1, the mean LST was higher in the city center than in both the north
and the south directions by ~0.2–1.7 ◦C [except for 7.5–11 km in the north, and 6.5–11 km
in the south because these areas were mostly sands and bare soil]. At W2, the mean LST
was higher at the city center than in both the north and the south directions by ~0.2–1.5 ◦C
[except at 6 km in the north and 10–11 km in the south because these areas were mostly
sands and bare soils]. At W3, the mean LST was higher in the city center than in both the
north and the south directions by ~0.2–3.6 ◦C [except for 8–8.5 km and 9.5–10.5 km in the
north, and 10–11 km in the south because these areas were covered mostly with sands and
bare soils]. At W4, the mean LST was higher in the city center than in both the north and the
south directions by ~0.3–2.1 ◦C except for 10.5–11 km in the south because of the existence
of barren land/bare soils.

NE to SE

In summer, the mean LST showed a higher peak at the city center than in both the
NE and the SW directions at all four time points, i.e., S1, S2, S3, and S4, by ~0.1–1.2 ◦C,
~0.1–4.1 ◦C, ~0.12–5.8 ◦C, and ~0.2–1.8, respectively. However, because of the existence of
sand, barren land, and bare soil, a reverse pattern was observed in zones 5–7.5 km and
9–11 km in the NE, and 5–11 km in the SW at the S1 timepoint, in zones 6–6.5 km and
10–11 km in the NE, and 5.5 km and 6.5–11 km in the SW at the S2 timepoint, in zones
7 km and 9.5–10.5 km in the NE and 10–11 km in the SW at the S3 timepoint, and in zones
6.5–8 km in the NE and 6.5 km and 10–11 km in the SW at the S4 timepoint.

In winter, the mean LST in the city center also followed the same pattern as that of the
summer, with higher temperatures observed as compared to suburban areas in both the
NE and the SW directions. The mean LST in the city center was higher by ~0.1–3.25 ◦C,
~0.1–2.4 ◦C, ~0.2–4.5 ◦C, and ~0.3–2.1 ◦C at the W1, W2, W3, and W4 time points. However,
in the NE direction, the zones 7–7.5 km at W1, 5.0 and 7.5 km at W2, 6.5–7 km, 8.5 km, and
10 km at W3, and 6–7 km at W4 exhibited a higher LST peak as compared to the city center
due to the presence of sand and bare soil. Along the same line, in the SW direction, zones
4.5–11 at W1, 7–8.5 km and 9.5–11 km at W2, 4.5–5.5 km, 8 km, and 9.5–11 km at W3, and
10–11 km at W4 exhibited the same trend.

NW to SE

In summer, at S1, the mean LST was higher at the city center than in both the NW
and the SE directions by ~0.15–1.8 ◦C except for zones having predominantly bare soil at
3.5–5 km and 6.5–9 km in the NW and 4.5–8 in the SE. The same pattern was also observed
at the S2, S3, and S4 time points. The mean LST at the city center was higher by ~0.1–2.6 ◦C,
~0.2–1.3 ◦C, and ~0.3–2 ◦C in both directions at S2, S3, and S4, respectively. The zones
with a reverse trend, due to the presence of predominantly bare soil, were 3.5–4.5 km and
7.5–9 km in the NW and 6–8 km in the SE at S2, 3.5–4.5 km and 7.5–9 km in the NW and
5 km and 6–8 km in the SE at S3, and 3.5–4.5 km and 7.5–9 km in the NW and 5.5–8 km in
the SE at S4.

In winter, the city center observed a higher LST peak than the suburban areas in both
the NW and the SE directions, as observed in the summer season. The mean LST in the
city center was higher by ~0.1–1 ◦C, ~0.1–1.9 ◦C, ~0.1–3.5 ◦C, and ~0.3–1.7 ◦C at the W1,
W2, W3, and W4 time points, respectively. However, exceptions to this trend were also
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observed in certain zones in both the NW and the SE directions at each distinct timepoint,
as can be clearly witnessed in Figure A2, because these areas were predominantly exposed
to bare soil.

West to East

In summer, the city center observed higher LST than suburban areas by ~0.1–1.2 ◦C at
S1, ~0.1–1.75 ◦C at S2, ~0.1–1.7 ◦C at S3 and ~0.1–1.5 ◦C at S4 in both the west and the east
directions. However, because of the existence of mostly sand, barren land, and bare soil,
a few zones observed a reverse trend, namely, 3.5–11 km in the west and 5–11 km in the
east at S1, 4.5–5 km and 7–11 km in the west, and 7.5–8 km and 9.5–11 km in the east at
S2, 4.5–5.5 km and 7–11 km in the west, and 6.5–7 km and 9.5–11 km in the east at S3, and
10–11 km in the west, and 7–8 km and 10.5–11 km in the east at S4.

In winter, the mean LST in the city center also followed the same pattern as that of the
summer, with higher temperatures observed as compared to suburban areas in both the
west and the east directions. The mean LST in the city center was higher by ~0.1–0.85 ◦C,
~0.1–1.6 ◦C, ~0.1–1.5 ◦C, and ~0.1–1.3 ◦C at the W1, W2, W3, and W4 time points. However,
exceptions to this trend were also observed in certain zones in both the west and the east
directions at each distinctive timepoint, as can be clearly seen in Figure A2, as these areas
mostly had sand and bare soil.

3.6. Hotspot Identification

The hotspot analysis was performed using the Getis–Ord Gi* approach to analyze
the spatial distribution of LST over Prayagraj city. This approach uses LST values of
neighboring features and delineates both hot and cold spots over the city landscape.
Hotspots are the clusters of features of high values of LST, while cold spots aggregate the
features of low LST values. On the basis of this analysis, the city landscape was categorized
into seven classes: very cold, cold, cool, not significant, warm, hot, and very hot.

The summer spatiotemporal hotspot maps of Prayagraj city are shown in Figure 18a
for summer time points S1, S2, S3, and S4 to present the clustering distribution of hotspot
dynamics, and their statistics are compiled in Table 8. The very cold spot class experienced
a high loss of 1.29 km2 of areal coverage during S1–S4. The cold spot class experienced
a loss of 0.07 km2 of areal coverage during S1–S4. The cool spot class also experienced
a loss of 0.44 km2 of areal coverage during S1–S4. However, the not significant class
experienced an enormous gain of 7.56 km2 of areal coverage during S1–S4. The warm spot
class experienced a loss of 1.81 km2 of areal coverage during S1–S4. The hot spot class
experienced a loss of 2.06 km2 of areal coverage during S1–S4. The very hot spot class
experienced a loss of 1.88 km2 of areal coverage during S1–S4. This summer hotspot pattern
indicates that the comfort level of living space intensively decreased in the city landscape
as the areas of very cold, cold, and cool spots severely declined.

The winter spatiotemporal hotspot maps of Prayagraj city are shown in Figure 18b
for the W1, W2, W3, and W4 winter time points to present the clustering distribution of
hotspot dynamics. Their statistics are shown in Table 8. The very cold spot class experienced
a severe loss of 6.49 km2 of areal coverage during S1–S4. The cold spot class experienced
a loss of 0.80 km2 of areal coverage during S1–S4. The cool spot class also experienced
a loss of 2.08 km2 of areal coverage during S1–S4. However, the not significant class has
experienced a considerable gain of 15 km2 of areal coverage during S1–S4. The warm spot
class experienced a loss of 1.46 km2 of areal coverage during S1–S4. The hot spot class
experienced a loss of 1.30 km2 of areal coverage during S1–S4. The very hot spot class
experienced a loss of 2.87 km2 of areal coverage during S1–S4. This winter hotspot pattern
also indicates that the comfort level of living space was on the decline in the city landscape
as the areas of very cold, cold, and cool spots severely declined.
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Figure 18. Seasonal hotspot maps based on Getis–Ord Gi* in Prayagraj city (1987–2018): (a) summer
and (b) winter.

Table 8. Seasonal hotspot classes based on Getis–Ord Gi* statistics.

Hot-Spot Classes Based on
Getis–Ord Gi* Analysis

Area (km2)
[Area (%)]

Summer Time Points S1 S2 S3 S4
Change during

S1–S4

Very cold spot
(99% of confidence level) 5.51 (7.55%) 4.76 (6.52%) 4.71 (6.45%) 4.22 (5.78%) −1.29 (−1.77%)

Cold spot
(95% of confidence level) 3.05 (4.18%) 2.03 (2.78%) 3.08 (4.22%) 2.98 (4.08%) −0.07 (−0.10%)

Cool spot
(90% of confidence level) 2.95 (4.04%) 2.21 (3.03%) 2.86 (3.92%) 2.52 (3.45%) −0.44 (−0.60%)
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Table 8. Cont.

Hot-Spot Classes Based on
Getis–Ord Gi* Analysis

Area (km2)
[Area (%)]

Not significant 45.35
(62.14%)

50.67
(69.43%)

49.98
(68.48%)

52.90
(72.49%) 7.56 (10.36%)

Warm spot
(90% of confidence level) 3.17 (4.34%) 2.62 (3.59%) 1.63 (2.23%) 1.36 (1.86%) −1.81 (−2.48%)

Hot spot
(95% of confidence level) 4.00 (5.48%) 3.96 (5.43%) 2.65 (3.63%) 1.94 (2.66%) −2.06 (−2.82%)

Very hot spot
(99% of confidence level) 8.94 (12.25%) 6.73 (9.22%) 8.07 (11.06%) 7.06 (9.67%) −1.88 (−2.58%)

Winter Time Points W1 W2 W3 W4
Change during

W1–W4

Very cold spot
(99% of confidence level) 7.97 (10.92%) 5.40 (7.40%) 3.35 (4.59%) 1.49 (2.04%) −6.49 (−8.89%)

Cold spot
(95% of confidence level) 4.16 (5.70%) 7.83 (10.73%) 7.67 (10.51%) 3.36 (4.60%) −0.80 (−1.10%)

Cool spot
(90% of confidence level) 7.44 (10.19%) 4.31 (5.91%) 2.94 (4.03%) 5.36 (7.34%) −2.08 (−2.85%)

Not significant 36.32
(49.77%)

41.30
(56.59%)

43.62
(59.77%)

51.32
(70.32%) 15.00 (20.55%)

Warm spot
(90% of confidence level) 2.83 (3.88%) 0.83 (1.14%) 1.81 (2.48%) 1.37 (1.88%) −1.46 (−2.00%)

Hot spot
(95% of confidence level) 3.42 (4.69%) 3.88 (5.32%) 3.22 (4.41%) 2.12 (2.90%) −1.30 (−1.78%)

Very hot spot
(99% of confidence level)

10.82
(14.83%) 9.42 (12.91%) 10.35

(14.18%) 7.95 (10.89%) −2.87 (−3.93%)

4. Discussion

4.1. Urbanization: An Assessment for Effective Urban Planning

This work assessed the seasonal (summer and winter) thermal state over the city
landscape of Prayagraj city (India). The effects of land indices, namely, NDBI, EBBI, NDMI,
NDVI, NDWI, and SAVI, on the thermal state were extensively examined to investigate
how water bodies, forest land, wetland, and barren soils control intensification and/or
cooling of LST over the landscape of the study area. The study area was delineated using
eight-directional ring profiling of land indices, including LST to explore how, where, and
what magnitude the LST changed either in increasing or in decreasing patterns due to
different land indices. This can help policymakers and planners to conduct sustainable
planning and enrich the carrying capacities of the landscape. As per the IPCC AR6 report of
2021, at the local to the global level, an extreme transformation of landscape has occurred,
especially in the postindustrial era, which needs to be monitored and mitigated to control
the rise in global mean temperature, leading to a decrease in the adverse consequences
of climate change [5]. In connection to this issue, multiple cities (such as Taipei city of
Taiwan [15], Phoenix city of the United States of America (USA) [16], Singapore [10], Dhaka
city of Bangladesh [17], Kathmandu valley of Nepal [18], Nanjing city of China [19], Beijing
city of China [20], Tokyo city of Japan [21], Tehran city of Iran [13], 70 selected cities of
Europe [22], Hong Kong [23], Baltimore–DC metropolitan area of the USA [24], and Cairo
city of Egypt [25]) have witnessed a similar amplifying pattern, which is very concerning
and critical for our blue planet. UN-Habitat (2018), through SDG-11, categorically acknowl-
edged the significance of spatial identification of land coverage and their possible effects
on the safety, resilience, and sustainability of the city landscape, especially using greenery
and open spaces [37].

Worldwide, to minimize the adverse effects of SUHI, including the rise in energy
consumption, water scarcity, air pollution, and health problems, e.g., sunstroke, cardiac,
and respiratory issues [68,69], populaces are converging on different mitigation strategies,
such as the use of light paints and materials, planting of trees on streets, and cool and
green roof creations [70,71]. Other strategies, such as designing the size, orientation, and
shape of buildings, could improve the wind flow in the city landscape [72]. Moreover,
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distinctive mitigation approaches, such as preserving wetlands, small to large water bodies,
and greenery plantations on barren spaces, can significantly improve the local climate and
ecosystem of the city landscape [38,73,74]. For this strategy and subsequent planning and
creation, remote sensing and GIS-based information using a multitemporal spatial database
can be applied to recognize the ground reality. Along with this, public awareness regarding
the adoption and implementation of the above strategies is a prerequisite for their success
in sustainable development and ecosystem restoration of the Prayagraj city landscape.

4.2. An Overview of Night-Time LST for SUHI Exploration

The spatiotemporal summer night-time LST maps are shown in Figure 19a, where sum-
mer time points, such as May 2008 and May 2018, were incorporated to present the night-
time LST dynamics along with their whisker boxplot statistics. The mean night-time LST
was severely intensified by 6.94 ◦C during the summer time periods of 2008–2018. At night-
time, the central urban core area intensively experienced higher LST than its periphery.

Figure 19. Maps of night-time LST dynamics with whisker boxplots for exploring SUHI at night-time:
(a) summer and (b) winter.
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The spatiotemporal winter night-time LST maps are shown in Figure 19b. Winter
time points, such as January 2007 and December 2018, were incorporated to present the
night-time LST dynamics and their whisker boxplot statistics. The mean night-time LST
was also intensified by 1.69 ◦C during the winter periods from 2007 to 2018. At night-time,
the central urban core area intensively experienced higher LST than its periphery. It was
further detected that the SUHI phenomenon at night-time was severely intensified by
0–2.98 ◦C and 0–4.56 ◦C in summer and winter, respectively, according to multiple ring
profiling. Other major cities over the Indo-Gangetic plain, such as Delhi [34], Lucknow [30],
Patna [36], and Kolkata [35] have also been experiencing a strong SUHI phenomenon,
whereby the city center has exhibited a higher LST than the periphery in the last few
decades; a similar pattern was observed in our study area.

The above findings of night-time LST dynamics indicate a severe SUHI occurrence in
both the summer and the winter seasons at night-time. These findings further strengthen
the results of the daytime LST of Landsat imagery from 2008 to 2018. In the daytime,
impervious surfaces absorb albedo extensively, and a long time is taken to radiate it back
to the atmosphere due to its physical properties. As a result of increasing urbanization, this
phenomenon has been further intensified. Both daytime and night-time LST experience
a strong SUHI phenomenon; however, at night-time, SUHI becomes more vulnerable. As
per this study, it is suggested to take immediate attention to reduce the SUHI severity
using an effective mitigation strategy after urban planners and policymakers consider the
aforementioned spatial thermal anomalies in the city.

5. Conclusions

This study explored the dynamics of seasonal (summer and winter) land indices [namely,
NDBI, EBBI, NDMI, NDVI, NDWI, and SAVI] and LST dynamics using Landsat 5 (TM) and
Landsat 8 (OLI/TIRS) imagery for Prayagraj city of India. The multitemporal spatial pattern
of land indices and LST and their correlation dynamics with directional ring profiling over the
city landscape were investigated, including the formation of SUHI and its dynamics over the
city landscape. It was found that summer periodical LST magnitudes were highly intensified
during S1–S4 by 0.32–2.45 ◦C (except for zone 11 km) at 0.5 km intervals from the city center
to the periphery. Winter periodical LST magnitudes were also intensified by 0.02–1.06 ◦C
(except for zones 9, 11, and 15–19 km). It was witnessed that the northeast and southwest
directions had a high growth of LST distribution, while the northwest direction had a low
growth of LST distribution in both seasons.

The results based on directional ring profiling of the effect of land indices on LST found
that most of the vegetation/forest land available, at 1–3 km in the northwest and 5–6 km in
the southeast direction, were depleted during the selected period. The impervious/built-up
land expanded from the city center to 8 km in all directions during the study time, whereas
bare soils and sand were primarily present in the northeast and the northwest (6–11 km).
The presence of different land covers significantly controlled the LST distribution as forested
area decreased the LST distribution whereas built-up area, bare soils, and sands increased
the LST distribution.

Forest cover played a crucial role in declining the LST by 2.25–4.8 ◦C (except for
water bodies), whereas bare soils and sand played a critical role in amplifying the LST by
1.9–5.6 ◦C. At the same time, built-up land amplified the LST by 1.8–3.9 ◦C (except for sand
and bare soils). These results were further strengthened by the findings that LST vs. NDVI,
LST vs. SAVI, LST vs. NDMI, and LST vs. NDWI had a positive correlation in the summer
season. However, the LST vs. NDWI relationship had a very weak positive correlation due
to the unavailability of water bodies of a significant size, which may have reduced the LST.
In contrast, LST vs. NDBI and LST vs. EBBI had a strong positive correlation.

In the winter season, a positive correlation was observed for LST vs. NDVI, LST vs.
SAVI, LST vs. NDMI, and LST vs. NDWI. However, the NDVI vs. LST, SAVI vs. LST,
and NDWI vs. LST relationships showed a weak positive correlation to reducing mean
LST. In contrast, EBBI vs. LST and NDBI vs. LST had a strong positive correlation. These
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findings indicate that forest and water body coverage played a vital role in reducing the
LST, whereas bare soils and sands played a substantial role in amplifying the LST in the
Prayagraj city landscape.

The SUHI results confirmed that the urban center observed a higher LST than ru-
ral/suburban points in the range of 0.398–4.016 ◦C and 0.45–2.24 ◦C in the summer and
winter, respectively. Furthermore, according to the directional ring profiling analysis, it was
detected that the center of the city had a higher LST than the periphery up to 11 km, mainly
in the northwest and the southeast (except for zones 6 and 8 km) directions by 0.1–4.1 ◦C
and 0.1–4.5 ◦C in the summer and winter seasons, respectively.

Hotspot analysis (using Getis–Ord Gi* statistics) revealed that very cold spot, cold
spot, and cool spot areal coverage declined over the study period in both the summer and
the winter seasons. Hotspot analysis revealed the forested and Ganga River areas for very
cold, cold, and cool spots, which were also observed in the directional ring profiling of
land indices. This further strengthens our findings. It was further detected that the SUHI
phenomenon at night-time was severely intensified by 0–2.98 ◦C and 0–4.56 ◦C in the sum-
mer and winter seasons. Therefore, to minimize the adverse effects of LST intensification
and environmental sustainability of the local climate and ecosystem in the Prayagraj city
landscape, the aforementioned delineated spatiotemporal seasonal thermal state and the
hot and cold spot areas need to be prioritized by urban planners and policymakers for the
design of suitable mitigation strategies.
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Appendix A

Figure A1. Seasonal whisker boxplots of the six land indices: (a) summer and (b) winter.
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Figure A2. Seasonal LST profiling for SUHI formation in Prayagraj city (1987–2018): (a) summer and
(b) winter.
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Abstract: Urban environments have a strong influence on the land surface temperature (LST) in
urban areas. Understanding the relationship between LST and urban environmental factors can
help develop effective strategies to reduce high LSTs in urban areas, which is critical for mitigating
the urban heat island effect. Previous studies have focused on the correlation between LST and the
environmental factors that drive its formation, without considering the influences of the neighboring
environment and the vertical expansion of highly urbanized areas. Notably, the correlation between
LST and its neighboring environment in different seasons remains unclear. In this study, we selected
central Beijing in China as our study area and employed the moving window method to characterize
the environmental factors of the neighboring environment of the central LST cell. We explored eight
environmental factors from three layers: normalized difference vegetation index (NDVI), normalized
difference built-up index (NDBI), modified normalized difference water index (MNDWI), building
density (BD), building height (BH), building volume (BV), sky view factor (SVF), and road density
(RD). The Pearson correlation and extreme gradient boosting (XGB) regression methods were applied
to measure the correlation between LST and the different factors in moving windows of different
sizes. The results indicated that the correlation between NDVI, MNDWI, and LST was considerably
different in the winter and other seasons. However, NDBI was positively correlated with LST in all
seasons, although the correlation was strongest/weakest in summer/winter. Among building-related
factors, BD and BH were more strongly correlated with LST, and the positive/negative correlation
between BD/BH and LST was stronger in summer/winter. The correlation between LST and its
neighboring environment varied with increasing window size, and this variation differs significantly
between winter and other seasons. In spring, summer, and autumn, the strength of the correlation
between LST and its neighboring environment showed an “inverted V” pattern with increasing
window size. The optimal spatial scales to explore the influence of neighboring environments on
the LST of 30-m cells were 210 m and 270 m. This study revealed the seasonal correlation between
LST and its neighboring environment while explaining the variation at a spatial scale. Notably, this
study can provide a new perspective for understanding the driving mechanism of the urban thermal
environment, while contributing to its scientific optimization and management.

Keywords: land surface temperature; neighboring environment; seasonal effect; scale effect; optimal
spatial scale; urban heat island; extreme gradient boosting regression
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1. Introduction

With the acceleration of urbanization, the development of urban heat islands (UHIs) in
cities being warmer than surrounding rural areas has been observed frequently on a global
scale [1–3]. High urban temperatures not only facilitate energy consumption for cooling [4],
contributing to air-pollutant emissions and global warming [5], but also increase the risk
of heat-related morbidity and mortality, especially during extreme heat events [6–8]. At
present, over 50% of the global population lives in urban areas, and this proportion is
expected to reach 70% by 2050 [9]. The negative impacts of UHIs pose a great threat to
sustainable urban development [2,3]. Land surface temperature (LST), an effective indicator
of surface UHI, is generally affected by various factors related to urbanization [10,11].
Disclosing the correlation between LST and urban environmental factors is critical in
developing reasonable strategies to optimize the urban thermal environment, prevent the
further intensification of the UHI effect, and achieve sustainable development.

Urbanization is a complex process characterized by the transformation of natural
land cover types (e.g., vegetation, water bodies, forests, and croplands) to impervious
surfaces, such as roads, buildings, pavements, and parking lots [12,13]. Previous studies
have confirmed that impervious surfaces can absorb and retain heat, resulting in higher
surface temperatures in urban areas [2]. In addition, roads in urban areas are associated
with traffic activities that lead to waste heat emissions [10]. Hardened pavement areas and
the number of private vehicles are related to road density (RD) [14]. Therefore, urban road
networks cannot be excluded when analyzing the potential driving factors of urban surface
temperature. Vegetation and water bodies have an important cooling effect that can reduce
the LST in urban areas [15]. Widely studied surface biophysical indexes, including the
normalized difference built-up index (NDBI) [16], normalized difference vegetation index
(NDVI) [17], and modified normalized difference water index (MNDWI) [18], exhibited
different correlations with LST. Reducing impervious surface areas and increasing urban
green vegetation/water areas are ideal strategies to mitigate high temperatures in urban
areas. However, in highly urbanized areas, the amount of space available for greening is
limited and it is impractical to considerably reduce impervious surfaces, such as buildings
and roads. Meanwhile, studies in 3D urban morphology have indicated that optimizing
urban building forms can help mitigate the UHI effect [19–23]. As a result, there is increas-
ing interest regarding the effects of multidimensional factors of urban environments on
LST [9,24–26].

In highly urbanized areas, buildings reflect urban expansion in the vertical dimension.
This has also been the most important urban landscape in 3D urban morphology studies.
The combination of high buildings and narrow streets can trap long-wave radiation and
increase the degree of thermal stress in summer and solar radiation absorption [27,28].
However, the shadows of high-rise buildings can reduce the absorption of solar radiation by
the ground [29]. Thus, a comprehensive investigation of the relationship between LST and
building-related factors is crucial for urban planning and intra-urban thermal environment
management. Although recent studies examine the relationship between LST and building
factors, including building density (BD), building height (BH), building volume (BV),
and sky view factor (SVF) factors [19,20,25,30,31], most of them focus on specific seasons,
with the summer receiving the most attention. More studies are required to understand
the correlations between building factors and LST during different seasons. Moreover,
previous studies on the relationship between LST and building features have yielded
inconsistent results. A study conducted at the residential scale suggested that building
height had a greater impact on LST than building density [19]. However, a seasonal analysis
at a geographical scale of 500 m × 500 m indicated that building density had a stronger
influence on LST than building height [21]. A recent study based on a road-block scale
also indicated that the influence of building cover ratio on LST was stronger than building
height [20]. These inconsistent conclusions suggest that the correlations between building
factors and LST may be affected by the spatial scale. However, at present, only a few studies
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have comprehensively discussed the seasonal and scale characteristics of the correlation
between building factors and LST [9].

The neighboring environment plays an important role in the driving mechanism of
the LST in highly urbanized areas. Previous studies have confirmed that the cooling effects
of urban vegetation and water bodies are largely regulated by neighboring vegetation
and impervious surface landscapes [32,33]. The heat sources in urban areas, such as
industrial parks, contribute to the increase in the surface temperatures within a certain
spatial extent around them [34]. Thus, these findings suggest that the local LST is related
to the neighboring environment. However, the strength of the correlation between LST
and land cover varies with spatial resolution, indicating the spatial range of the effect
of the neighboring environment on LST [25,35]. Determining the effect of neighboring
environments on LST provides a new perspective for understanding the potential driving
factors of the urban thermal environment in a comprehensive manner. Thus, there is an
increasing interest in the thermal effects of the neighboring environment. However, in
investigating the thermal effects of neighboring environments, previous studies mainly
focused on special urban scenarios, such as public and industrial parks and meteorological
station areas, without considering the general situation. Therefore, more case studies are
required to measure the influence of neighboring environments on fine-scale LSTs in highly
urbanized areas.

In this study, we analyzed the central urban area of Beijing; the moving window
method was adopted to measure the neighboring environmental factors of LST at different
spatial scales. Eight environmental factors were selected from the urban greenness, urban
wetness, and urban grayness layers: NDVI, NDBI, MNDWI, BD, BH, BV, SV, and RD. The
Pearson correlation and extreme gradient boosting (XGB) regression methods were used to
measure the influence of these factors on the LST from the perspectives of individual and
combined effects. The aim of this study is to address the following questions: (1) What are
the seasonal differences in the correlations between LST and the neighboring environment,
in terms of multidimensional factors? (2) How does a change in spatial scale affect the
correlation between LST and the neighboring environment? What are the optimal spatial
scales? (3) Finally, is there any inter-seasonal difference in the effects of spatial scale on the
correlation between LST and its neighboring environment?

This study aims to reveal the seasonal and scale effects on the correlations between
LST and multidimensional environmental factors from the perspective of neighboring
environments to improve the understanding of the driving mechanism of the urban
thermal environment.

2. Study Area and Dataset

2.1. Study Area

Beijing is located on the North China Plain and experiences a continental monsoon
climate (hot and rainy in the summer and cold and dry in the winter). As the capital of
China, Beijing has undergone rapid urbanization in the last four decades. Its permanent
population increased gradually from 10.47 million in 1987 to 21.94 million in 2017 (URL:
http://nj.tjj.beijing.gov.cn/nj/main/2021-tjnj/zk/indexch.htm, accessed on 1 June 2022).
The percentage of the urban population was 86.45% in 2017. Rapid urbanization has
dramatically changed urban landscape patterns and caused a variety of environmental
problems, including water and air pollution and the UHI effect. The deterioration of the
thermal environment has become a major challenge for sustainable urban development
in Beijing. Notably, urbanization in Beijing occurs in a ring-shaped pattern, that is, a
concentric expansion from the urban center to the periphery. The region within the Fourth
Ring Road covers most of the central urban areas that have the highest urbanization rates
and population densities and contains various land cover types and complicated landscape
patterns. Therefore, in this study, we investigated the thermal environment of the region
within the Fourth Ring Road of Beijing, which covers an area of 340.26 km2, and covers
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all of the Core Functional Zone and a small part of the Urban Function Extended Zone
(Figure 1).

Figure 1. Geographic location of the study area: (a) the location of the Fourth Ring Road of Beijing;
(b) the land use map of study area; (c) the land cover map of study area; (d) building height map of
study area; (e) the land surface temperature (summer) distribution map of study area (the land use
data in 2018 and land cover data in 2017 were derived from the website: http://data.ess.tsinghua.
edu.cn/, accessed on 21 August 2022).

2.2. Dataset

The dataset used in this study included Landsat-8 Operational Land Imager/Thermal
Infrared Sensor (OLI/TIRS) images and building and road network data. The Landsat-8
OLI/TIRS images obtained from the Geospatial Data Cloud official website (http://www.
gscloud.cn/, accessed on 28 November 2020) were used to estimate the LST and surface
biophysical factors. After screening all of the available images for 2017, four Landsat-8
OLI/TIRS images collected on May 23 (spring), July 10 (summer), September 28 (autumn),
and December 17 (winter) were employed to characterize the thermal environment for
different seasons [36]. The building data used to acquire building-related factors were
obtained from the Baidu, Inc. (https://map.baidu.com, accessed on 1 October 2017) with
a spatial resolution of 10 m. The building data can describe the geographical location
and height attributes of buildings in 2017 and cover the area within the Fourth Ring
Road of Beijing. The road data in 2017 were obtained from the OpenStreetMap (http:
//www.openstreetmap.org, accessed on 1 June 2020), a substantial global spatial database,
and were used to explore the thermal effects of road density on the LST in this study.

3. Methods

3.1. Land Surface Temperature (LST) Estimation

In this study, the radiative transfer equation (RTE) method was employed to estimate
the LST from the Landsat-8 OLI/TIRS images. The RTE method is more accurate than the
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split window method and single channel method and could guarantee an accuracy of 0.6 K
for the retrieved LST [37,38]. First, the RTE method was used to estimate the black-body
radiation brightness by removing the influence of the atmosphere. This can be expressed in
an equation, as follows:

B(TS) = [Lλ − L ↑ −τ(1 − ε)L ↓]/Lλε (1)

where B(TS) is the black-body radiation; Lλ (W/m2·sr·μm) is the spectral radiation bright-
ness for band 10; τ is the transmittance of thermal infrared bands in the atmosphere; L ↑
(W/m2·sr·μm) and L ↓ (W/m2·sr·μm) indicate the upwelling and downwelling atmo-
spheric radiance (http://atmcorr.gsfc.nasa.gov, accessed on 28 November 2020), respec-
tively; and ε denotes the land surface emissivity, which is calculated based on vegetation
proportion [38]. Finally, according to the Plank function, the LST was derived from B(TS),
using the following equation:

Ts = K2/ ln(K1/B(TS) + 1)− 273 (2)

where Ts is the LST (◦C), K2 is 1321.08 K, and K1 is 774.89 (W/m2·sr·μm).
The spatial distribution of the LST in spring, summer, autumn, and winter is shown in

Figure 2. The high-temperature area is significant for understanding the spatiotemporal
pattern of LST and optimizing the thermal environment. We observed three seasonal stable
high-temperature areas in the study area, mainly distributed within the Second Ring Road.
Compared with the high-temperature areas inside the Second Ring Road, the distribution
of the high-temperature areas located outside the road was relatively fragmented.

 

Figure 2. Spatial distribution of land surface temperature (LST) in: (a) spring, (b) summer, (c) autumn,
and (d) winter.
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3.2. Selection and Calculation of Multidimensional Environmental Factors

The LST in urban areas is mainly determined by complex urban landscapes. According
to previous studies, the driving factors of LST can be categorized into three layers: urban
greenness, wetness, and grayness (Table 1). In this study, three surface biophysical factors
(NDVI, NDBI, and MNDWI) were selected to represent the overall spatial distributions
of urban greenness, grayness, and wetness, respectively, from a two-dimensional (2D)
perspective. Buildings and roads are two typical artificial construction types in urban
areas, as well as the main components of urban grayness. In this study, we employed RD,
BD, BH, BV, and SVF to describe the detailed spatial characteristics of the urban grayness
components from 2D and 3D perspectives. The BD was defined as the proportion of the
ground building area per unit of analysis, and RD was defined as the total length of the
roads in an analysis unit divided by the area of the unit. The BH was defined as the average
height of the buildings per unit of analysis, and BV was defined as the total building
volume per unit of analysis. Furthermore, SVFj was defined as the proportion of visible sky
at a certain observation point j and was calculated based on the buildings, according to the
method proposed by [39]. Then, all the SVFj values per analysis unit were averaged. Since
seasonal effects were considered in this study, the three surface biophysical factors chosen
in this study were calculated separately from four Landsat-8 images captured during the
different seasons, whereas the building and road-related factors were considered to be the
same for all seasons. The spatial distributions of the selected environmental factors are
shown in Figure 3.

Figure 3. Spatial distribution of environmental factors considered in this study using different
indexes: normalized difference built-up index (NDBI), normalized difference vegetation index
(NDVI), modified normalized difference water index (MNDWI), building density (BD), building
height (BH), building volume (BV), sky view factor (SVF), and road density (RD). Images for NDBI,
NDVI, and MNDWI factors were captured in summer.
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Table 1. Description of environmental factors considered in this study.

Type Layers Factors (Abbreviation) Equation Reference Unit

Surface biophysical
factors

Urban greenness
Normalized difference

vegetation index
(NDVI)

NDVI = ρNIR−ρRed
ρNIR+ρRed

[40] -

Urban grayness Normalized difference
built-up index (NDBI) NDBI = ρSWIR1−ρNIR

ρSWIR1+ρNIR
[16] -

Urban wetness
Modified normalized
difference water index

(MNDWI)
MNDWI = ρGreen−ρSWIR1

ρGreen+ρSWIR1
[18] -

Multidimensional
factors of two

typical components
of urban grayness

Urban grayness
(Road network) Road density (RD) RD =

Lenroads
Unitarea

[41] m/m2

Urban grayness
(Buildings)

Building density (BD) BD =
∑n

i=1 Biarea
Unitarea

[30] -

Building height (BH) BH =
∑n

i=1 Biheight
n

[42] m

Building volume (BV) BV =
n
∑

i=1
Bivolume

[42] m3

Sky view factor (SVF) SVF = ∑k
i=1 SVFj/k [9] -

Note: Biarea is the land coverage area of the i-th building in the analysis unit, Biheight is the height of building i,
Bivolume is the volume of building i, n is the total number of buildings in the analysis unit, Lenroads is the total
length of all roads in an analysis unit, Unitarea is the area of the analysis unit, SVFj is the SVF value of cell j in the
analysis unit, and k is the total number of cells in the analysis unit. ρGreen, ρRed, ρNIR, and ρSWIR1 represents the
band 3, band 4, band 5, and band 6 of Landsat-8, respectively.

3.3. Moving Window Samples for Analysis

The moving window method is a common multiscale analysis approach [43]. The
method can be used to capture the continuous spatial variation in specific characteristics of
the urban environment at custom scales [44]. In this study, for each analysis sample, the
dependent variable was the LST value of the central cell of the moving window, and each
independent variable was the average value of the corresponding environmental factor
within the moving window. To investigate the influence of the spatial scale, 20 window sizes
were used to characterize the urban environmental factors and measure their relationship
with the LST of 30-m cells. Since the spatial resolution of the LST data in this study is
30 m, the minimum window size is 90 m × 90 m, which can ensure a clear central pixel
in the window. Moreover, the growth interval of the window size is twice the spatial
resolution of the LST data, which helps to capture the spatially continuous neighboring
environmental characteristics. In addition, a sufficient range of moving window size is
necessary to adequately explore the correlation between LST and multiple environmental
factors, especially to explore how the correlation changes with increasing window size.
Therefore, in this study, the window size was increased from 90 m × 90 m to 1230 m ×
1230 m, with an interval of 60 m. The samples obtained from the moving windows of
different sizes were used in the subsequent analysis to reveal the response of the LST to its
neighboring environment.

3.4. Correlations between Land Surface Temperature (LST) and Environmental Factors

In this study, the Pearson correlation method [45,46], which has been widely used in
previous studies, was used to measure the correlation direction and intensity between LST
and the selected environmental factors. Twenty correlation coefficients were estimated for
each factor in each season, corresponding to twenty sizes of the moving windows. One
of the aims of this study was to investigate the seasonal variations in the effects of the
urban environment on LST. Therefore, the mean values of the correlation coefficients were
calculated for the individual factors with respect to different seasons. In each season, three
environmental factors were identified as the dominant driving factors of LST, according
to the correlation intensity. Then, the spatial characteristics of the effects of the dominant
driving factors on LST were explored by analyzing the trend of correlation intensity with
increasing window size. Notably, we focused on the effects of dominant driving factors, as
they exhibited relatively strong correlations with LST.
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3.5. Application of Regression Model to Analyze Correlation between Land Surface Temperature
(LST) and Environmental Factors

Regression models are an efficient method for measuring the combined effects of
multiple driving factors on LST. The XGB regression model was used in this study according
to its advantages and our research needs. In this study, we aimed to explore the variation
in combined effects of multiple environmental factors on LST with increasing window
size in different seasons. Compared with statistical linear regression models, the XGB
regression model, a tree machine learning regression method, is better adapted to the
complex nonlinear relationships between LST and its driving factors. In addition, the
XGB regression model is not affected by multicollinearity among driving factors, which
means that all environmental factors can be entered into the model [47]. At present, XGB
regression is the most effective stochastic gradient boosting algorithm. The idea of the
XGB regression model is to build a series of shallow regression trees using a gradient
boosting technique, where each tree attempts to correct the residuals in the predictions
made by previous trees [48]. The XGB regression model can calculate the optimal solution
for the whole model and reduce the overfitting phenomenon [49]. Notably, previous
study has confirmed that the XGB regression model outperforms random forest, support
vector, and decision tree regressions with higher accuracy in LST prediction [50]. Moreover,
the XGB regression model has shown good application effects in many fields, including
crime prediction [47], vegetation mapping [51], algal biochar yield prediction [52], flood
susceptibility modeling [53], and urban thermal environment [54]. Therefore, in this
study, we developed XGB regression models to measure the combined effects of multiple
environmental factors on LST. The samples were randomly partitioned into 80% and
20% for training and validation, respectively. The performance of the regression model
was measured using the coefficient of determination (R2) metric, which indicated the
goodness of fit. It also represented the proportion of variance of the LST, explained by the
independent variables in the model. In addition, the root mean square error (RMSE) and
the mean absolute error (MAE) were used to evaluate the accuracy of the regression model.
The measured R2, RMSE, and MAE were calculated using the following equations:

R2(y, ŷ) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

y=
1
n∑ n

i=1yi (4)

RMSE(y, ŷ) =

√
1
n ∑ n

i=1(yi − ŷi)
2 (5)

MAE(y, ŷ) =
1
n ∑ n

i=1|yi − ŷi| (6)

where ŷi is the predictive value of the i-th sample, and yi is the corresponding true value
for n samples.

4. Results

4.1. Seasonal Correlations between Land Surface Temperature (LST) and Neighboring
Environmental Factors

The average correlation between the LST and environmental factors with respect to
different seasons is shown in Figure 4. The Pearson correlation coefficient indicated the
direction and intensity of the correlation between the LST and environmental factors. The
average correlation results were at the 95% significance level. In terms of the direction of
correlation, all factors, except BV, SVF, and NDVI, exhibited consistent correlations with the
LST in Beijing across all seasons. In addition, the correlation strengths between the urban
environmental factors and LST were strong in summer and weak in winter, in terms of the
strongest correlation factors.
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Figure 4. Pearson correlations between land surface temperature (LST) and different environmental
factors, normalized difference built-up index (NDBI), normalized difference vegetation index (NDVI),
modified normalized difference water index (MNDWI), building density (BD), building height (BH),
building volume (BV), sky view factor (SVF), and road density (RD).

We observed positive correlations between the BD, NDBI, and RD and the LST in all of
the seasons. The correlation between BD and LST was strong (0.501, 0.536, 0.476, and 0.299
in four seasons, respectively), whereas that between RD and LST was weak (0.048, 0.050,
0.026, and 0.065 in four seasons, respectively). These results indicated that the positive
association between LST and building density was stronger, whereas the influence of urban
road networks on LST was limited. The NDBI factor represented the overall grayness fea-
tures of the urban area, including both building and road features; therefore, its correlation
with LST was similar to that of the BD factor. Notably, the positive correlations between the
NDBI and BD factors and the LST of the city were consistent in the spring (0.487), summer
(0.614), and autumn (0.524) seasons; their correlation strengths with LST were stronger
in spring, summer, and autumn than in winter. This indicated that the warming effect of
urban grayness factors was more prominent during warm seasons. Furthermore, BH was
negatively correlated with the LST in all seasons, which was completely different from the
BD factor, although the latter also represented building characteristics. This result indicated
that BD increased the LST of the area, and conversely, BH decreased the LST. In addition,
the results also showed that the strength of the correlation between the BH and LST of the
city was highest in winter (−0.399). The correlation of the MNDWI factor with the LST was
weak and almost negligible in spring, summer, and autumn, with its negative correlation
with LST being evident in winter (−0.254).

The direction of the correlation between the urban environmental factors and LST
was also reversed during seasonal changes. The BV factor was positively correlated with
the LST in the spring (0.084) and summer (0.174) seasons, less correlated with the LST in
autumn (−0.045), and negatively correlated with it in winter (−0.243). The changes in the
correlations of the SVF and NDVI factors with the LST were similar. Specifically, they both
showed negative correlations with the LST in spring (−0.160 and −0.490) and summer
(−0.261 and −0.448); the negative correlations weakened in autumn. The factors exhibited
positive correlations with the LST in winter (0.198 and 0.081).

In general, there were no significant differences in the correlation results for spring,
summer, and autumn. In contrast, the direction or strength of the correlation between each
environmental factor and LST changed markedly in winter, compared to that in the other
three seasons. These findings imply that the main environmental factors affecting LST in
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spring, summer, and autumn were consistent to some extent, whereas the factors affecting
LST in winter differed from those in warmer seasons.

4.2. Spatial Characteristics of the Correlations between Land Surface Temperature (LST) and
Dominant Driving Factors

We selected three factors for spring, summer, and autumn (BD, NDBI, and NDVI) and
winter (BD, BH, and MNDWI) for further analysis, according to their strong correlations
with the LST (Figure 4). This exploration was conducted with various window sizes, i.e.,
from 90 m to 1230 m, with an interval of 60 m, to reveal the effect of scale through the change
in the correlation strength. The influence of the BD, NDBI, and NDVI factors on the LST
showed a similar trend, i.e., an inverted V shape with increasing window sizes in relatively
warmer seasons (spring, summer, and autumn) (Figure 5a–c). First, the correlation intensity
increased with the moving window size and then decreased gradually, which indicated the
optimal spatial scales to study the influence of the neighboring environments on the LST.
For the BD factor, the intensity of its positive correlation with LST showed an initial sharp
rise, followed by a gradual decline after reaching the peak; the peak correlation intensity
was obtained when the window size was set at 270 m (summer) and 330 m (spring and
autumn). The intensity curve of the NDVI factor associated with LST showed a trend similar
to the intensity curve of the BD–LST correlation. The spring curve was located between
the summer and autumn curves, and the maximum correlation intensity corresponded to
a window size of 210 m (spring and summer) and 270 m (autumn), although the NDVI
was negatively correlated with the LST. Similar to the results of BD and NDVI, the summer
curve of the NDBI was also at the top, indicating that these environmental factors were
most associated with the LST in summer. The difference between the first two was that the
gap between the spring and autumn curves gradually increased with the size of the moving
window. However, the strongest correlations between the NDBI and LST still occurred
at window sizes of 210 m (spring and summer) and 270 m (autumn). The general and
intuitive correlations between the environmental factors and LST are shown in Figure 4.
The comparative analysis between the scales further revealed that the scales of 210–270 m
were more effective in capturing the spatial characteristics of these correlations, regardless
of whether the factors were positively (NDBI and BD) or negatively (NDVI) correlated with
the LST.

In winter, the BH and MNDWI were negatively correlated with the LST. The curves of
these two factors also portrayed an inverted V shape. For example, the correlation intensity
between BH and LST first increased sharply, followed by a gradual decrease. The size
of the optimal scale at which the strongest correlation strength appeared was 450 m, but
the correlation strength at the optimal scale did not differ markedly from that observed
for the window size of 1230 m. The correlation intensity curve of the MNDWI also had
an inverted V shape, but it differed from that of BH, portraying a sharp decrease with
increasing window size. The apex of the curve (corresponding to the strongest correlation)
was located at a window size of 150 m. The curve of BD, which was positively correlated to
the LST, behaved differently; it continued to rise and then remained flat, without a clear
inflection point. The influence of the building characteristics (BH and BD) on the LST was
more prominent in the winter. In general, the trend of the winter curve was markedly
different from that of the warmer seasons, implying that there was a significant difference
in the formation mechanism of the urban thermal environment between the warm (spring,
summer, and autumn) and winter seasons.
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Figure 5. Correlation intensities of dominant factors: (a) correlation intensities of building density
(BD) in spring, summer, and autumn; (b) correlation intensities of normalized difference built-up
index (NDBI) in spring, summer, and autumn; (c) correlation intensities of normalized difference
vegetation index (NDVI) in spring, summer, and autumn; (d) correlation intensities of BD, building
height (BH); and modified normalized difference water index (MNDWI) in winter.

4.3. Combined Effect of Environmental Factors on Land Surface Temperature (LST)

The LST is the result of the combined effects of multiple factors. Therefore, in this
study, the XGB regression method was adopted to construct the LST regression models for
different spatial scales in order to investigate the combined effects of these factors on the
LST of the city. The explanatory rate indicator, i.e., the percentage of LST variance explained
by the regression model, was used to measure the combined effects of these factors on
the LST [48]. Figure 6 shows that the RMSE and MAE metrics are lower than 1.6 and 1.2,
respectively. Table 2 summarizes the explanatory rates at different scales. For each season,
the same color scheme was used to portray the change in the explanatory rate with scale.
Green indicates a low explanatory rate and yellow indicates a high explanatory rate. For the
spring and summer LST, the XGB regression models established at 210 m had the highest
explanatory rate (74.94% and 77.55%, respectively), followed by the model established at
270 m (74.62% and 77.34%, respectively). For the autumn LST, the model established at
270 m had the highest explanatory rate (68.04%), followed by that established at 210 m
(67.53%). These results indicated that, when studying the LST during the warm season, the
multiple regression model had the strongest interpretation of the LST at a spatial scale of
210–270 m.
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Figure 6. The root mean square error (RMSE) (a) and mean absolute error (MAE) results (b).

Table 2. Percentage of explained variance of the land surface temperature (LST) for different seasons.

Scales (m)
Percentage of Explained Variance of LST (%)

Spring Summer Autumn Winter

90 64.29 66.94 56.52 46.09
150 72.11 74.64 64.20 54.49
210 74.94 77.55 67.53 57.12
270 74.62 77.34 68.04 57.13
330 72.98 75.59 66.92 55.84
390 70.74 73.34 65.56 54.48
450 68.86 71.23 64.07 53.92
510 67.17 69.47 63.05 53.43
570 65.98 68.18 62.09 53.10
630 65.27 67.59 61.52 53.30
690 65.06 67.22 61.53 54.31
750 65.05 67.09 61.79 55.20
810 64.88 66.93 61.59 55.92
870 64.88 66.62 61.94 56.54
930 65.29 66.36 62.21 57.14
990 65.69 66.75 62.42 57.52

1050 66.05 66.60 62.87 57.92
1110 66.13 66.66 63.33 58.52
1170 66.15 66.94 63.53 59.69
1230 66.44 67.26 63.91 60.23

Average 67.63 69.51 63.23 55.59

Similar to the findings in Section 4.2, the explanatory rate of the XGB regression
model and its variation differed markedly between the winter and the warm seasons
(spring, summer, and autumn). For the winter LST, the explanatory rate of the model
first increased until 57.13% (270 m) and then decreased gradually until 53.10% (570 m);
the rate increased again until 60.23% (1230 m). The XGB regression model, including the
eight environmental factors, explained the LSTs in spring, summer, and autumn more
effectively than that in winter, both in terms of the mean and peak values. These findings
suggested that the influencing factors, formation mechanism, and scale effect of the thermal
environment in winter were more complex than those observed in the spring, summer, and
autumn seasons.
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5. Discussion

5.1. Seasonal Characteristics of the Thermal Effects of Urban Environmental Factors
5.1.1. Cooling Effects of Urban Green Vegetation and Water Bodies

Urban vegetation and water bodies are the two main landscape types that provide
cooling effects in urban areas and have attracted much attention for improving the urban
thermal environment. However, the difference in the cooling effect between the seasons
cannot be ignored. In general, urban vegetation decreases the LST through evapotranspi-
ration and shading. The cooling effect of evaporation and shading greatly varies among
species and depends on the canopy density in the region [55,56]. It has been confirmed
that the cooling effect of tree-cover vegetation is better than that of grass-cover vegeta-
tion [57,58]. The results of this study indicated significant inter-seasonal differences in the
thermal effects of vegetation and water bodies. The NDVI exhibited a significant negative
correlation with the LST in the spring, summer, and autumn seasons, which is consistent
with the findings of [59,60]. However, the NDVI exhibited a weak positive correlation with
the LST in winter (Figure 4). This finding was consistent with that of a study conducted
in North America [61]. Notably, deciduous broad-leaved trees occupy the largest area in
Beijing [30]. Additionally, there is an inevitable reduction in green vegetation in winter,
resulting in the weakening of the evapotranspiration and shading processes [62]. In addi-
tion, the distribution pattern and area of the vegetation may also affect its cooling effect.
Therefore, in winter, it is difficult for highly fragmented vegetation to generate a significant
cooling effect [19].

Previous studies have indicated that urban water bodies are negatively correlated
with LST [63,64]. However, in this study, we observed that the MNDWI factor, an effective
indicator of water bodies in urban areas, was weakly correlated to the LST in the spring,
summer, and autumn seasons (Figure 4). This discrepancy may be because the total water
area in the city is small; therefore, the water body may not be able to provide an effective
cooling effect [10]. The MNDWI exhibited a relatively stronger negative correlation with
the LST in winter, compared to the NDVI (Figure 4). This finding was consistent with
a previous study that reported that the cooling effect of water was stronger than that of
vegetation in November [65].

5.1.2. Thermal Effects of Urban Grayness Factors

Buildings, roads, and other impervious surfaces absorb solar radiation, resulting
in higher temperatures in urban areas [21,66–68]. In this study, the NDBI, BD, and RD
were positively correlated to the LST in all the seasons. The strength of the correlation
between RD and LST indicated the limited impact of RD on LST, which was consistent
with the findings of [41]. A recent study showed that the correlation between the NDBI
and LST was weaker in winter than in other seasons [69]. Similarly, in this study, the
NDBI and BD exhibited stronger correlations with the LST in summer than that in winter
(Figures 4 and 5). Buildings in urban areas are typically closely related to a variety of human
activities. For example, in summer, buildings with air conditioning release large amounts
of heat, contributing to an increase in the LST [70]. Similarly, the cold air emitted from the
air conditioner during winter can reduce the LST. Therefore, the seasonal characteristics
of the effects of the NDBI and BD on the LST may be influenced by the amount of solar
radiation absorbed by the impervious surface areas and the heat/cooling emissions from
buildings. Although the positive correlations of BD and NDBI with the LST have been
widely reported, our study revealed seasonal variations in the strength of their correlations
with the LST in urban areas at fine scales.

In this study, the BV, an indicator of the total volume of buildings, was positively/negatively
correlated to LST in summer/winter. The larger values of BV indicate the higher intensity
of the anthropogenic activity and possible larger amount of anthropogenic heat emissions,
which is expected to increase LST [71]. In addition, in winter, there may be a larger
amount of cooling emissions from buildings in the region with larger BV. A previous study
conducted in Berlin and Cologne also observed the positive correlation between BV and
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LST in summer [42], however, the correlation between BV and LST in winter was positive.
This difference could be explained by the different climate backgrounds of urban areas.
The influence of SVF on LST is complicated and conflicting conclusions on the correlation
between LST and SVF have been reported in previous studies [72–74]. Larger SVF indicated
more effective air circulation and heat dissipation, and it also means that there may be more
incoming solar radiation. Smaller SVF hinders airflow movement and is not conducive to
heat dissipation, and it also means the possibility of a larger area of shadow. In our study,
the correlation between SVF and LST was season-varying. Similarly, a study conducted in
Wuhan city also found a season-varying correlation between SVF and LST [9]. Notably, in
this study, the SVF was negatively correlated to LST in summer, which is consistent with
a recent study conducted in Beijing [72]. In addition, the negative/positive correlation
between SVF and LST in summer/winter may be associated to the anthropic activities, as
the smaller SVF is not conducive to the dissipation of the heat/cooling emissions from
buildings in summer/winter.

In particular, BH was negatively correlated with the LST in all seasons, which was in
line with the results of previous studies [9,19,20]. This may be because the shadows pro-
vided by high-rise buildings prevented the nearby ground from absorbing solar radiation,
thus, reducing the LST [20,29]. Therefore, higher buildings are expected to formulate lower
temperatures owing to their possible larger shadows [20]. Additionally, the negative effect
of BH on LST was stronger in winter and autumn than in other seasons, which can also be
explained by the larger shadow area in the winter and autumn seasons due to the lower
solar elevation [9]. The results related to building features can provide reliable references
for the planning and construction of urban buildings. In addition to urban vegetation and
water body planning, the season-stable negative effect of BH on LST could provide new
insights for the mitigation of the UHI effect for effective urban building planning.

5.2. Spatial Characteristic of the Thermal Effects of Neighboring Environment

Previous studies have confirmed that the cooling effects of urban vegetation and water
bodies are largely regulated by the vegetation and impervious surface landscapes of the
neighboring regions [32,33]. The heat sources in urban areas, such as industrial parks, will
continue to contribute to the increase in the LST within a certain spatial extent around
them [34]. These findings indicate that the neighboring environment plays an important
role in the driving mechanism of LSTs in urban areas. In addition, the correlations between
LST and surface coverage indicators generally vary with the geographical scale [66,75].
This may be related to the diversity of the surface cover features at different geographic
scales [62]. Therefore, an appropriate spatial scale is vital for the quantitative analysis of
the influence of the neighboring environment on the LST, balancing useful surrounding
environment information with the irrelevant information of the distant surrounding envi-
ronment. Notably, LST is the result of a combination of driving factors, which implies that
it is necessary to consider the individual and combined effects of various factors. Therefore,
we used both the correlation analysis and the XGB regression method to measure the
correlation between the urban environmental factors and LST at different spatial scales.

In this study, the correlation between the urban environmental factors and LST por-
trayed an initial increasing trend with increasing spatial scales, followed by a decreasing
trend (Figure 5 and Table 2), which implied the spatial range of the influence of the neigh-
boring environment on the LST of the 30-m cell. The strongest correlation between the
NDVI and LST was obtained within a 210-m moving window size in spring and summer
and a 270-m size in autumn (Figure 5). This finding is in line with that of [25], in which
the vegetation cover exhibited the highest correlation with the LST within a 210-m moving
window in summer. Another study conducted in India also indicated that the median cool-
ing range of urban green spaces was approximately 270 m outside the boundary [76]. The
correlations between the MNDWI and LST in winter varied with the sizes of the moving
windows and peaked at 150 m (Figure 5). This finding was consistent with the findings
of [32], which concluded that the cooling range of water bodies was approximately 74 m. A
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previous study conducted in the Phoenix metropolitan area indicated that the correlation
between impervious surfaces and maximum air temperature in the warm season decreased
after a 210-m spatial scale, and the strongest negative correlation between vegetation cover
and maximum air temperature occurred at 210 m and 270 m spatial scales [35]. In this
study, the optimal spatial scale for exploring the correlation relationship between the 30-m
LST and its neighboring environment was 210–270 m in warm seasons (spring, summer,
and autumn), considering the individual and combined correlations between the LST and
multidimensional factors of the urban environment (Figure 5 and Table 2). These findings
suggest that 210–270 m could be an appropriate spatial scale for characterizing the relation-
ship between the LST and its neighboring environment in Beijing. These findings could
provide a reference for spatial-scale selection in future LST studies in Beijing and other
large cities in northern China.

5.3. Limitations and Scope for Future Work

This study established a viable framework to explore the influence of neighboring
environments on LST, considering the multidimensional features of dominant urban land-
scape types. However, this study has a few limitations. First, although we considered the
seasonal variation in the LST, using only one daytime scene collected in each season to
obtain LST and surface biophysical indices could be insufficient. In addition, the acquisition
time of the images should be considered to ensure that the images can accurately reflect
the characteristics of LST in different seasons. Adopting multiple daytime and nighttime
images from different seasons to address this aspect may prove to be more efficient in future
studies. Second, this study was conducted only in the urban areas of Beijing, and more
cities in different climate zones should be considered in future studies [30]. Third, this study
explored the thermal effects of buildings and roads. However, the spatial resolution of LST
was coarser than that of the building data in the study area. LST data with higher spatial
resolution are expected to reveal more accurate relationships between LST and urban 3D
landscapes. Moreover, the positional accuracy of roads data from the OpenStreetMap is
mainly determined by the positioning technologies and references used by volunteers while
digitizing these data [77]. The roads data with high positioning accuracy and accurate infor-
mation on the width attributes should be considered in future works, although the accuracy
of OSM road network data (+/− 20 m) is better than that of other publicly available global
datasets such as Global Roads Open Access Data Set (+/− 500 m) [78]. In addition, more
factors such as building types/patterns, tree species/patterns, and anthropogenic heat [79],
are worthy of future study. Fourth, this study focused on the combined effect of multiple
factors on LST in the regression analysis, and the contribution of each environmental factor
is worth exploring in future studies. Finally, the thermal effects of urban environmental
factors and their spatial scale characteristics differed markedly between seasons, mainly be-
tween winter and the warmer seasons. Further studies are required to explain the different
driving mechanisms of the thermal environment in winter and other seasons.

6. Conclusions

In recent years, rapid urbanization has caused a series of significant changes in green
vegetation, impervious surfaces, human activities, energy consumption, and thermal
emissions, and the UHI effect has become increasingly severe. This study was conducted
in the central urban areas of Beijing and investigated how the LST of 30-m cells correlated
with their neighboring environment in different seasons. Moving windows were applied
to characterize the environmental factors of neighboring environments, with a total of
20 spatial scales ranging from 90–1230 m. Eight environmental factors were explored from
three layers of urban greenness, wetness, and grayness: NDVI, MNDWI, NDBI, BD, BH, BV,
SVF, and RD. The Pearson correlation and XGB regression methods were used to measure
the correlation between these factors and the LST, while considering the individual and
combined effect.
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This study confirmed the significant seasonal differences in the correlation between
the LST of 30-m cells and their neighboring environments. The correlation between the
NDVI and MNDWI and the LST was considerably different between the winter and the
other seasons, indicating that the cooling effects of urban vegetation and water bodies were
associated with the season. The NDBI, as a comprehensive indicator of urban grayness,
was positively correlated to the LST in all four seasons, indicating that the increasing
impervious surfaces can promote an increase in the LST. Reasonable control of the growth
of impervious surfaces can help prevent further deterioration of the UHI effect. Road
density had a limited impact on LST, whereas buildings had a significant impact on LST.
Notably, BD and BH were more strongly correlated to LST than other building factors.
BD was positively correlated with LST in all four seasons, indicating that the increasing
building density promoted higher LST. BD and NDBI were more strongly correlated with
LST in summer than in winter, implying that anthropogenic heat production due to seasonal
changes may also affect the correlation between urban grayness and LST. Owing to the
shadow effect, high BH values contributed to low LSTs in urban areas. Notably, there was a
negative correlation between LST and BH in all four seasons, and this negative correlation
was stronger in winter than in summer. In addition to increasing urban green space, the
building density and height characteristics can be optimized to help mitigate the UHI effect.

The correlation between LST and its neighboring environment varied with spatial
scale, with inter-seasonal differences in the scale effect, mainly between winter and other
seasons. In spring, summer, and autumn, the strength of correlation between LST and its
neighboring environment portrayed an “inverted V” pattern with increasing spatial scale in
terms of the Pearson correlation and XGB regression results, indicating the spatial range of
the strongest influence of the neighboring environment on LST of 30-m cells, i.e., the optimal
spatial scale to explore the relationship between LST and its neighboring environment.
Considering the correlation of individual factors with LST and the explanatory rate of the
XGB regression model for LST, 210 m and 270 m were considered as the optimal scales
to explore the relationship between LST and its neighboring environment in this study,
which can provide a reference for the selection of spatial scales in quantitative LST driving
force studies.

These findings contribute to the understanding of the correlation between LST and
multidimensional environmental factors in urban areas from the perspective of the neigh-
boring environment. Additionally, the framework developed in this study can be applied
to other urban areas. The results of these studies can help urban planners develop rational
strategies for optimizing urban thermal environments.
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Abstract: Rapid urban growth has coincided with a substantial change in the environment, including
vegetation, soil, and urban climate. The surface urban heat island (UHI) is the temperature in the
lowest layers of the urban atmosphere; it is critical to the surface’s energy balance and makes it
possible to determine internal climates that affect the livability of urban residents. Therefore, the
surface UHI is recognized as one of the crucial global issues in the 21st century. This phenomenon
affects sustainable urban planning, the health of urban residents, and the possibility of living in
cities. In the context of sustainable landscapes and urban planning, more weight is given to exploring
solutions for mitigating and adapting to the surface UHI effect, currently a hot topic in urban thermal
environments. This study evaluated the relationship between land use/land cover (LULC) and land
surface temperature (LST) formation in the temperate mountain valley city of Kathmandu, Nepal,
because it is one of the megacities of South Asia, and the recent population increase has led to the
rapid urbanization in the valley. Using Landsat images for 2000, 2013, and 2020, this study employed
several approaches, including machine learning techniques, remote sensing (RS)-based parameter
analysis, urban-rural gradient analysis, and spatial composition and pattern analysis to explore the
surface UHI effect from the urban expansion and green space in the study area. The results revealed
that Kathmandu’s surface UHI effect was remarkable. In 2000, the higher mean LST tended to be
in the city’s core area, whereas the mean LST tended to move in the east, south, north, and west
directions by 2020, which is compatible with urban expansion. Urban periphery expansion showed
a continuous enlargement, and the urban core area showed a predominance of impervious surface
(IS) on the basis of urban-rural gradient analysis. The city core had a lower density of green space
(GS), while away from the city center, a higher density of GS predominated at the three time points,
showing a lower surface UHI effect in the periphery compared to the city core area. This study
reveals that landscape composition and pattern are significantly correlated with the mean LST in
Kathmandu. Therefore, in discussing these findings in order to mitigate and adapt to prominent
surface UHI effects, this study provides valuable information for sustainable urban planning and
landscape design in mountain valley cities like Kathmandu.

Keywords: urbanization; surface urban heat island; land surface temperature; sustainable cities;
green space; impervious surface; Kathmandu

1. Introduction

Urbanization and associated LULC changes [1,2] significantly impact the urban ther-
mal environment of cities and their neighboring areas. This can result in numerous envi-
ronmental problems, such as deforestation, ecological degradation [3], air pollution [4],
energy imbalance [5], and hydrological stress [6], while the most apparent environmental
problem is the increase in the urban heat island (UHI) [7–11]. The urban heat island (UHI)
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refers to urban core areas with temperatures that are higher than those in surrounding rural
areas. Rapid urban expansion exerts substantial pressure on the natural environment [2,3],
and as a result, the area has become built-up land [12]. Built-up land is mainly covered
by impervious surfaces and can modify the surface energy and hydrological balance in
urban areas [13]. Due to the UHI effect, increasing temperatures in urban areas can lead to
higher energy and water consumption, air pollution, and a greater health risk for urban
dwellers [14,15].

UHI can be categorized as either surface UHI or atmospheric UHI [16]. Surface UHI is
estimated using land surface temperature, derived from remotely sensed thermal infrared
(TIR) data. Atmospheric UHI is calculated using in situ data and is often categorized
into the canopy and boundary-layer UHI [16,17]. This study focuses on surface UHI to
more deeply understand the processes underlying changes in land surface temperature in
accordance with LULC composition and pattern. Surface UHI includes both the daytime
and nighttime UHI; the daytime surface UHI is stronger than the nighttime UHI due to
solar radiation [17,18].

Many studies have shown that local climate zones for urban heat island studies
standardize the global exchange of urban thermal observations [19–22]. Moreover, a
growing body of literature shows the advantages of satellite remote sensing (RS) for
monitoring urban LULC patterns and LST [11,23–25]. For example, Estoque et al., 2017 [17]
studied the influence of landscape composition and LST patterns in three megacities in
Southeast Asia. Athukorala and Murayama 2020 [18] examined the spatial variation in land
use/land cover and composition and its impact on surface urban heat islands in the tropical
sub-Saharan city of Accra, Ghana. Jiang et al., 2015 [26] assessed the effects of urbanization-
associated land use cover changes on land surface temperature and surface moisture in the
midwestern United States. Yan et al., 2022 [27] evaluated the warming effect of urbanization
and agriculture in highly developed urban agglomerations in China, considering both
daytime and nighttime. These geospatial analyses provided critical insights for increasing
and understanding surface UHI research in order to implement proper urban planning to
reduce the surface UHI effect in many cities worldwide [11,16,17,24,28], thus improving
the living conditions for urban residents [16,17].

Generally, there is a contrast between heat absorption on impervious surfaces (con-
crete, asphalt, and other heat-absorbing substances) and heat absorption in the natural
environment in urban areas [28–31]. Many studies have shown that LST in urban areas
can be reduced by increasing urban green space, because such areas produce a cooling
effect and enhance humidity and emissivity [32–34]. Moreover, they can create a shadow
effect that covers land, limiting the direct heat applied to urban land surfaces from solar
radiation [13,16]. Therefore, many researchers have investigated the relationship between
spatial variations in impervious surfaces and green space in urban areas and cities on a
local [13,18], regional [35,36], and global scale [37], as well as the use of modeling [38–40]
to understand this phenomenon.

Many studies have investigated the relationship between spatial variations of impervi-
ous surface and green space in many cities and in various climatic regions, including tropi-
cal [41,42], tropical mountain [13], subtropical [18,43], temperate [9,44], and hot desert [16]
regions. However, a study of temperate mountain valley cities that provide a favorable
climate for their residents is still lacking [45–47].

Kathmandu is one of the most developed cities in Nepal with respect to population
and economic development, with built-up areas covering the majority of its land. Recent
research has revealed that thermal comfort is a significant problem in Kathmandu [48]. For
example, Maharjan et al., 2021 [49] studied urban heat islands in densely populated cities
of South Asia, including Kathmandu Valley, using the normalized difference vegetation
index (NDVI) and normalized difference built-up index (NDBI). Their study found an
increase in surface temperature of up to 30 ◦C between 2015 and 2018. Therefore, our study
explores the relationship between LST and the spatial variation of impervious surface
and green space in the temperate mountain valley city of Kathmandu, Nepal, to provide
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valuable insights for urban planners and policymakers in order to achieve the proper
management of Kathmandu. We used Landsat data and various geospatial approaches
such as machine learning techniques, urban-rural analysis, index-based analysis, and
landscape configuration analysis to deeply understand the relationship between the LST
and LULC patterns of Kathmandu, Nepal.

2. Materials and Methods

2.1. Study Area

Kathmandu, the capital of Nepal, is located in the central area of Nepal (Figure 1). The
study area consists of three districts: Bhaktapur, Kathmandu, and Lalitpur, which contain
five municipalities: Kathmandu metropolitan, Bhaktapur, Madyapur Thimi, Lalitpur sub-
metropolitan, and Kirtipur [50]. The rate of urbanization during the 1990s was 6.6% per
annum, which was among the highest in the Asia Pacific region [50]. As a result, the total
population of Kathmandu reached 2.5 million by 2016, of which about 1,465,254 were
considered urban residents [50]. The altitude range of the area is 1026 m through 2547 m
(Figure 1). Kathmandu City stretches along the Bugmathi river basin [50]. According to
the Koppen classification, the study area belongs to a temperate, dry winter, hot summer
climate (Cwa) [51]. The area experiences four seasons: winter (December–February),
pre-monsoon (March–May), monsoon (June–September), and post-monsoon (October–
November) [50,52]. The average summer and winter temperatures in Kathmandu are 29 ◦C
and 10.1 ◦C, respectively [50,52]. Kathmandu is regarded as a high urban accumulated area,
and is the industrial and administrative hub in Nepal. Therefore, Kathmandu Valley has
accelerated in terms of both population and urban development, expanding to the outer
areas. After considering the urban development process and the potential restricted effects
of administrative boundaries, we defined our study area as 20 × 20 km, with a 10 km radial
from the city center in Kathmandu’s central hub (Figure 1).

Figure 1. Location of the study area. (a) Nepal (28◦23′42′′N/84◦7′40′′E) and some other countries in
South Asia [53]; (b) Kathmandu City and its immediate surrounding areas [54]; and (c) study area of
20 × 20 km with a 10 km radius.
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2.2. LULC Classifications

In assessing the relationship between LULC and LST, spatially and temporally con-
sistent LULC maps are required. However, we could not find spatially and temporally
consistent LULC maps for Kathmandu. Therefore, we used earth-observing satellite remote
sensing data to classify LULC maps in 2000, 2013, and 2020, considering urbanization
and data availability. We used Landsat images in this study [55]: Bands 4, 3, and 2 for
Landsat 5 and bands 5, 4, and 3 for Landsat 8 were used for LULC classification. The
target years were selected on the basis of the urban development of the Kathmandu Valley
and previous studies [52,56]. We employed machine learning techniques—the random
forest classification using R software [57]—to classify the LULC maps for the study area.
Many studies have shown that the random forest classification method has higher LULC
classification accuracy in many regions of the world [58–60]. Six land use and land cover
categories were identified: impervious surface (IS), green space 1 (GS1), green space 2
(GS2), bare land (BL), water (W), and other land (OL). The IS category consists of buildings,
roads, airports, schools, industrial areas, and asphalt areas. The GS1 category consists of all
types of forests, and GS2 consists of croplands, grasslands, and small types of bushes. BL
comprises exposure areas both natural and man-made. The water (W) category includes
rivers, lakes, and sub-channels, and OL mainly contains clouds, snow, and shadows in the
study area.

We used 600 sample points to evaluate the accuracy of each map in 2000, 2013, and
2020. Google Earth historical images were used for the accuracy assessment. The accuracy
of the maps was determined by automatic sampling in the algorithm for each year using
the software. The spatial resolution of the classified LULC maps was 30 × 30 m.

2.3. Estimation of LST

This study used Landsat collection 2 level-1 product data (one TM 5 image for 2000 and
two OLI/TIRS images for 2013 and 2020) to estimate LST in Kathmandu. Captured Landsat
TM 5 images in 2000 (4 April; 10:07 local solar time) and 2013, and 2020 Landsat 8 OLI/TIRS
(26 March; 10:33 local solar time, and 11 April; 10:22 local solar time) images were utilized
for the analysis. Before assessing the LST in the area, we pre-processed the data on the
basis of methods presented in our previous studies (surface reflectance values for the
multispectral bands and at-satellite brightness temperature (Tb) values for the thermal
bands) [18,61]. Generally, the frequently applied process of obtaining unprocessed Landsat
data requires the DN value of thermal bands (Landsat thematic mapper TM = band 6, and
Landsat 8 OLI/TIRS = bands 10 and 11) [18]. First, we obtained absolute radiance values
and performed the derivation of satellite brightness temperature [17,18]. We used the
pre-processed bands (band 6 for Landsat 5 TM and bands 10 and 11 of Landsat 8 OLI/TIRS)
and the normalized difference vegetation index (NDVI) method to estimate land surface
emissivity values [17,18]. Consequently, Kelvin values of the top-of-atmosphere brightness
temperature were shifted to Celsius (◦C). Equation (1) [13,18] was used to estimate the LST
for Kathmandu:

LST =
Tb

1 + (λ × T b /ρ) INε

(1)

where Tb refers to Landsat 5 TM band 6, Landsat 8 OLI/TIRS band 10 brightness temper-
ature, λ refers to the wavelength of emitted radiance (11.5 μm for band 6 and 10.8 μm
for band 10), ρ = h × c/σ (1.438 × 10−2 m K), σ = Boltzmann constant (1.38 × 10−23 J/k),
h = Planck’s constant (6.626 × 10−34 Js), c = velocity of light (2.998 × 108 m/s), IN refers to
the pre-launch logarithm, and ε refers to the emissivity of the land surface.

2.4. Spatial Profile of Surface UHI in Kathmandu City

A typical UHI formation represents the temperature distribution from the urban
core. The urban core area shows a heating condition and comes to the middle. It shows
a decreasing trend in basins, plateaus, and valleys. Estoque and Murayama 2017 [13]
introduced surface UHI profiling for the South Asian mountain city of Baguio, Philippines,
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considering urban-rural gradient surface UHI formation using Landsat data. Athuko-
rala and Murayama 2020 [18] investigated the surface UHI formation in Accra, Ghana,
observing cross-sectional surface UHI profiles based on Landsat data. This study also fo-
cused on surface UHI definition based on 210 × 210 m grid size because this grid size is
robust for predicting methodological factors and environmental elements utilizing statistical
connections in surface UHIor atmospheric UHI, and LULC categories, as well as spatial
configurations and patterns (210 × 210 m grid size used based on previous studies [13,16,18]);
then, a surface UHI profile of the Kathmandu was created.

2.5. Remote Sensing-Related Parameter Analysis

Geologically, a valley is considered as an extended depression on the earth’s surface
that is usually surrounded by mountain ridges. The depth and natural landscape features
of the valley strongly impact its local climate, and valley cities develop under these condi-
tions. Kathmandu is a bowl-shaped temperate mountain valley city (Figure 1). Therefore,
it is crucial to understand the relationship between natural parameters such as NDVI,
modified normalized difference water index (MNDWI), normalized difference bareness
index (NDBal), and elevation and LST. Understanding the relationship between natural pa-
rameters and LST and their interconnectivity with each variable provides valuable insights
for urban planners and policymakers for the purposes of sustainable city planning. To do
this, we used four remote sensing parameters: NDVI, MNDWI, NDBal, and elevation for
Kathmandu City, and each variable was selected on the basis of the knowledge of the study
area and previous studies [13,62–65]. Elevation (digital elevation model (DEM)) data were
obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) with 30 × 30 m resolution [55]. We resampled NDVI, MNDWI, and NDBal into 0
to 100 using the resample tool in the ArcGIS 10.5 software. For the final analysis, we used a
210 × 210 m grid size, as explained in Section 2.4. The multiple linear regression (MLR)
model [66,67] was applied to demonstrate the relationship between remote sensing-related
parameters and the mean LST using 9025 analytical grids. Some previous studies have
also employed the same statistical method [13]. The objective of MLR is to model the
linear relationship between response (dependent) variables and explanatory (independent)
variables. Several important assumptions had to be tested during the regression analysis,
including the presence of linearity between the dependent and independent variables. The
R-squared was used to calculate how much of the variation in the independent variables
can be attributed to the variation in the outcome.

2.6. Spatial Analysis
2.6.1. Characteristics in Surface UHI of Kathmandu

We assessed the characteristics of SUHII along the urban-rural gradient in Kathmandu
to understand its formation in the temperate mountain valley condition. As described in
Section 2.4, all 210 × 210 m grids were aimed in the same direction for this analysis (see
Estoque and Murayama 2017 [13]). Accordingly, 48 urban-rural buffers were demarcated as
urban-rural zones in this study (URZs), i.e., URZ1, URZ2, URZ3, . . . , URZ48 (Appendix A).
The zones show the mean LST and LULC densities of IS, GS1, and GS2 (we calculated the IS,
GS1, and GS2 densities along each URZs), and the formation of the remote sensing-related
parameters, i.e., NDVI, MNDWI, and NDBal, ranging from 0 to 100 at 210 × 210 m intervals
(see Section 2.5). The surface UHI intensity changes were estimated between URZ1 (URZ1
was recognized as a high urban intensity zone) and other URZs. We applied the same
procedure for 2000, 2013, and 2020. On the basis of previous studies [16,18], we considered
high-IS-density zones (URZ1) as urban zones and URZs with <15% IS density as rural zones.
We excluded bare land (BL), water (W), and other land (OL) categories in this analysis,
because they possess relatively low areas compared to the other LULC categories.
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2.6.2. Landscape Composition and Pattern Analysis

This investigation aims to determine which spatial traits of the IS, GS1, and GS2
patches are likely to have impacted the spatial formation of LST in Kathmandu. The
210 × 210 m grid size used in Section 2.4 was inadequate for this composition and pattern
analysis due to the grid size. Therefore, we used a relatively large grid size for this analysis.
We applied a 4 × 4 km fishnet to divide the entire study area (20 × 20 km) into 25 sub-parts.
All sub-parts were considered in this analysis. For further investigation, the LULC and LST
maps were clipped with the corresponding polygon grid years 2000, 2013, and 2020.

We used five class-level spatial matrices: mean patch area (AREA_MN), number of
patches (NP), largest patch index (LPI), percentage of landscape (PLANND), and cohesion
(COHESION) (Table 1) (more information—Fragstats [68]). These class-level spatial metrics
have been widely applied in previous UHI studies. The 8-cell neighbor rule was employed
to estimate the five metrics. BL, W, and OL were excluded in this analysis due to the same
conditions explained in Section 2.5. Finally, the resulting metric values were correlated
with the mean LST of the LULC category of each sub-part to determine the influence of
landscape composition and pattern on the mean LST in Kathmandu.

Table 1. Class-level spatial metrics used in this study [68].

Index Description Unit Measure

Mean Patch Area
(AREA_MN)

The average patch size of LULC
classes. The spatial pattern and

heterogeneity of the area.
Hectare Composition of each LULC class

in the study area (LULC classes).

Number of Patches (NP) Derived using the total
landscape area.

Number of patches
per hectare

Estimation of the fragmentation
of each LULC class.

Largest Patch Index (LPI)

Quantifies the percentage of the
total landscape area taken up by

the largest patch at the class level.
It is a simple gauge of dominance.

0–100
LPI has the ability

to detect the advantages
of the LULC.

Percentage of Landscape
(PLANND)

Sum of the LULC classes divided
by the total landscape area × 100. Percentage Measurement of the abundance of

the corresponding LULC class.

Cohesion (COHESION)

The physical connectivity of the
corresponding patch type of the

LU class increases with more
clustering of the patch type in its
configuration, resulting in more

physical amalgamation.

0–100 The physical connectivity of the
equivalent patches of LULC class.

3. Results

3.1. LULC and LST Changes in Kathmandu from 2000 to 2020

The overall accuracy of the classified LULC maps was greater than 85% (Appendix B).
The classified LULC maps show that Kathmandu has undergone rapid urbanization over
the last two decades (2000–2020) (Figure 2). The area of IS increased by 762 ha between
2000 and 2013, and it expanded by 4240 ha between 2013 and 2020, corresponding to a total
of 5002 ha in the last 20 years (Table 2). In the visual interpretation, most of the IS area was
accumulated in the central part of the study area in 2000, and it gradually increased in the
outer area by 2020. The results show a total net loss of GS1 and GS2 recorded at 2807 ha
and 2202 ha in the 20 years, respectively (Figure 2). We observed that most GS1 areas were
located in the north-eastern, south-western, north-western, and south-eastern parts of the
study area, and GS2 was mainly concentrated in the middle part of the study area.
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Figure 2. LULC maps of Kathmandu City, Nepal, and its surrounding areas classified using machine
learning techniques (see Section 2.2): (a) LULC map in 2000; (b) LULC map in 2013; and (c) LULC
map in 2020.

Table 2. LULC area matrix of Kathmandu City from 2000 to 2020.

LULC Type 2000 km2 % 2013 km2 % 2020 km2 %

Impervious Surface 86.96 21.74 94.58 23.65 136.98 34.25
Green Space 1 (Forest) 116.69 29.17 99.7 24.93 88.62 22.16

Green Space 2 (Cropland/Grassland) 149.66 37.42 153.84 38.46 127.64 31.91
Bare Land 31.52 7.88 38.64 9.66 39.31 9.83

Water 1.93 0.48 1.79 0.45 1.7 0.43
Other Land (Cloud/Snow/Shadow) 13.24 3.31 11.44 2.86 5.75 1.44

Figure 3 shows the LST distribution of Kathmandu City from 2000 to 2020. The mean
LST in 2000 was 18.94 ◦C, and the LST was mainly concentrated in the central part, east,
northeast, and the periphery of southern and north-western parts. In 2013, the mean LST
was 25.19 ◦C and mainly accumulated in the central, south, and east parts. In 2020, the
mean LST was 26.11 ◦C, and the overall higher LST was observed in the central, east, south,
and north-western parts of the study area. In particular, we observed significantly higher
LST values in the Tribhuvan International Airport in Kathmandu at each time point (mean
LST was 25.11 ◦C in 2000, 27.43 ◦C in 2013, and 30.48 ◦C in 2020) (Figure 3).
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Figure 3. LST maps of Kathmandu City, Nepal, and its surrounding areas derived from Landsat
imagery: (a) LST map in 2000; (b) LST map in 2013; and (c) LST map in 2020.

Figure 4 shows the mean LST of each LULC category in Kathmandu. The results show
that the mean LST of IS was 19.80◦C in 2000, 26.52 ◦C in 2013, and 27.40 ◦C in 2020. The
mean LST of GS 1 was recorded at 16.88 ◦C in 2000 and 22.39 ◦C in 2020, while GS2′s was
18.66 ◦C in 2000 and 24.68 ◦C in 2020, indicating a lower mean LST than the IS category at
each time point. As mentioned before, the BL of the study area shows a relatively low area,
and most areas were located in the periphery of the study area (Figure 2). The mean LST of
BL was 21.49 ◦C in 2000, 25.82 ◦C in 2013, and 27.60 ◦C in 2020. The mean LST of the water
category was recorded at 18.89 ◦C in 2020 and 20.03◦C by 2020 over the study period.

Figure 4. Mean LST of each LULC category in Kathmandu City, Nepal in 2000, 2013, and 2020.
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3.2. Characteristics of RS-Based Spatial Parameters
3.2.1. Changes in NDVI, MNDWI, and NDBal

Figure 5 indicates the normalized difference vegetation index (NDVI) values in Kath-
mandu City in 2000, 2013, and 2020. High NDVI values were concentrated in the north-east,
south-east, south-west, and north-west regions, while lower NDVI values were concen-
trated on a substantial portion of the study areas in 2000 and 2013. However, we observed
lower NDVI values by 2020 compared to in the years 2000 and 2013, and NDVI in 2020 was
mainly concentrated in the north-east, south-east, south-west, and north-west areas. The
central part of Kathmandu showed lower NDVI values ranging from 1 to 20 during the
study period.

Figure 5. NDVI maps of Kathmandu City, Nepal: (a) NDVI in 2000; (b) NDVI in 2013; and (c) NDVI
in 2020.

Figure 6 reveals the modified normalized difference water index (MNDWI) of Kath-
mandu City in 2000, 2013, and 2020. The MNDWI is used extensively as the RS parameter
in surface UHI studies. In 2000, higher values of MNDWI were recorded in the central,
north-western, south, and south-eastern areas (Figure 6). The MNDWI was more apparent
in the central, north-east, south-western, and north-east areas by 2013. Our results show
the MNDWI concentration in the central part of the study area over three time points, with
the effect of the Bhagmathi river basin and several tributaries (Bishnumati and Manamati)
flowing through the central part of the study area. Most areas at the three time points show
an MNDVI ranging between 1 and 20, indicating some water stress in the study area.
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Figure 6. MNDWI maps of Kathmandu, Nepal: (a) MNDWI in 2000; (b) MNDWI in 2013; and
(c) MNDWI in 2020.

Figure 7 shows the normalized difference bareness index (NDBal) of Kathmandu in
2000, 2013, and 2020. According to the three maps (Figure 7), higher NDBal values were
identified in the middle, north, east, south, and west parts of the study area. We observed
that most of the NDBal values of Kathmandu were spread out and located as a ring away
from and around the city center at the given time points, indicating rapid LULC change
due to the urban process in the area. The three maps indicate that substantial-high NDBal
values were located around the top of mountain areas compared to the city area, and the
LULC maps (Figure 2) also corroborated this condition. Moreover, the three LST maps of
Kathmandu show relatively high LST values related to the high NDBal around the top of
mountain areas (Figure 3).
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Figure 7. NDBal maps of Kathmandu, Nepal: (a) NDBal in 2000; (b) NDBal in 2013; and (c) NDBal
in 2020.

3.2.2. Relationship between Mean LST and RS-Based Parameters

The results show a relationship between the mean LST and RS-based parameters at a
grid size of 210 × 210 m (Table 3). Overall, the MLR analysis results revealed that combining
the RS-based parameters used in this analysis makes it possible to explain the significance
of the parameters used in the mean LST during the study period. Moreover, each regression
coefficient β of the RS-based parameters showed statistical significance (p < 0.001) at the
three time points. For example, in 2000, the standardized regression coefficients showed
that the mean NDBal had a significant positive correlation with the mean LST, indicating
the heating power of the area. The mean NDVI, mean DEM, and mean MNDWI had a
significant negative relationship with mean LST, indicating the cooling power of the area.
In 2013 and 2020, the mean NDVI and mean elevation had the highest negative relationship
with the mean LST. In contrast, the mean NDBal had the highest negative relationship with
the mean LST in Kathmandu in 2013 and 2020. Our results indicate that the standardized
regression coefficients between the mean NDVI, mean elevation, and mean MNDWI and
the mean LST increased (negatively) during the study period. In contrast, the relationship
between mean NDBal and mean LST increased in 2020; however, the mean NDBal in 2013
showed a lower value than that in the years 2000 and 2020.
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Table 3. Results of MLR analysis in Kathmandu (dependent variable: mean LST; 210 × 210 m grid
size; and N = 9025).

RS-Based Parameters Coefficients

Unstandardized β Std. Error Standardized β Sig.

2000
(Constant) 22.590 0.144

Mean NDVI −0.031 0.001 −0.319 0.000
Mean MNDWI −0.017 0.001 −0.116 0.000
Mean NDBal 0.057 0.001 0.434 0.000

Mean elevation −0.003 0.000 −0.218 0.000
R2 = 0.696; Adjusted R2 = 0.695

2013
(Constant) 35.163 0.124

Mean NDVI −0.043 0.001 −0.506 0.000
Mean MNDWI −0.024 0.001 −0.170 0.000
Mean NDBal 0.042 0.001 0.410 0.000

Mean elevation −0.006 0.000 −0.453 0.000
R2 = 0.781; Adjusted R2 = 0.780

2020
(Constant) 31.154 0.112

Mean NDVI −0.046 0.001 −0.516 0.000
Mean MNDWI −0.045 0.001 −0.410 0.000
Mean NDBal 0.059 0.001 0.457 0.000

Mean elevation −0.006 0.000 −0.506 0.000
R2 = 0.729; Adjusted R2 = 0.729

3.3. Characteristics of Surface UHI in Kathamndu

Our results reveal that the density of IS and the mean LST have regular characteristics
(Figure 8a). The URZs near the central business district (CBD) exhibited the highest mean
LST, which declined along the urban−rural gradient in 2000, 2013, and 2020 (Figure 8a).
Conversely, the density of GS1 and GS2 indicates the lowest mean LST as being near the
CBD. The density of GS1 and GS2 gradually increased from the CBD, corresponding to
a large part of the rural area in the study period (Figure 8a). The density of IS increased
from the center to URZ4, and a quick drop was identified from URZ4 to URZ5. This drop
exhibited an ascending trend from URZ5 to URZ9, which continued until URZ12 with small
fluctuations (Figure 8a). From URZ12 to URZ48, the density of IS showed a decreasing trend
that is compatible with the mean LST at the three time points.

In contrast, the density of GS2 had a higher value than that of GS1 around the city
center at the three time points, and it gradually declined until URZ4. From URZ4 to URZ6,
the density of GS2 increased until URZ6, before again declining between URZ6 and URZ12,
apart from in 2013. By 2020, the density of GS2 showed an increasing trend until URZ33,
and then decreased until URZ48, indicating changes in the urban structure in the suburbs
(Figure 2). The density of GS1 decreased from the center grid to URZ20, indicating that
urban pressure in Kathmandu was reflected from the CBD to the suburbs. We observed that
from URZ20 to URZ48, the density of GS1 increased across the three time points. Moreover,
we found that the density of GS2 was higher from URZ12 to URZ42 than that of GS1,
showing a significant impact on mean LST in Kathmandu (see mean LST values in each
LULC at three time points) (Figure 8a).
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Figure 8. Urban–rural gradient in Kathmandu City: (a) mean LST and the density of IS, GS1, and
GS2 along the urban–rural gradient; and (b) mean LST and NDVI, MNDWI, and NDBal along the
urban–rural gradient.

The mean NDVI did not reveal the highest mean LST to be in the CBD. Our results
revealed that the mean MNDWI had higher values near the urban core area than the mean
NDVI and NDBal values because the area flourished in rivers and sub-waterways. The
mean MNDWI value showed an increasing trend from the center grid to URZ8, with
some fluctuations, and it gradually declined along the urban-rural gradient during the
study period. We observed that the mean MNDWI values increased from URZ25 to URZ48
compared to 2013, indicating enhanced green cover (forest, cropland, and grassland) in
the urban-rural transition area and the rural area in comparison to the LULC maps of the
study area (Figure 2). The decrease in the mean NDVI reported around the city core area
indicated rapid urban growth in the central part of Kathmandu and an abundance in the
urban fringe (Figure 8b). The results revealed that mean NDVI values increased gradually
from URZ29 to URZ48, indicating a greater cooling effect in these zones.

The mean NDBal of the study area showed an increasing trend until URZ26 and
declined from that point until the final zone, with few fluctuations. However, we observed a
slight increase in the mean NDBal between URZ25 and URZ29 (Figures 7 and 8b), indicating
that the BL was mostly located between the hinterland and the peripheral in the study
area in 2020 (Figure 2). We observed an increase in NDBal from URZ32 to URZ48 in 2020
compared to in 2013. This enhancement may have been due to the urbanization process
near hill areas and increased deforestation activities in this area, because the density of the
GS1 also decreased in this area (Figures 2 and 8a).

On the basis of the differences between Figure 8a,b, it can be concluded that the density
of GS1 and GS2 decreased over the three time points. This pattern corresponds to the
mean NDVI, MNDWI, and NDBal from URZ1 to URZ48, URZ25, and URZ31, respectively,
indicating the urbanization characteristics (i.e., the density of IS) in the area influenced the
formation of UHI in the area.
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3.4. LULC Composition and Pattern vs. Mean LST in Kathmandu

The results indicate that IS, GS1, and GS2 had a significant relationship with mean LST
in Kathmandu in 2000, 2013, and 2020 (Table 4). The correlation coefficients of IS showed a
positive relationship with mean LST during the study period. Conversely, GS1 and GS2
had a negative relationship with mean LST during the study period. The values of the five
IS metrics revealed the rapid expansion of IS in Kathmandu. These results correspond to
our classified LULC maps for the area (Figure 2). The Area_MN, LPI, and COHESION
of GS2 had a negative relationship at the three time points. The PD and PLAND of GS1
possessed lower values in 2013, but higher values in 2020. The AREA_MN, PD, LPI, and
PLAND of GS2 had a negative relationship with mean LST in Kathmandu. All values were
statistically significant (p < 0.001).

Table 4. Results of LULC composition vs. mean LST.

2000 2013 2020

IS GS1 GS2 IS GS1 GS2 IS GS1 GS2

AREA_MN 0.425 −0.235 −0.357 0.454 −0.629 −0.204 0.532 −0.670 −0.103
PD 0.108 −0.730 −0.087 0.257 −0.123 −0.138 0.477 −0.560 −0.194
LPI 0.127 −0.464 −0.039 0.481 −0.614 −0.34 0.505 −0.686 −0.024

PLAND 0.173 −0.549 −0.151 0.351 −0.800 −0.124 0.421 −0.660 −0.112
COHESION 0.209 −0.512 −0.196 0.539 −0.789 −0.173 0.611 −0.897 −0.262

Note 1: Area_MN—mean patch size; PD—patch density; LPI—largest patch index; PLAND—percentage of
landscape; and COHESION—cohesion. Note 2: IS—impervious surface; GS1—green space 1; and GS2—green
space 2.

Overall, five matrices—AREA_MN, PD, LPI, PLAND, and COHESION, and IS, GS1,
and GS2—have a confirmed potential influence on the mean LST in the temperate mountain
valley city of Kathmandu. A growing body of literature indicates that widespread patches
of green space can promote a cooling effect compared to the small and scattered patches of
green space. We observed widespread IS patches in Kathmandu to promote the surface
UHI effect. However, small and scattered patches of IS promoted a relatively lower surface
UHI effect in Kathmandu.

4. Discussion

4.1. Change in Urban Structure in Kathmandu

To investigate the effect on surface UHI of urban expansion and green space distri-
bution in Kathmandu, this study tried various approaches, including machine learning
techniques, remote sensing (RS)-based parameter analysis, urban-rural gradient analysis,
and spatial composition and pattern analysis. Here, we offer sustainable landscape and
urban planning strategies for use by city planners and policymakers in Kathmandu to
mitigate the UHI effect and improve the quality of life of city dwellers.

Our results provide strong evidence of the rapid urban growth in Kathmandu, Nepal,
showing an exponential expansion of IS over a time span of 20 years (from 2000 to 2020)
(Figure 2). Some studies have shown that the Kathmandu Valley is the most densely popu-
lated area, the major economic core, and one of the fastest-blooming urban agglomerations
in South Asia [69,70]. This city is critical, because Kathmandu is a mountain valley city with
unique geophysical characteristics in a land-locked country that has no land connected
to an ocean or coastlines [71]. Kathmandu’s urbanization has primarily been driven by
religion, tourism, and the city’s pleasant cool climate [72,73]. The population of Kathmandu
City was 2.5 million in 2016, and is expected to increase rapidly with these impacts and
drivers [52,71–79]. These results reveal that IS has rapidly encroached in the east, north,
south, and west with increasing population and infrastructure from the urban core to the
suburbs (Figure 2). This condition indicates that the central part of the Kathmandu Valley
and its neighborhoods are critical determinants of its urban development.
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4.2. Linking Surface SUHI Formation with LULC

In this study, we derived three remote sensing-based LST maps for 2000, 2013, and
2020, and the mean LST of Kathmandu was 18.94 ◦C in 2000, 25.19 ◦C in 2013, and 26.11 ◦C
in 2020 (Figure 3). However, we discovered that the LST values at the three time points
not only closely corresponded to LULC, but those other environmental variables, such as
surface moisture, humidity, solar radiation, wind speed, precipitation, and anthropogenic
heat release, may not have been temporally stable across the three time points when the
thermal images were acquired.

Hence, our research focused on the temporal fluctuations of surface UHI in Kath-
mandu. Here, two factors are considered, i.e., surface UHI and the density of LULC
difference between climate zones (between LULC categories and URZs) during the study
period. This approach enables the comparison of surface urban heat intensities in Kath-
mandu from 2000 to 2020. The results revealed the increasing trend of surface UHI intensity
between 2000 and 2020. We found that the surface UHI intensity between GS2 and GS1
increased by 1.37 ◦C during the study period. Considering the urban-rural gradient, an
average increase in surface UHI intensity between 2000 and 2020 based on URZ1 (urban
zone with the highest IS density at the three time points) and the rural zone (the first
URZ with <15% IS density) generated a higher value, at 3.89 ◦C. Therefore, the underlying
mechanisms of the increased surface UHI intensity in Kathmandu need to be understood
in order to achieve sustainable city planning.

In 2000 and 2013, the proportions of the study area accounted for by IS in Kathmandu
were 21.74% and 23.65%, respectively. However, during the period between 2013 and 2020,
the proportion of IS was 34.25%, an increase of 10.6% compared to the 2000–2013 period.
Several studies have discovered that the surface UHI intensity is positively correlated with
city size [9,11,80–82]. Therefore, we selected a 10 km buffer to restrict the study area. We
discovered that the increasing trend of surface UHI intensity in Kathmandu had been
impacted by changes in the natural landscape caused by rapid urban processes arising
from the considerable expansion of IS and the visible degradation of green space in the
area. The natural landscape change from GS1 (forest) to GS2 (cropland/grassland) cannot
be neglected, because the mean LST difference between GS2 and GS1 shows an increasing
trend, as mentioned before, and this can enhance the surface UHI effect in the area. Urban
landscape transformation also influences changes in the values of the RS-based parameters
(NDVI, MNDWI, and NDBal) considered in this study. Therefore, future urban planning
should pay more attention to this condition.

Our study found a high surface UHI value near Tribhuvan International Airport at
three time points, with increasing intensity between 2000 and 2020 (Figure 3). We gave
more attention to this area because the airport is the most critical place for the country from
a socio-economic perspective. The results revealed that GS2 and GS1 near the airport area
had declined with the rapid expansion of IS (sub-urbanization), promoting more surface
UHI in this vicinity. Therefore, urban planners should pay more attention to reducing LST
by means of possible and practical treatments in this area.

Along the urban-rural gradient, we observed a slightly decreased IS density between
URZ4 and URZ7 and an improved GS2 density in the same area. However, the decline in IS
density and increase in GS2 density did not fully correspond to the mean LST in this region
(see Figure 8a). As mentioned above, the MNDWI in the URZs exhibited lower values,
and NDBal showed relatively high values in these URZs. This effect might have enhanced
the mean LST in these URZs. Previous studies have reported similar findings [16,18]. For
instance, XIAO et al. (2007) revealed that surface UHI was not most pronounced in the
CBD. Rather, it was located in the south of the central city near the 4th ring road and the dry
Yongding river in the south-western part of the city, which is the biggest area of bare land in
Beijing, China [83]. Estoque and Murayama studied the impact of landscape composition
and pattern on land surface temperature in the three megacities of Southeast Asia [17].
They identified a significant correlation between land use categories and mean LST changes
along the urban-rural gradient in Bangkok, Jakarta, and Manila. Athukorala and Murayama
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discovered a strong relationship between LULC density and tasseled cap transformation
(TCT) and the mean LST change in the sub-Saharan city of Accra, Ghana [18]. They found
that GS2 (cropland and grassland) positively contributes to enhancing surface UHI by
combining the effects of the bareness index in the sub-Saharan climate.

4.3. Effect of Landscape Composition and Pattern on Surface UHI Formation

Our study shows that the five spatial metrics were significantly correlated with the
mean LST in Kathmandu (the density of IS (positive) in 2000, 2013, and 2020, and the density
of GS1 and GS2 (negative)) (Table 4). These findings are similar to other studies by Estoque
et al. (2017) [17], Myint et al. (2013) [84], Hou and Estoque (2020) [32], Zhou et al. (2011) [66],
Athukorala and Murayama (2021) [16], and Zhou et al. (2017) [85]. They revealed that
the AREA_MN, PD, LPI, PLAND, and COHESION of IS and GS significantly correlate
with the mean LST. However, data information, including the magnitude, significance,
and angle of the influence, differed between our findings and those of prior studies. It
is important to note that rapid urban growth changes natural environments into the IS,
receiving more solar energy and little reflected solar radiation [16,86]. In that context, LST
affects urban thermal environmental change and modifies environmental factors (humidity,
evapotranspiration, and energy balance) in the urban area, influencing human health and
thermal comfort.

Generally, vegetation and shadow help to reduce the surface temperature [16,87–89].
In Kathmandu, we observed that forest cover, high-rise building shadow, and mountain
shadow mitigate surface UHI in certain areas. However, the position of this shadow
effect varies with earth rotation and time. For example, many studies have investigated
the surface UHI effect using Landsat data [13,17,89]. The local time of data capture was
during the morning. The solar incidence angle (the angle between solar rays and the
vertical direction) produces the evapotranspiration and shadow effects. However, the
magnitude, location, and surface covering of areas with these effects should be fully
considered for urban planning, especially the relationship between the effects of shadow
and earth rotation.

Geophysically, Kathmandu City is located in a mountain valley and one of the coun-
try’s major river basins (the Bagmati river basin). Urban planners should pay more attention
to these factors with respect to urban planning. Landscape composition and pattern analy-
sis can fill this gap and provide more insights for urban planners [8,66,85,90,91]. Generally,
large patches of IS produce more surface UHI, and relatively small patches have a lower
surface UHI effect. On the other hand, large GS patches have a more cooling effect, and
small patches have less of a cooling effect. Our study reveals that enlarged and continuous
patches of GS1 (forest) and GS2 (cropland/grassland) generate a more significant cooling
effect in rural areas (Shanti Danda, Chonga Ganesh temple area, Hanumante river area,
Gokarna, Chanautipato, Coronation garden, Chhanui military barracks, Swayambhunath,
and Shoyembhu areas) than in urban core areas. Similar results have been reported in
Bangkok, Jakarta, Manila, Accra, greater Cairo, and Baguio [13,16–18]. However, the mag-
nitude of the cooling effect of GS1 is higher than GS2 in Kathmandu. We discovered that
the complex shape of the forest and cropland/grassland was more active in cooling LST
in Kathmandu. Zhou et al. (2017) [85] revealed the same conditions in Sacramento, but in
Baltimore, a simple tree crown with a small margin in the same area performed better in
terms of cooling effect. Such differences have emerged in the literature between study areas
with different climatic conditions. Therefore, the relationship between landscape metrics
and LST should be thoroughly considered in order to achieve sustainable city planning.

Overall, for Kathmandu, it is suggested to plant suitable trees or set waterways and
protect the existing tributaries (we observed that some sub-water channels were dispersed
around the city core area during the study period) near roads and buildings to decrease
the surrounding surface UHI. Athukorala and Murayama (2021) [16] revealed that rooftop
greening provided a practical cooling effect during both daytime and nighttime in greater
Cairo, Egypt. In this respect, Kathmandu is a bowl-shaped city, and reducing surface UHI
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remains a challenge. Moreover, the lessons learned from rooftop agriculture and vegetation
in greater Cairo, Egypt [16] provide a more efficient approach to mitigating the surface UHI
effect. Therefore, urban planners could rearrange the green space (trees) in Kathmandu to
create adjoining patches, maximizing their cooling ability.

4.4. Implication for Surface UHI Mitigation and Urban Climate Adaptation

Kathmandu has been Nepal’s largest urban agglomeration, industrial center, and socio-
economic and tourist hub in recent decades [52,71,72], during which period the extensive
natural and semi-natural landscape was rapidly transformed into IS. Many researchers
across the world have recently focused their attention on the relationship between the
significant loss of urban green space and the increasing surface UHI effect [13,17,66].
Our findings revealed that the tremendous growth of IS and the decline of green space
made the surface UHI effect more pronounced in downtown Kathmandu. Many urban
agglomerations are rapidly approaching mitigation and climatic adaption to the surface
UHI effect by means of sustainable city planning [8,16,17]. The growing literature shows
that efficiently distributed vertical greenery [92–94], such as rooftop vegetation and green
walls [16,95,96], makes a reliable contribution to reducing surface UHI and heat fluxes by
means of moist and shading facades, thus facilitating human thermal comfort.

According to the visual interpretation, the IS in the 2000 map shows relatively high
fragmentation compared to the IS in the 2020 map. However, the actual situation is that
the IS in 2020 is more fragmented than the IS presented in the 2000 map because of urban
development with high buildings and rapid urban structure change, resulting in greater
fragmentation of IS in Kathmandu by 2020. This condition also substantially affected the
increase in surface UHI in Kathmandu. In this context, the implementation of rooftop
solar photovoltaic systems (SPVSs) has provided roof cover and improved indoor thermal
conditions by minimizing extreme heatwaves in the urban core area [97–99]. Our results
reveal that the urban areas in Kathmandu have expanded from the CBD to the urban
periphery and suburban areas.

Urban agglomerations can effectively produce a positive cooling effect by optimizing
the green space [17]. The cooling effects of PD, PLAND, COHESION, and LPI values
on surface UHI were exceptional and robust in Kathmandu. Therefore, it is critical to
ensure sufficient size and consistency of green space when planning green landscapes
to achieve maximum surface UHI cooling by improving the interconnection between
patches [16], such as establishing urban parks and green corridors and decreasing the
extent of patches [100].

In response to the formation of surface UHI in Kathmandu from 2000 to 2020, we
propose that Kathmandu’s urban core should be filled in with green patches with high
population density and aggregated urban land, and that more green infrastructure net-
works, in connection with topographic features and roads, should be planned, thus further
promoting cooling conditions in the urban area. Moreover, as explained previously, urban
planners in Kathmandu should pay a great deal of attention to the Tribhuvan International
Airport area, enhancing greenery around the airport vicinity. The link between the GS and
RS parameters indicates that vegetation and blue infrastructure should be connected at mi-
cro and macro levels. Similar results and implementations have been reported in previous
studies [18,101]. To reduce the heatwave effect on urban city dwellers, urban designers and
planners should understand the characteristics of rapid urban growth structure change at
various development levels and logically composite patterns of urban green spaces and
anthropogenic activities.

5. Conclusions

This study assessed the surface UHI and related it to the LULC composition and
pattern in the temperate mountain valley city of Kathmandu, Nepal, from 2000 to 2020,
using Landsat images. The study area experienced rapid urban development during the
study period. This indicates a substantial expansion of impervious surfaces and loss of
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green space in Kathmandu, and the surface UHI phenomenon is remarkable in the city.
Our results revealed a significant relationship between the mean LST and urban expansion
(impervious surface and green space change). The mean LST, mean NDVI, mean MNDWI,
mean NDBal, and elevation were critical spatial parameters for deriving the surface UHI
in the study area (the statistical relationships were R2 = 0.695 in 2000, R2 = 0.781 in 2013,
and R2 = 0.729 in 2020). On the basis of various geospatial methods, this study provides
valuable practical approaches for sustainable urban planning and design in Kathmandu.
The results show that the surface UHI in Kathmandu has increasing characteristics. The
LULC has exhibited a drastic change in Kathmandu during the past 20 years, and the city
core indicated the promotion of surface UHI due to the high density of IS.

In contrast, other land covers (GS1, GS2, W, and OL) had lower surface UHI, with the
exception of the bare land category. The urban periphery showed the expansion of the city
into more rural areas; these land changes enhanced the surface UHI in the urban fringe.
GS1 and GS2 gradually decreased in the urban core areas during the study period, showing
more fragmentation and reducing the patch size gap, resulting in a reduced cooling effect
in the city core. Based on the above-mentioned conclusions, in order to control the further
strengthening of surface UHI, protecting vegetation cover and the urban river system,
it may be helpful to increase river basin sustainability (Bagmati river basin) and enhance
the ecological characteristics of urban greenery, thus mitigating and adapting to the surface
UHI effect in Kathmandu in the future.
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Appendix A

Figure A1. Urban–rural gradient. Grid order from city center to outer (i.e., URZ1, URZ2, URZ3, . . . ,
URZ48). Background image (Landsat 8, 11 April 2020 image, false color band composite bands 6, 4,
and 2).
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Appendix B

Table A1. Confusion matrices of the classified LULC maps of this study.

LULC Category
Reference Data

Total
User’s

Accuracy (%)IS GS 1 GS 2 BL W OL

2000
IS 98 1 4 5 1 2 111 88.29

GS 1 3 96 3 1 4 6 113 84.96
GS 2 1 6 89 2 1 2 101 88.12
BL 3 0 3 79 0 1 86 91.86
W 1 3 2 2 81 1 90 90.00
OL 1 4 1 4 5 84 99 84.85

Total 107 110 102 93 92 96 600

Producer’s
accuracy (%) 91.59 87.27 87.25 84.95 88.04 87.50

Overall accuracy (%) = 87.83

2013
IS 103 2 3 4 3 1 116 88.79

GS 1 2 79 2 3 3 6 95 83.16
GS 2 3 3 98 5 5 2 116 84.48
BL 3 2 1 84 2 5 97 86.60
W 1 1 4 3 72 4 85 84.71
OL 4 3 3 2 3 76 91 83.52

Total 116 90 111 101 88 94 600

Producer’s
accuracy (%) 88.79 87.78 88.29 83.17 81.82 80.85

Overall accuracy (%) = 85.33

2020
IS 93 4 2 5 1 3 108 86.11

GS 1 3 84 1 1 3 2 94 89.36
GS 2 1 2 96 3 2 4 108 88.89
BL 1 3 4 87 3 3 101 86.14
W 2 5 2 1 79 5 94 84.04
OL 3 1 1 4 2 84 95 88.42

Total 103 99 106 101 90 101 600

Producer’s
accuracy (%) 90.29 84.85 90.57 86.14 87.78 83.17

Overall accuracy (%) = 87.16

Note: impervious surface (IS), green space 1 (GS1), green space 2 (GS2), bare land (BL), water (W), and other
land (OL).
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Abstract: The landscape patterns of urban green spaces have been proven to be important factors
that affect urban thermal environments. However, the spatial effect of the landscape patterns of
urban patches with different vegetation densities on land surface temperature (LST) has not been
investigated in detail. In this study, the built-up area of Xuzhou City was taken as the study region,
and the four phases of Landsat 8 images and their corresponding ground observations from 2014
to 2020 were selected as the basic data. Normalized spectral mixture analysis and an improved
mono-window algorithm were used to invert the vegetation component fraction (VF) and LST maps
of the study area, respectively, and the surface patches were classified into five levels according to
the VF values, from low to high. Four landscape-level and five class-level metrics were then selected
to represent the landscape characteristics of each VF-level patch. The tested values of 60 and 780 m
were regarded as the best grain size and spatial extent, respectively, in the calculation of all landscape
metrics of ALL VF-level patches (VFLM) using the moving-window method. The results of bivariate
Moran’s I for VFLM and LST showed the following: (1) for landscape-level metrics, only the Shannon
diversity index and patch diversity have substantial negative spatial correlations with LST (with
average |Moran’s I| < 0.2), indicating that the types of VF levels and the number of patches exert
weak negative effects on the thermal environment for a certain area; (2) for class-level metrics such
as percentage of landscape, patch cohesion index, largest patch index, landscape shape index, and
aggregation index, only the class-level metrics of sub-high VF (LV4) and extreme-high (LV5) VF levels
patches have significant negative spatial correlations with LST (with high Moran’s I value, and high–
high and low–high distributions in local indications of spatial association cluster maps), indicating
that only the patches of high VF levels can effectively alleviate LST and that patch proportion, natural
connectivity degree, predominance degree, shape complexity, and aggregation degree are important
landscape factors for regulating the thermal environment. Principal component analysis and multiple
linear regression were applied to determine the impact weights of the class-level VFLMs of LV4 and
LV5 patches on LST, which revealed the contributions of these landscape metrics to mitigating the
urban heat island effect (UHI). These results signify the importance of and differences in the spatial
patterns of various VF-level patches for UHI regulation; these patterns can provide new perspectives
and references for urban green space planning and climate management.

Keywords: urban vegetation; urban heat island effect; landscape patterns; spatial correlation;
Landsat 8

1. Introduction

In the process of urbanization, many natural surfaces are replaced by dense sidewalks,
buildings, and other surfaces that absorb and retain heat; urbanization not only changes the
ground thermal radiation characteristics but also generates a large amount of anthropogenic
heat, resulting in a condition wherein the atmospheric and surface temperatures in urban
areas are higher than those in the surrounding suburban natural and agricultural areas.
This phenomenon is known as the urban heat island effect (UHI), which is also a form of
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air pollution and a major cause of global warming. UHI expansion not only deteriorates
regional thermal environments [1] but also leads to increased energy consumption, thermal
risk, air pollution, and pollution-related mortality [2], which seriously reduce the quality of
living environments for urban residents [3]. The urban thermal environment has become a
research hotspot in the field of urban ecology, environment, and climate, and methods that
can mitigate the risks and negative consequences of UHI are urgently needed.

The development of open green spaces, also known as “green infrastructure” and
“green space cold islands” [4], has become a widely accepted strategy for mitigating UHI.
Vegetation can reduce temperature and increase humidity by transpiration and shielding
against long- and short-wave radiation [5,6]. As important parts of urban ecosystems,
urban forests and greening can effectively improve urban substrates and play a major role
in regulating the temperature and mitigating UHI [7]. Green spaces containing a large
number of vegetation canopies can cool the atmosphere and air by creating a shading
effect [8]. Interconnected shadow areas called “Shadeways” can pass through the city along
infrastructure corridors and roads, provide relatively high natural and artificial shadows,
and align cool areas with active travel spaces [9,10]. According to the vegetation species and
environmental conditions in urban areas, shadow areas have a cooling effect of between
2.3 ◦C and 2.5 ◦C [11].

The cooling effect of green spaces on UHI can be analyzed by evaluating the statisti-
cal relationship between land surface temperature (LST) and regional landscape patterns
or vegetation indices [12]. Some vegetation indices, such as the normalized difference
vegetation index (NDVI) and fractional vegetation coverage (FVC), have been proven to
exhibit negative correlations with LST [13,14]. Owing to urban land restrictions, it is impos-
sible to mitigate UHI only by increasing urban vegetation. In addition to expanding the
number and scale of urban forests (in a limited manner), maximizing the eco-efficiency of
urban vegetation is a fundamental strategy to mitigate the thermal environment. Therefore,
optimizing the landscape patterns of urban vegetation has become an effective option
for alleviating UHI. Landscape patterns describe the landscape features of an ecosystem,
such as its spatial arrangement and configuration. Spatial composition represents the
proportions of all types of land cover within a certain spatial unit, whereas spatial configu-
ration refers to their physical arrangement and distribution [15]. Spatial composition and
configuration can be quantified using various landscape metrics that describe different
spatial characteristics [3]. Some reports have described the coverage, patch characteristics,
and spatial distribution of urban vegetation using landscape metrics and then discussed
the relationship between urban vegetation and UHI. The results show that the size, shape,
and spatial distribution of vegetation patches have a significant impact on urban thermal
environments and that increasing the area and density of vegetation patches can effectively
reduce LST [16,17]. However, most studies on the relationship between urban vegetation
landscape patterns and UHI consider urban forests and open green spaces as a single type
of vegetation, and few studies have considered the differences in the regulation effects of
patches with different vegetation densities on UHI.

In this study, Landsat 8 and ground observation data were used to extract information
on the urban vegetation component fraction (VF) and LST, respectively, and the urban
surface considered was divided into patches with different vegetation densities according
to VF values. The LST and landscape metrics of these patches extracted using the moving-
window method were then analyzed via geospatial and statistical approaches. The results
revealed the spatial effect of the landscape pattern of urban patches with different VFs on
the urban thermal environment. The detailed technical process was shown in Figure 1.
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Figure 1. Technical roadmap of this study.

2. Materials and Methods

2.1. Study Area

The built-up area of Xuzhou, Jiangsu Province, was selected as the study location
(Figure 2). Xuzhou is located southeast of the North China Plain (between 116◦22’–118◦40′E
and 33◦43′–34◦58′N) and has a temperate monsoon climate. Xuzhou is an important
transportation hub, an important coal-producing area in China, and an electric power
base in eastern China. Xuzhou also has a large-scale manufacturing industry. However,
the vegetation coverage rate of Xuzhou is as high as 32%, of which the urban vegetation
coverage rate is 27.8%, making this city rank first in Jiangsu Province. The developed
transportation and energy sectors, industries, and a large area of impervious surfaces have
caused the built-up areas of Xuzhou to experience significant UHI. Simultaneously, the
large area of urban vegetation has also played an important role in regulating the urban
thermal environment. These characteristics of the study area make it suitable for exploring
the spatial relationship between landscape patterns of patches with different vegetation
densities and the urban thermal environment.
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Figure 2. Location and satellite image of the study area. (a) Map of Jiangsu Province in China;
(b) map of the study area in Xuzhou; and (c) GF-1 satellite image of the study area on 28 April 2020.

As shown in Figure 2c, a total of 101 sample points were selected in the study for the
scale effect analysis and pixel unmixing validation in subsequent sections. At an interval
of 900 m, the sample points were distributed on four sample lines from the city center
to the suburb along four directions (east–west, south–north, southeast–northwest, and
southwest–northeast). This distribution mode provides stable variation in the vegetation
component ratio of the pixels along each sample line, owing to the sample pixels along
each direction gradually changing from the suburb mainly covered by vegetation to the
urban built-up area mainly covered by impervious surface, which ensures the diversity of
the component ratios of the sample pixels.

2.2. Data Descriptions
2.2.1. Satellite Data

The remote sensing data used in this study included four Landsat 8 images from May
2014 to 2020 and one GF-1 image from April 2020. Detailed information is shown in Table 1.
Visible and near-infrared bands 1–7 of the Landsat 8 OLI sensor were primarily used to
extract mixed pixel endmember fractions and calculate other land surface parameters.
Thermal infrared band 10 of the TIRS sensor was primarily used to invert LST. The spatial
resolution of the fusion of the panchromatic and multispectral bands of the GF-1 image was
2 m; this resolution could be used to extract high-precision surface coverage data to verify
the accuracy of the mixed pixel decomposition. As there are no high-resolution satellite
data that completely coincide with the transit dates of the four phases of Landsat 8 images,
the acquisition date of the GF-1 image used in this study was 28 April 2020, which is only
19 days from the acquisition date of the corresponding Landsat 8 image. Therefore, it is
acceptable to use this GF-1 scene as the validation data.

2.2.2. Ground Observations

The necessary meteorological observations for the remote sensing inversion of LST
included near-surface temperature and air relative humidity, as shown in Table 2. All the
ground observations from 2014 to 2018 were obtained from the Collaborative Observa-
tion Test Site of the China University of Mining and Technology in the study area (data
acquisition frequency: 30 min), and the meteorological data for 2020 were obtained from
the NOAA National Centers for Environmental Information of USA [18] (data acquisition
frequency: 1 h).
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Table 1. Technical parameters of Landsat 8 and GF-1 data.

Satellite Sensor Resolution Scene ID Acquisition Date
Acquisition

Time (GMT + 8)

Landsat 8
OLI: 30 m

TIRS: 100 m

LC81210362014121LGN00 1 May 2014 10:42:29
LC81220362017136LGN00 16 May 2017 10:48:22
LC81220362018123LGN00 3 May 2018 10:48:04
LC81210362020138LGN00 17 May 2020 10:42:10

GF-1 PAN: 2 m
MSS: 8 m

GF1_PMS1_E117.2_N34.1_20200428_L1A0004767917 28 April 2020 11:14:21
GF1_PMS1_E117.3_N34.4_20200428_L1A0004767915 28 April 2020 11:14:17

Table 2. Ground meteorological observation data at satellite transit time.

Date Acquisition Time (GMT + 8) Air Temperature (K) Air Relative Humidity (%)

1 May 2014 11:00:00 297.42 55.12
16 May 2017 11:00:00 296.33 39.76
3 May 2018 11:00:00 294.96 48.00

17 May 2020 11:00:00 299.48 53.19

2.3. Extraction of Vegetation Fraction from Mixed Pixels
2.3.1. Selection of Spectral Mixture Analysis Model

The pixels of low- and medium-resolution remote sensing images of urban areas are
often mixed with endmembers, such as impervious surfaces, vegetation, and bare soil
(water bodies generally exist independently). The commonly used methods for extracting
the proportion of each endmember in a mixed pixel are divided into two categories:
nonlinear and linear models. The theoretical premise of the linear spectral mixture analysis
model (LSMA) is that the spectral signal of a pixel is a linear combination of the spectral
signals of each endmember; the endmember fractions can be inverted using the least
squares method based on the spectral characteristics of each endmember, simplifying the
relationship between the components in the mixed pixel [19]. The fully constrained linear
spectral mixture analysis model (FCLS), which is based on LSMA, adds two constraints:
(1) the sum of all endmember fractions in each pixel is 100%; (2) all endmember fractions
are non-negative [20]. The greater the number of endmembers, the more detailed the
spectral analysis, which is beneficial to the fitting accuracy of FCLS. However, too many
endmembers will increase the sensitivity of the decomposition results to endmember
errors [21–23]. Based on a field investigation in the study area, the mixed pixel endmembers
were divided into five types: forest, grassland (including grass, shrubs, and farmland), bare
soil, and high- and low-albedo impervious surfaces (IPS). In addition, to solve the problems
associated with brightness variation and shade, the reflectance values of all bands were
normalized before applying FCLS [24]; the algorithms used were as follows.

Rb =
Rb

1
N ∑N

b=1 ×Rb
× 100 (1)

Rb =
N

∑
i=1

fiRi,b + eb (2)

N

∑
i=1

fi = 1, fi ≥ 0 (3)

where Rb is the normalized reflectance value of the mixed pixel for band b, Rb is the original
reflectance of the mixed pixel for band b, N is the number of endmembers, fi is the fraction
of endmember i in the mixed pixel, Ri,b is the reflectance of endmember i for band b in the
mixed pixel, and eb is the model calculation residual for band b. The final fitting accuracy
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of FCLS is represented by the RMS calculated using eb, and the calculation formula is as
follows [22].

RMS = (
N

∑
b=1

eb/N)

0.5

(4)

2.3.2. Extraction of Endmember Fraction

In ENVI 5.3, the minimum noise fraction rotation (MNF) was used to calculate the band
eigenvalues to select the main bands by reducing the data dimensions (Figure 3a). Next,
the pure pixel index was applied to identify and extract pure pixels in the multispectral
data. The filtered pure pixels were used as the region of interest of the first four bands
of the MNF image to generate a 3D scatter plot in the ENVI n-D visualizer. The scatter
plot was rotated, and the clustered scatter clouds (endmembers) were marked (Figure 3b).
Finally, the classified endmembers (Figure 3c) were substituted into FCLS to extract the
component fractions.

Figure 3. Endmember selection (data of 28 April 2020). (a) Eigenvalues of all minimum noise fraction
rotation (MNF) bands; (b) 3D scatter plot of each endmember in MNF bands 1–3; and (c) response
curve of all endmembers at each wavelength.

2.3.3. Validation of Endmember Fraction

A total of 101 sample points were generated in the study area (Figure 2c), and
101 validation sample areas of 90 × 90 m2 (3 × 3 pixels) were established with each sample
point as the center. All sample areas were superimposed onto the mixed pixel decomposi-
tion image and GF1 image of 2020 to extract the endmember fraction inversion value and
high-resolution interpretation value (true value) of each sample area. The endmembers of
vegetation (forest and grassland) and IPS (high- and low-albedo) exhibited high correlation
coefficients (r > 0.89) and linear goodness of fit (R2 > 0.80) between the endmember fraction
inversion value and the true value (Figure 4), indicating that the FCLS result had a high
accuracy. As the four Landsat 8 images are all from May and the principles of endmem-
ber selection are completely consistent, it can be considered that the FCLS results of the
four-phase data can meet the accuracy requirements.
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Figure 4. Validation of endmember fraction inversion results. (a) Accuracy of inversed vegetation
fraction; (b) accuracy of inversed impervious surface fraction.

2.4. Analysis of Vegetation Fraction Levels Using Landscape Metrics
2.4.1. Definitions of Vegetation Fraction Levels

The mean-deviation method (Table 3) was used to classify the VFs into five lev-
els: extreme-high VF (Level 5), sub-high VF (Level 4), medium VF (Level 3), sub-low
VF (Level 2), and extreme-low VF (Level 1), which represent patches with various vegeta-
tion densities.

Table 3. Vegetation fraction levels.

VF Levels Interval

Extreme-high VF (Level 5, LV5) VF > VF_mean + std
Sub-high VF (Level 4, LV4) VF_mean + 0.5std < VF ≤ VF_mean + std
Medium VF (Level 3, LV3) VF_mean − 0.5std < VF ≤ VF_mean + 0.5std
Sub-low VF (Level 2, LV2) VF_mean − std < VF ≤ VF_mean − 0.5std
Extreme-low VF (Level 1, LV1) VF < VF_mean − std

2.4.2. Selection of Landscape Metrics

Landscape metrics are effective tools for quantifying the spatial characteristics of
various land-cover types [3]. Class-level and landscape-level metrics were used to an-
alyze the number and spatial distribution characteristics of VF-level patches (Table 4).
Five class-level metrics—percentage of landscape (PLAND), largest patch index (LPI), land-
scape shape index (LSI), aggregation index (AI), and patch cohesion index (COHESION)—
were selected to represent the proportion, predominance, shape complexity, aggregation,
and natural connectivity of patches at each VF level. Four landscape-level metrics—the
Shannon diversity index (SHDI), Shannon evenness index (SHEI), patch diversity (PD),
and contagion index (CONTAG)—were selected to represent the diversity, distribution,
number, and aggregation degrees of all patches within an analysis unit.

2.4.3. Scale Effect Analysis

Scale effects, including the effects of grain size (spatial resolution) and spatial ex-
tent [25], are important factors that affect the results of landscape pattern analyses [26].
Landscape structure information changes with variations in grain size, and some land-
scape features can only be found at a specific grain size [27]. For the data of 17 May 2020,
the VF-level images were resampled from 30 to 200 m at 10 m intervals to obtain the
corresponding raster images with 18 spatial resolutions, and the class-level metrics for
each grain size were calculated using FRAGSTATS 4.2. As shown in Figure A1a–e in
Appendix B, most inflection points in the response curves appear at a grain size of 60 m.
Figure A1f in Appendix B describes the land-area information-loss index calculated using
Equations (A1) and (A2) in Appendix A for each grain size, indicating that the land area
accuracy loss is small when the grain size is 60 m. Therefore, 60 m was selected as the best
grain size for landscape pattern analysis.
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Table 4. Formulas and descriptions of landscape metrics selected in this study.

Metrics Equation Description Parameter Explanation

Class level

PLAND
(

n
∑

j=1
aij/A

)
× 100

Porportion of the
patch type

aij—the area of patch ij;
A—total landscape area;
eik—total length (m) of
edge in landscape
between patch types
(classes) i and k;
gii—number of adjacent
patches of the same
landscape type i;
pij—perimeter of patch ij
in terms of number of cell
surfaces;
Z—total number of cells
in the landscape.

LPI
[
max

(
aij

)
/A
]
× 100

Porportion of the largest
patch type

LSI 0.25
n
∑

j=1
eik/

√
A

Shape complexity degree
of the patch type

AI
[

gii
max→gii

]
× 100

Aggregation degree of
the patch type

COHESION

{
1 −

[
m
∑

i=1

m
∑

k=1
pij/

m
∑

i=1

m
∑

k=1

(
pij ×√aij

)]}
×(

1 − 1/
√

Z
)−1 × 100

Natural connectivity
degree between patches

Landscape
level

SHDI − n
∑

i=1
[pi × ln(pi)]

Diversity indicator of all
patch types

pi—proportion of the
landscape occupied by
patch type (class) i;
m—number of patch
types (classes) present in
the landscape, excluding
the landscape border if
present;
N—number of patches in
the landscape of patch
type (class) i;
A—total landscape area.

SHEI − n
∑

i=1
[pi × ln(pi)]/ln(m)

Even distribution
indicator of all patch
types

PD N/A Number of patches per
unit area

CONTAG

{
1 +

[
m
∑

i=1

m
∑

k=1

(
pi × gik

∑n
j=1 gij

)
×

ln

(
pi × gik/

n
∑

j=1
gij

)]
/[2ln(m)]

}
× 100

Aggregation degree of all
patch types

The moving-window method [28,29] was used to quantify the landscape patterns
of VF-level patches. Using this method, landscape metrics within a spatial extent were
assigned to the center pixel for each window movement, and finally, the mapped distri-
butions of the landscape metrics were generated. Owing to the scale dependence of the
landscape metrics [30], the size of the moving window used in the calculation may affect the
results [28]. When the spatial extent is smaller, the landscape index changes significantly
and fluctuates greatly and hence cannot effectively reflect the gradient characteristics of
the landscape patterns. When the spatial extent is larger, the landscape metrics change
gently, eliminating the interference caused by high-resolution and regional differences
but also leading to the loss of some gradient features. Six window sizes ranging from
300 × 300 to 1500 × 1500 m were tested at 240 m intervals. To avoid pixel splitting, the
interval for the moving-window sizes was set to multiples of 60 m (the best grain size).
Four landscape-level metrics were calculated for each tested window size, and then all
metrics were extracted for the 101 sample points (Figure 2c) to record the metric changes
under different moving-window sizes. Figure A2 shows that the curve of variation in
landscape metrics tends to be stable when the spatial extent reaches 780 m. Therefore,
780 m was selected as the best spatial extent.

2.5. Landscape Surface Temperature Inversion

Landsat 8 has two thermal infrared bands: 10 and 11. However, owing to the uncer-
tainty of band 11 information, the USGS recommends using single-channel algorithms
based on band 10 for LST inversion [31,32]. The improved mono-window model [33]
was used to determine the inversion parameters for the Landsat 8 sensor, as shown in
Equations (5)–(7).

LST = {a(1 − C − D) + [b(1 − C − D) + C + D]T10 − DTair_e}/C (5)
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C = ετ (6)

D = (1 − τ)[1 + (1 − ε)τ] (7)

where a = −62.7182 and b = 0.4339 are the linear regression coefficients of the Planck
blackbody radiation function for band 10 (0–70 ◦C), T10 is the brightness temperature
calculated using band 10, Tair_e is the effective atmospheric average temperature, ε is the
surface emissivity, and τ is the atmospheric transmissivity.

T10 = K2/ ln(1 + K1/L10) (8)

εnature = PvRvεv + (1 − Pv)Rsεs + dε (9)

εconstruction = PvRvεv + (1 − Pv)Rmεm + dε (10)

where K1 = 774.89 and K2 = 1321.08, are the thermal conversion constants for Landsat 8
band 10; L10 is the thermal spectral radiance calculated from the pixel DN value of band
10 [33]; Rv, Rs, and Rm are the radiation ratios of vegetation, bare soil, and construction
land, respectively [34]; εv = 0.986, εs = 0.970, and εm = 0.970, are the emissivity of pure
vegetation, bare soil, and construction land, respectively; Pv is the fractional vegetation
coverage; and dε is the effect of the interaction between vegetation and bare soil on the
surface emissivity [34].

Table 5 shows the linear relationship between the mid-latitude summer effective mean
atmospheric temperature (Tair_e) and near-surface air temperature (Tair) [34]. In addition,
the regression functions between atmospheric transmissivity (τ) and the atmospheric
water content (w) for Landsat 8 TIR band 10 were also simulated using the Moderate
Resolution Atmospheric Transmission (MODTRAN 4) program [33]. Since the atmospheric
water content data of the study area was not directly obtained, according to the algorithm
obtained by fitting the historical observation data of the China Meteorological Stations,
water content can be estimated by the average altitude of the study area (HE = 40 m), the
latitude of the study area (ϕ = 34.24◦), and the relative humidity (RH), which have been
shown as Equations (11) and (12) [35].

w = 0.03exp
(
−1.39HE

2 + 2.74HE + 0.15
)

e +
0.066

(ϕ − 33)2 + 4.41
+ 0.17 (11)

e = 0.6112exp
(

17.67Tair
Tair + 243.5

)
× RH (12)

Table 5. Regression functions for Tair_e and τ estimation.

w (g·cm−2) τ Functions Tair_e Function

0.2–1.6 0.9184–0.0725w
16.0110 + 0.9262Tair1.6–4.4 1.0163–0.1330w

4.4–5.4 0.7029–0.0620w

2.6. Spatial Correlation Analysis

Spatial autocorrelation analysis was used to determine whether the distribution of
spatial variables was related to the adjacent variables. It can be divided into global and
local spatial autocorrelations. Bivariate Moran’s I [36], proposed by Anselin, can effectively
reflect the correlation and dependence characteristics of the spatial distribution of two
variables. OpenGeoDa software was used for bivariate spatial autocorrelation analysis.
Bivariate global Moran’s I was used to analyze the spatial response of LST to landscape
metrics of VF-level patches; it was calculated using Equation (13).

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
yj − y

)
S2 ∑n

i ∑n
j=1 Wij

(13)
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where I is the bivariate global spatial autocorrelation index, that is, the overall correlation
between the spatial distribution of variables x and y; N is the total number of spatial
units; Wij is the spatial weight matrix established by the K adjacency method; xi and yj are
the observed values of the independent and dependent variables in spatial units i and j,
respectively; and S2 is the variance of all samples.

Bivariate local Moran’s I was calculated as follows [37]:

Ii = Zi ∑n
j=1 WijZj (14)

where Ii is the local spatial relationship between the independent and dependent variables
of spatial unit i, and zi and zj are the standardized variance values of the observed values
of spatial units i and j. Based on Ii, there are four clustering modes in the Local Indications
of Spatial Association (LISA) distribution map, which can intuitively present the agglomer-
ation and differentiation characteristics of independent and dependent variables in local
areas. The clustering mode can be classified as high–high (HH) clustering, that is, the
independent variable of the spatial unit i and the dependent variable of the adjacent unit
j are both high; low–low (LL) clustering, that is, the independent variable of the spatial
unit i and the dependent variable values of the adjacent unit j are both low; low–high
(LH) aggregation, that is, the independent variable value of spatial unit i is low and the
dependent variable value of the adjacent unit j is high; and high–low (HL) aggregation, that
is, the independent variable value of the spatial unit i is high and the dependent variable
value of the adjacent unit j is low.

2.7. Impact Weight Calculation Based on Principal Component Analysis

To further explore the contribution of the class-level metrics negatively correlated
with LST in urban thermal environment mitigation, the impact weight of each metric
was calculated by combining the principal component analysis (PCA) and multiple linear
regression. The standardized coefficients in multiple linear regression are often used to rep-
resent the influence weight of independent variables on dependent variables. However, to
prevent multicollinearity between class-level VFLMs, the multiple linear regression method
cannot be used directly. In this study, PCA was used to extract the principal component
variable Fi [38] for the class-level VFLMs, and standardized regression coefficients (βi)
were extracted by multiple linear regression between Fi and LST. This procedure removes
the multicollinearity among the metrics, and the weighted impact (Wj) of each VFLM on
LST can be obtained using the eigenvalues (λi), PCA component matrix (θij), and βi. The
equations for impact weight calculation are shown as follows.

αij =
θij√
λi

(15)

Fi =
n

∑
j=1

αijXj (16)

Wj =
∣∣α1j × β1 + α2j × β2

∣∣ (17)

where Xj is the original variable; n is the total number of the original variables; aij is
the contribution coefficient of original e variable in corresponding principal component
variable Fi.

3. Results

3.1. Inversion Results for VF and LST

Figure 5 shows the VF maps of the study area from 2014 to 2020, which indicate
the spatial distribution and area ratio of the vegetation patches. LSMA could not only
extract large-area and high-proportion vegetation patches in the study area but also fully
extract the fragmented and low-proportion vegetation distributions in mixed pixels, such
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as small green belts near buildings and roads. Complete vegetation quantity information is
beneficial for accurately exploring the effects of patches with different VFs on the thermal
environment. Figure 6 shows the LST maps of the study area from 2014 to 2020, revealing
that the LST values of the areas primarily covered by urban IPS were significantly higher
than those of the area covered by vegetation. The superposition of the LST and VF maps
indicates that the LST of patches with different VFs varies greatly. The VF and LST values of
101 sample points (Figure 2c) were extracted for correlation and linear regression analyses,
as shown in Figure A3 of Appendix B. The Pearson correlation coefficients between VF and
LST for the four phases were −0.6923, −0.6226, −0.6820, and −0.6573, indicating a strong
negative correlation between them. The linear regression results also showed that there
was a significant negative linear correlation between VF and LST (p < 0.001) and that for
every 0.1 increase in VF, LST decreased by approximately 0.48–0.78 ◦C. Therefore, a high VF
exerts a significant alleviating effect on LST, and it is necessary to further explore the spatial
impact of patches with various vegetation densities on the urban thermal environment.

Figure 5. Vegetation fraction inversion maps of (a) 1 May 2014, (b) 16 May 2017, (c) 3 May 2018, and
(d) 17 May 2020.

Figure 6. Land surface temperature inversion maps of (a) 1 May 2014, (b) 16 May 2017, (c) 3 May 2018,
and (d) 17 May 2020.
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3.2. Bivariate Moran’s I between Landscape Metrics of VF-Level Patches and LST

Figure 7 shows the bivariate global Moran’s I between the landscape metrics of VF-
level patches (hereinafter referred to as VFLM) and LST. The spatial correlations of VFLM
and LST varied widely for different landscape metrics. For the same landscape metric, the
spatial correlation between VFLM and LST also varied greatly from VF LV1 to LV5. The
landscape-level metrics of SHDI and PD exhibited significant negative spatial correlations
with LST (average Moran’s I was −0.17 and −0.13, respectively), indicating that the region
contained more types of VF levels and that patch numbers have weak effects on regional
cooling. Both positive and negative spatial correlations were observed between LST and
SHEI, and CONTAG, indicating that the even distribution degree and aggregation degree
of the five types of VF levels have no stable influence on regional temperature. Therefore,
the impact of landscape-level VFLM on LST is limited.

Class-level VFLMs such as PLAND, LPI, LSI, AI, and COHESION showed a significant
spatial correlation with LST (p < 0.001), implying that the spatial distribution characteristics
of VF-level patches, such as patch proportion, predominance degree, shape complexity
degree, aggregation degree, and natural connectivity degree, are important factors for
regulating environmental temperature. In addition, the bivariate global Moran’s I values
between VFLM and LST were positive and gradually increased from VF LV3 to LV1. In
contrast, bivariate global Moran’s I values between VFLM and LST were negative and
gradually increased from VF LV4 to LV5. Therefore, the patch VF can effectively alleviate
ambient temperature only when it reaches sub- and extreme-high levels, and the higher the
VF level, the stronger the mitigation effect.

Figure 7. Bivariate global Moran’s I between landscape metrics of IPSD levels and LST (the
significance levels of all Moran’s I were at p < 0.001 except for CONTAG of 1 May 2014 with
p > 0.05).

The average values of bivariate global Moran’s I between the VFLM of LV4 and
LV5 patches and LST in the four phases were, from high to low, in the order of PLAND
(−0.53), LPI (−0.43), LSI (−0.49), COHESION (−0.42), and AI (−0.24), indicating that patch
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proportion and aggregation degree have the strongest and weakest spatial correlations with
LST, respectively. However, Moran’s I value cannot directly represent the contributions of
these five class-level VFLMs to LST mitigation, which is necessary for further discussion of
their impact.

Bivariate local Moran’s I was used to further reveal the spatial characteristics of the
landscape patterns of VF LV4 and LV5 patches regulating the thermal environment. The
LISA maps (Figure 8) show the spatial distribution characteristics of the spatial correlation
between VFLM (class level) and LST. The clustering patterns between VFLM (PLAND,
LPI, LSI, AI, and COHESION) and LST were primarily HL and LH. The LH areas were
primarily distributed in the urban center and mostly covered by IPS. The HL areas were
primarily distributed in urban forests, parks, and suburban farmlands and were primarily
covered by natural vegetation and farmland.

Figure 8. Local Indications of Spatial Association (LISA) cluster maps between landscape metrics of
the vegetation fraction (VFLM; LV4 and LV5) and land surface temperature (LST): (a) 1 May 2014;
(b) 16 May 2017; (c) 3 May 2018; (d) 17 May 2020 (HH: high VFLM and high LST; LL: low VFLM and
low LST; LH: low VFLM and high LST; HL: high VFLM and low LST).

3.3. Impact Weight of Class-Level VFLMs of LV4 and LV5 on LST

The class-level VFLMs of LV4 and LV5 patches have been shown to have a significant
negative spatial correlation with LST; however, the contribution rate of each VFLM in
mitigating the thermal environment remains unclear. Therefore, it is necessary to discuss
the impact weights of PLAND, LPI, LSI, COHESION, and AI of LV4 and LV5 patches in
LST regulation.

The five class-level VFLMs of LV4 and LV5 patches were normalized before PCA.
As listed in Table 6, the values of the Kaiser–Meyer–Olkin (KMO) measure of sampling
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adequacy for the four phases were all greater than 0.6, indicating that the PCA method is
feasible for analyzing these variables. Two principal components (F1 and F2) were extracted
from each phase, with a high proportion of cumulative variance (>77%).

Table 7 lists the loadings of the original variables in the principal components (F1 and
F2). A common feature is that the metrics of LV5 (X1–X5) and LV4 (X6–X10) are the core
parameters affecting the principal components F1 and F2, respectively (with high θi values;
values with θi < 0.3 have been rejected). Therefore, F1 and F2 can be used as new variables
to represent the class-level VFLMs of LV5 and LV4 patches, respectively. Equation (15)
was used to calculate the contribution coefficient (αij) of each original variable based on
eigenvalues (λi) and θi, and F1 and F2 were calculated using Equation (16).

Table 6. Total variance explained from principal component analysis (PCA).

Date KMO Sums of Squared Loadings F1
1© F2

1©

1 May 2014 0.7190
Eigenvalue (λi) 4.02 3.74
Cumulative percent (%) 77.56

16 May 2017 0.7109
Eigenvalue (λi) 4.00 3.71
Cumulative percent (%) 77.14

3 May 2018 0.7096
Eigenvalue (λi) 3.89 3.84
Cumulative percent (%) 77.32

17 May 2020 0.6855
Eigenvalue (λi) 3.89 3.88
Cumulative percent (%) 77.74

1© F1 and F2 are components 1 and 2 extracted using PCA, respectively.

Table 7. Component matrix of principle component analysis 1©.

Normalized Original Variables
(Class-Level VFLMs)

1 May 2014 16 May 2017 3 May 2018 17 May 2020

F1 (θ1) F2 (θ2) F1 (θ1) F2 (θ1) F1 (θ1) F2 (θ2) F1 (θ1) F2 (θ2)

(X1) PLAND_LV5 0.914 / 0.910 / 0.914 / 0.921 /
(X2) COHESION_LV5 0.914 / 0.911 / 0.909 / 0.914 /
(X3) LPI_LV5 0.883 / 0.880 / 0.885 / 0.891 /
(X4) AI_LV5 0.827 / 0.838 / 0.826 / 0.823 /
(X5) LSI_LV5 0.627 0.572 0.611 0.586 0.596 0.579 /
(X6) PLAND_LV4 0.341 0.875 0.372 0.868 0.300 0.896 / 0.908
(X7) COHESION_LV4 / 0.923 / 0.924 / 0.924 / 0.935
(X8) LPI_LV4 / 0.873 / 0.883 / 0.880 / 0.883
(X9) AI_LV4 / 0.733 / 0.705 / 0.733 / 0.724
(X10) LSI_LV4 0.555 0.632 0.531 0.624 0.513 0.631 0.519 0.642

1© Rotation method: Varimax with Kaiser normalization.

Multiple linear regressions between normalized LST (LSTN) and F1 and F2 (Table 8) of
the four phases showed significant negative linear correlations between them (p < 0.001).
The absolute values of the standardized coefficients (β1) of F1 were all larger than those of
F2 (β2), indicating that the class-level VFLM of LV5 had a stronger regulatory effect on LST
than that of LV4. Finally, the impact weights (Wj) of all class-level VFLMs were calculated
using Equation (17), and the results are shown in Figure 9.

The heat map in Figure 9 again shows that the class-level VFLM of LV5 has a higher
impact weight on LST than that of LV4 and that PLAND_LV5 (X1) and COHESION_LV5
(X2) had the highest impact weights among all metrics, indicating that patch proportion
and natural connectivity degree between LV5 patches are the two most important factors
affecting LST, followed by LPI_LV5 (X3), AI_LV5 (X4), and LSI_LV5 (X5). In contrast to LV5,
the impact weights of the class-level VFLM of LV4 were, from high to low, in the order of
LSI_LV4 (X10), PLAND_LV4 (X6), COHESION_LV4 (X7), LPI_LV4 (X8), and AI_LV4 (X9).
In urban areas, the land-cover type of the LV5 patch is almost entirely vegetation; however,
the LV4 patch is still mixed with more land-cover types, which is the main reason for the
difference in the orders of impact weights between the VFLMs of LV4 and LV5.
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Table 8. Results of multiple linear regression between dependent variable LSTN and independent
variables F1 and F2.

Regression Coefficients 1 May 2014 16 May 2017 3 May 2018 17 May 2020

r 0.569 *** 0.612 *** 0.553 *** 0.644 ***

R2 0.323 *** 0.375 *** 0.306 *** 0.415 ***

Regression Constant 0.949 *** 0.578 *** 0.693 *** 0.635 ***

Unstandardized Coefficients
F1 −0.010 *** −0.110 *** −0.083 *** −0.109 ***
F2 −0.004 *** −0.066 *** −0.014 *** −0.054 ***

Standardized Coefficients (βi)
β1 −0.474 *** −0.463 *** −0.516 *** −0.538 ***
β2 −0.139 *** −0.207 *** −0.060 *** −0.179 ***

*** Significant: p < 0.001.

Figure 9. Heatmap of the impact weights of vegetation-fraction landscape metrics on land surface
temperature.

4. Discussion

In previous studies on the relationship between green space and LST based on mid-
or low-resolution satellite images, vegetation was generally regarded as one or several
kinds of homogeneous patches (such as grassland, farmland, and forest) in landscape
pattern analysis [12,15,39], without considering the spatial impact of vegetation density
on the thermal environment. Since vegetation density has been proven to have significant
negative correlations with LST [40,41], an innovative method was explored to incorporate
vegetation density into landscape pattern analysis in this study. According to the fraction
value of vegetation component from low to high, the land surface of the study area was
classified into five levels (or five patch types), which is similar to the land-cover types. A
same index is used to classify the urban surface with high heterogeneity, which is conducive
to revealing the difference in the impacts of the spatial patterns of patches with various
vegetation densities on UHI regulation.

The results showed that there were differences in the impacts of landscape-level and
class-level metrics on LST. Particularly, the effects of the landscape-level SHEI and CON-
TAG on LST were unstable (both positive and negative effects exist). This is mainly because
landscape-level metrics represent the regional spatial characteristics of five vegetation den-
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sity levels, which includes both the mitigation effects of high-vegetation-density patches on
the thermal environment and the enhancement impacts of low-vegetation-density patches
(with a higher density of impervious surfaces) on the surface temperature. Therefore,
the impacts of the even distribution degree and aggregation degree of the five vegetation
levels on LST depend on which level is dominant in the region. This phenomenon is
consistent with the previous research. On the premise that the land surfaces are divided
into grassland, forest, farmland, impervious water, and other types, the correlations of LST
with landscape-level metrics such as AI, LPI, CONTAG, SHDI, and PD are unstable (with
variable correlation directions and significances) [3,42].

The absolute value of the spatial correlation between class-level metrics and LST
(|Moran’s I|) gradually decreases from LV1 to LV3 and conversely increases gradually
from LV4 to LV5. This phenomenon is also owing to the variation in vegetation density
among different patches. From LV1 to LV3, the patches’ spatial patterns were positively
correlated with LST, because these patches were primarily covered by IPS and because
the vegetation cooling effect could not offset the heating effect caused by the IPS thermal
radiation and anthropogenic heat. However, as the vegetation density gradually increased
and the impervious surface density gradually decreased, resulting in a decreasing trend
of |Moran’s I|. From LV4 to LV5, the spatial pattern of patches was negatively correlated
with LST, because these patches were dominated by vegetation cover and because their
cooling effect was sufficient to control the ambient temperature. Furthermore, owing to
the gradual increase in vegetation density, |Moran’s I| showed an increasing trend. In
addition, the land-cover types of the LV5 patches were almost entirely vegetation. However,
the LV4 patches were still mixed with more land-cover types. This is an important reason
for the difference in the orders of impact weights between the VFLMs of LV4 and LV5.
In previous studies, for the patches of forest, grassland, and farmland, their class-level
metrics of PLAND, LSI, and AI were found to be negatively correlated with LST, and the
correlation between PLAND and LST was far stronger than AI [42], which is also consistent
with our results. According to our research, priority should be given to increasing the area
ratio, natural connectivity, and shape complexity degrees of high-density vegetation, which
can effectively enhance the ability of green space in regional UHI mitigation.

5. Conclusions

In this study, four periods of Landsat 8 OLI/TIRS images and various geospatial
methods (including landscape measurement, spatial correlation, and statistics) were used
to examine the spatial relationship between LST and the landscape patterns of patches with
various vegetation densities. There was a certain spatial correlation between the landscape
metrics of the five VF-level patches and LST. Landscape-level metrics such as SHDI and PD
only have significant but weak negative spatial correlations with LST, indicating that the
types of VF levels and number of patches have limited impacts on regional temperature.
However, all class-level metrics, such as PLAND, COHESION, LPI, LSI, and AI, of extreme-
and sub-high-level patches had significant negative spatial correlations with LST, and the
correlation degree was high. This indicates that spatial distribution characteristics such as
patch proportion, natural connectivity degree, predominance degree, shape complexity, and
aggregation degree of areas with high vegetation density are important factors in regulating
the thermal environment. In addition, patches with high VF levels have a strong ability to
alleviate surface temperature; in particular, PLAND and COHESION of VF LV5 patches
have the highest impact weights on LST. These findings reveal the importance of and
differences in the spatial patterns of areas with various VFs in urban thermal environment
regulation, thus providing new perspectives and references for urban green-space planning
and climate management.

Special attention should be paid to the fact that different vegetation types have sig-
nificant differences in evapotranspiration, shading, canopy heat radiation characteristics,
etc., so their spatial patterns will have different impact mechanisms on LST. Further re-
search is required on the distinction of the regulatory effects of the spatial patterns of the
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vegetation types with different canopy characteristics on LST, with the help of Uninhabited
Air Vehicles (UAV) or high-resolution satellites equipped with multi-spectral and thermal
infrared sensors.
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Appendix A

Lj =
(

Aj − Abj

)
/Abj × 100 (A1)

Sj =

√
∑n

j=1 L2
j

n
(A2)

where Lj refers to the relative value of area loss; Aj is the area of VF level j at a converted
grain size; Abj is the area of VF level j at the original grain size; n is the number of VF levels,
and Sj is the land area loss index.

Appendix B

Figure A1. (a–e) Response curves of class−level metrics against variations in grain size; (f) land area
loss index curve corresponding to grain size variation.
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Figure A2. Trends in the variation of landscape−level metrics of 101 sample points for different
spatial extents.

Figure A3. Linear regression between vegetation fraction and land surface temperature of sample
points: (a) 1 May 2014; (b) 16 May 2017; (c) 3 May 2018; and (d) 17 May 2020.

238



Remote Sens. 2022, 14, 5684

References

1. He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the Urban Heat: Situation, Background, Impacts and the Way Forward in China. Renew.
Sustain. Energy Rev. 2022, 161, 112350. [CrossRef]

2. Santamouris, M. Recent Progress on Urban Overheating and Heat Island Research. Integrated Assessment of the Energy,
Environmental, Vulnerability and Health Impact. Synergies with the Global Climate Change. Energy Build. 2020, 207, 109482.
[CrossRef]

3. Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M.; Sun, Q. (Chayn) Revisiting the Cooling Effects of Urban Greening: Planning
Implications of Vegetation Types and Spatial Configuration. Urban For. Urban Green. 2021, 64, 127266. [CrossRef]

4. Amati, M.; Taylor, L. From Green Belts to Green Infrastructure. Plan. Pract. Res. 2010, 25, 143–155. [CrossRef]
5. Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of Urban Green Patterns on Surface Urban Cool Islands and Its Seasonal Variations.

Urban For. Urban Green. 2014, 13, 646–654. [CrossRef]
6. Shih, W. Greenspace Patterns and the Mitigation of Land Surface Temperature in Taipei Metropolis. Habitat Int. 2017, 60, 69–80.

[CrossRef]
7. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the

Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]
8. Horváthová, E.; Badura, T.; Duchková, H. The Value of the Shading Function of Urban Trees: A Replacement Cost Approach.

Urban For. Urban Green. 2021, 62, 127166. [CrossRef]
9. Colter, K.R.; Middel, A.C.; Martin, C.A. Effects of Natural and Artificial Shade on Human Thermal Comfort in Residential

Neighborhood Parks of Phoenix, Arizona, USA. Urban For. Urban Green. 2019, 44, 126429. [CrossRef]
10. Deilami, K.; Rudner, J.; Butt, A.; MacLeod, T.; Williams, G.; Romeijn, H.; Amati, M. Allowing Users to Benefit from Tree Shading:

Using a Smartphone App to Allow Adaptive Route Planning during Extreme Heat. Forests 2020, 11, 998. [CrossRef]
11. Hsieh, C.M.; Li, J.J.; Zhang, L.; Schwegler, B. Effects of Tree Shading and Transpiration on Building Cooling Energy Use. Energy

Build. 2018, 159, 382–397. [CrossRef]
12. Wang, X.; Dallimer, M.; Scott, C.E.; Shi, W.; Gao, J. Tree Species Richness and Diversity Predicts the Magnitude of Urban Heat

Island Mitigation Effects of Greenspaces. Sci. Total Environ. 2021, 770, 145211. [CrossRef] [PubMed]
13. Lee, P.S.-H.; Park, J. An Effect of Urban Forest on Urban Thermal Environment in Seoul, South Korea, Based on Landsat Imagery

Analysis. Forests 2020, 11, 630. [CrossRef]
14. Zhang, Y.; Chen, L.L.; Wang, Y.; Chen, L.L.; Yao, F.; Wu, P.; Wang, B.; Li, Y.; Zhou, T.; Zhang, T. Research on the Contribution of

Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data. Remote Sens. 2015, 7,
10737–10762. [CrossRef]

15. Guo, G.; Wu, Z.; Chen, Y. Complex Mechanisms Linking Land Surface Temperature to Greenspace Spatial Patterns: Evidence
from Four Southeastern Chinese Cities. Sci. Total Environ. 2019, 674, 77–87. [CrossRef]

16. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban
Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [CrossRef]

17. Zhou, W.; Cao, F. Effects of Changing Spatial Extent on the Relationship between Urban Forest Patterns and Land Surface
Temperature. Ecol. Indic. 2020, 109, 105778. [CrossRef]

18. NOAA’s Satellite and Information Service (NESDIS) NOAA National Centers for Environmental Information. Available online:
https://www.ngdc.noaa.gov/ (accessed on 7 September 2022).

19. Li, L.; Canters, F.; Solana, C.; Ma, W.; Chen, L.; Kervyn, M. Discriminating Lava Flows of Different Age within Nyamuragira’s
Volcanic Field Using Spectral Mixture Analysis. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 1–10. [CrossRef]

20. Heinz, D.C.D.C.; Chang, C.I. Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification
in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [CrossRef]

21. Small, C. Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis. Int. J. Remote Sens. 2001, 22, 1305–1334.
[CrossRef]

22. Wu, C.; Murray, A.T. Estimating Impervious Surface Distribution by Spectral Mixture Analysis. Remote Sens. Environ. 2003, 84,
493–505. [CrossRef]

23. Ridd, M.K. Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing:
Comparative Anatomy for Cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [CrossRef]

24. Wu, C. Normalized Spectral Mixture Analysis for Monitoring Urban Composition Using ETM+ Imagery. Remote Sens. Environ.
2004, 93, 480–492. [CrossRef]

25. Wu, J. Effects of Changing Scale on Landscape Pattern Analysis: Scaling Relations. Landsc. Ecol. 2004, 19, 125–138. [CrossRef]
26. Teng, M.; Zeng, L.; Zhou, Z.; Wang, P.; Xiao, W.; Dian, Y. Responses of Landscape Metrics to Altering Grain Size in the Three

Gorges Reservoir Landscape in China. Environ. Earth Sci. 2016, 75, 1055. [CrossRef]
27. Oyana, T.J.; Johnson, S.J.; Wang, G. Landscape Metrics and Change Analysis of a National Wildlife Refuge at Different Spatial

Resolutions. Int. J. Remote Sens. 2014, 35, 3109–3134. [CrossRef]
28. Chefaoui, R.M. Landscape Metrics as Indicators of Coastal Morphology: A Multi-Scale Approach. Ecol. Indic. 2014, 45, 139–147.

[CrossRef]
29. Kong, F.; Nakagoshi, N. Spatial-Temporal Gradient Analysis of Urban Green Spaces in Jinan, China. Landsc. Urban Plan. 2006, 78,

147–164. [CrossRef]

239



Remote Sens. 2022, 14, 5684

30. Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical Patterns of the Effects of Changing Scale on Landscape Metrics. Landsc. Ecol.
2002, 17, 761–782. [CrossRef]

31. Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious
Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [CrossRef]

32. Montanaro, M.; Lunsford, A.; Tesfaye, Z.; Wenny, B.; Reuter, D. Radiometric Calibration Methodology of the Landsat 8 Thermal
Infrared Sensor. Remote Sens. 2014, 6, 8803–8821. [CrossRef]

33. Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature
Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [CrossRef]

34. Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data
and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [CrossRef]

35. Zhang, Y.; Li, L.; Chen, L.; Liao, Z.; Wang, Y.; Wang, B.; Yang, X. A Modified Multi-Source Parallel Model for Estimating Urban
Surface Evapotranspiration Based on ASTER Thermal Infrared Data. Remote Sens. 2017, 9, 1029. [CrossRef]

36. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
37. Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the Spatial Relationship between Ecosystem Services and Urbanization:

A Case Study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [CrossRef]
38. Liu, R.X.; Kuang, J.; Gong, Q.; Hou, X.L. Principal Component Regression Analysis with Spss. Comput. Methods Programs Biomed.

2003, 71, 141–147. [CrossRef]
39. Dutta, K.; Basu, D.; Agrawal, S. Synergetic Interaction between Spatial Land Cover Dynamics and Expanding Urban Heat Islands.

Environ. Monit. Assess. 2021, 193, 184. [CrossRef]
40. Wetherley, E.B.; McFadden, J.P.; Roberts, D.A. Megacity-Scale Analysis of Urban Vegetation Temperatures. Remote Sens. Environ.

2018, 213, 18–33. [CrossRef]
41. Zaitunah, A.; Samsuri, S.; Silitonga, A.F.; Syaufina, L. Urban Greening Effect on Land Surface Temperature. Sensors 2022, 22, 4168.

[CrossRef]
42. Zhao, H.; Tan, J.; Ren, Z.; Wang, Z. Spatiotemporal Characteristics of Urban Surface Temperature and Its Relationship with

Landscape Metrics and Vegetation Cover in Rapid Urbanization Region. Complexity 2020, 2020, 1–12. [CrossRef]

240



Citation: Sismanidis, P.; Bechtel, B.;

Perry, M.; Ghent, D. The Seasonality

of Surface Urban Heat Islands across

Climates. Remote Sens. 2022, 14, 2318.

https://doi.org/10.3390/rs14102318

Academic Editors: Yuji Murayama

and Ruci Wang

Received: 3 April 2022

Accepted: 6 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

The Seasonality of Surface Urban Heat Islands across Climates

Panagiotis Sismanidis 1,*, Benjamin Bechtel 1, Mike Perry 2 and Darren Ghent 2

1 Institute of Geography, Ruhr-University Bochum, 44801 Bochum, Germany; benjamin.bechtel@rub.de
2 National Centre for Earth Observation, Department of Physics and Astronomy, University of Leicester,

Leicester LE1 7RH, UK; mike.perry@leicester.ac.uk (M.P.); djg20@leicester.ac.uk (D.G.)
* Correspondence: panagiotis.sismanidis@rub.de

Abstract: In this work, we investigate how the seasonal hysteresis of the Surface Urban Heat Island
Intensity (SUHII) differs across climates and provide a detailed typology of the daytime and nighttime
SUHII hysteresis loops. Instead of the typical tropical/dry/temperate/continental grouping, we
describe Earth’s climate using the Köppen–Geiger system that empirically maps Earth’s biome
distribution into 30 climate classes. Our thesis is that aggregating multi-city data without considering
the biome of each city results in temporal means that fail to reflect the actual SUHII characteristics.
This is because the SUHII is a function of both urban and rural features and the phenology of the
rural surroundings can differ considerably between cities, even in the same climate zone. Our
investigation covers all the densely populated areas of Earth and uses 18 years (2000–2018) of land
surface temperature and land cover data from the European Space Agency’s Climate Change Initiative.
Our findings show that, in addition to concave-up and -down shapes, the seasonal hysteresis of the
SUHII also exhibits twisted, flat, and triangle-like patterns. They also suggest that, in wet climates,
the daytime SUHII hysteresis is almost universally concave-up, but they paint a more complex picture
for cities in dry climates.

Keywords: surface urban heat island; SUHI; land surface temperature; LST; seasonal hysteresis;
MODIS; ESA-CCI; Köppen–Geiger climate zones

1. Introduction

Cities are generally warmer than their surroundings. This phenomenon is known
as the Urban Heat Island (UHI) and is one of the clearest examples of human-induced
climate modification [1]. UHIs increase the cooling energy demand, aggravate the feeling
of thermal discomfort, and influence air quality [2–6]. As such, they impact the health
and welfare of the urban population and increase the carbon footprint of cities [7–9].
The root cause of an UHI is the transformation of the natural landscape to a corrugated,
mostly manufactured, and less vegetated surface [10]. The radiative, aerodynamic, thermal,
and moisture properties of man-made surfaces are fundamentally different to natural
ones, leading to reduced evapotranspiration and the uptake, storage, and release of more
heat [1,11]. The relative warmth of the urban atmosphere, surface, and substrate leads to
four distinct UHI types that are governed by a different mix of physical processes. These
four types are the canopy layer, boundary layer, surface, and subsurface UHI.

Surface UHIs (SUHI) result from modifications of the surface energy balance at urban
facets, canyons, and neighborhoods [1,12–14]. They exhibit complex spatial and temporal
patterns that are strongly related to land cover and are usually estimated from remotely-
sensed Land Surface Temperature (LST) data with a kilometer or sub-kilometer spatial
resolution [10,15–17]. These data are retrieved from satellite observations of the surface-
emitted thermal infrared radiation and provide a spatially continuous representation of the
urban surface at the satellite overpass time. The difference between the urban and rural
LST is known as the SUHI Intensity (SUHII) and is controlled primarily by differences in
the evapotranspiration and aerodynamic roughness [11,18,19]. The SUHII varies rapidly
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in space and time as the surface conditions, the weather, and the incoming radiation
change, and it is generally strongest during the daytime and summertime [13,20–23]. These
variations are driven by changes in both the urban and the rural LST [24,25] and not only by
the urban as it is usually assumed. The dependency of the SUHII on the characteristics of the
rural reference area makes it inappropriate for urban heat mitigation [24] and complicates
the analysis of multi-city SUHII data [25].

The seasonal variation of the SUHII has been extensively studied on local [15,26–32],
regional [33–40], and global [13,22,37,41] levels, primarily by analyzing monthly and
seasonal means. A global study of 419 cities with more than one million inhabitants
estimated that the 2003–2008 mean daytime SUHII is 1.9 K for the summertime and 1.1 K
for the wintertime (the corresponding nighttime means are 1.0 K) [22]. A more recent
work that examines 9500 cities and a longer time period (2000–2017) reports lower daytime
means—1.3 K for the summertime and 0.4 K for the wintertime—and that the majority (87%)
of urban areas exhibit positive daytime SUHIIs [23]. It also reports that in warm temperate
and snow cities, the SUHII peaks in June–July and is least in November–December, while in
arid and equatorial cities, it hardly shows any seasonality. Independent works investigating
the seasonal variation of the SUHII in India [35], Europe [33], China [36], and North
America [37,38] corroborate most of these findings and show that the SUHII is stronger in
temperate and continental cities than in arid and semi-arid. They also show that negative
SUHIIs occur primarily in dry areas in summer [23,38].

One of the most interesting findings, however, is that the SUHII, when plotted against
the rural LST, exhibits a rate-dependent seasonal hysteresis that strongly depends on local
climate conditions [26,29,33,34,42]. This means that the seasonal variation of the SUHII
exhibits a looping pattern whose shape is controlled primarily by the local climate and that
its magnitude (at any point in time) depends on both present (relative to that timepoint)
and recent past effects. This hysteresis is first reported in Zhou et al. [33], where seven
distinct and geographically separated types of SUHII hysteresis are identified in Europe. A
plausible explanation for the seasonal hysteresis of the SUHII is given in Manoli et al. [42],
where it is hypothesized that this behavior is the result of time lags between the surface
energy budget of urban and rural areas. Testing this hypothesis using a coarse-grained
SUHI model [43], the SUHII hysteresis of wet (London, Milan, and Paris) and dry (Madrid
and Nicosia) cities in Europe was replicated and led the authors to conclude that in wet
climates, the shape of the daytime hysteresis is controlled by the time lag between solar
radiation and the air temperature, whereas in seasonally dry climates, it is controlled by
the time lag between solar radiation and the rainfall. The former generates a concave-
up loop that is positive throughout the year and peaks in summer, while the latter is a
concave-down loop that peaks in spring and is negative during summer and autumn [42].

These findings improve our understanding about the influence of the local climate
conditions on the SUHII and it is worth further investigation and testing. The first step
toward this direction is to extend the work of Zhou et al. [33] in cities outside of Europe and
consistently describe the SUHII seasonal hysteresis in every climate inhabited by humans.
This paper aims to address this gap and derive a complete typology of the SUHII hysteresis
loops for both the daytime and nighttime. In this regard, we ask: (i) what is the shape
of the SUHII hysteresis loops in every densely populated climate; (ii) when is the SUHII
strongest and weakest within the year; (iii) what these values are; and (iv) how they relate
to the seasonal variation of the precipitation and solar radiation? To answer these questions,
we use 18 years (2000–2018) of global LST and land cover data from the European Space
Agency’s Climate Change Initiative (ESA-CCI). To characterize the climate of each city,
we use the Köppen–Geiger classification system [44] that empirically maps Earth’s biome
distribution (i.e., vegetation zones) in 30 climate classes. The SUHII is a function of both
urban and rural features [24,25], and the phenology of the rural surroundings can differ
considerably between cities, even within the same climate zone (i.e., tropical, dry, temperate,
continental, and polar). Controlling the city biomes is especially important over dry and
tropical regions where cities exhibiting positive and negative SUHIIs may coexist (e.g., in
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India [35]). In such cases, aggregating multi-city SUHII data can result in temporal means
that fail to reflect the actual SUHII characteristics and lead to erroneous conclusions.

Following this introduction, in Section 2, we describe our method for calculating the
SUHII and deriving the hysteresis loops. In Sections 3 and 4, we present our results and
discuss how they differ between climates, and in Section 5, we provide our conclusions.

2. Materials and Methods

2.1. ESA-CCI MODIS LST

The ESA-CCI project on Land Surface Temperature (LST_cci) provides validated LST
products across all land surfaces of the Earth over the past 20 to 25 years. In this work,
we use the 0.01◦ daily 2000–2018 LST_cci Terra MODIS (Moderate Resolution Imaging
Spectroradiometer) product (v.1.0) for the focus areas presented in Figure 1. Terra MODIS
is a multispectral sun-synchronous satellite instrument that crosses the equator at 10:30
(local solar time) in the descending orbit and 22:30 in the ascending orbit and views almost
the entire surface of the Earth every day. The LST_cci MODIS LST are retrieved as a linear
combination of the 11.0 μm and 12.0 μm clear-sky brightness temperatures (BT) using a
Generalized Split-Window (GSW) algorithm [45]. The GSW coefficients depend on the
satellite view angle and the water vapor and are derived by linearly regressing simulated
BT and LST for various conditions. The land surface emissivity is used explicitly in the GSW
formulation and is obtained from the Baseline Fit Emissivity Database of the Cooperative
Institute for Meteorological Satellite Studies (CIMSS) [46], while the cloud masks are from
the MOD35_L2 operational product. A strong point of the LST_cci MODIS data is that they
provide a detailed quantification of the uncertainty of each pixel using three uncertainty
components: the random (uran), the locally correlated (uloc), and the systematic (usys).
The employed uncertainty model is described in detail in Ghent et al. [47] and is equally
applicable across different surface temperature domains. In this work, we use the total LST
uncertainty (utotal) of each pixel, by combining uran, uloc, and usys using Equation (1).

utotal =
√

u2
ran + u2

loc + u2
sys (1)

Figure 1. Areas of dense human habitation and the focus areas of this work. The present Köppen–
Geiger climate zones are also shown.

2.2. Present Köppen–Geiger Climate Classification Map

The present (1980–2016) Köppen–Geiger climate map from Beck et al. [44] classifies
Earth’s climate into five main classes and 30 sub-classes (Figure 1). The five main classes
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are the tropical, dry, temperate, continental, and polar, while the sub-classes reflect differ-
ences in seasonal precipitation and level of heat. It is derived from an ensemble of four
independent high-resolution (~1 km) climatic maps of air temperature and precipitation
that have been topographically corrected and adjusted to reflect the period 1980–2016. The
classification is based on threshold values and the seasonality of monthly air temperature
and precipitation, and it is applied to each climatic dataset combination separately (12 in
total; for full details, see [44]). The final climate map is derived from the 12 individual
maps by selecting, for each grid-cell, the most common Köppen–Geiger climate class. A
corresponding confidence map is also derived by dividing the frequency of occurrence
of the most common class by the ensemble size and converting these fractions to percent-
ages [44]. In general, class confidence levels are generally lower in the vicinity of borders
between climate zones, especially in high-latitude regions where the climatic data have
higher uncertainty.

2.3. City Delineation and SUHII Calculation

To delineate the cities in the focus areas of Figure 1, we use land cover (LC) data from
the ESA-CCI Land Cover project [48]. This data product provides annual high-resolution
(300 m) LC maps that classify the global surface in 37 classes according to the United Nations
Land Cover Classification System (UNLCCS) with an overall accuracy of 75.4% [48]. To
process the LC data, we first resample them to the 0.01◦ × 0.01◦ LST grid by calculating
the LC fractions of each grid cell. Then, for each year from 2000 to 2018, we create a
binary urban mask of all the pixels that have an urban fraction of at least 95%, a water
fraction equal to 0%, and are more than ~2 km away from the coastline. To eliminate single
pixels and small objects from the resulting masks, we apply a morphological operator that
removes any objects with eight or fewer connected pixels using scikit-image v.0.18.1 [49].
Finally, we segment the filtered masks into clusters that correspond to cities and label all
the instances of each city with the same unique ID. Our method follows the principle of the
City Clustering Algorithm [50], which has been used in several SUHII studies due to its
ability to describe the extent of a city more accurately than administrative or population
data [18,22,33].

To select appropriate rural pixels for each city, we use the Boundary Generation
Algorithm (BGA) [33] that iteratively expands a rural buffer around each city until its size
is approximately that of the urban area. To ensure consistency in the SUHII estimates over
time, we create a single rural buffer per city that is representative for all the years between
2000 and 2018. In our implementation of BGA, we do not use all the pixels in each new
ring but filter them according to the following rules: the rural LC fraction of each candidate
pixel is at least 95% for every year between 2000 and 2018; the corresponding urban and
water LC fractions are equal to 0%; and the elevation of each candidate pixel does not differ
by more than ±200 m from the median elevation of the corresponding city. Here, we define
as rural LC the aggregate class that is derived by summing the LC fractions presented in
Table 1 (the resulting class closely resembles LCZ B, C, D, and F [51]). To ensure that only
rural pixels adjacent to each city are selected, the search zone of BGA is limited to within
30 pixels from the city boundary.

Following standard practice [1,13,22,33], we calculate SUHII as the difference between
the mean urban (LSTurban) and rural LST (LSTrural) for each date d (Equation (2)).

SUHII(d) = LSTurban(d)− LSTrural(d), (2)
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Table 1. The rural LC component classes.

ID ESA-CCI Land Cover Class

10 Rainfed croplands
11 Rainfed croplands with herbaceous cover
12 Rainfed croplands with tree or shrub cover
20 Irrigated croplands
30 Mosaic croplands (>50%) with natural vegetation
40 Mosaic natural vegetation (>50%) with croplands

110 Mosaic herbaceous cover (>50%) with trees and shrubs
120 Shrublands
121 Evergreen shrublands
122 Deciduous shrublands
130 Grasslands
140 Lichens and mosses
150 Sparse vegetation
151 Sparse trees
152 Sparse shrubs
153 Sparse herbaceous cover
200 Bare areas
201 Consolidated bare areas

We apply Equation (2) to each city (separately for daytime and nighttime), using the
corresponding urban and rural masks to select the respective MODIS pixels. Before we
calculate the urban and rural means, we quality-filter the LST data of each group, keeping
only the values that range from 240 K to 360 K and have a total uncertainty equal or better
than 2 K. In addition to these two checks, we also apply a median absolute deviation test to
remove any remaining outliers (the test statistics are calculated separately for the urban
and rural pixels of each city, using the corresponding LST for each year). To evaluate our
SUHII estimates, we compare them with reference SUHIIs derived from MOD11A1 v.6.0
LST using the method described above (the results are presented in Appendix A).

2.4. Data Analysis

Our goal is to analyze the seasonal hysteresis of SUHII vs. LSTrural as a function of
climate. To do this, we use the ~1 km Köppen–Geiger present climate map from Beck
et al. [44] and assign each city to a climate class. To reduce misclassifications, we keep only
the cities where the climate confidence flag is at least 90%. We also discard any climate
classes with insufficient SUHII data (<10% of clear-sky days) and/or fewer than 10 cities.
To derive each class’s hysteresis loop, we first calculate the 2000–2018 SUHII and LSTrural
monthly means for each city. We do this using only the dates where at least 70% of the
urban and rural pixels are available. Before we calculate the monthly means, we subtract
from each date 80 days (i.e., the approximate day-of-year of spring equinox) if it is a north
hemisphere city and 265 days if it is south. This, in essence, results in a custom calendar
where the corresponding south and north hemisphere equinoxes and solstices are in sync.
To derive the SUHII hysteresis loop for each climate class, we average the hysteresis loops
from the individual cities located in that class. For this calculation, we use only the cities
with complete loops, i.e., loops without missing months. To describe and compare the
resulting hysteresis patterns, we use the loop direction, the minimum and maximum SUHII
(calculated using the absolute values), and the month when these values occur. In contrast
to Zhou et al. [33], we do not approximate the LSTrural and SUHII time series of each city
with a Fourier series but follow a data-driven approach that relies on the good quality and
the large volume of the collected data.

To investigate the influence of precipitation and solar radiation on the shape of the
resulting loops, we use precipitation data (v2020) from the Global Precipitation Climatology
Centre (GPCC) [52] and at-surface clear-sky downwelling shortwave fluxes (SW) [53] from
the CERES Level-3b Energy Balanced and Filled Climate Data Record (v4.1). Both datasets
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provide global coverage, are available at monthly resolution, and cover the study period
(2000–2018). To extract the corresponding precipitation and SW time series for each city,
we use the coordinates of the urban polygon centroid. This is because the grid-cell size
of the precipitation and SW data (0.5◦ × 0.5◦ for the former and 1◦ × 1◦ for the latter) is
much coarser than that of the LST data. To derive the climate-class monthly means, we
first calculate the 2000–2018 mean precipitation and SW value per month and city and then
aggregate the data from the relevant cities, as performed for SUHII and LSTrural. To analyze
the seasonality of SUHII and LSTrural versus that of precipitation, and SW per climate class,
we study their co-seasonality and determine the months of minimum and maximum.

3. Results

3.1. Delineated Cities and SUHII Climatology

Using the City Clustering Algorithm [50], we delineate 1511 global cities in one tropical,
two dry, five temperate, and three continental Köppen–Geiger classes (Table 2). The location
and the number of cities per class is presented in Figure 2, while their characteristics (area,
elevation, and percentage of coastal/inland cities) are discussed in Appendix B. From
these 11 classes, 10 include more than 50 cities, 6 more than 100 cities, and 1 more than
300 cities. The majority (90.5%) of them are located in Asia (40.0%), Europe (27.5%), and
North America (23.0%), and only 9.5% are in Africa (5.9%), South America (2.7%), and
Oceania (0.9%). In Figure 2, we also present the daytime (~10:30 local time) and nighttime
(~22:30 local time) SUHII climatology of each class as the bivariate distribution of the daily
SUHII and LSTrural that we have randomly sampled using the months as strata.

The tropical class is the Aw (tropical savanna), which comprises African, Asian, and
South American cities (Figure 2A). The Aw climate has two distinct seasons—a wet and
a dry—and is warm throughout the year. This weak seasonality is evident in the SUHII
climatologies in Figure 2A, which are shaped like convex blobs. The interquartile range
(shown as [Q25, Q75], where Q25 and Q75 are the first and third quartiles) of the Aw SUHII
is [−0.4 K, 3.1 K] for the daytime and [0.5 K, 2.2 K] for the nighttime. The corresponding
LSTrural values are [306 K, 315 K] and [293.7 K, 298.9 K], respectively, which make the
Aw the climate with the least intra-annual variation in our analysis (the corresponding
means are shown in Table 3). The dry classes are the BSh (hot semi-arid) and the BSk (cold
semi-arid). They are intermediate climates between desert and humid climates and are
usually dominated by grasslands and shrubs. In our analysis, the BSh is represented mainly
by cities in India, Africa, Mexico, and the Middle East, while the BSk is represented by cities
in Europe and Asia. The shape of the BSh and BSk SUHII climatologies is more complex
than that of the Aw and clearly influenced by seasons (Figure 2B,C). The interquartile range
of the daytime SUHII (and LSTrural) is [−2.0 K, 0.8 K] ([305.7 K, 319.8 K]) for the BSh and
[−1.4 K, 1.2 K] ([283.7 K, 310.3 K]) for the BSk. The corresponding nighttime values are
[1.1 K, 2.8 K] ([288.0, K 298.9 K]) and [1.0 K, 2.8 K] ([270.1 K, 290.6 K]), respectively. The
key characteristic of these two dry climates is that daytime SUHIIs are mostly negative,
especially when the LSTrural is maximum.

The five temperate classes are the Csa (hot-summer Mediterranean), Cfa (humid
subtropical), Cfb (oceanic), Cwa (dry-winter humid subtropical), and Cwb (dry-winter
humid highland). Temperate climates are generally defined as environments with moderate
rainfall, sporadic droughts, mild-to-warm summers, and cool-to-cold winter. They occur
in mid-latitude regions and have four seasons (winter, spring, summer, and autumn).
The Csa exhibits wet winters and hot, dry summers and is water deficient during part
of the growing season. This makes the daytime climatology of the Csa (Figure 2D) to be
considerably different than that of the other temperate climates. It has a concave-down
shape with negative summertime SUHIIs and an interquartile range of [−1.1 K, 1.3 K] for
the SUHII and [294.2 K, 313.1 K] for the LSTrural. In contrast, the shape of the Csa nighttime
climatology is convex and always positive with an interquartile range of [0.9 K, 2.5 K]
and [282.4 K, 293.8 K], respectively. The Cfa is represented by cities in North and South
America, Europe, Australia, and Asia (Figure 2E), while the Cfb is represented by cities in
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western Europe (Figure 2F). Their daytime (and nighttime) climatologies exhibit almost
identical concave-up shapes, with the SUHII and LSTrural peaking almost simultaneously.
The daytime interquartile range of the SUHII (and LSTrural) is [0.3 K, 3.2 K] ([292.9 K,
309.1 K]) for the Cfa and [0.4 K, 3.0 K] ([282.0 K, 301.5 K]) for the Cfb. The corresponding
nighttime values are [0.7 K, 2.2 K] ([279.6 K, 294.8 K]) and [0.4 K, 1.9 K] ([275.1 K, 285.9 K]).
The last two temperate classes, namely the Cwa and Cwb, are represented mainly by cities
in Asia and Central America, respectively. The Cwa is a monsoon-influenced climate with
dry winters and hot summers, while the Cwb is a climate mainly found in tropical and
subtropical highlands with cold, dry winters and rainy summers. They both exhibit a
completely different daytime SUHII climatology than the other temperate climates. The
shape of the Cwa climatology is presented in Figure 2G, while that of the Cwb is in
Figure 2H. The interquartile range of the daytime SUHII (and LSTrural) is [−0.1 K, 2.5 K]
([298.0, 311.0]) for the Cwa and [−1.0 K, 3.4 K] ([301.1 K, 310.0 K]) for the Cwb. The
corresponding nighttime values are [1.0 K, 2.5 K] ([286.2 K, 298.1 K]) and [1.1 K, 3.4 K]
([282.5 K, 290.1 K]), respectively.

The three continental Köppen–Geiger classes are the Dfa (hot-summer humid continen-
tal), Dfb (warm-summer humid continental), and Dwa (monsoon-influenced hot-summer
humid continental). The Dfa is represented mainly by cities in North America (Figure 2I),
while the Dfb (Figure 2J) and the Dwa (Figure 2K) are represented by cities in Europe
and Asia, respectively. Continental climates occur within large landmasses away from
the moderating effect of oceans and are characterized by an extreme range of annual near-
surface air temperatures. They exhibit four distinct seasons (winter, spring, summer, and
autumn) with warm-to-hot summers and cold, snowy winters. The shapes of the Dfa,
Dfb, and Dwa climatologies (Figure 2I–K) are almost identical and quite similar to that
of the Cfa and Cfb (Figure 2E,F). When the LSTrural is below 300 K, the daytime SUHII of
continental climates is rather constant and close to 1 K. Above 300 K, the SUHII increases
considerably and peaks when the LSTrural is maximum. The shape of the corresponding
nighttime climatologies are rather flat and featureless like all the other climates presented
in Figure 2. The interquartile range of the daytime SUHII is [0.3 K, 3.3 K] for the Dfa,
[0.2 K, 2.7 K] for the Dfb, and [−0.5 K, 2.5 K] for the Dwa. The corresponding nighttime
values are [0.5 K, 2.1 K], [0.4 K, 2.4 K], and [1.1 K, 2.8 K]. The extreme range of continental
annual temperatures is evident in the interquartile range of the daytime LSTrural, which is
[282.9 K, 304.8 K] for the Dfa, [275.2 K, 302.4 K] for the Dfb, and [282.5 K, 306.7 K] for the
Dwa. The corresponding nighttime values are [271.5 K, 290.2 K], [268.9 K, 285.7 K], and
[270.1 K, 292.3 K].

Table 2. The Köppen–Geiger climate classes analyzed in this work.

ID Parent Class Description

Aw Tropical Tropical savanna with dry-winter characteristics
BSh Dry Hot semi-arid
BSk Cold semi-arid
Csa

Temperate

Hot-summer mediterranean
Cfa Humid subtropical
Cfb Oceanic
Cwa Dry-winter humid subtropical
Cwb Dry-winter subtropical highland
Dfa

Continental
Hot-summer humid continental

Dfb Warm-summer humid continental
Dwa Monsoon-influenced hot-summer humid continental
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Figure 2. The location and number of delineated cities per Köppen–Geiger climate class and the
corresponding daytime and nighttime SUHII climatologies visualized as the bivariate distribution of
daily SUHII and rural LST. Each distribution presents all the possible combinations of SUHII and
rural LST and is unique and characteristic of the respective climate class. The colors indicate how
likely each combination is: yellow indicates the most likely and blue the least.
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Table 3. The mean and the standard deviation (SD) of the 2000–2018 daily SUHII and rural LST
shown in Figure 2.

Climate

SUHII (K) Rural LST (K)

Daytime Nighttime Daytime Nighttime

Mean SD Mean SD Mean SD Mean SD

Aw 1.3 2.7 1.4 1.2 311.0 7.0 296.2 4.0
BSh −0.6 2.3 2.0 1.3 312.3 9.6 293.4 6.7
BSk −0.1 2.1 1.9 1.3 296.5 17.0 279.7 13.0
Csa 0.0 2.0 1.7 1.2 303.6 11.0 287.8 7.3
Cfa 1.8 2.2 1.5 1.2 301.0 11.0 287.3 9.3
Cfb 1.7 1.9 1.2 1.1 292.1 11.4 280.5 6.9
Cwa 1.2 2.0 1.8 1.2 304.5 10.2 291.5 8.3
Cwb 1.2 3.1 2.2 1.6 305.5 7.2 286.0 5.1
Dfa 1.9 2.3 1.4 1.2 293.8 13.6 280.6 11.1
Dfb 1.5 1.9 1.5 1.4 288.2 17.0 276.3 11.5
Dwa 1.1 2.3 2.1 1.4 294.4 16.2 280.2 14.3

3.2. SUHII Seasonal Hysteresis

The daytime SUHII hysteresis loops of the examined climate classes are presented in
Figure 3. Overall, their shape matches well that of the SUHII climatologies and provides a
clearer view of how the SUHII and LSTrural vary within the year. They are the most different
for temperate climates (Table 2), where each sub-class exhibits a distinct looping pattern.
The daytime Cfa and Cfb hysteresis loops exhibit a concave-up pattern, as the model of
Manoli et al. [42] suggests, with the SUHII and LSTrural peaking almost simultaneously.
The shape of the Csa loop exhibits a weak concave-down pattern, while that of the Cwa
exhibits a twisted concave-up pattern. The shape of the Cwb daytime loop is convex
(triangle-like), as is the case for the Aw. For cities in the Dfa, Dfb, and Dwa continental
climates, the daytime SUHII hysteresis shows a concave-up pattern that is flat when the
LSTrural is below ~300 K and peaks rapidly as the LSTrural increases. Similarly, to the Cfa
and Cfb climates, the SUHII and LSTrural of the Dfa, Dfb, and Dwa become maximum
almost simultaneously. For the BSh and BSk semi-arid climates, the daytime SUHII loops
are rather flat. This result does not agree well with the shapes of the individual city loops
shown in Figure 3 (grey lines). Further investigations focusing on the BSh cities show
that the shape of the individual hysteresis loops differs with geographic location and can
take the form of concave-down, flat, twisted, and triangle-like loops (Figure 4). These
differences are attributed primarily to differences in the characteristics of the surrounding
rural areas, which exert a strong influence on the SUHII [24,25], and suggest that semi-arid
cities should be classified into even finer groups. Our analysis also shows that the shape of
the humid temperate and continental loops is more stable than that of the dry-climate loops.
This observation corroborates the remark of Manoli et al. [42] that the shape of dry-climate
loops is more susceptible to perturbations in the seasonality and the magnitude of rainfall.
The direction of the daytime loops is clockwise in all cases, except for the Aw, BSh, Cwa,
Cwb, and Dwa (Figure 3).
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Figure 3. The daytime SUHII hysteresis loops for each Köppen–Geiger climate class (colored lines).
Each black dot represents a month (the start and end points correspond to spring equinox), and the
change in color indicates the direction of each loop. The solid grey loops represent the individual city
loops per climate class, and the dashed one represents the corresponding parent-class loops.

Figure 4. The individual daytime SUHII hysteresis loops for hot semi-arid (BSh) cities in North Africa
(A), South Asia (B), Central America—Mexico (C), Central America—USA (D), and West Africa (E).
The dashed line is the mean BSh loop from Figure 3.

In Figure 5, we present the seasonal variation of the daytime SUHII, SW, and precipita-
tion for each Köppen–Geiger class examined in this work. We focus on these two variables
because they have been shown to play a key role in the seasonality of the SUHII [42]. For
the Aw cities we observe that the SUHII peaks when the SW and precipitation are almost
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maximum. This is also the case for the Cwb cities in our analysis, which are located mainly
in elevated regions within the tropics and the subtropics (Figure 2H). In temperate and
continental climates (Cfa, Cfb, Dfa, and Dfb), where the precipitation is rather constant
throughout the year, the SUHII appears to vary mainly with the SW. This, however, is not
the case for the Cwa and Dwa variates that exhibit a monsoonal tendency with a much
higher precipitation in summer than in winter. In these climates, the SUHII intensifies as the
summertime precipitation peaks, which suggests that monsoons influence the concave-up
hysteresis of the SUHII in the Cwa and Dwa. The climate class with the most distinct
behavior is the hot-summer Mediterranean (Csa), where the precipitation decreases as
the SW increases. The anti-correlation between the SW and precipitation during spring
and summer makes the Csa SUHII-SW-precipitation loop the only one with a clockwise
direction (Figure 5). The daytime SUHII of the Csa cities peaks in late spring/early summer
and then starts to drop as the precipitation approaches its minimum and SW its maximum.
During this phase, a significant portion of the natural vegetation begins to dry due to water
stress [54]. Under such water-limited conditions, the evapotranspiration of rural areas
decreases, which impacts their ability to cool [11,42]. In dry-climate cities, the precipitation
is low throughout the year and does not vary much with the SW (monsoon-influenced cities
in India make the bulk of the examined BSh cities and are responsible for the precipitation
peak in Figure 5). The SUHII of the BSh and BSk cities does not vary with the SW either;
however, as discussed above, this result is a fluke caused by averaging dissimilar SUHII
loops (see Figures 3 and 4). Overall, Figure 5 shows that the SUHII of tropical, temperature,
and continental cities is generally strongest when the SW and precipitation peak. Under
these conditions, the vegetation surrounding each city reaches peak greenness, which
in turn suggests that the observed SUHII increase should not be attributed solely to an
increase in the urban LST.

 
Figure 5. The seasonal variation of precipitation, clear-sky at-surface downwelling shortwave
radiation flux (SW), and daytime SUHII for each Köppen–Geiger climate class examined in this work.
Each dot represents a month (the start and end points correspond to spring equinox). The monthly
means refer to the years 2000–2018 and the color of the line indicates the direction of each loop.
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The corresponding nighttime hysteresis loops are rather similar and exhibit mostly
flat and concave-up patterns (Figure 6). In humid temperate and continental climates, the
SUHII increases and decreases almost in sync with the LSTrural, while in dry climates, the
shape of the nighttime hysteresis loops is mainly flat. The looping direction is always
clockwise and the classes with the most distinct nighttime loops are the BSh for the dry
climates, the Cfb for the temperate, and the Dwa for the continental. Contrary to the
daytime, the shape of the individual BSh and BSk nighttime hysteresis loops are more alike
and better represented by the mean loop (Figure 6). In respect to the seasonal variation of
the precipitation and SW, the nighttime SUHII of the Csa, Cfa, Cfb, Dfa, and Dfb cities is
strongest when the SW peaks (Figure 7). In contrast, the nighttime SUHII of the Aw cities
is weakest when the precipitation and SW peak.

Figure 6. The nighttime SUHII hysteresis loops for each Köppen–Geiger climate class (colored lines).
Each black dot represents a month (the start and end points correspond to spring equinox), and the
change in color indicates the direction of each loop. The solid grey loops represent the individual city
loops of each climate class, and the dashed one represents the corresponding parent-class loops.
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Figure 7. The seasonal variation of precipitation, clear-sky at-surface downwelling shortwave
radiation flux (SW) and nighttime SUHII for each Köppen–Geiger climate class examined in this
work. Each dot represents a month (the start and end points correspond to spring equinox). The
monthly means refer to the years 2000–2018, and the color of the line indicates the direction of each
loop.

In Figures 3 and 6, we also include the SUHII hysteresis of the dry, temperate, and
continental parent classes (dashed lines) that we derive using the individual loops from all
the relevant cities. The results support our thesis that aggregating multi-city data without
considering the biome of each city can result in temporal means that fail to reflect the actual
SUHII characteristics and show that the shape of each parent-class loop is determined by
the climate sub-class with the most cities. This is particularly the case for the Cfa and Cfb,
where the daytime temperate parent-class loop reflects their shape and is not representative
of the other temperate sub-classes (e.g., Csa or Cwb, as seen in Figure 3).

3.3. Month of Minimum and Maximum SUHII

The month when the SUHII of each hysteresis loop is maximum and minimum in
absolute values is shown with black dots in Figures 8 and 9 (the corresponding magnitudes
are provided in Table 4). The colored dots refer to the individual city loops and indicate
the variability in the examined cities. For the Aw cities, the daytime SUHII is strongest
in September (4.3 ± 0.8 K) and weakest in February (−0.1 ± 0.7 K). The peak occurs
four months later than that of the daytime LSTrural and one month later than that of the
precipitation (Figure 8). The nighttime SUHII peaks in January (1.4 ± 0.2 K) and is least in
September (0.8 ± 0.2 K), whereas the Aw LSTrural is maximum in May and minimum in
December/January.
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Figure 8. The month when SUHII, rural LST, SW, and precipitation are strongest per climate class. The
colored dots represent the individual SUHII loops and the black dots the Köppen–Geiger climate-class
mean loop (BSh and BSk are not included).

Figure 9. The month when SUHII, rural LST, SW flux, and precipitation are minimum. The colored
dots represent the individual SUHII loops, and the black dots the Köppen–Geiger climate-class mean
loop (BSh and BSk are not included).
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Table 4. The minimum and maximum SUHII (and the 95% confidence intervals) for the Köppen–
Geiger climate-class means shown in Figures 8 and 9 (black dots).

Climate
Maximum SUHII (K) Minimum SUHII (K)

Daytime Nighttime Daytime Nighttime

Aw 4.3 ± 0.8 1.4 ± 0.2 −0.1 ± 0.7 0.8 ± 0.2
BSh - 1.9 ± 0.2 - 1.1 ± 0.3
BSk - 2.0 ± 0.2 - 1.4 ± 0.2
Csa 1.5 ± 0.4 1.8 ± 0.2 0.0 ± 0.2 0.9 ± 0.2
Cfa 3.6 ± 0.3 1.7 ± 0.1 0.7 ± 0.1 1.1 ± 0.1
Cfb 4.0 ± 0.2 1.9 ± 0.1 0.4 ± 0.1 0.4 ± 0.1
Cwa 4.1 ± 0.5 1.9 ± 0.2 0.0 ± 0.2 1.4 ± 0.1
Cwb 3.8 ± 1.3 2.2 ± 1.1 0.2 ± 0.6 1.3 ± 1.1
Dfa 3.9 ± 0.4 1.9 ± 0.1 0.4 ± 0.1 0.7 ± 0.1
Dfb 3.3 ± 0.2 2.2 ± 0.1 0.3 ± 0.1 0.7 ± 0.1
Dwa 5.2 ± 0.3 2.4 ± 0.2 0.0 ± 0.1 1.5 ± 0.1

The daytime SUHII and LSTrural of semi-arid cities is generally strongest in summer.
The nighttime SUHII peaks in November (1.9 ± 0.2 K) for the BSh and in June (2.0 ± 0.2 K)
for the BSk, while the LSTrural peaks in August. In hot-Mediterranean (Csa) cities, the
daytime SUHII is warmest in May (1.5 ± 0.4 K) and the LSTrural in August. In contrast, the
nighttime SUHII peaks in July (1.8 ± 0.2 K) when the precipitation is minimum and the
LSTrural is almost maximum. The month when the Csa SUHII and LSTrural are weakest is
January (Figure 9). The Csa is the only temperate climate where the daytime SUHII peak
occurs in spring and not in summer.

In wet temperate climates, the SUHII is strongest in summer. It peaks in August for
the Cfa and in June/July for the Cfb. The corresponding SUHII magnitudes are 3.6 ± 0.3 K
and 4.0 ± 0.2 K for the daytime and 1.7 ± 0.1 K and 1.9 ± 0.1 K for the nighttime (Table 4).
The LSTrural and SW also peak in summer, while the precipitation is relative constant
throughout the year (this explains the pronounced dispersion of the Cfa and Cfb colored
dots in Figures 8 and 9). The SUHII is weakest in December/January for both climate
classes, with the Cfa exhibiting a slightly greater magnitude (~0.9 K vs. 0.4 K). The daytime
SUHII of the Cwa and Cwb cities is maximum in August/September and minimum in
December. This is also the case for the precipitation, SW, and LSTrural. The maximum
daytime SUHII is equal to 4.1 ± 0.5 K for the Cwa and 3.8 ± 1.3 K for the Cwb, while
the corresponding minimums are 0.0 ± 0.2 K and 0.2 ± 0.6 K, respectively (Table 4). The
nighttime SUHII peaks earlier than the LSTrural (in April/May vs. July/August) and is
equal to 1.9 ± 0.2 K for the Cwa and 2.2 ± 1.1 K for the Cwb.

In continental climates (Dfa, Dfb, and Dwa), the SUHII and LSTrural are warmest
in July/August. The only exception is the Dwa where the nighttime SUHII peaks in
February (Figure 8). The precipitation also peaks in July, while the SW peaks in June.
The maximum daytime SUHII is 3.9 ± 0.4 K for the Dfa, 3.3 ± 0.2 K for the Dfb, and
5.2 ± 0.3 K for the Dwa. The corresponding nighttime values are 1.9 ± 0.1 K, 2.2 ± 0.1 K,
and 2.4 ± 0.2 K. The daytime SUHII minimums occur in November/December and the
nighttime in January/December, except for the Dwa which occurs in August (Figure 9). The
corresponding values are ~0 K for the daytime and 0.7 ± 0.1 K (Dfa, Dfb) and 1.5 ± 0.1 K
(Dwa) for the nighttime. Figures 8 and 9 also show that the daytime and nighttime,
minimum and maximum SUHII do not always occur in the same month. We attribute this
to the different mechanisms that drive the SUHII during the day and night.

4. Discussion

In this work, we revisit the topic of SUHII seasonality and how it differs across climates.
Instead of the typical tropical/dry/temperate/continental grouping, we describe Earth’s
climate using the Köppen–Geiger system that empirically maps Earth’s biome distribution
into 30 climate classes [44]. This climate classification system has proven to be a highly
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suitable means for aggregating complex climate gradients into simple but ecologically
meaningful classes [44]. As such, it is regularly used across a range of disciplines for
regionalizing variables [55]. We find this property particularly suitable for our work
because it allows an indirect control of the biome of each city. Even though a global
vegetation map would provide more accurate labels about the city biomes, this approach
also leads to a sufficient discrimination between the examined tropical, temperate, and
continental cities. This is because climate is the basis for most plant vegetation systems,
and the regional extend of each biome is primarily determined by it.

Previous studies investigating the characteristics of the SUHII on a global level have
largely neglected to control the biome of each city, despite the fact that it exerts a strong
influence on the SUHII. The SUHII is a function of both urban and rural features [24,25],
and the phenology of the rural surroundings can differ considerably between urban areas
even within the same climate zone. This implies that failing to control this parameter
when aggregating multi-city data can result in temporal means that do not reflect the
actual SUHII dynamics of each group. Our findings support this thesis and show that the
seasonality of tropical, dry, temperate, and continental SUHIIs differs considerably during
the daytime. They also reveal that in dry and temperate climates, the SUHII seasonal
dynamics exhibit considerable intra-class variations that cannot be represented by the
parent class. The comparison between the SUHII characteristics (i.e., hysteresis, range,
and month of minimum/maximum) of the temperate parent class and the corresponding
sub-classes provides clear evidence of this and suggests that the parent-class characteristics
reflect those of the dominant sub-class. This suggests that using parent-class summaries
to make inferences about the SUHII characteristics of cities in non-dominant climate sub-
classes should be avoided or exercised with caution. In contrast to daytime data, this
issue does not appear to affect the analysis and aggregation of nighttime SUHIIs as much,
particularly because they exhibit less inter- and intra-class annual variation.

The derived SUHII hysteresis loops reveal the strong influence that local climate
conditions exert on daytime SUHIIs and suggest that almost every climate class exhibits a
unique daytime looping pattern. For temperate climates, our results replicate the daytime
concave-up and -down patterns observed in Europe [33,42] and present the convex and
twisted hysteresis of temperate dry-winter cities in America and Asia. They also show that
the daytime hysteresis of continental cities in Asia, Europe, and North America is always
concave-up, with a rather constant SUHII when the LSTrural is below 300 K. For cities in dry
semi-arid climates, we found a rather flat SUHII seasonality, like Chakraborty and Lee [23].
However, examining the individual daytime loops of semi-arid cities, we observed a variety
of flat, twisted, triangle-like, and concave-up patterns that depend strongly on geographic
location. This finding suggests that dry-climate SUHIIs should be grouped into even finer
classes that describe the rural features in more detail (e.g., using the land cover fractions).

Overall, our results provide the most complete typology of daytime and nighttime
hysteresis loops to date. This information improves our understanding about the global
SUHII dynamics and can guide the analysis of multi-city SUHII data from different climates.
The development of a consistent framework for analyzing global SUHI data has been the
focus of many papers over the years [10,13,23,39]. Our work contributes to this goal by
proposing a consistent method for delineating cities and demonstrating the impact of
improper data aggregation. Future efforts should introduce further controls and investigate
how the seasonal hysteresis of the SUHII varies as a function of urban form and function.
These two attributes exhibit considerable heterogeneity [56,57] on a global level and have
been shown to influence the SUHII [10,58]. Here, we overlook this issue primarily because
we use coarse resolution data (~1 km) and a custom definition of urban areas that selects
only pixels that form densely built-up clusters with almost no vegetation. The employed
definition improves the consistency of the derived multi-city SUHII data by mitigating
the influence of urban green. However, it also results in city polygons that are smaller,
more fragmented, and with more gaps in comparison to city polygons retrieved from
administrative or land cover data. This work is also one of the first to use data from the
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new ESA-CCI LST product that has been designed to meet the requirements of the Global
Climate Observing System (GCOS) for climate applications.

In respect to other global SUHII studies [13,23], our study includes fewer cities. This
is mainly due to the minimum city size threshold that we use to ensure that the employed
cities are adequately resolved in the ~1 km LST data. A consequence of this decision is that
our SUHII estimates are warmer than that from other studies (this is because the SUHII
and city size are positive correlated [58,59]). We are also skeptical about the direct use of
the findings presented here and in similar works for informing heat mitigation actions.
This is due to the dependency of the SUHII on the characteristics of the reference rural
areas [24,25] and also because the canopy-layer UHIs—which are the ones that should be
mitigated—differ significantly from the SUHIs [12,17] and do not exhibit any pronounced
seasonal hysteresis [26]. Nevertheless, this information can help us better understand how
rural and urban land covers react to time-lags between radiation forcing and precipitation,
which might provide further insights about urban heat.

5. Conclusions

The seasonal variation of the SUHII exhibits distinct hysteretic patterns that depend
on the local climate conditions and in particular on the seasonal availability of energy
and water. In this work, we use the new ESA-CCI LST data product for the Terra MODIS
and characterize the seasonal hysteresis of the SUHII in almost every Köppen–Geiger
climate class inhabited by humans. Our results advance the state-of-the-art and provide
the most complete typology of daytime and nighttime SUHII hysteresis loops to date.
They reveal that in addition to concave-up and -down shapes, the seasonal hysteresis
of the daytime SUHII can also exhibit twisted, flat, and triangle-like patterns, and that
nighttime loops are mostly flat and concave-up. They suggest that, in wet climates, the
daytime SUHII hysteresis is almost universally concave-up but paint a more complex
picture for dry climate cities, where the reference rural areas are more heterogenous and
actual evapotranspiration is less than potential evapotranspiration. They also show that
aggregating SUHII data from cities in different biomes results in temporal means that do
not reflect the actual SUHII characteristics. Even though our results cannot and should not
be used for urban heat mitigation, they improve our understanding about the global SUHI
variability and the influence that rural surroundings exert on SUHII.
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ESA-CCI European Space Agency’s Climate Change Initiative
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LST_cci ESA-CCI project on Land Surface Temperature
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RMSD Root-Mean-Square-Deviation
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SUHI Surface Urban Heat Island
SUHII Surface Urban Heat Island Intensity
SW At-surface clear-sky downwelling shortwave fluxes
UHI Urban Heat Island
UNLCCS United Nations Land Cover Classification System

Appendix A

Table A1 presents the agreement between the 2000–2018 SUHII data estimated from
the LST_cci MODIS product (v.1.0) and the well-established MOD11A1 LST v.6.0 product.
We retrieve the MOD11A1 SUHII data for all the focus areas of Figure 1 using the method
described in Section 2.3. To quantify the agreement between the two SUHII datasets, we
use the Root-Mean-Square-Deviation (RMSD) and Pearson’s correlation coefficient. Our
results show that the daytime and nighttime LST_cci and MOD11A1 SUHII data agree well,
with the RMSD ranging from 0.5 to 1.1 K at daytime and 0.1 K to 0.7 K at nighttime. The
correlation coefficient ranges from 0.90 to 0.97 and is generally higher during the daytime.

Table A1. The Root-Mean-Square-Deviation (RMSD) and the correlation coefficient between the
2000–2018 LST_cci and MOD11A1 (v.6.0) SUHII for each Köppen–Geiger climate class.

Climate
RMSD (K) Correlation Observations

Daytime Nighttime Daytime Nighttime Daytime Nighttime

Aw 0.6 0.1 0.97 0.92 9297 31,831
BSh 0.8 0.5 0.96 0.91 3393 13,180
BSk 0.6 0.5 0.97 0.94 9392 25,613
Csa 0.7 0.5 0.94 0.91 2828 11,988
Cfa 0.8 0.5 0.94 0.90 19,401 64,639
Cfb 0.6 0.6 0.92 0.90 10,150 26,337
Cwa 0.6 0.4 0.97 0.92 5519 26,964
Cwb 0.6 0.4 0.95 0.95 469 974
Dfa 1.1 0.4 0.94 0.91 13,951 29,807
Dfb 0.6 0.6 0.92 0.94 20,873 44,667
Dwa 0.5 0.4 0.97 0.95 14,775 41,282

Appendix B

Figure A1 presents the characteristics (area, elevation, and percentage of inland/coastal
cities) of the examined cities per Köppen–Geiger climate class. The mean city elevation
ranges from 98 m in the Dwa to 1928 m in the Cwb. The pooled mean and the standard
deviation (SD) of the elevation means is 400 ± 503 m, while the median of the means is
220 m. The climate classes with the most pronounced elevation differences are the BSk
and Cwb, where the interquartile range (ΔQ) is 966 m and 611 m, respectively. The classes
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where the urban elevations differ the least are the Cfa (ΔQ = 132 m), Cfb (101 m), and Dwa
(117 m). The mean city size (Figure A1B) ranges from 32 km2 in the Cfb and BSk to 159 km2

in the Cwb. The pooled mean (±SD) is 57 ± 36 km2 and the median of the means is 48 km2.
The size distributions are heavily skewed to the right and appear to follow Zipf’s Law. The
class with the largest cities (≥500 km2) is the Cfa (11), followed by the Cfb (3) and Dfa (3).
The classes with the greatest variation in city size are the Csa (the SD is 396 km2) and the
Cwb (258 km2), while the ones with the least variation are the BSk (43 km2), Cwa (46 km2),
and Dfb (53 km2). The percentage of inland and coastal cities for each climate is presented
in Figure A1C (we assign a city as coastal if at least one point of its boundary is 10 km or less
from the coast). Inland cities make up most of the urban areas in each class. The median
and the mean (±SD) percentage for these classes is 84% and 82% (±12%), respectively. The
only class with no coastal cities is the Cwb, which corresponds to subtropical highlands.

Figure A1. The distribution of city elevations (A) and sizes (B) and the percentage of inland and
coastal cities (C) per Köppen–Geiger climate class.
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Abstract: The acceleration of urbanization has significantly impacted the changing regional thermal
environment, leading to a series of ecological and environment-related problems. A scientific eval-
uation of the urban thermal security pattern (TSPurban) strongly benefits the planning and layout
of sustainable development and the construction of comfortable human settlements. To analyze the
characteristics of the TSPurban under cross-regional differences and provide targeted solutions to
mitigate the urban heat island effect in later stages, the logical system research framework of the
TSPurban based on the “construction–evaluation–optimization” model was explored using reverse
thinking. This study selected the Wuhan metropolitan area in China as the research object. First, a
morphological spatial pattern analysis (MSPA) model was used to extract the top 30 core heat island
patches, and Conefor 2.6 software was used for connection analysis to evaluate their importance.
Second, based on the characteristics of various land cover types, the friction (cost) map of surface
urban heat island (SUHI) diffusion was simulated. The spatial attributes of the heat island resistance
surface were examined using a standard deviation ellipse and hot spot analysis. Finally, this paper
used circuit theory to find 56 low-cost heat island links (corridors) and circuit scape software to find
widely distributed vital nodes. The optimization of the TSPurban network was then investigated
using a reverse thinking process. Heat island patches, corridors, and vital nodes are among the
crucial components of the TSPurban. By obstructing corridor links and disturbing important nodes, it
is possible to appropriately and proficiently reduce the TSPurban network’s connection efficiency and
stability, which will have a positive influence on regional climate mitigation and the heat island effect.

Keywords: urban thermal security pattern; surface temperature; circuit theory; research framework;
Wuhan urban agglomeration; China

1. Introduction

As the world urbanizes, impervious surfaces such as cement, asphalt, and concrete
are replacing the natural surface [1]. Heat builds up in metropolitan areas due to built
structures and human activity. This build-up leads to a significant temperature difference
between urban and suburban areas, resulting in the urban heat island (UHI) effect [2],
which Howard originally discovered in 1833 [3]. Subsequently, numerous scholars have
carried out a considerable number of studies on the form and structure [4,5], evolution
and change [6,7], and mechanism and simulation [8,9] of UHIs. Relevant studies have
considered the UHI effect to be one of the most critical issues influencing urban public health
and sustainable development [10,11], regional climate [12], biodiversity [13], vegetation
phenology [14], and quality of air and water [15]. Even human morbidity and mortality are
impacted by UHIs [6].
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The thermal environment security of urban agglomerations is facing unprecedented
problems, particularly in light of the growing worldwide UHI intensity, the rapid expansion
of urban development land, the ongoing growth in city populations, and the effects of global
warming [7]. Academic research on heat mitigation is becoming increasingly important [5].
Therefore, it is extremely relevant for regional climate research to study the characteristics
and optimization of the urban thermal security pattern model (TSPurban). Generally,
atmospheric UHIs (AUHIs) and surface UHIs (SUHIs) are the two major types of UHIs [16].
We can calculate SUHIs by observing the land surface temperature (LST), which can
be retrieved from satellite observations [17]. Additionally, we understand that SUHIs
have convenient data acquisition characteristics and ranges of observable coverage [18].
Therefore, this study focuses on SUHIs.

Regarding how to effectively mitigate the security of the urban thermal environment,
studies have shown that blue and green spaces play a significant role in cooling the Earth’s
surface compared to the surrounding thermal environment. Urban green infrastructure
(UGI) can influence urban climate by increasing transpiration [19], providing shading or
water features, and supporting heat exchange through the selective absorption and reflec-
tion of solar radiation [20,21]. However, these studies have mainly used forward thinking
to reduce UHIs by directly selecting negative correlates that counteract the thermal environ-
ment. Furthermore, they have mainly focused on isolated spatial patches; less consideration
has been given to the holistic and connected nature of the UHI mitigation effect [22,23].

Due to its abstract character, the term “reverse thinking” necessitates a thorough
conceptual understanding before it can be properly applied to the text’s internal logic.
From the perspective of the term’s connotation, “reverse thinking” refers to thinking
backward to solve problems that are difficult to solve by conventional thinking. From the
perspective of the TSPurban, we don’t use large-scale cooling measures. Instead, we focus
on correctly locating the important nodes and corridors of SUHIs and stopping nodes from
connecting. This keeps a network of heat island patches from forming, which can do a
lot of damage to the thermal environment in the region. Therefore, we choose to address
the heat island patch problem in the real world and use “reverse thinking” to consider
how to make an effective breakthrough based on the current TSPurban. In this paper, we
will examine “reverse thinking” as a way to deal with TSPurban from two points of view:
theoretical research and practical exploration. We’ll talk about how reverse thinking works
and what it means in real life.

In terms of theoretical research, on the one hand, studies have shown that the connec-
tivity of heat island patches potentially enhances the regional UHI effect [24,25]. In this case,
it is important to effectively block the connectivity between heat island patches, and this
connectivity needs to be reflected at the specific spatial level of the targeted situation [26–28].
However, these studies have not received sufficient attention [29]. On the other hand, other
researchers have focused on spatial connectivity, such as Peng et al. (2022), who focuses on
enhancing the connectivity of future “cool islands” (CIs) by constructing a network, which
is typical of forward positive thinking [30]. Based on the current situation, the heat island
patch network problem in the TSPurban urgently needs an effective breakthrough. At the
same time, since the connectivity of heat island patches has the function of enhancing the
UHI effect [31,32], a new method to mitigate the UHI effect by interrupting the connectivity
of heat island patch corridors is proposed for later stages.

On the one hand, in terms of practical exploration and due to real environmental costs,
especially in the past, many investments have been made to mitigate the regional thermal
environment [33]. Among them, urban blue/green landscape space is characterized by
limited development and high investment costs [34]; with the overall economic slowdown,
it is challenging to break through the limited funds available for mitigating urban thermal
safety patterns. On the other hand, due to China’s territorial spatial planning control,
too many projects to mitigate the regional thermal environment will involve encroach-
ment on many permanent basic agricultural land and construction development control
areas [35,36]. Therefore, it will be more difficult to coordinate these projects under realistic
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conditions, which in turn will reduce the operability of regional thermal environment
mitigation projects.

Therefore, constructing a specific distribution of heat island networks at the spatial
level is an important technical point. Based on the analysis based on previous research, it
was found that circuit theory, although it first originated as a related concept in physics,
was gradually introduced to identify important heat island corridors and critical nodes
related to heat exchange based on LST data. Studies have already been done that apply
circuit theory to these networks, mainly by defining heat source areas and connecting
corridors to build networks [30,32]. On the one hand, these corridors and critical nodes are
similar to the effects of electric currents in that they have a random, “wandering” nature.
On the other hand, this approach can assist us in pinpointing the key nodes and corridors
of the SUHI. Thus, it is possible to identify important patch corridors and nodes in the
TSPurban based on the movement patterns in complex cost resistance.

This paper constructed a regional heat island network based on the circuit theory
simulation, i.e., the final construction of the three major elements of the TSPurban, namely,
the heat source, the resistance surface, and the corridor. In the evaluation of the TSPurban,
the heat source analyzed patch fragmentation through connectivity, the resistance surface
revealed spatial directional characteristics via the standard deviation ellipse, and the
corridor analyzed hot and cold spot clustering regions via spatial autocorrelation. The
corridor also thought about how important it was and figured out where the most important
heat flow nodes were. In the optimization of the TSPurban, this paper mainly relies on
“reverse thinking” to mitigate the heat island effect through the following three dimensions:
the first dimension is to weaken the heat source role of the main heat island patches;
the second is to disrupt the linking effect by reducing the role of links in the heat island
corridors; the last is to use the key areas identified on the corridor for targeted engineering
projects that can mitigate the heat island effect. In this way, the current UHI effect can be
alleviated through gradual weakening. In summary, precisely locating the key nodes and
corridors in the urban heat island (SUHI) at the spatial level is the basis for the effective
mitigation of SUHIs. We use “reverse thinking” to efficiently and accurately “block” or
“destroy” the critical nodes and corridors in the network to effectively decrease the regional
heat island effect.

Additionally, the administrative boundaries of cities determined by anthropogenic
rules should not bind the natural heat island network. However, most current research on
heat island networks lacks a cross-regional perspective [37], so it is difficult to fully consider
the spatial organization of heat islands. The inspiration for regional TSPurban governance
and optimization is limited. Even from a cross-regional perspective, the research mainly
focuses on China’s Yangtze River Delta, Pearl River Delta, and other open coastal city
clusters [38]. Relevant research has not paid enough attention to the central metropolitan
area. Therefore, taking the Wuhan urban agglomeration as the research object, this paper
reveals the locational characteristics of urban heat island patches and the spatial pattern
of collaborative optimization. Then, we look at the main problems caused by the urban
heat island effect, and finally, we suggest ways to improve transregional efforts to reduce
urban heat islands. Specifically, this paper proposes and attempts to explore the following
research objectives: (1) to investigate the characteristics of the TSPurban in the context
of cross-regional differences; (2) to accurately identify corridors and key nodes in the
TSPurban and then propose targeted solutions; (3) to provide strong theoretical support for
the construction of regionally integrated urban heat island effect mitigation solutions.

2. Research Overview

2.1. Research Area

As shown in Figure 1, the Wuhan Urban Agglomeration (Central China) refers to
the area around Wuhan with a radius of approximately 100 km. The total area of Wuhan,
Huangshi, Ezhou, Xiaogan, Huanggang, Xianning, Xiantao, Tianmen, and Qianjiang is
579 × 104 hm2, accounting for 31.09% of the total area of Hubei Province. In 2021, the total
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resident population of the region exceeded 33 million, and the GDP exceeded 3 trillion.
The Wuhan Urban Agglomeration is located at latitudes 29◦02′~31◦51′N and longitudes
112◦33′~116◦07′E. It belongs to the midlatitude zone. Solar radiation varies seasonally, and
the area is far from the ocean. It has a typical subtropical East Asian continental climate,
with four clear seasons and substantial amounts of light, heat, and rain.

Figure 1. Location of the study area (A), land cover (B), and administrative division (C).

2.2. Research Framework and Data Sources
2.2.1. Research Framework

Some scholars have explored mitigation strategies for the UHI effect from the perspec-
tive of constructing spatial networks. For example, Yu et al. (2021) identified the critical
nodes in a UHI network and then broke the network to effectively mitigate SUHI [32]. To
reflect the contributory nature of the article in examining the overall logic of the TSPurban,
in this research, as shown in Figure 2, we propose a TSPurban based on the new paradigm
of “heat source–resistance surface–corridor” and alleviate the UHI effect by blocking
connectivity. Finally, we creatively develop the research framework of the TSPurban’s
“construction–evaluation–optimization” logic system.

First, in terms of construction, the heat source was mainly defined by the climate
characteristics of the Wuhan metropolitan area. Then, the average maximum value of that
period was synthesized, and the morphological spatial pattern analysis (MSPA) model was
used to further extract the core heat island patches. Surface resistance mainly combines
different land use cover characteristics in the region and generates a friction (cost) map
by giving a differential resistance coefficient. The corridor mainly uses circuit theory to
identify the path with the least cumulative resistance by sharing random “wandering”
attributes and finally identifies the important SUHI links and key nodes related to heat
flow, forming a regional heat island network.
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Figure 2. TSPurban’s logical framework of “construction–evaluation–optimization”.

Second, in the evaluation, Conefor software can quantitatively evaluate the connec-
tivity of important patches as the basis for later maintenance or connectivity improve-
ment [39,40]. Therefore, the heat source mainly uses Conefor 2.6 software to analyze the
connectivity of the extracted core heat island patch. To measure the directional and element
aggregation characteristics of the resistance surface, the standard deviation ellipse is used
to judge the dominant direction, and the spatial autocorrelation is used to analyze the
spatial aggregation characteristics. At the same time, in terms of corridor evaluation, the
natural fracture method is used to judge the importance of corridors. In the circuit model,
the random walk of electrons in the circuit is used to simulate the process of heat flow in
regional diffusion [41,42]. Therefore, Circuitscape software can be employed to find the
most important nodes, setting the stage for more precise heat island mitigation.

Finally, we investigate the precise and efficient mitigation strategies from the three
aspects of heat islands (heat source, resistance surface, and heat corridor) based on the
aforementioned construction and evaluation via a reverse thinking method. Then, we
control the space between the partitions, manage the core heat island patches, and isolate
the important nodes from the corridor.

2.2.2. Data Sources

MODIS remote sensing data are used as the data source for SUHIs in this project.
The MOD11A2 remote sensing image is a 1 km2 resolution image of the Earth’s surface
temperature in 2020 synthesized over eight days. The data can be obtained from NASA’s
official website (https://ladsweb.modaps.eos.dis.nasa.gov/search, accessed on 1 June
2022). The data sensor is on board the Terra satellite.

GlobeLand30 data (http://www.globallandcover.com/, accessed on 15 June 2022),
developed by the National Basic Geographic Information Center, provided the land use
data for this study. The data are multispectral images at 30 m resolution that use the POK
method based on pixel classification, object extraction, and knowledge verification [37].
According to China’s standard for land use classification, the study area is divided into
eight categories: farmland, forest, grassland, shrubland, wetland, waters, construction land,
and bare land.
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In this study, all the spatial data are projected into the WGS_1984_UTM_Zone_50N
coordinate system. We also use tools for resampling to turn the data into uniform raster
data with a 30 m spatial resolution.

3. Method

3.1. Seasonal Division and Calculation of Land Surface Temperature (LST)

With an annual mean temperature of 17 ◦C and an annual temperature difference
of 16 ◦C, the area has a typical subtropical monsoon humid climate. In most areas, the
annual daily temperature exceeds 35 ◦C for approximately 10–30 days. The maximum
temperature is above 30 ◦C for 60 to 80 days out of the year. The minimum temperature is
below 0 ◦C for 80 to 110 days out of the year in most areas, decreasing from north to south.
June, July, August, and September (defined as the summer months) are the four hottest
successive months of the year, with average temperatures exceeding 22 ◦C. Therefore, we
will calculate the average maximum of the 6- to 9-month LST composition.

3.2. Division of Urban Heat Island Intensity

Due to the difference in time and environment, the surface temperatures cannot be
directly compared. However, the distribution of the relative intensity of the thermal field
is not affected by other factors, so to analyze the relative spatiotemporal changes in the
surface thermal environment, the urban surface thermal field is classified based on the
surface temperature [12].

This study uses the mean-standard deviation method to classify the land surface ther-
mal field. This method calculates the land surface temperature by multiple combinations of
the mean and standard deviation and defines the urban thermal environment. The standard
deviation reflects the deviation of the surface temperature from the mean temperature.
Compared with the common method of equidistant density segmentation, the standard de-
viation can better reflect the classification characteristics of the urban heat island [11]. Based
on the above theory, the surface heat field of the Wuhan Urban Agglomeration is divided
into five grades with μ (mean), 0.5 std (standard deviation), and 1 std as the cutoff points.
To analyze the heat island state, the high-temperature and medium-high-temperature areas
are taken as the heat island range. Table 1 shows the specific rules for dividing the LST
intensity by using the mean value and standard deviation.

Table 1. Division method of the mean-standard deviation thermal field.

Temperature Class Division Method of Thermal Field

High-temperature zone Ts > μ + std
Medium-high temperature zone μ + 0.5 std ≤ Ts ≤ μ + std

Middle-temperature zone μ − 0.5 std ≤ Ts ≤ μ + 0.5 std
Medium-low temperature zone μ − std ≤ Ts ≤ μ − 0.5 std

Low-temperature zone Ts ≤ μ − std

3.3. MSPA-Based SUHI Mode

The morphological spatial pattern analysis method (MSPA) proposed by Vogt and
other scholars can accurately classify grid images’ spatial pattern function types [40]. It
can identify patches that play an essential role in regional landscape connectivity at the
pixel level [43] and provide a more scientific basis for the selection of ecological sources
and ecological corridors [44]. According to the needs of the MSPA method, ArcGIS is
used to convert the land use classification data after remote sensing interpretation into
30 m × 30 m binary TIFF grid data [45]. The foreground and background are two categories
of research objects in the MSPA method. Therefore, to identify the types of heat island
patches important for maintaining connectivity, the extracted heat island area is set as the
foreground data (set to 2), and other areas are the background data (set to 1). We used
GuidosToolbox2.8 software to analyze the landscape pattern. After a series of mathematical
calculations, such as skeleton extraction and corrosion calculation, seven landscape types
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with different functions are obtained. Next, we count the analysis results for MSPA. The
core area is basically a large heat island patch within the research area, which may be the
primary locus where solar radiation is absorbed. From here, we can select the source of the
core heat island.

3.4. Connectivity Analysis

Connectivity analysis was initially applied to the landscape field, which refers to
the comprehensive effect of the ecological processes of energy, material exchange, and
migration among landscape elements and the movement rate of patches [46]. Therefore,
connectivity analysis can also measure the connectivity and importance of heat island
patches. In this paper, the “core” SUHI patches in MSPA are extracted, and the patch
importance index dPC is analyzed using Conefor 2.6 software to measure the degree of
connectivity between the core heat island patches in the study area. The higher connectivity
index of the heat island patches indicates that they are essential to the heat sources of
SUHIs. The calculation formula is as follows:

PC =
∑n

i=1 ∑n
j=1 ai×aj×p∗ij

A2
L

(1)

dPC =
PC − PCremove

PC
× 100% (2)

where i 
= j; n represents the number of patches in the core area; ai and aj represent the
areas of patches i and j, respectively; and p∗ij represents the maximum product of all path
probabilities between patch i and patch j. The value range of PC is 0 to 1. The larger the
PC value is, the higher the connectivity between patches; PCremove indicates the possible
connectivity index of the remaining patches after removing a patch.

3.5. Building the Friction (Cost) Map

Previous studies have fully demonstrated the ability of land cover elements (such
as forest, water, and grassland) to reduce temperature [37,47]. The resistance scores of
different land use types in the heat island diffusion pathway are determined, and the
larger the resistance scores are, the greater the heat island blocking force, patch migration,
and diffusion.

Because of their large heat capacities, low heat conductivities, and slow rate of temper-
ature rise, wetland and water areas typically have the lowest temperatures [48]; hence, the
resistance of the wetland and water areas is 100, ranking first.

Forestland also plays essential roles in lowering the surface temperature, collecting
dust, minimizing wind, fixing soil fixation, beautifying the area, and greening cities [49].
Forestland is thought to play a large part in maintaining the stability of the urban environ-
ment; hence, its resistance value is 75, ranking second.

Irrigation of arable land has the potential to reduce regional temperatures. Water
evaporation can absorb a large amount of heat from the air via a phenomenon called the
“irrigation cooling effect” [50]. Additionally, crops grown on the cultivated land create
high levels of vegetation coverage, reducing the bare surface area. As a result, the surface
temperature is significantly reduced [51]. Therefore, the resistance value of arable land is
set at 50, ranking third. Additionally, the effect of shrubs on plant coverage was less than
that of woodlands; hence, the value of resistance for shrubs is also 50.

The results show that the mean temperature of grassland is the highest among the
vegetation types, which indicates that the effect of grassland on urban heat islands is not
pronounced [52]. Hence, the resistance value of grassland is 25, ranking fourth.

In general, the average temperature of construction land is very high, mainly because
of the high density of buildings within the land area, which is not conducive to air circula-
tion. Building materials such as bricks, tiles, and cement have low thermal capacity and
inertia, but their thermal conductivity and diffusivity are large. After receiving solar radia-
tion, these materials diffuse heat quickly into the surrounding atmosphere, resulting in the
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surrounding temperature being higher than that of the vegetated areas [53,54]. Therefore,
the resistance value of construction land is 5, ranking fifth.

The high surface temperature of unused land is due to the characteristics of bare land.
Because there is no plant growth on bare land and solar radiation impacts bare land directly,
the temperature changes considerably [55,56]. Therefore, we set the bare ground resistance
value at 1, ranking it sixth.

3.6. Standard Deviation Ellipse and Spatial Autocorrelation Analysis

The standard deviation ellipse can measure the concentration, dispersion, and direct
distribution of geographical elements, explore the distribution and development trend of
geographical elements, and visualize the spatial pattern of geographical elements. Lefever
first proposed this method in 1926, and it is widely used in many fields and studies, such
as population, economy, and sociology [57,58]. Based on the analysis of the standard
deviation ellipse of the heat island friction (cost) map for the Wuhan urban agglomeration,
the direction and trend of the heat island resistance patch in the study area are reflected.
Among them, the shape of the ellipse can, to some extent, reflect the characteristics of the
geographical element distribution. It mainly includes the directional angle, center, ellipse X
and Y axes, and standard deviation. The formulas are as follows:

Hx =

√
∑n

i=1(xi − x)2

n
(3)

Hy =

√
∑n

i=1(yi − y)2

n
(4)

where Hx and Hy represent the calculated ellipse variance, xi and yi are the coordinates of
geographical element i, x and y are the arithmetic average centers of geographical elements,
and n is the number of elements. The directional angle of an ellipse is calculated by:

tan θ =
∑n

i=1 x̃2
i − ∑n

i=1 ỹ2
i +

√(
∑n

i=1 x̃2
i − ∑n

i=1 ỹ2
i
)2

+ 4(∑n
i=1 x̃i ỹi)

2

2 ∑n
i=1 x̃i ỹi

(5)

where θ is the angle that starts at 0◦ due north and rotates clockwise to the x-axis; x̃i,
and ỹi is the mean center deviation. The standard deviation of the x- and y-axes can
be determined:

σx =
√

2
√

∑n
i=1(x̃i cos θ−ỹi cos θ)2

n

σy =
√

2
√

∑n
i=1(x̃i sin θ+ỹi cos θ)2

n

⎫⎬⎭ (6)

where σx and σy are the standard deviations of the x- and y-axes, respectively.
Global spatial autocorrelation and local spatial autocorrelation are two aspects of

spatial autocorrelation analysis. Moran’s I index, derived from global spatial autocorrela-
tion analysis, can comprehensively describe the spatial average correlation degree, spatial
distribution pattern, and significance of specific variables or attributes of each unit in the
region [59]. The formula is expressed as:

I =
n ∑n

i=1 ∑n
j=1 Wij

(
xi − X

)(
xj − X

)(
∑n

i=1 ∑n
j=1 wij

)
∑n

i=1
(
xi − X

)2 (7)

where xi and xj denote the spatial position of unit i and unit j, respectively, and i 
=j; X
denotes the average value of the corresponding attribute values of n position units; Wij
denotes the spatial weight matrix, and n represents the number of cells. The significance of
spatial autocorrelation was tested by the Z statistic of a normal distribution [60]. The value
of Moran’s I index is distributed between ±1; the absolute value indicates the strength
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of the spatial correlation of variables, the positive sign and the negative sign indicate the
positive and negative correlation of variables in the region, respectively, and the trend to 0
indicates the noncorrelation and the random distribution.

Although the global Moran’s I index can judge the global correlation degree of an
attribute value in the region, it cannot determine the specific location of the aggregation.
Due to spatial heterogeneity, the spatial autocorrelation degree of each location in the study
area can be different, so local Getis-OrdGi* hot spot analysis is carried out to locate the
specific location of the spatial aggregation of heat island resistance. Hot spot analysis is
used to identify statistically significant high-value and low-value aggregation areas, that is,
hot and cold spots [61]. It is expressed as:

G∗
i =

∑n
j=1 Wijxj − X ∑n

j=1 Wij

S

√
n ∑n

j=1 Wij−
(

∑n
j=1 Wij

)2

n−1

(8)

where S is the standard deviation of the corresponding attributes of n units; the others are
the same as in Formula (7). To facilitate comparison and research, G∗

i is normalized and
expressed as:

Z(G∗
i ) =

1 − E
(
G∗

i
)√

VAR
(
G∗

i
) (9)

where E
(
G∗

i
)

is the expected value of the local Getis-OrdGi* index and VAR
(
G∗

i
)

is the
variance of the local Getis-OrdGi* index. Z

(
G∗

i
)

> 1.96 indicates a significant hot spot area;
1.65 < Z

(
G∗

i
)

< 1.96 indicates a significant hot spot area; −1.65 < Z
(
G∗

i
)

< 1.65 indicates
an area with insignificant aggregation; −1.96 < Z

(
G∗

i
)

< −1.65 indicates a significant cold
spot area; and Z

(
G∗

i
)

< −1.96 indicates a significant cold spot area.

3.7. Construction of a Heat Island Network Based on Circuit Theory

In circuit theory, the movement of heat island patches is analogous to current, and the
friction (cost) map is defined as a resistance surface. The higher the cumulative current
value is, the better the connectivity of the circuit network, and vice versa [62,63]. In
the process of simulating the regional diffusion of heat island patches based on circuit
theory, some patches are first grounded, 1A current is input to other patches, the friction
(cost) resistance surface is constructed, the current value between each pair of patches
is calculated, and the current value can represent the probability of heat island patches
moving along a certain path. Therefore, different calculation methods are used to determine
how well different decentralized paths in the heat island network work based on how the
electrons in the circuit move around randomly.

Based on circuit theory, this study used Circuitscape software and the Linkage Map-
per tool for simulations. Circuitscape software provides four methods of calculation, of
which “all-to-one” (many-to-one mode) is mainly used for the identification of essential
patches, and “pairwise” (pair mode) is mainly used for the identification of corridors. In
this study, “all-to-one” and “pairwise” were used to simulate the connectivity between
heat island sources. Regarding how to scientifically set the resistance value, on the one
hand, the theoretical circuit model creates the accumulated current value of migration or
diffusion between patches through different resistance values [64]. Although different
resistance values will produce different current densities, connectivity between patches can
be observed [41] because a higher accumulated current value indicates that the connectivity
between two patches in the region is better [40]. On the other hand, this paper combines
the research results of relevant circuit theory and considers the propagation distance of
heat island patches to comprehensively determine the resistance value [65,66]. The Linkage
Mapper tool is used to construct the UGI network, and the search radius of the barrier
Mapper tool is set to 500 m to identify obstacles in the network.
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4. Results

4.1. Construction of the Urban Thermal Security Pattern

Figure 3A shows the average maximum value of LST synthesis in the Wuhan Ur-
ban Agglomeration from June to September 2020, where the minimum temperature was
23.33 ◦C, the maximum temperature was 48.17 ◦C, the mean value was 33.76 ◦C, and the
standard deviation was 2.31. The LST showed an extensive range of changes or fluctuations.
Five grades of heat island intensity in the Wuhan Urban Agglomeration are divided using
the mean standard deviation. Figure 3B depicts the spatial distribution of heat island
intensity change. The high-temperature area was 7774.29 km2, accounting for 13.41% of the
total study area. The area of the medium- and high-temperature areas was 8462.14 km2,
accounting for 14.59% of the total study area, indicating that the heat island covered 28.00%
of the total study area. The proportion of the medium-temperature zone was as high as
40.09%, that of the medium- and low-temperature zones was 18.28%, and that of the low-
temperature zone was 13.63%. Specifically, from the perspective of spatial distribution, the
heat island patches in the Wuhan metropolitan area were mainly concentrated in the area
of Wuhan’s main urban regions. However, they tended to spread to the surrounding areas.
In addition, the “1 + 8” urban circle of Tianmen (Zone b), Huanggang (Zone c), Huangshi
(Zone d), Xianning (Zone e), and other urban centers also had apparent heat islands. The
spatial pattern of the heat island was consistent with the urban spatial distribution. The
background areas were rich in water and forests; thus, they were mainly low-temperature
and medium-low-temperature areas.

Figure 3. Study area LST (A) and LST level (B).

The prospective data area for MSPA analysis was 16,236.4356 km2, as shown in Table 2
and Figure 4A, accounting for approximately 27.999912% of the total area of the study area.
In the foreground data, the heat island area in the core area was the largest, accounting
for 97.59243% of the total foreground area. In addition, as the transition patch between
the core heat island area and the outside background area, the marginal area accounts for
2.25766% of the foreground area. The porosity was along the inner edge of the core region,
which had the same edge effect as the edge region. The porosity accounted for 0.14583% of
the foreground area, indicating that the core heat island region had a specific edge effect.
Moreover, the rest of the measurement indicators accounted for less.
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Table 2. MSPA classification statistics.

Types Area/km2 Percent in Foreground Area/% Percent in Total Area/%

Core 15,845.5323 97.59243% 27.325795%
Loop 0.1377 0.00085% 0.000237%

Bridge 0.4896 0.00302% 0.000844%
Edge 366.5637 2.25766% 0.632143%
Islet 0.0027 0.00002% 0.000005%

Branch 0.0324 0.00020% 0.000056%
Perforation 23.6772 0.14583% 0.040832%

Figure 4. Heat island map (A) and friction (cost) map (B) in the study area.

Through the analysis of land cover resistance factors, Figure 4B shows the resistance
surface of heat island propagation and diffusion in the Wuhan Urban Agglomeration. The
study area’s spatial distribution of heat island resistance generally presented a “high in
the east, low in the west, low in the middle, and high in the north and south” pattern.
The terrain significantly influenced the heat island resistance distribution. The resistance
value was low on the riverside plain in eastern Hubei and the Hanjiang plain west of the
circle. The resistance values in the vast northern, northeastern, and southern low mountain
and hilly areas were generally on the high side. In addition, the dense distribution of
construction land led to the distribution of low-value resistance, which promoted the flow
of heat island energy and led to the better connectivity of regional heat islands.

Figure 5A depicts the study area’s minimum cumulative resistance distribution map.
The areas with larger cumulative resistance values were mainly distributed in the low
mountain and hilly regions of the northeast and south. The distribution pattern was
mainly related to the trend of the valleys. Therefore, a “depression” was formed due to
the complex topography, convenient transportation, flat terrain, water distribution in more
areas, more human activities, and heat island expansion resistance. As shown in Figure 5B,
the minimum cost path for the starting and ending points was calculated by the minimum
path tool from the minimum cumulative resistance model, simulating potential diffusion
corridors that interconnect between patches of heat island sources. The results showed
56 channels in the Heat Island Patch, among which the northern corridor was sparse, and
the eastern and southern corridors were more densely distributed, indicating that the
exchange of matter and energy was more unimpeded in the Heat Island Patch.
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Figure 5. Distribution of minimum cumulative resistance (A) and the thermal corridor (B).

4.2. Evaluation of the Urban Thermal Safety Pattern

Table 3 measures the significance of the 30 heat sources selected in the previous stage
using dPC. The total area of the heat island source area was 13,023.2295 km2, which was
distributed widely in space. The source area with a sequence number of 1 in the north
was 5227.9668 km2, and the patch importance index (dPC) was 87.1181, indicating that the
well-connected source area was conducive to the exchange of heat islands. It was located at
the source of the heat island with serial numbers 2–7 in the north, and its patch importance
index (dPC) was greater than 10, so its connectivity was better than that of other areas. The
heat island source with serial numbers 8–11 had a patch importance index (dPC) greater
than one and medium connectivity; however, the connectivity of heat island patches with
other serial numbers was small. In the Wuhan urban agglomeration, heat island sources
were not connected in the same way, and there was considerable patch fragmentation.

Table 3. Importance of heat source dPC value.

Serial Number Area/km2 dPC Value

1 5227.9668 87.1181
2 2124.2952 23.8945
3 314.8272 22.0948
4 68.1552 18.6799
5 90.6255 18.2483
6 793.9566 17.1256
7 352.3500 10.6279
8 366.7203 6.7918
9 434.9169 6.6787
10 120.9843 2.2007
11 163.9728 1.3063
12 713.1960 0.7596
13 384.5322 0.2208
14 373.0311 0.2078
15 207.6714 0.0644
16 149.6457 0.0334
17 136.6938 0.0279
18 124.4772 0.0231
19 120.0708 0.0215
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Table 3. Cont.

Serial Number Area/km2 dPC Value

20 116.4915 0.0203
21 108.6786 0.0176
22 85.7034 0.0110
23 69.7050 0.0073
24 68.1696 0.0069
25 62.8362 0.0059
26 51.4611 0.0040
27 51.1101 0.0039
28 48.0726 0.0035
29 46.6524 0.0033
30 46.2600 0.0032

Note: The above serial numbers are consistent with the serial numbers in Figure 4A.

To reveal the spatial characteristics of the heat island friction (cost) map of the Wuhan
urban agglomeration, this paper measured the center of gravity shift and ellipse distribution
of the standard deviation ellipse. The center of gravity of the heat island friction (cost) map
corresponded to the center of mass of this geographic plane. Table 4 shows the specific
parameters of the ellipse. Combined with the ellipse shape of the heat island friction (cost)
map in Figure 6, the east-west semiaxis was more significant than the south-north semiaxis,
showing an obvious east-west distribution pattern. The standard deviation ellipse azimuth
θ of the friction (cost) map was approximately 92.13◦, which basically followed a horizontal
straight line.

Table 4. Standard deviation ellipse parameters for friction (cost) maps.

The
Circumference

of an Ellipse/km

The Area of an
Ellipse/km2

Center Point X
Coordinates

Center Point Y
Coordinates

The Length of
the X-Axis of an

Ellipse/km

The Length of
the Y-Axis of the

Ellipse/km
Azimuth/(◦)

635.32 27,922.31 114◦6′33′′ 30◦24′4′′ 114.54 77.60 92.13

Based on the first-order spatial weight matrix of the Queen Standard, the global spatial
autocorrelation analysis of the Wuhan urban heat island friction (cost) map was carried
out. Furthermore, the global Moran’s I index results were obtained. The global Moran’s I
index was 0.41, and all attributes passed the significance level test with a P value less than
0.01 and a z value greater than 2.58. The heat island friction (cost) map showed significant
spatial autocorrelation. That is, the map of the Wuhan Urban Agglomeration’s heat island
friction (cost) showed a very significant spatial clustering effect, and counties with high (or
low) heat island friction (cost) were close to each other.

To better understand the local spatial aggregation characteristics of the heat island
friction (cost) map, the hot spots and cold spots of the heat island friction map were
explored using the Getis-OrdGi* hot spot analysis method. Compared with the local spatial
autocorrelation, the hot spot analysis was more evident for the aggregation state of heat
island friction (cost). According to the hot spot analysis, as shown in Figure 6, there
were hot and cold spots in the friction (cost) of the heat island. The friction (cost) spatial
agglomeration of the Wuhan urban heat island was characterized by “cold in the west and
hot in the east”. Heat island friction (cost) hotspots were mainly located in lakes and nature
reserves such as Long Lake and Hong Lake. At the same time, the eastern and southern
regions contained low mountains and hills, the land use cover types were mostly woodland
and grassland, the forest coverage rate was high, and the population was small, which was
the secondary hot spot. The friction (cost) cold spots of heat islands were mainly found in
the region’s middle and west, where there was much human disturbance.
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Figure 6. Standard deviation ellipse and local spatial autocorrelation analysis in the study area.

5. Discussion

5.1. Characteristics of the Urban Thermal Safety Pattern

In summary, the distribution law of the heat island patches in the Wuhan Urban
Agglomeration is consistent with the urban spatial distribution. It gradually spreads from
the main urban area of Wuhan to the surrounding urban areas, and the centers of other cities
in the urban circle also have a noticeable heat island effect. Generally, the effect is mainly
distributed around the developed areas of cities. In particular, as the economic activities of
urban areas have accelerated and the population density has grown in recent years, the
number of buildings has increased, and traffic congestion and other factors have likewise
increased in tandem. These results are consistent with those of previous studies [67,68].

At the same time, heat island patch spreading resistance is mainly distributed in
mountains, woodlands, and water areas where human activity is minimized, such as river
basins. Because of their intrinsic resistance to heat island patch spreading, the resistance
value of these localities is higher. Finally, the resistance values of these regions form the
characteristic spatial pattern of “middle low, four sides high”. Figure 7A shows that the
corridors spatially connect the otherwise independent heat sources. Due to the limitations
of geographical space and friction cost along corridors, the connection lengths between
them are not the same. The total length of the corridor centerline is 1004.71 km. In the
Wuhan Urban Agglomeration, a network of heat sources has grown, making it easier for
each heat source to connect to other heat sources and strengthening the urban heat island
as a whole.

As shown in Figure 7B, the critical nodes in the study area are located on the edge
or corridor of the heat source, and more significant obstacles are found where the natural
and artificial ecosystems intersect. The area of relatively small obstacles, on the other hand,
appears in land use areas classified as woodland or water areas. These essential nodes,
which are often tiny in size and distant from major heat sources, are thought to be crucial
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for the proper operation of heat island corridors. As a result, the focus of the TSPurban
network optimization is the effective blocking of critical points, which plays an important
role in reducing the structure and function of the regional heat island system.

Figure 7. Locations of the heat island network (A) and key nodes (B) in the study area.

5.2. Optimization of the Urban Thermal Safety Pattern
5.2.1. Comprehensive “Destruction” of Patches and Corridors

As a reverse thinking process, one should think about how to reduce the stability
and connectivity of the heat island patch network under the conditions of the status quo
TSPurban. The first goal, from the perspective of the heat source itself, is to weaken the
heat island source site. For this purpose, we consider natural and artificial drivers: on
the one hand, based on natural drivers, the reduction in heat islands via green areas is
extremely obvious [69]. Therefore, we should vigorously develop green urban construction.
While improving the ecological and environmental function of green spaces, we should
strictly implement ecological conservation measures, such as implementing ecological
protection projects, returning farmland to forests, and closing mountains for afforestation.
On the other hand, to address artificial drivers, local resource advantages should be used
to their fullest during regional economic development. This means gradually reducing the
production of high-energy-consuming businesses, adjusting the industrial structure and
layout, and reducing the entry of artificial heat sources.

The second goal, from the perspective of heat source connectivity, is to destroy heat
island corridors. To this end, two options focus on nodes and corridors. First, because the
number and quality of nodes dictate the formation of heat island corridors, the destruction
of corridors is contingent on the continuous reduction in heat island sources. Second,
integrated heat island mitigation projects should be carried out for both the corridor
and its perimeter. The mitigation projects for the corridor itself should mainly focus on
minimizing the corridor width to reduce the contribution to network connectivity, while the
mitigation projects for the corridor perimeter need to be integrated to increase the diffusion
resistance of heat flow, a process that is largely influenced by the dominant influence of
land cover [47,52].

Specifically, to address the main characteristics of the Wuhan Urban Agglomeration
in this study, various methods must be implemented to destroy the heat island system
within the TSPurban network and block heat island corridors at the key points. On the one
hand, the regional heat island resistance barrier formed by the “green veins” (forests and
grasslands) and “blue veins” (waters and wetlands) of the Wuhan Urban Agglomeration
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should be protected. On the other hand, the construction and protection of multiple groups
of ecological “isolated green wedges” are required to gradually form green isolation zones
within the Wuhan Urban Agglomeration, thus reducing the heat island effect.

5.2.2. Effective “Barrier” Based on Key Point Analysis

In the reverse thinking process, when the TSPurban network is disrupted by blocking
the links and key pinch points at the spatial level, the SUHI connectivity is reduced.
Thus the SUHI effect can be effectively mitigated. Since we have already discussed how
connected links can be broken from the point of view of heat source connectivity, we know
that the next step in reducing the effects of heat islands will be to pinpoint the priority
mitigation zones. This will be done by implementing effective mitigation measures at key
points in the TSPurban network.

Specifically, the above analysis shows that the corridor connections between heat
island patches are where most critical points are located, and these areas require the most
urgent improvement. Once mitigation measures become significant, the improvement
effect becomes obvious. The heat island “barrier” in this area can directly reduce the overall
connectivity efficiency of the TSPurban network. In this study, the critical nodes are mainly
located in the eastern and southern regions of the Wuhan urban area, and planners and
policymakers should focus on these areas when implementing future climate adaptation
planning and SUHI mitigation measures. If the key nodes involve regional ecological and
arable land protection areas, they can be adjusted by micro-means, such as optimizing
spatial layout structures and updating building materials. At the same time, because of the
wide distribution of these key points, “blocking” will be a long-term investment. Effectively
“blocking” a key node is the cornerstone for significantly mitigating the formation of a
regional TSPurban network.

5.3. Limitations and Deficiencies

This study also has some shortcomings. First, this paper mainly focuses on the urban
heat island effect formed by LST during the daytime. However, the heat island effect is
more potent at night [70] because daytime solar radiation induces a warming state in the
nearby ground, while the whole region enters a cooling environment when the ground
emits longwave radiation at night. The greater the heat escaping the ground, the lower
the LST [71]. Therefore, in future work, we can compare nighttime data features and the
daytime TSPurban network. Second, the heat island friction (cost) resistance surface is
subject to the superposition of both artificial and natural factors [72,73]. The focus of this
paper is to measure the integrated results of land cover; the consideration of artificial
resistance drivers should be enhanced at a later stage.

6. Conclusions

This study selected the Wuhan Urban Agglomeration, an important strategic place in
Central China, and constructed three major elements of the TSPurban based on the MSPA
model and circuit theory “heat source, resistance surface, and corridor,” and used “reverse
thinking” to explore a variety of ways to optimize the TSPurban. The main conclusions
were as follows: (1) regarding the heat source, heat island patches were extracted according
to the MSPA model, and the patches in the top 30 important heat island source areas were
evaluated using the connectivity analysis method. It was found that the spatial form of the
heat island was consistent with the urban spatial distribution; (2) regarding the resistance
surface, the resistance surface of heat island propagation and diffusion was constructed
by combining the land cover resistance factors, and the resistance surface was evaluated
by using the standard deviation ellipse and spatial autocorrelation analysis methods. It
was found that the resistance surface was distributed in an “east–west” spatial pattern
and that the gathering situation was characterized by “cold in the west and hot in the
east”; (3) regarding the corridor, we identified the link (corridor) based on the circuit
theory and used the Linkage Mapper software to connect the lowest-cost path of the SUHI
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“source,” thus generating 56 heat island corridors with a total length of 1004.71 km. At
the same time, Circuitscape software was used to identify key nodes to effectively control
key points, and the ecological regulation function for alleviating the urban heat island
effect was more prominent. In terms of optimizing the TSPurban, it is necessary to weaken
the interconnection between heat island sources at the spatial level by “breaking” the
links and key nodes in the TSPurban network. Ultimately, the focus is on increasing the
fragmentation of heat island patches and their resistance to diffusion and reducing the
connections between heat islands while weakening the heat source patches themselves.
This study utilizes reverse thinking to effectively mitigate the urban thermal environment.
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Abstract: Habitat structure and quality in the urban agglomeration (UA) are subject to multiple threats
and pressures due to ongoing anthropogenic activities and call for comprehensively effective solutions.
Many approaches, including cartographic comparison, correlation analysis, the local entropy model,
and GeoDetector, were jointly used to clarify the interplay between habitat quality and multiple
environmental issues. In response to the overlapped risks of diverse environmental systems, this
study presented an integrated research framework to evaluate the spatial influences of multifaceted
environmental situations on habitat quality. We conducted the case study in the three largest Chinese
UAs: Beijing–Tianjin–Hebei (BTH), Greater Bay Area (GBA), and Yangtze River Delta (YRD). The
evaluation results show that the three UAs shared similarities and differences in relationship/impact
types and their strengths. In 2015, most of the three UAs’ landscapes delivered low–medium
magnitudes of habitat quality (score <0.7) and emerged with unevenly severe consequences over
space across different environmental aspects, highlighting the importance of maintaining habitat
safety. Overall, habitat quality scores were synergistic with NDVI, but antagonistic to surface heat
island intensity (SHII), PM2.5 concentrations, and residential support. However, locally structured
relationships exhibited geographical complexity and heterogeneity between habitat quality and
environmental systems. Regarding GeoDetector evaluation, PM2.5 concentrations in BTH, SHII in
GBA, and NDVI in YRD played a dominant role in single-factor and interaction analysis. More
importantly, the synergistic effect of various environmental issues on habitats was manifested as
mutually enhanced rather than independent or weakened interactive effects, implying the aggravation
of compound effects and the necessity of prioritization schemes. This study could provide beneficial
insights into the interconnections between habitats’ sustainability and multifaceted environmental
situations in UAs.

Keywords: air quality; GeoDetector; habitat quality; thermal environment; urban agglomeration

1. Introduction

Ongoing socioeconomic development has given rise to multifaceted problems and
challenges for habitats. The Intergovernmental Panel on Climate Change (IPCC) high-
lighted the necessity of understanding the interrelationships and linkages between various
environmental issues in the Sixth Assessment Report [1]. The natural ecosystem and hu-
man system are intertwined, and alterations in one component may stimulate others [1].
Thus, sustainable development strategies require a new understanding of compound
environmental issues and overlapping consequences [2].

The United Nations declared that over half of the current world’s dwellers reside
in urban settlements in the World Urbanization Prospects [3]. This proportion will rise
to two-thirds by the 2050s [3]. Accordingly, improving human well-being increasingly
relies on upgrading the situations and services in human-dominated urban areas [4,5].
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Urban agglomerations (UAs) are a newly evolved manifestation of spatially clustered
regions with a common interest and fate [6]. Regional integration development and drastic
urbanization have propelled the formation of UAs [7]. The UA system is a complex
ensemble comprising multiple cities and their extended outskirts with large-scale urban
fabrics and artificial landscapes. These artificial landscapes provide adequate space to
guarantee social-economic boom and human well-being [6]. In parallel, natural habitats
provide a majority of essential ecosystem services to sustain the ecological security of the
entire UA region. However, with drastic economic and population growth, UA regions have
manifested vigorous trade-offs between ecosystem services provision and human social
development, giving rise to enormous ecological deficits, especially in the core megacities
and highly populated areas [4,8]. As such, the habitats of UAs are diverse but fragile, and
might be subjected to a multitude of risk factors from natural and human interference [4].

Existing studies on UAs are typically confined to the individual environmental prob-
lem, formation mechanism, and mitigation strategy, including the thermal [9], air [10],
housing [11], landscape [12], and resource [13] spheres. A vast quantity of studies have
identified, for example, the heat island phenomenon [14,15], air pollution [16,17], and
urban containment [18]. Abundant solutions have continuously contributed to a future
sustainable world, such as nature-based solutions [19] and ecological intensification in-
terventions [20]. Against the backdrops of UAs, implementing measures that safeguard
environmental health and human well-being across multiple aspects is warranted [21,22].
However, few studies have been concerned with the fate of compound environmental risks
and their interactive relationships. The environmental crisis in the UAs may be magnified
due to the overlap of multiple issues, their influences on habitats may be aggravated,
and comprehensive carrying capacity might have further deteriorated [1,23]. Considering
the growing demands for comprehensive issues and compound risks in the UAs, it is
imperative to understand the associations between diffident environmental problems and
seek co-benefits.

Unraveling the relationships between habitats and environmental issues is the founda-
tion of effective, comprehensive policies. Yet, one of the key challenges is obtaining insights
into the complex interplay of multiple environmental situations [1,4]. The impact of human
interference on different environment systems varies broadly from slight, modest, to severe,
but may share similar driving factors [8,24–26]. Additionally, the measurement of the geo-
graphical association of multiple variables relies on their locations, distances, neighboring
settings, and scales [24,27,28]. However, conventional methods, such as cartographic com-
parison, correlation, and regression analysis, generally only mirror simple relationships [29].
Exponential, quadratic, and interactive relationships are difficult to represent using these
conventional methods. The lack of knowledge about complex relationships has obstructed
the achievement of multifaceted environmental evaluation [29]. In light of this, this study
presents a framework that integrates multi-method and multi-source data to evaluate the
associations between multifaceted environmental states and habitat quality in different
UA settings. Our proposed framework incorporates cartographic comparison, correlation
analysis, the local entropy model, and GeoDetector to conduct a spatially multi-perspective
relationship profiling. The local entropy model is a novel method for examining the locally
varying relationships over space, which can capture linear and polynomial complex associ-
ations [29]. GeoDetector is a powerful tool for identifying spatial stratified heterogeneities
and interactive effects [30,31].

We designated the UAs of Beijing–Tianjin–Hebei (BTH), Guangdong–Hong Kong–
Macao Greater Bay Area (GBA), and Yangtze River Delta (YRD) as the study regions.
In recent decades, the Chinese government has been committed to ecological civilization
construction and sustainability management in these three UAs based on a series of relevant
initiatives and policies [32–34], which have been in response to habitat degradation from
dramatic socioeconomic growth [13,35–38]. Moreover, many scientific investigations have
contributed to sustainable development schemes for the three UAs [37,39–44]. The thermal
environment, air quality, living space, and green landscapes have been the focal topics
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among environmental monitoring and assessments, which are also deeply discussed in
this study. Thus, focusing on the three UAs of BTH, GBA, and YRD in 2015, this study
consists of four goals, as follows: (1) Quantification of habitat quality; (2) Evaluation of
diverse environmental situations from the thermal, air, living, and landscape spheres;
(3) Identification of the interconnection and interplay between habitat quality and multi-
dimensional environmental situations; and (4) Elucidation of a potential management
pathway for multi-dimensional sustainability and security for the UAs.

2. Materials and Methods

2.1. Study Areas

This study focused on the three largest Chinese UAs: BTH, GBA, and YRD (Figure 1). The
study regions were determined due to (1) their rapid socioeconomic development, (2) plen-
tiful nature capitals, (3) critical geographical location, (4) urgent sustainability needs, and
(5) superior policy support. BTH, GBA, and YRD are nationally and globally representative
UA regions. These UA regions are not only primary engines and important pivots for China’s
socioeconomic development, but also the significant guarantee and forefront of China’s eco-
logical security. BTH UA (113◦27′E to 119◦50′E, 35◦03′N to 42◦40′N) is situated in Northeast
China, encompassing 13 cities with 2.2% (2.2 × 107 ha) of the national territorial area. GBA UA
(111◦27′E to 115◦42′E, 21◦57′N to 24◦40′N) has a scope of 9 cities and 2 special administrative
regions in South China, accounting for 0.6% (5.6 × 106 ha) of the national territory. YRD UA
(111◦27′E to 115◦42′E, 21◦57′N to 24◦40′N) is composed of 16 cities on the eastern coast of
China, covering 2.2% of China’s territory (2.1 × 107 ha).

Figure 1. Study areas: (a) geographic location of the study areas in China; (b) Beijing–Tianjin–Hebei
(BTH); (c) Guangdong–Hong Kong–Macao Greater Bay Area (GBA); and (d) Yangtze River Delta (YRD).

At the end of 2015, approximately 8%, 5%, and 11% of the national population resided in
BTH, GBA, and YRD, respectively [45]. BTH, GBA, and YRD had 10.2%, 14%, and 18.5% of the
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respective national totals in the gross domestic product (GDP) [45]. These three UAs emerge
as compound habitat systems of multiple urban cores and their peripheral countrysides
under different climate schemes characterized by abundant land details. BTH, GBA, and
YRD are configured by a variety of ecosystems, landscapes, and landforms. BTH is located
in a temperate monsoon climate zone, while GBA and YRD are dominated by a monsoon
subtropical climate context. Significant alterations and transformations in the environmental
landscapes and socioeconomic scales of these UAs in recent decades [38,42,46,47] have given
rise to habitat degradation, ecological fragility, and climate crisis [48–51], such as intensified
heat island effects [52] and deteriorated air pollution [16]. Thus, national development
initiatives also highlight the urgency and necessity of sustainability-related, ecological-oriented
strategies and projects in BTH, GBA, and YRD [32–34].

2.2. Data Preparation and Treatment

Given the data availability, precision, and consistency of the three UAs, this study set
2015 as the year for the research. The year 2015 was an extraordinary time for economic
growth and social boom in BTH, GBA, YRD, and even the entire territory of China due to
a number of important development policies, including the 13th Five-Year Plan, Belt and
Road initiatives, and regional collaboration plans [32–34,53].

The land cover/use maps of the BTH, GBA, and YRD in 2015 were cited and pruned
from Climate Change Initiative (CCI) global land cover (LC) products, European Space
Agency (ESA) (https://www.esa-landcover-cci.org/ (accessed on 30 November 2022)).
ESA CCI-LC product is a 300 m spatial resolution of a time-series global surface coverage
dataset generated based on multi-source satellite archives [54]. The overall weighted-area
accuracy of the ESA CCI-LC map in 2015 was validated to be 71.1% [54]. Thus, the ESA
CCI-LC map can deliver abundant land details and flexibly serve diverse land-oriented
applications. Referring to the official classification scheme [54] and IUCN habitat-related
suggestions [55,56], we rearranged the land cover/use thematic legend into eight categories:
agricultural habitat (AH), forest habitat (FH), grassland habitat (GH), wetland habitat (WH),
shrubland habitat (SH), urban fabric (UF), vacant land (VL), and water (WA).

The annual average daytime and nighttime land surface temperatures (LSTs) of the
BTH, GBA, and YRD in 2015 were composited and preprocessed based on the 1 km resolu-
tion of Moderate Resolution Imaging Spectroradiometer (MODIS) daily/night land surface
temperature/emissivity products (MOD11A1 and MYD11A1, https://modis.gsfc.nasa.
gov/data/dataprod/mod11.php (accessed on 30 November 2022)) using the Google Earth
Engine (GEE). The 2015 yearly average normalized difference vegetation index (NDVI)
distributions in the BTH, GBA, and YRD were also GEE-derived and composed using
MODIS 1 km 16-Day vegetation indices (MOD13A2, https://modis.gsfc.nasa.gov/data/
dataprod/mod13.php (accessed on 30 November 2022)). The 1 km resolution spatial cover-
ages of the 2015 average PM2.5 (particulate matter in the air with aerodynamic diameters
smaller than 2.5 μm) concentrations in the BTH, GBA, and YRD were sourced from China
High Air Pollutants (CHAP) datasets [57,58] (https://weijing-rs.github.io/product.html
(accessed on 30 November 2022)). The China High PM2.5 datasets were developed by
coupling in site PM2.5 data, MODIS aerosol optical depth (AOD) products, and various
auxiliary data based on the space-time extra-trees model [57]. Various air-relevant studies
have used the ChinaHighPM2.5 datasets due to their wide spatiotemporal range and high
cross-validation accuracy (R2 = 0.86–0.90) [57,58]. Spatially gridded population density
data (1 km of spatial resolution) of the BTH, GBA, and YRD in 2015 were extracted from
the high-profile WorldPop population products. WorldPop (https://www.worldpop.org/
(accessed on 30 November 2022)), developed by the University of Southampton, has
been dedicated to supporting the open utilization of various spatial demographic stud-
ies [59]. China-relevant spatial data (e.g., administrative boundary) were obtained from
the Resource and Environmental Science and Data Center, Chinese Academy of Sciences
(https://www.resdc.cn/Default.aspx (accessed on 30 November 2022)).
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2.3. Research Framework

This study aims to evaluate the interconnection and spatial heterogeneity between
habitat quality and multiple environmental situations from multiple perspectives. Thus,
the cascade diagram of our proposed framework is shown in Figure 2. The overall research
framework is mainly composed of four modules: (I) data preparation and preprocessing;
(II) correlation analysis; (III) local bivariate analysis; and (IV) GeoDetector analysis.

Figure 2. Overall research framework. Note: InVEST logo image sources from the website (https:
//naturalcapitalproject.stanford.edu/software/invest (accessed on 30 November 2022)).
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2.4. Quantification of Habitat Quality

Habitat quality is geographically heterogeneous, which depends on habitat character-
istics, suitability, and the presence and relative magnitudes of threat factors [60]. In light
of this, the spatial patterns and magnitudes could be evaluated by the joint use of land
cover/use and threats data [61,62]. The Integrated Valuation of Ecosystem Services and
Tradeoffs–Habitat Quality (InVEST–HQ) model was developed by Natural Capital Projects
in conjunction with Stanford University, the Nature Conservancy, and the World Wide
Fund for Nature (https://naturalcapitalproject.stanford.edu/software/invest (accessed on
30 November 2022)). Given the low data demand, superior spatial visualization, and easy
operation, the InVEST–HQ model is the dominant tool for habitat quality quantification. It
has been widely applied to ecological studies across different regions and spatial scales [60].
Thus, we employed the InVEST–HQ model to estimate the habitat quality in the three UAs
of BTH, GBA, and YRD. Habitat quality can be calculated using the following equations:

Qxj = Hj(1 − (
Dz

xj

Dz
xj + kz )) (1)

where Qxj represents the habitat quality of grid x in land cover/use type j; Hj refers to the
habitat suitability of land cover/use type j; Dxj reflects the total threat level in grid cell x
with land cover/use type j, which is judged by the types, intensities, and proximities of
neighboring threats [62]; k is the half-saturation constant, which is equivalent to the half
of the crest value of Dxj; and z is default at 2.5, which is a scaling parameter for mirroring
spatial differentiation [60].

Dxj =
R

∑
r=1

Yr

∑
y=1

(
wr

∑R
r=1 wr

)ryirxyβxSjr (2)

where R denotes the number of threats; y indexes all grid cells on the raster layer of threat
r; Yr indicates the set of grid cells occupied by the threat on the raster layer; wr and ry
reflect the weight of the threat and the interference intensity of the threat for grid cell y,
respectively; irxy is the habitat interference level of grid cell x from threat r on the grid
cell y; βx refers to the reachability level (the anti-disturbance ability) of grid cell x; and Sjr
represents the relative sensitivity of land cover/use type j to threat factor r. The habitat
quality scores range from 0 to 1, which embodies serious to ideal situations for habitat
quality [60]. In this paper, irxy was considered as follows:

irxy = 1 −
(

dxy

dr max

)
i f linear attenuation (3)

irxy = exp
(
−
(

2.99
dr max

)
dxy

)
i f exponential decay (4)

where dxy is the linear distance between grid cells x and y, and dr max is the maximum
effective influence distance of threat r. More specific information is provided in the InVEST
user guide [60] and the relevant literature [35,49,63–66].

We primarily prepared three categories of documentation as input parameters of
the InVEST–HQ model: (1) raster layers of land cover/use, (2) threat data, sources, and
their accessibility, and (3) suitable habitat types and corresponding threat sensitivities [60].
Threat sources in this study included cultivated lands, bare lands, and built-up lands
due to data availability and consistency. The raster layers of threat sources were derived
in ArcGIS Pro Version 3.0.1 (https://www.esrij.com/products/arcgis-pro/ (accessed on
30 November 2022)). The setting of threat factors and sensitivity parameters were based
on previous literature in the study regions, expert knowledge, and the official user guide
manual [35,49,60,63–66], as shown in the Supplementary Materials.
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2.5. Evaluation of Multifaceted Environmental States

Land surface temperature (LST) is an essential key variable in surface energy balance,
heat fluxes, and energy exchanges over different land cover types, playing a crucial role
in geo-environmental and human health [28]. Thermal infrared (TIR) data from satellite
platforms and retrieved LST are reliable barometers for diagnosing thermal circumstances
in various fields [28,67]. Numerous studies have found different responses to daytime and
nighttime LSTs and reported their different influences on environmental situations and
human behaviors [28,67]. Thus, we utilized both daytime and nighttime LSTs. Instead of
absolute LST observations, the intensity of the surface heat island (SHII) was estimated for
evaluating the states of thermal environments in BTH, GBA, and YRD to minimize the ef-
fects and uncertainty of the climate background. The SHII was generated using the average
daytime and nighttime surface heat island intensities, computed as Equations (5) and (6).
The day and night SHII were, respectively, derived from the daytime and nighttime LSTs,
which subtracts the corresponding mean LST value of non-UF category pixels from the LST
value of each pixel in the study region [68]:

SHII = average
(

SHIIday, SHIInight

)
(5)

SHIIday or night = LSTurban − LSTrural = LSTi − LSTnon−UF (6)

where SHIIday and SHIInight are the surface heat island intensities for day and night,
respectively. LSTurban is the LST value of urban pixels, while LSTrural indicates the LST
value of rural pixels. LSTi denotes the LST value of pixel i within the individual study
regions of BTH, GBA, and YRD. The non-UF category pixels are substitutions for rural
pixels, encompassing the pixels from various non-UF land cover/use categories. Thus,
LSTnon−UF indicates the average LST values of non-UF pixels in the three UAs.

In this study, the yearly average concentration of PM2.5 was captured to reflect the air
environmental situation and pollution in the three UAs. The values of the yearly average
NDVI were used to mirror the environmental comfort and biological health degrees based
on green spaces and vegetation situations.

Residential support (RS) refers to the spaces or services arranged for the necessities of
human living and life, taking into consideration the land cover/use weights and population
density [69]. BTH, GBA, and YRD are the most populated regions in China. Thus, residen-
tial support is an essential component of UA’s environmental issues. The magnitude of RS
in this study was evaluated based on the population distribution and built-up proportion,
which is computed using the following equation [69]:

RS = Popstd × PBU (7)

where Popstd indicates standardized population density. PBU denotes the built-up propor-
tion derived from the calculation of land cover/use.

2.6. Relationship Profiling
2.6.1. Correlation and Local Bivariate Analysis

Given the data-processing capacity and spatial autocorrelation, we generated a set
of 3000 m × 3000 m grid cells as the appropriate analytical scale for the spatial analysis.
Thus, this study rescaled the habitat quality and all environmental indicators into 3000 m
spatial fishnets for evaluating the relationships and interactions between habitat quality
and multifaceted environmental situations. All the spatial operations and modeling in
this study were completed in the ArcGIS Pro Version 3.0.1 platform. Initially, we utilized
the corrplot R package (under R v4.1.0 statistical software, https://www.r-project.org/
(accessed on 30 November 2022)) to visualize the correlation matrix for disclosing the global
association between various indicators across the entire UA region. Next, we adopted the
local entropy model to explore the local connection between habitat quality and various
environmental situations.
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The local spatial associations between habitat quality and environmental situations
were judged based on a local entropy model. The local entropy model is a nonparametric
approach proposed by Guo [29] for multivariate data. It integrates local spatial analysis,
Rényi entropy calculation, permutation-based distribution estimation, and a set of statistical
tests, allowing the interactive detection of significant local multivariate associations over
space [29]. Entropy is a gauge for quantifying uncertainties and randomness, such as Rényi
entropy and Shannon entropy [29,70,71]. Rényi and Shannon entropies are computed as
the following equations:

Hλ =
1

1 − λ
log
(∫

f (x)λdx
)

λ ≥ 0, λ 
= 1 (8)

H = −
∫

f (x) log f (x)dx (9)

where Hλ indicates Rényi entropy, x denotes a multi-dimensional vector in the data space, f (x)
refers to the probability density function, and λ (≥ 0) represents the order of the Hλ. When
λ is closing to 1, Hλ converges to the Shannon entropy (H) in the data space [29]. However,
the unknown probability density function is the principal challenge when estimating the
entropy for exploratory data analysis [29,70,71]. The power-weighted minimum spanning
tree (MST) method is an effective alternative for entropy estimation in multivariate data
analysis [29]. Accordingly, the local entropy model can be conducted by the following
analytical procedures: (1) multivariate Rényi entropy estimation and observation for the
local neighborhood, (2) construction for empirical distributions of local joint entropy using
permutations based on the null hypothesis and MST method, (3) test for statistically significant
local relationships using permutations, and (4) examination and classification of the local
relationships [29,70,71]. Notably, using the appropriate parameter values for the size of the
local neighborhood and the edge power of the MST is vital in implementing this local entropy
model. Specifically, the scaling factor can modulate the sensitivity to subtle relationships.
The proper parameter of the neighboring size can improve the likelihood and efficiency of
detecting significant relationships and patterns. Additionally, optimizing the number of
permutations can permit a neutralization between precision and processing time [29].

The local entropy model proposed by Guo [29] did not assume a prior relationship
form, which can estimate multivariate entropy distribution without a probability density
function and implement local spatial analysis without a regression model [29]. Thus, there
is a growing application of local entropy maps in geography-related studies [29,70–72].
We designed the research steps of local bivariate analysis based on Guo’s approach, as
shown in Figure 3. The average habitat quality score of each analytical grid was extracted
as the dependent variable. The respective average values of SHII, PM2.5 concentration,
NDVI, and RS for each analytical grid were estimated as explanatory variable parameters.
Further, we conducted a series of local bivariate relationship analyses to investigate the
local association between habitat quality and each explanatory variable. We specified a
95% confidence level of the hypothesis test for significant relationships. Six categories of
relationships can be identified based on the local entropy model: not statistically significant,
positive linear, negative linear, concave, convex, and undefined complex.
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Figure 3. Research flowchart of local bivariate analysis. Note: The flowchart of local bivariate
analysis was designed and revised based on Guo’s study [29], consisting of three steps: (I) local data
preparation; (II) permutation-based entropy distribution estimation and testing; and (III) local spatial
relationship mapping.

2.6.2. Geographical Detector Model

The Geographical Detector Model (GeoDetector) is a novel method for capturing
stratified spatial heterogeneity and related driving forces, consisting of risk, factor, ecology,
and interaction detectors modules [30,31]. GeoDetector can quantitatively analyze the
association and similarity of the spatial distributions between a geostatistical variable and
a series of stratified independent variables [31]. The merits of GeoDetector are identifying
interaction influences between multiple factors and comparing their differences [31].

The GeoDetector model assumes that the study area is composed of multiple region
blocks. Spatial heterogeneity is detected if the total variance of the regions is greater
than the sum of the variances of the subregions [31]. In contrast, there is a statistical
association between the two variables when the spatial patterns of the two variables tend
to be identical [31]. Due to no presuppositions and constraints, the GeoDetector analysis is
universal and transplantable [31]. Thus, the GeoDetector model has been used in various
research fields, such as the geoenvironmental and sustainability sciences [14,73,74].

Given the consistency of the three UAs, the four numerical indicators—RS, SHII,
PM2.5 concentrations, and NDVI—were stratified and categorized using equal intervals
classification in conjunction with Jenks natural breaks optimization methods. These four
stratified indicators served as the explanatory variables (X) in the GeoDetector analysis.
The estimated score of habitat quality was still taken as the dependent variable (Y). Among
the four modules of GeoDetector, the risk detector showed the responses of habitat quality
on each stratified explanatory variable. The ecological detector was used to examine the
significant impact difference of stratified explanatory variables on habitat quality. These
two modules can determine the suitable range or type of explanatory variables. However,
we were more concerned about the outputs of factor and interaction detectors in this study.

Based on the factor detector module, the magnitude of stratified spatial heterogeneity
for habitat quality can be quantified using q statistical measures [31].

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST
(10)

where the dependent variable Y (habitat quality in this study) is divided into strata {h},
with h = 1, . . . , L; N and Nh indicate the number of grids in the whole UA region and
strata h, respectively; and σ2 and σ2

h denote the variances of the whole region and strata
h, respectively. SSW is the sum of squares within, while SST is the sum of squares total.
q stands for the explanatory power of a specific explanatory variable X (RS, SHII, PM2.5,
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and NDVI) for habitat quality, ranging from 0 to 1. The greater the q value, the stronger
the influences of the explanatory variable X and the more apparent spatial differentiation
of habitat quality [31]. Remarkably, habitat quality exhibits a random spatial distribution
when the q value is 0, whereas habitat quality shows complete spatial differentiation when
the q value equals 1 [31]. The q value satisfies the non-central F distribution, where λ is the
non-central parameter and Yh is the mean of layer h [31].

F =
N − L
L − 1

q
1 − q

˜F(L1, NL;) (11)

λ =
1
σ2 [

L

∑
h=1

Yh
2 − 1

N
(

L

∑
h=1

√
NhYh)

2] (12)

According to the equations above, the p-value can be calculated as a statistical signifi-
cance test for the q statistics. The interaction detector module can discern the interactive
effect on the habitat quality between two environmental situations. Firstly, the impact
(q values) of two stratified environmental situations on habitat quality was estimated as
q(Xi) and q

(
Xj
)
, respectively. Next, we computed the q values of the interactive effect

(q
(
Xi ∩ Xj

)
). Ultimately, according to judging criteria (Table 1), the interaction type between

two stratified environmental situations can be determined by comparing q
(
Xi ∩ Xj

)
with

q(Xi) and q
(
Xj
)
. More detailed information on the GeoDetector model can be obtained

from the official website (www.geodetector.cn (accessed on 30 November 2022)).

Table 1. Definition of the interaction types in the GeoDetector model [31].

Interaction Types Judging Criteria Interaction Relationship Descriptions

Nonlinear-weakened q
(

Xi ∩ Xj

)
< Min

(
q(Xi), q

(
Xj

)) The synergistic effect is nonlinearly weakened by the
interplay of two variables.

Univariate-weakened
Min

(
q(Xi), q

(
Xj

))
< q

(
Xi ∩ Xj

)
< Max

(
q(Xi), q

(
Xj

)) The synergistic effect is univariately weakened by
the interplay of two variables.

Independent q
(

Xi ∩ Xj

)
> Max

(
q(Xi), q

(
Xj

))
The effects of individual variables are independent.

Bivariate-enhanced q
(

Xi ∩ Xj

)
= q(Xi) + q

(
Xj

) The synergistic effect is mutually enhanced by the
interplay of two variables.

Nonlinear-enhanced q
(

Xi ∩ Xj

)
> q(Xi) + q

(
Xj

) The synergistic effect is nonlinearly enhanced by the
interplay of two variables.

3. Results

3.1. Spatial Characteristics of Habitat Quality Based on Land Cover/Use Evaluation

The thematic maps of land cover/use for three UAs were prerequisites for quantifying
the habitat quality, as shown in Figure 4. The UF areas were highly urbanized areas
dominated by large-scale built-up areas, highlighted in red. Natural habitat types are
presented using different gradients of green and blue. AH referred to a semi-habitat system
used for cultivation and farming activities, depicted in yellow.

Upon the completion of the InVEST–HQ analysis, the magnitudes of habitat quality
for three UAs in 2015 were assessed, as shown in Figure 5. The habitat quality scores ranged
from 0 to 1, representing the worst to perfect ecological situations. We assorted and mapped
the habitat quality index into ten levels using an equal interval of 0.1, indicating the lowest
(HL1: 0–0.1) to highest habitat quality (HL10: 0.9–1). The habitat qualities of the three UAs
and their geographical variations differed by habitat types and suitability. Overall, the
habitat situations of the three UAs in 2015 were not optimistic, and approximately one-third
of the regions showed low magnitudes of habitat quality (HL1–HL3). The average habitat
quality scores in BTH, GBA, and YRD were 0.3563, 0.3399, and 0.3336, respectively. The
moderate-quality levels of habitats (HL4–HL6) made up the largest proportion of the three
UA regions. However, the high habitat quality areas (HL7–HL10) added up to under 15%

292



Remote Sens. 2023, 15, 921

(Figure 5d). The spatial layouts of habitat quality in the three UAs were highly consistent
with the configuration characteristics of land cover/use. The scores of non-habitat areas
(UF and VL) were estimated to be zero. In contrast, FH and WA showed higher quality
scores than other habitat types in the three UAs. However, the habitat quality score of the
WA type in GBA was much lower than that of BTH and YRD. There was a large margin of
habitat quality score for the GH type between BTH and the other two UAs. The average
scores of AH, FH, GH, and WA in 2015 are shown in Figure 6, as these four habitat types
dominated the three UAs (over 85% of area shares).

Figure 4. Thematic maps of land cover/use for three UAs: (a) BTH, (b) GBA, and (c) YRD.

Figure 5. Spatial patterns and distributions of habitat quality in the three UAs: (a) BTH, (b) GBA,
(c) YRD, and (d) area summary.
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Figure 6. The scores of habitat quality for the four dominant land cover/use.

Geographically, the areas with low habitat suitability in the three UAs in 2015 were
chiefly located in human settlements, namely, urban and peri-urban fringes, indicating
the adverse influences of anthropogenic activities on the regional habitats. The northwest
part of BTH showed high-quality scores due to mountain ridges and massive forests,
while the most serious habitat fragile areas were detected in Beijing and Tianjin. The
severe habitat delicate areas in GBA were roughly configured as a triangle-shaped region,
extending from Guangzhou–Foshan outwards to Macao, Zhuhai, Shenzhen, and Hong
Kong. Only Zhaoqing and Huizhou exhibited favorable circumstances for habitats due
to their abundant natural capital. In YRD, the southern part and the Taihu region were
prominent due to their superior habitat suitability. Shanghai, the south of the Jiangsu
Province, and the north of the Zhejiang Province suffered from a challenging habitat
situation in 2015 due to the sparse vegetation availability.

3.2. Spatial Stratification of Multi-dimensional Environmental Situations

Although the annual LST values showed a large difference in tendency and influ-
ence depending on the day and night, the spatial patterns of day and night heat island
intensities in the three UAs were highly consistent. In light of this, this study utilized the
mean value of yearly daytime and nighttime SHII to reflect the regional comprehensive
thermal environment status in the three UAs. The spatial arrangements of daytime and
nighttime thermal environments (both LST and SHII) in the three UAs are shown in the
Supplementary Materials. This study divided the SHII index into five categories: ≤0, 0~1,
1~2, 2~3, >3 (unit: ◦C, Grades I–V) (Figure 7). The 2015 average values of daytime LST in
BTH, GBA, and YRD were estimated to be 19.99 ◦C, 24.7 ◦C, and 20.83 ◦C, respectively, and
those of respective nighttime LST were 21.84 ◦C, 26.79 ◦C, and 22.67 ◦C. The non-habitat
areas and agricultural habitats dominated the areas with high SHII values. The area ratios
of positive SHII regions were 56.36% in BTH, 57.12% in GBA, and 60.51% in YRD.

Significant spatial differentiations of yearly average PM2.5 concentrations were found
in the three UAs. The spatial maps of the average PM2.5 concentrations in 2015 for the
three UAs were stratified into five categories: ≤30, 30~40, 40~50, 50~60, >60 (unit: ug/m3,
Grades I–V), as shown in Figure 8. The BTH regions showed the worst air condition
among the three UAs, and about 43.78% of the regional territory was exposed to severe
air pollution (Grade V). Most of the GBA regions (94.26%) in 2015 were clustered in Grade
II and III PM2.5 concentrations. Only 13.8% of YRD regions did not suffer from severe
air pollution.

This study weighed the UAs’ living supporting capacity based on the product of
built-up proportion and population density. Regions without living supporting capacity
were assigned the value of zero. The RS value was equal to one, indicating perfect resi-
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dential suitability. We defined five grades for the RS index: 0 (without RS capacity), 0~0.1,
0.1~0.2, 0.2~0.3, >0.3 (unitless, Grades I–V). There were multiple cores with extremely
high living supporting capacity in the three UAs, as shown in Figure 9. Regions with
residential suitability in BTH, GBA, and YRD were estimated to be 26.75%, 26.27%, and
30.1%, respectively.

Figure 7. Spatial stratification of the thermal environmental situations in the three UAs: (a) BTH,
(b) GBA, and (c) YRD.

Figure 8. Spatial stratification of the air environmental situations in the three UAs: (a) BTH, (b) GBA,
and (c) YRD.

Figure 9. Spatial stratification of the residential situations in the three UAs: (a) BTH, (b) GBA, and (c) YRD.
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NDVI represents the aesthetic, recreational, and regulating functions of natural land-
scapes. We mapped the spatial patterns of the NDVI index with an interval of 0.2 for the
three UAs (unitless, Grades I–V, Figure 10). In 2015, the average values of NDVI were
projected to be 0.7263 in BTH, 0.7196 in GBA, and 0.6798 in YRD. Approximately 84.77% of
BTH regions, 75.33% of GBA regions, and 72.30% of YRD regions had high values of NDVI,
exceeding 0.6 in 2015.

Figure 10. Spatial stratification of the biological health situations in the three UAs: (a) BTH, (b) GBA,
and (c) YRD.

3.3. Correlations of Environmental States

We started with the correlation analysis between habitat quality and four environ-
mental status indicators. In general, three UAs exhibited identical relation patterns in the
entire regional scale, albeit with varying degrees. Habitat quality in the three UAs was
negatively associated with the indicators of SHII (R2 ≥ 0.49, p < 0.001), PM2.5 concentra-
tions (R2 ≥ 0.38, p < 0.001), and RS (R2 ≥ 0.26, p < 0.001), while positively related to NDVI
(R2 ≥ 0.3, p < 0.001). The correlation coefficients between habitat quality and SHII were
the highest in GBA (R2 = 0.73) and the lowest in BTH (R2 = 0.49). The association between
habitat quality and NDVI degrees in GBA (R2 = 0.62) was the strongest among the three
UAs. The most salient impact of PM2.5 concentrations (R2 = 0.44) on habitat was detected
in BTH. YRD showed the highest coefficient between habitat quality and RS (R2 = 0.32).
As for the four environmental status indicators, there were positive correlations among
SHII, PM2.5 concentration, and RS, but NDVI negatively varied with other indicators
(p < 0.001). In terms of UA, the strongest associations were SHII–PM2.5 concentration in
BTH (R2 = 0.81) and SHII–NDVI in GBA (R2 = 0.74) and YRD (R2 = 0.64). In contrast,
there were minor linkages between PM2.5 concentrations and RS in all the studied UAs
(R2 ≤ 0.12). The relevant correlation coefficients are shown in Figure 11.

We identified six types of spatial structural relationships between habitat quality
and four environmental status indicators based on the local entropy model. We assumed
that there were local relationships between quality and individual environmental status
indicators in the three UAs under the 95% confidence level. We set the 0.5 scaling factor,
30 neighborhoods, and 199 permutations to perform the hypothesis test for accommodating
local spatial relationships.
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Figure 11. Correlograms of multifaceted environmental situations in the three UAs: (a) BTH, (b) GBA,
and (c) YRD. Note: The asterisk symbols (‘***’) are representative of the statistical significance at the
0.1% level (p < 0.001).

The relationships were predicted and determined based on the adjusted R-square and
the model’s Modified Akaike Information Criterion (AICc). The classified local relationships
in the three UAs are mapped in Figure 12, and the relevant categorical summary is shown
in Table 2. We provided the entropy statistic and detailed information on the local bivariate
analysis in the Supplementary Materials. The results of the local bivariate analysis displayed
local structural relationships of various forms between habitat quality and environmental
situations over space. Furthermore, the generated maps of local bivariate analysis differ-
entiated the significance levels within a certain neighboring extent. Many regions showed
statistically non-significant relationships in the local contexts of the three UAs, indicating
a spatially random distribution pattern between variables presented in these regions. The
spatially explicit local relationship maps provided an overview of the spatial diversities
for significant local associations between habitat quality and environmental situations and
navigated the analysis to focus on specific areas. The local bivariate analysis, thus, offered
considerable interpretation clues. For example, about 4.86% of BTH regions showed a
concave relationship between habitat quality and SHII, indicating that habitat quality in the
corresponding BTH regions followed a concave curve as the SHII varied.

We found that the total area ratios of linear and quadratic models for the HQ–SHII
relationship in BTH were 23.95% and 10.59%, respectively. This finding indicates that the
polynomial and linear models can explain the 23.95% and 10.59% relationship between habitat
quality and thermal environment in BTH, respectively. These explanations were also suitable
for other estimated coefficients. Thus, the local bivariate analysis allowed us to capture the
extent of local heterogeneity between habitat quality and different environmental situations:
27.37–43.14% in BTH, 23.7–65.37% in GBA, and 27.95–55.84% in YRD.

Comparing the performance of four environmental situation indicators, the spatial
influences of SHII, NDVI, and RS on habitats in the neighboring local setting were more apt
to be detected. However, understanding how the PM2.5 concentration locally influenced the
UAs’ habitat over space was not completed due to there being over 72% of non-significant
areas. Looking at the statistically significant features, the negative linear relationship
accounted for the largest share in the HQ–SHII, HQ–PM2.5, and HQ–RS results. In contrast,
the positive linear relationship was the most remarkable in the HQ–NDVI results.
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Figure 12. Local spatial relationship between habitat quality and multifaceted environmental states:
(a–c) HQ–SHII for BTH, GBA, and YRD, respectively; (d–f) HQ–PM2.5 for BTH, GBA, and YRD,
respectively; (g–i) HQ–RS for BTH, GBA, and YRD, respectively; and (j–l) HQ–NDVI for BTH, GBA,
and YRD, respectively.
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Table 2. Categorical summary of the local bivariate analysis.

BTH

Type of Relationship HQ–SHII HQ–PM2.5 HQ–RS HQ–NDVI

Positive Linear 6.99% 4.62% 0.11% 20.87%
Negative Linear 16.96% 10.47% 21.16% 4.27%
Concave 4.86% 3.77% 1.00% 9.87%
Convex 5.73% 4.56% 10.44% 5.48%
Undefined Complex 3.89% 3.95% 1.15% 2.66%
Not Significant 61.57% 72.63% 66.15% 56.86%

GBA

Type of relationship HQ–SHII HQ–PM2.5 HQ–RS HQ–NDVI

Positive Linear 4.17% 1.35% 0.01% 16.91%
Negative Linear 30.17% 10.48% 16.50% 4.78%
Concave 11.53% 3.23% 0.03% 9.28%
Convex 12.26% 1.91% 10.01% 10.81%
Undefined Complex 7.25% 6.72% 2.25% 7.43%
Not Significant 34.63% 76.30% 71.20% 50.80%

YRD

Type of relationship HQ–SHII HQ–PM2.5 HQ–RS HQ–NDVI

Positive Linear 4.16% 3.20% 0.01% 22.00%
Negative Linear 21.41% 11.36% 27.99% 5.46%
Concave 16.18% 4.08% 0.30% 11.43%
Convex 6.23% 2.11% 16.86% 10.53%
Undefined Complex 5.65% 7.20% 3.37% 6.42%
Not Significant 46.36% 72.05% 51.47% 44.16%

3.4. GeoDetector-Based Interactive Effects Assessment

Spatial stratified heterogeneity and interactive influence between habitat quality and
multi-dimensional environmental status in the three UAs were captured using GeoDetector.
The outputs show that the geographically stratified heterogeneities of habitat quality in
the three UAs were, to a certain extent, affected by multifaceted environmental status.
The habitat quality varied significantly over space for each graded environmental status
indicator based on a series of t-tests at a significance level of 0.05. The related outputs of
factor and ecological detector modules are shown in the Supplementary Materials. The
stratified average values of habitat quality in each stratum of environmental situations
for the three UAs are shown in Figure 13. The q statistic coefficients for four graded
environmental status indicators in the three UAs under the factor detector module are
shown in Figure 14. The higher q statistic coefficient indicated a greater explanatory power
for the stratified heterogeneity of habitat quality. According to the coefficients of the q
statistic, the most crucial influencing indicators on habitat quality in the three UAs were
PM2.5 concentration (BTH, q = 0.17), SHII (GBA, q = 0.30), and NDVI (YRD, q = 0.21).
Other indicators also showed a considerable impact on habitat quality. The outputs of
the interaction detector module revealed the interactive influences from a combination
of multiple environmental status indicators on habitat quality, as shown in Figure 15.
With reference to the judging criteria of interaction (Table 1), we found that the q statistics
for the bivariate interactions were greater than the q statistics for every single factor,
indicating that the explanatory power of a single indicator could be mutually enhanced
when interacting with another one. The cumulative effects of different environmental
statuses could bring about more pressures and risks on habitat quality. Specifically, in BTH,
the PM2.5 concentration played a dominant role in the single-factor influence analysis and
strongly interacted with other indicators. The predominant interaction between PM2.5
concentration and NDVI showed the highest q statistic. A similar phenomenon was also
found in the SHII indicator of GBA and the NDVI indicator of YRD.
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Figure 13. The performances of the graded environmental situations under the risk detector: (a) SHII,
(b) PM2.5, (c) RS, and (d) NDVI.

Figure 14. The q-statistic coefficients for the grading indicators in the three UAs.

Figure 15. Interactive influences of different environmental situations on habitat quality: (a) BTH,
(b) GBA, and (c) YRD.
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4. Discussion

4.1. The Impacts of Multifaceted Environmental States on Habitat Quality in the Three
Urban Agglomerations

Focusing on BTH, GBA, and YRD, this study spatially evaluated the relationships
between habitat quality and multifaceted environmental states using various methods. The
cartographic comparison allowed us to capture spatial differentiation and hotspots, the
correlation analysis provided a global overview of the statistical relationships, the local
entropy model inspected the local structural associations, and GeoDetector identified the
spatial stratification heterogeneity and interactive influence. Through such incorporation
of multi-perspective profiling, this study presents a comprehensive panorama of the in-
terconnection of various environmental circumstances and their impacts on habitats for
different UAs. As a series of biophysical and anthropogenic drivers can threaten the habitat
quality and simultaneously trigger changes in different environmental mechanisms, there
were similarities and discrepancies in the performances of the three UAs, reflected by the
dominant impact and relationship strengths.

Based on the overlay of habitat quality and land/cover use maps in the three UAs, we
found that more than four-fifths showed low–medium habitat suitability, spatially clumped
in the human settlement and cultivation areas. Meanwhile, large-scale UF areas displayed
prominent heat island phenomena, terrible air quality, over-intensive living space, and sparse
green availability, albeit with varying degrees of three UAs. Habitat types with high greenness
(e.g., forests) in the three UAs showed small gaps in habitat quality scores, ranging from
0.409 to 0.467. The scores of habitats with low greenness (e.g., grass, water) greatly varied
across different UAs, depending on habitat types and extents (Figures 6 and 13d). Grounded
on correlation analysis, SHII, PM2.5 concentrations, and RS showed an overall deteriorative
impact, whereas NDVI had a beneficial influence on the habitat quality in the three UAs. This
result was in line with previous environmental-related studies [10,14,15,44,49,74,75]. We also
recognized that the most noticeable impacts on habitat were air pollution in BTH, thermal
stress, and green capacity in GBA, and residential pressure in YRD. Thus, habitat quality tied
in closely with natural assets’ situations, indicating that habitat-related strategies depended
on improving and maintaining the green and blue spaces.

Next, bivariate relationship profiling based on the local entropy model identified
and delineated the local spatial influence of individual environmental status on habitat
quality. The spatial mapping of local relationships showed the advantage of distinguishing
diverse types of significant associations and highlighting their spatial patterns. Local
spatial relationships were roughly in agreement with the global trend of the entire UA.
Except for non-significant areas, the habitat quality scores of most regions in the three
UAs were negatively related to SHII, PM2.5 concentrations, and RS, while positively
associated with NDVI at the 95% confidence level. The local spatial influences of different
environmental statuses on habitats were complicated with a rich mixture of relationship
types, regardless of UAs. However, large shares of non-significant areas emerged in terms of
HQ–PM2.5 (>72%) and HQ–RS (>51%). The PM2.5 concentrations used in this study were
estimated based on in situ observations, AOD distribution, and auxiliary data (e.g., land
cover/use and population) [57,58]. Our habitat quality scores were assessed using the land
cover/use-based InVEST–HQ module [60]. It is difficult to simulate the habitat suitability
and quality considering air-related threats due to model constraints, which interfere with
the relationships captured between habitat and PM 2.5 concentrations. Regarding HQ–
RS performance, the non-significant areas mainly belonged to natural habitats without
residential function and service.

The upshots from GeoDetector analysis generally conformed with the foregoing
paired relationship profiling and demonstrated the pile-up effect of any two different
environmental issues. Relying on the GeoDetector investigation, this study emphasized
spatial differences in the overlapping effects and interaction relationships of differently
graded environmental strata on habitat quality. Using the interaction detector, we figured
out that the impacts of the combination of different environmental issues on habitats in the
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three UAs were bivariate-enhanced rather than independent or weakened, indicating the
aggravation and amplification of compound effect compared with the influence of a single
environmental status. In terms of the BTH region, the cumulative effects of air pollution in
conjunction with other environmental issues were more severe, coinciding with previous
investigations [57,76,77]. BTH has struggled with the worst consequences of air pollution
due to a chain of factors [16,78–80]. BTH is the national capital region of China, with over
110 million people [45]. The primary contributors were high energy consumption, vehicle
emissions, biomass burning, and neighboring heavy industries [79,80]. As surrounded by
mountains, BTH was a victim of its topography, where pollutants are trapped within the
regional limits (mainly in the south and east of BTH).

In contrast, the overlapping influences of the heat island phenomenon and other issues
in GBA have attracted more attention. We identified that the average annual daytime and
nighttime LST values in GBA were the highest among the three UAs. On the other hand,
a vast extent with low habitat quality scores in GBA was spatially congregated in the
three contiguous megacity clusters (Dongguan–Guangzhou–Foshan, Zhuhai–Macao, and
Shenzhen–Hong Kong). Meanwhile, these three contiguous megacity clusters exhibited
forceful residential service capacities and low green gradients. However, GBA was superior
to the other two UAs in the scale, extent, and gradient of air pollution. Most areas with
over 50 ug/m3 annual PM2.5 concentrations in GBA were merely spatial distributed in
Foshan. Accordingly, we observed the lowest impact of PM2.5 concentrations on GBA’s
habitats. In the YRD case, the interactions between NDVI and other indicators stood out.
Additionally, there were minor gaps in impact magnitudes between indicators for YRD in
comparison to those for BTH and GBA. We noticed that the gradient of NDVI and habitat
quality in YRD were inferior to that of the other two UAs. These performances of YRD
can be partly ascribed to development gradients and geomorphic features. Owing to the
fast-growing urban built-up and settlements in recent decades, YRD is the most populated,
urbanized, and prosperous region in China, with numerous megacities and more than
80 million urban dwellers [45]. Most areas of YRD render a plain terrain, whereas uplands
and forests are spatially configured in the south region. Shanghai, Hangzhou Bay, and
Suxichang Metropolitan Areas are the most remarkable regions with high urbanness. Such
geographical configuration of YRD could respond to its layout and composition of habitat
quality, revealing the lag and importance of YRD’s greenness and habitat security.

4.2. Road Ahead and Implication for the Spatial Management of Multi-Dimensional
Environmental Issues

The uniqueness of this study was the multi-perspective profiling of numerous envi-
ronmental issues and their interactions. Unlike other environmental studies, this study
discerned the associations and interactive effects of different environmental situations
instead of clarifying the mechanisms and driving forces of individual environmental prob-
lems. Initially, the circumstances of the designated onefold environment in the three
UAs were separately evaluated using different indicators and methods. Subsequently,
we constructed an integrated framework that combined multiple approaches to link the
varying mixes and degrees of different environmental impacts on habitats. This frame-
work propels the multi-objective sustainable management of natural-social capital and
co-benefits-seeking policies.

The spatially explicit quantification, mapping, and profiling of various environmental
impacts and their relationships serve as the chief references for development plans and
policymaking. In recent years, numerous studies detected trade-offs and synergies among
multiple environmental services, demonstrating how to move towards sustainability by op-
timizing the governance and service deliveries of different ecosystems [24,81]. Analogously,
our understanding of multifaceted environmental situations and their influences on habitat
quality can support work toward tailored sustainable pathways to specify (1) whether and
where to adopt the countermeasures to safeguard nature and human habitats, (2) which
sector and whose situation should be accounted for and take the corresponding precedence,
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and (3) how to reduce overlapped risks and advance the co-benefits, which we examined
in the context of the three largest Chinese UAs.

Our evaluation results for these three UAs suggest the weightiness of embracing
the spatial diversities and context heterogeneities of regional environmental situations
for spatially targeted decision-making. Importantly, the landscapes delivering high habi-
tat quality (score ≥0.7) in the three UAs occupied only under 15% of their respective
areas. However, over half areas emerged with varying strengths of deteriorative environ-
mental consequences across different aspects. This study focused on four environmental
issues, namely, heat-related stress, air pollution, over-intensive living space, and limited
urban afforestation, which have been the most common and urgent problems in UA re-
gions and emphasized in national initiatives and local policies [23,25]. We identified that
the compound impacts were amplified when one environmental issue overlapped with
another. Since the interactive effects of different environmental issues were not indepen-
dent, strategies to improve an onefold environment may contribute to ameliorating other
environmental situations. It is imperative to take advantage of the interactive traits of
environmental issues to safeguard and advance regional sustainability, preventing the
formation and magnification of multifold risks from ecological, climate, and social aspects.

Furthermore, the motivation for UA formation is integrating regional resources, com-
plementarity advantages, and beneficial cooperation [6]. The geographical heterogeneities
and multi-dimensional gaps of UAs can offer opportunities for establishing rational re-
source allocation and cost-sharing mechanisms [6]. The core megacities and highly pop-
ulated areas of the UA have been subjected to multiple environmental pressures. Due
to the extremely constrained habitat availability and ecological carrying capacities, the
supply of essential ecological services in these areas should be addressed by the enrich-
ment and complementary of surrounding natural/semi-natural ecosystems rather than
self-sufficiency [82]. Therefore, it is crucial to review the heterogeneities and relationships
of the multifaceted environmental situations across the entire UA. By synthesizing different
situations, the corresponding geographic areas should be identified to efficiently demarcate
vulnerable environmental zones, implement the scopes of mitigation or restoration, and
equitably assign environmental compensation [24,82].

Considering different hotspots and relationships between environmental issues, the
spatial targeting of specific policies should be deliberated in potentially vulnerable areas
to ensure effectiveness [38,83,84]. Spatially explicit mapping should visualize the per-
formance of habitat quality and various environmental states, which can be more prone
to identifying corresponding vulnerable locations. The most suitable strategies should
be generated by integrating the different environmental profiles and minimizing overall
negative feedback [23]. For example, since the most severe problem in BTH is air pollution,
the interaction between air pollution and other issues can be aggravated. The mitigation of
air pollution should be a considerable priority [19,79,80]. A series of strategies and interven-
tions, including a clean energy plan, vast investments in urban greenery, the optimization
of energy consumption structure and efficiency, and technological innovations [53], can
take precedence to ameliorate the pollution condition of BTH. Simultaneously, thermal
and biophysical environments in BTH can also be improved due to common management
strategies. Similar arguments are suitable for GBA and YRD. A relief of the heat island
phenomenon in GBA and the management intervention of urban afforestation in YRD
should take precedence. Prioritization of decision-making in tandem with compound
risk minimization sheds light on a promising amelioration pathway of both onefold and
comprehensive UA environments, which can make the achievements of spatially com-
prehensive management and multi-dimensional sustainability possible and efficient from
various aspects [19,23,82].

Although we are confident about the contributions of this study to sustainability-
related policymaking processes, there is still enormous potential for our framework. Firstly,
we are considering the improvement of the habitat quality quantification in further stud-
ies by incorporating more threat source data and models, such as traffic data and heavy
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industrial zone. Our habitat quality was mainly derived from land cover/use evaluation
and, to some extent, affected the investigation of relationships between habitat quality
and certain environmental situations (e.g., air quality). On the other hand, there can be
a dynamic improvement when updating the indicators of environmental issues from a
spatiotemporal perspective. In this study, restricted by data availability and consistency,
we only evaluated the situations and impacts of four environmental issues on the spatial
grid scale in 2015. The relationships between environmental issues and their influences
may vary across different spatial scales and evolve over time. We desire to add more tem-
poral dynamics and incorporate policy information to verify the proposed comprehensive
research framework further. In particular, significant spatiotemporal disparities and trends
may be reflected when comparing the situations before and after the COVID-19 pandemic.
Moreover, we can endeavor to explore more environmental issues to enrich the multifaceted
evaluation. Environmental profiles, such as energy emission, water purification, and food
security, can be synthesized into our future research framework to produce more insights
for sustainability support.

5. Conclusions

In tailoring sustainable development schemes for the three UAs of BTH, GBA, and
YRD, we profiled the relationships and interactions between habitat quality and multi-
environmental status indicators from various perspectives by integrating cartographic
comparison, correlation analysis, local entropy map, and GeoDetector. The cartographic
comparison highlighted geographical hotspots, the correlation analysis weighed global
heterogeneities, the local entropy map differentiated the local spatial associations, and
GeoDetector recognized interactive relationships.

The contributions of this study stem from four aspects: (1) spatial valuation of habitat
quality for the three UAs; (2) spatial overview of the multifaceted environmental situations
for the three UAs; (3) multi-perspective profiling of the relationships and interactive
influences of different environmental situations on habitat quality for the three UAs; and
(4) implications for supporting habitat sustainability and co-benefit-sought decisions. The
critical discoveries are summarized as follows:

In 2015, most of the regional landscapes in the three UAs delivered low/medium habi-
tat availability levels overlapped with threats from the thermal, air, living, and biological
environmental spheres. The worst compound environmental risks were geographically ag-
gregated in highly urbanized areas, showing an execrable habitat quality. As expected, the
habitat security of the UAs was diminished by the heat island phenomenon, air pollution,
and residential support. In contrast, enhancing afforestation in the UAs can be a promising
pathway to maintain habitat health. The delineation of the local structural relationships
between habitat quality and different environmental statuses highlighted the spatial com-
plexity of the influences and interplay among various environmental systems, indicating
potential environmental injustice, spatially heterogeneous changes, and context depen-
dency. Strategies targeting specific environmental issues may induce spatially varying
consequences on habitats and produce various trade-offs in other environmental systems.
The interaction between various environmental issues manifested bivariate-enhanced ef-
fects, implying that the overlay of different environmental issues can magnify the influence
of each environmental risk. The seriousness of the worst environmental issue would deteri-
orate when overlapping with others. Thus, the prioritization of decision-making processes
may be required in different geographical contexts, such as air pollution removal in BTH,
heat island mitigation in GBA, and green space improvement in YRD.

In conclusion, the findings of this study support the multi-dimensional sustainability
and co-benefits sought by taking advantage of the relationships and interactions between
habitats and diverse environmental issues in the UAs.
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Abstract: Land surface temperature (LST) in urban agglomerations plays an important role for
policymakers in urban planning. The Pearl River Delta (PRD) is one of the regions with the highest
urban densities in the world. This study aims to explore the spatial patterns and the dominant
drivers of LST in the PRD. MODIS LST (MYD11A2) data from 2005 and 2015 were used in this study.
First, spatial analysis methods were applied in order to determine the spatial patterns of LST and
to identity the hotspot areas (HSAs). Second, the hotspot ratio index (HRI), as a metric of thermal
heterogeneity, was developed in order to identify the features of thermal environment across the
nine cities in the PRD. Finally, the geo-detector (GD) metric was employed to explore the dominant
drivers of LST, which included elevation, land use/land cover (LUCC), the normalized difference
vegetation index (NDVI), impervious surface distribution density (ISDD), gross domestic product
(GDP), population density (POP), and nighttime light index (NLI). The GD metric has the advantages
of detecting the dominant drivers without assuming linear relationships and measuring the combined
effects of the drivers. The results of Moran’s Index showed that the daytime and nighttime LST were
close to the cluster pattern. Therefore, this process led to the identification of HSAs. The HSAs were
concentrated in the central PRD and were distributed around the Pearl River estuary. The results
of the HRI indicated that the spatial distribution of the HSAs was highly heterogeneous among
the cities for both daytime and nighttime. The highest HRI values were recorded in the cities of
Dongguan and Shenzhen during the daytime. The HRI values in the cities of Zhaoqing, Jiangmen,
and Huizhou were relatively lower in both daytime and nighttime. The dominant drivers of LST
varied from city to city. The influence of land cover and socio-economic factors on daytime LST was
higher in the highly urbanized cities than in the cities with low urbanization rates. For the cities
of Zhaoqing, Huizhou, and Jiangmen, elevation was the dominant driver of daytime LST during
the study period, and for the other cities in the PRD, the main driver changed from land cover in
2005 to NLI in 2015. This study is expected to provide useful guidance for planning of the thermal
environment in urban agglomerations.

Keywords: land surface temperature; spatial analysis; urban agglomeration; driving factors; geo-
detector metric

1. Introduction

The urban heat island (UHI) is a global phenomenon caused by urbanization [1]. UHI
affects air quality [2], threatens the health of urban residents [3,4], influences building en-
ergy consumption, and leads to the risk of overheating in outdoor thermal environments [5].
Generally, UHI can be assessed by using the air temperature or land surface temperature
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(LST). Urban agglomerations, which represent groups of cities that have a compact spatial
organization and close economic connections, have become the most prominent feature
of global urbanization in recent decades [6,7]. Especially in China, urban agglomerations
have become the major form of national urbanization [8]. Therefore, it is important to un-
derstand the spatial distribution patterns of LST and the main driving factors affecting LST
in order to formulate informed urban policies for urban agglomerations in the future [9].

Most previous studies focused on the spatial distribution characteristics and driving
factors of LST [10–18]. The spatial distribution of high LSTs is significant for understand-
ing the landscape patterns of LST [19,20]. According to previous studies, the potential
factors of LST can be divided into three types: (1) land cover factors, which include land
use/land cover (LUCC) [21], the normalized difference vegetation index (NDVI) [22–24],
and the normalized difference built-up index (NDBI) [25,26]. This type also includes the
impervious surface area (ISA) and the impervious surface distribution density (ISDD),
which indicate the urbanization intensity of an area from the perspective of impervious
surfaces [27,28]. (2) Socio-economic factors, which include the gross domestic product
(GDP) [29], population density (POP) [30,31], and industrial production activities [32].
In addition, the nighttime light index (NLI) can indicate the human density [33], energy
consumption [34], built-up area [35], and socioeconomic dynamics [36]. However, few
studies have explored the relationship between NLI and LST. (3) Physiographical factors,
which include elevation and slope, have also been studied [37,38].

The correlations between LST and various factors should be clarified in order to
determine the main drivers of LST. Several methods, including the use of Pearson cor-
relation coefficient [39], linear regression analysis [8,30], and stepwise multiple-linear
regression [40], have been widely used in previous studies. LST is usually affected by
multiple factors, and their interactions are quite complex. However, the above-mentioned
methods cannot adequately measure the non-linear correlations between LST and the
various drivers [9], or they cannot deal with categorical data [41]. In addition, few studies
have taken the combined effect of different factors into consideration when determining the
dominant factors of LST. Therefore, this study applied the geo-detector (GD) metric [42] to
explore the correlations between LST and three types of drivers in order to avoid the previ-
ous limitations. The GD metric is applicable to the non-linear relations between the drivers
and LST, and can also measure the combined impact of different drivers on LST. Due to its
good applicability, the GD metric has been widely used in studies of drivers, including air
pollution [43–45], public health [41,46,47], land use [48,49], regional economies [50,51], and
urban environment [9,52].

This study was conducted in the Pearl River Delta (PRD) urban agglomeration, China.
The PRD is one of the most important economic centers in China, and is also one of the most
highly urbanized and populous regions in the world [53]. The cities included in the PRD
were merged into an urban agglomeration in 2005 [54]. The PRD contributed about 9.12%
of the national gross domestic product in 2015 [55], and is known as an “economic miracle”
and the “world factory”. Its rapid urbanization and industrialization led to significant
land cover changes and brought a series of environmental problems, including urban
flood risk, air pollution, and the UHI effect in the PRD [56–58]. The PRD has a subtropical
climate and is located along the coast of the South China Sea. The dual effects of rapid
urbanization and climate make the PRD highly susceptible to extreme heatwave events [20].
However, the current studies on the thermal environment in the PRD are still not adequate.
Most previous studies focused solely on individual factors of LST, such as LUCC, ISA, or
greenspace in the PRD [19,20,37,59–62]. In addition, more attention has been paid to the
core cities, such as Guangzhou, Dongguan, Shenzhen, and Zhongshan cities [19,63–66],
while the cities in the east and west of the PRD have received less attention.

To address the above problems, this study aimed to explore the spatial distribution
characteristics of LST and to detect its main driving factors by using the GD metric in the
PRD. First, we studied the spatial distribution of LST and used Moran’s Index to indicate
the presence of hotspot areas (HSAs). Then, the HSAs were determined by using hotspot
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analysis in a GIS environment. Second, the Hotspot Ratio Index (HRI) was developed to
evaluate and rank the thermal gradient of each city in the urban agglomeration. Finally, the
GD metric was used to measure the influence of each factor and the combined influence
of the different factors on LST. Seven factors were selected based on the literature review
and available data. The effects of the seven factors on the LST in the nine cities were
compared to reveal the complex mechanism of LST in the PRD. Our study contributes
to a better understanding of the spatial distribution characteristics of LST and its main
driving factors, which is helpful in providing insights into the optimization of the urban
thermal environment.

2. Study Area and Data Sources

2.1. Study Area

The PRD urban agglomeration is one of the regions with the highest urban densities
in the world and is one of the most developed regions in China. It is located in the south-
central coastal region of Guangdong Province, and it includes nine cities: Guangzhou,
Foshan, Dongguan, Shenzhen, Zhongshan, Zhuhai, Huizhou, Zhaoqing, and Jiangmen
(Figure 1). The PRD is surrounded by hills and mountains to the north, west, and east. The
total area of the PRD is 55,000 km2 [61]. The PRD experienced rapid population growth
and economic growth from 2005 to 2015, with its population increasing by 13.27 million,
and its GDP increased by about 3.8 trillion yuan (http://stats.gd.gov.cn, accessed on
15 September 2020). The PRD became the largest mega-region in the world according to
the World Bank Group (2015). The average annual temperature ranges from 21 to 23 ◦C,
and the average annual precipitation is over 1500 mm [60,67]. The PRD was selected
for this study because its thermal environment became a serious problem due to the
acceleration of its urbanization. Table 1 shows some key attributes of the nine cities in the
PRD. The air temperature data were obtained from the National Meteorological Data Center
(http://data.cma.cn, accessed on 10 April 2021). The permanent population and electricity
consumption data were derived from the Statistical Yearbook of Guangdong Province.

Figure 1. Maps of the Pearl River Delta (PRD) urban agglomeration: (a) map of Guangdong province,
China; (b) PRD urban agglomerations, including nine cities; (c) elevation map of the PRD.
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2.2. Data Sources

In this study, the LST data for 2005 and 2015 were obtained from the 8-days (version
6) MODIS Aqua LST composite products (MYD11A2) (https://search.earthdata.nasa.
gov, accessed on 6 June 2019). The MYD11A2 LST product was validated with in situ
measurements to yield a bias of <0.5 K [68]. We used the annual mean LST observed in
the daytime/nighttime at 13:30/01:30 local solar time [37]. The potential driving factors
were selected according to previous research and available data, including the elevation,
LUCC, NDVI, ISDD, GDP, POP, and NLI (Table 2). The elevation, LUCC, NDVI, POP,
and GDP data were obtained from the Resource and Environment Science and Data
Center (www.resdc.cn, accessed on 15 June 2019). The LUCC data included six types:
cultivated land, woodland, grassland, water area, construction, and unused land. The
NDVI product was computed from the continuous time series of the SPOT/VEGETATION
NDVI remote sensing dataset. The GDP and POP were grid data with a 1 km resolution.
In addition, the impervious surface data were obtained from published global urban
datasets (https://doi.org/10.6084/m9.figshare.11513178.v1, accessed on 18 June 2020).
The calculation of the ISDD is detailed in [27]. The NLI was obtained from nighttime
light imageries, which were downloaded from the Resource and Environment Science and
Data Center (www.resdc.cn, accessed on 15 June 2019) and the National Geophysical Data
Center (http://ngdc.noaa.gov, accessed on 15 June 2019). All data were resampled to a
1 km resolution to keep the consistence of the spatial resolution of the data analyzed. The
sources of the driver data are summarized in Table 2.

Table 2. Influencing drivers and data sources.

Drivers Variables
Original

Resolution/Resample
Resolution

Time Source

Physiographical factor Elevation 1 km/1 km / www.resdc.cn

Land cover factors
Land use/land cover (LUCC) 1 km/1 km 2005, 2015 www.resdc.cn

NDVI 1 km/1 km 2005, 2015 www.resdc.cn

ISDD 30 m/1 km 2005, 2015 https://doi.org/10.6084/m9
.figshare.11513178.v1

Socio-economic factors

GDP 1 km/1 km 2005, 2015 www.resdc.cn
POP 1 km/1 km 2005, 2015 www.resdc.cn

NLI
1 km/1 km 2005 www.resdc.cn
750 m/1 km 2015 http://ngdc.noaa.gov

3. Methods

3.1. Spatial Variability of LST

The MYD11A2 LST products were used to get the annual average daytime LST and
annual average nighttime LST for 2005 and 2015. The MODIS Reprojection tool was used
to preprocess the MYD11A2 LST data, which included format conversion, re-projection,
and clipping. The mask tool was used to remove cloud pixels; only pixels with a high
quality (average LST error < = 1 K) were used to calculate the annual average LST for 2005
and 2015.

3.1.1. Global Moran’s Index

Spatial distribution analysis is often used to explore geographical phenomena. The
Global Moran’s Index was used to analyze the spatial distribution of the LST. The value of
the Global Moran’s Index is between −1.0 and 1.0, where 1 indicates perfect positive spatial
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autocorrelation, −1 indicates perfect negative spatial autocorrelation, and 0 indicates a
perfect spatial randomness [69]. The Global Moran’s Index is calculated as follows:

I =
n ∑n

i=i ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1(xi − x)2 (1)

where n is the number of pixels; xi and xj are the LSTs at pixels i and j; x is the mean LST;
wij is the spatial weight determined with the spatial correlation of the LSTs at pixels i and j.

3.1.2. Hotspot Analysis

Many previous methods for delineating high-temperature regions have applied nu-
merical classification [70], Gaussian surface fitting [71–73], radial sampling [74,75], and
hotspot analysis [76,77]. Hotspot analysis can be used to identify the spatial clusters of
high LSTs (hotspots) and low LSTs (cold spots) by using only LST data, thus avoiding the
subjective influence that may be caused by having too many parameter settings. Therefore,
hotspot analysis was applied to identify the areas with high (hotspot) or low (cold spot)
LSTs in this study. Based on the clustering patterns of the spatial distribution of the LST,
the Getis–Ord Gi (Gi*) index was applied to measure the degree of clustering for each
pixel [77]. For each pixel, the hotspot analysis returns a z-score. A higher positive z- score
indicates a higher degree of clustering of high LSTs (hot spots) [78]. In this study, the areas
with z-scores ≥ 2.58 (corresponding to the 99% confidence level) were defined as HSAs [76].
The Gi* is defined as:

G∗
i =

∑n
j=1 ωijxj − X ∑n

j=1 ωij

S

√
[n ∑n

j=1 ωij
2−
(

∑n
j=1 ωij

)2
]

n−1

(2)

X =
∑n

j=1 xj

n
(3)

S =

√
∑n

j=1 xj
2

n
− (X)

2
(4)

where, xj is the LST value of pixel j, ωij represents the spatial weight between pixels i and
j, and n is the total number of pixels; the spatial weight is determined according to the
Queen’s adjacency connectivity matrix [76].

3.2. Hotspot Ratio Index

The urban-heat-island ratio index was applied in previous studies to evaluate and
rank thermal environments [79,80]. It is effective in measuring the characteristics of a
thermal environmental, but its calculation requires urban or rural boundary data [80,81].
In this study, the hotspot ratio index (HRI) was used to evaluate and rank the thermal
environments of the nine cities. The HRI gives scores and ranks the areas according to the
value of the LST. The HRI is calculated as the weighted sum of the percentage of HSAs with
different classes in the selected region. The HRI reflects the thermal gradient in the selected
region. A higher HRI indicates that a city has a higher thermal gradient, which implies that
the city is more likely to experience greater thermal stress. The HRI is calculated as follows:

HRI =
n

∑
i=1

i ∗ Pi (5)

where n is the total number of classes. To avoid skewed data, the quantile classification
method was applied to classify the HSAs into 5 classes according to the LSTs. Pi is the ratio
of the area of class i to the total study area. i is the class index, i.e., i = 1, 2, 3, 4, and 5. A
higher class index refers to a higher LST. To calculate the HRI, the areas of 1st, 2nd, 3rd,
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4th, and 5th classes of HSAs were divided by the total study area, then multiplied by the
class index.

3.3. Geo-Detector Metric

The geo-detector (GD) metric is an effective metric for revealing the drivers of geo-
graphical phenomena [42]. The main idea assumes that if an independent variable affects
the dependent variable, then their spatial distributions should be similar. The GD metric
includes four detectors: factor, interaction, risk, and ecological. We used the factor detector
to measure the influence of each driver on the LST. We also used the interaction detector to
measure the combined influence of the interactions between drivers on the LST. The GD
metric is freely available from www.geodetector.cn, accessed on 18 July 2021.

3.3.1. Factor Detector

The factor detector signifies the effects of factors on the LST. The greater the probability
distribution (q) value is, the greater the influence of the factors on the LST will be. The
value of q is between 0 and 1; in extreme cases, the q value equals 1, indicating that factor
X completely affects the spatial distribution of Y, and a q value of 0 indicates that factor X
has nothing to do with Y. The value of q is calculated as follows [42]:

q = 1 − 1
Nσ2

L

∑
h=1

Nhσ2
h (6)

where the LST (Y) and the drivers (X) are composed of L classes (h = 1, 2, . . . L); N and Nh
represent the numbers of cells in the entire area and the h class, and σ2 and σ2

h represent
the variance in the LST.

3.3.2. Interaction Detector

The interaction detector was used to measure the influence of the interactions between
different factors on the LST. It identifies whether the interactions between drivers (X1
and X2) have an effective influence on the LST or not. First, we separately calculate the
influence of each driver (q(X1) and q(X2)) on the LST; then, the influence of the interaction
between X1 and X2 (q(X1∩X2)) on the LST is calculated based on an overlay of the two
drivers (X1 and X2). According to the values of q(X1), q(X2), and q(X1∩X2), the effect of
the interaction between the two drivers on the LST can be determined (Table 3) [9].

Table 3. The effects of interactions between two drivers.

Description Interaction Effect

q(X1∩X2) > Min (q(X1), q(X2)) Enhance
q(X1∩X2) > Max (q(X1), q(X2)) Bi-enhance

q(X1∩X2) > q(X1) + q(X2) Enhance, nonlinear
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) < q(X1) + q(X2) Weaken

q(X1∩X2) < Max (q(X1), q(X2)) Weaken, un-enhance
q(X1∩X2) < Min (q(X1), q(X2)) Weaken, nonlinear

3.3.3. Data Preparation

The GD metric captures the spatial heterogeneity of the attributes, and it requires the
discretization of input data. Many methods have been applied for discretization [82]. The
natural breaks method depends on the principle of the “maximum and minimum distance
between classes“ that can allow the original characteristics of the data to be kept [83].
This method has provided good results [43,52]. Accordingly, we applied natural breaks
classification in order to classify the drivers. Sample points were generated in ArcGIS
according to the 1 km grids over the entire study area. Therefore, the numbers of sample
points in each city depended on the area of the city. The values of each driver and mean LST
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were extracted for the sample points. The natural breaks method was applied to classify
all drivers (except LUCC, as it was already classified into cultivated land, woodland,
grassland, water areas, construction, and unused land). For the GD metric, LST was the
dependent variable, while the classified drivers were independent variables (Table 2).

4. Results

4.1. Spatial Distribution of LST

As seen in Figure 2, in 2005, higher daytime LSTs were mostly concentrated in the
central area of the PRD, including the cities of Dongguan, Shenzhen, Guangzhou, Foshan,
and Huizhou. By contrast, in 2015, higher daytime LSTs were concentrated in Dongguan,
Shenzhen, Foshan, Zhongshan, Jiangmen, and Guangzhou. The daytime LSTs decreased
in the cities located in the northern part of the PRD, including the cities of Zhaoqing,
Guangzhou, and Huizhou. For the nighttime LST, the higher LSTs were also concentrated
in the central area of the PRD in 2005. In 2015, the highest nighttime LSTs increased in the
cities of Dongguan, Shenzhen, Foshan, Zhongshan, Jiangmen, and Guangzhou.

Figure 2. Daytime and nighttime land surface temperature (LST) maps of the PRD:(a) daytime LST in 2005; (b) daytime LST
in 2015; (c) daytime LST difference between 2005 and 2015; (d) nighttime LST in 2005; (e) nighttime LST in 2015; (f) nighttime
LST difference between 2005 and 2015.

4.1.1. General Spatial Pattern of LST

The spatial pattern of the LST was estimated by using the Global Moran’s Index. The
Global Moran’s Indexes for the daytime LST were 0.903 and 0.915 at the 99% significance
level in 2005 and 2015, respectively. For nighttime LST, the Global Moran’s Indexes were
0.940 and 0.941 at the 99% significance level in 2005 and 2015, respectively. The results for
the Moran’s Index indicate that the LST distribution was a clustered pattern—areas had
aggregations of high and low temperatures—and there was less than a 1% likelihood that
the results were random, which indicates the presence of HSAs in the study area.
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4.1.2. Spatial Distribution of Hotspot Areas (HSAs)

Hotspot analysis was applied to identify the HSAs in the PRD. For each LST pixel,
the hotspot analysis returned a z-score. We defined areas with z-scores ≥ 2.58 as HSAs
according to [78] (Table 4). For the daytime LST, the HSAs pattern was consistent with the
pattern of the high-temperature regions (Figures 2 and 3).

Figure 3. Hot-/cold-spot distributions in the PRD: (a) hot-/cold-spots for daytime LST in 2005; (b) hot-/cold-spots for
daytime LST in 2015; (c) hot-/cold-spots for nighttime LST in 2005; (d) hot-/cold-spots for nighttime LST in 2015.

Three patterns of HSAs in the PRD were observed—stable, reduced, and expanded—
by comparing the HSAs maps for 2015 with those for 2005 (Figure 4). For the daytime LST,
the stable HSAs distribution indicates that the HSAs tended to be clustered in the center
of the PRD. The HSAs expanded towards the central and southwestern parts of the PRD.
A considerable growth of HSAs was observed in Jiangmen compared with Huizhou and
Zhaoqing. In contrast, the HSAs were significantly reduced in the northwest and northeast
of the PRD.
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Figure 4. Maps of changes in the spatial distributions of hotspot areas (HSAs) at the 99% significance level in the PRD:
(a) the changes in daytime HSAs in the PRD; (b) the changes in nighttime HSAs in the PRD (the “blank” areas did not
include HSAs).

For the nighttime LST, the stable HSAs were bigger and more continuously distributed
than those in daytime. Most of the stable HSAs were located near the coast and the
Pearl River estuary, including in Zhuhai, Zhongshan, Foshan, Guangzhou, Shenzhen,
and Dongguan.

4.2. Hotspot Ratio Index in the Nine Cities

The HSAs were classified according to [79] (Table 5 and Figure 5). The values of
the HRI varied across cities in the daytime (Figure 6). Low HRI values were observed
in Zhaoqing, Jiangmen, Zhuhai, and Huizhou (Figure 6). The HRI values of Dongguan,
Shenzhen, Foshan, and Zhongshan were higher than those of the other cities.

Table 5. Criteria for HSAs classification.

HSAs Level
LST Range (◦C)

Daytime Nighttime

Level 1 <=28.78 <=18.36
Level 2 28.78~29.42 18.36~18.90
Level 3 29.42–30.19 18.90~19.30
Level 4 30.19~31.22 19.30~19.76
Level 5 >31.22 >19.76

The HRI also varied across cities in the nighttime. The highest HRI values were
recorded in Zhongshan and Zhuhai. The HRI values of Zhaoqing and Huizhou were
minimal. The higher HRI values were recorded in Dongguan, Shenzhen, Zhongshan,
Zhuhai, and Foshan cities. These results indicate that the spatial distribution of HSAs was
highly heterogeneous among the cities in both daytime and nighttime.

4.3. Dominant Drivers of LST in the PRD

The factor detector quantifies the influence of each driver on the LST by calculating
the q values (Table 6). The q value shows that driver X explains (100*q) % of the LST. The q
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values at the 95% significance level are shown in Table 6. The results show the differences
in the influence of each driver on the LST in 2005 and 2015.

Figure 5. HSAs classification in each city in 2005 and 2015: (a) the percentage of different levels of HSAs in the total area of
each city in the daytime; (b) the percentage of different levels of HSAs in the total area of each city in the nighttime.

Figure 6. Hotspot Ratio Index (HRI) in the nine cities.
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Table 6. The q values of the LST drivers in 2005 and 2015.

Year Region Elevation LUCC NDVI ISDD POP GDP NLI

2005 day PRD 0.50 0.35 0.40 0.30 0.26 0.25 0.36
2015 day PRD 0.50 0.43 0.50 0.44 0.37 0.31 0.58

2005 night PRD 0.41 0.30 0.44 0.32 0.45 0.35 0.45
2015 night PRD 0.43 0.31 0.45 0.34 0.33 0.29 0.50

For the daytime LST, in 2005, elevation had the greatest influence on LST (50%),
followed by the NDVI (40%). In 2015, the NLI was the dominant driver of LST, which
indicated the increase in the influence of socio-economic drivers on daytime LST due to
the continuous development of the urban agglomeration [84]. For the nighttime LST, in
2005, the NLI (45%) and POP (45%) had the greatest influence, followed by the NDVI (44%)
(Table 6). In 2015, the NLI (50%) also had the greatest influence, followed by the NDVI
(45%) (Table 6). The results indicate that the NLI and NDVI were important factors for the
nighttime LST.

The explanation rate of the NLI for the daytime LST increased from 36% in 2005 to
58% in 2015, and the explanation of the NLI for the nighttime LST increased from 45% in
2005 to 50% in 2015, which indicated the important influence of the NLI factor on LST in
the PRD.

4.4. Dominant Drivers of LST in the Nine Cities
4.4.1. Factor Detector Analysis

The results for the factor detector for each city are presented in Figures 7 and 8, where a
color-coding scheme was applied to facilitate the interpretation. Lower q values are shown
in a lighter red color, while darker red colors indicate higher q values. There are two ways
to explain these results. When read from left to right, the differences in the influences of all
drivers in one city are clear. When reading from top to bottom, the differences across cities
can be explained for each driver. The results show that the influence of the selected drivers
on LST varied from city to city (Figures 7 and 8).

For Huizhou, Zhaoqing, and Jiangmen, the elevation had the greatest influence on
daytime LST, as there are many mountains and forests in these three cities. Similarly, in
Guangzhou, the elevation also exhibited the highest influence rate (61%) in 2005. Socio-
economic factors also showed great influences on nighttime LST in the above four cities
(Figure 8).

For Dongguan and Shenzhen, the NDVI had the greatest influence on daytime LST in
2005, while in 2015 the NLI was the dominant driver. The NLI was the most influential fac-
tor for nighttime LST in Dongguan and Shenzhen in 2015, which indicated the importance
of socio-economic development in these areas and its effect on LST. The NDVI also had the
high explanation rate for nighttime LST in these two cities during the study period.

For Foshan and Zhongshan, the NLI was the dominant driver of daytime LST during
the study period (Figure 7). The NDVI showed the greatest influence on nighttime LST in
these two cities (Figure 8). The influences of the drivers on the nighttime LST in Guangzhou
and Zhuhai are shown in Figure 8. None of the seven drivers had a significant influence on
nighttime LST in Zhuhai, but all seven drivers had a strong influence on nighttime LST
in Guangzhou.

The socio-economic drivers (GDP, POP, and NLI) were highly correlated with daytime
LST in the central cities in the PRD, including Dongguan, Shenzhen, Guangzhou, Foshan,
and Zhongshan (Figure 7). The socio-economic drivers had a low level of correlation with
the daytime LST in Huizhou, Zhaoqing, and Jiangmen, where elevation was the dominant
driver of daytime LST (Figure 7). Similarly, the land cover drivers, i.e., the LUCC, ISDD,
and NDVI, were highly correlated with daytime LST in Dongguan, Shenzhen, Guangzhou,
Foshan, and Zhongshan, while the correlation was weaker in Huizhou, Zhaoqing, and
Jiangmen. Due to topographical issues, urbanization is concentrated in the central region
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of the PRD [37]. For the nighttime LST, the NDVI showed a strong influence in most of the
cities during the study period (Figure 8).

Figure 7. The q values of drivers for each city in the daytime (the blank values indicate that the
results of corresponding factors are not significant at a p-value of 0.05).

Figure 8. The q values of drivers for each city in the nighttime (the blank values indicate that the
results of corresponding factors are not significant at a p-value of 0.05).
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4.4.2. Interaction Detector Analysis

In this study, the interaction detector was calculated for certain drivers: elevation,
LUCC, NDVI, ISDD, GDP, POP, and NLI. Strong interactions were observed among all
seven drivers (Figures 9–12). The interactions between elevation and the other drivers were
significantly strong in Huizhou, Jiangmen, Zhaoqing, and Guangzhou (Figures 9 and 10).
The greatest effects of the drivers’ interactions on daytime LST were Elevation ∩ NDVI
(68%), Elevation ∩ LUCC (46%), Elevation ∩ GDP (68%), and Elevation ∩ NDVI (71%)
in Huizhou, Jiangmen, Zhaoqing, and Guangzhou, respectively, in 2005. In 2015, the
greatest effects of drivers’ interactions on daytime LST were Elevation ∩ NLI in Huizhou
(69%), Jiangmen (57%), and Guangzhou (78%). The explanation rate of Elevation ∩ LUCC,
Elevation ∩ ISDD, and Elevation ∩ POP for daytime LST in Zhaoqing was 63%, which
illustrates that elevation had the greatest influence on daytime LST in this city.

Figure 9. The interactions among drivers with respect to daytime LST in each city (2005).

The interactions between elevation and the socio-economic factors showed a high
explanation rate for nighttime LST in Zhaoqing, Jiangmen, Huizhou, and Guangzhou
(Figures 11 and 12). The explanation rates of the interactions between elevation and the
three socio-economic factors exceeded 30% (in Zhaoqing), 40% (in Jiangmen), 42% (in
Huizhou), and 72% (in Guangzhou) in 2005. In 2015, the highest combined explanations of
elevation and the socio-economic factors reached 39% (in Zhaoqing), 43% (in Jiangmen),
57% (in Huizhou), and 72% (in Guangzhou).

In Dongguan and Shenzhen, in 2005, the interactions between the NDVI and the
three socio-economic factors exceeded 63% and 74%, respectively (Figure 9). In 2015, the
greatest influence of the interactions on daytime LST in Dongguan and Shenzhen was
from NLI ∩ LUCC (72%) and NLI ∩ NDVI (79%), respectively (Figure 10). The results
of the interaction analysis for daytime LST in Dongguan and Shenzhen were consistent
with the results of the factor detector analysis for daytime LST in these two cities. For the
nighttime LST in Dongguan and Shenzhen, the predominant interactions between drivers
were NDVI ∩ Elevation, NDVI ∩ NLI, NDVI ∩ POP, and NDVI ∩ GDP (Figures 11 and 12).
This result indicates the important influence of the NDVI and socio-economic factors on
the nighttime LST in these two cities.
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Figure 10. The interactions among drivers with respect to daytime LST in each city (2015).

Figure 11. The interactions among drivers with respect to nighttime LST in each city (2005).
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Figure 12. The interactions among drivers with respect to nighttime LST in each city (2015).

Similarly, the interactions between land cover and the socio-economic drivers were
most predominant in Foshan, Zhongshan, and Zhuhai. NLI ∩ LUCC had the greatest
influence on daytime LST in Foshan with 64% in 2005 and 63% in 2015. NLI ∩ NDVI
had the greatest influence on daytime LST in Zhuhai with 43% in 2005 and 56% in 2015.
The strongest interaction in Zhongshan was between the drivers NLI ∩ ISDD (65%) in
2005, and the interactions between NLI and the three land cover drivers explained 70% in
2015 (Figures 9 and 10). For the nighttime LST in Foshan, Zhongshan, and Zhuhai, the
interactions between the NDVI and socio-economic factors were predominant during the
study period (Figures 11 and 12).

5. Discussion

5.1. Spatial Patterns and Drivers of LST

This paper aimed to study the spatial distribution characteristics and main drivers
of LST in the PRD urban agglomerations. The HSAs were mainly located on both sides
of the Pearl River estuary. Our findings agree with those of [37]. The HSAs were mainly
distributed in Shenzhen, Dongguan, Guangzhou, Foshan, Zhongshan, and Zhuhai, while
there were fewer HSAs in Huizhou, Jiangmen, and Zhaoqing (Figure 4). The urbanization
rates of the nine cities are as follows: Shenzhen > Guangzhou > Zhuhai > Dongguan >
Foshan > Zhongshan > Huizhou > Jiangmen > Zhaoqing [85]. The HSAs results indicate
that high temperatures are more likely to be observed in areas with high urbanization rates.
There was a remarkable decrease in the daytime HSAs in the northern PRD (Figure 4).
There are many mountains and forests in the northern PRD, where the environment has
been improved significantly since 2006. A series of ecological projects have continuously
promoted the increase in vegetation cover in these areas (http://gz.gov.cn, accessed on
15 September 2020), which decreased the LST in the northern PRD. This finding is consis-
tent with the findings of [20]. There was a difference between the spatial distributions
of daytime and nighttime HSAs. This could be explained by the impacts of impervious
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surfaces and human activities on the LST in areas with higher urbanization rates during the
day, while the impact of water became significant at night due to its high thermal capacity
and properties [10]. In other words, the differences between daytime and nighttime HSAs
may be related to the different driving forces of daytime and nighttime LST [86].

The HRI was developed to quantitatively evaluate and rank the thermal environment
of each city. The results for the HRI indicated that Dongguan and Shenzhen, which were
characterized by high urbanization rates, were the most thermally cities in day and night
(Figure 6). This can be explained by the fact that Dongguan is an industrial city, while
Shenzhen has a big port with intensive traffic, as it is a coastal city, which increased the LSTs
in both cities [66]. The daytime HRI index also increased more in Foshan and Zhongshan
than in other cities (Figure 6), which can be due to the impervious surfaces, which obviously
increased in these cities from 2005 to 2015 [37]. However, Zhaoqing, Jiangmen, and
Huizhou, which were characterized by the lowest urbanization rates, showed the lowest
HRI values. These findings can provide guidelines for the improvement of the thermal
environment in urban agglomerations.

The drivers of LST were analyzed by applying the GD metric. All of the drivers
showed significant influences on daytime and nighttime LST in the PRD. However, the
main driving factors varied from city to city. Vegetation has a cooling effect through evap-
otranspiration and by shading other urban facets. Vegetation can absorb a large fraction
of solar radiation and use a large fraction of it for evaporation and transpiration, thereby
reducing sensible heat transfer to the boundary layer, i.e., reducing the temperatures of
both the vegetation and urban air [19,38]. The shade from vegetation protects other urban
surfaces from solar radiation and prevents increases in air and surface temperatures [87].
Our results showed that the NDVI had a strong correlation with daytime LST in Shenzhen
and Guangzhou. Our results agree with those of [19,30]. The NDVI also showed a strong
influence on nighttime LST in Dongguan, Shenzhen, Foshan, Zhongshan, and Guangzhou.
This result is in agreement with the findings of [88].

Variations in LST due to elevation differences should be considered in LST studies in
large areas where the terrain is not flat [89]. A negative correlation was observed between
LST and elevation [90]. In our study, the elevation factor had a stronger influence on
daytime LST in Huizhou, Zhaoqing, Jiangmen, Guangzhou, and Shenzhen. The elevation
values of these five cities are higher than those of the other cities in the PRD (Figure 1 and
Table 1). The high density of vegetation in the mountainous areas led to a great impact
on temperature [91]. In addition, the low urbanization rates in Zhaoqing, Jiangmen, and
Huizhou indicated the weak influences of the ISDD, GDP, POP, and NLI factors on daytime
LST, which was in line with our results (Figure 7). LST is usually affected by multiple
factors, and the higher correlation between the elevation factor and LST in these three
cities may be the result of the weak influences of the other factors that were related to the
urbanization rate on daytime LST. Similarly, the differences in correlation intensity between
elevation and LST in 2005 and 2015 can also be partially explained by the variations in
the influences of other factors on LST. The influence of elevation on nighttime LST in the
PRD was lower than that on daytime LST in the PRD (Table 6, Figures 7 and 8); this could
be due to the location of the PRD. The influence of the ocean at night makes the driving
mechanism of nighttime LST more complex. This finding is in agreement with those of [37].

In this study, POP had a significant influence on daytime LST in Dongguan, Shenzhen,
Foshan, Zhongshan, and Guangzhou, which were characterized by high urbanization rates
(Figure 7). However, a case study in the Yangtze River Delta urban agglomeration found
that there was no significant correlation between the surface UHI intensity and population
density [92]. The statistical population census data aggregated by the district were used in
the study of the Yangtze River Delta, while gridded population data with a 1 km spatial
resolution were used in our study, and these were consistent with the spatial resolution
of the LST data used in our study. Population indirectly reflects the development of an
area and the complexity of the urban surface. An increasing population leads to rapid
transformation of natural land cover into impervious surfaces, such as buildings, streets,
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and other human-made features, which can reduce thermal admittance and increase the
surface temperature through a modification of the energy balance [31]. In addition, a high
population density can directly (by metabolic heating) or indirectly (by anthropogenic heat
emissions) affect urban surface temperature.

In 2005, the socio-economic drivers explained most of the observed variations in
daytime LST in Dongguan, Shenzhen, Guangzhou, Foshan, and Zhongshan, which were
characterized by high urbanization rate. The daytime LST is affected by landscape changes
and anthropogenic activities [9]. Socio-economic activities are usually associated with en-
ergy consumption, which increases anthropogenic heat and local surface temperature [93].
The change rates of the population and electricity consumption were positive in these
cities (Table 1), which indicated the possible increase in the intensity of the population and
socio-economic activities. The NLI represents the intensity of nighttime lighting, and it
is an indicator of human density [86]. Anthropogenic heat emissions caused by human
activities contribute to daytime LST increases. A low intensity of nighttime lighting is the
result of agricultural activities, especially in underdeveloped areas with low urbanization
rates. In addition, the brightest areas in nighttime light images could represent factories or
industries, which also consume energy and generate heat emissions in the daytime, causing
daytime surface temperature changes [94]. Consequently, it can be inferred that the greater
influence of NLI on the daytime LST in Dongguan and Shenzhen cities was related to the
high urbanization rates and industrialization characteristics of these two cities. Our results
agree with those of [95]. The results for the drivers in these nine cities further revealed the
mechanisms that drive the LST.

5.2. Management of Urban Agglomerations

The results of the HSAs and HRI showed that the spatial distribution of LST in the PRD
urban agglomeration was highly heterogeneous among the nine cities in both daytime and
nighttime. Therefore, it is recommended that more attention and resources be committed to
improving the thermal environments of cities that are characterized by higher thermal stress
in daytime, such as Dongguan, Shenzhen, Zhongshan, and Foshan. Human-made surfaces
absorb solar radiation and lead to heat storage in urban areas [39]. As the urbanization is
greater in Dongguan and Shenzhen compared to Huizhou, Jiangmen, and Zhaoqing, the
thermal stress in daytime is higher in Dongguan and Shenzhen than in Huizhou, Jiangmen,
and Zhaoqing. To reduce the thermal stress, the spatial expansion of urban areas should
be controlled in these cities. On the other hand, increasing green vegetation areas is an
effective way to mitigate the increasing LSTs in regions with high thermal stress. The
significant reduction of HSAs in the northern part of the PRD is due to the implementation
of greening measures by local governments [20]. Therefore, increasing the green areas may
also be an effective way to alleviate the thermal stress in Shenzhen, Dongguan, Guangzhou,
and Huizhou, as the NDVI explained over 40% of the variations in the daytime LST in
these cities (Figure 7). In addition, the NDVI also showed a strong influence on nighttime
LST in Dongguan, Shenzhen, Foshan, Zhongshan, and Guangzhou. The dominant drivers
of daytime LST in the central cities of the PRD were the socio-economic ones in 2015,
including in Dongguan, Shenzhen, Foshan, Zhongshan, Guangzhou, and Zhuhai. The HRI
greatly increased in Dongguan, Shenzhen, Foshan, and Zhongshan, which could be due to
the increased intensity of socio-economic activities. Therefore, it is suggested that the heat
emissions caused by socio-economic activities should be considered in the urban planning
in order to reduce the thermal stress in these cities. The results of this study can provide
useful guidance for planners towards better management of the thermal environment.

5.3. Limitations and Future Work

This study provided a comprehensive framework for identifying the spatial distribu-
tion characteristics and main driving factors of the LST at different spatial scales in the
PRD. There are still some limitations. First, this study analyzed the spatial patterns and the
influencing factors of the LST for just two years: 2005 and 2015. Therefore, further studies
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are needed in order to address this aspect by applying the most recent multi-temporal
remote sensing data in the future. Second, the annual scale was selected in this study,
as it provided good results in many previous studies [31,37,96]. Seasonal changes also
need to be studied in the future. Third, we considered five levels of LST classification, but
more classification criteria need to be considered in future studies. Fourth, the combined
effects of two drivers on the LST were measured in this study. However, the combined
effects of multiple variables on the LST are important and need to be studied in future
works. Finally, the spatial resolution of the remote sensing data must be improved by using
higher-resolution remote sensing data in the future.

6. Conclusions

This study took the PRD urban agglomeration, a typical urban agglomeration in
Southeast China, as a case study and focused on the spatial distribution and main driving
factors of the LST in 2005 and 2015. A spatial autocorrelation analysis, hotspot analysis,
and the HRI were used to quantitatively analyze the spatial distribution characteristics of
the LST. Seven drivers of LST were studied, including physiographical, land cover, and
socio-economic drivers. The GD metric was applied to explore the explanation rate of
the driving factors for the LST. The main conclusions from this study can be summarized
as follows:

1. From 2005 to 2015, the daytime HSAs were concentrated towards the center of the
PRD, while they decreased in the northern PRD. The stable daytime HSAs were
concentrated and distributed on both sides of the Pearl River estuary.

2. The rankings of the HRI values of the nine cities showed that, during the study
period, the highest daytime stress on the thermal environment among all cities was
recorded in Dongguan and Shenzhen. The nighttime stress on the thermal environ-
ment recorded in Zhongshan, Zhuhai, Dongguan, and Shenzhen was higher than that
in the other cities in 2015, while the lowest HRI values were observed in Zhaoqing,
Jiangmen, and Huizhou, which were characterized by the lowest urbanization rates.
This finding indicates that highly urbanized cities are more likely to experience severe
thermal environments than cities with low urbanization rates.

3. The influence of land cover and socio-economic factors on daytime LST was higher in
the relatively highly urbanized cities than in the cities with low urbanization rates.
This finding indicates that human activities greatly contributed to the variations in
LST in highly urbanized areas.

4. In 2015, the NLI factor exhibited the strongest influence on daytime LST in Shenzhen,
Dongguan, Guangzhou, Foshan, Zhongshan, and Zhuhai. However, for the marginal
cities of Zhaoqing, Jiangmen, and Huizhou, the influence of elevation was much
higher than that of the other factors. This finding indicates that the influence of socio-
economic activities on daytime LST was higher in highly urbanized areas, and even
exceeded the influence of land cover. Controlling the anthropogenic heat released
due to socio-economic activities is an important step in improving the thermal envi-
ronment in highly urbanized areas with the development of urban agglomerations.

5. The NDVI showed an important influence on nighttime LST in most of the cities
during the study period. Some factors had no significant effects on nighttime LST
in some cities, suggesting that the driving mechanisms of nighttime LST are more
complex than those of daytime LST.

6. LST is the result of the combined effects of multiple factors. The combined effects of
different factors on the LST are greater than the independent effects of single factors.
The combined effects of different drivers are important in studies of the driving
mechanisms of LST.

This study is expected to provide useful guidance for the optimization of the thermal
environment in PRD urban agglomerations. In addition, the research framework used
in this study can also be applied in other urban agglomerations. The results of this
study revealed the complex mechanisms of the variability of the LST among the nine
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cities in the PRD urban agglomeration, and corresponding improvement measures have
been recommended to help urban planners in better articulating urban agglomeration
management strategies.
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Abbreviations

GD Geo-detector
GDP Gross domestic product
HRI Hotspot ratio index
HSAs Hotspot areas
ISDD Impervious surface distribution density
LST Land surface temperature
LUCC Land use/land cover
NDVI Normalized difference vegetation index
NLI Nighttime light index
POP Population density
PRD Pearl River Delta
UHI Urban heat island
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Abstract: The Surface Urban Heat Islands (SUHI) phenomenon has adverse environmental con-
sequences on human activities, biophysical and ecological systems. In this study, Land Surface
Temperature (LST) from Landsat and Sentinel-2 satellites is used to investigate the contribution of
potential factors that generate the SUHI phenomenon. We employ Principal Component Analysis
(PCA) and Multiple Linear Regression (MLR) techniques to model the main temporal and spatial
SUHI patterns of Cartago, Colombia, for the period 2001–2020. We test and evaluate the performance
of three different emissivity models to retrieve LST. The fractional vegetation cover model using
Sentinel-2 data provides the best results with R2 = 0.78, while the ASTER Global Emissivity Dataset v3
and the land surface emissivity model provide R2 = 0.27 and R2 = 0.26, respectively. Our SUHI model
reveals that the factors with the highest impact are the Normalized Difference Water Index (NDWI)
and the Normalized Difference Build-up Index (NDBI). Furthermore, we incorporate a weighted
Naïve Bayes Machine Learning (NBML) algorithm to identify areas prone to extreme temperatures
that can be used to define and apply normative actions to mitigate the negative consequences of
SUHI. Our NBML approach demonstrates the suitability of the new SUHI model with uncertainty
within 95%, against the 88% given by the Support Vector Machine (SVM) approach.

Keywords: Surface Urban Heat Island (SUHI); Land Surface Temperature (LST); Principal Component
Analysis (PCA); Multiple Linear Regression (MLR); Machine Learning; Naïve Bayes

1. Introduction

Urban expansion transforms natural areas into surfaces covered with concrete, asphalt,
and buildings (highly impervious materials), reducing evapotranspiration and decreasing
the cooling capacity of the air, which in turn helps to reduce the impacts of high urban
surface temperature on the urban surface. Due to the existing urban growth, the climate
in these areas becomes warmer than the regional areas of the suburban and rural regions,
resulting in the phenomenon of Urban Heat Islands (UHI) [1]. The UHI refers to a phe-
nomenon in which urban areas tend to have higher air or surface temperatures than their
surroundings [2]. Traditionally, terrestrial observation methods, such as ground meteo-
rological stations that record specific values of air temperature, have been used to model
UHI [3]. The difference between air temperature measurements recovered from urban
and rural meteorological stations is a direct method used to model UHI [4]. However,
the high heterogeneity in urban areas makes temperature spatially diverse, making it
difficult for a small number of stations to realistically represent the real variability [5].
When the UHI phenomenon is monitored by remote sensing, it is referred to as Surface
Urban Heat Island (SUHI). The reason is that the parameter considered here is the Land
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Surface Temperature (LST), which differs from studies of air temperature [6]. Therefore,
LST is an essential variable to characterize SUHI, which has been listed as an essential
climate variable of the World Meteorological Organization program. This variable is an
important indicator of the energy balance between the atmosphere and the surface of the
Earth [7]. Zhou et al. [8] presented a broad review of the SUHI phenomenon and suggested
several methods of analysis through the integration of remote sensing data, thermal trends,
field observations, and numerical modeling. Sekerteking and Zadbagher [9] suggest that to
model and simulate LST, it would be important to investigate the performance of various
Machine Learning methods associated with statistical and numerical models. Li et al. [10]
and Mei et al. [11] pointed out that one of the problems to be solved in inference models of
LST or geographic variables is to evaluate the influence of contributing factors.

Land-use land-cover changes (LULC) and spectral indices from satellite data, such as,
e.g., Normalized Difference Vegetation Index (NDVI) or Normalized Difference Water
Index (NDWI), have been used extensively to investigate the relationships between urban
and biophysical systems, as well as their impact on surface temperature [12–15]. LULCs are
due to complex interactions between the urban system and the biophysical environment
that produce significant changes in local temperatures. In a recent work published by
Shi et al. [16], eight parameters were referred to as urban design factors, where thermal
properties of building materials, vegetation, vegetation cover ratio, and ground emissivity
were taken into account. The authors suggested the need to detect more potential factors
affecting this phenomenon.

Understanding and quantifying urban temperatures in space and time are significantly
relevant for city planners in defining policies that generate adaptation strategies to mitigate
the SUHI effects. A very useful tool is Principal Component Analysis (PCA), a multivariate
statistical technique that aims to preserve the total variance and reduce the dimensional-
ity of the data set, while eliminating redundancy in the data [17]. Several authors have
used this technique to detect spatial patterns of biophysical factors by synthesizing in-
formation from a set of images [18–20]. Multiple Linear Regression (MLR) analysis is
an approach used to evaluate the relationship between independent and dependent fac-
tors [21]. This method has also been widely used to determine the relationship of various
environmental factors [22–24].

Advanced nonlinear analysis techniques, such as Machine Learning, have been ap-
plied in numerous studies that require analyzing variables related to urban thermal changes.
Some examples are population density, land cover, and urbanization [25–29]. Voelkel and
Shandas [30] implemented a UHI model to detect a daily distribution of temperatures.
Their results revealed that a random forest (RF) model performed better in predicting tem-
perature. Furthermore, Zumwald et al. [31] developed a model to create high-resolution
air temperature maps. This model makes predictions by integrating an RF algorithm with
low-cost weather stations. It is important to note that the behavior of SUHI varies over
time and is associated with factors such as human development and changes in land use.
In this sense, Kafy et al. [32] formulated a seasonal thermal prediction influenced by LULC
through Cellular Automata and Artificial Neural Network algorithms. Their findings
indicated that by 2039, the urban growth of Cumilla, and Bangladesh, plus the decrease in
land cover, will cause 30% of cities to experience temperatures above 33 ◦C. Shi et al. [33]
noted that the use of time series and Machine Learning techniques is a growing trend in
SUHI research.

Several studies have widely documented the influence of spectral indices such as
the NDBI, NDVI and Normalized Difference Water Index (NDWI) on the SUHI phe-
nomenon [34,35]. However, none of these authors considered the weighted contribution
of the factors to temperature changes, while it is an interesting analysis that can iden-
tify which factors generate the greatest influence on SUHI. On the basis of these factors,
specific adaptation measures to thermal change can be defined and applied. The main
novelty of the approach proposed in this work is the application of a weighted Naïve Bayes
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Machine Learning (NBML) algorithm to segment the geographical space into regions of
different thermal intensity, not explored in previous literature.

Understanding and quantifying urban temperatures in space and time is significantly
relevant for city planners in defining policies that generate adaptation strategies in the face
of adverse effects of SUHI. Here we study the application and assessment of modeling
procedures that allow evaluating the contribution of various factors to SUHI. For this
purpose, a combination of PCA and MLR techniques applied along with Machine Learning
Algorithms is used to detect high thermal intensity patterns in the tropical Colombian
Andean city of Cartago. Although SUHI is a derived quantity, expressed as the difference
between urban and rural LST, the delimitation of thermal zones using LST ranges allows
establishing comparisons with other zones, e.g., rural areas, and classifies the space into
zones with greater or lesser thermal activity. In this study, the LST ranges are taken from
Wang et al. [36], as they are based on statistical criteria, and they appear to conveniently
reflect the LST differences of urban areas with their surroundings. The spatial patterns of
the SUHI phenomenon can be represented through LST ranges, which, combined with the
weights of the involved variables, are further classified using Machine Learning algorithms.

The methodology suggested in this article establishes an effective method for assess-
ing SUHI patterns, locally, and attempts to draw several recommendations for planning
sustainable urban development and for the regeneration of areas with thermal excesses.

2. Materials and Methods

2.1. Study Area

The city of Cartago is located in the south-west area of Colombia in the Andean region
at an altitude of 917 m above sea level. It has an extension of 279 km2 with moderate
topographic relief. The geodetic coordinates of the city center are 4.75◦ N and 75.9◦ W.
This area belongs to Valle del Cauca Department and is surrounded by the Cauca and La
Vieja rivers.

The climate in this area is tropical dry and the average air temperature is 23.8 ◦C,
with an annual rainfall of 1578 mm. March is the warmest month with an average temper-
ature of 24.3 ◦C, while October is the coldest with 23.3 ◦C. According to official reports,
the urban population growth rate during 2001–2020 was 12.3%, while the rural population
decreased by 44% [37]. The population density is 464 inhabitants per km2. The appearance
of new urban units (red oval areas in Figure 1) denotes the urban growth from the city
center to the north-east, near the La Vieja River, as well as to the south-east and south-west.
Temperatures in tropical zones show small changes throughout the year. According to
official reports from the study area, the difference between the average temperature of the
warmest month and that of the coldest month is 1 ◦C [38].

 

Figure 1. Location of the study area. (a) South America: Colombia highlighted. (b) Location of Valle
del Cauca in Colombia. (c) Cartago in Department of Valle del Cauca. (d) Cartago, Landsat 8 OLI
band combination (R:5, G:6, B:4). (e) Digital Elevation Model.
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2.2. Data

Data used for the study area (Figure 1a,b) were freely acquired from ESRI World
Countries (https://hub.arcgis.com/, accessed on 20 October 2021). The base cartography
for the construction of thematic maps and the topographic model is available at https:
//geoportal.dane.gov.co/, accessed on 20 October 2021 and https://geoportal.igac.gov.co/,
accessed on 20 October 2021. The primary information sources used are satellite Earth
images from the Thematic Mapper (TM) instrument onboard the Landsat 5 and 7 satellites
(L5TM, and L7ETM+), and from the Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS) onboard the Landsat 8 satellite (L8OLI/TIRS). The images used in this study
are sparsely distributed within the period 2001–2020, as shown in Figure 2. Each Landsat
product contains separated spectral bands in GeoTIFF format and is referenced to the
WGS84 datum in the UTM (18N) cartographic projection. L5TM, L7ETM+ and L8OLI VIS
and NIR bands have a spatial resolution of 30 m, while for the TIR satellite instruments,
the resolutions are 120, 60, and 100 m, respectively. We employ a total of 37 Landsat scenes
(satellite path 009 and row 057) including 2 images of L5TM, 20 of L7ETM+, and 15 of
L8OLI/TIRS. In addition to the Landsat products, 11 multispectral Level-2A atmospheric
corrected images from the Sentinel-2 Multispectral Instrument (S2-MSI) were also used to
extract the so-called Fractional Vegetation Cover (Fcover) biophysical variable. S2-MSI of-
fers a different spatial resolution; the three visible and the near infrared bands have 10
m spatial resolution. The three Red Edge bands, an NIR band, and two SWIR S2-MSI
bands have 20 m spatial resolution. These data are very appropriate for the retrieval of
geophysical surface parameters. Meanwhile, the three other S2-MSI bands (coastal aerosol,
water vapor, and SWIR-Cirrus) have a resolution of 60 m resolution. The reflectance S2-
MSI products are freely available on the European Space Agency (ESA) DataHUB server
(ESA, https://scihub.copernicus.eu/, accessed on 20 October 2021). Details on the retrieval
of Fcover are given in Section 2.3.2. The estimation of LST from the Thermal Infrared Sensor
(TIRS) is highly dependent on the intrinsic properties of the coverage, such as the emissivity
of the land surface. The emissivity retrieval method based on the Fcover is very suitable
due to its ease of application. The performance shown in works such as Sobrino et al. [39]
and Valor and Caselles [40].

Figure 2. Temporal distribution of Landsat and Sentinel 2.

2.3. Methods

The proposed methodology comprises five processing steps: (1) data calibration, (2) ex-
traction of contributing factors, (3) estimation of temperature and emissivity, (4) validation
of temperatures, and (5) modeling of the SUHI phenomenon. These are described in the
following sections.
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2.3.1. Data Calibration

The conversion of image digital values to top of atmosphere radiance (LTOA) was
carried out using the gain and offset parameters included in the product metadata file.
We use the radiance models provided by the USGS website [41]. Subsequently, the images
were corrected from atmospheric effects to minimize the radiance scattering and absorption
errors caused by water vapor, dust particles, and aerosols. We employ the Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module of ENVI®,
which incorporates the MODerate Resolution Atmospheric TRANsmission (MODTRAN)
model [42]. Given the geographic location of the area of interest, the tropical atmospheric
model is applied to the Landsat products. FLAASH solves the radiative transfer equation
by determining the water vapor for each pixel in the image. Water vapor content (WVC)
retrieval is not a straightforward solution for Landsat bands, so this parameter was taken
from a standard atmospheric model. Regarding the aerosol concentration or aerosol optical
depth (AOD), the dark vegetation reflectance algorithm of Kaufman et al. [43] was applied.
Finally, all images were subset to fit the boundaries of the study area.

2.3.2. Definition and Extraction of Contributing Factors

Spectral indices such as NDBI, NDVI, and NDWI are used to examine the underlying
properties of SUHI formation. Analytical expressions of these indices can be found in Zha
et al. [44], Tucker [45], and Gao [46]. Moreover, the components of the tasseled cap (TC)
components (brightness, greenness, and wetness) are also computed [47]. The rationale for
the selection of these biophysical indices is as follows.

• Energy exchange between latent and sensible heat is related to NDBI, since it detects
impervious surfaces that reduce humidity and increase the average temperature of
the environment [48].

• Temperature and vegetation maintain a spatially dependent relationship [49].
Vegetation reduces surface irradiation and increases humidity through physiolog-
ical processes that allow energy exchange, while producing a cooling effect. In this
sense, an index for measuring this photosynthetic activity is the NDVI.

• The presence of water bodies has a cooling effect on urban temperature [50]. In this
scheme, the NDWI quantifies the water content in the vegetation, while suggesting a
significant effect in reducing SUHI. Likewise, rivers play an important role as thermal
regulators of urban climate, increasing the cooling potential through evaporation and
facilitating airflow. Given that the urban center is the main point for the development
of socioeconomic activities, two additional variables were considered to describe the
expression of the proximity, i.e., the proximity map of the water body (PW) and the
proximity map (PW) and the city center (PUC). A greater distance would imply a lower
thermal intensity [51]. The proximity indices are computed by means of a Euclidean
distance using the inverse weight distance operator in ArcGIS® (https://esri.com/,
accessed on 20 October 2021).

The above indices conform to the contributing factors to our proposed SUHI model.
To compute the emissivity values required to retrieve LST from Landsat thermal bands,
a novel method is proposed through extracting Fcover biophysical variable, although this
information can be derived indirectly from NDVI, Leaf area index (LAI), or other bio-
physical variables [52–54]. Bacour et al. [55] proposed a robust procedure based on the
Neural Network training of the PROSAIL (PROSPECT leaf optical properties model and
SAIL canopy bidirectional reflectance) model. This Fcover variable is implemented in the
ESA’s Sentinel Application Platform (SNAP (https://step.esa.int/main/toolboxes/snap/,
accessed on 20 October 2021), and requires S2-MSI images. Detailed descriptions of this
scheme are available in Weiss and Baret [56]. The Fcover variable provides the emissivity
values necessary to compute LST with the L8OLI/TIRS thermal band 10. Compared to
traditional methods based on NDVI, this new approach for extracting the emissivity is
suitable for thermal radiation models. Due to temporal synchronization between S2-MSI
and L8OLI/TIRS images, this method is only applicable since 2015.
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2.3.3. Estimation of Land Surface Temperature and Emissivity

Land surface temperatures are retrieved from L5TM, L7ETM+, and L8OLI/TIRS.
For L8OLI/TIRS, only band 10 is used, since band 11 has large uncertainties, as reported
by the USGS [57]. The consistency of Landsat 5, 7 and 8 satellite thermal instruments
in recovering LST was compared by Sekertekin and Bonafoni [58] and validated with in
situ LST measurements. The RMSE values were 2.39 ◦C, 2.57 ◦C and 2.73 ◦C, respectively,
resulting in an average difference of 0.2 ◦C between the sensors. The uncertainty values
are adequate uncertainty for the purpose of this study. In Figure 3, our model to retrieve
LST is presented in a flow chart. Temperatures are derived using the radiative components
implemented by Barsi et al. [59] for single-channel algorithms. This method simulates the
attenuation effects of the atmosphere that disturb the TIR signal.

 

Figure 3. Flowchart for LST estimation and assessment of the emissivity models used in this study.

Radiance and transmissivity values are available at https://atmcorr.gsfc.nasa.gov/,
accessed on 20 October 2021. The data is a compendium of atmospheric transmissivity
values, along with upwelling and downwelling radiances for a given geographical location.
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The radiative values can be used in atmospheric correction models, e.g., Equation (1),
taking also into account the correction of spectral emissivity.

LTOA = τ · ε · LT + Lλ↑ + τ · (1 − ε) · Lλ↓ (1)

In this equation, LTOA is the spectral radiance at the top of the atmosphere (registered by
the sensor), τ is the atmospheric transmittance, ε is the spectral emissivity, LT is the spectral
radiance of a black-body target of kinetic temperature T, Lλ↑ and Lλ↓ are the upwelling
atmospheric path radiance and the downwelling or sky radiance, respectively.

Implementing Equation (1) requires the supply of adequate emissivity values for a
suitable estimation of LST. Since different land covers emit thermal radiation differently,
spectral emissivity corrections are necessary [60]. In this work, three emissivity models are
tested to accurately estimate LST. First, the field-measured LSE (land surface emissivity)
values are obtained from different authors, and are listed in Table 1. Then the emissivity
data of the ASTER-GEDv3 product [61] were considered.

Then, the Fcover model of Valor and Caselles [40] is applied; this model allows the
calculation of the emissivity in the Landsat 8 thermal band, considering the Fcover index
and the minimum and maximum values of the emissivity in the corresponding spectral
band. Finally, the three LST models are compared and validated. In this study, land
use features are categorized into seven classes. These are water bodies, cropland, forest,
low vegetation, bare soil, urban/densely built, and suburban/medium built. We applied
this scheme following the land cover classes proposed by Park et al. [62]. Since impervious
surfaces exhibit a large spectral variation [63], two classes are used to represent artificial
surfaces: urban/dense and suburban/medium. These classes are particularly identified by
the impact on emissivity.

For this purpose, an object-based classification is carried out using Trimble’ s eCogni-
tion Developer software (https://geospatial.trimble.com/products-and-solutions/ecognition,
accessed on 20 October 2021).

Table 1. Reference values for the LSE model with L8OLI/TIRS band 10.

Land Cover Emissivity Reference

Waterbodies 0.992 FROM-GLC cited by [64]
Cropland 0.971 FROM-GLC cited by [64]

Forest 0.995 FROM-GLC cited by [64]
Low vegetation 0.986 Tan et al. [65]

Soil 0.972 Tan et al. [65]
Urban/densely built 0.973 FROM-GLC cited by [64]

Suburban/medium built 0.971 Tan et al. [65]

The second emissivity dataset in this work is the ASTER Global Emissivity Dataset v3
(ASTER-GEDv3) [61], (https://emissivity.jpl.nasa.gov/aster-ged, accessed on 20 October
2021). This method was developed by the NASA Jet Propulsion Laboratory (JPL) as an
algorithm based on temperature and emissivity separation along with an atmospheric
correction model. More details can be found in Hulley and Hook [66].

The third emissivity model requires knowledge of the Fcover variable [40]. This method
provides the emissivity of a heterogeneous surface as follows:

ε = εv · Fcover + εg · (1 − Fcover) + 4 · 〈dε〉 · Fcover · (1 − Fcover) (2)

In this equation, εv = 0.985 and εg = 0.960 are reference vegetation and bare soil
emissivity, respectively. ‘dε’ is the cavity effect associated with the indirect radiance emitted
due to internal reflections between the interfaces. Here, Fcover is obtained from S2-MSI Level
2A products (see Section 2.3.2). The procedure to retrieve the Fcover variable differs from
the NDVI methods [67,68], and is presented as a novel alternative for thermal modeling
with Landsat data. In tropical areas, throughout the year, vegetation dynamics does not
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exhibit abrupt changes, and this implies that Fcover lacks significant seasonal variations.
For the L5TM and L7ETM+ thermal instruments, the emissivity model of Equation (3) [69]
is used. This last method to obtain Fcover is based on the NDVI parameter.

ε = εnonveg (1 − Fcover) · εveg · Fcover (3)

In this equation, εnonveg and εveg are the reference emissivity values for nonvegetated
and vegetated areas, being 0.97 and 0.99, respectively [70]. In this work, the Fcover variable
is recovered using the NDVI, as it effectively reflects the conditions of vegetation cover [42].
This is estimated by Equation (4).

Fcover =

[
NDVI − NDVIs

NDVIv − NDVIs

]2
(4)

In this equation, NDVIs is the NDVI value of pure soil, and NDVIv is the NDVI of
pure vegetation obtained from the NDVI image.

This method is based on the Carlson and Ripley [69] model. Finally, the conversion
from LTOA to LST is estimated by using the constants for sensor calibration and the
inversion of the Planck equation [71].

2.3.4. Assessment of the Land Surface Temperature Retrieved from L8TIRS B10

Landsat-retrieved LST was verified with in situ measurements. Unfortunately, due to
the Landsat overpasses schedule, starting in 2001, it was impossible to undertake a val-
idation by means of field surveys for the entire Landsat time series. Due to these incon-
veniences, the comparison was limited only to two overpasses of L8OLI/TIRS band 10.
The L5TM and L7ETM+ data, the Carlson and Ripley results [69] can be used as a refer-
ence. In situ temperatures were measured using 30 thermometers assembled into DS18B20
digital sensors. The direct calibration method was applied, which consists in recording the
readings of the test and standard thermometers. The latter are preserved in an isothermal
medium. This calibration procedure produced standard deviations of ±0.5 ◦C. The field
survey consists of distributing 30 devices, as shown in Figure 4. LST measurement coinci-
dent with the two L8OLI/TIRS overpasses were recorded on 22 January and 9 September
2019. Each device recorded the temperature values by means of a probe in contact with the
ground surface. The ground sensors were placed in areas with homogeneous land cover to
minimize the spatial thermal variation caused by different emissivity values. These records
will be used to contrast the LST values derived from satellite measurements. In Section 3.1,
we perform a sensitivity analysis for the three emissivity models.

  

Figure 4. Location of in situ ground LST measurements.
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2.3.5. Modelling the SUHI Phenomenon

According to Rasul et al. [72], SUHI modeling consists of identifying the spatial varia-
tion in time of thermal features in urban areas. Here, through the combination of thermal
images from remote sensing and sparse measurements on field, our SUHI model employs
the PCA to analyze space-time data. The PCA is a multivariate statistical technique that
preserves the total variance of a dataset while reducing its dimensionality [73]. In this way,
the PCA can retrieve the main spatial patterns of variability in a time-series. The application
of PCA provides a generalization of the changes that characterize the variability patterns
in a time series of images [18].

Then, the impacts of the eight factors considered in this study are assessed using a MLR
approach. The MLR technique is a parametric model that adjusts the relationship between
explanatory variables, that is, the contributing factors, and the response variable, e.g., LST.
The inclusion or elimination of predictors depends on the significance of these variables
within the model, which is defined by a test hypothesis based on the coefficients associated
with the response variable. When using MLR techniques, it is important to examine the key
assumptions of autocorrelation, normality of residuals, and multicollinearity. These factors
determine the reliability of the model [74]:

• Autocorrelation of a variable represents its self-dependence and implies redundant
information that makes the estimator lose efficiency. The Durbin-Watson statistic is
used to measure autocorrelation [75].

• The normality of a residuals guarantees a satisfactory representation of the model.
• Multicollinearity occurs when the predictor variables are highly correlated.

Multicollinearity increases the variance, causing instability of the regression and thus
increasing the standard error [76]. Multicollinearity is measured with the Variance
Inflation Factor (VIF).

Finally, outliers can also alter the modelling approach, causing problems with regres-
sion assumptions [77,78], and these must be controlled or removed from the dataset. Here,
our MLR analysis is an equation capable of describing the thermal intensity depending
on the contributing factors. To verify the relative importance of each individual predictor
of the LST model, a normalization procedure was previously performed to standardize
the coefficients. We use the deviation of the mean values, which is divided by the stan-
dard deviation of the response variable in LST. This allows us to derive the standardized
coefficients [79]. Subsequently, the contribution of each variable to LST is obtained by
weighting the absolute value of each variable. The resulting weights are further used for
assessing the subsequent Machine Learning procedure that derives the multitemporal
intensity of the SUHI model. This provides a technical basis for analyzing the factors
that influence the thermal environment, which is of great significance for rational urban
planning and sustainability.

The methodological workflow in Figure 5 shows the spatiotemporal model followed
to characterize the impact of environmental factors on the thermal changes. First, the mul-
titemporal factors, such as LST, spectral indices, and other variables, are derived from the
Landsat 2001–2020 dataset. Then, the PCA technique is applied to extract the main patterns
of variability. Subsequently, all the variables involved are included in the MLR scheme to
model the possible dependences on LST. The MLR is implemented with the software R
Studio (https://rstudio.com/, accessed on 20 October 2021).

Finally, the SUHI phenomenon is segmented into different zones depending on
the thermal intensity. Thermal value ranges follow the categories of Wang et al. [36],
which consider the average temperature of the land surface and its standard deviation (SD).
Segmentation provides a definitive SUHI product that categorizes the urban environment
according to specific conditions. Here we test two different Machine Learning methods
for classification; Support Vector Machine (SVM) and Naïve Bayes Machine Learning
(NBML). Both SVM and NBML methods have shown in previous research their robust-
ness for the characterization of various types of geospatial data [80,81]. The SVM method
defines a separate hyperplane in a higher-dimensional space that optimally classifies the
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data. This method is particularly useful for solving nonlinear relations [82], and is avail-
able as open-source software in Orfeo ToolBox (OTB) at https://www.orfeo-toolbox.org/,
accessed on 20 October 2021. The NBML technique is based on the Bayes theorem for condi-
tional probability and assumes independence between predictors, variables, or features [83].

Figure 5. Flowchart of the proposed SUHI model.

NBML is often referred to as the maximum a posteriori decision rule [84], and its code
can be easily written in any programming language. NBML assigns the most likely class
to a certain observation by estimating the probability density of the training classes [85].
An observation is classified as a certain class when the posterior probability reaches the
maximum value according to the following expression:

k(x) = argmaxkp(Ck)
n

∏
i=1

p(xi |C k) (5)

In this equation, k(x) is the maximum a posteriori of xi for the class labeled as Ck,
p(Ck) is the prior probability for class Ck, p(xi |C k) represents the conditional probability
distribution of xi given Ck, and (wi) is a particular weight applied to each factor. Usually,
the independence assumption is not fulfilled, and the weighting of the features involved
in the assignment process can satisfy the required assumptions [86]. Here, each feature or
factor is affected by a particular weight (wi), which can be formally defined by:

k(x) = argmaxkp(Ck)
n

∏
i=1

p(xi |C k)
wi (6)

In this equation, wi denotes the weight value of the ith attribute, with values restricted
to the range [0, 1]. In this work, attributes are the contributing factors involved in the
SUHI phenomenon, while the Ck classes are the seven temperature categories defined by
Wang et al. [36]. These are described in Table 2.
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Table 2. Range of LST intervals. Ts represents land surface temperature; Ta is the average land
surface temperature. SD is the standard deviation.

Temperature Grade Range

Extreme high temperature (EHT) TS > Ta + 2SD
High temperature (HT) Ta + SDTS ≤ Ta + 2SD

Sub-high temperature (SHT) Ta + SD/2TS ≤ Ta + SD
Medium temperature (MT) Ta − SD/2TS ≤ Ta + SD/2

Sub-medium temperature (SMT) Ta − SDTS ≤ Ta − SD/2
Low temperature (LT) Ta − 2SDTS ≤ Ta − SD

Sub-low temperature (SLT) TS < Ta + 2SD

The prior p(Ck) and conditional probabilities p(xi |C k) are determined through a
training process. Then, Equation (6) becomes:

k(x) = argmaxkp̂(Ck)
n

∏
i=1

p̂(xi |C k)
wi (7)

In this equation, p̂(Ck) and p̂(xi |C k) are estimates of the probabilities density func-
tions (PDFs). These are derived from the frequency of their respective arguments in the
training sample. Here, p̂(Ck) can also be estimated from a preliminary outcome of a
SVM process.

Equation (7) allows us to weight each environmental factor to generate the final
SUHI product. The resulting map is generated according to the architecture shown in
Figure 6, which is based on the NB decision rule. This approach categorizes the urban
environment according to a specific condition and assigns a specific type of action based
on each temperature category. This analytical procedure allows one to obtain a map
that delimits the areas of different thermal intensities. The resulting areas are based on
the spatiotemporal trends of the contributing factors, facilitating the management and
application of measures to mitigate/adapt the SUHI phenomenon.

 

Figure 6. Architecture of the NBML modelling for generating the SUHI product.

3. Results

3.1. Land Surface Temperature

Sensitivity analysis of the three emissivity models is performed prior to retrieving
land surface temperatures from the 37 Landsat images; the results of the assessment for the
LST retrieved from L8/TIRS B10 (described in Section 2.3.4) are presented here. Figure 7
shows the differences between LST derived from the three models evaluated in this study
(Fcover, AS-TER-GEDv3, and LSE), and these are compared with in situ LST. In this figure,
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the minimum, maxima, median and mean values are shown for (a) January 2019 and (b)
September 2019. In both cases, the lowest differences agree with the LST values from our
Fcover emissivity model.

 

Figure 7. Boxplots of LST results from Fcover, ASTER-GEDv3, and LSE. The white horizontal line in
each box is the median. (a) January 2019; (b) September 2019.

The interquartile ranges show a narrower dispersion for the Fcover model compared to
the ASTER-GEDv3 and the LSE model. This feature is obvious for the campaign in Septem-
ber 2019. The regression analysis between the LST from ground-based sensors and that of
the L8OLI/TIRS band 10 is shown in Figure 8. The dark gray areas represent the confidence
boundaries of 95%, while the solid lines represent the line of best fit between the computed
and in situ LST. The best determination coefficient is given by Fcover with R2 = 0.78 and SD
= 0.73 ◦C (Figure 8a). For the other two cases, the coefficients are R2 = 0.27 and R2 = 0.26
for the ASTER-GEDv3 and LSE models, respectively.

 

Figure 8. Regression analysis between LST from L8OLI/TIRS and that from ground measurements.
Color code: Orange, January; Green, September (a) Fcover; (b) ASTER-GEDv3; (c) LSE model.
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3.2. Principal Component Analysis

The PCA was carried out using all contributing factors during the period 2001–2020
(37 images for each variable). Figure 9 shows the contribution to the total variance of each
PCA component. We can observe that the first PCA component (PCA1) of T-cap Brightness
and T-cap Wetness provide a lower contribution to the total variance, with 54% and 64%,
respectively. On the other hand, the rest of the variables show larger patterns of variability
with only the first PCA component (above 75%).

 

Figure 9. Contribution of the main PCA components to the total variance for the different variables
used in this study.

Regarding the explained variance (%) of the second principal component or the
T-cap Brightness, it is observed that it still retains a large amount of variance (12%),
when compared to other factors. Since the goal of the PCA is to reduce the set of variables,
in the case of the T-cap Brightness, the former dataset cannot be strictly explained by the
first principal component, as it is the case of the remaining factors. This implies that further
analysis is addressed towards investigating the second or even third components of the
T-cap Brightness.

We employ the Jenks Natural Breaks grouping model [87] to identify the main groups
and the inherent patterns that minimize the deviation of each class with respect to the
mean value of the other groups. This method reduces the variance within the classes and
maximizes the variance between classes. In this scheme, we obtain four groups for each
factor, representing the spatiotemporal trends between 2001–2020. Figure 10 shows the
resulting maps where the results for LST (Figure 10a) show the maximum concentration
of temperature in densely populated areas, similar to the results of NDBI (Figure 10b).
The LST results show gradual variations from low to high temperatures near the perimeter
of urban areas. Regions with lower temperatures are mainly located in areas close to
water bodies and dense vegetation. Vegetation areas can be identified in the NDVI results
(Figure 10c). The NDVI and T-Cap Greenness maps Figure 10c,f have high similarity,
while the T-Cap Brightness and Wetness maps Figure 10e,g lack spatial correlation with the
thermal phenomenon. In the next section, we analyze the spatial correlations in more detail.
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Figure 10. First PCA components for the main factors during the period 2001–2020: (a) land surface
temperature; (b) normalized difference built-up index; (c) normalized difference vegetation index;
(d) normalized difference water index; (e) T-cap brightness; (f) T-cap greenness; (g) T-cap wetness.

3.3. Multiple Linear Regression

A large number of outliers were identified and removed in the brightness and hu-
midity factors to avoid introducing “noise” into the MLR analysis. All residuals greater
than 3σ standard deviation from the mean value are considered outliers and thus removed.
Since NDVI and Greenness factors are highly redundant (R2 = 0.99), the latter was excluded.
Concerning the Brightness factor, under the special circumstances observed in Section 3.2,
the two first principal components only explain 66% of the total variance. Moreover, the low
spatial correlation with LST (Figure 10) suggests excluding this variable.

Then, in the Fisher hypothesis test for the PW factor is larger than 0.1, and it was
removed. Finally, the scrutiny explanatory variables are NDBI, NDVI, NDWI, and PUC,
and the resulting MLR model outcomes as follows:

LSTtrend = 0.29 + 0.48 NDBItrend + 0.21 NDVItrend − 0.61 NDWItrend − 0.51 PUC (8)

The regression analysis coefficients are shown in Table 3. In this table, p (>|t = 0.05|)
represents the probability of observing any value larger than t. In our model, all p-values
are below the significance level (0.05). This implies that NDBI, NDVI, NDWI and PUC
are statistically significant predictors. The model has a high coefficient of determination
(R2 = 0.82), this means that these variables explain 82% of the variability observed in
the LST.

Table 3. Multiple Linear Regression coefficients.

Factors Estimate SD t Value p (>t |0.05|)

(Intercept) 0.29 0.01 34.79 <0.001
NDBI 0.48 0.05 9.91 <0.001
NDVI 0.21 0.02 13.21 <0.001
NDWI −0.61 0.03 −23.65 <0.001
PUC −0.51 0.01 −39.60 <0.001

The p-values of the regression analysis are shown in Table 3. All p-values are smaller
than 0.05, indicating that the relationships between independent and dependent variables
are statistically significant. Finally, to support the validity of the model, the following key
assumptions were verified: autocorrelation, normality, and multicollinearity. The resulting
values are given in Table 4.
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Table 4. Fulfillment of the Assumptions.

Autocorrelation Normality Multicollinearity (VIF)

D-W p-Value K-S p-Value NDBI NDVI NDWI PUC

2.00 0.80 0.02 <0.001 45.03 9.12 45.75 1.26

In this table, we can appreciate that the NDBI and NDWI VIF values are greater than 10,
thus exceeding the tolerance. This implies that these two variables should be disregarded.
As stated by Szymanowski and Kryza [88], the variables that exceed this tolerance may
be considered to improve a regression model. Moreover, these two predictors are very
important variables in many UHI studies [89–91]. In the UHI study by Cruz et al. [92],
after performing a multicollinearity test, explanatory variables with VIFs between 50 and
70 were selected for their multiregression analysis. These were considered an important
component for modeling this phenomenon. These are the reasons for maintaining the
NDBI and NDWI as explanatory variables in this study.

The independence between residuals was verified using the Durbin–Watson statis-
tic (D-W) with a value of 2.0, which falls within the critical values of 1.5 < D-W < 2.5,
indicating the absence of autocorrelation. The normality of the residuals was proved
by applying a Kolmogorov–Smirnov (K-S) test, which confirms the normal distribution.
Figure 11 shows the scatter diagrams, the histograms, and the correlation values for each
pair of explanatory variables in the model. To verify our model assumptions, four scatter-
plots of residuals against fitted values are investigated. Figure 12 suggests that the data
are randomly distributed around zero, with constant variability. There are no patterns that
indicate that the assumptions of the model are fulfilled for the dataset.

 

Figure 11. Histograms of the model variables (i.e., LST, NDBI, NDVI, NDWI, and PUC) in the main
diagonal. Scattergrams between the model variables (below main diagonal), and the corresponding
Pearson correlation (above main diagonal).

In this figure, good correlation of NDBI and NDWI with LST is observed.
The contribution of each variable (wi) was obtained through the standardized regres-

sion coefficients (ŵi), which are weighted means absolute value. The resulting standardized
regression coefficients and the contribution of the factors to the model are presented in
Table 5. In this table, we can observe that the main contributing factors are the variables
NDWI and NDBI, followed by NDVI and PUC. The derived weights are used in the next
section to derive the SUHI model.
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Figure 12. Performance of the linearity of the model. Graphs of the regression analysis residuals
vs. fitted lines. (a) NDBI vs. residuals. (b) NDVI vs. residuals. (c) NDWI vs. residuals. (d) PUC vs.
residuals.

Table 5. Standardized Regression Coefficients and Contribution of each Factor.

Factor Standardized Coefficients
^
wi

Weighted Contribution wi (%)

NDBI 0.21 21.38
NDVI 0.13 12.84
NDWI −0.51 51.46
PUC −0.14 14.32

3.4. SUHI Modeling

The SUHI phenomenon depends on the properties of land cover properties which,
combined with their energy absorption capacity, produce a thermal increase on the surface
and represent a threat to the thermal regime of urban ecosystems. Our modeling approach
is based on segmentation through the identification of potential thermal areas. Here we
employ the seven temperature zones defined by Wang et al. [36]. The definition of the
training areas is achieved with the LST variable (Figure 10a). The thermal ranges for the
training process are those defined in Table 2. These ranges are based on LST averages and
the standard deviations. We test both the SVM and NBML algorithms. The application
of the NBML method requires estimating the conditional probability functions for each
contributing factor. The Gaussian and Logistic probabilities density functions showed the
best results for the respective training frequencies of observation/category. Each condi-
tional probability was weighted according to Table 5. Moreover, the weighting capability
of the NBML method allows taking into account the relevance of each factor for deriving
the SUHI product. This feature is not possible with the SVM method.

The segmentation results for both methods are shown in Figure 13. In both cases,
the results were validated with the criteria established in Table 2. Table 6 reports the Kappa
index for SVM and NBML are approximately 88% and 94%, and the overall accuracy are
88% and 95%, respectively.
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Figure 13. Temperature classification results. (a) SVM; (b) naïve Bayes.

Table 6. Kappa Index and Precision of SVM and NBML.

Algorithm Kappa Index Overall Accuracy

SVM 0.88 0.88
NBML 0.94 0.95

Figures 13 and 14 show the final SUHI map that categorizes the urban environment
according to a specific SUHI state and assigns a specific type of action based on temperature.
The proposed actions are: intervene, monitor, strengthen, and preserve. The intervene action
is directly related to the SUHI areas exposed to the maximum thermal concentration.
These areas need to be immediately intervened in and are considered an ‘Extreme-high’
class. The monitor action groups ‘High’ and ‘Sub-high’ categories, and points to the
SUHI areas that should be kept under observation and intervened in a medium term.
The strengthen action classifies the ‘Medium’ and ‘Sub-medium’ classes into SUHI areas that
have gradually presented a temporary thermal trend increase. The preserve action contains
the ‘Low’ and ‘Very-low’ classes and comprises the SUHI areas that must be preserved.

 

Figure 14. Final SHUI product from NBML. The legend recommendations are specific types of action
based on temperature warnings.
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4. Discussion

4.1. Sensitivity Analysis

The results of the January 2019 campaign (Figure 7a) suggest that the amplitude of
the errors in recovering LST is similar between the models evaluated. The September 2019
measurement records (Figure 7b) indicated that the Fcover model provides the smallest
deviation with a mean error of 1.14 ◦C. This is very obvious compared to ASTER-GEDv3
and the LSE model, which shows mean deviations of 3.67 ◦C and 3.85 ◦C, respectively.
As shown in the Results section, the Fcover model exhibited better performance with a
mean error of 1.33 ◦C. Data reported by Duan et al. [93], and Malakar et al. [94] showed
differences for L5TM, L7ETM+, and L8OLI/TIRS among recovered LST and in situ LST
between 0.7 and 1.2 ◦C. Furthermore, we observed mean differences between 1.1 ◦C and
1.3 ◦C. Authors such as Chen and Zhang [14] and Liu and Li [95] have analyzed the SUHI
phenomena with similar differences. In this work, the Fcover model provided the smallest
errors in LST recovery among all the tested schemes, and it is considered the most suitable
for this kind of studies.

4.2. Statistical Analyses

The PCA was applied to derive the time trend of each variable and to analyze the
LST variation. Then, the main PCA component was employed in the MLR. We achieve a
coefficient of determination of approximately R2 = 0.82. These results are in agreement
with recent studies that have used regression models to quantify the impact of contributing
factors on LST [16,96]. Moreover, the combination of these factors defines how the different
types of land cover absorb temperatures. These absorptions manifest themselves with the
corresponding increase in emissivity and surface temperature. Our findings confirm results
of earlier studies, such as those of Rasul et al. [72], who modeled with the MLR method
the spatiotemporal trend of temperature data, and provided robust results in determining
SUHI areas.

Regarding the conditions for ensuring the validity of our proposed approach, several
considerations must be addressed. First, the multicollinearity of the predictor variables
and their effect on the model need to be validated with the VIF. Our results show that
two of the VIF parameters exceeded the value of 10, which would exclude two of the
explanatory variables of the prediction model. However, it is found that NDBI and NDWI
are the factors with the highest contribution, while NDVI and PUC have lower VIF values,
contributing to a lesser extent. Strong correlations, 0.89 and −0.89, were found between
the LST and NDBI and NDWI, respectively. A similar correlation was found between
NDVI and NDWI. It is important to note that removing highly correlated variables can
benefit the overall result and simplify the approach. However, having high contributing
predictor variables such as NDBI and NDWI may indeed improve prediction products,
as noted in [88]. Although some collinearity was presented, the Pearson correlation indices
and the fulfillment of independence and normality of the residuals have denoted a very
reliable model.

Regarding the direct relationships of LST with the different physical variables and
contributing factors, a strong correlation with NDBI was observed: building construction.
This justifies why impervious areas have high caloric retention capacity and low water
storage capacity, in turn reducing humidity. Previous studies have demonstrated strong
correlations between LST and NDBI [97,98]. In contrast, a strong correlation was found
between LST and NDVI/NDWI. Please note that temperature decrease follows increases in
vegetation and humidity. The higher the vegetation cover, the lower the surface tempera-
ture becomes. The reason for this may be strongly related to the soil moisture content in
vegetated areas, which alters the energy balance and causes variation effects from solar
radiation. These results are in line with those obtained by Ibrahim and Rasul Faqe [99],
who reported a strong negative correlation between these variables. Our results show
urban planners that the identification of factors and their contribution to the SUHI phe-
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nomenon serves as a support to define adaptation measures to cities for thermal change,
allowing them to adapt with other territorial planning priorities.

A moderate correlation was found between LST and PUC, indicating that LST in-
creases moderately according to the proximity to the urban center. This correlation may
be related to urban density distribution and road infrastructure, which, compared to the
distance variable, are responsible for generating a complex structure not well represented
by linear models. Bonafoni and Keeratikasikorn [100] also implemented a ring-based
method and analyzed LST as a function of building density and proximity to urban centers.
This issue is to be addressed in future research.

4.3. The SUHI Model

To reveal the multitemporal intensity of the SUHI phenomenon, two Machine Learning
techniques were tested, the SVM and the NBML. Both algorithms performed satisfactorily,
with Kappa indices of 89% and 93%, respectively. Better performance was observed for
certain categories for the NBML algorithm (Figure 13b). Although both procedures are able
to detect high-density urban areas affected by extremely high temperatures, NBML allows
coupling criteria to assign individual weights to each class, increasing the quality of the
results. Conventional NBML classifiers consider the model to be applicable when the
Gaussian probability density function is present in the data set [84]. Molina et al. [101]
showed that the combination of the best-fit distribution model (not necessarily Gaussian),
and the weights of each variable led to satisfactory results.

The SUHI phenomenon is a complex system that occurs as a result of the interaction
of various factors [102]. This interactivity produced by anthropic effects generates thermal
imbalances requiring intervention, monitoring, strengthening, and preservation, as a
fundamental expression between causes and effects of urban/rural ecosystems. Our results
show that the highest temperatures are concentrated in the central area of the city and
gradually decrease toward the periphery. The characterization of the space through the four
proposed classes of actions (intervene, monitor, strengthen, and preserve) makes it possible
to regulate the conditions that could mitigate the SUHI effect. The areas designated as
intervene correspond to the center of the city and tend to have a higher population density
and old buildings. It is recommended to change black roofs to less thermic roofs that have
reduced solar energy absorption and increased energy savings, as suggested by Alshayeb
and Chang [103]. Since these areas do not have appropriate physical space to create green
areas, an alternative might be the use of road dividers to plant trees with large foliage and
roots that do not weaken existing infrastructure. An interesting measure that allows the
reduction of anthropogenic heat is to restrict the transit of private vehicles and limit access
to specific areas. The access methods can be substituted for public transportation or cycling.
These measures have already been implemented in many locations. The areas identified as
monitor should implement small tree-lined sites and natural corridors to refresh the space.
Rainwater irrigation channeled through sewerage systems can be used as a contribution
to the restoration of urban wetlands. The areas indicated as strengthen show less thermal
intensity than the above areas and are associated with urban growth. Within this policy,
the morphology of these areas should integrate green spaces that allow increased water
infiltration and cooling [104]. In general, the use of highly reflective building materials is
recommended, reducing the amount of solar radiation absorbed by the surface, such as,
for example, the use of cool pavements suggested by the U.S. Environmental Protection
Agency [105]. Finally, areas marked as preserve have the highest vegetation cover and
play an important role in the urban ecosystem. They reduce carbon dioxide emissions,
becoming spaces that reduce the radiant load produced by various economic activities,
and generate thermal regulation. In addition, these have a great potential for ecotourism.

Further development of this research can be undertaken by applying simulation
techniques with Machine Learning Algorithms that allow the integration of weights to
the variables involved in the predictive model, and that allow characterization of future
thermal scenarios associated with the spatiotemporal trends of the explanatory variables.
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The interactions produced by biophysical factors and the geometric changes that are
transforming cities make the relationships between objects and phenomena increasingly
complex. In this sense, it would be very pertinent to further explore the classification
of local climatic zones in tropical cities in countries such as Colombia. These are highly
vulnerable to climate change.

5. Conclusions

The results of this work demonstrate that emissivity data have a large impact on the
retrieval of LST. Here, LST is obtained from L8OLI/TIRS band 10 and LSE from Sentinel-2.
Both sources are more accurate and homogeneous than using traditional ground-based
methods. Our innovative approach proposes quantifying the SUHI phenomenon from a
set of contributing factors. We first employ the PCA to retrieve the main spatiotemporal
variations in the initial data. Then, MLR is applied to integrate the dependencies and to
analyze their impacts on SUHI. According to our regression model, the most influential
factors in the SUHI are NDWI with a contribution of 52%, NDBI with 21%, NDVI with
13%, and PUC with a 14%. Finally, the integration of these predictors within an SVM
and a NBML approaches confirms the existence of coupling mechanisms between each
variable. The satisfactory results of the NBML confirm the suitability of the proposed
approach, with an overall accuracy of 95%. We expect to improve the results of the
model with future upgrades associated with structural complexity of the landscapes.
The spatial variation of SUHI points out an enhanced phenomenon towards areas of high
urban density. Our research demonstrates the suitability of Machine Learning Algorithms
for mapping SUHI intensities, providing spatially explicit descriptions of urban heat
distribution. The derived products are crucial for defining sustainable urban planning
policies, as well as for adequate responses to thermal risks. These actions will in turn make
it possible to define mitigation and adaptation strategies.
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