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Preface

Recently, microgrids have become a fundamental element within the framework of a smart

grid. They bring together distributed renewable energy sources (RESs), prediction of RESs, energy

storage units, and load control to enhance the reliability of the power system, promote sustainable

growth, and decrease carbon emissions. Simultaneously, the swift progress in sensor and metering

technologies, wireless and network communication, IoT-based technologies, as well as cloud and fog

computing, is resulting in the gathering and storage of substantial volumes of data, such as device

status information, energy generation statistics, and consumption data.

Furthermore, IoT devices are found in various parts of the smart grid, such as smart appliances,

smart meters, and substations. These IoT devices generate petabytes of data, which are known to

be one of the most scalable properties of a smart grid. Without smart grid analytics, it is difficult

to make efficient use of data and to make sustainable decisions related to smart grid operations.

With the energy system of the developing world heading towards smart grids, there needs to be

a forum for analytics that can collect and interpret data from multiple endpoints. Data analytics

platforms can analyze data to produce invaluable results that lead to many advantages, such as

operational efficiency and cost savings. In addition, proper forecasting of energy generation from

RESs and energy theft detection help a lot while maintaining smart and sustainable energy systems.

This reprint comprises a variety of noteworthy and original research contributions that pertain to

smart grid analytics for sustainability and urbanization in big data. It also plays a fundamental part

in sharing and promoting novel ideas within this field.

Sheraz Aslam, Herodotos Herodotou, and Nouman Ashraf

Editors
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Solar and Wind Energy Forecasting for Green and Intelligent
Migration of Traditional Energy Sources
Syed Muhammad Mohsin 1,2,* , Tahir Maqsood 3 and Sajjad Ahmed Madani 1
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2 College of Intellectual Novitiates (COIN), Virtual University of Pakistan, Lahore 55150, Pakistan
3 Department of Computer Science, COMSATS University Islamabad, Abbottabad 22060, Pakistan
* Correspondence: syedmmohsin9@yahoo.com

Abstract: Fossil-fuel-based power generation leads to higher energy costs and environmental im-
pacts. Solar and wind energy are abundant important renewable energy sources (RES) that make the
largest contribution to replacing fossil-fuel-based energy consumption. However, the uncertain solar
radiation and highly fluctuating weather parameters of solar and wind energy require an accurate
and reliable forecasting mechanism for effective and efficient load management, cost reduction, green
environment, and grid stability. From the existing literature, artificial neural networks (ANN) are
a better means for prediction, but the ANN-based renewable energy forecasting techniques lose
prediction accuracy due to the high uncertainty of input data and random determination of initial
weights among different layers of ANN. Therefore, the objective of this study is to develop a harmony
search algorithm (HSA)-optimized ANN model for reliable and accurate prediction of solar and wind
energy. In this study, we combined ANN with HSA and provided ANN feedback for its weights
adjustment to HSA, instead of ANN. Then, the HSA optimized weights were assigned to the edges of
ANN instead of random weights, and this completes the training of ANN. Extensive simulations were
carried out and our proposed HSA-optimized ANN model for solar irradiation forecast achieved the
values of MSE = 0.04754, MAE = 0.18546, MAPE = 0.32430%, and RMSE = 0.21805, whereas our pro-
posed HSA-optimized ANN model for wind speed prediction achieved the values of MSE = 0.30944,
MAE = 0.47172, MAPE = 0.12896%, and RMSE = 0.55627. Simulation results prove the supremacy
of our proposed HSA-optimized ANN models compared to state-of-the-art solar and wind energy
forecasting techniques.

Keywords: renewable energy; forecasting; machine learning; energy efficiency; sustainability; low
carbon emission

1. Introduction

Increased energy consumption leads to higher fossil fuel consumption. Brown energy
is produced using expensive and environmentally damaging fossil fuels including coal,
natural gas, and oil. On the other hand, green energy is produced by inexpensive and
widely available renewable energy sources (RESs), such as solar and wind energy. When
compared to brown energy sources, RESs have a substantially lower carbon emission rate
(CER) [1]. In this context, governments and the scientific community face major difficulties
related to lowering electricity costs and ensuring environmental sustainability. Due to the
long-term effects of carbon emissions from traditional power plants, some countries have
imposed large taxes on carbon emissions [2–4]. Therefore, the research community has
made tremendous research efforts to reduce electricity costs and carbon emissions [5–8].

State-of-the-art literature recommends integration of RESs with brown energy
sources [9–19] to meet users’ energy demand in an environmental friendly and cost efficient
manner. Solar and wind energy are the abundantly available main sources of renewable
energy. However, both sources are inherently highly variable due to volatile weather
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conditions. Figures 1 and 2 show how intermittent energy is generated from solar and
wind energy sources. Weather data are taken from the measurement and instrumentation
data centre at the national renewable energy laboratory [20], as these data are sufficiently
accurate [21]. The intermittency of solar and wind generation creates significant difficulties
in seamless integration of solar and wind power into the existing power system [22].
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Figure 1. Pattern of solar power generation.
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Figure 2. Pattern of wind power generation.

Meteorological conditions affect the green energy generation, and green energy pro-
duction is different in various time zones [23–27]. Therefore, green energy produced by
RESs is intermittent in nature. That is a big challenge, especially, while utilizing RESs as
the only power source. Consequently, integration of RESs with brown energy is mostly
studied and recommended in the literature to cope up with the intermittent nature of RESs.
As the renewable energy generation is dependent upon wind direction, wind speed, solar
radiance, temperature, humidity, and other weather conditions, it is unreliable [28]. Hence,
accurate forecasting of energy production by RESs is necessary to:

1. Minimize the carbon emission,
2. Decrease operational cost of the grid,
3. Trustworthy and safe operations of the power grid
4. Minimize the gap between electricity demand and supply,
5. Reduce the use of electricity reserves through improved scheduling of generation.

2
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Given the importance of renewable energy forecasting, DeepMind, a subsidiary of
Alphabet and Google, has chosen machine learning (ML) for 36-h wind energy forecasts to
ensure the availability of clean and carbon-free wind energy [29]. Machine learning, which
encompasses a variety of other areas, such as data mining, image and speech recognition,
optimization, virtual personal assistants, fraud detection, product recommendations, self-
driving cars, and artificial intelligence, can be used to process extensive historical Big
Data to solve data-driven problems [30,31]. During training, machine learning approaches
search for relations between input and output data and make predictions based on the
input data. Model generalisation and feature extraction are two areas where machine
learning outperforms traditional statistical predictive models.

Machine learning can help make smarter, faster, data-driven estimates about how
electricity generation can meet electricity demand [32]. ML can be used for a variety of
energy-related tasks, including demand-side management, energy theft detection, demand
forecasting, energy generation forecasting, energy price forecasting, predictive maintenance
and control, prediction of weather phenomena and optimised energy storage operation that
could impact energy forecasting and build energy management. All forms of renewable
energy, including hydro, marine, wind, solar, geothermal, bio, hydrogen, and hybrid, can
be harnessed with AI models [33].

In the literature, a number of ML forecasting methods for renewable energy have been
put forth, and many patents have been registered in this regard. The inventors of US patent
US 2015/0186904 A1 at [34] have invented a system for managing and predicting solar
and wind energy. They have proposed a current–voltage curve of a solar cell, a diagram to
illustrate energy management and use of energy generated by renewable energy sources.
US patent 2005/0039787 A1 [35] presents a tool to help grid operators plan and allocate
generation resources in a power grid with solar generation capacity on an hourly basis
and a week in advance. Tools are also provided to help entities involved in the generation,
distribution, and sale of electric energy.

Another invention, patent WO 2011/124226 A1 at [36], discloses a forecasting tech-
nique for wind power generation. The invention discusses establishment of a forecasting
site at a given location and collecting power generation data from a series of wind turbines,
with the first wind turbine at a first location and the second wind turbine at a second
location. The estimation is based on the performance data of the group of wind turbines
extrapolated into the future or used in conjunction with the location of the forecast site.

Artificial neural networks (ANN) and time series methods, such as autoregressive
integrated moving average (ARIMA), are among the most popular ML-based forecasting
techniques [37]. The authors of [38] found that time series techniques such as ARIMA lose
accuracy when dealing with noisy data and are less accurate than ML techniques. However,
ANN may also lose its prediction accuracy due to the high uncertainty of the input data
and the random determination of the initial weights between different layers [38].

In this study, we consider reliable and accurate forecasting of solar and wind energy.
Previously, the weights to the edges of ANNs were randomly assigned for solar and wind
energy forecasting, while in this study we use a meta-heuristic optimization algorithm
called harmony search algorithm (HSA) [39] for optimal weights assignment to the edges
of ANN for improved forecasting. The main contributions of this study are given below.

• We summarize the state-of-the-art literature on solar and wind energy forecasting.
• During the literature review, we find out that artificial neural networks lose prediction

accuracy when dealing with highly intermittent data, such as solar irradiance and
wind speed.

• We propose a reliable solar irradiance and wind speed forecasting algorithm named
HSA-optimized ANN.

• In our proposed forecasting model, we use HSA for assignment of optimized weights
to the edges of ANN.

The rest of the article is organized as follows. State-of-the-art literature review is
presented in Section 2. Motivation and problem statement are described in Section 3, and

3
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Section 4 provides a thorough description of an artificial neural network, the harmony
search algorithm, and our proposed system model. The simulation setup and methodology
for this study are covered in Section 5, while Section 6 presents the simulation findings and
pertinent discussions. The study is finally concluded along with future research directions
in Section 7.

2. Literature Review

Prominent machine learning based solar and wind energy forecasting models [40–48]
and [49–58] are briefly explained in Sections 2.1 and 2.2, respectively. The summary of the
literature review on solar and wind energy forecasting studies is given in Tables 1 and 2,
respectively.

2.1. State-of-the-Art Literature on Solar Energy Forecasting

An efficient and effective building energy management system (EMS) can be developed
with a reliable energy supply system. Photovoltaic (PV) generation is intermittent; hence,
its reliable and accurate forecasting is very important in the development of an efficient
EMS. Authors of [40] have proposed a probabilistic day-ahead PV generation forecasting
model. A clear sky model is transformed into temperature and shading, and then its
deviation is used to train a bagging regression tree for point forecasting of PV energy. A
proposed probabilistic forecast model was tested for one year in Munich, Germany, and
results proved its accuracy in point forecasting for energy management system applications.

The paper [41] developed and evaluated a daily global solar radiation model from the
European centre for medium range weather forecasting by using an ANN-based machine
learning model. They compared the ANN model with other models, namely support vector
regression, genetic programming, and gaussian process machine learning. Mean absolute
error (MAE) and root mean square error (RMSE) were implemented for benchmarking.
Results concluded that the ANN-based prediction model was better than other data-driven
prediction models.

Solar irradiance is affected by meteorological factors, such as temperature, humidity,
cloud cover, dust in desert locations, and sunshine intensity. As a result, solar output
varies. Authors of [42] used aerosol optical depth and angstrom data for an hour-ahead
solar irradiance forecasting. The proposed forecasting model was compared with different
data-driven forecasting models, namely k nearest neighbors, multilayer perception, and
support vector regression model. The proposed model was tested on Saudi Arabia data,
and it was concluded that it is superior to compared forecasting models, especially for
desert areas.

Photovoltaic cells produce electric power when exposed to sun rays. The relationship
between energy supply and demand needs to be optimized by reliable solar energy fore-
casting. The authors of [43] proposed a multi-variant neural network ensemble framework
trained on meteorological data. After combining the results with Bayesian model averaging,
the proposed technique was compared with real-time solar PV data from the University of
Queensland. Validation of the proposed framework was performed by one-day ahead fore-
casting. Results prove that the proposed multi-variant neural network ensemble framework
helps improve the accuracy of PV power output.

Hourly solar irradiation for the following day was predicted by the authors of [44]
using LSTM. Inputs include data from the weather forecast for the following day, which
includes information on temperature, humidity, sky coverage, wind speed, and precipita-
tion. The model was trained with data from multiple locations of Korea Meteorological
Administration. It was found that the proposed model had strong forecasting capabilities
with RMSE of 30 W/m2.

4
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Table 1. Summary of literature on solar energy forecasting.

Paper Energy Source RES Forecasting Implementation
Strategy Objective(s) Dataset Type Performance/Result

[40] Solar energy Yes Probabilistic day
ahead PV forecast

PV energy
forecasting Historical

Continuous ranked
probability skill
score = 90.94%

[41] Solar energy Yes Global solar
radiance prediction

Daily global solar
radiance Historical ANN RMSE = 1.613,

ANN MAE = 1.146

[42] Solar energy Yes

Aerosol optical
depth (AOD) and
angstrom data for
solar irradiance

forecasting

One hour solar
irradiance
prediction

Historical MLP RMSE = 32.75
(W/m2)

[43] Solar energy Yes
Multivariate neural
network ensemble

framework

PV output power
forecast Historical MAPE = 3.1

[44] Solar energy Yes
LSTM model for
solar irradiance

forecasting

Accurate forecast of
solar irradiance Historical RMSE = 30 W/m2

[45] Solar energy Yes
LSTM model for
solar irradiance

forecasting

Forecasting of solar
irradiance Historical

3.2% improvement
in nRMSE over the

SVR model

[46] Solar energy Yes FFNN and LSTM Accurate forecast of
solar irradiance Historical

Combination of
MM and MO

performed better

[47] Solar energy Yes
Image-based

dataset and LSTM
model

Solar irradiance
forecasting Historical

Pearson
Product-Moment

Correlation
Coefficient (PCCs)

is used in this study

[48] Solar energy Yes GRU, LSTM, RNN,
SVR, and FFNN

Accurate forecast of
solar irradiance Historical GRU is better than

LSTM

Using an LSTM model, the authors of [45] predicted hourly solar radiation for the city
of Johannesburg. Solar radiation, temperature, daylight hours and relative humidity were
used as training inputs for the LSTM network. Model was build using solar radiation data
of National Oceanic and Atmospheric Administration from 2009 to 2019. The simulation
results showed that the proposed LSTM network had a 3.2% improvement in normalised
RMSE over the SVR model.

To anticipate solar radiation over a multilevel horizon in northern Italy, the authors
of [46] used two different neural network types, FFNN and LSTM. The proposed models
used a variety of methods, including multi-model (MM) and multi-output (MO), to build
their predictive models. Six years of weather data from 2014 to 2019 was collected from the
Italian weather station used in this study. Historical solar radiation data were used to train
the model. Comparative results of the study proved that the proposed models performed
better by combining the techniques of MM and MO.

The authors of [47] proposed a new method of solar irradiance prediction using an
image-based dataset and LSTM model. The developed model can predict solar radiation
up to 60 min in advance. The LSTM model was introduced with two different methods
based on the input variables. Prediction results of the second model were better. Authors
of [48] used the historical data from Korea Department of Meteorological Administration
SURFRA system to analyze different deep learning and machine learning solar irradiance

5
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prediction algorithms. Simulation results showed that performance of deep learning models
was better.

2.2. State-of-the-Art Literature on Wind Energy Forecasting

Due to its wide availability and limitless supply, wind energy is a particularly pop-
ular source of energy. Production of wind energy is hampered by uncertainty of air
flow/pressure, among other things. The authors of [49] performed probabilistic wind
speed forecasting through an ensemble model. The proposed ensemble model is composed
of a recurrent neural network, wavelet threshold de-noising (WTD), and an adaptive neu-
ral fuzzy inference system (ANFIS). Sub-model variance is used to calculate wind speed
forecasting, which is then confirmed for one hour wind speed prediction. Accuracy of the
proposed model over its counterparts was proved by simulation results.

Wind energy is highly dependent on wind speed, wind direction, weather temperature,
and weather pressure that make it unpredictable, hence unreliable. In [50], the authors
exploited ANN to measure different local meteorological conditions that affect wind flow.
In order to predict the wind speed, MAE and RMSE were determined. Reliable wind
speed forecasting is needed to plan, develop, and monitor an intelligent power system.
As the wind energy relies upon wind speed, pressure, temperature, and wind direction,
its forecasting mechanism was proposed by the authors of [51]. Raw data is decomposed
using an empirical wavelet transformation in a deep-learning-based hybrid wind speed
forecasting model. The proposed model was validated in a way that simulation results
show highly accurate wind speed prediction.

The authors of [52] stated that wind energy generation, conversion, and optimal
control are dependent on reliable wind speed prediction. They proposed EnsembleLSTM
using non-linear learning to predict the wind speed. Long short-term memory (LSTM)
neural network neurons and numerous hidden layers are used in the suggested method to
help reliable wind speed prediction. Later on, the wind speed forecasting process involves
the usage of support vector regression machines and external optimization methods. The
proposed method was compared with two cases of Inner Mongolia, China, for 10 min
ahead and one hour ahead forecasting. Results proved the efficacy of the proposed method.

Wind energy has economical and environmental advantages, so it has garnered much
attention of policy makers and the research community. However, uncertainty in wind
power generation is unacceptable and a challenging task to overcome. A deep-learning-
based ensemble solution was proposed by the authors of [53] for probabilistic wind power
forecasting. In order to deal with uncertainties, this study proposed an enhanced point
forecasting technique based on wavelet processing and convolutional neural networks
(CNN) for wind energy forecasting. The non-linearity of each frequency also increased
predicting accuracy. Results show that the suggested technique outperforms its competitors.

Wind power generation is economical and environment friendly; however, irregular
wind power generation leads to peak load pressure and frequency regulation issues at grid
stations. Wind power forecasting can make its supply steady. Therefore, for accurate wind
power prediction, the authors of [54] suggested a long short-term memory improved forget
gate network model. Results demonstrate significant improvement in prediction accuracy
and speed up in the convergence process.

The authors of [55] presented the SSA-EMD-CNNSVM model, which uses singular
spectrum analysis (SSA) for noise reduction and trend extraction from actual data. Time
empirical mode decomposition (EMD), as the name suggests, is used to separate time series
of wind speed into sublayers. Following that, a convolutional support vector machine
(CSVM) is used to forecast wind speed. The proposed prediction model was compared
with other wind speed prediction models, including the CNNSVM, EMD-BP, SVM, and
EMD-Elman models. Results demonstrated the superiority of the proposed model.
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Table 2. Summary of literature on wind energy forecasting.

Paper Energy Source RES Forecasting Implementation
Strategy Objective(s) Dataset Type Performance/Result

[49] Wind energy Yes
WTD–RNN–ANFIS

based ensemble
model

Reliable wind speed
forecasting Historical

MAE ANN = 0.929,
MAE SVM = 0.963,

RMSE ANN = 1.293,
RMSE SVM = 1.349

[50] Wind energy Yes
Wind speed

forecasting through
ANN

Forecasting of wind
speed Historical RMSE = 0.675,

MAE = 0.536

[51] Wind energy Yes

Wind speed
prediction through

wavelet
transformation and

recurrent neural
networks

Wind speed is
predicted Historical

Wind speed series 1,
MAPE

ARIMA = 7.17,
MAE ARIMS = 0.93,

RMSE
ARIMA = 1.21

[52] Wind energy Yes

Ensemble LSTM
using non-linear

learning to predict
the wind energy

Wind speed
forecasting Historical

MAE EnsemL-
STM = 0.574, RMSE

EnsemL-
STM = 0.755, MAPE
EnsemLSTM = 5.41

[53] Wind energy Yes

Deep learning
based ensemble

approach for
probabilistic wind
power forecasting

Wind power
forecasting Historical

Performance
improvemney by

48.42%, 45.02%, and
45.10% as compared
to three benchmarks

[54] Wind energy Yes

Long short-term
memory enhanced
forget gate network
model for reliable

wind power
prediction

Wind power
forecasting Historical 18.3% rise in

accuracy

[55] Wind energy Yes

Convolutional
support vector

machine
(CNNSVM)

Wind speed
forecasting Historical

RMSE = 39.25%,
MAE = 39.21% ,
MAPE = 42.85%

[56] Wind energy Yes
SVM-based

prediction and MLP
are used

Wind speed
forecasting Historical MSE SVM = 0.78%,

MSE MLP = 0.9%

[57] Wind energy Yes Wavelet transform Wind speed
forecasting Historical

MAPE increased
from 14.79% to

22.64%

[58] Wind energy Yes ARIMA and ANN Wind speed
forecasting Historical MAPE = 6.97%

The support vector machine method is used in [56] for wind prediction. The regression
analysis is performed after mapping the time series data for any variable into a higher
dimensional space (e.g., Hilbert space), according to the procedure. In addition, the results
of SVM-based prediction and multilayer perceptron (MLP) models were compared. MSE
and RMSE were the performance measures used in [56]. Since the SVM had a mean square
error of 0.78% compared to the MLP of 0.9%, it was found that the SVM performed better
than the MLP.

Using a wavelet transform, the authors of [57] deconstructed a wind series. The
selection of input parameters for the SVM was supported by the genetic algorithm approach.
The input must be improved to select the best forecast candidates. According to the results,
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persistence increased MAPE from 14.79% to 22.64%, while WT-SVM-GA did not. The
NNWT technique, in which the prediction for the next three hours is made using the
historical data of the last twelve hours, was compared with ARIMA (1,2,1) and NN by [58].
The MAPE value was found to be 6.97% using the NNWT technique.

The authors of [59] discussed the benefits and limitations of solar energy in detail. A
brief description along with benefits and limitations of solar energy and wind energy are
briefly described in Table 3.

Table 3. Short description and merits/limitations of solar energy and wind energy.

Type Short Description Benefits Limitations

Solar energy
Energy of sunrays is
transformed into electricity
with the help of PV cells

• Inexhaustible energy source
• Pollution-free energy
• Directly exploitable and

widely available
• Renewable energy
• Being labor intensive industry,

improves job opportunities
• Reduces electricity cost

• Huge initial installation cost
• Dependent over climate

and weather
• Intermittent in nature
• Performance issues of batteries

and inverters, etc.
• Shortage of skilled manpower

Wind energy
Produced by kinetic energy
caused by flow of air on the
surface of Earth

• Clean energy
• Carbon free generation
• Minimizes dependence over

fossil fuels

• Intermittent in nature
• Dependent over air dynamics

such air flow, pressure,
direction, humidity etc.

3. Motivation and the Problem Statement
3.1. Motivation

Many researchers have considered the energy optimization and environmental im-
plications caused by excessive brown energy usage. A few have proposed using both
energy sources, while some have recommended using RESs only. Recent research articles
cited at [40–58] have focused on solar energy and wind energy forecasting, respectively.
The literature review motivated us towards accurate and reliable RES forecasting because
it is very important for effective and efficient grid management. Moreover, it is helpful
in minimizing user energy cost, reducing carbon emissions, overcoming energy imbal-
ances, decreasing dependence upon electricity reserves, and better scheduling of different
energy sources.

3.2. Problem Statement

Accurate renewable energy forecasting is important for the minimization of user
energy cost and carbon emission. ANN-based renewable energy forecasting techniques
lose prediction accuracy due to uncertainty of input data and random determination of
initial weights between different layers of the ANN. Therefore, the objective of this work
is to develop “a harmony search algorithm optimized artificial neural network model for
reliable and accurate solar and wind energy forecasting”.

4. Proposed System Model
4.1. Artificial Neural Network

A collection of linked nodes referred to as artificial neurons makes up an artificial
neural network, which functions similarly to the human nervous system. Artificial neural
nodes are connected to each other through edges, and the edges carry signal or output to
the next artificial neuron where some logical action is performed [37]. This signal is possibly
sent to the next neuron for further processing or final output. ANN may have a single
hidden layer or multiple hidden layers, and each layer may have a different number of
nodes. The quantity of hidden layers, learning rate, and iterations are the main governing
factors of an ANN. The activation functions that have an impact on ANN processing
include softmax, sigmoid, gaussian error linear units, exponential linear units and swish,
among others. Figure 3 depicts the basic architecture of ANN.
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Output layer

Hidden layer 2 

(f2)

Hidden layer 1

(f1)

Input layer

Input

[N,3]

Input layer Output layerHidden layer

Figure 3. Basic architecture of artificial neural network.

4.2. Harmony Search Algorithm

Harmony search algorithm (HSA) is a nature inspired evolutionary meta-heuristic
optimization algorithm [39], proposed by Zong Wo Geem et al. [60] in 2001. Harmony
improvisation is the term used to describe the process by which artists apply this algorithm
to enhance their harmony. Every time a musical band where each performer plays a
different instrument completes the harmony improvisation process. Each member of the
musical ensemble serves as a decision variable in this situation, and each musical instrument
has a different pitch. Successful musical harmony is achieved throughout the process
of improvising harmony, and this successful harmony is then updated in the harmony
memory (HM). HM contains the top solution vectors. The HSA process is illustrated in
Figure 4, and Table 4 displays manually chosen HSA control parameters in the context of
Equations (1)–(5). According to Table 4, HMS, NI, HMCR, PAR, PAPmax, and PAImax stand
for harmony memory size, number of iterations, harmony memory consideration rate, pitch
adjustment rate, maximum pitch adjustment proportion (used for continuous variables),
and maximum pitch adjustment index (used for discrete variables), respectively.
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Start

New harmony 

computation

Update HM

Stop

Modify HM by 

new harmony

Stop criterion

Yes

Yes

No

No

Yes

Variables 

initialization

Harmony memory

initialization

Initialization phase

HMCR selection PAR selection

Improvisation phase

No

Figure 4. Procedural steps of harmony search algorithm.

Table 4. HSA control parameters.

Control Parameter Value

HMS 3
NI 10

HMCR 0.9
PAR 0.5

PAPmax 0.25
PAImax 2

A brief description of each procedural step of HSA is given in the following.

1. Variables initialization
Values limit of different variables used in HSA are defined during this step.

• Upper and lower limit of variables

xL
i ≤ xi ≤ xU

i (1)

• Harmony memory size (HMS)

10 ≤ HMS ≤ 3 (2)

• Harmony memory consideration rate (HMCR)

0.0 ≤ HMCR ≤ 1.0 (3)

• Pitch adjustment rate (PAR)

0.0 ≤ PAR ≤ 1.0 (4)

• Maximum number of iterations (NI), i.e., stopping criteria

0 ≤ NI ≤ 10 (5)
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2. HM initialization
The harmony memory matrix is randomly initialized during the HM initialization
step using following equation.

x(i,j) = lj + rand().Uj − lj (6)

The jth element of the initial harmony memory in Equation (6) is indicated by x(i,j),
whereas the rand() function is used to generate random values between zero and one.
Uj and lj in Equation (6) represent upper and lower bounds of variables, respectively.

3. HMCR selection
A random number between zero and one is created during the HMCR selection phase
of the HSA improvisation phase using the rand() function, as indicated in Equation (7).
The value for that specific place is chosen if the randomly generated value is smaller
than the HMCR; otherwise, a new random number is generated.

Vi,j =

{
x(randj) i f randb()is < HMCR
lj + rand().Uj − lj else

(7)

4. PAR selection
PAR selection is another sub-part of the the HSA improvisation phase in which the
memory elements selected during the HMCR step are further improved in the PAR
selection step. The PAR selection step works on the basis of Equation (8); bw in
Equation (8) represents bandwidth which plays an important role in pitch adjustment.

Vi,j =

{
V j

i rand().bwj i f rand()is < PAR
V j

i else
(8)

5. Update HM
Upon successful completion of the new harmony selection process, it is updated in
the HM by replacing the already present worst memory there.

6. Checking the stop criteria
The harmony improvisation process terminates at the maximum number of iterations
(NI), i.e., stopping criteria, as shown in Equation (5).

The nature-inspired meta-heuristic algorithm HSA offers perfect stability between
the search process’s exploration and exploitation stages [61]. Moreover, HSA has been
effectively used in a variety of application areas, including image processing, wireless
sensor networks, text clustering, and fuzzy clustering [62]. Therefore, it has high precision,
faster convergence speed, and less complexity. Consequently, we selected HSA for weight
optimization of the ANN edges in this study.

4.3. Proposed System Model

Recent research has focused on the integration of brown energy sources and RESs
(solar and wind) because of low operational cost and carbon-free production of RESs.
However, reliable forecasting of RESs is an important issue and needs keen attention. We
have considered an ANN-based solar and wind energy forecasting model for efficient
solar and wind energy production, thereby efficient supply and demand management, less
energy cost, and less carbon emissions.

The literature review revealed that machine learning techniques are much better than
time series techniques for solar and wind forecasting. The authors of [38] stated that
machine learning techniques, such as, artificial neural network suffer from:

1. Loose precision due to high uncertainty of input data like solar and wind energy
production;

2. Random determination of initial weights between different layers can affect the
performance of an ANN.
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In this study, we propose HSA-optimized ANN for solar and wind energy forecasting
models, where initial weights between different layers of ANN are determined by a meta-
heuristic algorithm named the harmony search algorithm. Our proposed forecasting
model has strengths of machine learning (ANN) and meta-heuristic algorithm (HSA).
Consequently, our proposed forecasting algorithm has high precision, faster convergence
speed, and less complexity. Our proposed forecasting model for reliable solar and wind
energy prediction is shown in Figure 5.

Yes

No

Input data

Initialization of HSA parameters

Random initialization of harmony memory 

Computation of harmony proportion, on
the basis of neural network feedback

Termination

Computation of new harmony, on the 
basis of neural network feedback

Modify harmony 
memory by new 

harmony

Update harmony memory

Yes

No

Finish

Training data

Initialization of neural network parameters 
using HSA generated weights

Training of neural network 

Testing of neural network 

Neural network accuracy evaluation

Training data

Initialization of neural network parameters 
using HSA generated weights

Training of neural network 

Testing of neural network 

Neural network accuracy evaluation

Figure 5. Proposed solar and wind energy forecasting model.

In Figure 5, it is evident that weights at the edges of ANN are being adjusted by the
meta-heuristic algorithm HSA which is very famous for optimization problems. Here, the
optimal weights assignment to the ANN’s edges has a favourable impact on the forecasting
of solar and wind energy. The findings mentioned in Section 6 contain supporting data.

5. Simulation Setup and Methodology
5.1. Simulation Setup

In this section, implementation specifications of our suggested model are described
in terms of their performance indicators. Our model is tested on a system with a core i7,
16 GB of RAM, and a 4.8 GHz processor. Python and the Anaconda IDE environment are
employed. Table 5 describes the simulation settings of our proposed system model.

Overfitting occurs when the model curve becomes too complex and performs too
well on training data but fails or degrades performance on test data. The main cause of
overfitting is that the model has not learned well from the training data. When underfitting
occurs, the model does not perform well even on the training data because the model is
too simple and/or the input features are not very expressive. If the number of epochs
is too high, the model may overfit, and if the number of epochs is very low, the model
may underfit. To avoid overfitting, we used an early stopping criterion in our model. If
the model does not perform better after a certain number of epochs, e.g., between 50 and
60 epochs, it is automatically stopped even if the fixed number of epochs is 100. We tested
our model for different numbers of epochs, i.e., from 100 to 300, and we found 200 to be
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the optimal number of epochs where we obtained good results for training and testing
of the data.

Table 5. Simulation parameters.

Parameter(s) Setting

Neural network Artificial neural network

Number of hidden layers 2

Heuristic algorithm Harmony search algorithm

Optimizer Adam

Loss functions MSE, MAE, MAPE, RMSE

Batch size 4

Number of epoch 200

5.2. Methodology

First, solar and wind energy datasets were downloaded from [63] for the time period
of 1 January 2015 to 1 March 2018. A total of 70% of the total data was utilized for training
purpose whereas, 30% of the data was used for testing the accuracy of the proposed
forecasting model. Pre-processing of solar and wind energy datasets was performed
using standard scalar to improve the training of our proposed model by means of data
standardization. The following four different forecasting models were developed.

1. ANN-based solar irradiance forecasting model without HSA (using random weights
assignment at the edges of ANN layers)

2. ANN-based wind speed forecasting model without HSA (using random weights
assignment at the edges of ANN layers)

3. ANN-based solar irradiance forecasting model with HSA (using HSA optimized
weights assignment at the edges of ANN layers)

4. ANN-based wind speed forecasting model with HSA (using HSA optimized weights
assignment at the edges of ANN layers)

A basic structure of the ANN model with 2 hidden layers was created, and solar and
wind datasets downloaded from [63] were loaded. The model was trained with 70% of the
data ,and performance was measured by means of error criteria, i.e., mean square error
(MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean
square error (RMSE). Later on, we used the harmony search algorithm for assignment of
optimized weights at the edges of the ANN instead of random weight assignment to the
edges of the ANN. Different weights harmonies were created using the harmony search
algorithm, and this process was repeated in a loop until the number of iterations, i.e., 5 in
our case. During this process, each time a new harmony (weight) was generated it was
fitted to the ANN to obtain a loss value. Loss values of all the harmonies (weights) were
compared and finally, the best harmony (weight) among all was selected and applied to the
edges of the ANN. Tables 6 and 7 show the simulation results.

Table 6. Performance evaluation of solar irradiance forecasting.

Error
Criteria ANN [38] GA Optimized

ANN [38] ANN [41] SVR [41] ANN
(Ours)

HSA Optimized
ANN (Proposed)

MSE 0.53 0.29 — — 0.06354 0.04754

MAE 0.53 0.29 1.146 1.367 0.18520 0.18546

MAPE 7.6% 4.5% — — 0.32430% 0.32475%

RMSE 0.62 0.37 1.613 1.994 0.25208 0.21805
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Table 7. Performance evaluation of wind speed forecasting.

Error
Criteria ANN [49] SVM [49] GRNN [51] EWT-

Elman [51]
ANN
(Ours)

HSA Optimized
ANN (Proposed)

MSE — — — — 0.46358 0.30944

MAE 0.929 0.963 0.89 0.66 0.66419 0.47172

MAPE — — 6.88% 5.08% 0.13988% 0.12896%

RMSE 1.293 1.349 1.27 0.83 0.68087 0.55627

6. Results and Discussions
6.1. Solar Irradiance Forecasting

As mentioned above, we proposed and developed an HSA-optimized ANN model for
solar irradiance forecasting, and we used well-known error value measurement methods
for accurate and reliable analysis of the results. Solar irradiance prediction was carried out
for one week of all seasons, i.e., autumn, spring, summer, and winter.

In Table 6, the solar irradiance forecasting accuracy of our proposed model is compared
with solar irradiance forecasting accuracy of the study at [38]. The authors of [38] developed
two models for solar irradiance forecasting: (1) an ANN model was used with random
determination of weights at its edges (ANN [38]) and (2) a genetic algorithm (GA) was
used for optimized weights assignment at the edges of ANN (GA optimized ANN [38]).
The authors of [41] implemented ANN and SVR models for solar irradiance forecasting.
Instead, we used; (1) an ANN model with random determination of weights at its edges
(ANN (Ours)) and (2) an ANN with HSA-optimized weight assignment at its edges (HSA-
optimized ANN (proposed)). Simulation results prove the supremacy of our proposed
solar irradiance forecasting model.

The results reported in the Table 6 show that the solar irradiance prediction accu-
racy is higher with our proposed HSA-optimized ANN model, achieving MSE = 0.04754,
MAE = 0.18546, MAPE = 0.32430%, and RMSE = 0.21805. On the other hand, the first com-
petitor ANN at [38] achieved the result values of MSE = 0.53, MAE = 0.53, MAPE = 7.6%,
and RMSE = 0.62. Its second competitor, GA-optimized ANN, at [38] achieved results of
MSE = 0.29, MAE = 0.29, MAPE = 4.5%, and RMSE = 0.37. Its third competitor ANN at [41]
achieved results of MAE = 1.146 and RMSE = 1.613, whereas it fourth competitor SVR
at [41] achieved results of MAE = 1.367 and RMSE = 1.994. Results of all the competitors
of our proposed HSA-optimized ANN model are far behind. The authors of [41] did not
consider MSE and MAPE as evaluation criteria in their study. During solar irradiance fore-
casting simulations, the computational time of ANN (Ours) was recorded = 60 s, whereas
the computational time of our proposed HSA-optimized ANN was recorded = 176 s. The
computational time of the HSA-optimized ANN is higher because it involves another
meta-heuristic algorithm (HSA) for optimal weight assignment.

Figure 6 shows the result graph of actual solar irradiance values, ANN-predicted solar
irradiance values without HSA, and ANN-predicted solar irradiance values with HSA
for the whole dataset. The results of the one-week solar irradiance forecast for autumn,
spring, summer, and winter seasons are shown in Figure 7a–d, respectively. The green
lines in these figures represent the actual solar irradiance values, and the blue lines show
the predicted solar irradiance values using ANN without HSA. The red lines, on the other
hand, show the predicted solar irradiance values of the ANN model optimized with HSA,
i.e., our proposed model.
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Figure 6. Actual vs. forecasted solar irradiation.

(a) Autumn season (b) Spring season

(c) Summer season (d) Winter season
Figure 7. Actual vs. forecasted 1-week solar irradiation of different seasons.

In Figure 7a–d it can be seen that sometimes the line of actual values (green line) and
the line of predicted values (blue and red lines) cross each other. Ideally, this should not
have happened. As mentioned earlier, whole dataset is split into 70% for training and 30%
for accuracy testing purpose. We tested our models for a one-week solar irradiance forecast
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of four seasons. Each forecast model makes its predictions based on its learning process,
where it learns about trends in changes. However, actual weather is 100% unpredictable,
and we see sudden changes in actual weather parameters such as temperature, solar
irradiance, etc. Therefore, the actual and predicted lines overlap in the results. We will deal
with this issue in our future work.

6.2. Wind Speed Forecasting

Wind energy is less reliable compared to solar energy [22]. Therefore, results accuracy
in the case of wind speed forecasting is less compared to solar energy forecasting. Wind
speed prediction was carried out for one week of all seasons, i.e., autumn, spring, summer
and winter. In Table 7, the wind speed forecasting accuracy of our proposed model is
compared with wind speed forecasting accuracy of the studies at [40,51]. The authors
of [49] discussed different wind speed forecasting models, and we have selected two
representative models which are ANN and SVM. The authors of [51] discussed two models
for wind speed forecasting: (1) a GRNN model and (2) an EWT-Elman model. We used:
(1) an ANN model with random determination of weights at its edges (ANN (Ours))
and (2) an ANN with HSA-optimized weight assignment at the edges of the ANN (HSA-
optimized ANN (proposed)). Simulation results prove the supremacy of our proposed
wind speed forecasting model.

The results reported in the Table 7 show that the wind speed prediction accuracy
is higher with our proposed HSA-optimized ANN model, achieving MSE = 0.30944,
MAE = 0.47172, MAPE = 0.12896%, and RMSE = 0.55627. On the other hand, Its first
competitor ANN at [49] achieved the values of MAE = 0.929 and RMSE = 1.29, whereas
it second competitor SVM at [49] achieved the values of MAE = 0.963 and RMSE = 1.349.
Its third competitor, GRNN, at [51] achieved the values MAE = 0.89, MAPE = 6.88%,
and RMSE = 1.27, and the fourth competitor, EWT-Elman, at [51] achieved the values of
MAE = 0.66, MAPE = 5.08%, and RMSE = 0.83. Results of all competitors of our proposed
HSA-optimized ANN model were far behind. MSE was not considered by the authors
of [49,51]. The authors pf [49] also did not consider MAPE in their study. However, we
considered MSE as well in our proposed model, and its result values are shown in Table 7.
During wind speed forecasting simulations, the computational time of ANN (Ours) was
recorded = 60 s, whereas the computational time of our proposed HSA-optimized ANN
was recorded = 323 s. Computational time of HSA-optimized ANN was higher because it
involved another meta-heuristic algorithm (HSA) for optimal weight assignment.

Figure 8 shows the resuls graph of actual wind speed values, ANN predicted wind
speed values without HSA, and ANN predicted wind speed values with HSA for the whole
dataset. The results of the one-week wind speed forecast for autumn, spring, summer, and
winter seasons are shown in Figure 9a–d, respectively. The green lines in these figures
represent the actual wind speed values, and the blue lines show the predicted wind speed
values using ANN without HSA. The red lines, on the other hand, show the predicted
wind speed values of the ANN model optimized with HSA, i.e., our proposed model.

In Figure 9a–d it can be seen that sometimes the line of actual values (green line) and
the line of predicted values (blue and red lines) cross each other. Ideally, this should not
have happened. As mentioned earlier, whole dataset is split into 70% for training and 30%
for accuracy testing purpose. We tested our models for a one-week wind speed forecast of
four seasons. Each forecast model makes its predictions based on its learning process, where
it learns about trends in changes. However, actual weather is 100% unpredictable and
we see sudden changes in actual weather parameters such as wind speed, wind direction,
temperature, wind pressure, etc. Therefore, the actual and predicted lines sometimes
overlap each other in the results. However, we will try our best to deal with this problem
in our future work.
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Figure 8. Actual vs. forecasted wind speed.

(a) Autumn season (b) Spring season

(c) Summer season (d) Winter season
Figure 9. Actual vs. forecasted 1-week wind speed of different seasons.

7. Conclusions and Future Work

Fossil fuel generated electric power leads to higher energy cost and environmental
pollution. To deal with higher electricity costs and environmental implications, solar and
wind energy are abundantly available renewable energy sources being used for green
environment and low cost energy. As solar and wind energy are highly intermittent in
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nature, in this study we have proposed HSA-optimized ANN solar irradiance and wind
speed forecasting models. We have assigned HSA-optimized weights at the edges of ANN
layers, and simulation results prove the accuracy of our proposed forecasting models. Our
proposed HSA-optimized ANN model for solar irradiation forecast achieved the values
of MSE = 0.04754, MAE = 0.18546, MAPE = 0.32430(%), and RMSE = 0.21805, whereas
our proposed HSA-optimized ANN model for wind speed prediction achieved the values
of MSE = 0.30944, MAE = 0.47172, MAPE = 0.12896(%), and RMSE = 0.55627. Result
accuracy of our proposed wind speed forecasting model is less compared to our proposed
solar irradiance forecasting model. Accuracy enhancement of our proposed wind speed
forecasting model is our future work. Furthermore, identifying the causes of the volatile
character of wind speed and solar irradiance is also essential since doing so enables the
adaptation or even mitigation of the intermittent nature of wind and solar energy.
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Abstract: Medium-term electricity consumption and load forecasting in smart grids is an attractive
topic of study, especially using innovative data analysis approaches for future energy consumption
trends. Loss of electricity during generation and use is also a problem to be addressed. Both
consumers and utilities can benefit from a predictive study of electricity demand and pricing. In this
study, we used a new machine learning approach called AdaBoost to identify key features from an
ISO-NE dataset that includes daily consumption data over eight years. Moreover, the DT classifier and
RF are widely used to extract the best features from the dataset. Moreover, we predicted the electricity
load and price using machine learning techniques including support vector machine (SVM) and deep
learning techniques such as a convolutional neural network (CNN). Coronavirus herd immunity
optimization (CHIO), a novel optimization approach, was used to modify the hyperparameters to
increase efficiency, and it used classifiers to improve the performance of our classifier. By adding
additional layers to the CNN and fine-tuning its parameters, the probability of overfitting the classifier
was reduced. For method validation, we compared our proposed models with several benchmarks.
MAE, MAPE, MSE, RMSE, the f1 score, recall, precision, and accuracy were the measures used for
performance evaluation. Moreover, seven different forms of statistical analysis were given to show
why our proposed approaches are preferable. The proposed CNN-CHIO and SVM techniques had
the lowest MAPE error rates of 6% and 8%, respectively, and the highest accuracy rates of 95% and
92%, respectively.

Keywords: smart grid; electricity price forecasting; energy management; electricity load forecasting;
convolutional neural network; corona virus herd immunity optimization

1. Introduction

Electricity is now a critical component of economic and social growth. It revolves
around electricity. Our lives are thought to be stuck if we do not have electricity. Industrial,
commercial, and residential electricity use are classified into three groups. According to [1],
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residential areas consume nearly 65% of total generated electricity. The majority of energy
is lost in the conventional grid during the production, delivery, and supply of electricity.
To resolve the aforementioned issues, the smart grid (SG) was developed. By incorporat-
ing information and communications technology (ICT) into a traditional grid, it can be
transformed into an SG as shown in Figure 1.

Figure 1. Hierarchical network of smart grid.

1.1. Smart Grid

SG is a smart power system that handles energy generation efficiently. Transmission
incorporates emerging technology into a system of energy, allowing users and utilities to
communicate in both directions. Power is also a necessity and a valuable asset. Because
of the severe energy shortages in the summer, the youth of today are drawn to Singapore.
Gadgets in the home are planned with DSM implementing meta-heuristic methods to
minimize energy costs and highest point ratios and to find a satisfactory balance between
energy costs and customer convenience [2]. By offering effective energy storage, SG
assists consumers in achieving efficiency and sustainability. By encouraging customers
and providers to exchange information in real-time, the smart meter made it possible to
gather sufficient information about future power production. It will ensure that energy
output and use are in order. The consumer engages in SG services by shifting demand
from maximum to off-hours and conserving resources and saving money on energy [3].
DSM allows customers to monitor their energy usage patterns based on the price set by the
utility. The load forecasting benefits market rivals more. Growth, distribution management
energy, production planning, performance analysis, and quality control are all things that
need to be taken into consideration that depend on upcoming load predictions. Another
problem in the energy sector is efficient energy production and use. The primary objective
of the consumer and the utility is utility maximization. Energy producers will increase their
costs with the aid of reliable load forecasts, while consumers will profit from the low cost
of buying electricity. In Singapore, there is no proper energy generation policy. A perfect
balance between generated and consumed energy is needed to avoid extra generation. As
a result, accurate load forecasting is more critical for market setup management. ISO-NE is
also a local distribution system operated by an independent power system, charging the
wholesale energy market’s activities. Vermont, Massachusetts, Connecticut, and Rhode
Island in New England are served by it. The analysis in the study was based on a large
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collection of ISO NE results. Price is not the only factor that influences the load; temperature,
weather conditions, and other factors all affect the electrical load. There is a significant
amount of real information [4].

The SG data were carefully scrutinized. The utility takes instructions from the huge
quantities of data, which allow it to conduct research and enhance business activity plan-
ning and management. To enhance the supply side of SG, a decision-making model was
developed. A method for producing is required. The successful choice process leads to
a reduction in loss of power, lower energy costs, and lower PAR in the end consumer [5].
Researchers are concentrating on the power scheduling problem in light of these issues.
Specific optimization approaches were utilized to address the energy issue [6].

1.2. Problem Statement and Motivation

Each technique in machine learning has advantages and disadvantages. In forecasting
the electricity load, however, better performance and accuracy are the primary issues.
A large volume of data, on the other hand, makes forecasting more difficult to achieve
accuracy. As a result, several strategies have been developed and adapted to fix these prob-
lems within the time constraints; however, some challenges remain, such as varying power
production and usage to monitor the varying behavior between the power consumption
and production patterns [7]. Technique precision and adjusting the hyperparameters for
the estimation of electricity demand data [8] and computational difficulty during fuzzy
details, such as unnecessary and duplicate features in the data, which increases the learning
process calculation time and decreases the reliability of energy load forecasting. A machine
learning and deep learning-based model was proposed to solve these challenges. Further-
more, to achieve optimum precision, the hyperparameter values were fine-tuned to use an
optimization algorithm. In the function engineering phase, RFE, X-G Boost, and RF were
used to remove duplication and clean the files. Finally, the CHIO optimization algorithm
was used to determine the optimal hyperparameter values for the convolutional neural
network (CNN).

2. Background and Related Work

The term “smart grid” refers to the next generation of power grids, which are power
systems in which integrated two-way communication is used to improve energy gener-
ation and management. They have the ability in interactions and pervasive computing
for stronger control reliability, durability, and protection. Electricity is delivered between
producers and customers through a SG. Digital technologies form two-way communication.
It is in charge of intelligent appliances. For buyers’ homes or buildings, it is used to save
electricity and money and to improve trustworthiness, performance, and accountability [9].
The legacy power system is required to be updated by a SG. It automatically regulates,
preserves, and maximizes the operation of the interconnected components. It includes
everything from conventional main utilities to emerging regeneration distributed genera-
tors, as well as the transmission and distribution networks and systems that link them to
industrial consumers and/or home users with heating systems, electric cars, and smart
appliances [10]. The bidirectional link of energy and knowledge flows in a SG and creates
an integrated, globally dispersed transmission network. It combines the advantages of
digital communications with the legacy electricity grid to provide real-time information
and to allow near-instantaneous supply and demand management [11]. Many of the SG
systems are now in use in other industrial applications, such as sensor networks in manu-
facturing and wireless networks in telecommunications, and are being developed for use
in this modern intelligent and integrated model. Advanced materials; sensing and mea-
suring; enhanced interfaces and decision support, protocols, and classes; and integrated
communications are the five main fields in which SG networking systems can be classified.
Home area networks (HANs), business area networks (BANs), community area networks
(NANs), data centers, and substation automation convergence schemes serve as general
frameworks for SG networking infrastructures [12]. Using bi-directional information flow
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to monitor intelligent equipment at the consumer’s side, SGs deliver electricity between
generators (both conventional power generation and distributed generation sources) and
end-users (industrial, private, and residential consumers), saving energy and lowering
costs while improving system efficiency and service. Smart metering/monitoring strategies
can include real-time energy usage as a review and can correlate to demand to/from utili-
ties with the help of a network infrastructure. Customer power demand data and online
market prices can be retrieved from data centers from network service centers in order
to optimize electricity supply and delivery based on energy consumption. In a dynamic
SG architecture, both utilities and consumers will benefit from the widespread rollout of
modern SG elements and the integration of current information and control systems used
in the legacy power grid [13]. Through incorporating digital connectivity technologies
into SGs, it will also improve the reliability of legacy power generation, transmission, and
distribution systems, as well as increase the use of sustainable renewable energy. The ca-
pacity for various organizations (e.g., intelligent instruments, dedicated software, systems,
control center, etc.) to communicate with a network infrastructure is the foundation of a
SG. As a result, the construction of a dependable and widespread network infrastructure is
critical to the structure and service of SG communication networks [14]. In this regard, the
construction of a secure connectivity system for developing robust real-time data trans-
portation across wide area networks (WANs) to the delivery feeder and consumer level is a
strategic necessity in supporting this mechanism [15]. Existing electrical utility WANs are
built on a mix of networking technologies, including wired technologies like fiber optics,
power line communication (PLC) systems, copper-wire lines, and wireless technologies
like GSM/GPRS/WiMAX/WLAN and cognitive radio [16]. They are intended to enable
monitoring/controlling technologies such as supervisory control and data aAcquisition
(SCADA)/energy management systems (EMS), distribution management systems (DMS),
enterprise resource planning (ERP) systems, generation plant automation, distribution
feeder automation, and physical protection for facilities in a variety of locations with
insufficient bandwidth. Many technologies, such as SG energy metering, have resulted
from a decade of wireless sensor network research. However, sensor networks were unable
to communicate with the Internet due to a lack of an IP-based network infrastructure, re-
ducing their real-world influence. The LoWPAN and roll working groups were established
by the Internet Engineering Task Force (IETF) to define specifications at different layers of
the protocol stack to link low-power devices to the Internet. The authors of [17] explain
how the scientific community effectively engages in this process by shaping the creation of
these working groups’ specifications and offering open-source implementations. The new
transmission infrastructures can expand into virtually universal data transport networks
capable of handling both power distribution applications and large amounts of new data
generated by SG applications. These networks should be flexible to meet the current and
future collection of functions that define the emerging SG networking technical platform,
as well as being highly ubiquitous to support the deployment of last-mile communications
(i.e., from a backbone to the terminal customers’ locations) [18]. The remainder of this
segment covers power line connections, distributed energy storage, smart metering, and
tracking and regulation, as well as other important aspects of SG systems.

There are two pieces of the associated work. The literature on energy usage prediction
is examined in the first sub-section. A systematic analysis of the literature on power price
forecasts is presented in the second sub-section.

2.1. Forecasting Electricity Load

Many techniques for load forecasting have been used in the literature. The training
data are difficult to work with as the data are so large and complex. The computing ability
of a deep neural network (DNN) allows it to manage big data training. DNN has the
capability of accurately forecasting and handling large amounts of data. A broad variety
of estimation strategies are covered in the literature. Random forest, naive Bayes, and
ARIMA, among other classifier-based techniques, are used for forecasting. Particle swarm
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optimization (PSO), shallow neural networks (SNN), artificial neural networks (ANN),
deep neural networks (DNN), and other artificial intelligence techniques, including shallow
neural networks (SNN), artificial neural networks (ANN), deep neural networks (DNN),
and others are used. Forecasting the load or price employs a variety of methods. Neural
networks have an advantage over other approaches due to automated feature extraction
and training methods. In [19], SNN had poor outcomes and an overfitting issue. Regarding
price and load forecasting, DNN outperforms SNN. The rectified linear unit (ReLU) and
the restricted Boltzmann machine (RBM) were used by the author for forecasting [20].
Data processing and training are handled by RBM, while load forecasting is handled by
ReLU. In [21], features were extracted using KPCA, and price forecasting was done using
DE-based SVM. Deep auto encoders (DAE) [10] are used to forecast electricity load. DAE is
superior in terms of data learning and accuracy. DAE is an unsupervised learning approach
that outperforms other methods in terms of achieving high accuracy. In [22], the price
was forecasted using the gated recurrent units (GRU) technique. To detect irregular load
activity, the Parameter Estimation Method (PEM) was used in [23].

DAE is an unsupervised learning system that achieves high precision while out-
performing other methods. It predicts the price using the gated recurrent units (GRU)
approach [24]. In [25], the authors used the parameter estimation model (PEM) to identify
irregular load activity. For DNN models, the predictability for outcomes is higher. Big
data from SG will assist in determining the load and cost trends. It helps utilities create a
market, distribution, and inspection routine, which is needed to achieve demand–supply
stability. DNN models have a higher degree of predictability. The use of SG’s big data
would aid in the analysis of load and cost patterns. It assists utilities in developing a pro-
duction, distribution, and maintenance strategy, both of which are essential for maintaining
production equilibrium. Feature engineering is one of the applications of the classifier. The
authors of [26] used a multi-layer neural network (MLNN) model to predict energy costs.
However, the computational time and rate of neuron failure in this model are extremely
high. Price prediction using hybrid structured deep neural networks was addressed by
the authors in [27]. The HSDNN, LSTM, and CNN algorithms were merged. The accuracy
of this framework was calculated for different benchmark schemes using performance
evaluators like MAE and RMSE. The authors established the predictive performance with
the suggested RNN and LSTM named GRU in [28]. Benchmark models such as SARIMA,
Markov chain, and naive Bayes were also used in the comparison. To limit forecasting flaws
in forecasting, [29] introduced a new framework for STLF named “back neural networks”
(BPNN). SSA was used to pre-process the information. This model forecasts using CS and
SVM. STLF accuracy was improved in this study. The envelope and embedded strategies
were used in [30], and the training data were validated using extra tree regression (ETR)
and recursive feature elimination (RFE). LSTM-RNN was used to forecast outcomes after
splitting results into preparation and trial sets. It addressed the topic of load demand on
the service side [31]. It also encouraged customers to shift their loads from maximum to
off moments, saving them money. For DR, two types of architectures have been proposed:
user- and utility-centric. The data pre-processing steps were addressed by the authors
in [32]. The authors proposed a method for selecting and extracting features. Feature
identification and filtration are essential in information pre-processing, and they play a
crucial role in reliable forecasting. Forecasting accuracy is improved using normalized data.
The actual data are inadequate to estimate demand correctly. A meta training methodol-
ogy was employed to achieve better results, with the post approach being recommended.
A battery was used to store energy in this model. It enabled facility users to discharge
excess energy during peak hours when prices were high [33]. Additionally, the authors
suggested the battery energy storage system (BESS) as a method for achieving effective
cost forecasts. It describes the intra-hour term, which is used to evaluate if the cost is rising
or decreasing at the time of publishing. The authors suggested a method for displaying the
pattern of electricity use in [34]. With Apache Spark’s library, the k-means method and the
cluster validity indices (CVI) were proposed. The RF algorithm was used for prediction
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by the authors in [35]. Using hourly data from two separate University of North Florida
buildings also determined the function value. This model can also predict monthly and
yearly consumption patterns, and RF with support vector regression (SVR) were used
to analyze the reliability of multiple aspects such as air, heat, moisture, and time type.
SVM and artificial neural networks (ANN) were considered classifiers in this analysis. The
authors considered improving forecasting accuracy in their proposed model. To extract
and pick features from large datasets, RF and regression tree (CART) were employed. The
collection of input determines the efficiency and accuracy of resources. The authors of this
study concentrated on input selection and accuracy behavior when the training and testing
sets were changed. Deep learning (DL) is a particular sub of machine learning that has
advanced significantly in recent decades. The increased computing cost of training large
models is one of the significant concerns of artificial neural networks. However, when a
deep belief network is effectively formed utilizing a method known as greedy layer-wise
pre-training, this problem is solved. The experts began to effectively train complex neural
networks with more than one layer not visible. The precision and efficiency of these new
designs have increased models that have been used to apply generalization technologies
in software engineering applications such as object processing, voice identification, and
other relevant disciplines. There are a few functions that are focused on deep processing.
Estimating performance improved by 30% due to the sorting method in the literature,
and some authors utilized CNN to obtain more precise modeling that outperformed the
competition in energy-related areas, such as load and price forecasting, in terms of accuracy.
The authors in [36–38] forecasted the short-term electricity load using the feature extraction
methods and also the improved version of a general regression neural network and deep
learning methods. The authors achieved accuracy in forecasting the electricity load. The
authors of [39] recommended and described how to use DL time-series forecasting tech-
niques for predicting electricity consumption. DL includes models such as the restricted
Boltzmann machine (DBM), deep recurrent neural networks (RNN), the stack auto-encoder
(SAE), CNN, and others. It is a subset of SAE in which the auto encoder is used as a foun-
dation framework. It involves operational inference [40] to prevent overfitting. SAE aims
to reduce the complexity of the data set. DBM is made up of layers, each of which contains
hidden Boolean units that allow different layers to communicate with one another. This
relation, however, does not exist between each layer [41]. The authors of [40–42] increased
the accuracy of pricing and load predictions, but they did not account for processing
time. Similarly, it solves the problem of load predictions, however, it does not address the
issue of overfitting. Additionally, the authors presented the BPNN model for forecasting
day-ahead electricity usage in 10; nevertheless, the recommended model’s complexity has
risen. Furthermore, we also discuss the literature on electricity price forecasting in the
next section.

2.2. Forecasting Electricity Price

In [43], the authors proposed a cost forecast approach based on deep learning methods,
which included DNN as an evolution of the DNN framework, the CNN framework, hybrid
GRU, traditional MLP, and the hybrid LSTM-DNN framework. The suggested structure
was then put up against 27 other schemes as a comparison. The suggested deep learning
framework was discovered to improve prediction consistency. A single dataset was used
to equate the proposed model to all other schemes. For all real-time experiments, a single
dataset is insufficient. GCA, KPCA, and SVM were used to create a dual process for the
choice of features, filtration of features, and a massive drop in measurements. However,
since the authors used a broad dataset that included prices for wood, steam, gas, wind, and
oil, the model’s computation overhead increased. Furthermore, collecting all of these costs
in a single real-time database is complex; these resources’ prices cannot be collected in
advance. The authors of [44] used DNN templates and the stacked DE noising auto-encoder
(SDA). To improve market predictive accuracy, the authors compared various models such
as multivariate regression DNN, classical neural networks, and SVM [45]. Additionally, the
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authors selected features using functional analysis and Bayesian optimization of variance.
The creators have suggested the prototype for simultaneously predicting the prices of two
markets. Furthermore, prediction can be improved by employing aspects of elimination
methods. They reduce the chance of overfitting. The authors, on the other hand, compared
the model that had been proposed. This study performed both price and load forecasting.
The price prediction accuracy, on the other hand, is insufficient. The authors of [46] looked
at a probabilistic model for predicting hourly prices. The generalized extreme learning
machine (GELM) was used to make predictions. To speed up the model by reducing
computational time, the authors used bootstrapping techniques. On the other hand, it
does not work best for massive, large datasets, and the volume of information increased
linearly. Oveis Abedinia et al. focused on attribute choice to improve prediction. For
feature selection, these proposed models use information-theoretic parameters such as
information gain (IG) and mutual information (MI). The hybrid filter-wrapper solution
is another contribution of this study. In [47,48], the authors suggested a mixed algorithm
for cost and demand modeling. Quasi-oppositional artificial bee colony (QOABC) and
artificial bee colony optimization (ABCO) algorithms were updated by the researchers.
Dogan Keles et al. are a group of researchers who came up with a novel solution. ANN [49]
was used to propose a system. To find the best ANN parameters, the authors used a variety
of clustering algorithms. The dynamic choice algorithm neural network (DCANN) was
introduced by [50]. This design is used to predict rates for the next day. To unplug poor
results and recognize acceptable inputs for a teaching method, this method integrates
supervised and unsupervised training. The researchers of [51] developed a mixed design
built on the neural network of Guo-Feng Fan et al. By combining the bi-square kernel
regression model with the phase space reconstruction algorithm, the PSR-BSK model [52],
a new model for predicting energy load, has been suggested. To validate the model’s
performance, the authors used an hourly dataset from NYISO in the New South Wales
and the United States market. To extend the community in CS and to maximize the
search space in [53], the authors suggested a dual SVR-chaotic cuckoo search (SVRCCS)
framework. The authors recommended SSVRCCS, a seasonal CCS with SVR, to work
with the load’s periodic linear development. Owing to a large number of iterations, the
computing period, on the other hand, was raised. It is impossible to overstate the value
of contact between SG and its users. In the sense of creation in smart cities, the authors
reduced energy usage and increased the traffic speed of device-to-device (D2D) interaction,
also known as smart interaction, in [54]; smart communication is a serious issue that
needs to be tackled. The authors broke the problem down into two parts to solving it:
uplink subcarrier assignment (SA) and power allocation (PA) with joint optimization.
The transmission power was distributed to all sub-carriers using a heuristic algorithm
for SA. After that, an optimal PA algorithm was implemented to tackle the sub problem
of convex similarity. The contact problems between SG and consumers were addressed
by the authors in [55]. The authors provided a brief overview of the wireless and wired
communication systems, as well as the various communication protocols. According to
the cyber and physical frameworks, security concerns of hardware and software were also
addressed. The authors discussed advanced metering infrastructure as well as automatic
meter readings for customer information gathered via cables and portable links. The
authors of [56] showed how SG and customers communicate digitally and with advanced
control technologies. For connected and portable communication, the functionality, safety,
robustness, efficiency, range, speed, power consumption, and protocols of wireless and
other innovations were contrasted. API, HEMS, DA, DER, and EVS were some of the
contact applications used by SG and consumers. To evaluate the efficiency of D2D delivery,
in their study [57], the authors proposed an energy efficient delivery system (ECDS). D2D is
a dependable and effective method of communication. It is not necessary to have any prior
knowledge of content delivery, mobile mobility, or user demand. The energy conservation
design system (ECDS) is used in smart cities to reduce their energy consumption. For a
random and complex world, this method achieves the optimal solution.
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Only a few logical operations were performed by ECDS, which made decisions based
on local data from each system. The authors in [58,59] forecast the electricity price us-
ing the multi-step methods and dual decomposition methods. Furthermore, they tuned
the parameters of the model using multi-objective optimization methods, which led to
better forecasting.

SG can quickly predict the demand for consumers’ energy usage after receiving
information about the use of various devices through a green communication system. To
maintain production and need equilibrium, load and price prediction are critical. Load
balancing is necessary to prevent power shortages and over-production. When resources
are abundant, storing them is very costly. A blackout could occur if a generation falls
short of demand. The utility can generate electricity with the help of generators and other
expensive tools. The cost of energy rises in all situations. A summary of related work is
shown in Table 1.
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3. System Models

This stud proposes two methods for forecasting energy load and price. Since they use
similar strategies, these two models are related.

The last design, on the other hand, is utilized to predict electricity demand, while the
second framework is utilized to predict energy costs. The models that were suggested are
the electricity price forecasting model and the electricity load forecasting model.

3.1. Model for Predicting Electricity Load and Price

Figure 2 depicts the load forecasting model. To predict the electricity load and price,
take the following steps:

1. Data input (i.e., dataset).
2. Feature extraction using RFE.
3. Feature selection using RF and XG-Boost.
4. Splitting of data into training and testing.
5. Load the CNN layers and parameters.
6. Tuning the CNN parameters using CHIO and then model compiling.
7. Predicted price and load.
8. Performance evaluation.
9. Statistical analysis.

Figure 2. System model for electricity price and load forecasting.

3.2. Data Collection

ISO-NE is the name given to the electricity energy sector in New England [60].
It is in charge of producing, processing, and delivering electric energy to end-users in
the processing, retail, and industrial areas. ISO-NE provides a large amount of data
about, among other things, load, cost, production, and supply. The load data for 2018
come from ISO-NE, and they were used to incorporate the proposed models. This study
used daily energy load data from Independent System Operator New England (ISO NE)
(https://www.iso-ne.com, accessed on: 29 June 2021) for three years, from January 2017 to
December 2019. It provides power to a number of English towns. Weather, temperature,
humidity, and other dependent and independent data were included in the dataset. Our
goal data are in a column called “electricity load”. The target data were affected by all
functionality other than the target features. The energy load demand pattern of a similar
month in each year is roughly the same. As a result, we took three years’ worth of results, or
36 months. To that end, the dataset was split into two sets: preparation and research. As a
result, 90% of the data was used for teaching, and 10% was used for research, since the more
data generated for training, the higher the model’s learning rate would be. Furthermore,
data from previous years’ equivalent months, such as January 2017, January 2018, and
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January 2019, were combined to provide a short-term load forecast for December 2019. The
data in the dataset were organized by month, which aids in the better training of our model
to determine the load pattern of months. All data from the first week of December 2019,
i.e., 1 December 2019 to 7 December 2019, were used as preparation for weekly forecasting.
In the first week of December, the teaching model was put to the test. Furthermore, the first
five months of 2019 were also taken into account for preparation and research. Similarly,
except for January 2019, all data were used for preparation and monitoring. In addition,
the same situation was pursued in February, March, April, and May 2019. The suggested
model’s effectiveness is shown by the simulation and the results. The data description and
function names are shown in Figure 3.

Figure 3. Dataset overview.

3.3. Feature Extraction Using (RFE)

Recursive feature elimination (RFE) is a tool for obtaining a set of attributes from
a database [61–63]. It replaces the lowest feature recursively before the required set of
attributes is achieved. RFE involves the selection of many features; however, determining
how many features are most important is difficult in advance as in Figure 4. To solve this
dilemma, cross-validation was combined with RFE. Cross-validation tests the reliability of
various categories and picks the most reliable.

Figure 4. Random forest classifier.

3.4. Feature Selection

The method of selecting more important features is known as feature selection [64–66].
The number of features in the data set was reduced. Every feature’s importance was
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calculated using RF. It was done to exclude the less relevant functions, and a hybrid
solution was proposed for the final selection, which was a mixture of XG-boost and RF as
shown in Figure 5.

XG-Boost

XG-boost gradient boosting (Extreme) is an optimized gradient boosting library [67].
It is made to be extremely compact, adaptable, and efficient. It uses the gradient method
boosting and tree boosting in tandem to effectively and reliably produce accurate classifi-
cation issues. It can be used to address estimation, grouping, and rating concerns. It is a
library that is free to use. It comes in a variety of languages, including C++ and Python, for
a variety of platforms of activity. The abstract diagram of XG-boost is shown in Figure 6.

Figure 5. Feature selection.

Figure 6. XG-boost abstract model.
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3.5. Convolutional Neural Network

CNN is a type of neural network that belongs to the category of supervised deep learn-
ing prototypes [68]. In CNN implementation, firstly, a sequential model is implemented.
It builds model layers upon layers. A prediction framework is built using four distinct
levels in this design. A second surface, the convolution layer, is added to verify the neurons
with outcomes that are related to the input layer. The convolutional layer receives m*r as
its input. The dimensions of the height and width of the matrix are denoted by m and r,
respectively. In cases where the matrix’s dimension is less than the query, the kernel size
will be used as a filter. The network’s linked structure is determined by the filter’s height.
The equation will be used to calculate Relu, which will be used as an activation function.
If the input value is negative, Relu returns 0; otherwise, it produces the same result, where
x is the inputs:

max(0, x) = Relu(x) (1)

Following it, as a network’s third tier, max-pooling is used to provide a matrix with
small numbers. Max pooling, for example, chooses the most significant value from the
various matrices. Then, using these values, it makes a small matrix.

For example, where p stands for padding and f stands for the range of filters, and n is
the length of content: 32 × 32 × 1. To prevent the issue of over-fitting, flatten layer was
used as the fourth layer to turn all of the neurons into a single associated layer using a
dropout layer. Each entity in the system is attached to the others. Early on in the process,
the importance of the neuron failure rate was revealed. If the value of a network’s failure
rate in a stable state cannot be found by soon stopping the process it can be tested again.
Then, to prevent overfitting, one switches to the dropout layer and applies the dense layer
once more. The prediction result is finally shown in the output layer. The optimizer in
this model is called “Adam”. CNN forecasted energy demand and price under various
scenarios in this study. Algorithm 1 illustrates the proposed model step by step. The
architecture of CNN is shown in Figure 7.

Figure 7. CNN architecture.

3.6. Coronavirus Herd Immunity Optimization

In this study, we utilized the CHIO algorithm [68] to tune the parameters of Adaboost.
CHIO is used to minimize time complexity and increase precision in AdaBoost perfor-
mance measurement. The concept of coronavirus herd immunity optimization (CHIO)
was inspired by preventing the COVID-19 disease outbreak. The rate at which coron-
avirus infection spreads is regulated by how affected people interact with others in society.
To protect all members of the community from the condition, health authorities advise
social distancing. Herd immunity is a state attained by a species when the majority of its
population is immune, inhibiting disease transmission. These concepts are represented by
optimization principles. CHIO is a combination of herd immunity and social distancing
strategies. Human cases are classified into three types for herd immunity: vulnerable,
immuned, and contaminated. This is to determine whether the newly developed method
employs social distancing strategies to update the genes. Figure 8 depicts the flow of the
CHIO algorithm.
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Figure 8. CHIO algorithm flow chart.

Algorithm 1 illustrates the proposed model step by step. The proposed algorithm of
our work is:

Algorithm 1: Proposed Work Algorithm
Result: Electricity price and load forecasting
X: data features;
Y: data with a purpose;
/* Separate the data into two categories: preparation and testing. */ ;

split (x, y) = x train, x test, y train, y test;
RFE (5, x train, y train); Selected_ function;
/* Selection of hybrid features */ ;
Incorporateimp = RFimp + XGimp ;
/* Using RF and XG-boost, measure value */ ;
RF imp = RF calculates importance;
/* RFE is a technique for extracting features. */ ;
if Incorporate imp ≥ RFE and the threshold == right then

Select the feature;
else

decline feature;
end
CNN-CHIO predicting the future with fine-tuned;
Performance evaluation test, compare predictions;

3.7. Performance Evaluation

Based on efficiency metrics, the suggested models were evaluated: MSE, MAPE, MAE,
and RMSE. Equations (2)–(5) [22] provide the MSE, MAE, RMSE, and MAPE formulas.
On the data collection of ISO-NE, Tables 2 and 3 displays the measurement of output
measures of various methods. The MAPE is calculated using the formula:

MAPE =
1
y

yn

∑
yn=1

100
∣∣∣∣
Sb − Gb

Ab

∣∣∣∣ (2)
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The RMSE is calculated using the formula:

RMSE =

√√√√ 1
Y

YM

∑
yn=1

(Sb − Gb)
2 (3)

The MAE and MSE are calculated using the formula:

MSE =
1
Y

YN

∑
yn=1

(Sb − Gb)
2 (4)

MAE =
∑YN

yn=1|(Gb − Sb)|
Y

(5)

Table 2. Performance evaluation values of electricity load forecasting.

Techniques Accuracy
(%)

F1-Score
(%)

Recall
(%)

Precision
(%)

RMSE
(%)

MAPE
(%)

MSE
(%)

MAE
(%)

SVM 90.89 90.32 94.456 88.21 8.43 7.23 12.34 10.77

RF 84.54 72.98 89.33 82.22 24.27 24.56 27.65 25.78

LR 81.22 75 71.555 84.94 24 22.78 27 21

LDA 76.21 74.12 82.22 65.22 29 28.78 35.22 31.56

CNN-CHIO 95.789 96.22 98.55 94.639 6.23 5.67 10.82 7.22

Table 3. Electricity price forecasting performance evaluation values.

Techniques Accuracy
(%)

Precision
(%)

F1-Score
(%)

Recall
(%)

RMSE
(%)

MSE
(%)

MAPE
(%)

MAE
(%)

LR 75.22 78.94 69 65.545 24 27 22.78 21

RF 79.54 77.22 67.98 84.33 24.27 27.65 24.56 25.78

SVM 88.89 85.21 87.32 91.466 8.34 11.34 7.23 10.77

LDA 71.21 60.22 69.12 77.22 29 35.22 28.78 31.56

CNN-CHIO 90.789 89.639 91.22 93.55 6.23 9.82 5.67 7.22

4. Simulation Results and Discussions

The implementation effects of our proposed model are explained in terms of their
performance metrics in this section. We simulated our model on the following system
specifications: 16 GB RAM and a 4.8 GHZ Core i7 processor. The IDE environment
Anaconda (Spyder) and the Python language were used.

4.1. Electricity Load Forecasting

Figures 9 and 10 show the feature importance calculated by machine learning tech-
niques, i.e., AdaBoost and RF. The feature importance means how much a feature impacts
the target feature, i.e., electricity load. The high importance value of the feature means an
important influence on the targeted function. The high impact of the feature shows the
high relevancy towards the target. Changes in these relevant features can cause a huge
impact on the target. Features with a low importance value were considered as low-impact
features. If these features are removed, they had no impact or low impact on the target.
Getting rid of the features that are not needed improves the simulation time and reduces
computational complexity. Figure 9 shows the feature score/importance calculated by the
AdaBoost technique, and Figure 10 displays the importance of features calculated by RF.
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Figure 9. ADABoost-computed feature importance.

DA
_D

em
an

d

RT
_D

em
an

d

DA
_L

M
P

DA
_E

C

DA
_C

C

DA
_M

LC

RT
_L

M
P

RT
_E

C

RT
_C

C

RT
_M

LC

Dr
y_

Bu
lb

De
w_

Po
in

t

Re
g_

Ca
pa

cit
y_

Pr
ice

Re
gC

P

Re
g_

Se
rv

ice
_P

ric
e

Features 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RF
 Im

po
ra
ta
nc

e

Figure 10. Random-forest-computed feature importance.

Figure 11 shows the daily normal load electricity of the years 2012–2020. We can
see that the normal load had some different patterns with respect to time. Figure 11 also
comprises the historical consumption pattern of consumers.
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Figure 11. Normal electricity load. of ISO-NE 2012–2020.

Using the modified machine learning algorithm SVM and the deep learning algorithm
CNN embedded with a GRU layer, we forecast the electricity load of one day as shown in
Figure 12.
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Figure 12. One-day electricity. load forecast.

Furthermore, with the same methodology, we forecasted two-day, three-day, and
one-week upcoming electricity loads with a high accuracy of 96%.

In Figures 13–15, we can see that our proposed algorithm forecasts better than the
other benchmark algorithms. The proposed algorithm CNN-CHIO performed better
than the other proposed algorithms, and SVM performed better than the most up-to-date
algorithms.
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Figure 13. Two-day load forecast.
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Figure 14. Three-day load forecast.
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Figure 15. One-week load forecast.

Figures 16 and 17 shows the accuracy and loss curve of our proposed model.
In Figure 16, we can see that the curve of training and the testing accuracy was increasing,
while Figure 17 shows the decrease in the model loss value. The increase in accuracy and
the decrease in the loss curve shows the superiority of the model that we proposed, which
means our proposed model performed better in achieving the accuracy.

4.2. Electricity Price Forecasting

Figure 18 shows the normal electricity price from 2012–2020. The price of electricity
varied with time. It also shows the seasonal change in the electricity price.

Figures 19–22 shows the electricity price forecasting of 24 h, two days, three days, and
one week. From Figures 19–22, it was determined that the proposed algorithm worked
well in terms of predicting the electricity. In comparison with the actual electricity price,
we can see that the curve of the proposed algorithm is near to the actual. In forecasting the
short-term electricity price, our proposed model outperformed benchmark algorithms.

Figure 23 describes the proposed model’s loss and accuracy. The proposed model’s
accuracy was increasing, and the loss value was decreasing with the number of itera-
tions. Our proposed methodology performed better in achieving the accuracy of 92% and
90%, respectively.

4.3. Performance Evaluation of Electricity Price and Load Forecasting

This section evaluates the proposed model and benchmark schemes using performance
evaluation techniques, performance error metrics, and statistical analysis. Figure 24 shows
the performance evaluation using the error metrics MAPE, MSE, RMSE, and MAE. We can
determine in Figure 24 that the proposed models SVM and CNN-CHIO had the lowest
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error rate compared with the RF, LDA, and RF techniques. The LDA technique had the
highest error rate in forecasting the electricity price and load. The lowest error showed the
superiority of the proposed techniques.

Figure 16. Accuracy curve of electricity load model.

Figure 17. Loss curve of electricity load model.
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Figure 18. Normal electricity price of ISO-NE 2012–2020.
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Figure 19. 24-h electricity price forecast.
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Figure 20. Two-day electricity price forecast.
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Figure 21. Three-day electricity price forecast.
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Figure 22. One-week electricity price forecast.

(a) Accuracy Curve (b) Loss Curve

Figure 23. Electricity price forecasting model accuracy and loss.

The performance evaluation metrics, i.e. precision, F-score, accuracy, and recall, were
also used to assess the proposed model and to compare with the benchmark algorithm.

In Figure 25, the performance evaluation of the electricity price and the electricity
load forecasting model is shown. Figure 25 clearly shows that the accuracy of CNN-CHIO
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and SVM was higher than the other benchmark algorithm. The optimization part of the
proposed model provided the exact values to the models, which increased the accuracy of
our proposed model.

(a) Model of electricity load. (b) Model of electricity price.

Figure 24. Performance error metrics of proposed and benchmark techniques.

(a) Model of electricity load. (b) Model of electricity price.

Figure 25. Evaluation metrics performance of proposed and benchmark techniques.

Our proposed model’s, i.e., SVM’s and CNN-CHIO’s, accuracy in electricity price
forecasting, was 92% and 90%, respectively. Furthermore, SVM achieved 95% accuracy,
while CNN-CHIO achieved 92% accuracy in terms of the electricity load forecasting model.

Tables 2 and 3 shows the performance evaluation of electricity load and price forecast-
ing values in tabular form. Our proposed technique CNN-CHIO achieved 95% accuracy,
and SVM achieved 90.89% accuracy in load forecasting with 90% and 87.32% accuracy in
price forecasting, respectively, as shown in Figures 26 and 27. Our proposed technique
outperformed the state of the art.

Table 4 shows the statistical analysis of the proposed algorithm. We applied ten
statistical techniques to analyze our proposed model. The supremacy of the proposed
model can also be identified in the analysis table.
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Figure 26. Electricity load forecasting accuracy proposed vs. benchmark techniques.

Figure 27. Electricity price forecasting accuracy proposed vs. benchmark techniques.

Table 4. Statistical analysis of proposed techniques vs. benchmark algo.

Techniques Kendallas Spearmans ANOVA Mann-Whitney Kruskal Chi-Squared

SVM F-statistic −0.128 −0.149 99.775 13,344.500 194.502 168.491

SVM p-Value 0.014 0.014 0.000 0.000 0.000 0.000

RF F-statistic 0.785 0.856 28.779 39,227.000 35.686 107.540

RF p-Value 0.911 0.995 0.000 0.785 0.000 0.042

CNN-CHIO F-stat 1.000 1.000 0.000 37,538.000 0.000 6028.000

CNN-CHIO p-Val 1.000 0.000 1.000 0.500 1.000 0.000

LDA F-statistic 0.801 0.867 3.100 41,232.000 70.847 109.440

LDA p-Value 0.849 0.839 0.079 0.811 0.000 0.053

LG F-statistic 1.000 1.000 0.000 37,538.000 0.000 6028.000

LG p-Value 0.000 0.000 1.000 0.500 1.000 0.000
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5. Conclusions

We proposed a CNN-GRU hybrid model tuned with a novel optimization technique
CHIO was used to simulate energy use and energy price in residential buildings in this
study. The proposed model was validated using a publicly accessible dataset from ISONE.
Since the input data were non-linear, we first normalized them using a regular min–max
scalar, then we fed the normalized data into the feature selection method using AdaBoost
and extracted the feature importance and selected the features with high importance. We
applied RF and RFE to remove the redundant features and selected the optimum and most
relevant features. The preprocessing process was performed to improve the training of
our model and to decrease the computational complexity. Following that, we looked at
various machine learning and deep learning approaches before settling on a mixed model
that merged CNN and GRU. We first used feature engineering to extract spatial features.
We then fed them into our tuned CNN-CHIO and SVM to simulate temporal characteristics
corresponding to the time series data entry. As opposed to other baseline models, the
proposed model performed well, suggesting that our presented, existing buildings model
must be able to be found in actual life. Furthermore, our proposed model of CNN-CHIO
and SVM achieved 95% and 92% accuracy in load forecasting and 92% and 89% accuracy
in price forecasting, respectively. In future work, we intend to validate the proposed
CNN-GRU and SVM model on various datasets and enhance the model’s accuracy by
incorporating fuzzy logic concepts. The model is currently being based on residential
building results, but it will also be tested on commercial loads and price datasets. We
predicted short-term electricity consumption and electricity prices in this study; however,
our long-term aim is to assess the model’s efficiency in predicting medium- and long-term
electricity consumption and electricity prices.
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Abstract: In smart grid, energy management is an indispensable for reducing energy cost of con-
sumers while maximizing user comfort and alleviating the peak to average ratio and carbon emission
under real time pricing approach. In contrast, the emergence of bidirectional communication and
power transfer technology enables electric vehicles (EVs) charging/discharging scheduling, load
shifting/scheduling, and optimal energy sharing, making the power grid smart. With this motiva-
tion, efficient energy management model for a microgrid with ant colony optimization algorithm to
systematically schedule load and EVs charging/discharging of is introduced. The smart microgrid is
equipped with controllable appliances, photovoltaic panels, wind turbines, electrolyzer, hydrogen
tank, and energy storage system. Peak load, peak to average ratio, cost, energy cost, and carbon
emission operation of appliances are reduced by the charging/discharging of electric vehicles, and
energy storage systems are scheduled using real time pricing tariffs. This work also predicts wind
speed and solar irradiation to ensure efficient energy optimization. Simulations are carried out to
validate our developed ant colony optimization algorithm-based energy management scheme. The
obtained results demonstrate that the developed efficient energy management model can reduce
energy cost, alleviate peak to average ratio, and carbon emission.

Keywords: energy optimization; day ahead energy prediction; artificial neural network; renewable
energy sources; demand response; microgrid; smart grid

1. Introduction

The traditional power system is inefficient because it entirely depends on fossil fuels,
and having centralized generation that is far away from consumers. In these circumstances,
the generated electricity needs to be transmitted and distributed to consumers via transmis-
sion and distribution lines over long distances, spending many resources on construction,
maintenance of all systems involved and high levels of technical losses [1]. According
to [2], centralized power systems suffer from severe transmission and distribution energy
losses because of long distances between consumers and generating stations. Further-
more, centralized generation usually causes more environmental pollution than distributed
generation technologies. From the consumer’s point of view, practically, electricity is
used in unintelligent manner without control. Keeping in view both perspectives, new
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paradigms of distributed generation and smart grid have emerged for electricity generation
and consumption. These paradigms are prominent in the electricity market around the
world because they have low transmission losses and provide electricity intelligently with
control to consumers. According to [1], the distributed generation definitely refers to
microgrids, which is small-sized, near to consumers, and directly connected to the distri-
bution system. Smart grids are power grids with advanced communication and control
technologies between consumers and generating stations, delivering optimized power
usage, clean energy at reduced cost, and improving the quality of energy and efficiency
of the power grid. They also provide reductions in technical losses and greenhouse gas
emissions, and solve the high carbon emissions problem, where 23% and 41% pollution
emission is caused by transport sector, and energy sector, respectively, around the globe [3].
Thus, the conventional power gird is not able to meet future electricity demand due to
dependence on limited and environment foe fossil fuels.

With microgrids, evolution dependence on fossil fuels is reduced, and high carbon
emission problem is resolved. Furthermore, the microgrid can be connected with smart
homes in modes like grid-connected and islanded. In islanded mode, microgrids and
commercial grids couldnot initiate the purchase/sell mechanism of energy. On the other
hand, in grid-connected mode, the microgrid purchases and sells electricity from/to
the external power grid. In the recent past, a significant variety of forecasts have been
employed. The selection of a forecasting model is typically dependent on the available data,
the model network mechanism’s aims, and the energy planning operation. In this paper,
we examine renewable energy and power forecast models used as an energy planning
tool in a critical and precise way, the application of these techniques for forecasting, their
accuracy for geographical and temporal prediction, and their significance to policy and
planning purposes are all explored. Machine learning models handling enormous data
while also providing precise predictive analyses. By integrating various models and using
ensemble methods, we may improve forecasting accuracy. Artificial neural networks,
when utilised correctly, can help one make better decisions because they can extract and
model previously unknown correlations and characteristics [4]. The microgrid includes
renewable energy sources (RES) such as solar, wind etc., to generate electricity, contributing
to pollution emission minimization. Furthermore, RES are intermittent in nature; thus, one
cannot rely on them. Therefore, ESSs and EVs are used with RES to solve this problem.

One of the problems to be catered within smart grid/smart home is energy man-
agement, whose purpose is to give greater control to the user’s over their power usage
to promote the efficient use of electricity, which is possible with the implementation of
demand response (DR). The DR is classified in two classes, namely: direct DR program,
in which the electric utility company (EUC) operator disconnects or interrupts the load as
per an interruption contract signed with the consumer; indirect DR program, where the
consumer changes/adapts their demand in response to the offered pricing signaled by the
EUC operator [5]. The latter DR program is the focus of this work.

The indirect DR program plays a vital role in cost efficient and reliable power system
operations [6]. In [7], users reduced cost and improve comfort level via scheduling smart
home appliances using indirect DR program. Similarly, the DR program is used to schedule
multiple homes’ loads with the same living patterns in [8]. However, the assumptions
made by the authors seem impractical because, usually, multiple homes do not have the
same devices with the same operation time and power rating. A novel energy management
scheme can create optimal schedule of appliances power usage, which illustrates the
same profile as the microgrid generated power. The users reduce electricity cost and
import a minute amount of energy from the commercial power grid by adopting the
optimal schedule. In this manner, efficient energy management ensures stable and reliable
microgrid operation. In [9], EMC is introduced, which schedules the power usage pattern
of a single home to alleviate peak demand. This work considered RES and day-ahead
weather information to ensure energy cost minimization and an energy efficient operation.
The paper [10] proposed a strategy for cost minimization considering weather parameters.
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The authors of [11] introduced the deterministic method to schedule the operation of
appliances and charging/discharging of EVs. Furthermore, EVs are considered mobile
storage. In [12], authors developed a building energy management strategy for peak energy
consumption mitigation. They considered ESSs and EVs as storage devices to mitigate
fluctuations accompanied by RES and improve building energy efficiency regarding cost
minimization. A hybrid energy system of PV, WT, and ESSs is developed with day-ahead
energy forecasting in [13]. Furthermore, they considered diesel generator as a backup for
power generation; however, power is produced at high cost and pollution emission.

The valuable research reviewed above either focused on load scheduling or charg-
ing/discharging scheduling of ESSs and EVs or failed to fully utilize beneficial aspects of
smart grid technologies and DR program implementation. Some studies used a diesel gen-
erator as a backup, which is not appropriate for RES-based microgrids. Some solutions such
as load shedding may cause user frustration, and minimize welfare and system efficiency.
With this motivation, this work proposes an efficient management strategy to schedule user
activities, ESSs and EVs are connected to a smart microgrid. In addition, we assess a smart
home and microgrid equipped with PV panels, WT, electrolyzer, hydrogen tank, ESSs,
and EVs connected to the external power grid. As a backup resource, a MGT is employed
in place of diesel drive subject to cost and carbon emission minimization concerns. We use
mobile storage (EVs) and static storage (ESSs) simultaneously to cater for uncertainties in
EVs (parked in home or goes out on driving), and ensure the reliable provision of electricity.
Moreover, a prediction model based on modified Enhanced Differential Evolution (mEDE)
and Artificial Neural Network (ANN) is developed for microgrid generation capacity
accurate prediction instead of assuming. The main contribution and novelty of this paper
is outlined below.

• An efficient energy management scheme is proposed, which considers the RTP
curve with variations that systematically schedule appliance operation and charg-
ing/discharging of EVs to maintain a balance between energy supply and demand.

• Ant colony optimization (ACO) algorithm is adapted, which takes into account con-
straints, occupant energy consumption pattern, users priorities, and uncertainties
in the presence of RTP to schedule load and EVs charging/discharging for efficient
energy management.

• Adapted ACO algorithm successfully solves the presented problem, allowing a high
monetary reduction in the energy cost paid by consumers, alleviating the peak forma-
tion in electricity demand, minimizing carbon emission, and improving the comfort
of the users.

• For efficient energy management, an accurate forecast model ANN based on mEDE
(ANN-mEDE) is developed to forecast a generation profile of microgrid using weather
information and mathematical models of the WT and PV.

• Simulation results demonstrate that the newly devised scheme based on the ACO
technique is effective, which considerably reduces the consumer’s cost, PAR, and peak
electricity demand reduction in the commercial grid.

The rest of the paper is structured as follows: Section 2 presents related work. In
Section 3, a proposed efficient system model is discussed. Section 4 presents mathemat-
ical modeling of the proposed system model. The problem formulation is presented in
Section 5. The simulation results are presented in Section 6 and finally in Section 7, the
paper is concluded.

2. Related Work

Several research works have been conducted over the last few decades in the literature
to address energy management problems in a smart gird. To solve energy management
problems, many heuristic, mathematical, and controller base methods are developed in the
literature, which are discussed in detail as follows.
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2.1. Mathematical Techniques

In [14], the authors power usage scheduling framework based on Mixed Integer Linear
Programming (MILP) to reduce energy cost and alleviate PAR. The authors in [15] proposes
a game theory-based appliance scheduling framework for electricity cost and peak energy
demand reduction. However, the user frustration level is not taken into consideration.
The authors of [16] proposes a scheme for residential sector based on MILP technique
to analyze EVs bi-directional flow. In [17], authors mitigate the cost of electricity in a
smart house and determine the modes of operation of various loads; an exact solution
technique is used to retain the surplus electricity from RESs in batteries. To minimize
overall energy bill in the microgrid, an optimal energy management model based on MILP
is presented [18]. The authors use the Power Grand Composite Curves (PGCC) technique
for adjusting system functioning in response to short-term energy requirement, and their
study provides a unique way for identifying appropriate Power Management Strategies
(PMS) in RES-based smart grids. The authors of [19] evaluate prosumers-based Energy
Management and Sharing (PEMS) as well as the issues that come with it. It will assist in the
interpretation and analysis of the prosumers effect on future smart grids. Their study gives
a detailed evaluation of these goals, PEMS in the smart grid environment, and its impacts on
power system reliability and energy sustainability are studied. In [20], authors developed
a technique based on the MILP paradigm, employed in this project to provide an optimal
solution in terms of tasks such as energy usage and renewable resource management.
The suggested technique achieves an optimal schedule under dynamic electrical limitations
while maintaining thermal comfort based on user requirements. The mathematical and
deterministic methods suffer from system and computational complexity.

2.2. Controller-Based Methods

Researchers adopted controller-based methods to resolve problems accompanied
with deterministic methods. For example, in [21], the authors presented a Distributed
Model Predictive Controller (DMPC) for consumers and EUCs DSM. The smart grid
have generating units such as RESs, ESSs, and smart load. The DMPC schedules the
smart load for efficient DSM. The authors of [22] proposed an integration and control
automation of RESs such as a PV plant, a solid oxide fuel cell with battery, and load in
smart grid. The Energy Management System (EMS) is based on Proportional Integral (PI)
and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to effectively balance
supply and demand. A DMPC method is developed for grid-connected cooperative energy
management in [23]. The proposed DMPC’s optimization results are similar to Centralised
MPC (CMPC) Pareto solutions according to a real-time hardware-in-the-loop, while the
computation speed is significantly faster than CMPC. The authors in [24] proposed an
energy management scheme to forecast interrupted data for a microgrid with a centralized
dispatching mechanism. The proposed energy management scheme is based on MPC and
ensemble learning network approaches. A novel coordinated MPC method is developed
that schedules the operation of the microgrid while considering the variations of stochastic
RESs as well as meteorological circumstances [25]. A dynamic energy management system
based on MPC is developed for a power grid-connected microgrid linked to and serving a
residential area [26]. The dynamic energy management system collects data from various
components of the electrical system via a smart metering system. However, the controller-
based methods are computationally intensive and become too slow for energy optimization.

2.3. Stochastic Techniques

To resolve the problems accompanied by deterministic and controller-based methods,
stochastic techniques have emerged as a promising solution. For instance, in [27], the
Genetic Algorithm (GA) based non-sorting scheme was adopted for scheduling household
with primary objectives such as carbon emissions, power usage, and energy bill minimiza-
tion. A new algorithm for programming the EMC to schedule household load is developed
in [28]. The EMC schedules home appliances in such a manner that the load is shifted to
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the battery during peak hours. The work [29] proposed a hybrid optimization technique of
GA and MILP for economic dispatch. The authors of [30] incorporate a mutation operator
with ACO algorithm to resolve the problem trapping at local optima with primary DSM
objectives such as PAR, and cost minimization. The authors in [31] scheduled the home ap-
pliances to mitigate PAR and minimize the delay time of appliances. However, the Carbon
emission is not taken into account in their study. The authors of [32] implemented the Fire-
fly Algorithm (FA) for energy management under the pricing schemes such as Real-Time
Price (RTP) and Critical Peak Price (CPP). However, user comfort is compromised. The
Grey Wolf Accretive Satisfaction Algorithm (GWASA) to solve the residential demand-side
management problem with the lowest cost and highest ratio of satisfaction in [33]. The [34]
used the Candidate Solution Updation Algorithm (CSUA) for reducing PAR and consumer
delay time by increasing user comfort level. The authors of this paper considered uncertain-
ties in loads and ensured optimal scheduling to facilitate residents. The authors presented
an intelligent energy management principles and technology issues for smart grid appli-
cations to help the Distributed Electric System (DES). The authors in [35] conducted a
comprehensive analysis of IoT-based energy management in smart communities. Follow-
ing that, the foundation and software model for an IoT-based system at the network’s edge
is presented. The authors developed optimum power scheduling technique using RTP and
Inclining Block Rate (IBR) tariff to minimize electricity costs, reduce the PAR, and minimize
user discomfort. The authors in [36] proposed hierarchical architecture using cloud comput-
ing and edge computing to a distributed architecture which provides autonomous strategic
decisions with agent-based intelligence for massive information. In households and grids,
large-scale information gathering, communications, processing, and control are performed
through agents for cooperative energy management. The results of the experiments show
that the agent-based solution is promising in cooperative energy management. In [37],
the authors developed a game-theoretical model to schedule entire electricity consumption
scheduling for efficient power consumption planning and DSM. The [38] proposed load
schedling and distributed storage approach to improve user satisfaction and minimize
customer energy costs. In [39], an optimization-based energy management structure is
developed to schedule consumer energy consumption pattern using RTP signals under
utility, PV, and ESSs. The purpose is to reduce energy bills, carbon emissions, and peak
power consumption while mitigating pricing rebound peak generation. The authors pro-
posed a multi-domain communication network with federation concept in [40]. This model
introduced how IEC 61850 and the extensible Message Presence Protocol (XMPP) may be
used to provide a common communication framework for Virtual Power Plants (VPPs)
management in smart grids. A privacy-preserving technique is introduced. The nodes
use accurate data for estimation and broadcasting the noisy version in [41]. The authors
show that the proposed algorithm can protect privacy and retain the final solution’s con-
vergence and optimality. Extensive simulations indicate that their proposed strategies
are effective. The authors used a GA-, game theory-, and fuzzy logic-based framework
that seeks to maximize profit by choosing the optimum alternative and forecasting future
energy demands [42]. The authors implemented a Cuckoo Search Algorithm (CSA) to
study the impact Battery Energy Storage (BES) on power system operation [43]. A game-
theoretic (Stackelberg) model is introduced in [44] to examine coordination of generators
with microgrids. A novel technique with Artificial Neural Networks (ANN) is developed
for expressing and conveying the energy flexibility of distributed energy resources for
efficient energy management [45]. In [46], the authors proposed a scheduling technique
based on the markov decision process for energy management in a smart grid . This work
aims to lower a customer’s energy expenditure. The authors in [47] presented a method
for regulating the active and reactive power flow in an islanded renewable generating
system’s Point of Common Connection (PCC). In [48], the authors employed optimum DR
technique to maintain balance between supply and demand. The DR program engaged the
Plug in Hybrid EVs (PHEVs) at parking stations as distributed energy storage and source
to participate in DSM.
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The related works discussed above are summarized in Table 1. All the methods dis-
cussed above are capable and effective in energy management. However, the researchers
did not all use key features such as advanced metering infrastructure, forecasting, and bi-
directional communication of the smart grid. Furthermore, mostly researchers assumed
consumers behavior and RESs profile. Some authors focused on electricity cost mini-
mization, others catered for PAR alleviation, a few handled both electricity cost and PAR
minimization, while some authors considered user comfort maximization. However, the ob-
jectives such as electricity cost, carbon emission, PAR, and user comfort are not handled
simultaneously by any authors in the literature. Thus, it is concluded from the above litera-
ture that electricity cost, carbon emission, PAR, and user comfort are energy management
objectives, where carbon emission and PAR are utility objectives which are directly linked
to customer objectives such as energy cost and user comfort. The utility and customer
objectives are contradictory in nature and challenging to handle simultaneously.

Table 1. A detailed analysis of the most relevant study in terms of sources, storage, objectives, and proposed algorithms.
Abbreviations used in the Table are; RESs = Renewable Energy Sources, CG = Commercial Grid, BES = Battery Energy
Storage, ESS = Energy Storage System, and MGT = Micro Gas Turbine.

References Sources Storage Objective(s) Proposed Algorithm

[14] RES + CG ESS + MGT Reducing PAR, minimizing cost, maximizing user
comfort MILP

[15] RES + CG ESS Minimizing cost and PAR Game-theory framework
[16] RES + CG ESS Reducing electricity cost MILP
[17] RES + CG ESS Reducing electricity cost MILP
[18] RES + CG ESS Short term energy demands PGCC and MILP
[19] RES + CG ESS Issues faced by prosumer PEMS and MILP
[20] RES + CG ESS Saving consumer cost MILP
[21] RES + CG ESS Electricity price varying MPC
[22] RES + CG ESS Minimizing electricity cost PI and ANFIS
[23] RES + CG ESS Minimizing electricity cost DMPC
[24] RES + CG ESS Reducing electricity cost MPC
[25] RES + CG ESS Reducing green house gases emissions MPC
[26] RES + CG ESS Energy-saving and gain MPC

[27] RES + CG ESS Carbon emission, energy consumption and reducing
electricity cost GA

[28] RES + CG ESS Cost minimization, maximize comfort level Control algorithm
[29] RES + CG ESS Minimizing cost and PAR and economic dispatch GA and MILP
[30] RES + CG ESS Minimizing PAR and cost ACO algorithm
[31] Reducing PAR cost, and consumer delay time GmEDE
[32] RES + CG ESS Minimizing electricity cost FA
[33] RES + CG ESS Minimize cost and high level of user satisfaction GWASA
[34] RES + CG ESS Reducing PAR and increase user comfort level CSUA
[49] RES + CG ESS Minimizing cost and PAR GA, GWO, mEDE and GmGWO
[50] RES + CG ESS Issues of EVs integration smart grid DES
[35] RES + CG ESS Cost minimization IoT-based system
[51] RES + CG ESS Minimizing cost and reducing PAR Aquifer Thermal Energy Storage (ATES)
[36] RES + CG ESS Reducing electricity cost Hierarchical architecture

[37] RES + CG ESS TCLs electricity consumption scheduling and
minimizing RES fluctuation

Game-Theoretic Demand Side
Management

[52] RES + CG ESS + BES Minimizing cost and PAR GA and PSO and ACO
[38] RES + CG ESS Minimizing cost and User comfort level Distributed storage strategy
[39] RES + CG ESS Minimizing cost and PAR HGACO
[40] RES + CG ESS VPPM XMPP based IEC 61850 communication
[41] RES + CG ESS Accurate data for state changing Privacy-preserving technique
[42] RES + CG ESS Predicting future energy demands using GA Game-theory based fuzzy logic
[43] RES + CG ESS BES on the functioning of power systems CSA
[44] RES + CG ESS Maximizing their payoffs Stackelberg game theoretic framework
[45] RES + CG ESS Energy flexibility of distributed energy resources ANN
[46] RES + CG ESS Lowering Consumer’s electricity cost MDP
[47] RES + CG ESS Reactive islanded power flow PCC

[48] RES + CG ESS Energy Balance and flexible loads Multilayer individual-based optimization
algorithm
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Thus, an optimization technique is needed that considers user priority, DR program,
and comfort constraints to cater for uncertainties in load and renewable generation for
efficient energy utilization, energy cost reduction, PAR alleviation, carbon emission mitiga-
tion, and end-user satisfaction, to satisfy both utility providers and consumers at the same
time. In this regard, an innovative framework composed of residential smart homes and a
grid-connected smart microgrid is proposed. Furthermore, an efficient energy management
scheme based on the ACO algorithm is developed for the proposed framework to system-
atically schedule load and EV’s charging/discharging connected in a smart microgrid.

3. Framework of Efficient Energy Management System

Efficient energy management framework is presented in this section, followed by a
description of the day-ahead energy generation prediction model. The complete implemen-
tation diagram of the proposed model is depicted in Figure 1, which is discussed in detail
in subsequent sections.
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Figure 1. Proposed scheme implementation flow chart for efficient energy management
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3.1. System Model

The proposed system model is composed of a residential smart home equipped with
smart meter and smart appliances, and a smart microgrid comprising WT, PV panels,
electrolyzer, and hydrogen tank. The proposed system model is depicted in Figure 2. How-
ever, residential consumers load and electricity generation of a microgrid is stochastic and
uncertain. Thus, an ANN-mEDE-based prediction model is developed for efficient energy
management. An efficient EMC based on ACO algorithm (whose control parameters are
listed in Table 2) is installed to systematically schedule load and EVs charging/discharging
connected to a smart microgrid according to RTP signal. In our proposed work, the sim-
ulation time T is assumed to be 1 day, which is split into sub-timeslots of equal duration
denoted by t(1h). The detailed description of each component of the proposed system
model is as follows.

Table 2. ACO Parameters.

Technique Parameters Values

Ant Colony Optimization

Number of Ants 15
Maximum number of Iterations 250
Evaporation Rate 7
Pheromone Factor 3
Stopping criteria When Maximum iteration reached

COMMERCIAL GRIDSOLARELECTROLYZERHYDROGEN TANK WIND

SMART METER

             EMC

SMART HOME

TCA’s

OCA’s

ECA’s

MGT

BATTERYEV’s
COMMUNUICATION FLOW

  AC LINE

DC LINE

Figure 2. Proposed system model schematic diagram

3.2. Energy Generation Prediction Model

This section describes the prediction model to predict solar irradiation and wind
speed for effective generation estimation. In this regard, a framework of ANN-mEDE
is developed to predict solar irradiation and wind speed for effective estimation of gen-
eration. The proposed prediction model is composed of three parts: (i) feature selector,
(ii) forecaster, and (iii) optimizer. Feature selector phase of the prediction model based
on mutual information technique uses time-series solar irradiation and wind speed as
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input. The mutual information technique rank the inputs and passed the ranked inputs to
redundancy and irrelevancy filters for the removal of irrelevant and redundant features.
Then, the selected inputs are split into training and testing datasamples.

The forecaster phase is based on an artificial neural network (ANN), which uses
training and testing sets to forecast solar irradiation and wind speed for a day-ahead time
horizon. The ANN is a multilayer feed-forward network, where each succeeding layer gets
input from the preceding layers. In other words, the outputs of one layer’s nodes are used
as inputs in the next layer. A weighted linear combination is used to combine the inputs,
which are changed by a nonlinear function [53] to generate output.

The ANN has three layers layout having input, hidden, and output layers, where
Artificial Neurons (ANs) in each layer are exploited by sigmoidal activation function [54],
which is shown in Equation (1) as follows.

f (S, b) =
1

1 + e−β(S−b)
(1)

The input signal is S with attributes (as discussed in the first module). The param-
eter β is for steepness control of the activation function and b indicates the bias value.
As discussed above, the developed prediction model is enabled via training to learn and
accurately estimate future energy generation. In the literature, learning mechanisms such
as unsupervised, supervised, and re-enforcement learning exist. The developed forecast-
ing framework learns from time series analysis with the supervised learning approach,
which employs multivariate autoregressive rules due to high convergence than benchmark
learning rules [55]. Solar irradiation and wind speed prediction model is illustrated in
Figure 3. The RESs three-year weather data is adopted from [56]. The acquired data is
divided into training and testing sets of 80% and 20%, respectively, as per the mechanism
available [57–59].

MAPE(i) =
1
n

m

∑
j=1

∣∣∣ pactual(i, j)− p f orecast(i, j)
∣∣∣

pactual(i, j)
(2)

The training set trains the forecasting framework to predict future values, and testing
set validates the forecasting framework to show the accuracy of the obtained predicted
results compared to the ground-truth observations. Mean absolute percentage error (MAPE)
is a validation metric (to illustrate the relationship between ANN predicted output and
observed values), which is formulated as follows in Equation (2) [54].

Where pactual(i, j) denotes the actual and p f orecast(i, j) represents forecasted solar ir-
radiation and wind speed. m denotes number of days under observation. The control
parameters are tuned using Levenburg Marquart algorithm until the error is minimized.
The forecasted values (solar irradiation and wind speed) by ANN forecaster is fed to
optimizer phase of the prediction model for further error minimization.

In the optimizer phase, the error is calculated between estimated and observed value,
and this error is further minimized with the use of the mEDE algorithm in the optimizer
phase. The meta-heuristic algorithms such as GA, PSO, FA, DE and GWO are widely used
in prediction problems. The DE among these algorithms is selected due to its better perfor-
mance in the aspects of fast converging speed, computational efficiency, and avoidance of
premature convergence while seeking a global optimal solution. This better performance
of DE is due to the different vector-based mechanism, which expands its search space [60].
On this note, the authors of [61–64] used DE and GA techniques, respectively; with this
as motivation, we developed modified enhanced DE to optimize control parameters of
the prediction model for returning accurate estimation without trapping into local optima
and avoiding premature convergence. The energy estimations returned from the optimizer
phase are more accurate and utilized for efficient energy management.
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Figure 3. Solar irradiance and wind speed prediction model for estimation of electricity

4. Mathematical Modeling

This section presents the mathematical modeling of a smart microgrid equipped with
controllable appliances, PV panels, WT, electrolyzer, hydrogen tank, EVs, and ESS.

4.1. Modeling of Appliances Operating within Smart Home

This section presents explanation and modeling modeling of appliances operating
within smart home. Each consumer is in contact with smart appliances. Moreover, each
appliance is scheduled according to consumer demand. These appliances are further
categorized into three categories: (i) Electrically Controllable-Appliances (ECA), (ii) Ther-
mostatically Controllable-Appliances (TCA), and (iii) Optically Controllable-Appliances
(OCA). Each category will be discussed in detail as follows.

4.1.1. Scheduling of ECA

An adaptive approach based on RTP signal for ECA scheduling such as PHEVs is
proposed. The EMC schedules ECA as soon as it receives RTP signal from the utility.
Consumers typically schedule smart appliances within the assigned time interval to avoid
high payment due to operation in peak price hours. Furthermore, the ECA parameters
such as the time interval in between the Earliest Starting Time (EST) and Latest Finishing
Time (LFT), and Length of Operation Time (LOT) are adjusted using In-Home Display
(IHD) and the adjusted parameters will be communicated to EMC via Home Gate (HG).
These parameters are adopted from [65] and listed in Table 3.
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Table 3. Appliances Classification.

Category Appliance EST (h) LFT (h) LOT (h) Power (kw)

Electrically Controllable Appliances

Dishwasher 09:00 17:00 7 2.4
Dryer 13:00 18:00 5 2.5
Washing Machine 09:00 17:00 8 2
Pump 12:00 19:00 9 1
EV 18:00 8:00 15 3.5

Thermostatically Controllable Appliances

Heater 09:00 19:00 6 2.4
Fridge 00:00 24:00 24 0.5
Freezer 09:00 20:00 10 0.3
AC 08:00 16:00 3 0.7

Optically Controllable Appliances Lighting 19:00 24:00 6 0.84

The appliance consumption cycle is started using the starting probability function,
which is defined as Pstep in Equation (3):

Pstart(A, W, δ, σf lat, h, d) = Pseason(A, W)Phour(A, h, d)Pstep(δ)Psocial(σf lat) (3)

where A represents an ECA appliance, h represents the hour of the day, d represents the
day of the week, W represents the week of the year, and δ represents the computing time
step (second or minute), σ is the standard deviation for Psocial which represents the social
random factor. Moreover, seasonal changes are customized by Pseason, Phour the probability
hourly factor, Pstep stands for scaling factor, which scales the probabilities in consideration
with δ. Pstart is described for each time interval δ it takes a value between 0 and 1. Further
detailed elaboration is given in [65].

4.1.2. Scheduling of TCA

TCA may be electrical or thermal equipment such as an air conditioner or a water
heater, which can be scheduled using the desired temperature and RTP signal. The air
conditioner, refrigerator, heater, and freezer temperatures are denoted by Tac

t , T f ridge
t ,

Theater
t , and T f reezer

t , respectively, presented in Equations (4)–(7) which should be adjusted by
consumers as per their specified temperature to avoid user-frustration. These circumstances
can be stated as follows:

Tac
min ≤ Tac

t ≤ Tac
max (4)

T f ridge
min ≤ T f ridge

t ≤ T f ridge
max (5)

Theater
min ≤ Theater

t ≤ Theater
max (6)

T f reezer
min ≤ T f reezer

t ≤ T f reezer
max (7)

where Tac
min, T f ridge

min , Theater
min and T f reezer

min are air conditioner, fridge, heater and freezer lower

bound, while Tac
max, T f ridge

max , Theater
max and T f reezer

max are air conditioner, fridge, heater and freezer
upper bound, respectively. These appropriate temperatures may differ from one household
to the next, since they are determined by each individual consumer to ensure user comfort.
Further detailed elaboration can be found in [65].

4.1.3. Scheduling of OCA

The OCA mostly includes lighting loads, which are scheduled according to illumi-
nation. The lighting load is modeled using illumination level index, which is based on
the activity probability, which indicates the house occupancy in the lighting load calcu-
lation. The following is how the illumination of a room (a) in the house is expressed in
Equation (8).

La
t + LOUT

t ≥ (1 + kt)La,min
t (8)

A detailed elaboration is available in [65].
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4.2. Microgrid

The microgrid considered in this work is equipped with controllable appliances, PV
panels, WT, electrolyzer, hydrogen tank, EVs, and ESS for electricity generation. The net
energy generated from the sources equipped with microgrid is m ε M in time interval t ε T
is presented in Equation (9) as follows.

E(t) = ∑
mεM

εm(t) (9)

where εm represents microgrid generation. Equation (10) calculates microgrid total elec-
tricity generation.

E(t) =
T

∑
t=1

∑
mεM

εm(t) (10)

As the microgrid is equipped with RESs which are intermittent in nature, thus, the
ANN-mEDE prediction model is implemented to predict solar irradiation and wind speed
for next-day timeslots T for accurate future electricity generation estimation. The detailed
explanation of generating sources equipped with microgrid is presented as follows.

4.2.1. Wind Turbine

The WT is entirely dependent on the wind speed for electricity generation, which is
mathematically modeled in Equation (11) as follows.

Pwt(t) = 1/2× Cp × (λ)× ρ× A× (Vt
wt)3 (11)

where Pwt represents WT electricity generation at timeslot t, A is the area swept by turbine
blades through which WT generates power, Vt

wt denotes wind speed and air density is ρ.
The electricity generation from WT is directly proportinal to wind speed, i.e., the higher
the wind speed, the higher the generation, and vice versa, as presented in Equation (11).
The WT electricity generation is subjected to specified constraints [66], which are defined
in Equations (12)–(14).

Vcut−in ≤ Vwt(t) ≤ Vcut−out (12)

0 = Vwt(t) ≥ Vcut−out, ∀ t ε T (13)

0 = Vwt(t) ≤ Vcut−in, ∀ t ε T (14)

4.2.2. PV Panels

PV panels generates electricity from the sunlight, which is mathematically modeled in
Equation (15) as follows [65].

Pt
pv = ηpv × Apv × Irr(t)× (1− 0.005× (Temp(t)− 25)) (15)

where Pt
pv shows amount of electricity produced per hour from PV panels. The symbols

Apv and ηpv show area and efficiency of PV panel, respectively. Moreover, the Temp(t) and
Irr(t) indicate amount of solar irradiation and the outside temperature at timeslot t.

4.2.3. Electrolyzer

An enhanced electrolyzer has been developed in our proposed study. In the elec-
trolyzer model, electrochemical processes are employed. Furthermore, the maximum
temperature of 100 ◦C was taken into account. An electrolyzer cell’s electrode dynamics
can be approximated using an empirical voltage relationship. Several electrolyzer empirical
models have been proposed [67–70].

U = Urev +
r
A

I + s log(
t
A

+ 1) (16)
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In addition, in order to model the temperature dependency of an over voltages,
Equation (16) can be altered.

4.2.4. Hydrogen Tank

As this Bennedict Webb Rubin (BWR) equation comprises of eight parameters, and is
more exact than that of three-parameter equations, particularly at temperatures above
critical and pressures not exceeding extremely high, as indicated in Equation (17) [71].

p = RTρ + (B0RT − A0 −
Co

T2 )ρ
2 + (bRT − a)ρ3 + aαρ6 +

cρ3

T2 ∗ [(1 + γρ2) exp(−γρ2)] (17)

where ρ represents gas density which relates to compressibility factor by (18):

z = 1 + (B0 −
A0

RT
− c0

RT3 )ρ + (b− a
RT

)ρ2 +
aα

RT
ρ5 +

cρ2

RT3 [(1 + γρ2) exp(−γρ2)] (18)

where as, p is represented in atm, T is in kelvin (k), ρ is in mol/L, R = 0.08205 atm L/mol K.
Moreover, the remaining parameters are as follows:

a = −9.2211 × 10−3 (L/mol)3 atm;
A0 = 9.7319 × 10−2 (L/mol)2 atm;
b = 1.7976 × 10−4 (L/mol)2;
B0 = 1.8041 × 10−2 (L/mol);
c = −2.4613 × 102 (L/mol)3 K2 atm;
C0 = 3.8914 × 102 (L/mol)2 K atm;
α = −3.4215 × 10−6 [(L/mol)3];
γ = 1.89 × 10−3 [(L/mol)2]

4.3. Micro-Gas Turbine

MGT is a generator used for electricity generation with a generation capacity range of
15–300 (kW). It is usually preferred due to its ease of installation and maintenance [72]. In
this work, the MGT is employed as a backup and shiftable generating source, and operates
as per the direction and requirement of users. Its generation is cheaper and environment
friendly compared to diesel generators, and significantly contributes to carbon emission
minimization [29]. On/off are the two operation statuses; it produces constant energy of
2 kW in on status while in off status, its generation is 0 kW [13].

4.4. Energy Storage System

ESSs includes static storage and mobile storage systems that are equipped with RES
in the microgrid to store energy during on-peak hours (act as a load) and discharge energy
to load in low price hours (act as a source). Complete discussion is presented below.

4.4.1. Static Energy Storage System: BES

The smart home considered in this work is equipped with BES with a storage capacity
of 3 kWh, the same as is discussed in [14,73]. The BES is subjected to various constraints
such as ESSmin and ESSmax, which represent minimum and maximum charge limit, respec-
tively. Every BES has a predefined discharging limit, namely lower discharging limit, which
is set at 20%, the same as is used in [74,75]. The energy stored in BES is mathematically
modeled in Equation (19).

SE(t) = SE(t− 1) + k× ηESS × ESch(t)− k× ESdis(t)/ηESS (19)

subjected to
ES(t)ch ≤ ESmax (20)

ES(t)dis ≥ ESmin (21)
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ESS(t)ch < ESSupl (22)

where SE shows stored energy at timeslot t in BES measured in Ah, ηESS is the efficiency
of BES, ESch(t) and ESdis(t) represent charging and discharging status at timeslot t, re-
spectively. Moreover, the charging/discharging and idle status of BES is mathematically
modeled in Equation (23) as follows.

αe(t) =





1 i f ESS is ch arg ing,

−1 i f ESS is disch arg ing,

0 i f ESS is idle.

(23)

When the status of BES is equal to 1, the battery is charging from RES and acts as a
load. On the other hand, when the status of BES is equal to−1, the battery is in discharging
mode and acts as a source; otherwise, it will be in idle mode.

4.4.2. Mobile Energy Storage System: EVs

EVs are employed as mobile energy storage systems as well as being used for driving
purposes. The main objective is to mitigate fluctuations accompanied by RES and min-
imize energy cost. The EVs energy utilization for arrival and departure usage mode is
mathematically modeled in Equation (48) as follows [14].

EVe =
te
d

∑
t=te

a

(ψe(t)× αe(t)) (24)

where, in Equation (24), te
a represents EVs arrival time and te

d denotes EVs departure
time. The symbols ψe(t) and αe(t) denote charging/discharging in Ah and status of EV at
timeslot t, respectively. When αe = 1 EV is in charging mode, αe = −1 EV is in discharging
mode, and αe = 0 EV is in idle mode.

5. Problem Formulation

In energy management, the main objectives are energy cost, PAR, carbon emission,
and user discomfort minimization to facilitate both end-users and utility. The energy
management objectives can be achieved by actively engaging consumers/end-users in
distributed generation and DR programs. In this work, end-users are engaged in both
distributed generation and DR programs to obtain the energy management objectives.
On this note, the EMC based on the ACO algorithm is employed, which receives a DR
signal (RTP) and broadcasts it to consumers ahead of time. In response, consumers send
their electricity consumption pattern to the EMC based on the ACO algorithm, whose
control parameters are listed in Table 2. The EMC schedules power usage of consumers and
charging/discharging of EVs and BES to manage the electricity consumption pattern of
consumers in such a manner that energy cost is reduced, PAR is alleviated, carbon emission
is mitigated, and user discomfort is minimized. Thus, the proposed objective function
is modeled as optimization function to minimize the above-discussed objectives. Each
optimization objective will be individually mathematically formulated following the whole
energy management problem formulation.

5.1. Energy Cost

Energy cost is a payment made by consumers to utility providers for the electricity
consumed for a specific period of time. The energy cost is formulated with the RTP signal
offered by the utility provider. In 2009, FERC reported that consumers who implemented
DR programs for power usage scheduling achieved 65% monetary benefit in aspects of
cost reduction. The energy cost payment to the utility providers for energy consumption
under the RTP signal without considering the microgrid is formulated in Equation (25).

ζ(t) = (ΓECA(t) + ΓTCA(t) + ΓOCA(t))× EP(t) (25)
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where ΓECA(t), ΓTCA(t), and ΓOCA(t) are electricity demand of ECA, TCA and OCA,
respectively. Moreover, the total energy cost charged per day is formulated in Equation (26)
as follows.

ζ(T) =
T

∑
t=1

(ΓECA(t) + ΓTCA(t) + ΓOCA(t))× EP(t) (26)

The energy imported per hour after considering the microgrid equipped with RES,
BES, EV, and MGT is formulated in Equation (27) as follows.

Φ(t) = ((ΓECA(t) + ΓTCA(t) + ΓOCA(t))− (E(t) + EV.αEV(t) + ESS.αESS(t) + MGT.αMGT(t))) (27)

Φ(t) =

{
Φ(t) i f Φ(t) > 0,

0 otherwise
(28)

Equation (28) shows that if Φ(t) > 0 the electricity is imported and if Φ(t) = 0, the
energy is not imported. The total energy imported per day is formulated in Equation (29)
as follows.

Φ(T) =
T

∑
t=1

Φ(t) (29)

The consumers hourly and daily energy cost after considering the microgrid is formu-
lated in Equations (30) and (31), respectively, as follows.

δ(t) = (Φ(t)EP(t)) (30)

δ(T) =
T

∑
t=1

(Φ(t)× EP(t)) (31)

where δ(t) is the per hour energy cost and δ(T) is the total energy cost per day. The symbol
Φ(t) represents imported electricity per hour and EP(t) is RTP signal.

5.2. PAR

PAR is a ratio of peak electricity consumption to average electricity consumption.
The PAR is important for EUCs and users because it smooths out the load curve for utility
providers, which stops operation of peak power plants during peak hours and thus reduces
consumers energy cost. In this work, utility providers stimulate users to participate in DR
either by load and EVs charging/discharging scheduling, and to install the EMC, both of
which significantly contribute to PAR alleviation. The PAR is mathematically formulated
in Equation (32) as follows.

µ =
max

(
ΓECA(t) + ΓTCA(t) + ΓOCA(t) + ESch(t)

)

ΓECA(t) + ΓTCA(t) + ΓOCA(t) + ESch(t)
/

4
(32)

where µ represents PAR.

5.3. User Comfort

User comfort is measured in various aspects such as waiting time, energy consumption,
temperature, sound, illumination, and demographic energy demand patron of consumers.
This study measures user discomfort in aspects of delay, i.e., how much of a delay a user
confronts after scheduling. Furthermore, a tradeoff exists between energy bill and user
discomfort; the users who tolerate more delay would be charged a lower energy cost and
those who are not delay-tolerant would be charged a higher energy cost. The user comfort
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is measured in aspects of delay/waiting time, which is mathematically formulated in
Equation (33).

wa =

T
∑

t=1

n
∑

a=1

∣∣∣
(

To,unsch
a,t − To,sch

a,t

)∣∣∣

Tlo
a

(33)

where wa is the waiting time that each appliance may face after scheduling, To,unsch
a,t shows

status of an appliance before scheduling, To,sch
a,t denotes status of an appliances after schedul-

ing, and Tlo
a represents the total LOT of an appliance. The EMC based on the ACO algorithm

schedules appliances in response to the RTP signal and consumer priority. An appliance
that can tolerate maximum delay/waiting time is formulated in Equation (34) as follows.

wd
a = Tt

a − Tlo
a (34)

where wd
a represents maximum waiting time/delay an appliance faces after scheduling

and Tt
a denotes the total time interval of appliances. User frustration increases with the

increase in wd
a and hence their comfort is compromised. The user discomfort is at its peak

when wa = wd
a , and this represents the worst case, which never happens. Percentage user

discomfort is mathematically modeled in Equation (35).

D =
wa

wd
a
× 100 (35)

5.4. Carbon Emission

Carbon emission is defined as the release of carbon dioxide in atmosphere while
generating and using electricity in the energy sector. In this work, distributed generation
and MGT are included in the microgrid instead of fossil fuels and diesel generators, while
load and charging/discharging of EVs are scheduled, which reduces carbon emissions
and ensures a cleaner and greener environment. The carbon emission is mathematically
formulated in Equation (36) as follows.

Υ =
mean(EP(t))

ε× ς×= (36)

The term Υ represents carbon emission which is measured in pounds, where mean(EP(t))
denotes mean electricity price, ε indicates price per kWh, ς is the electricity emission factor,
and = is the hour in the day.

5.5. Objective Function

Now, the overall problem is modeled as optimization problem to achieve our desired
objectives: minimum energy cost, carbon emission, PAR, and user discomfort with load
and charging/discharging scheduling, which is expressed is in Equation (37) as follows.

minimize
T

∑
t=1

(
(Γt

ECA + Γt
TCA + Γt

OCA)−
(Et + ESSt + EVt + MGTt)

)
× EPt (37)

Subjected to:
E(t) = Ppv(t) + Pwt(t) + Phyd(t) + Pelec(t), (38)

Γt
ECA + Γt

TCA + Γt
OCA = Et + ESSt

+EVt + MGTt + Φt,
, (39)

n

∑
a=1

η = LOT(a), (40)

n

∑
a=1

α ≤ η ≤ β, (41)
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Urev =
∆G
zF

(42)

z =
pVm

RT
(43)

Φt ≤ KI, (44)

Vcut−in ≤ V(t)wt ≤ Vcut−out, ∀ t ε T, (45)

0 < Irr(t) < kc, ∀ t ε T, (46)

0 < ESSmin < ESSmax, ∀ t ε T, (47)

EVe
min ≤ ρEVe

a + EVe ≤ EVe
max (48)

The symbols used in the above equations are defined in Section 3 and presented in
Nomenclature table.

6. Analysis of Simulation Results

Analysis of simulation results are discussed in this section. The extensive simulations
are carried out in a MATLAB environment installed in the computer system with Intel
Core i5 2.4 GHz processor, 8 GB RAM, and Windows 10 operating system, in order to
show optimal operation and charging/discharging scheduling of EVs. This study uses four
performance metrics including energy cost, PAR, carbon emission, and waiting time/delay
for performance evaluation of the proposed model in comparison with existing models.
The proposed system model was developed for a residential smart home with three types of
load: ECA, TCA, and OCA, which communicate with an EMC based on a ACO algorithm
via the Internet, and the EMC schedule operation of appliances and charging/discharging
of EVs per the RTP tariff received from the utility provider. The appliance description
is discussed in Section 3 and their parameters are listed in Table 3. Furthermore, we
developed a forecasting framework for solar irradiation and wind speed to accurately
estimate electricity generation for efficient energy management. Simulations are conducted
for cases: (I) energy management without a microgrid, (II) energy management with a
microgrid for a 24 h time horizon. The detailed discussion is as follows.

6.1. Energy Management without Microgrid

This section presents the results and discussions of scenario I, where microgrid is
not considered.

An RTP from Figure 4, it is obvious that the proposed scheme schedules the load
during off-peak hours. When the proposed technique is not implemented, meanwhile,
the maximum amount of energy is purchased during peak hours. In this figure, the hourly
cost is also shown.

The electricity consumption profile of appliances like ECA, TCA, and OCA within
home in presence of RTP tariff received from utility with and without proposed approach
is illustrated in Figure 4 and their 24 h status is listed in Table 4. It is obvious that the
proposed scheme schedules operation of most appliances during low and mid price hours
considering the priority of users to ensure both objectives: energy cost and user discomfort
minimization. In contrast, the MILP schedules the operation of most appliances during
low price hours cause user discomfort and rebound peak creation. However, the MILP is
better than the case without scheduling. The energy cost hourly pattern of this scenario is
depicted in Figure 5. It is observed in the energy cost profile that our proposed scheme
optimally schedules the operation of smart home appliances keeping in view both user
priority and energy cost constraint, and hence have little bit more energy cost during peak
hours. On the other hand, with MILP-based schedules, consumers pay minimum cost over
our proposed case without scheduling because user priority constraints are ignored.
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Table 4. Operation schedule of smart home appliances with our proposed scheme.

Category Appliances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ECAs

Dish Washer 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
Dryer 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1

Cloth Washer 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0
Pump 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0

EV 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0

TCAs

Heater 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
Fridge 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1
Freezer 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1

AC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1

OCAs Lighting 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1

Figure 4. Energy consumption profile for energy management without microgrid scenario.

Figure 5. Energy cost profile without microgrid.

Figure 6 illustrates the consumer’s daily energy cost with and without using the
proposed scheme. It is clearly seen in the Figure that our proposed scheme reduces energy
cost significantly compared to without scheduling scheme and MILP based scheme. The
solid reason for this performance is that the proposed scheme considers users priority and
cost constraints, and minimizes both energy cost and user discomfort. In addition, it also
avoids rebound peaks to ensure stable and reliable power grid operation.
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Figure 6. Net Energy cost evaluation without microgrid scenario.

The PAR is illustrated in Figure 7 for existing and proposed schemes. The proposed
scheme minimized the PAR to 40%, which is lower as compared to MILP and the case
without scheduling.

Figure 7. Net PAR evaluation without scheduling scenario.

Energy Management with a Microgrid

Simulations are conducted to evaluate the proposed scheme performance with and
W/O microgrid in the proposed system model. microgrid is equipped with PV panels,
WT, electrolyzer, hydrogen tank. The RES equipped with a microgrid are intermittent;
therefore, the BES and EVs in the proposed microgrid are also included. The electricity is
generated from sources such as PV panels, WT, electrolyzers, and hydrogen tanks depicted
in Figure 8. It is visualized in figure that the PV generation is high during day time and
lower at night time. This behavior is due to the well-known fact that the solar irradiation
is high during daytime and lower during the night. The electricity generation from WT
entirely depends on wind speed, i.e., electricity generation is maximum when wind speed
is high and below the cut-out speed, and vice versa. Thus, we forecast wind speed to
accurately estimate electricity generation from wind. Further, to ensure the accuracy of
the prediction model, MAPE and NRMSE metrics are used, which are shown in Figure 9
and Figure 10, respectively. It is clear from the above figures that observed and forecasted
values of wind are closely related ensures accurate estimation of electricity generation.

67



Sustainability 2021, 13, 11429

Figure 8. Microgrid electricity generation profile.

Figure 9. Prediction model evaluation using NRMSE.

Figure 10. Prediction model evaluation using MAPE.

Solar energy is generated from sunlight, and is a sustainable and environmentally
favorable energy source. Light from the Sun reaches the planet, which supplies energy.
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However, we require power every hour in the generation process. Energy is generated for
commercial, industrial, and residential customers to serve their load. As a result, it is more
efficient. As seen from Figure 11 the solar generation is high during the daytime due to
high solar irradiance.

Figure 11. PV electricity generation profile.

From Figure 12, it is clear that when the wind speed is high, the generation is like-
wise high, and vice versa. Wind energy is the primary source of RES in a microgrid
that is optimized for balancing energy supply, demand, and storage to ensure efficient
energy management.

Figure 12. Wind electricity generation profile.

However, a comparison of expected and measured electrolyzer voltage and accom-
panying power indicates that the slight under-prediction of temperature has virtually no
relevance from the perspective of energy system modeling. For instance, we examine the
one-day simulation described in our proposed study. By mixing hydrogen and oxygen,
a hydrogen tank generates electricity, heat, and water. Frequently, fuel cells and batteries
are combined. Both of these devices convert the energy generated by a chemical reaction
into electrical energy. The hydrogen fuel cell, on the other hand, will keep producing
energy as long as fuel (hydrogen) is available.

Figure 13 illustrates the net electricity demand and imported electricity for serving
smart home loads. Figure 13 clearly demonstrates that our proposed scheme shifts the
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load via scheduling from high price hours to low price hours, and serves the net load from
the microgrid. Furthermore, the proposed scheme acquires power from the external grid
during the hours when power rates are low. This figure also depicts the RES curve, which
ensures that RES are serving the whole day to satisfy the user’s electricity demand.

Figure 13. Hourly optimal demand and imported electricity.

Net electricity demand, imported electricity from WT, and purchased electricity from the
power grid considering with/without EVs discharging capabilites are illustrated in Figure 14.
It is obvious from results that the proposed model minimizes the energy purchased from
the power grid during high price hours, importing energy from WT and enabling the
discharging mode of EVs to ensure reliable power supply to the load. In contrast, smart
homes import more energy in cases when EVs are driving or empty because EVs act as
mobile storage.

The mobile storage EVs charging/discharging and electricity generation of the mi-
crogrid, including all sources, is depicted in Figure 15. The figure clearly shows that EVs
charging mode is enabled when the microgrid generation is maximum and EVs have
lower energy, and discharging mode is enabled when microgrid generation is minimum or
there is no other source of energy available. In the first hour, the battery is fully charged,
in 10–15 h timeslots it is charging, and 2–3 and 16–21 timeslots, it is discharging.

Figure 14. Electricity purchase with/without discharging EVs.
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Figure 15. EVs charging and discharging behavior with mircogrid electricity generation.

The EVs and BES participate in the microgrid with RES to significantly contribute in
energy cost and PAR minimization as shown in Figure 16. It is obvious from the results
that users utilize electricity from BES or EVs rather than importing electricity from the
power grid during situations when electricity demand is at peak or high price hours, or
when generation from the microgrid is scarce. This behavior highly contributes to energy
cost reduction and PAR alleviation.

Figure 16. EVs and BES hourly share for serving load.

The MGT is employed instead of a diesel generator to reduce carbon emissions and
lower peak load. MGT will only operate when the user demand exceeds a certain threshold
value. From Figure 17 it is evident that MGT only functions during peak hours to fulfil
customer demand, and so PAR is lowered.
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Figure 17. Optimal demand and MGT contribution.

Analysis is conducted for 24 h operation of the microgrid system to evaluate carbon
emissions. In the microgrid, the MGT used in place of diesel generator because a diesel
generator releases a large carbon footprint with RES. Thus, our proposed scheme with the
use of the microgrid significantly minimizes (up to 25%) carbon emission; this is shown in
Figure 18.

Figure 18. Hourly carbon emissions.

7. Conclusions

This work presents efficient energy management scheme to schedule operation of
appliances and charging/discharging of EVs in the presence of RTP signal under utility
with and without a microgrid. A prediction model, ANN-mEDE, is developed for accurate
electricity generation estimation of the microgrid to contribute to efficient energy man-
agement. Then, an ACO algorithm is developed for the proposed scheme to solve energy
management problems via scheduling with and without microgrid scenarios. The aims and
objectives of solving the energy management problem are maintaining a balance between
demand and supply for reducing energy cost, PAR, carbon emission, and user discomfort
to facilitate both parties, utility providers and end-users, at the same time. To endorse
the developed model, simulations are conducted in comparison with the existing scheme
based on MILP and cases without scheduling in with and without microgrid scenarios. The
results depict that the proposed scheme reduced energy cost, carbon emission, and PAR
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by 35%, 25.01%, and 40.12% in scenario I; by 55.05%, 45.5%, and 42.4% in scenario II,
respectively.
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Nomenclature
Abbreviations Explanation
ACO Ant Colony Optimization
AN Artificial Neuron
ANN Artificial Neural Network
CE Carbon Emission
DR Demand Response
DSM Demand Side Management
DES Distributed Electric System
EMC Energy Management controller
EST Earliest Starting Time
EDE Enhanced Differential Evolution
EV Electric Vehicle
ESS Energy Storage Systems
ECA Electrically Controllable Appliances
FA Firefly Algorithm
IoT Internet of Things
GHG Green House Gases
GA Genetic Algorithm
LOT Length of Time
LFT Latest Finishing Time
MGT Micro Gas Turbine
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
MAPE Mean Absolute Percentage Error
MSE Mean squared Error
MG Micro Grid
MPC Model Predictive Control
MPPT Maximum Power Point Tracking
NRMSE Normalized Root Mean Square Error
OCA Optically Controllable Appliances
PAR Peak to Average Ratio
PSO Particle swarm Optimization
PHEV Plug in Hybrid Electrcic Vehicle
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RES Renewable Energy Sources
RTP Real Time Pricing
SG Smart Grids
TCA Thermostatically Controllable Appliances
WT Wind Turbine
m Generation from RES
t Time interval
Constants Explanation
Tac

min AC lower bound
T f ridge

min Fridge lower bound
Theater

min Heater lower bound
T f reezer

min Freezer lower bound
Tac

max AC upper bound
T f ridge

max Fridge upper bound
Theater

max Heater upper bound
T f reezer

max Freezer upper bound
Vcut−out Wind cut-out speed
Vcut−in Wind cut-in speed
Pt

pv Electricity consumed per hour from PV
ρEVe

a Energy storage level at EV arrival time
ρEVe

d Energy storage level at EV departure time
EVe

max Maximum EV discharging limit
EVe

min Minimum EV discharging limit
Ppv(t) PV contribution in electricity generation
Pwt(t) WT contribution in electricity generation
Phyd(t) Hydrogen tank contribution in electricity generation
Pelec(t) Electrolyzer contribution in electricity generation
ΓECA ECA scheduling
ΓOCA OCA scheduling
ΓTCA TCA scheduling
Φ(t) Hourly imported electricity
EVe

a EV arrival time
ηpv Efficiency of Solar panel
ηESS Efficiency of ESS
Variables Explanation
Pwt Generation from WT
Vt

wt Wind Speed
ρ Air Density
Pt

pv Hourly produced energy by PV
Apv Area of Solar panel
Irr(t) Solar Radiation
Temp(t) Outside Temperature
SE Stored Energy (Ah)
ESch(t) Charging Status of ESS at time t
ESdis(t) Discharging Status of ESS at time t
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Abstract: Price based demand response is an important strategy to facilitate energy retailers and
end-users to maintain a balance between demand and supply while providing the opportunity to
end users to get monetary incentives. In this work, we consider real-time electricity pricing policy to
further calculate the incentives in terms of reduced electricity price and cost. Initially, a mathematical
model based on the backtracking technique is developed to calculate the load shifted and consumed
in any time slot. Then, based on this, the electricity price is calculated for all types of users to
estimate the incentives through load shifting profiles. To keep the load under the upper limit, the
load is shifted in other time slots in such a way to facilitate end-users regarding social welfare. The
user who is not interested in participating load shifting program will not get any benefit. Then the
well behaved functional form optimization problem is solved by using a heuristic-based genetic
algorithm (GA), wwhich converged within an insignificant amount of time with the best optimal
results. Simulation results reflect that the users can obtain some real incentives by participating in
the load scheduling process.

Keywords: demand side management; demand response; load scheduling; real time pricing; genetic
algorithm; dynamic incentives

1. Introduction and Background

The smart grid (SG) is an emerging paradigm shift in power distribution systems
that aims to improve itself using various information and communication technologies.
It comprises various intelligent controlling and decision-making systems, which manage
electricity generation, transmission and distribution through two-way communication
mechanisms [1,2]. In addition, SG allows the integration of distributed and renewable
generation facilities to cope with various uncertainties (i.e., energy deficits, blackouts, high
peaks) that are caused by the energy demand variations and intermittent nature of renew-
ables [3], which helps minimize carbon emissions. This is due to the fact that distributed
renewable energy resources can provide power during stand alone or independent/island
mode to manage power demand with reduced emission. For this purpose, intelligent
autonomous mechanism, blockchain technology and artificial intelligence are key technolo-
gies being widely adopted in recent decades. Furthermore, as distributed generation and
renewable sources can play a key role in managing energy demand, distribution systems
can use the flexibility of variable energy resources to improve the underlying capacity of
low voltage distribution networks, which can also be referred to as “active distribution
systems”. Due to the developments in energy storage technologies, as well as the strong
need to reduce transportation-related costs and emissions [3], the focus on electric vehicles
has been increasing. Electric vehicles need to be recharged at charging stations. Thus,
based on the aforementioned justifications, EVs integration has a threefold set of objectives:
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(i) it can be used for transportation purposes replacing the traditional vehicles due to a
large amount of carbon emissions and abrupt fluctuations in fuel prices; (ii) EVs can also be
used for the transmission of electricity; (iii) the integration of EVs can help with alleviating
the high and rebound peaks majorly caused by high energy extracted during low pricing
hours.

Recent advancement in communication and control technologies has envisioned the
DR programs as an important tool for load management and scheduling. In [4], the authors
used an opportunistic load scheduling technique, which is based on optimal stopping
theory. Each load is assigned a time factor to decide its priority and then threshold criteria is
calculated to find optimal time slot for each individual load. As it is a pure threshold policy.
Therefore, this policy would be unfavorable when energy consumption and market spot
pricing trends are dynamic. A similar work is proposed [5] to schedule residential loads
in conjunction with on-site renewable energy and storage system. A mixed integer linear
programming algorithm is used to solve cost minimization and comfort maximization
problems. A slightly different work is presented [6] for real-time pricing demand response
with fault-tolerant and flexible user enrolment to predict dynamic pricing. This scheme is
relatively efficient in terms of less computational overhead and transmission delay. In [7], a
two layered model for a hybrid energy system is proposed with a demand biding strategy.
Before scheduling the load, a demand bidding based on Nash equilibrium theory is used
to find the optimal pricing involving different stakeholder. Then, a coordinated multiagent
framework is used to ensure the stability of this system with an event triggered mechanism.
The work presented in [8] is devoted to modeling a locational marginal pricing based
demand response using a monotonously decreasing linear function. In [9], a price based
demand response program to schedule the residential load is presented and solved by using
a decision support system. The load is first predicted and then scheduled based on market
price to minimize overall cost. A novel pricing scheme considering residential demand
response, renewable energy and power losses is presented for peak load alleviation [10].
All the generation and demand facilities actively collaborate in a distributed manner to
find the best optimal price without affecting their objectives., where demand response DR
allows the potential users to shift their consumption level or curtail some portion of the
load in response to time-varying dynamic pricing such as time of use (TOU), real-time
pricing (RTP), day-ahead pricing (DAP), and critical peak pricing (CPP) [11]. In [12], a
multiagent based strategy to integrate the flexibility potential of industrial and residential
demand is presented. A particular focus is on considering the cement and metal smelting
industry, where residential and industrial demand is fulfilled through renewable and
grid energy sources, respectively. In [13], a multiagent based load scheduling scheme is
proposed, which utilizes optimal stopping theory to obtain the optimal scheduling instants.
To optimally utilize the grid and renewable energy resources, a heuristic algorithm is used
to solve the load scheduling problem [14]. Furthermore, to maximize user comfort in terms
of scheduling delay, the load is modeled to prioritize comfort over cost and vice versa. To
model the electricity prices, the authors first used a data mining approach to find the load
consumption patterns from historical data using density based clustering with noise [15].
Then, a mixed integer nonlinear programming technique is applied to find electricity prices
over the given time slots. To analyze the performance of this model, the online network
enabled optimization system (NEOS) is used. The work presented in [16] is devoted to
analyzing the advantages and disadvantages of active demand response programs in
relation to residential load management. This work also analyzed the features of the energy
system and highlights the key issues of decentralized energy resources. To reduce the peak
load demand, the work presented in [17] is devoted to modeling the load and heating
ventilation air-conditioning, particularly using demand response. In response to electricity
prices and energy demand requirements, the dynamic demand response controller (DDRC)
adjusts the control set points after every 15 min and shifts the load in case demand exceeds
the predefined threshold. The proposed model is designed in the MATLAB/SIMULINK
environment which is connected with the EnergyPlus model via a building control virtual
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test-bed. In [18], the authors proposed a renewable energy buying back scheme with a
dynamic pricing strategy for energy efficiency in the smart grid. Here, the dynamic pricing
is formulated as a convex optimization duel problem and a day-ahead tune dependent
pricing in a distributed manner is proposed to ensure user privacy. This work is designed
in such a way to provide the benefits to users and utility, dynamically. This is to note
that the benefits offered by the DR program should not be underestimated due to their
great impact on power system reliability and stability through its load management and
optimization. However, the discussed benefits could be undermined due to the negligible
impact of small power consumption loads on power system stability. Additionally, another
drawback associated with the improper implementation of DR programs is the restriction
of some high power rating loads being non-shiftable or non-interruptible [13]. On the other
hand, EVs are becoming one of the potential candidates both in household and charging
lots that draw a large amount of electric power, causing serious concerns from energy
management perspectives [16]. There might be several reasons that exacerbate the utility’s
DR and create rebound peaks due to massive power that is drawn. Firstly, the aggregated
charging loads of EVs can serve as a great resource of demand and capacity to obtain a
noticeable impact on DR programs if there exists coordination among EV charging loads.
Secondly, there should be greater flexibility on shifting and interruption offered by EV
charging operators through the coordination with DR. This could manage EV charging
load demand while fulfilling the key concerns of DR. These parameters are addressed and
modeled in the work proposed in [19].

2. Related Work

Various price-based DR optimization techniques for optimally control residential
loads have been reported in the literature. In [20], a new architecture based on technical
building systems is presented, which is suitable for nearly zero energy building. To
achieve this objective, the active load profiles of all the participants are obtained and
then a building demand response program is used to model and manage the load for
peak alleviation and flatten the load profile. These include model-based optimization
methods [21], heuristic optimization techniques [22,23], where residential load is modeled
with load classification [22] and customer preferences [23]. A stochastic optimization
algorithms taking into consideration the inherent uncertainties in appliance scheduling
time and electricity pricing [24]. To handle these uncertainties, a stochastic technique
involving energy consumption adaptation variable and load consumption patterns is used.
In [25], a probabilistic demand response program is proposed to model the load demand
of residential sector. The main objective is to analyze the operational objectives used to
balance the total cost. The stochastic optimization techniques provide the statistical results
of the energy consumption of residential appliances. However, these algorithms are unable
to guarantee an efficient DR policy from a day ahead perspective. On the other hand,
model-based DR programs can guarantee the DR policy if the accurate load and patterns
are available. However, a big challenge is how to get a correct estimate of the energy
demand and usage patterns of residential loads. Because the energy consumption patterns
cannot be fixed due to variable habits of energy consumers. In the third category, where
home appliances are scheduled in response to dynamic prices using heuristic optimization
methods. It is mentioned that optimal results in terms of cost and peak to average ratio
reductions can be achieved with compromise on discomfort. Because, unlike electricity
cost minimization, the comfort/social welfare maximization are two different objectives
and cannot be achieved at the same time.

Moreover, the model-based DR schemes are developed based on simplified energy
consumption models. In [26], the energy consumption of a residential house is modelled
using simplified conduction heat transfer equations. In [27], the authors use a quasi-steady
state approach for the estimation of a day-ahead electricity demand in the DR market.
In [2], the authors adopt a model predictive control strategy that employs the model of
building dynamics based on a thermal resistance-capacitance network. A low voltage
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residential load model based on price based DR has been proposed in [28]. In this work,
high-resolution load models were developed by combing Monte Carlo Markov chain based
bottom-up demand models, time-variant load model, shot water demand models and
discrete state-space representation of thermal loads. Then, a price based DR program is
modelled to control the working of all these loads in response to consumers. The model is
useful for predicting the distributed impact of introducing dynamic pricing in the system.
In [29], the authors consider the problems of considering dynamic pricing in the network.
They have used a Stackelberg game approach to model the interactions between end-
users and electricity producers. Then, a comprehensive characterization of the tradeoffs
between consumer surplus and net profit is obtained. They have also analyzed the effects
of renewable energy integration and distributed storage in the system. It is concluded that
all benefits go to energy retailers when the capacity of renewable energy is small. These
are the main conditions where renewable energy systems are used. In another similar
work, the authors consider the problem of variable pricing and load consumption, where
a utility or energy retailer acts as an agent between retailer and consumers [30], whereas
variable pricing is somehow useful for the electricity retailer in stabilizing the electric
network. However, its implementation seems difficult due to the lack of information about
the consumers and associated uncertainties. Similarly, consumers are also more likely to
face the difficulties in establishing their schedules for loads scheduling due to variable
pricing. However, this problem can be tackled by using a reinforcement learning technique
without background information of consumers and retailers. In [31], the authors propose a
demand-side management (DSM) technique that takes into consideration user preferences.
The authors identified a trade-off between cost reduction and comfort maximization and
developed a Game theoretic-based algorithm to overcome this trade-off. In [32], the
authors proposed a new pricing mechanism for low and high energy consumption users
based on a time of use pricing policy. The price signal is further divided into different
blocks and forecasted load is scheduled based on these prices to curtail the cost of end
users. Here, an artificial neural network, due to its efficiency, is adopted to forecast the
short term load in a day-ahead fashion. However, a few other algorithms to forecast the
short and long term load are also being widely used by different authors [33]. In another
similar approach, [34], the consumer’s behaviours on each other’s DSM decisions have
been accounted for. Then a non-cooperative game strategy is used, where each user will
decide whether to participate in the DR program or not. Here, to minimize the electricity
cost is the main objective. While in traditional game-theoretic approaches, it is being
considered that consumers are free in taking their decisions. In [35], the authors show that
incoordination between consumer and electricity distributor may create the chances of
high and rebound peaks leading to catastrophic behavior of the electric grid. In this regard,
the authors propose a system-wide framework to coordinate the DR of end-users in a smart
grid. The key objective of this framework is to provide monetary benefits, privacy and
comfort to end-users.

3. Motivation

With population growth and advancements in information and communication tech-
nologies (ICTs), the power demand has also been increased. Consequently, scientists
and researchers have been working to find new energy sources and energy management
mechanisms to meet the growing power demand. In this regard, the SG vision has come
to incorporate distributed and renewable energy resources, advance metering infrastruc-
ture (AMI) [36] and communication protocols, DR programs [20,21], and optimization
techniques to efficiently manage the power demand. In accordance with this, the resi-
dential customers have been provided with the facility to curtail their load or reschedule
the working slots in response to the DR programs and time-varying prices found in the
literature [6–10]. Consequently, the utility obtained the benefits regarding of grid stabil-
ity, while users can gain get the reduced bill as these pricing mechanisms are designed
in such a way that the hourly price factor is calculated based on aggregated load con-
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sumed/demanded in a particular region which is operated under the same DSO. In almost
all the techniques, DSM algorithms are used to schedule the load for energy management
by taking into consideration the load demand, market clearing price, dynamic consumption
trends and optimization algorithms. To achieve the effective outcomes of the DR based
load scheduling programs, the end users are being offered various incentives in terms
of bill reduction, uninterruptible supply of power, and so forth. However, the users are
given the opportunity to decide whether they are willing to participate or not. Unlike the
participating customers, the other customers would not be able to receive any benefit until
they agreed to participate in DR programs by accepting terms and conditions. Furthermore,
it is also understood that there could be multiple energy retailers being operated in some
specific geographic region with dynamic and time varying price signals. The participating
users have to manage their load according to the available price signal without knowing
which other users are impacting on their benefits. For example, the high, medium and
low energy consumers are always charged electricity bills according to the consumed load
based on DR pricing policy. Here, the price signal would remain the same even if the
customers are consuming low or high power over a given time period. Consequently, the
those customers who have maintained a stable load profile and are consuming relatively
less power are not getting the actual benefits or incentives in participating in DR and load
scheduling programs. This is due to the discriminatory price signal being provided by the
market retailer because it is difficult to provide a separate price signal to every user, which
is a limitation of price based DR programs. Thus, by consideration of this problem and the
underlying limitation of the DR program, this work proposes a new mechanism to provide
some incentives to the customers maintaining a balanced load profile.

4. Contribution

This mechanism must possess the characteristics of a fair distribution of prices and
incentives without any discrimination. By considering the aforementioned limitations and
drawbacks, this paper further investigates the price based DR programs and introduces
a novel mechanism for load management and price calculation with dynamic incentives.
By taking into account the existing mechanisms (i.e., TOU, RTP) for calculating electricity
prices, we have designed a new and slightly different method to calculate electricity prices
and incentives based on load consumption and shifting patterns over given time period.
For this purpose, the profiles of each user are obtained via smart meters using advanced
metering infrastructure (AMI) [18] and are maintained just like the charging management
system (CMS) in the electric vehicle scenario [28]. Then, by using the proposed mechanism,
the price is calculated whether the user will get the incentives or overpriced signal, which
is independent of each user and load. One of the unique and novel aspects of the proposed
mechanism is that these incentives are non-discriminatory and independent from other
users participating in a load scheduling based incentivise mechanism. These prices rather
depend upon individual consumption trends and the RTP signal over the given time
period. Hence, the proposed mechanism is designed to facilitate the users in reducing high
and rebound peaks by incorporating the upper limit of energy consumption during the
scheduling process. However, this may be inconvenient for those users who intend to use
energy as per their defined schedules to improve the social welfare level. Consequently,
the utility may receive extra benefits in terms of system stability through reliable energy
generation and supply systems. Finally, the developed system model is tested and validated
using the proposed algorithm which presents the idea of calculating dynamic incentives
instead of static and predefined incentives.

5. Characterizing DR

As understood, electricity cannot be stored at large scale power systems due to
physical limitations and constraints. Therefore, it is strongly recommended that the dif-
ference between electricity generation and consumption must be minimal. Moreover, the
marginal cost of electricity in a day-ahead market is extremely dynamic due to variable
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and unexpected energy consumption patterns, whereas the electricity cost varies over the
given period (i.e., 60 min, 30 min, 15 min) of fixed intervals, and consumers receive retail
electricity prices reflecting average energy generation trends including transmission and
distribution losses. Therefore, the frequent disconnections between short term marginal
and long term marginal costs can cause serious concerns regarding real-time energy gen-
eration and consumption. This is because consumers do not have the information about
the marginal cost of supplied electricity. This results in an inefficient participation in DR
programs. Consequently, the consumers receive little or no incentive for participating in
DR programs. From the above-mentioned discussion, it can be concluded that a flat rate
tariff encourages the consumers to overuse electricity during low pricing hours. As a result,
electricity tariffs may have higher values due to excessive energy consumption during
particular hours. Therefore, utilities have to fulfil energy demand by turning on extra
generators leading to costly tariffs. In conclusion, inefficient utilization of DR programs and
calculation of electricity tariffs in a day-ahead market may affect a consumer’s objectives.
As a response, consumers may be discouraged to adopt DR programs, which can create
serious concerns regarding grid stability in the long term. So, it is desired to adopt some
real-time mechanisms that could be feasible for both utilities and consumers, without
disturbing/violating their objectives.

6. System Model

In this section, we describe the proposed system model used to calculate incentive
based electricity prices. Let i ∈ N denote the loads li with time deadline denoted by t ∈ T
such that t = 1, 2, 3, ...T and j ∈ M denotes index of users who are participating in load
scheduling program and getting incentives. The energy demand of each load i is denoted
by dli (t). Let φ(t) denoted the global pricing policy (i.e., RTP) obtained from the electricity
market via AMI. Let β be the binary decision variable and represents the ON/OFF status of
load. Each load has a predefined start τs

i and end time τe
i , which lies within scheduling time

interval T. Without losing generality, all customers have the equal opportunity to schedule
their loads within the given time frame. Consequently, the cost-sensitive customers’ k1 can
get some incentives by shifting some load from on-peak to off-peak hours. In contrast, the
customers k3 who are not willing to participate in DR programs may receive higher prices,
which are calculated based on energy price and demand during critical hours. The details
of k1 and k3 are given in the next section.

6.1. Previous Model

In traditional schemes being used to calculate energy consumption prices, where all
users receive global prices irrespective of individualized demands, this may result in re-
bound peaks, that is, due to demand shifting from critical hours to off-peak hours [1,37,38].
In consequence, the non-homogeneous cost may be charged to customers, which partic-
ipated in DSM programs. In addition, exposing end-users to the wholesale electricity
market (i.e., real-time and day-ahead prices) has to lead the users to shift their load to
a low pricing area, which eventually increases demand during this time span [38]. This
would eventually lead to higher peaks. It is also demonstrated in [37] that this may create
rebound peaks due to demand shifting, and hence, DSMs need to be studied in accordance
with homogeneous and non-homogeneous energy users with the objective of peak shaving
and fair price distribution among all types of consumers. Similarly, the work reported
in [39] provided the concept of user aware price policies, which is based on individualized
demand profiles obtained from smart grid communication network. Although the concept
is novel, which helps with alleviating non-homogeneous price penalties on potential users.
However, in reality, energy consumption has a dynamic trend which is based on customers’
daily life activities. Eventually, this mechanism [39] may create homogeneous cost profiles
for a given time. A general energy price is calculated using Equation (1).

pi = ∑
i∈N

∑
t∈T

{[
(β× `i(t))× d`i

(t)
]
× φ(t)

}
, ∀i ∈ T, t ∈ T, (1)
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where φ(t) is the real time electricity price obtained from a day-ahead market, β is a binary
decision variable which denotes, that is, ON/OFF states of connected loads `i(t) during
time t, and is expressed as;

β =

{
1; I f load is ON
0; I f load is OFF.

(2)

As the utility pricing model is based on some specified time interval, which is consid-
ered 24 h equally divided on all time slots. Therefore, ts and te are used to denote start and
end time intervals of `i over the given price φ(t), respectively, whereas the φ is obtained
from the electricity retail market, which is changed due to load trends and consumer
demand over the given period [t ∈ T], while τi denotes utility cycles (i.e., number of time
slots) of all loads subject to (β`i(t)). The following sections discuss different cases related
to electricity price calculation methods.

6.2. Demand Aware Prices (Case-1)

To cater for the aforementioned uncertainty, the proposed work provides a mathemat-
ical mechanism to calculate electricity prices on the basis of energy consumption profiles
of all users/units which are obtained from smart grid communication network. For this
purpose, there need to be community networks to handle individual price profiles of all
users in accordance with the individualized energy consumption trends. The electricity
price (p′i) is calculated by using the proposed mechanism, which depends on the load
consumption of each customer, and is expressed through Equation (3):

p′i(t) = ∑
i∈N

∑
t∈T

{[
(β× `i(t))× d`i

(t)
]
× φ′(t)

}
, ∀i ∈ T, t ∈ T, (3)

where φ′(t) denotes homogeneous price policies which further depends on k1 variable
denoting the actual electricity price each customer will be charged, giving the variation in
energy consumption of `i over give time t. The k1 can be calculated on the bases of `i(t)
and φ(t) and expressed in Equation (4):

k1(t) = ∑
i∈N

∑
t∈T

{[(
(β× `i(t))× d`i

(t)
)
× φ(t)

]
× (di)

−1/2
}

, ∀i ∈ T, t ∈ T, (4)

p′i(t) = ∑
i∈N

∑
t∈T

{[
(β× `i(t))× d`i

(t)
]
× k1(t)

}
, ∀i ∈ T, t ∈ T. (5)

Equation (5) denotes the electricity price (p′i) in the proposed case and the cost mini-
mization objective function can be described through Equation (6):

min ∑
i∈N

∑
t∈T

Φi(t) (6)

s.t : ∀i ∈ N : Φi =

(
∑
i∈N

∑
t∈T

p′i(t).

)
(7)

6.3. An Incentive Based Price Overview (Case-2)

In this case, we first identify the total users consuming high power, contributing
towards a high electricity tariff. Eventually, the other users who have a balanced power
consumption profile may be affected in terms of bearing high prices. This section aims
to devise a mechanism to fairly design customized price profiles for all users. For this
purpose, the pricing tariff for the customers consuming high power needs to be calculated,
which would be used in calculating incentives for the customers showing balanced power
consumption trends. After calculating incentives and penalties for respective customers,
we will then compare the cost values of both traditional and proposed mechanisms for
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validation purpose. Using Equation (8), we can identify the consumers who have drawn
more power leading to adding more to the electricity price being provided.

p′i(t)− pi(t) = 0, ∀i ∈ T, t ∈ T. (8)

Now, we can design the customized electricity tariff for high consumption users.
Meanwhile, we also calculate the incentives to those customers who willingly maintain
stable load profile to seek incentives from utility.

6.4. An Incentive Based Price Calculation

This section discusses the incentive-based price policies designed for those customers
who participated in the energy management process j ∈ M to reduce peak load demand.
In response, the participating customers have been given incentives in the form of a bill
reduction. In contrast, the customers who do not want to compromise on their comfort
level and have not yet participated in energy management programs are charged prices
in accordance with load demand and non-discriminatory penalties. These penalties have
been calculated to preserve utility revenue. Initially, we have to calculate the electricity
cost of two types of customers: (i) the customers with surplus electricity cost being charged
after participation in the energy management (EM) process; and (ii) the customers with
reduced electricity costs after participation in the EM process. For this purpose, we first
calculate the reduced cost as expected by the M customers, which can be calculated through
Equation (9):

p′i(t) = ∑
j∈M

∑
i∈N

∑
t∈T

{[
(β× `i,j(t))× d`i,j

(t)
]
× k2(t)

}
, ∀i ∈, j ∈ J, T, t ∈ T (9)

k2(t) = ∑
i∈N

∑
j∈M

∑
t∈T

{[(
(β× `i,j(t))× d`i,j

(t)
)
φ′(t)

]
× (di,j)

−1/2
}

, ∀i ∈ T, t ∈ T, (10)

where Equation (10) denotes the fraction by which the customers j consumes more energy,
and φ′(t) is the price, which is expected by customers j in order to reduce their electricity
cost. The actual electricity price p′′i (t) which is obtained after load scheduling is expressed
through Equation (11):

p′′i (t) = ∑
i∈N

∑
j∈M

∑
t∈T

{[
(β× `i,j(t))× d`i,j

(t)
]
× φ′′(t)

}
, ∀i ∈ T, j ∈ M, t ∈ T, (11)

where φ′′(t) depicts the electricity price being charged to j customers. Now, we can
calculate the surplus electricity price being charged to j customers, based on which the
comfort cost is calculated for i consumers. Once this cost is calculated, the extra cost
charged to j customers would be adjusted in order to provide incentives in the form of
electricity bill reduction. The total amount of electricity cost for i can be calculated through
Equation (12):

pj(t) = ∑
i∈N

∑
j∈M

∑
t∈T

{[(
(β× `i,j(t))× d`i,j

(t)× (k1(t) + α)
)]
× (di,j)

−1/2
}

, ∀i ∈ N, j ∈ M, t ∈ T, (12)

where pi denotes the actual price charged to M customers and α = k2 − k3 is the ap-
proximate cost difference between scheduled and unscheduled cases. k3 can be through
Equation (13):

k3(t) = ∑
i∈N

∑
j∈M

∑
t∈T

{[
(β× `i,j(t))× d`i,j

(t)× φ′(t)
]
× (di,j)

−1/2
}

, ∀i ∈ N, j ∈ M, t ∈ T. (13)

Now, the total energy consumption cost Φ̂i(t) over time t is calculated by using
Equation (14);
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Φ̂i,j(t) =

{
pi ∑

i∈N
∑
t∈T

(t) +

[
∑
i∈N

∑
j∈M

∑
t∈T

{[
(β× `i,j(t))× d`i,j

(t)
]
× k3(t)

}
× (di,j)

−1/2

]
× ∑

i∈N
∑

j∈M
∑
t∈T

di,j(t)

}
,

∀i ∈ N, j ∈ M, t ∈ T.

(14)

Now, we can calculate incentives for M customers who took part in the energy
management program. Let Epi

denote the monetary incentives given to those customers
who have participated in the energy management process to flatten the peak demand
during critical hours. From the above Equations (1)–(12), we can calculate Epi

as given
below;

Epi = ∑
i∈N

∑
j∈M

∑
t∈T

[
Φ̂i,j(t)−

{
k3(t)×

(
(β× `i,j(t))× d`i,j

(t)
)
× φ′(t)

}]
, ∀i ∈ N, j ∈ M, t ∈ T. (15)

Now, the final objective function Equation (16) which is the incentive maximization
and subject to the constraints of Equations (17)–(20) is written as:

min ∑
i∈N

∑
j∈M

∑
t∈T

(
Epi,j

(t)
)

(16)

Epi
≤ (d`i

× φ) : ∀i ∈ N. (17)

Equation (16) refers to the cost minimization objective function and Equation (17) de-
notes that the total cost obtained from the proposed mechanism should always be less than
the traditional mechanism. Otherwise, the proposed mechanism is not an optimal one.

Φ̂i = ur : ∀i ∈ N (18)

p`un
i,j

= pdsch
i,j

: ∀i ∈ N. (19)

Equation (18) shows the total cost of load consumed, which should be equal to
the cost/utility revenue. Otherwise, the mismatch could ultimately affect the objectives.
Equation (19) denotes that the unscheduled and scheduled load before and after the
scheduling process must be equal. Otherwise, the proposed mechanism could be based on
energy conservation/reduction instead of load scheduling or management.

pdi,j
< pdi,j

< pdi,j
: ∀i ∈ N (20)

`i ≤ β×`uti(t) : ∀i ∈ N, t ∈ T. (21)

Equation (20) shows the upper and lower limits on the load demand and Equation (21)
shows that the load demand must not exceed the utility capacity.

7. Proposed Algorithm

In the proposed work, we used GA to solve the incentive-based load scheduling
problem. Although, the consideration of heuristic algorithms is gaining popularity due to
their ability to obtain the best optimal results even when other mathematical algorithms fail
due to the diverse nature of control parameters and inherent complexity while designing
or formulating the underlying problem, mathematically. That is why we have considered
and used GA due to its ability to obtain global optimal results in all situations with a
high convergence rate. Moreover, the crossover and mutation operators further allow
obtaining the best results even if some random parameters affect the performance of the
results. Generally, convergence is one of the important parameters when dealing with
successive series of experiments in iterative methods [36,40]. Generally, the GA works by
considering some initial parameters with random initial population, fitness function, and
values of other control parameters. Initially, the objective/cost function is evaluated as per
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given control values such as cost, incentives and delay in the proposed work. Once the
fitness is calculated and the best results are obtained, the algorithm stops by following some
predefined criteria or based on an initial number of iterations. Then, the best optimal results
are saved and crossover and mutation operators are applied to evaluate the fitness function
based on a new population. The probabilities of crossover Pc and Pm are set in such a way
to obtained global optimal results. However, to avoid premature convergence, we have
compared the best convergence results with the newly obtained results in each iteration and
used a Sigma scaling factor so that premature results should be discarded. We have also
tested the convergence against different control values to assess the performance under the
proposed model. It is also worth mentioning here that the performance of any optimization
algorithm also depends on the well behaved functional form of a developed mathematical
model. Otherwise, the optimal results may take more time or face complexities in achieving
them. Table 1 provides the loads with demand and working hours, while the Table 2 gives
the values of control variables used to find the optimal scheduling patterns and incentives.
Max. generation is selected as 800 so as to have the sufficient space for optimal results.
The population size is chosen as 400 in order to avoid the solution being premature.
The Pc and Pm values are selected and set after monitoring the convergence results. We
observed through experiments that these values are the most suitable for fast convergence.
The Algorithm 1 explains the working steps involved in getting incentives based price
profiles. In step-4, the initial random population is generated which is evaluated in step-5
using Equation (7). Step-6 is involved in calculating the power using RTP and proposed
mechanisms. Equations (9), (11), (12), (14) and (15) are involved for the calculation. Steps
1–8 show that the algorithm moves to the next step if an optimal solution is obtained.
Otherwise, the control will move to step-1 for new calculation and evaluation. Steps 13–14
compare the optimal solutions obtained from Equation (16) and Equation (6). After saving
the results, the crossover and mutation operators are applied and the control moved to the
step-1. The same process repeats over a 24 h time period.

Table 1. Load consumption and duty cycle requirements.

li Working Hours dli (kW)

l1 20 2.5
l2 24 3
l3 5 2
l4 7 2.5
l5 8 3.5
l6 8 3

Table 2. Control parameters of GA [36,40].

Parameters Values

Number of loads 6
Number of users 3
Max. generation 800
Population size 400

Probability of crossover 0.9
Probability of mutation 0.003
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Algorithm 1 Steps involved in calculating incentives using GA.

Require: li, dli , φ, popsize, Pc, Pm,
1: for t = 1 to T do
2: for i = 1 to N do
3: for j = 1 to M do
4: generate initial population
5: evaluate Equation (7)
6: calculate p′(t), p′′(t), pj, Φ̂i,j,Epi,j

using Equations (9), (11), (12), (14) and (15)
7: evaluate Equation (16)
8: if best == min. then
9: save result

10: else
11: move to step-1
12: end if
13: if min.Equation (16) ≤ min.Equation (6) then
14: save the results
15: else
16: go to step-4
17: end if
18: do selection process
19: do Pc

20: do Pm

21: move to step-1
22: end for
23: end for
24: end for

8. Results and Discussion

Figure 1 shows the electricity price signal used in the proposed work. Unlike other
pricing signals being widely used in the literature and real-time works such as RTP, TOU,
DAP, CPP, the proposed price signal is dynamic with changing values at every instant
of time. This price signal is considered to deeply analyze the realistic cost and incentive
profiles of all the consumers instead of developing the load scheduling techniques of
algorithms based on DAP, which is known in advance to the users and energy management
controllers. Furthermore, these price signals elucidate the realistic changing behaviours
of price with respect to load. Figure 2 gives the convergence profile of GA based on the
control and load scheduling parameters. It is clear from the figure that GA converges
within 400 iterations and results with the best optimal cost in each iteration are obtained.
Figure 3 give and comparison of the price profiles between the RTP signal and the proposed
pricing signals being calculated using proposed incentive based model. It can be seen from
this figure that the proposed price profiles differ from RTP, showing that the proposed
mechanism calculates the price signal based on load demand, scheduling capacity and
incentives, respectively. Figure 1 shows a comparison of different patterns of price profiles
using RTP and proposed price (PP). From first sight, it is very clearly visible that the price
profiles using PP has variations when compared with RTP obtained from a day-ahead
market. These variations are due to various incentives provided to different consumers
based on load shifting and taking part in the load scheduling mechanism. For example, if
any user is willingly participating in load scheduling and maintain a consumption level
under the upper threshold limit as compared to the other consumers, he gets incentives in
electricity tariffs of that particular hour, instead of for the whole day. Similarly, if any user is
consuming relatively more power and exceeding the upper threshold limit, then s/he has to
be charged the extra price due to creating trouble for the electricity retailer of the producer.
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This is because the electricity producer or distributor has to maintain a balance between
generation and demand. Figure 4 provides the energy consumption profiles of all the units
using RTP. t can be seen that scheduled load profiles show remarkable trends reflecting
the scheduling capability of the proposed mechanism based on GA algorithm, which is in
terms of load scheduling and peak management as well. Similarly, Figure 5 shows the cost
profiles of all the units using RTP. These variations provide an overview of the scheduling
mechanism designed to lower the overall cost and providing incentives to the users. It is
also seen from the profiles that scheduled cost is lower than unscheduled cost. Here, the
maximum peak is around 350$ and the minimum peak is around 20$. In contrast, Figure 6
provides the cost profiles of all the units using PP. Here, we can see that the maximum peak
is around 370$ and the minimum peak is around 10$. It reflects that those customers who
are willingly participating in the proposed scheduling mechanism are getting the incentives
in terms of reduced cost. On the other hand, the other customers who are not interested
in participating in load management programs are getting a comparatively higher price
and cost.
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Figure 1. Real time electricity price signals over time t.
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Figure 2. A comparison between total cost and fitness value over different values of control parameters.
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Figure 3. A comparison between real time electricity price and the proposed method for different
units over time t.
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Figure 4. A comparison of energy consumption using real time electricity and proposed price signals
for different units over time t.
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Figure 5. Electricity cost incurred for different units over time t using real time price signal.
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Figure 6. Electricity cost incurred for different units over time t using proposed method.

9. Conclusions

Price based DR programs through AMI are designed to encourage users to participate
in load scheduling processes to balance generation and demand capacity without consid-
ering costlier generation. However, these programs faced difficulties in attracting a large
number of customers to participate. This is due to the inherent limitations caused by its
discriminatory nature if applied in different geographical regions being operated under
the same distributed system operator. To handle this limitation, this work has proposed an
incentive-based load scheduling mechanism using a real-time pricing policy to facilitate
energy retailers’ and end-users’ particularity. The incentives, in terms of dynamic pricing
profiles using load consumption trends, are calculated. However, as these incentives are
calculated based on the dynamic price profiles of different customers, we first obtained
these profiles based on load consumption trends. In response, each customer received a
different price signal, which is dynamically changed with load consumption reflecting
incentives or an overpriced tariff. To analyze the impact of the proposed mechanism,
we provided a system model to calculate these prices and incentives and formulate an
objective function. Then, a well behaved functional form of optimization function is solved
by using a heuristic based GA and obtained the energy and load consumption profiles.
The results are then compared with the unscheduled profiles without incentives. It is clear
from the results that participating customers are able to get dynamic pricing signal based
incentives without affecting the electricity bills of other customers. In the future, we intend
to extend and implement this model in designing electricity prices in peer-to-peer energy
transactions using blockchain technology.

Author Contributions: T.A., M.B.R. and M. Awais did the mathematical modelling and implementa-
tion. T.A., A.H.M. check and verify the results. T.A., A.H.M. and M.B.R. supervise the project. All
authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by Deanship of Scientific Research (DSR) at King Abdulaziz Uni-
versity, Jeddah, under grant number (RG-13-135-41). The authors therefore acknowledge with
thanks DSR for their technical and financial support. This project has also received funding
from the European Union Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 754382, GOT ENERGY TALENT. The content of this [re-
port/study/article/publication] does not reflect the official opinion of the European Union. Respon-
sibility for the information and views expressed herein lies entirely with the author(s).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

91



Sustainability 2021, 13, 6066

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors thank the referees for careful reading and useful comments that
helped to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
t index of time
i index of loads
j index of customers
ar number of arrival requests
dli

load demand of ith load
li load index for ith load
pi energy consumption price of ith load
β binary decision variable
pi actual price charged to M customers
Φ̂i,j total energy consumption cost
ur utility revenue
pdsch

i,j
scheduled load of jth customer

pdi,j
min. limit on load demand of jth customer

φ(t) electricity price over time t
τi utility cycle of ith load
p‘ electricity price using proposed method
κ1 actual electricity price phase-1
Φi total electricity cost of ith load
κ2 actual electricity price phase-2
p′′ actual electricity price after incentives
φ1 electricity price after scheduling
α approximate cost difference
Epi

incentives for customer
p`un

i,j
unscheduled load jth customer

pdi,j
max. limit on load demand of jth customer

luti utility load
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Abstract: Recently, the expansion of energy communities has been aided by the lowering cost of
storage technologies and the appearance of mechanisms for exchanging energy that is driven by
economics. An amalgamation of different renewable energy sources, including solar, wind, geother-
mal, tidal, etc., is necessary to offer sustainable energy for smart cities. Furthermore, considering the
induction of large-scale electric vehicles connected to the regional micro-grid, and causes of increase
in the randomness and uncertainty of the load in a certain area, a solution that meets the community
demands for electricity, heating, cooling, and transportation while using renewable energy is needed.
This paper aims to define the impact of large-scale electric vehicles on the operation and management
of the microgrid using a hybridized algorithm. First, with the use of the natural attributes of electric
vehicles such as flexible loads, a large-scale electric vehicle response dispatch model is constructed.
Second, three factors of micro-grid operation, management, and environmental pollution control
costs with load fluctuation variance are discussed. Third, a hybrid gravitational search algorithm
and random forest regression (GSA-RFR) approach is proposed to confirm the method’s authenticity
and reliability. The constructed large-scale electric vehicle response dispatch model significantly
improves the load smoothness of the micro-grid after the large-scale electric vehicles are connected
and reduces the impact of the entire grid. The proposed hybridized optimization method was solved
within 296.7 s, the time taken for electric vehicle users to charge from and discharge to the regional
micro-grid, which improves the economy of the micro-grid, and realizes the effective management of
the regional load. The weight coefficients λ1 and λ2 were found at 0.589 and 0.421, respectively. This
study provides key findings and suggestions that can be useful to scholars and decisionmakers.

Keywords: microgrid; sustainable society; electric vehicles; flexible load; optimization

1. Introduction

The concept of smart, environmentally friendly, and sustainable cities is crucial to
assessing how well nations have advanced their civilizations and development [1–3]. The
goal of developed nations’ research and development efforts is to create greener cities and
communities that enhance the state of the environment worldwide and reduce pollution
from human activity [4]. To accomplish a comprehensive energy solution, it is crucial
to control the demand for and distribution of produced energy [3,4]. Furthermore, it is
also necessary to implement various forms of renewable energy technology in cities and
societies [5]. To enable sustainable energy for cities, a mix of several renewable energy
sources, such as solar, wind, geothermal, tidal, etc., is necessary [6]. Intelligent energy
management strategies can be implemented at all levels, starting at home and extending to
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every nook and cranny of the city, including transportation, schools, hospitals, factories,
streets, etc. [7]. The increasing penetration of renewables has driven power systems to
operate closer to their stability boundaries, increasing the risk of instability [8]. With the
upcoming dynamic power generation in many countries, the installed capacity of power
generation can gradually and effectively use energy to promote energy conservation, which
plays an important role in achieving sustainable energy development [8,9]. The authors
discussed the rapid development of power grid technology in the mix with the electric
vehicles (EVs) industry (V2G) [10,11]. Using large-scale EV charging piles in the area to
realize vehicle network interaction allows large-scale EVs and EVs to take part in economic
optimization management, while the use of an energy storage system allows users to create
energy arbitrage by discharging during price peaks and charging during off-peak periods
if a variable energy price is considered [9].

The control methods of the microgrid (MG) are more diversified, and the development
of safety emergency response capabilities has become a current research hotspot. In terms
of reducing the valley gap, the literature uses the temporal and spatial characteristics of EVs
to construct an orderly charging and discharging load for EVs and a real-time electricity
price response model [12]. EVs and other power generation equipment can take part in the
economic dispatch of the MG. To study the different strategies between EV power stations
and MG, an economic dispatch optimization model was constructed [13]. To solve the
increase in the popularity of the complex EV access point network, it has been proposed
large-scale EVs be connected to the network, and there is a good deal of optimization
scheduling methods. EVs are effectively used to optimize charging and reduce system
load peaks and valleys [14]. However, the economic dispatch model of the literature
mentioned above considered three factors of an MG, while the user benefits and safety of
MG operation do not cogitate the performance of MG management and the participation
of EV users [8,15].

These days, smart parking lots are becoming more and more popular since they offer
a workable solution to power outages [16]. Systems for managing energy can benefit from
heuristic algorithms since they speed up decision-making and develop a novel heuristic
algorithm for MG energy management [17]. The principle behind this algorithm is to
avoid wasting the available renewable potential at each period. Model predictive control is
used to reduce the output power loss caused by converter failure, panel shading, and dirt
buildup on wind and PV panels [18].

Authors discussed the dimensional optimization algorithm for optimizing scheduling
problems, such as the endless combination of particle swarm optimization (PSO) algo-
rithm and differential evolution algorithm (DE), and the random particle swarm algorithm
(RDPSO) [19,20]. Authors proposed that WOANN predicts the required control gain
parameters of the hybrid renewable energy systems to maintain the power flow, based
on the active and reactive power variation on the load side [19]. The imperialist com-
petition algorithm (ICA) combined mutation, destruction, and selection of a variety of
different operators with PSO and other methods studied [21,22]. However, these methods
have some shortcomings in finding the optimal solution and the best ability to overcome
them [23]. Based on the above analysis, starting from the management side of the MG
operator, we comprehensively considered the three factors of MG operation safety, en-
vironmental governance, and user participation. A preliminary EV participation in the
MG operation management optimization model was established to realize the operating
and management costs, environmental pollution control costs, and the lowest mid-term
cost [24]. The multi-agent chaotic particle swarm optimization (MACPSO) algorithm com-
bined with the chaotic particle swarm optimization algorithm and chaotic particle swarm
optimization (CPSO) algorithm was used to solve the problem [25]. The demand and
response characteristics of each power generation unit, large-scale EVs, and electric load
in the region were different, and the constraint conditions of each power generation unit
presented nonlinear characteristics [26]. A regional MG under the constraints of nonlinear
equations is one difficulty for researchers [27]. Furthermore, achieving the best states of
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management cost, environmental pollution, and load fluctuation variance are another topic
of discussion [26]. Authors used the penalty function method to deal with the relevant
constraints; this method adds a penalty term to generate a new objective function [20].
Energy conservation has become a long-term strategic policy for global economic and social
development [27]. The enhancement of energy management can improve energy efficiency
and promote energy conservation and emissions reduction [28]. However, integrating
renewable energy and a flexible load makes the integrated energy system a complex dy-
namic with high uncertainty, bringing great challenges to modern energy management [29].
With the increasing number of vehicle charging piles installed in recent years, load peak
periods are brought to the station area, resulting in an insufficient capacity of the station
area, in turn resulting in an overload of the distribution transformer in the station area,
increased loss of lines and transformers, and other problems [30]. A good auxiliary power
supply is the key to the coordinated development between vehicle charging and the power
grid in a smart MG [28]. The wind and solar energy generation system can transform
the natural resources of the station area into a stable power supply. Authors proposed
an energy management method for a grid-connected wind-solar storage MG system with
multiple types of energy storage [31]. Authors have researched optimal energy scheduling
of MG considering EV charging load [32]. According to the two operation modes of the
MG, namely grid-connected and isolated islands and the different access modes of EVs, the
MG operation control strategy including EVs was customized [21]. To investigate if solar
energy and wind energy are naturally complementary, an energy storage system and an
optimized battery energy storage control strategy were combined to put forward a hybrid
landscape storage system control strategy considering the charging effect of batteries [33].
The author discussed the operation energy management strategy of the isolated grid of
an MG containing hybrid energy storage [33]. However, none of these explored strategies
were studied with regard to their application in smart stations/MGs and EVs.

This paper proposes large-scale EVs involved with MG operation and its management
optimization method. This method first makes full use of the EV natural flexible load
property, and the response of the large-scale EV scheduling model is constructed. Then,
considering the system’s operation, user participation, and environmental governance,
an optimization model is established. The system operation management cost of the
MG, environmental pollution control cost, and load fluctuation variance are integrated
to achieve an optimal system. Finally, by comparing the optimization results of multiple
scenarios, it is verified that the model can realize effective load management in the region
and reduce the management cost of MGs and environmental pollution treatment costs to
support a healthy society.

The rest of the study is organized as follows, Section 2 presents the related work,
Section 3 describes the proposed model, Section 4 explains the results and discussion and
the conclusion is presented in Section 5.

2. Related Work
2.1. Model of Large-Scale EVs

Assume that some users of EVs in the area respond to the dispatching information of
the regional grid to charge from and discharge to the MG. In contrast, some users do not
respond to dispatching information and randomly access charging [21]. The dispatching
structure diagram is shown in Figure 1.

According to the operating characteristics of the EVs in the area, the regional response-
dispatching EV cluster is divided into a charging cluster and a discharging cluster [34]. The
charging and discharging responsiveness of EV users at time t expressed as:

ϕd(t) =
Nd(t)

N × 100%
(1)

ϕc(t) =
Nc(t)

N × 100%
(2)
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ϕ(t) = ϕd(t) + ϕc(t) (3)

where N is the total number of EVs in the area; Nd(t) is the number of EVs that respond to
discharge information; Nc(t) is the number of EVs that respond to charging; ϕd(t) is the
discharge responsiveness of EV users; ϕc(t) is the user’s charging responsiveness; ϕ(t) is
the user’s responsiveness. When a user responds to charging, ϕd(t) = 0, and when the
user responds to discharge, ϕc(t) = 0.
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2.2. EV Disorderly Charging Model

It is assumed that the charging power of an EV is equal to the power of the connected
charging piles and limited by the power of the charging piles installed in the area [35].
The charging power of different types of charging piles is inconsistent. According to the
maximum state of charge of the i-th EV SOCi,max, the state of charge SOCi at the beginning
of charging, the power of the connected charging pile Pi,ch, the power battery capacity C,
and the charging efficiency ηCEV , the charging duration of EVs obtained in the formula is
as follows [36]:

tc,i =
(SOCi,max − SOCi)C

ηCEV Pch,i
(4)

The calculation expression is:

Puno(t) = (1− ϕ(t))
N

∑
i=1

Pch,i(t).αtcp,t.αstate,t (5)

where Puno(t) represents the total disordered charging load in the area at time t, t 1, 2, 3, . . . ,
24; N is the number of EVs; Pch,i(t) is the connection at the charging time t, αstate,i represents
the state of the charging pile, αstate,i = 1 represents the charging state, and αtcp,i represents
the parking time; tp,i is greater than the required charging duration. tc,i is used to calculate
the charging power that is αtcp,i 1 and the total disordered charging load in the t period
area.

2.3. Model of Charging, Discharging, and User Response

EV users respond to dispatched charging and discharging, while users responding
to the dispatching information of the regional MG and connect to the regional MG for
controllable charging and discharging in an orderly manner. Suppose that when the user
of the i-th EV responds to the scheduling information, they also provide feedback on
important parameters such as the state of charge of the power battery SOCi, the parking
time tp,i, the next trip, and the unit power consumption of the EV to the area of the MG
to calculate the energy consumption for the rest of the user’s journey SOCrest,i according
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to the feedback parameter information, the state of charge of comprehensive user anxiety
SOCanx,i, and to protect the battery reserve with capacity margin of not less than 20% to
calculate the charging and discharging time of the EV.

The charging duration is consistent with Equation (6), and the discharge duration is
expressed as [37]:

td,i =
(SOCi − SOCi,rest − SOCanx,i − 20%)C

ηdEV Pdis,i
(6)

where ηdEV is the discharge efficiency of EV; Pdis,i represents the discharge power of the
connected charging pile.

The total charge and discharge power PresEV(t) of EVs in the area at time t can be
obtained by:

PdisLoad(t) = ϕdis(t)
N

∑
i=1

Pdis,i(t).αtdp,t.αstate,t (7)

PcLoad(t) = ϕc(t)
N

∑
i=1

Pch,i(t).αtcp,t.αstate,t (8)

PresEV(t) = PdisLoad(t) + PcLoad(t) (9)

where αtdp,i means that the parking time tp,i is greater than the continuous discharge time
td,i to calculate the discharge power, that is, αtdp = 1, according to the discharge of the
connected charging pile power.

3. Proposed Model
3.1. Objective Function

The operating and management costs of the regional MG and pollutant control costs
can be collectively referred to as the total operating and management costs of the regional
MG, defined as:

minF λ1(F1 + F2) + λ2F3 (10)

where λ1 and λ2 are weighting factors, where λ1 + λ2 = 1.
The integrated operation and management cost of an MG with large-scale EVs mainly

includes the economic operation cost of the MG and the incentive cost for EVs that respond
to dispatching to take part in the dispatch as follows:

F1 =
T

∑
i=1
{[Cn(PDG(n, t)) + Cw,n(PDG(n, t))]}+ Cgrid(t)Pgrid(t) + Cexcit(t) + Cdc(t) (11)

where T is a dispatch cycle; NDG is the type of power generation unit installed in the
area; C(PDG(n, t)) is the power generation cost of the nth type of power generation unit;
CW,n(PDG(n, t)) is the maintenance cost of the nth type of power generation unit; PDG(n, t)
is the power generation of the n type of power generation unit; cgrid(t) and Pgrid(t) are the
agreement points of the MG and the power grid company at time t, respectively; Cexcit(t) is
the cost of incentivizing EVs to participate in dispatch; Cdc(t) is the difference between the
operation purchase of electricity from users (discharge) and the sale of electricity to EVs
(charging), an additional fee is required.

The power generation cost of a distributed generation unit is defined as:

Cn(PDG(n, t)) = αn[PDG(n, t)]2 + βnPDG(n, t) + γn (12)

where αn, βn, and γn are cost constants, which are related to the type of distributed
generation (DG) unit.

The maintenance cost of the power-generating unit is approximately proportional to
the power generated by the power-generating unit.

Cw,n(PDG(n, t)) = λm
n (PDG(n, t) (13)
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where λm
n represents the maintenance coefficient of n types of distributed power generation

units. Different types of distributed power generation units have different maintenance
coefficients. For different types of maintenance coefficients, please refer to the literature.

To use the capacity of the EV’s power battery, the regional MG adopts certain incentives
for car owners to attract EV owners to actively respond to the dispatching information of
the regional MG, charge/discharge the regional MG, and take incentive measures.

The cost calculation expression is:

Cexcit(t) = ϕ(t)∑
i=1

(SOCi,max − SOCi,min)Cρexcit(t) ∧i (t) (14)

where ρexcit(t) represents the unit incentive cost at time t, and its value is calculated
by referring to the distributed generation kilowatt-hour subsidy standard [38]; Λi(t) is
the connection state of the charging pile at time t, Λi(t) = 1 means the charging pile is
connected, Λi(t) = 0 means the charging pile is not connected.

The additional cost added by the difference in the electricity price during the charging
and discharging period of the user can be calculated by:

Cdc(t) =
T

∑
i=1

N

∑
i=1

{
ϕdis(t)Pdis,i(t)p(t)4d,t −(1− ϕdis(t)Pch,i(t)c(t)∆c,i)

}
(15)

where T is a dispatch period; N is the total number of EVs in the area; p(t) is the on-grid
price of the user for discharging into the regional MG at time t; c(t) is the charging price
of the user at time t; ∆tc,i and ∆td,i, respectively, represent the continuous charging and
discharging time of EV users to the regional MG. The pollutant penalty costs for MG
operation are as follows:

F2 =
T

∑
t=1

⌊
NDG

∑
n=1

M

∑
m=1

Cmαm,nPDG(n, t) +
M

∑
m=1

Cmαgrid,mPgrid(t)

⌋
(16)

where M is the type of pollutant, and the power generation process mainly considers
NOx, SO2, and carbon emissions; Cm represents the cost per kilogram of treating these
m types of pollutants; αn,m represents the first type of power generation unit produced.
The emission coefficient of m-type gas pollutants; PDG(n, t) is the power generation of the
nth type of power generation unit; αgrid,m represents the emission coefficient of m-type
gas pollutants generated when the public large-scale power grid transmits electric energy;
Pgrid(t) represents the power flowing in both directions between the regional MG and the
large public grid.

The power supplied by the grid to the MG is positive, and the power supplied by the
regional MG to the large power grid is negative due to the load fluctuation and due to
improving the security and stability of the MG’s economic operation.

F3 =
1
T

T

∑
t=1

(
Pload(t) + Puno(t) + PresEV(t)−

NDG

∑
n=1

PDG(n, t)− Pav(t)

)2

(17)

where Pload(t) represents the basic electricity load in the MG in the period t; Puno(t) rep-
resents the disorderly charging load of EVs in the period t; PresEV(t) represents the EVs
response charge and discharge in the period t load.

3.2. Constraints

To achieve a balanced state of power on the supply and demand side in regional MGs,
the power balance constraint can be expressed as:

Pload(t) + (Puno(t) + PresEV(t)) =
NDG

∑
n=1

Pn(t)− Pbss(t) + Pgrid(t) (18)
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where Pn(t) is the power supply of the nth type of power generation unit in the area; Pbss(t)
is the energy storage system’s total charge and discharge power; greater than 0 means
discharging, and less than 0 means charging.

EV charging and discharging state constraints:

SOCi(t + 1) = SOC(t)i +

(
ηc,iPc,i(t)

C
αstate,i.4c,t +

Pdis,i(t)
ηd,iC

αstate,i.4d,t

)
(19)

where SOCi(t + 1) and SOCi(t) are, respectively, the state of charge of the ith EV power
battery during (t + 1) and t periods; ηc,i, ηd,i represents the charge and discharge efficiency
of EV; ∆c,t and ∆d,t represent the duration of charge and discharge.

To meet the user’s next trip needs, the user can set the desired power battery power.

SOCi(tleave) ≥ SOCdesired,i (20)

where SOCdesired,i represents the state of charge of the power battery expected by the user
when leaving the charging pile; SOCi(tleave) represents the actual state of charge of the
power battery when the EV leaves the charging pile.

3.3. Hybridized Algorithm
3.3.1. The GSA Algorithm

The GSA acts on agents as objects whose actions are recorded by the masses [39].
Objects are to display a solution or a portion of a solution. The gravitational pull attracts
items to themselves, causing a worldwide movement toward objects with larger masses [40].
Because the heavier masses have higher fitness criteria, achieving a worthy ideal answer is
more difficult.

The position is defined with N as:

Xi = (x1
i . . . xd

i . . . xn
i ) f or i = 1, 2, . . . , N (21)

First, the agents of the solution have given a solution based on Newton’s gravitational
theory [41]. The gravitational force is calculated as follows:

Fd
ij(t) = G(t)

Mi(t)xMj(t)
Rij(t) + ε

(
xd

j (t)− xd
i (t)

)
(22)

The Euclidian distance can be written as:

Rij(t) = ‖Xi(t), Xj(t)‖2 (23)

The total force acting can be presented as:

Fd
i (t) =

N

∑
j∈kbest,j 6=i

randjFd
ij(t) (24)

Moreover, ad
i (t) can be presented as:

ad
i (t) =

Fd
i (t)

Mii(t)
(25)

Furthermore, a technique based on this concept can be described to obtain an agent’s
subsequent speed and location. An agent’s subsequent speed can be represented as a
function of its current velocity plus its current acceleration. As a result, the improved
location and speed provides:

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (26)
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xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (27)

To appropriately regulate the search procedure, the gravitational constant (G) is set
arbitrarily at the start and gradually decreases over time as follows:

G(t) = G(G0, t) (28)

G(t) = G0e−α t
T (29)

The masses of the agents can be determined via fitness evaluation. The greater an
agent’s act mass, the more significant that agent is to obtaining the answer. According to
Newton’s laws of gravity and motion, a hefty mass has greater pull-on power and moves
slower. The masses can be described as follows:

Mai = Mpi = Mii = Mi, i = 1, 2, . . . , N

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(30)

Mi(t) =
mi(t)

N
∑

j=1
mj(t)

(31)

3.3.2. The RFR Algorithm

The fitness function for the GSA algorithm must be established to assess the benefits
and drawbacks of the RFR model for each node [42]. The following new particle will result
from the crossing:

Xk
inew = rXk

i + (1− r)Xk
j (32)

Vk
inew =

Vk
i + Vk

j
∣∣Vk

i

∣∣+
∣∣∣Vk

j

∣∣∣

∣∣∣Vk
j

∣∣∣ (33)

where the random number r value is between 0 to 1; the velocities of particles are Vi and
Vj, Xi and Xj; Xi and Vi are the new positions and velocities of the different particles, while
Xi replaces them.

The method of dynamically adjusting the inertia factor is used for great particles.
In the initial phase, w is nominated to develop global searchability. The slighter w

stood in the later phase to attain a more sophisticated search. The efficient formulation of
the inertia factor is presented in Equation (33).

w(t) = (w1 − w2)× (T − t)/T + w2 (34)

The following was chosen for the mean square of the residual:

R2
RF = 1− MSEooB

σ2
y

(35)

where the predicted cost of variance is σ2
y; residual error R2

RF is the mean square. Each
input feature’s significance can be determined by random forest as:

fi =
∑ j∈ f eatureinj

∑ knk
(36)

nk = wk Mk − wk1Mk1 − wk2Mk2 (37)
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where node k importance is nk; the feature division is the node with the feature I as nj;
the number of samples in node k is wk, w1, and w2, the ratio and its sub-nodes to all the
samples, respectively; the node k mean square errors are Mk, M1, and M2 and its sub-nodes.

Figure 2 shows the multi-objective model is weighted into a comprehensive single-
objective model. There may be errors in weighting to overcome subjective experience.
This paper uses the entropy method for weighting, forming a weighted single-objective
optimization model, and implementing specific steps.

(1) Take the objective function Fi(i = 1, 2, . . . , n) as the optimization target for the single-
objective solution.

(2) According to step (1), a single objective function value and a comprehensive, objective
function value can be obtained.

(3) According to the single objective function value and the comprehensive objective func-
tion, the objective function value is unified and dimensionless, and the preprocessed
objective function value set is obtained.

(4) Apply the entropy weight method to obtain the weight coefficient of the objective
function.
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4. Result and Discussion
4.1. Model Parameter

Figure 3 shows a selection of the typical wind and solar power forecast curves in
the MG of a park. The charging piles are installed in the park and can be divided into
three levels. Table 1 lists the allowable charging power of each level of charging piles. The
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three-level charging pile proportions are 50%, 30%, and 20%. Due to the limitations of the
actual park’s MG installed capacity and transmission power lines, it is assumed that there
are 100 EVs in the park. Tables 2–4 show the parameters of the power generation units
installed in the park, unit power generation costs and maintenance costs, environmental
governance cost coefficients, and time-of-use electricity prices of the park [43]. Assuming
that all EVs in the park are of the same type, the charging and discharging power and
the charging and discharging efficiency are the same. The EV’s parameters are shown in
Table 5. The GSA-RFR algorithm parameters; population size is 300, the maximum iteration
time MaxTime = 350, the upper limit of inertia weight wmax = 0.9, the lower limit of inertia
weight wmin = 0.4, the initial self-learning factor ci = 2.5, termination self-learning factor
c1 f = 0.5, initial social learning factor ci = 20.5, termination social learning factor c2 f = 2.5,
environment size lsize = 20, optimal chaotic environment size hsize = 3, the search radius
r = 0.5, the number of iterations of optimal chaos hcir = 10.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 
Figure 3. Typical wind and PV power generation forecast curve in the area. 

Table 1. Charging power rating of piles. 

Cases Case1 Case2 Direct Current 
Power (kW) 1.4–3 5–10 25–180 

Table 2. Parameters of each power generation unit, generation cost, and maintenance cost. 

Resource Power Range (kW) Generation Cost 
(USD/kWh) 

Maintenance Cost 
(USD/kWh) 

BSS −150~150 0.68 0.08439 
WT 0100~0.39 0.009 6 
PV 075~0.56 0.001 2 
MT 20~150 0.41 0.0401 

Table 3. Environmental costs and pollutant emission coefficient. 

Contaminant 
Type 

Control Costs (USD/kg) 
Pollutant Emission Factor (kWh) 
Grid MT WT PV 

CO2 0.21 889 724 0 0 
SO2 14.842 1.8 0.0036 0 0 
NOx 62.94 41.6 0.2 0 0 

Table 4. Local time-of-use electricity price list. 

Period (Time) 
Peak Normal Valley 
10:00–15:00 
19:00–22:00 

7:00–9:00 
16:00–18:00 

1:00–6:00 
23:00–24:00 

Electricity price (USD/kWh) 1.56 0.7 0.43 
Purchase price (USD/kWh) 0.75 0.43 0.14 

Table 5. Electric vehicle parameters. 

Category 
Battery Capacity 
(kWh) SOC Limit (%) 

Charge and Dis-
charge Power 
Limit (kW) 

Charge and Dis-
charge Efficiency 
(%) 

Value 52.5 20/90 50 0.95 

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Po
w

er
  (

kW
)

Time (hour)

PV Wind

Figure 3. Typical wind and PV power generation forecast curve in the area.

Table 1. Charging power rating of piles.

Cases Case1 Case2 Direct Current

Power (kW) 1.4–3 5–10 25–180

Table 2. Parameters of each power generation unit, generation cost, and maintenance cost.

Resource Power Range (kW) Generation Cost
(USD/kWh)

Maintenance Cost
(USD/kWh)

BSS −150~150 0.68 0.08439

WT 0.100~0.39 0.009 6

PV 0.75~0.56 0.001 2

MT 20~150 0.41 0.0401
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Table 3. Environmental costs and pollutant emission coefficient.

Contaminant
Type

Control Costs
(USD/kg)

Pollutant Emission Factor (kWh)

Grid MT WT PV

CO2 0.21 889 724 0 0

SO2 14.842 1.8 0.0036 0 0

NOx 62.94 41.6 0.2 0 0

Table 4. Local time-of-use electricity price list.

Period (Time)

Peak Normal Valley

10:00–15:00
19:00–22:00

7:00–9:00
16:00–18:00

1:00–6:00
23:00–24:00

Electricity price
(USD/kWh) 1.56 0.7 0.43

Purchase price
(USD/kWh) 0.75 0.43 0.14

Table 5. Electric vehicle parameters.

Category Battery
Capacity (kWh) SOC Limit (%)

Charge and
Discharge Power
Limit (kW)

Charge and
Discharge
Efficiency (%)

Value 52.5 20/90 50 0.95

4.2. Effectiveness of the Large-Scale EV Response Scheduling Model

To verify the effectiveness of a large-scale EV response scheduling model in this paper
in reducing load volatility, three different EV charging and discharging models are selected:
(1) user autonomous charging model; (2) orderly charging and discharging model based
on peak-valley time-of-use electricity prices; (3) response scheduling model, using three
different charging and discharging models, the total electricity load, including EVs, and
the charging and discharging loads were calculated, and the user response degree was set
to 100%. The operating results are shown in Figure 4.
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In Figure 4, the orderly charge and discharge model based on the peak-valley time-of-
use electricity price is shown. The performance of orderly charge and discharge according
to the peak-valley time-of-use electricity price information is reduced by 11.6%. Meanwhile,
this causes EV users to charge and discharge the MG to generate new electricity (peaks),
which makes a new impact on the MG. The response scheduling model guides EVs to
charge from and discharge to the MG based on peak-valley time-of-use electricity prices
and regional load information. Compared with the user-autonomous charging model
and the orderly charge–discharge model of peak-valley time-of-use electricity prices, the
variance of load fluctuations is reduced by 25.3% and 15.5%. The response scheduling
model improves the smoothness of the regional load.

4.3. Weight Coefficients and Impact of Different Optimization Results

To analyze the influence of different weight coefficients on the optimization results, the
table compares the optimization results under five groups of different weight coefficients.
Among them, the weight coefficient λ1 in each group has a value of 0, 0.3, 0.5, 0.8, and 1;
the weight coefficient λ2 is 1, 0.7, 0.5, 0.2, 0, respectively. According to the optimization
results, the statistics of the integrated operation and management costs and load fluctuation
variance of the MG in a dispatch period are shown in Table 6.

Table 6. Comparison of optimization results of different weight coefficients.

Weight
Coefficient

MG Operation Costs
(USD)

Environmental Pollution
Costs (USD)

Load Fluctuation
Variance

1 94,099.872 10,735.098 12.56

2 42,739.869 8585.706 86.68

3 36,717.197 8081.684 118.62

4 31,347.512 7632.539 126.76

5 31,190.257 6976.039 285.38

The MG operation and management, environmental pollution control, load fluctuation
variance, and other indicators of cost reach the best operating state to select the appropriate
weighting coefficients. Table 6 shows that setting different weight coefficients has an impact
on the optimization results. When the weight coefficient λ1 increases, the MG operating
costs and environmental pollution cost gradually decrease, and the load fluctuation vari-
ance increases with the decrease in the weight coefficient λ2. Table 6 shows the maximum
value of MG operation management cost, environmental pollution control cost, and load
fluctuation variance as USD 94,099.872 and USD 10,735.098. The minimum values are USD
31,190.257, USD 6976.039, and USD 12.56, respectively. The entropy weight method is used
to calculate the weight coefficients of each objective function, and the weight coefficients
λ1 and λ2 are 0.589 and 0.421, respectively. Applying the obtained weight coefficients to
weigh different objective functions and solving the proposed model, the MG operation
management, environmental pollution costs and load fluctuation are USD 31,984.413, USD
76,695.169, and USD 120.236, respectively.

4.4. Controllable Power Generation Unit Output with Different Responsiveness

The output of controllable generating units with different responsiveness were studied,
and the user responsiveness in the selected area is 0%, 50%, 80%, and 100%, respectively.
Figure 5 shows the operation results, and the responses of different users in a dispatch
period were counted. The operation management, load fluctuation and the costs of the MG
with a high degree are shown in Table 6.
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Figure 5. The planned output of controllable power generation units with different user responsive-
ness; (a) 0% of the planned output of controllable generating units, (b) 30% of the planned output of
controllable power generation units, (c) 50% of the planned output of controllable power generation
units, (d) 80% of the planned output of controllable power generation units, (e) 100% controllable
power generation unit planned output.

Figure 6 shows the power supply change curve of the large-scale public power grid.
During the period 8:00–20:00 large-scale EVs are connected to the MG in disorder, and the
power demand of the MG during the peak period of electricity load is sharp. Increasing the
amount of power supplied by the large public grid to the MG is likely to cause the large
public grid to be overloaded. Figure 6 and Table 7 show the statistical data that when the
user responsiveness is between 30% and 80%, as the user responsiveness increases, the
operation and management costs of the MG and the environmental pollution control costs
are reduced correspondingly, and the variance of load fluctuations is first. Considering
the tendency to increase after decreasing when the user response rate is 100%, large-scale
EVs are connected to the regional MG for charging and discharging. Due to the limitation
of the installed capacity of the regional MG-distributed energy, the demand for electricity
in the region increases, leading to the microgrid’s related costs. Correspondingly, at the
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same time, the variance of load fluctuations increases compared with the variances of load
fluctuations with a responsiveness of 50% and 80%.
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Table 7. Comparison of MG indicators for different user responsiveness.

Responsiveness MG Operating Costs
(USD)

Environmental Pollution
Treatment Costs (USD)

Load
Fluctuation

0% 45,454.215 9467.724 253.71

30% 37,967.285 8760.162 144.13

50% 31,690.206 7881.186 114.24

80% 28,655.759 7836.853 130.19

100% 35,750.162 7972.188 196.15

4.5. Comparison of Different Optimization Algorithms

A comparison is made to verify the effectiveness of the GSA-RFR algorithm in solving
high-dimensional, non-continuous problems with the multi-constrained optimization prob-
lems (MINLP) method, GSA algorithm, CPSO algorithm, and multi-agent PSO algorithm
to solve the economic optimization model put forth in this study and contrast the GSA-RFR
algorithm’s solution outcomes with the optimization outcomes of various algorithms. The
maximum number of iterations is 350, and the population size is 300. Figure 6 depicts the
convergence curves of various algorithms.

The PSO method has the fastest convergence speed, as shown in Figure 6, but it
is prone to premature phenomena and cannot converge upon the global extreme point.
Although the solution time of the MINLP method is not much different from that of the
PSO algorithm, its optimization accuracy is better than that of the PSO algorithm. In the
CPSO algorithm, the chaotic search strategy is added to improve the global search ability of
the algorithm to a certain extent, thereby avoiding falling into local extreme points. Still, its
convergence accuracy needs to be improved. The CPSO algorithm requires more iterations
and time to achieve convergence in the solution process, but it improves the optimization
results. Compared with several optimization methods, the GSA-RFR algorithm integrates
a multi-agent system and a chaotic search mechanism to increase its time consumption, but
its optimization effect is the best.
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Table 8 shows that when the economic optimization model is established, the opti-
mization result’s operating cost, environmental pollution control cost, and load fluctuation
variance are minimized. The GSA-RFR algorithm demonstrates good performance in
solving high-dimensional, non-continuous, and multi-constrained optimization problems.

Table 8. Comparison of optimization results of different optimization algorithms.

Algorithms MG Operation
Costs (USD)

Environmental
Pollution Control
Expenses (USD)

Variance of Load
Fluctuation

Solution Running
Time (s)

GSA-RFR 48,974.386 8986.562 236.45 296.7

GSA 45,499.685 8654.639 214.32 307.5

MINLP 43,875.754 8579.546 196.53 314.3

CPSO 32,497.179 7608.743 184.65 375.6

PSO 28,785.478 6937.591 132.36 509.8

5. Conclusions

The goal of developed nations’ research and development efforts is to create greener
cities and communities that enhance the state of the environment worldwide and reduce
environmental pollution. EVs will play a critical role in energy systems over the coming
years, due to their environmental friendliness and capacity to reduce/absorb superfluous
power from renewable energy sources. Meanwhile, a large-scale EV charging pile of
regional power grids increases the randomness and uncertainty of the load in the concerned
area. The proposed study constructed a large-scale EV response dispatch model that
significantly improves the load smoothness of the MG after large-scale EVs are connected,
and reduces the impact of the entire MG. The weight coefficients λ1 and λ2 were determined
as 0.589 and 0.421, respectively, the controllable power generation output scheme unit was
best observed, and the operational management, environmental pollution control, and
variance of load fluctuations costs were interestingly observed as lowest at USD 31,983.813,
USD 76,695.169, and USD 120.236, respectively. The proposed hybridized optimization
method directs EV users to charge from and discharge to the regional MG with the presence
of renewable energy resources (wind and PV), which improves the economics of the
MG and realizes the operation management and environmental pollution regularized to
establish a friendly society.

In the future, studies on different scenarios, including the maximum renewable model,
the uncoordinated charging model, the load levelling model, and the charging-discharging
model, can be used to further enhance EV demand. Additionally, the effects of various
electric vehicle (EV) charging/discharging strategies on the costs associated with operation
and the removal of pollutants in remote micro-grid (MG) modes are also relevant areas for
future study.
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Nomenclature

MG micro-grid
EVs electric vehicles
MINLP multi-constrained optimization problems
PSO particle swarm optimization
DE differential evolution algorithm
ICA imperialist competition algorithm
MACPSO multi-agent chaotic particle swarm optimization
CPSO chaotic particle swarm optimization
DG distributed generation
Nd(t) number of EVs that respond to discharge information
Nc(t) number of EVs that respond to charging information
SOCi,max the state of charge
Pi,ch the power battery capacity
ηCEV charging efficiency
Puno(t) represents the total disordered charging
PresEV(t) EVs response charge and discharge
Pload(t) basic electricity load

References
1. Bibri, S.E. Data-Driven Smart Eco-Cities of the Future: An Empirically Informed Integrated Model for Strategic Sustainable Urban

Development. World Futures 2021, 1–44. [CrossRef]
2. Li, J.; Sun, W.; Song, H.; Li, R.; Hao, J. Toward the construction of a circular economy eco-city: An emergy-based sustainability

evaluation of Rizhao city in China. Sustain. Cities Soc. 2021, 71, 102956. [CrossRef]
3. Mignoni, N.; Scarabaggio, P.; Carli, R.; Dotoli, M. Control frameworks for transactive energy storage services in energy communi-

ties. Control Eng. Pract. 2023, 130, 105364. [CrossRef]
4. Scarabaggio, P.; Carli, R.; Dotoli, M. Noncooperative Equilibrium Seeking in Distributed Energy Systems Under AC Power Flow

Nonlinear Constraints. IEEE Trans. Control Netw. Syst. 2022, 1–12. [CrossRef]
5. Nazir, M.S.; Mahdi, A.J.; Bilal, M.; Sohail, H.M.; Ali, N.; Iqbal, H.M.N. Environmental impact and pollution-related challenges of

renewable wind energy paradigm—A review. Sci. Total Environ. 2019, 683, 436–444. [CrossRef]
6. Ma, H.; Zhang, C.; Peng, T.; Nazir, M.S.; Li, Y. An integrated framework of gated recurrent unit based on improved sine cosine

algorithm for photovoltaic power forecasting. Energy 2022, 256, 124650. [CrossRef]
7. Aziz, S.; Peng, J.; Wang, H.; Jiang, H. ADMM-Based Distributed Optimization of Hybrid MTDC-AC Grid for Determining Smooth

Operation Point. IEEE Access 2019, 7, 74238–74247. [CrossRef]
8. Egbue, O.; Uko, C. Multi-agent approach to modeling and simulation of microgrid operation with vehicle-to-grid system. Electr. J.

2020, 33, 106714. [CrossRef]
9. Yao, M.; Molzahn, D.K.; Mathieu, J.L. An optimal power-flow approach to improve power system voltage stability using demand

response. IEEE Trans. Control Netw. Syst. 2019, 6, 1015–1025. [CrossRef]
10. Rodrigues, Y.R.; de Souza, A.Z.; Ribeiro, P.F. An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G

in smart microgrid environments. Int. J. Electr. Power Energy Syst. 2018, 102, 312–323. [CrossRef]
11. Suresh, V.; Bazmohammadi, N.; Janik, P.; Guerrero, J.M.; Kaczorowska, D.; Rezmer, J.; Jasinski, M.; Leonowicz, Z. Optimal

location of an electrical vehicle charging station in a local microgrid using an embedded hybrid optimizer. Int. J. Electr. Power
Energy Syst. 2021, 131, 106979. [CrossRef]

12. Rajamand, S. Vehicle-to-Grid and vehicle-to-load strategies and demand response program with bender decomposition approach
in electrical vehicle-based microgrid for profit profile improvement. J. Energy Storage 2020, 32, 101935. [CrossRef]

13. Anastasiadis, A.G.; Konstantinopoulos, S.; Kondylis, G.P.; Vokas, G.A. Electric vehicle charging in stochastic smart microgrid
operation with fuel cell and RES units. Int. J. Hydrogen Energy 2017, 42, 8242–8254. [CrossRef]

14. Sattarpour, T.; Nazarpour, D.; Golshannavaz, S. A multi-objective HEM strategy for smart home energy scheduling: A collabora-
tive approach to support microgrid operation. Sustain. Cities Soc. 2018, 37, 26–33. [CrossRef]

15. Tidjani, F.S.; Hamadi, A.; Chandra, A.; Saghir, B.; Mounir, B.; Garoum, M. Energy management of micro grid based electrical
vehicle to the building (V2B). In Proceedings of the 2019 7th International Renewable and Sustainable Energy Conference (IRSEC),
Agadir, Morocco, 27–30 November 2019.

16. Sadeghian, O.; Oshnoei, A.; Mohammadi-Ivatloo, B.; Vahidinasab, V.; Anvari-Moghaddam, A. A comprehensive review on
electric vehicles smart charging: Solutions, strategies, technologies, and challenges. J. Energy Storage 2022, 54, 105241. [CrossRef]

111



Sustainability 2022, 14, 16172

17. Adil, M.; Mahmud, M.P.; Kouzani, A.Z.; Khoo, S. Energy trading among electric vehicles based on Stackelberg approaches: A
review. Sustain. Cities Soc. 2021, 75, 103199. [CrossRef]

18. Kumar, A.; Jha, B.K.; Das, S.; Mallipeddi, R. Power flow analysis of islanded microgrids: A differential evolution approach. IEEE
Access 2021, 9, 61721–61738. [CrossRef]

19. Venkatesan, K.; Govindarajan, U. Optimal power flow control of hybrid renewable energy system with energy storage: A
WOANN strategy. J. Renew. Sustain. Energy 2019, 11, 015501. [CrossRef]

20. Ajithapriyadarsini, S.; Mary, P.M.; Iruthayarajan, M.W. Automatic generation control of a multi-area power system with renewable
energy source under deregulated environment: Adaptive fuzzy logic-based differential evolution (DE) algorithm. Soft Comput.
2019, 23, 12087–12101. [CrossRef]

21. Garcia-Guarin, J.; Rodriguez, D.; Alvarez, D.; Rivera, S.; Cortes, C.; Guzman, A.; Bretas, A.; Aguero, J.R.; Bretas, N. Smart
microgrids operation considering a variable neighborhood search: The differential evolutionary particle swarm optimization
algorithm. Energies 2019, 12, 3149. [CrossRef]

22. Deepa, S.; Selladurai, R.; Chelladurrai, C. Cost minimization in a MicroGrid connected with Wind and PV generations using a
hybrid Cat Swarm optimization and micro Differential Evolution. In Proceedings of the 2019 9th International Conference on
Power and Energy Systems (ICPES), Perth, WA, Australia, 10–12 December 2019.

23. Moradi, M.H.; Abedini, M.; Hosseinian, S.M. Improving operation constraints of microgrid using PHEVs and renewable energy
sources. Renew. Energy 2015, 83, 543–552. [CrossRef]

24. Ikeda, S.; Ooka, R. Application of differential evolution-based constrained optimization methods to district energy optimization
and comparison with dynamic programming. Appl. Energy 2019, 254, 113670. [CrossRef]

25. Gholami, K.; Jazebi, S. Multi-objective long-term reconfiguration of autonomous microgrids through controlled mutation
differential evolution algorithm. IET Smart Grid 2020, 3, 738–748. [CrossRef]

26. Essiet, I.O.; Sun, Y.; Wang, Z. Optimized energy consumption model for smart home using improved differential evolution
algorithm. Energy 2019, 172, 354–365. [CrossRef]

27. Aziz, S.; Wang, H.; Liu, Y.; Peng, J.; Jiang, H. Variable Universe Fuzzy Logic-Based Hybrid LFC Control With Real-Time
Implementation. IEEE Access 2019, 7, 25535–25546. [CrossRef]

28. Fattahi, A.; Nahavandi, A.; Jokarzadeh, M. A comprehensive reserve allocation method in a micro-grid considering renewable
generation intermittency and demand side participation. Energy 2018, 155, 678–689. [CrossRef]

29. Aslam, S.; Khalid, A.; Javaid, N. Towards efficient energy management in smart grids considering microgrids with day-ahead
energy forecasting. Electr. Power Syst. Res. 2020, 182, 106232. [CrossRef]

30. Gholami, K.; Dehnavi, E. A modified particle swarm optimization algorithm for scheduling renewable generation in a micro-grid
under load uncertainty. Appl. Soft Comput. 2019, 78, 496–514. [CrossRef]

31. Arcos-Aviles, D.; Pacheco, D.; Pereira, D.; Garcia-Gutierrez, G.; Carrera, E.V.; Ibarra, A.; Ayala, P.; Martínez, W.; Guinjoan, F. A
Comparison of Fuzzy-Based Energy Management Systems Adjusted by Nature-Inspired Algorithms. Appl. Sci. 2021, 11, 1663.
[CrossRef]

32. Nazari, A.; Keypour, R. Participation of responsive electrical consumers in load smoothing and reserve providing to optimize the
schedule of a typical microgrid. Energy Syst. 2020, 11, 885–908. [CrossRef]

33. Mena, R.; Hennebel, M.; Li, Y.-F.; Zio, E. Self-adaptable hierarchical clustering analysis and differential evolution for optimal
integration of renewable distributed generation. Appl. Energy 2014, 133, 388–402. [CrossRef]

34. Marzband, M.; Fouladfar, M.H.; Akorede, M.F.; Lightbody, G.; Pouresmaeil, E. Framework for smart transactive energy in
home-microgrids considering coalition formation and demand side management. Sustain. Cities Soc. 2018, 40, 136–154. [CrossRef]

35. Garcia-Guarin, J.; Infante, W.; Ma, J.; Alvarez, D.; Rivera, S. Optimal scheduling of smart microgrids considering electric vehicle
battery swapping stations. Int. J. Electr. Comput. Eng. 2020, 10, 5093.

36. Cao, Y.; Tang, S.; Li, C.; Zhang, P.; Tan, Y.; Zhang, Z.; Li, J. An optimized EV charging model considering TOU price and SOC
curve. IEEE Trans. Smart Grid 2011, 3, 388–393. [CrossRef]

37. Tushar, M.H.K.; Zeineddine, A.W.; Assi, C. Demand-side management by regulating charging and discharging of the EV, ESS,
and utilizing renewable energy. IEEE Trans. Ind. Inform. 2017, 14, 117–126. [CrossRef]

38. Bewley, S.K. The Potential Market Applications of Distributed Generation of Electricity; Massachusetts Institute of Technology:
Cambridge, MA, USA, 2002.

39. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
40. Duman, S.; Sönmez, Y.; Güvenç, U.; Yörükeren, N. Optimal reactive power dispatch using a gravitational search algorithm. IET

Gener. Transm. Distrib. 2012, 6, 563–576. [CrossRef]
41. Shin, D.-K.; Lee, J.J. Analysis of asymmetric warpage of thin wafers on flat plate considering bifurcation and gravitational force.

IEEE Trans. on Compon. Packag. Manuf. Technol. 2014, 4, 248–258. [CrossRef]
42. Johannesen, N.J.; Kolhe, M.L.; Goodwin, M. Smart load prediction analysis for distributed power network of Holiday Cabins in

Norwegian rural area. J. Clean. Prod. 2020, 266, 121423. [CrossRef]
43. Midenet, S.; Boillot, F.; Pierrelée, J.-C. Signalized intersection with real-time adaptive control: On-field assessment of CO2 and

pollutant emission reduction. Transp. Res. Part D Transp. Environ. 2004, 9, 29–47. [CrossRef]

112



Citation: Chillab, R.K.; Jaber, A.S.;

Smida, M.B.; Sakly, A. Optimal DG

Location and Sizing to Minimize

Losses and Improve Voltage Profile

Using Garra Rufa Optimization.

Sustainability 2023, 15, 1156.

https://doi.org/10.3390/su15021156

Academic Editors: Herodotos

Herodotou, Sheraz Aslam and

Nouman Ashraf

Received: 4 December 2022

Revised: 1 January 2023

Accepted: 4 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Optimal DG Location and Sizing to Minimize Losses and
Improve Voltage Profile Using Garra Rufa Optimization
Riyadh Kamil Chillab 1, Aqeel S. Jaber 2,* , Mouna Ben Smida 1 and Anis Sakly 1

1 National Engineering School of Monastir (ENIM), University of Monastir, Ibn El Jazzar, Skaness,
Monastir 5019, Tunisia

2 Departments of the Electrical Power Engineering, Al-Ma’moon University College, Baghdad 10013, Iraq
* Correspondence: aqe77el@yahoo.com

Abstract: Distributed generation (DG) refers to small generating plants that usually develop green
energy and are located close to the load buses. Thus, reducing active as well as reactive power losses,
enhancing stability and reliability, and many other benefits arise in the case of a suitable selection
in terms of the location and the size of the DGs, especially in smart cities. In this work, a new
nature-inspired algorithm called Garra Rufa optimization is selected to determine the optimal DG
allocation. The new metaheuristic algorithm stimulates the massage fish activity during finding food
using MATLAB software. In addition, three indexes which are apparently powered loss compounds
and voltage profile, are considered to estimate the effectiveness of the proposed method. To validate
the proposed algorithm, the IEEE 30 and 14 bus standard test systems were employed. Moreover,
five cases of DGs number are tested for both standards to provide a set of complex cases. The results
significantly show the high performance of the proposed method especially in highly complex cases
compared to particle swarm optimization (PSO) algorithm and genetic algorithm (GA). The DG
allocation, using the proposed method, reduces the active power losses of the IEEE-14 bus system up
to 236.7873%, by assuming 5DGs compared to the active power losses without DG. Furthermore, the
GRO increases the maximum voltage stability index of the IEEE-30 bus system by 857% in case of the
4DGs, whereas GA rises the reactive power of 5DGs to benefit the IEEE-14 bus system by 195.1%.

Keywords: distribution generation; Garra Rufa ptimization; PSO; GA; power system

1. Summary

The interconnection of generation, transmission, and distribution with a centralized
control increases the power system complexity with the increase in the number of nodes
and branches. To overcome centralized control and long-distance power transmission, dis-
tributed generators (DGs) are among the most common clean energy solutions introduced
in the last 20 years [1–4]. Their advantages are not limited only to reduce the complexity
and enhance the environment as in the smart city. They are also extended to other indexes,
such as the economy, environment, quality, stability, losses, voltage profile, and sensitivity.
Those benefits have positively increased with the corresponding proper selection of each
benefit. On the other hand, within the context of intelligent optimization and control, the
huge thinking of the maximum economic operation and high efficiency, the researchers
spotlighted and paid attention to the intelligent behavior of nature [5–9]. The new artifi-
cial intelligence (AI) advances in software engineering are related to all scientific topics
which provide new opportunities and challenges for scientists for tackling highly complex
issues that are difficult to solve with conventional techniques [10,11]. The nature-inspired
algorithms ranked the highest in predicting the exact solutions, efficiency, and speed even
in multi-objective functions. Since intelligent optimization led the way in engineering
science, several studies have been conducted on the topic of determination of DG location
and size which are listed in the references [12–23]. For instance, Suresh and Belwin [12]
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used the Dragonfly algorithm to optimal DG size for multi-objective function. IEEE 15,
33, and 69 examined the algorithm performance. Ogunsina et al. [13] determined the
DG effect using the electrical transient and analysis program (ETAP) model for the IEEE
30 bus standard via enhancing the active power loss and voltage profile. The used method
was artificially intelligent colony optimization. The optimal size and sitting of DGs were
estimated by Marimuthu et al. [14] by a hybrid of particle swarm optimization (PSO) and
time-varying acceleration coefficients. The voltage Stability with other four objectives
were the goal for enhancing a 69-node power system. Montoya et al. [15] suggested a
solution for the DGs allocation by employing a master-slave technique using a modified
genetic algorithm (GA) that named the Chu-Beasley genetic algorithm. The master-slave
solved the mixed-integer nonlinear identification problem in the complex system and the
slave determined the optimal power flow using MATLAB. Another attempt of GA for
optimizing the allocation was introduced by Chandel et al. [16]. The differential evolution
was the comparison base that was selected to enhance five objective functions of the IEEE
18 standard system. Elhosseny et al. [17] developed a PSO technique for selecting the
location and the size of DG. The IEEE14 standard system was implemented to validate the
build-up of the PSO method for reducing power losses and improving voltage stability.
The power loss was reduced by using the Bat algorithm during the optimal selection of
DG size in [18]. The IEEE 33-bus standard was the only system that has been tested to
validate the system. Suresh and Edward [19] considered the hybridization of fuzzy and
one-rank cuckoo search algorithms as the best method to allocate DG. The power losses and
voltage profile were the objectives to improve IEEE 15-bus, 33-bus, and 69-bus test systems.
Abedini and Saremi [20] proposed a hybrid of two intelligent methods, PSO and GA, to
locate the DG with a fuzzy optimization idea to transfer the multi-objective into a single
objective problem. The method was tested using the 52-bus of Hamadan power networks.
A fuzzy logic control method with GA has been tested to optimize the D-STATCOM by
optimizing the allocation of the DG [21]. A radial distribution standard of 33-bus was
the system that examined the Fuzzy-GA method to improve three of the indexes of the
power system.

However, each of the optimal algorithms that is used in the literature has its own
drawback. For example, GA suffers from premature dependence convergence, slow con-
vergence, and difficulty in parameter determination [24,25]. The last iterations of PSO
converge slowly and drop easily into a locally optimal solution [24,26]. The convergence
rate of the bee colony is slow convergence, also has the same problem of PSO of the local
optimal point. The ant colony convergence is normally slow, and hilly dependent on param-
eter selection [24]. The modified and the hybrid methods are more complex and increase
the complexity of the system [26]. These limitations are due mainly to the use of Garra
Rufa optimization (GRO) for estimating the size and location of DGs. The high flexibility
feature of GRO may lead to solving the DGs issues. First of all, a simplified view of the
DG, the proposed method, and the used systems are introduced. Secondly, applying three
factors in one objective function that are active and reactive power losses minimization,
and voltage stability index enhancement. The three objectives were weighted depending
on the corresponding priority of each index on the power system’s economic and quality.
Moreover, the proposed method is applied to the 14 and 33-bus bar standard systems with
PSO and GA algorithms with five cases of distribution generator numbers.

Finally, the proposed optimization technique is compared with PSO and GA in order
to show its tracking performance via the active power losses, reactive power losses, and
voltage profile. By examining the optimal allocation of each method, the performance
validation is conducted by analyzing the IEEE of 14-bus and 30-bus.

2. Related Work

A population of strings representing several potential solutions makes up the popula-
tion used by the population-based search technique known as GA [27]. As a result, when
it’s used to solve challenging optimization issues, GA has latent parallelism that improves
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its search capabilities and speeds up the discovery of the optima. In order to discover a
globally optimal solution, GA is an effective point-based optimization technique that has
been widely used in a variety of engineering issue.

Another evolutionary computation method is used to validate the proposed method
is (PSO). PSO has been inspired by the behaviors of wildlife like swarming fishes and
flocking birds. In several cases, PSO is typically described as a clear, simple-to-use, and
computationally efficient technique.

The GA and PSO can be widely used to investigate optimal DG placement. The non-
linear model of the power system, as settled, has problems of irregularity and discontinuity.
The objective function organized by the genetic algorithm has a high feature of adaptability
compared to PSO [28]. PSO is more effective than GA and has a balanced method to
improve local and global exploration capabilities [29,30]. However, some shortcomings
have been found in the performance of most of the basic algorithms, such as GA, ABC,
ACO, CKO, and PSO [31]. Figures 1 and 2 represent the intelligent algorithms for GA and
PSO respectively.
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To overcome the drawback of many of the intelligent optimization methods, GRO
is one of the most flexible and efficient methods introduced to solve the highly complex
issues [32,33]. To understand the GRO mechanism, the algorithm could be simplified in
three steps. Step one is initialization, step two is the leaders’ crossover, and group followers’
crossover is the last step.

2.1. GRO Initialization

The main principle of GRO is to divide the total particles into more than one group,
each group has its’ own guide to the local and global optimal group points. Moreover,
initial assumptions must be assumed in the GRO algorithm such as each fish could be
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either a guide or a follower according to the corresponding global optimal point of each
group. Before the next iteration, a percentage of the followers will move from the weak
leader to the stronger one that got the best optimal value. This percentage must be initially
assumed. Other initial parameters are the inertia weight (ω) and acceleration coefficients
(c1, c2). The initialization equation is listed as shown [31].

f ollowers number =
total umber o f partcles− number o f groups

number o f groups
(1)

2.2. GRO Leaders’ Crossover

Two types of leaders’ crossovers are assumed in the GRO algorithm, firstly, a new
leader (guide) is elected for each group. Secondly, select the best leader to lead the number
one group which has the maximum number of followers. These steps are considered the
basis paving the way for the most important step, which gives flexibility to the method
of GRO.

2.3. GRO Followers’ Crossover

The flexible movement for the sleeve fish between the groups is more probability
to search in the problem space. The highly complex problems can cause disorientation
for all the intelligent optimization algorithms that have inflexible nature of moving from
one search space to another. This issue occurs due to a large number of ripples and the
multiplicity of parameters of complex problems. By the follower crossover between the
groups, GRO found a way to keep searching in the wider area space of the problem
by applying three steps. First of all, a random number of fish will move to the strong
leader from all other groups. Secondly, one step is moving toward each leader which
must be done by determining the velocity (vi) and the position (Xi) using the classical
Equations (2) and (3).

vi(t + 1) = ωvi(t) + c1r1(pi(t)− Xi(t)) + c2r2(Gi(t)− Xi(t)) (2)

Xi(t + 1) = Xi(t) + vi(t + 1) (3)

After that, the fitness of the new groups’ figures will be recalculated, including all
followers and leaders. Equations (4) and (5) represent the novelty steps of GRO.

moving f olwoersi = integer (£ ∗ random) (4)

f ollowersij = Max
((

f ollowersij−1 −moving f olwoersi
)
, o
)

(5)

where £ is the highest possible number of moving fish. Figure 3 shows the algorithms
flowchart of GRO method.
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In this paper, particle swarm (PSO) and GA optimization algorithms will be used for
comparison with GRO to optimize the size and location of the DGs. The PSO, GA, and
GRO basic fundamental equations are implemented without any further modifications
according to Kennedy and Eberhart (PSO) [34], Abedini (GA) [20], and Jaber [31].

3. Proposed System Model

As previously mentioned, power system models and their networks comprise a
nonlinear high-order system of equations that arise from a large number of parameters.

Thus, prior to solving the DGs problem of estimating their size and location, an
obvious objective function is required. The objective function of any DG allocation could
be one or more.

According to the power flow using the formulation that contained the different types
of power system variables (active reactive power, voltage, and power angle), important
indexes have been introduced to improve the power system quality, e.g., power losses,
voltage profile, reliability, stability, and economic issues. In this paper, three of the most
important challenges in DG topic are selected to determine the size and location of each
DG. The following indexes represent the base indexes formulas of the objective function.

3.1. Minimization of Total Active Power Losses

The total losses have a substantial effect on the total power generation, thus could
grow the economic and environmental merits. Two power systems are used to estimate the
current flow in the lines between the buses of those systems. These currents result in power
losses (PL) that represent the most important objective function which has a mathematical
model as (6).

PL =
Nu

∑
line=1

Gline(Vi
2 + Vs

2 − 2ViVs cos(αi − αs)) (6)

where Nu is the total number of transmission lines in the system, Gline is the conductance
of the line, Vi and Vs are the magnitudes of the sending end voltages and receiving end
voltages of the line, αi and αs are angles of the end voltages.

3.2. Minimization of Reactive Power Losses

QL are referred to as the complex part of the apparent power losses. The amount
of reactive power losses (QL) has a significant impact on conductor capacity and voltage
profile. In addition, the QL reduction could increase the stability and reliability indexes.
The second objective function in this study can be mathematically written as (7).

QL =
Nu

∑
line=1

Bline(Vi
2 + Vs

2 − 2ViVs sin(αi − αs)) (7)

where Nu is the total number of transmission lines in the system, Bline is the susceptance
of the line, Vi and Vs are the magnitudes of the sending end voltages and receiving end
voltages of the line, αi and αs are angles of the end voltages.

3.3. Voltage Stability Index Improvement

In order to satisfy the modern power system quality, the improvement of voltage
stability is essential that it is concerned with the power capability for maintaining acceptable
voltages at all buses in both normal and up normal conditions. In this paper, the voltage
deviation index is used to estimate the voltage stability index which is based on the
power flow calculations [35,36]. The described voltage stability index (VSI) is formulated
as follows:

VSI =
Nb

∑
Bus=1

(
Vre f −Vbus

)
(8)

where Nb is the number of buses; Vre f is the reference voltage; and Vbus is the bus voltage.
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From the other hands, the weights are selected to give the corresponding priority
to each impact indices of DGs allocation objective functions [37,38]. The appropriate
weight selection also relies on the experience of power system researchers and the heeds of
distribution side utilities. Nowadays, total power loss reduction in both of its components
is one of the major concerns in the power system operation and control due to its impact on
the economy, stability, and environment, while the voltage stability index is less important
than the power loss reduction. Hence, the weights for PL, QL, and VSI (w1, w2, and w3)
have been taken as 0.50, 0.15, and 0.35, respectively.

Moreover, in order to make the maximum and minimum values and the possible
changes of each index as a result of adding the DG homogeneous in terms of units and
influence, a corresponding base index was chosen that represents the same of each index
without adding the DG. Figure 4 represents the objective function calculation according to
the AI algorithm. Furthermore, the optimization problem is given by Equation (9)

objective = minimize
(

w1 ∗
PL with DG

PL without DG
+ w2 ∗

QL with DG
QL without DG

+ w3 ∗
VSI with DG

VSI without DG

)
(9)

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 13 
 

VSI =  (𝑉 − 𝑉௨௦) ே್
௨௦ୀଵ  (8)

where 𝑁 is the number of buses; 𝑉 is the reference voltage; and 𝑉௨௦ is the bus volt-
age. 

From the other hands, the weights are selected to give the corresponding priority to 
each impact indices of DGs allocation objective functions [37,38]. The appropriate weight 
selection also relies on the experience of power system researchers and the heeds of dis-
tribution side utilities. Nowadays, total power loss reduction in both of its components is 
one of the major concerns in the power system operation and control due to its impact on 
the economy, stability, and environment, while the voltage stability index is less im-
portant than the power loss reduction. Hence, the weights for 𝑃, 𝑄, and VSI (w1, w2, and 
w3) have been taken as 0.50, 0.15, and 0.35, respectively.  

Moreover, in order to make the maximum and minimum values and the possible 
changes of each index as a result of adding the DG homogeneous in terms of units and 
influence, a corresponding base index was chosen that represents the same of each index 
without adding the DG. Figure 4 represents the objective function calculation according 
to the AI algorithm. Furthermore, the optimization problem is given by Equation (9) objective = minimize(𝑤ଵ ∗ 𝑃 with 𝐷𝐺𝑃 without 𝐷𝐺 + 𝑤ଶ ∗ 𝑄 with 𝐷𝐺𝑄 without 𝐷𝐺 + 𝑤ଷ∗ 𝑉𝑆𝐼 with 𝐷𝐺𝑉𝑆𝐼 without 𝐷𝐺) 

(9)

 
Figure 4. The objective function. 

4. Result and Discussion 
The discovery of the high efficiency and flexibility of GRO in highly complex issues 

inspires the authors of this paper to utilize the algorithm to estimate the location and size 
of DGs in order to reduce active and reactive losses of power and improve voltage stabil-
ity.  

To achieve the results and performances of the prepared scenario, all tested cases and 
algorithms have been simulated by MATLAB. Additionally, the optimization algorithms 
are tested with the 30 and 14 bus IEEE standards which are shown in Figure 5.  

Figure 4. The objective function.

4. Result and Discussion

The discovery of the high efficiency and flexibility of GRO in highly complex issues
inspires the authors of this paper to utilize the algorithm to estimate the location and size
of DGs in order to reduce active and reactive losses of power and improve voltage stability.

To achieve the results and performances of the prepared scenario, all tested cases and
algorithms have been simulated by MATLAB. Additionally, the optimization algorithms
are tested with the 30 and 14 bus IEEE standards which are shown in Figure 5.

Besides, for fair comparisons, the objective functions are implemented using GRO,
PSO, and GA with the same different numbers of population and iterations depending on
the problem case and the system, as shown in Table 1.

Table 1. Algorithm parameters.

System 30 Bus 30 Bus 30 Bus 30 Bus 30 Bus 14 Bus 14 Bus 14 Bus 14 Bus 14 Bus

DGs-number 1 2 3 4 5 1 2 3 4 5

Particles 25 30 40 40 40 20 20 20 20 20

Iterations 30 30 35 40 40 20 20 30 30 30

118



Sustainability 2023, 15, 1156Sustainability 2023, 15, x FOR PEER REVIEW 7 of 13 
 

 
 

(a) (b) 

Figure 5. Tested systems (a) IEEE 30 bus system (b) IEEE 14 bus system. 

Besides, for fair comparisons, the objective functions are implemented using GRO, 
PSO, and GA with the same different numbers of population and iterations depending on 
the problem case and the system, as shown in Table 1. 

Table 1. Algorithm parameters. 

System 30 bus 30 bus 30 bus 30 bus 30 bus 14 bus 14 bus 14 bus 14 bus 14 bus 
DGs-number 1 2 3 4 5 1 2 3 4 5 

Particles 25 30 40 40 40 20 20 20 20 20 
Iterations 30 30 35 40 40 20 20 30 30 30 

4.1. Test Case 1: IEEE-14 Bus Standard 
Between 1 and 5 DGs are assumed to be added to the selected IEEE systems to find 

the effectiveness of DG of the objective functions. The addition of different numbers of 
DG is create multi complexity cases. Furthermore, the load flow calculations for all the 
cases have been done using the Newton–Raphson method. Table 2 shows the size and 
location for the three methods. 

  

Figure 5. Tested systems (a) IEEE 30 bus system (b) IEEE 14 bus system.

4.1. Test Case 1: IEEE-14 Bus Standard

Between 1 and 5 DGs are assumed to be added to the selected IEEE systems to find
the effectiveness of DG of the objective functions. The addition of different numbers of DG
is create multi complexity cases. Furthermore, the load flow calculations for all the cases
have been done using the Newton–Raphson method. Table 2 shows the size and location
for the three methods.

Table 3 describes some of the important directories for the changes in Loss saving and
voltage profile improvements by the three used methods. It can be noted from Table 3 that
all three methods have an impact on the apparent power losses and improve the stability
voltage index but in different values. In cases of single, two, and three generators, there is
no significant noted advance of GRO on the objective value, while the effectiveness of the
proposed method is clearly shown in the four and five DGs allocation problem solutions.

4.2. Test Case 2: IEEE-30 Bus Standard

In order to validate the proposed method, the same procedure sequence is followed
with a higher complex system of the IEEE system instead of the IEEE-14 bus. The IEEE-30
bus consists of six generators and 41 lines between the 30 buses. Tables 4 and 5 illustrate
the DGs locations for the five cases of the number of generators and the three cases of the
optimization methods.

The specific underlined values seen in Tables 3 and 5 show the best optimal values of
each optimization method for all the classes. To clarify those distinction of these optimiza-
tion methods, Figures 6–8 illustrate samples of power system improving in power losses
and voltage profile.
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As observed in Tables 3 and 5, there are loss savings in all three methods. The
maximum saving in the active power of the IEEE-14 bus system is 236.7873% in the case of
the 5DGs GRO method, and the minimum benefit is –9.7576% in the 1DG GRO method,
which means GRO failed in finding an acceptable solution. Moreover, the maximum saving
in the reactive power of the IEEE-14 bus system is 195.1% in the case of the 5DGs GA
method, and the minimum benefit is −7.1173% in the 1DG GRO method. Furthermore, the
maximum saving in the voltage stability index of the IEEE-14 bus system is 515.2% in the
case of the 5DGs GRO method, and the minimum benefit is 107.6 in the 1DG GRO method.
While the best objective function is 0.212 in the case of the five DG GRO method, the worst
value is 0.547 in both GA and GRO single DG.

The maximum saving in the active power of the IEEE-30 bus system is 216.6% in
the case of the 5DGs GRO method, and the minimum benefit is 50.07% in the 1DG GRO
method. Moreover, the maximum saving in the reactive power of the IEEE-30 bus system
is 193.8% in the case of the 3DGs GA method, and the minimum benefit is 39.79% in the
1DG GRO method. Furthermore, the maximum saving in the voltage stability index of
the IEEE-30 bus system is 857% in the case of the 4DGs GRO method, and the minimum
benefit is 32.04% in the 2DG GA method. While the best objective function is 0.299 in the
case of the five DG GRO method, and the worse value is 0.606 in both GA 2DGs.
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Of the ten cases that were selected to study the new method which represents a multi-
level of complexity, seven of the cases were advanced via the objective function using GRO,
while two and one cases are optimized better by using PSO and GA, respectively. Moreover,
all the high levels of complexity had a better solution using the proposed method.

Converge mechanism of the proposed optimization methods by searching in sev-
eral areas in the problem space is the reason behind the overcome of GRO method in
most cases. The convergence for two cases of each optimization method is shown in
Figures 9 and 10. Additionally, all the other load flow results and figures can be shown in
Supplementary Materials.

From Figures 9 and 10, it can be noted that for the assumed iterations and the same
number of search particles, GRO converges more effectively than the others (GA, PSO) in
terms of the minimum objective function. Moreover, in Figure 10, GRO could find a better
solution even after five constant iterations (from 10 to 15). This gives the impression that
GRO may be successful in skipping in falling into a single optimal point.
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5. Conclusions

In this work, the GRO, a recent nature-inspired algorithm, has been utilized to specify
DGs’ location and size in power network distribution. The proposed method was investi-
gated on two well-known IEEE14 and IEEE30 bus standards by DG, 2DGs, 3DGs, 4DGs,
and 5DGs installation and succeeded in terms of loss reduction improvement in voltage
stability. Three algorithms, including GA, PSO, and GRO, were applied to solve the as-
signed issue for comparative aims. As a result of proper DG allocation using the proposed
methods, the active and reactive power losses were reduced and the voltage stability index
was enhanced up to 236.7873%, 857%, and 195.1% respectively. Moreover, there was a
single case where the GRO was unable to find a proper solution, which was reducing the
reactive power in a single DG and IEEE 14-bus standard. The GRO mechanism and its
superior exploration and exploitation features over other swarm intelligence methods for
solving highly complex engineering optimization issues were conveyed. In the end, it is
expected that the GRO may provide efficient solutions to existing highly complex power
engineering issues, such as load forecasting or load frequency control. On the other hand,
the newly proposed method can be modified to be able to solve low-complex problems
with more accuracy.
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Abstract: The current study uses a data-driven method for Nontechnical Loss (NTL) detection using
smart meter data. Data augmentation is performed using six distinct theft attacks on benign users’
samples to balance the data from honest and theft samples. The theft attacks help to generate
synthetic patterns that mimic real-world electricity theft patterns. Moreover, we propose a hybrid
model including the Multi-Layer Perceptron and Gated Recurrent Unit (MLP-GRU) networks for
detecting electricity theft. In the model, the MLP network examines the auxiliary data to analyze
nonmalicious factors in daily consumption data, whereas the GRU network uses smart meter data
acquired from the Pakistan Residential Electricity Consumption (PRECON) dataset as the input.
Additionally, a random search algorithm is used for tuning the hyperparameters of the proposed
deep learning model. In the simulations, the proposed model is compared with the MLP-Long Term
Short Memory (LSTM) scheme and other traditional schemes. The results show that the proposed
model has scores of 0.93 and 0.96 for the area under the precision–recall curve and the area under the
receiver operating characteristic curve, respectively. The precision–recall curve and the area under
the receiver operating characteristic curve scores for the MLP-LSTM are 0.93 and 0.89, respectively.

Keywords: deep learning; GRU; healthcare; MLP; non-technical losses; PRECON; smart cities; smart
grids; smart meters

1. Background

One of the major achievements of smart grids was the development of the Advanced
Metering Infrastructure (AMI) system [1]. This system reduces the danger associated with
electricity theft by using its fine-grained computations and tracing ability [2]. However, an
increase in the system’s usage increases energy theft and consequently leads to a loss of
electricity [3]. The loss of electricity is among the problems that reduce the performance of
the power grids. There are two types of electricity losses. The first are known as Technical
Losses (TLs) and the second are known as Non-Technical Losses (NTLs) [4]. The electric
heating of resistive components in transformers, transmission lines, and other types of
equipment causes TL, while electricity thefts, billing mistakes, and meter faults are the most
common cause of NTL [3]. Electricity companies are particularly interested in reducing
NTLs, since it accounts for a significant portion of the overall energy losses. Energy
theft is the major type of NTL that involves bypassing meters, modifying the meter’s
readings, etc. The Electricity Consumption (EC) behavior of users may vary from customer
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to customer. Nonetheless, identifying NTL patterns among all of the usual patterns of EC
is a crucial task. In order to capture different types of NTL behaviors, handcrafted feature
engineering approaches have been used. However, these approaches are costly as well as
time-consuming due to their reliance on expert knowledge [3].

On the one hand, energy theft has resulted in losses of more than 20% of India’s total
energy supply and 16% of China’s accumulative energy supply [5]. On the other hand,
financial losses due to energy theft are approximately 100 million and 6 billion dollars
per year for Canada and USA, respectively [6], while Pakistan faces an annual loss of
approximately 0.89 billion rupees as a result of NTLs [7]. Theft of energy has long been a
severe problem in conventional power networks worldwide. Different users show different
patterns of Electricity Consumption (EC). Nonetheless, distinguishing NTL patterns from
regular EC patterns is challenging. To detect and address these NTLs, many approaches
are employed [8,9]. These approaches are classified into three fundamental groups: hybrid-
oriented, network-oriented, and data-driven-oriented detection systems. The data-driven
methods have attracted the attention of academics and research scholars for performing
Electricity Theft Detection (ETD) over the last few years.

The data-driven method is composed of machine learning-based classifiers that are
used to detect NTLs [7]. These solutions are also used in various fields like healthcare,
education, and transport. In [10], deep learning models were trained as binary classifiers
to detect energy thefts. The authors investigated several deep learning models, such as
the Convolutional Neural Network (CNN), Multi-Layer Perceptron (MLP), Long-Short
Term Memory (LSTM), and Gated Recurrent Unit (GRU) networks. However, due to
inefficient tuning of hyperparameters, these models exhibit poor generalization. To tackle
the generalization issue, previous studies used the Grid Search Algorithm (GSA) to tune the
hyperparameters of the models. However, the GSA requires high computational resources
to find the optimal combination of parameters.

According to [11,12], ensemble models fail to identify diverse theft patterns of EC due
to a significant imbalance in data, resulting in a high False Positive Rate (FPR). Therefore,
we propose the use of a hybrid of neural networks referred as MLP-GRU to detect energy
theft. Actual smart meter data and auxiliary information from the consumers are used for
the data analysis.

The authors of [12] conducted a detailed analysis of ensemble models based upon
boosting and bagging methods. They observed that the Random Forest (RF) model obtained
the highest DR and the lowest FPR. Moreover, the authors implemented two data balancing
techniques, i.e., the Synthetic Minority Oversampling Technique (SMOTE) and near-miss,
to compare both oversampling and undersampling algorithms. However, there may be an
increase in the chances of overlapping classes when using SMOTE, as it can increase the
existence of noise. The problem of anomaly detection was addressed in [13]. In the proposed
work, the authors used a deep learning approach this is capable of distinguishing between
regular and anomalous consumption patterns. They also handled the drift concept by
discriminating between nonmalicious and real anomalies. However, there is a substantial
delay between the occurrence of an anomaly and its detection in the proposed approach.

Existing Machine Learning (ML) algorithms require an equal number of instances
for each class during model training. For minority classes, these models have a poor
predictive performance. For the detection of electricity thefts, there is a lack of theft data in
the real world. Therefore, we synthetically generated the theft data using data balancing
techniques [14]. Many studies have used different balancing techniques; however, such
techniques have a high computational time and executional complexity. In [14], the authors
proposed a hybrid technique, K-SMOTE, for data balancing. In the model, a k-means
clustering algorithm is used to determine k clusters for abnormal samples. Afterwards,
SMOTE is applied on the clusters of theft samples for interpolation to balance the complete
data. Based on the balanced data, Random Forest (RF) classification is performed to detect
electricity theft behavior. However, to determine optimal values of k and perform tuning
of other hyperparameters for data balancing, an optimization algorithm is required.
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With the emergence of smart meters, diverse types of energy theft cases have been
introduced, and these are difficult to detect using the existing techniques. The authors
of [15] presented a statistical and ML-based system designed to identify and alert cus-
tomers about energy theft. In previous studies, several data-driven techniques for the NTL
identification issue have been used. The majority of these studies have concentrated on
boosting approaches while ignoring bagging methods, such as Extra Trees (ET) and RF.
Furthermore, ML models, such as the Support Vector Machine (SVM) and neural networks,
have high FPR values and low detection rates. Neural networks were used in [16] for the
prediction of coalbed methane well production.

In [17], the authors employed an Extreme Gradient Boosting (XGBoost) technique to
classify the malicious users. However, because of the imbalanced dataset, this technique
has a high FPR and requires more onsite inspections. The authors of [18] introduced a
boosting method called the Gradient Boosting Theft Detector (GBTD), which is based on
three existing boosting models: XGBoost, light gradient boosting, and categorical boosting.

The data-driven methods can be broken down into nonsupervised and supervised
learning. The nonsupervised learning techniques have acquired significant attention for
their use in identifying energy theft nowadays. However, on big datasets, these techniques
lack generalization and can also lead to high FPR values due to the fluctuations in load pat-
terns. The authors of [19] exploited an unsupervised learning model called the Stack Sparse
Denoising Auto-Encoder (SSDAE) detector, which extracts abstract features from large
datasets. However, auto-encoders tune many hyperparameters, thereby consuming more
processing time. Moreover, the SSDAE detector must be rectified regularly with incoming
training samples. In [20], the authors introduced a novel solution to data augmentation
and relevant feature extraction from high dimensional data using a Conditional Variational
Auto-Encoder (CVAE) in conjunction with a CNN classifier.

Various experiments on energy theft identification in AMI have been carried out using
ML techniques. The authors of [21] presented an unsupervised learning based anomalous
pattern recognition technique to identify energy theft in data streams provided by smart
meters. The technique only uses regular consumer usage data for model training. However,
the classifier may recognize high energy usage patterns over weekdays and holidays.
Furthermore, in [22], the authors proposed a Consumption Pattern-Based Energy Theft
Detection (CPBETD) approach to leverage the predictability of consumers’ benign and
fraudulent class samples. However, the SVM misclassification rate limited the DR, resulting
in a high FPR.

Most researchers have focused on EC nonmalicious patterns [23]. However, previous
studies have shown poor detection rates and accuracy regarding NTL detection. In [23],
the authors developed a hybrid K-means-DNN approach, which is a combination of the
K-Nearest Neighbor (KNN) and Deep Neural Network (DNN). The approach detects
electricity theft in power grids. However, its detection performance is low. The authors
of [24] suggested a hybrid method that enhances the internal structure of the standard
LSTM model combined with the Gaussian Mixture Model (GMM). However, the proposed
method is applicable only for low dimensional space data and is not very robust. In [25],
the authors proposed a hybrid technique based on the SVM and Decision Tree (DT) for
detecting illegal consumers. However, no effective performance measures were used for
the combined technique’s evaluation.

Contribution List

The key contributions of this paper are as follows:

• A hybrid model, referred as MLP-GRU, that identifies NTLs using both metering data
and auxiliary data is proposed.

• A data augmentation technique is used due to the scarcity of theft samples. This
study uses six theft scenarios to create synthetic instances of EC by modifying the
honest samples.
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• Meanwhile, a Synthetic Minority Oversampling Technique (SMOTE) is employed to
maintain a balance between synthetic and benign samples.

• An optimization algorithm, known as the Random Search Algorithm (RSA), is used to
effectively tune the MLP-GRU model’s hyperparameters.

The rest of the manuscript is structured as follows. A detailed discussion of the
proposed model is provided in Section 2. Afterwards, performance evaluation metrics are
described in Section 3. Section 4 discusses the simulation results, while the conclusion of
the paper is given in Section 5.

2. Proposed System Model

The proposed work is an extended version of [26]. The model proposed for detecting
electricity theft includes two stages: training and testing. These two stages are generally
comprised of five major steps. Figure 1 depicts the complete methodology outline of
this study.
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Figure 1. Methodology outline.

(1) The data preprocessing take place before the training step in the first stage. The data
interpolation method is employed to fill in the dataset’s missing values. Following that,
a standard-scalar technique is used to normalize the data, which is a min-max procedure.

(2) Data augmentation is performed after the data have been standardized and cleaned.
Different theft patterns are created by modifying the honest users’ samples using six
theft scenarios [18].

(3) Since the proportion of the theft class exceeds the benign class, SMOTE is applied on
the benign class to balance the dataset.
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(4) Afterwards, the preprocessed data are used to train the model. The datasets from
the smart meters and relative auxiliary information are sent to the GRU and MLP
networks, respectively. The RSA is used to effectively tune the parameters of the
classifiers.

(5) In the last step, efficient performance metrics, such as the accuracy, F1-score, Area
Under the Receiver Operating Characteristics Curve (AUC-ROC)m and Area Under
the Precision–Recall Curve (PR-AUC) are used for evaluating the proposed model’s
performance.

During the second stage, we validated the model’s performance by evaluating the
unseen data to identify whether the new data belonged to the benign class or the theft class.
These steps are shown in Figure 2 and are discussed in the following subsections.
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Figure 2. MLP-GRU model architecture.

2.1. Data Preprocessing

The EC data typically contain missing or incorrect numbers due to erroneous data
transmission, short circuits in transmission equipment, smart meter failure, and storage
problems. The classifier wrongly classifies fraudulent consumers due to missing data in
the dataset. We applied an interpolation approach, the simple imputer, to fill in the missing
values in the dataset [10]. It was used to impute missing data using the mean, median and
so on.

Furthermore, data interpretation becomes complex when the data are spread across a
vast scale as the execution time grows. Thus, we normalized the data through a standard-
scalar technique, which was used to scale inconsistent data within 0 and 1 to improve the
prediction models.

2.2. Data Balancing and Data Augmentation

In the real world, there a fewer nonhonest users’ consumption samples as compared
with the amount of benign users’ samples. ML or deep learning models are biased towards
majority class samples during training when the dataset is imbalanced. Moreover, they fail
to recognize minority class instances that lead to performance degradation.

To address this issue, a variety of resampling techniques have been proposed in the
literature [3,17,20]. Undersampling techniques result in the loss of critical data. In contrast,
oversampling approaches replicate samples that are likely to be overfitted. The authors
of [27] used the One-Dimensional-Wasserstein Generative Adversarial Network (WGAN),
which takes a significant amount of time to generate synthetic patterns. Given the significant
disparity between massive datasets of energy used and the shortcomings of previous
methods, we created synthetic theft instances by altering benign samples in our proposed
study. As shown in Figure 3, the Pakistan Residential Electricity Consumption (PRECON)
dataset only contains normal users’ samples. Electricity theft samples are also needed

130



Sustainability 2022, 14, 15001

for training the deep learning classifiers to detect electricity theft. Thus, we performed
data augmentations through synthetic theft attacks to get nonhonest users’ patterns. The
samples from fraudulent users were created by modifying the samples of normal users
using the six theft attacks. The distribution of augmented data samples is depicted in
Figure 4. The six existing theft cases were used to produce distinct malicious patterns
using normal ones to train the deep learning classifiers with various theft patterns [10]. The
generation of distinct theft patterns to provide diversity in the dataset is an essential feature.

Subsequently, SMOTE was employed to balance the minority class (benign) and
majority class (theft) samples. Figure 5 shows the distribution of balanced data using
SMOTE. When we generate malicious samples in the dataset, the proportion in the theft
class exceeds the benign class. Therefore, we applied SMOTE to the benign class to balance
the dataset. In this case, training ML or deep learning models on imbalanced datasets
biases the model towards the majority class and adversely affects the model’s performance.
Thus, oversampling was performed on the data points of the benign class using SMOTE to
balance the generated theft instances for each day.
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Figure 3. Imbalanced data distribution (Benign class).
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Figure 4. Augmented data using attacks.
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Figure 5. Balanced data distribution.

2.2.1. Six Theft Cases

Existing theft scenarios were used for generating theft data from different attacks by
modifying the smart meters’ data [18]. In the proposed model, we represent the real daily
energy consumption of a home H as Ht, where Ht = [H1, H2, H3, . . . , H48] and T = 48 (total
actual energy usage per day). We used these theft scenarios to modify the actual energy
usage behavior, where t belongs to [1, 48]

(A1). Ht = Ht ∗ a, where a = rand (0.1, 0.9),
(A2). Ht = Ht ∗ bt, where bt = rand (0.1, 1.0),
(A3). Ht = Ht ∗ ct, where ct = rand [0, 1],
(A4). Ht = mean (H) ∗ dt, where dt = rand (0.1, 1.0),
(A5). Ht = mean (H),
(A6). Ht = HT−t.

The first theft attack produces fraudulent patterns by multiplying the consumption of
honest users with values randomly produced within the range of 0.1 to 0.9. In theft case 2,
each consumer’s meter reading is multiplied by a distinct random integer, ranging from
(and including) 0.1 to 1.0. The generated values show a discontinuity in tracing the theft
data and the manipulated values.

Theft case 3 is an on-off attack in which a consumer either submits the actual readings
or a zero value is submitted as its EC. This means that the normal users’ samples are
multiplied by 1 during a random period t; otherwise, they are multiplied by zero. Further-
more, for theft attack 4, the average energy consumed for all users is multiplied with a
randomly generated value in the range of 0.1 to 1.0 exclusively. As a result, the malicious
users under-report the actual energy they consumed. For theft attack 5, the average energy
consumed by all users is reported and is the same throughout the day. Theft case 6 changes
the sequence of the real EC, for example, by shifting the order of consumption data from
peak to off-peak hours [14].

The daily energy usage patterns and six distinct forms of theft cases are shown in
Figures 6 and 7.

2.2.2. Hybrid MLP-GRU Network

The hybrid neural network, MLP-GRU, introduced in this work aims to integrate the
metering data and auxiliary information. Table 1 shows the auxiliary dataset features with
their descriptions. Our proposed method was influenced by the work undertaken in [4]
to identify electricity theft, where the authors proposed a hybrid deep neural network,
MLP-LSTM. In the proposed model, the GRU network receives the preprocessed EC data
from the smart meters. It generalizes the embedding for a shorter processing time by
employing few cells. Meanwhile, the auxiliary dataset is provided as an input for the MLP
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using 20 neurons. This design is highly efficient, since it allows simultaneous training on
both forms of input data. Afterwards, the batch normalization layer is used to normalize
the data until it is submitted to the final layer. In the model, the sigmoid activation function
in the last layer only has one neuron. The subsections below provide a thorough description
of each network.
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Figure 6. Attack patterns 1, 2, and 5.
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Figure 7. Attack patterns 3, 4, and 6.

Table 1. Representation of the shortcomings and the proposed solutions.

Shortcomings Proposed Solutions Evaluation

L1 and L2: imbalanced dataset issue
and inadequate training data

S1: Employ six theft attacks on normal samples,
then apply SMOTE to balance the dataset

V1: Comparison with
oversampling techniques

L3: Misclassification as a result of
non-malicious circumstances S2: Integrate auxiliary data V2: Performance comparison with

traditional models

L4: Inappropriate tuning of
model’s hyperparameters S3: RSA V3: Compare the RSA with the

existing GRA approach

2.2.3. Gated Recurrent Unit Network for Smart Meter Data

The GRU is a variant of the LSTM that overcomes the computational complexity of
the LSTM by considering few gates, as it eliminates the output gate. The GRU includes
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an update gate (long-term memory) and a reset gate (short-term memory), as shown
in Figure 8.

rt = σ(Xt ∗Vr + Ht−1 ∗Wr + Br), (1)

ut = σ(Xt ∗Vu + Ht−1 ∗Wu + Bu). (2)

According to Equations (1) and (2) [15,28], rt and ut denote the number of times the
reset gate and update gate have been enabled, respectively. Vr and Vu denote the weights of
the input layer, while Wr and Wu indicate the recurrent weights of the GRU. The biases of
the deep network are denoted by the variables Br and Bu. Xt is the current input state and
Ht−1 is the previous layer input. All values of the reset and update gates are multiplied by
the sigmoid activation function, denoted as σ [29].

Dn = c ∗ d1, c ∗ d2, c ∗ d3, . . . c ∗ di, (i = 1, 2, 3, . . . , 365). (3)

Equation (3) indicates the daily energy consumption data over the year. c ∗ di presents
the 365 days of consumption records. The GRU network examines the whole EC history of
smart meters on a daily basis and generates the final result. The final predicted outcome of
the GRU network and the output of the MLP network are activated using a single activation
function to generate a combined prediction.

Update Gate
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Wr Wu

Vrr Vu
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*
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Figure 8. GRU model architecture.

2.2.4. Multi-Layered Perceptron Network with Auxiliary Data

The auxiliary dataset is analyzed using the MLP network. The MLP contains more
than one hidden layer of neurons. The validation dataset is used to choose these hidden
layers in the MLP network.

Hn = σ(∑ Ui,n ∗ Xi + Bn), i = 1, 2, . . . , N, (4)

Yn = σ(Un ∗ Hn−1 + Bn). (5)

According to Equations (4) and (5) [4], Un denotes the weights of layer n, Hn−1
indicates the previous hidden states of the input layer, and Bn represents the bias. After
processing the input values, the activation function that activates the neuron is called and
determines whether to send the values to the next layer or not. σ represents the sigmoid
activation function. Equation (5) shows the output layer, which is denoted as Yn. In this
study, we used the Rectified Linear Unit (ReLU) activation function in the hidden layer,
while for the final output layer, a sigmoid activation function was used for the binary
classification [15]. To accelerate the network convergence, a batch normalization layer
was added to standardize the input values. Afterwards, a dropout layer was added as a
regularization technique to reduce overfitting.
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2.2.5. Random-Search-Based Parameters’ Optimization Algorithm

A critical challenge in the development of deep learning models is the appropriate
setting of hyperparameters to achieve optimal results. Inappropriate selection of hyper-
parameters adversely affects the training activity as well as the time complexity of deep
learning models. The fundamental goal of deep learning classifiers is to improve the
accuracy of the classification results. Therefore, the selection of a suitable learning rate,
number of neurons, number of hidden layers, batch size, activation function, epochs, and
other hyperparameters of deep learning classifiers has significant impacts on the model’s
performance. In order to achieve optimal results, the important hyperparameters of the
classifiers need to be optimized (tuned). In recent research, the GSA has been considered
in many machine and deep learning algorithms for the tuning of hyperparameters [4,30].
For instance, we used hyperparameters hp1, hp2 and hp3 of an ML model M. The GSA
specifies the range of values for each hyperparameter. Afterwards, it creates many dif-
ferent M versions using different combinations of hyperparameter values. This range of
hyperparameter values is referred to as the grid.

Moreover, the manual selection of hyperparameters and GSA makes it somewhat
easier for the user to define these essential parameters. However, both techniques take
a long time to converge. On the other hand, GSA remains a computationally intensive
method, particularly as the number of hyperparameters grows and the interval between
discrete values shrinks [30].

In the case of high dimensionality, when several hyperparameters drastically grow,
the GSA method suffers a lot and is computationally overburdened. It takes the maximum
time during tuning, even in cases with a small number of hyperparameters. Since there
is no guarantee of finding the best solution, in this study, a RSA method was employed
to improve the classification accuracy of the models. The RSA is a stochastic optimization
algorithm that is invaluable for finding the optimal solution globally with fast-running
simulations. It performs searching using random combinations of hyperparameter values
to train a model. Additionally, it is more effective in high-dimensional space.

The RSA consists of five major steps:

• The initial value is stored in a variable, denoted by x.
• If the values stored in x are target node values, the algorithm immediately stops with

the success. Otherwise, it moves to the next step.
• The values of x are updated to get the optimal possible combination of x. We obtain

the number of child nodes (values of x) and store them in another variable C.
• A value from all possible combinations of child node values is randomly selected.
• The values of x are replaced with the new values, and then the process returns to

step 2 for validation, where the existing values are compared with the target values.
The process continues until the final optimal solution is reached. Figure 9 shows the
process of tuning hyperparameters with the RSA.

To optimize the hyperparameters, we used the following steps.
Step 1: The hyperparameters are initialized with their possible range. To train our

hybrid MLP-GRU model, the hyperparameters, such as the activation function, epochs, the
number of hidden layers, batch size, etc., are defined. The RSA samples a set of values for
each of these hyperparameters and makes a grid of all available values from their respective
distributions and uses it for training.

Step 2: During the evolution period, only one solution is retained. A random vector is
added to the solution after each epoch. The process is repeated numerous times, resulting
in the training of several models.

Step 3: The new solution is checked after it has been measured. If the new solution is
superior to the old one, then it is acknowledged as the correct one; otherwise, the old one
remains unchanged.

Step 4: The best combination of the values of the hyperparameters is eventually
preserved.
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Figure 9. Flowchart of the Random Search Algorithm.

Table 2 displays the set of values that are searched and the best values that are
discovered or revealed by the RSA during the tuning of the proposed MLP-GRU model.
The best values are explored by tracking the results of the validation dataset. The RSA can
monitor different random combinations of hyperparameters. To train the MLP-GRU model,
the hyperparameters, like epochs, number of hidden layers, etc, are defined. The RSA can
sample a set of values for epochs and hidden layers from their respective distributions
that are used for training. The process is repeated several times until the desired results
have been obtained. Table 3 shows the hyperparameters and their optimal values that were
found using the GSA during the tuning of the existing MLP-LSTM model. However, we
considered fewer hyperparameters due to their high computational time.

Table 2. Auxiliary Dataset Information.

Data Type Description (MLP Input Data) Size of Data

Residents’ Information Temporary residents and permanent residents 2

People Total number of people including adults, children 3

Appliances
Number of appliances in a home including washing machine, fridge, iron,
electronic devices, fans, AC, water-pump, UPS, water-dispenser, refrigerator
and lightening devices

11

Connection Type Single-phase and multi-phase 2

Rooms’ Information Number of rooms including bed room, living room, kitchen, washroom,
dining room 6

Roof or Ceiling The total height of ceiling, ceiling insulation used, ceiling insulation not used 2

Building Year The year of building construction 1

Property Area The area or location of house 1

Floors The total number of floors in a building 1
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Table 3. The Proposed MLP-GRU-Random Search Method.

Hyperparameter Optimal Value Values Range

Units 100 100, 10, 15, 50, 20, 35, 400, 25

Optimizer Adam Adam, Adamax and SGD

Dropout 0.01 0.3, 0.2, 0.5, 0.01, 0.1

Batch-size 32 10, 32, 25, 15

Activation function relu relu, elu, sigmoid, softmax, tanh and linear

Epochs 10 15, 25, 10, 20

3. Performance Measurement Indicators

In this section, we conduct a thorough examination of the proposed hybrid model’s
performance in comparison with the existing hybrid MLP-LSTM classifier. The accuracy,
F1-score, PR-AUC, and ROC-AUC are effective performance indicators that are used to
evaluate the performance of the techniques. These indicators are determined using the
core confusion metrics, which are composed of four crucial error rates: False Positive (FP),
False Negative (FN), True Positive (TP)m and False Negative (FN) [31]. These metrics
indicate the total number of consumers wrongly classified as thieves, accurately labeled
as fair consumers, erroneously identified as honest consumers, and correctly labeled as
thieves [32]. Accuracy is a widely used performance measure that represents the percentage
of correct model predictions. It offers the measures of predictability for TPs and TNs in the
classifier. It quantifies how well the model predicts TPs and TNs. However, it frequently
fails for imbalanced datasets.

Accuracy = (TP + TN)/(TP + TN + FP + FN). (6)

Mathematically, Equation (6) exhibits accuracy [31]. Other metrics were employed
due to the lack of a specific measure for FP and FN predictions. The harmonic mean of
recall and precision is called the F1-score, which is calculated by Equation (7).

F1-score = 2 × (Recall × Precision)/(Recall + Precision). (7)

One of the main objectives of ETD is to enhance the TPR or Detection Rate (DR) while
simultaneously reducing the FPR. Thus, the ROC-AUC is a useful metric for identifying
NTLs in binary classification problems [33]. It demonstrates the relationship of TPR with
FPR at different threshold values. A score is a number between 0 and 1 that represents
how different the two classes are. An AUC score of 1 indicates a perfect detection method.
In the case of an imbalanced dataset problem, it is more reliable in terms of evaluating
the model’s performance. FPR and TPR are beneficial for assessing the performance of
a model. However, the precision of the model is not considered using these measures.
Thus, the PR-AUC is a valuable performance measure that is used for evaluating the
model’s performance. It is more appropriate for imbalanced datasets as compared with
balanced datasets.

4. Simulations and Findings

The simulation findings of the proposed model are discussed in this section. The
PRECON dataset was used to test the proposed model. Python was used to carry out
the simulations. The proposed model was implemented using an Intel Core i3 with 4 GB
of RAM. Additionally, a Google Colaboratory application was used in conjunction with
Python language packages such as NumPy, pandas, TensorFlow, Keras, etc. to simulate
the data.
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4.1. Data Acquisition

The proposed model was trained and tested on the actual smart meter dataset of
PRECON [34], which is publicly available. It contains information about energy demand,
including half-hourly electricity usage records from 42 residential properties. The PRECON
smart meter dataset includes half-hourly energy consumption data with 48 features that be-
long to the normal users’ consumption class, while the auxiliary dataset contains 28 features.
Based on the dataset of honest users, we identified six types of theft attacks to generate
malicious users’ consumption patterns. We divided the consumption behavior of users on
a half-hourly basis, while attacks were assessed on a yearly consumption basis. This helped
us to analyze the daily consumption behavior of a user and identify nonmalicious users’
patterns, as was done in [35,36] (to identify the periodicity in consumption). After applying
attacks, we oversampled the minority class (benign) samples using SMOTE to balance the
malicious attack class. The auxiliary information was provided to identify nonmalicious
factors, which can cause a high misclassification rate. This included information on high
energy consumption equipment and load profiles for the entire home. The utility provided
the labeled dataset by inspecting it at least once. As a result, it is reasonable to assume
that all samples belonged to trustworthy consumers. In addition, the dataset was split
into a ratio of 80% training and 20% testing samples in a stratified manner, where 3494
instances were used in the training set and 874 were used in the testing set. Moreover,
being motivated by [4], the proposed model was compared with the deep learning models
and not the traditional machine learning models.

4.2. Evaluation Results

Figure 10 demonstrates the ROC curve of the proposed model after data balancing.
The comprehensive scores of measurement are shown in Table 4. The proposed MLP-GRU
model bet the single GRU classifier on the test data with an AUC score of 0.93. This
indicates that the incorporation of auxiliary information such as permanent occupants,
property area, and contracted power improve the performance by lowering the FPR. We
also noticed that the performance of the hybrid MLP-LSTM was quite similar to our model,
obtaining an AUC score of 0.89 due to the use of auxiliary information, except that the
F1-score was relatively low with 0.89 compared with our model which obtained a score of
0.92. In contrast to our proposed model, the existing MLP-CNN classifier obtained an AUC
score of 0.84 due to the lack of generalization in the CNN model.

Table 4. Hybrid MLP-LSTM-Grid Search.

Hyperparameter Optimal Value Values Range

Dropout 0.2 0.2, 0.5

Units 10 100, 10, 50

Optimizer Adam Adam and SGD

Activation function sigmoid relu and sigmoid

A comparative analysis of the proposed and existing models is depicted in Figure 10.
On the x-axis and y-axis, the TPR and FPR are shown, respectively. The TPR indicates
the proportion of correctly classified positive samples among all available data, whereas
the FPR denotes the proportion of negative samples incorrectly classified as positive. The
proposed model accurately categorized samples with high DR and low FPR values at the
initial level. With a rising FPR, a small change was noticed after attaining a high TPR of 0.8.
Hence, our proposed model’s FPR was significantly lower than that of the existing model.
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Figure 10. ROC-based performance comparison.

Subsequently, we were able to see an exponential periodic regain in the ROC curve
of the proposed hybrid model. The models’ stability and precision were enhanced by
increasing the TPR and thereby reducing the FPR. A decrease in FPR minimizes the need
for onsite inspections, which is a costly process as it involves the reliance on experts.
Similarly, the PR-AUC curve is depicted in Figure 11. It indicates that, on the test datasets,
our proposed model achieved a PR-AUC score of 0.91, which is substantially higher than
those of existing models. Table 5 shows the accuracy, F1-score, and AUC values. The
results indicate that the proposed MLP-GRU model surpasses the other state-of-the-art
models. The computational complexity of the GRU classifier is minimal, since fewer gates
are employed in GRU as compared with the LSTM classifier. In this regard, the GRU model
requires a limited amount of hyperparameters for tuning, leading to a fast convergence rate.
Moreover, we applied the RSA instead of the GSA, which is a computationally demanding
process. The use of a small dataset also makes it better. In addition, the loss of the proposed
model is shown in Figure 12. We ran 25 iterations. The loss declined with each move,
settling at a 0-point minimum during training and testing. Training and testing data losses
were the same. The proposed model works well regarding training and testing data, as
seen in Figure 13.
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Figure 11. PR-AUC-based performance comparison.
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Figure 13. Loss-based analysis of the proposed solution.

It is critical to consider the execution time in a hyperparameter optimization process
with real-world circumstances. Many studies have stated that finding acceptable hyper-
parameter values for a model can take a significant amount of time. As a result, many
researchers do not consider parameter tuning due to the waste of time.

Figure 14 depicts the average execution times of the RSA and GSA, while Figure 15
shows the accuracy levels of the proposed and existing models. The results demonstrate
that our proposed RSA approach takes less time than the existing MLP-LSTM classifier
using the GSA method. The RSA creates a grid using a range of different hyperparameter
values and picks random combinations from it to train the model. In contrast to the RSA,
the GSA method makes a grid of hyperparameter values for each combination, which is
computationally very expensive in terms of processing power and time. Besides, Table 5
compares the proposed model’s performance with that of the existing models.
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Table 5. Comparison of the proposed model’s performance with that of existing models.

Models Accuracy AUC F1-Score Time Required (s)

Proposed model 0.93 0.93 0.92 144

MLP-LSTM-GS 0.89 0.89 0.89 391

MLP-CNN 0.67 0.84 0.71 26

5. Conclusions

In the proposed study, a hybrid deep learning model, MLP-GRU, was developed
using metering data and auxiliary information. The MLP network receives auxiliary data,
whereas the GRU network takes nonsequential or metering data for detecting electricity
theft. Additionally, the EC datasets contain a small number of malicious samples that
skew the model in favor of the majority class. The issue of the biased dataset is tackled
through data augmentation in which synthetic theft instances are created via six different
theft attacks on benign samples. Afterwards, the imbalanced dataset problem is resolved
using SMOTE. The effectiveness of our proposed hybrid model was assessed against
changes in EC usage patterns and various attack types. The PRECON dataset was used
to run the simulations. According to the findings, the proposed model outperforms the
existing hybrid MLP-LSTM and other conventional models. The results demonstrate
that the proposed model performs much better with a ROC-AUC value of 0.93 and a
PR-AUC value of 0.96 when auxiliary data are included with the metering data. In the
future, there is a need to exploit more sophisticated optimization algorithms for adjusting

141



Sustainability 2022, 14, 15001

hyperparameters of deep learning classifiers to find the optimal ETD results. We will
also use other residential areas of the PRECON dataset to conduct a detailed analysis of
consumers’ consumption behaviors.
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FPR False Positive Rate
GBTD Gradient Boosting Theft Detector
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LR Logistic Regression
LSTM Long-Short Term Memory
ML Machine Learning
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NTL Nontechnical Loss
PRECON Pakistan Residential Electricity Consumption
RF Random Forest
RSA Random Search Algorithm
SVM Support Vector Machine
SMOTE Synthetic Minority Oversampling Technique
SSDAE Stacked Sparse Denoising Auto-Encoder
SETS Smart Energy Theft System
TL Technical Loss
TPR True Positive Rate
WGAN Wasserstein Generative Adversarial Network
XGBoost Extreme Gradient Boosting
Ht−1 Previous Layer Input
r Reset Gate
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u Update Gate
Xt Current Input State
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Abstract: Electricity theft harms smart grids and results in huge revenue losses for electric companies.
Deep learning (DL), machine learning (ML), and statistical methods have been used in recent research
studies to detect anomalies and illegal patterns in electricity consumption (EC) data collected by
smart meters. In this paper, we propose a hybrid DL model for detecting theft activity in EC data.
The model combines both a gated recurrent unit (GRU) and a convolutional neural network (CNN).
The model distinguishes between legitimate and malicious EC patterns. GRU layers are used to
extract temporal patterns, while the CNN is used to retrieve optimal abstract or latent patterns from
EC data. Moreover, imbalance of data classes negatively affects the consistency of ML and DL. In
this paper, an adaptive synthetic (ADASYN) method and TomekLinks are used to deal with the
imbalance of data classes. In addition, the performance of the hybrid model is evaluated using a
real-time EC dataset from the State Grid Corporation of China (SGCC). The proposed algorithm
is computationally expensive, but on the other hand, it provides higher accuracy than the other
algorithms used for comparison. With more and more computational resources available nowadays,
researchers are focusing on algorithms that provide better efficiency in the face of widespread data.
Various performance metrics such as F1-score, precision, recall, accuracy, and false positive rate are
used to investigate the effectiveness of the hybrid DL model. The proposed model outperforms its
counterparts with 0.985 Precision–Recall Area Under Curve (PR-AUC) and 0.987 Receiver Operating
Characteristic Area Under Curve (ROC-AUC) for the data of EC.

Keywords: class imbalance; gated recurrent units; convolutional neural network; electricity theft
detection; non-technical losses; smart grids

1. Introduction

Electricity has become a basic need in the modern world, as it is used in homes,
businesses, and industry. To distribute electricity to these sectors, a network is formed,
which is called the power grid. Technically, the power grid consists of a production side and
a demand side. Electricity generation is increased or decreased depending on the demand
side’s needs. Unfortunately, some of the electricity produced is lost during generation,
transmission, and distribution. Energy losses are divided into two main classes: non-
technical losses (NTL) and technical losses. Various methods, techniques, and tools are in
practice or are proposed to address technical losses.

On the demand side, one of the NTLs is electricity theft. Electricity loss is a major issue
for power utility companies, as it causes major disruption to their operations, which leads
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to loss of revenue, increased generation load, and excessive electricity bills for legitimate
consumers. Moreover, electricity loss also causes issues related to economic growth and
power infrastructure stability. NTL, also known as commercial losses, happen mostly due
to electricity theft and fraud. Power utility companies still lose large amounts of revenue
due to unlawful electricity theft and fraud by electricity consumers. This theft places a
heavy burden on the power grid infrastructure and results in fires that threaten public
safety. They also cause loss of revenue for electrical generation companies [1–3]. It is a
challenge to address power caused by theft. Theft can be done by tampering with electricity
meters, double-tapping attacks, changing meter readings through communication links,
and using shunt devices. It is an open secret that power utilization is strongly connected
with the development of a country and is hence a vital measure that shapes the foundation
of industrialization. With the consistently increasing need for power usage, electricity theft
is at a peak. Fossil fuel combustion from electricity generation causes 70% of greenhouse
gas (GHG) emissions [4]. In spite of endeavors to reduce GHG outflows, electricity theft
overshadows these endeavors in developing countries. The capacity to create electric
power is diminished as a result of resources lost to energy theft. Due to electricity theft,
unnecessary blackouts/load-shedding occur, which encourages users to opt alternative
energy resources to fulfill their requirements, including using petrol and diesel generators
that cause GHG emissions.

The majority of climate talks have focused on how to lower GHG emissions; very
few have examined the consequences of energy theft. By continuously monitoring the
electrical system and isolating energy-theft hotspots from a distance, Smart Meters (SM)
are suggested as a strategy to prevent energy theft. All transformers, distribution poles,
and customer houses should have SMs. The measurements are subsequently transmitted
over a communication network to the distribution company’s database for examination,
and if trouble areas are found, power is cut off remotely. This technology would enhance
performance, which would immediately result in a decrease in GHG emissions while also
increasing total returns to the distribution firm. It would also promote transparency in the
metering process.

Moreover, NTLs cause USD 75 billion in lost revenue in the United States. This amount
is enough to power 77,000 households for a year [5]. A World Bank report shows that
China, Brazil, and India suffer 16%, 25%, and 6% losses in electricity supply, respectively [6].
According to Joker et al. [7] such losses are not only limited to developing countries; de-
veloped countries such as the U.S. and the U.K. bear losses of USD 6 billion and GBP
173 million, respectively, each year. The above discussion shows that an efficient electricity
theft detection (ETD) model is required to detect NTLs. In the literature, hardware devices,
and data-driven and game-theoretic approaches are used to detect NTLs. Hardware-based
approaches use sensors and radio identification tags to distinguish between honest and
malicious samples. However, these approaches are expensive, require huge maintenance
costs, and do not provide optimal results under extreme weather conditions [3,8–10]. Meth-
ods based on game theory design a utility function among electric utilities, stakeholders,
and customers. However, it is difficult to implement an accurate utility function. Moreover,
these approaches are less accurate and have a high false-positive rate (FPR) [11–14].

The introduction of smart power grids opens new opportunities for ETD. A smart grid
is an upgraded version of a conventional power grid and consists of smart meters, sensors,
and computing devices that have self-healing mechanisms and communication technolo-
gies. The smart meters and sensors obtain data on consumers’ electricity consumption
(EC), electricity prices, and the status of the grid infrastructure [15,16]. The data-driven
approaches are trained on the collected EC data to distinguish between honest and mali-
cious samples. These approaches have received a lot of focus from the research community,
but they have the following limitations: curse of dimensionality, class imbalance problems,
and low detection rates for standalone ML and DL models. Moreover, conventional ML
models such as k-nearest neighbors and naïve Bayes have high FPRs. As mentioned in the
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literature, electric utilities cannot tolerate low detection rates and high FPRs because for
on-site inspection they have limited resources.

This paper presents a hybrid DL model (named HGC) that is a combination of a
gated recurrent unit (GRU) and a convolutional neural network (CNN). GRU extracts
temporal features, while CNN retrieves abstract patterns from EC data. The advantages
of the models are summarized in the HGC model. It also outperforms existing models.
The uneven distribution of class patterns leads to poor performance. This problem leads
to majority class bias, which leads to incorrect results. In this paper, a hybrid approach
consisting of undersampling and oversampling methods is presented to deal with the
uneven distribution of class samples. The main contributions of the paper are listed below.

• We present an HGC model that combines the advantages of GRU and CNN. It is the
first study that combines the advantages of sequential and non-sequential models.

• A CNN model extracts latent or abstract patterns, while a GRU retrieves temporal
patterns from EC data. The curse of dimensionality is addressed with both DL models.

• The adaptive approach of synthetic minority oversampling and TomekLinks are used
to discuss the problem of class imbalance.

• The performance of the HGC model is evaluated using a real EC dataset obtained
from the State Grid Corporation of China (SGCC).

• To verify the real efficiency of the proposed model, extensive experimentation is
performed based on recall, accuracy, precision, F1 score and FPR.

The rest of the paper is organized as follows. Section 2 presents an overview of related
literature. We present the Problem Statement in Section 3, followed by Materials and
Methods in Section 4. The Proposed Model is outlined in Section 5. Section 6 contains the
Experimental Analysis and Discussion. The Experimental Outcome and Arguments are
discussed in Section 7. Finally, we come to an end in Section 8.

2. Related Literature

The tools and techniques proposed in the literature to detect NTLs are studied in this
part of the document. In [5], a model combining CNN and multilayer perceptron (MLP) is
used. It integrates the advantages of both DL models, which is why it gives better results
than standalone models. The first model is employed to extract hidden, abstract patterns,
while the latter one is used for extracting meaningful information. The class imbalance
problem, however, is not addressed, which makes the ML and DL models biased towards
majority class samples and ignore minority ones. Moreover, MLP does not give results on
sequential datasets. Joker et al. [7] propose an electricity theft detector that is developed
using an SVM classifier to differentiate between malicious and honest customers. It is
the first study that integrates a ML model and hardware devices to capture drift changes
in data that can happen due to many reasons: e.g., a different number of members in
a household or weather changes. Some authors utilize random undersampling to solve
the uneven distribution of class samples. However, this technique creates underfitting.
Moreover, they utilize hardware devices that make the proposed solution expensive. In [17],
the authors propose a theft detector that contains gradient boosting classifiers. The authors
introduce the concept of stochastic features, which enhance the detection rate and reduce
the FPR. Moreover, they conduct a comparative study and prove that boosting classifiers
perform better than SVM on an Irish dataset. Moreover, electricity theft cases are updated
by arguing that existing theft cases’ resemblance to real-time samples is the least. Random
oversampling is employed to handle the uneven distribution of class samples, which
creates an overfitting problem. The curse of dimensionality is a big nuisance and reduces
the detection-rate of ML and DL models. In [18], the authors use heuristic techniques to
select optimal combination of features from EC data, which solves overfitting, memory
constraints, and computational overhead issues. However, they use accuracy as a fitness
function to evaluate the efficacy of meta-heuristic techniques, which is not a good practice.

In [19], a long short-term memory (LSTM)-dependent framework is suggested. It is
proposed for differentiating between malicious and normal patterns as well as changes
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due to drift. Based on our knowledge, this is the first study that considers drift changes
with malicious patterns and reduces FPR. The Power utilities are unable to bear high FPR
due to their limited resources to inspect on the site. Fenza et al. [20] propose a model that
integrates the benefits of both CNN and random forest. The former is used to obtain abstract
features, while the latter is used to differentiate malicious and normal patterns in EC data.
The class imbalance problem is handled using SMOTE, which creates overfitting. In [21], a
DL model is proposed that integrates the benefits of both LSTM and MLP. This is the first
article that has leveraged the benefits of both sequential and non-sequential data. The class
imbalance problem is not considered, which is why ML and DL models give biased results.
In [22], an ensemble deep CNN is used for detection of atypical behaviors in EC data.
Imbalanced data are a severe issue in ETD and is handled through random bagging. Finally,
a well-known voting ensemble strategy is utilized to decide between malicious and normal
patterns. Ghori et al. [23] conduct a comparison study between different conventional ML
classifiers using a real EC dataset. The ANN and boosting classifiers such as LightBoost,
CatBoost, and XGBoost give better performance than other models. Moreover, the curse of
dimensionality is dealt with by selecting optimal combination features.

In [24], the authors put forward a fascinating technique for NTL detection using smart
meter data. Moreover, auxiliary information is utilized to enhance the accuracy of ML
models. Different features are built using distance and density outlier-detection methods.
The proposed model is employed in smart grids to distinguish illegitimate patterns from
legitimate patterns. In [25], Hasan et al. put forward the idea of identifying low-voltage
stations and comparing the performance of supervised and unsupervised learning methods.
The suggested method gives better results in contrast to SVM and DT-SVM.

Ismail et al. [26], merge the integrated model of CNN and LSTM. This is the first study
that integrates the benefits of both DL learning models. Moreover, the uneven distribution
of class samples is another severe issue. SMOTE is utilized to handle this issue. The
proposed hybrid model achieves 89% accuracy, which is more than conventional ML and
DL models.

The poisoning attack problem in smart grids is proposed by Maamar et al. [27]. They
introduce a sequential and parallel DL-based autoencoder based on GRU and LSTM
models. The deep neural network performs better than a shallow neural network. In [28],
it is revealed that existing studies mostly monitor attacks on the consumer side. No
one focuses on the distribution side, where hackers hack utility meters and create higher
electricity bills. In their study, they introduce a hybrid C-RNN-based model and prove
that it performs well compared to other DL models. The proposed model is evaluated on
SCADA meter readings.

In [29], a new hybrid approach is introduced that integrates the benefits of k-mean
clustering and a deep neural network. Irish Smart Energy Trials data are used for model
evaluation. However, if the authors utilize other advanced clustering algorithms, then
proposed model increases the performance. Shehzad et al. [30] introduce a smart system for
ETD. The system integrates the benefits of statistical methods and different DL models such
as MLP, LSTM, RNN, and GRU. The proposed technique is evaluated on real data from
Singaporean homes. However, the performance of the suggested technique is not checked
using other performance measures such as F1-score, recall, precision, FPR, ROC-AUC, and
PR-AUC.

3. Problem Statement

In [3], the authors propose a theft detector consisting of an SVM to discriminate
between malicious and normal samples. However, they do not use a feature selection or
extraction approach to deal with the curse of dimensionality. Overfitting leads to high
accuracy when using training data compared to test data when ML and DL models are used.
Moreover, in [17], the black-hole algorithm (BHA) is used to handle the high dimensional
data. BHA is a meta-heuristic method that requires high and complex computations to
find an optimal feature combination with which ML models achieve better results. For
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this reason, it is not suitable for real-time smart-grid applications. Moreover, the problem
of class imbalance is another serious problem in ETD. There are more samples of normal
classes than malicious classes. Zheng et al. [1] do not use any approach to solve this
problem. In [8], SMOTE is used to improve the minority class samples. However, with
this approach, there is a tendency for the ML or DL models to run into an overfitting
problem as sample size increases. In [3], a random undersampling approach is employed to
compensate for the unequal distribution of normal and malicious samples. However, this
approach removes important information and creates the problem of underfitting. In the
literature, authors usually use conventional ML models such as SVM, DT, and NB. These
models have low detection rates and high FPRs. Therefore, an efficient framework with
accurate identification of NTLs in EC needs to be proposed.

4. Materials and Methods

Section 4.1 is about acquiring the dataset; data preprocessing is covered in Section 4.2,
which include handling missing values, removing outliers, normalizing data values, and
class imbalance problems; and in Section 5 the proposed model is discussed.

4.1. Acquiring the Dataset

In this study, to appraise the performance of the suggested model, data from the
State Grid Corporation of China (SGCC) are used, as it is the only publicly available
dataset; it includes 42,372 records of consumers, 3615 of which are thieves, while the
rest are ordinary consumers (https://github.com/henryRDlab/ElectricityTheftDetection
(accessed on 2 March 2022)). Each consumer has a label, either 1 or 0, where 0 represents a
normal consumer, and 1 represents a malicious consumer. SGCC assigns the labels after
conducting on-site inspections. The dataset is in tabular form, with rows representing
consumers, and columns indicating the daily EC of each consumer from 1 January 2014 to
31 October 2016. Facts and figures regarding the SGCC dataset are mentioned in Table 1.
Here, it is important to mention that the dataset contains some incorrect and missing values.
Therefore, to handle this issue, data preprocessing is used, as described in Section 4.2.

Table 1. Details about the data.

Description EC Time Window Class of
Customer Power Source Data

Resolution
Total

Customers
Honest

Customers
Thief

Customers

Values 1 January 2014 to
31 October 2016 Residential Utility Daily data 42,372 38,757 3615

4.2. Data Preprocessing

Data preprocessing is an important step and includes the following steps: removal of
missing values and outliers, normalization of data values, feature extraction or selection,
and handling the class imbalance problem.

4.2.1. Handling the Missing Values

The SGCC dataset contains missing values and non-numeric values, indicated by
’NAN’. These values occur for many reasons, such as improper operation of smart meters,
human typos, data storage problems, and distribution line faults. If the data contain
missing values, ML and DL methods do not produce good results. If the records with
missing values are removed, it may also take away important information which creates
the problem of underfitting. The missing values are tackled with linear imputation to avoid
the problem of underfitting. The mathematical equations are given below.

f (zi) =





zi,j−1 + zi,j+1

2
, zi,j = NaN, zi,j±1 6= NaN,

0, zi,j−1 = NaN or zi,j+1 = NaN,

zi,j, zi,j 6= NaN.

(1)
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In Equation (1), zi denotes the EC of consumer i on the current day, and zi−1 and zi+1
show the EC of the previous day and the next day, respectively.

4.2.2. Removing the Outliers

Some outliers are also found in the data. In the preprocessing of the data, one of
the most important steps is to remove or treat the outliers. In the literature, experimental
results show the sensitivity of the ML and DL models to splitting data and generating
false results. To treat the outliers, the three-sigma rule (TSR) is used in this study. The
mathematical equation of the TSR is given below.

f (zi) = (zi) ∗ σ(zi) i f zi,j > µ(zi) + 3 ∗ σ(z) otherwise f (zi) = zi (2)

In Equation (2), zi shows the EC history of a consumer i, µ(zi) represents the averaging
of EC, and σ(zi) denotes the standard deviation.

4.2.3. Normalizing the Data Values

After performing the above steps, normalization of the data is done by a min–max
method. The reason for this is that ML and DL do not work well on diverse data. The
mathematical equation is given below.

zi,j =
zi,j −min(Zi)

max(Zi)−min(Zi)
(3)

In Equation (3) min(Zi), represents the minimum EC, while max(Zi) denotes the
maximum EC of consumer i.

Algorithm 1 shows the data pre-processing phase, which contains following steps:
handling the missing values, removing the outliers, and normalizing the data values.

Algorithm 1: Data pre-processing phase.

1 Data: EC data: Z
2 X = (zi,j, yi), (zi+1,j, yi+1), ..., (zm,n, ym)

3 m = number of records, n = number of features
4 Variables: mini = minimum consumption, maxi = maximum consumption, zi =

mean consumption, σi = standard deviation,
5 for i← m do
6 for j← n do
7 Handle the missing data:
8 if zi,j−1 && zi,j+1 6= NaN && zi,j == NaN then
9 zi,j = (zi,j−1 + zi,j+1)/2

10 end
11 if zi,j−1 ‖ zi,j+1 == NaN then
12 zi,j = 0
13 end
14 Remove anomalies:
15 if zi,j > zi + 3σi then
16 zi,j = zi + 3σi
17 end
18 Data normalization through min–max method:

19 zi,j =
zi,j−mini

maxi−mini

20 end
21 end
22 Result: Znormalized = Z
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4.2.4. Class Imbalance Problem

The problem of class imbalance or uneven distribution of class samples is a severe
issue in ETD, where there are more samples of one class than other classes. When ML or
DL are trained on an imbalanced dataset, they provide biased results with high FPRs. As
mentioned in the literature, power generation companies cannot tolerate high FPRs because
they have limited resources for on-site inspections. Two approaches are generally used in
the literature to deal with class imbalance problems: undersampling and oversampling. In
the former, replicates of the minority class are generated, while in the latter, samples are
eliminated to balance the classes. However, both techniques have the following drawbacks:
overfitting, duplication of existing data, and loss of information. In this paper, a hybrid
sampling approach based on adaptive synthetic sampling (ADASYN) and TomekLinks
is proposed. The former uses oversampling while the latter uses undersampling to solve
the problem of class imbalance. The proposed hybrid approach solves the problems of
undersampling, oversampling, and duplication of data. A detailed description of ADASYN
and TomekLinks can be found below.

ADASYN (Adaptive Synthetic):

To solve underfitting, ADASYN is employed to generate minority class samples,
which are harder to learn. The overall working mechanism of that sampling approach is
elaborated below.

• The ratio of the minority to the majority class is calculated using the below equation:

d =
mmin
mmaj

(4)

where mmin is the total number of minority class samples, and mmaj is the number of
majority class samples in the dataset.

• The ratio of how many samples will be generated is decided using the following equation:

G = (mmaj −mmin)β (5)

where G is the total number of minority class samples that will be generated to
handle undersampling; β is a random number whose value is between 1 and 0, with
0 indicating that no samples of the minority class will be generated, while 1 shows
that minority samples will be generated until both classes have an equal number of
samples, β = (0, 1).

• In this step, the number of majority class samples near minority class samples are cal-
culated using k-nearest neighbors. After that, each minority class sample is associated
with a different number of neighbors that belong to the majority class.

rj =
majority

k
(6)

Here, rj shows the dominance of the majority class samples over each minority class
sample. A higher rj shows that it is difficult for ML and DL models to learn/remember
the patterns of minority class samples. Thus, a greater number of samples are cre-
ated for minority class samples that are surrounded by large/maximum numbers of
majority class samples. This phenomena gives an adaptive nature to ADASYN.

• To normalize the rj values, we use

rj =
rj

∑ rj
∑ rj = 1 (7)

• For minority class samples, we compute the amount of synthetic samples with

Gj = Grj (8)

151



Sustainability 2022, 14, 13627

• In the last step, Algorithm 1 selects the minority class samples from training data and
generates new samples. If training data contain m number of minority class samples,
then new samples are created using the following equation.

sj = xj + (xj − xrandom) ∗ λ, j = 1 . . . m. (9)

In the above equation, λ is a random number between 1 and 0, j is the newly generated
sample, xj is a first sample of training data, and xrandom is a randomly selected sample
from the training data.

TomekLink:

TomekLink is used for undersampling class imbalance problems. It is a modification
of Condensed Nearest Neighbor ((CNN), not to be confused with Convolutional Neural
Network). It uses the following rules to select pairs of observations (e.g., X and Y) that
satisfy the properties listed below:

• The observation that X’s nearest neighbor is Y (and vice versa);
• The observation that X and Y belong to different classes: either the minority class or

the majority class.

Mathematically, this is expressed as (Xmin and Xmaj), representing the Euclidean
distance between Xmin and Xmaj, where Xmin and Xmaj belong to the minority and majority
classes, respectively. If there is no sample Xk that satisfies the following conditions:

d(Xmin, Xk) < d(Xmin, Xmaj) (10)

d(Xmaj, Xk) < d(Xmin, Xmaj) (11)

The pair (Xmin, Xmaj) are TomekLink samples, which removes noise and duplicated
values from data. Consequently, ML and DL models learn diverse patterns from data and
do not get stuck in underfitting.

5. Proposed Model

In [5], a combined MLP and CNN model is proposed, which proves that the hybrid
model outperforms standalone models of ML and DL. In [22], the authors present CNNs
with LSTMs. GRUs and LSTMs utilize different approaches toward gating information to
prevent the vanishing gradient problem. RNNs have two variants: GRU and LSTM. The
vanishing gradient problem is solved by the author of [31] by comparing the performance
of GRU and LSTM with an RNN model using different sequential datasets. Extensive
experimentation are performed by Ding et al. on 10,000 LSTM and RNN architectures [32].
The final results advocate that GRU outperform as compared to all contemporary models.
For the above reasons, in this research paper a hybrid DL model is presented that combines
the advantages of both GRU and CNN models. The GRU extracts the time-related patterns,
while the CNN retrieves abstract or latent pattern data. The HGC model consists of the
following parts/modules: GRU, CNN, and Hybrid. One-dimensional data are fed as input
to the GRU module, while 2D data are fed as input to the CNN to learn abstract features.
The hybrid module takes the extracted features from both modules as input and combines
them to discriminate between malicious and normal patterns. From the literature, hybrid
models work well because they allow combined training and testing of both DL models. In
the following, the individual modules are explained in more detail.

5.1. Gated Recurrent Unit (GRU)

GRU is an enhanced form of a recurrent neural network (RNN). One of the main
problems in RNNs is the vanishing gradient problem, which stops the learning process
and pushes the sequential DL models into local optima. To solve the prior problem, GRU
model was introduced. GRU structure consists of an update gate and a reset gate that affect
the learning of temporal patterns from EC data. Basically, the information to be passed
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to the next layers or units is determined by the update gate. Otherwise, the amount of
information from the past that should be forgotten is determined by the reset gate. This
information is not important for future decisions. The GRU layers are trained on past data,
learn and remember the important information, and remove the redundant values that
are not important for distinguishing between malicious and normal patterns. These GRU
layers are able to retrieve time-related patterns from EC data. The equations of the update
and reset gates are given below.

UGt = σ(Uug, [hdnt−1, Zt]), (12)

RGt = σ(Urg, [hdnt−1, Zt]), (13)

ˆhdnt = tanh(U, [rt ∗ hdnt−1, Zt]), (14)

hdnt = (1−UGt) ∗ hdnt−1 + UGt ∗ ĥt. (15)

DenseGRU = Flaten(hdnt ∗WGRU + bGRU) (16)

where Zt and hdnt−1 show the input value and hidden layer value of the previous time
step, respectively, UGt indicates the update gate, RGt shows the reset gate, Uug and Urgr
are weights of the update and reset gates, respectively. DenseGRU layers are used to merge
extracted features of GRU and CNN models to enhance the prediction accuracy. The
hyperparameter settings for GRU are mention in Table 2.

Algorithm 2 describes the working mechanism of the proposed hybrid DL model
containing a GRU, a CNN, and fully connected layers.

Algorithm 2: Working of HGC model.

1 Data: EC data: ZBalance
2 Data in 1D format:
3 Z1D = zi,j, zi,j+1, zi,j+2, ..., zl,m
4 l = 42372, m = 1034
5 Convert data to 2D format

6 Z2D =




x1,1 · · · x1,k
...

. . .
...

xj,1 · · · xm,k




7 Pass Z1D data to GRU model
8 for i < Epoch do
9 rt = σ(Urg, [hdnt−1, xt])

10 ˆhdnt = tanh(U, [rt ∗ hdnt−1, xt])

11 hdnt = (1− zt) ∗ hdnt−1 + zt ∗ ˆhdnt
12 DenseGRU = relu(U · hdnt, b])
13 FlGRU = f latten(DenseGRU)
14 Z2D[u, v] = (Z2D)[m, v] = ∑j ∑k f [j, k]Z2D[m− j, v− k]
15 u, v⇒ dimension of output matrix
16 FlCNN = f latten(Z2D)
17 hHGC = (WHGC · [FlCNN , FlGRU ] + b)
18 Denselayer = [U · hHGC + b]
19 b ⇒ bias term, U ⇒ weight
20 YNTL = σ(Denselayer)

21 Loss(YNTL, Y) = −∑42372
i=i (Yi · log YNTLi )

22 YNTL = Predicted, Y = Actual
23 Reduce the loss value
24 end
25 Result: YNTL
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Table 2. GRU hyperparameter settings.

Model GRU Layers Activation Function Dropout Rate Kernel Initializer Hyperparameter Epochs

GRU 40 Sigmoid 0.4 henormal Optimal values 15

5.2. Convolutional Neural Network (CNN)

The CNN algorithm belongs to the group of DL models. It is mainly used in the
recognition of images and videos. It is an extended version of the MLP. It takes images
as input, learns important features using a weight-learning mechanism, and develops a
relationship between learned features and labels. Technically, CNN design consists of a
number of convolution layers with filters (kernels), pooling layers, then one or more fully
connected (FC) layers; it applies a softmax function to classify an object with probabilistic
values between 0 and 1. Each layer has its own functionality that extracts abstract or latent
features that cannot be detected by the human eye. In this study, a CNN model is used to
extract latent patterns from data provided by electric utilities. The extracted features are
fed into the hybrid layer to make final decisions about malicious and normal consumers.
The final hidden layer of the CNN model is shown below.

DenseCNN = Flaten(X ∗WCNN + bCNN) (17)

where WCNN and bCNN represent the weight and bias values, respectively, of hidden CNN
layers and the feature matrix by X. The hyperparameter settings for CNN are explained in
Table 3.

Table 3. CNN hyperparameter settings.

Model Filters Strides Padding Activation Batch Size Epochs Time

CNN 32 1 Same ReLu 64 15 202 s

5.3. Hybrid Module

The GRU model learns temporal patterns from 1D data, while CNN extracts the
patterns, which are viewed through the human eye from 2D data. The extracted features
of both models are concatenated using Keras API and then passed to a hybrid layer that
decides whether there is an anomaly in the EC data; hHGC is the last hidden layer of the
hybrid module. Its output is passed to the sigmoid function to give a final decision about
malicious and normal consumers.

hHGC = (WHGC[DenseCNN + DenseGRU ] + bHGC), YNTL = σ(hHGC) (18)

where WHGC and bHGC represent the weight and bias values of the hybrid layer, and σ
denotes a sigmoid function. The settings of hyperparameter for HGC are mention in Table 4
and the pictorial representation of the proposed framework is given in Figure 1.

Table 4. HGC parameter settings.

Model Layers Dense Batch Size Epochs Optimize Time (s) Dropout Activation Kernal Initializer Pool Size

GRU 40 20 64 10 ADAM 1704 0.4 - henormal -

CNN 32 20 64 10 ADAM 1704 - ReLu - 2 × 2
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Figure 1. Proposed system model.

6. Experimental Setting and Analysis

In this section, we analyze the performance of the proposed model on the SGCC
dataset using various performance measures. We also compare the results obtained with
the proposed model to those of benchmark models.

6.1. Performance Measures

Uneven distribution of class samples is a critical problem in ETD, where the number
of samples of the normal class is higher than that of the malignant class. When an ML
or DL model is trained on this type of data, it attracts majority class samples and ignores
minority class samples, producing false results/alarms. The literature indicates that electric
utilities cannot tolerate false alarms due to limited resources for on-site testing. Although
the training dataset is balanced with the proposed sampling technique, the test data are
unbalanced. Therefore, appropriate performance measures are needed to evaluate the
performance of the benchmark and proposed models. In this paper, the performance
measures used are accuracy, F1 score, recall, ROC-AUC, and PR-AUC. To calculate the
above measures, we use a confusion matrix: a confusion table that contains true negative
(TN), true positive (TP), false negative (FN), and false positive (FP) results.

6.1.1. Accuracy

Accuracy is the ratio between the number of correct predictions and the total number
of records in the dataset.

Accuracy =
TN + TP

TN + TP + FN + FP
(19)

where TN and TP are the sums of total number of true negatives and true positives,
respectively, and TN, TP, FN, and FP are the sums of true negatives, true positives, false
negatives, and false positives, respectively.
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6.1.2. Recall

Recall is determined by dividing the correctly predicted positive records by the total
number of positive records. The equation of recall is given below, as described in [33]:

Recall =
TP

FN + TP
(20)

where FN is the number of dishonest consumers predicted by the model as honest consumers.

6.1.3. F1-Score

The F1-score is also a good performance measure for imbalanced datasets. When
ML/DL models have a high F1-score, they are considered good for predictions in real-
world scenarios. The equation for the F1-score is given below, as described in [34,35]

F1− Score =
2 ∗ precision ∗ recall

precision + recall
(21)

To calculate the precision, the number of true positives divided by the sum of false
positives and true positives, as mentioned in [33].

The ROC curve is obtained by plotting recall and FPR on the y-axis and x-axis, respec-
tively. It is a good measure for imbalanced datasets because it is not skewed toward the
majority class. Its value ranges from 0 to 1. However, ROC only considers the recall/true
positive rate, so it focuses on positive records and ignores the negative ones. The PR curve
is another important measure that considers recall and precision simultaneously and gives
equal importance to twain classes.

6.2. Implementation Environment

The proposed and benchmark models are implemented using Google Colabora-
tory [36], which provides distributed computing power. Their performance is studied
using the SGCC dataset collected from the largest electric utility in China. DL models are
implemented using TensorFlow (v2.8.2), while ML models are trained and evaluated using
the Scikit library (v1.0.2), and the Keras API is used to develop the hybrid model.

6.3. Proposed Deep Learning Model Performance Analysis

In this section, we analyze the performance of the proposed model using accuracy and
loss curves for training and testing data. Figure 2 shows the performance of the model on
training and test data using accuracy curves. Both curves move side-by-side with a small
difference, indicating that the proposed model does not suffer from overfitting. However,
after the fourth epoch, the test accuracy starts to decrease, which means that the model
suffers from overfitting. Thus, if more than four epochs are trained, the performance of
the model decreases. To improve the model’s performance in the future, meta-heuristic
algorithms will be used to help select the optimal parameters for deep and machine
learning to avoid overfitting. It is very complex and time-consuming to select these
parameters manually.

Figure 3 also shows the same phenomena using loss curves on training and testing
data. The value of loss can be decreased with more epochs.

However, there is a high probability that the model encounters overfitting, which
affects generalization. In addition, the proposed model consists of GRU, CNN, and dense
layers. The gates like, update and reset in the GRU layer control the information flow
through network. These gates remember valuable information and ignore redundant
and noisy patterns from the data. CNN layers help the proposed hybrid model learn
global/abstract patterns from EC data and reduce the curse of dimensionality, which
directly increases the convergence speed. The literature shows that dropout layers simplify
the model and prevent overfitting. Finally, the dense layer takes inputs from the GRU
and CNN models and passes them to a sigmoid function to distinguish between normal
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and malicious samples. For all these reasons, a hybrid model performs better than the
individual models.
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Figure 2. Accuracy curves on training and testing data.
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Figure 3. Loss curves on training and testing data.

6.4. Benchmark Models

This section implements various DL and ML models that have previously been
proposed in the literature and compares their performance with that of the proposed
hybrid model.

6.4.1. Wide and Deep Convolutional Neural Network

In [5], Zheng et al. propose a DL model that is a fusion of CNN and ANN. This is
the first study to combine the advantages of both models. The authors feed 2D data to a
CNN, while 1D data are fed into an ANN to learn local and global patterns from the SGCC
dataset. However, the ANN model does not give good results on 1D data because it is
designed for tabular data. In this work, we use the same hyperparameter settings and the
same dataset for a fair comparison.

6.4.2. Logistic Regression (LR)

This is a basic supervised learning model used for binary classification. It is also
known as a single-layer neural network. It simply contains an input layer whose values
are multiplied by weights, and the resulting value is fed into a sigmoid function that
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produces either 0 or 1 as input. LR consists of various solvers such as Newton’s method
and stochastic gradient descent that are used to tune the hyperparameters.

6.4.3. Decision Tree (DT)

DTs are used in both regression and classification tasks. They consist of a root node,
edges, and leaf nodes that are used to predict the result. A DT works like the human mind
and creates a tree-like structure in which the dataset is divided into many branches based
on features. The best attributes/features are selected based on the information gain and
Gini index criteria as root nodes. DTs are easy to implement and give good results on
smaller datasets. However, for larger datasets there is a risk of overfitting. In addition, a
small change in the data leads to poor generalization.

6.4.4. Support Vector Machine (SVM)

SVMs are a supervised learning model used for both regression and classification
purposes. They are able to classify linear and nonlinear data by using the power of kernel
functions. These kernel functions draw a decision boundary to classify between normal and
malicious samples after converting non-linear data into linear patterns. In [7], the authors
develop a current theft detector based on consumption patterns using an SVM classifier to
draw a decision boundary between benign and stolen samples. From the literature, SVM is
well-suited for smaller datasets, as it requires a lot of computational time to draw a decision
boundary between normal and malicious patterns for larger datasets. In this work, the RBF
kernel is used for the SGCC dataset due to the nonlinearity of the data.

6.4.5. Random Forest (RF)

An ensemble technique called RF is used to solve complex problems by training
multiple decision trees on datasets. It has applications in banking, e-commerce, and other
fields. RFs control the problem of DF overfitting and increase precision. They give good
results with little adjustment of hyperparameters. They also minimize overfitting and
increase the precision when the number of DTs is increased during the training period.
However, they require a lot of computation time for larger datasets, since multiple DTs are
trained on a single dataset, which reduces their effectiveness in real-world problems.

6.4.6. Naive Bayes Classifier

This is a classification method derived from Bayes’ theorem. The Naive Bayes (NB)
does not consider the linkage between inputted features and targeted column, and uses the
probability distribution to distinguish between normal and malicious samples. There are
many versions developed depending on the type of dataset. In today’s world, there are
many applications in various fields such as sentiment analysis, email filtering, recommender
systems, spam, and natural language processing. In this work, we use Gaussian NB since
the SGCC dataset has continuous features.

7. Experimental Results and Discussions

The performance of the proposed HGC model is compared with the state-of-the-art
classifiers. The same datasets with different ratios for training and testing are used for DT,
NB, LR, CNN, GRU, RF, SVM, and WDCNN. As discussed earlier, the CNN design consists
of a number of convolution layers with filters (kernels) and pooling layers, followed by one
or more fully connected (FC) layers, and applies a softmax function to classify an object
with probabilistic values between 0 and 1. Each layer has its own functionality and extracts
abstract or latent features that cannot be detected by the human eye.

The GRU layers have two important gates; update and reset. These are used to
learn necessary patterns and remove unnecessary values. As discussed earlier, the flow
of information is controlled by GRU gates to improve the performance of the model.
The GRU-extracted features are then combined with the latent or abstract patterns. The
proposed HGC model extracts abstract and periodic patterns from EC data using GRU
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and CNN hence HGC outperforms as compared to counterparts of it. The combination
of optimal features helps the HGC to attain 0.96 PR-AUC and 0.97 ROC-AUC values,
which are higher than those of all the above-mentioned classifiers. The performance of
proposed model is compared with conventional models using PR and ROC curves in
Figures 4 and 5. The proposed hybrid model achieves better results than its counterparts.
SVM achieves 0.88 ROC-AUC and 0.85 PR-AUC. We use a linear kernel instead of an RBF
kernel to train the SVM model on EC data because the dataset contains a large number of
records and features, which increases the model computation time, so it is not suitable for
larger datasets.

LR is a conventional ML model that distinguishes between normal and malignant
samples using a sigmoid function. It achieves 0.86 and 0.88 for PR-AUC and ROC-AUC,
respectively, which is better than SVM, but has lower performance than other models. It
has a large number of applications in various fields because it is easy to implement and
is suitable for linearly separable datasets, but in the SGCC dataset, malicious and normal
samples are not linearly separable. Therefore, LR gives lower performance compared to
other models [30].

RF gets 0.76 PR-AUC and 0.75 ROC-AUC, while DT gets 0.80 ROC-AUC and 0.85 PR-AUC
on the EC dataset. DT gives better results than RF. DT provides good performance on
smaller datasets but has overfitting on larger datasets, and small changes in the data
reduce its generalization ability. RF is an ensemble method designed to overcome the
overfitting/low generalization of DT. It controls overfitting but has low PR-AUC and ROC-
AUC, as seen in Figures 4 and 5, because RF takes the average of all DT prediction results.

In addition, NB is a conventional classifier that classifies between normal and ma-
lignant samples using Bayes theorem. It obtains 0.71 and 0.65 PR-AUC and ROC-AUC
values, respectively. Unlike other conventional ML and ensemble models, it gives poor
results. It assumes that there is an independent relationship between the attributes and the
target features.

Moreover, CNN gains 0.96 ROC-AUC and 0.94 PR-AUC values, while GRU gains
0.96 and 0.96 ROC-AUC and PR-AUC values on the EC dataset, which are higher than the
PR-AUC and ROC-AUC values of conventional ML models. Technically, a CNN consists of
a number of convolution layers with filters (kernels) and pooling layers, followed by one
or more fully connected (FC) layers. In addition, the convolutional layer is used to remove
redundant, overlapping, and noisy values from the EC data. GRU also gives good results
that are in the acceptable range, as it has update and reset gates to help remember periodic
patterns. In [5], the authors combine the merits of the ANN and CNN models to develop a
hybrid model. Their proposed model achieves a value of 0.96 PR-AUC and 0.97 ROC-AUC.
In the literature, the authors demonstrate that the hybrid model performs better than the
DL models and the standalone ML model. Therefore, in this research, the Keras API is used
to develop a hybrid model. It integrates the advantages of both GRU and CNN models. The
former learns the temporal patterns, while the latter derives global and abstract patterns
from EC data. The extracted features of both models are merged and passed to a fully linked
layer for the classification of theft and normal patterns. The proposed model achieves
better results than the standalone DL and the previously proposed hybrid DL models for
the above reasons. It achieves 0.987 ROC-AUC values and 0.985 PR-AUC values on EC
data, as observed in Tables 5 and 6.

Tables 5 and 6 show the performance analysis of the ML and DL models at 70% and
60% training ratios, respectively. It can be seen that the proposed model maintains its
superiority and gives better results at both training ratios. For the DL models, performance
increases as the size of the training data increases because DL models are inherently
sensitive to the size of the training data. On the other side, the increased or decreased
performance of conventional ML models follow the power law [37]. This law states that
beyond a certain point, the performance of ML models increases with the increase of
the amount of data. After this point, the models face the problem of overfitting, which
affects their generalizability. In this work, RF and NB give poor results compared to other
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conventional ML models. Although both models perform well on balanced datasets, they
show poor performance due to the following limitations.
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Figure 4. ROC curves of proposed and benchmark models.
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Figure 5. PR curves of proposed and benchmark models.

Table 5. Performance analysis of DL and ML using 70% training data.

ML/DL
Models Accuracy F1-Score Recall Score PRAUC ROCAUC

LR 0.8040 0.8068 0.714 0.868 0.885

SVM 0.8165 0.8200 0.800 0.854 0.880

RF 0.6912 0.696 0.6128 0.756 0.748

DT 0.8056 0.8118 0.7826 0.850 0.803

NB 0.6261 0.649 0.608 0.719 0.658

CNN 0.914 0.918 0.877 0.946 0.962

GRU 0.9074 0.9080 0.919 0.964 0.968

WDCNN 0.9397 0.9408 0.919 0.971 0.977

HGC 0.9438 0.9452 0.91709 0.985 0.987
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Table 6. Performance analysis of DL and ML using 60% training data.

ML/DL
Models Accuracy F1-Score Recall Score PRAUC ROCAUC

LR 0.804 0.807 0.796 0.868 0.883

SVM 0.811 0.815 0.797 0.855 0.877

RF 0.677 0.680 0.672 0.756 0.748

DT 0.801 0.808 0.781 0.848 0.799

NB 0.619 0.645 0.604 0.715 0.650

CNN 0.916 0.916 0.916 0.955 0.966

GRU 0.925 0.926 0.910 0.968 0.973

WDCNN 0.936 0.938 0.906 0.971 0.779

HGC 0.947 0.948 0.921 0.985 0.987

NB accounts for the independent relationship between features and target variables
that does not exist in real EC data, while RF controls for overfitting by the average perfor-
mance of all DTs. The literature shows that the performance of DL models depends on
the size of the training data. Large datasets yield high values for performance measures.
ROC analysis of different hybrid models is given in Table 7. In [38], CNN-LSTM and LSTM
RUSBoost achieve 0.817 and 0.879 ROC values, respectively, while in [30], MLP–LSTM
achieves 0.92 ROC, and HG2 achieves 0.93 ROC. In our case, our proposed model maintains
its superiority and performs better than the above-mentioned hybrid models by achieving
0.98 ROC.

The computation time of the ML and DL models is given in Table 8. NB and LR
have a lower computation time in contrast to other ML models because the former only
computes the probability distribution of all features and provides the final results, whereas
LR is a single-layer neural network that multiplies the inputs with weights and distin-
guishes between malignant and normal samples. For the above reasons, they require little
computational time compared to other ML models.

In ETD, SVM is a well-known classifier. RF requires more training time than DT
because it trains multiple DTs on the SGCC dataset and computes the average of multiple
estimators. Moreover, the training time of DL models depends on the number of hidden
layers, the size of the dataset, the stack size, and the number of neurons in each layer. GRU
and CNN are DL models that take 2364 and 202 seconds to train, respectively. GRU requires
more training time because it has update and reset gates that extract temporal patterns
from SGCC data and save the important information in memory networks, while CNN
only retrieves abstract/latent patterns by using convolution functions and max-pooling
layers, which is why they have low computation time. Moreover, HGC takes 1704 seconds
to train with the SGCC dataset. It has a lower computation time than GRU because it
converges in 5 epochs, whereas GRU converges in 15 epochs. In addition, HGC requires
more training time than the CNN model because it integrates the benefits of both models.
Moreover, at the present time, meta-heuristic techniques are receiving attention from the
research community for feature selection and hyperparameter optimization in ML and
DL models. Therefore, in this study, BHA, a meta-heuristic technique, is used for feature
selection. The literature demonstrates that these techniques have high computational
complexity. For this reason, a small portion of the dataset is used to evaluate the ability
of BHA for feature selection. The selected data consist of 10,000 records and 30 days of
EC values from 42,372 records. BHA takes 3000 seconds to select the optimal combination
of features/attributes from the selected EC data, which is more than the time required
by all DL models: GRU, CNN, WDCNN, and HGC. The above results show that the
computational time of BHA increases as the amount of data increases. Therefore, these
types of real-time applications are not suitable for the smart grid. Moreover, the increased
dataset size enhances the performance of DL models. Hence, the performance of these
models depend on the size of training dataset. In canse of convolution ML models, the
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performance is enhanced by following the power law. Their performance stop improving
after certain point of training [37].

From the literature, hybrid models work well because they combine training and test-
ing of both DL models and have better generalization capabilities than many other machine
and deep learning models. However, HGC maintains dominance over the state-of-the-art
DL models and shows better performance on varieties of training ratios over SGCC dataset.
Nexus to the above, there is no free lunch. The cost benefit analysis is a trade-off between
computational time and accuracy. The proposed algorithm is computationally expensive,
but on the other hand, it provides higher accuracy than the other algorithms used for com-
parison. With more and more computational resources available these days, researchers are
focusing on algorithms that provide better efficiency in the face of widespread data.

Table 7. ROC performance analysis of hybrid models.

Hybrid
Models CNN-LSTM LSTM-

RUSBoost MLP-LSTM HG2 Proposed
Model

ROC 0.817 0.879 0.92 0.93 0.98

Table 8. Computation time of ML and DL models.

ML/DL Models SVM LR DT RF NB SVM + BHA CNN GRU WDCNN HGC

Time (s) 1618 4 52 281 1 3000 202 2364 304 1704

Epoch - - - - - - 15 15 15 5

8. Conclusions and Future Work

Electricity theft is an unavoidable issue that causes power losses in both; developed
and developing countries. As a result, power utility companies have major disruptions in
their operations, leading to loss of revenue. Moreover, electricity loss also causes issues
with economic growth and power infrastructure stability. In this study, a combined DL
model for NTL detection is presented that incorporates a GRU and a CNN. To remove null
and undefined values, EC data are pre-processed by normalization. In addition, uneven
distribution of class samples is another problem in ETD that affects the effectiveness of the
ML and DL models. In this paper, a hybrid approach is used to address these problems.
The performance of the proposed model is evaluated on the SGCC dataset in real-time
using various performance metrics and compared with SVM, LR, CNN, GRU, RF, DT, NB,
and WDCNN. The model achieves 0.987, 0.985, 0.94, 0.94, and 0.91 ROC-AUC, PR-AUC,
accuracy, F1-score, and recall score on the SGCC dataset, respectively. The obtained results
are better than those of other ML and DL models. However, despite the proposed model
outperforming substitute techniques, it is too sensitive to changes in input data. The
presented model will help many industrial applications to identify normal and abnormal
samples or records. To improve the model’s performance and avoid overfitting, meta-
heuristic algorithms help select the optimal parameters for deep and machine learning. It
is very complex and time consuming to select these parameters manually.

In the future, meta-heuristic techniques will be used to achieve optimal hyperparame-
ter tuning in DL models.
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Nomenclature

ANN Artificial Neural Network (NN) zi EC of consumer i at current day
ADASYN Adaptive Synthetic zi−1 EC of consumer i at previous day
AUC Area Under the Curve zi+1 EC of consumer i at next day
BHA Black Hole Algorithm
CNN Convolutional Neural Network µ(zi) Represents average E
DT-SVM Decision Tree-SVM min(Zi) Minimum EC
DL Deep Learning max(Zi) Maximum EC
DE Differential Evolution mmin Total number of minority class
DT Decision Tree mmax Total number of majority class
DNN Deep Neural Network G Total number of minority data to be generated
EC Electricity Consumption ETD Electricity Theft Detection
FP False Positive FN False Negative
FPR False Positive Rate GRU Gated Recurrent Unit
HGC Hybrid GRU–CNN LSTM Long Short-Term Memory
KNN K-Nearest Neighbor β Ratio of minority: majority data desired after ADASYN
LR Linear Regression MLP Multi-Layer Perceptron
NTL Non-Technical Loss RNN Recurrent Neural Network
PR-AUC Precision–Recall Area Under Curve ROC-AUC Receiver Operating Characteristic Area Under Curve
RBF Radial Basis Function RF Random Forest
SGCC State Grid Corporation of China SVM Support Vector Machine
TP True Positive TN True Negative
TL Technical Loss TSR Three Sigma Rule
WADCNN Wide And Deep Convolution NN λ Number between 0–1
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Abstract: The stability control of nominal frequency and terminal voltage in an interconnected power
system (IPS) is always a challenging task for researchers. The load variation or any disturbance affects
the active and reactive power demands, which badly influence the normal working of IPS. In order
to maintain frequency and terminal voltage at rated values, controllers are installed at generating
stations to keep these parameters within the prescribed limits by varying the active and reactive
power demands. This is accomplished by load frequency control (LFC) and automatic voltage
regulator (AVR) loops, which are coupled to each other. Due to the complexity of the combined
AVR-LFC model, the simultaneous control of frequency and terminal voltage in an IPS requires
an intelligent control strategy. The performance of IPS solely depends upon the working of the
controllers. This work presents the exploration of control methodology based on a proportional
integral–proportional derivative (PI-PD) controller with combined LFC-AVR in a multi-area IPS.
The PI-PD controller was tuned with recently developed nature-inspired computation algorithms
including the Archimedes optimization algorithm (AOA), learner performance-based behavior
optimization (LPBO), and modified particle swarm optimization (MPSO). In the earlier part of this
work, the proposed methodology was applied to a two-area IPS, and the output responses of LPBO-
PI-PD, AOA-PI-PD, and MPSO-PI-PD control schemes were compared with an existing nonlinear
threshold-accepting algorithm-based PID (NLTA-PID) controller. After achieving satisfactory results
in the two-area IPS, the proposed scheme was examined in a three-area IPS with combined AVR
and LFC. Finally, the reliability and efficacy of the proposed methodology was investigated on a
three-area IPS with LFC-AVR with variations in the system parameters over a range of Â ± 50%. The
simulation results and a comprehensive comparison between the controllers clearly demonstrates
that the proposed control schemes including LPBO-PI-PD, AOA-PI-PD, and MPSO-PI-PD are very
reliable, and they can effectively stabilize the frequency and terminal voltage in a multi-area IPS with
combined LFC and AVR.

Keywords: PI-PD controller; load frequency control; automatic voltage regulator; nature-inspired
optimization; multi-area interconnected power system

1. Introduction

Research efforts and specializations in power systems are increasing day by day to
acquire reliable power with nominal voltage and frequency. In a power system, the main
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goal is to provide nominal voltage and frequency to all consumers without any interruption.
The simultaneous control of load frequency and terminal voltage in an interconnected
electrical power system is the fundamental area of research for all practicing engineers.
The mutilation of frequency or voltage can spoil the performance and life expectancy of
equipment associated with IPS [1]. The active and reactive powers can change with load
demands in IPS. The active power can be adjusted by a speed governor in an LFC loop,
whereas reactive power can be controlled by an exciter in an AVR loop. In order to fulfill
the active power demand, a turbine input is continuously regulated in LFC, or else the
changing frequency will vary the machine’s speed. In AVR, terminal voltage remains
within the prescribed limit if the excitation of generators is regulated properly to match the
reactive power demand. A lot of literature is available on individual AVR or LFC systems;
however, relatively less research work has been carried out on combined LFC-AVR due
to its complex design. The PID controller was extensively used in multi-area IPS due to
its simple design and easier installation. For instance, the artificial electric field algorithm-
based hybridized approach to tune the fuzzy PID controller was suggested for combined
LFC and AVR with the incorporation of different energy storage devices [1]. A particle
swarm-optimized Ziegler–Nicholas (PSO-ZN)-based PID controller was examined for AVR-
LFC control in PV integration and a conventional power system [2]. PI and PID with filter
(PIDF) controllers based on the sine cosine algorithm were also inquired for a two-area,
two-source IPS. The redox flow batteries were assimilated for further improvements in
the system dynamics [3]. The doctor and patient optimization (DPO)-based accelerating
PID controller (PIDA) was proposed for the LFC-AVR problem in a multi-area IPS with
renewable energy sources [4]. The PID controller was employed for collective AVR-LFC
in a two-area IPS. A nonlinear threshold-accepting algorithm was explored to find the
optimum parameters of the PID controller [5]. PI and I controllers for AVR and an LFC loop
were also investigated for a single-area IPS [6]. In [7], due to the inclusion of deregulated
environments in IPS, a fuzzy logic controller (FLC) was recommended for a two-area
LFC-AVR problem. A fractional order controller (PIDµF) based on the lightning search
algorithm (LSA) was also proposed for LFC-AVR with wind and a reheat thermal plant
as the generating companies (GENCOs) of area-1,and with diesel and a nonlinear reheat
thermal plant as the GENCOs of area-2 under deregulated environments [8].The PID
controller was optimized with the hybridization of the artificial electric field algorithm
and differential evolution for a two-area IPS with a joint LFC-AVR [9,10]. In [11], PID with
the firefly algorithm was employed for a two-area IPS with AVR-LFC. The moth flame
optimization (MFO)-based fractional order PID controller was proposed for both LFC and
AVR loops [12]. For a single-area synchronous generator, the combined LFC-AVR was
explored using a hardware environment [13]. In [14,15], the authors inspected the firefly
algorithm, particle swarm optimization, and the genetic algorithm-based PID controller for
AVR-LFC loops. The novel state-observer (SO)-based integral double-derivative controller
based on magneto-tactic-bacteria optimization (MBO) was presented for voltage–frequency
control in a hybrid IPS [16]. The model predictive controller (MPC) was also used to
improve AVR-LFC responses [17]. In [18], the heuristic computation-based two degrees
of freedom state-feedback PI controller was exploited for the AVR loop in synchronous
generators. A combination of the bacterial foraging optimization algorithm and particle
swarm optimization was utilized to tune the PI controller for the AVR system with a static
synchronous compensator [19]. In [20], a sliding mode controller with the addition of a
gene ralized extended state observer was successfully explored to optimize the LFC loop
in a multi-area IPS. The PID controller tuned with the many optimizing liaisons (MOL)
algorithm was applied to a two-area IPS with non-reheat thermal sources in the presence of
GDB [21]. Moreover, a comprehensive research work was presented for individual LFC
loops as presented in [22–37]. A brief literature summary of AVR-LFC is provided in Table 1.
It can be seen that much less attention has been given to the combined LFC-AVR problem in
multi-area IPS due to its complex structure. The literature survey also depicts that modified
forms of the PID controller were explored very rarely for combined AVR-LFC. Different
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modified forms such as PI, PIDF, PIDµF, and FO-IDF have been explored due to their
excellent time response characteristics with fast convergence, but the PI-PD controller has
not been employed for combined LFC-AVR multi-area IPS. Due to its modified structure
having a control branch in the feedback path, complex systems can be well optimized with
PI-PD as compared to classical control schemes such PI and PID, etc. To obtain optimal
controller parameters, an intelligent tuning algorithm is needed, which can optimize
the controller with minimum error/fitness. In the past, nature-inspired optimization
algorithms have received a lot of attention from researchers because of their strengths
and abilities to tackle a variety of complex optimization issues in engineering. These
strategies have also been used successfully to obtain optimal controller parameters. The
classical nature-inspired computing techniques have shown very satisfactory performances
for both individual and combined LFC-AVR. Moreover, researchers have also presented
some novel nature-computing algorithms such as dandelion optimizer [38], modified
particle swarm optimization (MPSO), bald eagle search (BES) [39], the transient search
algorithm (TSO) [40], learner performance-based behavior optimization (LPBO) [41], the
Archimedes optimization algorithm (AOA) [42], etc. These recently introduced techniques
such as MPSO, LPBO, and AOA have not been considered for the optimal tuning of the
PI-PD control scheme. It will be worth choosing these nature-inspired techniques for the
optimization of multi-area IPS with combined LFC-AVR. Keeping in mind the existing
research gap, the nature-inspired computation-based PI-PD control scheme is proposed in
this research for multi-area IPS with combined AVR-LFC. The main contributions of this
work are:

1. The modeling of combined AVR-LFC for two-area and three-area IPS;
2. The modeling of the PI-PD control scheme and its optimization using the Archimedes

optimization algorithm (AOA), learner performance-based behavior optimization
(LPBO), and modified particle swarm optimization (MPSO);

3. The formulation of fitness functions for the optimization of proposed controller;
4. Further, a comprehensive performance comparison is carried out between LPBO-

PI-PD, AOA-PI-PD, and MPSO-PI-PD in two-area IPS. Moreover, the efficacy of
the proposed control schemes has been tested in a three-area IPS with a combined
LFC-AVR problem;

5. The reliability of the proposed control methodology has been illustrated by altering
the system parameters of three-area IPS over a range of Â ± 50%.

Table 1. Literature on ALR-LFC.

Reference Year Research
Area Controller Tuning

Schemes Area/System Nonlinearities Additional Incorporation

[2] 2021 AVR-LFC PID PSO-ZN Two Area - -
[3] 2020 AVR-LFC PI, PIDF CSA Two Area - RFBs, UPFC
[4] 2022 AVR-LFC PIDA DPO Two Area -
[5] 2019 AVR-LFC PID NLTA Single Area - -
[6] 2014 AVR-LFC PI Not given Single Area - Damper Winding

[7] 2019 AVR-LFC PID, FLC Fuzzy Logic Two Area - DC Link,
Deregulated Environment

[8] 2018 AVR-LFC PIDF,
PIDµF LSA Two Area GDB, GRC SMES, IPFC,

Deregulated Environment
[9] 2020 AVR-LFC PID DE-AEFA Two Area GRC IPFC and RFBs

[10] 2020 AVR-LFC PID DE-AEFA Two Area GRC HVDC link with
the existing AC tie-line

[11] 2019 AVR-LFC PID FO Two Area - -
[12] 2019 AVR-LFC FO-PID MFO Two Area GDB, BD -

[13] 2020 AVR-LFC PI HIL
Strategy Single Area - -

[14] 2019 AVR-LFC PID FA, GA, PSO Single Area - -
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Table 1. Cont.

Reference Year Research
Area Controller Tuning

Schemes Area/System Nonlinearities Additional Incorporation

[15] 2015 AVR-LFC PID PSO Two Area - -
[16] 2018 AVR-LFC SO-IDD MBO Two Area GRC, GDB -
[17] 2020 AVR-LFC MPC MPC Two Area - -

[18] 2020 AVR
2DOF state-
feedback PI

control

VSA, WOA,
SCA

GWO, SSA,
WCA

AVR for
Synchronous

Generator
- -

[19] 2021 AVR PI Hybrid
BFOA-PSO

Standalone
Wind–Diesel

Power
System

- STATCOM

[20] 2019 LFC

Observer-
based

nonlinear
sliding
mode

control

LMI Two Area GRC, GDB -

[21] 2021 LFC PID MOL Two Area GDB -
Proposed

Work 2022 AVR-LFC PI-PD AOA, LPBO,
MPSO

Two Area,
Three Area - -

Table 2 demonstrates the nomenclature used in this study. This research paper is
organized in following way: The power system model is described in Section 2. The
proposed control methodology is presented in Section 3. Section 4 contains a description
and flow charts of nature-inspired computation algorithms including LPBO, AOA, and
MPSO. The implementation and results of the proposed techniques are summarized in
Section 5. Lastly, conclusions and future guidelines are given in Section 6.

Table 2. Nomenclature.

Acronym Definition Acronym Definition

AOA Archimedes optimization algorithm IPS Interconnected power system
NLTA Nonlinear threshold-accepting algorithm LPBO Learner performance-based behavior optimization
AVR Automatic voltage regulator ∆Ptie Tie-line power deviation

PI-PD Proportional integral–proportional derivative Vt Terminal voltage
MPSO Modified particle swarm optimization LFC Load frequency control

Ri Speed regulation ∆f Frequency deviation
KG Governor gain B Area bias factor
TG Time constant of governor ∆PD Load deviation
Ka Amplifier gain Kt Turbine gain
Ta Time constant of amplifier Tt Time constant of turbine
Kg Generator gain Ke Exciter gain
Tg Time constant of generator Te Time constant of exciter
Kp Power system gain ∆XG Valve position of governor
Tp Time constant of power system ∆PG Deviation in the output of generator

T12, T21 Tie-line synchronizing time constants Ki Coupling coefficient of AVR-LFC loops

2. Power System Model

The multi-area IPS model under study is shown in Figure 1. The terminal voltage was
maintained at nominal value by stabilizing the generator fields, while the load frequency
was regulated by controlling real power. Figure 1a represents the AVR-LFC model of a
power system for a single area, where i and j represent area-1 and area-2, respectively [5].
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Vt(i), Ve(i), Vre f (i), and Vs(i) refer to the terminal output, error, reference, and sensor
voltage in area-1, respectively. The AVR system of area-i consists of a controller (K1(i)(s)),

amplifier (
Ka(i)

sTa(i)+1 ), generator (
Kg(i)

sTg(i)+1 ), exciter (
Ke(i)

sTe(i)+1 ), and sensor (
Ks(i)

sTs(i)+1 ). Area-1′s LFC

system has a controller K2(i)(s), turbine (
Kt(i)

sTt(i)+1 ), governor (
KG(i)

sTG(i)+1 ), speed regulation (Ri),

and generator/load (
Kp(i)

sTp(i)+1 ). ∆ f(i) denotes frequency deviation (Hz), ∆XG(i) shows the

valve position of the governor (p.u.MW),∆PG(i) represents the deviation in the output of
the generator (p.u.MW), ∆PD(i)(p.u.MW) denotes the deviation in load, speed regulation
is represented by R(i)(Hz p.u.MW−1), and ∆Ptie(i) is the tie–line power. The purpose of
tie–line is to interconnect multiple areas in IPS. Figure 1b shows the tie–line connections.
The synchronization coefficient between area-i and area-j is represented by Tij.

3. Proposed Control Methodology

The proportional integral derivative (PID) controller is commonly utilized in industrial
applications owing to its easier implementation and simpler structure. The PID controller
provides a satisfactory performance in most of the systems; however, the modified forms
of the PID control structure have shown improved performance in many control systems,
such as the AVR-LFC interconnected power system. The proportional integral–proportional
derivative controller (PI-PD) is a modified version of PID, which is designed in such a way
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to eliminate system errors with optimum transient and steady state response [43]. The PI
part of PI-PD exists in a feed forward path and directly responds to the error signal coming
from the summing junction. The PD part is located in the feedback path, and it is unaffected
by sudden changes in the set point specification. The closed-loop response can be improved
significantly with the addition of a controller part in the feedback path. The PI-PD controller
has been successfully employed in the recent past in different applications [44–50]. The
proposed control methodology with the combined LFC-AVR system is given in Figure 2.
The transfer function of PI-PD controllers is represented as:

U(s) = (Kp1 +
Ki
s
)E(s)− (Kp2 + Kds)Y(s) (1)

E(s) = Y(s)− R(s) (2)

where U(s), Y(s), R(s), and E(s) denote the control, output, reference, and error signals,
respectively. The cost function (J) is minimized to obtain the best possible parameters of
the controllers. J depends upon E(s), which is basically the difference between the output
and reference signal.
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In order to minimize the error signal, different types of performance indices can be
used such as the integral of the squared value of the error signal (ISE), the integral of the
time multiplied with the absolute value of the error signal (ITAE), the integral of the time
multiplied with the squared value of the error signal (ITSE), and the integral of the absolute
value of error (IAE) represented by the following equations:

JISE,two−area =
∫ T

0
[∆ f 2

1 + ∆ f 2
2 + ∆V2

t1 + ∆V2
t2 + ∆P2

tie12]dt (3)

JITAE,two−area =
∫ T

0
t[|∆ f1|+ |∆ f2|+ |∆Vt1|+ |∆Vt2|+ |∆Pptie12|]dt (4)
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JITSE,two−area =
∫ T

0
t[∆ f 2

1 + ∆ f 2
2 + ∆V2

t1 + ∆V2
t2 + ∆P2

tie12]dt (5)

JIAE,two−area =
∫ T

0
[|∆ f1|+ |∆ f2|+ |∆Vt1|+ |∆Vt2|+ |∆Pptie12|]dt (6)

For three-area IPS, we can write:

JISE,three−area =
∫ T

0
[∆ f 2

1 + ∆ f 2
2 + ∆ f 2

3 + ∆V2
t1 + ∆V2

t2 + ∆V2
t3 + ∆P2

tie1 + ∆P2
tie2 + ∆P2

tie3]dt (7)

JIAE,three−area =
∫ T

0 [|∆ f1|+ |∆ f2|+ |∆ f3|+ |∆Vt1|+ |∆Vt2|+ |∆Vt3|+ |∆Pptie1|+ |∆Pptie2|+ |∆Pptie3|]dt
(8)

JITSE,three−area =
∫ T

0
t[∆ f 2

1 + ∆ f 2
2 + ∆ f 2

3 + ∆V2
t1 + ∆V2

t2 + ∆V2
t3 + ∆P2

tie1 + ∆P2
tie2 + ∆P2

tie3]dt (9)

JITAE,three−area =
∫ T

0
t[|∆ f1|+ |∆ f2|+ |∆ f3|+ |∆Vt1|+ |∆Vt2|+ |∆Vt3|+ |∆Pptie1|+ |∆Pptie2|+ |∆Pptie3|]dt (10)

where,
∆Vt1 = Vre f −Vt1∆Vt2 = Vre f −Vt2∆Vt3 = Vre f −Vt3 (11)

∆Pptie1 = ∆Pptie12 + ∆Pptie13∆Pptie2 = ∆Pptie21 + ∆Pptie23∆Pptie3 = ∆Pptie31 + ∆Pptie32 (12)

When the cost function is minimized, the algorithm returns the best optimum pa-
rameters of the controller. To optimize the cost function (J), nature-inspired computation
algorithms including LPBO, AOA, and MPSO were adapted.

4. Nature-Inspired Computation Algorithms

Due to their ability to solve complex valued problems, nature-inspired computation
algorithms have gained brilliant attention in IPS. Keeping in view their remarkable contri-
bution, an effort was made in this research to optimize the combined LFC and AVR-based
IPS using nature-inspired computation techniques.

4.1. Learner Performance-Based Behavior Optimization

Rashid and Rahman presented a novel nature-inspired learner performance-based
behavior optimization (LPBO) technique in 2020. The basic concept behind this algorithm
is based on the fact that how students are admitted to different departments of a university
is based on their high school performance. After admission, students must be able to
improve their intellectual level to improve their skills. In this way, both exploitation and
exploration phases are preserved. In this algorithm, a random population is generated with
various ranges of grade point average (GPA). The applications of some of these learners
will be rejected or accepted based on their fitness. After that, the population is divided in
to subpopulation. Fitness is calculated and is then sorted into separate groups. The new
population’s structure is changed using crossover and mutation operators. A specified
number of learners is acquired by different departments based on the minimum GPA
criteria. This rejection and acceptance process is continued until all departments have their
vacancies filled. Population fitness is improved in each iteration based on group learning,
intellectual level, and teaching level [41]. Figure 3 presents the flow chart of the LPBO
algorithm. Note that the LPBO population represents the PI-PD controller’s parameters in
this case.
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4.2. Archimedes Optimization Algorithm

The Archimedes optimization algorithm (AOA) is a new state-of-the-art algorithm
based on the Archimedes principle. It deals with both convex and non-convex problems.
It was invented in 2021 by Fatmaand Houssein. It defines the relationship between a
buoyant force and an object submerged in water. The object will sink if the displaced
fluid weight is less than the weight of the object. Similarly, if the displaced fluid and
object weight are equal, the object floats on the fluid. An object has volume, acceleration,
and density that results in the buoyancy force, as a result fluid’s net force is always zero.
AOA is a very effective nature-inspired algorithm in a way that it analyzes a problem
with a global optimum solution. AOA fences in both exploitation and exploration phases
since it is a global optimization algorithm. A comprehensive area must be examined
to identify the global optimum solution of a given problem. Firstly, the fluid’s random
position is initialized, and then AOA evaluates the initial population fitness to discover
the best possible solution until the selection criteria are met. The density and volume of
each object changes at each AOA iteration. The new density, volume, and acceleration are
obtained using the object’s fitness. The AOA population represents the PI-PD controller’s
parameters [42]. Figure 4 presents a flow chart diagram of AOA.
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4.3. Modified Particle Swarm Optimization (PSO)

Drawing inspiration from swarm intelligence, Eberhart and Kennedy proposed the
particle swarm optimization (PSO) algorithm in 1995. In PSO, the movement of particles
(candidate solutions) over a defined search space depends upon their velocity and position.
The movement of particles is incited by the best possible positions known as local bests.
These local bests lead particles toward the best possible position [51]. In modified particle
swarm optimization (MPSO), the global learning coefficient is updated using a combination
of existing local and global learning coefficients. The modification in the PSO algorithm is
being made to improve the convergence characteristics of the controller. Figure 5 depicts
the flow chart of the MPSO algorithm. Remember that in this research work, the particles
represent the PI-PD controller’s parameters.
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5. Implementation and Results Discussion

Multiple simulations were carried out in MATLAB/Simulink to express the validation
of the proposed control methodology. Firstly, a two-area, two-source IPS with combined
LFC and AVR was optimized using LPBO, AOA, and MPSO. ITSE was chosen as the error
criterion, due to efficient error convergence characteristics. After achieving successful
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results, the proposed methodology was applied to a three-area, three-source IPS with
LFC-AVR loops.

5.1. Optimization of Two-Area Interconnected Power System

The two-area IPS model under investigation with a collective LFC-AVR system is
shown in Figure 6. The system parameters of the two-area IPS are specified in Appendix A.
The system parameters of area-1 and area-2 were chosen from [5] for a direct comparison of
the proposed methodology with the NLTA-PID controller. The parameters of optimization
algorithms such as MPSO, LPBO, and AOA used in simulations are given in Table 3. The
tie–line connection between area-1 and are-2 can be established using Figure 7. The optimal
parameters of MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control schemes are given in
Table 4. For the sake of the assessment of the proposed control schemes, the evaluation of
the time response of each schemes was carried out and comparisons were made with the
results of NLTA-PID [5]. Further, a comparison between the proposed control schemes such
as MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD is also presented in detail in this section.
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Table 3. Parameters of optimization techniques.

MPSO LPBO AOA

Parameter Value Parameter Value Parameter Value
Population size 20 Population size 20 Population size 20

Iterations 10 Iterations 10 Iterations 10
Inertia Weight
Damping Ratio 1 Crossover

Percentage 0.7 C1 (constant) 2

Personal Learning
Coefficient 2.74 Mutation

Percentage 0.3 C2 (constant) 6

Global Learning
Coefficient 2.88 Mutation Rate 0.03 C3 (constant) 2

Max. Velocity
Limit 0.2 Number of

Mutants 6 C4 (constant) 0.5

Min. Velocity
Limit −0.2 Number of

Offspring 14 Range of
Normalization (u,l) 0.9, 0.1
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Table 4. Optimal values of controller parameters (area-2).

Area Controller
Parameters

NLTA-PID [5] Controller
Parameters

Proposed Control Schemes

MPSO-PI-PD LPBO-PI-PD AOA-PI-PD

Area-1

Kp1 1.995 Kp1 1.061 1.064 1.61
Ki1 1.943 Ki1 0.630 1.396 1.512
Kd1 1.079 Kp2 1.162 1.071 1.88
Kp2 1.994 Kd1 1.621 1.795 1.263
Ki2 1.295 Kp3 1.063 1.850 1.01
Kd2 1.107 Ki2 1.419 0.772 1.68

- - Kp4 0.812 0.140 0.68
- - Kd2 0.283 0.483 0.37

Area-2

Kp3 1.956 Kp5 0.564 0.965 0.90
Ki3 1.919 Ki3 0.792 0.667 0.67
Kd3 0.655 Kp6 0.775 0.670 1.44
Kp4 1.283 Kd3 1.106 0.616 1.60
Ki4 0.586 Kp7 1.903 1.522 1.50
Kd4 0.819 Ki4 1.376 1.325 1.85

- - Kp8 0.799 0.507 0.74
- - Kd4 0.822 0.526 0.52

ITSE 2.84 ITSE 0.250 0.164 0.1892

Figure 8 shows the frequency deviation curves of area-1 and area-2 using NLTA-
PID [5], MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control techniques in a two-area IPS,
respectively. It can be seen that the proposed control schemes provided a very satisfactory
frequency deviation response. For the area-1 LFC, the settling time of NLTA-PID [5] was
lower than the proposed schemes but at the cost of a high undershoot. NLTA-PID provided
an undershoot of −0.285, whereas the proposed MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-
PD provided−0.130, −0.135, and −0.115, respectively. It can be noticed that the proposed
MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD provided 54%, 52.6%, and 60%, respectively,
better undershoot responses as compared to the NLTA-PID controller in area-1. For area-2,
NLTA-PD provided a quick settling, but it provided an undershoot of −0.275, whereas
the proposed MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD provided−0.135, −0.170, and
−0.120, respectively. It was verified that the proposed MPSO-PI-PD, LPBO-PI-PD, and
AOA-PI-PD provided 51%, 38%, and 56%, respectively, better undershoot responses as
compared to the NLTA-PID controller. The percentages of overshoots and steady state (s-s)
errors were almost zero with each proposed technique.
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Figure 9 shows the terminal voltage of area-1 and area-2 using the NLTA-PID, MPSO-
PI-PD, LPBO-PI-PD, and AOA-PI-PD control techniques in a two-area IPS, respectively. It
is clear that the proposed control schemes provided a very satisfactory transient response in
both area-1 and area-2. It is identified that NLTA-PID provided 18% and 17% overshoot in
area-1 and area-2, respectively, but the proposed technique provided a negligible overshoot
percentage at the cost of the settling time with all tuning techniques. It can be observed
that the proposed LPBO-PI-PD and AOA-PI-PD control schemes produced settling times
approximately the same as those achieved by NLTA-PID.
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Figure 10 shows the tie–line power response using NLTA-PID, MPSO-PI-PD, LPBO-PI-
PD, and AOA-PI-PD control techniques in a two-area IPS, respectively. It can be observed
from the results that LPBO-PI-PD and AOA-PI-PD provided tie–line power responses with
no undershoot; however, this was at the cost of a slightly small overshoot. In addition,
the tie–line power responses yielded by MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD were
satisfactory.
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Tables 5 and 6 show the summary of LFC and AVR responses using NLTA-PID, MPSO-
PI-PD, LPBO-PI-PD and AOA-PI-PD control schemes in a two-area IPS, respectively.
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Table 5. LFC responses (area-2).

Area-1 Area-2

Control
Scheme

Settling
Time % Overshoot Undershoot s-s

Error
Settling

Time % Overshoot Undershoot s-s
Error

NLTA-PID [5] 2.1204 0.0005 −0.285 0 2.592 0 −0.275 0
MPSO-PI-PD 4.5407 0 −0.13 0 4.92 0 −0.135 0
LPBO-PI-PD 6.9478 0.005 −0.135 0 4.043 0 −0.17 0
AOA-PI-PD 6.6752 0 −0.115 0 4.69 0 −0.12 0

Table 6. AVR responses (area-2).

Control
Scheme

Area-1 Area-2

Rise
Time

Settling
Time % Overshoot s-s

Error
Rise
Time

Settling
Time % Overshoot s-s

Error

NLTA-PID [5] 0.1287 1.24 18.80 0 0.154 0.887 17.75 0
MPSO-PI-PD 0.6532 3.30 0 0 1.077 3.17 3.2971 × 10−4 0
LPBO-PI-PD 0.4546 1.22 0.28 0 0.464 1.381 0 0
AOA-PI-PD 0.610 1.23 0.27 0 0.435 1.499 0 0

Figure 11 shows the graphical comparison of the performance parameters of NLTA-
PID, MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control techniques in a two-area IPS,
respectively. It is very clear that the proposed PI-PD control schemes provided relatively
better responses in terms of the undershoot in LFC and overshoot percentage in AVR as
compared to the NLTA-PID controller. From Tables 5 and 6 and Figure 11, it is concluded
that the proposed MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD were effective for maintain-
ing the frequency and voltage within the prescribed values with a satisfactory performance
in a two-area IPS.

5.2. Three-Area, Three-Source System

In this section, the proposed methodology is applied to a three-area IPS model with
combined LFC-AVR. The model under study is presented in Figure 12, while the model
parameters are provided in Appendix B.

The optimal values of MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD for a three-area
IPS with combined LFC and AVR are given in Table 7. Figure 13 shows the frequency
deviation response using MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control techniques
in a three-area IPS, respectively.

Table 7. Optimal values of controller parameters (area-3).

Area Controller Parameters
Proposed Control Schemes

MPSO-PI-PD LPBO-PI-PD AOA-PI-PD

Area-1

Kp1 1.0995 0.66 1.51
Ki1 1.1028 0.59 1.29
Kp2 1.2737 0.96 −0.38
Kd1 0.831 0.53 0.55

Area-2

Kp5 1.1106 0.77 0.86
Ki3 0.9076 0.61 0.71
Kp6 0.8639 1.48 1.55
Kd3 1.3118 1.03 0.86
Kp7 1.7917 1.68 1.91
Ki4 1.8286 1.57 1.97
Kp8 0.9068 0.83 1.074
Kd4 0.6882 0.73 1.071
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Table 7. Cont.

Area Controller Parameters
Proposed Control Schemes

MPSO-PI-PD LPBO-PI-PD AOA-PI-PD

Kp3 1.5371 1.56 0.88
Ki2 1.965 1.62 1.91
Kp4 1.2543 0.85 1.13
Kd2 0.5936 0.56 0.5

Area-3

Kp9 0.7914 0.78 1.9
Ki5 1.0795 1.12 1.26

Kp10 1.2741 0.66 1.64
Kd5 0.8581 1.56 0.42
Kp11 1.2282 1.29 1.63
Ki6 1.4326 1.3 1.69

Kp12 0.9527 0.77 1.43
Kd6 0.5874 0.45 1.33
ITSE 0.3507 0.34485 0.4853
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Table 8 shows the summary of LFC responses of area-1, area-2, and area-3 using
MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control techniques, respectively. For area-1,
LPBO-PI-PD provided 14% and 31% quick settling times as compared to the MPSO-PI-PD
and AOA-PI-PD control schemes, respectively. The overshoot percentage and steady state
error were zero in each case.

Table 8. LFC responses (area-3).

Area Control Scheme Settling Time % Overshoot Undershoot s-s
Error

Area-1
MPSO-PI-PD 5.43 0 −0.14 0
LPBO-PI-PD 4.65 0 −0.20 0
AOA-PI-PD 6.73 0 −0.175 0

Area-2
MPSO-PI-PD 5.04 0 −0.120 0
LPBO-PI-PD 4.87 0 −0.122 0
AOA-PI-PD 5.46 0 −0.115 0

Area-3
PSO-PI-PD 5.40 0 −0.122 0

LPBO-PI-PD 7.16 0 −0.143 0
AOA-PI-PD 6.40 0 −0.095 0

Further, MPSO-PI-PD exhibited 30% and 20% better undershoot responses as com-
pared to the LPBO-PI-PD and AOA-PI-PD control techniques, respectively. For area-2,
LPBO-PI-PD yielded 3.3% and 11% quick settling times, as compared to the MPSO-PI-PD
and AOA-PI-PD control schemes, respectively. The overshoot percentage and steady state
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error were zero in each case. Further, AOA-PI-PD exhibited 4.16% and 5.74% better un-
dershoot responses as compared to the MPSO-PI-PD and LPBO-PI-PD control schemes,
respectively. For area-3, MPSO-PI-PD provided 25% and 16% quick settling times as com-
pared to the LPBO-PI-PD and AOA-PI-PD control techniques, respectively. The overshoot
percentage and steady state error were again zero in each case. Further, AOA-PI-PD ex-
hibited 22% and 34% better undershoot responses as compared to the MPSO-PI-PD and
LPBO-PI-PD control schemes, respectively. Figure 14 shows the terminal voltage responses
of area-1, area-2, and area-3 using MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control
techniques in a three-area IPS, respectively.
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Table 9 shows the summary of AVR responses of area-1, area-2, and area-3 using the
MPSO-PI-PD, LPBO-PI-PD, and AOA-PI-PD control schemes, respectively. For area-1,
AOA-PI-PD provided 26% and 2% quick rise times as compared to the MPSO-PI-PD and
LPBO-PI-PD control techniques, respectively. Moreover, AOA-PI-PD yielded 38% and
29% fast settling times as compared to the MPSO-PI-PD and LPBO-PI-PD control schemes,
respectively. Further, it was observed that the percentage of overshoot and steady state
error were almost zero with each tuning technique. For area-2, MPSO-PI-PD offered 3% and
13% quick rise times as compared to the LPBO-PI-PD and AOA-PI-PD control techniques,
respectively. Moreover, AOA-PI-PD provided 21% and 19% fast settling times as compared
to the MPSO-PI-PD and LPBO-PI-PD control schemes, respectively. Further, it can be seen
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that the overshoot percentage and steady state error were almost zero with each tuning
technique. For area-3, LPBO-PI-PD produced 64% and 73% quick rise times as compared to
the MPSO-PI-PD and AOA-PI-PD control techniques, respectively. Moreover, AOA-PI-PD
provided 0.3% and 5.45% fast settling times as compared to the MPSO-PI-PD and LPBO-
PI-PD control schemes, respectively. Further, it can be seen that the overshoot percentage
and steady state error were negligible with each tuning technique. Figure 15 shows the
graphical comparison of the performance parameters of the MPSO-PI-PD, LPBO-PI-PD,
and AOA-PI-PD control techniques in a three-area interconnected system.

Table 9. AVR responses (area-3).

Area Control Scheme Rise Time Settling Time % Overshoot s-s
Error

Area-1
MPSO-PI-PD 1.53 3.48 5.8225 × 10−6 0
LPBO-PI-PD 1.15 3.01 4.5973 × 10−4 0
AOA-PI-PD 1.13 2.15 0.083 0

Area-2
MPSO-PI-PD 0.95 2.44 0 0
LPBO-PI-PD 0.98 2.37 0 0
AOA-PI-PD 1.09 1.92 0.37 0

Area-3
MPSO-PI-PD 1.32 3.30 0 0
LPBO-PI-PD 0.48 3.48 0.001 0
AOA-PI-PD 1.75 3.29 0 0

Figure 16 shows the tie–line power responses of area-1, area-2, and area-3 using
the MPSO-PI-PD, LPBO-PI-PD and AOA-PI-PD control schemes in a three-area IPS, re-
spectively. It can be inferred that PI-PD-based control schemes including MPSO-PI-PD,
LPBO-PI-PD, and AOA-PI-PD yielded satisfactory tie–line powers responses with negligi-
ble undershoots and overshoot percentages in the three-area IPS.

5.3. Sensitivity Analysis

In this section, the robustness of the proposed nature-inspired computation-based
PI-PD control techniques were tested with large variations in the system parameters of
the three-area IPS with combined LFC-AVR. The generator time constant (Tg) and turbine
time constant (Tt) were varied to Â ± 50% of their nominal values. The newer values of Tg
and Tt after Â ± 50% variations are given in Appendix B. The optimum parameters of the
PI-PD control scheme were the same as those used in Case 2. The AVR and LFC responses
of the PI-PD control scheme with variations in Tt and Tg are depicted in Figures 17 and 18,
respectively. Tables 10 and 11 show the summary of the performance parameters of LFC
and AVR responses under parametric variations. From the obtained results, it is evident
the overshoot percentages and steady state error were almost zero in each case. The AVR
responses are almost indistinguishable to each other, despite the variation in system param-
eters. Figure 19 shows the graphical comparison of the performance parameters under this
scenario. It is clearly observed that the system response under Â± 50% variations was very
identical to response with nominal values. This indicates that the proposed LPBO-PI-PD
control technique was very realistic and robust under variations in the system parameters.
These results clearly reveal that the re-tuning of the proposed controller is not necessary
with large variations of at least Â ± 50%.
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Table 10. Settling time responses of PI-PD control scheme with variations in system parameters.

Parameters/Variation Settling Time (LFC and AVR)

∆f1 ∆f2 ∆f3 Vt1 Vt2 Vt3
Nominal Tg, Tt 4.65 4.87 7.16 3.01 2.37 3.48

Tg1, Tg2, Tg3/+50% 4.60 4.76 7.02 2.74 2.11 3.56
Tg1, Tg2, Tg3/−50% 4.71 4.95 7.32 3.25 2.59 3.56
Tt1, Tt2, Tt3/+50% 4.63 5.01 7.18 3.03 2.38 3.48
Tt1, Tt2, Tt3/−50% 4.60 4.71 7.11 2.99 2.36 3.48

Table 11. Overshoot and undershoot responses of PI-PD control scheme with variations in system
parameters.

Parameters/Variation %Overshoot (LFC and AVR) %Undershoot (LFC)

∆f1 ∆f2 ∆f3 Vt1 Vt2 Vt3 ∆f1 ∆f2 ∆f3
Nominal Tg, Tt 0 0 0 0 0 0 −0.2 −0.122 −0.143

Tg1, Tg2, Tg3/+50% 0 0 0 0 0 3.4 −0.185 −0.13 −0.155
Tg1, Tg2, Tg3/−50% 0 0 0 0 0 0 −0.215 −0.125 −0.13
Tt1, Tt2, Tt3/+50% 0 0 0 0 0 0 −0.245 −0.125 −0.15
Tt1, Tt2, Tt3/−50% 0 0 0 0 0 0 −0.16 −0.125 −0.135
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Figure 17. LFC and AVR responses with variations in Tt. (a) ∆f1 in area−1; (b) ∆f2 in area−2; (c) ∆f3 in 
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Figure 17. LFC and AVR responses with variations in Tt. (a) ∆f 1 in area−1; (b) ∆f 2 in area−2; (c) ∆f 3

in area−3; (d) Vt1 in area−1; (e) Vt2 in area−2 and (f) Vt3 in area−3.
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Figure 18. LFC and AVR responses with variations in Tg. (a) ∆f1 in area−1; (b) ∆f2 in area−2; (c) ∆f3 in 
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Figure 18. LFC and AVR responses with variations in Tg. (a) ∆f 1 in area−1; (b) ∆f 2 in area−2; (c) ∆f 3

in area−3; (d) Vt1 in area−1; (e) Vt2 in area−2 and (f) Vt3 in area−3.
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Figure 19. Graphical comparison of performance parameters in three-area IPS with variations in Tg

and Tt. (a) Settling time; (b) undershoot.

6. Conclusions and Future Work

The multi-area IPS included numerous control areas, which are connected through
the AC tie–line. The transient and steady state performance of a multi-area IPS with AVR-
LFC was thoroughly investigated in this research.Nature-inspired computation including
MPSO-, LPBO-, and AOA-based PI-PD control technique was proposed for the optimization
of the multi-area system. From the findings of Case 1, it is concluded that all proposed
schemes provided relatively better undershoot responses as compared to the NLTA-PID
controller [5] for LFC. Particularly, the AOA-PI-PD control scheme exhibited 60% and
56% better undershoots in the area-1 and area-2 LFC, respectively, as compared to the
NLTA-PID controller. Similarly, NLTA-PID provided 18% and 17% overshoot in the area-1
and area-2 AVR, respectively, but the proposed PI-PD control scheme completely eliminated
the overshoot percentage with each tuning algorithm. The results of Case 2 reveal that
LPBO-PI-PD provided 14% and 31% quick settling times in area-1, whereas 3.3% and
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11% quick settling times were provided in the area-2 LFC as compared to the MPSO-PI-
PD and AOA-PI-PD control techniques, respectively. In the area-3 LFC, MPSO-PI-PD
provided relatively lower settling times (25% and 16%) as compared to the LPBO-PI-PD
and AOA-PI-PD control schemes, respectively. MPSO-PI-PD provided relatively better
undershoot (30% and 20%) in the area-1 LFC, whereas the AOA-PI-PD control technique
provided better undershoot in the area-1 (4.16% and 5.74%) and area-2 (22% and 34%) LFC,
respectively. Moreover, the AOA-PI-PD control scheme provided 26% and 2% quick rise
times, and 38% and 29% fast settling times in the area-1 AVR as compared to the MPSO-PI-
PD and LPBO-PI-PD control schemes, respectively. Further, MPSO-PI-PD provided 3% and
13% fast rise times in the area-2 AVR as compared to the LPBO-PI-PD and AOA-PI-PD
control schemes, respectively. AOA-PI-PD provided 21% and 19% quick settling times
in the area-2 AVR, and 0.3% and 5.45% fast settling times in the area-3 AVR as compared
to the MPSO-PI-PD and AOA-PI-PD control schemes, respectively. For the area-3 AVR,
LPBO-PI-PD provided 64% and 73% fast rise times as compared to the MPSO-PI-PD and
AOA-PI-PD control schemes, respectively. Finally, the resilience of the PI-PD control
technique was assessed by varying the system parameters (Â± 50%), and a comprehensive
sensitivity analysis was carried out to confirm its robustness. The results confirm the
superiority of the proposed PI-PD control scheme when applied to multi-area IPS with
combined LFC and AVR. Keeping in mind the value of the present work, IPS with a
combined LFC-AVR can be analyzed by incorporating multi-source and various energy
storage devices to enhance the dynamic response of the power systems. Further, neuro-
fuzzy and hybrid ANN controllers can also be utilized for multi-area multi-sources IPS.
It will be worth employing PI-PD, neuro-fuzzy, or hybrid ANN to multi-area IPS under
nonlinearity constraints. Moreover, very recently introduced nature-inspired computing
techniques such as dandelion optimization, artificial rabbits optimization, and sea-horse
optimization can be explored to find the optimal parameters of controllers in such types
of application.
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Appendix A

Table A1. Area-2 [5].

Sr. No.
Area-1 Area-2

System’s Parameter Value System’s Parameter Value

1 B1 1 B2 1
2 R1 2.4 R2 1.2
3 KG1 1 KG2 1
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Table A1. Cont.

Sr. No.
Area-1 Area-2

System’s Parameter Value System’s Parameter Value

4 TG1 0.08 TG2 0.12
5 Kt1 1 Kt2 1
6 Tt1 0.3 Tt2 0.15
7 ∆PD1 0.02 ∆PD2 0.02
8 Kp1 120 Kp2 100
9 Tp1 20 Tp2 10

10 Ka1 10 Ka2 10
11 Ta1 0.1 Ta2 0.1
12 Ke1 1 Ke2 1.5
13 Te1 0.4 Te2 0.6
14 Kg1 1 Kg2 1.5
15 Tg1 1 Tg2 1.5
16 Ks1 1 Ks2 1
17 Ts1 0.01 Ts2 0.01
18 G1 1.5 G6 1.5
19 G2 0.3 G7 0.3
20 G3 0.1 G8 0.1
21 G4 1.4 G9 1.4
22 G5 0.5 G10 0.5
23 T12 0.545 T21 0.545

Appendix B

Table A2. System parameters of area-1, area-2, and area-3.

Sr. No.
Area-1 Area-2 Area-3

System’s Parameter Value System’s Parameter Value System’s Parameter Value

1 B1 1 B2 1 B3 1
2 R1 2.4 R2 1.20 R3 1.20
3 KG1 1 KG2 1 KG3 1
4 TG1 0.08 TG2 0.12 TG3 0.12
5 Kt1 1 Kt2 1 Kt3 1
6 Tt1 0.3 Tt2 0.15 Tt3 0.15
7 ∆PD1 0.02 ∆PD2 0.02 ∆PD3 0.02
8 Kp1 120 Kp2 100 Kp3 100
9 Tp1 20 Tp2 10 Tp3 10

10 Ka1 10 Ka2 10 Ka3 10
11 Ta1 0.1 Ta2 0.1 Ta3 0.1
12 Ke1 1 Ke2 1.5 Ke3 1.8
13 Te1 0.4 Te2 0.6 Te3 0.8
14 Kg1 1 Kg2 1.5 Kg3 1.8
15 Tg1 1 Tg2 1.5 Tg3 1.8
16 Ks1 1 Ks2 1 Ks3 1
17 Ts1 0.01 Ts2 0.01 Ts3 0.01
18 G1 1.5 G6 1.5 G11 1.5
19 G2 0.3 G7 0.3 G12 0.3
20 G3 0.1 G8 0.1 G13 0.1
21 G4 1.4 G9 1.4 G14 1.4
22 G5 0.5 G10 0.5 G15 0.5
23 T12 0.545 T21 0.545 T31 0.545
24 T13 0.545 T23 0.545 T32 0.545
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Table A3. System parameters after Â ± 50% variations in Tg and Tt.

Sr. No.
Area-1 Area-2 Area-3

System’s Parameter Value System’s Parameter Value System’s Parameter Value

1
Tg1 (+50%) 1.5 Tg2 (+50%) 2.25 Tg3 (+50%) 2.7

Tg1 (Nominal) 1 Tg2 (Nominal) 1.5 Tg3 (Nominal) 1.8
Tg1 (−50%) 0.5 Tg2 (−50%) 0.75 Tg3 (−50%) 0.9

2
Tt1 (+50%) 0.45 Tt2 (+50%) 0.225 Tt3 (+50%) 0.225

Tt1 (Nominal) 0.3 Tt2 (Nominal) 0.15 Tt3 (Nominal) 0.15
Tt1 (−50%) 0.15 Tt2 (−50%) 0.075 Tt3 (−50%) 0.075
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Abstract: Modern power systems are largely based on renewable energy sources, especially wind
power. However, wind power, due to its intermittent nature and associated forecasting errors,
requires an additional amount of balancing power provided through the automatic generation control
(AGC) system. In normal operation, AGC dispatch is based on the fixed participation factor taking
into account only the economic operation of generating units. However, large-scale injection of
additional reserves results in large fluctuations of line power flows, which may overload the line
and subsequently reduce the system security if AGC follows the fixed participation factor’s criteria.
Therefore, to prevent the transmission line overloading, a dynamic dispatch strategy is required
for the AGC system considering the capacities of the transmission lines along with the economic
operation of generating units. This paper proposes a real-time dynamic AGC dispatch strategy,
which protects the transmission line from overloading during the power dispatch process in an active
power balancing operation. The proposed method optimizes the control of the AGC dispatch order to
prevent power overflows in the transmission lines, which is achieved by considering how the output
change of each generating unit affects the power flow in the associated bus system. Simulations
are performed in Dig SILENT software by developing a 5 machine 8 bus Pakistan’s power system
model integrating thermal power plant units, gas turbines, and wind power plant systems. Results
show that the proposed AGC design efficiently avoids the transmission line congestions in highly
wind-integrated power along with the economic operation of generating units.

Keywords: automatic generation control; wind energy; transmission line security; dispatch strategies;
Pakistan power system

1. Introduction

Wind power plants are directly connected to various voltage levels of power systems
and the majority provide a sustainable connection to high voltage transmission grids. How-
ever, wind power is highly reliant on intermittent wind speed that incurs stochasticity and
inaccurate accuracy, resulting in forecasting errors [1]. The forecasting errors of wind power
have pertinent effects on power system operations by incurring a mismatch between supply
and load demand that leads to deviation of generation and power exchanges from their
scheduled values. The power system planners employ various scheduling mechanisms
to deploy the extra amount of reserve, keeping the power grids in a balance condition.
Conventionally, the additional reserves are provided manually or through automatic gen-
eration control (AGC) considering only the economic operation in the account [2]. As
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a result, large fluctuations in the line power flow occur, which subsequently increases
the risk of transmission lines overloading during the power balancing operation [3–5].
This may further deteriorate the power system security and causes permanent damage to
the transmission line network. Contrarily, if enough margin capacity for the fluctuation
running is set up in the transmission lines, the available capacity for the energy market
transactions is reduced and high economic losses can occur. Therefore, the overloading
of the transmission line network is becoming a serious problem threatening the stable
operation of the power system in large-scale wind energy-based power systems.

The problem has been highlighted in several research articles [6–8]. In this regard, a
comprehensive review of the deployment of AGC for conventional and modern power
systems is proposed in [9]. Similarly, the integration of wind and electric vehicles in power
systems is studied using the AGC strategies [10]. Various models are developed and
implemented [11,12] in different kinds of electricity markets to alleviate the line overload in
the massive renewable integrated power systems. Two broad models are normally used for
the alleviations of line overloads, namely cost-free means and not-cost-free means. The cost-
free means included actions like outraging of congested lines or operation of FACTS devices
because the marginal costs (and not the capital costs) involved in their usage are nominal.
The not-cost-free means include the re-dispatching of the generation amounts by backing
down some generators while others increase their output and, as a result, the generators
no longer operate at equal incremental costs. This study has explored the latter model,
in which the dispatched power from the generating units is rescheduled to minimize
line congestion. The authors in [13] proposed an enhanced power flow management
scheme for the renewable energy-based power system to avoid transmission line overload
during maximum power flow fluctuations. The study illustrated a detailed dispatching
mechanism for the AGC system to reschedule the power flow in the heavily loaded line,
utilizing the remained capacity of light-loaded lines, which act as a buffer of fluctuating
power. However, the proposed AGC model does not operate effectively in the case when
all lines are set to target, since the model is based on the utilization of the capacity of the
light-loaded line. The authors in [14] used a direct method to reschedule the generation of
the power plant units, alleviating the line overloads after any N-1 contingencies. In this
method, the power at the receiving bus of the overloaded line is appropriately modified by
an amount equal to the overloaded power during each iteration of the load flow solutions.
However, the method uses a hit-and-miss procedure to measure the correct bus power
adjustment and, therefore, consumed enough time.

Non-linear programming methods are employed in several research articles to find
a coordinated control action to eliminate the transmission line overload in renewable
integrated power systems [15,16]. The authors in [17] utilized a learning machine learning
approach with classical constraints for the economic dispatch model to tackle the problem
of line overload alleviations. In [18], an economic dispatch model was developed for the
generating units based on the direct acyclic graph (DAG), which provides an optimal
remedy for the large network having different interconnected areas. The study in [19]
proposed a dispatch model for line overload alleviation, utilizing a technique based on
mixed linear programming to minimize switch opening as a solution to reduce overloads.
The authors in [20] reduced the overloading of the transmission lines using a fuzzy logic
model that tried to recreate the network operators’ actions; however, the generation cost
has not been considered. In [21], the authors used the metaheuristics of fuzzy logic and
genetic algorithm for the implementation of online economic dispatch that assisted the
overload study by eliminating the modeling of the entire AC system and the difficulties of
the non-convergence of exact solution approaches. The authors in [22] employed fractional
order integral control for AGC of a multi-source interconnected power system. The research
work in [23] utilized a primal-dual interior point-based technique for the dispatch process
of generating units. However, before executing the algorithm for a final solution, different
stages of the simplification for the dispatch scenarios are deliberated, which are required to
be executed in clusters. Such a process creates a direct impact on the scenario selection.
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The aforementioned literature has tackled the overloading problem in a detailed
manner. However, the studies lack a real-time dispatch strategy for the AGC system, taking
into account the secure operation of transmission lines, along with the economic operation
in a high wind integrated power system network. This paper proposes real-time load
alleviation techniques for the AGC system by incorporating the line capacity constraints
in the dispatch and scheduling process. The study analyzes the impact of the overloaded
power on the transmission lines and proposes a dispatch strategy for the AGC system to
keep the power fluctuation of the transmission line under the prescribed limits during the
power balancing operation. Transmission lines having an anticipated load factor greater
than the threshold value are selected as target heavy load lines. The overloaded power is
reduced in the target lines by optimizing the dispatching ratio of the AGC system. This
is done by calculating the amount of overloaded power and reducing the dispatched
power of the target generating units by that amount. Meanwhile, the deficient power
is injected into the grid by increasing the dispatched power from the local grid station
of that overloaded bus. In this way, the area control error is regulated along with the
protection of the transmission lines. However, if the line loadings are not detected, the
dispatching ratio is set to be constant at the generation capacity ratio. Hence, the proposed
dispatch strategy mitigates overloads of transmission elements after N-1 contingencies,
ensuring the minimum risk of collapse in the massively penetrated wind power systems.
To verify the efficacy of the proposed method, simulations are performed on Pakistan’s
5-machine 8-bus power system model in Dig silent power factory software. The impact of
the overloaded power due to a random change in the dispatch order is firstly analyzed and
then the proposed method is implemented to de-overload the target lines.

The pertinent contributions of this work are as follows:

• The aggregated model of Pakistan’s 5-machine 8-bus power system network is de-
veloped by integrating the 500 kV transmission lines and generating units of thermal
power plants, gas turbines, and wind power plant systems.

• A model of the AGC system is designed and a dispatch strategy is developed to
maximize or minimize the power flow increase among target lines at which power
flow increase is detected.

• The dispatch strategy is designed by considering different constraints such as max-
imum, minimum capacities, and reserve availability of generating units and power
capacities of transmission lines. Further, the system model is simplified to find quick
solutions to contingencies issues. The proposed model of the AGC system is validated
using the step input and the real-time data inputs.

The remainder of the paper Is divided as follows: Section 2 presents the modeling of
the power plant units, such as thermal power plants, wind power plants, and gas turbines.
Section 3 describes the proposed model of the AGC system along with the objective function
and the proposed dispatch strategy for the line overload in the power balancing operation.
Section 4 validates the proposed AGC system by initially applying a step input and then
a real data input. Finally, Section 5 includes a summary, recommendations, and possible
future works in the proposed research domain.

2. Modelling of the Power Plant Generating Units

This section contains thorough information on the modeling of power plant units, such
as thermal power plant systems (THPPs), gas turbine-based power plant systems (GTPPs),
and wind power plant systems (WPPs). The governor, which is designed and installed
on power plant systems, provides the primary frequency response from each power plant
unit. In addition, a centralized AGC system is designed for a secondary response, which is
discussed in the following section.

2.1. Thermal Power Plant Model

The study considers the aggregated model of the thermal power plant system to
provide the required primary and secondary reserve power in the balancing process of
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load and generation along with the routine operation in the power system network. The
entire response of the THPPs is based on the response of the boiler influencing the system
stability operation. Figure 1 presents the detailed diagram of the THPPs, which is modeled
based on the investigation taken from the study [24,25] and is simplified for long-term
dynamic simulation studies. It is illustrated from the diagram that the steam turbine block
provides the required mechanical outpower (Pmech) based on the input from two blocks,
which include the governor block (cv) and the steam pressure (Pt) from the boiler block.
LR represents the load reference set point, which is provided from the boiler control section
and varies in response to any change in the system load. This change is counter in the
boiler section by recalculating the mainstream pressure value (Pt), considering the real
limitation of the turbine output and the associated delays of the store steam energy in
the boiler. The load reference set point signal (LR) is a feed-forward signal of the boiler
regulating the turbine valve to match the current generation value with the reference value.
Furthermore, the GRC and STC effects are integrated by considering a ramp rate limitation
of 30 MW/min.
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Figure 1. Thermal Power Plant Model. 
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Figure 1. Thermal Power Plant Model.

The governor provides the required primary response by controlling the turbine speed
valves based on speed variations of the generator and the droop setting of the governor.
The droop setting in this study is fixed at 4 percent. Dead bands are added to the governor
to prevent the motion of the steam valve from any small changes in speed due to the
mechanical fault. b1, b2, and Pt are the corresponding lump storing steam series at interior
pressure, while Tb1, Tb2, and Tb3 are the associated time constants representing the time
delays related to the boiler model. The response time of the boiler lies in the range of
5–6 min [26], leading to the overall response of the THPPs. This study considers a cross-
compound double reheat steam turbine [24], as shown in Figure 1, which derives the
output power in its mechanical form based on the inputs from the boiler model (Pt) and
the governor output (cv). The four time constants (T1, T2, T3, and T4) represent the overall
response of the turbine, which characterizes the charging of various volumes including
high-pressure turbine bowls and the time constant for re-heater, crossover, and double
reheat units. K1 − K8 are different coefficients signifying the contribution of the turbine
sections to the net mechanical output power. K1, K2 represent very high pressure, K3, K4
are only for high pressure, while K5, K6 and K7, K8 represent intermediate- and low-
pressure contribution values.

2.2. Gas Turbine Power Plant Model

The gas turbine power plant aggregated model is being considered in this study to
provide only the primary response during the power balancing process along with the
daily routine operation. The developed model, as shown in Figure 2, is based on the study
taken from [25–27], which comprises different blocks including the power distribution
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block (PDB), power limitation block (PLB), and gas turbine dynamics block (GTDB). The
governor model is designed for GTPPs integrating the low-pass filter and dead band effects
to protect the model from responding to high frequency and low frequency variations,
respectively. When there is any change in system load, the frequency of the system deviates
from its original value, which is converted into a power demand signal (∆Pc) by the droop
characteristic signal. The resultant ∆Pc of the signal is provided as an input to the power
limitation block, which utilizes the combustion technology physical constraints to impose
physical barriers on the turbine response. The PLB block restricted the reference power
signal to Pmax and Pmin, which are upper and lower power level limits. Lmax and Lmin
are the upper and lower load reference set points in the PLB block, which ensure that no
combustion constraints are violated during normal operation. A rate limiter block regulates
the ramping of the power demand signal at a specific rate, preventing excessive fire during
ramping up and the extinguishment of a narrow combustion flame during severe ramping
down.
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Command load signal (CLC) is the resultant signal generated by the PLB block, which
is fed to the PDB block. The PDB block consists of two chambers fired in series. The
EV chamber takes the compressed air as an input and mixes it with 50 percent of the
total fuel after heating. Here, it is important to mention that the fuel flow is controlled
through the CLC signal from the PDB block, while the airflow is controlled through the
shaft speed and variable inlet guide vane (VIGV). The resultant mixture is entered into the
high-pressure turbine, forcing it to spin, which causes the pressure to drop. The remaining
50 percent of the fuel and some additional air is added to the resultant mixture in the SEV
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chamber. The new mixture is then expended through the low-pressure turbine, forcing it
to spin. This kind of procedure inculcates high operational flexibility, low emission, and
high efficiency. The power contribution factors (CEV, CSEV, CVGV, and CFM) in the PDB
control blocks represent the physical characteristics of fuel flow, airflow, and allowable
temperature. The output of the power contribution factors depends on the CLC signal, air
compressor, and the two combustors’ capacities. The dynamics of the gas turbine dynamic
block are represented by the compressor and combustor unit. The combustor EV and
SEV are represented by the 1st order transfer function, while the variable inlet guide vane
(VIGV) is represented by the 2nd order transfer function. TEV and TSEV are time constants
for the burner of the EV and SEV combustors, respectively. The overall mechanical output
of the turbine is a function of CFM, CEV, CSEV, CVGV, and CLC and is restricted between
Pmax and Pmin.

2.3. Wind Power Plant Model

The study has modeled the wind power plant system to investigate its behavior during
the active power balancing operation by providing the primary and secondary regulating
reserves along with the normal system operation. The proposed model is developed to be
operated at the power system level rather than considering the impact of a specific wind
farm. This is because the aggregated performance of many wind turbines has a greater
influence on the power system than the operation of a single turbine. The study considered
the model proposed by the IEC61400-27-1 committee as the starting point for the model,
drafted for the simulation models of wind power generation. Here, it is important to
mention that the proposed model is developed for the control operation of the active power
in the system, which is the focus of this study. However, the model includes all the relevant
dynamics for long-term simulation studies. A detailed figure of the wind power plant
system (WPPs) is shown in Figure 3, mainly consisting of three blocks, which are the wind
power plant active power controller (WPPAPC), the wind turbine active power controller
(WTAPC), and a generator reference current block.
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(VIGV) is represented by the 2nd order transfer function. 𝑇ா  and 𝑇ௌா  are time con-
stants for the burner of the EV and SEV combustors, respectively. The overall mechanical 
output of the turbine is a function of CFM, CEV, CSEV, CVGV, and CLC and is restricted 
between 𝑃௫ and 𝑃. 

2.3. Wind Power Plant Model 
The study has modeled the wind power plant system to investigate its behavior dur-

ing the active power balancing operation by providing the primary and secondary regu-
lating reserves along with the normal system operation. The proposed model is developed 
to be operated at the power system level rather than considering the impact of a specific 
wind farm. This is because the aggregated performance of many wind turbines has a 
greater influence on the power system than the operation of a single turbine. The study 
considered the model proposed by the IEC61400-27-1 committee as the starting point for 
the model, drafted for the simulation models of wind power generation. Here, it is im-
portant to mention that the proposed model is developed for the control operation of the 
active power in the system, which is the focus of this study. However, the model includes 
all the relevant dynamics for long-term simulation studies. A detailed figure of the wind 
power plant system (WPPs) is shown in Figure 3, mainly consisting of three blocks, which 
are the wind power plant active power controller (WPPAPC), the wind turbine active 
power controller (WTAPC), and a generator reference current block. 
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The WPPAPC block generates a reference signal at the wind turbine level (Pre f _WT) in
response to any change in the reference signal at the wind power plant level (Pre f _WPPs).
Pre f _WPP is a function of the reference signal (Pre f ), governor output (∆Pc), and measured
power at PCC (Pmeas_PCC ). The governor model considers the effect of the dead bands and
provides the required power change signal (∆Pc) based on the droop characteristics signal
and the available power strength. The PI controller of the WPPAPC block regulates its
Pre f signal based on the difference between the Pre f _WPP and Pmeas_PCC signals. The signal
of the PWPPavail limits the PI controller output power. Following the reference signal from
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the WPPAPC block, the WTAPC block generates the currently active component (IPcmd)
as calculated by the PI controller and it is calculated based on the difference between the
Pre f _WT and Pmeas_PCC signals. This study considers the type IV wind turbine technology
for the generator as being able to provide the required operational flexibility. Machine-side
convertors (MSC) of such turbines are decoupled from the grid-side converter (GSC) to
perform their tasks. MSC rotates the generator at a specific speed, while the GSC controls
the active and reactive power flow to the grid side. The generator used in the wind turbine
is modeled as a static generator considering the current source because grid-side wind
turbine behavior is determined by the full-scale converter. The dynamic response of the
static generator is a function of the inputs from the phase-locked loop (PLL) and reference
current. In addition, a ramp-rate limitation is also added to limit the reference value based
on available wind power. WPP has the fastest response time among the power plant units
to any change in system loads, which is typically 2–4 s.

3. Power System AGC Model and the Proposed Control Strategy

This section presents detailed information about the proposed power system AGC
model, followed by the objective functions and the proposed dispatch strategy implemented
in the AGC system.

3.1. Power System AGC Model

The secure and reliable operation of the power system is determined by the automatic
generation control (AGC), which continuously monitors the frequency of an interconnected
power system and accordingly performs the remedy measures if required. In the AGC
control, two variables determine the whole operation, which includes frequency deviations
and the interchanged power. These two variables accumulatively make one equation called
area control error (ACE), which is a prime step in the execution of the AGC control. The
equation of ACE for an ith area of an interconnected power system is given as:

PACE,i[MW] = ∑
j ε An

βi∆ f + ∆Pij (1)

In the above equation, PACE,i[MW] is the imbalance of power in the ith area of the
system following any change in the system load. ∆ f represents the deviations in the
frequency, while βi is the frequency bias constant of the ith area. βi is represented by
the equation βi

[
MW
Hz

]
= Di +

1
Ri

, in which Di

[
MW
Hz

]
characterizes the damping of the

power system, while Ri

[
MW
Hz

]
is the droop characteristics. In this study, Ri is fixed at

a 4 percent value. ∆Pij[MW] is the total change in the interchange power, which is the
difference between the actual and scheduled interchange power and is called the tie-line
error. The system frequency instantly varies following any load change in the network due
to which the primary reserves are activated through a governor installed on each generator
unit. Meanwhile, AGC calculates the required area control error PACE,i and releases the
secondary reserves to regulate it and release the primary reserve. This process brings the
frequency to its nominal level. In such a way, the AGC regulator maintains the frequency of
the system at its nominal level and keeps the interchange power at its scheduled value by
performing the minute-to-minute balancing in the ith controlled area. The AGC operation
time lies in the range of 1–10 min.

Conventionally, the AGC system regulates the area control error and tie-line inter-
changes, which is the only power flow control function. However, the power flow on
the rest of the lines in the power system network is not regulated, which often results
in the overloading of the transmission lines during the power balancing operation. The
operation of AGC regulates the active power flow, which is absorbed or injected by dif-
ferent components of the power system. Therefore, overloading of the power lines can
be avoided during the power balancing operation by considering the line limits in the
AGC dispatch process. The focus of this study is to integrate the line capacities of the
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transmission line system in AGC dispatch, which considers the line loading limits of all the
lines before distributing the dispatching power to the generating units. Hence, the power
fluctuation in the transmission lines is controlled by re-scheduling the participation factor
of the generating units.

Figure 4 shows the network layout of the proposed power system AGC model. An
8-bus 5-machine model of Pakistan’s power system is considered in this study, consisting
of different generating units of thermal power plants, gas turbines, and wind power plant
systems. The generating units are connected to different buses of the 500 kV transmission
system. Furthermore, to study the dynamics of the AC interconnection, an external grid
is connected, emulating the characteristics of a general grid having an inertia of 16 s. It is
important to mention that the unit of inertia utilized in this study is in seconds. This is
because, in a per unit system, inertia is equivalent to energy per power, which means that
the rate at which the power changes in the power system network is restricted. Moreover,
the primary frequency response of the connected grid is 6000 MW/Hz, which means
that the rate at which the external grid responds per Hz changes with system frequency.
Detailed information on the connected buses and the associated lines is given in Table 1.
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Table 1. Grid stations and associated lines of the network.

S. No. Grid Stations (500 kV) Location
(Pakistan) Connected Lines and Dist. (500 kV)

1 Niki (NKI) North Karachi HBC-NKI (63 km)
2 Shikarpur (SKP) Shikarpur, Sindh SKP-DU (2) (153 km), DUN-SKP (2) (159 km)
3 Dadu-New (DUN) Sindh JMS-DUN (2) (199 km), DUN-SKP (2)
4 Jamshoro (JMS) Jasmshoro, Sindh HBC-JMS (198 km), JMS-DUN (2)
5 Hubco (HBC) Lasbela, Balochistan HBC-NKI (63 km), HBC-JMS
6 Dadu (DU) Dadu, Sindh SKP-DU (2), DU-DGK (544 km)
7 Guddu New (GDN) Kashmore, Sindh DU-GDN (319 km)
8 DG Khan (DGK) DG Khan DU-DGK, DGK-EXT Grid

The objective of this study is to alleviate the overloading of the transmission lines
during the power balancing operation by considering the power capacities of the lines.
Therefore, to simplify the complex model of transmission line systems to achieve the
aforementioned objectives, this study has ignored the other parameters of the transmission
line while performing this task. The other parameters include the line lengths and the line
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voltages. Furthermore, the AGC implemented in this study considers a PI controller, which
is used to minimize the PACE, as provided in (2).

∆PSec = K.∆PACE + KT
∫

∆PACEdt K (2)

The values of the parameters K and T are necessary to restore the network’s frequency
and the interchange power to their original values. The values of these parameters are set
following the conventional criteria for a coordinated secondary control system [28]. The
activation rate of the reserves from the generating units of the power plants is character-
ized by the tracking speed of the controller known as the time constant. ∆PSec[MW] is
the amount of reserve power calculated by the AGC controller to be distributed among
the generating units utilizing the proposed dispatch technique. In this study, the ex-
tra amount of reserve power is utilized from different units of thermal power plants
(∆PTHPP(JMS), ∆PTHPP(HBC), ∆PTHPP(NIKi)[MW]) and the wind power plant (∆PWPP)[MW],
considering all the constraints of the generating units and the transmission lines.

3.2. Objective Function and the Proposed Dispatch Strategy

The uncontrolled power flow in the transmission line of large-scale wind-integrated
power systems replicate serious repercussions on the health of the transmission system.
Power flow congestion management aims to alleviate the transmission line overload while
lowering the generation cost. This is expressed mathematically as follows:

Objective No. 1:

Min
NL

∑
J=1

(℘J−℘CP) (3)

Subjected to:
Equality Constraints:

PGi − PLDi = ∑NB
J=1 |Vi||Vj||Yij| cos(δi − δj − θij) (4)

QGi −QLDi = ∑NB
J=1 |Vi||Vj||Yij| sin(δi − δj − θij) (5)

Inequality Constraints:
Pmin ≤ PGi ≤ Pmax (6)

Qmin ≤ QGi ≤ Qmax (7)

∆Pmin limit ≤ ∆PGi ≤ ∆Pmax limit (8)

Figure 5 presents the proposed dispatch strategy for the developed AGC model as
mentioned in Figure 4. Initially, when there is any change in the system frequency, area
control error is calculated and based on that, the AGC regulator calculates the required
change in reserve power (∆PSec), which is then distributed among the different generating
units to regulate the area control error (PACE). For positive regulation, the required AGC
response is divided among the different generating units of the thermal power plant. How-
ever, the negative regulation wind power plant is also integrated into the AGC response
along with thermal power plant units. In the event of a negative dispatch, wind power
output is reduced only if all thermal power plants are running at their lower limitations,
which are set at 20% of their full capacity, or if the dispatched power is approaching their
lower limits. This reduces the use of reserve power from thermal generating units while
allowing the wind power plant to run at full capacity.
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Meanwhile, the line data of power flows in all the transmission lines are continuously
measured during the dispatch process, and in case any of the lines are overloaded during
the dispatch process, the proposed dispatch strategy performs the optimal dispatching,
in which the impact of AGC dispatch on overloaded power flow lines are calculated.
Transmission lines with an estimated load factor larger than the threshold value are chosen
as target heavy load lines. Overloaded power is reduced in the target lines by adjusting
the AGC system’s dispatching ratio. This is accomplished by determining the amount of
overloaded power and reducing the dispatched power of the target generating units by that
amount. Meanwhile, inadequate power is injected into the grid by raising the dispatched
power from the local grid station of that overloaded bus. In this way, the area control
error is regulated along with the protection of the transmission lines. However, if the
line loadings are not detected, the dispatching ratio is set to be constant at the generation
capacity ratio. Here, line loading means an excess of power flow over a certain threshold
value fixed by the operator. The estimated value or the threshold value of the transmission
line loading is fixed at 90 % in this study, which means that if a line exceeds its limit of 90%,
it is considered a loaded line. The line loading of each transmission line is measured using
the equation given as:

Line Loading =
current flowing in the line
Current rating of the line

× 100 (9)

4. Simulation and Results

The aforementioned section presented the developed power system AGC model and
the associated dispatch strategy, which contemplate the transmission line overloading
during the dispatch process to perform the daily generation and load balancing operation.
The section implements the dispatch strategy and analyzes the results. To carry out this

204



Sustainability 2022, 14, 11810

objective, the study has modeled a hypothetical network of the Pakistan power system in
which a specific part of the network is considered to implement and analyze the proposed
control strategy. The selected part of the network is a 5-machine 8-bus model with 500 kV
transmission lines connected through different buses and with different types of power
plant units. The network consists of three THPPs units, GTPPs, and a WPP system. Gener-
ating units of THPPs, GTPPs, and WPPs are responsible for the primary reserves, while
secondary reserves are delivered from the THPPs and WPPs following the proposed dispatch
strategy. Furthermore, to investigate power changes on the external grid, the proposed power
system network is coupled to an external grid that mimics the specific characteristics of a grid
with a main frequency response of 6000 MW/Hz and an inertia of 16 s.

To understand the workings of the proposed power system AGC model, this study
is divided into two phases. In the first phase, the effectiveness of the proposed dispatch
strategy is analyzed for a step response of 150 MW when randomly applied on any bus of
the power system network. In the second phase, the study implemented the same AGC
model, utilizing a real-time input series for the generating units and connected loads. In
both phases, the overloading of the transmission lines is analyzed during the dispatch
process of the AGC model in the power balancing operation. Table 2 presents the current
operating scenario, in which the power plant units are operating at different points to
meet the daily load demand. Initially, before applying the step response, the load and the
generation in the current scenario are balanced and, therefore, no imbalances in the power
system are present, resulting in the frequency of the system being at the nominal level.
The line loadings of the associated transmission lines are obtained in this scenario and are
shown in Table 3. It is illustrated from the table that no line exceeded the limit of 90%,
which is the maximum limit of line loading fixed in this study.

Table 2. Capacities, regulating reserves, and the initial operating points of generating units in a
selected part of Pakistan’s power system network.

Power
Plant

Models

THPP
(Jamshoro)

THPP
(Hubco)

THPP
(Niki)

GTPP
(Bhiki)

WPP
(Jhimpir)

Load
(Jamshoro)

Load
(Niki)

Load
(Dadu)

Load
(Guddo-New)

Capacities 1320 1202 800 220 2800 – – – –
Reserves ±100 ±100 ±120 0 −400 – – – –

I.O.P 1188 1081.8 500 218 2520 2920.3 887.5 700 1000

Table 3. Ratings and current loading of the transmission lines in the balanced condition.

Power System
Trans-Lines DU-GDN DU-DGK SKP-DU DUN-SKP JMS-DUN HBC-JMS HBC-NIKI

Current
ratings (KA) 1.8 0.3 1.5 1.5 1.5 1.2 0.6

Loadings (%) 51.7 17.8 31.6 40.0 40.0 66.8 74.6

4.1. Step Response Analysis

To initiate the case study of the first phase, a load step of 150 MW was applied
at the Niki bus station of the proposed power system network, deviating the system
frequency from its nominal value, thus creating an imbalance between the load and gen-
eration. The system frequency is regulated by activating the secondary reserves follow-
ing the primary reserves through the AGC system from the thermal power plants units
((∆PTHPP(JMS), ∆PTHPP(HBC), ∆PTHPP(NIKi)) installed at different grid stations. The response
of the AGC system is based on the calculated ACE signal (PACE) in the power system net-
work, which is fed to the PI controller to determine the indispensable secondary response
(∆PSec) from the concerned power plant units. PACE and ∆PSec signals are resultantly drawn
in Figure 6a to show the response of the area control error and the required power dispatch
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to regulate the ACE signal. It is illustrated from the figure that the ∆PSec signal leg behind
the PACE was due to the delays accompanying the AGC and the power plant units. The
subsequent individual response (∆PTHPP(x)) of THPP units against the ACE signal is drawn
in Figure 6b. For positive regulation, the required AGC response is divided among the
different generating units of thermal power plants. However, for negative regulation, the
wind power plant is also integrated into the AGC response along with thermal power plant
units.
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Hubco, and Niki).

From Figure 6, it can be seen clearly that when a load of 150 MW was applied at the
Niki grid station, the AGC system automatically activated the reserve power from each
generating unit taking part in the AGC dispatch process by keeping in view the line limit of
each transmission line. In this process, all the lines approaching the Niki grid station would
have a possibility to cross the threshold loading values to meet the increasing load demand
at the Niki grid station. Hence, to alleviate the overloading of these lines, the dispatched
power from all the buses connected to these lines should be reduced by the amount of
overladed power calculated with the help of Equation (9). In this case, the transmission
line approaching the Niki grid station from the Hubco grid station became overloaded.
This can be seen in Figure 6b between the time duration of 2340 and 2440 s, when the
loading of a line connecting the Hubco and Niki grid station is overloaded as a result of
the AGC operation and the response from the thermal power plant units is rescheduled to
de-overload that specific line. The resulting dispatch power of the generating units shows
that the generation at the Hubco grid station is reduced to zero, while the power from the
generating unit of the Jamshoro grid station is reduced to a lower level. This is because the
associated transmission lines of these grid stations are overloaded and, hence, a further
dispatch from these generating units can overload these transmission lines. Conversely, the
dispatched power by the generating unit at the Niki grid station (Local) is increased by the
amount of power that the other two generating units have decreased in power. This does
not affect the power balancing operation of the AGC system and, thus, the frequency of
the system remains at the nominal level. Hence, the proposed dispatch strategy effectively
regulated the area control error (PACE) by not violating the maximum line limit of the
transmission lines, which is fixed at 90 % in this study. This can be witnessed from the
resultant response of the system frequency (Figure 7a) following the AGC response and
subsequent response from the external grid, as shown in Figure 7b.
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To further quantify the results, the steady-state values of the line loadings of all the
transmission lines following the AGC response are presented in Table 4, and their responses
are drawn in Figure 8, from which it can be illustrated that no line has crossed the limit of
90 %; hence, all the lines are operating within their nominal limits. Hence, the proposed
AGC model effectively mitigated the imbalance engendered due to the load changes in the
power system.

Table 4. Rating and current loading of the transmission lines following the AGC response.

Power System
Trans-Lines DU-GDN DU-DGK SKP-DU DUN-SKP JMS-DUN HBC-JMS HBC-NIKI

Current
ratings (KA) 1.8 0.3 1.5 1.5 1.5 1.2 0.6

Loadings (%) 51.7 17.8 31.6 39.9 39.9 60.0 88.2
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Figure 8. Line loading following AGC response.

Nevertheless, the line loadings remain within the limit, which ensures a secure and
reliable operation of the power system. Furthermore, from Figure 8, it is illustrated clearly
that the loading of the line connecting the HBC-NIKI grid station is reduced from the
maximum limits between the time duration of 2340 and 2440 s. The resultant loading of the
other lines following the AGC response is also shown in the figure, which shows that none
of the lines crossed the maximum loading limits during the operation.
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4.2. Real-Time Input-Based Analysis

The aforementioned section validated the proposed AGC dispatch strategy for avoid-
ing the overloading of the transmission lines in the power balancing operation when a load
step was applied at the Niki bus station. The developed dispatch strategy is further ana-
lyzed in this section utilizing a real-time input series for the generating units and connected
loads. The capacities and the regulating reserves of the generating units and the connected
loads are kept the same, as mentioned in Table 2. Furthermore, the initial generating power
of all the power plant units is shown in Figure 9, in which three generating units are based
on thermal power—one is a gas turbine and one is the wind power plant. Furthermore, the
generating units based on the thermal power plant and the wind power plant contribute
their power to the secondary regulation process. Here, it is important to mention that
the forecast error in wind power engendered a power imbalance between the load and
generation.
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Figure 9. Initial generation from power plant units.

Figure 10 presents the initial power imbalance between the demand and generation
resulting from the forecasting error of the wind power plant. The resulting imbalances are
required to be mitigated by utilizing the secondary reserves from wind and thermal power
plants installed at different buses. In this case, all the thermal power plants contribute to
both positive and negative regulation, while the wind power plant only regulates negative
power imbalances. Meanwhile, at the same time, the power flow of the transmission lines
is measured by performing the load flow analysis according to the developed dispatch
strategy. If any of the transmission lines cross the threshold value of the line loading
as fixed by the operator, the dispatch ratio is optimized by the AGC regulator in a way
that alleviates the overloaded lines by reducing the power generation from the concerned
power plant units. The reduced power is equal to the amount required to de-alleviate the
target-loaded lines. In addition, the deficient power is injected into the grid from the local
grid station of the overloaded line. Conversely, if none of the lines cross the threshold load
value, the dispatch ratio of the generating units would remain the same as it was before the
loading impact. Here, the threshold value is set at 90% of the full line capacity.

Figure 11 illustrates the responses of all the generating units during the 24 h simulation
period to provide the required reserve power during the AGC operation. Here, it can be
seen from the figure that all the thermal power plants are actively participating in the
positive and negative regulation process, while the wind power plant is only providing the
regulation power during the negative regulation process. This is because the wind power
plant is cheaper and always preferred to be operating at its maximum level. However, in
this study, the generation capacity of wind power is reduced only if all the thermal power
plants approach their lower operating level (Pchp, min(x)), which is set to 20% of their full
capacity, or the dispatched power of all the thermal power plants touches their lower limits.
In such a situation, thermal power plants does not have sufficient reserves to be inculcated
in the grid. Therefore, the wind power plant starts reducing its output power to regulate
the PACE as per the requirement of the network.
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Hubco & Niki), and (c) WPP (Jhimpir).

Along with such a regulation process, the dispatch mechanism takes into account the
limitation of the transmission line capacities to avoid any overloading issues during the
power balancing operation. To achieve this objective, regulating reserves are activated
from those generating units, which do not overload the associated transmission lines. In
this case, it can be seen from Figure 11 that the dispatched power is at a maximum from
the Niki power plant and a minimum from the Jamshoro power plant units. Moreover,
the reserve activation from the Hubco power plant system remained at the lowest level.
This is because the line connecting the Hubco and Niki grid station is already operating at
its maximum limit and further dispatches from the Hubco grid or any other grid station
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may overload this line. However, the power from the local generating station at the Niki
bus compensated for the required regulation power. The resultant response of all the lines
in the network following the AGC operation is shown in Figure 12, where it be seen that
all the lines are operating below the maximum loading limit of 90%. Furthermore, it can
be realized from the figure that the loading of the line connecting the Hubco to the Niki
grid station remains at the maximum level and, therefore, the dispatch from the generating
units installed at the associated buses remains at the lower level.
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Figure 12. Line loadings following the AGC response.

Figure 13 presents the response of the grid frequency and the deviations of the AC
interconnection. It is illustrated from the figure that the frequency of the system is regulated
to its nominal level at different points during the simulation period. This is due to the
activation of the reserve power from different generating units. The power deviations that
appeared on the external grid are reduced by a substantial amount after the AGC response.
Here, it is important to mention that the external grid deviations are the final imbalances,
which will remain in the system following the AGC response.

The comparison of the initial and final power imbalance following the AGC response
in the network is shown in Figure 14, from which it is illustrated that the initial power
imbalance is reduced by a substantial amount after the activation of the reserve power from
generation.

In addition, Figure 15 demonstrates the comparison of the loading power of the
overloaded line during the AGC operation. From the figure, it can be concluded that
the overloaded power has been significantly alleviated, bringing it to the level below the
threshold value, which is fixed at 90% in this study. Hence, it can be concluded that
the proposed dispatch strategy effectively performs the AGC operation and protects the
transmission lines in the network.
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Figure 13. (a) Grid frequency and (b) Grid deviations following the AGC response.
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5. Conclusions and Future Directions

Concerns about the security and economy of the grids have increased due to devel-
opments in power system networks including the integration of large-scale wind energy
sources, which engendered the power imbalance between the load and generation due to
associated forecasting errors. Additional reserves are normally provided from the gener-
ating units to keep the balance in the network. However, the bulky injection of reserve
power results in large fluctuations of the power flows in the associated transmission lines
by not considering the transmission system constraints. This study incorporated the trans-
mission line capacities in the real-time dispatch of the AGC system, resulting not only in an
economic operation, but also avoiding transmission line overloading in real-time, thereby
making the real-time operations secure and reliable. A simulation model consisting of a
5-machine 8-bus model was designed for the study in the Dig silent power factory software.
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A real-time dispatch strategy was developed and implemented by performing the step
response and the real-time input analysis. The results demonstrate that the suggested AGC
design efficiently eliminates transmission line congestions during the daily load generation
balancing operation while allowing generating units to operate economically.

In the present work, the proposed control strategy for avoiding line congestion was
implemented in a single area network with minimum buses to minimize the computational
burden. In the future, this work can be extended to the power system network, which has a
multi-bus bar structure with interconnected power systems.
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Abbreviations
Acronym/Symbol Definition
GTPP Gas turbine power plant
THPP Thermal power plant
CLC Command load signal
CIGRE International Council on Large Electric Systems
FACTS Flexible AC transmission system
PLB Power limitation block
STC Steam temperature control
℘J [MW] Active power flow in jth line
NL, NG Number of loaded lines and generators
PLDi[MW] Load demand at ith bus
Yij Mutual admittance
θij Line impedance angle
CVGV Variable inlet guide vane position compressor capacity
GTDB Gas turbine dynamics block
CSEV Sequential environmental burner capacity
PDB Power distribution block
CFM Baseload function
DAG Direct acyclic graph
GRC Generation rate constraints
℘CP[MW] Maximum capacity of the line
PGi[MW] Active power of the ith generator
NB Number of buses
δi, δj Bus i and j voltage angles
∆PGi[MW] Dispatch power from an ith generator
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Abstract: Currently, grid-connected Photovoltaic (PV) systems are widely encouraged to meet
increasing energy demands. However, there are many urgent issues to tackle that are associated
with PV systems. Among them, partial shading is the most severe issue as it reduces efficiency. To
achieve maximum power, PV system utilizes the maximum power point-tracking (MPPT) algorithms.
This paper proposed a two-level converter system for optimizing the PV power and injecting that
power into the grid network. The boost converter is used to regulate the MPPT algorithm. To make
the grid-tied PV system operate under non-uniform weather conditions, dragonfly optimization
algorithm (DOA)-based MPPT was put forward and applied due to its ability to trace the global peak
and its higher efficiency and shorter response time. Furthermore, in order to validate the overall
performance of the proposed technique, comparative analysis of DOA with adaptive cuckoo search
optimization (ACSO) algorithm, fruit fly optimization algorithm combined with general regression
neural network (FFO-GRNN), improved particle swarm optimization (IPSO), and PSO and Perturb
and Observe (P&O) algorithm were presented by using Matlab/Simulink. Subsequently, a voltage
source inverter (VSI) was utilized to regulate the active and reactive power injected into the grid
with high efficiency and minimum total harmonic distortion (THD). The instantaneous reactive
power was adjusted to zero for maintaining the unity power factor. The results obtained through
Matlab/Simulink demonstrated that power injected into the grid is approximately constant when
using the DOA MPPT algorithm. Hence, the grid-tied PV system’s overall performance under partial
shading was found to be highly satisfactory and acceptable.

Keywords: photovoltaic (PV); partial shading; maximum power point tracking (MPPT); dragonfly
optimization algorithm (DOA); adaptive cuckoo search optimization (ACSO); fruit fly optimization
algorithm combined with general regression neural network (FFO-GRNN); improved particle swarm
optimization (IPSO); voltage source inverter (VSI); total harmonic distortion (THD)

1. Introduction

Renewable energy resources have emerged as an important source of energy over
the last few decades. The wind, solar, fuel cells, biomass, geothermal, and hydrothermal
are leading energy resources. The wind, hydrothermal, and geothermal energy resources
are highly localized compared with other energy resources [1]. The sunlight is a supreme,
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abundant, and viable means of renewable energy that can accommodate growing public
energy demands [2,3]. The PV system is also attractive owing to its scalability, simple
architecture, lack of fuel cost, low carbon footprint, being free of noise, and friendliness to
the environment [4,5]. PV systems can be categorized into two major groups, i.e., utility-
interfaced PV systems and standalone PV systems [6]. There are many urgent issues to
tackle that are associated with PV systems. Partial shading is the most severe issue of the
PV system, as it distinctly diminishes the efficiency and output power of the PV array.
During partial shading, the P-V trajectory will become more distinct and complex due
to the availability of numerous peaks. Moreover, nonlinear behavior is also observed in
the I-V characteristic curve because of variation in temperature and irradiance [7,8]. The
characteristic curves have a special, single MPP at which the system works with supreme
efficiency. The block diagram of grid-interfaced PV systems is presented in Figure 1, which
usually comprises PV arrays and boost converters to improve DC voltage. The system
is then connected with a three-phase inverter to convert DC voltage to AC voltage, and
then sent into the power grid. The boost converter is exceptionally helpful to increase
the DC voltage generated from the PV array [9]. The switching of the boost converter is
regulated by the MPPT method based on the duty cycle. The MPP can be calculated by
using various MPPT methodologies. A brief survey of these techniques is presented in [10].
The proficiency of these techniques can be evaluated by tracking speed, maximum power
achieved, complexity, the number of sensors required, and time to reach the MPP.

Figure 1. The block diagram of the proposed Grid-Connected PV System.

The MPPT techniques can be categorized into conventional and intelligent techniques.
The progress in this field of MPPT algorithms continues due to multiple optimization
solutions [11]. To certify the better operation under the condition of uniform irradiance,
some conventional MPPT techniques are proposed, such as Perturb and Observe (P&O) [12],
Hill climbing (HC) [13], Incremental conductance (INC) [14]. Fractional short circuit
current is also proposed and performed well under normal weather conditions [15], and
modified P&O-based MPPT is implemented under single-solution optimization [16]. These
approaches experience the oscillations in the MPP that consequences overall sustained
loss in power and efficiency of the PV system. Furthermore, under partial shading, the
above-mentioned conventional techniques are stuck at local peaks and fail to reach the
global peak, surely reducing the PV system’s proficiency and effectiveness.

To resolve the precedent drawbacks in conventional MPPT techniques, researchers
proposed numerous algorithms by employing different methodologies in the literature.
The intelligent MPPT control uses artificial intelligence-based techniques, like artificial
neural networks (ANN) techniques [17], genetic algorithm [18], fuzzy logic controller
(FLC), and neuro-fuzzy algorithms [19], which are proposed to track the global MPP with
short response times and handle the nonlinear relationship between variables. Training
neural networks requires thousands of datasets to be modeled for non-uniform weather
conditions [20]. However, applying these MPPT methodologies to acquire the maximum
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power is a costly and time-consuming task. It will also implement a control system much
harder for grid-interfaced PV systems [21].

On the other hand, evolutionary techniques are usually employed, and among them,
the particle swarm optimization (PSO) technique is usually preferred [22,23]. It is a simple
and efficient technique that predominantly deals with multimodal and irregular issues.
However, this cannot reach the global maxima owing to random numbers rooted in par-
ticles velocity. Consequently, the efficiency of this method is affected, which leads to
premature convergence. Recently proposed soft-computing MPPT algorithms include
flower optimization [24], cat swarm optimization [25], artificial bee colony [26], grey wolf
optimization [27], and moth flame optimization [28]. The MPPT controllers have shown
reasonable performance and better response to track the MPP under partial shading. How-
ever, these techniques exhibit some drawbacks, including comprehensive mathematical
modeling, tuning of multiple parameters, and requiring a large population to perform
optimization tasks. If the size of the sample population decreases, the success rate to
determine the global MPP also drops.

The hybrid MPPT algorithms are also used in the literature to locate the MPP for
improving the search speed with fewer steady-state oscillations [29–32]. In Ant colony
optimization (ACO)-integrated P&O optimization-based MPPT algorithm, the P&O was
employed for local search and ACO for global search [29]. In [30], diversification was
added by combining differential evolution (DE) with PSO algorithm-based MPPT. The
DE is used even while PSO is employed for odd iterations to reach MPP. The GWO-based
MPPT is used in combination with the P&O algorithm for improving the convergence time.
The GWO was employed in the early stage, while P&O was used at the final stage [31].
The deterministic PSO combined with the INC-based MPPT algorithm was presented
in [32]. The INC was used to search local mode, while the PSO deterministically updated
the velocity without using random numbers. However, the important benefit of the
evolutionary algorithm was lost due to the removal of randomization. Hence, it may not
trace the global MPP. Furthermore, suppose the irradiance level is less than 500 W/m2. In
that case, the interaction between PV array and grid network will be more complicated,
and undesirable reactive power will occur, which diminishes the overall PV system [33].
The overall efficiency of grid-interfaced PV systems is consequent of a combination of the
following components: PV array (approx. 18–44%), inverter (approx. 95%), and MPPT
(approx. 98%), as described in [34]. Hence, modern control systems work on the MPPT
side to improve grid-interfaced PV systems’ efficiency.

After a comprehensive analysis, it was noticed that mostly global MPPT methodolo-
gies deal with partial shading for a standalone PV system and have not often discussed
partial shading for grid-interfaced PV systems. Therefore, this paper suggested a dragonfly
optimization algorithm (DOA)-based MPPT methodology to overcome these issues. The
novelty of this research work is to employ the DOA-based MPPT technique working under
partial shading conditions for grid-interfaced PV systems. The comprehensive analysis was
presented based on a novel DOA MPPT technique to trace the global MPP under partial
shading conditions. Furthermore, the results of DOA, compared with those of P&O, PSO,
ACSO, IPSO, and FFO-GRNN algorithms, prove the advancement in proficiency, reliability,
and robustness of DOA to reach global MPP. A dual-level interfacing scheme based on a
boost converter and three-phase VSI was presented to interface the PV system with the grid.
The switching of the boost converter was controlled by duty cycle through the DOA-based
global MPPT technique. The VSI comprises two regulating loops, i.e., an external DC
voltage and an internal current normalization loop. The voltage loop normalizes the output
power from the PV module to the grid and stabilizes the grid’s power flow. However
current control loop was used to regulate the injected current to the grid and keep it in
phase with the grid voltage to achieve a unified power factor. Finally, the accuracy of
the projected scheme was verified successfully by simulation in MATLAB/Simulink. The
important contributions of the research are listed below:
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• The proficient and enhanced dragonfly optimization algorithm (DOA) was imple-
mented.

• The suggested MPPT method can track the global MPP with fewer iterations under
partial shading.

• The proposed DOA’s applicability was supported by the performance comparison
with existing PSO, improved PSO, and P&O algorithm.

• The proposed DOA effectively applied to the PV-interfaced grid with the help of VSI
that can efficiently transfer energy between the PV array and grid side.

The rest of this paper is organized as follows. In Section 2, PV modeling under partial
shading is built. Then, the DOA-based global MPPT technique is presented in Section 3.
The inverter control methodology is illustrated in Section 4. Subsequently, the simulation
results are shown and analyzed in Section 5. Eventually, Section 6 concludes the paper.

2. Modeling of PV Array and Partial Shading
2.1. PV Array Modelling

The solar cell is mostly composed of silicon (Si) crystalline material that conducts
electricity when sunlight falls on solar cell and it converts the sunlight into electrical energy.
In literature, the common models used for PV cells are based on one-diode and two-diode
electrical circuit equivalent models. However, the one-diode model is preferred over the
other because of its simple structure and easy implementation [35]. The equivalent model
for solar cells is presented in Figure 2. By utilizing Kirchhoff’s current rule (KCL), we can
acquire the load current as presented in Equation (1):

I = Isc − IR

(
e
(I.RS + V)q

K.A.T
− 1
)
−
(

V + I.Rs

Rp

)
(1)

where I is the output current of PV cell; V represents the output voltage, Isc is used to
show the short-circuit cell’s current, q represents the electronic charge, IR is the reverse
saturation current, K is Boltzmann’s constant, T is temperature of the PV Module and A is
the ideality factor of diode, Rs represents the resistance in series, and Rp is the resistance
in parallel. However, the value of I bypass current is very low and approaches zero. The
resistance in parallel is also of huge quantity. Hence, Equation (1) can easily be transformed
into Equation (2):

I = Isc − IR

(
e
(I.RS + V)q

K.A.T
− 1
)

(2)

Figure 2. Single photovoltaic cell-equivalent circuit diagram.

Many PV cells are connected in series to form a PV module that is capable of delivering
higher power. Usually, a single module is comprised of (36, 72, 96, and 128) cells connected
in series and are currently available in markets [9]. These PV modules, in turn, associated
in parallel and series combinations to increase the current and voltage, respectively, to
form the PV string. The combination of PV strings is referred to as a PV array. These
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PV arrays have the capacity to produce power according to the desired demand. The BP
MSX 120 panel was used here and the specifications of the module under the standard
conditions (25 ◦C and 100 W/m2 irradiance) are shown in Table 1, and those of the 12-KW
PV system are presented in Table 2. Assume that Ns is the number of cells arranged in
series scheme and Np is the number of cells settled in parallel. Hence, Equation (2) can be
converted into Equation (3).

I = Isc.Np − IR.Ns


e

(
Np
Ns

I.RS + V
)

q

K.A.T.Ns
− 1


 (3)

Table 1. The BP-MSX 120 Module specification (25 ◦C and 1000 W/m2).

Parameter Values

Number of cells in series 72
Short circuit current 3.87 A
Maximum current 3.56 A

Open circuit voltage 42.1 V
Maximum voltage 33.7 V
Maximum power 120 W

Table 2. Characteristics of 12 KW PV system.

Parameter Values

No. of series modules in a string 10
No. of parallel modules in a string 10

Voltage at output 337 V
Current at output 35.6 A

Max power at output 12K W

2.2. Behavior of PV Array under Partial Shading

When environmental circumstances like irradiance and temperature are not varying
with the passage of time, then PV output power is assumed to be stable. If there is a cloudy
sky or other obstacle in the way of PV modules, radiation to the PV array declines. As a
result, the power diminishes and a variation in the nature of typical PV characteristic graph
is observed. The output characteristics of the PV system are dissimilar during uniform
irradiation and under partial shading. The extent of sun radiation on PV array declines
during partial shading. Therefore, the power output of array decreases, and a variation in
the performance can be observed in the PV’s characteristic curve [6]. When the intensity
of radiation is similar, there will be only one power peak for all the modules. However,
when the intensity of irradiance is dissimilar, the PV’s characteristic curve has various
local peaks but just one global peak. Herein, the PV system was composed of three PV
arrays connected in series. The different levels of irradiance were applied on the PV array
for establishing partial shading, and are shown in Figure 3 and organized in Table 3. The
output characteristics (P-V and I-V) graphs of the PV system for partial-shading case-1 and
partial-shading case-2 corresponding to divers irradiance levels are presented in Figure 4a,b
respectively. Both cases had multiple local peaks and had only one global peak. Moreover,
local peaks are indicated with the help of red dots while the global peaks are indicated
with the help of green dots.
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Figure 3. Irradiance configuration for: (a) normal condition, (b) partial-shading condition.

Table 3. PV array irradiance level for different partial-shading cases.

PV Arrays Cases Irradiance (W/m2)
Maximum Output

Power

1st Array 2nd Array 3rd Array (W)

Case-1 600 800 1000 9250
Case-2 800 550 450 4240

2.3. Boost Converter Modelling

The DC-DC boost converter is usually employed as an interfacing bridge between
the PV array and inverter. The typical circuit diagram of the boost converter is shown
in Figure 5. This can be used to raise the PV array voltage to the appropriate level for
grid synchronization and trace global MPP by resorting to DOA. The sizing of the boost
converter (value of inductor, input capacitor, and output capacitor) parameters is presented
in Appendix A. From [36] and [37], the value of the inductor was measured by utilizing
Equation (4), where Dm Dm is the value of duty cycle, switching frequency is shown
by fsfs, while output maximum voltage is presented by Vom , and ∆Ir is the inductance
ripple current.

L ≥ Vom·Dm(1− Dm)

fs·∆Ir
(4)

The input capacitor and the group of PV arrays were arranged in parallel combinations.
It is the capacitor at the input of the boost converter. This capacitance was calculated in [37]
and represented by Equation (5), where the value of the current at max power is Iom, Dm
represents duty cycle, and Vpv_mmpp is the output voltage of the system at MPP.

Cin ≥
[

Iom·(Dm)
2

0.02(1− Dm) fs·Vpv_mmpp

]
(5)

The capacitor in parallel with the load is called an output capacitor or DC-link ca-
pacitor. It is the capacitor at the output of the boost converter. The most vital function
of this capacitor is to confine voltage to the predetermined level and reduce the ripple
content from the PV source [38]. To measure the size of the output capacitor, Equation (6)

219



Sustainability 2021, 13, 778

was employed, where Dm represents duty cycle, Vout is the output voltage of the boost
converter, Rout is output load of boost converter, and ∆Vout is ripple output voltage.

Cout ≥
[

Vout·Dm

fs·∆Vout·Rout

]
(6)

Figure 4. (a) P-V characteristics of the array, (b) I-V characteristics of the array under partial shading.

Figure 5. The typical circuit diagram of the boost converter.
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3. MPPT Algorithms
3.1. Dragonfly Optimization Algorithm (DOA)

The dragonfly optimization algorithm (DOA) is a kind of evolutionary algorithm
and an intelligent search-optimization technique. The idea is originated in the static and
dynamic behavior of dragonflies. The small cluster of dragonflies that hunt for prey in a
small locality are categorized as a static swarm. The movement of flies is characterized
by abrupt and rapid changes in their respective flight paths. On the other hand, a large
cluster of flies that maintains a constant direction of motion over a lengthy distance with
the aim to migrate from one point to another is categorized as a dynamic swarm. Since
the aim of these dragonflies in a swarm is similar to the optimization problem, the static
behavior of swarm dragonflies (DFs) are used to characterize the exploitation phase, while
the dynamic behavior of swarm DFs is used to characterize the exploration phase. This
establishes the foundation of DOA. To derive the mathematical model for signifying the
flies’ motion in a cluster, five features of dragonflies, i.e., separation, alignment, cohesion,
food, and enemy are described. The Sepi, Algi, Cohi, A fi, and Eei are used to represent
separation, alignment, cohesion, food, and enemy features of an i individual dragonfly in a
cluster. The acronym list of DOA variables is shown in Table 4. These feature of flies can be
represented by mathematical equations as follows:

Table 4. Acronym list for DOA variables.

Symbol Acronym

Sepi Separation of the ith individual dragonfly
Algi, Alignment of the ith individual dragonfly
Cohi, Cohesion of the ith individual dragonfly
A fi Food attraction
Eei Enemy position
∆xi Step size of DF movement
w Inertial weight
a Separation weight
b Alignment weight
b Cohesion weight
d Food factor
e Enemy factor

To maximize the search space and avoid collision, the distance between adjacent DFs
is necessary within the given locality. Let i is represent the number of individuals in a
cluster with ‘n’ neighbors. The Separation Sepi of the i individual in a cluster is shown
with the help of Equation (7), as shown below., where x is the current position of DF and
xk is the position of the kth neighboring DF.

Sepi = ∑n
k=1(x− xk) (7)

Matching the velocities of the individual with other DFs with in the same locality is
based on alignment term Algi as represented in Equation (8). Here, Vk is the velocity of the
kth neighboring DF.

Algi =
∑n

k=1 Vk

n
(8)

All the individuals of DF in a cluster are inclined to move in the direction of the mass
center of neighboring DFs. The cohesion feature Cohi of DF is determined by Equation (9):

Cohi =
∑n

k=1(Vk)

n
(9)
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All the individuals in a cluster tend to move in the direction of food, as it is essential
for living. The attraction for food A fi feature at location x f ood is acquired by following
Equation (10).

A fi = x f ood − x (10)

All the individuals in a cluster tend to move away from the enemy. The enemy feature
Eei at location of enemy xe can be calculated by Equation (11).

Eei = xe + x (11)

The behavior of DFs in a cluster is influenced by the combining all the five attributes.
The updated location of the individual DFs is calculated by step ∆xi and denoted in
Equation (12).

xi = xi + ∆xi (12)

∆xi = w∆xi + (a.Sepi + b.Algi + c.Cohi + d.A fi + e.Eei) (13)

where w is the inertial weight, and a, b, and c are the separation, alignment, and cohesion
weights, respectively, whereas d is used to represent the food factor and the enemy factor
is represented by e. The Sepi, Algi, Cohi, A fi, and Eei are used to represent separation,
alignment, cohesion, food, and enemy features of an i individual dragonfly in a cluster.
The variation in the explorative and exploitative behaviors of the DFs can be realized by
using different values of parameters. The flow chart of DOA is also displayed in Figure 6.

Figure 6. Flow diagram of the proposed DOA algorithm.
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3.2. Application of DOA for MPPT Problem

The DOA can also be applied to track the global MPP of the PV system under partial
shading. The particles are initialized around the search space. The existing location of
DF is considered as the duty cycle. The constraints used for DOA is tabulated in Table 5.
The pseudo code for the application of DOA for the MPPT problem is also presented in
Figure 7. The important phases involved in the execution of DOA are described as below:

1. Firstly, there is a need to initialize the particles around the search space between dmin
and dmax, and the step value (∆xi) for particles is initialized properly. The duty cycle
is considered as the particle position and its value is randomly chosen between 0.2
and 0.9.

2. During the second step, the boost converter is triggered by utilizing the control
algorithm against each particle position and the best output power that is assumed to
be the fitness (cost) function is calculated. Then, the food source and enemy location
are updated. The cost function is monitored for changes and if there is any variation
in power due to partial shading.

3. Subsequently, the a, b, c, d, and e values are updated. The separation, alignment,
cohesion, food, and enemy features for individual DFs are calculated by using Equa-
tions (7)–(11). For exploration and exploitation, the radius of neighboring dragonflies
is updated.

4. At this moment, the step and position of particle is calculated by using Equations (12)
and (13) respectively. If the position of dragonflies lies outside the search space, then
DOA is initiated at opposite boundary.

5. Finally, if the termination condition (the best optimal position of dragonflies to operate
on global MPP) is met or satisfied, then this algorithm will stop. It also restarts the
search process if a sudden change occurs in the input power.

Table 5. Constraints for DOA.

Parameter Symbol Value

Quantity of particles k 4
Separation weight a 0.2
Alignment weight b 0.1
Cohesion constant c 0.9

Food factor d 0.5
Enemy constant e 1

3.3. Comparison of DOA with Other MPPT Techniques

The suggested DOA technique was compared with other widely used conventional
and intelligent MPPT algorithms, including the Perturb and Observe (P&O) algorithm, the
Particle Swarm Optimization (PSO) algorithm, an improved version of the PSO algorithm
(IPSO), the adaptive cuckoo search optimization (ACSO) algorithm, and fruit fly optimiza-
tion combined with a general-regression neural network (FFO-GRNN). The P&O approach
experienced the oscillations and failed to reach global MPP. Subsequently, it caused an
overall sustained loss in power and efficiency of the PV system [12]. The PSO algorithm
was inspired by the swarm behavior of particles and is a kind of evolutionary technique.
Moreover, it is a simple and efficient technique, predominantly dealing with irregular is-
sues [22]. However, during local power peaks, when particles were caught by undesirable
states in the course of searching and evolution processes, the exploration capacity was
quickly lost. As a result, the efficiency of PSO was affected and this led towards premature
convergence. Therefore, in order to overcome these shortcomings, an Improved PSO (IPSO)
algorithm is introduced [6]. The IPSO has shown better performance as compared with the
PSO algorithm. The ACSO-based MPPT algorithm was employed to determine the MPP
during non-uniform weather conditions, and it showed better performance than Cuckoo
search optimization. Furthermore, the FFO algorithm with GRNN was also utilized to
trace the global MPP under partial shading conditions. It showed better searching ability
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and efficiency as compared with other MPPT algorithms [17]. All these aforementioned
techniques were applied on the PV system to study their performance behavior under
non-uniform irradiance and partial-shading conditions. Detailed comparisons among
these MPPT techniques are presented in the simulation results and discussion section of
this paper.

Figure 7. Pseudocode for the DOA algorithm.

4. Inverter Control Methodology

The fundamental purpose of the inverter is to associate the PV array with the power
grid. In a similar time, the inverter is employed to keep up the voltage at output of the
boost converter, i.e., the DC link of the inverter and controlling the power (active and
reactive), which are sent to the grid under partial shading. The various parts relating to the
work of this system are presented in Figure 8. The performance of the overall system can
be expressed by Equation (14), where Uabc and Iabc are the grid voltages and currents, and
eabc are the voltages of converters.

Uabc = eabc + R.Iabc + L
d
dt
(Uabc) (14)

The stationary abc and the synchronously rotating dq reference frames were used for
the implementation of this methodology. The vector control, grid voltage, and current are
portrayed as vectors in the α-β reference frame. The process of changing the stationary
three-phase abc coordinates system to the rotating dq coordinate frame system is called
the d-q transformation. This change can be performed in two steps. The clark and inverse
clark transformations are utilized to change over the factors into α-β reference stationary
edge and vice versa. Essentially, for transformation of the value from the stationary α-β
reference frame into the rotating d-q reference, the park and inverse-park transformations
are required. The alteration of axes for vector-control frames is displayed in Figure 9. By
employing abc to dq transformation, voltages and currents can be expressed by Equation
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(15) for the dq frame of reference revolving at ω. The Equations (16) and (17) present voltage
in the dq reference frame, as shown below.

(
Ud
Uq

)
= R

(
Id
Iq

)
+ L

(
Id
Iq

)
+ L

(
0 −ω
ω 0

)(
Id
Iq

)
+

[
ed
eq

]
(15)

Ud − ed = L
d
dt
(Id) + R.Id −ωLIq (16)

Uq − eq = L
d
dt
(

Iq
)
+ R.Iq −ωLId (17)

Figure 8. The block diagram of the controller for the grid-connected PV system.

Figure 9. The alteration of axes for vector-control frames.

The synchronization of the grid plays a significant part in grid-interfaced PV systems.
The PLL control strategy is employed to synchronize the output signal with the reference
input signal according to phase and frequency [39]. The block of three-phase PLL block
can be accessed by employing MATLAB/Simulink.
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4.1. Voltage and Current Control Strategy

The approach used for regulating the inverter contains two controlling loops, as
presented in Figure 8. The regulatory approach has an internal current and an external
voltage-control loop. The function of the internal current-regulating loop is to regulate the
injected current to the grid and keep it in phase with the grid voltage to provide power
factor unity and reduce the harmonics. The AC grid current references are delivered by an
external voltage-regulating loop. The external voltage-regulatory loop is used to normalize
DC voltage and stabilizes the grid’s power flow. The synchronous frame-of-reference
dq control adopts (abc to dq) reference frame conversion to transfer the grid voltage and
current to the dq reference frame. The voltage, after transformation, detects the phase and
frequency of the grid.

In Figure 8, the value of U*PV is correlated with a given value of UPV, and the PI
regulator achieves the difference for the static control of DC voltage. Since Isd can achieve
DC voltage regulation, the reference value of the active current inner loop I*sd is given by
the output of the external DC voltage loop, thus realistically controlling the active power of
the grid-connected inverter output. The reference value of the inner-loop reactive current
I*qs is determined by the amount of reactive power required by the grid network. When
I*qs = 0, the reactive power output of the grid inverter is zero, and only the active power is
transmitted to the grid, which is then operated in the unit power-factor state. The internal
current-loop controller and external voltage-controller parameters can be measured by the
transfer-function model of the PID tuning algorithm by employing Matlab/Simulink [40].
The values of Kp and Ks for the voltage PI controller were 9.5 and 20. The values of Kp and
Ks for the current PI controller were 0.5 and 50. The period of sampling time was taken as
1 µ second.

4.2. SVPWM Technology

The three-phase inverter comprised six power switches from S1 to S6, as shown
in Figure 8, all of which were regulated by the standards of space-vector pulse-width
modulation (SVPWM). The SVPWM methods are characterized by consistent amplitude,
but the duty cycle of every period is different. The voltage in the abc frame ought to be
presented in the dq frame for the SVPWM [40]. Voltages might be characterized as vectors
set in search space. These vectors are used for the switching of the inverter compared with
switch combinations.

4.3. Grid Connected Filter

Since providing a sinusoidal line current to the grid without harmonic distortion was
the utmost significant objective of this research, an inverter capable of filtering must be
connected with the power grid. The filter can also minimize the switching losses. Therefore,
to design the filter that meets these requirements as much as possible, 10% rated current
output was used as the ripple output current. The value of the inductor and capacitor can
be calculated by Equations (18) and (19), respectively [39].

L ≥ Vdc−side
16. fs.∆IL

(18)

C ≥ 10

3 ∗ 2π ∗ f ∗ (Vrated)
2 (19)

5. Simulation Results and Discussion

The credibility of the proposed DOA-based MPPT algorithm was verified through
two different cases, i.e., partial-shading case-1 and case-2. For the implementation of
partial shading, diverse irradiance was applied to three PV arrays associated with the series
connection. Those diverse levels of irradiance are given in Table 3. The MATLAB/Simulink
was used for analyzing these MPPT methodologies. Furthermore, the suggested DOA
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technique was compared with the conventional P&O algorithm, PSO algorithm, IPSO
algorithm, ACSO algorithm, and FFO-GRNN algorithm.

5.1. Partial Shading Case-1

In this case, partial shading occurred when PV arrays did not experience identical
irradiance. The diverse irradiance (600 W/m2, 800 W/m2, and 1000 W/m2) was applied to
three PV arrays associated with the series connection. The power voltage characteristic
curve for this case is visualized in Figure 4a with two local and one global peak at the
power levels of 3578 W, 5813 W, and 9250 W respectively. In this section, the research was
carried out according to the maximum power attained using the abovementioned MPPT
techniques under partial-shading case-1.

Overall, the performance of the DOA-based MPPT algorithm was outclassed in every
aspect. Both DOA and FFO-GRNN procedures had comparable prospects in the attainment
of global MPP. The suggested DOA entirely nullified the oscillations while achieving global
MPP. The steady power achieved by DOA, FFO-GRNN, IPSO, ACSO, PSO, and P&O was
9189 W, 9003 W, 8889 W, 8982 W, 8767 W, and 5196 W, respectively. Under these circum-
stances, the power, voltage, and current plots of the concerned techniques are displayed in
Figure 10a–c, respectively. The oscillations were higher in the P&O technique, and local
peaks could easily trap them. Hence, a significant decrease in efficiency was observed. The
PSO method could reach the local peak shortly, but consecutive oscillation caused huge
energy and proficiency loss, reaching the global peak after 0.47 s with oscillations. The
FFO-GRNN technique also easily captured the global maxima and exhibited a tracking
time of around 0.33 s. The IPSO technique was not too disturbed by the local peaks and
stabilized at global maxima peak within 0.38 s, and it displayed fewer fluctuations com-
pared with PSO. The tracking time to achieve the maximum peak for the ACSO technique
was around 0.46 s. The proposed DOA was not affected by the local peak and tracked the
global peak without a loss in power. The DOA was the fastest one to stabilize at a global
peak, within 0.28 s, as depicted in Figure 10a.

Among these MPPT techniques, DOA achieved the highest efficiency of about 99.34%;
subsequently, FFO-GRNN realized 97.32%, while the IPSO method achieved 97.10%. After
that, ACSO attained an efficiency of 96.09%. Moreover, PSO attained 94.77% efficiency.
The least efficiency of about 56.17% was attained by P&O. In terms of convergence speed,
DOA effectively traced the global peak within 0.28 s while FFO-GRNN tracked after 0.33 s.
The proposed DOA technique appeared to stabilize at a global peak in fewer iterations
and showed a very quick response. The detailed comparative analysis of these concerned
techniques under these circumstances is also presented in Table 6.

Figure 10. Cont.
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Figure 10. (a) Power comparison, (b) Voltage comparison, (c) Current comparison of P&O, PSO, IPSO, and DOA algorithms
under partial-shading case-1.

Table 6. Performance analysis of different MPPT algorithms.

MPPT
Techniques

Sensed
Variables

Steady
State Error

Tracking
Speed

GMPP
Tracking

Tracking
Accuracy Efficiency Complexity Cost

P&O V, I High Fast No Low Less Low Cheap
PSO V, I Moderate Fast Yes Medium High Medium Moderate

ACSO V, I Less Fast Yes High High High Expensive
IPSO V, I Less Fast Yes High High High Expensive

FFO-GRNN V, I Less Fast Yes High High High Expensive
DOA V, I Less Fast Yes High High High Expensive

5.2. Partial Shading Case-2

To make this investigation and relative study further inclusive, we considered an
additional partial-shading case, in which diverse irradiance (800 W/m2, 500 W/m2, and
450 W/m2) was applied to three modules associated in series connection. The power-
voltage curve for this case is visualized in Figure 4a with two local peaks and only one
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global peak at the power levels of 2022 W, 3357 W, and 4240 W, respectively. In this
section, the research was carried out according to maximum power attained using the
abovementioned MPPT techniques under partial-shading case-2.

In general, the suggested DOA technique showed better and more efficient results
compared with other concerned methodologies. The output power achieved by DOA,
FFO-GRNN, IPSO, ACSO, PSO, and P&O techniques was 4211 W, 4094 W, 4032 W, 3979 W,
3948 W, and 2216 W, respectively. Under these circumstances, the power, voltage, and
current plots of the concerned techniques are displayed in Figure 11a–c, respectively.
The proposed DOA technique was not disturbed by the local peaks and stabilized at
global peak power within 0.32 s. It displays fewer fluctuations compared with other
MPPT methodologies. The FFO-based GRNN technique also showed better efficiency and
touched the global peak after 0.30 s. The IPSO technique showed better efficiency and
output power results than PSO, experienced oscillation, and stabilized at the global peak
after 0.35 s. The ACSO algorithm achieved a global peak within 0.33 s, just after the IPSO
technique. Figure 11a also demonstrates that PSO was affected by local peaks. Its scatter
plot exhibited large oscillations in output power, caused loss in energy and efficiency, and
reached the global peak after 0.44 s. Moreover, under these circumstances, the conventional
P&O technique was stuck at the local peak. It failed to reach the global peak, which will
surely reduce the proficiency and effectiveness of the PV system.
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Among these MPPT techniques, DOA achieved the highest efficiency, of about 99.31%.
Next, FFO-GRNN maintained 97.32% efficiency. The IPSO method attained a 95.09%
efficiency rate, while the ACSO technique upheld an efficacy of around 93.84%, whereas
PSO attained 93.11% efficiency. Moreover, the P&O technique showed very little efficiency
of around 52.26%. The DOA appeared to stabilize at a global peak in fewer iterations
and showed a very quick response. The proposed DOA-based MPPT technique has
improved tracking ability, faster convergence rate, and reduced power loss in a steady state.
Thereby, these characteristics make DOA an excellent option to be utilized under different
shading conditions. The comparison of these concerned techniques regarding convergence
time, maximum power tracked, and efficiency are also tabulated in Table 6. The overall
performance analysis of these MPPT algorithms regarding the steady-state error, tracking
speed, complexity, accuracy, and cost are recorded in Table 7.

Table 7. Comparison of different parameters concerned MPPT techniques under partial shading.

MPPT
Techniques

Irradiance
Cases

Converge
Time (s)

Max Traced
Power (W)

Global Max
Power (W)

Global MPP
Located

MPPT
Accuracy

Percent
Error

P&O
Case-1 0.18 5196 9250 No 56.17% 43.82%

Case-2 0.12 2216 4240 No 52.26% 47.73%

PSO
Case-1 0.48 8767 9250 Yes 94.77% 5.22%

Case-2 0.44 3948 4240 Yes 93.11% 6.88%

ACSO
Case-1 0.46 8889 9250 Yes 96.09% 3.91%

Case-2 0.33 3979 4240 Yes 93.84% 6.16%

IPSO
Case-1 0.38 8982 9250 Yes 97.10% 2.89%

Case-2 0.35 4032 4240 Yes 95.09% 4.90%

FFO-GRNN
Case-1 0.33 9003 9250 Yes 97.32% 2.68%

Case-2 0.30 4094 4240 Yes 96.62% 3.38%

DOA
Case-1 0.29 9189 9250 Yes 99.34% 0.65%

Case-2 0.32 4211 4240 Yes 99.31% 0.68%
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5.3. PV Array Interfaced with Grid Network

After investigating the simulation results of the DOA algorithm compared with those
of other concerned MPPT algorithms, it demonstrated advancement in reliability, efficiency,
and robustness of DOA to achieve the global MPP. Therefore, this section simulates the
grid interfaced PV system by utilizing the DOA algorithm and analyzed it under partial-
shading case-1. The PV arrays received different irradiances (600 W/m2, 800 W/m2, and
1000 W/m2), while the temperature was constant at 25 ◦C. The simulation setup for the
grid-interfaced PV system under partial shading by the DOA MPPT technique can be seen
in Figure 12. It can be observed from Figure 10a,b that the values of the output power
and a voltage obtained from the boost converter were 9189 W and 490 V, respectively. The
response time of DOA was also much shorter relative to conventional P&O, PSO, IPSO
ACSO, and FFO with the GRNN algorithms, although the existence of partial shading
makes it hard to stay at the best optimal point.

Figure 12. Simulation setup for the grid-interfaced PV system under partial shading by employing DOA MPPT Technique.

The frequency of the grid was assumed to be 50 Hz, and the sinusoidal current output
from grid connection can be viewed in Figure 13a, between −18 A and +18 A. Figure 13b
presents the zoom view of three-phase sinusoidal current. The peak-to-peak voltage of the
analog grid was 311 V, which can also be seen in Figure 13c, while Figure 13d presents the
zoom view of three-phase voltage. The amplitude of peak voltage was switched between
311 V and +311 V. Figure 13e presents the voltage and current of the power grid, and
Figure 13f presents the zoom view of the grid voltage and current. Both the voltage and
current were in phase, which is very important in maintaining the unity of power factor.
The inverters have to diagnose voltage anomalies in the grid-interfaced PV system. In this
research, the requirement for grid voltage was 311 V (peak-to-peak) or 220 V (RMS voltage).
For instance, it can be observed in Figure 13c that, initially, the voltage disturbance was
small, but after a short span of time (about 0.08 s), it quickly retained the three-phase
voltage of the grid network at 311 V (peak-to-peak). Hence, it also fulfilled the relative
requirement of the grid.
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Figure 13. Cont.
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Figure 13. (a) Waveforms of the 3-phase grid current, (b) Zoomed view of the 3-phase grid current, (c) Waveforms for
the 3-phase grid voltage, (d) Zoomed view of the 3-phase grid voltage, (e) Amplitude of the grid voltage and current,
(f) Zoomed-view amplitude of the grid voltage and current.

The parameters in the dq transformation are visualized in Figure 14a. We can see in
this figure that the value of Id was around 30 Amperes, while the value of Iq was around
zero Amperes. The value of voltage Ud was around 385 V, while the value of Uq was
around zero Volts. The values of DC voltage and current are shown in Figure 14b. The
figure demonstrates that the value of the current was around 20 A, while the value of the
voltage was around 530V. This is the same voltage generated by the boost converter and
given to the input side of the inverter as DC voltage. The input current to the inverter
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was around 20 A. The value of the active power generated by the grid can be viewed in
Figure 14c, whose value was around 9.2 KW. The reactive power also reached zero, as
shown in Figure 14d. As the received power approached zero, the power factor was close
to unity.

Figure 14. Cont.
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Figure 14. (a) Current and voltages from dq transformation, (b) DC link voltage and current, (c)
Active power received by the grid. (d) Reactive power received by the grid.

The THD of the grid-interfaced PV system is the most significant power quality
component. The notable concern of the grid is to comply with the THD requirement of
grid interconnection standards. The Fast Fourier Transform (FFT) analysis was utilized
to observe the fundamental and harmonic components in the output injected-current
waveform. The THD of the grid-associated current was analyzed and compared with the
standard of IEEE 519. In line with the IEEE standard, THD of the grid-connected current
must be below 5% of the fundamental current frequency at the rated inverter output, since
the high-order harmonics of current will cause adverse effects on a variety of equipment
related to the power grid. The THD of the system is shown in Figure 15a. The magnitude
of fundamental harmonics was more than 3.25%. In comparison, the magnitude of the 3rd
and 5th harmonic components were 0.38% and 2.78%, respectively. The magnitude of the
7th harmonics was 2.07%, and the 9th was around 0.17%. It is obvious from Figure 15a
that after the 7th harmonics, the current decreased significantly. In these circumstances,
the THD was 3.76%, which is less than 5%, and meets the criteria of IEEE standard 519 for
distribution into the grid. Therefore, the system performance of THD is reasonable.

According to the 929 standards of IEEE, the power factor must be greater than
0.85 (leading or lagging). The grid-linked PV inverter is intended to normalize the grid
current with a unity power factor. In this way, an inverter is responsible for regulating
the power factor. Herein, we can learn from Figure 15b that power factor reached unity.
The PV system ought to be synchronized with the power grid. Meanwhile, the frequency
range must not exceed the limit (49.2–50.6) Hz for the slight PV system, as defined by the
929 standards of IEEE. In this study, frequency was also within these limits, as displayed
in Figure 15c. Consequently, frequency follows the standard requirement.
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Figure 15. (a) Plot showing the percentage of the THD, (b) Power factor of a grid, (c) Frequency of a grid network under
partial shading.

6. Conclusions

This section outlines the key areas introduced in this study and a recommended plan
for applying the DOA-based global MPPT technique for grid-interfaced PV systems.

The dual-stage arrangement for grid-interfaced PV systems was presented in this
research work. This arrangement consisted of a DC-DC boost converter and inverter to
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link the PV array with the grid network. The boost converter switching was regulated
by utilizing the dragonfly optimization algorithm (DOA) based on the duty cycle. The
proposed DOA-based MPPT technique was capable of finding and following the global
peak, irrespective of the variation in shading pattern, with less oscillations around the
steady state. The DOA-based MPPT technique was evaluated and compared with widely
used MPPT techniques, such as P&O, PSO, IPSO, ACSO, and FFO-GRNN algorithms,
under different shading patterns. The simulation results showed that the suggested DOA
technique significantly out-performed the competing techniques in terms of response time,
oscillations reduction, robustness, accuracy convergence speed, and power efficiency. The
VSI was utilized to regulate the active and reactive power injected into grid simultaneously.
To maintain the unity power factor operation, instantaneous reactive power flow was
adjusted to zero. The three-phase PLL was employed to lock the inverter phase and
frequency with the grid. Finally, the simulation of the overall grid-associated PV system
was carried out by means of MATLAB/Simulink. The simulation results showed that THD
the grid current, power factor, and frequency were within the IEEE’s standard limits. Hence,
the proposed DOA-based MPPT is an effective technique to practically enhance the output
and overall performance of the grid-interfaced PV systems under all shading conditions.
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Appendix A

In this section, the design of boost converter (value of inductor, input capacitor and
output capacitor) is discussed in detail. The parameters for the sizing of boost converter is
shown in Table A1.

Table A1. Design parameters for the sizing of boost converter.

Parameters Values

Input Voltage 337 V
Output Voltage 540 V

PV maximum Power 12,000 W
Frequency 10 K Hz

Inductor ripple current 10%

The value of inductor is measured by Equation (A1), where Dm is the value of duty
cycle at MPP, switching frequency is shown by fs, while output maximum voltage is
presented by Vom and ∆Ir ∆Ilrippleis the inductance ripple current. The inductor L is
calculated with the following Equation (A1) [39]:

L ≥ Vom·Dm(1− Dm)

fs·∆Ir
(A1)
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where Vom is 540 V, fs is 10,000 and the value of duty cycle Dm is obtained from:

Vout

Vim
=

T
to f f

=
1

1− Dm

Dm = 1− Vin
Vout

= 1− 337
540

Dm = 0.3759 = 0.38

The output maximum current is given by:

Iom =
Pout

Vout

The converter is supposed no loss. The PV input power is the output power.

Iom =
12, 000

540
= 22.22 A

The resistive load is given by:

Rload =
Vout

Iom

Rload =
540

22.22
= 24.3 Ω

Hence, inductor L is calculated by putting values in Equation (4).

L ≥ 540 ∗ 0.38 ∗ (1− 0.38)
10, 000 ∗ 2 ∗ 35.6 ∗ 0.1

L ≥ 1.78 mH

The input Capacitor is calculated from Equation (A2). Where the value of current at
max power is Iom, Dm represents duty cycle and Vpv_mmpp is the output voltage of the
system at MPP.

Cin ≥
[

Iom.(Dm)
2

0.02(1− Dm) fs.Vpv_mmpp

]
(A2)

Cin ≥
[

22.22 ∗ (0.38)2

0.02 ∗ (1− 0.38) ∗ 10, 000 ∗ 337

]

Cin ≥ 76.7 µF

To measure the size of output capacitor, Equation (A3) is employed. Where Vout is
the output voltage of the boost converter, Dm represents duty cycle, Rout is output load of
boost converter, ∆Vout is ripple output voltage.

Cout ≥
[

Vout·Dm

fs·∆Vout·Rout

]
(A3)

Cout ≥
[

540 ∗ 0.38
10000 ∗ 5.4 ∗ 24.3

]

C ≥ 156 µF
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Abstract: Economic Load Dispatch (ELD) plays a pivotal role in sustainable operation planning in
a smart power system by reducing the fuel cost and by fulfilling the load demand in an efficient
manner. In this work, the ELD problem is solved by using hybridized robust techniques that combine
the Genetic Algorithm and Artificial Fish Swarm Algorithm, termed the Hybrid Genetic–Artificial
Fish Swarm Algorithm (HGAFSA). The objective of this paper is threefold. First, the multi-objective
ELD problem incorporating the effects of multiple fuels and valve-point loading and involving
higher-order cost functions is optimally solved by HGAFSA. Secondly, the efficacy of HGAFSA is
demonstrated using five standard generating unit test systems (13, 40, 110, 140, and 160). Finally, an
extra-large system is formed by combining the five test systems, which result in a 463 generating
unit system. The performance of the developed HGAFSA-based ELD algorithm is then tested on
the six systems including the 463-unit system. Annual savings in fuel costs of $3.254 m, $0.38235 m,
$2135.7, $9.5563 m, and $1.1588 m are achieved for the 13, 40, 110, 140, and 160 standard generating
units, respectively, compared to costs mentioned in the available literature. The HGAFSA-based ELD
optimization curves obtained during the optimization process are also presented.

Keywords: artificial fish swarm algorithm; economic load dispatch; genetic algorithm; hybrid genetic
–artificial fish swarm algorithm; multi-objective optimization; sustainable power generating system

1. Introduction

Modern power systems around the world are becoming increasingly complex, with
interconnections and varying load demands. There is an emergent need for power systems
to be sustainable, reliable, low-cost, smarter, and cleaner, which would allow the broad
participation of end users for energy generation and consumption and the management
of loads by intelligent devices [1]. With this changing outlook, Economic Load Dispatch
(ELD) is needed due to the lack of energy resources, increased power generation costs, and
environmental concerns. In the actual scenario, the power plants are not equidistant from
the load and there is no similar fuel cost function. Therefore, in order to provide cheaper
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power, loads must be distributed to various power plants to minimize power generation
costs. A practical economic dispatch (ED) problem has a highly nonlinear objective function
with equality and inequality constraints. The ELD problem is solved using conventional
methods such as lambda iteration, gradient methods, and non-conventional methods
(heuristic methods). However, these technologies may not provide optimal solutions
to find a global optimal solution as they require a piecewise linear and monotonically
increasing incremental fuel cost curve. Optimal economic operation and planning of
sustainable power generation systems is a very important pillar in the power industry [2].
ELD also refers to the operation of a power generation facility that produces energy at
the lowest cost in order to recognize operational limitations of power generation facilities
and provide reliable services to consumers. ELD schedules the output of available power
generation units at specific times to minimize overall production costs while satisfying
equality and inequality constraints [3]. Before 1973, due to the oil embargo measures that
led to a sharp rise in fuel prices, utility companies spent around 20% of their total revenue
on fuel for the generation of electric energy [4]. By 1980, this figure had increased to over
40% of the total revenue. In the five years following 1973, the fuel cost for electric utilities
in the United States increased by 25% per year. Due to the fact that fuel is an irreplaceable
natural resource, the efficient use of available fuels is of increasing importance [5].

Table 1 shows the parameters and assumptions for a moderately large power sys-
tem [2]. The idea of size of money was obtained by considering the annual operation cost
of a large utility for purchasing fuel. This cost reveals the direct requirement for customers’
income to be an average of 3.15 cents/kWh, targeted for recovering fuel costs. Savings in
the operation of a small part of the system refer not only to the amount of fuel consumed
but also to the substantial reduction in operating costs. Therefore, this field has gained
tremendous attention from engineers for many years. However, a regular change in the
basic fuel price level plays the role of emphasizing the problem and enhancing its economic
significance. Inflation also poses problems in developing economic operational techniques,
methods, and examples of power generation systems [6]. Moreover, the rapid increase in
the size and power demand of power systems resulted in reduced operating costs while
maintaining the thermal limitations of voltage security and transmission line branching.
Many mathematical programming and artificial intelligence techniques, such as GA-based
ELD, Particle Swarm Optimization (PSO)-based ELD [7,8], ELD based on dynamic pro-
gramming and evolutionary programming, and hybrid GA–PSO-based ELD, are applied
to solve the aforementioned problem. In the most common formulation, the ELD problem
is modeled as a large-scale, non-convex, nonlinear, static optimization problem in both
discrete and continuous control variables [9].

Table 1. Parameters and assumptions for total annual fuel cost.

Parameters Assumptions

Annual peak load and load factor 10,000 MW and 60 % Annual energy produced 107 MW × 8760 h/year × 0.60
= 5.256 ×1010 kWh

Average annual heat rate for
converting fuel to electric energy 10,550.56 KJ/kWh Annual fuel consumption 10,550.56 KJ/kWh × 5.256 ×

1010 kWh = 55.45 × 1013 KJ

Annual fuel cost (corresponds to
oil price at $18/bbl ) $3.00/1.055 GJ Annual fuel cost 55.45 × 1013 × 3/1.055 ×

10−9 $/J $1.5767 million

Many researchers [6–9] have modeled the nonlinear, convex nature of ELD problems
using pure quadratic functions, with the quadratic coefficients (a, b, and c) defined at the
start of the solution search process. Meanwhile, research work [10] developed realistic
models to incorporate the effect of multiple fuel cost functions and valve-point loading into
the formulation of the ELD problem. For example, the authors in [8] employed PSO with
the BAT algorithm for solving ELD problems considering inspired acceleration coefficients.
In [9], the authors analyzed the generating unit profiles of various distributed generation
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systems of different technologies. The energy loss was minimized for a distribution
system with a mix of renewable energy resources using optimization techniques [10]. The
authors in [11] proposed dynamic ELD in a sustainable power system using an accurate
forecasting model and improved salp-swarm optimizer considering PV, energy storage, the
power system, and various constraints of generating units. In [12], the authors proposed a
combined dispatch strategy (load following and cycle charging) for the energy management
and optimal operation of a hybrid energy system. A gradient-based optimizer inspired by
the Newton technique was used for solving the ELD problem considering the valve-point
effect [13]. The authors in [14] proposed a teaching–learning optimization for dynamic ELD
of wind energy and load demand uncertainties considering various operation constraints.
Most of the research works utilized various optimization techniques to minimize the fuel
costs, reduce environmental concerns, and ensure dynamic ELD. In this regard, this work
proposes a hybrid optimization technique to achieve the aforementioned objectives.

The key contribution of this work is to address the ELD problem by developing a
more realistic model and by considering the effects of valve-point loading and multiple
fuel cost functions. A multi-objective optimization problem is formulated that minimizes
the fuel cost of generating units and the amount of nitrogen-bearing (NOx) gases emitted
by the generating units during their operation. Therefore, there is an emergent need to
employ robust techniques to provide a reliable solution to the aforementioned complex
optimization problem. Some have used heuristic techniques in an attempt to solve the
abovementioned optimization technique to some extent, but this did not provide guaran-
teed efficient solutions. In order to provide a reliable and efficient solution, a hybridization
of two conventional heuristic techniques (GA and AFSA), called HGAFSA, is proposed in
order to solve the complex multi-objective optimization problem. HGAFSA is applied to
solve a multi-objective ELD problem considering the effects of multiple fuel cost functions
and valve-point loading. The effectiveness of the proposed approach is demonstrated using
five standard generating unit test systems (13, 40, 110, 140, and 160) and a 463 generating
unit system formed by the combination of the five systems, and the results are compared
with the best results presented in the literature. The choice of GA and AFSA is based on
the following factors: (a) GA is a heuristic technique with a well-defined set of search
equations that is effective in solving problems such optimal sizing and location of capacitor
banks and distributed generators [15], optimal power flow [16], optimal location of tie and
sectionalizing switches in distribution systems, and optimal network expansion [17], and
(b) AFSA is a relatively new heuristic technique based on well-refined and sophisticated
solution search equations and is widely applied in controller design, optimal PID tuning,
and objective function minimization/maximization [18].

The major contributions of this work to the existing body of knowledge are summa-
rized as follows:

1. HGAFSA, capable of solving a higher-order ELD, is developed and used to solve sev-
eral higher-order ELD problems, including 13, 40, 110, 140, 160, and 463 unit systems.

2. An ELD encoder algorithm is developed and linked to the developed HGAFSA to
form a HGAFSA-based ELD algorithm that minimizes any ELD cost function better
than every algorithm mentioned in the available literature.

3. The effectiveness of the developed HGAFSA is demonstrated on six ELD systems,
including the 463-unit system. Annual savings in fuel costs of $3.254 m, $0.38235 m,
$2135.7, $9.5563 m, and $1.1588 m for the 13, 40, 110, 140, and 160 units, respectively,
for the first five systems are achieved, compared to costs reported in the available
literature.

The remainder of the paper is organized as follows. Section 2 formulates the ELD
problem. The formulation of the proposed HGAFSA is presented in Section 3. Section 4
provides the performance validation and simulation settings of the proposed system. The
paper concludes with a brief summary and future directions in Section 5.
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2. Formulation of ELD

The purpose of the ELD problem is to find an optimal combination of power generation
that meets the constraints of equality and inequality while minimizing the total power
generation cost. The fuel cost curve for any unit is an approximation of the quadratic
function segment of the generator’s active power output by assumption [19].

2.1. The Cost Function

Cost function is a financial term used by a company’s economists and managers as a
way to express how different costs differ under different circumstances. This shows how to
display monetary output. Changes in the level of activities related to these outputs will
change rates and fees from overhead and operating expenses [19]. The linear cost function
has three basic types:

1. Functions of fixed cost (defined by a straight line with a zero (0) gradient).
2. Functions of variable cost (defined by a straight line with positive gradient and having

no intercept).
3. Functions of mixed cost (defined by a line having single or multiple gradient(s) and

intercept(s)).

In mixed environments, costs are fixed to specific points, which can be changed based
on related activities. Analysts use this type of function to make important predictions
about the market and to inform various decision-making tasks [19]. For a given network
of power generating units, a set of cost functions are usually defined based on the mixed
function types to account for the operational cost of each generating unit. Conventionally,
the quadratic form of the cost functions is most widely used [20]. A quadratic cost function
is a mixed cost function that partly comprises a single fixed cost function (represented
by a fixed coefficient, e.g., a) and two variable cost functions (represented by products of
coefficients b and c, and functions of output power P and P2). For a network of n generating
units, the overall cost function (FT) of the system is a summation of the n individual cost
functions [F(P1), F(P2). . . , F(Pn−1), F(Pn)] of the various units in the system. This can be
simply represented by Equation (1). An ELD problem is an optimization problem that is
aimed at minimizing the FT subject to a set of operating constraints [21].

FT =
n

∑
i−1

F(Pi) =
n

∑
i=1

ai + biPi + ciP2
i . (1)

In general, FT is used to represent the fuel or emission cost ($/hr) depending on the
values of the coefficients (ai, bi and ci) used [21]. In order to ensure proper operation of
the network of generating units, it is essential to ensure that a set of useful constraints are
satisfied. These constraints include the generator capacity (inequalities) and active power
balance (equality) constraints given in Equations (2) and (3), respectively [21].

Pi,min ≤ Pi ≤ Pi,max f or i = 1, 2, ..., n , (2)

where Pi,min and Pi,max are the minimum and maximum power output of the ith unit.

PD =
n

∑
i=1

Pi − PLoss . (3)

where PD is the total power demand and PLoss is the total transmission loss. The transmis-
sion loss PLoss can therefore be calculated by using the B matrix technique and is defined
by Equation (4) as follows [21]:

PLoss =
n

∑
i=1

n

∑
j=1

PiBijPj , (4)
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where Bijs are the elements of loss coefficient matrix B. The cost function defined by FT
in Equation (1) assumes a smooth quadratic fuel cost function without the valve-point
loadings of the generating units (where the valve-point effects are ignored). The generating
units with multi-valve steam turbines exhibit greater variation in the fuel cost functions. Since
the valve point results in ripples, a cost function with higher-order nonlinearity will result.
Therefore, the function F(Pi) in Equation (1) can be replaced by Equation (5) to account for
the valve-point effects [22]. Conventionally, sinusoidal functions are often added to the
quadratic cost function to account for the valve-point effect, as given in Equation (5).

F(Pi) = ai + biPi + ciP2
i + |ei × sin( fi × (Pi,min − Pi))| . (5)

where ei and fi are the cost coefficients of the ith unit with valve-point effects. In general,
the cost coefficients ei and fi are introduced as in Equation (5) to model the valve-point
loadings. Similarly, Equation (5) can be used to represent either the fuel or emission cost
($/hr) depending on the values of the coefficients (ai, bi, ci, ei, and fi) that are used. Finally,
Equation (5) also represents the proposed higher-order cost function considering the valve-
point loading effect. In practical situations, generating units are made up of subunits. These
subunits combine to give rise to the overall installed capacity of the unit. Most units are
designed to operate using more than one fuel type, particularly in the case in which there is
great fluctuation in the price and availability of the dominant fuel types [19]. In the case of
moderately large units, a combination of the available fuel types may be used to cover the
power demand over the specified period of time. This type of scenario introduces greater
nonlinearity into the overall fuel cost function. Therefore, the fuel cost function of such
a system can be modeled using a multiple fuel cost function, which is only defined for
a particular range of power output within the specified maximum and minimum power
generation. Considering both the valve-point loading effect and multiple fuels, the cost
function of the system may easily be represented using Equation (6) [19].

F(Pi) =

ai1 + bi1P2
i + ci1P2

i + |ei1 × sin( fi1 × (Pi1,min − Pi1)|Fuel1 : Pm
i in ≤ Pi ≤ Pi1

ai2 + bi2P2
i + ci2P2

i + |ei2 × sin( fi2 × (Pi2,min − Pi2)|Fuel2 : Pm
i in ≤ Pi ≤ Pi2

aik + bikP2
i + cikP2

i + |eik × sin( fik × (Pik,min − Pik)|Fuel3 : Pmin
ik−1 ≤ Pi ≤ Pmax

ik .

(6)

2.2. Artificial Fish Swarm Algorithm

AFSA guarantees a global optimum in solution search problems [23], which is of
great importance in artificial intelligence to perform behavioral modeling. Consider a
swarm consisting of N artificial fishes and a state vector X = (x1, x2, ...xn), where n states
or attributes of the artificial fish are to be optimized via the AFSA algorithm. In addition,
suppose that Y = f (X) represents the objective function giving the food concentration of
the artificial fish at the current position, and let Dij = ||Xi − Xj|| be used to describe the
distance between artificial fishes i and j. Other important parameters for the artificial fish,
including its vision field, maximum step for motion, the congestion factor, and maximum
attempts in each praying, are also taken into account and are expressed as visual, step, δ,
and try number, respectively. For better results, the congestion factor is used to constrain
the size of the artificial swarm [5]. The behavior of the artificial fish is described next as
praying, swarm, and chasing.

2.2.1. Praying

If the artificial fish is currently in state Xi, in order to carry out praying, then it must
select another state, e.g., Xj, that is located within its visual field. Afterwards, the search
for a minimal solution is continued until Yi ≥ Yj; if this is the case, praying is completed
by moving one step in the direction taken. However, if Yi ≤ Yj, another state Xj must be
reselected from the visual field randomly to analyze whether it can move forward based on
a certain forwarding condition. This procedure is repeated for try-number times, and if the
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forward motion condition is still not satisfied, it will take one step in a random direction.
Mathematically, this can be expressed as given in Equation (7);

xi−next−k = xi→k +
xjk − xik

‖Xj − Xi‖
∗ random(step) Yj > Yi ,

xi−next−k = xi→k + random(step) Yj ≤ Yi ,
(7)

where k = 1, 2...n, xij represents the kth element of Xi, which is the current state of the
artificial fish; xjk is the kth element of Xj, which is the state of the artificial fish after random
movement, and xi−next−k represents the kth element of xi−next, which is the next state of the
artificial fish. Similarly, Yi and Yj are the values of the objective function of the current state
and that after a random movement, respectively, and random(step) represents a random
number selected from the range defined by [0 step].

2.2.2. Swarm

In the swarming process, the fish has the natural ability to share food and avoid any
distraction that is encountered. Suppose that the current state of the artificial fish is given
by Xj, and the total number of other fishes in its vision domain is denoted by n. Now, if
n f = 0, this should mean that the visual domain of the given artificial fish is empty, so it is
time to implement praying. However, if n f ≥ 0, this means that there are other companion
fishes present in its vision domain, and it must start searching the central position Xc
(i.e., center between the present fishes) of its companions according to Equation (8) [24].

Xck =
(∑

n f
j=1 xjk)

n f
, (8)

where Xc represents the central position of the artificial fish among other fishes, Xck gives the
kth element of Xc, and Xjk denotes the kth element of the vector of jth companion j = (1, 2, ... , n).
The calculation of the food concentration of the artificial fish at the central position, given
by Yc, is the objective function with the constraint of Yc

n f
Yi

> 1. If the central position is less
congested and safer, the artificial fish must move towards this position using Equation (9);
otherwise, praying is implemented [24].

xi−next−k = xi→k +
xck − xik
‖Xc − Xi‖

∗ random(step) . (9)

2.2.3. Chasing

In an artificial fish swarm, when fishes are in search of food, neighboring partners
have the natural ability to trace and reach food more quickly. Suppose that Xi denotes
the current state of the artificial fish and n denotes the total number of companions in its
visual field. Now, if n f = 0, this shows that the visual field of the artificial fish is empty;
therefore, praying should be implemented. However, if n f ≥ 1, this indicates that some
companions do exist in its visual field; therefore, it should search and find a companion
with a minimum value of the corresponding function Xmax. Then, the constraint is checked,
i.e., Ymax

n f
Yi

> 1; if it is valid, this means that the fitness value of the corresponding
companion is small and it is not congested; thus, Equation (10) is implemented; otherwise,
praying is implemented [24].

xi−next−k = xi→k +
xmax,k − xik

‖Xmax − Xi‖
∗ random(step) . (10)

where xmax,k gives the kth element of state vector Xmax.
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2.3. Genetic Algorithm

Genetic algorithm (GA) is an optimization algorithm that simultaneously works on
several solutions (also called population), as opposed to other optimization methods
that work on one solution at a time [25,26]. It is an iterative optimization algorithm and
comprises several steps, briefly described below.

2.3.1. Reproduction

The foremost operation on a population is called reproduction, which establishes a
mating pool by the selection of good strings from a population. The mating pool is fed with
duplicate copies of the good strings, i.e., above average strings. Proportionate selection
of strings from the present population is the most common operation in the reproduction
process, where each string is selected based on its fitness probability. Hence, an ith string
is selected with a fitness probability of εi. The cumulative probability of all the strings
in a population is always ’1’ because the population size in GA is normally fixed. The
fitness probability of ith string is given as fi

∑N
j=1 f j

. N represents the size of the population.

In [27], the authors have presented a method for achieving a proportionate selection using
a roulette wheel, where the circumference for every string is marked exactly according to
its fitness.

2.3.2. Crossover

Crossover is the next operation applied to the string of the mating pool after the
reproduction operation. In this operation, two strings are selected randomly from the
mating pool and some of their portions are exchanged. For instance, in a single point
crossover operation, two new strings are produced by swapping the right-side portions of
two strings after cutting these at arbitrary places, as presented in [15].

A better child string can be produced by combining good sub-strings from either
parent if a suitable site is selected, which is usually selected randomly since the suitability
of a site is not always known [15]. However, it must be noted that the random selection of a
site does not make the search process random. If a single-point crossover is applied to two
1-bit strings from either parent, at most, different strings can be found as a solution in the
given search space. With the selection of a random site, 2i children strings are produced.
These strings may or may not contain good sub-strings from parent strings, which depends
on the selection of an appropriate site. This aspect is of little interest as, if the crossover
operation fails to produce good strings, the reproduction operation will produce more
copies in the following mating pool. In a similar way, with a two-point crossover operation,
two sites are chosen randomly. A multi-point crossover operation can be carried out in a
similar fashion, and this extension is usually called the uniform crossover operator.

For a case of binary strings, the uniform crossover operation is applied by selecting
from either parent every bit with a probability of 0.5 [15]. The major purpose of the
crossover operation is the search of the parameter space and the preservation of the
information from parent strings since these are labeled as good strings after due selection
by the reproduction operation. Maximum information is transferred or preserved from
parent to child strings with a single-point crossover operator search as opposed to that
of the uniform crossover operator, where the search is extensive but the information
preservation form parent to child is minimal. For a crossover probability of Pc, the crossover
operation is applied to 100Pc% of the strings in the population and the remaining strings,
i.e., 100(1−Pc)% are transferred to a new population [15].

2.3.3. Mutation

In genetic algorithms, search procedures are normally carried out with the crossover
operator. However, a mutation operation may also be used sometimes for this purpose,
which uses certain mutation probability Pm, to change a 1 to 0 and vice versa. The detailed
process of mutation is explained in [15] where a new solution is created after a change
in the value of the fourth gene. The mutation operation is necessary to diversify the

247



Sustainability 2021, 13, 10609

population, which can be demonstrated with the above example, where a long string of
zeros occurs, and a 1 is required to obtain a new solution that is more optimal or near to
optimal. Mutation is also helpful in improving a local solution.

3. Formulation of Hybrid Genetic–Artificial Fish Swarm Algorithm

The proposed HGAFSA is designed based on the available parameter dredging steps
present in the conventional GA and AFSA. However, each of the separate algorithms (GA
and AFSA) is assumed to be composed of three major steps, as described below.

1. GA

(a) Reproduction;
(b) Crossover;
(c) Mutation.

2. AFSA

(a) Praying;
(b) Swarming;
(c) Chasing.

The mathematical formulation of these steps has been described in Section 2. The
proposed HGAFSA is a logical combination of the six steps listed above. It is worth noting
that the GA uses a binary operation on a set of binary codes known as chromosomes, which
further comprise gins, whereas the AFSA uses real numbers ranging between zero and
one as the parameters of the so-called artificial fish. As such, a decoder function and an
encoder function are required to serve as converters from GA to AFSA and vice versa.
These functions are intended to decode binary code into real numbers and later encode
real numbers into binary.

3.1. Decoder Function

The decoder function takes in four parameters as inputs and generates a decoded
version of the main parameter as the output. Here, the main parameter is the chromosome
(X), whereas the remaining three parameters are:

1. xmin → Lower boundary of the desired decoded output;
2. xmax → Higher boundary of the desired decoded output;
3. Nbits → Number of bits per parameter.

The steps involved in decoding a single chromosome can be described using Algorithm 1.

Algorithm 1: The decoder function
input : X, xmin, xmaxandNbits
output : Xdecoded

1 Evaluate: N =number of bits in X;
2 Evaluate: p = N ∗ (Nbits)

−1 //number of parameters;
3 Evaluate: q = 0.5[1,2,...Nbits ]//quantization levels;
4 Evaluate: qnorm = q ∗ (∑Nbits

i=1 qi)
−1//quantization level normalization;

5 Evaluate: Xdecoded(i) = [q(1) ∗ X(j + 1)q(2) ∗ X(j + 2)...q(Nbits ∗ X(j + Nbits)];
6 for i← 1 to p and j← (i− 1) ∗ Nbits do
7 Xdecoded = [Xdecoded(1)Xdecoded(2)...Xdecoded(p)] ∗ (xmax − xmin) + xmin;

Using the decoder function, a vector X with p×Nbits elements is decoded into a vector
Xdecoded with p elements. As an illustration, consider X = [110110110111011110111011111011], if
xmin = 0 and xmax = 1, let Nbits = 6. Algorithm 1 yields = [0.8571 0.8730 0.4762 0.9365 0.9365]. In
the proposed HGAFSA, once any of the GA steps is executed, the resulting output/population
must be decoded before their respective fitnesses can be evaluated. Meanwhile, the resulting
output/population from the AFSA steps are directly evaluated using the fitness function
without being decoded.
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3.2. Encoder Function

The encoder function is also written to counteract the effect of the decoder function
presented in Algorithm 1. However, a reversed procedure is adopted based on Algorithm 1
(moving from step 7 to 1). Here, the decoder function is intended to generate chromosome
(X) given its decoded version Xdecoded, xmin, xmax and Nbits. However, the encoder function
formulation is omitted from this manuscript for brevity. Generally, it can be said that the
decoder function converts a chromosome into a fish, whereas the encoder function converts
a fish back into a chromosome. This can be further described using Figure 1. Furthermore,
it is worth noting that both X and Xdecoded are kept for reference during the optimization
process using the proposed HGAFSA. However, either X or Xdecoded is later discarded
depending on which of the GA or AFSA steps perform better at a given generation and at
a given step in the HGAFSA dredging process. At first, the entire population is stored as
chromosomes. However, each chromosome is either left as a X or transformed into a fish
Xdecoded depending on which of the HGAFSA steps (GA step or AFSA step) performs better.

Figure 1. Illustration of chromosome to fish conversion and vice versa.

3.3. Population Update

The proposed HGAFSA is composed of two unique algorithms (GA and AFSA)
with completely different parameter dredging procedures. When one of the GA steps is
executed on an encoded fish (chromosome), the resulting chromosome might be of poor
fitness compared to the result if an AFSA step had been directly performed on the fish
itself. However, this consequence might be reversed. Therefore, the population must be
carefully updated for optimality and an improved convergence rate. Algorithm 2 further
describes the population update procedure.
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Algorithm 2: Population updated
input : //list of steps to be executed in chronological order)

combined population of fish and chromosomes
output : P(k)

1 Define: Ω =;
2 for k← 1 to popsize do
3 for s← 1 to Nsteps do
4 if P(k) = f ish & S(s) AFSA then
5 Evaluate: f = Fobj(P(k));
6 Execute: P(k)→ S(s)→ P(k)new;
7 Evaluate: fnew = Fobj(P(k)new);
8 if fnew is better than f then
9 Store: [ fnewP(k)new]→ Ω;

10 else
11 Store: [ f P(k)]→ Ω;

12 else if P(k) = f ish & S(s)GA then
13 Evaluate: f = Fobj(P(k));
14 Execute: P(k)→ Encoder → P(k)Encoded;
15 Execute: P(k)Encoded → S(s)→ P(k)Encoded,new;
16 Evaluate: fnew = Fobj(P(k)Encoded,new);
17 if fnew is better than f then
18 Store: [ fnewP(k)Encoded,new]→ Ω;

19 else
20 Store: [ f P(k)]→ Ω;

21 else if P(k) = chromosome & S(s)AFSA then
22 Execute: P(k)→ Decoder → P(k)Decoded;
23 Evaluate: f = Fobj(P(k)Decoded);
24 Execute: P(k)Decoded → S(s)→ P(k)Decoded,new;
25 Evaluate: fnew = Fobj(P(k)Decoded,new);
26 if fnew is better than f then
27 Store: [ fnewP(k)Decoded,new]→ Ω;

28 else
29 Store: [ f P(k)]→ Ω;

30 else if P(k) = chromosome & S(s)GA then
31 Execute: P(k)→ Decoder → P(k)Decoded;
32 Evaluate: f = Fobj(P(k)Decoded);
33 Execute: P(k)→ S(s)→ P(k)new;
34 Execute: P(k)→ Decoded→ P(k)new,Decoded;
35 Evaluate: fnew = Fobj(P(k)new,Decoded);
36 if fnew is better than f then
37 Store: [ fnewP(k)new,Decoded]→ Ω;

38 else
39 Store: [ f P(k)]→ Ω;

40 Sorting: Rearrage the vectors in Ω (in the order of optimality);

3.4. Model of the Economic Load Dispatch Problem

To solve the ELD problem using the proposed HGAFSA, a function is required to
convert the random numbers generated by it into electrical power demand scheduled to
the set generating units. Let P be a set of power to be generated by the available generating
units forming the ELD problem. Let Pmax and Pmin be the maximum and minimum power
allowable for each of the units, respectively. NG is the number of generating units. Then,

P = [P1P2P3...PNG−2PNG−1PNG ] , (11)

Pmax = [Pmax,1Pmax,2...Pmax,NG−1Pmax,NG ] , (12)

Pmin = [Pmin,1Pmin,2...Pmin,NG−1Pmin,NG ] . (13)

The next most important parameter of ELD problem formulation is the total power
(PT) to be generated by the generating units to meet both the power demand and the
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power losses along the network. This can be described using the equality constraint as in
Equation (14).

PT = PD + PL . (14)

where PD is the total power demanded by the consumers and PL is the total power losses
in the network. PT can also be expressed using Equation (15).

PT =
NG

∑
i

Pi . (15)

As described earlier, to evaluate the fitness of a population generated by HGAFSA,
the population must be decoded into a fish (Xdecoded). However, this fish must be further
converted into a real power demand P. To achieve this, let Xdecoded be replaced by χ having
p elements, such that Equation (16) holds.

χ = x1x2x3...xp−2xp−1xp . (16)

An ELD encoder function is developed to transform χ into an equivalent P. The
overall process can be described using Figure 2.

Fobj,ELD ELD Encoder

Chromosome Decoder Fish χ

P = [P1..., PP]

Figure 2. Evaluating the fitness of a chromosome/fish.

An ELD encoder function is developed to transform χ into an equivalent P. The
overall process can be described using Figure 2. The function Fobj,ELD is the objective
function of the ELD problem. The ELD encoder function is given in Algorithm 3. The
proposed ELD encoder has the advantage that no generating unit can generate below its
minimum allowable generating limit. However, its generation may exceed the allowable
maximum. To prevent this, steps 11 to 14 are added to Algorithm 3 to enforce the maximum
limit constraint. Furthermore, in the developed ELD encoder, the power generation at any
unit cannot be lower than the minimum allowable generation at that unit. This is because,
in line 10 of the ELD encoder Algorithm, the addition of Pmin(h) enforces the lower limit
constraint. However, the parameter γ can be greater than the upper limit at a particular
generating unit due the presence of a rational function at the first part. The rational part
of γ usually results in approximation, pushing its value beyond the maximum allowable
limit. This phenomenon can be avoided by replacing γ with Pmax(h) when the upper limit
is exceeded or using line 11 to 14 of Algorithm 3.

However, it can be observed from step 16 of Algorithm 3 that the proposed ELD
encoder performs optimization during the encoding process. Therefore, it could be termed
an optimal ELD encoder of order p. To further increase the performance of the proposed
ELD encoder, the dimension of X can be extended for every given χ generated by the
proposed HGAFSA. This extension is modeled in Equation (17).

χext = [χ, χ|(sin(2πχ)|, χ|(cos(2πχ))|] . (17)

With this extension, a new optimal ELD encoder of order 3×p can be formed by
modifying steps 6 and 14 of the former optimal ELD encoder (order p) described earlier.
This can be achieved using Equations (18) and (19), respectively.

par = [1, 2, 3, ..., 3× p] , (18)
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s = [1, 2, 3, ..., 3× p] . (19)

Equation (17) can be used to boost the performance of HGAFSA by further exploring
the solution search space. This is because, for every new set of possible solutions χ, two
additional solution sets are also searched, i.e., χ1 = χ|(sin(2πχ))| and χ2 = χ|(cos(2πχ))|.
Therefore, the probability that the optimal solution will lie within the three search spaces
(χ, χ1, and χ2) must always be greater than or equal to the probability of the obtained
optimal solution being within χ alone. As such, the performance of the original ELD
encoder (which makes use of χ alone) will definitely improve. In the other hand, the ELD
encoder of order 3× p is of a higher rate of convergence than the original ELD encoder
(with order p).

Algorithm 3: ELD Encoder
input : χ, p, NG, Pmax, Pmin and PT
output : P

1 Creat: ζ = [] ;
2 for g = [1, 2, 3, ..., NG] do
3 ∂ = (Pmax(g)− Pmin(g)) ∗ χ/max(χ);

4 ζ =
[

ζ
∂

]
;

5 Create:ε = [];
6 for par = [1, 2, 3, ..., p] do
7 for g = [1, 2, 3, ..., NG] do
8 ρ(g) = ζ(g, par);

9 for h = [1, 2, 3, ..., NG] do

10 γ =
(PT−∑

NG
g Pmin(g))∗ρ

(∑
NG
g ρ(g))

+ Pmin(h);

11 while max(γ− Pmax) > 0 (enforce the upper limit constraint for each generating unit) do
12 ρ = rand(1, NG). ∗ ρ + rand(1, NG);
13 repeat
14 for loop at step 9;
15 until;

16 ε =
[ ε

γ
]
;

17 for s = [1, 2, 3, ..., p] do
18 Evaluate:Fit(s) = Fobj,ELD([ε(s, 1) ε(s, 2) ε(s, 3) ... ε(s, NG − 1) ε(s, NG)]);

19 Determine: K ← Fit(K) = min(Fit);
20 Assign: P = [ε(K, 1) ε(K, 2) ε(K, 3) ... ε(K, NG − 1) ε(K, NG)];

3.5. The Proposed HGAFSA-Based Higher-Order ELD Algorithm

The ELD problem is one of the power system analysis problems with a large number
of possible solutions. However, such solutions form a set of local optimums. As the
number of generating units increases, the possible solutions increase exponentially. As
such, an algorithm that can deeply search into the solution domain is required to locate
the global optimum solution. In this work, the HGAFSA optimization algorithm with
high computation capability and a fast rate of convergence is developed for complex
ELD problem solving. The flow chart for the proposed HGAFSA-based higher-order ELD
problem solver is shown in Figure 3.
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START 

Input: ELD parameters, 

Select suitable HGAFSA parameters 

HGAFSA 

Is initial population available? 

NO 

YES 

Set the best population as the starting point 

Is minimum cost accepted? 

YES 

NO 

Reproduce initial population 

Print minimum cost as global optimum cost 

Generate Optimization Curve 

Output Power allocation for each Generator 

STOP 

Figure 3. HGAFSA-based ELD algorithm.

4. Performance Validation

To demonstrate the effectiveness of the developed HGAFSA-based ELD problem
solving algorithm, six test systems are designed. The developed algorithm is programmed
in the MATLAB 2016a environment on a setup with 8 GB RAM and a 2.3 GHz Core I3
processing Computer running Windows 10.1.

A set of suitable parameters chosen for simulation analysis are listed in Table 2. To
achieve the desired objective of outperforming all existing ELD algorithms in the literature,
the best solution generated by HGAFSA is set as the starting point if it does not meet the
desired goal. This process is repeated as far as the optimum cost is higher than the best
cost presented in the literature so far.

Table 2. HGAFSA simulation parameter settings.

Parameter Algorithm Abbreviation Value

Population Size GA, AFSA Psize 64

Number of Parameters GA, AFSA NoP 32

Visual Distance AFSA VD 0.875 to 1

Crowdness Factor AFSA CF 0.09 to 0.5

Step Size AFSA Ssize 0.00125 to 0.1

Max. Iteration GA, AFSA Max_Iter 10,000

Mutation Rate GA MR 0.4 to 0.75

Selection Probability GA SProb 0.375 to 0.5

Number of Bits GA NoB 8
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4.1. Test System 1

The proposed HGAFSA algorithm is tested for a 13 generating units (Gen. units) test
system having a non-smooth fuel cost function with valve-point effect, and its effectiveness
is demonstrated compared to that of the oppositional grey wolf optimization (OGWO)
algorithm [28] for the mentioned test system. The system data, such as fuel cost coefficients
and active power limit thresholds for different generators, are adopted from [29] and the
power demand assumed for the given test system is 2.52 GW. The simulation results of the
13-unit system are comparatively analyzed in Table 3 for our proposed HGAFSA and other
optimization algorithms, such as improved coordinated aggregation-based PSO [30], shuf-
fled differential evolution (SDE), oppositional real-coded chemical reaction optimization
(ORCCRO) [31], biogeography-based optimization (BBO), hybrid differential evolution-
based BBO (DE/BB) [32], and oppositional–invasive weed optimization (OIWO) [33]. The
performance of HGAFSA is measured in terms of fuel cost ($/h) and power loss (MW),
compared to the mentioned optimization algorithms, in Table 3. The fuel cost of HGAFSA
is lower (24,141.26 $/h) compared to other algorithms. Comparatively, HGAFSA reduces
the fuel cost of the generation system under consideration. Similarly, SDE and ORCCRO
result in the same power loss (40.09 and 40.11) as HGAFSA (40.22), but lower than GWO,
OGWO, and OIWO. Therefore, the reduced fuel cost and minimum power loss shown
in Table 3 prove the efficacy of our proposed HGAFSA. Figure 4a shows the HGAFSA-
based optimization curve. Figure 4a reveals that the algorithm converges at the thirteenth
generation system to a cost of 24,141.2687 $/h. This results in annual savings of $3.253 m.
Figure 4b presents the cumulative power generated by the units. In ELD, the power gener-
ated by each unit must lie within its maximum and the minimum allowable power output
(upper and lower limits). Therefore, the power allocations must lie within this limit and
the optimum power allocated to each unit (Pi) must lie within its limits. Finally, the cost
functions of the various generating units influence the optimum power allocated the units
and, thus, define the pattern of the ’optimum Pi’ curves for each of the six test systems in
this work. In general, the peak of the cumulative power curves can be described as follows.

Table 3. Comparison of results for 13-unit system.

No. of Gen. Units HGAFSA (MW) OGWO (MW) GWO (MW) OIWO (MW) SDE (MW) ORCCRO (MW)

1 628.32 628.29 628.16 628.31 628.32 628.32

2 299.20 299.18 298.92 299.19 299.20 299.20

3 299.20 297.50 298.22 299.19 299.20 299.20

4 159.73 159.72 159.72 159.73 159.73 159.73

5 159.73 159.73 159.72 159.73 159.73 159.73

6 159.73 159.72 159.72 159.73 159.73 159.73

7 159.73 159.73 159.71 159.73 159.73 159.73

8 151.73 159.73 159.67 159.73 159.73 159.73

9 148.02 159.73 159.66 159.73 144.74 144.72

10 114.79 77.39 77.39 77.39 113.12 112.14

11 95.58 114.74 114.60 113.10 92.40 92.40

12 92.40 92.39 92.38 92.35 92.40 92.40

13 92.40 92.37 92.35 92.39 92.40 92.40

Fuel Cost ($/h) 24,141.26 24,512.72 24,514.47 24,514.83 24,514.90 24,513.91

Power Loss (MW) 40.11 40.28 40.29 40.36 40.09 40.11

254



Sustainability 2021, 13, 10609

(a)

(b)

Figure 4. HGAFSA optimization and optimal power allocation curves for 13 units. (a) Optimization
curve; (b) cumulative power generated.

1. Optimum Pi Curve: Defines the total power generated (Demand + Losses) by the
system of generating units;

2. Upper Limit Pmax Curve: Defines the maximum power that can be generated by the
system of generating units;

3. Lower Limit Pmin Curve: Defines the minimum power generated by the system of
generating units.

In the case of Figure 4b, Ppeak
i = 25,604, Ppeak

min = 550, and Ppeak
max = 2960.

4.2. Test System 2

The performance of the proposed algorithm, HGAFSA, and OGWO is validated for a
40 generating unit test system, where the data for valve-point coefficients and 40 generating
units are adopted from [34]. A total power demand of 10.5GW is assumed for the given
system. The real power generation output and fuel cost are calculated for the 40-unit
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test system by various methods, such as HGAFSA, GWO, OGWO [28], SDE [31], ORC-
CRO, quasi-oppositional teaching–learning-based optimization (QOTLBO) [35], hybrid
ant colony–genetic algorithm (GAAPI) [36], and krill herd algorithm (KHA) [37], and are
tabulated in Table 4. The HGAFSA appraoch results in a reduced fuel cost (136,396.9 $/h)
and minimum power loss (957.29 MW) compared to the approaches mentioned in Table 4.
Figure 5a shows the HGAFSA-based optimization curve, which converges at the fifty-
first generation to a cost of 136,396.9727 $/h. This results in annual savings of $382,350.
Furthermore, Figure 5b shows that all generators satisfy their inequality constraints.

(a)

(b)

Figure 5. HGAFSA optimization and optimal power allocation curves for 40 units. (a) Optimization
curve; (b) cumulative power generated.
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Table 4. Comparison of results for 40-unit system.

No. of
Gen. Units

HGAFSA
(MW)

OGWO
(MW)

GWO
(MW)

OIWO
(MW) SDE (MW) ORCCRO

(MW)
GAAPI
(MW)

QOTLBO
(MW)

KHA
(MW)

1 113.96 114 114 113.9908 110.06 111.68 114 114 114

2 113.69 114 114 114 112.41 112.16 114 114 114

3 120 120 120 119.99 120 119.98 120 107.82 120

4 179.74 183.57 181.04 182.51 188.72 182.18 190 190 190

5 96.97 87.81 87.83 88.42 85.91 87.28 97 88.37 88.59

6 140 140 140 140 140 139.85 140 140 105.51

7 300 300 300 299.99 250.19 298.15 300 300 300

8 284.8 300 300 292.06 290.68 286.89 300 300 300

9 289.02 300 300 299.88 300 293.38 300 300 300

10 279.65 279.72 279.97 279.70 282.01 279.34 205.25 211.20 280.67

11 168.81 243.61 243.62 168.81 180.82 162.35 226.3 317.27 243.53

12 94 94.17 94.14 94 168.74 94.12 204.72 163.76 168.80

13 484.04 484.27 484.45 484.07 469.96 486.44 346.48 481.57 484.11

14 484.05 484.33 484.23 484.04 484.17 487.02 434.32 480.54 484.16

15 484.04 484.04 484.24 484.03 487.73 483.39 431.34 483.76 485.23

16 484.08 484.07 484.03 484.08 482.3 484.51 440.22 480.29 485.06

17 489.28 489.21 489.62 489.28 499.64 494.22 500 489.24 489.45

18 489.3 489.26 489.32 489.29 411.32 489.48 500 489.55 489.30

19 511.32 511.33 511.46 511.32 510.47 512.2 550 512.54 510.71

20 511.33 511.49 511.49 511.33 542.04 513.13 550 514.29 511.30

21 549.94 523.47 523.47 549.94 544.81 543.85 550 527.08 524.46

22 549.94 546.64 547.68 549.99 550 548 550 530.10 535.57

23 523.3 523.38 523.37 523.28 550 521.21 550 524.29 523.37

24 523.32 523.33 523.13 523.32 528.16 525.01 550 524.65 523.15

25 523.27 523.40 523.34 523.58 524.16 529.84 550 525.05 524.19

26 523.28 523.30 523.35 523.58 539.1 540.04 550 524.46 523.54

27 10.01 10.01 10.06 10.01 10 12.59 11.44 10.89 10.12

28 10.01 10.01 10.63 10.01 10.37 10.06 11.56 17.43 10.18

29 10.01 10.06 10.51 10.01 10 10.79 11.42 12.78 10.02

30 96.96 87.80 87.80 87.86 96.1 89.7 97 88.81 87.81

31 190 190 190 190 185.33 189.59 190 190 190

32 190 190 190 189.99 189.54 189.96 190 190 190

33 190 190 190 190 189.96 187.61 190 190 190

34 199.99 200 200 199.99 199.9 198.91 200 200 200

35 200 200 200 200 196.25 199.98 200 168.08 164.91

36 169.2 164.89 164.83 164.82 185.85 165.68 200 165.50 164.97

37 110 110 110 110 109.72 109.98 110 110 110

38 109.99 110 110 109.99 110 109.82 110 110 110

39 110 110 110 110 95.71 109.88 110 110 110

40 550 511.85 511.54 550 532.43 548.5 550 511.53 512.06

Fuel Cost
($/h) 136,396.9 136,440.6 136,446.8 136,452.7 138,157 136,855.1 139,865 137,329.8 136,670

Power Loss
(MW) 957.29 973.12 973.28 957.29 974.43 958.75 1045.06 1008.96 978.92
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4.3. Test System 3

This system comprises 110 generating units with quadratic cost function characteristics.
A load demand of 15GW is assumed for this system, and other system data (fuel valve
coefficients and active power thresholds) are obtained from [38]. The minimum fuel cost
and generation capacity computed using HGAFSA and OIWO are tabulated in Table 5.
The results show that HGAFSA provides efficient and cheap power generation compared
to OIWO and other optimization algorithms mentioned in the literature. Figure 6a shows
the HGAFSA-based optimization curve. The algorithm is truncated at the hundredth
generation and at a cost of 197,988.892 $/h. This results in annual savings of $2135.69. The
saving in cost is lower because of the narrow margins for some of the generating units,
especially units 1 to 9, and the high cost of generation. Furthermore, Figure 6b shows that
all generators satisfy their inequality constraints.

(a)

(b)

Figure 6. HGAFSA optimization and optimal power allocation curves for 110 units. (a) Optimization
curve; (b) cumulative power generated.
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Table 5. Comparison of results for 110 unit system.

No. of
Gen. Units

HGAFSA
(MW)

OIWO
(MW)

No. of
Gen. Units

HGAFSA
(MW) OIWO (MW) No. of Gen.

units
HGAFSA
(MW)

OIWO
(MW)

1 2.4 2.4 38 69.99 69.98 75 89.99 89.99

2 2.40 2.40 39 99.99 99.99 76 49.99 49.99

3 2.40 2.40 40 120 120 77 160 160.01

4 2.4 2.4 41 157.18 156.8 78 295.76 291.36

5 2.4 2.4 42 220 220 79 175.05 177

6 4.01 4.01 43 440 440 80 98.01 97.75

7 4 4 44 560 560 81 10.01 10.01

8 4 4 45 660 660 82 12.01 12.30

9 4 4 46 616.43 619.53 83 20.01 20.04

10 64.39 63.05 47 5.40 5.40 84 199.98 199.99

11 62.16 59.27 48 5.4 5.4 85 324.99 324.51

12 36.29 35.65 49 8.40 8.40 86 439.99 439.99

13 56.62 57.43 50 8.4 8.4 87 14.42 18.86

14 25 25 51 8.4 8.4 88 24.32 23.33

15 25 25 52 12 12 89 82.44 84.40

16 25 25 53 12 12 90 89.25 91.9

17 155 155 54 12.01 12.01 91 57.61 58.29

18 155 155 55 12 12 92 99.99 98.07

19 155 155 56 25.2 25.2 93 440 440

20 155 155 57 25.2 25.2 94 499.99 499.97

21 68.9 68.9 58 35 35 95 600 600

22 68.9 68.9 59 35.01 35 96 471.47 469.27

23 68.9 68.9 60 45.01 45.01 97 3.6 3.6

24 350 350 61 45.01 45.01 98 3.6 3.6

25 400 400 62 45 45 99 4.4 4.4

26 400 400 63 184.99 185 100 4.40 4.40

27 500 500 64 185 184.99 101 10.01 10.01

28 500 500 65 185 185 102 10.01 10.01

29 200 199.99 66 184.99 185 103 20.01 20.01

30 100 100 67 70 70 104 20.01 20.01

31 10.01 10.01 68 70 70 105 40 40

32 19.99 19.99 69 70.01 70.01 106 40.01 40.01

33 79.99 79.48 70 359.99 360 107 50 50

34 250 250 71 400 400 108 30 30

35 360 360 72 400 400 109 40 40

36 400 399.99 73 104.96 107.83 110 20 20

37 39.99 39.99 74 191.49 188.81 Fuel Cost
($/h) 197,988.8 197,989.1

4.4. Test System 4

In this scenario, a power system comprising 140 generating units is considered and
the performance of the proposed HGAFSA algorithm is compared to OGWO, SDE, and
OIWA. These results validate that HGAFSA outperforms all other methods in producing
cheap power. The performance of both HGAFSA and OGWO is satisfactory but HGAFSA is
significantly better than OGWO. The fuel costs are computed as 1,558,619 $/h for HGAFSA
and 1,559,710 $/h and 1,559,953 $/h for OGWO and GWO, respectively. Figure 7a shows the
HGAFSA-based optimization curve. HGAFSA converges at the sixty-sixth generation to a
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cost of 1,559,710 $/h, resulting in annual savings of $9.55 m. Furthermore, Figure 7b shows
that all generators satisfy their inequality constraints.

(a)

(b)

Figure 7. HGAFSA optimization and optimal power allocation curves for 140 units. (a) Optimization
curve; (b) cumulative power generated.

4.5. Test System 5

The proposed algorithm is also tested for a test system consisting of 160 generating
units with non-smooth valve-point cost functions. In order to show the effectiveness of the
proposed technique for solving a large-scale ELD problem, transmission losses are ignored.
The fuel costs are computed as 9612.8 $/h for HGAFSA and 9745.1 $/h and 9813.3 $/h for
OGWO and GWO, respectively. These results indicate that the total production cost is lower
than that of all other methods mentioned in this work. Figure 8a shows the HGAFSA-based
optimization curve. The HGAFSA algorithm converges at the eighth generation to a cost of
9612.8295 $/h, providing annual savings of $1.158 m. Furthermore, Figure 8b shows that
all generators satisfy their inequality constraints.
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(a)

(b)

Figure 8. HGAFSA optimization and optimal power allocation curves for 160 units. (a) Optimization
curve; (b) cumulative power generated.

4.6. Test System 6

The test system comprises a 463-unit system formed by combining test systems 1 to 5
(Gen. Units of 13 + 40 + 110 + 140 + 160). The coefficient of the valve point is assumed to
be zero if not available for any generating unit. The simulation study is carried out under
valve-point loading multi-fuel cost and emotion. A total power demand of 120,000 MW
is used for the dispatch problem. The power loss components are assumed to be negli-
gible. The problem is solved using the proposed HGAFSA. The fuel cost is computed
as 1,645,338.7 $/h. Figure 9a also shows the HGAFSA-based optimization curve. The
HGAFSA algorithm converges at the eighty-sixth generation to a cost of 1,645,338.7385 $/h.
Furthermore, Figure 9b shows that all generators satisfy their inequality constraints.
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(a)

(b)

Figure 9. HGAFSA optimization and optimal power allocation curves for 463 units. (a) Optimization
curve; (b) cumulative power generated.

In general, the results of the overall simulation study are summarized and presented
in Table 6, which provides a comparative analysis of the developed HGAFSA and the
best-performing algorithms mentioned in the literature. Table 6 reveals that HGAFSA
outperforms all other algorithms for all simulation scenarios, with the best performance
obtained in the 140-unit test system. This, however, results in relatively high overall annual
savings. This work also provides a new benchmark test system of 463 units. In order to
further demonstrate the optimization parameter sensitivity of the proposed HGAFSA, a
range of sensitivity analysis is performed and is reported in the next subsection.

4.7. Sensitivity Analysis

Sensitivity analysis is carried out to provide an insight towards the selection of the
HGAFSA-based optimization parameter settings (a) to achieve the desired optimization
trade-off, (b) to boost the capability of replicating this work, and (c) to ease future advance-
ment in this area of research. Tables 7–13 present the optimization results obtained by
varying the most sensitive HGAFSA parameters over a number of Monte Carlo (NMC)
simulation trials. In the analysis, the NMC is maintained at 10 trials and the optimization
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result is averaged over the 10 trials. In each of the tables, the convergence optimum cost,
the number of function evaluations before convergence (NFEBC), the number of gener-
ations/iterations before convergence (NGBC), and the CPU time are averaged (over the
10 trials/NMC) and recorded/presented.

The convergence/optimization curve reaches a minimum value at a point referred
to as the ’point of convergence’. The number of optimization trials/generation before
the point of convergence, also known as the number of generations before convergence
(NGBC), is used to compare the performance of HGAFSA for different cases of optimization.
Contrarily, the NFEBC gives an idea of the computational intensity/expensiveness of any
given optimization algorithm. In Table 7, the Psize is randomly varied between 2 and
500 individual/candidate solutions, and it is observed that the best performance (i.e., the
lowest cost and a relatively lower NFEBC, NGBC, and CPU time) is achieved with 64-
candidate solutions. Furthermore, for Psize greater than 64-candidate solutions, HGAFSA
yields the optimum cost but with higher NFEBC and CPU time. However, the NGBC is
observed to decrease with an increase in Psize.

Table 6. Summary of results for the comparison of HGAFSA and OGWO/OIWO.

Test System Number of
Gen. Units HGAFSA ($) Best Cost in

Literature ($)
Annual

Savings ($)
Total Power

(MW) CPU (s)

1 13 24,141.26 24,512.72 3,253,957.2 2560.36 5.02

2 40 136,396.97 136,440.62 382,350.35 11,457.29 10.11

3 110 197,988.89 197,989.14 2135.68 15,000 104.3

4 140 1,558,619.09 1,559,710 9,556,337 49,342 47.12

5 160 9612.82 9745.11 1,158,803.5 43,200 10.23

6 463 1,645,338.73 none none 120,000

Table 7. Effect of population size (Psize) on HGAFSA convergence.

NoP = 32; VD = 1; CF = 0.5;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. Psize Cost ($) NFEBC NGBC CPU (s)

1 2 1,558,959 44,544 87 5.823

2 16 1,558,651 319,488 78 41.77

3 64 1,558,619 360,448 22 47.12

4 100 1,558,619 460,800 18 60.24

5 500 1,558,619 1,536,000 12 200.8

Table 8. Effect of number of parameters (NoP) on HGAFSA convergence.

Psize = 64; VD = 1; CF = 0.5;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. NoP Cost ($) NFEBC NGBC CPU (s)

1 2 1,559,930 51,200 100 6.693

2 16 1,558,700 729,088 89 95.31

3 32 1,558,619 360,448 22 47.12

4 64 1,558,619 622,592 19 81.39

5 124 1,558,619 1,079,296 17 141.1
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Table 9. Effect of visual distance (VD) on HGAFSA convergence.

Psize = 64; NoP = 32; CF = 0.5;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. VD Cost ($) NFEBC NGBC CPU (s)

1 0.25 1,559,130 1,638,400 100 71.39

2 0.5 1,559,009 1,638,400 100 71.39

3 0.75 1,558,909 1,490,944 91 64.97

4 1 1,558,619 360,448 22 47.12

5 1.25 1,558,619 491,520 30 50.25

6 1.2 1,559,658 1,638,400 100 71.39

Table 10. Effect of crowdedness factor (CF) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875;
Ssize = 0.005; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. CF Cost ($) NFEBC NGBC CPU (s)

1 0.03 1,559,992 1,638,400 100 71.39

2 0.06 1,559,986 1,556,480 95 67.82

3 0.09 1,559,930 1,490,944 91 64.97

4 0.5 1,558,619 360,448 22 47.12

5 0.6 1,558,666 851,968 52 55.69

6 0.7 1,558,802 1,343,488 82 58.54

Table 11. Effect of step size (Ssize) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875;
CF = 0.5; Max.Iter = 100; MR = 0.5;

Sprob = 0.5; NoB = 8; NMC = 10

Test Sys. Ssize Cost ($) NFEBC NGBC CPU (s)

1 0.00125 1,558,619 360,448 22 70.68

2 0.005 1,558,619 360,448 22 47.12

3 0.01 1,558,689 524,288 32 68.54

4 0.025 1,558,679 1,097,728 67 71.75

5 0.05 1,558,692 1,343,488 82 58.54

6 0.1 1,558,629 1,507,328 92 65.68

Step size (Ssize) is another parameter of the HGAFSA that randomly affects its charac-
teristics. In general, the smaller the value of Ssize, the better the performance, as presented
in Table 11. An Ssize of 0.005 is used in this work. An important parameter of the HGAFSA
is the selection probability (Sprob). Sprob also randomly affects the characteristics of
HGAFSA, as shown in Table 12. Maintaining the value of Sprob at 50% (0.5) can work
for most optimization problems. Similar to Sprob, the mutation rate (MR) also randomly
affects the behavior of the developed HGAFSA, as shown in Table 13. A 50% mutation
rate (MR = 0.5) is sufficient to handle most optimization problems. Finally, it is noted that,
despite the effect of parameter variation, the HGAFSA outperforms most of the existing
algorithms, regardless of its parameter settings.
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Table 12. Effect of selection probability (Sprob) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875;
CF = 0.5; Max.Iter = 100; MR = 0.5;
Ssize = 0.005; NoB = 8; NMC = 10

Test Sys. Sprob Cost ($) NFEBC NGBC CPU (s)

1 0.1 1,558,629 442,368 27 48.19

2 0.2 1,558,621 507,904 31 55.33

3 0.3 1,558,650 475,136 29 51.76

4 0.5 1,558,619 360,448 22 47.12

5 0.7 1,558,629 622,592 38 67.82

6 0.8 1,558,622 491,520 30 64.25

Table 8 shows that an increase in the number of parameters (NoP) results in earlier
convergence but with higher computational expensiveness and convergence time. It is
also found out that a choice of 32 parameters is sufficient to achieve a relatively good
convergence characteristic. Table 9 presents the effect of the visual distance (VD) on the
convergence characteristics of HGAFSA. The choice of VD alters the value of NGBC, and
an improper selection of VD may result in a large value of NGBC or even lead to local
minimum/premature convergence. A trail and error procedure can be used to obtain a
suitable VD for any given optimization problem. However, it is found that a VD = 1 is
most suitable for solving the ELD problem. The effect of the crowdedness factor (CF) is
demonstrated in Table 10. Even though the results reported are the average of 10 trials,
the effect of CF on HGAFSA is observed to be random. However, with CF = 0.5, the
least/optimum cost is obtained for all scenarios.

Table 13. Effect of mutation rate (MR) on HGAFSA convergence.

Psize = 64; NoP = 32; VD = 0.875; CF = 0.5; Max.Iter = 100;
Ssize = 0.005; Sprob = 0.5; NoB = 8; NMC = 10

Test System MR Cost ($) NFEBC NGBC CPU (s)

1 0.1 1,558,629 540,672 33 58.9

2 0.25 1,558,621 638,976 39 69.61

3 0.5 1,558,619 360,448 22 47.12

4 0.75 1,558,650 524,288 32 57.12

5 1 1,558,629 573,440 35 62.47

5. Conclusions and Future Directions

HGAFSA is developed using a hybridization of the conventional binary-coded GA
and real-coded AFSA using a decoder (which converts a GA ’chromosome’ into an AFSA
’fish’) and an encoder (which performs the reverse operation of the decoder). An ELD
encoder algorithm is also developed and integrated with the HGAFSA to form a more
robust, efficient, and reliable technique (with a guaranteed high rate of convergence) for
solving complex ELD problems. A sensitivity analysis is carried out on the optimization
parameter settings of the developed HGAFSA. It is concluded that a trial and error method
can be used to select a suitable set of parameters in order to optimize an ELD problem. The
convergence of HGAFSA is randomly dependent on most of its parameters, and despite
the limitation of the parameter choice, its solutions would always be better than most of
the existing algorithms. The choice of encoder/decoder function further enhances the
optimization process. This feature of HGAFSA makes it robust and almost insensitive
to the choice of optimization parameter setting and enables it to support a wide range
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of optimization parameter settings. The effectiveness of the HGAFSA is demonstrated
through the simulation of solutions to a multi-objective ELD problem with higher-order
cost functions using 13, 40, 110, 140, 160, and 463 generating unit test systems. Outstanding
performance is demonstrated by the proposed HGAFSA-based ELD approach for most of
the test systems. The future directions include the integration of the proposed ELD encoder
with other meta-heuristics techniques in order to increase the efficiency and performance
and its comparison with the proposed HGAFSA. The computational expensiveness of
HGAFSA can also be further reduced by minimizing the number of repetitive steps in
the algorithm while still introducing a powerful function that could compensate for their
solution search ability. Another possible improvement is to modify the solution search
procedure by introducing a set of steps that could adjust the parameter settings of HGAFSA
based on the iteration counter to further enhance its rate of convergence.
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