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Preface

In the last three decades, fractional calculus has broken into the field of mathematical analysis,

both at the theoretical level and the level of its applications. In essence, the fractional calculus theory

is a mathematical analysis tool applied to studying integrals and derivatives of arbitrary order, which

unifies and generalizes the classical notions of differentiation and integration. These fractional and

derivative integrals, which until a few years ago had been used in purely mathematical contexts,

have been revealed as instruments with great potential to model problems in various scientific

fields, such as fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems,

signal processing, and entropy theory. Since fractional order’s differential and integral operators

are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes,

which in many cases is more useful than classical formulations; this is why applying fractional

calculus theory has become a focus of international academic research. This Special Issue, “Applied

Mathematics and Fractional Calculus II,” has published excellent research studies in the field of

applied mathematics and fractional calculus, authored by many well-known mathematicians and

scientists from diverse countries worldwide, such as the USA, Ireland, Romania, Bulgaria, Türkiye,

China, Pakistan, Iran, Egypt, India, Iraq, and Saudi Arabia.

Francisco Martı́nez González and Mohammed K. A. Kaabar

Editors
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Mittag-Leffler Type Stability of Delay Generalized
Proportional Caputo Fractional Differential Equations:
Cases of Non-Instantaneous Impulses, Instantaneous Impulses
and without Impulses

Ravi P. Agarwal 1, Snezhana Hristova 2,* and Donal O’Regan 3
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Abstract: In this paper, nonlinear differential equations with a generalized proportional Caputo
fractional derivative and finite delay are studied in this paper. The eventual presence of impulses
in the equations is considered, and the statement of initial value problems in three cases is defined:
namely non-instantaneous impulses, instantaneous impulses and no impulses. The relations between
these three cases are discussed. Additionally, some stability properties are investigated. We apply
the Mittag–Leffler function which plays a vital role and which gives well-known bounds on the
norm of the solutions. The symmetry of this function about a line and the bounds is a property that
plays an important role in stability. Several sufficient conditions are presented via appropriate new
comparison results and the modified Razumikhin method. The results generalize several known
results in the literature.

Keywords: generalized proportional fractional derivatives; delays; non-instantaneous impulses;
instantaneous impulses; Mittag–Leffler stability; Razumikhin method; Lyapunov functions

MSC: 34A34; 34K45; 34A08; 34D20

1. Introduction

Fractional calculus in real world phenomena is very applicable because of some typical
properties such as memory. Various types of kernels in fractional integrals and fractional
derivatives are applied (for example, in [1,2] the fourth-order time-fractional integro-
differential equation with various types of kernels are studied numerically). A very general
type of kernel was studied in [3] and called a general fractional integral/derivative. These
general fractional integrals and derivatives were systematically studied by Y. Luchko [4,5]
in appropriate function spaces in the framework of fractional calculus. Luchko also studied
some qualitative properties of solutions of various types of differential equations with
general fractional derivatives (see, [5]). In this paper, we focus on stability for a particular
kernel (to be described in Section 3). Stability properties for fractional differential equations
were studied by many authors (see, for example, [6,7]). As mentioned in [8], the generalized
energy of a system does not have to decay exponentially for the system to be stable in the
sense of Lyapunov, and recently the Mittag–Leffler stability and the fractional Lyapunov
direct method were introduced for various types of fractional differential equations (see,
for example, [9–12]) and applied in fractional models ([13–17]).

Many real processes are characterized by rapid changes in their state, and they are
adequately modeled by differential equations with impulses. The acting time of these
changes could be short relative to the duration of the whole process and they could
be modeled as instantaneous impulses (see, for example, the classical book for ordinary

Symmetry 2022, 14, 2290. https://doi.org/10.3390/sym14112290 https://www.mdpi.com/journal/symmetry
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differential equations [18] and the cited references therein). In some processes, the duration
of changes might not be negligible, i.e., they start at arbitrary fixed points and remain active
on finite time intervals. These types of changes could be modeled by non-instantaneous
impulses (see, the overview given in the book [19]).

Even though fractional derivatives have memory, often various types of delays are
involved in the fractional differential equations to represent some dynamics of the corre-
sponding processes. When one studies fractional differential equations with delays and
any type of impulse, there are a number of technical and theoretical difficulties.

In this paper, we study nonlinear differential equations with finite delay and with a
generalized proportional Caputo fractional derivative. We consider three main cases: the
case when there are non-instantaneous impulses in the equation, the case when there are
instantaneous impulses in the equation and the case without any impulses. In all of these
cases, we set up the initial value problem and we discuss the relation between them. The
appropriate Mittag–Leffler type stability is defined, and several sufficient conditions are
obtained. Our study is based on the Razumikhin method and its appropriate modifications.
Some of the obtained results are generalizations of results known in the literature for the
case of Caputo fractional differential equations.

Our contributions in this paper include:

1. The statement of the initial value problem for nonlinear systems of generalized pro-
portional Caputo fractional differential equations with finite delays, and we consider
three cases:

- With non-instantaneous impulses;
- With instantaneous impulses;
- Without impulses.

2. An appropriate interpretation and connection between the three cases are provided.
3. Generalized proportional Mittag–Leffler stability of the three types of systems is defined.
4. The appropriate modifications of the Razumikhin method are applied in the three cases.
5. Some extensions of the comparison principle are provided.
6. Sufficient conditions for the Mittag–Leffler-type stability are obtained.

The paper is organized as follows. In Section 2, we recall some basic definitions about
generalized proportional fractional integrals and Caputo-type derivatives, and some basic
results are presented. In Section 3, we discuss the statements of fractional order delay
systems in our three cases, and the relationships between them is provided. In Section 4,
in the three cases, the generalized proportional Mittag–Leffler stability is defined, some
comparison results are proved and several sufficient conditions are obtained with the help
of appropriate modifications of the Razumikhin method.

2. Preliminary Notes and Results

We will give some basic notations used in this paper.
Let u : [0, b] → Rn, b > 0, b ≤ ∞ and τ ∈ (0, b). Then, we will use the following

notations u(τ) = u(τ − 0) = limt↑τ u(t) and u(τ + 0) = limt↓τ u(t).
Let r > 0 be a given number and consider the set E = {φ : [−r, 0]→ Rn is continuous

everywhere except at a finite number of points τj ∈ (−r, 0) : φ(τj − 0) = φ(τj), φ(τj + 0) <
∞} with a norm ||φ||0 = sups∈[−r,0] ||φ(s)||, where ||.|| is a norm in Rn.

Let two sequences of points {ti}∞
i=1 and {si}∞

i=0 be given such that 0 < si−1 ≤ ti <
si < ti+1 , i = 1, 2, . . . , and limk→∞ sk = ∞. Denote t0 = 0.

Let J ⊂ [0, ∞) be a given interval. Consider the following classes of functions:

NPC(J,Rn) = {u : J → Rn : u ∈ C[J ∩
(⋃

∪∞
k=0(tk, sk]

)
,Rn] :

u(sk) = u(sk − 0) = lim
t↑sk

u(t) < ∞,

u(sk + 0) = lim
t↓sk

u(t) < ∞, k : sk ∈ J},

2
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and

PC(J,Rn) = {v : J → Rn : v ∈ C[J ∩
(
[0, ∞)/{tk}∞

k=1),R
n] :

v(tk) = v(tk − 0) = lim
t↑tk

v(t) < ∞,

v(tk + 0) = lim
t↓tk

v(t) < ∞, k : tk ∈ J},

We will give a brief overview of the literature on fractional integrals and derivatives
with general kernels. In [4], Luchko described what was known in the literature on general
fractional integrals (GFI) and general fractional derivatives (GFD) and studied GFI and
GFD with the Sonine kernel. In [5], Luchko studied some analytical properties of initial-
value problems for single and multi-term fractional differential equations with GFD with
a Sonine kernel that possess integrable singularities of power function-type at the point
zero. Luchko introduced the set of Sonine kernels S−1 and he considered GFI with a kernel
κ ∈ S−1 (Definition 3.2 [5]):

(I(κ) f )(t) =
∫ t

0
κ(t− τ) f (τ)dτ, t > 0, (1)

GFD of Riemann–Liouville type (Definition 3.3 [5]):

(D(κ) f )(t) =
d
dt

∫ t

0
κ(t− τ) f (τ)dτ, t > 0, (2)

and GFD of Caputo-type (Definition 3.3 [5]):

(∗D(κ) f )(t) = (D(κ) f )(t)− f (0)κ(t), t > 0. (3)

In [5], the first fundamental theorem of fractional calculus for the GFD (Theorem 3.1 [5])
and the second fundamental theorem of FC for the GFD (Theorem 3.2 [5]) are proved. Ad-
ditionally, an explicit form of the solution of the initial value problem (IVP) for the linear
fractional differential equation with Caputo type GFD is obtained. This formula signif-
icantly depends on the kernel κ ∈ S−1. Since the main goal of this paper is the study
of fractional generalization of exponential stability, i.e., so-called Mittag–Leffler-type of
stability, we will use a spacial type of the kernel κ ∈ S−1:

κ(t; α, ρ) =
ρα−1 t−α

Γ(1− α)
e

ρ−1
ρ t ∈ S−1, α ∈ (0, 1), ρ ∈ (0, 1], t ≥ 0. (4)

Then, the definitions of GFI and GFD given by (1)–(3) are reduced:

(I1−α,ρ f )(t) = (I(κ(t,1−α,ρ)) f )(t) =
∫ t

0

ρ−α (t− s)α−1

Γ(α)
e

ρ−1
ρ (t−s) f (s)ds,

α > 0, ρ ∈ (0, 1],

(RLDα,ρ f )(t) = (D(κ(t;α,ρ)) f )(t)

=
1

ρ1−αΓ(1− α)

d
dt

∫ t

0
(t− s)−αe

ρ−1
ρ (t−s) f (s)ds, α ∈ (0, 1), ρ ∈ (0, 1],

(CDα,ρ f )(t) = (∗D(κ(t;α,ρ)) f )(t)

=
ρα−1

Γ(1− α)

d
dt

∫ t

0
(t− s)−αe

ρ−1
ρ (t−s) f (s)ds− f (0)

ρα−1 t−α

Γ(1− α)
e

ρ−1
ρ t,

for t > 0, α ∈ (0, 1), ρ ∈ (0, 1].

(5)

Remark 1. The fractional integral (I1−α,ρ f )(t), the fractional derivatives (RLDα,ρ f )(t) and
(CDα,ρ f )(t) are called generalized proportional fractional integral, generalized proportional Rieman–

3
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Liouville fractional integral and generalized proportional Caputo fractional derive, respectively, and
they are studied in [20,21].

Remark 2. (see Remark 3.2 [20]) If α ∈ (0, 1) and ρ ∈ (0, 1] then the relation (C
aDα,ρe

ρ−1
ρ (.)

)(t) =
0 for t > a holds. At the same time (C

aDα,ρK)(t) �= 0 for K ∈ R, K �= 0.

We recall some results about generalized proportional Caputo fractional derivatives
and their applications in differential equations, which will be applied in the main result in
the paper.

Lemma 1. (Proposition 5.2 [20]) For ρ ∈ (0, 1] and α ∈ (0, 1) we have

(C
aDα,ρ(e

ρ−1
ρ t

(t− a)β−1)(t) =
ραΓ(β)

Γ(β− α)
e

ρ−1
ρ t

(t− a)β−1−α, β > 0.

Lemma 2. (Lemma 3.2 [22]) Let u ∈ C1([a, b],R) with a, b ∈ R, b ≤ ∞ (if b = ∞ then the
interval is half open), and q ∈ (0, 1), ρ ∈ (0, 1] be two reals. Then,

(C
aDα,ρu2)(t) ≤ 2u(t)(C

aDα,ρu)(t), t ∈ (a, b].

Lemma 3. (Lemma 5 [23]) Let u ∈ C([t0, T,R), T > t0, and there exists a point t∗ ∈ (t0, T]
such that u(t∗) = 0, and u(t) < 0, for t0 ≤ t < t∗. Then, if the generalized proportional Caputo
fractional derivative of u exists for t = t∗, then the inequality ( c

t0
Dα,ρu)(t)|t=t∗ > 0 holds.

Lemma 4. (Example 5.7 [20]) The scalar linear generalized proportional Caputo fractional initial
value problem

(C
aDα,ρu)(t) = λu(t), u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1]

has a solution
u(t) = u0e

ρ−1
ρ (t−a)Eα(λ(

t− a
ρ

)α), t > a,

where λ ∈ R, Eα(z) = ∑∞
i=0

zi

Γ(iα+1) is the Mittag–Leffler function of one parameter.

Lemma 5. Let α ∈ (0, 1) and ρ ∈ (0, 1]. Then

(C
aDα,ρ

(
e

ρ−1
ρ (t−a)Eα

(
λ

(
(t− a)

ρ

)α))
= λe

ρ−1
ρ (t−a)Eα

(
λ

(
(t− a)

ρ

)α)
.

Proof. From Lemma 1 and the definition of Mittag–Leffler function with one parameter,
we obtain

(C
aDα,ρ(Eα(λ(

t− a
ρ

α

)))e
ρ−1

ρ (t−a)
) =

∞

∑
i=0

(C
aDα,ρ(e

ρ−1
ρ (t−a)

)(λ( t−a
ρ )α)i

Γ(iα + 1)

=
∞

∑
i=1

λiραΓ(αi + 1)e
=ρ−1

ρ (t−a)
)(t− a)αi−α

ραiΓ(αi + 1− α)Γ(iα + 1)

= λe
ρ−1

ρ (t−a)
∞

∑
i=1

λi−1(t− a)α(i−1)

ρα(i−1)Γ(α(i− 1) + 1)
= λe

ρ−1
ρ (t−a)Eα

(
λ

(
(t− a)

ρ

)α)
.

3. Statement of the Problems

In this paper, we will consider three cases: non-instantaneous impulses, instantaneous
impulses and without impulse,s and we give the relations between them.

4
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3.1. Non-Instantaneous Impulses

Let two sequences of points {ti}∞
i=1 and {si}∞

i=0 be given such that 0 < si−1 ≤ ti <
si < ti+1 , i = 1, 2, . . . , and limk→∞ sk = ∞. Let t0 ≥ 0 be the given fixed initial time.
Without loss of generality, we will assume 0 ≤ t0 < s0 < t1.

Remark 3. The intervals (sk, tk+1], k = 0, 1, 2, . . . are called intervals of non-instantaneous
impulses.

Let J ⊂ R be a given interval. Consider the following class of functions:

NPCα,ρ(J,Rn) = {u : J → Rn : u ∈ NPC(J,Rn) : for any k = 0, 1, 2, · · · : tk ∈ J,

(C
tk
Dα,ρu)(t) exists for t ∈ (tk, sk] ∩ J},

Consider the system of non-instantaneous impulsive delay differential equations (NIDDE)
with the generalized proportional Caputo fractional derivative

(C
tk
Dα,ρx)(t) = f (t, xt) for t ∈ (tk, sk], k = 0, 1, 2, . . .

x(t) = Φk(t, x(sk − 0)) for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,
(6)

with initial condition
x(t + t0) = φ(t) for t ∈ [−r, 0], (7)

where f : [t0, s0]
⋃∪∞

k=1[tk, sk] × Rn → Rn, Φi : [si, ti+1] × Rn → Rn, (i = 0, 1, 2, 3, . . . ),
r > 0 is a given number, φ : [−r, 0]→ Rn and xt = x(t + s), s ∈ [−r, 0].

Remark 4. The functions Φk(t, x), k = 1, 2, . . . , are called non-instantaneous impulsive functions.

Remark 5. For some detailed explanations about non-instantaneous impulses in generalized pro-
portional Caputo fractional differential equations without delays, see [24].

We will introduce the following conditions:
(A 1.1.) The function f ∈ C(∪∞

k=0[tk, sk]×Rn,Rn).
(A 1.2.) For any natural number k the functions Φk ∈ C([sk, tk]×Rn,Rn), k = 1, 2, . . ..

Remark 6. We will assume that for any initial function φ ∈ E the IVP for the system of
NIDDE (6) and (7) has a solution x(t; t0, φ) ∈ NPCα,ρ([t0, ∞),Rn).

We now give a brief description of the solution of IVP for NIDDE (6) and (7). The
solution x(t; t0, φ) of (6) and (7) is given by

x(t; t0, φ) =

{
Xk(t), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,
Φk(t, Xk(sk − 0)), for t ∈ (sk, tk+1] k = 1, 2, . . .

(8)

where

- On the interval [t0 − r, t0], the solution satisfies the initial condition (7);
- On the interval [t0, s0], the solution coincides with X0(t) which is the solution of

(C
t0
Dα,ρx)(t) = f (t, xt), t ∈ (t0, s0] with initial condition (7);

- On the interval (s0, t1], the solution x(t; t0, φ) satisfies the equation

x(t; t0, φ) = Φ0(t, X0(s0 − 0));

5
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- On the interval (t1, s1], the solution coincides with X1(t) which is the solution of
(C

t1
Dα,ρx)(t) = f (t, xt), t ∈ (t1, s1] and initial condition x(t + t1) = φ̃(t), t ∈ [−r, 0]

with

φ̃(t) =
{

Φ0(t1, X0(s0 − 0)) t = 0
x(t− t1; t0, φ) t ∈ [−r, 0);

- On the interval (s1, t2], the solution x(t; t0, φ) satisfies the equation

x(t; t0, x0) = Φ1(t, X1(s1 − 0));

and so on.
In connection with the study of the stability properties of zero solutions, we introduce

the following assumption:
(A 1.3.) The equalities f (t, 0) = 0 and Φk(t, 0) ≡ 0, k = 0, 1, 2, . . . , hold.

3.2. Instantaneous Impulses

Let the sequence of points {ti}∞
i=1 be given such that 0 < ti ≤ ti+1 , i = 1, 2, . . . , and

limk→∞ tk = ∞. Let t0 ≥ 0 be the given fixed initial time. Without loss of generality we will
assume 0 ≤ t0 < t1.

Remark 7. The points tk, k = 0, 1, 2, . . . are called points of impulses.

Let J ⊂ R be a given interval. Consider the following class of functions

PCα,ρ(J,Rn) = {v : J → Rn : v ∈ PC(J,Rn) : for any tk ∈ J, k = 0, 1, 2, · · · :

(C
tk
Dα,ρv)(t) exists for t ∈ (tk, tk+1] ∩ J}.

Consider the system of instantaneous impulsive delay differential equations (IDDE) with
the generalized proportional Caputo fractional derivative

(C
tk
Dα,ρx)(t) = f (t, xt) for t ∈ (tk, tk+1], k = 0, 1, 2, . . .

x(tk + 0) = Ψk(x(tk − 0)) for k = 1, 2, . . . ,
(9)

with initial condition (7), where f : [t0, ∞)×Rn → Rn, Ψi : Rn → Rn, (i = 1, 2, 3, . . . ).

Remark 8. The functions Ψk(y), k = 1, 2, . . . , are called impulsive functions.

Remark 9. In the case in Section 3.1 that both sequences coincide, i.e., si = ti+1, i = 0, 1, 2, . . . ,
the system (6) is reduced to the system (9) with Φk(t, u) = Ψk(u), k = 0, 1, 2, . . . , i.e., the case
of non-instantaneous impulses could be considered as a generalization of the case of instantaneous
impulses.

We will introduce the following conditions:
(A 2.1.) The function f ∈ C([t0, t1]

⋃∞
k=1(tk, tk+1]×Rn,Rn).

(A 2.2.) The functions Φk ∈ C(Rn,Rn), k = 1, 2, . . . .
(A 2.3.) The function f (t, 0) = 0, t ≥ t0 and the functions Ψk(0) = 0, k = 1, 2, . . . .
If condition (A 2.3) is satisfied, then for the zero initial function, the IVP for IDDE (7) and (9)

has a zero solution.

Remark 10. We will assume that for any initial function φ ∈ E the IVP for the system of
IDDE (7) and (9) has a solution x(t; t0, φ) ∈ PCα,ρ([t0, ∞),Rn)

6



Symmetry 2022, 14, 2290

3.3. No Impulses

Consider the system of delay differential equations (DDE) with the generalized propor-
tional fractional derivative

(C
t0
Dα,ρx)(t) = f (t, xt) for t > t0 (10)

with initial condition (7), where f : [t0, ∞)×Rn → Rn.

Remark 11. The system (10) could be considered as a partial case of (9) in the case when there are
no impulses, i.e., in Section 3.2 ti = t0, i = 1, 2, . . . , i.e., the case of instantaneous impulses could
be considered as a generalization of the case of without impulses.

Let J ⊂ R be a given interval. Consider the following classes of functions

Cα,ρ(J,Rn) = {u : J → Rn : u ∈ C(J ∩ [a, ∞),Rn) :

(C
aDα,ρu)(t) exists for t ∈ [a, ∞) ∩ J}.

We will introduce the following conditions:
(A 3.1.) The function f ∈ C([t0, ∞)×Rn,Rn).
(A 3.2.) The function f (t, 0) = 0, t ≥ t0.

Remark 12. We will assume that for any initial function φ ∈ E, the IVP for the system of
DDE (7) and (10) has a solution x(t; t0, φ) ∈ Cα,ρ([t0, ∞),Rn)

4. Mittag–Leffer-Type Stability Properties

We will study the Mittag–Leffler-type stability for NIDDE (6), IDDE (9) and DDE (10)
by Lyapunov functions and an appropriate modification of the Razumikhin method.

4.1. Non-Instantaneous Impulses

Definition 1. The zero solution of the system NIDDE (6) and (7) is said to be generalized
proportional Mittag–Leffler stable if there exist constants β, γ, C, λ > 0 such that the inequality

||x(t; t0, φ)||

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C||φ||β0
((

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−λ( t−tk

ρ )α)

)γ

,

t ∈ (tk, sk], k = 0, 1, . . . ,

C||φ||β0
(

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)γ

,

t ∈ (sk, tk+1], k = 0, 1, 2, . . .

(11)

holds, where x(t; t0, φ) is a solution of the IVP for NIDDE (6) and (7) (with an arbitrary initial
function φ ∈ E).

Remark 13. The definition for generalized proportional Mittag–Leffler stability for NIDDE
(6) and (7) depends significantly on the type of intervals—the intervals of differential equations and
the intervals of non-instantaneous impulses (see, the first and the second line, respectively, in (11)).

We will use the following class of Lyapunov-like functions (for more details, see the
book [19]):

Definition 2. Let a < b ≤ ∞ be given numbers , Ω ⊂ Rn, 0 ∈ Ω. Then, the function
V : [a− r, b]×Ω → [0, ∞) is from the class NΛ([a− r, b], Ω) if:

- V ∈ C([a, b]/{sk} ×Ω, [0, ∞)) and it is Lipschitz with respect to the second argument;
- For any sk ∈ (a, b), x ∈ Ω, there exist finite limits V(sk − 0, x) = limt↑sk

V(t, x) and
V(sk + 0, x) = limt↓sk

V(t, x).

7
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We will consider the following scalar non-instantaneous impulsive differential equa-
tion (NIDE) as a comparison equation

(C
tk
Dα,ρu)(t) = −λu(t), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

u(t) = Ξk(t, u(sk − 0)) for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

u(t0) = u0.

(12)

According to Lemma 4, the solution of the IVP for NIDE (12) is given by

u(t) =

⎧⎪⎪⎨⎪⎪⎩
u0e

ρ−1
ρ (t−t0)Eα(−λ( t−t0

ρ )α), t ∈ [t0, s0]

Ξk(t, u(sk − 0)), t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

Ξk−1(tk, u(sk−1 − 0))e
ρ−1

ρ (t−tk)Eα(−λ( t−tk
ρ )α), t ∈ (tk, sk], k = 1, 2, . . . .

Applying the scalar NIDE (12) as a comparison equation, we will obtain the following
comparison result for NIDDE (6).

Lemma 6. Suppose:

1. The function x∗(t) = x(t; t0, φ) ∈ NPCα,ρ([t0, ∞), Δ) is a solution of the NIDDE (6) and (7),
where Δ ⊂ Rn.

2. The functions Ξk ∈ C([sk, tk+1] × R,R) and Ξk(t, u) ≤ u for t ∈ [sk, tk+1], u ≥ 0,
k = 0, 1, 2, . . . .

3. The function V ∈ NΛ([t0 − r, ∞), Δ) and

(i) for any t ∈ (tk, sk] with k = 0, 1, . . . such that

V(t, x∗(t))
e

1−ρ
ρ (t−tk)

Eα

(
−λ

(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ

(
(s−tk)

ρ

)α)V(s, x∗(s))

(13)

the inequality
C
tk
Dα,ρV(t, x∗(t)) ≤ −λV(t, x∗(t))

holds where λ > 0 is a given number.
(ii) For any k = 0, 1, . . . the inequalities

V(t, Φk(t, x∗(sk − 0))) ≤ Ξk(t, V(sk − 0, x∗(sk − 0))) for t ∈ (sk, tk+1].

hold.

Then, the inequality

V(t, x∗(t))

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M
(

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−λ( t−tk

ρ )α),

t ∈ (tk, sk], k = 0, 1, . . . ,

M
(

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−λ( si−ti

ρ )α)

)
, t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

(14)

holds where M = maxs∈[−r,0] V(t0 + s, φ(s)).

8
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Proof. Case 1. Let t ∈ [t0, s0]. Define the function m(t) = V(t, x∗(t)) for t ∈ [t0 − r, s0].
Then, the function m(t) ∈ Cα,ρ([t0, s0],R+) and the inequality m(t0) = V(t0, φ(0)) ≤
sups∈[−r,0] V(t0 + s, φ(s)) = M hold. We will prove that

m(t) < Me
ρ−1

ρ (t−t0)Eα

(
−λ

(
t− t0

ρ

)α)
+ εe

ρ−1
ρ (t−t0), t ∈ [t0, s0], (15)

where ε > 0 is a small enough number. Note for t = t0 inequality (15) holds. Assume (15)
is not true on (t0, s0]. Therefore, there exists t∗ ∈ (t0, s0] such that

m(t) < Me
ρ−1

ρ (t−t0)Eα

(
−λ

(
t− t0

ρ

)α)
+ εe

ρ−1
ρ (t−t0), t ∈ [t0, t∗),

m(t∗) = e
ρ−1

ρ (t∗−t0)Eα

(
−λ

(
t∗ − t0

ρ

)α)
+ εe

ρ−1
ρ (t∗−t0).

(16)

Consider the function ξ(t) = m(t)−Me
ρ−1

ρ (t−t0)Eα

(
−λ

(
t−t0

ρ

)α)
− εe

ρ−1
ρ (t−t0) for t ∈

[t0, s0]. According to Lemma 3 with u(t) ≡ ξ(t) the inequality ( c
t0
Dα,ρξ)(t)|t=t∗ > 0 holds.

Therefore, according to Lemma 5 and Remark 2, we obtain

( c
t0
Dα,ρm)(t)|t=t∗ > −λMe

ρ−1
ρ (t∗−t0)Eα

(
−λ

(
t∗ − t0

ρ

)α)
. (17)

Case 1.1. Let r < t∗ − t0. Then, t∗ − r > t0 and [t∗ − r, t∗] ⊂ (t0, t∗], i.e., [t∗ − r, t∗] ∩
[t0, t∗] = [t∗ − r, t∗]. Therefore, since the function Eα(−λt) is decreasing for t ∈ (t0, t∗], i.e.,

1

Eα

(
−λ

(
(t−t0)

ρ

)α
) ≤ 1

Eα

(
−λ

(
(t∗−t0)

ρ

)α
) for t ∈ [t∗ − r, t∗] by (16), we obtain

m(t)
e

1−ρ
ρ (t−t0)

Eα

(
−λ

(
t−t0

ρ

)α) < M + ε
1

Eα

(
−λ

(
t−t0

ρ

)α)
≤ M + ε

1

Eα

(
−λ

(
t∗−t0

ρ

)α)
= m(t∗)

e
1−ρ

ρ (t∗−t0)

Eα

(
−λ

(
t∗−t0

ρ

)α) , t ∈ [t∗ − r, t∗],

(18)

i.e., inequality (13) is satisfied for t = t∗.
According to condition 3(i) the inequality( c

t0
Dα,ρm

)
(t)|t=t∗ =

( c
t0
Dα,ρV(t, x∗(t))

)
|t=t∗ ≤ −λV(t∗, x∗(t∗))

= −λm(t∗) = −λMe
ρ−1

ρ (t∗−t0)Eα

(
−λ

(
t∗ − t0

ρ

)α)
− λεe

ρ−1
ρ (t∗−t0)

(19)

holds.
From inequalities (17) and (19), it follows that −λεe

ρ−1
ρ (t∗−t0) > 0. The obtained

contradiction proves the inequality (15) on [t0, s0].
Case 1.2. Let r ≥ t∗ − t0. Then, t∗ − r ≤ t0 and [t∗ − r, t∗] ∩ [t0, t∗] = [t0, t∗] =

{t0} ∪ (t0, t∗]. Similar to the proof in Case 1.1, we obtain the inequality

m(t)
e

1−ρ
ρ (t−t0)

Eα

(
−λ

(
t−t0

ρ

)α) ≤ m(t∗)
e

1−ρ
ρ (t∗−t0)

Eα

(
−λ

(
t∗−t0

ρ

)α) , t ∈ (t0, t∗].

9
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For t = t0, apply (16), Eα(0) = 1 and obtain m(t∗) e
1−ρ

ρ (t∗−t0)

Eα

(
−λ

(
t∗−t0

ρ

)α
) > M ≥ m(t0).

Therefore, inequality (13) holds for t = t∗.
Thus, condition 3(i) is applicable and as in Case 1.1 we obtain a contradiction.
The contradiction proves inequality (15). From inequality (15) as ε → 0 follows the

validity of (14) on [t0, s0].
Case 2. Let t ∈ (s0, t1]. Then, x∗(t) = Φ1(t, x∗(s0 − 0)). From conditions 2, 3(ii) for

k = 0 and Case 1, we obtain

V(t, x∗(t)) = V(t, Φ0(t, x∗(s0 − 0))) ≤ Ξ0(t, V(s0 − 0, x∗(s0 − 0)))

≤ V(s0 − 0, x∗(s0 − 0))

≤ Me
ρ−1

ρ (s0−t0)Eα

(
−λ

(
s0 − t0

ρ

)α)
, t ∈ (s0, t1].

Therefore, inequality (14) holds on (s0, t1].
Case 3. Let t ∈ (t1, s2]. Define the function

m1(t) =

{
V(t1, x∗(t1)) for t ∈ [t1 − r, t1],
V(t, x∗(t)) for t ∈ (t1, s1].

Then, the function m1(t) ∈ Cα,ρ([t1, s1],R+). Denote M1 = V(t1, x∗(t1)). Then,(
max

s∈[−r,0]
m1(t1 + s)

)
= M1

and according to Case 2, the inequality

M1 < Me
ρ−1

ρ (s0−t0)Eα

(
−λ

(
s0 − t0

ρ

)α)
holds.

Similar to the proof of inequality (15) in Case 1, we have the validity of the inequality

m1(t) < M1e
ρ−1

ρ (t−t1)Eα

(
−λ

(
t− t1

ρ

)α)
+ εe

ρ−1
ρ (t−t1). t ∈ [t1, s1].

Thus,

m1(t) < Me
ρ−1

ρ (s0−t0)Eα

(
−λ

(
s0 − t0

ρ

)α)
e

ρ−1
ρ (t−t1)Eα

(
−λ

(
t− t1

ρ

)α)
+ εe

ρ−1
ρ (t−t1), t ∈ (t1, s1].

(20)

Taking the limit in (20) as ε → 0 we obtain the claim of Lemma 6 on (t1, s1].
Continue this process and an induction argument proves the claim in Lemma 6.

Remark 14. The condition (13) is a modified Razumikhin condition applied in connection with
generalized proportional fractional derivatives.

Remark 15. The inequality (13) in condition 3(i) of Lemma 6 could be replaced by

V(t, x∗(t)) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ

(
(s−tk)

ρ

)α)V(s, x∗(s)) (21)

Note that if (21) holds, then inequality (13) is also satisfied.

10
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Remark 16. If the condition (21) is satisfied, then the classical Razumikhin condition V(t, x∗(t)) ≥
sups∈[t−r,t]∩[tk ,t] V(s, x∗(s)) holds.

Remark 17. The condition 3(i) is satisfied only at some particular points of t from the studied interval.

We study the generalized Mittag–Leffler stability properties of the zero solution of
NIDDE (6).

Theorem 1. Suppose :

1. Conditions (A 1.1)–(A 1.3) are satisfied.
2. There exists a function V ∈ NΛ([t0 − r, ∞),Rn) such that

(i) There exist positive constants A, B, a, b such that the inequalities A||x||a ≤ V(t, x) ≤
B||x||ab, t ≥ t0, x ∈ Rn hold.

(ii) For any point t ∈ (tk, sk] with k = 0, 1, 2, . . . and any function ψ ∈ Cα,ρ(tk, [t −
r, t],Rn) such that

(
C
tk
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t))
e

1−ρ
ρ (t−tk)

Eα

(
−D

(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s))

(22)

the inequality (
C
tk
Dα,ρV(t, ψ(t))

)
≤ −DV(t, ψ(t)) (23)

holds where D > 0 is a given number.
(iii) For any k = 0, 1, . . . and u ∈ Rn, the inequalities

V(t, Φk(t, u)) ≤ C||u||a for t ∈ (sk, tk+1].

hold where C ∈ (0, A].

Then, the zero solution of NIDDE (6) with the zero initial function is generalized proportional

Mittag–Leffler stable with C = a
√

B
A , β = b, λ = D, γ = 1

a .

Proof. Let φ ∈ E be an arbitrary initial function and now let x(t) = x(t; t0, φ) ∈ NPCα,ρ

([t0, ∞),Rn) be the solution of the IVP for NIDDE (6) and (7). Let t∗ ∈ (tk, sk] with k a
non-negative integer, be such that the inequality (22) holds with ψ(t) = x(t). Note that
x ∈ Cα,ρ(tk, [t∗ − r, t∗],Rn) and

(
C
tk
Dα,ρx

)
(t)|t=t∗ = f (t∗, xt∗). Then, according to condition

2(ii) of Theorem 1, the inequality (23) holds, i.e., we have(
C
tk
Dα,ρV(t, x(t))

)
|t=t∗ ≤ −DV(t∗, x(t∗)),

i.e., the condition 3(i) of Lemma 6 is satisfied with λ = D.
Let k = 0, 1, . . . be an arbitrary number. Then, from conditions 2(i) and 2(iii) of

Theorem 1, we obtain V(t, Φk(t, x(sk − 0))) ≤ C||x(sk − 0)||a ≤ C
A V(sk − 0, x(sk − 0)), i.e.,

condition 3(ii) of Lemma 6 is satisfied with Ξk(t, u) = C
A u ≤ u according to the choice of

the constants A, C.

11
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According to Lemma 6, the inequality

V(t, x(t))

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M
(

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−D( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−D( t−tk

ρ )α),

t ∈ (tk, sk], k = 0, 1, . . . ,

M
(

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−D( si−ti

ρ )α)

)
, t ∈ (sk, tk+1], k = 0, 1, 2, . . . .

(24)

holds where M ≤ B||φ||ab
0 .

Thus, from condition 2(i) of Theorem 1, we obtain

||x(t)||

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a
√

B
A ||φ||b0

((
∏k−1

i=0 e
ρ−1

ρ (si−ti)Eα(−D( si−ti
ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−D( t−tk

ρ )α)

) 1
a
,

t ∈ (tk, sk], k = 0, 1, . . . ,

a
√

B
A ||φ||b0

(
∏k

i=0 e
ρ−1

ρ (si−ti)Eα(−D( si−ti
ρ )α)

) 1
a
,

t ∈ (sk, tk+1], k = 0, 1, 2, . . . .

(25)

Thus, the zero solution of (6) is generalized Mittag-Leffler stable with C = a
√

B
A , β =

b, λ = D, γ = 1
a .

Corollary 1. Let the conditions of Theorem 1 be satisfied where the inequality (22) is replaced by

V(t, ψ(t)) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s)) (26)

Then, the zero solution of NIDDE (6) with the zero initial function is generalized proportional
Mittag–Leffler stable.

Proof. If the inequality (26) is satisfied for the point t, then we obtain

V(t, ψ(t))
e

1−ρ
ρ (t−tk)

Eα

(
−D

(
(t−tk)

ρ

)α) ≥ V(t, ψ(t)),

i.e., inequality (22) is satisfied.

Corollary 2. Let the conditions of Theorem1 be satisfied where the condition 2(ii) is replaced by
2(ii)* for any point t ∈ (tk, sk] with k = 0, 1, 2, . . . and any function ψ ∈ Cα,ρ(tk, [t− r, t],Rn)

such that
(

C
tk
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t)) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s)) (27)

the inequality (
C
tk
Dα,ρV(t, ψ(t))

)
≤ −D sup

s∈[t−r,t]∩[tk ,t]
||ψ(s)||ab (28)

holds where D > 0 is a given number.
Then, the zero solution of NIDDE (6) with the zero initial function is generalized proportional

Mittag–Leffler stable.

12
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Proof. From condition 2(iii) of Theorem 1 and inequality (27), we have that ||ψ(s)||ab ≥
V(s, ψ(s)), s ∈ [t− r, t] ∩ [tk, t], i.e.,

−D

(
sup

s∈[t−r,t]∩[tk ,t]
||ψ(s)||ab

)
≤ −D

(
sup

s∈[t−r,t]∩[tk ,t]
V(s, ψ(s))

)
= −DV(t, ψ(t)).

Thus, from inequality (28) we have inequality (23).

Corollary 3. Let the conditions of Theorem1 be satisfied where the inequality (23) is replaced by

C
tk
Dα,ρV(t, ψ(t)) ≤ 0, (29)

and condition 2(i) is changed by
2(i)* There exist positive constants A, B such that the inequalities A||x|| ≤ V(t, x) ≤

B||x||, t ≥ t0, x ∈ Rn hold.
Then, the zero solution of NIDDE (6) with the zero initial function is stable.

Proof. Inequality (29) is a partial case of (23) with D = 0, then use Eα(0) = 1 and in-
equality (25) and we obtain ||x(t)|| ≤ B

A ||φ||0 for t ≥ t0, which proves the stability of the
solution.

Example 1. . Consider the scalar IVP for NIDDE(
C
tk
Dα,ρx

)
(t) = −2 + t

t + 1
(x(t)− 0.5x(k)t ), for t ∈ (tk, sk], k = 0, 1, 2, . . . ,

x(t) = 0.5(sin t)x(sk − 0) for t ∈ (sk, tk+1], k = 0, 1, 2, . . . ,

x(t0 + s) = φ(s), s ∈ [−r, 0],

(30)

where for any t ∈ (tk, sk] we denote x(k)t (s) = x(t + s), s ∈ [max{−r, tk − t}, 0].
The scalar IVP for NIDDE (30) with φ(s) ≡ 0 has a zero solution.
Consider the Lyapunov function V(t, x) = x2. Then, condition 2(i) of Theorem 1 is satisfied

with A = 0.25, B = 1, a = 2, b = 1. Let k be a whole number and the point t ∈ (tk, sk] and the
function ψ ∈ Cα,ρ(tk, [t− r, t],R) be such that

(
C
tk
Dα,ρψ

)
(t) = − 2+t

t+1 (ψ(t)− 0.5ψ
(k)
t ) and

ψ2(t) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−
(
(s−tk)

ρ

)α)ψ2(s). (31)

Then applying sups∈[t−r,t]∩[tk ,t]
e

1−ρ
ρ (s−tk)

Eα

(
−
(
(s−tk)

ρ

)α
)ψ2(s) ≥ sups∈[t−r,t]∩[tk ,t] ψ2(s) we obtain

(
C
tk
Dα,ρψ2

)
(t) ≤ 2ψ(t)

(
C
tk
Dα,ρψ

)
(t)

= −2
2 + t
t + 1

(ψ2(t)− 0.5ψ(t)ψ(k)
t )

≤ 2 + t
t + 1

(−2ψ2(t) + 0.5ψ2(t) + 0.5(ψ(k)
t )2)

≤ 2 + t
t + 1

(−2ψ2(t) + 0.5ψ2(t) + 0.5 sup
s∈[t−r,t]∩[tk ,t]

ψ2(s))

≤ 2 + t
t + 1

(−1.5ψ2(t) + 0.5ψ2(t)) = −2 + t
t + 1

ψ2(t)

< −V(t, ψ(t)).

(32)

Let t ∈ (sk, tk+1] where k = 0, 1, 2, . . . . Then, (0.5 sin t u)2 ≤ 0.25u2 = 0.25|u|2.

13
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Therefore, the conditions of Corollary 1 are satisfied with D = 1, C = A = 0.25, B = 1, a =
2, b = 1. According to Corollary 1 the zero solution of the scalar NIDDE (30) is generalized
proportional Mittag–Leffler stable with C =

√
4 = 2, β = 1, λ = 1, γ = 0.5, i.e., the inequality

||x(t)||

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2||φ||0
√(

∏k−1
i=0 e

ρ−1
ρ (si−ti)Eα(−( si−ti

ρ )α)

)
e

ρ−1
ρ (t−tk)Eα(−( t−tk

ρ )α),

t ∈ (tk, sk], k = 0, 1, . . . ,

2||φ||0
√

∏k
i=0 e

ρ−1
ρ (si−ti)Eα(−( si−ti

ρ )α),

t ∈ (sk, tk+1], k = 0, 1, 2, . . . .

holds.

Remark 18. The Mittag–Leffler type stability for the Caputo fractional differential equations (with
ρ = 1) is studied in [25].

4.2. Instantaneous Impulses

As mentioned in Remark 9, the case of non-instantaneous impulses could be consid-
ered as a generalization of the case of instantaneous impulses. That is why we can translate
the results from the previous section to instantaneous impulses.

Definition 3. The zero solution of the system IDDE (7) and (9) (with φ ≡ 0) is said to be
generalized proportional Mittag–Leffler stable if there exist constants β, γ, C, λ > 0 such that
the inequality

||x(t; t0, φ)|| ≤ C||φ||β0
(

e
ρ−1

ρ (t−tk)Eα(−λ(
t− tk

ρ
)α)

)γ

,

t ∈ (tk, tk+1], k = 0, 1, . . . ,
(33)

holds, where x(t; t0, φ) is a solution on the IVP for IDDE (7) and (9) with an arbitrary initial
function φ ∈ E.

We will use some comparison results for IDDE (9) by applying piecewise continuous
Lyapunov functions and we introduce a class of Lyapunov-like functions:

Definition 4. Let a < b ≤ ∞ be given numbers , Ω ⊂ Rn, 0 ∈ Ω. Then, the function
V : [a− r, b]×Ω → [0, ∞) is from the class PΛ([a− r, b], Ω) if:

- V ∈ C([a, b]/{tk} ×Ω, [0, ∞)) and it is Lipschitz with respect to the second argument;
- For any tk ∈ (a, b), x ∈ Ω, there exist finite limits V(tk − 0, x) = limt↑tk

V(t, x) and
V(tk + 0, x) = limt↓tk

V(t, x).

The comparison scalar equation (IDE) is

(C
tk
Dα,ρu)(t) = −λu(t), for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

u(t) = Ξk(u(tk − 0)) for k = 1, 2, . . . ,

u(t0) = u0.

(34)

According to Lemma 4, the solution of the IVP for IDE (34) is given by

u(t) =

⎧⎨⎩ u0e
ρ−1

ρ (t−t0)Eα(−λ( t−t0
ρ )α) t ∈ [t0, t1]

Ξk(u(tk − 0))e
ρ−1

ρ (t−tk)Eα(−λ( t−tk
ρ )α) t ∈ (tk, tk+1], k = 1, 2, . . . .

14
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The auxiliary Lemma, corresponding to Lemma 6, reduces to

Lemma 7. Suppose:

1. The function x∗(t) = x(t; t0, φ) ∈ PCα,ρ([t0, ∞), Δ) is a solution of the IDDE (7) and (9)
where Δ ⊂ Rn.

2. The functions Ξk ∈ C(R,R) and Ξk(u) ≤ u for u ≥ 0, k = 1, 2, . . ..
3. The function V ∈ PΛ([t0 − r, ∞), Δ) and

(i) For any t ∈ (tk, tk+1] with k = 0, 1, . . . , such that

V(t, x∗(t))
e

1−ρ
ρ (t−tk)

Eα

(
−λ

(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ

(
(s−tk)

ρ

)α)V(s, x∗(s))

(35)

the inequality
C
tk
Dα,ρV(t, x∗(t)) ≤ −λV(t, x∗(t))

holds where λ > 0 is a given number.
(ii) For any k = 1, . . . , the inequalities

V(tk − 0, Ψk(x∗(tk − 0))) ≤ Ξk(V(tk − 0, x∗(tk − 0))),

hold.

Then, the inequality

V(t, x∗(t)) ≤
(

max
s∈[−r,0]

V(t0 + s, φ(s))
)

e
ρ−1

ρ (t−tk)Eα(−λ(
t− tk

ρ
)α),

t ∈ (tk, tk+1], k = 0, 1, . . . ,
(36)

holds.

Remark 19. The comparison scalar Equation (34) is chosen such that its explicit solution is known
and condition 3(i) will be satisfied for the Lyapunov function.

Theorem 2. Suppose:

1. Conditions (A 2.1)–(A 2.3) are satisfied.
2. There exists a function V ∈ PΛ([t0 − r, ∞),Rn) such that

(i) There exist positive constants A, B, a, b such that the inequalities A||x||a ≤ V(t, x) ≤
B||x||ab, t ≥ t0, x ∈ Rn hold.

(ii) For any point t ∈ (tk, tk+1] with k = 0, 1, 2, . . . and any function ψ ∈ Cα,ρ(tk, [t−
r, t],Rn) such that

(
C
tk
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t))
e

1−ρ
ρ (t−tk)

Eα

(
−D

(
(t−tk)

ρ

)α)
≥ sup

s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−D

(
(s−tk)

ρ

)α)V(s, ψ(s))

(37)

15
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the inequality
C
tk
Dα,ρV(t, ψ(t)) ≤ −DV(t, ψ(t))r (38)

holds where D > 0 is a given number.
(iii) For any k = 1, 2, . . . and u ∈ Rn the inequalities

V(t, Ψk(u)) ≤ C||u||a for t ∈ (tk, tk+1].

hold where C ∈ (0, A].

Then, the zero solution of IDDE (9) with the zero initial function is generalized proportional

Mittag–Leffler stable with C = a
√

B
A , β = b, λ = D, γ = 1

a .

Now we will provide an example illustrating the application of the given above suf-
ficient conditions. To be able to compare both cases about non-instantaneous impulses
and instantaneous impulses we will consider the scalar IVP for NIDDE (30) with appropri-
ate changes.

Example 2. . Consider the scalar IVP for IDDE(
C
tk
Dα,ρx

)
(t) = −2 + t

t + 1
(x(t)− 0.5x(k)t ) for t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,

x(tk + 0) = 0.5(sin tk)x(tk − 0) for k = 1, 2, . . . ,

x(t0 + s) = φ(s), s ∈ [−r, 0].

(39)

The scalar IVP for IDDE (39) with φ(s) ≡ 0 has a zero solution.
Let V(t, x) = x2. Thus, the condition 2(i) of Theorem 2 is satisfied with A = 0.25, B = 1, a =

2, b = 1.
Let k be a given natural number and t ∈ (tk, tk + 1), and the function ψ ∈ Cα,ρ(tk, [t −

r, t],R) be such that (
C
tk
Dα,ρψ

)
(t) = −2 + t

t + 1
(ψ(t)− 0.5ψ

(k)
t )

and

ψ2(t) ≥ sup
s∈[t−r,t]∩[tk ,t]

e
1−ρ

ρ (s−tk)

Eα

(
−
(
(s−tk)

ρ

)α)ψ2(s).

Then, we obtain
(

C
tk
Dα,ρψ2

)
(t) < −V(t, ψ(t)) (see (32)), i.e., condition 2(ii) of Theorem 2 is

satisfied with D = 1.
For any k = 1, 2, . . . we obtain (0.5 sin tk u)2 ≤ 0.25u2 = 0.25|u|2, i.e., the condition 2(iii)

of Theorem 2 is satisfied with C = 0.25.
According to Theorem 2, the zero solution of the scalar IDDE (39) is a generalized proportional

Mittag–Leffler stable with C = 2, β = 1, λ = 1, γ = 0.5, i.e., the inequality

||x(t; t0, φ)|| ≤ 2||φ||0
√

e
ρ−1

ρ (t−ti)Eα(−(
t− tk

ρ
)α), t ∈ (tk, tk+1], k = 0, 1, . . .

holds (compare with the special case tk+1 = sk, k = 0, 1, 2, . . . of Example 1) .

4.3. No Impulses

As mentioned in Remark 11 the case of instantaneous impulses could be considered
as a generalization of the case of no impulses, i.e., the system (10) could be considered as a
partial case of (9) with ti = t0, i = 1, 2, . . . . That is why we can translate the results from
the previous section to the case without impulses.
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Definition 5. The zero solution of the system DDE (10) (with φ ≡ 0) is said to be generalized
proportional Mittag-Leffler stable if there exist constants β, γ, C, λ > 0 such that the inequality

||x(t; t0, φ)|| ≤ C||φ||β0
(

e
ρ−1

ρ (t−t0)Eα(−λ(
t− t0

ρ
)α)

)γ

, t ≥ t0, (40)

holds, where x(t; t0, φ) is a solution on the IVP for DDE (7) and (10).

Remark 20. In the case ρ = 1, Definition 5 is the same as in [26].

We will use some comparison results for DDE (10) by applying Lyapunov functions:

Definition 6. Let a < b ≤ ∞ be given numbers , Ω ⊂ Rn, 0 ∈ Ω. Then, the function
V : [a− r, b]×Ω → [0, ∞) is from the class Λ([a− r, b], Ω) if V ∈ C([a, b]/{tk} ×Ω, [0, ∞))
and it is Lipschitz with respect to the second argument.

The comparison scalar equation (DE) is

(C
t0
Dα,ρu)(t) = −λu(t), for t > t0,

u(t0) = u0.
(41)

According to Lemma 4, the solution of the IVP for DE (41) is given by u(t) =

u0e
ρ−1

ρ (t−t0)Eα(−λ( t−t0
ρ )α). t ≥ t0.

The auxiliary Lemma, corresponding to Lemma 6 reduces to

Lemma 8. Suppose:

1. The function x∗(t) = x(t; t0, φ) ∈ Cα,ρ([t0, ∞), Δ) is a solution of the DDE (7) and (10),
where Δ ⊂ Rn.

2. The function V ∈ CΛ([t0 − r, ∞), Δ) and for any point t > t0 such that

V(t, x∗(t))
e

1−ρ
ρ (t−t0)

Eα

(
−λ

(
(t−t0)

ρ

)α)
≥ sup

s∈[t−r,t]∩[t0,t]

e
1−ρ

ρ (s−t0)

Eα

(
−λ

(
(s−t0)

ρ

)α)V(s, x∗(s))

(42)

the inequality (
C
t0
Dα,ρV(t, x∗(t))

)
≤ −λV(t, x∗(t))

holds where λ > 0 is a given number.

Then, the inequality

V(t, x∗(t)) ≤ max
s∈[−r,0]

V(t0 + s, φ(s))e
ρ−1

ρ (t−t0)Eα(−λ(
t− t0

ρ
)α), t > t0

holds.

Theorem 3. Suppose:

1. Conditions (A 3.1), (A 3.2) are satisfied.
2. There exists a function V ∈ Λ([t0 − r, ∞),Rn) such that

(i) There exist positive constants A, B, a, b such that C ≤ A and the inequalities A||x||a ≤
V(t, x) ≤ B||x||ab, t ≥ t0, x ∈ Rn hold.
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(ii) For any point t > t0 and any function ψ ∈ Cα,ρ(t0, [t− r, t],Rn) such that
(

C
t0
Dα,ρψ

)
(t) = f (t, ψt) and

V(t, ψ(t))
e

1−ρ
ρ (t−t0)

Eα

(
−λ

(
(t−t0)

ρ

)α)
≥ sup

s∈[t−r,t]∩[t0,t]

e
1−ρ

ρ (s−tk)

Eα

(
−λ

(
(s−t0)

ρ

)α)V(s, ψ(s))

(43)

the inequality
C
t0
Dα,ρV(t, ψ(t)) ≤ −DV(t, ψ(t)) (44)

holds where D > 0 is a given number.

Then, the zero solution of DDE (10) with the zero initial function is generalized proportional

Mittag–Leffler stable with constants C = a
√

B
A , β = b, λ = D, γ = 1

a .

Example 3. Consider the scalar IVP for DDE(
C
t0
Dα,ρx

)
(t) = −2 + t

t + 1
(x(t)− 0.5 sup

s∈[−r,0]
x(t + s)), t > t0,

x(t0 + s) = φ(s), s ∈ [−r, 0].

(45)

The scalar IVP for DDE (45) with φ(s) ≡ 0 has a zero solution.
Let V(t, x) = x2. Thus, the condition 2(i) of Theorem 3 is satisfied with A = 0.25, B = 1, a =

2, b = 1.
Let t > t0 and the function ψ ∈ Cα,ρ(t0, [t − r, t],R) be such that

(
C
t0
Dα,ρψ

)
(t) =

− 2+t
t+1 (ψ(t)− 0.5 sups∈[−r,0] ψ(t + s) and ψ2(t) ≥ sups∈[t−r,t]∩[t0,t]

e
1−ρ

ρ (s−t0)

Eα

(
−
(
(s−t0)

ρ

)α
)ψ2(s). Then,

we obtain (
C
t0
Dα,ρψ2

)
(t) < −V(t, ψ(t))

(see (32)), i.e., condition 2(ii) of Theorem 3 is satisfied with D = 1.
According to Theorem 3, the zero solution of the scalar DDE (45) is generalized proportional

Mittag–Leffler stable with C = 2, β = 1, λ = 1, γ = 0, i.e., the inequality

||x(t; t0, φ)|| ≤ 2||φ||0
√

e
ρ−1

ρ (t−t0)Eα(−(
t− t0

ρ
)α), t ≥ t0.

holds (compare with the special case of t0 = tk, k = 1, 2, . . . of Example 2).

5. Conclusions

In this paper, a system of nonlinear differential equations with finite delay and with
a generalized proportional Caputo fractional derivative is studied. The basic cases are
presented: the case when there are non-instantaneous impulses in the equations, the case
when there are instantaneous impulses in the equations, and the case without any impulses
in all equations. The appropriate initial value problem is set up in all these cases, and the
relation between them is discussed. It is shown that the case of non-instantaneous impulses
is a generalization of the case of instantaneous impulses, and the case of instantaneous
impulses could be considered as a generalization of the case without any impulses. These
statements could be applied to study various qualitative properties of the solutions. In this
paper, based on the application of Lyapunov functions and an appropriate modification of
the Razumikhin method, the Mittag–Leffler type stability is investigated.
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Abstract: This paper explores the realm of fractional integral calculus in connection with the one-
dimensional Dunkl operator on the space of tempered functions and Lizorkin type space. The
primary objective is to construct fractional integral operators within this framework. By establishing
the analogous counterparts of well-known operators, including the Riesz fractional integral, Feller
fractional integral, and Riemann–Liouville fractional integral operators, we demonstrate their ap-
plicability in this setting. Moreover, we show that familiar properties of fractional integrals can be
derived from the obtained results, further reinforcing their significance. This investigation sheds
light on the utilization of Dunkl operators in fractional calculus and provides valuable insights into
the connections between different types of fractional integrals. The findings presented in this paper
contribute to the broader field of fractional calculus and advance our understanding of the study of
Dunkl operators in this context.

Keywords: Dunkl theory; fractional Integral; Bessel functions
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1. Introduction

On the real line, for a positive real number κ, the Dunkl operator Dκ provides a
one-parameter deformation of the ordinary derivative d

dx . It is defined as:

Dκ :=
d

dx
+

κ

x
(1− s), (1)

where s is the reflection operator acting on a function f (x) of a real variable x as s f (x) := f (−x).
The Dunkl operator incorporates the additional term κ

x (1− s), which accounts for reflection
symmetry and introduces a dependence on the parameter κ. This operator plays a funda-
mental role in generalizing various classical results in harmonic analysis and approximation
theory, as explored in the works of Dunkl [1,2] Trimeche [3], de Jeu [4], Rosler [5–7], and
others.

Fractional calculus [8–15] has gained significant importance in recent decades as a
powerful tool for developing advanced mathematical models involving fractional differen-
tial and integral operators. When applied to the Dunkl operator, fractional calculus offers
a fresh perspective by incorporating the effects of reflection and asymmetry within the
underlying space.

A notable feature of the Dunkl setting is the existence of a natural Riesz transform,
which shares similarities with classical singular integrals. In the multidimensional case,
S. Thangavelu and Y. Xu [16,17] established the Lp-boundedness of the associated Riesz
transform. This study was further extended by Amri and Sifi [18], who considered the
general case for 1 < p < ∞. Additionally, investigations into singular integrals and
multipliers were carried out in [18–22]. These contributions have significantly enriched our
understanding of the Dunkl operator and its associated Riesz transform.

Symmetry 2023, 15, 1725. https://doi.org/10.3390/sym15091725 https://www.mdpi.com/journal/symmetry
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In this study, our main focus is on the comprehensive exploration of the one-dimensional
fractional Dunkl integral within Lizorkin type spaces [10–12], with a specific emphasis on
analytic continuation techniques. The obtained operators go beyond the conventional Riesz
fractional integral [9] and Feller fractional integral [8,11], as they are specifically tailored to
operate within the Dunkl setting. By extending the applicability of these operators to the Dunkl
context, we aim to unlock new possibilities and gain deeper insights into the realm of fractional
calculus.

To address the challenges posed by the divergence of fractional Dunkl operators, we
adopt a unique approach that incorporates the regularization technique for divergent integrals,
inspired by the work described in the book by Samko [11,12]. Our methodology involves
utilizing specific segments of the Taylor formula associated with the Dunkl operator, as originally
formulated by Mourou [23]. This regularization technique plays a pivotal role in extending
the fractional integral operators to the domain of �(α) > 0. As a result, we introduce an
alternative normalization scheme for tempered power functions, offering a fresh and insightful
perspective on fractional calculus within the Dunkl setting. It is important to note that while
Soltani [24] relies on the conventional Taylor series, our approach, based on the Taylor formula
of Mourou [23], better suits the specific requirements of the Dunkl operator.

Our paper is organized as follows: In Section 2, we begin by collecting some essential
facts about the Dunkl operator and the Lizorkin space. Section 3 focuses on studying the
generalized power function and its analytic continuation. Moving on to Section 4, we
dedicate that section to the study of extensions of well-known fractional integrals such as
the Riesz fractional integral, the Feller fractional integral, and the Weyl fractional integral.

2. Preliminaries

In this section, we introduce some notations and gather some facts about the one-
dimensional Dunkl operator.

2.1. The One-Dimensional Dunkl Operator

Let κ ≥ 0, and f be a differentiable function on R. The Dunkl derivative Dκ f (x) is
defined by

Dκ f (x) =

⎧⎪⎨⎪⎩
f ′(x) + κ

f (x)− f (−x)
x , if x �= 0,

(2κ + 1) f ′(0), if x = 0.
(2)

We denote by Lp
κ (R) (1 ≤ p), the Lebesgue space associated with the measure

σκ(dx) =
|x|2κ

2κ+1/2Γ(κ + 1/2)
dx (3)

and by ‖ f ‖κ,p the usual norm given by

‖ f ‖κ,p =
( ∫

R
| f (x)|p σκ(dx)

)1/p
. (4)

Now, consider the so-called nonsymmetric Bessel function, also called Dunkl type Bessel
function, in the rank one case (see [25]) [§10.22(v)]:

Eκ(x) := Jκ−1/2(ix) +
x

2κ + 1
Jκ+1/2(ix). (5)

where the normalized Bessel functions is defined by

Jκ(x) := Γ(κ + 1) (2/x)κ Jκ(x)

=
∞

∑
n=0

(−1)n

n!Γ(κ + n + 1)
(

x
2
)2n+κ , x > 0.
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It is evident to the reader that the Dunkl kernel Eκ(iλx) coincides with the exponential
function when the parameter κ is equal to zero, i.e., E0(iλx) = eiλx. This function also has a
close connection with the Wright function.

Eκ(x) = Γ(κ + 1/2)
[
W1,κ+1/2(

x2

4
) +

x
2

W1,κ+3/2(
x2

4
)
]
, (6)

where the Wright function is defined by the series representation, valid in the whole
complex plane [26]

Wα,β(z) :=
∞

∑
n=0

zn

n!Γ(αn + β)
, α > −1, β ∈ C. (7)

The Wright function provides a powerful tool for dealing with fractional calculus
problems, as it allows for the analysis of fractional differential and integral equations in a
unified framework, see [26,27].

The function Ek(iξx) satisfies the following eigenvalue problem

Dκ(Ek(iξx)) = i ξ Eκ(iξx), Ek(0)) = 1 (8)

and has the Laplace representation

Eκ(ix) =
Γ(κ + 1/2)
Γ(1/2)Γ(κ)

∫ 1

−1
etx(1− t)κ−1(1 + t)κ dt. (9)

The Dunkl transform is defined by [1,3,4]

(Fκ f )(λ) :=
∫ ∞

−∞
f (x) Eκ(−iλx) σκ(dx). (10)

The Dunkl transform can be extended to an isometry of L2
κ(R), that is,∫

R
| f (x)|2 σκ(dx) =

∫
R
| f̂κ(λ)|2 σκ(dλ). (11)

For any f ∈ L1
κ(R) ∩ L2

κ(R), the inverse is given by

f (x) =
∫
R

f̂κ(λ) Eκ(iλx) σκ(dλ). (12)

As in the classical case, a generalized translation operator was defined in the Dunkl
setting side on L2

κ(R) by Trimèche [3]

Fκ{τy f (x); ξ} := Eκ(iξy)Fκ{ f (x); ξ}, y, ξ ∈ R. (13)

We also define the Dunkl convolution product for suitable functions f and g by

f ∗ g(x) =
∫
R

τ−x f (y)g(y)σκ(dy).

Explicitly, the generalized translation τx f (y) takes the explicit form (see [28] Theo-
rem 6.3.7):

τx f (y) :=
1
2

∫ 1

−1
f (
√

x2 + y2 − 2xyt)(1 +
x− y√

x2 + y2 − 2xyt
)hk(t)dt (14)

+
1
2

∫ 1

−1
f (−

√
x2 + y2 − 2xyt)(1− x− y√

x2 + y2 − 2xyt
) hk(t) dt,
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where

hκ(t) =
Γ(κ + 1/2)
22κ
√

πΓ(κ)
(1 + t)(1− t2)κ−1.

2.2. The Generalized Lizorkin Space

For a comprehensive treatment of the standard Lizorkin space, we recommend refer-
ring to the book [12] §2, where the authors provide a detailed and in-depth analysis of this
topic. Additionally, the study of the generalized Lizorkin space has been carried out by
Soltani [24]. While we cannot provide a detailed overview of the entire subject here, we can
highlight some important points for clarity.

We denote by S(R) the Schwartz space, which is the space of C∞-functions on R which
are rapidly decreasing as well as their derivatives, endowed with the topology defined by
the seminorms

‖ f ‖n,m = sup
x∈R, j≤m

(1 + x2)nD
j
κ ϕ(x), n, m ∈ N,

It is not difficult to check that

D f (x) = f ′(x) + κ
∫ 1

−1
f ′(xt)dt.

From this representation, we see that the operator D leaves S(R) invariant.
In the context of distribution theory, the space S′(R) denotes the topological dual

of S(R), which consists of generalized functions, also known as tempered distributions.
The value of a generalized function f as a functional on a test function ϕ ∈ S(R) is
denoted by ( f , ϕ).

A generalized function is said to be κ-regular if there exists a locally integrable function
f with respect to the measure σκ(dx), such that the integral

∫
R

f (x)ϕ(x)σκ(dx) is finite for
every ϕ ∈ S(R). The action of the κ-regular generalized function f on a test function ϕ is
denoted as ( f , ϕ) or equivalently 〈 f , ϕ〉κ . Here, the integral on the right-hand side of the
equation is denoted by 〈 f , ϕ〉κ . It is important to note that the measure σκ(dx) depends on
the specific context and properties of the Dunkl operators. The notation and definitions
provided above establish a general framework for understanding κ-regular generalized
functions and their evaluation on test functions.

The Dunkl transform is a powerful mathematical tool that acts as a topological iso-
morphism between the Schwartz space S(R) and itself. This transform extends naturally
to generalized functions by considering the Dunkl transform of a generalized function
f ∈ S′(R). The definition of the Dunkl transform for generalized functions can be expressed
using duality as follows: for any ϕ ∈ S(R), the pairing between the Dunkl transform of f
and ϕ is given by

(Fκ f , ϕ) = ( f , Fκ ϕ), ϕ ∈ S(R).

In terms of integral notation, it can be written as:∫
R
(Fκ f )(x)ϕ(x)σκ(dx) =

∫
R

f (x)Fκ ϕ(x)σκ(dx), ϕ ∈ S(R), (15)

provided f and Fκ f are κ-regular.
The space S(R) itself is not invariant under multiplication by power functions. How-

ever, we can define an invariant subspace by utilizing the Dunkl transforms. This leads us
to the set Ψκ(R) consisting of functions ϕ ∈ S(R) that satisfy the conditions:

Dn
κ ϕ(0) = 0, for n = 0, 1, 2, . . . ,

where Dn
κ ϕ denotes the nth order Dunkl transform of ϕ. In other words, ϕ belongs to

Ψκ(R) if all the Dunkl transforms of ϕ evaluated at the origin are zero. By imposing these
conditions, we construct a space of functions that possess certain transformation properties
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with respect to the Dunkl operators. The generalized Lizorkin space Φκ(R) is introduced
as the Dunkl transform preimage of the space Ψκ(R) in the space S(R),

Φκ(R) =
{

ϕ ∈ S(R) : ϕ = Fκ(ψ), ψ ∈ Ψκ(R)
}

. (16)

According to this definition, any function ϕ ∈ Φκ(R) satisfies the orthogonality
conditions ∫

R
xn ϕ(x)σκ(dx) = 0, n = 0, 1, 2, . . . . (17)

3. Regularization of Integrals with Power Singularity

In this section, we examine two types of power functions defined on the entire real line

• Even, |x|α;
• Odd, sgn(x) |x|α; where

sgn(x) :=
{

1, if x > 0
−1, if x < 0.

Other types of tempered power functions can be defined as follows

xα
± =

1
2
[
|x|α ± |x|αsgn(x)

]
,

(±i x)α = |x|α
(

cos(πα/2)± i sgn(x) sin(πα/2)
)
.

These tempered power functions capture different aspects of fractional calculus and
are used to generalize the concept of differentiation and integration to noninteger orders.

3.1. Taylor–Dunkl Formula

To facilitate the forthcoming discussion on analytic continuation, we begin by present-
ing an additional formula that proves to be valuable in the process.

Let f ∈ C∞(R); for every n ∈ N, we have [19]

τy f (x) =
n−1

∑
j=0

bj(x)D j
κ f (x) + rn(x, y; f ), (18)

where ⎧⎪⎨⎪⎩
rj+1(x, y; f ) =

∫ |y|
−|y|

( sgn(y)
2|y|2κ +

sgn(u)
2|u|2κ

)
rj(x, u; Dκ f ) |u|2κdu,

r1(x, y; f ) = τy f (x)− f (x)

and

bj+1(x) =
∫ |y|

−|y|

( sgn(y)
2|y|2κ

+
sgn(u)
2|u|2κ

)
bj(u) |u|2κdu, b0(x) = 1. (19)

Then,

b2s(x) =
Γ(κ + 1/2)

Γ(κ + s + 1/2)
x2s

s!
, b2s+1(x) =

Γ(κ + 1/2)
Γ(κ + s + 3/2)

x2s+1

s!
, s = 0, 1, 2, . . . .

From the work of Mourou [23], we can extract the following proposition, which
provides a complete asymptotic expansion for τκ f (x) as x approaches a.
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Lemma 1. Let f ∈ C∞(R) and a ∈ R; then, one has

τa
κ f (x) ∼

∞

∑
s=0

bs(x)D s
κ f (a), as x → a, (20)

3.2. Generalized Power Functions

By considering |x|−α and sign(x)|x|−α as elements of Ψ′κ(R), we recognize them as
κ-regular generalized functions for all α ∈ C, that is,

〈|x|−α, ϕ〉κ =
∫
R

1
|x|α ϕ(x)σκ(dx), (21)

〈sgn(x)|x|−α, ϕ〉κ =
∫
R

sgn(x)
|x|α ϕ(x)σκ(dx). (22)

When considering the functions |x|−α and sign(x)|x|−α as elements of S′(R) or Φ′κ(R),
they are not κ-regular if �(α) ≥ 2κ + 1. To handle these generalized functions, let α ∈ C

such that α �= 2κ + 2s + 1 for s = 0, 1, 2, . . . . For ϕ ∈ S(R), we can define the generalized
power function |x|−α as follows:

(|x|−α, ϕ) =
∫
|x|<1

1
|x|α

[
ϕ(x)−

m

∑
s=0

bs(x)D s
κ ϕ(0)

]
σκ(dx) (23)

+
[ m

2 ]

∑
s=0

D2s
κ ϕ(0)

2κ−1/2Γ(κ + s + 1/2), s!
1

2κ + 2s + 1− α

+
∫
|x|≥1

ϕ(x)
|x|α σκ(dx),

where m > Re(α)− 2κ − 1. It is important to note that the right-hand side of Equation (23)
does not depend on the choice of m as long as m > �(α)− 2κ− 1. Since ϕ ∈ S(R), Lemma 1
guarantees that

ϕ(x)−
m

∑
s=0

bs(x)D s
κ ϕ(0) = O(xm+1) (as x → 0).

This property ensures the well-definedness of the expression. The mapping α →
(|x|−α, ϕ) from C to S′(R) can be extended to a holomorphic function on C− {2κ + 2s + 1 :
s = 0, 1, 2, . . . }, with simple poles at α = 2κ + 2s + 1. The residues of the function at these
poles are given by

Res
(
(|x|−α, ϕ); 2κ + 2s + 1

)
= − 2−κ+1/2D2s

κ ϕ(0)
Γ(κ + s + 1/2) s!

. (24)

When α = 2κ + 2s + 1 with s = 0, 1, 2, . . . , we define the even, tempered power
function |x|−2κ−2s−1 as

(|x|−2κ−2s−1, ϕ) = lim
α→2κ+2s+1

{
(|x|−α, ϕ) + D2s

κ ϕ(0)
2κ−1/2Γ(κ+s+1/2) s!

1
α−2κ−2n−1

}
. (25)

This provides a definition for the even, tempered power |x|−α for all α ∈ C.
Similarly, for α ∈ C such that α �= 2κ + 2s + 2 with s = 0, 1, 2 . . . , we define the odd

tempered power function |x|−αsgn(x) by
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(
sgn(x)
|x|α , ϕ) =

∫
|x|<1

sgn(x)
|x|α

[
ϕ(x)−

m

∑
s=0

bs(x)D s
κ ϕ(0)

]
σκ(dx) (26)

+

[m−1
2 ]

∑
s=0

D2s+1
κ ϕ(0)

2κ−1/2Γ(κ + s + 3/2) s!
1

2κ + 2s + 2− α

+
∫
|x|≥1

sgn(x)
|x|α ϕ(x) σκ(dx) (m > �(α)− 2κ − 2).

It follows that the mapping α → (|x|−αsgn(x), ϕ) is analytic on C − {2κ + 2s + 2,
s = 0, 1, 2, . . . }, with simple poles at α = 2κ + 2s + 2 and

Res
(
(|x|−αsgn(x), ϕ); 2κ + 2s + 2

)
= −2−κ+1/2D2s+1

κ ϕ(0)
Γ(κ + s + 3/2) s!

.

For α = 2κ + 2s+ 2, with s = 0, 1, 2, . . . , we define the odd, tempered powers function
sgn(x)|x|−2κ−2s−2 as

(sgn(x)|x|−2κ−2s−2, ϕ) = lim
α→2κ+2s+2

{
(sgn(x)|x|−α, ϕ) + D2s+1

κ ϕ(0)
2κ−1/2Γ(κ+s+3/2) s!

1
α−2κ−2s−2

}
. (27)

4. Fractional-Type Integral and Derivative for the Dunkl Operator

In this section, we embark on a comprehensive exploration of fractional-type integral
operators associated with the Dunkl operator. These operators transcend the conventional
Riesz fractional integral, Feller fractional integral, and Liouville fractional integral, as they
are specifically designed to operate within the Dunkl setting.

4.1. The Riesz–Dunkl Fractional Integral

In this section, our focus lies on extending the Riesz fractional integral to any arbitrary
value of �(α) > 0. As a reminder, the Riesz fractional integral Iα f is defined by

(Iα f )(x) =
1

γ(α)

∫
R

kα(x− y) f (y)dy, (28)

where kα(x) is defined as:

kα(x) =

{
|x|α−1, α �= 1, 3, 5, . . . ,
−|x|α−1 ln |x|, α = 1, 3, 5, . . . .

(29)

The normalization factor γ(α) depends on the value of α and is given by:

γ(α) =

⎧⎨⎩
2α−1/2 π1/2Γ( α

2 )

Γ( 1−α
2 )

, α �= 2s + 1, s = 0, 2, . . . ,

(−1)ss!π1/222sΓ(s + 1/2), α = 2s + 1, s = 0, 2, . . . .
(30)

Lemma 2. Let κ < α < 2κ + 1. Then, the Dunkl transform of |x|α−2κ−1 exists in the usual sense,
and it is given by

F−1
κ (|x|−α) =

Γ(κ + 1−α
2 )

2α−κ−1/2Γ( α
2 )
|x|α−2κ−1.

Proof. By using (5), we obtain

F−1
κ

(
|x|−α

)
(x) =

∫ ∞

−∞
|u|−αEκ(iux)σκ(du)

=
2

2κ+1/2Γ(κ + 1
2 )

∫ ∞

0
Jκ−1/2(|x|u)u−α+2κ du.
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Making the substitution t = |x|u yields

F−1
κ (|x|−α)(x) = |x|α−2κ−1

∫ ∞

0

Jκ−1/2(u)
uα−κ−1/2 du.

The result follows from the following Weber formula [29] §13.24:

∫ ∞

0

Jν(t)
tν−μ+1 dt =

1
2ν−μ+1

Γ( μ
2 )

Γ(ν− μ
2 + 1)

, 0 < �(μ) < �(ν) + 3
2

. (31)

Proposition 1. The Dunkl transform of |x|−α ∈ Ψ′κ(R) is given by

F−1
κ

(
|x|−α

)
=

1
γκ(α)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|x|α−2κ−1, α �= −2s, α �= 2κ + 2s + 1, s ∈ N0,

|x|α−2κ−1 ln 1
|x| , α = 2κ + 2s + 1, s ∈ N0,

(−1)sD2s
κ δ, α = −2s, s ∈ N0,

where

γκ(α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2α−κ−1/2Γ( α
2 )

Γ(κ+ 1−α
2 )

α �= −2s, α �= 2κ + 2s + 1,

(−1)ss!2κ+2s+1/2Γ(κ + s + 1/2), α = 2κ + 2s + 1,

1, α = −2s

and δ is the Dirac delta distribution.

Proof. From Lemma 2, it is evident that by analytic continuation, for α ∈ C such that
α �= 2κ + 2s + 1 and α �= −2s for s = 0, 1, 2, . . . , we have:

1
|x|α =

Γ(κ + 1−α
2 )

2α−κ−1/2Γ( α
2 )

Fκ(|x|α−2κ−1). (32)

The case α = −2s for s = 0, 1, 2, . . . follows from the fact that

(FκD
2s
κ ϕ)(x) = (−1)s|x|2s(Fκ ϕ)(x), ϕ ∈ S(R).

It remains to consider the case α = αs = 2κ + 2s + 1 for s ∈ N0. From Equation (32),
we have

∂

∂α

(
(α− αs)(|x|−α, Fκ ϕ)

)
=

∂

∂α

(
η(α)(|x|α−2κ−1, ϕ)

)
, η(α) =

α− αs

γκ(α)
. (33)

By considering (23) and (25), the limit as α → αs of the left-hand side of (33) can be
evaluated as follows:

lim
α→αs

∂

∂α

(
(α− αk)(|x|−α, Fκ ϕ)

)
= (|x|−2κ−2s−1, Fκ ϕ).

The limit of the right-hand side of Equation (33) as α → αs can be evaluated as follows:

lim
α→αs

∂

∂α

(
η(α) (|x|α−2κ−2, ϕ)

)
= lim

α→αs
((η′(α) + η(α) ln |x|)|x|α−2κ−1, ϕ).
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A straightforward computation shows that

lim
α→αs

η(α) =
(−1)s+1

s!2κ+2s−1/2Γ(κ + s + 1/2)
. (34)

Taking into account Equation (17), in the limit as α approaches αs, we obtain the
following expression:

(|x|−2κ−2s−1, Fκ ϕ) =
(−1)s

s!2κ+2s−1/2Γ(κ + s + 1/2)
(|x|2s ln

1
|x| , ϕ). (35)

Definition 1. For �(α) > 0, we define the Riesz–Dunkl fractional integral I α
κ f of f ∈ Φκ(R) as:

(I α
κ f )(x) =

∫
R

τ−yKκ,α(x) f (y)σκ(dy) (36)

where

Kκ,α(x) =
1

γκ(α)

⎧⎪⎨⎪⎩
|x|α−2κ−1, α �= −2s, α �= 2κ + 2s + 1

ln( 1
|x| ) |x|α−2κ−1, α = 2κ + 2s + 1.

(37)

The following theorem states that the space Φκ(R) is closed under the action of the
operator I α

κ . This result ensures the consistency and coherence of the space Φκ(R) under
the Riesz–Dunkl fractional integral. Moreover, the proposition establishes the relationship
between the Dunkl transform Fκ and the fractional integral operator I α

κ and shows the
compatibility of the fractional integral operators I α

κ under composition.

Theorem 1. The space Φκ(R) is invariant under the operator I α
κ , i.e.,

f ∈ Φκ(R) ⇒ I α
κ f ∈ Φκ(R).

Furthermore,

(FκI
α

κ f ) =
1
|x|α Fκ f ,

and
I α

κ I
β

κ = I
α+β

κ , �(α), �(δ) > 0.

The proof of this theorem is omitted, but it can be established by utilizing Lemma 2
and Proposition 1 mentioned earlier, which provide the necessary tools and results to
derive these conclusions.

Utilizing the reflection formula for the gamma function, we have:

Γ(z)Γ(1− z) =
πz

sin πz
, z /∈ Z.

In the limit when κ ↓ 0, we retrieve the classical Riesz and Feller fractional integral
(see, [11]) §12.1

lim
κ ↓0

I α
κ f (x) =

1
2Γ(α) cos(πα/2)

∫ ∞

−∞

1
|x− y|1−α

f (y)dy. (38)

4.2. Feller–Dunkl Fractional Integral

In this section, we aim to establish an analogous version of the classical Feller fractional
integral within the framework of Dunkl operators. The Feller fractional integral, denoted
as Jα

κ f (x), is defined as follows:
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Jα
κ f (x) =

1
2Γ(α) sin(πα/2)

∫ ∞

−∞

sgn(x− y)
|x− y|1−α

f (y)dy. (39)

The following lemmas play a crucial role in establishing an extension of the Feller
integral within the framework of the Dunkl operator.

Lemma 3. Let κ < α < 2κ + 2. Then, the Dunkl transform of sgn(x) |x|−α exists in the usual
sense, and it is given by

F−1
κ (sgn(x)|x|−α) = i

Γ(κ + 2−α
2 )

2α−κ−1/2Γ( 1+α
2 )

sgn(x) |x|α−2κ−1.

Proof. Using (5), we have

F−1
κ

(
sgn(x)|x|−α

)
(x) =

∫ ∞

−∞
sgn(u)|u|−αEκ(iux)σκ(du)

=
2 i x

(2κ + 1)2κ+1/2Γ(κ + 1
2 )

∫ ∞

0
Jκ+1/2(xu) u−α+2κ+1 du

= i sgn(x) |x|α−2κ−1
∫ ∞

0

Jκ+1/2(t)
tα−κ−1/2 dt.

The Weber Formula (31) achieves the result.

Lemma 4. The following holds: for α �= 2κ + s + 1 with s ∈ Z−, we have

Dκ |x|−α = −α |x|−α−1sgn(x).

Proof. Let κ < �(α) < 2κ + 1 and ϕ ∈ S(R), we have

< Dκ |x|−α, ϕ >κ = − < |x|−α, Dκ ϕ >κ

= −
∫
R
|x|−αDκ ϕ(x)σκ(dx)

= −α
∫
R
|x|−α−1sgn(x)ϕ(x)σκ(dx)

= −α < |x|−α−1sgn(x), ϕ >κ .

By analytic continuation for α ∈ C such that α �= 2κ + s + 1, s ∈ N, we have

Dκ |x|−α = −α |x|−α−1sgn(x),

which is the required result.

Proposition 2. The Dunkl transform of sgn(x) |x|−α ∈ Ψ′κ(R) is given by

F−1
κ

(
− i |x|−αsgn(x)

)
=

1
δκ(α)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sgn(x) |x|α−2κ−1, α �= −2s− 1, α �= 2κ + 2s + 2, s ∈ N0,

−|x|2s+1 ln |x|, α = 2κ + 2s + 2, s ∈ N0,

(−1)sD2s+1
κ δ, α = −2s− 1, s ∈ N0.
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where

δκ(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2α−κ−1/2Γ( α+1
2 )

Γ(κ+ 2−α
2 )

α �= −2s− 1, α �= 2κ + 2s + 2,

(−1)ss!2κ+2s+3/2Γ(κ + s + 3/2), α = 2κ + 2s + 2,

1, α = −2s− 1.

Proof. The proof of the proposition can be achieved by utilizing the above lemmas.

Definition 2. For �(α) > 0, we define the Riesz–Dunkl fractional integral J α
κ f of f ∈ Φκ(R) as:

(J α
κ f )(x) =

∫
R

τ−yGκ,α(x) f (y)σκ(dy) (40)

where

Gκ,α(x) =
1

δκ(α)

⎧⎪⎨⎪⎩
sgn(x) |x|α−2κ−1, α �= 2κ + 2s + 2

sgn(x) ln( 1
|x| )|x|α−2κ−1, α = 2κ + 2s + 2.

(41)

In the limit when α ↓ 0, we obtain

lim
α ↓0

(J α
κ f ) := Hκ f (x) :=

Γ(κ + 1)√
πΓ(κ + 1/2)

lim
ε↓0

∫
|y|≥ε

τ
−y
κ f (x)

dy
y

, (42)

and
(FκHκ f )(x) = −i sgn(x)(Fκ f )(x), f ∈ Φκ(R).

For the special case of κ = 0 and α = 0, the Feller–Dunkl fractional integral coincides
with the Hilbert transform. The Hilbert transform is a well-known operator in harmonic
analysis and signal processing. It acts as a multiplier with the symbol −isign(x).

It can be easily seen from Propositions 1 and 2 that the operators I α
κ and J α

κ are
connected by

I α
κ = HκJ

α
κ .

4.3. Riemann–Liouville–Dunkl fractional integrals

The Riemann–Liouville fractional integrals are given by [12] formulas (5.1) and (5.2)

Iα
+ f (x) :=

1
Γ(α)

∫ x

−∞
(x− y)α−1 f (y)dy (43)

and
Iα
− f (x) :=

1
Γ(α)

∫ ∞

x
(y− x)α−1 f (y)dy (44)

They are related to the Riesz fractional integral Iα and its conjugate Jα by

Iα f (x) =
Iα
+ f (x) + Iα

− f (x)
2 cos(πα

2 )
,

Jα f (x) =
Iα
+ f (x)− Iα

− f (x)
2 sin(πα

2 )
.

Similarly, the correspondent definition of the Riemann–Liouville–Dunkl fractional
integral can be given as follows:

I α
κ,+ f (x) := cos(απ/2)I α

κ f (x) + sin(απ/2J α
κ f (x),

I α
κ,− f (x) := cos(απ/2)I α

κ f (x)− sin(απ/2J α
κ f (x).
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Proposition 3. The following holds:

(1) For f ∈ Φ, we have
(FκI

α
κ,± f ) = (∓ix)−α (Fκ f )(x).

(2) For f ∈ Φ and �(α),�(β) > 0, we have

I α
κ,±I

β
κ,± = I

α+β
κ,± .

(3) Integration by parts:∫
R

I α
κ,+ f (x) g(x)σκ(dx) =

∫
R

f (x)I α
κ,−g(x)σκ(dx), f , g ∈ Φκ(R).
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Abstract: In this study, a new fractional-order model for human skull heat conduction is tackled by
using a neural network, and the results were further modified by using the hybrid cuckoo search
algorithm. In order to understand the temperature distribution, we introduced memory effects into
our model by using fractional time derivatives. The objective function was constructed in such a
way that the L2−error remained at a minimum. The fractional order equation was then calculated
by using the proposed biogeography-based hybrid cuckoo search (BHCS) algorithm to approximate
the solution. When compared to earlier simulations based on integer-order models, this method
enabled us to examine the fractional-order (FO) cases, as well as the integer order. The results are
presented in the form of figures and tables for the different case studies. The results obtained for the
various parameters were validated numerically against the available literature, where our proposed
methodology showed better performance when compared to the least squares method (LSM).

Keywords: boundary value problems; fractional derivatives; heat conduction; BHCS algorithm;
Cuckoo search; numerical method; human head

1. Introduction

The use of electronic devices is increasing day by day. One reason behind this is the
advancement of technology and its applications in various sectors. This advancement
in technological equipment has some side effects, especially when it crosses some limit
in its use. Some of the devices and systems are Bluetooth, mobile phones, and other
headphone-like devices. These devices produce thermal waves that pass through the skin
and enter the human head, damaging various tissues, including the brain. The use of
these electronic devices produces brain damage and other neural disorders, as explained
in the references [1–3]. Furthermore, the analysis of the effects of the thermal and non-
thermal waves are numerically and experimentally analyzed by Bernardi et al. [4]. The
flow symmetry of heat is widely analyzed by many researchers due to its experimental and
theoretical applications [5]. The energy transfer from the electronic object to the human
head follows the one-sided symmetry in the skull. The facial, brain, and skull symmetries
are well explained by Ratajczak et al. [6].

Symmetry 2023, 15, 1722. https://doi.org/10.3390/sym15091722 https://www.mdpi.com/journal/symmetry
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The analysis of heat in a human head became famous after the work of Flesch [7].
In this work, Flesch used a differential equation for the analysis of heat. This work was
further examined by Gray [8] in 1980, which provides a theoretical approach to heat transfer
analysis in terms of the human head. The human skull produces more heat on the outer
layer than the center. On the other hand, when the surrounding temperature is reduced,
the heat production is more peripheral to the skull. Simply put, the temperature outside
and the radial distance from the skull’s center affect how much heat is produced inside the
human skull. Anderson and Arthurs [9] used the complementary extremum approach to
analyze this famous problem. Makinde [10] analyzed the human skull problem by using
the non-perturbation approach. Raja et al. [11] implemented the stochastic approach to
study the human skull problem. Abdelhakem and Youssri [12] analyzed the Lane-Emden
and Bratu equations by using the spectral Legendre’s algorithm. Youssri et al. [13] used the
wavelets approach for a solution of the Lane–Emden equations. A more brief analysis using
the numerical approaches to the solution of D.Eqs. can be found in the literature [14,15].

The methodology and the model modifications are both points of interest to researchers.
In recent years, the use of fractional derivatives in differential equations has been widely
implemented [16,17]. The applications of fractional derivatives are well explained by
Podlubny [18]. The use of fractional derivatives in the field of differential equations is
explained by Aleksandrovich et al. [19]. Wang [20] studied the febrifuge effect for analyzing
the fractional-order human skull problem. The concept of Caputo-type derivatives was
introduced by Kumar et al. Kumar et al. [21] for use in differential equations. At the same
time, the concept of Caputo-type derivatives for delay-type differential equations was
introduced by Odibat et al. [22]. The concept of fractional derivatives in applications can
be found in ecology [23,24], psychology [25], chemistry [26], epidemiology [27–30], and
physics [31]. Yavuz and Sene [32] examined how various parameters affect fractional-order
second-grade fluid flow. Hammouch et al. [33] numerically simulated a fractional chaotic
system with changing order. Yavuz [34] studied the classic and generalized Mittag-Leffler
kernels used in the fractional derivative definition in the European option pricing model.

The applications of fractional derivatives are not limited to a single definition. The
solution to Cauchy and Dirichlet problems are studied by Avci et al. [35] by using the
Caputo-Fabrizio derivative definition. Erturk et al. [36] developed a unique Caputo
fractional derivative for the corneal shape model of the human eye. The recent litera-
ture shows the application of fractional calculus, which can be found in the following
references [37–39].

The following is the integer-order model for temperature distribution in the hu-
man skull:

T′′(r) + 2T′(r)
r + λ.exp(−mT) = 0,

T′(0) = 0, T′(1) = NB(1− T).
(1)

Here, T, r, NB, m, and λ denote the temperature, radial distance, Biot number,
metabolic thermogenesis slope, and thermogenesis heat production, respectively.

We introduce the Riemann–Liouville definition of the fractional-order derivative of
the function � ∈ Cd

−1 below [18]:

Dμ
t �(t) =

{ dγ�(t)
dψγ , μ = γ ∈ Z,

1
γ(γ−μ)

∫ t
0 (t− σ)γ−μ−1�γ(σ)dσ, γ− 1 < μ < γ, γ ∈ Z.

(2)

In light of Equation (2), the suggested classical BVP (1) is transformed into a fractional-
order generalized form:

2
r .cDν

0 T(r) +c Dμ
0 T(r) + λ.exp(−mT) = 0,

T′(0) = 0, T′(1) = NB(1− T).
(3)

Here, r ∈ [0.1, 1] and the derivatives of the function T(r) with fractional orders
0 < ν ≤ 1 and 1 < μ ≤ 2, are represented by the symbols cDν

0 and cDμ
0 respectively.
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The graphical abstract of the proposed methodology is given in Figure 1, whereas the
structure of the neural network is presented in Figure 2.

Figure 1. Graphical abstract of the given model.
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Figure 2. Graphical presentation of the ANN structure for the given model.

Our Contribution

The primary objective of this research study is to develop an approximate solution for
a fractional-order human head heat conduction model by using the BHCS algorithm. More
specifically, we summarize our contributions as follows:

• To the best of our knowledge, the proposed problem is, for the first time, trans-
formed into a fractional order by using the Riemann–Liouville definition of fractional-
order derivatives;

• A new optimal approach has been designed to approximate the solution to the trans-
formed equations;

• We investigated the impacts of radial distance on the dynamics of the temperature
curve for various fractional-order values (ν, μ), for which the results are displayed
through graphs and tables and were validated against the available literature [40].

In this article, the proposed methodology of BHCS is discussed in Section 2, and the
numerical step-up and various proposed cases (with graphs and tables) are presented in
Section 3 and are discussed in detail. At the end, a conclusion is provided in Section 4 of
the article.

2. The Proposed Methodology

The approximate solution (T̂(r)) of the fractional-order model for temperature in
the human head by using feed-forward neural networks with the help of an exponential
function is given as

T̂(r) =
m

∑
i=1

αieωir+βi , (4)

dμT̂(r)
drμ =

m

∑
i=1

αir−μeβi E1,1−μ(ωir), (5)

dνT̂(r)
drν

=
m

∑
i=1

αir−νeβi E1,1−ν(ωir), (6)
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where αi, ωi and βi are the weights given as α = [α1, α2, . . . , αm], ω = [ω1, ω2, . . . , ωm],

β = [β1, β2, . . . , βm], and m represents the number of neurons. Moreover, dν T̂(r)
drν and dμ T̂(r)

drμ

are the fractional derivatives of the series solution.

2.1. Fitness Function

In the fitness function, we compute the absolute error and make an optimization
process to minimize the error ε, i.e., when ε → 0, then T̂(r)→ T(r).

The fitness function for the transformed equations is given as

ε = ε1 + ε2, (7)

where ε1 represents the mean squared error for a given differential equation (DE), and ε2
represents the conditions on it. Therefore, we have

ε1 =
1
k

K

∑
k=1

(
2
rk

.cDν
0 T̂k +

c Dμ
0 T̂k + λ.exp(−mT̂k)

)2
, (8)

and
ε2 =

1
2

(
(T̂′0)

2 + (T̂′1 − NB(1− T̂))2
)

, (9)

where h = u
k , T̂k = T̂(rk), and rk = kh.

2.2. Cuckoo Search (CS) Technique

The cuckoo search (CS) algorithm follows the breeding behavior of the cuckoo bird [41].
In this algorithm, other birds give their eggs to others’ nearest nests. When the host bird
finds it, she adopts two methods: either to remove the eggs or to find a new nearest nest to
lay their own eggs. In this process, the host bird’s eggs indicate a solution, and the cuckoo
bird’s eggs display a fresh potential resolution [42].

This procedure is explained in [43]:

• Each cuckoo bird lays a single egg in the nest of its host;
• Those nests containing eggs of superior quality will be passed on to the next generation;
• The number of hosts’ nests is set, and the host bird has a specific chance of discovering

an alien egg.

We assume, yi = yi1, yi2, yi3, . . . , yiD as ith egg positions. The egg is defined as a
solution, and Lévy flights update the new solution ynew

i as follows:

ynew
i = yold

i + α(yl − xg)⊕ Levy(β), (10)

ynew
i = yold

i +
0.01u

|v|
1
β

(yi − yg), (11)

where ⊕ is the entry-wise product, β indicates the Lévy flight exponent, α > 0 is the
cuckoo’s step size, xg is the optimal sample, and u and v are random numbers. Furthermore,

v ∼ N(0, σ2
v ), u ∼ N(0, σ2

u), (12)

σu =

⎡⎣ sin πβ
2 · Γ(1 + β)

2
β−1

2 β · Γ( 1+β
2 )

⎤⎦ 1
β

, σv = 1. (13)
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Here, the function σu is controlled by the parameter β and the Γ function. In CS, the
discovered nests are replaced using a discovery operator that takes the probability pa into
account. Thus, we have the updated solution given as follows:

ynew
ij =

{
yold

ij + rand · (yr1 j(k)− yr2j(k)) if P > pa,

yold
ij (k) else.

(14)

Here, ynew
ij represents the jth component of the ith solution ynew

i , yr1,j is the jth
element of the solution yr1, and yr2,j is jth element of the solution yr2. Moreover, r1 and r2
are two distinct integers within in [1, NP], where NP denotes the size of the population,
and pa is the discovery denoting probability.

2.3. Biogeography-Based Optimization

An evolutionary biogeography-based optimization method (BBO) was motivated
by several traits of animals found on islands. In BBO, NP habitats (solutions) are used
to randomly initialize the population. Each generation ranks the population from best
to worst.

Here, we define λ̂ and μ̂ as the particular habitat’s immigration and emigration rates,
as given in [44]: {

λ̂i = I
(

1− ŝi
NP

)
,

μ̂i = E ŝi
NP ,

(15)

where E = I = 1 are the immigration rates, ŝi is a species of a certain population, which
is defined as {ŝi = NP− i}, i ∈ N. The changing parameter updates the corresponding
solution, and BBO also utilizes the mutation operator to update the solution accordingly.

2.4. Hybrid Cuckoo Search

In order to further improve the best nests obtained from the CS, we applied BBO. Both
exploration and exploitation were employed alternatively. By combining exploration and
exploitation, the BBO-based heterogeneous cuckoo search (BHCS) method was designed
as a hybrid meta-heuristic. The proposed BHCS algorithm comprises two primary steps:
heterogeneous CS and biogeography-based discovery.

The Methodology of Heterogeneous CS

The first component of BHCS employs the Lévy flights and a quantum mechanism-
based heterogeneous CS. Heterogeneous CS is based on quantum mechanics [42,45].

ynew
i =

⎧⎪⎨⎪⎩
yold

i + α ·
(
yi − yg

)
⊕ Lévy(β) 2

3 < sr � 1,
ȳ + L ·

(
ȳ− yold

i
) 1

3 < sr � 2
3 ,

yold
i + ε ·

(
yg − yold

i
)

else.

(16)

Here, the terms L = ln ( 1
η ), ε = δeη , and yg refer to the iteration’s best solution, sr is

the number η ∈ [0, 1], and ȳ = 1
NP ∑NP

i=1 yi is the average of the solutions. Equation (16)
demonstrates that three equations are used in a heterogeneous cuckoo search to update the
answers with the exact probabilities. The 1st equation is derived from the Lévy flights in
the original CS, and the 2nd and 3rd equations are used to update the results by using the
quantum-based algorithm. The search space is diversified by updating the solutions with
heterogeneous rules, which move toward the actual global region.

3. Results and Discussion

In this section, we calculate four individual case studies and compute the results using
our proposed BHCS as a global search technique. The case studies are shown in Table 1. A
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total of 100 independent runs were performed for each case study by taking the domain
r ∈ [0.1, 1] with 0.1 step size.

Table 1. Different cases with the variation of fractional derivative parameters.

Case Study 1 Case Study 2 Case Study 3 Case Study 4
μ = 2, ν = 1 μ = 1.70, ν = 0.70 μ = 1.80, ν = 0.80 μ = 1.90, ν = 0.90

The formulation for these case studies is given below:

3.1. Case Study 1

For this case, the fitness function with the boundary conditions is given as

ε1 =
1
11

11

∑
k=1

(
2
rk

.cD1
0 T̂k +

c D2
0 T̂k + λ.exp(−mT̂k)

)2
, (17)

ε2 =
1
2

(
(T̂′0)

2 + (T̂′1 − NB(1− T̂))2
)

. (18)

We considered the parameters λ = 1, m = 1, Nb = 1. By using BHCS, the best weights
for this case are given in the following equation.

T̂c1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.4025e(−0.2030r−0.7130)−0.0856e(−1.4281r+0.5922)

+0.2617e(−0.0189r−0.1831) − 0.7062e(0.5749r−1.6112)

−2.4658e(−0.5143r−1.7698) + 1.7948e(−0.0388r−0.7866)

−0.1858e(−0.5612r−0.5207) + 0.7182e(−1.3911r−1.2173)

+0.9790e(0.3547r−2.6460) − 0.0509e(−1.6107r−1.0547).

(19)

Here, Equation (19) is a series solution for case study 1.

3.2. Case Study 2

The fitness function for the current case study is formulated below:

ε1 =
1

11

11

∑
k=1

(
2
rk

.cD0.70
0 T̂k +

c D1.70
0 T̂k + λ.exp(−mT̂k)

)2
, (20)

ε2 =
1
2

(
(T̂′0)

2 + (T̂′1 − NB(1− T̂))2
)

. (21)

Here, we take the parameters λ = 1, m = 1, Nb = 1. The best weights for this case are
given as

T̂c2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−0.7538e(−0.8125r+0.7228) + 1.3636e(−0.3377r−0.4151)

+0.8281e(−0.2094r−1.3968) + 0.4684e(−0.4236r−0.2732)

+0.9507e(−1.3841r−1.4493) + 1.1338e(−1.1852r−0.9906)

−0.6161e(−5.0000r−4.1270)−0.1282e(−0.7593r−1.3885)

+1.9087e(−0.3513r−0.8274) + 0.0553e(0.1238r−0.1236).

(22)

Here, the above equation is the corresponding series solution for this special case 2.
The absolute errors (AE) are presented in Table 2. The approximate solutions of the given
fractional model, which were obtained by using the series solution of Equation (19), are
illustrated in Figure 3. The best fitness values are evaluated by considering the above
conditions, and the results are displayed in Figure 4.
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Table 2. Minimum Absolute Errors (ε).

Case Study 1 Case Study 2 Case Study 3 Case Study 4
r μ = 2, ν = 1 μ = 1.70, ν = 0.70 μ = 1.80, ν = 0.80 μ = 1.90, ν = 0.90
0.1 9.21E−15 4.30E−07 7.63E−08 2.42E−08
0.2 1.27E−11 1.44E−06 3.96E−07 6.66E−08
0.3 2.38E−12 3.64E−08 2.86E−11 3.95E−09
0.4 1.91E−11 2.46E−07 1.07E−07 6.60E−09
0.5 1.22E−11 2.81E−07 7.29E−08 1.20E−08
0.6 2.05E−15 2.94E−08 3.86E−10 4.24E−09
0.7 1.73E−11 6.22E−08 4.86E−08 4.94E−17
0.8 3.83E−11 2.16E−07 9.32E−08 2.16E−09
0.9 1.07E−11 8.58E−08 2.23E−08 2.39E−09
1.0 5.47E−11 1.42E−07 8.26E−08 6.05E−11

We analyzed the FO heat conduction model for the human head given in Equation (3)
by using an interval of [0.1, 1]. Four different cases were considered by choosing varying
values of μ, ν for the fixed parameters λ = 1, Nb = 1. The approximate solutions for both
cases, 1 and 2, are presented in Figure 3. These graphs show that when we decrease the
order of the fractional parameters from an integer order to a non-integer, the temperature
profile jumps to 1.17 from 1.16. A decreasing trend is observed when r −→ 1. This trend is
more sharp in the integer order when compared to the fractional order. The fitness of the
functions is shown in Figure 4, where the red lines show the mean. Almost all the values
are bounded by the box, and the distance from the mean positions is displayed on the
vertical line.
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Figure 3. Graphical representation of the solutions for (a) Case study 1 and (b) Case study 2.

(a) (b)

Figure 4. Graphical representation of fitness functions for (a) Case study 1 and (b) Case study 2.
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3.3. Case Study 3

In case 3, we considered μ = 1.80 and ν = 0.80 by choosing λ = 1, m = 1, Nb = 1. The
fitness functions for this case are given by

ε1 =
1

11

11

∑
k=1

(
2
rk

.cD0.80
0 T̂k +

c D1.80
0 T̂k + λ.exp(−mT̂k)

)2
, (23)

ε2 =
1
2

(
(T̂′0)

2 + (T̂′1 − NB(1− T̂))2
)

. (24)

The corresponding best weights are given below:

T̂c3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.3527e(0.7055r−2.1888)−1.1520e(−0.7899r−1.8388)

+1.4121e(−3.4830r−1.8823) + 1.3158e(−0.4966r−0.9646)

+0.1036e(0.3872r−0.0793) − 1.0951e(−0.9004r−0.8300)

−0.2317e(−3.6303r−0.1507) + 0.1977e(−1.2789r−0.2822)

+0.8166e(−0.0468r+0.4276) − 0.5767e(0.5119r−0.9304).

(25)

3.4. Case Study 4

For this case study, we took μ = 1.90 and ν = 0.90. So, the corresponding fitness
functions take the following form:

ε1 =
1

11

11

∑
k=1

(
2
rk

.cD0.90
0 T̂k +

c D1.90
0 T̂k + λ.exp(−mT̂k)

)2
, (26)

ε2 =
1
2

(
(T̂′0)

2 + (T̂′1 − NB(1− T̂))2
)

. (27)

By choosing λ = 1, m = 1, Nb = 1, we have

T̂c4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−0.5186e(−0.8417r−1.3387) − 0.0069e(−4.9937r−1.3860)

+0.1558e(−1.3456r−1.2083) − 0.9332e(0.3765r−0.7752)

+1.3882e(−0.1069r+0.1492) − 0.3297e(−0.4075r−1.2062)

−0.4607e(−0.3663r−0.3495) + 0.5638e(0.5029r−3.9098)

−0.1666e(0.4195r−0.8498) + 2.0192e(0.2491r−1.2911).

(28)

Here, T̂c3 and T̂c4 are the series solutions for cases 3 and 4. The AE are plotted in
Table 2, whereas the approximate solutions are presented in Figure 5. The fitness values are
given in Figure 6. The values of AE ε for all the case studies are presented in Table 2.

Similarly, in cases 3 and 4, when we increase the fractional parameters that nearly
approach the integer, the solution profiles fall from 1.65 to 1.61. As a result, the suggested
fractional-order graph, which takes into account the radial distance (r), Biot number (NB),
metabolic thermogenesis slope parameter (m), and thermogenesis heat production parame-
ter (λ), provides a more accurate representation of the distribution of temperature within
the human skull.

The fitness functions for cases 3 and 4 are displayed in Figure 6. The horizontal red
line shows the mean, and the red addition symbols show the positions of the results from
this point. In both cases, the results are in the range of 10−5 and 10−4, respectively. This
further recommends that the fitness functions remain as minimal as possible.

In Table 2, the results for the minimum values of the absolute error are displayed
numerically. These cases are chosen in such a way that the deviations from the integer
order to a fractional order are clearly visible as time varies. First, the decreasing trend from
the integer order is observed for various fractional parameters. In the last two columns,
the increasing trend towards the integer order is displayed. If we compare the results of
the second case and the fourth, we see that the results initially go toward the worst and
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then beat the integer order at r = 0.7. Similarly, the BHCS results are compared against
the available literature in Table 3. In case 1, the results for the integer order are almost
the same as the LSM. In cases 2, 3, and 4, the results of BHCS are nearer the integer-order
solution when compared to LSM. This proves the validity and efficiency of our proposed
method, BHCS.

Table 3. Comparison of the approximate solutions of the BHCS neural network using the least
squares method (LSM) [40].

Case study 1 Case Study 2 Case Study 3 Case Study 4
r μ = 2, ν = 1 μ = 1.70, ν = 0.70 μ = 1.80, ν = 0.80 μ = 1.90, ν = 0.90

BHCS LSM BHCS LSM BHCS LSM BHCS LSM
0.1 1.1603 1.1603 1.1704 1.1688 1.1648 1.1770 1.1616 1.1848
0.2 1.1587 1.1587 1.1677 1.1669 1.1626 1.1747 1.1598 1.1819
0.3 1.1561 1.1561 1.1637 1.1638 1.1592 1.1710 1.1568 1.1776
0.4 1.1524 1.1524 1.1587 1.1596 1.1547 1.1662 1.1528 1.1722
0.5 1.1477 1.1477 1.1526 1.1543 1.1492 1.1603 11.1477 1.1656
0.6 1.1419 1.1419 1.1457 1.1479 1.1427 1.1534 1.1416 1.1581
0.7 1.1350 1.1350 1.1378 1.1405 1.1353 1.1454 1.1345 1.1496
0.8 1.1271 1.1271 1.1290 1.1320 1.1269 1.1364 1.1263 1.1401
0.9 1.1180 1.1180 1.1194 1.1224 1.1176 1.1264 1.1172 1.1297
1.0 1.1078 1.1078 1.1089 1.1118 1.1073 1.1154 1.1070 1.1183
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Figure 5. Graphical representation of the solutions for (a) Case study 3 and (b) Case study 4.

(a) (b)

Figure 6. Graphical representation of fitness function for (a) Case study 3 and (b) Case study 4.
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4. Conclusions

In this article, we discussed the distribution of temperature within the human skull by
considering the fractional derivative. In order to solve the proposed model, we utilized
the biogeography-based hybrid cuckoo search (BHCS) algorithm to then be used on the
transformed fractional-order equation. The following are the main features obtained based
on our analysis.

• The proposed problem was tackled by using the Riemann-Liouville definition of
fractional-order derivatives for briefly analyzing the transfer of heat at the integer and
non-integer points;

• The suggested fractional-order graphs that explain the parameters (r, NB, m, λ) pro-
vide a more accurate representation of the distribution of temperature within the
human skull;

• A new type of BHCS algorithm was applied to reduce the L2−norm for the fitness
function;

• On the basis of the L2−error, we observed that the case obtained extraordinary results
that beat the integer order: r = 0.7;

• The results were validated against the available literature [40], as per Table 3.
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Abstract: In this paper, we study the averaging principle for ψ-Capuo fractional stochastic delay
differential equations (FSDDEs) with Poisson jumps. Based on fractional calculus, Burkholder-Davis-
Gundy’s inequality, Doob’s martingale inequality, and the Hölder inequality, we prove that the
solution of the averaged FSDDEs converges to that of the standard FSDDEs in the sense of Lp. Our
result extends some known results in the literature. Finally, an example and simulation is performed
to show the effectiveness of our result.
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1. Introduction

Many systems exhibit natural symmetry, such as chemical, physical, and biological
systems. It is well known that stochastic differential equations play an important role in
explaining some symmetry phenomena (see [1–3]). Additionally, we know that stochastic
differential equations are mathematical tools widely used to simulate and model stochastic
processes. Recently, more in-depth research has been conducted on the theory and applica-
tion aspects of these equations to adapt to more complex systems, such as chemical reaction
networks, atmospheric environments, and financial markets; readers can refer to the papers
[4–7] for more information.

In 1968, Khasminskii [8] extended the averaging principles for ODEs to the case of
stochastic differential equations (SDEs). Since then, the averaging principles for SDEs have
found applications in many areas of science and engineering, including fluid dynamics,
control theory, and climate modeling. Many people have devoted their efforts to the study
of averaging principles for SDEs, for example, see [9–11].

As we all know, compared with integer-order derivatives, fractional-order derivatives
provide a magnificent approach to describe the memory and hereditary properties of
various processes. Thus, fractional differential equations are more accurate and convenient
than integer-order ones. The numerical solution of fractional-order nonlinear systems is
an active research area with ongoing developments and improvements in the different
numerical algorithms and techniques used [12–14].

With the development of fractional calculus, the averaging principles for fractional
stochastic differential equations (FSDEs) have become a widespread concern [15–17]. One
notable approach of research is the fractional averaging principle, which extends the
classical averaging principle to FSDEs. Another approach of research is the stochastic
averaging principle, which combines averaging methods with stochastic calculus. Overall,
research into averaging principles for FSDEs is still ongoing, and there is much to be
explored in terms of developing new methods and exploring their applications.

Symmetry 2023, 15, 1346. https://doi.org/10.3390/sym15071346 https://www.mdpi.com/journal/symmetry
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Recently, Wang and Lin [18] extended the averaging principle of the following frac-
tional stochastic differential equations (FSDEs){

CDα
0 [x(t)− h(t, x(t)] = f (t, x(t)) + g(t, x(t)) dBt

dt , t ∈ J = [0, T],
x(0) = x0,

(1)

in the sense of mean square (L2 convergence) to Lp convergence (p ≥ 2), which generated
some works on the averaging principle for FSDES [19–21].

The periodic averaging method for impulsive conformable fractional stochastic dif-
ferential equations with Poisson jumps are discussed in [22] by Ahmed. For some recent
works on Hilfer fractional order stochastic differential systems, we refer to [23–26]. In [27],
Ahmed and Zhu investigated the averaging principle for the following Hilfer fractional
stochastic delay differential equation with Poisson jumps in the sense of mean square⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dℵ,h̄
0 x(t) = �(t, x(t), x(t− τ)) + σ(t, x(t), x(t− τ)) dB

dt ,
+
∫

V h(t, x(t), x(t− τ), v)N̄(dt, dv), t ∈ J = (0, T],
x(t) = φ(t), −τ ≤ t ≤ 0,
I(1−ℵ)(1−h̄)
0+ x(0) = φ(0).

(2)

In [28], Almeida generalized the definition of the Caputo fractional derivative by
considering the Caputo fractional derivative of a function with respect to another function
ψ. Since then, there have been so many papers involving the ψ-Caputo fractional derivative,
see [29–32]. Recently, there have been many works on SDEs with Poisson jumps, see, for
example, [33–35] and the references therein. However, to the best of our knowledge, the
averaging principle for the ψ-Capuo fractional stochastic delay differential equation with
Poisson jumps in the sense of Lp convergence has not yet been researched in the literature.
In the present paper, motivated by the above-mentioned works, we study the following
ψ-Caputo fractional stochastic delay differential equation with Poisson jumps⎧⎨⎩

CDα,ψ
0 [x(t)− h(t, x(t)] = f (t, x(t), x(t− τ)) + σ(t, x(t), x(t− τ)) dBt

dt ,
+
∫

V g(t, x(t), x(t− τ), v)N̄(dt, dv), t ∈ J = (0, T],
x(t) = φ(t), −τ ≤ t ≤ 0,

(3)

where CDα,ψ
0 is the left ψ-Caputo fractional derivative with 0 < α < 1 and ψ ∈ C1([a, b])

is an increasing function with ψ′(t) �= 0 for all t ∈ [0, T], J = (0, T], x ∈ Rn is a stochastic
process, h, f : J×Rn ×Rn → Rn, σ : J×Rn ×Rn → Rn×m, and g : J×Rn ×Rn ×V → Rn.
Let (Ω,F , P) be a complete probability space equipped with a filtration (Ft)t≥0 satisfying
the usual condition. Here, Bt is an m-dimensional Brownian motion on the probability
space (Ω,F , P) adapted to the filtration (Ft)t≥0. Let (V, Φ, λ(dv)) be a σ-finite measurable
space, given the stationary Poisson point process (pt)t≥0, which is defined on (Ω,F , P)
with values in V and with the characteristic measure λ. We denote by N(t, dv) the counting
measure of pt such that N̄(t, Θ) := E(N(t, Θ)) = tλ(Θ) for Θ ∈ Φ. Define N̄(t, dv) :=
N(t, dv)− tλ(dv), and the Poisson martingale measure is generated by pt .

In this paper, we prove that the solution of the averaged neutral SFDDEs with Poisson
random measure converges to that of the standard one in Lp sense. The main contributions
and advantages of this paper are as follows:

(i) For the first time in the literature, the averaging principle for ψ-Capuo fractional
stochastic delay differential equations with Poisson jumps is investigated.

(ii) The fractional calculus, stochastic inequality, and Hölder inequality are effectively
used to establish our result.

(iii) Our work in this paper is novel and more technical. Our result has greatly
promoted and extended the main result of [18].

This paper will be organized as follows. In Section 2, we will briefly recall some
definitions and preliminaries. Section 3 is devoted to obtaining an averaging principle for
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the solution of the considered system (3). Additionally, a numerical simulation example is
provided to illustrate our main result. Finally, the paper is concluded in Section 4.

2. Preliminaries

In this section, we recall some basic definitions and lemmas, which are used in the
sequel.

Definition 1 ([36]). Let α > 0, f be an integrable function defined on [a, b] and ψ ∈ C1([a, b]) be
an increasing function with ψ′(t) �= 0 for all t ∈ [a, b]. The left ψ-Riemann-Liouville fractional
integral operator of order α of a function f is defined by

a Iα,ψ
t f (t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 f (s)ds. (4)

Definition 2 ([28,36]). Let n− 1 < α < n, f ∈ Cn([a, b]) and ψ ∈ Cn([a, b]) be an increasing
function with ψ′(t) �= 0 for all t ∈ [a, b]. The left ψ-Caputo fractional derivative of order α of a
function f is defined by

C
a Dα,ψ

t f (t) = (a In−α,ψ
t f [n])(t)

=
1

Γ(n− α)

∫ t

a
(ψ(t)− ψ(s))n−α−1 f [n](s)ψ′(s)ds, (5)

where n = [α] + 1 and f [n](t) :=
(

1
ψ′(t)

d
dt

)n
f (t) on [a, b].

In the following, we will give some properties of the combinations of the fractional
integral and the fractional derivatives of a function with respect to another function.

Lemma 1 ([28]). Let f ∈ Cn([a, b]) and n− 1 < α < n. Then, we have

(1) C
a Dα,ψ

t a Iα,ψ
t f (t) = f (t);

(2) Iα,ψ
t

C
a Dα,ψ

t f (t) = f (t)−
n−1

∑
k=0

f [k](a+)
Γ(k− α)

(ψ(t)− ψ(a))k.

In particular, given α ∈ (0, 1), one has

Iα,ψ
t

C
a Dα,ψ

t = f (t)− f (a).

To study the averaging method of Equation (3), we impose the following conditions
on data of the problem.

(H1) If |h(0, φ(0))| < ∞, t ∈ [0, T] and for all x, y ∈ Rn, a constant C1 ∈ (0, 1) exists
such that

|h(t, x)− h(t, y)| ≤ C1|x− y|.
(H2) For any x1, x2, y1, y2 ∈ Rn and t ∈ J, two constants C2, C3 > 0 exist such that

| f (t, x1, y1)− f (t, x2, y2)|p ∨ |σ(t, x1, y1)− σ(t, x2, y2)|p

∨
∫

V
|g(t, x1, y1, v)− g(t, x2, y2, v)|pλ(dv) ≤ Cp

2 (|x1 − x2|p + |y1 − y2|p),

and

| f (t, x1, y1)|p ∨ |σ(t, x1, y1)|p ∨
∫

V
|g(t, x1, y1, v)|pλ(dv) ≤ Cp

3 (1 + |x1|p + |y1|p).

According to Lemma 1 and [37], an Rn-value stochastic process {x(t),−τ ≤ t ≤ T} is
called a unique solution of Equation (3) if x(t) satisfies the following :
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x(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ0 − h(0, φ0) + h(t, x(t)) +

1
Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s) f (s, x(s), x(s− τ))ds

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)σ(s, x(s), x(s− τ))dBs

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)

∫
V g(s, x(s), x(s− τ), v)N̄(ds, dv), t ∈ J,

φ(t), t ∈ [−r, 0],

(6)

where φ0 = φ(0).

For each t ∈ J, we consider the standard form of Equation (6)

xε(t) = φ0 − h(0, φ0) + h(t, xε(t)) +
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s) f (s, xε(s), xε(s− τ))ds

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)σ(s, xε(s), xε(s− τ))dBs

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V

g(s, xε(s), xε(s− τ), v)N̄(ds, dv), t ∈ J, (7)

where ε ∈ (0, ε0] is a positive small parameter with ε0 being a fixed number.

Consider the averaged form, which corresponds to the standard form (7) as follows:

yε(t) = φ0 − h(0, φ0) + h(t, yε(t)) +
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s) f̄ (yε(s), yε(s− τ))ds

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)σ̄(yε(s), yε(s− τ))dBs

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V

ḡ(yε(s), yε(s− τ), v)N̄(ds, dv), t ∈ J, (8)

where f̄ : Rn × Rn → Rn, σ̄ : Rn × Rn → Rn×m, and ḡ : Rn × Rn ×V → Rn satisfying the
following averaging condition :

(H3) For any T1 ∈ [0, T], x, y ∈ Rn and p ≥ 2, a positive bounded function β(·) exists
such that

1
T1

∫ T1

0
| f (t, x, y)− f̄ (x, y)|pdt ∨ 1

T1

∫ T1

0
|σ(t, x, y)− σ̄(x, y)|pdt

∨ 1
T1

∫ T1

0

(∫
V
|g(t, x, y, v)− ḡ(x, y, v)|pλ(dv)

)
dt ≤ β(T1)(1 + |x|p + |y|p),

and limT1→∞ β(T1) = 0.

Lemma 2. Suppose that (H2) and (H3) hold. Then, for T1 ∈ (0, T] we have

|σ̄(x, y)|p ≤ C4(1 + |x|p + |y|p) and
∫

V
|ḡ(x, y, v)|pλ(dv) ≤ C4(1 + |x|p + |y|p),

where C4 = 2p−1(β(T1) + Cp
3 ).

Proof. Using (H2), (H3) and Jensen’s inequality, we obtain

|σ̄(x, y)|p ≤ 2p−1

T1

∫ T1

0
|σ̄(x, y)− σ(t, x, y)|pdt +

2p−1

T1

∫ T1

0
|σ(t, x, y)|pdt

≤ 2p−1β(T1)(1 + |x|p + |y|p) + 2p−1Cp
3 (1 + |x|p + |y|p)
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= 2p−1(β(T1) + Cp
3 )(1 + |x|p + |y|p).

Similarly, we can prove that∫
V
|ḡ(x, y, v)|pλ(dv) ≤ 2p−1(β(T1) + Cp

3 )(1 + |x|p + |y|p).

Lemma 3 ([38]). If p ≥ 2 and a, b ∈ Rn, then for any k ∈ (0, 1), one has

|a + b|p ≤ |a|p
kp−1 +

|b|p
(1− k)p−1 .

Lemma 4 ([39,40]). Let φ : R+ ×V → Rn and assume that∫ t

0

∫
V
|φ(s, v)|pλ(dv)ds < ∞, p ≥ 2.

Then, Dp > 0 exists such that

E

(
sup

0≤t≤u

∣∣∣∣∫ t

0

∫
V

φ(s, v)N̄(ds, dv)
∣∣∣∣p
)

≤ Dp

{
E

(∫ u

0

∫
V
|φ(s, v)|2λ(dv)ds

) p
2
+E

∫ u

0

∫
V
|φ(s, v)|pλ(dv)ds

}
.

Lemma 5 ([41]). Let u, v be two integrable functions and g be continuous defined on domain [a, b].
Let ψ ∈ C1[a, b] be an increasing function such that ψ′(t) �= 0, ∀t ∈ [a, b]. Moreover, assume that

(1) u and v are nonnegative, and v is nondecreasing;

(2) g is nonnegative and nondecreasing.

If

u(t) ≤ v(t) + g(t)
∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1u(τ)dτ,

then
u(t) ≤ v(t)Eα(g(t)Γ(α)(ψ(t)− ψ(a))α), ∀t ∈ [a, b],

where Eα is the Mittag–Leffler function.

3. Main Results

Theorem 1. Assume that (H1)–(H3) are satisfied. Then, for a given arbitrary small number δ > 0,
p = 2, 1

2 < α < 1, or p > 2 and max
{

p−1
p , p+2

2p

}
< α < 1, M > 0, ε1 ∈ (0, ε0] and γ ∈ (0, 1)

exist such that

E

(
sup

t∈[−τ,Mε−γ ]

|xε(t)− yε(t)|p
)
≤ δ, (9)

for all ε ∈ (0, ε1].

Proof. If p = 2, it is easy to prove that (9) holds by using the similar method as in [27]. In
the following, we will only consider the case p > 2. From Equations (7) and (8), we obtain

xε(t)− yε(t) = h(t, xε(t))− h(t, yε(t))
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+
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v))

−ḡ(xε(s), xε(s− τ), v))]N̄(ds, dv).

Choosing k = C1 in Lemma 3, using (H1) and the following elementary inequalities:

|a + b|p ≤ 2p−1(|a|p + |b|p), |a + b + c|p ≤ 3p−1(|a|p + |b|p + |c|p), (10)

we obtain

|xε(t)− yε(t)|p ≤ C1|xε(t)− yε(t)|p

+
3p−1εp

(1− C1)p−1Γ(α)p

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

∣∣∣∣p

+
3p−1ε

p
2

(1− C1)p−1Γ(α)p

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

∣∣∣∣p

+
3p−1ε

p
2

(1− C1)p−1Γ(α)p

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v))

−ḡ(xε(s), xε(s− τ), v))]N̄(ds, dv)
∣∣∣∣p

. (11)

For any t ∈ [0, u] ⊂ [0, T], taking the expectation on both sides Equation (11), we have

E

(
sup

0≤t≤u
|xε(t)− yε(t)|p

)

≤ 3p−1εp

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

∣∣∣∣p
)

+
3p−1ε

p
2

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

∣∣∣∣p
)

+
3p−1ε

p
2

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v))

−ḡ(xε(s), xε(s− τ), v))]N̄(ds, dv)
∣∣∣∣p)

.

= I1 + I2 + I3. (12)

Applying Jensen inequality, we obtain

I1 ≤
6p−1εp

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f (s, yε(s), yε(s− τ))]ds

∣∣∣∣p
)

+
6p−1εp

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, yε(s), yε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

∣∣∣∣p
)
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= I11 + I12. (13)

Thanks to the Hölder inequality and (H2), we obtain

I11 ≤
6p−1εp

(1− C1)pΓ(α)p

(∫ u

0
1ds

)p−1

·E
(

sup
0≤t≤u

∫ t

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p| f (s, xε(s), xε(s− τ))− f (s, yε(s), yε(s− τ))|pds

)

≤ 6p−1εp

(1− C1)pΓ(α)p up−1Kp−1Cp
2

·E
(

sup
0≤t≤u

∫ t

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)[|xε(s)− yε(s)|p + |xε(s− τ))− yε(s− τ))|p]ds

)

≤ A11εpup−1
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E

(
sup

0≤θ≤s
|xε(θ)− yε(θ)|p

)

+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p

)]
ds, (14)

where A11 =
6p−1Cp

2 Kp−1

(1−C1)
pΓ(α)p and K = supt∈[0,T] ψ′(t).

Applying the Hölder inequality, we obtain

I12 ≤
6p−1εp

(1− C1)pΓ(α)p

(∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s)

p
p−1 ds

)p−1

·E
(

sup
0≤t≤u

∫ t

0
| f (s, yε(s), yε(s− τ))− f̄ (yε(s), yε(s− τ))|pds

)
. (15)

Since ∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s)

p
p−1 ds =

∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s) · ψ′(s)

1
p−1 ds

≤ K
1

p−1

∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s)ds

= K
1

p−1
p− 1

αp− 1
(ψ(u)− ψ(0))

αp−1
p−1 , (16)

we have by (15), (16), and (H3) that

I12 ≤ A12εp(ψ(u)− ψ(0))αp−1u, (17)

where,

A12 =
6p−1K

(1− C1)pΓ(α)p

(
p− 1

αp− 1

)p−1
‖β‖L∞([0,u])

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
,

here, ‖β‖L∞([0,u]) = supt∈[0,u] |β(t)|.
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For the second term I2, we have

I2 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ(s, yε(s), yε(s− τ))]dBs

∣∣∣∣p
)

+
6p−1ε

p
2

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, yε(s), yε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

∣∣∣∣p
)

= I21 + I22. (18)

In view of the Burkholder–Davis–Gundy’s inequality, Hölder’s inequality, and Doob’s
martingale inequality, a constant Cp > 0 exists such that

I21 ≤
6p−1ε

p
2 Cp

(1− C1)pΓ(α)p E

(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2|σ(s, xε(s), xε(s− τ))− σ(s, yε(s), yε(s− τ))|2ds

) p
2

≤ 6p−1Cp

(1− C1)pΓ(α)p ε
p
2 u

p
2−1E

(∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)p

·|σ(s, xε(s), xε(s− τ))− σ(s, yε(s), yε(s− τ))|pds
)

≤ 6p−1Cp

(1− C1)pΓ(α)p ε
p
2 u

p
2−1Kp−1Cp

2 ·E
(∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)

·[|xε(s)− yε(s)|p + |xε(s− τ)− yε(s− τ)|p]ds
)

≤ A21ε
p
2 u

p
2−1

∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)

[
E

(
sup

0≤θ≤s
|xε(θ)− yε(θ)|p

)

+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p

)]
ds, (19)

where A21 =
6p−1CpKp−1Cp

2
(1−C1)

pΓ(α)p .

Since α > p−1
p , we have αp− p + 1 > 0. Applying Lemma 2 and an estimation method

similar to Equation (19), we obtain

I22 ≤
12p−1CpKp−1

(1− C1)pΓ(α)p ε
p
2 u

p
2−1 ·E

(∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)

·(|σ(s, yε(s), yε(s− τ))|p + |σ̄(yε(s), yε(s− τ))|p)ds
)

≤ A22ε
p
2 u

p
2−1(ψ(u)− ψ(0))(α−1)p+1, (20)

where

A22 =
12p−1CpKp−1(Cp

3 + C4)

(1− C1)pΓ(α)p(αp− p + 1)

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
.

Next, we deal with the third term. Similar to the method used in (18), we have

I3 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v)
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−g(s, yε(s), yε(s− τ), v)]N̄(ds, dv)
∣∣∣∣p)

+
6p−1ε

p
2

(1− C1)pΓ(α)p E

(
sup

0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, yε(s), yε(s− τ), v)

−ḡ(yε(s), yε(s− τ), v)]N̄(ds, dv)
∣∣∣∣p)

= I31 + I32. (21)

From Lemma 4, one has

I31 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p Dp

{
E

(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

∫
V
|g(s, xε(s), xε(s− τ), v)

−g(s, yε(s), yε(s− τ), v)|2λ(dv)ds
) p

2

+E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, xε(s), xε(s− τ), v)

−g(s, yε(s), yε(s− τ), v)|pλ(dv)ds
)}

. (22)

By using the Hölder inequality and (H2), we obtain

E

(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

∫
V
|g(s, xε(s), xε(s− τ), v)− g(s, yε(s), yε(s− τ), v)|2λ(dv)ds

) p
2

≤ (uλ(V))
p−2

2 E

(∫ u

0

∫
V
(ψ(u)− ψ(s))p(α−1)ψ′(s)p|g(s, xε(s), xε(s− τ), v)

−g(s, yε(s), yε(s− τ), v)|pλ(dv)ds
)

≤ (uλ(V))
p−2

2 Kp−1Cp
2E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)[|xε(s)− yε(s)|p + |xε(s− τ)− yε(s− τ)|p]ds

)

≤ Kp−1Cp
2 λ(V)

p−2
2 u

p−2
2

∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E

(
sup

0≤θ≤s
|xε(θ)− yε(θ)|p

)

+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p

)]
ds, (23)

and

E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, xε(s), xε(s− τ), v)− g(s, yε(s), yε(s− τ), v)|pλ(dv)ds

)

≤ Cp
2E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p[|xε(s)− yε(s)|p + |xε(s− τ)− yε(s− τ)|p]ds

)

≤ Cp
2 Kp−1

∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E

(
sup

0≤θ≤s
|xε(θ)− yε(θ)|p

)

+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p

)]
ds. (24)
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Plugging (23) and (24) into (22), we obtain

I31 ≤ A31ε
p
2

(
1 + λ(V)

p−2
2 u

p−2
2

) ∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E

(
sup

0≤θ≤s
|xε(θ)− yε(θ)|p

)

+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p

)]
ds, (25)

where A31 = 6p−1

(1−C1)
pΓ(α)p DpCp

2 Kp−1. We also have

I32 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p Dp ·
{
E

(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

·
∫

V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|2λ(dv)ds

) p
2

+E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)ds

)}
. (26)

Since α > p+2
2p , we have 2pα− p− 2 > 0. By using the Hölder inequality, (10), (H2),

and (H3), we obtain

E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)ds

)

≤ 2p−1E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

[∫
V
(|g(s, yε(s), yε(s− τ), v)|p

+|ḡ(yε(s), yε(s− τ), v))|p)λ(dv)ds
])

≤ 2p−1(Cp
3 + C4)Kp−1E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)(1 + |yε(s)|p + |yε(s− τ)|p)ds

)

≤ 2p−1(Cp
3 + C4)Kp−1

p(α− 1) + 1
(ψ(u)− ψ(0))p(α−1)+1

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
, (27)

and

E

(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|2λ(dv)ds

) p
2

≤ E

⎡⎣(∫ u

0

∫
V
(ψ(u)− ψ(s))

2p(α−1)
p−2 ψ′(s)

2p
p−2 λ(dv)ds

) p−2
2

·
(∫ u

0

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)dsλ(dv)ds

)]

≤ K
p+2

2 λ(V)
p−2

2

(
p− 2

2pα− p− 2

) p−2
2
(ψ(u)− ψ(0))

2pα−p−2
2

·uE
(

1
u

∫ u

0

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)ds

)
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≤ K
p+2

2 λ(V)
p−2

2

(
p− 2

2pα− p− 2

) p−2
2

β(u)u(ψ(u)− ψ(0))
2pα−p−2

2

·
[

1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
. (28)

Substituting (27) and (28) into (26), we obtain

I32 ≤ A321ε
p
2 (ψ(u)− ψ(0))p(α−1)+1 + A322ε

p
2 β(u)u(ψ(u)− ψ(0))

2pα−p−2
2 , (29)

where

A321 =
12p−1Dp

(1− C1)pΓ(α)p
(Cp

3 + C4)Kp−1

p(α− 1) + 1

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
,

A322 =
6p−1

(1− C1)pΓ(α)p DpK
p+2

2 λ(V)
p−2

2

(
p− 2

2pα− p− 2

) p−2
2

·
[

1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
.

Combining (13), (14), (17)–(21), (25), with (29), for u ∈ (0, T] we obtain

E

(
sup

0≤t≤u
|xε(t)− yε(t)|p

)

≤ A(u) + B(u)
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

·
[
E

(
sup

0≤θ≤s
|xε(θ)− yε(θ)|p

)
+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p]

)]
ds, (30)

where

A(u) = A12εp(ψ(u)− ψ(0))αp−1u + A22ε
p
2 u

p
2−1(ψ(u)− ψ(0))(α−1)p+1

+A321ε
p
2 (ψ(u)− ψ(0))p(α−1)+1 + A322ε

p
2 β(u)u(ψ(u)− ψ(0))

2pα−p−2
2 ,

and

B(u) = A11εpup−1 + A21ε
p
2 u

p
2−1 + A31ε

p
2

(
1 + λ(V)

p−2
2 u

p−2
2

)
.

Set

Σ(u) := E

(
sup

0≤θ≤u
|xε(θ)− yε(θ)|p

)
.

Noting that E

(
sup

−τ≤θ<0
|xε(θ)− yε(θ)|p

)
= 0, then

E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p

)
= Σ(s− τ).
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Hence, it follows from (30) that

Σ(u) ≤ A(u) + B(u)
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)(Σ(s) + Σ(s− τ))ds.

For each u ∈ [0, T], denote Φ(u) = sup−τ≤t≤u Σ(t). Then,

Σ(s) ≤ Φ(s) and Σ(s− τ) ≤ Φ(s).

Thus, one has

Φ(u) = sup
−τ≤t≤u

Σ(u) ≤ A(u) + 2B(u)
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)Φ(s)ds.

By using Lemma 5, we obtain

Φ(u) ≤ A(u)Ep(α−1)+1

(
2B(u)Γ(p(α− 1) + 1)(ψ(u)− ψ(0))p(α−1)+1

)
.

Moreover, we have

E

(
sup

0≤t≤u
|xε(t)− yε(t)|p

)
≤ A(u)Ep(α−1)+1

(
2B(u)Γ(p(α− 1) + 1)(ψ(u)− ψ(0))p(α−1)+1

)
.

Choose M > 0 and β ∈ (0, 1) such that for all t ∈ (0, Mε−β] ⊂ (0, T]

E

(
sup

0<t≤Mε−β

|xε(t)− yε(t)|p
)
≤ ĀEp(α−1)+1

(
2B̄Γ(p(α− 1) + 1)(ψ(T)− ψ(0))p(α−1)+1

)
ε1−β,

where

Ā = A12Mεp−1(ψ(T)− ψ(0))αp−1 + A22M
p
2−1ε(

p
2−1)(1−β)+β(ψ(T)− ψ(0))(α−1)p+1

+A321ε
p
2−(1−β)(ψ(T)− ψ(0))p(α−1)+1 + A322Mmε

p
2−1(ψ(T)− ψ(0))

2pα−p−2
2 ,

here, m is a positive bounded of function β(·), and

B̄ = A11Mp−1εp−(p−1)β + A21M
p
2−1ε

p
2 (1−β)+β + A31ε

p
2 + A31λ(V)

p−2
2 M

p−2
2 ε

p
2 (1−β)+β,

are two constants. Thus, for any given number δ > 0, ε1 ∈ (0, ε0] exists such that for each
ε ∈ (0, ε1] and t ∈ [−τ, Mε−β],

E

⎛⎝ sup
t∈[−τ,Mε−β ]

|xε(t)− yε(t)|p
⎞⎠ ≤ δ.

Remark 1. If ψ(t) ≡ t, g ≡ 0, and τ = 0, then FSDDEs (3) reduces to FSDEs (1) in [18].
Therefore, Theorem 1 generalizes the main result of [18].

Example 1. Consider the following ψ-Caputo fractional stochastic delay differential equation
(FSDDEs) with Poisson jumps :⎧⎪⎨⎪⎩

CD0.9,
√

t
0

[
xε(t)−

(
1
8 t

1
5 + 1

9 sin(xε(t))
)]

= 1
2 εxε(t− τ) + 3π

4
√

ε sin3 txε(t) dBt
dt

+
√

ε
∫

V 3N̄(dt, dv), t ∈ [0, 25],
xε(t) = 0.5, −0.25 ≤ t ≤ 0,

(31)

where α = 0.9, ψ(t) =
√

t, T = 25, τ = 0.25, and
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h(t, xε(t)) =
1
8

t
1
5 +

1
9

sin(xε(t)), f (t, xε(t), xε(t− τ)) =
1
2

xε(t− τ),

σ(t, xε(t), xε(t− τ)) =
3π

4
sin3 t · xε(t), g(t, xε(t), xε(t− τ), v) = 3.

Then,

f̄ (yε(t), yε(t− τ)) =
1
π

∫ π

0
f (t, yε(t), yε(t− τ))dt =

1
2

yε(t− τ),

σ̄(yε(t), yε(t− τ)) =
1
π

∫ π

0
σ(t, yε(t), yε(t− τ))dt = yε(t),

ḡ(yε(t), yε(t− τ), v) =
1
π

∫ π

0
g(t, yε(t), yε(t− τ), v)dt = 3.

Thus, we have the corresponding averaged FSDDEs with Poisson jumps :⎧⎪⎨⎪⎩
CD0.9,

√
t

0

[
yε(t)−

(
1
8 t

1
5 + 1

9 sin(yε(t))
)]

= 1
2 εyε(t− τ) +

√
εyε(t) dBt

dt
+
√

ε
∫

V 3N̄(dt, dv), t ∈ [0, 25],
yε(t) = 0.5, −0.25 ≤ t ≤ 0.

(32)

It is easy to check that the conditions of Theorem 1 are satisfied. So, as ε → 0, the original
solution xε and the average solution yε are equivalent in the sense of Lp (p = 2 or p > 2
with max

{
p−1

p , p+2
2p

}
< 0.9). To test this, Equations (31) and (32) are calculated numerically

and error Err = |xε(t)− yε(t)|3 are given in Figures 1 and 2. So, the averaging principle for
the ψ-Capuo FSDDE with Poisson jumps is successfully established.
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Figure 1. Comparison of xε and yε for Equations (31) and (32) with α = 0.9 and ε = 0.1.
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Figure 2. Comparison of xε and yε for Equations (31) and (32) with α = 0.9 and ε = 0.01.
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4. Conclusions

In this article, the averaging principle for FSDDEs in the sense of Lp has been proved.
Hölders inequality, Jensen’s inequality, Burkholder-Davis-Gundys inequality, Doobs mar-
tingale inequality, and fractional Gronwall’s inequality are applied in the estimation. To
the best of our knowledge, this is the first work dealing with the averaging principle for ψ-
Capuo fractional stochastic delay differential equations with Poisson jumps. The obtained
results generalize the two cases of p = 2 and the classical Caputo fractional derivative.
For future research, the averaging principle for fractional stochastic neutral functional
differential equations driven by the Rosenblatt process with delay and Poisson jumps is
both interesting and important. It is worth further investigation in the future.
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Abstract: In this paper, we consider a weakly system of fractional θ-evolution equations. Using the
fixed-point theorem, a global-in-time existence of small data solutions to the Cauchy problem is
proved for one single equation. Using these results, we prove the global existence for the system
under some mixed symmetrical conditions that describe the interaction between the equations of
the system.

Keywords: fractional derivatives; θ-evolution equation; weakly coupled system of equations; global existence

1. Introduction

In this paper, we show the existence of the global (in time) solutions with small data
to the weakly coupled system of fractional wave equations

D1+λ1 μ + (−Δ)
θ1
2 u = |v|p, J1−λ1 u(0, x) = uλ1(x), Dλ1 u(0, x) = 0,

D1+λ2 v + (−Δ)
θ2
2 v = |u|q, J1−λ2 u(0, x) = uλ2(x), Dλ2 v(0, x) = 0,

(1)

where λ1, λ2 ∈ (0, 1), θ1, θ2 are real positive numbers and D1+λ is the Riemann–Liouville
fractional derivative defined by

D1+λ f (t) := ∂2
t (J1−λ f )(t) (2)

with the Riemann–Liouville fractional integral operator

Da f (t) :=
1

Γ(a)

∫ t

0
(t− s)a−1 f (s)ds, t > 0 (3)

for �(a) > 0, and Γ is the Euler Gamma function.
Such mathematical models have promising applications in engineering and in other

physical sciences, as well as in numerical simulations of some fractional nonlinear vis-
coelastic flow problems, and they impact the bioconvection on the free stream flow of a
pseudoplastic nanofluid past a rotating cone.

At the outset, since the fractional equation interpolates the heat equation for λ → 0
and the wave equation for λ → 1 we will provide briefly some previous results of the wave
equations and heat equation.

On the one hand, we consider the Cauchy problem for the semi-linear heat equation

ut − Δu = |u|p, u(0, x) = u0(x).

Fujita in [1] proved that the exponent pFuj := 1 + 2
n is critical for the classical heat model,

which means that we have the global (in time) existence of small data solutions for p > pcrit,
and the blow up if we have the inverse 1 < p < pFuj. In [2,3], the authors proved the
blow-up for the critical case p = pFuj.
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On the other hand, let us consider the Cauchy problem for the semi-linear wave
equation

utt − Δu = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x),

where the authors in [4] proved for n = 3 that the critical exponent is defined as a positive
root of the quadratic equation

(n− 1)p2 − (n + 1)p− 2 = 0.

The defined exponent by the last equation is called the Strauss exponent and denoted by pS
for further considerations, which means that we have the global (in time) existence of small
data weak solutions for the above pS , whereas the local (in time) existence for p > 1 and
large data can be only expected. In [5,6], the author proved in R2 that the Strauss exponent
pS is critical. After that, the global existence for n = 2, 3 was treated in [7] and for n ≥ 4
in [8,9]. The nonexistence of solutions for data compactly supported was studied in [10] for
1 < p < n+1

n−1 . For n = 3, the authors proved some optimal results in [11] for p = 1 +
√

2.
For n > 3, a nonexistence result with small data proved in [12] for 1 < p < pS.

In 2017, D’Abbicco et al. [13] considered the semi-linear fractional wave equation

∂1+λ
t u− Δu = |u|p, u(0, x) = u0(x), ut(0, x) = 0, (4)

where λ ∈ (0, 1) with the fractional Riemann–Liouville fractional derivative. They proved
the critical exponent for the global existence of a small data solution in a low space dimen-
sion. The Caputo fractional order and the existence of non-null Cauchy data was studied
in [14].

In [15], the authors proved the global (in time) existence of small data solutions to semi-
linear fraction θ-evolution equations with mass or power nonlinearity. A similar problem
was treated in [16] by considering a memory term instead of the power nonlinearity.

In the first part of our main results, we show the global existence of a small data solu-
tion to the fractional Riemann–Liouville order to the semi-linear θ-evolution problem (7).

For the systems, let us first consider the weakly coupled system of damped wave
equations semi-linear heat equations

ut − Δu = |v|p, u(0, x) = u0(x), ut(0, x) = u1(x),
vt − Δv = |u|q, v(0, x) = v0(x), vt(0, x) = v1(x),

where t ∈ [0, ∞), x ∈ Rn, p, q > 1 and pq > 1. The authors of [17] showed that the
exponents p and q satisfying

n
2
=

max{p, q}+ 1
pq− 1

are critical, which means that the solutions exist globally for n
2 > max{p,q}+1

pq−1 and blow-
up for the inverse case. For more details about the system of damped wave equations
semi-linear heat equations, the reader can also see [18–21].

Some papers are considered for the weakly coupled systems of semilinear classical
damped wave equations with power non-linearities. The problem we have in mind is

utt − Δu + ut = |v|p, u(0, x) = u0(x), ut(0, x) = u1(x),
vtt − Δv + vt = |u|q, v(0, x) = v0(x), vt(0, x) = v1(x),

(5)

where t ∈ [0, ∞), x ∈ Rn. In 2007, Sun and Wang proved in [22] that if

λ :=
max{p; q}+ 1

pq− 1
<

n
2

. (6)

for n = 1 or 3, then the solution exists globally in time for small initial data, while, if
λ ≥ n

2 , then every solution having positive average value does not exist globally. In [23],
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the authors generalized the previous results to the case where n = 1, 2, 3 and improved
the time decay estimates for n = 2. In 2014, using the weighted energy method, Nishihara
and Wakasugi proved, in [24], the critical exponent for any space dimensions. Considering
the time-dependent dissipation terms, the authors of [25–27] proved the global (in time)
existence of small data solutions under a plan condition , which presents the interplay
between the exponents of power nonlinearities.

In our paper, we consider first the single equation from system (1) where we proved
the global existence for some range of the exponent p under conditions related to the
regularity of the data and the dimension. After that, we apply the results of the single
equation to study the weakly coupled systems (1). We proved the global existence for the
system with a loss of decay if one of the exponents of power nonlinearities did not satisfy
the condition of the single equation.

The paper is organized as follows. In Section 2, we will show our main results of global
(in time) existence with examples. Moreover, we mention some remarks of the interpolated
cases of wave and heat equations. Next, in Section 3, we prove the existence of solution by
applying Banach’s fixed point. Appendix A concludes the paper.

2. Main Results

2.1. Single Equation of Fractional Integral Equation

In this section, we will show our main results where we start with the global (in time)
existence of solutions to the single equation of the Cauchy problem. Using the formal
representation of the solution to our equation, we obtain the estimates of the solutions, and
finally we prove the existence using fixed-point theorem explained in the Appendix A.

Dλ+1u + (−Δ)
θ
2 u = |u|p, J1−λu(0, x) = uλ(x), Dλu(0, x) = 0 (7)

where λ ∈ (0, 1), θ > 0.

Theorem 1. Let n ≥ 1, and the data uλ are supposed to belong to L1 ∩ Lp. The following conditions
are satisfied for the exponent p :

p > 1 +
1 + λ

n
θ (1 + λ)− λ

, (8)

and
p < 1 +

θ

n− θ
if n > θ. (9)

Then, a small constant ε exists such that, if ‖uλ‖L1∩Lp ≤ ε, then there is a uniquely determined
globally (in time) energy solution to (7) in C([0, ∞), L1 ∩ Lp).
Furthermore, the solution satisfies the estimates:

‖u‖Lq � (1 + t)λ− n
θ (1+λ)

(
1− 1

q

)
‖uλ‖L1∩Lp ,

where q ∈ [1, p].

The new type of date has a strong influence in the representation of the solution of (1)
after [28], which leads to a quite different admissible range of the exponent p compared
with the classical equations presented in [14].

Remark 1. If λ → 0, then the admissible range for the global (in time) existence corresponds with
a Fujita like exponent 1 + θ

n . On the contrary for λ → 1, we obtain a gap of continuity with respect
to the Strauss exponent, which appeared in previous results as a critical exponent for the classical
wave equation.
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Remark 2. One can obtain the optimal for the exponent p in (8) using the scaling argument
similarity to prove of the critical exponent to (4) illustrated in [14].

Example 1. We consider a concrete example by giving values to the parameters appearing in the
theorem. Let us consider in R3 the following model:

D
3
2 u + (−Δ)

3
4 u = |u|p, J

1
2 u(0, x) = uλ(x), D

1
2 u(0, x) = 0.

Then, using Theorem 1, the admissible range for the global existence is 8
5 < p < 2.

2.2. Weakly Coupled System of Fractional Integral Equations

In this section, we apply the results of the previous theorem to study systems of weakly
coupled fractional θ-evolution equations.

Theorem 2. Let n ≥ 1, and the data uλ1 , uλ2 is supposed to belong to (L1 ∩ Lp)× (L1 ∩ Lq). The
following conditions are satisfied for the exponent p and q:

p < 1 +
1 + λ2

n
θ2
(1 + λ2)− λ2

, q > 1 +
1 + λ1

n
θ1
(1 + λ1)− λ1

, (10)

p < 1 +
θ

n− θ1
, q < 1 +

θ

n− θ2
if n > min{θ1; θ2} (11)

and
Q(λ1, λ2, θ1, θ2, q) > o. (12)

Then, a small constant ε exists such that, if
∥∥uλ1

∥∥
L1∩Lp +

∥∥vλ2

∥∥
L1∩Lq ≤ ε, then there is a uniquely

determined globally (in time) energy solution to (1) in C([0, ∞), L1 ∩ Lp)× C([0, ∞), L1 ∩ Lq).
Furthermore, the solution satisfies the estimates:

‖u‖Lr1 � (1 + t)λ+L(p)− n
θ1
(1+λ1)

(
1− 1

r1

)
‖uλ‖L1∩Lp ,

‖v‖Lr2 � (1 + t)λ2− n
θ2
(1+λ2)

(
1− 1

r2

)
‖vλ‖L1∩Lq ,

where L(p) = − n
θ2
(1 + λ2)(p − 1) + pλ2, Q(λ1, λ2, θ1, θ2, q) =

(
n
θ2
(1 + λ2)− λ2

)
q2−(

n
θ1
(1 + λ1)− n

θ2
(1 + λ2)− λ1

)
q− n

θ1
(1 + λ1) and r2 ∈ [1, p], r2 ∈ [1, q].

Remark 3. If we take in Theorem 2 the condition p > 1 + 1+λ2
n
θ2
(1+λ2)−λ2

, then we cannot feel any

interplay between the equations of the system since it will behave as a single equation.

Remark 4. If we consider p = 1 + 1+λ2
n
θ2
(1+λ2)−λ2

then, after using Proposition A1, we obtain a new

decay generated by the log term appearing in the estimate of u, exactly, (1 + t)−1 log(1 + t) ≈
(1 + t)−1+ε.

Example 2. Let us consider θ1 = θ2 = 2 in R2 and the parameter of the fractional derivative of
the first equation λ1 → 0 and the second λ2 → 1. Then, with the Cauchy condition the model,
we obtain

∂tu +−Δu = |v|p,
∂ttv +−Δv = |u|q.

Applying Theorem 2, we obtain the global (in time) existence of the solution for p < 3 and q > 2 .
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Remark 5. The reader can apply the last theorem for several examples. Giving values to some
parameters such as the dimension or the order of the fractional derivative, we obtain the mixed
condition that leads to the global existence .

3. Philosophy of Our Approach

In this section, we will prove results for the Cauchy problems (1) and (7). Our main
interest is to prove the global (in time) existence of small data solutions, which means the
global existence after the perturbation of the null Cauchy condition ‖uλ‖L1∩Lp ≤ ε. Such
results imply immediate stability results for the zero solution .

3.1. Proof of Theorem 1

In this section, we deal with the following single equation:

∂λ+1
t u + (−Δ)

θ
2 u = |u|p, J1−λu(0, x) = uλ(x), Dλu(0, x) = 0. (13)

We define the norm of the solution space X(t), which we will propose in all of the proofs of
the above theorems by

‖u‖X(t) = sup
τ∈[0,t]

(1 + t)−λ
{
‖u(τ, ·)‖L1 + (1 + t)

n
θ (1+λ)

(
1− 1

p

)
‖u(τ, ·)‖Lp

}
, (14)

We introduce the operator N by

N : u ∈ X(t)→ Nu = Nu(t, x) := uln(t, x) + unl(t, x),

where uln is a Sobolev solution to the Cauchy problem

∂λ+1
t u + (−Δ)

θ
2 u = 0, J1−λu(0, x) = uλ(x), Dλu(0, x) = 0,

and unl is a Sobolev solution to the Cauchy problem

∂λ+1
t u + (−Δ)

θ
2 u = |u|p, J1−λu(0, x) = uλ(x), Dλu(0, x) = 0.

Using Fourier analysis together with Theorem A1 from Appendix A, we can show that
the solutions of the previous problems can be presented by u(t, x) = uln(t, x) + unl(t, x)
as follows:

uln(t, x) = tλ−1F−1
(

E1+λ,λ

(
−t1+λ|ξ|θ

))
(t, x) ∗(x) uλ(x), (15)

and

unl(t, x) =
∫ t

0
(t− s)λF−1

(
E1+λ,1+λ

(
−t1+λ|ξ|θ

))
(t− s, x) ∗(x) |u(s, x)|pds. (16)

Following Proposition A2, our aim is to prove the following inequalities:

‖Nu‖X(t) � ‖uλ‖L1∩Lp + ‖u‖p
X(t), (17)

‖Nu− Nv‖X(t) � ‖u− v‖X(t)
(
‖u‖p−1

X(t) + ‖v‖p−1
X(t)

)
. (18)

After proving these both inequalities, we apply Banach’s fixed-point theorem. In this way,
we obtain the local (in time) existence of large data Sobolev solutions and the global (in
time) existence of small data Sobolev solutions as well.

We split the prove of the first inequality (17) into the following inequalities:∥∥uln∥∥
X(t) � ‖uλ‖L1∩Lp , (19)
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and ∥∥unl∥∥
X(t) � ‖u‖p

X(t). (20)

To prove inequality (19) we have to derive the estimate of
∥∥F−1(E1+λ,λ

(
−t1+λ|ξ|θ

))∥∥
Lp

in order to use Young’s inequality. Using the scaling property, we obtain∥∥∥F−1
(

E1+λ,λ

(
−t1+λ|ξ|θ

))∥∥∥
Lp

= t−
n
θ (1+λ)

(
1− 1

p

)∥∥∥F−1
(

E1+λ,λ

(
−|ξ|θ

))∥∥∥
Lp

. (21)

Indeed, after change of variable ξ1 = t1+λ|ξ| we obtain

F−1
(

G
(

t1+λ|ξ|θ
))

= t−
n
θ (1+λ)

∫
Rn

eit−
1+λ

θ xξ1 G(|ξ1|θ)dξ1

= t−
n
θ (1+λ)F−1

(
G(|ξ|θ)

)
(t−

1+λ
θ x).

Using the last equality, we obtain∥∥∥F−1
(

G
(

t1+λ| · |θ
))∥∥∥p

Lp
= t−

n
θ (1+λ)p

∥∥∥F−1
(

G(| · |θ)
)
(t−

1+λ
θ x)

∥∥∥
Lp

= t−
n
θ (1+λ)p

∫
Rn

∣∣∣F−1
(

G(| · |θ)
)
(t−

1+λ
θ x)

∣∣∣p
dx.

The change of variable y = t−
1+λ

θ x leads to∥∥∥F−1
(

G
(

t1+λ| · |θ
))∥∥∥p

Lp
= t−

n
θ (1+λ)p+ n

θ (1+λ)
∥∥∥F−1

(
G
(
| · |θ

))∥∥∥p

Lp
,

which completes the proof of 21.
Then, we restrict ourselves to the estimates of

∥∥F−1(E1+λ,λ
(
−|ξ|θ

))∥∥
Lp . After applying

Theorem A2 from the Appendix A, we obtain

E1+λ,λ

(
−|ξ|θ

)
=

2
1 + λ

|ξ|−θ
(

1− 2
1+λ

)
e

θ
1+λ cos

(
π

1+λ

)
cos

(
|ξ| θ

1+λ sin
π

1 + λ

)
+π−1|ξ|−θ

(
1− 2

1+λ

) ∫ ∞

0

s2+λ

s2(1+λ) + 2cos(π(1 + λ)) + 1
e−s|ξ|

θ
1+λ ds sin(λπ),

which leads to

F−1
(

E1+λ,λ

(
−|ξ|θ

))
=

2
1 + λ

A(s, x) + π−1 sin(λπ)
∫ ∞

0

s2+λ

s2(1+λ) + 2cos(π(1 + λ)) + 1
B(s, x)ds,

where

A(s, x) = F−1
(
|ξ|−θ

(
1− 2

1+λ

)
e

θ
1+λ cos

(
π

1+λ

)
cos

(
|ξ| θ

1+λ sin
π

1 + λ

))
,

B(s, x) = F−1
(
|ξ|−θ

(
1− 2

1+λ

)
e−s|ξ|

θ
1+λ

)
.
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First, we consider B(s, x). Similarly to (21), we have

‖B(s, ·)‖Lp =

∥∥∥∥F−1
(
|ξ|−θ

(
1− 2

1+λ

)
e−s|ξ|

θ
1+λ

)∥∥∥∥
Lp

=

∥∥∥∥F−1
(

s(1+λ)
(

1− 2
1+λ

)
(s1+λ|ξ|θ)−

(
1− 2

1+λ

)
e−(s

1+λ |ξ|θ)
1

1+λ

)∥∥∥∥
Lp

= sλ−1− n
θ (1+λ)

(
1− 1

p

)∥∥∥∥F−1
(
|ξ|−θ

(
1− 2

1+λ

)
e−|ξ|

θ
1+λ

)∥∥∥∥
Lp

= sλ−1− n
θ (1+λ)

(
1− 1

p

)
‖B(1, ·)‖Lp .

Then,

‖B(s, ·)‖Lp = sλ−1− n
θ (1+λ)

(
1− 1

p

)
‖B(1, ·)‖Lp . (22)

Then,

∥∥∥F−1
(

E1+λ,λ

(
−| · |θ

))∥∥∥
Lp

=
2

1 + λ
‖A(s, ·)‖Lp + π−1 sin(λπ)

∫ ∞

0

s1+2λ− n
θ (1+λ)

(
1− 1

p

)
s2(1+λ) + 2cos(π(1 + λ)) + 1

‖B(1, ·)‖Lp ds,

Using the last estimate together with (A5) from Remark A1, one can obtain the following
estimate from Lemma 2.1 in [14] for d = −θ

(
1− 2

1+λ

)
:

F−1
(

E1+λ,λ

(
−|ξ|θ

))
∈ Lp if

n
θ

(
1− 1

p

)
< 2, (23)

which satisfied (9) .
From (15) with (21), and after using Young’s inequality, we obtain∥∥∥uln(t, x)

∥∥∥
L1

� (1 + t)λ−1‖uλ‖L1 , (24)∥∥∥uln(t, x)
∥∥∥

Lp
� (1 + t)λ−1− n

θ (1+λ)
(

1− 1
p

)
(‖uλ‖L1 + ‖uλ‖Lp). (25)

Replacing last estimates in the definition of the norm of solution space (14) leads to the
desired estimate (19).
For the second estimate (20), under the same conditions requested for (23) we have∥∥∥F−1

(
E1+λ,1+λ

(
−t1+λ|ξ|θ

))∥∥∥
Lp

� (1 + t)−
n
θ (1+λ)

(
1− 1

p

)
.

From (16), we obtain ∥∥∥unl(t, x)
∥∥∥

L1
�

∫ t

0
(t− s)λ‖|u(s, x)|p‖L1 ds, (26)

and ∥∥∥unl(t, x)
∥∥∥

Lp
�

∫ t

0
(t− s)λ− n

θ (1+λ)
(

1− 1
p

)
‖|u(s, x)|p‖L1 ds. (27)

Using the definition of solution space from (14), we obtain∥∥∥unl(t, x)
∥∥∥

L1
� ‖u‖p

X(t)

∫ t

0
(t− s)λ(1 + s)−

n
θ (1+λ)(p−1)+pλds,∥∥∥unl(t, x)

∥∥∥
Lp

� ‖u‖p
X(t)

∫ t

0
(t− s)λ− n

θ (1+λ)
(

1− 1
p

)
(1 + s)−

n
θ (1+λ)(p−1)+pλds.
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Using Proposition A1, we obtain∥∥∥unl(t, x)
∥∥∥

L1
� (1 + t)λ‖u‖p

X(t), (28)∥∥∥unl(t, x)
∥∥∥

Lp
� (1 + t)λ− n

θ (1+λ)
(

1− 1
p

)
‖u‖p

X(t), (29)

provided that n
θ (1 + λ)

(
1− 1

p

)
− λ < 1 and n

θ (1 + λ)(p− 1)− pλ > 1, which are equiva-
lent to (8) and (9), respectively.

Replacing the last estimates in the norm of solution space, we obtain (20), which
complete, together with (19), the proof of the first inequality (17).

For the second condition (18), we assume that u and v belong to X(t). Then,

Nu−Nv =
∫ t

0
(t− s)λF−1

(
E1+λ,1+λ

(
−t1+λ|ξ|θ

))
(t− s, x) ∗(x)

(
|u(s, x)|p− |v(s, x)|p

)
ds.

We control all norms appearing in ‖Nu− Nv‖X(t). These are the norms ‖Nu− Nv‖L1 and
‖|D|s(Nu− Nv)‖Lp .

Similarly to (26), we have

‖Nu− Nv‖L1 �
∫ t

0
(t− s)λ

∥∥(|u(s, x)|p − |v(s, x)|p
)∥∥

L1 ds.

Hölder’s inequality implies∥∥|u(s, ·)|p − |v(s, ·)|p
∥∥

L1 �
∥∥u(s, ·)− v(s, ·)

∥∥
Lp

(
‖u(s, ·)‖p−1

Lp + ‖v(s, ·)‖p−1
Lp

)
, (30)

Using the norm of the solution space X(t), we obtain∥∥u(s, ·)− v(s, ·)
∥∥

Lp � (1 + s)−
n
θ (1+λ)(1− 1

p )+λ∥∥u(s, ·)− v(s, ·)
∥∥

X(t),

‖u(s, ·)‖p−1
Lp � (1 + s)

(
− n

θ (1+λ)(1− 1
p )+λ

)
(p−1)∥∥v(s, ·)

∥∥(p−1)
X(t) ,

‖u(s, ·)‖p−1
Lp � (1 + s)

(
− n

θ (1+λ)(1− 1
p )+λ

)
(p−1)∥∥v(s, ·)

∥∥(p−1)
X(t) .

Using the last estimates, we can obtain similarly to (28) and (29)

‖Nu− Nv‖L1 � (1 + t)λ‖u− v‖X(t)
(
‖u‖p−1

X(t) + ‖v‖p−1
X(t)

)
,

and

‖Nu− Nv‖Lp � (1 + t)λ− n
θ (1+λ)

(
1− 1

p

)
‖u− v‖X(t)

(
‖u‖p−1

X(t) + ‖v‖p−1
X(t)

)
.

Then, the proof of the second condition and the theorem is completed.

3.2. Proof of Theorem 2

We define the norm of the solution space X(t) by

‖(u, v)‖X(t) = sup
τ∈[0,t]

{
M(τ, u) + M(τ, v)

}
(31)

where

M(τ, u) = (1 + t)−λ1−L(p)
[
‖u(τ, ·)‖L1 + (1 + t)

n
θ1
(1+λ1)

(
1− 1

p

)
‖u(τ, ·)‖Lp

]
, (32)

M(τ, v) = (1 + t)−λ2

[
‖v(τ, ·)‖L1 + (1 + t)

n
θ2
(1+λ2)

(
1− 1

q

)
‖v(τ, ·)‖Lq

]
. (33)
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Then, we introduce the operator N by

N : (u, v) ∈ X(t)→ N(u, v) = (uln + unl , vln + vnl),

where

uln(t, x) := tλ1−1F−1
(

E1+λ1,λ1

(
−t1+λ1 |ξ|θ1

))
(t, x) ∗(x) uλ1(x),

unl(t, x) :=
∫ t

0
(t− s)λ1F−1

(
E1+λ1,1+λ1

(
−t1+λ1 |ξ|θ1

))
(t− s, x) ∗(x) |v(s, x)|pds,

vln(t, x) := tλ2−1F−1
(

E1+λ2,λ1

(
−t1+λ2 |ξ|θ2

))
(t, x) ∗(x) vλ2(x),

vnl(t, x) :=
∫ t

0
(t− s)λ2F−1

(
E1+λ2,1+λ2

(
−t1+λ2 |ξ|θ2

))
(t− s, x) ∗(x) |u(s, x)|qds.

If we consider the results Proposition A3, then our aim is to prove the following inequalities,
which imply, among other things, the global existence of small data solutions:

‖N(u, v)‖X(t) � ‖uλ1‖L1∩Lp + ‖vλ2‖L1∩Lq + ‖(u, v)‖p
X(t) + ‖(u, v)‖q

X(t), (34)

‖N(u, v)− N(ũ, ṽ)‖X(t) � ‖(u, v)− (ũ, ṽ)‖X(t)
(
‖(u, v)‖p−1

X(t) + ‖(ũ, ṽ)‖p−1
X(t)

+‖(u, v)‖q−1
X(t) + ‖(ũ, ṽ)‖q−1

X(t)

)
.

(35)

Let us start by the first condition. Similarly to (24) and (25), we obtain∥∥∥uln(t, x)
∥∥∥

L1
� (1 + t)λ1−1∥∥uλ1

∥∥
L1 ,∥∥∥uln(t, x)

∥∥∥
Lp

� (1 + t)λ1−1− n
θ1
(1+λ1)

(
1− 1

p

)(∥∥uλ1

∥∥
L1 +

∥∥uλ1

∥∥
Lp

)
,∥∥∥vln(t, x)

∥∥∥
L1

� (1 + t)λ2−1∥∥vλ2

∥∥
L1 ,∥∥∥vln(t, x)

∥∥∥
Lq

� (1 + t)λ2−1− n
θ2
(1+λ2)

(
1− 1

q

)(∥∥vλ2

∥∥
L1 +

∥∥uλ2

∥∥
Lq

)
.

The last estimates, together with the definition of the norm in (31), lead to

‖(uln, vln)‖X(t) � ‖uλ1‖L1∩Lp + ‖vλ2‖L1∩Lq . (36)

Then, we complete the proof by showing the inequality

‖(unl , vnl)‖X(t) � ‖(u, v)‖p
X(t) + ‖(u, v)‖q

X(t). (37)

For unl , we have ∥∥∥unl(t, x)
∥∥∥

L1
�

∫ t

0
(t− s)λ1‖|v(s, x)|p‖L1 ds,

and ∥∥∥unl(t, x)
∥∥∥

Lp
�

∫ t

0
(t− s)λ1− n

θ1
(1+λ1)

(
1− 1

p

)
‖|v(s, x)|p‖L1 ds.

Using the definition of solution space from (31), we obtain∥∥∥unl(t, x)
∥∥∥

L1
� ‖(u, v)‖p

X(t)

∫ t

0
(t− s)λ1(1 + s)−

n
θ2
(1+λ2)(p−1)+pλ2 ds,∥∥∥unl(t, x)

∥∥∥
Lp

� ‖(u, v)‖p
X(t)

∫ t

0
(t− s)λ1− n

θ1
(1+λ1)

(
1− 1

p

)
(1 + s)−

n
θ2
(1+λ2)(p−1)+pλ2 ds.

73



Symmetry 2023, 15, 1341

From Proposition A1, one can obtain∥∥∥unl(t, x)
∥∥∥

L1
� ‖(u, v)‖p

X(t)(1 + t)λ1− n
θ2
(1+λ2)(p−1)+pλ2 = ‖(u, v)‖p

X(t)(1 + t)λ1+L(p), (38)∥∥∥unl(t, x)
∥∥∥

Lp
� ‖(u, v)‖p

X(t)(1 + t)λ1− n
θ1
(1+λ1)

(
1− 1

p

)
− n

θ2
(1+λ2)(p−1)+pλ2 = ‖(u, v)‖p

X(t)(1 + t)λ1− n
θ1
(1+λ1)

(
1− 1

p

)
+L(p), (39)

provided that n
θ (1 + λ1)

(
1− 1

p

)
− λ1 < 1, which is equivalent to (11).

For unl , we have ∥∥∥vnl(t, x)
∥∥∥

L1
�

∫ t

0
(t− s)λ2‖|u(s, x)|q‖L1 ds,

and ∥∥∥vnl(t, x)
∥∥∥

Lq
�

∫ t

0
(t− s)λ2− n

θ2
(1+λ2)

(
1− 1

q

)
‖|u(s, x)|q‖L1 ds.

Using the norm of the solution space, we obtain∥∥∥vnl(t, x)
∥∥∥

L1
� ‖(u, v)‖p

X(t)

∫ t

0
(t− s)λ2(1 + t)−Q(λ1,λ2,θ1,θ2,q)ds,

and ∥∥∥vnl(t, x)
∥∥∥

Lq
� ‖(u, v)‖p

X(t)

∫ t

0
(t− s)λ2− n

θ2
(1+λ2)

(
1− 1

q

)
(1 + t)−Q(λ1,λ2,θ1,θ2,q)ds.

Proposition A1, together with (12), leads to∥∥∥vnl(t, x)
∥∥∥

L1
� ‖(u, v)‖p

X(t)(1 + t)λ2 , (40)

and ∥∥∥vnl(t, x)
∥∥∥

Lq
� ‖(u, v)‖p

X(t)(1 + t)λ2− n
θ2
(1+λ2)

(
1− 1

q

)
ds, (41)

provided that n
θ (1 + λ2)

(
1− 1

q

)
− λ2 < 1, which is equivalent to (11).

From (38) to (41), we obtain (37), which implies, together with (36), the first condition (34).
To prove (35), we assume that (u, v) and (ũ, ṽ) are two elements from the function space
X(t). Then, we have

N(u, v)− N(ũ, ṽ) =
(
unl(t, x)− ũnl(t, x), vnl(t, x)− ṽnl(t, x)

)
=
( ∫ t

0
F−1

(
E1+λ1,1+λ1

(
−t1+λ1 |ξ|θ1

))
(t− s, x) ∗(x)

(
|v(s, x)|p − |ṽ(s, x)|p

)
ds, (42)∫ t

0
F−1

(
E1+λ2,1+λ2

(
−t1+λ2 |ξ|θ2

))
(t− s, x) ∗(x)

(
|u(s, x)|q − |ũ(s, x)|q

)
ds
)

. (43)

Similarly to the proof of the estimates (30), we can derive the following estimates for
0 ≤ τ ≤ t:∥∥|v(τ, ·)|p − |ṽ(τ, ·)|p

∥∥
L1 � (1 + t)−

n
θ2
(1+λ2)(p−1)+pλ2‖v− ṽ‖X(t)

(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
, (44)∥∥|u(τ, ·)|q − |ũ(τ, ·)|q

∥∥
L1 � (1 + t)−Q(λ1,λ2,θ1,θ2,q)‖u− ũ‖X(t)

(
‖u‖q−1

X(t) + ‖ũ‖q−1
X(t)

)
. (45)

Using the last estimates, one may finally conclude, similarly to (38) to (41), the following
estimates:
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∥∥∥∥∫ t

0
F−1

(
E1+λ1,1+λ1

(
−t1+λ1 |ξ|θ1

))
(t− s, x) ∗(x)

(
|v(s, x)|p − |ṽ(s, x)|p

)
ds
∥∥∥∥

L1

� (1 + t)λ1+L(p)‖v− ṽ‖X(t)
(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
,∥∥∥∥∫ t

0
F−1

(
E1+λ1,1+λ1

(
−t1+λ1 |ξ|θ1

))
(t− s, x) ∗(x)

(
|v(s, x)|p − |ṽ(s, x)|p

)
ds
∥∥∥∥

Lp

� (1 + t)λ1− n
θ1
(1+λ1)

(
1− 1

p

)
+L(p)‖v− ṽ‖X(t)

(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
,∥∥∥∥∫ t

0
F−1

(
E1+λ2,1+λ2

(
−t1+λ2 |ξ|θ2

))
(t− s, x) ∗(x)

(
|u(s, x)|q − |ũ(s, x)|q

)
ds
)∥∥∥∥

L1

� (1 + t)λ2‖v− ṽ‖X(t)
(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
,∥∥∥∥∫ t

0
F−1

(
E1+λ2,1+λ2

(
−t1+λ2 |ξ|θ2

))
(t− s, x) ∗(x)

(
|u(s, x)|q − |ũ(s, x)|q

)
ds
)∥∥∥∥

Lq

� (1 + t)λ2− n
θ2
(1+λ2)

(
1− 1

q

)
‖v− ṽ‖X(t)

(
‖v‖p−1

X(t) + ‖ṽ‖p−1
X(t)

)
,

In this way, we can conclude the proof of the last condition (35) and the theorem.

4. Concluding Remarks

• We need to prove the blow-up for the system an interaction between the exponents of
both equations. However, the method of scaling is not suitable to prove the blow-up
result for the system since we have no interactions between the exponents. Moreover,
the influence of each equation to the other one generated a condition presented by
several parameters, fractional derivatives, dimensions, and others. For this reason, we
will devote the blow-up problem in a forthcoming project using another approach.

• The applications of our results in real world problems and phenomena can be investi-
gated after mathematical modeling by choosing the suitable parameters involved in our
problem, such as dimension, and by taking the experimental values into consideration.
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Appendix A

Theorem A1. Let λ ∈ (0, 1), aλ ∈ R. Then, the unique solution solution to

∂λ+1
t f + |ξ|θ f = g(t), J1−λ f (0) = aλ, Dλg(0) = 0. (A1)

is given by

f (t) = tλ−1E1+λ,λ

(
−t1+λ|ξ|θ

)
aλ +

∫ t

0
(t− s)λE1+λ,1+λ

(
−t1+λ|ξ|θ

)
(t− s, ·)g(t)ds, (A2)

where E1+λ,μ are the Mittag–Leffler functions defined by

E1+λ,μ(z) =
∞

∑
k=0

zk

Γ(k + λk + μ)
.
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For the proof, see [28].

Theorem A2. Let 0 < λ < 2, μ ∈ R, and m ∈ N, with m ≥ μ
1+λ − 1. Then, for the real number

z > 0, the following holds :

E1+λ,μ(z1+λ) =
2

1 + λ
z1−μez cos( π

1+λ ) cos(z sin(
π

1 + λ
)− π

1 + λ
(μ− 1)) (A3)

+
m

∑
k=1

(−1)k−1

Γ(μ− k(1 + λ))
zk(1+λ) + Ωm(z), (A4)

where

Ωm(z) =
(−1)mz1−μ

π
(I1,m(z) sin(π(μ− (m + 1)(1 + λ)) + I2,m(z) sin(π(μ−m(1 + λ)))),

and

Ij,m(z) =
∫ ∞

0

s(m+j)(1+λ)−μ

s2(1+λ)2 cos(π(1 + λ))s1+λ + 1
eszds.

Remark A1. The integral Ij,m(z) is uniformly bounded if

−1 < m + j− 1 +
1− μ

1 + λ
< 1. (A5)

For the proof, see [29].

Proposition A1. Let a ∈ R < 1 and b ∈ R. Then,

∫ t

0
(t− s)−a(1 + s)−bds �

⎧⎨⎩
(1 + t)−a if a < 1 < b;
(1 + t)−1 log(1 + t) if a < 1 = b;
(1 + t)1−a−b if a, b < 1.

(A6)

The reader can find the proof of Proposition A1 in [14].

Proposition A2. The operator N maps X(t) into itself and has one and only one fixed point
u ∈ X(t) if the following inequalities hold:

‖Nu‖X(t) ≤ C0(t)‖(u0, u1)‖Am,s + C1(t)‖u‖p
X(t), (A7)

‖Nu− Nv‖X(t) ≤ C2(t)‖u− v‖X(t)
(
‖u‖p−1

X(t) + ‖v‖p−1
X(t)

)
, (A8)

where C1(t), C2(t) −→ 0 for t −→ +0 and C0(t), C1(t), C2(t) ≤ C for all t ∈ [0, ∞).

For the proof, see [30].

Proposition A3. Let us suppose that for any (u0, u1), (v0, v1) ∈ Am,s1 ×Am,s2 , the mapping N
satisfies the following estimates:

‖N(u, v)‖X(t) ≤ C0(t)
(
‖(u0, u1)‖Am1,s1

+ ‖(v0, v1)‖Am2,s2

)
+C1(t)

(
‖(u, v)‖p

X(t) + ‖(u, v)‖q
X(t)

)
,

(A9)

‖N(u, v)− N(ũ, ṽ)‖X(t) ≤ C2(t)‖(u, v)− (ũ, ṽ)‖X(t)

×
(
‖(u, v)‖p−1

X(t) + ‖(ũ, ṽ)‖p−1
X(t) + ‖(u, v)‖q−1

X(t) + ‖(ũ, ṽ)‖q−1
X(t)

)
,

(A10)

where C1(t), C2(t) −→ 0 for t −→ +0 and C0(t), C1(t), C2(t) ≤ C for all t ∈ [0, ∞).
Then, N maps X(t) into itself and has one and only one fixed point (u, v) ∈ X(t).
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For the proof, see [26].
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Abstract: In this paper, a hybrid variable-order mathematical model for multi-vaccination COVID-19
is analyzed. The hybrid variable-order derivative is defined as a linear combination of the variable-
order integral of Riemann–Liouville and the variable-order Caputo derivative. A symmetry parameter
σ is presented in order to be consistent with the physical model problem. The existence, uniqueness,
boundedness and positivity of the proposed model are given. Moreover, the stability of the proposed
model is discussed. The theta finite difference method with the discretization of the hybrid variable-
order operator is developed for solving numerically the model problem. This method can be explicit
or fully implicit with a large stability region depending on values of the factor Θ. The convergence
and stability analysis of the proposed method are proved. Moreover, the fourth order generalized
Runge–Kutta method is also used to study the proposed model. Comparative studies and numerical
examples are presented. We found that the proposed model is also more general than the model
in the previous study; the results obtained by the proposed method are more stable than previous
research in this area.

Keywords: variable-order hybrid operator; Pfizer vaccine; Moderna vaccine; Janssen vaccine; theta
finite difference method; generalized fourth order Runge–Kutta method

MSC: 65L05; 37N30; 65M06

1. Introduction

Coronaviruses are a large family of viruses known to cause illnesses ranging from
the common cold to more serious illnesses such as severe acute respiratory syndrome [1].
The World Health Organization has designated this variant as a variant of serious concern.
The United States Centers for Disease Control and Prevention has granted Emergency Use
Authorization to the following vaccines: Pfizer-BioNTech with 95% efficacy against symp-
tomatic COVID-19, Moderna vaccine with 94.5% efficacy and Janssen vaccine manufactured
by Johnson & Johnson, which has an efficacy rating of 67%, as well as many others [1,2].
SARS-CoV-2 vaccinations have been shown to be effective against infections, including both
silent and symptomatic cases, of severe COVID-19 illness and deaths [2]. Mathematical
modeling is a valuable tool to study disease spread and control very effectively. Several
mathematical models have been proposed in the literature to study and understand the
novel complex transmission pattern of the COVID-19 pandemic; see, for example, [3–8].

In the meantime, there are now extensive articles explaining the advantage of fractional
order models for studying real mathematical models in various fields [9]. The variable-
order fractional derivatives (VOFDs) can describe the effects of the long variable memory
of a time-dependent system. In [10], Samko et al. proposed this interesting extension of the
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classical calculation of fractions. In the concept of fractional derivative with variable order,
the order may vary either as a function of the independent differentiation variable (t) or
as a function of another (possibly spatial) variable (x), or both. Therefore, the derivative
models described using variable-order fractional derivatives are useful and appropriate for
the epidemic models. We can obtain the results of fractional order and integer order as a
special case from variable-order mathematical models [11–18].

In this article, we will present the theta finite different method with the discretization
of new hybrid fractional operator. This operator is called the constant proportional Caputo
variable-order fractional derivative (CPC-Θ FDM) and is used to study the proposed
model numerically. In the literature, the theta finite differences method (ΘFDM) method,
also called the weighted average finite differences method (WAFDM), is one of the finite
difference methods [19,20]. This method could be an explicit method or an implicit method
(more stable and efficient), depending on the weight factor Θ ∈ [0, 1]. Using Caputo and
Riesz–Feller derivatives, this method was developed for a nonstandard finite difference
method [21,22].

The goal of this work is to present and analyze a hybrid variable-order fractional
model of multi-vaccination for COVID-19. The new variable-order hybrid derivatives are
defined as the linear combination of the variable-order Riemann–Liouville integral and the
variable-order derivative of Caputo. This is one of the most effective and reliable of these
operators; it is more general than the Caputo fractional operator. Positivity, boundedness
and stability will be proved in the current model.

Moreover, one of the aims of this article is developing CPC-Θ FDM for solving the
variable-order fractional differential equations numerically and we will compare the ob-
tained results with the results obtained with the fourth order generalized Runge–Kutta
method (GRK4M) [23] and the method in [24]. Moreover, we extended the method in [24]
to variable order. The analysis of stability and convergence of the proposed method
will be studied. Numerical simulations will be given to confirm the efficiency and wide
applicability of the proposed method.

To our knowledge, no numerical investigations of a hybrid variable-order fractional
for multi-vaccination for a COVID-19 mathematical model utilizing CPC-Θ FDM have
been conducted.

This paper is organized as follows: Some notations and definitions of variable-order
fractional derivatives are introduced in Section 2. In Section 3, the model with a hybrid
variable order is presented; moreover, the positivity, boundedness, existence and unique-
ness of the solutions and the stability of the present model are discussed. In Section 4, the
numerical methods GRK4M and CPC-Θ SFDM are studied; moreover, stability analyses
for these methods are proved. In Section 5, numerical simulations are presented. The
conclusions are ultimately outlined in Section 6.

2. Notations and Preliminaries

In this section, we review several key definitions of variable-order calculus that will
be utilized throughout the remainder of this article.

Definition 1. Caputo’s derivatives (right–left side variable-order fractional α(t)) are defined,
respectively, as follows [25]:

(CDα(t)
b− f )(x) = (C

t Dα(t)
b f )(t) =

(−1)n

Γ(n− α(t))

∫ b

t

f (n)(s)
(s− t)−n+α(t)+1

ds, b > t, (1)

(CDα(t)
a+ f )(t) = (C

a Dα(t)
t f )(t) =

1
Γ(n− α(t))

∫ t

a

f (n)(s)
(t− ξ)−n+α(t)+1

ds, t > a, (2)

f (t) ∈ ACn[a, b], n = 1 + [�(α(t))], �(α(t)) /∈ N0.
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Definition 2. Let 1 > α(t) > 0, −∞ < a < b < +∞; the right–left side variable-order fractional
Riemann–Liouville’s integral and f (t) ∈ ACn[a, b] are given as follows [25]:

t I
α(t)

b f (t) =

[ ∫ b

t
f (s)(t− s)α(t)−1ds

]
1

Γ(α(t))
, t < b, (3)

a I
α(t)

t f (t) =

[ ∫ t

a
f (s)(t− s)α(t)−1ds

]
1

Γ(α(t))
, t > a. (4)

α(t) ∈ C.

Definition 3 ([26]). The variable-order fractional Caputo proportional operator (CP) is given as
follows:

CP
0 Dα(t)

t y(t) =
∫ t

0
(Γ(1− α(t)))−1(t− s)−α(t)(y′(s)K0(s, α(t)) + y(s)K1(s, α(t)))ds,

=

(
Γ(1− α(t))−1

tα(t)

)
(y′(t)K0(t, α(t)) + y(t)K1(t, α(t))). (5)

K1(α(t), t) = (−α(t) + 1)tα(t), K0(α(t), t) = t(1−α(t))α(t), 1 > α(t) > 0.
Alternatively, the constant proportional Caputo (CPC) variable-order fractional hybrid
operator can be formulated as follows [26]:

CPC
0 Dα(t)

t y(t) =

(∫ t

0
(t− s)−α(t) 1

Γ(1− α(t))
(K1(α(t))y(s) + y′(s)K0(α(t)))ds

)
= K1(α(t))RL

0 I1−α(t)
t y(t) + K0(α(t))C

0 Dα(t)
t y(t), (6)

K0(α(t)) = Q(−α(t)+1)α(t), K1(α(t)) = Qα(t)(−α(t) + 1), where Q is a constant.

Definition 4. Moreover, its inverse operator is [26]:

CPC
0 Iα(t)

t y(t) =

(∫ t

0
exp

[
K1(α(t))
K0(α(t))

(t− s)

]
RL
0 D1−α(t)

t y(s)ds

)
1

K0(α(t))
. (7)

3. A Hybrid Variable-Order Mathematical Model

A variable-order multiple vaccination model for COVID-19 is presented below; it is an
extension of the model given in [24]. To satisfy the dimensional fit between the two sides
of the resulting variable-order fraction equations, the variable-order operator is modified
by an auxiliary parameter σ. As a result, the dimension of the left side is (day)−1 [27]. The
following is the updated variable-order nonlinear fractional mathematical model:

1
σ1−α(t)

CPC
0 Dα(t)

t S =Λ− ν1S− ν2S− ν3S− λS− μS,

1
σ1−α(t)

CPC
0 Dα(t)

t V1 =ν1S− (1− ξ1)λV1 − μV1,

1
σ1−α(t)

CPC
0 Dα(t)

t V2 =ν2S− (1− ξ2)λV2 − μV2,

1
σ1−α(t)

CPC
0 Dα(t)

t V3 =ν3S− (1− ξ3)λV3 − μV3,

1
σ1−α(t)

CPC
0 Dα(t)

t A = f3(1− ξ3)λV3 + f2(1− ξ2)λV2 + f1(1− ξ1)λV1 − (γA + μ)A + pλS,
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1
σ1−α(t)

CPC
0 Dα(t)

t IU =(1− p)λS− (γIU + dIU + α1μ)IU ,

1
σ1−α(t)

CPC
0 Dα(t)

t IV =(1− f2)(1− ξ2)λV2 + (1− f3)(1− ξ3) + (1− f1)(1− ξ1)λV1λV3

− (γIV + (1− φ)αμ + dIV)IV ,

1
σ1−α(t)

CPC
0 Dα(t)

t IS =α1(1− φ)IV − (dIS + μ + γIS)IS + α1 IU ,

1
σ1−α(t)

CPC
0 Dα(t)

t R =γA A + γIU IU + γIV IV + γIS IS − μR. (8)

λ = βN−1
H

(
IU + θA + ηv Iv

)
,

S + V1 + V2 + V3 + A + IU + IV + IS + R = NH(t),

with the initial conditions

S(0) = s0 ≥ 0, V1(0) = v10 ≥ 0, V2 = v20 ≥ 0, V3 = v30 ≥ 0, A = a0 ≥ 0, IU = iu0 ≥ 0,

IV = iv0 ≥ 0, IS = is0, R(0) = r0 ≥ 0. (9)

Figure 1 shows the flowchart of the model (8). Table 1 shows the definitions of variables
for system (8). The hypotheses of the model for the rate of each type of vaccination are the
same as in [24], as follows:

1 NH(t) = S + V1 + V2 + V3 + A + Iu + Iv + Is + R.
2 Vaccination simulations of the proposed model in the strategy implementing only the

Pfizer vaccine ( f1 �= 0, ξ1 �= 0, φ1 �= 0, v1 �= 0), where these parameters are defined
as in Table 2.

3 Vaccination simulations of the proposed model in the strategy implementing only
Moderna vaccine (ξ2 �= 0, f2 �= 0, v2 �= 0, φ2 �= 0).

4 Vaccination simulations of the proposed model in the strategy implementing only
Janssen vaccine (ξ3 �= 0, f3 �= 0, v3 �= 0, φ3 �= 0).

We can verify the boundedness of the solution for the suggested model (8) as follows:

1
σ1−α(t)

(CPC
0 Dα(t)

t S +CPC
0 Dα(t)

t R +CPC
0 Dα(t)

t V3 +
CPC
0 Dα(t)

t V2 +
CtV
1 +

CPC
0 Dα(t)

t A +CPC
0 Dα(t)

t S +CPC
0 Dα(t)

t Is +
CPC
0 Dα(t)

t IV +CPC
0 Dα(t)

t IU) = σ−1+α(t)CPC
0 Dα(t)

t NH(t),

1
σ1−α(t)

CPC
0 Dα(t)

t NH(t) = Λ− μNH(t)− [dIV IV + dIU IU + dIS IS], NH(0) = A ≥ 0, (10)

Λ− (μ + 3δ)NH ≤
dNH

dt
< Λ− μNH , δ = min{dIV , dIU , dIS}.

Therefore, we have NH(t) ≤ Λμ−1, at t −→ ∞. The feasible region
Ω = {S, A, IU , IV , IS, R, V3, V1, V2 ∈ R9, NH(t) ≤ Λμ−1}.

System (8) has a solution in Ω. This verifies the boundedness of the solution.
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Table 1. Variables of system (8).

Variable Interpretation

R Humans who have recovered
S Unvaccinated susceptible individuals
V3 Vaccinated using vaccination number three (Oxford Johnson & Johnson)
V2 Vaccinated using vaccination number two (Moderna)
V1 Vaccinated using vaccination number one (Pfizer)
IS Individuals with severe sickness and hospitalization who are symptomatic

(vaccinated and unvaccinated) (under complete isolation)
IV Symptomatic people who have been vaccinated
IU Symptomatic people who have not been immunized
A Asymptomatic individuals (vaccinated and unvaccinated)

Figure 1. Flowchart for system (8).

Theorem 1. Using (9), for t ≥ 0 solutions of (8) are still nonnegative.

Proof. Using (9), we obtain [28]:
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1
σ1−α(t)

CPC
0 Dα(t)

t S |S=0 =Λ ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t V1 |V1=0 =V1S ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t V2 |V2=0 =V2S ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t V3 |V3=0 =V3S ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t A |A=0 =(1− ξ2) f2λV2 + (1− ξ3) f3λV3 + pλS + (1− ξ1) f1λV1 ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t IU |IU=0 =(1− p)λS ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t IV |IV=0 =(1− ξ2)λ(1− f2)V2 + (1− ξ3)λV3(1− f3) + (1− ξ1)λV1(1− f1) ≥ 0,

1
σ1−α(t)

CPC
0 Dα(t)

t IS |IS=0 =α1 IU + (1− φ)α1 IV ≥ 0,

1
σ−α(t)+1

CPC
0 Dα(t)

t R |R=0 =γA A + γIU IU + γIV IV + γIS IS ≥ 0. (11)

3.1. Uniqueness and Existence

The existence and uniqueness of the solutions of the proposed model will be estab-
lished using Banach fixed point theorem. Let system (8) be written as follows [4]:

CPC
0 Dα(t)

t ε(t) = �(ε(t), t), ε(0) = ε0 ≥ 0, (12)

ε(t) =

(
S, A, IU , IV , IS, R, V3, V1, V2

)T

represents the variables of the proposed system (8)

and � is a vector that represents the equations in the right of the system (8).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1
�2
�3
�4
�5
�6
�7
�8
�9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1−α(t)(Λ− ν1S− ν2S− ν3S− λS− μS)

σ1−α(t)(ν1S− (1− ξ1)λV1 − μV1)

σ1−α(t)(ν1S− (1− ξ2)λV2 − μV2)

σ1−α(t)(ν1S− (1− ξ3)λV3 − μV3)

σ1−α(t)((1− ξ2)λ f2V2 + (1− ξ1)λ f1V1 + (1− ξ3)λ f3V3 − (γA + μ)A) + pλS

σ1−α(t)((1− p)λS− (γIU + dIU + α1μ)IU )

σ1−α(t)((1− ξ2)λ(1− f2)V2 + (1− ξ3)λ(1− f3)V3 + (1− ξ1)λ(1− f1)V1 − (dIV + α(1− φ)μ)IV + γIV )

σ1−α(t)(α1 IU − (dIS + μ + γIS)IS) + α1(1− φ)IV

σ1−α(t)(γIU IU + γIV IV + γIS IS − μR + γA A)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with an initial condition ε0. Furthermore, Lipschitz requirements as in [4] are satisfied:

‖�(ε1(t), t)−�(ε2(t), t)‖ ≤ W0‖ε1(t)− ε2(t)‖, W0 ∈ R. (13)

Theorem 2. If the following conditions are met:

W0�
α(t)
maxXα(t)

max
Γ(α(t)− 1)K0(α(t))

< 1, (14)

the hybrid variable-order fractional model (8) has a unique solution.

Proof. Applying (6) in (12), we have:

ε(t) = ε(t0) +
1

K0(α(t))

∫ t

0
exp(−K1(α(t))

K0(α(t))
(t− s))RL

0 D1−α(t)
t �(ε(s), s)ds. (15)
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Let B : C(K,R9) −→ C(K,R9) and K = (0, T); then:

B[ε(t)] = ε(t0) +
1

K0(α(t))

∫ t

0
exp(−K1(α(t))

K0(α(t))
(t− s))RL

0 D1−α(t)
t �(ε(s), s)ds. (16)

We have:
B[ε(t)] = ε(t).

The supremum norm on K is represented by ‖.‖K. Thus
‖ε(t)‖K = sup

t∈K
‖ε(t)‖, ε(t) ∈ C(K,R9).

So, ‖.‖K with C(K,R9) is a Banach space. Then, the following relation holds:

Λ‖ϕ(s, t)‖K‖ε(s)‖K≥ ‖
∫ t

0
ϕ(s, t)ε(s)ds‖, 0 < t < Λ < ∞

with ϕ(s, t) ∈ C(K2,R9) ε(t) ∈ C(K,R9),
then supt,s∈K |ϕ(s, t)| = ‖ϕ(s, t)‖K.
Relation (16) can be written as:

‖B[ε1(t)]− B[ε2(t)]‖K ≤ ‖
1

K0(α(t))

∫ t

0
exp(−K1(α(t))

K0(α(t))
(t− s))(RL

0 D1−α(t)
t �(ε1(s), s)

−RL
0 D1−α(t)

t �(ε2(s), s))ds‖K.

≤ �
α(t)
max

K0(α(t))Γ(α(t)− 1)
‖
∫ t

0
(t− s)α(t)−2(�(ε1(s), s)−�(ε2(s), s))ds‖K,

≤ �
α(t)
maxXα(t)

max
K0(α(t))Γ(α(t)− 1)

‖�(ε1(t), t)−�(ε2(t), t)‖K,

≤ W0�
α(t)
maxXα(t)

max
K0(α(t))Γ(α(t)− 1)

‖ε1(t)− ε2(t)‖K. (17)

Then
‖B[ε1(t)]− B[ε2(t)]‖K≤ L‖ε1(t)− ε2(t)‖K, (18)

where

L =
W0�

α(t)
maxXα(t)

max
K0(α(t))Γ(α(t)− 1)

.

B is a contraction operator if 1 > L. So (8) has a unique solution.

Table 2. The definition of all parameters of system (8).

Parameter Interpretation Baseline Value (per day−1) Reference

Λ Recruitment rate 29,200,000
75 × 365 day−1 [29]

β Rate of effective transmission 0.00016708 [24]
μ Natural death rate 1

75 × 365 day−1 [29]
ξ3 Efficacy of the Janssen vaccine 0.67 [1]
ξ2 Efficacy of the Moderena vaccine 0.945 [30]
ξ1 Efficacy of the Pfizer vaccine 0.95 [31]
ν3 Rate of Janssen vaccination 0.00053 day−1 [24]
ν2 Rate of Moderena vaccination 0.0042 day−1 [24]
ν1 Rate of Pfizer vaccination 0.0059 day−1 [24]
p Unvaccinated susceptibles who move to the asymptomatic stage are a small percentage of the total 0.5 [24]
θ A parameter was changed to limit the transmissibility of asymptomatic people 0.7 [32]
φ Vaccine effectiveness against severe COVID-19 sickness 0.8 [2]
fi The percentage of susceptibles who received the vaccine and went on to develop subclinical disease 0.5 [24]

γA , γIU , γIV , γIS Individuals in A, IU , IV and IS classes, respectively; the programme has a high rate of recovery 0.13978 day−1 [24]
dIU , dIV , dIS Death rates from disease for people in the IU , IV and IS groups, respectively 0.015 [32]

α1 The rate at which severe COVID-19 sickness develops 0.3 [32]
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3.2. Local Stability

The basic reproduction number is calculated in this section. The next generation
operator method is used to investigate the local stability of the disease-free equilibrium
(DFE), which is given by solving 1

σ1−α(t)
CPC
0 Dα(t)

t (.) = 0 of model (8) and considering
IU = IV = IS = 0. Then, we obtained D0, where D0 is the DFE and is given by [33]:

D0 = (S̃, Ṽ3, Ṽ2, Ṽ1, Ã, ĨV , ĨS, ĨU , R̃) =

(
Λ

(ν3 + ν2 + ν1 + μ)
,

ν3Λ
(ν3 + ν2 + ν1 + μ)

,
ν2Λ

(ν3 + ν2 + ν1 + μ)
,

ν1Λ
(ν1 + ν2 + ν3 + μ)

,

Λ
(ν1 + νλ2 + ν3 + μ)

, 0, 0, 0, 0).

As a result, the matrix V of the transfer of individuals between compartments and the
matrix F of new infection terms are provided by

F = σ1−α(t)

⎛⎜⎜⎜⎜⎜⎝
βθQ̃
ÑH

βQ̃
ÑH

βηV Q̃
ÑH

0

(1− p) βθS̃
ÑH

(1− p) βS̃
ÑH

(1− p) βηV S̃
ÑH

0
βθν̃

ÑH

βν̃

ÑH

βηV ν̃

ÑH
0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠,

with ν̃ = (1− ξ3)(1− f3)Ṽ3 + (1− ξ2)(1− f2)Ṽ2 + (1− ξ1)(1− f1)Ṽ1,
Q̃ = (1− ξ3) f3Ṽ3 + (1− ξ1) f1Ṽ1 + (1− ξ2) f2Ṽ2 + pS̃.

V = σ1−α(t)

⎛⎜⎜⎝
μ + γA 0 0 0

0 γIU + dIU + α1 + μ 0 0
0 0 γIV + dIV + (1− φ)α1 + μ 0
0 −α1 −(1− φ)α1 γIU + dIU + μ

⎞⎟⎟⎠.

The model’s basic reproduction number, denoted by R0, is given by [34,35]:

ρ(FV−1) = R0 = σ1−α(t)β
( (1− p)E1E3μ + E1E2ηVY1 + E2E3ηAθY2

μ(ν1 + ν2 + ν3)E1E2E3

)
. (19)

with E1 = (γA + μ),
E2 = (γIU + dIU + α1 + μ),
E3 = (α1(1− φ) + dIV + μ + γIV),
Y1 = (1− ξ3)(1− f3)ν3 + (1− ξ1)(1− f1)ν1 + (1− ξ2)(1− f2)ν2,
Y2 = (1− ξ3) f3ν3 + (1− ξ2) f2ν2 + μp(1− ξ1) f1ν1.

Theorem 3. The disease-free equilibrium point D0 of model (8) is locally asymptotically stable
(LAS) if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix of the system (8) at the DFE is used to investigate the local
stability of model (8) [33,36].

J(D0) = σ1−α(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X 0 0 0 A1 A2 A3 0 0
ν1 −μ 0 0 B1 B2 B3 0 0
ν2 0 −μ 0 F1 F2 F3 0 0
ν3 0 0 −μ G1 G2 G3 0 0
0 0 0 0 M1 M2 M3 0 0
0 0 0 0 N1 N2 N3 0 0
0 0 0 0 Z1 Z2 Z3 0 0
0 0 0 0 0 α1 (1− φ)α1 −E4 0
0 0 0 0 γA γIU γIV γIS −μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where X = −(ν1 + ν2 + ν3 + μ), A1 = − βθS̃H
ÑH

, A2 = − βS̃H
ÑH

, A3 = − βηV S̃H
ÑH

,

B1 = −(1− ξ1)
βθṼ1
ÑH

, B2 = −(1− ξ1)
βṼ1
ÑH

, B3 = −(1− ξ1)
βηVṼ1

ÑH
,

F1 = −(1− ξ2)
βθṼ2
ÑH

, F2 = −(1− ξ2)
βṼ2
ÑH

, F3 = −(1− ξ2)
βηVṼ2

ÑH
,

G1 = −(1− ξ3)
βθṼ3
ÑH

, G2 = −(1− ξ3)
βṼ3
ÑH

, G3 = −(1− ξ3)
βηVṼ3

ÑH
,

M1 = βθQ̃
ÑH
− E1, M2 = βQ̃

ÑH
, M3 = βηV Q̃

ÑH
,

N1 = βθ(1−p)S̃H
ÑH

, N2 = β(1−p)S̃H
ÑH

− E2, N3 = β(1−p)ηV S̃H
ÑH

,

Z1 = βθν̃

ÑH
, Z2 = βν̃

ÑH
, Z3 = βηV ν̃

ÑH
− E3,

E4 = (γIS + dIS + μ).
The characteristic equation:

(ν3 + ν1 + ν2 + μ + λ)(λ3 + (E1 + E2 + E3 − (1−p)S̃+ηV ν̃+ηV θQ̃
ÑH

β)λ2

+ (E1E2 + E1E3 + E2E3 − β[(E1 + E3)(1− p)S̃ + (E1 + E2)ηV ν̃
+ (E2 + E3)ηAθQ̃])λ + E1E2E3(1− R0))(μ + λ)4(λ + E4) = 0.
Then, we have
(λ + μ) = 0, (λ + E4) = 0, (λ + ν1 + ν2 + ν3 + μ) = 0;
the arguments are arg(λk) >

π
a > k 2π

a > π
M > π

2M , where k = 0, 1, 2, 3, ..., a− 1.

(λ3 + (E1 + E2 + E3 − β
(1−p)S̃+ηV ν̃+ηV θQ̃

Ñ )λ2 + (E1E2 + E1E3 + E2E3 −
β[(E1 + E3)(1− p)S̃ + (E1 + E2)ηV ν̃ + (E2 + E3)ηAθQ̃])λ + E1E2E3(1− R0)) = 0.

We can rewrite the above equation as:

λ3 + aλ2 + bλ + c = 0, (20)

where

a = (E1 + E2 + E3 − β
(1− p)S̃ + ηV ν̃ + ηVθQ̃

Ñ
),

b = (E1E2 + E1E3 + E2E3 − β[(E1 + E3)(1− p)S̃ + (E1 + E2)ηV ν̃ + (E2 + E3)ηAθQ̃]),

c = E1E2E3(1− R0).

λ3 + aλ2 + bλ + c = 0, (21)

We obtain
λ3 + aλ2 + bλ + c = (λ− ζ11)(λ

2 − τλ + ζ11), (22)

τ = −(a + ζ11), (23)

ζ11 = b + ζ11(a + ζ11), (24)

c = −ζ11δ11, (25)

Hence, the other two roots are given by

ζ11,2,3 =
1
2
(τ ±

√
�), (26)

� = τ2 − 4δ11 = a2 − 2aζ11 − (3ζ2
11 + 4b). (27)
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These two roots are complex conjugate when � < 0, real and distinct when � > 0,
and real and conincident when� = 0.

Considering that� = 0 occurs a = ζ11 ± 2
√

ζ2
11 + b, we have that if ζ2

11 + b < 0, then
� > 0 and two distinct real roots given by

ζ11,2,3 =
1
2
(τ ±

√
�).

If ζ2
11 + b = 0 then � = (a− ζ11)

2 and two distinct real roots exist given by

ζ11,2,3 =
1
2
(τ ± |a− ζ11|).

So that ζ11,2 = −ζ11,1 and ζ11,3 = −a, if ζ2
11,1 + b > 0 and (ζ11 − 2

√
ζ2

11 + b) < a <

(ζ11 + 2
√

ζ2
11 + b), then � < 0 and two complex conjugate roots exist, given by ζ11,2,3 =

α11 ± iB11 where α22 = τ
2 , B11 =

√
4δ11−τ2

2 =
√

δ11 − α2
11. a = (ζ11 − 2

√
(ζ2

11) + b)

or a = (ζ11 − 2
√
(ζ2

11) + a2), then (� = 0) and two concident real roots exist given by

ζ11,2 = ζ11,3 = τ
2 = a+ζ11

2 a < (ζ11− 2
√
(ζ2

11) + a2) or a1 > (ζ11− 2
√
(ζ2

11) + b). Then,
� = 0 and two distinct real roots exists given by

ζ11,2,3 =
1
2
(τ ±

√
�).

Applying the Routh–Hurwitz criterion [37], Equation (27) has roots with negative real
parts if and only if R0 < 1. Thus, the DFE is locally asymptotically stable.

4. Numerical Methods for Solving the Proposed Model

4.1. GRK4M

Consider the fractional derivatives with variable order given by the following equation:
C
0 Dα(t)

t ε(t) = f (t, ε(t)), Tf ≥ t > 0, 1 ≥ α(t) > 0, (28)

ε(0) = εo.

Using GRK4M [23], the approximate solution of (28) is:

εn+1 = εn +
1
6
(K1 + 2K2 + 2K3 + K4), (29)

K1 = Υ f (tn, εn),

K2 = Υ f (tn +
1
2

Υ, εn +
1
2

K1),

K3 = Υ f (tn +
1
2

Υ, εn +
1
2

K2),

K4 = Υ f (tn + Υ, εn + K3),

where Υ =
τα(tn)

Γ(α(tn) + 1)
.

4.2. Stability of GRK4M

To investigate the stability of GRK4M, we shall utilize the following test problem of
variable-order linear differential equation for simplicity:

C
0 Dα(t)

t ε(t) = ε(t)υ, Tf ≥ t > 0, υ < 0, 1 ≥ α(t) > 0, (30)

ε(0) = εo.
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As in [23], Equation (30) is written as follows:

ε(ti+1) = ε(ti) +
1
6

υτα(ti)

Γ(1 + α(ti))
ε(ti), i = 0, 1, . . . , n− 1. (31)

Then, we have the following equation [38]:

ε(ti+1) = (1 +
1
6

τα(ti)υ

Γ(1 + α(ti))
)iε0. (32)

The condition of stability [38]:

−1 < (
1
6

τα(ti)υ

Γ(1 + α(ti))
+ 1) < 1.

4.3. CPC-ΘFDM

Consider:
CPC
0 Dα(t)

t ε(t) = ξ(t, ε(t)), ε(0) = ε0, 1 ≥ α(t) > 0. (33)

Relationship (6) can be expressed as follows:
CPC
0 Dα(t)

t ε(t) =
1

Γ(1− α(t))

∫ t

0
(t− s)−α(t)(K1(α(t))ε(s) + K0(α(t))ε′(s))ds,

= K1(α)
RL
0 I1−α(t)

t ε(t) + K0(α(t))C
0 Dα(t)

t ε(t),

= K1(α)
RL
0 Dα(t)−1

t ε(t) + K0(α(t))C
0 Dα(t)

t ε(t), (34)

Using ΘFDM and GL-approximation, we can discretize (34) as shown below:

CPC
0 Dα(t)

t ε(t)|t=tn =
K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)

+
K0(α(tn))

ταn

(
εn+1 −

n+1

∑
i=1

�iεn+1−i − ςn+1ε0

)
, (35)

K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)
+

K0(α(tn))

τα(tn)

(
εn+1 −

n+1

∑
i=1

�iεn+1−i − ςn+1ε0

)
= (Θ)ξ(ε(tn), tn) + (1−Θ)ξ(ε(tn+1), tn+1), (36)

where, ω0 = 1, ωi = (1 − α(tn)
i )ωi−1, tn = nτ, τ =

Tf
N , N is a natural number, �i =

(−1)i−1
(

α(tn)
i

)
, �1 = α(tn), ςi =

iα(tn)
Γ(1−α(tn))

. Moreover, consider that [39]:

0 < �i+1 < �i < ... < �1 = α(tn) < 1,

0 < ςi+1 < ςi < ... < ς1 =
1

Γ(−α(tn) + 1)
, i = 1, 2, ..., n + 1.

Remark 1. If K1(α(t)) = 0 and K0(α(t)) = 1 in (36), we can obtain the discretization of Caputo
operator with theta finite difference technique (C-Θ FDM).

4.4. CPC-ΘFDM Stability Analysis

The stability of method (36) will be considered here. We shall utilize the test problem
of variable-order linear differential equation, for simplicity:

(CPC
0 Dα(t)

t )ε(t) = Aε(t), t > 0, A < 0, 0 < α(t) ≤ 1. (37)
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By (34) and GL-approximation, we can discretize (37) as shown below:

K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)
+

K0(α(tn))

τα(tn)

(
εn+1 −

n+1

∑
i=1

�iεn+1−i − ςn+1ε0

)
= ΘAεn + (1−Θ)Aεn+1; (38)

put C = K1(α(tn))

τα(tn)−1 , B = K0(α(tn))

τα(tn) . Then, from boundness theorem [40], we have:

εn+1 =
1

C + B

(
Aεn − C

n+1

∑
i=1

ωiεn+1−i + B

(
n+1

∑
i=1

�iεn+1−i + ςn+1ε0

))
≤ εn, (39)

This means ε0 ≥ ε1 ≥ ... ≥ εn−1 ≥ εn ≥ εn+1. Then, method (36) is stable.

4.5. Convergence of the Method

Equation (34) can be discretized as shown below:

CPC
0 Dα(t)

t ε(t)|t=tn =
K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)

+
K0(α(tn))

ταn

(
εn+1 −

n+1

∑
i=1

�iεn+1−i − ςn+1ε0

)
, (40)

K1(α(tn))

τα(tn)−1

(
εn+1 +

n+1

∑
i=1

ωiεn+1−i

)
+

K0(α(tn))

τα(tn)

(
εn+1 −

n+1

∑
i=1

�iεn+1−i − ςn+1ε0

)
−Θξ(ε(tn), tn)− (1−Θ)ξ(ε(tn+1), tn+1) = TRn, (41)

where
‖TRn‖∞ < W, W = C max

0≤i≤n+1
|εi+1|,

C = (τα(ti)−1 + τα(ti)).

The proposed method is convergent because it is stable and consistent [41], then (41)
is convergent.

5. Numerical Results

In the following, we solved (8) numerically using GRK4M (29) and CPC-ΘFDM (36).
Using CPC-Θ FDM for solving (8), we obtained (9N + 9) of the nonlinear algebraic system
with (9N + 9) unknown. (

S, V1, V2, V3, A, IU , IV , IS, R

)
can be solved using an appropriate iterative method based on the assumed beginning
conditions. For the real data, we use [24]; the authors in this reference used the literature
to obtain some parameter values and the remaining values were fitted to the data for the
state of Texas, USA. They fitted the data of (8) solutions with the data for the state of
Texas from 13 March to 29 June 2021 [29,42]. The model was fitted with three datasets,
Moderna, Janssen, and Pfizer, with immunization data for Texas state. The three vaccination
rates υ1, υ2 and υ3 corresponding to each vaccine as well as the effective contact rate for
COVID-19 transmission, β, are estimated. According to publicly available data, the total
population of the state of Texas, USA, for the year 2021 was 29,200,000 [1]. Let R(0) = 5000,
V2(0) = 4,016,005, A(0) = 50,000, V3(0) = 129,859, S(0) = 24,000,000, IU(0) = 17,000,
IV(0) = 15,000, V1(0) = 4,115,127 and IS(0) = 10,000. The parameter values are given in
Table 2. To show that the proposed scheme is efficient, we compare the results that we
obtained in this paper with the results that were found in reference [24], which are given
in Figure 2 in constant fractional order. Figure 3 shows the behavior of the approximate
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solution of (8) (using the method in [24]) with different values of α(t). As can be seen from
this figure, when the value of the fractional derivative changes over time, the results are
different and this can dramatically affect the behavior of the model. This confirms the
generality of the variable-order derivatives. Unfortunately, this method gives us unstable
solutions, as in Figure 4a, when the value of the step size equals one. Moreover, we obtained
the stable solutions using the proposed method CPC-ΘFDM and Θ = 0, in the fully implicit
case given in this paper. This confirms that the method in [24] is stable only when the step
size is very small, while our used method is stable regardless of the value of the step size.
Figure 5 shows the behavior of the approximate solution of (8) (using CPC-ΘFDM and
Θ = 0.5, Q = 0.00025) with different values of α(t). The approximate solution behavior
of (8) is shown in Figure 6 (Θ = 1 and using CPC-ΘFDM) with different values of α(t),
Q = 0.00025. The approximate solution behavior of (8) (using GRK4M with different values
of α(t)) is shown in Figure 7. Figure 8 shows the behavior of the approximate solution
of (8) (using CPC-Θ FDM when K0(α(t)) = 1, K1(α(t)) = 0 and Θ = 0) with different
values of α(t). We noted that by comparing our results with different variable orders and
constant orders as given in [24] and Figure 5, the result in the case of constant order is
agreement. Moreover, by compering the results given in Figures 7 and 8, the result given
using CPC-ΘFDM (fully implicit case) is convergent, better than the results given using
GRK4 when we use nonlinear α(t). Figure 9 shows the relation between R and Iv, Iu, Is, A
using CPC-ΘFDM (fully implicit case) and nonlinear α(t). Furthermore, we found that
the variable-order derivative order model is a more general model than the fractional
order model given in [24] and integer order; a new behavior of the solution appears by
using different values of α(t). Moreover, we can obtain the fractional Caputo operator
as a special case from the CPC operator when K0(α(t)) = 1, K1(α(t)) = 0. Moreover,
we can obtain the fractional Caputo operator as a special case from the CPC operator if
K0(α(t)) = 1, K1(α(t)) = 0. The solutions obtained using the new method CPC-ΘFDM
can be explicit (Θ = 1) or implicit (0 ≤ Θ ≤ 1,) and fully implicit with accurate solution
when (Θ = 0).

Figure 2. Real data [24] versus fitting model (8).
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Figure 3. The solution behavior using the method in [24] with different values of α(t).

(a)

(b)

Figure 4. The solution behavior using the method [24] in (a) and using CPC-ΘFDM and Θ = 0, in (b).

Figure 5. Cont.
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Figure 5. The solution behavior acquired via CPC-ΘFDM and Θ = 0.5, of (8).

Figure 6. Cont.
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Figure 6. The solution behavior acquired via CPC-ΘFDM and Θ = 1 of (8).

Figure 7. The solution behavior acquired via GRK4M of (8).

Figure 8. The solution behavior acquired via CPC-ΘFDM and Θ = 0 of (8).
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Figure 9. The relation between the variables concerning nonlinear α(t) using CPC-ΘFDM and Θ = 0.

6. Conclusions

A novel hybrid variable-order fractional multi-vaccination model for COVID-19 is
presented in this paper in order to further explore the spread of COVID-19. The main
advantage of the hybrid variable-order fractional operator is that it can be defined as a linear
combination of the variable-order integral of Riemann–Liouville and the variable-order
Caputo derivative; it is one of the most effective and reliable operators and it is more general
than the Caputo fractional operator. The proposed model’s dynamics are improved and its
complexity is increased by employing variable-order fractional derivatives. Furthermore,
the variable-order fractional Caputo operator can be derived as a special case from the
CPC operator. Existence, boundedness, uniqueness, positivity and stability of the proposed
model are established for the model. To be compatible with the physical model, a new
parameter σ is added. The proposed model is numerically studied using CPC-ΘFDM and
GRK4M. CPC-ΘFDM depends on the values of the factor Θ. It can be explicit (Θ = 1) or
fully implicit (Θ = 0) with a large stability region. We compared our results with the real
data from the state of Texas in the United States. Moreover, the results obtained from the
CPC-ΘFDM are more stable than the results obtained from the proposed method in [24].
As a result, some graphs are provided for various linear and non-linear variable-order
derivatives. In the future, the presented study can be extended to optimal control and to
examine the impact of multiple vaccination strategies on the dynamics of COVID-19 in
a population.
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Abstract: The focus of the research presented in this paper is on a new generalized family of
degenerate three-variable Hermite–Appell polynomials defined here using a fractional derivative.
The research was motivated by the investigations on the degenerate three-variable Hermite-based
Appell polynomials introduced by R. Alyosuf. We show in the paper that, for certain values, the
well-known degenerate Hermite–Appell polynomials, three-variable Hermite–Appell polynomials
and Appell polynomials are seen as particular cases for this new family. As new results of the
investigation, the operational rule for this new generalized family is introduced and the explicit
summation formula is established. Furthermore, using the determinant formulation of the Appell
polynomials, the determinant form for the new generalized family is obtained and the recurrence
relations are also determined considering the generating expression of the polynomials contained in
the new generalized family. Certain applications of the generalized three-variable Hermite–Appell
polynomials are also presented showing the connection with the equivalent results for the degenerate
Hermite–Bernoulli and Hermite–Euler polynomials with three variables.

Keywords: Hermite polynomials; Appell polynomials; three-variable Hermite-based Appell polyno-
mials; fractional derivative; integral transforms; operational rule

MSC: 26A33; 33B10; 33C45

1. Introduction and Preliminaries

Fractional calculus, a branch of mathematical analysis, examines the possibility of
using the differentiation operators of real or complex number powers. Theoretical studies
successfully employ fractional calculus operators, which are also applicable in a vari-
ety of science and engineering domains. A comprehensive overview of the theory and
applications of the fractional-calculus operators can be seen in recent review papers [1,2].

A powerful method for dealing with fractional derivatives is the combination of
integral transforms and special polynomials; see, for instance, [3].

For min{Re(ν), Re(b)} > 0, the integral of the form [4] (p. 218),∫ ∞

0
e−bttν−1dt = Γ(ν) b−ν, (1)

is called Euler’s integral of the second kind. Consequently, the following consequences are
obtained in [3]:
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Γ(ν)
(

α− ∂

∂u

)−ν

f (u) =
∫ ∞

0 e−αttν−1 et ∂
∂u f (u)dt =

∫ ∞
0 e−αttν−1 f (u + t)dt, (2)

and

Γ(ν)
(

α− ∂2

∂u2

)−ν

f (u) =
∫ ∞

0
e−αttν−1 et ∂2

∂u2 f (u)dt. (3)

Particularly in recent years, a number of generalizations of special functions in mathe-
matical physics have seen a significant evolution. Many mathematical physics issues can
be solved analytically thanks to the recent developments in special functions theory, which
have various wide-range applications. Multi-variable and multi-index special functions
represent a substantial improvement in the theory of generalized special functions. Both
in the realm of pure mathematics and in real-world applications, special functions have
been recognized for their importance. To address the problems appearing in the theory
of abstract algebra and partial differential equations, the necessity for multi-variable and
multi-index special functions is acknowledged. In physics, the Hermite polynomials are
used to produce the quantum harmonic oscillator’s eigenstates and to solve the Schrodinger
equation for the harmonic oscillator. They are also employed as Gaussian quadrature in
numerical analysis and the notion of multiple-index, multiple-variate Hermite polynomials
were given by Hermite in [5]. Degenerate q-Hermite polynomials are defined by means of
generating function in [6], and significant properties have been determined.

Recently, additional extensions of special polynomials have been built on the foun-
dation of Euler’s integral. When establishing operational definitions and generating rela-
tions for the generalized and innovative forms of special polynomials in [3], Dattoli em
et al. employed Euler’s integral. Thus, using (1), a generalization of a number of special
polynomials including hybrid special polynomials was introduced by several authors.
Extended Laguerre–Appell polynomials are considered for research in [7]. A new class
of q-Sheffer–Appell polynomials was introduced and studied in [8] and certain positive
linear operators together with the Sheffer–Appell polynomial sequences were investigated
in [9]. Fractional calculus aspects were connected to special polynomials involving Ap-
pell sequences in the study presented in [10]. Complex Appell polynomials and their
degenerate-type polynomials were studied in [11] and it iwas shown that the results can be
applied to complex Bernoulli polynomials and complex Euler polynomials. Further stud-
ies involve Gould–Hopper-based Frobenius–Genocchi polynomials, Lagrange–Hermite
polynomials [12] and generalized Legendre–Laguerre–Appell polynomials are investigated
through fractional calculus.

In a recent study, R. Alyosuf [13] introduced degenerate three-variable Hermite-based
Appell polynomials (D-3VHAP) listed by the generating relation:

∞

∑
m=0

J Rm(u, v, w; χ)
tm

m!
= Y(t, u, v, w; χ) = R(t)(1 + χ)

ut
χ (1 + χ)

vt2
χ (1 + χ)

wt3
χ , (4)

which possess the series definition:

m

∑
k=0

(
m
k

)
Jm−k(u, v, w; χ) Rk = J Rm(u, v, w; χ), (5)

and are represented by operational rule:

exp

(
v χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

)
{Rm(u)} = J Rm(u, v, w; χ), (6)
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where, Rm(u) are Appell polynomials [14]given by generating relation:

∞

∑
k=0

Rk(u)
tk

k!
= R(t) exp(ut), (7)

with R(t) being the convergent power series given by:

∞

∑
k=0

Rk
tk

k!
= R(t), R0 �= 0. (8)

Fractional operators offer a more accurate representation of complex systems that can-
not be modeled using integer-order derivatives. Hence, they have significant applications in
various fields, including numerous branches of mathematics, physics [15], engineering [16],
and finance [17]. For example, the behavior of viscoelastic materials, biological systems
and electrical networks can be described using fractional operators [18]. Additionally,
fractional operators have applications in electromagnetics, where those operators are used
to describe the behavior of electromagnetic waves in media with fractional-order dielectric
and magnetic properties [19]. Other applications of fractional calculus can be seen in [20].

The work of Datolli and colleagues [3] and that of R. Alyusof [13] served as a source
of inspiration and motivation for the investigation reported in this paper due to the tremen-
dous relevance of fractional operators. The generalized form of a convoluted degenerate
hybrid special polynomial family is constructed here by using the fractional operator called
Eulers’ integral given by (1). A generalized degenerate Hermite-based Appell polynomial
family denoted by J Rm,ν(u, v, w; χ, β) is introduced using the generating expression:

R(z)(1 + χ)
uz
χ[

β− (vz2+wz3)
χ log(1 + χ)

]ν =
∞

∑
m=0

J Rm,ν(u, v, w; χ, β)
zm

m!
. (9)

These hybrid special polynomials could be useful in image processing and computer
vision to enhance image quality and extract features. Further, they have applications in
financial mathematics, where they model the behavior of stock prices, interest rates, and
other financial variables.

The focus of the present article is to present the study on the features of the generalized
forms of the hybrid degenerate special polynomials connected to the Hermite polynomials
through the extensive use of integral transforms and operational principles. The main con-
tributions of the paper are contained in Sections 2 and 3, after a comprehensive introduction
where all the necessary previously known results are listed. The novelty starts in Section 2,
where fractional derivatives are used to introduce a generalized version of degenerate
three-variable Hermite–Appell polynomials. These polynomials are further investigated
and for them, summation formula, determinant form and recurrence relations are also
deduced. Section 3 includes several applications of the new results involving generalized
degenerate three-variable Hermite-Appell polynomials as well as equivalent results for the
degenerate Hermite–Bernoulli and Hermite–Euler polynomials with three variables.

2. Generalized Forms of Mixed Special Polynomials

We first establish the following result before introducing the generalized version of
the degenerate three-variable Hermite–Appell polynomials:

Theorem 1. For the generalized degenerate three-variable Hermite–Appell polynomials
J Rm,ν(u, v, w; χ, β), the following operational rule holds true:(

β−
(

v
χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

))−ν

Rm(u) = J Rm,ν(u, v, w; χ, β). (10)
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Proof. Substituting b with α−
(

v χ
log(1+χ)

D2
u + w

(
χ

log(1+χ)

)2
D3

u

)
in integral (1) and the

resulting equation on Rm(u), we discover

(
α−

(
v

χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

))−ν

Rm(u)

=
1

Γ(ν)

∫ ∞

0
e−αttν−1 exp

(
vt

χ

log(1 + χ)
D2

u + wt
( χ

log(1 + χ)

)2
D3

u

)
Rm(u)dt, (11)

which in view of Equation (6) gives(
α−

(
v

χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

))−ν

Rm(u) =

1
Γ(ν)

∫ ∞

0
e−αttν−1

J Rm(u, vt, wt; χ)dt. (12)

A new family of polynomials is defined by the transform on the right-hand side
of Equation (12). Using the symbol J Rm,ν(u, v, w; χ, β) to identify this unique family of
polynomials, we may create the generalized degenerate three-variable Hermite Appell
polynomials (D3VHAP) given by expression

J Rm,ν(u, v, w; χ, β) =
1

Γ(ν)

∫ ∞

0
e−αttν−1

J Rm(u, vt, wt; χ)dt. (13)

In view of Equations (12) and (13), assertion (10) follows.

Next, we prove the following result, which will be applied to construct the generating
function of the generalized D3VHAP J Rm,ν(u, v, w; χ, β):

Theorem 2. For the generalized D3VHAP J Rm,ν(u, v, w; χ, β), the following generating expres-
sion holds true:

R(z)(1 + χ)
uz
χ[

β− (vz2+wz3)
χ log(1 + χ)

]ν =
∞

∑
m=0

J Rm,ν(u, v, w; χ, β)
zm

m!
(14)

Proof. When we multiply both sides of expression (13) by zm

m! and summing over m adding
the results, we obtain

∞

∑
m=0

J Rm,ν(u, v, w; χ, β)
zm

m!
=

∞

∑
m=0

1
Γ(ν)

∫ ∞

0
e−βttν−1

J Rm(u, vt, wt; χ)
zm

m!
dt. (15)

Using Equation (4) with t replaced by z in the right-hand side of Equation (15), it
follows that

∞

∑
m=0

J Rm,ν(u, v, w; χ, β)
zm

m!
=

∞

∑
m=0

1
Γ(ν)

∫ ∞

0
e−βttν−1R(z)(1 + χ)

uz+vz2t+wz3t
χ dt, (16)

which in view of expression (1) yields assertion (14).

Corollary 1. For R(z) = 1, the generalized D3VHAP J Rm,ν(u, v, w; χ, β) reduces to the degener-
ate three-variable Hermite polynomials Jm,ν(u, v, w; χ, β), therefore the corresponding operational
rule and generating function for these polynomials are given by the expressions:(

β−
(

v
χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

))−ν

um = Jm,ν(u, v, w; χ, β) (17)
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and
(1 + χ)

uz
χ[

β− (vz2+wz3)
χ log(1 + χ)

]ν =
∞

∑
m=0

Jm,ν(u, v, w; χ, β)
zm

m!
, (18)

respectively.

Remark 1. For β = ν = 1, the generalized D3VHAP J Rm,ν(u, v, w; χ, β) reduces to the degener-
ate Hermite–Appell polynomials J Rm(u, v, w; χ) [13].

Remark 2. For α = ν = 1 and χ → 0, the generalized D3VHAP J Rm(u, v, w; χ) becomes the
3VHAP [21].

Remark 3. For α = ν = 1, v = w = 0 and χ → 0, the generalized D3VHAP J Rm(u, v, w; χ)
reduces to the Appell polynomials [14].

The next step is to prove the explicit summation formula for the generalized D3VHAP
J Rm,ν(u, v, w; χ, β):

Theorem 3. For, J Rm,ν(u, v, w; χ, β) i-e, the generalized D3VHAP, the below listed explicit
summation formula in terms of the generalized D3VHP Jm,ν(u, v, w; χ, β) holds true:

J Rm,ν(u, v, w; χ, β) =
m

∑
r=0

(
m
r

)
Rr Jm−r,ν(u, v, w; χ, β) (19)

Proof. By inserting Equations (18) and (8) into the left-hand side of the expression (14),
assertion (19) is obtained.

Corollary 2. The determinant formulation listed in [22] (p. 1533) of the Appell polynomials is
used to obtain the determinant form of the generalized D3VHAP:

R0(u) =
1
γ 0

, γ0 =
1

R0
, (20)

Rm(u) =
(−1)m

(γ0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 u u2 · · · um−1 um

γ0 γ1 γ2 · · · γm−1 γm

0 γ0 (2
1)γ1 · · · (m−1

1 )γm−2 (m
1 )γm−1

0 0 γ0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (21)

γm = − 1
R0

( m

∑
k=1

(
m
k

)
Rk γm−k

)
, m = 1, 2, 3, · · · ,

where γ0, γ1, · · · , γm ∈ R, γ0 �= 0.

Theorem 4. For the generalized D3VHAP J Rm,ν(u, v, w; χ, β), the following determinant form
holds true:

J R0,ν(u, v, w; χ, β) =
1
γ 0
Jm,ν(u, v, w; χ, β), γ0 =

1
R0

, (22)
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J Rm,ν(u, v, w; χ, β)

= (−1)m

(γ0)
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J0,ν(u, v, w; χ, β) J1,ν(u, v, w; χ, β) · · · Jm−1,ν(u, v, w; χ, β) Jm,ν(u, v, w; χ, β)

γ0 γ1 · · · γm−1 βn

0 γ0 · · · (m−1
1 )γm−2 (m

1 )γm−1

0 0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (23)

γm = − 1
R0

( m

∑
k=1

(
m
k

)
Rkγm−k

)
, m = 1, 2, 3, · · · ,

where γ0, γ1, · · · , γm ∈ R, γ0 �= 0 and Jm,ν(u, v, w; χ, β) (m = 0, 1, · · · ) are the generalized
D3VHP defined by Equation (18).

Proof. Taking m = 0 in Equation (19) and then using Equation (17) in the resultant equation,
it follows that:

J Rm,ν(u, v, w; χ, β) =
1
γ 0
J0,ν(u, v, w; χ, β), γ0 =

1
R0

. (24)

Expansion of the determinant in Equation (20) with respect to the first row gives

Rm(u) =
(−1)m

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γm−1 γm

γ0 (2
1)γ1 · · · (m−1

1 )γm−2 (m
1 )γm−1

0 γ0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (−1)mu
(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ2 · · · γm−1 γm

0 (2
1)γ1 · · · (m−1

1 )γm−2 (m
1 )γm−1

0 γ0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(25)

+
(−1)mu2

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 · · · γm−1 γm

0 γ0 · · · (m−1
1 )γm−2 (m

1 )γm−1

0 0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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+ · · ·+ (−1)2m−1um−1

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 γ2 · · · γm

0 γ0 (2
1)γ1 · · · (m

1 )γm−1

0 0 γ0 · · · (m
2 )γm−2

. . . · · · .

. . . · · · .
0 0 0 · · · ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
um

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 γ2 · · · γm−1

0 γ0 (2
1)γ1 · · · (m−1

1 )γm−2

0 0 γ0 · · · (m−1
2 )γm−3

. . . · · · .

. . . · · · .
0 0 0 · · · γ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (26)

Since each minor in Equation (26) is independent of u, operating
(

β−
(

v χ
log(1+χ)

D2
u +

w
(

χ
log(1+χ)

)2
D3

u

))−ν

on both sides of Equation (26) and then using Equations (10) and (17),

we find

J Rm,ν(u, v, w; χ, β) =
(−1)mJ0,ν(u, v, w; χ, β)

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 γ2 · · · γm−1 γm

γ0 (2
1)γ1 · · · (m−1

1 )γm−2 (m
1 )γm−1

0 γ0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (−1)mJ1,ν(u, v, w; χ, β)

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ2 · · · γm−1 γm

0 (2
1)γ1 · · · (m−1

1 )γm−2 (m
1 )γm−1

0 γ0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)mJ2,ν(u, v, w; χ, β)

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 · · · γm−1 γm

0 γ0 · · · (m−1
1 )γm−2 (m

1 )γm−1

0 0 · · · (m−1
2 )γm−3 (m

2 )γm−2
. . · · · . .
. . · · · . .
0 0 · · · γ0 ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·
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+
(−1)2m−1Jm−1,ν(u, v, w; χ, β)

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 γ1 γ2 · · · γm

0 γ0 (2
1)γ1 · · · (m

1 )γm−1

0 0 γ0 · · · (m
2 )γm−2

. . . · · · .

. . . · · · .
0 0 0 · · · ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
Jm,ν(u, v, w; χ, β)

(γ0)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 γ2 · · · γm−1

0 γ0 (2
1)γ1 · · · (m−1

1 )γm−2

0 0 γ0 · · · (m−1
2 )γm−3

. . . · · · .

. . . · · · .
0 0 0 · · · ( m

m−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (27)

Combining the components in Equation (27), the right-hand side leads to the theorem’s
proof (12).

Next, we derive the recurrence relations of the generalized D3VHAP J Rm,ν(u, v, w; χ, β)
by considering their generating expression. A recurrence relation is an equation that
iteratively creates a sequence or multidimensional array of values after one or more ini-
tial terms are given. The definition of each subsequent term in the series or array de-
pends on the preceding terms. The listed recurrence relations of the generalized D3VHAP
J Rm,ν(u, v, w; χ, β) are discovered by differentiating generating function (14) with respect
to u, v, w, and β:

χ

log(1 + χ)

∂

∂u

(
J Rm,ν(u, v, w; χ, β)

)
= m J Rm−1,ν(u, v, w; χ, β),

χ

log(1 + χ)

∂

∂v

(
J Rm,ν(u, v, w; χ, β)

)
= ν m(m− 1) J Rm−2,ν+1(u, v, w; χ, β),

χ

log(1 + χ)

∂

∂w

(
J Rm,ν(u, v, w; χ, β)

)
= ν m(m− 1)(m− 2) J Rm−3,ν+1(u, v, w; χ, β),

∂

∂β

(
J Rm,ν(u, v, w; χ, β)

)
= −ν J Rm,ν+1(u, v, w; χ, β).

Given the aforementioned relationships, we have

χ

log(1 + χ)

∂

∂v

(
J Rm,ν(u, v, w; χ, β)

)
= − ∂3

∂u2∂β J Rm,ν(u, v, w; χ, β),

( n
log(1 + χ)

)2 ∂

∂w

(
J Rm,ν(u, v, w; χ, β)

)
= − ∂4

∂u3∂β J Rm,ν(u, v, w; χ, β).

3. Applications

A variety of members of the Appell polynomial family can be obtained depending
on the proper choice for the functionR(t). Several applications in number theory, combi-
natorics, numerical analysis, and other areas of practical mathematics make use of these
polynomials and numbers of Bernoulli, Euler, and Genocchi. The Taylor expansion, the
trigonometric and hyperbolic tangent and cotangent functions, and the sums of powers of

106



Symmetry 2023, 15, 840

natural numbers are only a few examples of mathematical formulas where the Bernoulli
numbers can be found. In close proximity to the trigonometric and hyperbolic secant
function origins, the Euler numbers enter the Taylor expansion. In graph theory, automata
theory, and calculating the number of up–down ascending sequences, the Genocchi num-
bers are useful.

Thus, for suitable selection of R(z) in (14), the following generating expressions for
degenerate 3VH-Bernoulli, Euler and Genocchi polynomials hold:

z
ez−1 (1 + χ)

uz
χ[

β− (vz2+wz3)
χ log(1 + χ)

]ν =
∞

∑
m=0

JBm,ν(u, v, w; χ, β)
zm

m!
,

z
ez+1 (1 + χ)

uz
χ[

β− (vz2+wz3)
χ log(1 + χ)

]ν =
∞

∑
m=0

J Em,ν(u, v, w; χ, β)
zm

m!

and
2z

ez+1 (1 + χ)
uz
χ[

β− (vz2+wz3)
χ log(1 + χ)

]ν =
∞

∑
m=0

J Gm,ν(u, v, w; χ, β)
zm

m!
.

The generalized D3VH-Bernoulli polynomials JBm,ν(u, v, w; χ, β) and the generalized
D3VH-Euler polynomials J Em,ν(u, v, w; χ, β) in view of (10) are defined using the following
operational rules:(

β−
(

v
χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

))−ν

Bm(u) = J Rm,ν(u, v, w; χ, β)

and (
β−

(
v

χ

log(1 + χ)
D2

u + w
( χ

log(1 + χ)

)2
D3

u

))−ν

Em(u) = J Rm,ν(u, v, w; χ, β),

respectively.
Appell polynomials are involved in various identities. The operational formalism

outlined in the preceding section can be used to acquire the appropriate identification using
the generalized Hermite–Appell polynomials. To do this, we take the following course
of action:

The operator
(

β−
(

v χ
log(1+χ)

D2
u + w

(
χ

log(1+χ)

)2
D3

u

))−ν

, referred to as (O), is ap-

plied on both sides of a given relation.
We have the four applications listed below.

1. Consider first the following connections involving Bernoulli polynomials [23]
(pp. 29–30):

Bm(u + 1)−Bm(u) = m um−1, m = 0, 1, 2, ...

m−1

∑
k=0

(
m
k

)
Bk(u) = mum−1, m = 2, 3, 4, ...

Bm(ku) = km−1
m−1

∑
k=0

Bm

(
u +

k
m

)
, m = 0, 1.2, ...; k = 1, 2, 3, ...

The identities that contain the generalized D3VH-Bernoulli polynomials JBm,ν(u, v, w; χ, β)
are obtained by applying the operator (O) to earlier expressions and taking into ac-
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count operational rules (14) and (17) on the resulting expressions. They are listed
as follows:

JBm,ν(u + 1, v, w; χ, β)− JBm,ν(u, v, w; χ, β) = m JBm−1,ν(u, v, w; χ, β), m = 0, 1, 2...,

m−1

∑
k=0

(
m
k

)
JBm,ν(u, v, w; χ, β) = m JBm−1,ν(u, v, w; χ, β), m = 2, 3, 4...,

JBm,ν(ku, k2v, k3w; χ, β) = km−1
m−1

∑
k=0

JBm−1,ν(u + k/m, v, w; χ, β), m = 0, 1, 2, ...; k = 1, 2, · · · .

2. We now use the the following relationships involving Euler polynomials [23] (pp. 29–30):

Em(u + 1) + Em(u) = 2um.

Em(kx) = km
m−1

∑
k=0

(−1)kEm

(
u +

k
m

)
m = 0, 1, 2...; k odd,

The following identities involving the generalized D3VH-Euler polynomials J Em,ν
(u, v, w; χ, β) are obtained:

J Em,ν(u + 1, v, w; χ, β) + J Em,ν(u, v, w; χ, β) = 2 Jm,ν(u, v, w; χ, β).

J Em,ν(ku, k2v, k3w; χ, β) = km
m−1

∑
k=0

(−1)k
J Em,ν(u + k/m, v, w; χ, β), m = 0, 1.2, ...; k odd.

3. Next, we review the relationships between Bernoulli and Euler polynomials [23]
(pp. 29–30), which are listed below:

Bm(u) = 2−m
m

∑
k=0

(
m
k

)
Bm−kEk(2u), m = 0, 1, 2...,

Em(u) =
2m+1

m + 1

[
Bm+1

(u + 1
2

)
−Bm+1

(u
2

)]
, m = 0, 1, 2...,

Em(ku) = − 2km

m + 1

m−1

∑
k=0

(−1)kBm+1

(u + k
m

)
, m = 0, 1, 2...; k even.

When we apply the operator (O) to the prior listed equations, we obtain:

JBm,ν(u, v, w; χ, β) = 2−m
m

∑
k=0

(
m
k

)
Bm−kJ Em,ν(2u, 4v, 8w; χ, β), m = 0, 1, 2...,

J Em,ν(u, v, w; χ, β) =
2m+1

m + 1

[
J Rm+1,ν(

u + 1
2

,
v
4

,
w
8

; χ, β)− JBm+1,ν(
u
2

,
v
4

,
w
8

; χ, β)
]
, m = 0, 1, 2, ...

J Em,ν(ku, k2v, k3w; χ, β) = − 2km

m + 1

m−1

∑
k=0

(−1)k
JBm+1,ν(

u + k
m

, v, w; χ, β), m = 0, 1.2, · · · ; k even.

4. Further, the determinant definition of the generalized D3VH-Bernoulli polynomials

JBm,ν(u, v, w; χ, β) is derived by assuming γ0 = 1 and γi = 1
i+1 (i = 1, 2, · · · , n)

in (22) and (23) and the determinant formulation of the generalized D3VH-Euler
polynomials J Em, ν(u, v, w; χ, β) is derived by taking γ0 = 1 and γi = 1

2 (i =
1, 2, · · · , n) in expressions (22) and (23).

The examples above show how the operational connection between the Appell and
generalized D3VHAP polynomials may be used to find solutions for the generalized
D3VHAP polynomials.
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4. Conclusions

Inspired by the study conducted in [13], where three-variable degenerate Hermite-
based Appell polynomials have been introduced and studied, the new generalized family of
degenerate three-variable Hermite–Appell polynomials J Rm,ν(u, v, w; χ, β) is introduced in
Section 2 of this paper. For these polynomials J Rm,ν(u, v, w; χ, β), Theorem 1 provides the op-
erational rule. Theorem 2 gives the generating expression for the function J Rm,ν(u, v, w; χ, β)
and the connection of this family to the degenerate Hermite–Appell polynomials, three-
variable Hermite–Appell polynomials and Appell polynomials. The explicit summation
formula for polynomials J Rm,ν(u, v, w; χ, β) is proved in Theorem 3 and the determinant
form for the generalized family is obtained in Theorem 4. The recurrence relations of the
generalized three-variable degenerate Hermite-based Appell polynomials are also derived.
In Section 3, certain applications of the results obtained in Section 2 are presented giving the
equivalent results for the degenerate Hermite–Bernoulli and Hermite–Euler polynomials
with three variables. These generalized degenerate hybrid special polynomials associated
with Hermite polynomials have a wide range of applications in mathematics and physics.
These polynomials may arise naturally in the study of quantum mechanics, in probability
theory, where these polynomials may be related to the normal distribution, which is one
of the most important distributions in probability theory. In approximation theory, these
polynomials can be used as a basis for approximating functions and serve as a powerful
tool for numerical analysis. Further, in statistical mechanics, Hermite polynomials are used
to calculate the partition function and thermodynamic properties of ideal gases and can be
used in Fourier analysis to decompose functions into a sum of orthogonal functions.

By using operational approaches, the development of new functional families is
facilitated as well as the derivation of the characteristics of those functional families linked
to regular and generalized special functions. Dattoli and his colleagues recognized the
significance of the use of operational techniques in the study of special functions that are
intended to provide explicit solutions for families of partial differential equations, including
those of the Heat and D’Alembert type, and their applications; see, for example [3,24,25]
when applied to multi-variable generalized special functions in conjunction with the
monomiality principle. This article’s method can be utilized as a helpful tool in novel
analytical techniques for the solutions of a large class of partial differential equations that
are regularly encountered in physical issues.

Further, future research can be conducted in order to find the symmetric identities and
determinant forms for these polynomials. Additionally, implicit summation formulae can
be taken as future observations.
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Abstract: The optimal control theory in mathematics aims to study the finding of control for a dynamic
system over time, where an objective function is optimized. It has a broad range of applications in
engineering, operations research, and science. The main purpose of this study is to provide numerical
algorithms for two cases of optimal control problems of fractional order that involve fractional order
derivatives with free and non-free terminal time. In addition to comparing the numerical results
for three test problems with exact solutions of these problems, various computer simulations are
also introduced.

Keywords: optimal control; fractional differential equations (FDEs); fractional optimal control problems
(FOCPs); free terminal time

1. Introduction

Optimal control is the study of finding a dynamic control system over time in order to
optimize an objective function. It has many uses in operations research, engineering, and
science. For instance, the dynamic system could be a spacecraft with controls that corre-
spond to rocket thrusters, and the goal could be to reach the moon using the least amount of
fuel. In terms of result, the dynamic system could be a country’s economy with the goal to
minimize unemployment; in this scenario, the controls could be fiscal and monetary policy.
It is also possible to integrate operations research issues into the framework of optimal
control theory by using a dynamic system. Additionally, a branch of mathematics and
physics known as the fractional dynamics examines how objects and systems behave by
differentiating fractional orders. Research on fractional dynamical systems has produced
novel findings that have attracted the interest of a significant audience of professionals,
including mathematicians, physicists, applied researchers, and practitioners. This is due to
the topic’s wide applications in science and technology. In contrast to integer-order models,
however, fractional-order models offer the potential to express non-local relations in time
and space using power law memory kernels [1]. Consequently, this indicates that they offer
more accurate and more realistic results. Moreover, the standard integral and differential
calculus are generalized to any order in fractional calculus. If the order of the fractional
derivative operator is an integer m, we obtain an m-fold integral when m is negative and
the traditional derivative of order m when m is positive. Furthermore, for the review of the
literature on numerical studies of fractional optimal control problems (FOCPs), Agrawal [2]
preformed a formulation and numerical scheme for FOCPs, the work in [3] introduced the
numerical solution of some types of FOCPs, while Bhrawy et al. [4] introduced an accurate
numerical technique for solving FOCPs. Furthermore, a new method for the numerical
solution of FOCPs was introduced in [5]. Furthermore, to solve multidimensional FOCPs
with a quadratic performance index, the authors of [6] developed a practical numerical
method for the purpose of solving FOCPs, and Doha et al. [7] investigated an effective
numerical method based on the shifted orthonormal Jacobi polynomials. However, the
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generalized differential transform approach was used in [8] to introduce the numerical
solutions of the coupled space-and-time Burgers equations. Lotfi et al. [9] introduced a
numerical technique for solving FOCPs, Pooseh et al. [10] introduced a numerical scheme
to solve FOCPs, Zhao and Li [11] solved the time–space fractional telegraph equation using
the fractional difference-finite element, and Mechee and Senu [12] studied the numerical so-
lution of fractional differential equations of Lane–Emden type by the method of collocation.
For the space fractional diffusion equations, Zhou et al. [13] studied the quasi-compact
finite difference schemes, and Bhrawy et al. [14] investigated a new Jacobi spectral colloca-
tion approach for fractional coupled Schrödinger systems and 1 + 1 fractional Schrödinger
equations. At the same time, for the review of the literature on Legendre polynomials, using
a Chebyshev–Legendre operational technique, Bhrawy et al. [15] solved the fractional opti-
mal control for dynamical systems problems (FOCDSs). In fact, Yousefi et al. [16] employed
a Legendre multiwavelet collocation approach in order to solve the FOCPs. In contrast,
Bhrawy and Ezz-Eldien [17] used a new Legendre operational technique for solving delay
FOCPs, in similar to Dirichlet boundary conditions, Heydari et al. [18] solved fractional
partial differential equations (FPDEs) using the Legendre wavelets method. On the other
hand, for the solution of fractional sub-diffusion and reaction sub-diffusion equations, Doha
et al. [7] utilized an effective Legendre spectral tau matrix formulation, Khan and Khalil [19]
provided a new approach that is based on Legendre polynomials. In parallel to these re-
searchers, Sweilam and Al-Ajami [20] solved some types of FOCPs using the Legendre
spectral-collocation method; additionally, some authors studied different cases of fractional
differential equations. To solve the space fractional order diffusion equation, Sweilam
et al. [21] utilized the second sort of shifted Chebyshev polynomials, but a discrete method
for solving FOCPs was introduced in [22], while ref. [23] established a fractional adaptation
strategy for lateral control of an AGV; whereas, Pinto and Tenreiro Machado [24] introduced
the fractional dynamics of computer virus propagation, Pooseh et al. [25] studied the FOCPs
with free terminal time by using operational matrices of Bernstein polynomials, Jafari and
Tajadodi [26] solved the FOCPs, and Jesus and Tenreiro Machado [27] investigated the
fractional control of heat diffusion systems. Thereafter, for a review of more literature on
the applications, Ahmad and El-Khazali [28] introduced the fractional-order dynamical
models of love and David et al. [29] studied fractional-order calculus, meanwhile, analog
fractional-order controllers for temperature and motor control applications were studied
in [30,31] introduced a 2D dynamic analysis of the model of disturbances in the calcium
neuronal model and its implications in neurodegenerative disease; the work in [32] intro-
duced the fractional sub-equation method and its applications to nonlinear fractional PDEs,
whereas Kreyszig [33] studied historical apologia, fundamental ideas, as well as certain
applications. Lastly, a fractional-order iterative learning control (FOILC) design challenge
for linear time-varying systems with nonuniform trial durations was addressed in [34].
Additionally, a closed-loop FOILC updating legislation has been provided for activities
with variable trial lengths. A central idea that unifies the coordination, prioritization, and
execution of digital transformations within a firm was investigated in [35] in organizations
that needed to build management procedures to oversee initiatives to investigate new
digital technologies. For the purpose of tracking control of fractional-order linear systems,
Zhao et al. [36] developed a revolutionary FOILC approach. In the meantime, the same
beginning condition assumption is relaxed with the introduction of an initial state learning
mechanism. For the FOCPs exposed to fractional systems with equality and inequality
constraints, Sabermahani and Ordokhani [37] investigated fractional optimal control issues
using the Fibonacci wavelets and Galerkin approach.

The free and non-free terminal time optimal control for dynamical systems (OCDSs)
is introduced in this study. Additionally, the direct search approach to the unconstrained
optimization problem is investigated. The proposed numerical methods for solving the
optimal control problems of fractional orders with free and non-free terminal time are then
constructed. The algorithm of the known procedure as Hooke and Jeeves’s method is used
in the computation.
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2. Main Problem

A dynamic system’s optimal control problem is the task of determining the control
law that minimizes a performance index in terms of the state and control variables. Many
authors have recently studied a wide range of optimization issues related to the integer
optimal control of differential systems. In this research, we propose a novel numerical
method for approximating the solutions of the fractional optimal control systems in both
cases with free- and non-free terminal time.

Case I: Non-Free Terminal Time
Consider

min
x(τ),u(τ)

J(τ, x(τ), u(τ)) = min
x(τ),u(τ)

∫ τ1

τ0

P(τ, x(τ), u(τ))dτ, (1)

subjected to the constricted dynamical system

αẋ(τ) + βDγx(τ) = γ(τ)x(τ) + f (τ)u(τ) + g(τ), τ0 ≤ τ ≤ τ1, 0 ≤ γ ≤ 1. (2)

The constricted boundary conditions are as follows:

x(τ0) = ζ, x(τ1) = η, (3)

where α, β �= 0,

Case II: Free Terminal Time
Consider the FOCP in the equations

min
x(τ),u(τ),T

J(τ, T, x(τ), u(τ)) = min
x(τ),u(τ),T

∫ T

τ0

P(τ, x(τ), u(τ))dτ, (4)

subjected to the constricted dynamical system in Equation (2) with the free terminal time:

x(t0) = c, x(T) = d, (5)

where T is a free parameter.
Firstly, for using the proposed numerical approach, we use the basic polynomials to

approximate the state variable x(τ) with the control variable u(τ), and the known functions
e(τ), f (τ), and g(τ) are given. The second stage of the numerical method involves using
a search method such as the Hooke and Jeeves method to optimize the parameters of
the approximation in case of the problem of fractional order of optimal control systems
with free terminal time together to the parameter of T in case of non-free terminal time.
The manuscript is organized as follows. Section 3 introduces the basic definitions and
background related to the problem of this study, while Section 4 presents the numerical
methods and studies the proposed numerical method for solving FOCPs with free and
non-free terminal time. Furthermore, Section 5 introduces the implementations of test
examples for solving two types of fractional optimal control dynamical systems with free
and non-free terminal time. Lastly, this paper ends with a discussion and conclusions in
Section 6.

3. Preliminary

We have introduced the basic definitions and background related to the problem of
this study.

3.1. Basic Definitions of the Fractional Derivatives and (FOCDS) with Free and Non-Free Terminal Time

The fundamental definitions of fractional derivatives as well as the free and non-free terminal
times of fractional-order optimal control problems are introduced in this subsection.
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Definition 1. Non-Free Terminal Time (FOC) Problem
The (FOC) problem in Equations (1)–(3) is said to be a non-free terminal time if we have a

constraint in t1 that means it is fixed else free terminal time (FOC) if t1 = T is not a fixed parameter.
The following are two famous fractional derivatives since a large number of scholars have worked to
establish a fractional derivative. In the literature, the fractional derivative often was presented in
integral form. Two famous fractional derivatives are known as follows:

(i) Let f : [a, ∞) → �. and a > 0. The fractional definition of f using the Riemann–Liouville
derivative for α ∈ [n− 1, n) is defined by:

Definition 2. Riemann–Liouville Fractional Integral The left and right Riemann–Liouville (RL)
fractional integral operators of order α > 0

aDα
τy(τ) =

1
Γ(n− α)

dn

dτn

∫ τ

a

y(τ)
(τ − x)n−α−1 dx, (6)

and

aDα
τy(τ) =

1
Γ(n− 1)

dn

dτn

∫ τ

a
(τ − s)n−α−1y(s)ds, (7)

respectively, such that n is an integer and n− 1 < α < n, n ∈ N. Additionally, (ii) the Caputo
derivative definition of f , for α ∈ [n− 1, n), is defined as follows:

Definition 3. The Fractional Caputo Derivative

aDα
τ f (τ) =

1
Γ(n− α)

∫ τ

a

f (n)(τ)
(τ − x)α−n−1 dx, (8)

where n is an integer and n− 1 < α < n, n ∈ N The fractional integral and derivative in the
Definitions 2 and 3 satisfy the linearity properties for the fractional integrals and derivatives for
α > 0, n− 1 ≤ α < n.

3.2. Hooke and Jeeves Direct Search Method Analysis

In this subsection, the direct search method for solving the unconstrained optimiza-
tion problem

min
X

f (X), (9)

where the objective function f maps �n into �⋃{+∞} and X = (x1, x2, x3, . . . , xn), is intro-
duced.

3.2.1. Algorithm of Hooke and Jeeves Method

1. Set k = 0;
2. Choose an initial point X(k) and indicate the variable increments with�i for

i = 1, 2, . . . , N, where the factor of step reduction is a > 1, and the termination parameter is ε;
3. Use X(k) as the base point for an experimental move. Consider the result of the ex-

ploratory maneuver to be X. Set Z(k + 1) = X and proceed to Step 4 if the exploratory
move is successful; otherwise, proceed to Step 3;

4. Is ||�|| < ε? If so, terminate; otherwise, set A= A/a for i = 1, 2, . . . , N and go to Step 3;
5. Perform the pattern move after setting k = k+1: Xp(k+ 1) = Xp(k) + X(k)−X(k+ 1);
6. Perform another exploratory move using Xp as the base point. Let the result be

X(k + 1);
7. Is f (X(k + 1)) < f (X(k))? If so, go to Step 5; otherwise, go to Step 4.
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3.2.2. The Convergence of Hooke and Jeeves Method

The set of points produced by the direct algorithm is consistently dense in the search
region for all box selection methods. When Nmax = 1 and Hmin = 0, the proposed
algorithm’s properties of convergence are examined. The sequence of the solutions of the
problem in Equation (9) is {X(0), X(1), . . . , X(k), X(k + 1), . . . }, which is obtained using
the Hooke and Jeeves method. This sequence satisfies the convergence conditions according
to the condition in step three.

Consider ξ ∈ E to be arbitrary, where

E = zm + hmeso[−1; 1]n.

For each valid box selection approach, let {δr}∞
r=1 represent the points produced by strategy Γ.

Let

Δ(r) = max
Γ

max
ξ∈E

min
i=1,2,...,r

||ξi − δi||.

Then, Δ(r) −→ 0 as r −→ ∞.

4. The Numerical Method

In this section, the proposed numerical method for solving (FOC) problems with free-
and non-free terminal time is introduced.

4.1. Proposed Algorithm

In this subsection, we write the algorithm of the proposed numerical approach for
approximating the solutions of (FOC) in two cases: (FOC) problems with free- and non-free
terminal time. The steps of this algorithm are written as follows:

• Algorithm of non-free terminal time (FOC) problem:

1. Choose a suitable approximated base.

Ω = {Ω0(t), Ω1(t), Ω2(t), . . . , Ωn(t)},

2. Construct an approximated solution of (FOC),

x(t) =
n

∑
i=0

ciΩi(t) = c0Ω0(t) + c1Ω1(t) + · · ·+ cnΩn(t). (10)

In Equations (1) and (2) which satisfy the boundary conditions in Equation (3)
using the approximated base.

3. In case the differential equation in Equation (2) is given as explicit formula in the
control function u(t), then we have to evaluate the function u(t);

4. Substitute the approximated formulas of the functions x(t) and u(t) in Equation (1);
5. Use a suitable minimizing search methods such as the Hooke and Jeeves method

to find the minimal parameter(s) in Equation (1).

• Algorithm of free terminal time (FOC) problem:

1. Perform steps 1–4 in the previous algorithm;
2. Use suitable minimizing search methods such as the Hooke and Jeeves method

to find the best parameters (minimal) including the parameter T in Equation (1).

where T is the free parameter.

4.2. Dual Discreet Problem

• Algorithm of non-free terminal time (FOC) problem:
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1. From Equation (10), consider

x(t) =
n

∑
i=0

ciΩi(t), (11)

with the boundary conditions leading

c1 = γ0

η − ζΩ0(t1)
Ω0(t0)

−∑n
i=2 ci

(
Ωi(t0)Ω0(t1)

Ω0(t0)
−Ωi(t1)

)
Ω1(t1)

, (12)

where

γ0 =
Ω0(t0)Ω1(t1)−Ω1(t0)Ω0(t1)

Ω0(t0)Ω1(t1)
,

and

c0 =
ζ − c1Ω1(t0)−∑n

i=2 ciΩi(t0)

Ω0(t0)
, (13)

hence,

x(t) =
ζ −∑n

i=2 ciΩi(t0)

Ω0(t0)
Ω0(t) + γ0

η − ζΩ0(t1)
Ω0(t0)

−∑n
i=2 ci

(
Ωi(t0)Ω0(t1)

Ω0(t0)
−Ωi(t1)

)
Ω1(t1)

+

(
Ω1(t)−

Ω1(t0)

Ω0(t0)
Ω0(t)

)
+

n

∑
i=2

ciΩi(t). (14)

2. From the differential equation in Equation (2), we obtain the control function
u(t) as a function u(t) = f , then, we have to evaluate the function u(t) =
ψ(c2, c3, . . . , cn, Ω0(t), Ω1(t), . . . , Ωn(t));

3. From Equation (1), we obtain the optimal problem Minimum φ(c2, c3, . . . , cn), in
case of the free terminal time (FOC) problem, and Minimum φ(c2, c3, . . . , cn, T),
in case of the non-free terminal time (FOC) problem.

where T is free parameter.

5. Implementations (Numerical Examples)

In this section, we introduce two types of dynamical problems. The numerical method
introduced in Section 4 has been used for solving the optimal control problems of integer
and fractional order with free and non-free terminal time.

Example 1. Let us take into consideration the following (FOC) problem with non-free terminal
time introduced by [10,25].

min
x(τ),u(τ)

J(τ, x(τ), u(τ)) = min
x(τ),u(τ)

∫ 1

0
(τu(τ)− (γ + 2)x(τ))2dτ, (15)

subjected to the dynamic system

Dγx(τ) + ẋ(τ) = τ2 + u(τ), (16)

with the boundary conditions (BCs)

x(0) = 0, x(1) =
2

3 + γ
, (17)
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where the exact solution is given by

(x(τ), u(τ)) = (
2τ2+γ

Γ(3 + γ)
,

2τ1+γ

Γ(2 + γ)
).

Using the approximation base Ω(t) = {τ2, τ, 1}, we have the approximation of x(τ) as

x(τ) = c0 + c1τ + c2τ2. (18)

If we use the BCs in Equation (17), we obtain c0 = 0 and c1 = 2
3+γ − c2. Then, the following

approximation is obtained

x(t) = t(c2 +
2

3 + γ
− c2t). (19)

Then, we have

u(τ) = x(τ) = (1 + τ1−γ)(c2 −
2

3 + γ
+ 2c2τ)− τ2. (20)

Substitute Equations (19) and (20) in the problem of minimizing in the Equation (15) to obtain the
optimal values of c2, and the non-free terminal parameter T. Hence, using the Hooke and Jeeves method for
the problem in parameter c2, the approximation of the problem is plotted in Figure 1a.

Example 2. Consider the following integer-order optimal control problem with non-free terminal time:

min
x(τ),u(τ),T

J(τ, x(τ), u(τ), T) = min
x(τ),u(τ),T

∫ T

0
(τu(τ)− 2x(τ))2dτ, (21)

subjected to the dynamic system

˙̇x(τ) + ẋ(τ) = τ2 + u(τ), (22)

with the boundary conditions

x(0) = 0, x(1) = 1, (23)

where the exact solution is given by

(x(τ), u(τ)) = (τ(2− τ),−τ2 + 2τ + 2).

Consider the solution of the optimization problem in Equations (21)–(23) written as follows

x(τ) = τ(1 + c2 − c2τ). (24)

This satisfies the boundary conditions in Equation (23). Then, we have

u(τ) = −τ2 + 2c2t + 3c2 − 1. (25)

Substitute Equations (24) and (25) in minimizing the problem in Equation (21) to obtain the
optimal values of c2 = 0.989 and T = 0.997. Hence, the approximation of the problem is written as
x(τ) = τ(2− τ) and then, it is plotted in Figure 1b.

Example 3. Let us consider the following optimal control problem of fractional order with non-free
terminal time which was introduced by [25]

min
x(τ),u(τ),T

J(τ, x(τ), u(τ), T) = min
x(τ),u(τ),T

∫ T

0
(τu(τ)− (γ + 2)x(τ))2dτ, (26)
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subject to the control system

Dγ
τ x(τ) + ẋ(τ) = τ2 + u(τ), (27)

and the boundary conditions

x(0) = 0, x(T) = 1. (28)

Consider the solution of the optimization problem in Equations (26)–(28) written as follows:

x(τ) = c2τ2 + (
1
T
− c2T)τ, (29)

which satisfied the boundary conditions in Equation (28). Then, we have

u(τ) = −τ2 + 2c2τ + 3c2 − 1. (30)

Substitute Equations (29) and (30) in minimizing the problem in Equation (26) to obtain the
optimal solutions using the Hooke and Jeeves method. Hence, the approximation of the problem is
plotted in Figure 1c.
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Figure 1. A Comparison of Numerical Solutions of (FrOCDS) Evaluated by the Hooke and Jeeves
Direct Search Method for the Implementations in (a) Example 1, (b) Example 2, and (c) Example 3.
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6. Discussion and Conclusions

The main purpose of this study is to introduce numerical methods for solving two
cases of fractional-order optimal dynamical control systems with free and non-free terminal
time. The study also offers a comparison of the numerical results obtained by using the
proposed method with the exact solutions for three test problems. From the numerical
results of the proposed method, we observe that the method is applicable to a class of (FOC)
problems with free or non-free terminal time. Moreover, the proposed method achieves
good agreement with exact solutions. As a result, the new method is efficient and provides
encouraging results. This direction of this research can be extended in the future to new
directions such as improving the numerical studies of stochastic optimal control problems
to the continuity of the research in this domain.
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Abstract: In the present paper, we first prove a new integral identity. Using that identity, we
establish some fractional weighted midpoint-type inequalities for functions whose first derivatives
are extended s-convex. Some special cases are discussed. Finally, to prove the effectiveness of our
main results, we provide some applications to numerical integration as well as special means.

Keywords: fractional derivatives; weighted integral; midpoint formula; integral inequalities;
s-convex functions

1. Introduction

It is well known that convexity is one of the most fundamental principles of analysis
that is widely used in several fields of pure and applied sciences. Especially, in the classical
theory of optimization where convexity causes it to be possible to obtain necessary and
sufficient global optimality conditions; in consumer theory in economics, information
theory as well as in the field of inequalities where the relationship is closely linked. For
papers related to convexity and integral inequalities we refer readers to [1–5].

A real function defined on E is called convex; if for all x, z ∈ E and all a ∈ [0, 1],
we have

g(ax + (1− a)z) ≤ ag(x) + (1− a)g(z).

We note that all convex function on a finite interval, and [�, �] must satisfy the so
called Hermite–Hadamard inequality (see [6]).

g
(

� + �

2

)
≤ 1

�− �

�∫
�

g(x)dx ≤ g(�) + g(�)

2
. (1)

Inequality (1) can be seen as a second definition of convex functions equivalent to the
first one for continuous function (see [7]); it is a character of which all convex functions
must satisfy at least the left- or right-hand side.

Pearce and Pečarić [8] introduced the following inequality connected with (1)∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(x)dx

∣∣∣∣∣∣ ≤ �− �

4

( |g′(�)|q + |g′(�)|q
2

) 1
q

,

where q ≥ 1.
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Kirmaci [9] proved that, for all function f such that |g′| or |g′|q are convex, the follow-
ing inequalities hold:∣∣∣∣∣∣g

(
� + �

2

)
− 1

�− �

�∫
�

g(x)dx

∣∣∣∣∣∣ ≤ �− �

8
(∣∣g′(�)∣∣+ ∣∣g′(�)

∣∣),

where q ≥ 1. Furthermore, they proved the following result∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(x)dx

∣∣∣∣∣∣
≤�− �

16

(
4

p + 1

) 1
p
((

3
∣∣g′(�)∣∣q + ∣∣g′(�)

∣∣q) 1
q
+
(∣∣g′(�)∣∣q + 3

∣∣g′(�)
∣∣q) 1

q
)

,

where q, p > 1 with 1
p + 1

q = 1.

İşcan et al. [10] showed the following midpoint inequalities for P-functions (see (3) below):∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(x)dx

∣∣∣∣∣∣ ≤ �− �

4

(∣∣g′(�)∣∣c + ∣∣g′(�)
∣∣c) 1

c ,

where c ≥ 1. Furthermore, they proved the following result:∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(x)dx

∣∣∣∣∣∣
≤�− �

4

(
1

b + 1

) 1
b

⎛⎝(∣∣g′(�)∣∣c + ∣∣∣∣g′(� + �

2

)∣∣∣∣c)
1
c

+

(∣∣∣∣g′(� + �

2

)∣∣∣∣c + ∣∣g′(�)
∣∣c) 1

c

⎞⎠
≤�− �

4

(
1

b + 1

) 1
b
((

2
∣∣g′(�)∣∣c + ∣∣g′(�)

∣∣c) 1
c
+
(∣∣g′(�)∣∣c + 2

∣∣g′(�)
∣∣c) 1

c
)

,

where c, b > 1 with 1
c +

1
b = 1.

Nowadays, fractional calculus has become a popular implement for scientists. It has
been successfully used in various fields of science and engineering see [11–18]. Its main
strength in the description of memory and genetic properties of different materials and pro-
cesses has aroused great interest for researchers in different domains. This innovative idea
of fractional calculus has attracted many researchers in recent years, several generalizations,
extensions, refinements, and finding a counterpart have appeared (see [19–26]).

In [6], Sarikaya and Yildirim established the analogue fractional of inequality (1)
as follows:

g
(

� + �

2

)
≤ 2α−1Γ(α + 1)

(�− �)α

(
Jα
(

�+�
2 )+

g(�) + Jα
(

�+�
2 )−

g(�)
)
≤ g(�) + g(�)

2
.

Furthermore, the authors investigate the following fractional midpoint inequalities for
convex-first derivatives∣∣∣∣2α−1Γ(α + 1)

(�− �)α

(
Jα
(

�+�
2 )+

g(�) + Jα
(

�+�
2 )−

g(�)
)
− g

(
� + �

2

)∣∣∣∣
≤ �− �

4(α + 1)

(( (α + 1)|g′(�)|q + (α + 3)|g′(�)|q
2(α + 2)

) 1
q
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+

(
(α + 3)|g′(�)|q + (α + 1)|g′(�)|q

2(α + 2)

) 1
q )

and ∣∣∣∣2α−1Γ(α + 1)
(�− �)α

(
Jα
(

�+�
2 )+

g(�) + Jα
(

�+�
2 )−

g(�)
)
− g

(
� + �

2

)∣∣∣∣
≤�− �

4

(
1

αp + 1

) 1
p

⎛⎝( |g′(�)|q + 3|g′(�)|q
4

) 1
q

+

(
3|g′(�)|q + |g′(�)|q

4

) 1
q

⎞⎠
≤�− �

4

(
4

αp + 1

) 1
p (∣∣g′(�)∣∣+ ∣∣g′(�)

∣∣),

where α > 0, p, q > 1 with 1
p + 1

q = 1, Γ is the gamma function and Jα
(

�+�
2 )+

and Jα
(

�+�
2 )−

are

the Riemann–Liouville integrals (see Definition 1 below).
Motivated by the above results, here, we first prove a new integral identity and, then,

by using this identity, we establish some fractional weighted midpoint-type inequalities for
functions that the first derivatives are extended s-convex functions. We also derive some
known results and, state applications in numerical integration and in special means are
presented to prove the effectiveness of our main results.

The paper is organized as follows. In the next section, we provide some auxiliary
results as a preliminaries. In Section 3, we provide the main results and proofs. In Section 4,
we will provide an applications of our analysis to illustrate our main results. In Section 5,
we conclude our work.

2. Preliminaries

In this section, we recall certain notions concerning special functions, some classes of
convex functions, and the Riemann–Liouville integral operator.

A non-negative function g : E ⊂ [0, ∞)→ R is said to be s-convex in the second sense
for some fixed s ∈ (0, 1], if

g(ax + (1− a)z) ≤ asg(x) + (1− a)sg(z), (2)

holds for all x, z ∈ E and a ∈ [0, 1].
Whereas, a non-negative function g : E → R is said to be P-convex; if for all x, z ∈ E

and all a ∈ (0, 1), we have

g(ax + (1− a)z) ≤ g(x) + g(z). (3)

A non-negative function g : E → R is said to be s-Godunova–Levin function, where
s ∈ [0, 1]; if for all x, z ∈ E, and all a ∈ (0, 1), we have

g(ax + (1− a)z) ≤ g(x)
as +

g(z)
(1− a)s . (4)

A non-negative function g : E ⊂ [0, ∞) → R is said to be an extended s-convex for
some fixed s ∈ [−1, 1]; if for all x, z ∈ E and all a ∈ (0, 1), we have

g(ax + (1− a)z) ≤ asg(x) + (1− a)sg(z). (5)

Definition 1 ([12]). Let Ω ∈ L1[�, �]. The Riemann–Liouville integrals Jα
�+

Ω and Jα
�−Ω of order

α > 0 with � > � ≥ 0 are defined by

Jα
�+Ω(d) = 1

Γ(α)

d∫
�
(d− a)α−1Ω(a)da, d > �,
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Jα
�−Ω(d) = 1

Γ(α)

�∫
d
(a− d)α−1Ω(a)da, � > d,

respectively, where

Γ(α) =
∞∫
0

e−aaα−1da,

and J0
�+

Ω(d) = J0
�−Ω(d) = Ω(d).

For any complex numbers k, l such that Re(k) > 0 and Re(l) > 0. The beta function is
provided by

B(k, l) =
1∫
0

ak−1(1− a)l−1da =
Γ(k)Γ(l)
Γ(k + l)

.

3. Main Results and Proofs

To prepare the proofs of our main results, we will need the following Lemma.

Lemma 1. Let g : E = [�, �] → R be a differentiable map on I◦ (I◦ is the interior of I), with
� < �, and let w : [�, �]→ R be symmetric as regards �+�

2 . If g, w ∈ L[�, �], then

Lα[w]g
(

� + �

2

)
− Lα[wg]

=
(�− �)2

4

⎛⎝ 1∫
0

p1(a)g′
(

a� + (1− a)
� + �

2

)
da−

1∫
0

p2(a)g′
(
(1− a)

� + �

2
+ a�

)
da

⎞⎠.

where

p1(a) =
1∫
a

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db, (6)

p2(a) =
1∫
a

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db, (7)

and

Lα[g] =
(

2
�− �

)α−1
Γ(α)

(
Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)
. (8)

Proof. Let
I = I1 − I2, (9)

where

I1 =

1∫
0

p1(a)g′
(

a� + (1− a)
� + �

2

)
da,

and

I2 =

1∫
0

p2(a)g′
(

a� + (1− a)
� + �

2

)
da.

Integrating by parts I1, we obtain

1∫
0

p1(a)g′
(

a� + (1− a)
� + �

2

)
da
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=

1∫
0

⎡⎣ 1∫
a

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db

⎤⎦g′
(

a� + (1− a)
� + �

2

)
da

=− 2
�− �

⎡⎣ 1∫
a

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db

⎤⎦g
(

a� + (1− a)
� + �

2

)∣∣∣∣∣∣
a=1

a=0

− 2
�− �

1∫
0

(1− a)α−1w
(

a� + (1− a)
� + �

2

)
g
(

a� + (1− a)
� + �

2

)
da

=
2

�− �

⎡⎣ 1∫
0

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db

⎤⎦g
(

� + �

2

)

− 2
�− �

1∫
0

(1− a)α−1w
(

a� + (1− a)
� + �

2

)
g
(

a� + (1− a)
� + �

2

)
da

=

(
2

�− �

)α+1
⎡⎢⎣

�+�
2∫
�

(u− �)α−1w(u)du

⎤⎥⎦g
(

� + �

2

)

−
(

2
�− �

)α+1
�+�

2∫
�

(u− �)α−1w(u)g(u)du (10)

=

(
2

�− �

)α+1
Γ(α)

(
Jα

( �+�
2 )

−w(�)

)
g
(

� + �

2

)
−
(

2
�− �

)α+1
Γ(α)Jα

( �+�
2 )

−(wg)(�).

Similarly, we have

1∫
0

p2(a)g′
(

a� + (1− a)
� + �

2

)
da

=

1∫
0

⎛⎝⎡⎣ 1∫
a

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db

⎤⎦g′
(

a� + (1− a)
� + �

2

)
da

=
2

�− �

⎡⎣ 1∫
a

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db

⎤⎦g
(

a� + (1− a)
� + �

2

)∣∣∣∣∣∣
a=1

a=0

+
2

�− �

1∫
0

(1− a)α−1w
(

a� + (1− a)
� + �

2

)
g
(

a� + (1− a)
� + �

2

)
da

=− 2
�− �

⎡⎣ 1∫
0

(1− b)α−1w
(

b� + (1− b)
� + �

2

)
db

⎤⎦g
(

� + �

2

)

+
2

�− �

1∫
0

(1− a)α−1w
(

a� + (1− a)
� + �

2

)
g
(

a� + (1− a)
� + �

2

)
da

=−
(

2
�− �

)α+1
⎡⎢⎣ �∫

�+�
2

(�− u)α−1w(u)du

⎤⎥⎦g
(

� + �

2

)

+

(
2

�− �

)α+1 �∫
�+�

2

(�− u)α−1w(u)g(u)du (11)
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=−
(

2
�− �

)α+1
Γ(α)

(
Jα

( �+�
2 )

+w(�)

)
g
(

� + �

2

)
+

(
2

�− �

)α+1
Γ(α)Jα

( �+�
2 )

+(wg)(�).

Substituting (10) and (11) into (9), then multiplying the resulting equality by (�−�)2

4
and using (8), we obtain the desired result.

Theorem 1. Let g : [�, �] → R be a differentiable function on (�, �) such that g′ ∈ L([�, �])
with 0 ≤ � < �, and let w : [�, �]→ R be a continuous and symmetric function as regards �+�

2 .
If |g′| is an extended s-convex for some fixed s ∈ (−1, 1], then we have∣∣∣∣Lα[w]g

(
� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α
‖w‖[�,�],∞

×

⎛⎝Γ(s + 1)Γ(α + 1)|g′(�)|+ 2Γ(s + α + 1)
∣∣∣g′( �+�

2

)∣∣∣+ Γ(s + 1)Γ(α + 1)|g′(�)|
Γ(s + α + 2)

⎞⎠,

where Γ is the gamma function.

Proof. Using Lemma 1, the absolute value and s-convexity of |g′| provide∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4

⎛⎝ 1∫
0

|p1(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣da

+

1∫
0

|p2(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣da

⎞⎠
≤ (�− �)2

4
‖w‖[�,�],∞

⎛⎝ 1∫
0

⎛⎝ 1∫
a

(1− b)α−1db

⎞⎠∣∣∣∣g′(a� + (1− a)
� + �

2

)∣∣∣∣da

+

1∫
0

⎛⎝ 1∫
a

(1− b)α−1db

⎞⎠∣∣∣∣g′(a� + (1− a)
� + �

2

)∣∣∣∣da

⎞⎠
≤ (�− �)2

4α
‖w‖[�,�],∞

⎛⎝ 1∫
0

(1− a)α
(

as∣∣g′(�)∣∣+ (1− a)s
∣∣∣∣g′(� + �

2

)∣∣∣∣)da

+

1∫
0

(1− a)α
(

as∣∣g′(�)
∣∣+ (1− a)s

∣∣∣∣g′(� + �

2

)∣∣∣∣)da

⎞⎠
=
(�− �)2

4α
‖w‖[�,�],∞

×

⎛⎝Γ(s + 1)Γ(α + 1)|g′(�)|+ 2Γ(s + α + 1)
∣∣∣g′( �+�

2

)∣∣∣+ Γ(s + 1)Γ(α + 1)|g′(�)|
Γ(s + α + 2)

⎞⎠.

Then, the proof is now completed.

Corollary 1. In Theorem 1, if we use:
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1. s = 0, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(α + 1)
‖w‖[�,�],∞

(∣∣g′(�)∣∣+ 2
∣∣∣∣g′(� + �

2

)∣∣∣∣+ ∣∣g′(�)
∣∣).

2. s = 1, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

2α(α + 1)
‖w‖[�,�],∞

⎛⎝ |g′(�)|+ 2(α + 1)
∣∣∣g′( �+�

2

)∣∣∣+ |g′(�)|
2(α + 2)

⎞⎠.

Corollary 2. In Theorem 1, if we use α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

4(s + 1)(s + 2)
‖w‖[�,�],∞

(∣∣g′(�)∣∣+ 2(s + 1)
∣∣∣∣g′(� + �

2

)∣∣∣∣+ ∣∣g′(�)
∣∣).

Remark 1. In Corollary 2, if we use s ∈ (0, 1], we obtain the first inequality of Corollary 2.2.1
in [27]. Moreover, if we use s = 0 and s = 1, we obtain Corollary 2 and Corollary 3 in [28]
respectively.

Corollary 3. In Theorem 1, if we choose:

1. w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

4Γ(s + α + 2)

(
Γ(s + 1)Γ(α + 1)

∣∣g′(�)∣∣+ 2Γ(s + α + 1)
∣∣∣∣g′(� + �

2

)∣∣∣∣
+Γ(s + 1)Γ(α + 1)

∣∣g′(�)
∣∣).

2. w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g

(
� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣
≤ �− �

4(s + 2)(s + 1)

(∣∣g′(�)∣∣+ 2(s + 1)
∣∣∣∣g′(� + �

2

)∣∣∣∣+ ∣∣g′(�)
∣∣).

Corollary 4. In Theorem 1, using the s-convexity of |g′|, i.e.,∣∣∣∣g′(� + �

2

)∣∣∣∣ ≤ |g′(�)|+ |g′(�)|
2s−1(1 + s)

,

we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
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≤ (�− �)2

4α(1 + s)
‖w‖[�,�],∞

(
22−sΓ(s + α + 1) + Γ(s + 2)Γ(α + 1)

Γ(s + α + 2)

)(∣∣g′(�)∣∣+ ∣∣g′(�)
∣∣).

Corollary 5. In Corollary 4, if we use:

1. α = 1, we obtain ∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤
(
22−s + 1

)
(�− �)2

4(1 + s)(s + 2)
‖w‖[�,�],∞

(∣∣g′(�)∣∣+ ∣∣g′(�)
∣∣).

2. w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

4(1 + s)

(
22−sΓ(s + α + 1) + Γ(s + 2)Γ(α + 1)

Γ(s + α + 2)

)(∣∣g′(�)∣∣+ ∣∣g′(�)
∣∣).

3. w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣ ≤
(
22−s + 1

)
(�− �)

4(1 + s)(s + 2)
(∣∣g′(�)∣∣+ ∣∣g′(�)

∣∣).

Remark 2. Corollary 5, the third point will be reduced to Theorem 2.2 in [9] when s = 1.

Theorem 2. Let g : [�, �] → R be a differentiable function on (�, �) such that g′ ∈ L([�, �])
with 0 ≤ � < �, and let w : [�, �]→ R be a continuous and symmetric function with respect to
�+�

2 . If |g′|q is an extended s-convex for some fixed s ∈ (−1, 1] and q > 1 with 1
p + 1

q = 1, then
we have∣∣∣∣Lα[w]g

(
� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(pα + 1)
1
p
‖w‖[�,�],∞

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
s + 1

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
s + 1

⎞⎟⎠
1
q
⎞⎟⎟⎠,

where B(., .) is the beta function.

Proof. Using Lemma 1, the absolute value, Hölder’s inequality, and s-convexity of |g′|, we
obtain∣∣∣∣Lα[w]g

(
� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4

⎛⎝ 1∫
0

|p1(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣da

+

1∫
0

|p2(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣da

⎞⎠
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≤ (�− �)2

4

⎛⎜⎝
⎛⎝ 1∫

0

|p1(a)|pda

⎞⎠
1
p
⎛⎝ 1∫

0

∣∣∣∣g′(a� + (1− a)
� + �

2

)∣∣∣∣qda

⎞⎠
1
q

+

⎛⎝ 1∫
0

|p2(a)|pda

⎞⎠
1
p
⎛⎝ 1∫

0

∣∣∣∣g′(a� + (1− a)
� + �

2

)∣∣∣∣qda

⎞⎠
1
q
⎞⎟⎠

≤ (�− �)2

4
‖w‖[�,�],∞

⎛⎝ 1∫
0

⎛⎝ 1∫
a

(1− b)α−1db

⎞⎠p

da

⎞⎠
1
p

×

⎛⎜⎝
⎛⎝ 1∫

0

(
as∣∣g′(�)∣∣q + (1− a)s

∣∣∣∣g′(� + �

2

)∣∣∣∣q)da

⎞⎠
1
q

+

⎛⎝ 1∫
0

(
as∣∣g′(�)

∣∣q + (1− a)s
∣∣∣∣g′(� + �

2

)∣∣∣∣q)da

⎞⎠
1
q
⎞⎟⎠

≤ (�− �)2

4α
‖w‖[�,�],∞

⎛⎝ 1∫
0

(1− a)pαda

⎞⎠
1
p

×

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
s + 1

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
s + 1

⎞⎟⎠
1
q
⎞⎟⎟⎠

=
(�− �)2

4α(pα + 1)
1
p
‖w‖[�,�],∞

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
s + 1

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
s + 1

⎞⎟⎠
1
q
⎞⎟⎟⎠.

The proof is now finished.

Corollary 6. In Theorem 2, if we use:

1. s = 0, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(pα + 1)
1
p
‖w‖[�,�],∞

×

⎛⎝(∣∣g′(�)∣∣q + ∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(∣∣g′(�)
∣∣q + ∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

2. s = 1, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(pα + 1)
1
p
‖w‖[�,�],∞
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×

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
2

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
2

⎞⎟⎠
1
q
⎞⎟⎟⎠.

Corollary 7. In Theorem 2, if we use α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

4(p + 1)
1
p
‖w‖[�,�],∞

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
s + 1

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
s + 1

⎞⎟⎠
1
q
⎞⎟⎟⎠.

Remark 3. In Corollary 7, if we assume that s ∈ (0, 1], we obtain Theorem 2.4 in [27]. Moreover,
if we use s = 1, we obtain Corollary 7 in [28], respectively.

Corollary 8. In Theorem 2, if we choose

1. w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

4(pα + 1)
1
p

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
s + 1

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
s + 1

⎞⎟⎠
1
q
⎞⎟⎟⎠.

2. w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣
≤ �− �

4(p + 1)
1
p

⎛⎜⎜⎝
⎛⎜⎝ |g′(�)|q +

∣∣∣g′( �+�
2

)∣∣∣q
s + 1

⎞⎟⎠
1
q

+

⎛⎜⎝ |g′(�)|q +
∣∣∣g′( �+�

2

)∣∣∣q
s + 1

⎞⎟⎠
1
q
⎞⎟⎟⎠.

Remark 4. Corollary 8, the second point will be reduced to Corollary 6 in [10] when s = 0.

Corollary 9. In Theorem 2, using the s-convexity of |g′|q, i.e.,∣∣∣∣g′(� + �

2

)∣∣∣∣q ≤ |g′(�)|q + |g′(�)|q
2s−1(1 + s)

,

we obtain ∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(pα + 1)
1
p
‖w‖[�,�],∞

⎛⎝((
1 + s + 21−s)|g′(�)|q + 21−s|g′(�)|q

(1 + s)2

) 1
q
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+

(
21−s|g′(�)|q +

(
1 + s + 21−s)|g′(�)|q

(1 + s)2

) 1
q
⎞⎠.

Corollary 10. In Corollary 9:

1. If we use α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

4(p + 1)
1
p
‖w‖[�,�],∞

⎛⎝((
1 + s + 21−s)|g′(�)|q + 21−s|g′(�)|q

(1 + s)2

) 1
q

+

(
21−s|g′(�)|q +

(
1 + s + 21−s)|g′(�)|q

(1 + s)2

) 1
q
⎞⎠.

2. If we choose w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

4(pα + 1)
1
p

⎛⎝((
1 + s + 21−s)|g′(�)|q + 21−s|g′(�)|q

(1 + s)2

) 1
q

+

(
21−s|g′(�)|q +

(
1 + s + 21−s)|g′(�)|q

(1 + s)2

) 1
q
⎞⎠.

3. If we choose w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g

(
� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣
≤ �− �

4(p + 1)
1
p

⎛⎝((
1 + s + 21−s)|g′(�)|q + 21−s|g′(�)|q

(1 + s)2

) 1
q

+

(
21−s|g′(�)|q +

(
1 + s + 21−s)|g′(�)|q

(1 + s)2

) 1
q
⎞⎠.

Remark 5.

1. Corollary 10, the first point will be reduced to Corollary 2.3 in [9] when s = 1.
2. The second point of Corollary 10 will be reduced to Theorem 6 in [6] when s = 1.
3. Corollary 10, the third point will be reduced to Theorem 2.3 in [9] when s = 1.

Corollary 11. In Corollary 9, if we use the discrete power mean inequality, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

2α(pα + 1)
1
p
‖w‖[�,�],∞

(
1 + s + 22−s

(1 + s)2

) 1
q ( |g′(�)|q + |g′(�)|q

2

) 1
q

.
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Corollary 12. In Corollary 11:

1. If we use α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

2(p + 1)
1
p
‖w‖[�,�],∞

(
1 + s + 22−s

(1 + s)2

) 1
q ( |g′(�)|q + |g′(�)|q

2

) 1
q

.

2. If we choose w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

2(pα + 1)
1
p

(
1 + s + 22−s

(1 + s)2

) 1
q ( |g′(�)|q + |g′(�)|q

2

) 1
q

.

3. If we choose w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣
≤ �− �

2(p + 1)
1
p

(
1 + s + 22−s

(1 + s)2

) 1
q ( |g′(�)|q + |g′(�)|q

2

) 1
q

.

Theorem 3. Let g : [�, �] → R be a differentiable function on (�, �) such that g′ ∈ L([�, �])
with 0 ≤ � < �, and let w : [�, �]→ R be a continuous and symmetric function with respect to
�+�

2 . If |g′|q is an extended s-convex for some fixed s ∈ (−1, 1] and q ≥ 1, then we have∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(α + 1)1− 1
q
‖w‖[�,�],∞

⎛⎝(
B(s + 1, α + 1)

∣∣g′(�)∣∣q + 1
α + s + 1

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(
B(s + 1, α + 1)

∣∣g′(�)
∣∣q + 1

α + s + 1

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠,

where B(., .) is the beta function.

Proof. Using Lemma 1, the absolute value, power mean inequality, and s-convexity of |g′|,
we obtain∣∣∣∣Lα[w]g

(
� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4

⎛⎝ 1∫
0

|p1(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣da

+

1∫
0

|p2(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣da

⎞⎠
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≤ (�− �)2

4

⎛⎜⎝
⎛⎝ 1∫

0

|p1(a)|dt

⎞⎠1− 1
q
⎛⎝ 1∫

0

|p1(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣qda

⎞⎠
1
q

+

⎛⎝ 1∫
0

|p2(a)|da

⎞⎠1− 1
q
⎛⎝ 1∫

0

|p2(a)|
∣∣∣∣g′(a� + (1− a)

� + �

2

)∣∣∣∣qda

⎞⎠
1
q
⎞⎟⎠

≤ (�− �)2

4
‖w‖[�,�],∞

⎛⎝ 1∫
0

⎛⎝ 1∫
a

(1− b)α−1db

⎞⎠da

⎞⎠1− 1
q

×

⎛⎜⎝
⎛⎝ 1∫

0

⎛⎝ 1∫
a

(1− b)α−1db

⎞⎠(
as∣∣g′(�)∣∣q + (1− a)s

∣∣∣∣g′(� + �

2

)∣∣∣∣q)da

⎞⎠
1
q

+

⎛⎝ 1∫
0

⎛⎝ 1∫
a

(1− b)α−1db

⎞⎠(
as∣∣g′(�)

∣∣q + (1− a)s
∣∣∣∣g′(� + �

2

)∣∣∣∣q)da

⎞⎠
1
q
⎞⎟⎠

=
(�− �)2

4α
‖w‖[�,�],∞

⎛⎝ 1∫
0

(1− a)αda

⎞⎠1− 1
q

×

⎛⎜⎝
⎛⎝ 1∫

0

(1− a)α
(

as∣∣g′(�)∣∣q + (1− a)s
∣∣∣∣g′(� + �

2

)∣∣∣∣q)da

⎞⎠
1
q

+

⎛⎝ 1∫
0

(1− a)α
(

as∣∣g′(�)
∣∣q + (1− a)s

∣∣∣∣g′(� + �

2

)∣∣∣∣q)da

⎞⎠
1
q
⎞⎟⎠

=
(�− �)2

4α(α + 1)1− 1
q
‖w‖[�,�],∞

×

⎛⎜⎝
⎛⎝∣∣g′(�)∣∣q 1∫

0

(1− a)αasda +
∣∣∣∣g′(� + �

2

)∣∣∣∣q 1∫
0

(1− a)α+sda

⎞⎠
1
q

+

⎛⎝∣∣g′(�)
∣∣q 1∫

0

(1− a)αasda +
∣∣∣∣g′(� + �

2

)∣∣∣∣q 1∫
0

(1− a)α+sda

⎞⎠
1
q
⎞⎟⎠

=
(�− �)2

4α(α + 1)1− 1
q
‖w‖[�,�],∞

⎛⎝(
B(s + 1, α + 1)

∣∣g′(�)∣∣q + 1
α + s + 1

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(
B(s + 1, α + 1)

∣∣g′(�)
∣∣q + 1

α + s + 1

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

The proof is now completed.

Corollary 13. In Theorem 3, if we use:

1. s = 0, we get ∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
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≤ (�− �)2

4α(α + 1)
‖w‖[�,�],∞

⎛⎝(∣∣g′(�)∣∣q + ∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(∣∣g′(�)
∣∣q + ∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

2. If we use s = 1, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣
≤ (�− �)2

4α(α + 1)
‖w‖[�,�],∞

⎛⎝(
1

α + 2

∣∣g′(�)∣∣q + α + 1
α + 2

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(
1

α + 2

∣∣g′(�)
∣∣q + α + 1

α + 2

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

3. If we choose α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

8
‖w‖[�,�],∞

(
2

(s + 1)(s + 2)

) 1
q

⎛⎝(∣∣g′(�)∣∣q + (s + 1)
∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(∣∣g′(�)
∣∣q + (s + 1)

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

Remark 6. In the third point of Corollary 13, if we assume that s ∈ (0, 1], we obtain Theorem 2.2
in [27]. Moreover, if we use s = 1, we obtain Corollary 12 in [28].

Corollary 14. In Theorem 3, if we choose:

1. w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

4(α + 1)1− 1
q

⎛⎝(
B(s + 1, α + 1)

∣∣g′(�)∣∣q + 1
α + s + 1

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

+

(
B(s + 1, α + 1)

∣∣g′(�)
∣∣q + 1

α + s + 1

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

2. If we choose w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g

(
� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣
≤�− �

8

(
2

(s + 1)(s + 2)

) 1
q

⎛⎝(∣∣g′(�)∣∣q + (s + 1)
∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q
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+

(∣∣g′(�)
∣∣q + (s + 1)

∣∣∣∣g′(� + �

2

)∣∣∣∣q)
1
q

⎞⎠.

Corollary 15. In Theorem 3, using the s-convexity of |g′|, we obtain∣∣∣∣Lα[w]g
(

� + �

2

)
− Lα[wg]

∣∣∣∣ ≤ (�− �)2

4α(α + 1)1− 1
q
‖w‖[�,�],∞

×

⎛⎝(
(1 + s)(α + s + 1)B(s + 1, α + 1) + 21−s

(1 + s)(α + s + 1)

∣∣g′(�)∣∣q + 21−s

(1 + s)(α + s + 1)

∣∣g′(�)
∣∣q) 1

q

+

(
21−s

(1 + s)(α + s + 1)

∣∣g′(�)∣∣q + (1 + s)(α + s + 1)B(s + 1, α + 1) + 21−s

(1 + s)(α + s + 1)

∣∣g′(�)
∣∣q) 1

q

⎞⎠.

Corollary 16. In Corollary 9, if we use:

1. α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

8
‖w‖[�,�],∞

(
2

(1 + s)(s + 2)

) 1
q
(((

1 + 21−s
)∣∣g′(�)∣∣q + 21−s∣∣g′(�)

∣∣q) 1
q

+
(

21−s∣∣g′(�)∣∣q + (
1 + 21−s

)∣∣g′(�)
∣∣q) 1

q
)

.

2. w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

4(α + 1)1− 1
q

((
(1 + s)(α + s + 1)B(s + 1, α + 1) + 21−s

(1 + s)(α + s + 1)

∣∣g′(�)∣∣q
+

21−s

(1 + s)(α + s + 1)

∣∣g′(�)
∣∣q) 1

q

+

(
21−s

(1 + s)(α + s + 1)

∣∣g′(�)∣∣q
+
(1 + s)(α + s + 1)B(s + 1, α + 1) + 21−s

(1 + s)(α + s + 1)

∣∣g′(�)
∣∣q) 1

q

⎞⎠.

3. If we choose w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g

(
� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣
≤�− �

8

(
2

(1 + s)(s + 2)

) 1
q
(((

1 + 21−s
)∣∣g′(�)∣∣q + 21−s∣∣g′(�)

∣∣q) 1
q

+
(

21−s∣∣g′(�)∣∣q + (
1 + 21−s

)∣∣g′(�)
∣∣q) 1

q
)

.

Remark 7. Corollary 16, the second point will be reduced to Theorem 5 in [6] when s = 1.
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Corollary 17. In Corollary 15, if we use the discrete power mean inequality, we obtain∣∣∣Lα[w]g
(

�+�
2

)
− Lα[wg]

∣∣∣
≤ (�−�)2

2α(α+1)1− 1
q
‖w‖[�,�],∞

(
(1+s)(α+s+1)B(s+1,α+1)+22−s

(1+s)(α+s+1)

) 1
q
(
|g′(�)|q+|g′(�)|q

2

) 1
q
.

Corollary 18. In Corollary 17, if we use:

1. α = 1, we obtain∣∣∣∣∣∣g
(

� + �

2

) �∫
�

w(N)dN−
�∫
�

w(N)g(N)dN

∣∣∣∣∣∣
≤ (�− �)2

4
‖w‖[�,�],∞

(
1 + 22−s

(1 + s)(s + 2)

) 1
q (∣∣g′(a)

∣∣q + ∣∣g′(�)
∣∣q) 1

q .

2. w(u) = 1
�−� , we obtain∣∣∣∣g(� + �

2

)
− 2α−1

(�− �)α Γ(α + 1)
(

Jα

( �+�
2 )

−g(�) + Jα

( �+�
2 )

+ g(�)

)∣∣∣∣
≤ �− �

2(α + 1)1− 1
q

(
(1 + s)(α + s + 1)B(s + 1, α + 1) + 22−s

(1 + s)(α + s + 1)

) 1
q
( |g′(�)|q + |g′(�)|q

2

) 1
q

.

3. w(u) = 1
�−� and α = 1, we obtain∣∣∣∣∣∣g

(
� + �

2

)
− 1

�− �

�∫
�

g(u)du

∣∣∣∣∣∣ ≤ �− �

4

(
1 + 22−s

(1 + s)(s + 2)

) 1
q (∣∣g′(�)∣∣q + ∣∣g′(�)

∣∣q) 1
q .

Remark 8. Corollary 18, the first point will be reduced to Theorem 2 in [8] when s = 1.

4. Applications

4.1. Weighted Midpoint Quadrature

Let Υ be the partition of the points � = ℘0 < ℘1 < ... < ℘n = � of the interval [�, �],
and consider the quadrature formula

�∫
�

w(u)g(u)du = λw(g, Υ) + Rw(g, Υ),

where

λw(g, Υ) =
n−1

∑
i=0

g
(
℘i + ℘i+1

2

)℘i+1∫
℘i

w(u)du

and Rw(g, Υ) is the associated approximation error.

Proposition 1. Let g : [�, �]→ R be a differentiable function on (�, �) with 0 ≤ � < � and g′

∈ L1[�, �], and let w : [�, �]→ R be symmetric as regards �+�
2 . If |g′| is s-convex function, then

for n ∈ N we have

|Rw(g, Υ)| ≤
(
22−s + 1

)
4(1 + s)(s + 2)

‖w‖[�,�],∞

n−1

∑
i=0

(℘i+1 − ℘i)
2(∣∣g′(℘i)

∣∣+ ∣∣g′(℘i+1)
∣∣).
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Proof. Applying Corollary 5 on the subintervals [℘i,℘i+1] (i = 0, 1, ..., n− 1) of the parti-
tion Υ, we obtain ∣∣∣∣∣∣g

(
℘i + ℘i+1

2

)℘i+1∫
℘i

w(u)du−
℘i+1∫
℘i

w(u)g(u)du

∣∣∣∣∣∣
≤

(
22−s + 1

)
(℘i+1 − ℘i)

2

4(1 + s)(s + 2)
‖w‖[℘i ,℘i+1],∞

(∣∣g′(℘i)
∣∣+ ∣∣g′(℘i+1)

∣∣).

Add the above inequalities for all i = 0, 1, ..., n− 1 and using the triangular inequality
to obtain the desired result.

Proposition 2. Let g : [�, �]→ R be a differentiable function on (�, �) with 0 ≤ � < � and g′

∈ L1[�, �], and let w : [�, �] → R be symmetric as regards �+�
2 . If |g′|q is a s-convex function,

then for n ∈ N we have

|R(g, Υ)| ≤
‖w‖[�,�],∞

2(p + 1)
1
p

n−1

∑
i=0

(℘i+1 − ℘i)
2

(
1 + s + 22−s

(1 + s)2

) 1
q ( |g′(℘i)|q + |g′(℘i+1)|q

2

) 1
q

.

Proof. Applying Corollary 12 on the subintervals [℘i,℘i+1] (i = 0, 1, ..., n− 1) of the parti-
tion Υ, we obtain ∣∣∣∣∣∣g

(
℘i + ℘i+1

2

)℘i+1∫
℘i

w(u)du−
℘i+1∫
℘i

w(u)g(u)du

∣∣∣∣∣∣
≤ (℘i+1 − ℘i)

2

2(p + 1)
1
p
‖w‖[℘i ,℘i+1],∞

(
1 + s + 22−s

(1 + s)2

) 1
q ( |g′(℘i)|q + |g′(℘i+1)|q

2

) 1
q

.

Add the above inequalities for all i = 0, 1, ..., n− 1 and using the triangular inequality
to obtain the desired result.

Proposition 3. Let g : [�, �]→ R be a differentiable function on (�, �) with 0 ≤ � < � and g′

∈ L1[�, �], and let w : [�, �] → R be symmetric as regards �+�
2 . If |g′|q is a s-convex function,

then, for n ∈ N, we have

|R(g, Υ)| ≤
‖w‖[ai ,b],∞

4

(
1 + 22−s

(1 + s)(s + 2)

) 1
q n−1

∑
i=0

(℘i+1 − ℘i)
2
(∣∣g′(℘i)

∣∣q + ∣∣g′(℘i+1)
∣∣q) 1

q .

Proof. Applying Corollary 18 on the subintervals [℘i,℘i+1] (i = 0, 1, ..., n− 1) of the parti-
tion Υ, we obtain ∣∣∣∣∣∣g

(
℘i + ℘i+1

2

)℘i+1∫
℘i

w(u)du−
℘i+1∫
℘i

w(u)g(u)du

∣∣∣∣∣∣
≤ (℘i+1 − ℘i)

2

4
‖w‖[℘i ,℘i+1],∞

(
1 + 22−s

(1 + s)(s + 2)

) 1
q (∣∣g′(℘i)

∣∣q + ∣∣g′(℘i+1)
∣∣q) 1

q .

Add the above inequalities for all i = 0, 1, ..., n− 1 and using the triangular inequality
to obtain the desired result.

4.2. Application to Special Means

Let �, � be two arbitrary real numbers:
The Arithmetic mean:

A(�, �) =
� + �

2
.

137



Symmetry 2023, 15, 612

The Logarithmic mean:

L(�, �) =
�− �

ln �− ln �
, �, � > 0, � �= �.

The p-Logarithmic mean:

Lp(�, �) =

(
�p+1 − �p+1

(p + 1)(�− �)

) 1
p

, �, � > 0, � �= � and p ∈ R�{−1, 0}.

Proposition 4. Let �, � ∈ R with 0 < � < �, then we have∣∣∣∣A 3
2 (�, �)− L

3
2
3
2
(�, �)

∣∣∣∣ ≤ �− �

10

(
�

1
2 + 3

(
� + �

2

) 1
2
+ �

1
2

)
.

Proof. Using Corollary 3 for function g(k) = k
3
2 whose derivative g′(k) = 3

2 k
1
2 is 1

2 -
convex.

Proposition 5. Let �, � ∈ R with 0 < � < �, then we have

∣∣∣A−1(�, �)− L−1(�, �)
∣∣∣ ≤ (�− �)

√
3

12

((
2� + �

��

) 1
2
+

(
� + 2�

��

) 1
2
)

.

Proof. Applying Corollary 17 with q = 2 to the function g(k) = 1
k whose derivative

|g′(k)|2 = 1
k is P-function.

5. Conclusions

In this study, we considered the weighted midpoint-type integral inequalities for
s-convex first derivatives using Riemann–Liouville integrals operators, where the main
novelties of the paper are provided by a new identity regarding the weighted midpoint-type
inequalities being presented and some new fractional weighted midpoint-type inequalities
for functions whose first derivatives are s-convex being established. Some special cases are
derived and the applications of our results are provided.
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Abstract: Navier–Stokes equations (NS-equations) are applied extensively for the study of various
waves phenomena where the symmetries are involved. In this paper, we discuss the NS-equations
with the time-fractional derivative of order β ∈ (0, 1). In fractional media, these equations can be
utilized to recreate anomalous diffusion equations which can be used to construct symmetries. We
examine the initial value problem involving the symmetric Stokes operator and gravitational force
utilizing the Caputo fractional derivative. Additionally, we demonstrate the global and local mild
solutions in Hα,p. We also demonstrate the regularity of classical solutions in such circumstances. An
example is presented to demonstrate the reliability of our findings.
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1. Introduction

Because of their importance in fluid mechanics, the Navier–Stokes equations have
been extensively studied by various researchers. NS-equations are partial differential
equations that describe the flow of incompressible fluid. These equations are generalization
of the equations devised by Swiss mathematician Leonhard Euler in the eighteen century
to describe the flow of incompressible and frictionless fluids. The NS-equations are useful
because they describe the physics of many scientific and engineering phenomena. These
can be used to simulate weather, ocean currents, water flow in a pipe, and airflow around
a wing etc. The difference between the NS-equations and the Euler equations is that
the NS-equations account for viscosity, whereas the Euler equations exclusively simulate
inviscid flow.

As a result, the NS-equations are parabolic equations, which have exceptional analytic
features. In a purely mathematical sense, the NS-equations are extremely interesting.
Despite its extensive range of applications, it is still unknown if smooth solutions always
exist in three dimensions, that is, whether these are infinite and differentiable at all points
in the domain. The existence and smoothness problem is known as the Navier–Stokes
problem.

Different scholars focus on mass and momentum conservation and describe useful
phenomena concerning the motion of the incompressible fluid flow, ranging from large-
scale atmospheric motions to the lubricant in ball bearings; see, Varnhorn [1], as well as
Cannone [2]. Similarly, Rieusset [3] discussed the existence, uniqueness and regularity of
NS-equations.

Jean Leray was a French mathematician who work on both PDEs and algebraic topol-
ogy and explained a fascinating phenomenon. The Leray projection is a linear operator
that is useful in the theory of partial differential equations, particularly in the subject of
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fluid dynamics. It can be considered as a projection on a vector field with no divergence. In
the Stokes equations and NS-equations, it is applied to eliminate both the pressure term
and the divergence-free term; see [4].

Aljandro Rangel-Huerts and Blanca Bermudez solved NS-equations using two unique
formulations with moderate and high Reynolds numbers. They used two numerical
solutions of lid-driven cavity and Taylor vortex problems. These problems can be solved
by using stream function vorticity in two dimensions of NS-equations; see [5]. Moreover,
Gallgher [6], Giga [7], Rejaiba [8], Kozono [9], Sell [10] and Choe [11] found unique results
on the regularity of weak and strong solutions. Emilia Bazhlekova et al. [12] analyzed
the Rayleigh Stokes’ problems. Rayleigh problem is also known as Stokes’ first problem
which is a problem of determining the flow created by a sudden movement of an infinitely
long plate from rest named after Lord Rayleigh and Sir George Stokes. The authors studied
the Reyleigh problems involving RL-fractional derivative. They worked on smooth and
non-smoothness initial data for Sobolev regularity of homogeneous problems.

On the contrary, fractional calculus has received a lot of attention in recent years. Many
of the fundamental piece of calculus are related to fluid mechanics like total derivative,
gradients, divergence and rotation. Fractional calculus proved that the topic indeed is
very promising like in control theory of dynamical system, porous structure, viscoelasticity
and among others; see, e.g., Hilfer [13], Herrmann [14], and Zhou [15–17]. Such models
are important not just in Physics but also in pure mathematics. Recently, experimental
data and theoretical analysis have shown that the diffusion equation fails to describes the
diffusion phenomena in porous media. Basically, the diffusion equation is a parabolic
PDE. In Physics, it describe the microscopic behavior of many microparticles in Brownain
motion.

Do NS-equations describe all the motion of the fluid? Serkan Solmaz gave an in-
teresting fact that the NS-equations encompass all types of fluid motion in case they are
combined with a related mathematical model such as multi-phase flow, chemical reaction
and turbulent etc. It is significant to specify the degree of error throughout the analysis
in which the NS-equations enable a reasonable range of error. Thereby, these are the most
famous equations that examine the motion of fluid reliably. Different authors talked about
the time fractional NS-equations; see [18–20]. Moreover, to the best of our insight there
are not many results on the existence, uniqueness and regularity of mild solution for time
fractional NS-equations.

Keeping this in view, we discuss the time fractional NS-equations in an open set
Ω ⊂ Rm(m ≥ 3):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
β
t v− μΔv + (v · ∇)v = −∇p + ρg + μ∇2�v, 0 < t,
∇ · v = 0,

v
∂Ω = 0,
v(0, y) = ax + b,

(1)

where ρ

(
∂v
∂t + (v · ∇)v

)
= ρ Dv

Dt , g is a gravitational force or body force, −∇p is a pressure

gradient, μ∇2−→v is viscous term or diffusion term, ρ Dv
Dt is local acceleration and ∂

β
t be the

Caputo fractional derivative with order β ∈ (0, 1), y ∈ Ω and the time 0 < t. By applying a
well-known Helmholtz projector P on (1) for getting rid of the pressure term, one has⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
β
t v− μPΔv + P(v · ∇)v = Pg, 0 < t,
∇ · v = 0,

v
∂Ω = 0,
v(0, y) = b.
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B is the Stokes operator under consideration, where b is the initial velocity and −μPΔ is
the Dirichlet boundary condition. The abstract form of (1) is{

CDβ
t v = −Bv + F(v, w) + Pg, 0 < t,

v(0) = b,
(2)

where −P(v · ∇)w = F(v, w).
The arrangement of the paper is as: In Section 2, we review some helpful preliminaries.

In Section 3, study of the global and local existence of mild solutions of problem (2) in Hβ,p

is conducted. In Section 4, the regularity of classic solutions in Qp will be discussed. At
last, an example will be presented.

2. Preliminaries

In this section, we discuss some known definitions, notations and results.
Suppose that, ω = {(y1, ..., ym) : ym > 0} be an open subset of Rm where m ≥ 3 and
1 < p < ∞. Then there exists a bounded projection

C∞
� (ω) = {v ∈ (C∞(ω))m : ∇ · v = 0, vhascompactinω},

as well as the null space is the closure of

{v ∈ (C∞(ω))m : v = ∇ϕ, ϕ ∈ C∞(ω)}.

Suppose that, Qp = C∞
� (ω)

|·|
, be the closed subspace of (Lp(ω))m. (Mn,p(ω))m be a

Sobolev space along the norm | · |n,p.
B = −μPΔ is said to be the Stokes operator in Qp whose domain is Dp(B) =

Dp(Δ)
⋂

hp. Here

Dp(Δ) = {v ∈ (M2,p(ω))m :
v

∂ω
= 0}.

It is noted that −B is a closed linear operator as well as generates the bounded analytic
semi-group {e−tB} on Qp.

We present new fractional power space definitions that are connected to−B. For α > 0
as well as v ∈ Qp, define

B−αv =
1

Γ(α)

∫ ∞

0
tα−1e−tBvdt.

B−α is bounded and one-to-one operator on Qp. Suppose that Bα is the inverse of B−α. For
α > 0, indicate the space Hα,p according to the range B−α along the norm

|v|Hα,p = |Bαv|p.

It is not difficult to see that e−tB restrict to be a bounded analytic semi-group on Hα,p, for
further details; see [21].

Suppose that Y is a Banach space as well as Q is the interval of R. All continuous Y
valued functions are represented by C(Q, Y). So for 0 < ζ < 1, Cζ(Q, Y) indicates for the
set of all functions is Holder continuous along the exponent ζ.

Assume that β ∈ (0, 1) as well as w : [0, ∞)→ Y, the fractional integral with the order
β along the lower limit zero for the function w is defined as

Iβ
t w(t) =

∫ ∞

0
hβ(t− s)w(s)ds, 0 < t,

the R.H.S is point-wise defined on the interval [0, ∞), where hβ is said to be the Riemann-
Liouville kernel

hβ(t) =
tβ−1

Γ(β)
, 0 < t.
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CDβ
t indicates the Caputo fractional derivative operator with order β. It can be describe as

CDβ
t w(t) =

d
dt
[I1−β
t (w(t)− w(0))] =

d
dt

( ∫ t

0
h1−β(t− s)(w(t)− w(0))ds

)
, 0 < t.

Generally, for w = [0, ∞) × Rm → Rm, Caputo fractional derivative w.r.t time for the
function w can be defined as

∂
β
t v(t, y) = ∂t

( ∫ t

0
h1−β(t− s)(v(t, y)− v(t, 0))ds

)
, 0 < t,

for further details; see [22]. Now, we define generalized Mittag-Leffler functions:

Eβ(−tβB) =
∫ ∞

0
Mβ(s)e−stβBds, Eβ,β(−tβB) =

∫ ∞

0
βsMβ(s)e−stβBds,

whereM(θ) is Mainardi’s Wright Type function defined as

Mβ(θ) =
∞

∑
g=0

θm

m!Γ(1− β(1 + m))
.

Lemma 1. In uniform operator topology, 0 < t, Eβ(−tβB) and Eβ,β(−tβB) are continuous. On
the interval [r, ∞], the continuity is uniform for every 0 < r.

Lemma 2. Let 0 < β < 1. At that point the following properties holds:
(i) for every v ∈ Y, limt→0+ Eβ(−tβB)v = v;
(ii) for every v ∈ D(B) and 0 < t,C Dt

βEβ(−tβB)v = −BEβ(−tβB)v;
(iii) for every v ∈ Y, E′β(−tβB)v = −tβ−1BEβ,β(−tβB)v;

(iv) for 0 < t, Eβ(−tβB)v = I1−β
t (tβ−1Eβ,β(−tβB)v).

Definition 1. A function v : [0, ∞)→ Hα,p is said to be the global mild solution of (2) in Hα,p, if
v ∈ C([0, ∞), Hα,p) and for t ∈ [0, ∞)

v(t) = Eβ(−tβB)b +
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), w(s))ds (3)

+
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)Pg(s)ds.

Definition 2. Suppose that 0 < T < ∞. A local mild solution of problem (2) in Hα,p or in Qp,
is a function v : [0,T] → Hα,p (Qp), if v ∈ C([0,T], Hα.p) as well as v fulfils (3) for interval
t ∈ [0,T].

ϕ(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)g(s)ds

U (v, w) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), w(s))ds.

Lemma 3. Suppose that (Y, ‖ · ‖Y) is a Banach space, O : Y×Y → Y be a bi-linear operator as
well as K be a non-negative real number in such a way that

‖O(v, w)‖Y ≤ K‖v‖Y‖w‖Y, f orallv, w ∈ Y.

Then, for some v0 ∈ Y with ‖v0‖Y < 1
4K , the relation v = v0 + O(v, w) must have a unique

solution v ∈ Y.
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The system (2) is equal to the following integral:

v(t) = b +
1

Γ(β)

∫ t

0
(t− s)β−1

(
Bv(s) + F(v(s), w(s)) + Pg(s)

)
ds, 0 ≤ t, (4)

provided the integral (4) exist.

Theorem 1. If (4) holds, then

v(t) = Eβ(−tβB)b +
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), w(s))ds

+
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)Pg(s)ds,

where

Eβ(−tβB) =
∫ ∞

0
Mβ(θ)T(tβθ)dθ, Eβ,β(−tβB) =

∫ ∞

0
βθMβ(θ)T(tβθ)dθ.

Proof. Let λ > 0

ν(λ) =
∫ ∞

0
e−λsv(s)ds, μ(λ) =

∫ ∞

0
e−λsg(s)ds.

Apply Laplace Transformation on (4)

ν(λ) = λβ−1(λβ I − B)−1b + (λβ I − B)−1μ(λ),

for t ≥ 0

ν(λ) = λβ−1
∫ ∞

0
e−λβsT(s)bds +

∫ ∞

0
e−λβsT(s)μ(λ)ds.

Let
φβ(θ) =

β

θβ+1 Mβ(θ
−β), β∈ (0, 1),

and its Laplace Transform is given by∫ ∞

0
e−λθφβ(θ)dθ = e−λβ

, (5)

using (4), so

λβ−1
∫ ∞

0
e−λβsT(s)bds =

∫ ∞

0
β(λt)β−1e−(λt)

β
T(tβ)bdt

=
∫ ∞

0
− 1

λ

d
dt

( ∫ ∞

0
e(−λt)β

φβ(θ)dθ

)
T(tβ)bdt

=
∫ ∞

0

∫ ∞

0

−λθ

−λ
e−λtθφβ(θ)T(tβ)bdt

=
∫ ∞

0

∫ ∞

0
θφβ(θ)e−λtθT(tβ)bdtdθ (6)

=
∫ ∞

0

∫ ∞

0
φβ(θ)e−λtT(

tβ

θβ
)bdθdt

=
∫ ∞

0
e−λt

[ ∫ ∞

0
φβ(θ)T(

tβ

θβ
)b
]

dθdt

= L
[ ∫ ∞

0
Mβ(θ)T(tβθ)bdθ

]
(λ)

= L[Eβ(−tβB)b](λ).
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Similarly

∫ ∞

0
e−λβsT(s)μ(λ)ds =

∫ ∞

0

∫ ∞

0
βtβ−1e(−λt)β

T(tβ)e−λs[F(v(s), w(s)) + Pg(s)]dsdt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
βtβ−1φβ(θ)e−λtθT(tβ)e−λs[F(v(s), w(s)) + Pg(s)]dθdsdt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
β
tβ−1

θβ
φβ(θ)T(

tβ

θβ
)e−λ(t+s)[F(v(s), w(s)) + Pg(s)]dθdsdt

=
∫ ∞

0
e−λt

[
β
∫ t

0

∫ ∞

0
φβ(θ)T

(
(t− s)β

θβ

)
(t− s)β−1

θβ

[F(v(s), w(s)) + Pg(s)]dθds
]

dt. (7)

Combining Equations (5)–(7), one has

ν(λ) =
∫ ∞

0
e−λt

[ ∫ ∞

0
φβ(θ)T(

tβ

θβ
)bdθ + β

∫ t

0

∫ ∞

0
φβ(θ)T

(
(t− s)β

θβ

)
(t− s)β−1

θβ

[F(v(s), w(s)) + Pg(s)]dθds
]

.

By applying the Laplace Transform,

v(t)

=
∫ ∞

0
φβ(θ)T(

tβ

θβ
)bdθ + β

∫ t

0

∫ ∞

0
φβ(θ)T

(
(t− s)β

θβ

)
(t− s)β−1

θβ
[F(v(s), w(s)) + Pg(s)]dθds

=
∫ ∞

0
Mβ(θ)T(tβθ)bdθ + β

∫ t

0

∫ ∞

0
θ(t− s)β−1Mβ(θ)T((t− s)βθ)[F(v(s), w(s)) + Pg(s)]dθds

= Eβ(−tβB)b +
∫ t

0
(t− s)β−1Eβ,β(−tβB)[F(v(s), w(s)) + Pg(s)].

We rewrite the above equation

v(t) = b +
1

Γ(β)

∫ t

0
(t− s)β−1

(
Bv(s) + F(v(s), w(s)) + Pg(s)

)
ds.

Thus, the proof is complete.

Proposition 1. Prove that

(i) Eβ,β(−tβB) = 1
2πi

∫
Γθ Eβ,β(−νtβ)(νI + B)−1dν;

(ii) BγEβ,β(−tβB) = 1
2πi

∫
Γθ νγEβ,β(−νtβ)(νI + B)−1dν

Proof. (i) Since
∫ ∞

0 βsMβ(s)e−stβBds = Eβ,β(−t), by using Fabini’s Theorem, we get

Eβ,β(−t) =
∫ ∞

0
βsMβ(s)e−stβBds

=
1

2πi

∫ ∞

0
βsMβ(s)

∫
Γθ

e−νstβ
(νI + B)−1dνds

=
1

2πi

∫ ∞

0
βsMβ(s)e−νstβ

ds
∫

Γθ
(νI + B)−1dν

=
1

2πi

∫
Γθ

Eβ,β(−νtβ)(νI + B)−1dν.

(ii) We follow the same steps
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BγEβ,β(−tβB) =
∫ ∞

0
βsMβ(s)Bγe−stβBds

=
1

2πi

∫ ∞

0
βsMβ(s)

∫
Γθ

νγe−νstβ
(νI + B)−1dνds

BγEβ,β(−tβB) =
1

2πi

∫ ∞

0
νγβsMβ(s)e−νstβ

ds
∫

Γθ
(νI + B)−1dν

=
1

2πi

∫
Γθ

νγEβ,β(−νtβ)(νI + B)−1dν.

3. Global and Local Existence in Hα,p

In this section, our main purpose is to build up sufficient conditions for the existence
and uniqueness of the mild solution of problem (2) in Hα,p. We suppose that

Hypothesis 1 (H1). Pg is said to be continuous for 0 < t and |Pg(t)|p = s(t−β(1−α)) as t→ 0
for 1 > α > 0.

Lemma 4. See ([23]). Suppose that 1 < p < ∞ and α1 ≤ α2. Then, at that point there exist a
constant C = C(α1, α2) in such a way that

|e−tBw|Hα2,p ≤ Ct−(α2−α1)|w|Hα1,p , 0 < t,

for w ∈ Hα1,p. Moreover, limt→0 t
(α2−α1)|e−tBw|Hα2,p = 0.

Lemma 5. Suppose that 1 < p < ∞ and α1 ≤ α2. For any R > 0 there is a constant C1 =
C1(α1, α2) > 0 in such a way that

|Eβ(−tβB)w|Hα2,p ≤ C1t
−β(α2−α1)|w|Hα1,p and|Eβ,β(−tβB)w|Hα2,p ≤ C1t

−β(α2−α1)|w|Hα1,p

for all w ∈ Hα1,p as well as t ∈ (0, R]. Moreover,

lim
t→0

tβ(α2−α1)|Eβ(−tβB)w|Hα2,p = 0.

Proof. Let w ∈ Hα1,p. According to Lemma 4, we consider

|Eβ(−tβB)w|Hα2,p ≤
∫ ∞

0
Mβ(s)|e−stβBw|Hα2,p ds

≤
(
C

∫ ∞

0
Mβ(s)s−(α2−α1)ds

)
t−β(α2−α1)|w|Hα1,p

≤ C1t
−β(α2−α1)|w|Hα1,p .

A well-known theorem, LebesgueDominatedConvergence theorem shows that

lim
t→0

tβ(α2−α1)|Eβ(−tβB)w|Hα2,p ≤
∫ ∞

0
M(s) lim

t→0
tβ(α2−α1)|Eβ(−tβB)w|Hα2,p = 0.

Similarly

|Eβ,β(−tβB)w|Hα2,p ≤
∫ ∞

0
βsMβ(s)|e−stβBw|Hα2,p ds
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|Eβ,β(−tβB)w|Hα2,p ≤
(

βC
∫ ∞

0
Mβ(s)s1−(α2−α1)ds

)
t−β(α2−α1)|w|Hα1,p

≤ C1t
−β(α2−α1)|w|Hα1,p ,

where the constant term is C1 = C1(β, α1, α2), such that

C1 ≥ Cmax
{

Γ(1− α2 + α1)

Γ(1 + β(α1 − α2))
,

βΓ(2− α2 + α1)

Γ(1 + β(α1 − α2))

}
.

3.1. Global Existence in Hα,p

The global mild solution of (2) in Hα,p is investigated in this subsection. For comfort,
we signify

N (t) = sup
s∈(0,t]

{sβ(1−α)|Pg(s)|p},

V1 = C1 max{V(β(1− α), 1− β(1− α)), V(β(1− ξ), 1− β(1− α))},

K ≥ MC1 max
{

V(β(1− α), 1− 2β(ξ − α)), V(β(1− ξ), 1− 2β(ξ − α))

}
.

Theorem 2. Suppose that 1 < p < ∞, 0 < α < 1 and condition (H1) holds. For each β ∈ Hα,p.
Let

C1|b|Hα,p + V1N∞ <
1

4K
, (8)

whereN∞ = sup
s∈(0,∞)

{sβ(1−α)|Pg(s)|p}. If m
2p − 1

2 < α, then at that point there is bξ > max{α, 1
2}

and a unique function v : [0, ∞)→ Hα,p fulfils the conditions given below:

(i) v : [0, ∞)→ Hα,p is continuous as well as v(0) = b;

(ii) v : [0, ∞)→ Hξ,p is continuous as well as limt→0 t
β(ξ−α)|v(t)|Hξ,p = 0;

(iii) v fulfils (3) for t ∈ [0, ∞).

Proof. The proof of this theorem is similar to that in [24] with a slight change according to
our problem.

3.2. Local Existence in Hα,p

The local mild solution of (2) in Hα,p is discussed in this section.

Theorem 3. Let 1 < p < ∞, 0 < α < 1 and (H1) (the supposition is given in the beginning of
Section 3) holds. Assume that

m
2p
− 1

2
< α.

Then, there is ξ > max{α, 1
2} in such a way that for each b ∈ Hα,p there exist T∗ > 0 as well as

v : [0,T∗]→ Hα,p is a unique function that fulfils the following properties:

(i) v : [0,T∗]→ Hα,p is continuous and v(0) = b;

(ii) v : [0,T∗]→ Hξ,p is continuous and limt→0 t
β(ξ−α)|v(t)|Hξ,p = 0;

(iii) For t ∈ [0,T∗], v satisfy (3).
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Proof. Suppose that ξ = 1+α
2 and the space of all curves is Y = Y[T] v : (0,T] → Hα,p in

such a way that:

(i) v : [0,T∗]→ Hα,p is continuous and v(0) = b;

(ii) v : [0,T∗]→ Hξ,p is continuous and limt→0 t
β(ξ−α)|v(t)|Hξ,p = 0;

with its neutral form

‖v‖Y = sup
t∈[0,T]

{tβ(ξ−α)|v(t)|Hξ,p}.

Alike the proof of Theorem 2, it is not difficult to claim that U : Y×Y → Y be continuous
linear mapping as well as ϕ(t) ∈ Y.

Eβ(−tβB)b ∈ C([0,T], Hα,p),

Eβ(−tβB)b ∈ C([0,T], Hξ,p).

By Lemma 5, it can easily be seen that

Eβ(−tβB)b ∈ Y,

tβ(ξ−α)Eβ(−tβB)b ∈ C([0,T], Hξ,p).

Therefore, let T∗ > 0 be small in such a way that

‖Eβ(−tβB)b + ϕ(t)‖Y[T∗ ] ≤ ‖Eβ(−tβB)b‖Y[T∗ ] + ‖φ(t)‖Y[T∗ ] <
1

4K
.

As a result of Lemma 3, F has a fixed point that is unique.

4. Local Existence in Qp

In this section, we discuss the local mild solution of (2) by using iteration method.
Suppose that ξ = 1+α

2 :

Theorem 4. Suppose that 1 < p < ∞, 0 < α < 1 and (H1)(the supposition is given in the
beginning of Section 3) holds. Assume that

b ∈ Hα,pwith
m
2p
− 1

2
< α.

Then, the problem (2) has mild solution v by Qp for b ∈ Hα,p. Furthermore, v must be continuous
on (0,T], Bξv, be continuous on (0,T] and tβ(ξ−α)Bξv(t) is bounded as t→ 0.

Proof. Step 1: Describe

R(t) := sup
s∈(0,t]

sβ(ξ−α)|Bξv(s)|p,

and

ψ(t) := U (v, w)(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)F(v(s)− w(s))ds.

|Bξ ψ(t)|p ≤ NC1V(β(1− ξ), 1− 2β(ξ − α))R2(t)t−β(ξ−α),

considering the integral ϕ(t). Thus

|Pg(s)|p ≤ N (t)sβ(1−α),
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where N is a continuous function. Using Theorem 2, we show that Bξ(t) is continuous in
the interval (0,T] by using

|Bξ ϕ(t)|p ≤ C1N (t)V(β(1− ξ), 1− β(1− α))t−β(ξ−α). (9)

For |Pg(t)|p = s(t−β(1−α)) as t → 0, N (t) = 0 is the solution. Here, (9) denotes,
|Bξ ϕ(t)|ps(t−β(1−α)) as t → 0. In Qp, we show that ϕ is continuous. In fact, if we take
0 ≤ t0 < t < T, we get

|ϕ(t)− ϕ(t0)|p

≤ C3

∫ t

t0

(t− s)β−1|Pg(s)|pds + C3

∫ t0

0

(
(t0 − s)β−1 − (t− s)β−1)|Pg(s)|pds

+ C3

∫ t0−ε

0
(t0 − s)β−1‖Eβ,β(−(t− s)βB)− Eβ,β(−(t0 − s)βB‖|Pg(s)|pds

+ 2C3

∫ t0

t0−ε
(t0 − s)β−1|Pg(s)|pds

≤ C3N (t)
∫ t

t0

(t− s)β−1s−β(1−α)ds + C3N (t)
∫ t

0

(
(t− s)β−1 − (t0 − s)β−1)s−β(1−α)ds

+ C3N (t)
∫ t0−ε

0
(t0 − s)β−1s−β(1−α)ds sup

s∈[0,t−ε]

‖Eβ,β(−(t− s)βB)− Eβ,β(−(t0 − s)βB‖

+ 2C3N (t)
∫ t0

t0−ε
(t0 − s)β−1s−β(1−α)ds → 0, ast→ t0,

as a result of previous conversations.
We also consider the function Eβ(−tβB)b. It is clear by Lemma 5 that

|Bξ Eβ(−tβB)b|p ≤ C1t
−β(1−α)|Bαb|p = C1t

−β(1−α)|b|Hα,p ,

lim
t→0

tβ(ξ−α)|Bξ Eβ(−tβB)b|p = lim
t→0

tβ(ξ−α)|Eβ(−tβB)b|Hα,p = 0.

Step 2: Now, we derive the result using successive approximations:

v0(t) = Eβ(−tβB)b + ϕ(t),

vm+1 = v0(t) + U (vm, wm)(t), m = 0, 1, 2 · · · . (10)

Using the information presented above, we can deduce that

Rm(t) := sup
s∈(0,t]

sβ(ξ−α)|Bξ vm(s)|p

are increasing and continuous functions on [0,T] with Rm(0) = 0. Furthermore, Rm(t)
fulfils the following inequality as a result of (9) and (10):

Rm+1(t) ≤ R0(t) +NC1V(β(1− ξ), 1− 2β(ξ − α))R2
m(t). (11)

We choose T > 0 such that R0(0) = 0,

4NC1V(β(1− ξ), 1− 2β(ξ − α))R0(T) < 1. (12)

The sequence Rm(T) is thus bounded, according to a fundamental consideration of (11).

Rm(T) ≤ �(T), m = 0, 1, 2...,
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where

�(t) =
1−

√
1− 4NC1V(β(1− ξ), 1− 2β(ξ − α))K0(t)

2NVC1(β(1− ξ), 1− 2β(ξ − α))
.

In the same way, Rm(t) ≤ �(t) holds for any t ∈ (0,T). Similarly, we may see that

�(t) ≤ 2R0(t).

Suppose that the equality

km+1(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)[F(vm+1(s), wm+1(s))− F(vm(s), wm(s))]ds,

where km = vm+1 − vn, m = 0, 1, ..., as well as t ∈ (0,T]. Writing

Wm(t) := sup
s∈(0,t]

sβ(ξ−α)|Bξ km(s)|p.

By Equation (8), we get

|J(vm+1(s), wm+1(s))− J(vm(s), wm(s))|p ≤ N (Rm+1(s) +Rm(t))Jm(s)s−2β(ξ−α),

by Theorem 2, we have

tβ(ξ−α)|Bξ km+1(t)| ≤ 2NC1V(β(1− ξ), 1− β(1− α))�(t)Wm(t).

The above inequality gives

Wm+1(T) ≤ 2NC1V(β(1− ξ), 1− β(1− α))�(t)Wm(t)

≤ 4NC1V(β(1− ξ), 1− β(1− α))�(t)R0(t)Wm(t). (13)

By Equations (12) and (13), it is not difficult to show that

lim
m→0

Jm+1(T)

Jm(T)
< 4NC1V(β(1− ξ), 1− β(1− α)) < 1,

as a result, the series Σ∞
m=0 Jm(T) converge. It prove that for t ∈ (0,T] the series

Σ∞
m=0t

β(ξ−α)Bξkm(t)

converge uniformly. As a result, the sequence tβ(ξ−α)Bξ vm(t) converge uniformly in (0,T].
This suggest that

lim
m→0

vm(t) = v(t) ∈ D(Bξ)

as well as

lim
m→0

tβ(ξ−α)Bξ vm(t) = tβ(ξ−α)Bξ v(t)uni f ormly,

since Bξ is both bounded and B−ξ is closed. As a result, the function

R(t) = sup
s∈(0,T]

tβ(ξ−α)|Bξ v(s)|p

also meets the condition

R(t) ≤ �(t) ≤ 2R0(t), t ∈ (0, t]. (14)
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as well as

Sm := sup
s∈(0,T]

s2β(ξ−α)|F(vm(s), wm(s))− F(v(s), w(s))|p

≤ N (Rm(T) +R(T)) sup
s∈(0,T]

sβ(ξ−α)|Bξ(vm(s)− v(s))|p → 0, asm → ∞.

Finally, make sure that v in [0,T] is a mild solution to problem (2). Since

|U (vn, wn)(t)− U (v, w)|p ≤
∫ t

0
(t− s)β−1Sms−2β(ξ−α)ds = tβαSm → 0, (m → ∞),

we have U (vm, wm)(t)→ U (v, w)(t). We get (9) by taking the limits on both sides

v(t) = v0(t) + U (v, w)(t). (15)

If we set v(0) = b, we get (15) for t ∈ [0,T] and v ∈ C([0,T], Qp). Furthermore, the con-
sistent convergence of tβ(ξ−α)Bξ vm(t)totβ(ξ−α)Bξv(t) drive the continuity of Bξv(t)on(0,T].
According to (14) and R0(0) = 0, we have |Bξv(t)|p = s(t−β(ξ−α)) is obvious.

Step 3: We show that the mild solution is unique. Assume that v and w are the mild solutions
of problem (2). We consider the equality k = v− w

k(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)[F(v(s), v(s))− F(w(s), w(s))]ds.

Introducing the function

R̃(t) := max{ sup
s∈(0,t]

sβ(ξ−α)|Bξ v(s)|p, sup
s∈(0,t]

sβ(ξ−α)|Bξ w(s)|p}.

By (8) and Lemma 5, we get

|Bξ k(t)|p ≤ NC1R̃(t)
∫ t

0
(t− s)β(1−ξ)−1s−β(ξ−α)|Bξk(s)|pds.

For t ∈ (0,T), the Gronwall inequality demonstrates that Bξ k(t) = 0. Since t ∈ [0,T], this
means that k(t) = v(t)− w(t) = 0. As a result, the mild solution is unique.

5. Regularity

Considering the regularity of v which satisfy (2), overall in this section, we suppose
that:

Hypothesis 2 (H2). Pg(t) be the Hold̈er continuous along the exponent θ ∈ (0, β(1− ξ)), i.e,

|Pg(t)− Pg(s)|p ≤ K|t− s|θ , ∀t > 0, s ≤ T.

Definition 3. The function v : [0,T] → Qp is said to be the classical solution of (2), if v ∈
C([0,T], Qp) with CDt

tv(t) ∈ C([0,T], Qp), which takes the value of D(B) and satisfy (2) for
every t ∈ (0,T].

Lemma 6. Let (H2) (the supposition is given in the beginning of Sec. 5) be fulfilled. If

ϕ1(t) :=
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)(Pg(s)− Pg(t))ds, t ∈ (0,T],

then ϕ1(t) ∈ D(B) and Bϕ1(t)C
θ([0,T], Qp).
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Proof. As

(t− s)β−1|BEβ,β(−(t− s)βB)(Pg(s)− Pg(t))|p ≤ (t− s)−1|(Pg(s)− Pg(t))|p
≤ C1K(t− s)θ−1 ∈ L1([0,T], Qp), (16)

then

|Bϕ1(t)|p ≤
∫ t

0
(t− s)β−1|BEβ,β(−(t− s)βB)(Pg(s)− Pg(t))|pds

≤ C1K
∫ t

0
(t− s)θ−1 ≤ C1R

θ
tθ < ∞.

We must show that Bϕ1(t) is Hȯlder continuous.

d
dt
(
tβ−1Eβ,β(−νtβ)

)
= tβ−2Eβ,β−1(−νtβ),

then

d
dt
(
tβ−1Eβ,β(−νtβ)

)
=

1
2πi

∫
Γθ

tβ−2Eβ,β−1(−νtβ)B(νI + B)−1dν

=
1

2πi

∫
Γθ

tβ−2Eβ,β−1(−νtβ)dν− 1
2πi

∫
Γθ

tβ−2νEβ,β−1(−νtβ)(νI + B)−1dν

=
1

2πi

∫
Γθ
−tβ−2Eβ,β−1(ζ)

1
tβ

dζ

− 1
2πi

∫
Γθ
−tβ−2Eβ,β−1(ζ)

ζ

tβ

(
− ζ

tβ
I + B

)−1 1
tβ

dζ.

In view of ‖νI + B‖≤ C
|ν| , we derive that∥∥∥∥ d

dt
(
tβ−1Eβ,β(−tβB)

)∥∥∥∥ ≤ Cβt
−2, 0 < t < T.

By the Mean Value Theorem, for each T ≥ t > s > 0, we get

‖tβ−1Eβ,β(−tβB)− sβ−1BEβ,β(−sβB)‖ =

∥∥∥∥ ∫ t

s

(
τβ−1BEβ,β(τ

βB)
)
dτ

∥∥∥∥
≤

∥∥∥∥ ∫ t

s

(
τβ−1BEβ,β(τ

βB)
)∥∥∥∥dτ

≤ Cβ

∫ t

s
τ−2dτ = C+ β(s−1 − t−1). (17)

Let k > 0 in such a way that 0 < t < t+ k ≤ T, then

Bϕ1(t+ k)− Bϕ1(t) =
∫ t

0

(
(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)

)
− (t− s)β−1BEβ,β(−(t+ k− s)βB)(Pg(s)− Pg(t))ds

+
∫ t

0
(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))ds

+
∫ t+k

t
(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))ds

:= k1(t) + k2(t) + k3(t).
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We discuss these terms step by step. For k1(t), by (16) and (H1), we get

|k1(t)|p ≤
∫ t

0
‖(t+ k− s)β−1BEβ,β(−(t+ k− s)βB)

− (t− s)β−1BEβ,β(−(t− s)βB)‖|(Pg(s)− Pg(t))|pds

≤ KCβk
∫ t

0
(t+ k− s)−1(t− s)θ−1ds

≤ KCβk
∫ t

0
(s + k)−1(t− s)θ−1ds

≤ CβK
∫ k

0

k
s + k

sθ−1ds + KCβk
∫ ∞

h

s
s + k

sθ−1ds,

so

|k1(t)|p ≤ KCβkθ . (18)

For k2(t), by using Lemma 5 and (H2),

|k2(t)|p ≤
∫ t

0
(t+ k− s)β−1|BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))|pds

≤ C1

∫ t

0
(t+ k− s)−1|(Pg(t)− Pg(t+ k))|pds

≤ KC1kθ
∫ t

0
(t+ k− s)−1ds

= KC1[ln k− ln(t+ k)]kθ . (19)

Moreover, for k3(t), again we use (H2) and Lemma 5, we get

|k3(t)|p ≤
∫ t+k

t
(t+ k− s)β−1|BEβ,β(−(t+ k− s)βB)(Pg(t)− Pg(t+ k))|pds

≤ C1

∫ t+k

t
(t+ k− s)−1|(Pg(s)− Pg(t+ k))|pds

≤ C1K
∫ t+k

t
(t+ k− s)θ−1ds = C1K

kθ

θ
. (20)

Combining Equations (18), (19) and (20), we conclude that Bϕ1(t) is Hölder continuous.

Theorem 5. Assume that the suppositions of Theorem 4 are fulfilled. The mild solution of Theorem 4
is classic if for each b ∈ D(B), (H2) holds.

Proof. In the case of b ∈ D(B), Part (ii) of Lemma 2 show that v(t) = Eβ(−tβB)b(0 < t)
the following problem has a classic solution:{

CDβ
t v = −Bv, 0 < t,

v(0) = b.

Step 1: We show that

ϕ(t) =
∫ t

0
(t− s)β−1Eβ,β(−((t− s)βB)Pg(s)ds,

is classic solution of the problem{
CDβ

t v = −Bv + Pg(t), 0 < t,
v(0) = b.
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From Theorem 4 ϕ ∈ C([0,T], Qp), we write ϕ(t) = ϕ1(t) + ϕ2(t), where

ϕ1(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)

(
Pg(t)− Pg(t+ k)

)
ds

ϕ2(t) =
∫ t

0
(t− s)β−1Eβ,β(−(t− s)βB)Pg(t)ds.

Bϕ2(t) = Pg(t)− Eβ(−tβB)Pg(t).

Since (H2) hold, it observes that

|Bϕ2(t)|p ≤ (1 + (C1)|Pg(t)|p,

as a result

ϕ2(t) ∈ D(B)aswellasBϕ2(t) ∈ Cμ((0,T], Qp) f ort ∈ (0,T].

We also explain that CDβ
t ϕ ∈ C((0,T], Qp). By Lemma 2(iv), as well as ϕ(0) = 0, we get

CDβ
t ϕ(t) =

d
dt
(

I1−β
t ϕ(t)

)
=

d
dt
(Eβ(−tβB) ∗ Pg).

It remains to show that Eβ(−tβB) ∗ Pg is continuously differentiable in Qp. Suppose that
T− t ≥ k > 0, we have

1
k
(Eβ(−(t+ k)βB) ∗ Pg− Eβ(−tβB) ∗ Pg) =

∫ t

0

1
k
(
Eβ(−(t+ k− s)βB)Pg(s)

− Eβ(−(t− s)βB)Pg(s)
)
ds

+
1
k

∫ t+k

0
Eβ(−(t+ k− s)βB)Pg(s).

Note that ∫ t

0

1
k
|Eβ(−(t+ k− s)βB)Pg(s)− Eβ(−(t− s)βB)Pg(s)|pds

≤ C1
1
k

∫ t

0
|Eβ(−(t− s)βB)Pg(s)|p

+ C1
1
k

∫ t

0
|Eβ(−(t+ k− s)βB)Pg(s)|pds

≤ C1N (t)
1
k

∫ t

0
(t+ k− s)−βs−β(1−α)ds

+ C1N (t)
1
k

∫ t

0
(t− s)−βs−β(1−α)ds

≤ C1N (t)
1
k
(
(t+ k)1−β + t1−β

)
V(1− β, 1− β(1− α)),

according to Dominated Convergence Theorem, we note that

lim
k→0

∫ t

0

1
k
(
Eβ(−(t+ k− s)βB)Pg(s)− Eβ(−(t− s)βB)Pg(s)

)
ds

=
∫ t

0
(t− s)β−1BEβ,β(−(t− s)βB)Pg(s)ds

= Bϕ(t).
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Furthermore,

1
k

∫ t+k

t
Eβ(−(t+ k− s)βB)Pg(s) =

1
k

∫ k

0
Eβ(−sβB)Pg(t+ k− s)ds

=
1
k

∫ k

0
Eβ(−sβB)

(
Pg(t+ k− s)ds− Pg(t− s)

)
ds

+
1
k

∫ k

0
Eβ(−sβB)

(
Pg(t− s)− Pg(t)

)
ds

+
1
k

∫ k

0
Eβ(−sβB)P f (s)ds.

By Lemma 1 and 5 and (H2), we get∣∣∣∣1
k

∫ k

0
Eβ(−sβB)

(
Pg(t+ k− s)ds− Pg(t− s)

)
ds
∣∣∣∣

p
≤ C1kθ ,∣∣∣∣1

k

∫ k

0
Eβ(−sβB)

(
Pg(t− s)− Pg(t)

)
ds
∣∣∣∣

p
≤ C1K

kθ

θ + 1
.

We conclude that Eβ(t
βB) ∗ Pg is differentiable at t+ as well as d

dt
(
Eβ(t

βB) ∗ Pg
)
+

=

Bϕ(t) + Pg(t). Same as Eβ(t
βB) ∗ Pg is differentiable at t− as well as d

dt
(
Eβ(t

βB) ∗ Pg
)
− =

Bϕ(t) + Pg(t).
We indicate ϕ(t) := Eβ(−tβB)b. According to Lemma 2(iv) and (5)

|Bξ ϕ(t+ k)− Bξ ϕ(t)|p =

∣∣∣∣ ∫ t+k

t
−sβ−1Bξ Eβ,β(−sβ−1B)bds

∣∣∣∣
p

≤
∫ t+k

t
sβ−1|Bξ−αEβ,β(−sβ−1B)Bβb|pds

≤ L1

∫ t+k

t
sβ(1+α−ξ)−1ds|Bβb|p

=
L1|b|Hα,p

β(1 + α− ξ)
kβ(1+α−ξ).

Thus, Bξ ϕ ∈ Cθ((0,T], Qp).
For each small ε > 0, take k in such a way that ε ≤ t < t+ k ≤ k, since

|Bξ ϕ(t+ k)− Bξ ϕ(t)|p ≤
∣∣∣∣ ∫ t+k

t
(t+ k− s)β−1Bξ Eβ,β(−(t+ k− s)βB)Pg(s)ds

∣∣∣∣
p

+

∣∣∣∣Bξ
(
(t+ k− s)β−1Eβ,β(−(t+ k− s)βB)

− (t− s)β−1Eβ,β(−(t− s)βB)
)

Pg(s)ds
∣∣∣∣

p

= ϕ1(t) + ϕ2(t).
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By applying (H1) and Lemma 5, we have

ϕ1(t) ≤ C1

∫ t+k

t
(t+ k− s)β(1−ξ)−1|Pg(s)|pds

≤ C1N (t)
∫ t+k

t
(t+ k− s)β(1−ξ)−1s−β(1−α)ds

≤ N (t)
C1

β(1− ξ)
kβ(1−ξ)t−β(1−α)

≤ N (t)
C1

β(1− ξ)
kβ(1−ξ)ε−β(1−α).

To prove ϕ2(t), we consider the inequality

d
dt
(
tβ−1Bξ Eβ,β(−tβB)

)
=

1
2πι

∫
Γ

νξtβ−2Eβ,β−1(−νtβ)(νI + B)−1dν

=
1

2πι

∫
Γ′
−
(
− ζ

tβ

)ξ

tβ−2Eβ,β−1(ζ)

(
− ζ

tβ
I + B

)−1 1
tβ

dζ.

This gives that ‖ d
dt
(
tβ−1Bξ Eβ,β(−tβB)

)
‖ ≤ Cβt

β(1−ξ)−2. By Mean Value Theorem

‖tβ−1Bξ Eβ,β(−tβB)− sβ−1Bξ Eβ,β(−sβB)‖ ≤
∫ t

s

∥∥∥∥ d
dτ

(
τβ−1Bξ Eβ,β(−τβB)

)∥∥∥∥dτ

≤ Cβ

∫ t

s
τβ(1−ξ)−2dτ = Cβ

(
sβ(1−ξ)−1 − tβ(1−ξ)−1),

thus

ϕ2(t)

≤
∫ t

0
|Bξ

(
(t+ k− s)β−1Eβ,β(−(t+ k− s)βB)− (t− s)β−1Eβ,β(−(t− s)βB)

)
Pg(s)ds|p

≤
∫ t

0

(
(t− s)β(1−ξ)−1 − (t+ k− s)β(1−ξ)−1)|Pg(s)|pds

≤ CβN (t)

( ∫ t

0
(t− s)β(1−ξ)−1s−β(1−α)ds−

∫ t+k

0
(t− s + k)β(1−ξ)−1s−β(1−α)ds

)
+ CβN (t)

∫ t+k

t
(t− s + k)β(1−ξ)−1s−β(1−α)ds

≤ CβN (t)
(
tβ(α−ξ) − (t+ k)β(α−ξ)

)
B(β(1− ξ), 1− β(1− α)) + CβN (t)kβ(1−ξ)t−β(1−α)

≤ CβN (t)kβ(1−ξ)[ε(ε + k)]β(α−ξ) + CβN (t)kβ(1−ξ)ε−β(1−α),

which shows that Bξ ϕ ∈ Cθ([ε,T], Qp). Therefore Bξ ϕ ∈ Cθ([0,T], Qp), because of arbi-
trary ε.

Recall

ψ(t) =
∫

0t(t− s)β−1Eβ,β(−(t− s)βB)F(v(s), v(s))ds.

Since |F(v(s), w(s))|p ≤ NR2(t)s−2β(ξ−α), where R(t) := sups∈[0,t] sβ(ξ−α)|v(s)|Hξ,p in
(0,T], is bounded and continuous. A similar conversation made it possible to provide the
Hold̈er continuity of Bξ ψ in Cθ((0,T], Qp). Hence, we have Bξv(t) = Bξ ϕ(t) + Bξ ϕ(t) +

Bξ ψ(t) ∈ Cθ((0,T], Qp).

Since F(v, w) ∈ Cθ((0,T], Qp), by Step 2, this proves that CDβ
t ψ ∈ Cθ((0,T], Qp),

Bψ ∈ Cθ((0,T], Qp). and CDβ
t ψ = −Bψ + F(v, w). We obtain CDβ

t v ∈ Cθ((0,T], Qp),

Bv ∈ Cθ((0,T], Qp) and CDβ
t v = −Bv + F(v, w) + Pg.
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Hence, we prove that v is a classical solution.

6. Example

In this section, we present an example to indicate the applicability of our results:

Example 1. Suppose that Y ∈ L2(0, 2π) as well as em(y) = 3
√

3
2 π cos x, m = 1, 2, .... At that

point, we define infinitesimal dimensional space U = Y and consider a system⎧⎪⎪⎨⎪⎪⎩
CD

4
5
t Z(t, y) =C D

2
3
t Z(t, y) + f (t,Z(t, y)) + Qw(t, y), 0 < t < d, 0 < y < 2π,

Z(0, y) = Z0(y), 0 ≤ y ≤ 2π,
Z(t, 0) = Z(t, 2π), 0 ≤ y ≤ d,

where (H1) is satisfied by the nonlinear function f as an operator for every w ∈ L2(0, d;U ) and
∑∞

m=1 ŵms(t)em. Consider

Qw(t) =
∞

∑
m=1

ŵms(t)em,

ŵm(t) =

{
0, 0 ≤ t < d(1− 1

m ),
wm(t), d(1− 1

m ) ≤ t ≤ d.

Because
‖Qw‖L2(0,d;U ) ≤ ‖w‖L2(0,d;U )′ ,

from U into L2(J, Y), the operator Q is bounded. However, it is not easy to see that QU �= L2(J, Y).
Suppose that ϕ is an arbitrary element in L2(0, d, Y) and k ∈ Y is defined as

k = Eβ(−d− s)βZ(0)y +
∫ d

0
(d− s)β−1T4

5
(d− s)ϕ(s)ds.

Suppose that

ϕ(t) =
∞

∑
m=1

fm(t)em,

as well as

k =
∞

∑
m=1

km(t)em.

Hence, we declare that for each given ϕ ∈ L2(0, d, Y), there exist w ∈ U in such a way that

Eβ(−d− s)βZ(0)y +
∫ t

0
(d− s)β−1T4

5
(d− s)Qw(s)ds

= Eβ(−d− s)βZ(0)y +
∫ d

0
(d− s)β−1T4

5
(d− s)ϕ(s)ds,

this indicates that (H2) is fulfilled.

7. Conclusions

The purpose of this paper is to study the time fractional NS-equations using initial
value problem with the Caputo derivative. We proved the global and local existence of mild
solution in Hα,p. We established sufficient conditions for the existence and uniqueness of
the mild solution for problem (2) in Hα,p. Moreover, we showed that classical solutions that
satisfy problem (2) are regular. Furthermore, we presented the regularity of mild solutions
for time fractional NS-equations. In the end, we presented an example.
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Abstract: This paper presents a new class of boundary value problems of integrodifferential fractional
equations of different order equipped with coupled anti-periodic and nonlocal integral boundary
conditions. We prove the existence and uniqueness criteria of the solutions by using the Leray-
Schauder alternative and Banach contraction mapping principle. Examples are constructed for the
illustration of our results.

Keywords: coupled system; fractional integro-differential equations; boundary conditions; existence
and uniqueness; fixed point theorems

1. Introduction

Fractional calculus has gained a rapid rise in popularity in the past few decades
due to the nonlocal nature of the derivatives and integrals of fractional order [1]. As a
matter of fact, this field incorporates the methods and concepts used to solve symmetrical
differential equations with fractional derivatives. Thereby, it evolved in many theoretical
and applications area. For application details in ecology, chaos and fractional dynamics,
medical sciences, financial economics bio-engineering, immune system, etc., we refer the
reader to the works [2–9]. For more theoretical aspects of fractional calculus, we refer the
reader to the monographs [10–18].

During this development, nonlinear Fractional Differential Equations (FDEs) equipped
with different kinds of Boundary Conditions (BCs) such as multi-point, periodic, anti-
periodic, nonlocal, and integral conditions have also been widely studied and investigated.
Many new results of variety boundary value problems were given in [19–25]. At the
same time, fractional differential system subjects with different kinds of BCs also received
the attention of such systems in the mathematical models with engineering and physical
phenomena [26–31].

Recently, fractional Integro-Differential Equations (IDEs) with nonlocal conditions
are considered a useful mathematical tool for the description of various real materials,
for instance, see [32,33], and references therein. By side, several researchers have applied
classical fixed point theorems to prove the existence and uniqueness results for such
boundary value problems [19,31,34–42].

In addition, the authors in [43–45] investigated some coupled systems (CSs) of mixed-
order FDEs with different kinds of BCs. To enrich the topic, we introduce and investigate a
CS of fractional IDEs of Caputo type with different derivatives orders given by

Symmetry 2023, 15, 182. https://doi.org/10.3390/sym15010182 https://www.mdpi.com/journal/symmetry
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⎧⎨⎩
cDq1 [κ1v(t) + λ1 Iθ1

x1 φ(t, v(t), u(t))] = k(t, v(t), u(t)), 2 < q1 ≤ 3, t ∈ [x1, x2],

cDq2 [κ2u(t) + λ2 Iθ2
x1 ψ(t, v(t), u(t))] = p(t, v(t), u(t)), 1 < q2 ≤ 2, t ∈ [x1, x2],

(1)

supplemented with coupled anti-periodic and nonlocal integral BCs:⎧⎨⎩ v(x1) + v(x2) = 0, v′(x2) = 0, v′(x1) = h
∫ ξ

x1

u(s)ds,

u(x1) + u(x2) = 0, u′(x2) = 0,
(2)

where cDΥ denotes the Caputo fractional differential operator of order Υ ∈ {q1, q2}, IῩ
x1

denotes the Riemann-Liouville fractional integral of order Ῡ ∈ {θ1, θ2} such that θ1, θ2 > 1,
κi, λi, h, i = 1, 2 are real constants with κi, h �= 0, φ, ψ, k, p : [x1, x2]×R×R −→ R are given
continuous functions and x1 < ξ < x2.

For usefulness, we emphasize that the current study is novel, and contributes exten-
sively to the existing results on the topic. Furthermore, new results follow as special cases
of the present work.

The structure of this paper is as follows. In Section 2, we give some important
definitions of fractional calculus and establish an auxiliary lemma that helps to transform
the system (1) into equivalent integral equations. In Section 3, the existence and uniqueness
results for the given system (1) are derived. Two examples are also presented to illustrate
the obtained outcomes.

2. Preliminary Material

First, we outline some main definitions of fractional calculus.

Definition 1 ([11]). Let U be an integrable function on x1 ≤ z ≤ x2. The Riemann-Liouville
fractional integral Iϑ

x1
of order ϑ ∈ R (ϑ > 0) for U is given by

Iϑ
x1

U(z) =
1

Γ(ϑ)

∫ z

x1

(z− s)ϑ−1U(s)ds,

where Γ is the Euler Gamma function.

Definition 2 ([11]). The Caputo derivative for a function U ∈ ACr[x1, x2] of order ϑ ∈ (r− 1, r],
r ∈ N existing on [x1, x2], is given by

cDϑU(z) =
1

Γ(r− ϑ)

∫ z

x1

(z− l)r−ϑ−1U(r)(l)dl, z ∈ [x1, x2].

Lemma 1 ([11]). The solution of the equation cDϑx(z) = 0, r− 1 < ϑ < r, z ∈ [x1, x2], is

x(z) = m0 + m1(z− x1) + m2(z− x1)
2 + ... + mr−1(z− x1)

r−1,

with mi ∈ R, i = 0, 1, ..., r− 1. Moreover,

Iϑ
x1

cDϑx(z) = x(z) +
r−1

∑
i=0

mi(z− x1)
i.

Next, we introduce an important lemma related to our new results.

Lemma 2. For Φ, Ψ, K, P ∈ C([x1, x2],R), the unique solution of the following linear system
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⎧⎨⎩
cDq1 [κ1v(t) + λ1 Iθ1

x1 Φ(t)] = K(t), 2 < q1 ≤ 3, t ∈ [x1, x2],

cDq2 [κ2u(t) + λ2 Iθ2
x1 Ψ(t)] = P(t), 1 < q2 ≤ 2, t ∈ [x1, x2],

(3)

equipped with the BCs (2) is given by:

v(t) =
1
κ1

∫ t

x1

(t− s)q1−1

Γ(q1)
K(s)ds− λ1

κ1

∫ t

x1

(t− s)θ1−1

Γ(θ1)
Φ(s)ds

+
λ1

2κ1

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)
Φ(s)ds− 1

2κ1

∫ x2

x1

(x2 − s)q1−1

Γ(q1)
K(s)ds

+ ρ1(t)
[
λ2

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
Ψ(s)ds−

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
P(s)ds

]
+ ρ2(t)

[
λ1

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)
Φ(s)ds−

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
K(s)ds

]
(4)

+ ρ3(t)
[
λ2

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
Ψ(s)ds−

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
P(s)ds

]
+ ρ4(t)

[ ∫ ξ

x1

(hλ2

κ2

∫ s

x1

(s− τ)θ2−1

Γ(θ2)
Ψ(τ)dτ − h

κ2

∫ s

x1

(s− τ)q2−1

Γ(q2)
P(τ)dτ

)
ds
]
,

u(t) =
1
κ2

∫ t

x1

(t− s)q2−1

Γ(q2)
P(s)ds− λ2

κ2

∫ t

x1

(t− s)θ2−1

Γ(θ2)
Ψ(s)ds

+
λ2

2κ2

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
Ψ(s)ds− 1

2κ2

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
P(s)ds (5)

+ ρ5(t)
[
λ2

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
Ψ(s)ds−

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
P(s)ds

]
,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1(t) =
−ε(x2 − x1)

4κ1
+

ε(t− x1)

κ1
− ε(t− x1)

2

2κ1(x2 − x1)
,

ρ2(t) =
−(x2 − x1)

4κ1
+

(t− x1)
2

2κ1(x2 − x1)
,

ρ3(t) =
−ε(ξ − x2)(x2 − x1)

4κ1
+

ε(ξ − x2)(t− x1)

κ1
− ε(ξ − x2)(t− x1)

2

2κ1(x2 − x1)
,

ρ4(t) =
(x2 − x1)

4
− (t− x1) +

(t− x1)
2

2(x2 − x1)
,

ρ5(t) =
−(x2 − x1)

2κ2
+

(t− x1)

κ2
,

(6)

ε =
hκ1(ξ − x1)

2κ2
. (7)

Proof. Using Lemma 1 and applying the integral operators Iq1
x1 , Iq2

x1 on both sides of the
equations in (3), we get the general solution that can be written as

v(t) =
1
κ1

∫ t

x1

(t− s)q1−1

Γ(q1)
K(s)ds− λ1

κ1

∫ t

x1

(t− s)θ1−1

Γ(θ1)
Φ(s)ds +

c1

κ1
+

c2

κ1
(t− x1)

+ c3
κ1
(t− x1)

2,
(8)
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v′(t) =
1
κ1

∫ t

x1

(t− s)q1−2

Γ(q1 − 1)
K(s)ds− λ1

κ1

∫ t

x1

(t− s)θ1−2

Γ(θ1 − 1)
Φ(s)ds +

c2

κ1
+ 2

c3

κ1
(t− x1), (9)

u(t) =
1
κ2

∫ t

x1

(t− s)q2−1

Γ(q2)
P(s)ds− λ2

κ2

∫ t

x1

(t− s)θ2−1

Γ(θ2)
Ψ(s)ds +

c4

κ2
+

c5

κ2
(t− x1), (10)

u′(t) =
1
κ2

∫ t

x1

(t− s)q2−2

Γ(q2 − 1)
P(s)ds− λ2

κ2

∫ t

x1

(t− s)θ2−2

Γ(θ2 − 1)
Ψ(s)ds +

c5

κ2
, (11)

with ci ∈ R, i = 1, ..., 5 are unknown arbitrary constants.
Using the conditions (2) in Equations (8)–(11), we obtain a system of equations in

ci (i = 1, ..., 5) given by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2c1 + (x2 − x1)c2 + (x2 − x1)
2c3 = I1,

2c4 + (x2 − x1)c5 = I2,
c2 + 2(x2 − x1)c3 = I3,

− c2
κ1

+ h(ξ−x1)
κ2

c4 +
h(ξ−x1)

2

2κ2
c5 = I4,

c5 = I5

(12)

where Ii; (i = 1, ..., 5) are defined by

I1 = λ1

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)
Φ(s)ds−

∫ x2

x1

(x2 − s)q1−1

Γ(q1)
K(s)ds,

I2 = λ2

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
Ψ(s)ds−

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
P(s)ds,

I3 = λ1

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)
Φ(s)ds−

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
K(s)ds,

I4 =
∫ ξ

x1

(hλ2

κ2

∫ s

x1

(s− τ)θ2−1

Γ(θ2)
Ψ(τ)dτ − h

κ2

∫ s

x1

(s− τ)q2−1

Γ(q2)
G(τ)dτ

)
ds,

I5 = λ2

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
Ψ(s)ds−

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
P(s)ds. (13)

Solving the system (12) for ci (i = 1, ..., 5) , we get that

c1 =
−ε(ξ − x2)(x2 − x1)

4
c5 +

1
2

I1 −
ε(x2 − x1)

4
I2 −

(x2 − x1)

4
I3 +

κ1(x2 − x1)

4
I4,

c2 = ε(ξ − x2)c5 + εI2 − κ1 I4,

c3 =
−ε(ξ − x2)

2(x2 − x1)
c5 −

ε

2(x2 − x1)
I2 +

1
2(x2 − x1)

I3 +
κ1

2(x2 − x1)
I4,

c4 =
−(x2 − x1)

2
c5 +

1
2

I2,

c5 = λ2

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
Ψ(s)ds−

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
P(s)ds,

where ε is given by (7). Inserting the values of ci (i = 1, ...5) in (8) and (9) together
with notations (6), we get (4) and (5). The converse follows by direct computation. This
completes the proof.

3. Existence and Uniqueness Results

Let V = {v|v ∈ C([x1, x2],R)} be a Banach space endowed with the norm

‖v‖ = sup
l∈[x1,x2]

|v(l)|.
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Obviously the product space (V × V , ‖.‖) is also a Banach space with norm ‖(v, u)‖ =
‖v‖+ ‖u‖ for (v, u) ∈ V × V .

In view of Lemma 2, we define an operator J : V × V → V × V as

J (v, u)(t) := (J1(v, u)(t),J2(v, u)(t)), (14)

where

J1(v, u)(t) =
1
κ1

∫ t

x1

(t− s)q1−1

Γ(q1)
k(s, v(s), u(s))ds− λ1

κ1

∫ t

x1

(t− s)θ1−1

Γ(θ1)
φ(s, v(s), u(s))ds

+
λ1

2κ1

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)
φ(s, v(s), u(s))ds− 1

2κ1

∫ x2

x1

(x2 − s)q1−1

Γ(q1)
k(s, v(s), u(s))ds

+ ρ1(t)
[
λ2

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
ψ(s, v(s), u(s))ds−

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
p(s, v(s), u(s))ds

]
+ ρ2(t)

[
λ1

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)
φ(s, v(s), u(s))ds−

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
k(s, v(s), u(s))ds

]
(15)

+ ρ3(t)
[
λ2

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
ψ(s, v(s), u(s))ds−

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
p(s, v(s), u(s))ds

]
+ ρ4(t)

[ ∫ ξ

x1

(hλ2

κ2

∫ s

x1

(s− τ)θ2−1

Γ(θ2)
ψ(τ, v(τ), u(τ))dτ − h

κ2

∫ s

x1

(s− τ)q2−1

Γ(q2)
p(τ, v(τ), u(τ))dτ

)
ds
]
,

J2(v, u)(t) =
1
κ2

∫ t

x1

(t− s)q2−1

Γ(q2)
p(s, v(s), u(s))ds− λ2

κ2

∫ t

x1

(t− s)θ2−1

Γ(θ2)
ψ(s, v(s), u(s))ds

+
λ2

2κ2

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
ψ(s, v(s), u(s))ds− 1

2κ2

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
p(s, v(s), u(s))ds (16)

+ ρ5(t)
[
λ2

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
ψ(s, v(s), u(s))ds−

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
p(s, v(s), u(s))ds

]
,

where ρi(t), i = 1, ...., 5 are given by (6). For brevity, we use the subsequent notations.

M1 =
3(x2 − x1)

q1

2|κ1||Γ(q1 + 1)
+ ρ̃2

(x2 − x1)
q1−1

Γ(q1)
, (17)

M2 = ρ̃1
(x2 − x1)

q2

Γ(q2 + 1)
+ ρ̃3

(x2 − x1)
q2−1

Γ(q2)
+ ρ̃4

|h|(ξ − x1)
q2+1

|κ2|Γ(q2 + 2)
, (18)

M3 =
3|λ1|(x2 − x1)

θ1

2|κ1||Γ(θ1 + 1)
+ ρ̃2

|λ1|(x2 − x1)
θ1−1

Γ(θ1)
, (19)

M4 = ρ̃1
|λ2|(x2 − x1)

θ2

Γ(θ2 + 1)
+ ρ̃3

|λ2|(x2 − x1)
θ2−1

Γ(θ2)
+ ρ̃4

|h||λ2|(ξ − x1)
θ2+1

|κ2|Γ(θ2 + 2)
, (20)

M5 =
3(x2 − x1)

q2

2|κ2||Γ(q2 + 1)
+ ρ̃5

(x2 − x1)
q2−1

Γ(q2)
, (21)

M6 =
3|λ2|(x2 − x1)

θ2

2|κ2||Γ(θ2 + 1)
+ ρ̃5

|λ2|(x2 − x1)
θ2−1

Γ(θ2)
, (22)

where ρ̃i = sup
t∈[x1,x2]

|ρi(t)|, i = 1, · · · , 5.

3.1. Existence Result via Leray-Schauder Alternative

Lemma 3 ([46]). (Leray-Schauder alternative) Let L : E→ E be a completely continuous operator.
Let X(L) = {x ∈ E : x = δL(x) for some 0 < δ < 1}. Then either the set X(L) is unbounded or
L has at least one fixed point.

165



Symmetry 2023, 15, 182

Theorem 1. Assume the following assumption holds

(H1) k, p, φ, ψ : [x1, x2] × R2 → R are continuous functions and there exist real constants
γi, νi, μi, �i ≥ 0 (i = 1, 2) and γ0, ν0, μ0, �0 > 0 such that, for all t ∈ [x1, x2] and v, u ∈ R,

|k(t, v, u)| ≤ γ0 + γ1|v|+ γ2|u|, |p(t, v, u)| ≤ ν0 + ν1|v|+ ν2|u|,
|φ(t, v, u)| ≤ μ0 + μ1|v|+ μ2|u|, |ψ(t, v, u)| ≤ �0 + �1|v|+ �2|u|,

then the CS (1) and (2) has at least one solution on [x1, x2] if

N1 = γ1M1 + ν1(M2 + M5) + μ1M3 + �1(M4 + M6) < 1, (23)

N2 = γ2M1 + ν2(M2 + M5) + μ2M3 + �2(M4 + M6) < 1. (24)

where Mj, j = 1, · · · , 6 are given by (17)–(22) respectively.

Proof. First, we demonstrate that the operator J : V × V → V × V is completely con-
tinuous. By continuity of the functions k, p, φ and ψ, it follows that the operators J1
and J2 are continuous. In consequence, the operator J is continuous. Let G ⊂ V × V
be a bounded set. Then ∀(v, u) ∈ G, there exist positive constants Ln, n = 1, 2, 3, 4 such that:{ |k(t, v(t), u(t))| ≤ L1, |p(t, v(t), u(t))| ≤ L2,

|φ(t, v(t), u(t))| ≤ L3, |ψ(t, v(t), u(t))| ≤ L4.
(25)

Then, for any (v, u) ∈ G, we have

|J1(v, u)(t)| ≤ 1
|κ1|

∫ t

x1

(t− s)q1−1

Γ(q1)

∣∣∣k(s, v(s), u(s))
∣∣∣ds +

|λ1|
|κ1|

∫ t

x1

(t− s)θ1−1

Γ(θ1)

∣∣∣φ(s, v(s), u(s))
∣∣∣ds

+
|λ1|
2|κ1|

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)

∣∣∣φ(s, v(s), u(s))
∣∣∣ds +

1
2|κ1|

∫ x2

x1

(x2 − s)q1−1

Γ(q1)

∣∣∣k(s, v(s), u(s))
∣∣∣ds

+ |ρ1(t)|
[
|λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)

∣∣∣ψ(s, v(s), u(s))
∣∣∣ds +

∫ x2

x1

(x2 − s)q2−1

Γ(q2)

∣∣∣p(s, v(s), u(s))
∣∣∣ds

]
+ |ρ2(t)|

[
|λ1|

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)

∣∣∣φ(s, v(s), u(s))
∣∣∣ds +

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)

∣∣∣k(s, v(s), u(s))
∣∣∣ds

]
+ |ρ3(t)|

[
|λ2|

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)

∣∣∣ψ(s, v(s), u(s))
∣∣∣ds +

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)

∣∣∣p(s, v(s), u(s))
∣∣∣ds

]
+ |ρ4(t)|

[ ∫ ξ

x1

( |h||λ2|
|κ2|

∫ s

x1

(s− τ)θ2−1

Γ(θ2)

∣∣∣ψ(τ, v(τ), u(τ))
∣∣∣dτ

+
|h|
|κ2|

∫ s

x1

(s− τ)q2−1

Γ(q2)

∣∣∣p(τ, v(τ), u(τ))
∣∣∣dτ

)
ds
]

≤ L1

{
1
|κ1|

∫ t

x1

(t− s)q1−1

Γ(q1)
ds +

1
2|κ1|

∫ x2

x1

(x2 − s)q1−1

Γ(q1)
ds + |ρ2(t)|

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
ds

}

+ L2

{
|ρ1(t)|

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
ds + |ρ3(t)|

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
ds +

|ρ4(t)||h|
|κ2|

∫ ξ

x1

( ∫ s

x1

(s− τ)q2−1

Γ(q2)
dτ
)

ds

}

+ L3

{
|λ1|
|κ1|

∫ t

x1

(t− s)θ1−1

Γ(θ1)
ds +

|λ1|
2|κ1|

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)
ds + |ρ2(t)||λ1|

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)
ds

}

+ L4

{
|ρ1(t)||λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
ds + |ρ3(t)||λ2|

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
ds

+
|ρ4(t)||h||λ2|

|κ2|
∫ ξ

x1

( ∫ s

x1

(s− τ)θ2−1

Γ(θ2)
dτ
)

ds

}
,
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taking the norm for t ∈ [x1, x2] and using the notations (17)–(20) yields

‖J1(v, u)‖ ≤ L1M1 + L2M2 + L3M3 + L4M4. (26)

Similarly, we have
‖J2(v, u)‖ ≤ L2M5 + L4M6. (27)

From above inequalities (26) and (27), we deduce that J1 and J2 are uniformly bounded,
which implies that

‖J (v, u)‖ ≤ L1M1 + L2(M2 + M5) + L3M3 + L4(M4 + M6). (28)

Hence the operator J is uniformly bounded.
Next, we prove that J is equicontinuous. Let t1, t2 ∈ [x1, x2] with t1 < t2. Then we get

|J1(v, u)(t2)−J1(v, u)(t1)| ≤
1
|κ1|

[ ∫ t1

x1

|(t2 − s)q1−1 − (t1 − s)q1−1|
Γ(q1)

∣∣∣k(s, v(s), u(s))
∣∣∣ds

+
∫ t2

t1

|(t2 − s)q1−1|
Γ(q1)

∣∣∣k(s, v(s), u(s))
∣∣∣]ds +

|λ1|
|κ1|

[ ∫ t1

x1

|(t2 − s)θ1−1 − (t1 − s)θ1−1|
Γ(θ1)

∣∣∣φ(s, v(s), u(s))
∣∣∣ds

+
∫ t2

t1

|(t2 − s)θ1−1|
Γ(θ1)

∣∣∣φ(s, v(s), u(s))
∣∣∣ds

]
+|ρ1(t2)− ρ1(t1)|

[
|λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)

∣∣∣ψ(s, v(s), u(s))
∣∣∣ds +

∫ x2

x1

(x2 − s)q2−1

Γ(q2)

∣∣∣p(s, v(s), u(s))
∣∣∣ds

]
+|ρ2(t2)− ρ2(t1)|

[
|λ1|

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)

∣∣∣φ(s, v(s), u(s))
∣∣∣ds +

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)

∣∣∣k(s, v(s), u(s))
∣∣∣ds

]
+|ρ3(t2)− ρ3(t1)|

[
|λ2|

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)

∣∣∣ψ(s, v(s), u(s))
∣∣∣ds +

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)

∣∣∣p(s, v(s), u(s))
∣∣∣ds

]
+|ρ4(t2)− ρ4(t1)|

[ ∫ ξ

x1

( |h||λ2|
|κ2|

∫ s

x1

(s− τ)θ2−1

Γ(θ2)

∣∣∣ψ(τ, v(τ), u(τ))
∣∣∣dτ

+
|h|
|κ2|

∫ s

x1

(s− τ)q2−1

Γ(q2)

∣∣∣p(τ, v(τ), u(τ))
∣∣∣dτ

)
ds
]

≤ L1

{
1

|κ1|Γ(q1 + 1)

[
2(t2 − t1)

q1 +
∣∣∣(t2 − x1)

q1 − (t1 − x1)
q1
∣∣∣]

+|ρ2(t2)− ρ2(t1)|
∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
ds

}

+L2

{
|ρ1(t2)− ρ1(t1)|

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
ds + |ρ3(t2)− ρ3(t1)|

∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
ds

+
|ρ4(t2)− ρ4(t1)||h|

|κ2|
∫ ξ

x1

( ∫ s

x1

(s− τ)q2−1

Γ(q2)
dτ
)

ds

}

+L3

{
|λ1|

|κ1|Γ(θ1 + 1)

[
2(t2 − t1)

θ1 +
∣∣∣(t2 − x1)

θ1 − (t1 − x1)
θ1−1

∣∣∣]

+
∣∣∣ρ̄2(t2)− ρ̄2(t1)

∣∣∣|λ1|
∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)
ds

}

+L4

{
|ρ1(t2)− ρ1(t1)||λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
ds + |ρ3(t2)− ρ3(t1)||λ2|

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
ds

+
|ρ4(t2)− ρ4(t1)||h||λ2|

|κ2|
∫ ξ

x1

( ∫ s

x1

(s− τ)θ2−1

Γ(θ2)
dτ
)

ds

}
,
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which imply that |J1(v, u)(t2)−J1(v, u)(t1)| → 0 independent of (v, u) ∈ G as t2 → t1. In
a similar way, we get

|J2(v, u)(t2)−J2(v, u)(t1)| → 0

as t2 → t1. Thus J is equicontinuous. Therefore, by Arzela-Ascoli’s theorem, it follows
that J is compact (completely continuous).

Finally, we ought to prove that Z(J ) = {(v, u) ∈ V × V : (v, u) = δJ (v, u) ; 0 ≤ δ ≤
1} is bounded. Let (v, u) ∈ Z(J ). Then (v, u) = δJ (v, u). For every t ∈ [x1, x2], we have

v(t) = δJ1(v, u)(t), u(t) = δJ2(v, u)(t).

Using (H1) in (1), we get

|J1(v, u)(t)| ≤ 1
|κ1|

∫ t

x1

(t− s)q1−1

Γ(q1)

[
γ0 + γ1|v(s)|+ γ2|u(s)|

]
ds

+
|λ1|
|κ1|

∫ t

x1

(t− s)θ1−1

Γ(θ1)

[
μ0 + μ1|v(s)|+ μ2|u(s)|

]
ds

+
|λ1|
2|κ1|

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)

[
μ0 + μ1|v(s)|+ μ2|u(s)|

]
ds

+
1

2|κ1|
∫ x2

x1

(x2 − s)q1−1

Γ(q1)

[
γ0 + γ1|v(s)|+ γ2|u(s)|

]
ds

+ |ρ1(t)|
{
|λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)

[
�0 + �1|v(s)|+ �2|u(s)|

]
ds

+
∫ x2

x1

(x2 − s)q2−1

Γ(q2)

[
ν0 + ν1|v(s)|+ ν2|u(s)|

]
ds

}

+ |ρ2(t)|
{
|λ1|

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)

[
μ0 + μ1|v(s)|+ μ2|u(s)|

]
ds

+
∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)

[
γ0 + γ1|v(s)|+ γ2|u(s)|

]
ds

}

+ |ρ3(t)|
{
|λ2|

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)

[
�0 + �1|v(s)|+ �2|u(s)|

]
ds

+
∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)

[
ν0 + ν1|v(s)|+ ν2|u(s)|

]
ds

}

+ |ρ4(t)|
{∫ ξ

x1

( |h||λ2|
|κ2|

∫ s

x1

(s− τ)θ2−1

Γ(θ2)

[
�0 + �1|v(τ)|+ �2|u(τ)|

]
dτ

+
|h|
|κ2|

∫ s

x1

(s− τ)q2−1

Γ(q2)

[
ν0 + ν1|v(τ)|+ ν2|u(τ)|

]
dτ
)

ds

}
,

which implies that

‖v‖ ≤ γ0M1 + ν0M2 + μ0M3 + �0M4 +
[
γ1M1 + ν1M2 + μ1M3 + �1M4

]
‖v‖

+
[
γ2M1 + ν2M2 + μ2M3 + �2M4

]
‖u‖. (29)

168



Symmetry 2023, 15, 182

Similarly, we get

‖u‖ ≤ ν0M5 + �0M6 +
[
ν1M5 + �1M6

]
‖v‖

+
[
ν2M5 + �2M6

]
‖u‖. (30)

From inequalities (29) and (30), we have

‖(v, u)‖ ≤ 1
N

[
γ0M1 + ν0(M2 + M5) + μ0M3 + �0(M4 + M6)

]
, (31)

with N = min
{

1−N1, 1−N2

}
. The inequality (31) shows that Z(J ) is bounded. Hence,

J has at least one fixed point according to Lemma 3. Thus, there is at least one solution on
[x1, x2] for the CS (1) and (2).

Example 1. Consider the CS of fractional differential equations given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
cD

7
3

[1
3
v(t) +

2
110

I
23
5 φ(t, v(t), u(t))

]
= k(t, v(t), u(t)),

cD
5
4

[7
9
u(t) +

3
70

I
11
3 ψ(t, v(t), u(t))

]
= p(t, v(t), u(t)), t ∈ [0, 1],

(32)

with the BCs ⎧⎨⎩ v(0) + v(1) = 0, v′(1) = 0, v′(0) =
3

125

∫ 2/5

0
u(s)ds,

u(0) + u(1) = 0, u′(1) = 0.
(33)

Here q1 = 7/3, q2 = 5/4, θ1 = 23/5, θ2 = 11/3, h = 3/125, ξ = 2/5 with

k(t, v(t), u(t)) =
3t2

6 + t4 +
sin v(t)√

49 + t2
+

u(t)|v(t)|
70(1 + |v(t)|) ,

p(t, v(t), u(t)) =
2t
3
+

8 sin v(t)| tan−1 u(t)|
16π(t3 + 1)

+
u(t)√

19
,

φ(t, v(t), u(t)) =
3

11
+

20v(t)
(t2 + 8)2 +

4
3
√

125 + t2
u(t),

ψ(t, v(t), u(t)) = (
t + 6
70π

) tan−1 v(t) +
v(t)| cos u(t)|

t5 + 22
+

√
t2 + 8

9
sin u(t).

Clearly,

|k(t, v(t), u(t))| ≤ 1
2
+

1
7
‖v‖+ 1

70
‖u‖,

|p(t, v(t), u(t))| ≤ 2
3
+

1
4
‖v‖+ 1√

19
‖u‖,

|φ(t, v(t), u(t))| ≤ 3
11

+
5

16
‖v‖+ 4

5
‖u‖,

|ψ(t, v(t), u(t))| ≤ 1
20

+
1

22
‖v‖+ 1

3
‖u‖,

and hence γ0 = 1
2 , γ1 = 1

7 , γ2 = 1
70 , ν0 = 2

3 , ν1 = 1
4 , ν2 = 1√

19
, μ0 = 3

11 , μ1 = 5
16 , μ2 =

4
5 , �0 = 1

20 , �1 = 1
22 and �2 = 1

3 . Using (23) and (24) with the given data we find that
N1  0.836430 < 1, N2  0.583054 < 1. Therefore, by Theorem 1, the problem (32) and (33) has
at least one solution on [0, 1].
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3.2. Uniqueness Result via Banach’s Fixed Point Theorem

Theorem 2. Assume the following assumption holds

(H2) k, p, φ, ψ : [x1, x2]×R2 → R are continuous functions and there exist positive constants
lm, m = 1, · · · , 4 such that ∀t ∈ [x1, x2], vi, ui, i = 1, 2 ∈ R we have

|k(t, v1, u1)− k(t, v2, u2)| ≤ l1(|v1 − v2|+ |u1 − u2|), (34)

|p(t, v1, u1)− p(t, v2, u2)| ≤ l2(|v1 − v2|+ |u1 − u2|), (35)

|φ(t, v1, u1)− φ(t, v2, u2)| ≤ l3(|v1 − v2|+ |u1 − u2|), (36)

|ψ(t, v1, u1)− ψ(t, v2, u2)| ≤ l4(|v1 − v2|+ |u1 − u2|), (37)

then the CS (1) and (2) has a unique solution on [x1, x2], provided that

M∗ = M1l1 + (M2 + M5)l2 + M3l3 + (M4 + M6)l4 < 1, (38)

where Mj, (j = 1, ..., 6) are given by (17)–(22).

Proof. Define l∗1 = sup
t∈[x1,x2]

|k(t, 0, 0)| < ∞, l∗2 = sup
t∈[x1,x2]

|p(t, 0, 0)| < ∞, l∗3 = sup
t∈[x1,x2]

|

φ(t, 0, 0)| < ∞, l∗4 = supt∈[x1,x2]
|ψ(t, 0, 0)| < ∞ and K > 0 such that

K >
M1l∗1 + (M2 + M5)l∗2 + M3l∗3 + (M4 + M6)l∗4

1− (M1l1 + (M2 + M5)l2 + M3l3 + (M4 + M6)l4)

Firstly, we show that J BK ⊂ BK, where

BK = {(v, u) ∈ V × V : ‖(v, u)‖ ≤ K}

For (v, u) ∈ BK, t ∈ [x1, x2] and by the assumption (H2), we have

|k(t, v(t), u(t)| ≤ |k(t, v(t), u(t))− k(t, 0, 0)|+ |k(t, 0, 0)|
≤ l1

(
|v(t)|+ |u(t)|

)
+ l∗1

≤ l1
(
‖v‖V + ‖u‖U

)
+ l∗1 ≤ l1K+ l∗1.

In the same manner, we can get,

|p(t, v(t), u(t)| ≤ l2K+ l∗2, |φ(t, v(t), u(t)| ≤ l3K+ l∗3, |ψ(t, v(t), u(t)| ≤ l4K+ l∗4.

Therefore, we have

|J1(v, u)(t)| ≤
(

l1K+ l∗1
){ 1
|κ1|

∫ t

x1

(t− s)q1−1

Γ(q1)
ds +

1
2|κ1|

∫ x2

x1

(x2 − s)q1−1

Γ(q1)
ds

+|ρ2(t)|
∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
ds

}
+
(

l2K+ l∗2
){
|ρ1(t)|

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
ds

+|ρ3(t)|
∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
ds +

|ρ4(t)||h|
|κ2|

∫ ξ

x1

( ∫ s

x1

(s− τ)q2−1

Γ(q2)
dτ
)

ds

}

+
(

l3K+ l∗3
){ |λ1|

|κ1|
∫ t

x1

(t− s)θ1−1

Γ(θ1)
ds +

|λ1|
2|κ1|

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)
ds

+|ρ2(t)||λ1|
∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)
ds

}
+
(

l4K+ l∗4
){
|ρ1(t)||λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)
ds
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+|ρ3(t)||λ2|
∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)
ds +

|ρ4(t)||h||λ2|
|κ2|

∫ ξ

x1

( ∫ s

x1

(s− τ)θ2−1

Γ(θ2)
dτ
)

ds

}
,

≤
(

M1l1 + M2l2 + M3l3 + M4l4
)
K+ M1l∗1 + M2l∗2 + M3l∗3 + M4l∗4.

In consequence, we get

‖J1(v, u)‖ ≤
(

M1l1 + M2l2 + M3l3 + M4l4
)
K+ M1l∗1 + M2l∗2 + M3l∗3 + M4l∗4.

Likewise, we can find that

‖J2(v, u)‖ ≤ (M5l2 + M6l4)K+ M5l∗2 + M6l∗4,

and consequently, we get

‖J (v, u)‖ ≤
(

M1l1 + (M2 + M5)l2 + M3l3 + (M4 + M6)l4
)
K

+
(

M1l∗1 + (M2 + M5)l∗2 + M3l∗3 + (M4 + M6)l∗4
)
≤ K.

which implies that J BK ⊂ BK.
Next, we show that the operator J is a contraction. For that, let vi, ui ∈ BK; i =

1, 2 and for each t ∈ [x1, x2]. Then we have

|J1(v1, u1)(t)−J1(v2, u2)(t)| ≤
1
|κ1|

∫ t

x1

(t− s)q1−1

Γ(q1)

∣∣∣k(s, v1(s), u1(s))− k(s, v2(s), u2(s))
∣∣∣ds

+
|λ1|
|κ1|

∫ t

x1

(t− s)θ1−1

Γ(θ1)

∣∣∣φ(s, v1(s), u1(s))− φ(s, v2(s), u2(s))
∣∣∣ds

+
|λ1|
2|κ1|

∫ x2

x1

(x2 − s)θ1−1

Γ(θ1)

∣∣∣φ(s, v1(s), u1(s))− φ(s, v2(s), u2(s))
∣∣∣ds

+
1

2|κ1|
∫ x2

x1

(x2 − s)q1−1

Γ(q1)

∣∣∣k(s, v1(s), u1(s))− k(s, v2(s), u2(s))
∣∣∣ds

+|ρ1(t)|
{
|λ2|

∫ x2

x1

(x2 − s)θ2−1

Γ(θ2)

∣∣∣ψ(s, v1(s), u1(s))− ψ(s, v2(s), u2(s))
∣∣∣ds

+
∫ x2

x1

(x2 − s)q2−1

Γ(q2)

∣∣∣p(s, v1(s), u1(s))− p(s, v2(s), u2(s))
∣∣∣ds

}
+|ρ2(t)|

{
|λ1|

∫ x2

x1

(x2 − s)θ1−2

Γ(θ1 − 1)

∣∣∣φ(s, v1(s), u1(s))− φ(s, v2(s), u2(s))
∣∣∣ds

+
∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)

∣∣∣k(s, v1(s), u1(s))− k(s, v2(s), u2(s))
∣∣∣ds

}
+|ρ3(t)|

{
|λ2|

∫ x2

x1

(x2 − s)θ2−2

Γ(θ2 − 1)

∣∣∣ψ(s, v1(s), u1(s))− ψ(s, v2(s), u2(s))
∣∣∣ds

+
∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)

∣∣∣p(s, v1(s), u1(s))− p(s, v2(s), u2(s))
∣∣∣ds

}
+|ρ4(t)|

{ ∫ ξ

x1

( |h||λ2|
|κ2|

∫ s

x1

(s− τ)θ2−1

Γ(θ2)

∣∣∣ψ(τ, v1(τ), u1(τ))− ψ(τ, v2(τ), u2(τ))
∣∣∣dτ

+
|h|
|κ2|

∫ s

x1

(s− τ)q2−1

Γ(q2)

∣∣∣p(τ, x1(τ), y1(τ))− p(τ, v2(τ), u2(τ))
∣∣∣dτ

)
ds
}

.
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By applying (H2), we have

‖J1(v1, u1)−J1(v2, u2)‖ ≤ [M1l1 + M2l2 + M3l3 + M4l4](‖v1 − v2‖+ ‖u1 − u2‖). (39)

Similarly, we find

‖J2(v1, u1)−J1(v2, u2)‖ ≤ [M5l2 + M6l4](‖v1 − v2‖+ ‖u1 − u2‖). (40)

It follows from (39) and (40) that

‖J (v1, u1)−J (v2, u2)‖ ≤ [M1l1 + (M2 + M5)l2 + M3l3 + (M4 + M6)l4](‖v1 − v2‖+ ‖u1 − u2‖). (41)

The inequalities (38) and (41) shows that J is a contraction. Due to the Banach fixed point
theorem, the operator J has a unique fixed point that corresponds to the unique solution
of the system (1) and (2) on [x1, x2].

Example 2. Consider the same system in Example (3.2) with

k(t, v(t), u(t)) =
2t3

√
225 + t8

( |v(t)|
1 + |v(t)| + cos u(t)

)
,

p(t, v(t), u(t)) =
e−4t

13

(
sin v(t) + u(t) + ln 7

)
,

φ(t, v(t), u(t)) = tan−1(t) +
1

12π
sin 2πv(t) +

|u(t)|
6(1 + |u(t)|) ,

ψ(t, v(t), u(t)) =
1

240
sin u(t) +

3e−t

720
v(t).

Clearly,

|k(t, v1, u1)− k(t, v2, u2)| ≤ l1(‖v1 − v2‖+ ‖u1 − u2‖) with l1 = 2/15

|p(t, v1, u1)− p(t, v2, u2)| ≤ l2(‖v1 − v2‖+ ‖u1 − u2‖) with l2 = 1/13

|φ(t, v1, u1)− φ(t, v2, u2)| ≤ l3(‖v1 − v2‖+ ‖u1 − u2‖) with l3 = 1/6

|ψ(t, v1, u1)− ψ(t, v2, u2)| ≤ l4(‖v1 − v2‖+ ‖u1 − u2‖) with l4 = 1/240

Moreover, it is found thatM∗  0.402293 < 1. So, the hypothesis of Theorem 2 is satisfied. Based
on Theorem 2, there is a unique solution for the system (32) equipped with the conditions (33) on
[0, 1].

4. Conclusions

In this work, we have successfully proved the existence and uniqueness results for
a CS of nonlinear fractional IDEs of different orders type Caputo complemented with
coupled anti-periodic and nonlocal integral BCs by using the Leray Schauder alternative
and Banach fixed point theorem. As a special case, if we take λ1 = λ2 = 0, consequently,
our outcomes correspond to the solutions of the form:

J ∗1 (v, u)(t) =
1
κ1

∫ t

x1

(t− s)q1−1

Γ(q1)
k(s, v(s), u(s))ds− 1

2κ1

∫ x2

x1

(x2 − s)q1−1

Γ(q1)
k(s, v(s), u(s))ds

− ρ1(t)
∫ x2

x1

(x2 − s)q2−1

Γ(q2)
p(s, v(s), u(s))ds− ρ2(t)

∫ x2

x1

(x2 − s)q1−2

Γ(q1 − 1)
k(s, v(s), u(s))ds (42)

− ρ3(t)
∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
p(s, v(s), u(s))ds− ρ4(t)

∫ ξ

x1

( h
κ2

∫ s

x1

(s− τ)q2−1

Γ(q2)
p(τ, v(τ), u(τ))dτ

)
ds,
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J ∗2 (v, u)(t) =
1
κ2

∫ t

x1

(t− s)q2−1

Γ(q2)
p(s, v(s), u(s))ds− 1

2κ2

∫ x2

x1

(x2 − s)q2−1

Γ(q2)
p(s, v(s), u(s))ds

+ ρ5(t)−
∫ x2

x1

(x2 − s)q2−2

Γ(q2 − 1)
p(s, v(s), u(s))ds, (43)

and the values of Mi, i = 1, ..., 6 given by (17)–(22) takes the following form in this situations:

M∗
1 =

3(x2 − x1)
q1

2|κ1||Γ(q1 + 1)
+ ρ̃2

(x2 − x1)
q1−1

Γ(q1)
,

M∗
2 = ρ̃1

(x2 − x1)
q2

Γ(q2 + 1)
+ ρ̃3

(x2 − x1)
q2−1

Γ(q2)
+ ρ̃4

|h|(ξ − x1)
q2+1

|κ2|Γ(q2 + 2)
,

M∗
5 =

3(x2 − x1)
q2

2|κ2||Γ(q2 + 1)
+ ρ̃5

(x2 − x1)
q2−1

Γ(q2)
,

M∗
6 =

3|λ2|(x2 − x1)
θ2

2|κ2||Γ(θ2 + 1)
+ ρ̃5

|λ2|(x2 − x1)
θ2−1

Γ(θ2)
,

In addition, the methods presented in this study can be utilized to solve the system of FDEs
type Riemann-Liouville with the BCs (2).

The simulation results of such an equation are the goal of a numerical study which
could be interesting for future work.
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Abstract: Various scholars have lately employed a wide range of strategies to resolve two specific
types of symmetrical fractional differential equations. The evolution of a number of real-world
systems in the physical and biological sciences exhibits impulsive dynamical features that can be
represented via impulsive differential equations. In this paper, we explore some existence and
controllability theories for the Caputo order q ∈ (1, 2) of delay- and random-effect-affected fractional
functional integroevolution equations (FFIEEs). In order to prove that random solutions exist, we
must prove a random fixed point theorem using a stochastic domain and the mild solution. Then we
demonstrate that our solutions are controllable. At the end, applications and example is illustrated
which indicates the applicability of this manuscript.

Keywords: random fixed point; state dependent delay; controllability; functional differential equation;
mild solution; finite delay; cosine and sine family

MSC: 26A33; 34K37

1. Introduction

Many different applications have been investigated through the theory of impulsive
fractional differential equations (IFDEs) in the accurate mathematical representation of a
wide variety of practical problems. It is acknowledged as a crucial area for research, as
much as the modelling of impulsive issues in population dynamics, ecology, biotechnology,
and other fields. In real-world situations, many processes and phenomena are characterised
by rapid shifts in their states. The mentioned quick modifications are called impulsive
effects within the system. Instantaneous and noninstantaneous impulses are the two main
forms of impulses discussed in the literature to date. In contrast to the length of a whole
evolution, such as that of shocks and natural disasters, the period of these fluctuations in
instantaneous impulses is insignificant; in the case of noninstantaneous impulses, on the
other hand, the duration of the changes exists throughout a finite time period.

Over the past three decades, the field of mathematical analysis has incorporated
fractional calculus, FDEs, and integrodifferential equations, and the qualitative theory
of these equations on both a theoretical and a practical level. Fundamentally, fractional
calculus theory, the qualitative theory of FDEs and fractional integrodifferential equations,
numerical simulations, and symmetry analysis are mathematical analytical tools used to
study arbitrary-order integrals and derivatives that unify and generalise the conventional
ideas of differentiation and integration. Compared to classical formulations, nonlinear
operators with a fractional order are more useful. Throughout the development of emerging
control theory, the controllability of DEs problems has played a major role. Typically, it
means that a dynamical system may be moved from any initial state to the desired terminal
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177



Symmetry 2023, 15, 290

state using a set of legal controls. Control theory places much emphasis on the qualitative
characteristics of control systems. There has been particular focus on the controllability of
linear and nonlinear systems in a finite-dimensional space that are described by ordinary
DEs; see [1–4] for a list of researchers who have extended the idea to infinite-dimensional
systems with bounded operators in Banach spaces (BS). The controllability problem was
converted into a fixed-point problem by the authors of [5]. We advise reading [6,7] for
additional information. The authors of [8,9] investigated a variety of functional DEs and
inclusions, and proposed various controllability findings. A family of integrodifferential
evolution equations’ controllability was examined by Dilao et al. [10].

It is often advantageous to handle second-order abstract DEs explicitly rather than
always reducing them to first-order systems. For the investigation of second-order issues,
the theory of strongly continuous cosine families is an invaluable resource. We use some of
the core ideas in cosine family theory [11]. Typically, this means that a dynamical system
may be moved from any initial state to the desired terminal state using a set of legal controls.
Control theory places much emphasis on the qualitative characteristics of control systems.
There has been particular focus on the controllability of linear and nonlinear systems in
finite-dimensional space that are described by ordinary DEs [12,13].

The reader is recommended to read [14–16] for more information on random differ-
ential equations, which are natural generalisations of deterministic DEs and appear in a
variety of applications. The accuracy of our knowledge about the system’s characteristics
determines the nature of a dynamic system. When knowledge about a dynamic system is
exact, a deterministic dynamical system emerges. Moreover, many of the available details
for identifying and assessing dynamic system characteristics are incorrect, uncertain, or im-
precise. To put it another way, determining the parameters of a dynamic system is highly
risky. However, when we have probable knowledge and an understanding of statistical
characteristics, we can use stochastic DEs in mathematically modelling such systems.

Ji-Huan He [17] studied fractal calculus. Wang et al. [18–20] worked on nondifferen-
tiable exact solutions, the modification of the unsteady model, and diverse exact and explicit
solutions. Mehmood et al. [21] worked on a partial DE. Niazi et al. [22], Shafqat et al. [23],
Alnahdi [24], and Abuasbeh et al. [25] investigated the existence and uniqueness of FEEs.
Inspired by the above studies [26], this paper deals with the controllability of the fractional
functional integroevolution equation with delay and random effects:

c
0Dq

νU(χ, ξ) = B1U(χ, ξ) + ϕ(χ, Uχ(., ξ), ξ) +
∫ ν

0 B2 f (χ, ξ)dCv + Bx(ν)Cx(ν)dν, ξ ∈ Θ := [0, κ], ν ∈ [0, T]
U(χ, ξ) + m(U) = �1(χ, ξ); ξ ∈ (−∞, 0],
U′(χ, ξ) = �2(ξ)

(1)

Knowing that complete probability space (Φ, F,℘) given functions ϕ : Θ × D × Ψ →
Ξ, σ1 ∈ D ∈ D × Φ, and infinitesimal generator B1 : D(B1) ⊂ Ξ → Ξ of a strongly
continuous cosine family, the phase space is (Hq(χ))χ∈Rm on Ξ, D, and a real BS is (Ξ, |.|).
Control function P(., ξ) is specified in L2(Θ, Ω), a BS of possible control functions with Ω
as a BS, and B2 is a bounded linear operator (LO) from Ω into Ξ.

The component of D×Φ determined with D×Φ, given by Uξ(ι, ξ) = U(ξ + ι, ξ), ι ∈
(−∞, 0] is denoted by Uχ(., ξ). Here, the state’s existence from the year −∞ to the current
day ξ is represented by the string Uχ(., ξ). Eras Uχ(., ξ) were presumptively part of some
abstract phases D.

First, we suppose random issue

c
0Dq

νU(χ, ξ) = B1U(χ, ξ) + ϕ(χ, Uϑ(χ,Uχ)(., ξ), ξ) +
∫ ν

0 B2 f (χ, ξ)dCv + Bx(ν)Cx(ν)dν, ξ ∈ Θ := [0, κ], ν ∈ [0, T]
U(χ, ξ) + m(U) = �1(χ, ξ); ξ ∈ (−∞, 0],
U′(χ, ξ) = �2(ξ)

(2)

where ϕ : Θ× D × Ψ → Ξ, σ1 ∈ D ∈ D ×Φ are given random functions, B1 : D(B1) ⊂
Ξ → Ξ is as in problem (1), D is the phase space, ψ; Θ× D → (−∞, κ], and (Ξ, |.|) is a real
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BS. For the key conclusions on Schauder’s fixed theorem [27], and random fixed-point
theorem paired with the family of cosine operators, we employ our’ arguments.

The layout of this article is as follows. Section 2 contains some needed preliminaries
and fundamental results. Sections 3 and 4 present our main results in two cases: infinite
fixed delay and state-dependent delay, respectively. In Sections 5 and 6, we give applications
and an example, respectively. In Section 7, we present the conclusion.

Motivation and Novelties

The incorporation of fractional-order derivatives in delay DEs provides a range of
advantages, including hereditary properties, additional degrees of freedom, and other
advantages of fractional modelling. As these equations are primarily used in control
theory and robotics, the stability and asymptotics of these equations are of vital importance.
However, stability and asymptotic analyses of fractional delay DEs are still in their early
stages. Most of the current stability results on autonomous equations of this type are based
on the root locus of their corresponding characteristic equations, and do not offer a universal
and reliable way of assessing the stability of a given fractional delay DE.

FDEs with a time delay are widely used in natural phenomena, and the fields of science
and engineering. To capture the dynamic behavior of travelling wave solutions on the basis
of these equations, researchers have created algorithms with high performance for various
spatial and time fractional delay DEs. However, there are still challenges to be addressed in
the field of fractional delay DEs, such as the stability analysis of numerical time integration
schemes and the numerical theory of the numerical scheme. Additionally, there is a need
for stability and numerical simulations of travelling wave solutions, critical travelling wave
solutions, and the design of compact fourth- and sixth-order schemes for fractional delay
DEs with strong nonlinearity.

This paper aims to investigate the existence and controllability of solutions to FDEs
with delay and random effects. While the majority of results in the literature have focused
on first-order equations, some researchers produced FDE results. In our study, we obtained
findings for Caputo derivatives of order (1,2) using a mild solution. Stability is a major
area of research in DE theory, and over the past 20 years, stability for FDE has been a
major focus of research. In order to illustrate this, we consider the prerequisites for solution
stability and FDE asymptotic stability. We also examine delay fractional functional random
integroevolution equations.

2. Preliminaries

We discuss a few of the abbreviations, definitions, and theorems that are used through-
out the work in this part. Considering the BS D(Ξ) of bounded LOs from Ξ into Ξ, where
Θ := [0, κ], κ > 0,

||ℵ||D(Ξ) = sup
||χ||=1

||ℵ(U)||.

Let C := C(I, Ξ) be the Banach space of continuous functions U : Θ → Ξ with the norm

||U||C = sup
χ∈Θ

|U(χ)|.

We follow to the methodology described in [28] and apply the axiomatic description of the
phase space D given in [29]. Once (D, ||.||D) is defined as a seminormed linear space of
functions translating (−∞, 0] into Ξ, we have

(J1) Let U : (−∞, κ)→ Ξ, κ > 0, is a continuous function on Θ and U0 ∈ D, then, for every
χ ∈ Θ, the following hold.

(a) Uχ ∈ D;
(b) There ∃ a positive constant ρ, |U(χ)| ≤ �||Uχ||D.
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(c) There ∃ two functions β(.), ω(.) : Rm
+ → Rm

+ independent of U with β continuous
and bounded and ω locally bounded where:

||Uχ||D ≤ β(χ) sup{|U(ρ)| : 0 ≤ ρ ≤ ρ}+ ω(χ)||U0||D.

(J2) For function U in (A1), Uχ is a D-valued continuous function on Θ.
(J3) The space D is complete.

Set
ς = sup{β(χ) : χ ∈ Θ}, and ω = sup{ω(χ) : χ ∈ Θ}.

Remark 1. 1. (2) is equivalent to |�1||D ≤ �||�1||D∀�1 ∈ D.
2. ||.||D is a seminorm, this implies that the two elements �1, η ∈ D satisfy ||�1 − η||D = 0 not

necessarily that �1(ι) = η(ι)∀ι ≤ 0.
3. For all �1, η ∈ D where ||�1 − χ||D = 0. ⇒ �1(0) = η(0).

Let us present the space

Ξ := {U : (−∞, κ] : U|(∞,0] ∈ D and U|Θ ∈ C},

and let ||U||Ξ be the seminorm in Ξ given by

||U||Ξ = ||�1||D + ||U||C.

Definition 1. Let {Hq(χ) : χ ∈ Rm} be a family of bounded LOs in the Banach space Ψ, which is
a strongly continuous cosine family if

• Hq(0) = I.
• Hq(χ)η is strongly continuous in χ on Rm for each fixed η ∈ Ψ.
• Hq(χ− ρ) = 2Hq(χ)Hq(ρ)∀χ, ρ ∈ Rm.

Let {Hq(χ) : χ ∈ Rm} be a strongly continuous cosine family in Ψ. Define the sine family
{Kq(χ) : χ ∈ Rm} with

Kq(χ)η =
∫ χ

0
Hq(ρ)ηdρ, η ∈ Ξ, χ ∈ Rm.

The infinitesimal generator B1 : Ξ → Ξ of the cosine family {S(χ) : χ ∈ Rm} is defined by

B1η =
d2

dχ2 Hq(χ)η|χ=0, η ∈ D(B1),

where
D(B1) = {η ∈ Ξ : Hq(.)η ∈ C2(Rm, Ξ)}.

Definition 2. Consider the map φ : Θ× D× ψ → Ξ is random Caratheodory if

(i) χ → φ(χ, U, Δ), this map measurable ∀ U ∈ D and for all Δ ∈ ψ.
(ii) U → φ(χ, U, Δ) is measurable ∀ U ∈ D and for all Δ ∈ ψ.
(iii) Δ → φ(χ, U, Δ) is measurable ∀ U ∈ D, and almost χ ∈ Θ.

Let DΞ be the Borel σ-algebra in separable BS Ξ. If, for each Π ∈ DΞ, p−1(Π) ∈ F, then the map
p : ψ → Ξ is a random variable. If G(., p), written as G(Δ, p) = G(Δ)p, is measurable for each
p ∈ Ξ, then G : ψ× Ξ → Ξ is a random operator.

Definition 3 ([30]). Let Ǵ be a mapping from ψ into 2Ξ. A mapping G : {(Δ, p) : Δ ∈ ψ ∧
p ∈ Ǵ(Δ)} → Ξ is a random operator with stochastic domain Ǵ if and only if, for all closed
Π1 ⊆ Ξ, {Δ ∈ ψ : Ǵ(Δ) ∩ Ǵ1 �= ∅} ∈ F, and for all open Π2 ⊆ Ξ and all p ∈ Ξ, {Δ ∈ ψ : p ∈
Ǵ(Δ) ∧ G(Δ, p) ∈ Π2} ∈ F. G is continuous if every G(Δ) is continuous. A mapping p : ψ → Ξ
is a random fixed point of G if and only if for all Δ ∈ ψ, p(Δ) ∈ Ǵ(Δ) and G(Δ)p(Δ) = p(Δ) and
p is measurable if for all open Π2 ⊆ Ξ, {Δ ∈ ψ : p(Δ) ∈ Π2} ∈ F.
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Lemma 1 ([30]). Let Ǵ : ψ → 2Ξ be measurable for every Δ ∈ ψ with Ǵ(Δ) closed, convex,
and solid (i.e.,

∫
G(Δ) �= ∅). We assumed the existence of a measurable p0 : ψ → Ξ with

p0 ∈
∫

Ǵ(Δ) for all Δ ∈ ψ. Assume that G is a continuous random operator with the stochastic
domain Ǵ; as such, G(Δ)p = p �= ∅ for any Δ ∈ ψ, {p ∈ Ǵ(Δ). Once this happens, G has a
stochastic fixed point. If the function p(χ, .) is measurable for each χ ∈ Θ, then the mapping of p of
Θ× ψ into Ξ is stochastic.

Definition 4 ([31]). Assume that U is a BS, and φU is the bounded subsets of Ξ. The Kuratowski
measure of noncompactness is map μ : ψU → [0, ∞) given by μ(Π) = inf{ε > 0 : Π ⊆ ∪n

i=1 and
diam(Πi) ≤ ε}; here Π ∈ ψU and verifies the following properties:

(a) μ(Π) = 0 ⇔ Π̄ is compact.
(b) μ(Π) = μ(Π̄).
(c) Π̃ ⊂ Π ⇒ μ(Π̃) ≤ (Π).
(d) μ(Π̃ + Π) ≤ μ(Π̃ + μ(Π)).
(e) μ(εΠ) = |ε|μ(Π); ε ∈ Rm.
(f) μ(convΠ) = μ(B).

Lemma 2 ([32]). μ(g(χ)) is continuous on theta if and only if g ⊂ C(Θ, Ξ) is bounded and
equicontinuous:

μ

({ ∫
Θ

η(ρ)dρ : η ∈ g}
)
≤

∫
Θ

μ(g(ρ))dρ,

where g(χ) = {η(χ) : η ∈ g}, χ ∈ Θ.

Lemma 3 (Gronwall lemma [28]). Assume μ, y ∈ H([0, 1],R+) and let μ be increasing. If u ∈
H([0, 1],R+) satisfies

u(ω) � μ(ω) +
∫ ω

0
y(s)u(s)ds, ω ∈ [0, 1],

then
u(ω) � μ(ω) exp

∫ ω

0
y(s)u(s)ds, ω ∈ [0, 1].

Definition 5 ([30]). The fractional Riemann–Liouville (RL) derivative is defined as follows.

aDp
ωχ(ω) =

1
Γ(n− p + 1)

(
d

dω

)n+1

∫ ω

a
(ω− τ)n−pχ(τ)dτ, n � p � n + 1.

Definition 6 ([30]). Caputo fractional derivatives Ca Dα
ωχ(ω) of order α ∈ R+ are defined by

C
a Dα

ωχ(ω) = aDα
ω(χ(ω)−

k−1

∑
j=0

χ(j)(a)
j!

(ω− a)j),

in which k = [α] + 1.

Definition 7 ([31]). Wright function ψα is defined by

ψα(κ) =
∞

∑
j=0

(−κ)j

j!Γ(−αj + 1− α)

=
1
π

∞

∑
j=1

(−κ)j

(j− 1)!
Γ(jα) sin(jπα),
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α ∈ (0, 1), κ ∈ C.

3. Results of Controllability for the Steady Delay Case

Definition 8. Equation (1) is controllable on the interval (−∞, κ] if, for all final state U1(ξ), there
∃ a control P(., ξ) in L2(Θ, Ω), such that the solution U(χ, ξ) of (1) satisfies U(κ, ξ) = U1(ξ).

Definition 9. A stochastic process U : (−∞, κ]×Φ → Ξ is a random mild solution of Problem
(1) if U(χ, ξ) = �1(χ, ξ); χ ∈ (−∞, χ], U∞(0, ξ) = �2(ξ), and the restriction of U(., ξ) to the
interval Θ is continuous and verifies:

U(χ, ξ) = Hq(χ)(�1(χ, ξ)−m(U)) + Kq(χ)�2(χ) +
∫ ν

0
(χ− ρ)Pq(χ− ρ)B1U(χ, ξ)dρ +

∫ ν

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, Uχ(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)

∫ ν

0
B2 f (χ, ξ)dCv + Bx(ρ)Cx(ρ)

)
dρ

Let
ω = sup{||Hq(χ)||D(Ξ) : χ ≥ 0}

and
ω = sup{||Kq(χ)||D(Ξ) : χ ≥ 0}.

The following hypotheses must be introduced:

(H1)Hq(χ) is compact for χ > 0,
(H2)The function φ : Θ× D× ψ → Ψ is random Caratheodory.
(H3)There ∃ functions η : Θ× φ → Rm

+ and p : Θ× ψ → Rm
+ for each Δ ∈ ψ, η(., Δ) is

continuous nondecreasing and p(., Δ) integrable with:

|φ(χ,P , Δ)| ≤ p(χ, Δ)η(||P||D, Δ) f ora.e. χ ∈ Θ and each P ∈ D,

(H4)There ∃ a random function Q : ψ → Rm
+ {0} where:

ω(1 + κωζ(||�1||D + η(D, Δ||p||L1) + κωζ||η1||+ ω′(1 + κωζ)|�2| ≤ Q(Δ)

where
D := ζQ(Δ) + σ||�1||D,

(H5)The linear � : L2(Θ, Ω)→ Ψ given by

�P =
∫ κ

0
Hq(κ − ρ)B2P(ρ, Δ)dρ

has an inverse operator �−1 in L2(Θ, Ω)/ ker�, and there ∃ a positive constant ζ, such
that ||B2�

−1|| ≤ ζ,
(H6) for each Δ ∈ ψ, �(., Δ) is continuous and χ, �1(χ, .) and Δ ∈ ψ, �2(Δ) are measurable.

Theorem 1. Assume that (H1)–(H2) are met; then Problem (1) is controllable on Θ.

Proof. Define the control:

P(χ, Δ) = �−1
(

p1(Θ)− Hq(χ)(�1(χ, ξ)−m(U))− Kq(χ)�2(χ)−
∫ ν

0
(χ− ρ)Pq(χ− ρ)B1U(χ, ξ)dρ

−
∫ ν

0
(χ− ρ)Pq(χ− ρ)[ϕ(χ, Uχ(., ξ), ξ)]dρ

)
.

The operator I : ψ × Ξ → Ξ defined by (I(ξ)p)(χ) = �1(χ, ξ), if χ ∈ (−∞, 0], and for
χ ∈ Θ:
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U(χ, ξ) = Hq(χ)(�1(χ, ξ)−m(U)) + Kq(χ)�2(χ) +
∫ ν

0
(χ− ρ)Pq(χ− ρ)B1U(χ, ξ)dρ +

∫ ν

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, Uχ(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)B−1

�

(
U1(Θ)− Hq(χ)(�1(χ, ξ)−m(U))

−Kq(χ)�2(χ)−
∫ ν

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ−

∫ ν

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, Uχ(., ξ), ξ)]dCρ

)
+ Bx(ρ)Cx(ρ)

)
dρ. (3)

We use (H5) to show that I has a fixed point U(χ, ξ) that is a mild solution of (1). This
suggests that Issue (1) is manageable on Θ. Additionally, we establish that I is a random
operator. To prove this, we show that I(.)(U) : ψ → Ξ is a random variable for any U ∈ Ξ.
The measurement of I(.)(U) : ψ → Ξ is then shown. Because of the assumptions (H2) and
(H6), the mapping ϕ(χ, U, .), χ ∈ Θ, U ∈ Ξ is measurable. Assume that D : ψ → 2Ξ is
provided by:

D(ξ) = {U ∈ Ξ : ‖U‖Ξ ≤ Q(ξ)}.

D(χ) is bounded, convex, closed, and solid for all ξ ∈ ψ. So, D is measurable. Suppose
ξ ∈ ψ is fixed; then, U ∈ D(ξ) and by (A1), we obtain:

‖Uρ‖D ≤ β(ρ)|U(ρ)|W + ω(ρ)‖U0‖D

≤ ζκ |U(ρ)|+ ωκ‖�1‖D,

and via (H3) and (H4), we have

|(I(ξ)U)(χ)| ≤ ω‖�1‖D + ω′|�2|+ ω
∫ χ

0
|ϕ(ρ, Uρ, ξ)|dρ + ωζ

∫ χ

0
|U1(ξ)|+ ω‖�1‖D

+ω′|�2|dρωζ
∫ χ

0

∫ κ

0
‖Hq(ε− ρ)‖|ϕ(ε, Uε(., ξ), ξ)|dεdρ

≤ ω‖�1‖D + ω′|�2|+ ω
∫ κ

0
p(�, ξ)χ(‖Uχ‖D, ξ)dρ + κωζ|U1(ξ)|+ κω2ζ‖�1‖D + κωω′ζ|�2|

+κω2ζ
∫ κ

0
p(ε, ξ)U(‖Uε‖D, ω)dε

≤ ω(1 + κωζ)‖�1|D + κωζ|U1(ξ)|+ ω′(1 + κωζ)|�2|+ ω(1 + κωζ)
∫ κ

0
p(ρ, ξ)U(‖pρ‖D, ξ)dρ

≤ ω(1 + κωζ)

(
‖�1|D + U(Dκ , ξ)

∫ κ

0
p(ρ, ξ)dρ

)
κωζ‖U1(ξ)‖+ ω′(1 + κωζ)|�2|.

Set
Dκ := ζκQ(ξ) + ρκ‖�1‖D.

Then, we have

|(I(ξ)U(χ)| ≤ ω(1 + κωζ)

(
‖�1|D + U(Dκ , ξ)

∫ κ

0
p(ρ, ξ)dρ

)
κωζ‖p1(ξ)‖+ ω′|�2|(1 + κωζ).

Thus

‖I(ξ)U‖Ξ ≤ ω(1 + κωζ)(‖�1‖D + U(Dκ , ω)‖�‖1
L)κωζ|U1(ξ)|+ ω′(1 + κωζ)|�2|

≤ Q(ω).

Thus, we deduce that, with stochastic domain D, I is a random operator and I(ξ) : D(ξ)→
D(ξ) for each ξ ∈ ψ.

Claim 1: I is continuous.
Assume that Un is a sequence where Un → U in Y. Then,
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|(I(ξ)Un)(χ)− (I(ξ)U(χ)| ≤ ω
∫ χ

0
|ϕ(ρ, Un

ρ , ξ)− ϕ(ρ, Uρ, ξ)|dεdρ + ζω
∫ χ

0

∫ κ

0
‖Hq(κ − ε)‖

|ϕ(ε, Un
ε (., ξ)− ϕ(ε, Uε, ξ)|dεdρ

≤ ω
∫ χ

0
|ϕ(ρ, Un

ρ , ξ)− ϕ(ρ, Uρ, ξ)|dεdρ + κω2ζ
∫ κ

0
|ϕ(ε, Un

ε (., ξ)− ϕ(ε, Uε, ξ)|dε

≤ ω(1 + κωζ)
∫ κ

0
|ϕ(ε, Un

ε (., ξ)− ϕ(ε, Uε, ξ)|dε

As ϕ(χ, ., ξ) is continuous, we obtain

‖ϕ(., Un, ξ)− ϕ(., U, ξ)‖L1 → 0 as n → +∞.

I is continuous.
Claim 2: we show that ξ ∈ ψ, {U ∈ D(ξ) : I(ξ)U = U} �= ∅ by applying Schauder’s

theorem.

(a) I maps bounded sets into equicontinuous sets in D(ξ).
Assume that ε1, ε2 ∈ [0, κ] with ε2 > ε1, D(ξ) are a bounded set, as in Claim 2,
and U ∈ D(ξ). Now,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ ‖Hq(ε2)− Hq(ε1)‖D(Ψ)‖�1‖D + ‖Kq(ε2)− Kq(ε1)‖D(Ψ)|� +
∫ ε1

0
‖Hq(ε2

−ρ)− Hq(ε1 − ρ)‖D(Ψ)|ϕ(ρ, Uρ, ξ)|dρ +
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)|ϕ(ρ, Uρ, ξ)|dρ

+ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ) × [|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖�1‖D +

‖Kq(κ)‖D(Ψ)|�2|]dρ + ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|

ϕ(ε, Uε(., ξ), ξ)|dεdρ + ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)[|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖�1‖D + ‖Hq(κ)‖D(Ψ)|�2|]dρ

+ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|ϕ(ε, Uε(., ξ)ξ)|dεdρ

≤ ‖Hq(ε− ρ)− Hq(ε1 − ρ)‖D(Ψ)‖�1‖D + ‖Kq(ε2)− Kq(ε1)‖D(Ψ)|�2|U(Dκ , ξ)
∫ ε1

0
‖Hq(ε2 − ρ)

−Hq(ε1 − ρ)‖D(Ψ)U(ρ, ξ)dρ + ωx(Dκ , ξ)
∫ ε2

ε1

p(ρ, ξ)dρ + ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)

×[|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖�1‖D + ‖Kq(κ)‖D(Ψ)|�2|]dρ + ζωU(Dκ , ξ)
∫ ε1

0
‖Hq(ε2 − ρ)

−Hq(ε1 − ρ‖D(Ψ)

∫ κ

0
U(ε, ξ)dεdρζω

∫ ε2

ε1

(|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖�1‖D + ‖Kq(κ)‖D(Ψ)|�2|

+ωU(Dκ , ξ)
∫ κ

0
U(ε, ξ)dεdρ.

In the above inequality, right-hand side tends to zero as ε2− ε1 → 0, since Hq(χ), Kq(χ)
are compact for χ > 0 and strongly continuous; then, we obtain the continuity in the
uniform operator topology [12,33].

(b) Assume that χ ∈ [0, κ] is, fixed and U ∈ D(ξ): by assumption (H3), (H5); since Hq(χ)
is compact, the set{ ∫ χ

0
Hq(χ− ρ)ϕ(ρ, Uρ(., ξ), ξ)dρ

∫ χ

0
Hq(χ− ρ)B2p(χ, ξ)dρ

}
is precompact in Ψ; then, the set
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{
Hq(χ)(�1(χ, ξ)−m(U)) + Kq(χ)�2(χ) +

∫ χ

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ +

∫ χ

0
(χ− ρ)Pq(χ− s)

[ϕ(χ, U2(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)

∫ ν

0
B2 f (χ, ξ)dCv + Bx(ρ)Cx(ρ)

)
dρ

}
is precompact in Ψ. Thus, I(ξ) : D(ξ) → D(ξ) is continuous. Through compact
Schauder’s theorem, we obtain that I(ξ) has a fixed point U(ξ) in D(ξ). Since
∩ξ∈ψD(ξ) �= ∅, and a measurable selector of

∫
D exists, then via Lemma 4, I has a

stochastic fixed point U∗(ξ), which is a random mild solution of (1).

4. Results for State-Dependent Delay Case Controllability

Definition 10. A stochastic process U : (−∞, κ]× ψ → Ψ is a random mild solution of Prob-
lem (2) if U(χ, ξ) = �(χ, ξ); χ ∈ (−∞, 0], U′(0, ξ) = �2(ξ), and the restriction of U(., ξ) to the
interval Θ is continuous and verifies the following equation:

U(χ, ξ) = Hq(χ)(�1(χ, ξ)−m(U)) + Kq(χ)�2(χ) +
∫ χ

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ +

∫ χ

0
(χ− ρ)

Pq(χ− ρ)[ϕ(χ, U2(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)

∫ ν

0
B2 f (χ, ξ)dCv + BU(ρ)CU(ρ)

)
dρ

Set
Q(θ−1) = {θ(ρ, �2) : (ρ, �2) ∈ Θ× D, θ(ρ, �2) ≤ 0}.

Suppose that θ : Θ → (−∞, κ] is continuous. (H�1) the function χ → �1χ is continuous from
Q(θ−1) into D, and there exists a continuous and bounded function β�1 : Q(θ−)→ (0, ∞) where
β�1(χ)||�1||D for every χ ∈ Q(θ−).

Remark 2 ([28]). Hypothesis H�1 is satisfied through continuous and bounded functions.

Lemma 4 ([34]). If U : (−∞, κ]→ Ψ is a function, such that U0 = �1, then

‖U�‖D ≤ (ωκ + β�1)‖�1‖D + ζκ sup{|U(i)|; I ∈ [0, max{0, ρ}]}, � ∈ Q(θ−)
⋃

Θ.

where β�1 = supχ∈Q(θ−1) β�1(χ).

The hypotheses

(H′1) Hq(χ) is compact for χ > 0 in Ψ.
(H′2) The function ϕ : Θ× D× ψ → Ψ is random Caratheodory.
(H′3) There ∃ a function η : Θ× ψ → Rm

+ and p : Θ× → Rm
+ , such that ξ ∈ ψ, U(., ξ) is a

continuous nondecreasing function and p(., ξ) integrable with:

|φ(χ,P , Δ)| ≤ p(χ, Δ)η(||P||D, Δ) f or a.e. χ ∈ Θ and each P ∈ D,

(H′4) There ∃ a random function α : Θ× ψ → Rm
+ with α(., χ) ∈ L1(Θ, Rm

+) for each ξ ∈ ψ
such that for any bounded B ⊆ Ψ.

μ(ϕ(χ, B, χ)) ≤ α(χ, ξ)μ(B).

(H′5) There ∃ a random function Q : ψ → Rm
+ {0} where:

ω(1 + κωλ)

(
‖�1‖D + η(ωκ + β�1)‖�1‖D + ζκQ(χ), χ)

∫ κ

0
p(ρ, χ)dρ

)
+ κωλ‖U1(χ)‖+ ω′(1 + κωλ)|�2| ≤ Q(ξ).
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(H′6) The linear LO � : L2(Θ, Ω)→ Ψ defined by:

�U =
∫ κ

0
Hq(κ − ρ)B2U(ρ, ξ)dρ

has an inverse operator �−1 that takes values in L2(Θ, Ω)/ker�, and there ∃ a
positive constant λ, such that ‖B2�

−1‖ ≤ λ.
(H′7) For each Δ ∈ ψ, �(., Δ) is continuous and, for each χ, �1(χ, .), is measurable, and, for

each Δ ∈ ψ, �2(Δ), is measurable.

Theorem 2. Suppose that (H′1)–(H′7) and (H�1) hold. If

ω(1 + ωλκ)
∫ κ

0
α(ρ)ξ(ρ)dρ < 1. (4)

Therefore, Theta can be used to control Random Problem (2).

Proof. Using (H6), the control is

U(χ, ξ) = �−1(U1(ξ)− Hq(κ)�1(0, ξ)− Kq(κ)�2(ξ)−
∫ κ

0
Hq(κ − ρ)B2U(χ, ξ)dρ−

∫ κ

0
Hq(κ − ρ)ϕ(ρ, Uθ(ρ,Uρ)(., ξ), ξ)dρ

)
.

The operator I : ψ× Ξ → Ξ given by: (I(ξ)U)(χ) = �1(χ, ξ), if χ ∈ (−∞, 0], and for χ ∈ Θ:

U(χ, ξ) = Hq(χ)(�1(χ, ξ)−m(U)) + Kq(χ)�2(χ) +
∫ χ

0
(χ− ρ)Pq(χ− s)B1U(χ, ξ)dρ +

∫ χ

0
(χ− ρ)Pq(χ− ρ)

[ϕ(χ, U2(., ξ), ξ)]dρ +
∫ χ

0

(
(χ− ρ)Pq(χ− ρ)B−1

�

(
p1(Θ)− Hq(χ)(�1(χ, ξ)−m(U)) (5)

−Kq(χ)�2(χ)−
∫ χ

0
(χ− ρ)Pq(χ− s)[ϕ(χ, U2(., ξ), ξ)]dCρ

)
+ BU(ρ)CU(ρ)

)
dρ

This proves that I has a fixed point U(χ, ξ), and that (2) is controllable. Moreover, we
demonstrate that I is a random operator by showing that, for any U ∈ Ξ, I(.)(U) : ψ → Ξ
is a random variable. We also show that I(.)(U) : ψ → Ξ is measurable, as a mapping
ϕ(χ, U, .), χ ∈ Θ, U ∈ Ξ is measurable through assumptions (H′2) and (H′6). Assume that
D : ψ → 2Ξ is given by:

D(ξ) = {U ∈ Ξ : ‖U‖Ξ ≤ Q(ξ)}.

D(χ) is bounded, convex, closed and solid for all ξ ∈ ψ. Then, D is measurable. Let ξ ∈ ψ
be fixed; if p ∈ D(ξ), then

‖U�(χ,Uχ)‖D = (ωκ + L�1)‖�1‖D + ζκQ(ξ),

For each U ∈ D(ξ), (H′3), and (H′4), for each χ ∈ Θ, we have
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|(I(ξ)U)(χ)| ≤ ω‖�1‖D + ω′|�2|+ ω
∫ χ

0
|ϕ(ρ, U�(χ,Uχ), ξ)|dρ + ωζ

∫ χ

0
|U1(ξ)|+ ω‖�1‖D

+ω′|�2|dρωζ
∫ χ

0

∫ κ

0
‖Hq(ε− ρ)‖|ϕ(ε, U�(χ,Uχ)(., ξ), ξ)|dεdρ

≤ ω‖�1‖D + ω′|�2|+ ω
∫ κ

0
p(�, ξ)η(‖Uχ‖D, ξ)dρ + κωζ|U1(ξ)|+ κω2ζ‖�1‖D + κωω′ζ|�2|

+κω2ζ
∫ κ

0
p(ε, ξ)η(‖pε‖D, ω)dε

≤ ω(1 + κωλ)‖�1|D + κωλ|U1(ξ)|+ ω′(1 + κωλ)|�2|+ ω(1 + κωλ)
∫ κ

0
p(ρ, ξ)η(‖U�(χ,Uχ)‖D, ξ)dρ

≤ ω(1 + κωλ)×
(
‖�1‖D + η(ωκ + β�1)‖�1‖D + ζκQ(ξ), ξ)

∫ κ

0
p(ρ, ξ)dρ

)
κωλ‖U1(ξ)‖

+ω′(1 + κωλ)|�2|.

Thus, with stochastic domain D, I is a random operator and I(ξ) : D(ξ)→ D(ξ) for each
ξ ∈ ψ.

Claim 1: I is continuous.
Suppose that Un is a sequence where Un → U in Ξ. Then,

|(I(ξ)Un)(χ)− (I(ξ)U(χ)| ≤ ω
∫ χ

0
|ϕ(ρ, Uϑ(χ, Un

χ)
n, ξ)− ϕ(ρ, Uϑ(χ,Uχ), ξ)|dεdρ

+ζω
∫ χ

0

∫ κ

0
‖Hq(κ − ε)‖|ϕ(ε, pn

ε (., ξ)− ϕ(ε, pε, ξ))|dεdρ

≤ ω
∫ χ

0
|ϕ(ρ, Uϑ(χ, Un

χ), ξ)n)− ϕ(ρ, Uϑ(χ, Uχ), ξ))|dεdρ

κω2ζ
∫ κ

0
|ϕ(ε, Uϑ(χ, Un

χ)
n(., ξ))− ϕ(εUϑ(χ, Uχ), ξ)|dε

≤ ω(1 + κωζ)
∫ κ

0
|ϕ(ε, Un

ϑ(χ,Un
χ)
(., ξ)− ϕ(εUϑ(χ, Uχ), ξ)|dε

As ϕ(χ, ., ξ) is continuous, we have

‖ϕ(., Un, ξ)− ϕ(., U, ξ)‖Ξ → 0 as n → +∞.

I is continuous.
Claim 2: We show that ξ ∈ ψ, {U ∈ D(ξ) : I(ξ)U = U} �= ∅. We apply Mönch fixed

point theorem [35,36].

(a) In D(ξ), I transforms bounded sets into equicontinuous sets.
Let ε1, ε2 ∈ [0, κ] with ε2 > ε1, D(ξ) be a bounded set as in Claim 2, and U ∈ D(ξ).
Then,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ ‖Hq(ε2)− Hq(ε1)‖D(Ψ)‖�1‖D + ‖Kq(ε2)− Kq(ε1)‖D(Ψ)|�

+
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)|ϕ(ρ, Uϑ(χ,Uχ), ξ)|dρ

+
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)|ϕ(χ, Uϑ(χ,Uχ), ξ)|dρ + ζ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(Ψ)

×[|p1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖�1‖D + ‖Kq(κ)‖D(Ψ)|�2|]dρ

+ζ
∫ ε1

0
‖Hq(ε2 − ρ)− S1(ε1 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|ϕ(ε, Uϑ(χ,Uχ), ξ)|dεdρ

+ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)[|U1(ξ)|+ ‖Hq(κ)‖D(Ψ)‖�1‖D + ‖Hq(κ)‖D(Ψ)|�2|]dρ

+ζ
∫ ε2

ε1

‖C(ε2 − ρ)‖D(Ψ)

∫ κ

0
‖Hq(κ − ε)‖D(Ψ)|ϕ(ε, Uϑ(χ,Uχ), ξ)|dεdρ
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Thus,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ |Hq(ε2)− Hq(ε1)|‖�1‖D + ‖Kq(ε2)− Kq(ε1)‖D(ψ)|�2|

+
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)ϕ(ρ, Uϑ(χ,Uχ), ξ)dρ +

∫ ε2

ε1

‖Hq(ε2 − ρ)‖D(ψ)ϕ(ρ, Uϑ(χ,Uχ), ξ)dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)[‖p1(ξ)‖+ ‖Hq(κ)‖D(ψ)|�1(0, ξ)|]dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)η((ωκ + β�1 )‖�1‖D + ζκ Q(ξ))×

∫ κ

0
p(ε, ξ)dεdρ +

λω
∫ ε2

ε1

‖U1‖+ ‖Hq(κ)‖D(ψ)|�1(0, ξ)|+ ωη((ωκ + β�1 )‖�1‖D + ζκ Q(ξ))×
∫ κ

0
p(ε, ξ)dεdρ

Hence,

|(I(ξ)U)(ε2)− (I(ξ)U)(ε1)| ≤ |Hq(ε2)− Hq(ε1)|D(ψ)‖�1‖D + ‖Kq(ε2)− Kq(ε1)‖D(ψ)
|�2|

+η(ωκ + β�1‖�1‖D + ζκQ(�))
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)

p(χ, ξ)dρ

+η((ωκ + β�1‖�1‖D + ζκQ(�), �)
∫ ε2

ε1

p(χ, ξ)dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)[‖U1(ξ)‖+ ‖Hq(κ)‖D(ψ)|�1(0, ξ)|]dρ

+λ
∫ ε1

0
‖Hq(ε2 − ρ)− Hq(ε1 − ρ)‖D(ψ)η((ωκ + β�1)‖�1‖D + ζκQ(ξ))

×
∫ κ

0
p(ε, ξ)dεdρ + λω

∫ ε2

ε1

‖U1(�)‖+ ‖Hq(κ)‖D(ψ)|�1(0, ξ)|+

ωη((ωκ + β�1)‖�1‖D + ζκQ(ξ))×
∫ κ

0
p(ε, ξ)dεdρ

In the previous inequality, the right-hand side went to zero as ε2− ε1 → 0, Hq(χ), Kq(χ)
are a strongly continuous operator, and Hq(χ) and Kq(χ) for χ > 0 are compact, which
implies that uniform operator topology is continuous. Suppose that ξ ∈ ψ is fixed.

(b) Suppose that Λ is a subset of D(ξ) where Λ ⊂ conv(I(Λ)
⋃{0}). Λ is bounded

and equicontinuous, and function χ → v(χ) = ς(Λ(χ)) is continuous on (−∞, κ].
Via (H2), and by considering the characteristics of the measure Λ, we have χ ∈
(−∞, κ]:
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v ≤ ς(I(Λ))(χ)
⋃
{0})

≤ ς(I(Λ)(χ))

≤ ς(Hq(χ)�1(0, ξ)) + ς(Kq(χ)�2(ξ)) + ς

( ∫ χ

0
Hq(χ− ρ)ϕ(ε, Uϑ(χ,Uχ)(., ξ)dρ

)
+ ωλ

∫ χ

0
ς(U1(ξ)

−Hq(κ)�1(0, ξ)− Kq(κ)�2(ξ)) + ς

( ∫ κ

0
Hq(κ − ε)ϕ(ε, Uϑ(χ,Uχ)(., ξ), ξ

)
dρ

≤ ω
∫ χ

0
ς(ϕ(ρ, Uϑ(χ,Uχ)(., ξ), ξ))dρωλ

∫ χ

0

∫ κ

0
ς(Hq(κ − ε)ϕ(ε, Uϑ(χ,Uχ)(., ξ), ξ)dεdρ

≤ ω
∫ χ

0
α(ρ)ς({Uϑ(χ,pχ) : p ∈ Λ})dρωλ

∫ χ

0

∫ κ

0
ς(Hq(κ − ε)ϕ(ε, Uϑ(χ,Uχ)(., ξ), ξ)dεdρ

≤ ω
∫ χ

0
γ(ρ)ζ(ρ) sup

0≤ε≤ρ

ς(Λ(ε))ρ + ω2λ
∫ χ

0

∫ κ

0
ς(ϕ(ε, Uϑ(χ,Uχ), ξ)dεdρ

≤ ω
∫ χ

0
γ(ρ)ζ(ρ)ς(Λ(ρ))dρ + ω2λκ

∫ κ

0
α(ε)ς(ϕ({Uϑ(χ,Uχ) : U ∈ Λ)dε

≤ ω
∫ χ

0
v(ρ)α(ρ)ζ(ρ)dρ + ω2λκ

∫ κ

0
α(ε)ζ(ε)ς(Λ(ε))dε

= ω
∫ χ

0
α(ρ)ζ(ρ)v(ρ)dρ + ω2λκ

∫ κ

0
α(ε)ζ(ε)v(ε))dε

≤ ω
∫ χ

0
α(ρ)ζ(ρ)v(ρ)dρ + ω2λκ

∫ κ

0
α(ε)ζ(ε)v(ε))dε

≤ ω(1 + ωλκ)
∫ κ

0
α(ρ)ζ(ρ)v(ρ))dρ

≤ ω(1 + ωλκ)
∫ κ

0
α(ρ)ζ(ρ) sup

0≤ε≤ρ

v(ε))dρ

≤ ω(1 + ωλκ)‖v‖∞

∫ κ

0
α(ρ)ζ(ρ)dρ.

Thus,

‖v‖∞ ≤ ω(1 + ωλκ)‖v‖∞

∫ κ

0
α(ρ)ζ(ρ)dρ

Then,

‖v‖∞

(
1−ω(1 + ωλκ)

∫ κ

0
α(ρ)ζ(ρ)dρ

)
≤ 0.

Hereby, ‖v‖∞ = 0; thus, v(χ) = 0 for each χ ∈ Θ, this implies Λ(χ) is relatively
compact in Ψ. Through the result of Ascoli-Arzel à theorem, Λ is relatively compact in
D(ξ). Via Mönch fixed-point theorem, we show that I has a fixed point U(ξ) ∈ D(ξ).
As

⋂
ξ∈ϕ D(ξ) �= ∅; moreover, a measurable selector of

∫
D exists. Lemma implies

that I has a stochastic fixed point U∗(ξ), which is a mild solution of (2).

5. Applications

The qualitative theory of FDEs, fractional integrodifferential equations, and fractional-
order operators can be applied to a wide range of scientific fields, including fluid mechanics,
viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing, and
entropy theory. Due to this, academics from all over the world have become interested
in the applications of the theory of fractional calculus and the qualitative theory of the
aforementioned equations, and many researchers have included them into their most
recent research.

For a very long time, DEs driven by a Brownian motion (or Wiener process) have been
the focus of study on the qualitative characteristics of stochastic DEs and their applications.
Furthermore, applications from a variety of domains, including storage, queueing, eco-
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nomic, and neurophysiological systems, can be found frequently in stochastic DEs driven
by a Poisson process. Additionally, stochastic DEs with Poisson jumps have gained much
traction in modelling phenomena from a variety of disciplines, especially economics, where
jump processes are frequently used to describe asset and commodity price dynamics. These
factors are sufficient for the existence and uniqueness of non-Lipschitz stochastic neutral
delay DEEs driven by Poisson jumps.

Levy procedures are becoming increasingly significant in the world of banking. While
Levy processes are often employed in newer models to accommodate jumps (which can be
regarded as external shocks) and achieve a better fit to empirical data, Brownian motion
is still frequently used in older models as a source of randomness. As a result, Levy
process applications in finance are simple to locate. There have been numerous applications
of the theory of impulsive DEs of an integer order in accurate mathematical modelling.
It has recently become a crucial subject of research due to the large range of practical
problems. This is because many evolutionary systems’ states are frequently exposed to
rapid disturbances and undergo abrupt shifts from time to time. These changes have a
very brief and insignificant length when compared to the lifespan of the process under
consideration, and can be viewed as impulses. Due to the lack of effective methods, the
control analysis of problems, including the impulse effect, fractional calculus, and white
noise, is challenging.

6. Example

Consider

c
0Dq

νU(χ, ξ, ς) = ϕ(χ, U(χ, ξ, ς), ς) +
∫ ν

0 B2 f (χ, ς)dCv, ξ ∈ Θ := [0, κ], ν ∈ [0, T]
U(χ, π, ς) + m(U) = U1(χ, 2π, ς); ξ ∈ [0, κ],
U′(χ, ξ, ς) = U2(ξ),

(6)

where Φ : Θ × R × ζ → Rm is a given function. If Ξ = L2[π, 2π], and B1 : Ξ → Ξ
given by B1U = U′ with domain D(B1) = {U ∈ Φ; U, U′ are absolutely continuous, U′ ∈
Ξ, U(π) = U(2π) = 0}. Let the strongly continuous cosine function (Hq(χ))χ∈Rm on Φ be
infinitesimally generated by the operator B1. Furthermore, B1 has a discrete spectrum, and
the eigenvalues are −n2, n ∈ IN with corresponding normalized eigenvectors

Un(ε) :=
(

2
2π

) 1
2

cos(nε),

and

(i) {Un : n ∈ IN} is an orthonormal basis of Φ,
(ii) If x ∈ Φ, then B1x = −∑∞

n=1 n2〈x, Un〉Un,
(iii) For x ∈ Φ, Hq(ϑ)x = ∑∞

n=1 sin(nt)〈x, Un〉Un, and the associated cosine family is

Kq(ϑ)x =
∞

∑
n=1

cos(nt)
n

〈x, Un〉Un.

Consequently, Kq(χ) is compact for all χ > 0 and

‖Hq(ϑ)‖ = ‖Kq(χ)‖ ≤ 1, ∀χ ≥ 0.

(iv) Let the group of translation be denoted by Φ:

ψ(χ)x(U, ς) = x̃(U + χ, ς),

where x̃ is the extension of x with period 4π. Then,

Hq(χ) =
1
2
(ψ + ψ(−χ)); U1 = D,
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where D is the infinitesimal generator of the group on

X = {x(., ς) ∈ H1(π, 2π) : x(π, ς) = x(2π, ς) = 0}.

Suppose that B2 is a bounded LO from Ω into Ξ and the linear operator K : L2(Θ, Ω)→
Ξ given by:

K f =
∫ k

0
Hq(k− �)B2 f (�, ς)dρ,

has an inverse operator K−1 in L2(Θ, Ω)/ ker K. We deduce that Equation (1) is an
abstract formulation of Equation (6) if H1 to H6 are met. Via Theorem 1, we conclude
that Equation (6) is controllable.

7. Conclusions

Existence and controllability results were presented for a couple of classes of second-
order fractional functional differential equations. A stochastic random fixed-point theorem
established the basis for our claims. Then, we demonstrated that our problems were
controllable. Some of the findings in this area form the basis of our future research plans.
New results can be obtained by either changing or generalising the conditions and the
functional spaces, or even by involving some fractional differential problems.
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Abstract: This paper considers the classes of the first-order fractional differential systems containing
a finite number n of sinusoidal terms. The fractional derivative employs the Riemann–Liouville
fractional definition. As a method of solution, the Laplace transform is an efficient tool to solve linear
fractional differential equations. However, this method requires to express the initial conditions
in certain fractional forms which have no physical meaning currently. This issue formulated a
challenge to solve fractional systems under real/physical conditions when applying the Riemann–
Liouville fractional definition. The principal incentive of this work is to overcome such difficulties
via presenting a simple but effective approach. The proposed approach is successfully applied
in this paper to solve linear fractional systems of an oscillatory nature. The exact solutions of
the present fractional systems under physical initial conditions are derived in a straightforward
manner. In addition, the obtained solutions are given in terms of the entire exponential and periodic
functions with arguments of a fractional order. The symmetric/asymmetric behaviors/properties of
the obtained solutions are illustrated. Moreover, the exact solutions of the classical/ordinary versions
of the undertaken fractional systems are determined smoothly. In addition, the properties and the
behaviors of the present solutions are discussed and interpreted.

Keywords: Riemann–Liouville fractional derivative; fractional differential equation; sinusoidal; exact
solution

1. Introduction

Unlike the classical calculus (CC) with integer derivatives, the fractional calculus
(FC) implements the derivatives of an arbitrary order (non-integer) [1–3]. So, the FC is
considered as a generalization of the CC. During the past decades, numerous physical, engi-
neering, and biological problems have been investigated by means of the FC ([4–9]). There
are several definitions for the derivatives of an arbitrary order, such as the Caputo frac-
tional derivative (CFD) [10–22], the Riemann–Liouville fractional derivative (RLFD) [23–25],
and the conformable derivative [26–29]. However, some difficulties arise when applying
the RLFD to solve fractional models under real physical conditions. The present paper is
an attempt to face such an issue by considering the following class of first-order fractional
ordinary equations (FODEs):

RL
−∞Dα

t y(t) + ω2y(t) = b1 sin(Ω1t) + b2 sin(Ω2t) + · · ·+ bn sin(Ωnt),

=
n

∑
j=1

bj sin(Ωjt), y(0) = A, α ∈ (0, 1], (1)
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where α is the non-integer order of the RLFD. The constant A is real while ω, bj, and Ωj
may be real or complex ∀ j = 1, 2, 3, . . . , n.

The applications of the class (1) may arise in oscillatory models in engineering when
the FC is incorporated. This class splits to other physical classes. As examples, for complex
ω, i.e., ω = iμ (μ is real), where i is the imaginary number, the model (1) becomes

RL
−∞Dα

t y(t)− μ2y(t) =
n

∑
j=1

bj sin(Ωjt), y(0) = A, α ∈ (0, 1]. (2)

In addition, if Ωj = iσj and bj = −idj, the classes (1) and (2) take the form:

RL
−∞Dα

t y(t) + ω2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A, α ∈ (0, 1], (3)

and
RL
−∞Dα

t y(t)− μ2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A, α ∈ (0, 1], (4)

in terms of hyperbolic functions, respectively.
In Refs. [1–3], the RLFD of order α ∈ R+

0 of function f : [c, d]→ R (−∞ < c < d < ∞)
is defined as

RL
c Dα

t f (t) =
1

Γ(n− α)

dn

dtn

(∫ t

c

f (τ)

(t− τ)α−n+1 dτ

)
, n = [α] + 1, t > c, (5)

where [α] is the integral part of α. If 0 < α ≤ 1 and c → −∞, then

RL
−∞Dα

t f (t) =
1

Γ(1− α)

d
dt

(∫ t

−∞

f (τ)
(t− τ)α dτ

)
. (6)

It is important to refer to the initial condition (IC) y(0) = A being physical, unlike
the nonphysical condition Dα−1

t y(0) = A that has been considered by the authors [30]. In
fact, the IC in the last fractional form is required when solving an FODE via the Laplace
transform (LT). This is, simply, because the LT of the RLFD as c → 0, i.e., RL

0 Dα
t , is [1–3,23,30]

L
[

RL
0 Dα

t y(t)
]
= sαY(s)− Dα−1

t y(0), (7)

which is given in terms of Dα−1
t y(0). Really, the main difference between RL

−∞Dα
t and RL

0 Dα
t

lies in the nature of the considered IC of the problem. In the literature, one can see that
the obtained solutions of the physical models depend on both the nature of the given
classical/fractional ICs along with the implemented method of solution.

In this regard, Ebaid and Al-Jeaid [30] applied the RLFDs RL
−∞Dα

t and RL
0 Dα

t to obtain
a dual solution for a similar model under the nonphysical IC Dα−1

t y(0) using the LT. Al-
though the LT was shown as an effective tool to exactly investigate several models [31–37],
it may not be appropriate to deal with the class (1) under the physical IC y(0) = A by
means of the RLFD operator RL

0 Dα
t . However, the solution is still available under this

physical condition via the RLFD operator RL
−∞Dα

t along with avoiding the LT, as will be
shown through this paper.
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Therefore, the main incentive of the present work is to introduce a new approach to
obtain the real solution of the current model under the physical IC y(0) = A through the
following properties (see Refs. [30,38]):

RL
−∞Dα

t eiωt = (iω)αeiωt, (8)
RL
−∞Dα

t cos(ωt) = ωα cos
(

ωt +
απ

2

)
, (9)

RL
−∞Dα

t sin(ωt) = ωα sin
(

ωt +
απ

2

)
. (10)

By using the above properties, it will be shown that the real solution of class (1) exists at
specific values of the fractional-order α. The symmetric/asymmetric behaviors/properties
of the obtained solutions will be demonstrated. Furthermore, it will be declared that
the solution of the class (2) is real at any arbitrary value α. In addition, the solutions of
the corresponding classes with the classical/ordinary derivative, i.e., as α → 1, will be
evaluated.

A brief description of the structure of this paper is as follows. In Section 2, an anal-
ysis of the complementary and particular solutions is presented. Section 3 is devoted to
obtaining the exact solutions for the fractional classes. In Section 4, the exact solutions for
the ordinary classes are obtained. The behaviors/properties of the solution are introduced
in Section 5. The paper is concluded in Section 6.

2. Analysis

The complementary solution yc(t) of Equation (1) can be obtained in the form, see [30]:

yc(t) = c eiδt, δ = −i
(
−ω2

)1/α
, (11)

which satisfies the homogeneous equation:

RL
−∞Dα

t y(t) + ω2y(t) = 0. (12)

In order to evaluate the constant c, the given IC will be applied on the general solution
y(t) = yc(t) + yp(t) in a subsequent section where yp(t) is a particular solution of the
non-homogeneous Equation (1). A simple method to calculate yp(t) is explained through
the following theorem.

Theorem 1. The yp(t) of the class (1) is in the form:

yp(t) =
n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

, (13)

Proof. Let us assume that

yp(t) =
n

∑
j=1

(ρ1j cos(Ωjt) + ρ2j sin(Ωjt)). (14)

Using the preceding properties of the RLFD operator RL
−∞Dα

t , we have

RL
−∞Dα

t yp =
n

∑
j=1

(
ρ1j

RL
−∞Dα

t cos(Ωjt) + ρ2j(α)
RL
−∞Dα

t sin(Ωjt)
)

,

=
n

∑
j=1

Ωα
j cos

(
Ωjt

)(
ρ1j cos

(πα

2

)
+ ρ2j sin

(πα

2

))
+

n

∑
j=1

Ωα
j sin

(
Ωjt

)(
ρ2j cos

(πα

2

)
− ρ1j sin

(πα

2

))
. (15)
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Thus,

RL
−∞Dα

t yp + ω2yp =
n

∑
j=1

[(
Ωα

j cos
(πα

2

)
+ ω2

)
ρ1j + Ωα

j sin
(πα

2

)
ρ2j

]
cos

(
Ωjt

)
+

n

∑
j=1

[(
Ωα

j cos
(πα

2

)
+ ω2

)
ρ2j −Ωα

j sin
(πα

2

)
ρ1j

]
sin

(
Ωjt

)
. (16)

Inserting the last result into Equation (1) yields(
Ωα

j cos
(πα

2

)
+ ω2

)
ρ1j + Ωα

j sin
(πα

2

)
ρ2i = 0,(

Ωα
j cos

(πα

2

)
+ ω2

)
ρ2j −Ωα

j sin
(πα

2

)
ρ1j = bj,

(17)

which can be easily solved to obtain ρ1j and ρ2j in the forms:

ρ1j = −
Ωαbj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) , ρ2j =

bjω
2 + Ωα

j bj cos
(

πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) . (18)

Employing (18) into (14), we find

yp(t) =
n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

, (19)

which completes the proof.

3. Solution of the Fractional Models: α ∈ (0, 1)

Lemma 1. The solution of the fractional class (1) is

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
))e(−ω2)

1
α t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

. (20)

Proof. The preceding analysis reveals that the general solution of the class (1) is in the
form:

y(t) = c eiδt +
n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

. (21)

From this equation, at t = 0, we obtain

y(0) = c−
n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) , (22)

and hence the IC can be applied to give

c = A +
n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) . (23)

Substituting (23) into (21), the solution reads

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
))e(−ω2)

1
α t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
+ Ωα

j sin
(
Ωjt− πα

2
)

ω4 + Ω2α
j + 2ω2Ωα

j cos
(

πα
2
) )

. (24)

It can be seen that the above solution satisfies the IC. In addition, the solution (24) is
real at specific values of α; this point will be discussed later.
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Lemma 2. The solution of the fractional class (2) is

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

μ4 + Ω2α
j − 2μ2Ωα

j cos
(

πα
2
))eμ

2
α t −

n

∑
j=1

bj

(
μ2 sin

(
Ωjt

)
−Ωα

j sin
(
Ωjt− πα

2
)

μ4 + Ω2α
j − 2μ2Ωα

j cos
(

πα
2
) )

. (25)

Proof. As mentioned in Section 1, the class (2) is a transformed version of the class (1)
when ω = iμ. Hence, the solution of the class (2) can be directly obtained from the solution
of the class (1), given in lemma 1, with the aide of the substitution ω = iμ, which yields

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

μ4 + Ω2α
j − 2μ2Ωα

j cos
(

πα
2
))eμ

2
α t +

n

∑
j=1

bj

(−μ2 sin
(
Ωjt

)
+ Ωα

j sin
(
Ωjt− πα

2
)

μ4 + Ω2α
j − 2μ2Ωα

j cos
(

πα
2
) )

, (26)

or

y(t) =

(
A +

n

∑
j=1

Ωα
j bj sin

(
πα
2
)

μ4 + Ω2α
j − 2μ2Ωα

j cos
(

πα
2
))eμ

2
α t −

n

∑
j=1

bj

(
μ2 sin

(
Ωjt

)
−Ωα

j sin
(
Ωjt− πα

2
)

μ4 + Ω2α
j − 2μ2Ωα

j cos
(

πα
2
) )

, (27)

which completes the proof.

Remark 1. The analytic method used to obtain the exact solutions of the fractional classes (1) and
(2) is shown in this section. The other fractional classes (3) and (4) can also be obtained similarly. It
can be seen from the solution (20) of the fractional class (1) that it is not always a real solution for
α ∈ (0, 1). This is simply because (−ω2)1/α �∈ R ∀ α ∈ (0, 1), but there are certain values of the
fractional-order α at which the solution (20) is real, y(t) ∈ R. Such values of α will be addressed in
a subsequent section.

However, the solution (25) of the fractional class (2) is always a real solution ∀ α ∈ (0, 1)
where μ2/α ∈ R for μ ∈ R. In the case of the ordinary/classical derivative, i.e., as α → 1, then the
solutions (20) and (25) are real. The solution of the fractional classes (3) and (4) can be obtained
via substituting Ωj = iσj and bj = −idj into the solutions (20) and (25), respectively. Although,
the resulting solutions of fractional classes (3) and (4) are not real at any value of α. In fact, the
solutions of classes (3) and (4) are only real when α → 1. The solutions of the four classes (1)–(4),
as α → 1, are determined in the next section.

4. Solution of the Classical/Ordinary Models: α → 1

This section focuses on obtaining the exact solutions of the classical/ordinary versions
of the classes (1)–(4) when α → 1,

4.1. Class (1)

As α → 1, the class (1) is transformed to the following class of ODEs:

y′(t) + ω2y(t) =
n

∑
j=1

bj sin(Ωjt), y(0) = A. (28)

The solution of this class can be derived from Equation (20) by letting α → 1, and
accordingly, we have

y(t) =

(
A +

n

∑
j=1

Ωjbj

ω4 + Ω2
j

)
e−ω2t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
+ Ωj sin

(
Ωjt− π

2
)

ω4 + Ω2
j

)
, (29)

which is equivalent to

y(t) =

(
A +

n

∑
j=1

Ωjbj

ω4 + Ω2
j

)
e−ω2t +

n

∑
j=1

bj

(
ω2 sin

(
Ωjt

)
−Ωj cos

(
Ωjt

)
ω4 + Ω2

j

)
. (30)
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The validity of the solution (30) can be easily verified by direct substitution into (28).
Moreover, this solution satisfies the given IC.

4.2. Class (2)

The class (2), as α → 1, reduces to ODEs:

y′(t)− μ2y(t) =
n

∑
j=1

bj sin(Ωjt), y(0) = A. (31)

From Equation (24), we obtain as α → 1 that

y(t) =

(
A +

n

∑
j=1

Ωjbj

μ4 + Ω2
j

)
eμ2t −

n

∑
j=1

bj

(
μ2 sin

(
Ωjt

)
−Ωj sin

(
Ωjt− π

2
)

μ4 + Ω2
j

)
, (32)

or

y(t) =

(
A +

n

∑
j=1

Ωjbj

μ4 + Ω2
j

)
eμ2t −

n

∑
j=1

bj

(
μ2 sin

(
Ωjt

)
+ Ωj cos

(
Ωjt

)
μ4 + Ω2

j

)
. (33)

4.3. Class (3)

The class (3) as α → 1 becomes

y′(t) + ω2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A. (34)

Because this class is transformed from the class (1) when Ωj = iσj, and bj = −idj, then
the solution of the current class is determined from Equation (30) as

y(t) =

(
A +

n

∑
j=1

σjdj

ω4 − σ2
j

)
e−ω2t −

n

∑
j=1

idj

(
ω2 sin

(
iσjt

)
− iσj cos

(
iσjt

)
ω4 − σ2

j

)
, (35)

i.e.,

y(t) =

(
A +

n

∑
j=1

σjdj

ω4 − σ2
j

)
e−ω2t +

n

∑
j=1

dj

(
ω2 sinh

(
σjt

)
− σj cosh

(
σjt

)
ω4 − σ2

j

)
. (36)

4.4. Class (4)

If ω = iμ, Ωj = iσj, and bj = −idj, then the class (1) as α → 1 is equivalent to the
following class of ODEs:

y′(t)− μ2y(t) =
n

∑
j=1

dj sinh(σjt), y(0) = A. (37)

In this case, we have three possible ways to obtain the solution of the current class.
The first way is to substitute ω = iμ, Ωj = iσj, and bj = −idj into Equation (30). The second
is to substitute Ωj = iσj and bj = −idj into Equation (33). The third way is the simplest
one, by substituting only ω = iμ into Equation (36). Following the third option, one can
obtain the exact solution:

y(t) =

(
A +

n

∑
j=1

σjdj

μ4 − σ2
j

)
eμ2t +

n

∑
j=1

dj

(
−μ2 sinh

(
σjt

)
− σj cosh

(
σjt

)
μ4 − σ2

j

)
, (38)

or

y(t) =

(
A +

n

∑
j=1

σjdj

μ4 − σ2
j

)
eμ2t −

n

∑
j=1

dj

(
μ2 sinh

(
σjt

)
+ σj cosh

(
σjt

)
μ4 − σ2

j

)
, (39)
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for the present class of ODEs.

Remark 2. The obtained exact solutions for the four classes of ODEs satisfy the condition y(0) = A.
On the other hand, the validity of the obtained solutions can be easily checked through direct
substitutions into the governing ODEs of these classes. We can say that the FC is of great importance
and benefits. This is because the FC not only gives the solutions of fractional models but also helps
in deriving the solutions of corresponding classical/ordinary models.

5. Behavior of Solution

It is seen from the previous sections that the fractional systems (1) and (2) have the exact
solutions given by Equation (20) and Equation (24), respectively. The main observation is
that the solution (20) of the class (1) is real if the quantity (−ω2)1/α is real. For real ω, we
note that (−ω2)1/α = νω2/α where ν = (−1)1/α. So, the solution (20) is real when ν is real.
The authors [31] were able to specify the α-values such that ν = (−1)1/α is real and this
occurs that the α-values follow the next theorem [30].

Theorem 2. For n, k ∈ N+, the solution (20) is real when α = 2n−1
2(k+n−1) (ν = 1) and α =

2n−1
2(k+n)−1 (ν = −1).

Based on the above theorem, the solution (20) for the fractional class (1) is plotted in
Figure 1 for α = 1

2 at different numbers of the sinusoidal terms. Figure 2 shows the variation
in the solution (20) for the fractional class (1) with two sinusoidal terms at different values
of the initial condition A. In addition, Figure 3 indicates the behavior of the solution at
various values of the fractional-order α when ten sinusoidal terms are incorporated in the
fractional class (1). Furthermore, the solution is depicted in Figure 4 at some selected values
α close to unity. This figure declares that the fractional solution becomes identical to the
ordinary/classical solution as α → 1 which validates the present results.

For the fractional class (2), the solution (25) is displayed in Figure 5 when α = 1
2 at

different numbers of the sinusoidal terms. The behavior of the solution of this class is
similar to Figure 1 but with a slightly higher magnitude of the oscillations for the same
numbers of the sinusoidal terms. Figure 6 gives us a picture of the solution profile as the
fractional-order α varies regarding the fractional class (2). Moreover, Figure 7 displays the
profile of the solution (25) at various values of the parameter μ. The current results reveal
the oscillatory nature of the obtained solutions for the fractional systems (1) and (2). Finally,
the present analysis may be extended to effectively analyze higher-order fractional systems
containing a finite number of sinusoidal terms.

� �

� � Α� �

�

�

�

�

Figure 1. Plots of the solution for the fractional class (1) when α = 1
2 , A = 0, ω = 1

2 , bj = j,
and Ωj = jπ/2 at different values of n (number of sinusoidal terms).
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Figure 2. Plots of the solution for the fractional class (1) when α = 1
2 , ω = 1

2 , bj = j, and Ωj = jπ/2
at different values of A = −2,−1, 0, 1, 2 for two sinusoidal terms (n = 2).
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Figure 3. Plots of the solution for the fractional class (1) when α = 1
2 , A = 0, ω = 1

5 , bj = j,
and Ωj = jπ/10 at different values of α = 1

4 , 1
2 , 3

4 , 7
8 for ten sinusoidal terms (n = 10).
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Figure 4. Plots of the solution for the fractional class (1) when A = 0, ω = 1
5 , bj = j, and Ωj = jπ/10

at different values of α = 27
29 , 45

47 , 61
63 , 81

83 , 1 for ten sinusoidal terms (n = 10).
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Figure 5. Plots of the solution for the fractional class (2) when α = 1
2 , A = 0, μ = 1

2 , bj = j,
and Ωj = jπ/2 at different values of n (number of sinusoidal terms).
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Figure 6. Plots of the solution for the fractional class (2) when μ = 1
2 , A = 0, bj = j, and Ωj = jπ/2

at different values of α for five sinusoidal terms (n = 5).
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Figure 7. Plots of the solution for the fractional class (2) when α = 1
2 , A = 0, bj = j, and Ωj = jπ/2

at different values of μ.

6. Conclusions

In this paper, a class of first-order fractional differential systems containing a finite
number n of sinusoidal terms was analyzed by means of the Riemann–Liouville fractional
definition. The difficulties in solving fractional systems under real/physical initial condi-
tions using the Riemann–Liouville fractional definition are overcome in this paper. This
task was achieved via a straightforward method. The suggested method was successfully
applied to extract the exact solutions of the considered fractional systems. In addition,
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the corresponding exact solutions of the classical/ordinary versions were determined.
The obtained results reveal the oscillatory nature of the present fractional systems. More-
over, the properties/behaviors of the obtained solutions were investigated graphically and
hence interpreted. Accordingly, the current approach may deserve a further extension to in-
clude fractional systems of a higher order when the sinusoidal terms of a finite number are
incorporated. Finally, the current approach may be applied to include other ideas [39–47].
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Abstract: Many techniques have been recently used by various researchers to solve some types of
symmetrical fractional differential equations. In this article, we show the existence and uniqueness to
the solution of ς-Caputo stochastic fractional differential equations (CSFDE) using the Banach fixed
point technique (BFPT). We analyze the Hyers–Ulam stability of CSFDE using the stochastic calculus
techniques. We illustrate our results with three examples.

Keywords: fractional calculus; fixed-point theory

1. Introduction

Fractional calculus is a mathematical axis studying the characterizations of non-integer
order derivatives and integrals [1,2]. In fact, this field contains the methods and notions
of solving symmetrical differential equations with fractional derivatives. The theory of
fractional calculus began almost in the same decade as the definition of classical calculus
was decided. It was first defined in Leibniz’s letter to L’Hospital in 1695, where the notion
of semi-derivative was presented. During this period, fractional derivative was founded
by many famous scientists, e.g., Riemann, Lagrange, Liouville, Fourier, Grünwald, Euler,
Heaviside, Abel, etc. The fractional calculus has been used to describe many real-world
phenomena: control theory, electrical networks, fluid flow, optics and signal processing,
dynamical processes, etc. (see [1,3–7]). Particularly, in [8], the authors analyzed a system of
neural networks in the sense of fractional derivatives. In [4], some novel applications of the
non-integer order operators in the theory of viscoelasticity were derived. The authors of
ref. [9] have proposed a scheme of approximate non-integer order differentiation, including
noise immunity. A fruitful discussion on the Adams method in the fractional-order sense
was given in the ref. [10]. In the last few decades, some new fractional derivatives have
been introduced by various researchers to improve the literature on fractional calculus.
In [11], Almeida suggested a new fractional derivative with respect to a kernel function
called ς-Caputo fractional derivative, and generalized the work of several researchers [1,12].
In this context, several research papers showed interest in the ς-Caputo fractional derivative;
for instance, see [11,13,14]. In [15], a numerical study on the non-integer order relaxation–
oscillation equations in terms of ς-Caputo fractional derivatives are proposed. In [16],
a study on the Ulam stability for Langevin non-integer order differential equations in the
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sense of two different fractional orders of ς-Caputo derivative has been given. In [17], the
authors explored an initial value problem for differential equations in the sense of ς-Caputo
derivative via a monotone iterative approach.

Recently, the theory of Hyers–Ulam stability (HUS) has attracted the attention of
several famous scientists due to its real-world applications in biology and fluid flow, where
identifying the explicit solutions is a very hard task. Some novel research studies on this
topic have been proposed in the following references [18–20]. In [21], the authors discussed
the results regarding the existence and HUS of solutions for almost periodic stochastic
differential equations in a fractional sense. In [22], some novel results on the existence
and HUS of random stochastic impulsive functional differential equations with delay have
been established. In [23], Ulam stability for partial integro-differential equations with
uncertainty in a fractional-order sense has been explored. Most of the existing papers
consider the Caputo fractional derivative for the existence, uniqueness and HUS of the
solutions of fractional differential equations. There are a lot of papers which discuss the
ψ-Caputo fractional derivative (see [24–26]) for the deterministic case. In this paper, we
have studied this concept for the stochastic case.

In this work, the existence and uniqueness of CSFDE are provided. The HUS for the
proposed problem with the help of the novel features of stochastic calculus is simulated.

This paper extends the work on [27–29] for the Caputo and Caputo–Hadamard frac-
tional derivative.

We highlight the main advantages of our article as follows:

• To investigate the existence and uniqueness of the solution of CSFDE via BFPT.
• To investigate the HUS of CSFDE by using the stochastic calculus techniques.

We summarize the content of the article: Section 2 presents the basic definitions
of ς-CFD and some fundamental notations. Section 3 investigates the global existence
and uniqueness of the solution of CSFDE. In Section 4, we analyze the HUS of CSFDE.
In Section 5, we give three illustrative examples.

2. Basic Notions

Denote by {Σ,F ,FΠ,P}, where FΠ = {Fη}η∈[1,Π] and Π > 1, the complete probability
space; W(η) is the standard Brownian motion.

Let Xη = L2(Σ,Fη ,P) (for every η ∈ [1, Π]) be the family of all Fη-measurable and
mean square integrable functions λ = (λ1, . . . , λp)

T : Σ → Rp satisfies

||λ||ms =

√√√√ p

∑
l=1

E(|λl |2) =
√
E||λ||2,

where || · || is the usual Euclidian norm.

Definition 1 ([14]). Denote by ϕ > 0 and let ς ∈ C1[c, b] the function satisfying ς′(σ) �= 0,
∀σ ∈ [c, b]. The ς-fractional integral of order ϕ for an integrable function g is defined as

Iϕ,ς
c+ g(x) =

1
Γ(ϕ)

∫ x

c
ς′(σ)(ς(x)− ς(σ))ϕ−1g(σ)dσ. (1)

Definition 2 ([14]). Denote by ϕ > 0 and let ς ∈ C1[c, b] the function satisfying ς′(σ) �= 0,
∀σ ∈ [c, b]. The ς-Riemann–Liouville fractional derivative of order ϕ of a function g is defined by

Dϕ,ς
c+ g(x) =

(
1

ς′(x)
d

dx

)
I1−ϕ,ς
c+ g(x). (2)
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Definition 3 ([14]). Let ϕ > 0 and ς ∈ C1[c, b] the functions satisfying ς′(σ) �= 0, ∀σ ∈ [c, b].
The ς-Caputo fractional derivative of order ϕ of a function g is defined by

CDϕ,ς
c+ g(t) = Dϕ,ς

c+

[
g(t)− g(c)

]
. (3)

Definition 4 ([1]). Eρ,κ(y) is called a Mittag–Leffler function with two parameters if:

Eρ,κ(y) =
+∞

∑
m=0

ym

Γ(mρ + κ)
,

where ρ > 0, κ > 0, y ∈ C.

Theorem 1 ([30]). Let (E, d) be a complete metric space and let B : E→ E (with z ∈ [0, 1)) be a
contraction. Assume that j ∈ E, d(j,B(j)) ≤ υ and υ > 0. Then, there is a unique u ∈ E such
that B(u) = u.

Let the following CSFDE:

CDϕ,ς
a+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)

dη
, (4)

where the initial condition is ξ(a) = δ, ς : [a, Π] → R be a C1-increasing function with
ς′(η) �= 0, ∀η ∈ [a, Π], 0 < ϕ < 1, f1 : [a, Π]×Rp −→ Rp and f2 : [a, Π]×Rp −→ Rp are
measurable functions.

Let the following hypothesis:
H1: There is L > 0 satisfying

|| f1(η, ξ1)− f1(η, ξ2)|| ∨ || f2(η, ξ1)− f2(η, ξ2)|| ≤ L||ξ1 − ξ2||, (5)

for all (η, ξ1, ξ2) ∈ [a, Π]×Rp ×Rp.
H2: f1(·, 0) and f2(·, 0) satisfying

|| f2(·, 0)||∞ = ess sup
η∈[a,Π]

|| f2(η, 0)|| < ∞, (6)

∫ Π

a
|| f1(σ, 0)||2dσ < ∞.

3. Existence and Uniqueness of Solutions

Denote by H2([a, Π]) the family of all the processes ξ which are FΠ-adapted, measur-
able such that

||ξ||H2 = sup
a≤r≤Π

||ξ(r)||ms < ∞.

It is not hard to prove that (H2([a, Π]), || · ||H2) is a Banach space. Let the operator Nδ :
H2([a, Π])→ H2([a, Π]), for δ ∈ Xa, given by:

Nδy(η) = δ +
1

Γ(ϕ)

[∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, y(σ))dσ

]
+

1
Γ(ϕ)

[∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, y(σ))dW(σ)

]
. (7)

Lemma 1. Nδ, for every σ ∈ Xa, is well defined.
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Proof. Let q ∈ H2([a, Π]). Then, one has

||Nδq(η)||2ms ≤ 3||δ||2ms +
3

Γ(ϕ)2E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, q(σ))dσ

∣∣∣∣∣∣∣∣2
)

+
3

Γ(ϕ)2E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, q(σ))dW(σ)

∣∣∣∣∣∣∣∣2
)

. (8)

Using the Cauchy–Schwartz inequality, one gets

E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, q(σ))dσ

∣∣∣∣∣∣∣∣2
)

≤
(∫ η

a
(ς′(σ))2(ς(η)− ς(σ))2ϕ−2dσ

)
E

(∫ η

a
|| f1(σ, q(σ))||2dσ

)
≤ M

(∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2dσ

)
E

(∫ η

a
|| f1(σ, q(σ))||2dσ

)
≤ M

2ϕ− 1
(ς(η)− ς(a))2ϕ−1E

(∫ η

a
|| f1(σ, q(σ))||2dσ

)
, (9)

where M = sup
σ∈[a,Π]

ς′(σ). ByH1, one can derive that

|| f1(σ, q(σ))||2 ≤ 2L2||q(σ)||2 + 2|| f1(σ, 0)||2. (10)

Thus,

E
(∫ η

a
|| f1(σ, q(σ))||2dσ

)
≤ 2L2(Π− a) sup

σ∈[a,Π]

E
(
||q(σ)||2

)
+ 2

∫ Π

a
|| f1(σ, 0)||2dσ. (11)

Then,

E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f1(σ, q(σ))dσ

∣∣∣∣∣∣∣∣2
)

≤ M(ς(Π)− ς(a))2ϕ−1

2ϕ− 1

[
2L2(Π− a) sup

σ∈[a,Π]

E
(
||q(σ)||2

)
+ 2

∫ Π

a
|| f1(σ, 0)||2dσ

]
. (12)

Using Itô’s isometry formula, one gets

E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, q(σ))dW(σ)

∣∣∣∣∣∣∣∣2
)

= E

(∫ η

a
(ς′(σ))2(ς(η)− ς(σ))2ϕ−2|| f2(σ, q(σ))||2dσ

)
. (13)

UsingH1, one has

|| f2(σ, q(σ))||2 ≤ 2L2||q(σ)||2 + 2|| f2(·, 0)||2∞. (14)

Hence,

E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1 f2(σ, q(σ))dW(σ)

∣∣∣∣∣∣∣∣2
)
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≤ 2ML2E

(∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2||q(σ)||2dσ

)
+ 2M|| f2(·, 0)||2∞

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2dσ

≤ 2ML2

2ϕ− 1
(ς(Π)− ς(a))2ϕ−1||q||2H2

+
2M

2ϕ− 1
(ς(Π)− ς(a))2ϕ−1|| f2(·, 0)||2∞. (15)

Therefore, Nδ is well defined.

Theorem 2. Under H1 and H2, for every σ ∈ Xa, Equation (4) has a unique global solution
ξ(·, σ) on [a, Π].

Proof. Let Π > a be arbitrary. Let θ > 0, such that θ2ϕ−1 > 2L2M(Π + 1)
Γ(2ϕ− 1)

Γ(ϕ)2 . We

define a norm || · || on the space H2([a, Π]) by

||ξ||θ = sup
η∈[a,Π]

√√√√E

(
||ξ(η)||2

)
eθ(ς(η)−ς(a))

, ∀ξ ∈ H2([a, Π]). (16)

It is not hard to show that || · ||H2 and || · ||θ are equivalent. Consequently, (H2([a, Π]), || · ||θ)
is a Banach space.

Let ξ1, ξ2 ∈ H2([a, Π]). Using (7), we get ∀η ∈ [a, Π]

E

(
||Nδξ1(η)− Nδξ2(η)||2

)

≤ 2
Γ(ϕ)2E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, ξ1(σ))− f1(σ, ξ2(σ)))dσ

∣∣∣∣∣∣∣∣2
)

+
2

Γ(ϕ)2E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f2(σ, ξ1(σ))− f2(σ, ξ2(σ)))dW(σ)

∣∣∣∣∣∣∣∣2
)

.

Using Hölder inequality, one has

E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, ξ1(σ))− f1(σ, ξ2(σ)))dσ

∣∣∣∣∣∣∣∣2
)

≤ L2M(η − a)
∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2

E

(
||ξ1(σ)− ξ2(σ)||2

)
dσ.

Moreover, using Itô isometry, we have

E

(∣∣∣∣∣∣∣∣∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f2(σ, ξ1(σ))− f2(σ, ξ2(σ)))dW(σ)

∣∣∣∣∣∣∣∣2
)

= E

(∫ η

a
(ς′(σ))2(ς(η)− ς(σ))2ϕ−2|| f2(σ, ξ1(σ))− f2(σ, ξ2(σ))||2dσ

)
≤ L2M

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2

E

(
||ξ1(σ)− ξ2(σ)||2

)
dσ. (17)

Then,
E

(
||Nδξ1(η)− Nδξ2(η)||2

)
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≤ 2L2 M
Γ(ϕ)2 (Π + 1)

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2

E

(
||ξ1(σ)− ξ2(σ)||2

)
dσ

=
2L2 M
Γ(ϕ)2 (Π + 1)

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2

E

(
||ξ1(σ)− ξ2(σ)||2

)
eθ(ς(σ)−ς(a))

eθ(ς(σ)−ς(a))dσ

≤ 2L2 M
Γ(ϕ)2 (Π + 1)||ξ1 − ξ2||2θ

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2eθ(ς(σ)−ς(a))dσ. (18)

Set J =
∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2eθ(ς(σ)−ς(a))dσ. Thus, by using Lemma 2.6 in [16], we get

J ≤ Γ(2ϕ− 1)
θ2ϕ−1 eθ(ς(η)−ς(a)). (19)

Therefore, we have

E

(
||Nδξ1(η)− Nδξ2(η)||2

)
eθ(ς(η)−ς(a))

≤ 2L2M
Γ(ϕ)2 (Π + 1)

Γ(2ϕ− 1)
θ2ϕ−1 ||ξ1 − ξ2||2θ . (20)

Hence,
||Nδξ1 − Nδξ2||θ ≤ C||ξ1 − ξ2||θ , (21)

where C =

√
2L2M
Γ(ϕ)2 (Π + 1)

Γ(2ϕ− 1)
θ2ϕ−1 . Therefore, there is a unique solution of (4) such

that ξ(a) = δ.

4. Hyers–Ulam Stability

In this section, we study the Hyers–Ulam stability of Equation (4) using the generalized
Gronwall inequality and the stochastic calculus techniques.

Definition 5. Equation (4) is Hyers–Ulam stable with respect to ε if there is a number M1 > 0
satisfying for each ε > 0, and for each solution y ∈ H2([a, Π]), with y(a) = δ, of the following
inequality:

E

∣∣∣∣∣
∣∣∣∣∣y(η)− y(a)−

(∫ η

a

ς′(σ)(ς(η)− ς(σ))ϕ−1

Γ(ϕ)
( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣∣∣
∣∣∣∣∣
2

≤ ε, (22)

for all η ∈ [a, Π], there exists a solution ξ ∈ H2([a, Π]) of (4), with ξ(a) = δ, such that

E||y(η)− ξ(η)||2 ≤ M1ε, ∀η ∈ [a, Π].

Theorem 3. Under AssumptionsH1-H2, the ς-Caputo stochastic fractional differential Equation (4)
are Hyers–Ulam stable with respect to ε on [a, Π].

Proof. Let ε > 0 and y ∈ H2([a, Π]) be a function satisfying (22) and denote by ξ ∈
H2([a, Π]) the solution of (4) with initial data y(a); thus

ξ(η) = y(a) +
1

Γ(ϕ)

[∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, ξ(σ))dσ + f2(σ, ξ(σ))dW(σ))

]
. (23)

Thus,
E||y(η)− ξ(η)||2

≤ 2E||y(η)− y(a)− 1
Γ(ϕ)

(
∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1[ f1(σ, y(σ))dσ

+ f2(σ, y(σ))dW(σ)])||2
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+2E|| 1
Γ(ϕ)

(
∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1[( f1(σ, y(σ))− f1(σ, ξ(σ)))dσ

+( f2(σ, y(σ))− f2(σ, ξ(σ)))dW(σ)])||2.

Then, applying assumptionsH1-H2 and Cauchy–Schwartz inequality, we have

E||y(η)− ξ(η)||2

≤ 2ε + 4E
∣∣∣∣∣∣∣∣ 1

Γ(ϕ)

∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f1(σ, y(σ))− f1(σ, ξ(σ)))dσ

∣∣∣∣∣∣∣∣2
+ 4E

∣∣∣∣∣∣∣∣ 1
Γ(ϕ)

∫ η

a
ς′(σ)(ς(η)− ς(σ))ϕ−1( f2(σ, y(σ))− f2(σ, ξ(σ)))dW(σ)

∣∣∣∣∣∣∣∣2
≤ 2ε +

4L2M(ς(η)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2 E

(∫ η

a
||y(σ)− ξ(σ)||2dσ

)
+

4L2M
Γ(ϕ)2 E

(∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2||y(σ)− ξ(σ)||2dσ

)
.

Then,

E||y(η)− ξ(η)||2 ≤ 2ε +
4L2M(ς(Π)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2

∫ η

a
E||y(σ)− ξ(σ)||2dσ

+
4L2M
Γ(ϕ)2

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2

E||y(σ)− ξ(σ)||2dσ. (24)

Set z(η) = E||y(η)− ξ(η)||2. Thus, one gets

z(η) ≤ α1 + α2

∫ η

a
z(σ)dσ + α3

∫ η

a
ς′(σ)(ς(η)− ς(σ))2ϕ−2z(σ)dσ, (25)

where α1 = 2ε, α2 =
4L2M(ς(Π)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2 and α3 =
4L2M
Γ(ϕ)2 .

Applying the generalized Gronwall inequality (see [31]), we have

z(η) ≤
[

α1 + α2

∫ η

a
z(σ)dσ

]
E2ϕ−1

(
α3Γ(2ϕ− 1)(ς(η)− ς(a))2ϕ−1

)
≤ α4 + α5

∫ η

a
z(σ)dσ, (26)

where α4 = 2εE2ϕ−1

(
α3Γ(2ϕ− 1)(ς(Π)− ς(a))2ϕ−1

)
and α5 =

4L2M(ς(Π)− ς(a))2ϕ−1

(2ϕ− 1)Γ(ϕ)2

E2ϕ−1

(
α3Γ(2ϕ− 1)(ς(Π)− ς(a))2ϕ−1

)
.

Applying the classical Gronwall inequality, we can derive that

z(η) ≤ α4eα5(η−a) ≤ α4eα5(Π−a). (27)

Hence,
z(η) ≤ M1ε, (28)

where M1 = 2E2ϕ−1

(
α3Γ(2ϕ− 1)(ς(Π)− ς(a))2ϕ−1

)
eα5(Π−a).

Therefore, Equation (4) is Hyers–Ulam stable with respect to ε.
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5. Examples

This section is devoted to show our results in three examples.

Example 1. Let the CSFDE for each ε > 0 and for η ∈ [1, e2], given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CD
2
3 ,ς
1+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)
dη ,

E

∣∣∣y(η)− y(1)− 1
Γ(ϕ)

(∫ η
1 ς′(σ)(ς(η)− ς(σ))−

1
3 ( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣2 ≤ ε,

y(1) = δ,

(29)

where ϕ = 2
3 , ς(η) = ln(η) and

ξ(η) ∈ H2([1, e2],R)

f1(η, ξ(η)) =
√

ln(η)(arctan(ξ(η)) + cos(ξ(η)))

f2(η, ξ(η)) =
√

η cos(ξ(η)).

We will prove that Equation (29) is Hyers–Ulam stable with respect to ε.

Let (η, ξ1, ξ2) ∈ [1, e2]×R×R, thus

| f1(η, ξ1)− f1(η, ξ2)| ≤ 4|ξ1 − ξ2|,

and
| f2(η, ξ1)− f2(η, ξ2)| ≤ e|ξ1 − ξ2|.

Hence, assumptionH1 fulfilled. Moreover,

|| f2(·, 0)||∞ = ess sup
η∈[1,e2]

| f2(η, 0)| ≤ e,

and ∫ e2

1
| f1(η, 0)|2dη ≤ 2(e2 + 1).

Thus, assumptionsH1-H2 fulfilled. Hence, applying Theorem 3, Equation (29) has a unique
solution, and it is Hyers–Ulam stable with respect to ε on [1, e2].

Example 2. Let the CSFDE for each ε > 0 and for η ∈ [0.5, 6], given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CD
3
4 ,ς
1+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)
dη ,

E

∣∣∣y(η)− y(0.5)− 1
Γ(ϕ)

(∫ η
0.5 ς′(σ)(ς(η)− ς(σ))−

1
4 ( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣2 ≤ ε,

y(0.5) = δ,

(30)

where ϕ = 3
4 , ς(η) =

√
η and

ξ(η) ∈ H2([0.5, 6],R)

f1(η, ξ(η)) =
eη

1 + eη (1 + ξ(η))

f2(η, ξ(η)) =
1 + sin(ξ(η))

(1 + η)2 .

We will prove that Equation (31) is Hyers–Ulam stable with respect to ε.

212



Symmetry 2022, 14, 2336

(η, ξ1, ξ2) ∈ [0.5, 6]×R×R, then

| f1(η, ξ1)− f1(η, ξ2)| ≤ |ξ1 − ξ2|,

and
| f2(η, ξ1)− f2(η, ξ2)| ≤ |ξ1 − ξ2|.

Thus, assumptionH1 holds. On the other hand,

|| f2(·, 0)||∞ = ess sup
η∈[0.5,6]

| f2(η, 0)| ≤ 1,

and ∫ 6

0.5
| f1(η, 0)|2dη ≤ ln(1 + e6).

Then, assumptions H1-H2 are fulfilled. Hence, applying Theorem 3, Equation (31) has a
unique solution, and it is Hyers–Ulam stable with respect to ε on [0.5, 6].

Example 3. Let the CSFDE, for each ε > 0 and for η ∈ [0, 5], given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CD
1
5 ,ς
0+ ξ(η) = f1(η, ξ(η)) + f2(η, ξ(η))

dW(η)
dη ,

E

∣∣∣y(η)− y(0)− 1
Γ(ϕ)

(∫ η
0 ς′(σ)(ς(η)− ς(σ))−

4
5 ( f1(σ, y(σ))dσ + f2(σ, y(σ))dW(σ))

)∣∣∣2 ≤ ε,

y(0) = δ,

(31)

where ϕ = 1
5 , ς(η) = η and

ξ(η) ∈ H2([0, 5],R)

f1(η, ξ(η)) = 2e−ηξ(η)

f2(η, ξ(η)) = 3 sin(ξ(η)).

We will prove that Equation (31) is Hyers–Ulam stable with respect to ε.

(η, ξ1, ξ2) ∈ [0, 5]×R×R, then

| f1(η, ξ1)− f1(η, ξ2)| ≤ 2|ξ1 − ξ2|,

and
| f2(η, ξ1)− f2(η, ξ2)| ≤ 3|ξ1 − ξ2|.

Thus, assumptionH1 hold. On the other hand,

|| f2(·, 0)||∞ = ess sup
η∈[0,5]

| f2(η, 0)| = 0,

and ∫ 5

0
| f1(η, 0)|2dη = 0.

Then, assumptions H1-H2 are fulfilled. Hence, applying Theorem 3, Equation (31) has a
unique solution, and it is Hyers–Ulam stable with respect to ε on [0, 5].

6. Conclusions

In this research paper, we have proved the existence and uniqueness of CSFDE. We
have simulated the HUS for the proposed problem with the help of the novel features
of stochastic calculus. We have illustrated three examples to justify the correctness and
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applicability of the proposed results. The applications of some well-known terms of
functional analysis, such as the Cauchy–Schwarz inequality, properties of measurable
functions, supremum norm, Itô’s isometry formula, Hölder inequality, and generalized
Gronwall inequality make the study more visible to the literature. The proposed results
will be very useful to prove the existence of a unique solution and Hyers–Ulam stability of
ς-Caputo type fractional stochastic differential equations.
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Abstract: In this study, we examine the existence and Hyers–Ulam stability of a coupled system of
generalized Liouville–Caputo fractional order differential equations with integral boundary condi-
tions and a connection to Katugampola integrals. In the first and third theorems, the Leray–Schauder
alternative and Krasnoselskii’s fixed point theorem are used to demonstrate the existence of a solution.
The Banach fixed point theorem’s concept of contraction mapping is used in the second theorem to
emphasise the analysis of uniqueness, and the results for Hyers–Ulam stability are established in
the next theorem. We establish the stability of Ulam–Hyers using conventional functional analysis.
Finally, examples are used to support the results. When a generalized Liouville–Caputo (ρ) parameter
is modified, asymmetric results are obtained. This study presents novel results that significantly
contribute to the literature on this topic.

Keywords: generalized fractional derivatives; generalized fractional integrals; coupled system;
existence; fixed point

MSC: 34A08; 34B10; 34D10

1. Introduction

We consider the nonlinear coupled fractional differential equations with generalized
Liouville–Caputo derivatives{

ρ
CD

ξ
0+ p(τ) = f (τ, p(τ), q(τ)), τ ∈ G := [0, T ],

ρ
CD

ζ
0+q(τ) = g(τ, p(τ), q(τ)), τ ∈ G := [0, T ],

(1)

enhanced with boundary conditions which are defined by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(0) = 0, q(0) = 0,

p(T ) = ερIς
0+q(�) = ερ1−ς

Γ(ς)

∫ �
0

θρ−1

(�ρ−θρ)1−ς q(θ)dθ,

q(T ) = πρI�
0+p(σ) = πρ1−�

Γ(�)

∫ σ
0

θρ−1

(σρ−θρ)1−� p(θ)dθ,

0 < σ < � < T ,

(2)

where ρ
CD

ξ
0+ , ρ

CD
ζ
0+ are the Liouville–Caputo-type generalized fractional derivative of order

1 < ξ, ζ ≤ 2, ρ
CI

ς
0+ , ρ

CI
�
0+ are the generalized fractional integral of order (Katugampola

type) �, ς > 0, ρ > 0, f , g : G ×R×R → R are continuous functions, ε, π ∈ R. The strip
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conditions states that the value of the unknown function at the right end point τ = T of the
given interval is proportional to the values of the unknown function on the strips of varying
lengths. When ρ = 1, the generalized Liouville–Caputo equation is changed to the Caputo
sense, which leads to asymmetric results. In a similar way, when ρ = 1, the Katugampola
integrals are changed to Riemann-Liouville integrals, which leads to cases that are not
symmetric. To the best of our knowledge, the stability analysis of boundary value problems
(BVPs) is still in its early stages. This paper’s primary contribution is to study existence and
Ulam-Hyers stability analysis. In addition, we demonstrate the problem (1)–(2) employed
by Leray–Schauder, Banach and Krasnoselskii’s fixed point theorems to prove the existence
and uniqueness of solutions. The system (1) is the well-known fractional-order coupled
logistic system [1]:{

Dαu(τ) = r1u(τ)− r1
k1

u(τ)(u(τ) + v(τ)), τ ∈ I,

Dβv(τ) = r2v(τ)− r2
k2

v(τ)(v(τ) + u(τ)),

and the Lotka–Volterra prey-predator system [1]:{
Dαu(τ) = u(τ)(a− u(τ)E− γv(τ)), τ ∈ I,
Dβv(τ) = v(τ)(−b + γEv(τ)− βE).

We now provide some recent results related to our problem (1)–(2). In [2], the authors
discussed the existence results for coupled system of fractional differential equations
Riemann–Liouville derivatives{

Dα1
0+(D

β1
0+x(t)) + f (t, x(t), y(t)), t ∈ [0, 1],

Dα2
0+(D

β2
0+y(t)) + f (t, x(t), y(t)), t ∈ [0, 1],

(3)

with the Riemann–Stieltjes integral boundary conditions:⎧⎪⎪⎨⎪⎪⎩
Dβ1

0+x(0) = 0, x(0) = 0, Dβ2
0+y(0) = 0, y(0) = 0,

x(1) = γ1Iδ1
0+y(ξ) + ∑

p
i=1

∫ 1
0 y(τ)dHi(τ),

y(1) = γ2Iδ2
0+x(η) + ∑

q
j=1

∫ 1
0 x(τ)dKi(τ),

(4)

where α1 is in the interval (0, 1), β1 is in the interval (1, 2), α2 is in the interval (0, 1], β2
is in the interval (1, 2], p, q ∈ N, and γ1, γ2, δ1, δ2 > 0, 0 < ξ, η < 1 Kj(t), j = 1, . . . , q,
Hi(t), i = 1, . . . , p are bounded variation functions. Both function f and g are nonlinear.
They used several theorems from fixed point index theory to prove the main results. In [3],
the authors investigated existence of solutions for coupled system of fractional differential
equations with Hilfer derivatives{

(HDα1,β1
0+ x)(t) + λ1(

HDα1−1,β1
0+ x)(t) = f (t, x(t), R(δq ,...,δ1)x(t), y(t)), t ∈ [0, T],

(HDα2,β2
0+ y)(t) + λ2(

HDα2−1,β2
0+ y)(t) = f (t, x(t), y(t), R(ζq ,...,ζ1)y(t)), t ∈ [0, T],

(5)

with Riemann–Liouville and Hadamard-type iterated integral boundary conditions:⎧⎪⎨⎪⎩
x(0) = 0, y(0) = 0,
x(T) = ∑m

i=1 εiR(μρ ,...,μ1)y(ηi) ηi ∈ (0, T),
y(T) = ∑n

j=1 θjR(νρ ,...,ν1)x(ξ j) ξi ∈ (0, T),
(6)

where HDαl ,βl is the Hilfer fractional derivative operator of order αl with parameters βl ,
l ∈ 1, 2, 1 < αl < 2, 0 ≤ βl ≤ 1, λ1, λ2, εi, θj ∈ R\{0}, i = 1, 2, . . . , m, j = 1, 2, . . . , n,
f , g : [0, T] × R × R × R → ×R are nonlinear continuous functions and R(φτ ,...,φ1),
φr ∈ {δ, ζ, μ, ν}, r ∈ {q, p, ρ|q, p, ρ ∈ N}, involves the iterated Riemann–Liouville and
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Hadamard fractional integral operators. They used several theorems from fixed point index
theory to prove the main results. Numerous scientific and engineering phenomena are
mathematically modelled using fractional order differential and integral operators. The
main benefit of adopting these operators is their nonlocality, which enables the description
of the materials and processes involved in the history of the phenomenon. As a result,
compared to their integer-order counterparts, fractional-order models are more precise
and informative. As a result of the extensive use of fractional calculus techniques in a
range of real-world occurrences, such as those described in the texts cited [4–8] numerous
researchers developed this significant branch of mathematical study. In recent years, a
lot of research has been done on fractional differential equations with different boundary
conditions. Nonlocal nonlinear fractional-order boundary value problems, in particular,
have attracted a lot of attention (BVPs). The idea of nonlocal circumstances, which help
to describe physical processes occurring inside the confines of a specific domain, was
originally introduced in the work of Bitsadze and Samarski [9]. It is challenging to defend
the assumption of a circular cross-section in computational fluid dynamics investigations
of blood flow problems because to the changing shape of a blood vessel throughout the
vessel. To solve that problem, integral boundary conditions have been developed. In
addition, the ill-posed parabolic backward problems are solved under integral boundary
conditions. Integral boundary conditions are also essential in mathematical models of bac-
terial self-regularization, as shown in [10]. Fractional order differential equations, as well as
inclusions including Riemann–Liouville, Liouville–Caputo (Caputo), and Hadamard-type
derivatives, among others, have all been included in the literature on the topic recently.
For some recent works on the topic, we point the reader to several papers [11–15] and
the references listed therein. The use of fractional differential systems in mathematical
representations of physical and engineering processes has drawn considerable interest.
See [16–22] for additional details on the theoretical evolution of such systems. The fol-
lowing is the remainder of the article: Section 2 introduces some fundamental definitions,
lemmas, and theorems that support our main results. For the existence and uniqueness
of solutions to the given system (1) and (2), we use various conditions and some standard
fixed-point theorems in Section 3. Section 4 discusses the Ulam–Hyers stability of the
given system (1) and (2) under certain conditions. In Section 6, examples are provided
to demonstrate the main results. Finally, the consequences of existence, uniqueness, and
stability for the problem (1) and (75) are provided.

2. Preliminaries

For our research, we recall some preliminary definitions of generalized Liouville–
Caputo fractional derivatives and Katugampola fractional integrals.

The space of all complex-valued Lebesgue measurable functions φ on (c, d) equipped
with the norm is denoted by Zq

b (c, d) :

||φ||Zq
b
=

(∫ d

c
|zbφ(z)|q dz

z

) 1
q

< ∞, b ∈ R, 1 ≤ q ≤ ∞.

Let L1(c, d) represent the space of all Lebesgue measurable functions ϕ on (c, d)
endowed with the norm:

‖ϕ‖L1 =
∫ d

c
|ϕ(z)|dz < ∞.

We further recall thatACn(E ,R) = {p : E → R : p, p
′
, . . . , p(n−1) ∈ C(E ,R) and p(n−1)

is absolutely continuous. For 0 ≤ ε < 1, we define Cε,ρ(E ,R) = { f : E → R : (τρ −
aρ)ε f (τ) ∈ C(E ,R) endowed with the norm ‖ f ‖Cε,ρ = ‖(τρ − aρ)ε f (τ)‖C . Moreover, we
define the class of functions f that have absolute continuous δn−1 derivative, denoted by
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ACn
γ(E ,R), as follows: ACn

γ(E ,R) = { f : E → R : γn−1 f ∈ AC(E ,R), γ = τ1−ρ d
dτ }, which

is equipped with the norm ‖ f ‖Cn
γ,ε = ∑n−1

k=0 ‖γk f ‖C + ‖γn f ‖Cε,ρ is defined by

Cn
γ,ε(E ,R) =

{
f : E → R : γn−1 f ∈ C(E ,R), γn f ∈ Cε,ρ(E ,R), γ = τ1−ρ d

dτ

}
.

Notice that Cn
γ,0 = Cn

γ . We define space P = {p(τ) : p(τ) ∈ C(E ,R)} equipped with
the norm ||p|| = sup{|p(τ)|, τ ∈ E}- this is a Banach space. Furthermore Q = {q(τ) :
q(τ) ∈ C(E ,R)} equipped with the norm is ||q|| = sup{|q(τ)|, τ ∈ E} is a Banach space.
Then the product space (P ×Q, ||(p, q)||) is also a Banach space with norm ||(p, q)|| =
||p||+ ||q||.

Definition 1 ([23]). The left and right-sided generalized fractional integrals (GFIs) of f ∈ Zq
b (c, d)

of order ξ > 0 and ρ > 0 for −∞ < c < τ < d < ∞, are defined as follows:

(ρIξ
c+ f )(τ) =

ρ1−ξ

Γ(ξ)

∫ τ

c

θρ−1

(τρ − θρ)1−ξ
f (θ)dθ, (7)

(ρIζ
d− f )(τ) =

ρ1−ξ

Γ(ξ)

∫ d

τ

θρ−1

(θρ − τρ)1−ξ
f (θ)dθ. (8)

Definition 2 ([24]). The generalized fractional derivatives (GFDs) which are associated with GFIs
(7) and (8) for 0 ≤ c < τ < d < ∞, are defined as follows:

(ρDξ
c+ f )(τ) =

(
τ1−ρ d

dτ

)n
(ρIn−ξ

c+ f )(τ)

=
ρξ−n+1

Γ(n− ξ)

(
τ1−ρ d

dτ

)n ∫ τ

c

θρ−1

(τρ − θρ)ξ−n+1 f (θ)dθ, (9)

(ρDξ
d− f )(τ) =

(
−τ1−ρ d

dτ

)n
(ρIn−ξ

d− f )(τ)

=
ρξ−n+1

Γ(n− ξ)

(
−τ1−ρ d

dτ

)n ∫ d

τ

θρ−1

(τρ − θρ)ξ−n+1 f (θ)dθ, (10)

if the integrals exist.

Definition 3 ([25]). The above GFDs define the left and right-sided generalized Liouville–Caputo
type fractional derivatives of f ∈ ACn

γ [c, d] of order ξ ≥ 0

ρ
CD

ξ
c+ f (z) =ρ Dξ

c+

[
f (τ)−

n−1

∑
k=0

γk f (c)
k!

(
τρ − cρ

ρ

)k
]
(z), γ = z1−ρ d

dz
, (11)

ρ
CD

ξ
d− f (z) =ρ Dξ

d−

[
f (τ)−

n−1

∑
k=0

(−1)kγk f (d)
k!

(
dρ − τρ

ρ

)k
]
(z), γ = z1−ρ d

dz
, (12)

when n = [ξ] + 1.

Lemma 1 ([25]). Let ξ ≥ 0, n = [ξ] + 1 and f ∈ ACn
γ [c, d], where 0 < c < d < ∞. Then,
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1. if ξ /∈ N

ρ
CD

ξ
c+ f (τ) =

1
Γ(n− ξ)

∫ τ

c

(
τρ − θρ

ρ

)n−ξ−1 (γn f )(θ)dθ

θ1−ρ
=ρ In−ξ

c+ (γn f )(τ), (13)

ρ
CD

ξ
d− f (τ) =

1
Γ(n− ξ)

∫ d

τ

(
θρ − τρ

ρ

)n−ξ−1 (−1)n(γn f )(θ)dθ

θ1−ρ
=ρ In−ξ

d− (γn f )(τ). (14)

2. if ξ ∈ N

ρ
CD

ξ
c+ f = γn f , ρ

CD
ξ
d− f = (−1)nγn f . (15)

Lemma 2 ([25]). Let f ∈ ACn
γ [c, d] or Cn

γ [c, d] and ξ ∈ R. Then,

ρIξ
c+

ρ
CD

ξ
c+ f (z) = f (z)−

n−1

∑
k=0

γk f (c)
k!

(
zρ − cρ

ρ

)k
,

ρIξ
d−

ρ
CD

ξ
d− f (z) = f (z)−

n−1

∑
k=0

(−1)kγk f (d)
k!

(
dρ − zρ

ρ

)k
.

In particular, for 0 < ξ ≤ 1, we have

ρIξ
c+

ρ
CD

ξ
c+ f (z) = f (z)− f (c), ρIξ

d−
ρ
CD

ξ
d− f (z) = f (z)− f (d).

We introduce the following notations for computational ease:

E1 = ε
�ρ(ς+1)

ρς+1Γ(ς + 2)
, E2 = π

σρ(�+1)

ρ�+1Γ(� + 2)
, Ê =

T ρ

ρ
, (16)

G = Ê2 − E1E2 �= 0, (17)

δ(τ) =

(
τρ

ρG

)
. (18)

Next, we are proving a lemma, which is vital in converting the given problem to a
fixed-point problem.

Lemma 3. Given the functions f̂ , ĝ ∈ C(0, T ) ∪ L(0, T ), p, q ∈ AC2
γ(E) and Λ �= 0. Then the

solution of the coupled BVP:⎧⎪⎨⎪⎩
ρ
CD

ξ
0+p(τ) = f̂ (τ), τ ∈ E := [0, T ],

ρ
CD

ζ
0+q(τ) = ĝ(τ), τ ∈ E := [0, T ],

p(0) = 0, q(0) = 0, p(T ) = ε ρIς
0+q(�), q(T ) = π ρI�

0+p(σ) 0 < σ < � < T ,

(19)

is given by

p(τ) =ρ Iξ
0+ f̂ (τ) + δ(τ)

[
Ê
(

ε ρIζ+ς
0+ ĝ(�)−ρ Iξ

0+ f̂ (T )
)
+ E1

(
π ρIξ+�

0+ f̂ (σ)−ρ Iζ
0+ ĝ(T )

)]
(20)

and

q(τ) =ρ Iζ
0+ ĝ(τ) + δ(τ)

[
Ê
(

π ρIξ+�
0+ f̂ (σ)−ρ Iζ

0+ ĝ(T )
)
+ E2

(
ε ρIζ+ς

0+ ĝ(�)−ρ Iξ
0+ f̂ (T )

)]
. (21)
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Proof. When ρIξ
0+ ,ρ Iζ

0+ are applied to the FDEs in (19) and Lemma 2 is used, the solution
of the FDEs in (19) for τ ∈ E is

p(τ) =ρ Iξ
0+ f̂ (τ) + a1 + a2

τρ

ρ
=

ρ1−ξ

Γ(ξ)

∫ τ

0
θρ−1(τρ − θρ)ξ−1 f̂ (θ)dθ + a1 + a2

τρ

ρ
, (22)

q(τ) =ρ Iζ
0+ ĝ(τ) + b1 + b2

τρ

ρ
=

ρ1−ζ

Γ(ζ)

∫ τ

0
θρ−1(τρ − θρ)ζ−1 ĝ(θ)dθ + b1 + b2

τρ

ρ
, (23)

respectively, for some a1, a2, b1, b2 ∈ R. Making use of the boundary conditions
p(0) = q(0) = 0 in (22) and (23) respectively, we get a1 = b1 = 0. Next, we obtain
by using the generalized integral operators ρIξ

0+,ρ Iζ
0+ (22) and (23) respectively,

ρI�
0+p(τ) =ρ Iξ+�

0+ f̂ (τ) + a1
τρ�

ρ�Γ(� + 1)
+ a2

τρ(�+1)

ρ�+1Γ(� + 2)
, (24)

ρIς
0+q(τ) =ρ Iζ+ς

0+ ĝ(τ) + b1
τρς

ρςΓ(ς + 1)
+ b2

τρ(ς+1)

ρς+1Γ(ς + 2)
, (25)

which, when combined with the boundary conditions p(T ) = ε ρIς
0+q(�),

q(T ) = πρI�
0+p(σ), gives the following results:

ρIξ
0+ f̂ (T ) + a1 + a2

T ρ

ρ
= ερIζ+ς

0+ ĝ(�) + b1
ε�ρς

ρςΓ(ς + 1)
+ b2

ε�ρ(ς+1)

ρς+1Γ(ς + 2)
, (26)

ρIζ
0+ ĝ(T ) + b1 + b2

T ρ

ρ
= πρIξ+�

0+ f̂ (σ) + a1
πσρ�

ρ�Γ(� + 1)
+ a2

πσρ(�+1)

ρ�+1Γ(� + 2)
. (27)

Next, we obtain

a2Ê − b2E1 = ε ρIζ+ς
0+ ĝ(�)−ρ Iξ

0+ f̂ (T ), (28)

b2Ê − a2E2 = π ρIξ+�
0+ f̂ (σ)−ρ Iζ

0+ ĝ(T ), (29)

by employing the notations (16) in (26) and (27) respectively. We find that when we solve
the system of Equations (28) and (29) for a2 and b2,

a2 =
1
G
[
Ê
(

ε ρIζ+ς
0+ ĝ(�)−ρ Iξ

0+ f̂ (T )
)
+ E1

(
π ρIξ+�

0+ f̂ (σ)−ρ Iζ
0+ ĝ(T )

)]
, (30)

b2 =
1
G
[
E2

(
ε ρIζ+ς

0+ ĝ(�)−ρ Iξ
0+ f̂ (T )

)
+ Ê

(
π ρIξ+�

0+ f̂ (σ)−ρ Iζ
0+ ĝ(T )

)]
. (31)

Substituting the values of a1, a2, b1, b2 in (22) and (23) respectively, we get the solution
for the BVP (19).

3. Existence Results for the Problem (1) and (2)

As a result of Lemma 3, we define an operator Δ : P ×Q → P ×Q by

Δ(p, q)(τ) = (Δ1(p, q)(τ), Δ2(p, q)(τ)), (32)

where
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Δ1(p, q)(τ) =ρIξ
0+ f (τ, p(τ), q(τ)) + δ(τ)

[
Ê
(

ε ρIζ+ς
0+ g(�, p(�), q(�))−ρ Iξ

0+ f (T , p(T ), q(T ))
)

+ E1

(
π ρIξ+�

0+ f (σ, p(σ), q(σ))−ρ Iζ
0+g(T , p(T ), q(T ))

)]
, (33)

Δ2(p, q)(τ) =ρIζ
0+g(τ, p(τ), q(τ)) + δ(τ)

[
Ê
(

π ρIξ+�
0+ f (σ, p(σ), q(σ))−ρ Iζ

0+g(T , p(T ), q(T ))
)

+ E2

(
ε ρIζ+ς

0+ g(�, p(�), q(�))−ρ Iξ
0+ f (T , p(T ), q(T ))

)]
. (34)

For brevity’s sake, we’ll use the following notations:

J1 =

(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)
, (35)

K1 = |δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)
, (36)

J2 = |δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)
, (37)

K2 =

(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
, (38)

Φ = min{1− [ψ1(J1 + J2) + ψ̂1(K1 +K2)], 1− [ψ2(J1 + J2) + ψ̂2(K1 +K2)]}. (39)

Theorem 1. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condition:
(A1) there exists constants ψm, ψ̂m ≥ 0(m = 1, 2) and ψ0, ψ̂0 > 0 such that

| f (τ, o1, o2)| ≤ ψ0 + ψ1|o1|+ ψ2|o2|,
|g(τ, o1, o2)| ≤ ψ̂0 + ψ̂1|o1|+ ψ̂2|o2|, ∀om ∈ R, m = 1, 2.

If ψ1(J1 + J2) + ψ̂1(K1 +K2) < 1, ψ2(J1 + J2) + ψ̂2(K1 +K2) < 1. Then ∃ at least
one solution for the BVP (1) and (2) on E , where J1,K1,J2,K2 are given by (35)–(38) respectively.

Proof. We define operator Δ : P ×Q → P ×Q as being completely continuous in the
first step. The continuity of the functions f and g implies that the operators Δ1 and Δ2 are
continuous. As a result, the operator Δ is continuous. Let Ψ ⊂ P ×Q be a bounded set to
demonstrate the uniformly bounded operator Δ. Then N̂1 and N̂2 are positive constants
such that | f (τ, p(τ), q(τ))| ≤ N̂1, |g(τ, p(τ), q(τ))| ≤ N̂2, ∀(p, q) ∈ Ψ. Then we have
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|Δ1(p, q)(τ)| ≤ρIξ
0+| f (τ, p(τ), q(τ))|+ |δ(τ)|

[
|Ê |

(
|ε| ρIζ+ς

0+ |g(�, p(�), q(�))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)

+ |E1|
(
|π| ρIξ+�

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

)]

≤ N̂1

⎧⎨⎩ |δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)
+

(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)

⎫⎬⎭
+ N̂2

{(
|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
+

|E1|T ρζ

ρζ Γ(ζ + 1)

)
|δ|
}

,

when taking the norm and using (35) and (36), that yields for (p, q) ∈ Ψ,

||Δ1(p, q)|| ≤ J1N̂1 +K1N̂2. (40)

Likewise, we obtain

||Δ2(p, q)|| ≤N̂2

⎧⎨⎩ |δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
+

(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

⎫⎬⎭
+ N̂1

{
|δ|
(

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)
+

T ρξ |E2|
ρξ Γ(ξ + 1)

)}
≤J2N̂1 +K2N̂2, (41)

using (37) and (38). Based on the inequalities (40) and (41), we can conclude that Δ1 and Δ2
are uniformly bounded, which indicates that the operator Δ is uniformly bounded. Next,
we show that Δ is equicontinuous. Let τ1, τ2 ∈ E with τ1 < τ2. Then we have

|Δ1(p, q)(τ2)− Δ1(p, q)(τ1)|
≤ |ρIξ

0+ f (τ2, p(τ2), q(τ2))− ρIξ
0+ f (τ1, p(τ1), q(τ1))|

+ |δ(τ2)− δ(τ1)|
[
Ê
(
|ε| ρIζ+ς

0+ |g(�, p(�), q(�))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)

+ E1

(
|π| ρIξ+�

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

)]

≤ρ1−ξN̂1

Γ(ξ)

∣∣∣∣∣
∫ τ1

0

[
θρ−1

(τ
ρ
2 − θρ)1−ξ

− θρ−1

(τ
ρ
1 − θρ)1−ξ

]
dθ +

∫ τ2

τ1

θρ−1

(τ
ρ
2 − θρ)1−ξ

dθ

∣∣∣∣∣
+ |δ(τ2)− δ(τ1)|

[
|Ê |

(
N̂2|ε|�ρζ+ς

ρζ+ςΓ(ζ + ς + 1)
+

N̂1T ρξ

ρξ Γ(ξ + 1)

)]

+ |δ(τ2)− δ(τ1)|
[
|E1|

(
N̂1|π|σρξ+�

ρξ+�Γ(ξ + � + 1)
+

N̂2T ρζ

ρζ Γ(ζ + 1)

)]
→ 0 as τ2 → τ1. (42)

independent of (p, q) with respect to | f (τ, p(τ1), q(τ1))| ≤ N̂1 and |g(τ, p(τ1), q(τ1))| ≤ N̂2.
Similarly, we can express |Δ2(p, q)(τ2)−Δ2(p, q)(τ1)| → 0 as τ2 → τ1 independent of (p, q)
in terms of the boundedness of f and g. As a result of the equicontinuity of Δ1 and Δ2,
operator Δ is equicontinuous. As a result of the Arzela–Ascoli theorem, the operator
is compact. Finally, we demonstrate that the set Π(Δ) = {(p, q) ∈ P × Q : λΔ(p, q);
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0 < λ < 1} is bounded. Let (p, q) ∈ Π(Δ).Then (p, q) = λΔ(p, q) . For any τ ∈ E , we have
p(τ) = λΔ1(p, q)(τ), q(τ) = λΔ2(p, q)(τ). By utilizing (A1) in (33), we obtain

|p(τ)| ≤ρIξ
0+(ψ0, ψ1|p(τ)|, ψ2|q(τ)|)

+ |δ(τ)|
(
|Ê |

(
|ε|ρIζ+ς

0+ (ψ̂0 + ψ̂1|p(�)|+ ψ̂2|q(�)|) +ρ Iξ
0+(ψ0 + ψ0|p(T )|+ ψ2|q(T )|)

)

+ |E1|
(
|π|ρIξ+�

0+ (ψ0 + ψ1|p(σ)|+ ψ2|q(σ)|) +ρ Iζ
0+(ψ̂0 + ψ̂1|p(T )|+ ψ̂2|q(T )|)

))
,

which results when taking the norm for τ ∈ E ,

||p|| ≤ (ψ0 + ψ1||p||+ ψ2||q||)J1 + (ψ̂0 + ψ̂1||p||+ ψ̂2||q||)K1. (43)

Similarly, we are capable of obtaining that

||q|| ≤ (ψ̂0 + ψ̂1||p||+ ψ̂2||q||)K2 + (ψ0 + ψ1||p||+ ψ2||q||)J2. (44)

From (43) and (44), we get

||p||+ ||q|| =ψ0(J1 + J2) + ψ̂0(K1 +K2) + ||p||
[
ψ1(J1 + J2) + ψ̂1(K1 +K2)

]
+ ||q||

[
ψ1(J1 + J2) + ψ̂1(K1 +K2)

]
,

which results, with ||(p, q)|| = ||p||+ ||q||,

||(p, q)|| ≤ ψ0(J1 + J2) + ψ̂0(K1 +K2)

Φ
.

As a result, Π(Δ) is bounded. Thus, the nonlinear alternative of Leray–Schauder [26]
is valid and the operator Δ has at least one fixed point. It implies that the BVP (1) and (2)
contain at least one solution on E .

Theorem 2. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condition:
(A2) there exists constants φm, φ̂m ≥ 0(m = 1, 2) such that

| f (τ, o1, o2)− f (τ, ô1, ô2)| ≤φ1|o1 − ô1|+ φ2|o2 − ô2|,
|g(τ, o1, o2)− g(τ, ô1, ô2)| ≤φ̂1|o1 − ô1|+ φ̂2|o2 − ô2|, ∀om, ôm ∈ R, m = 1, 2.

Furthermore, there exist S1,S2 > 0 such that | f (τ, 0, 0)| ≤ S1, |g(τ, 0, 0)| ≤ S2, Then,
given that

(J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2) < 1, (45)

the BVP (1) and (2) has a unique solution on E , whereJ1,K1,J2,K2 are given by (35)–(38) respectively.

Proof. Let us fix ϕ ≤ (J1+J2)S1+(K1+K2)S2
1−((J1+J2)(φ1+φ2)+(K1+K2)(φ̂1+φ̂2))

and demonstrate that ΔBϕ ⊂ Bϕ

when operator Δ is given by (32) and Bϕ = {(p, q) ∈ P × Q : ||(p, q)|| ≤ ϕ}. For
(p, q) ∈ Bϕ, τ ∈ E

| f (τ, p(τ), q(τ))| ≤ φ1|p(τ)|+ φ2|q(τ)|+ S1

≤ φ1||p||+ φ2||q||+ S1,
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and

|g(τ, p(τ), q(τ))| ≤ φ̂1|p(τ)|+ φ̂2|q(τ)|+ S2

≤ φ̂1||p||+ φ̂2||q||+ S2. (46)

This guides to

|Δ1(p, q)(τ)| ≤ρIξ
0+

[
| f (τ, p(τ), q(τ))− f (τ, 0, 0)|+ | f (τ, 0, 0)|

]
+ |δ(τ)|

(
|Ê |

(
|ε|ρIζ+ς

0+ g[(�, p(�), q(�))− g(�, 0, 0)|+ |g(�, 0, 0)|]

+ρIξ
0+ f [(T , p(T ), q(T ))− f (T , 0, 0)|+ | f (T , 0, 0)]|

)
+ |E1|

(
|π|ρIξ+�

0+ f [ f (σ, p(σ), q(σ))− f (σ, 0, 0)|+ | f (σ, 0, 0)|]

+ρIζ
0+[|g(T , p(T ), q(T ))− g(T , 0, 0)|+ |g(T , 0, 0)|]

))

≤(φ1||p||+ φ2||q||+ S1)

⎧⎨⎩
(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

⎫⎬⎭
+ (φ̂1||p||+ φ̂2||q||+ S2)

{
|δ|
(
|E1|T ρζ

ρζΓ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}

||Δ1(p, q)|| ≤ (φ1||p||+ φ2||q||+ S1)J1 + (φ̂1||p||+ φ̂2||q||+ S2)K1. (47)

Similarly, we obtain

|Δ2(p, q)(τ)| ≤(φ̂1||p||+ φ̂2||q||+ S2)

⎧⎨⎩
(
T ρζ(1 + |δ||Ê |)

)
ρζΓ(ζ + 1)

+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

⎫⎬⎭
+ (φ1||p||+ φ2||q||+ S1)

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)}
||Δ2(p, q)|| ≤(φ̂1||p||+ φ̂2||q||+ S2)K2 + (φ1||p||+ φ2||q||+ S1)J2. (48)

As a result, (47) and (48) follow ||Δ(p, q)|| ≤ ϕ, and thus ΔBϕ ⊂ Bϕ. Now, for
(p1, q1), (p2, q2) ∈ P ×Q and any τ ∈ E , we get

|Δ1(p1, q1)(τ)− Δ1(p2, q2)(τ)|
≤ρIξ

0+| f (τ, p1(τ), q1(τ))− f (τ, p2(τ), q2(τ))|

+ |δ(τ)|
(
|Ê |

(
|ε| ρIζ+ς

0+ |g(�, p1(�), q1(�))− g(�, p2(�), q2(�))|

+ρIξ
0+| f (T , p1(T ), q1(T ))− f (T , p2(T ), q2(T ))|

)
+ |E1|

(
|π| ρIξ+�

0+ | f (σ, p1(σ), q1(σ))− f (σ, p2(σ), q2(σ))|

+ρIζ
0+|g(T , p1(T ), q1(T ))− g(T , p2(T ), q2(T ))|

))
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≤(φ1||p1 − p2||+ φ2||q1 − q2||)

⎧⎨⎩
(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

⎫⎬⎭
+ (φ̂1||p1 − p2||+ φ̂2||q1 − q2||)

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}

≤ (J1(φ1 + φ2) +K1(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||).

Similarly, we obtain

|Δ2(p1, q1)(τ)− Δ2(p2, q2)(τ)|

≤(φ̂1||p1 − p2||+ φ̂2||q1 − q2||)

⎧⎨⎩
(
T ρζ(1 + |δ||Ê |)

)
ρζΓ(ζ + 1)

+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

⎫⎬⎭
+ (φ1||p1 − p2||+ φ2||q1 − q2||)

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)}
≤ (J2(φ1 + φ2) +K2(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||)).

Thus we obtain

||Δ1(p1, q1)(τ)− Δ1(p2, q2)(τ)|| ≤ (J1(φ1 + φ2) +K1(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||). (49)

In a similar manner,

||Δ2(p1, q1)(τ)− Δ2(p2, q2)(τ)|| ≤ (J2(φ1 + φ2) +K2(φ̂1 + φ̂2))(||p1 − p2||+ ||q1 − q2||). (50)

Hence, using (49) and (50) we can get

||Δ(p1, q1)(τ)− Δ(p2, q2)(τ)|| ≤ ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))

(||p1 − p2||+ ||q1 − q2||).

As a consequence of condition ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2)) < 1, Δ is
a contraction operator. As an outcome of the Banach fixed point theorem, we can conclude
that operator has a unique fixed point, which is the unique solution of the problem (1),
and (2).

For brevity’s sake, we’ll use the following notations:

Ω̂1 = J1 −
T ρξ

ρξ Γ(ξ + 1)
+K1, (51)

Ω̂2 = J2 −
T ρζ

ρζ Γ(ζ + 1)
+K2. (52)

Theorem 3. Assume that f , g : E ×R×R→ R are continuous functions satisfying the assump-
tion (A2) in Theorem 2. Furthermore, there exist positive constants U1,U2 such that ∀τ ∈ E and
ri ∈ R, i = 1, 2.

| f (τ, r1, r2)| ≤ U1, |g(τ, r1, r2)| ≤ U2. (53)

If

T ρξ(φ1 + φ2)

ρξΓ(ξ + 1)
+
T ρζ(φ̂1 + φ̂2)

ρζ Γ(ζ + 1)
< 1, (54)
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then the BVP (1), and (2) has at least one solution on E .

Proof. Let us define a closed ball Bϕ = {(p, q) ∈ P ×Q : ||(p, q)|| ≤ ϕ} as follows and
split Δ1, Δ2 as:

Δ1,1(p, q)(τ) =δ(τ)

(
Ê
(

ε ρIζ+ς
0+ g(�, p(�), q(�))−ρ Iξ

0+ f (T , p(T ), q(T ))
)

+ E1

(
π ρIξ+�

0+ f (σ, p(σ), q(σ))−ρ Iζ
0+g(T , p(T ), q(T ))

))
, (55)

Δ1,1(p, q)(τ) =ρIξ
0+ f (τ, p(τ), q(τ)), (56)

Δ2,1(p, q)(τ) =δ(τ)

(
Ê
(

π ρIξ+�
0+ f (σ, p(σ), q(σ))−ρ Iζ

0+g(T , p(T ), q(T ))
)

+ E2

(
ε ρIζ+ς

0+ g(�, p(�), q(�))−ρ Iξ
0+ f (T , p(T ), q(T ))

))
, (57)

Δ2,2(p, q)(τ) =ρIξ
0+g(τ, p(τ), q(τ)). (58)

In the Banach space P ×Q, Δ1(p, q)(τ) = Δ1,1(p, q)(τ) + Δ1,2(p, q)(τ), and Δ2(p, q)
(τ) = Δ2,1(p, q)(τ) + Δ2,2(p, q)(τ) on Bϕ are closed, bounded and convex subsets of P ×Q.
Let us fix ϕ ≤ max{J1U1 + K1U2,J2U1 + K2U2} and show that ΔBϕ ⊂ Bϕ to verify
Krasnoselskii’s theorem [27] condition (i), If we choose p = (p1, p2), q = (q1, q2) ∈ Bϕ, and
utilizing condition (53), we obtain

|Δ1,1(p, q)(τ) + Δ1,2(p, q)(τ)|
≤ρIξ

0+| f (τ, p(τ), q(τ))|

+ |δ(τ)|
(
|Ê |

(
|ε| ρIζ+ς

0+ |g(�, p(�), q(�))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)

+ |E1|
(
|π|ρIξ+�

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

))

≤ U1

⎧⎨⎩
(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

⎫⎬⎭
+ U2

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}
≤ U1J1 + U2K1 ≤ ϕ.

In a similar manner, we can find that

|Δ2,1(p, q)(τ) + Δ2,2(p, q)(τ)| ≤ U1J2 + U2K2 ≤ ϕ.

Clearly the above two inequalities lead to the fact that Δ1(p, q) + Δ2(p, q) ∈ Bϕ. Thus,
we define operator (Δ1,2, Δ2,2) as a contraction-satisfying condition (iii) of Krasnoselskii’s
theorem [27]. For (p1, q1), (p2, q2) ∈ Bϕ, we have
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|Δ1,2(p1, q1)(τ)− Δ1,2(p2, q2)(τ)| ≤
ρ1−ξ

Γ(ξ)

∫ τ

0

θρ−1

(τρ − θρ)1−ξ

× | f (θ, p1(θ), q1(θ))− f (θ, p2(θ), q2(θ))|dθ

≤ T ρξ

ρξΓ(ξ + 1)
(φ1||p1 − p2||+ φ2||q1 − q2||) (59)

and

|Δ2,1(p1, q1)(τ)− Δ2,1(p2, q2)(τ)| ≤
ρ1−ζ

Γ(ζ)

∫ τ

0

θρ−1

(τρ − θρ)1−ζ

× |g(θ, p1(θ), q1(θ))− g(θ, p2(θ), q2(θ))|dθ

≤ T ρζ

ρζ Γ(ζ + 1)
(φ̂1||p1 − p2||+ φ̂2||q1 − q2||). (60)

As a result (59) and (60),

|(Δ1,2, Δ2,2)(p1, q1)(τ)− (Δ1,2, Δ2,2)(p2, q2)(τ)|

≤T
ρξ(φ1 + φ2)

ρξ Γ(ξ + 1)
+
T ρζ(φ̂1 + φ̂2)

ρζ Γ(ζ + 1)
(||p1 − p2||+ ||q1 − q2||),

is a contraction by (54). Therefore, condition (iii) of the Theorem is satisfied. Following
that, we can establish that the operator (Δ1,1, Δ2,1) satisfies the Krasnoselskii theorem’s [27]
condition (ii). We can infer the continuous existence of the (Δ1,1, Δ2,1) operator by examining
the continuity of the f , g functions. For each (p, q) ∈ Bϕ we have

|Δ1,1(p, q)(τ)|

≤|δ(τ)|
(
|Ê |

(
|ε| ρIζ+ς

0+ |g(�, p(�), q(�))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)

+ |E1|
(
|π| ρIξ+�

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

))

≤ U1

⎧⎨⎩
(
T ρξ(|δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

⎫⎬⎭
+ U2

{
|δ|
(
|E1|T ρζ

ρζΓ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}
= Ω̂1,

|Δ2,1(p, q)(τ)| ≤ U2

⎧⎨⎩
(
T ρζ(|δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

⎫⎬⎭
+ U1

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)}
= Ω̂2,

which leads to

||(Δ1,1, Δ2,1)(p, q)|| ≤ Ω̂1 + Ω̂2.
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From the above inequalities, the set (Δ1,1, Δ2,1)Bϕ is uniformly bounded. The following
step will demonstrate that the set (Δ1,1, Δ2,1)Bϕ is equicontinuous. For τ1, τ2 ∈ E with
τ1 < τ2 and for any (p, q) ∈ Bϕ we get

|Δ1,1(p, q)(τ2)− Δ1,1(p, q)(τ1)|

≤|δ(τ2)− δ(τ1)|
(
|Ê |

(
|ε| ρIζ+ς

0+ |g(ω, p(ω), q(ω))|+ρ Iξ
0+| f (T , p(T ), q(T ))|

)

+ |E1|
(
|π| ρIξ+�

0+ | f (σ, p(σ), q(σ))|+ρ Iζ
0+|g(T , p(T ), q(T ))|

))

≤|δ(τ2)− δ(τ1)

(
U1

((T ρξ(|δ||Ê |)
)

ρξ Γ(ξ + 1)
+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)

+ U2|δ|
( |E1|T ρζ

ρζ Γ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

))
.

Likewise, we obtain

|Δ2,1(p, q)(τ2)− Δ2,1(p, q)(τ1)|

≤|δ(τ2)− δ(τ1)

(
U2

((T ρζ(|δ||Ê |)
)

ρζ Γ(ζ + 1)
+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)

+ U1

(
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)))
.

Therefore |(Δ1,1, Δ2,1(τ2)) − (Δ1,1, Δ2,1(τ1))| → 0 as τ2 → τ1 independent of
(p, q) ∈ Bϕ Thus the set (Δ1,1, Δ2,1)Bϕ is equicontinuous. As an outcome, the Arzela–
Ascoli theorem implies that the operator (Δ1,1, Δ2,1) is compact on Bϕ. Krasnoselskii’s
theorem [27] statement leads us to the conclusion that the problem (1) and (2) has at least
one solution on E .

4. Example

Consider the following Liouville–Caputo type generalized FDEs coupled system:⎧⎨⎩
3
4
CD

5
4
0+p(τ) = f (τ, p(τ), q(τ)), τ ∈ E := [0, 1],

3
4
CD

31
20
0+q(τ) = g(τ, p(τ), q(τ)), τ ∈ E := [0, 1],

(61)

supplemented with boundary conditions:{
p(0) = 0, q(0) = 0, p(1) = 1

6

3
4 I 13

20 q( 7
10 ), q(1) = 1

7

3
4 I 17

20 p( 1
2 ), (62)

where ξ = 5
4 , ζ = 31

20 , ρ = 3
4 , T = 1, ε = 1

6 , � = 7
10 , π = 1

7 , σ = 1
2 , ς = 13

20 , � = 17
20 and

f (τ, p(τ), q(τ)) =
(1 + τ)

30

( |p(τ)|
1 + |p(τ)| +

1
3

cos(q(τ)) + 3τ

)
, (63)

g(τ, p(τ), q(τ)) =
e−τ

25

(√
τ + 1
5

+
1
6

cos(p(τ)) +
|q(τ)|

1 + |q(τ)|

)
. (64)

With ψ0 = 1
10 , ψ1 = 1

30 , ψ2 = 1
90 , ψ̂0 = 1

125 , ψ̂1 = 1
25 , and ψ̂2 = 1

150 , the functions f
and g clearly satisfy the (A1) condition. Next, we find that (J1) = 2.5370237266984113,
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(K1) = 0.17111607453629377,J2 = 0.0906406939922634,K2 = 2.274156747108814,Ji,Ki
(i = 1, 2) are respectively given by (35),(36),(37) and (38), based on the data available. Thus
ψ1(J1 + J2) + ψ̂1(K1 +K2) � 0.18539972688882678 < 1, ψ2(J1 + J2) + ψ̂2(K1 +K2) �
0.04549809015197488 < 1, all the conditions of Theorem 1 are satisfied, and there is at
least one solution for problem (61) and (62) on [0, 1] with f and g given by (63) and (64)
respectively.

In addition, we’ll use

f (τ, p(τ), q(τ)) =
τ

3
+

3
4(τ + 16)

+
|p(τ)|

1 + |p(τ)| +
2

75
cos(q(τ)), (65)

g(τ, p(τ), q(τ)) =
(1 + e−τ)

4
+

19
400

cos(p(τ)) +
1

60
|q(τ)|

1 + |q(τ)| , (66)

to demonstrate Theorem 2. It is simple to demonstrate that f and g are continuous and
satisfy the assumption (A2) with φ1 = 3

64 , φ2 = 2
75 , φ̂1 = 19

400 and φ̂2 = 1
60 . All the

assumptions of Theorem 2 are also satisfied with (J1 + J2)(φ1 + φ2) + (K1 + K2)(φ̂1 +
φ̂2) � 0.35014782699385444 < 1. As a result, Theorem 2 holds true, and the problem (61)
and (62) with f and g given by (65) and (66) respectively, has a unique solution on [0,1].

5. Ulam–Hyers Stability Results for the Problem (1) and (2)

The U–H stability of the solutions to the BVP (1) and (2) will be discussed in this
section using the integral representation of their solutions defined by

p(τ) = Δ1(p, q)(τ), q(τ) = Δ2(p, q)(τ), (67)

where Δ1 and Δ2 are given by (33) and (34). Consider the following definitions of nonlin-
ear operators

H1,H2 ∈ C(E ,R)× C(E ,R)→ C(E ,R),{
ρ
CD

ξ
0+p(τ)− f (τ, p(τ), q(τ)) = H1(p, q)(τ), τ ∈ E ,

ρ
CD

ζ
0+q(τ)− g(τ, p(τ), q(τ)) = H1(p, q)(τ), τ ∈ E .

It considered the following inequalities for some λ̂1, λ̂2 > 0 :

||H1(p, q)|| ≤ λ̂1, ||H2(p, q)|| ≤ λ̂2. (68)

Definition 4. The coupled system (1) and (2) is said to be U–H stable if V1,V2 > 0 and there
exists a unique solution (p, q) ∈ C(E ,R) of a problem (1) and (2) with

||(p, q)− (p∗, q∗)|| ≤ V1λ̂1 + V2λ̂2,

∀(p, q) ∈ C(E ,R) of inequality (68).

Theorem 4. Assume that (A2) holds. Then the problem (1) and (2) is U–H stable.

Proof. Let (p, q) ∈ C(E ,R)× C(E ,R) be the (1)–(2) solution of the problem that satisfies
(33) and (34). Let (p, q) be any solution that meets the condition (68):{

ρ
CD

ξ
0+p(τ) = f (τ, p(τ), q(τ)) +H1(p, q)(τ), τ ∈ E ,

ρ
CD

ζ
0+q(τ) = g(τ, p(τ), q(τ)) +H1(p, q)(τ), τ ∈ E ,
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so,

p∗(τ) = Δ1(p∗, q∗)(τ) +ρ Iξ
0+H1(p, q)(τ)

+ δ(τ)

(
Ê
[
ε ρIζ+ς

0+ H2(p, q)(�)−ρ Iξ
0+H1(p, q)(T )

]

+ E1

[
π ρIξ+�

0+ H1(p, q)(σ)−ρ Iζ
0+H2(p, q)(T )

])
.

It follows that

|Δ1(p∗, q∗)(τ)− p∗(τ)| ≤ρIξ
0+|H1(p, q)(τ)|

+ |δ(τ)|
(
|Ê |

[
|ε| ρIζ+ς

0+ |H2(p, q)(�)|+ρ Iξ
0+|H1(p, q)(T )|

]

+ |E1|
[
|π| ρIξ+�

0+ |H1(p, q)(σ)|+ρ Iζ
0+|H2(p, q)(T )|

])

≤ λ̂1

⎧⎨⎩
(
T ρξ(1 + |δ||Ê |)

)
ρξΓ(ξ + 1)

+
|δ||π||E1|σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

⎫⎬⎭
+ λ̂2

{
|δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)}
≤J1λ̂1 +K1λ̂2.

Similarly, we obtain

|Δ2(p∗, q∗)(τ)− q∗(τ)| ≤λ̂2

⎧⎨⎩
(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

⎫⎬⎭
+ λ̂1

{
|δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |σρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)}
≤J2λ̂1 +K2λ̂2,

where J1,K1,J2, and K2 are defined in (35)–(38), respectively. As an outcome, we deduce
from operator Δ’s fixed-point property, which is defined by (33) and (34),

|p(τ)− p∗(τ)| =|p(τ)− Δ1(p∗, q∗)(τ) + Δ1(p∗, q∗)(τ)− p∗(τ)|
≤|Δ1(p, q)(τ)− Δ1(p∗, q∗)(τ)|+ |Δ1(p∗, q∗)(τ)− p∗(τ)|
≤((J1φ1 +K1φ̂1) + (J1φ2 +K1φ̂2))||(p, q)− (p∗, q∗)||
+ J1λ̂1 +K1λ̂2. (69)

|q(τ)− q∗(τ)| =|q(τ)− Δ2(p∗, q∗)(τ) + Δ2(p∗, q∗)(τ)− q∗(τ)|
≤|Δ2(p, q)(τ)− Δ2(p∗, q∗)(τ)|+ |Δ2(p∗, q∗)(τ)− q∗(τ)|
≤((J2φ1 +K2φ̂1) + (J2φ2 +K2φ̂2))||(p, q)− (p∗, q∗)||
+ J2λ̂1 +K2λ̂2. (70)
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From the above Equations (69) and (70) it follows that

||(p, q)− (p∗, q∗)|| ≤(J1 + J2)λ̂1 + (K1 +K2)λ̂2

+ ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))||(p, q)− (p∗, q∗)||.

||(p, q)− (p∗, q∗)|| ≤ (J1 + J2)λ̂1 + (K1 +K2)λ̂2

1− ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))

≤V1λ̂1 + V2λ̂2,

with

V1 =
J1 + J2

1− ((J1 + |J2)(φ1 + φ2) + (K1 + |K2)(φ̂1 + φ̂2))
,

V2 =
K1 +K2

1− ((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2))
.

Hence, the problem (1)–(2) is U–H stable.

6. Example

Consider the following Liouville–Caputo type generalized FDEs coupled system:⎧⎨⎩
19
20
C D

5
4
0+p(τ) =

√
τ

2 + 1
5(τ+25)

|p(τ)|
1+|p(τ)| +

3
80 cos(q(τ)), τ ∈ [0, 1],

19
20
C D

31
20
0+q(τ) = τ

5 + 17
300 cos(p(τ)) + 1

70
|q(τ)|

1+|q(τ)| , τ ∈ [0, 1],
(71)

supplemented with boundary conditions:{
p(0) = 0, q(0) = 0, p(1) = 5

6

19
20 I 13

20 q( 9
20 ), q(1) = 6

7

19
20 I 17

20 p( 13
20 ), (72)

where ξ = 5
4 , ζ = 31

20 , ρ = 19
20 , T = 1, ε = 5

6 , � = 9
20 , π = 6

7 , σ = 13
20 , ς = 13

20 , � = 17
20 and

| f (τ, p1(τ), q1(τ))− f (τ, p2(τ), q2(τ))| =
1

125
|p1(τ)− p2(τ)|+

3
80
|q1(τ)− q2(τ)|, (73)

|g(τ, p1(τ), q1(τ))− g(τ, p2(τ), q2(τ))| =
17

300
|p1(τ)− p2(τ)|+

1
70
|q1(τ)− q2(τ)|. (74)

With φ1 = 1
125 , φ2 = 3

80 , φ̂1 = 17
300 , and φ̂2 = 1

70 , the functions f and g clearly
satisfy the (A2) condition. Next, we find that (J1) = 1.9529307397739033, (K1) =
0.21135021378560123,J2 = 0.42682560046779994,K2 = 1.6225052940838325,Ji,Ki(i =
1, 2) are respectively given by (35),(36),(37) and (38), based on the data available. Thus
((J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2)) � 0.2383953280869716 < 1, all the conditions
of Theorem 5.2 are satisfied, and there is a unique solution for problem (71) and (72) on
[0, 1], which is stable for Ulam–Hyers, with f and g given by (73) and (74) respectively.

7. Existence Results for the Problem (1) and (75)

Furthermore, we are investigating the system (1) under the following conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(0) = 0, q(0) = 0,

p(T ) = ερIς
0+q(�) = ερ1−ς

Γ(ς)

∫ �
0

θρ−1

(�ρ−θρ)1−ς q(θ)dθ,

q(T ) = πρI�
0+p(�) = πρ1−�

Γ(�)

∫ �
0

θρ−1

(�ρ−θρ)1−� p(θ)dθ,

0 < � < T .

(75)
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Bear in mind that the conditions (2) contain strips of varying lengths, whereas the
one in (75) contains only one strip of the same length (0, �). We introduce the following
notations for computational ease:

E1 = ε
�ρ(ς+1)

ρς+1Γ(ς + 2)
, E2 = π

�ρ(�+1)

ρ�+1Γ(� + 2)
, Ê =

T ρ

ρ
, (76)

G = Ê2 − E1E2 �= 0, (77)

δ(τ) =

(
τρ

ρG

)
. (78)

Lemma 4. Given the functions f̂ , ĝ ∈ C(0, T ) ∩ L(0, T ), p, q ∈ AC2
γ(E) and Λ �= 0. Then the

solution of the coupled BVP:⎧⎪⎨⎪⎩
ρ
CD

ξ
0+p(τ) = f̂ (τ), τ ∈ E := [0, T ],

ρ
CD

ζ
0+q(τ) = ĝ(τ), τ ∈ E := [0, T ],

p(0) = 0, q(0) = 0, p(T ) = ερIς
0+q(�), q(T ) = πρI�

0+p(�), 0 < � < T ,

(79)

is given by

p(τ) =ρ Iξ
0+ f̂ (τ) + δ(τ)

([
ε ρIζ+ς

0+ ĝ(�)−ρ Iξ
0+ f̂ (T )

]
+
[
π ρIξ+ς

0+ f̂ (�)−ρ Iζ
0+ ĝ(T )

])
(80)

and

q(τ) =ρ Iζ
0+ ĝ(τ) + δ(τ)

([
π ρIζ+ς

0+ f̂ (�)−ρ Iζ
0+ ĝ(T )

]
+
[
ε ρIζ+ς

0+ ĝ(�)−ρ Iξ
0+ f̂ (T )

])
. (81)

Proof. When ρIξ
0+,ρ Iζ

0+ are applied to the FDEs in (79) and Lemma 4 is used the solution
of the FDEs in (79) for τ ∈ E is

p(τ) =ρ Iξ
0+ f̂ (τ) + a1 + a2

τρ

ρ
=

ρ1−ξ

Γ(ξ)

∫ τ

0
θρ−1(τρ − θρ)ξ−1 f̂ (θ)dθ + a1 + a2

τρ

ρ
, (82)

q(τ) =ρ Iζ
0+ ĝ(τ) + b1 + b2

τρ

ρ
=

ρ1−ζ

Γ(ζ)

∫ τ

0
θρ−1(τρ − θρ)ζ−1 ĝ(θ)dθ + b1 + b2

τρ

ρ
, (83)

respectively, for some a1, a2, b1, b2 ∈ R. Making use of the boundary conditions p(0) =
q(0) = 0 in (82) and (83) respectively, we get a1 = b1 = 0. We obtain by using the
generalized integral operators ρI�

0+,ρ Iζ
0+ (82) and (83) respectively,

ρI�
0+p(τ) =ρ Iξ+�

0+ f̂ (τ) + a1
τρ�

ρ�Γ(� + 1)
+ a2

τρ(�+1)

ρ�+1Γ(� + 2)
, (84)

ρIς
0+q(τ) =ρ Iζ+ς

0+ ĝ(τ) + b1
τρς

ρςΓ(ς + 1)
+ b2

τρ(ς+1)

ρς+1Γ(ς + 2)
, (85)

which, when combined with the boundary conditions p(T )=ερIς
0+q(�), q(T ) = πρI�

0+p(�),
gives the following results:

ρIξ
0+ f̂ (T ) + a1 + a2

T ρ

ρ
= ερIζ+ς

0+ ĝ(�) + b1
ε�ρς

ρςΓ(ς + 1)
+ b2

ε�ρ(ς+1)

ρς+1Γ(ς + 2)
, (86)
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ρIζ
0+ ĝ(T ) + b1 + b2

T ρ

ρ
= πρIξ+�

0+ f̂ (�) + a1
π�ρ�

ρ�Γ(� + 1)
+ a2

π�ρ(�+1)

ρ�+1Γ(� + 2)
. (87)

Next, we obtain

a2Ê − b2E1 = ερIζ+ς
0+ ĝ(�)−ρ Iξ

0+ f̂ (T ), (88)

b2Ê − a2E2 = πρIξ+�
0+ f̂ (�)−ρ Iζ

0+ ĝ(T ), (89)

by employing the notations (76)–(78) in (86) and (87) respectively. We find that when we
solve the system of Equations (88) and (89) for a2 and b2,

a2 =
1
G
[
Ê
(

ερIζ+ς
0+ ĝ(�)−ρ Iξ

0+ f̂ (T )
)
+ E1

(
πρIξ+�

0+ f̂ (�)−ρ Iζ
0+ ĝ(T )

)]
, (90)

b2 =
1
G
[
E2

(
ερIζ+ς

0+ ĝ(�)−ρ Iξ
0+ f̂ (T )

)
+ Ê

(
πρIξ+�

0+ f̂ (�)−ρ Iζ
0+ ĝ(T )

)]
. (91)

Substituting the values of a1, a2, b1, b2 in (82) and (83) respectively, we get the solution
for (79).

For brevity’s sake, we’ll use the following notations:

J1 =

(
T ρξ(1 + |δ||Ê |)

)
ρξ Γ(ξ + 1)

+
|δ||π||E1|�ρ(ξ+�)

ρξ+�Γ(ξ + � + 1)
, (92)

K1 = |δ|
(
|E1|T ρζ

ρζ Γ(ζ + 1)
+

|Ê ||ε|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)

)
, (93)

J2 = |δ|
(
T ρξ |E2|

ρξ Γ(ξ + 1)
+

|π||Ê |�ρ(ξ+�)

ρξ+�Γ(ξ + � + 1)

)
, (94)

K2 =

(
T ρζ(1 + |δ||Ê |)

)
ρζ Γ(ζ + 1)

+
|δ||ε||E2|�ρ(ζ+ς)

ρζ+ςΓ(ζ + ς + 1)
. (95)

To finish up, we will go over the results of existence, uniqueness, and Ulam–Hyers
stability for problems (1) and (75), respectively. For reasons that are similar to those in
Sections 3–6, we are not providing the proof.

Corollary 1. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condi-
tion: (A1) there exists constants ψm, ψ̂m ≤ 0(m = 1, 2) and ψ0, ψ̂0 > 0 such that

| f (τ, o1, o2)| ≤ ψ0 + ψ1|o1|+ ψ2|o2|,
|g(τ, o1, o2)| ≤ ψ̂0 + ψ̂1|o1|+ ψ̂2|o2|, ∀om ∈ R, m = 1, 2.

If ψ1(Ĵ1 + Ĵ2) + ψ̂1(K̂1 + K̂2) < 1, ψ2(Ĵ1 + Ĵ2) + ψ̂2(K̂1 + K̂2) < 1. Then at least one
solution for the BVP (1) and (75) on E , where Ĵ1, K̂1, Ĵ2, K̂2 are given by (92)–(95) respectively.
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Corollary 2. Assume that f , g : E ×R×R→ R are continuous functions satisfying the condi-
tion: (A2) there exists constants φm, φ̂m ≤ 0(m = 1, 2) such that

| f (τ, o1, o2)− f (τ, ô1, ô2)| ≤φ1|o1 − ô1|+ φ2|o2 − ô2|,
|g(τ, o1, o2)− g(τ, ô1, ô2)| ≤φ̂1|o1 − ô1|+ φ̂2|o2 − ô2|, ∀om, ôm ∈ R, m = 1, 2.

Moreover, there exist S1,S2 > 0 such that | f (τ, 0, 0)| ≤ S1, | f (τ, 0, 0)| ≤ S2, Then,
given that

(J1 + J2)(φ1 + φ2) + (K1 +K2)(φ̂1 + φ̂2) < 1, (96)

the BVP (1) and (75) has a unique solution on E , where Ĵ1, K̂1, Ĵ2, K̂2 are given by (92)–(95)
respectively.

Corollary 3. Assume that f , g : E ×R×R→ R are continuous functions satisfying the assump-
tion (A2) in Theorem 2. Further more, there exist positive constants U1,U2 such that ∀τ ∈ E and
ri ∈ R, i = 1, 2.

| f (τ, r1, r2)| ≤ U1, |g(τ, r1, r2)| ≤ U2. (97)

If

T ρξ(φ1 + φ2)

ρξΓ(ξ + 1)
+
T ρζ(φ̂1 + φ̂2)

ρζ Γ(ζ + 1)
< 1, (98)

then the BVP (1), and (75) has at least one solution on E .

Corollary 4. Assume that (A2) holds. Then the problem (1) and (75) is Ulam–Hyers stable.

8. Asymmetric Cases

Remark 1. If ρ = 1, the problem (1) generalized Liouville–Caputo type reduces to the classical
Caputo form. {

CDξ
0+ p(τ) = f (τ, p(τ), q(τ)), τ ∈ G := [0, T ],

CDζ
0+q(τ) = g(τ, p(τ), q(τ)), τ ∈ G := [0, T ].

(99)

Remark 2. If ρ = 1 in the boundary conditions (2) and (75) generalized Riemann–Liouville
integral boundary conditions reduces to the Riemann–Liouville integral conditions respectively.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(0) = 0, q(0) = 0,
p(T ) = εIς

0+q(�) = ε
Γ(ς)

∫ �
0 (�− θ)ς−1q(θ)dθ,

q(T ) = πI�
0+p(σ) = π

Γ(�)

∫ σ
0 (σ− θ)�−1 p(θ)dθ,

0 < σ < � < T ,

(100)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(0) = 0, q(0) = 0,
p(T ) = εIς

0+q(�) = ε
Γ(ς)

∫ �
0 (�− θ)ς−1q(θ)dθ,

q(T ) = πI�
0+p(�) = π

Γ(�)

∫ �
0 (�− θ)�−1 p(θ)dθ,

0 < � < T .

(101)

236



Symmetry 2022, 14, 2273

Remark 3. If ρ = 1 and ς = � = 1 in the boundary conditions (2) and (75) generalized Riemann–
Liouville integral boundary conditions reduces to the classical integral conditions respectively.{

p(0) = 0, q(0) = 0, p(T ) = ε
∫ �

0 q(θ)dθ, q(T ) = π
∫ σ

0 p(θ)dθ 0 < σ < � < T (102)

and{
p(0) = 0, q(0) = 0, p(T ) = ε

∫ �
0 q(θ)dθ, q(T ) = π

∫ �
0 p(θ)dθ 0 < � < T . (103)

9. Conclusions

This paper employs coupled nonlinear generalized Liouville–Caputo fractional dif-
ferential equations and Katugampola fractional integral operators to solve a novel class
of boundary value problems. Applying the techniques of fixed-point theory to discover
the existence criterion for solutions is efficient. While the second outcome provides a
sufficient criterion to establish the problem’s unique solution, the first and third results
define various criteria for the presence of solutions to the given problem. In the fourth
section, the Hyers–Ulam stability of the solution was determined. In the remarks, we have
shown the asymmetric cases of the assigned problem. Moreover, the form of the solution
in these kinds of remarks can be used to study the positive solution and its asymmetry in
more depth. We conclude that our results are novel and can be viewed as an expansion
of the qualitative analysis of fractional differential equations. Our results are novel in this
configuration and add to the literature on nonlinear coupled generalized Liouville–Caputo
fractional differential equations with nonlocal boundary conditions utilizing Katugampola-
type integral operators. Future research could focus on various conceptions of stability and
existence in relation to a Lotka–Volterra prey-predator system/coupled logistic system.
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Abstract: The fractional Hilbert transform, a generalization of the Hilbert transform, has been
extensively studied in the literature because of its widespread application in optics, engineering, and
signal processing. In the present work, we expand the fractional Hilbert transform that displays an
odd symmetry to a space of generalized functions known as Boehmians. Moreover, we introduce a
new fractional convolutional operator for the fractional Hilbert transform to prove a convolutional
theorem similar to the classical Hilbert transform, and also to extend the fractional Hilbert transform
to Boehmians. We also produce a suitable Boehmian space on which the fractional Hilbert transform
exists. Further, we investigate the convergence of the fractional Hilbert transform for the class of
Boehmians and discuss the continuity of the extended fractional Hilbert transform.

Keywords: convolution; Boehmian; fractional Hilbert transform; Hilbert transform; equivalence
class; delta sequences; compact support

1. Introduction

The space of Boehmians is a class of generalized functions that include all regular
operators and generalized functions or distributions, and other objects. The theory of
Boehmians with two convergences, introduced by Mikusinski [1], broadens the concept
of Boehme’s regular operators [2]. In contrast to the theory of distributions in which
generalized functions are treated as members of the dual space of any space of testing
function, the space of Boehmians treats distributions more as algebraic objects. Several
integral transforms for various spaces of Boehmians were studied and their properties were
investigated in [3–13]. Currently, a large number of studies are available on the extension
of classical integral transforms to Boehmians. Karunakaran and Roopkumar introduced
the Hilbert transform as continuous linear mapping defined on some space of Boehmians
into another space of Boehmians [7]. They also studied the Hilbert transform for the space
of ultradistributions [8]. The pioneering work of Zayed [13], Al-Omari, and Agarwal [6]
introduced an extension of fractional integral transform to Boehmians by extending the
fractional Fourier and Sumudu transforms to the space of integrable Boehmians. The
properties and generalizations of various quaternion integral transform [14] and fractional
integral transforms were also studied from the perspective of q-calculus analysis [15,16]
and rapidly decaying functions [17]. In recent years, the extension of fractional integral
transforms to the space of Boehmians has been an active area of research. Many well-
known fractional integral transforms have been extended to the space of Boehmians, but an
extension of the fractional Hilbert transform (FHT) has not yet been reported. So, the goal
of this paper is to extend the FHT to some space of Boehmians. Different definitions of FHT
exist in the literature [18–20], but in the generalization of the classical Hilbert transform, it
might rightly be said that the fractionalization of Hilbert transform is given by Zayed and
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is mathematically elaborated in [21]. The fractional Hilbert transform of a function f (x),
denoted by Hα[ f (x)], is defined as [20]

Hα[ f (x)] =
1
π

∫ ∞

−∞

e−i x2−t2
2 cot α

x− t
f (t)dt for α �= 0, π/2, π, (1)

where the integral is taken in the sense of the Cauchy principal value. The special case
α = π/2 reduces FHT into the standard Hilbert transform. Indeed, the FHT allows for
converting a real signal into a complex signal by suppressing the negative frequency. Such
a signal has a wide variety of applications in optics, signal processing, and image pro-
cessing [22–25]. It also does not flip the domain of the signal—the signal remains in the
same domain. However, it lacks detailed mathematical analysis, so we require a thorough
mathematical theory of FHT to understand its strengths and limitations. Consequently,
we need to extend the existing theory on such a significant transformation in terms of
generalized functions. An extension of FHT to some space of Boehmians may have appli-
cations in engineering and other sciences, as it may apply in converting functions with
discontinuities into smooth functions that consequently lead to the description of various
physical occurrences such as point charges [26].

The present paper is organized as follows: Section 1 covers the introduction. Section 2
covers the important definitions and theorems, and we also discuss the abstract construction
of Boehmians to render the paper self-contained. Section 3 covers results that comprise a
new convolutional operator and a new convolutional theorem for FHT, and proves auxiliary
results required for the construction of two Boehmian spaces. Lastly, we extend the FHT to
some spaces of Boehmians. Section 4 presents our conclusions.

2. Preliminaries

Let R be the set of all real numbers, L1(R) = L1 be the collection of complex-valued
measurable functions f defined on R for which

‖ f ‖1 =
∫ ∞

−∞
| f (x)|dx < ∞,

and C∞ = C∞(R) be the set of all infinitely differentiable functions defined on R, such that
functions and their derivatives converge uniformly on compact sets in R.

Theorem 1 ([27] Theorem 9.5). For any function f on R and for all t ∈ R, let ft be defined by

ft(x) = f (x− t).

If p ≥ 1 and f ∈ Lp, then mapping t → ft is uniformly continuous from R into Lp(R).

Definition 1. Let f and g be any two functions on R; their convolution, denoted by f ∗ g, is
defined as

f ∗ g =
∫ ∞

−∞
f (t)g(x− t)dt. (2)

The Hilbert transform of convolutional operation ∗ is given as follows:

Theorem 2. If f , g ∈ L1(R) with Hilbert transforms H f , Hg respectively, so that H f , Hg ∈
L1(R), then

H[ f ∗ g] = H f ∗ g = f ∗ Hg.

The FHT may not act as agreeably with the classical convolutional operator as the
classical Hilbert transform (Theorem 2).
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Boehmian Space

The members of Boehmian spaces are called Boehmians, which are equivalence classes
of “quotients of sequences”. These equivalence classes are formulated from an integral do-
main of continuous functions. The integral domain operations for Boehmians are addition
and convolution. This convolutional operation may differ from the standard convolutional
operation given in Definition 2.

We now present a brief introduction to Boehmians.
Let G be a complex linear space, (H, .) is a commutative semigroup, and let ⊗ :

G× H → G, so that the conditions given below hold:

• ( f ⊗ φ)⊗ ψ = f ⊗ (φ.ψ), ∀ f ∈ G, ∀φ, ψ ∈ H;
• ( f + g)⊗ φ = f ⊗ φ + g⊗ φ, ∀ f , g ∈ G, ∀φ ∈ H;
• λ( f ⊗ φ) = (λ f ⊗ φ) ∀ f ∈ G, ∀φ ∈ H, λ ∈ C;
• If fn → f as n → ∞ and φ ∈ H then fn ⊗ φ → f ⊗ φ as n → ∞.

Let Δ be a collection of sequences on H, so that

• If {φn}, {ψn} ∈ Δ then {φn.ψn} ∈ Δ;
• If fn → f as n → ∞ and {φn} ∈ Δ then fn ⊗ φn → f as n → ∞.

A pair of sequences { fn, φn} with fn ∈ G for all n ∈ N and {φn} ∈ Δ are a quotient of
sequences, denoted by fn

φn
, if

fn ⊗ φm = fm ⊗ φn ∀m, n ∈ N.

Two quotients of sequences fn
φn

and gn
ψn

are equivalent (∼) if, for every n ∈ N

fn ⊗ ψn = gn ⊗ φn.

The equivalence class of fn
φn

induced by “∼” is denoted by
[

fn
φn

]
. Every equivalence

class is called a Boehmian. The space of all Boehmians is denoted by B = B(G, H,⊗, Δ).
B is a vector space under the operations of addition and scalar multiplication defined
as follows:

• λ
[

fn
φn

]
=
[

λ fn
φn

]
;

•
[

fn
φn

]
+
[

gn
ψn

]
=
[

fn⊗φn+gn⊗ψn
φn⊗ψn

]
.

If we define an isomorphism f →
[

f⊗φn
φn

]
, then G is a subspace of B. Therefore, every

element of G can be expressed uniquely as a Boehmian.

3. Results

In this section, we define a new convolutional operation for FHT that yields a gener-
alized result for Theorem 2. Moreover, to extend the FHT to the class of Boehmians, we
define two classes of Boehmians. Two convergences of FHT are proved on C∞. Lastly, an
extension of FHT on Boehmians is introduced.

3.1. Convolutional Structure for Fractional Hilbert Transform

The idea of convolutional operation makes it evident that, given any integral transform,
we can associate a convolutional operation to it [28]. So, we introduce a new fractional
convolutional operator that helps us in extending FHT to the space of Boehmians.

Definition 2. Let f , g ∈ L1(R). We define a fractional convolution ( f ∗α g) as

( f ∗α g)(x) =
∫ ∞

−∞
f (x− t)g(t)e−it(x−t) cot αdt. (3)

Lemma 1. Let f , g ∈ L1. Then, ( f ∗α g) is also in L1.

241



Symmetry 2022, 14, 2096

Proof. To prove that f ∗α g ∈ L1, we consider its L1 norm.

‖ f ∗α g‖1 =
∫ ∞

−∞
| f ∗α g|dx

≤
∫ ∞

−∞

∫ ∞

−∞
| f (x− t)||g(t)|dtdx.

By using Fubini’s theorem, we have

‖ f ∗α g‖1 ≤
∫ ∞

−∞
| f (x− t)|dx

∫ ∞

−∞
|g(t)|dt.

Since the L1 norm is translation invariance, so
∫ ∞
−∞ | f (x − t)|dx = ‖ ft‖1 = ‖ f ‖1.

Therefore,
‖ f ∗α g‖1 ≤ ‖ f ‖1‖g‖1.

Since f , g ∈ L1,

‖ f ∗α g‖1 ≤ ‖ f ‖1‖g‖1 < ∞,

which proves that f ∗α g ∈ L1.

To extend the FHT to the case of Boehmians, the essential step is to prove the convo-
lutional theorem, and suitable Boehmian spaces can then be constructed by proving the
supplementary results. Now, we state and prove the convolutional theorem for FHT.

Theorem 3. (convolutional Theorem) Assume that f , g ∈ L1. Then,

Hα[ f ∗α g] = Hα[ f ] ∗α g = f ∗α Hα[g]. (4)

In addition, ( f ∗α g) = −(Hα[ f ] ∗α Hα[g]).

Proof.

Hα[( f ∗α g)(x)] =
1
π

∫ ∞

−∞

e−i x2−t2
2 cot α

x− t
( f ∗α g)(t) dt

=
1
π

∫ ∞

−∞

e−i x2−t2
2 cot α

x− t

∫ ∞

−∞
f (t− y)g(y)e−iy(t−y) cot αdydt.

By changing variables t− y = ν, the above equation can be simplified to

Hα[( f ∗α g)(x)] =
1
π

∫ ∞

−∞

∫ ∞

−∞

e−i x2−2xy+y2−ν2
2 cot α

(x− y)− ν
f (ν)g(y)e−i(yx−y2) cot αdνdy

=
∫ ∞

−∞
Hα[ f (x− y)]g(y)e−iy(x−y) cot αdy

= (Hα[ f ] ∗α g)(x).

Similarly,

Hα[( f ∗α g)(x)] = Hα[(g ∗α f )(x)] = (Hα[g] ∗α f )(x) = ( f ∗α Hα[g])(x). (5)

If we substitute g by Hα[g] in (4), we can write

Hα[( f ∗α Hα[g])(x)] = (Hα[ f ] ∗α Hα[g])(x),

( f ∗α Hα[Hα[g]])(x) = (Hα[ f ] ∗α Hα[g])(x), (by (5))

f ∗α g = −(Hα[ f ] ∗α Hα[g]),
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where H2
α = −I, and this proves the theorem.

3.2. Abstract Construction of Boehmians

Now, we construct the Boehmian space required for extending the theory of the
fractional Hilbert transform to some space of Boehmians. Here, we refer to only two
spaces of Boehmians needed to develop the theory of FHT. Now to define the space of
Boehmians, we introduce a class of identities as follows: Let space D constitute all infinitely
differentiable functions with compact support in R. Let

S = {φ ∈ D : φ ≥ 0 and
∫
R

φ = 1}.

Then, the space of Boehmians is given by

B1 = B1(L1(R), S, ∗α, Δ),

where Δ is the collection of all sequences of real-valued functions {φn(x)} ⊂ S, such that

1.
∫
R

eit(x−t) cot αφn(x)dx = 1, ∀ n ∈ N;
2. ‖φn‖1 ≤ M, ∀ n ∈ N for some M > 0;
3. limn→∞

∫
|t|>ε |φn(t)|dt = 0, ε > 0.

These sequences are delta sequences. We now state and prove the results that are needed
to build the desired space for Boehmians.

Lemma 2. The operation ∗α is both commutative and associative.

Proof. To prove that ∗α is commutative, consider

( f ∗α g)(x) =
∫ ∞

−∞
f (x− t)g(t)e−i(x−t) cot αdt.

By changing variable x− t = τ, we can simplify the above equation to

( f ∗α g)(x) =
∫ ∞

−∞
f (τ)g(x− τ)e−i(x−τ)τ cot αdτ = (g ∗α f )(x).

To prove the associativity, let us consider

(( f ∗α g) ∗α h)(x) =
∫ ∞

−∞
( f ∗α g)(x− t)h(t)e−i(x−t) cot αdt

=
∫ ∞

−∞

∫ ∞

−∞
f (x− t− u)g(u)h(t)e−iu(x−t−u) cot αe−it(x−t) cot αdtdu.

By changing variables t + u = y, we can write the above equation as

(( f ∗α g) ∗α h)(x) =
∫ ∞

−∞

∫ ∞

−∞
f (x− y)g(y− t)h(t)e−i(y−t)(x−y) cot αe−it(x−t) cot αdtdy.

As an application of Fubini’s theorem, we have

(( f ∗α g) ∗α h)(x) =
∫ ∞

−∞

∫ ∞

−∞
g(y− t)h(t)e−i(−tx+yt+tx−t2) cot α f (x− y)e−iy(x−y) cot αdtdy

=
∫ ∞

−∞
f (x− y)(g ∗α h)(y)e−iy(x−y) cot αdy

= ( f ∗α (g ∗α h))(x).

Thus, (( f ∗α g) ∗α h)(x) = ( f ∗α (g ∗α h))(x).

Lemma 3. Assume that {φn} and {ψn} are in Δ. Then, their convolution {φn ∗α ψn} is also in Δ.
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Proof. To prove that {φn ∗α ψn} ∈ Δ, we must show that the three conditions for delta
sequences are fulfilled.

1.
∫
R

eit(x−t) cot α(φn ∗α ψn)(x)dx =
∫
R

eit(x−t) cot α
∫ ∞
−∞

(
φn(x− t)ψn(t)e−it(x−t) cot α

)
dtdx.

By using Fubini’s theorem, we can write∫
R

eit(x−t) cot α(φn ∗α ψn)(x)dx =
∫
R

eit(x−t) cot αe−it(x−t) cot αφn(x− t)dx
∫ ∞

−∞
ψn(t)dt.

Since {φn}, {ψn} ∈ Δ, then∫
R

eit(x−t) cot α(φn ∗α ψn)(x)dx = 1.

2.

‖φn ∗α ψn‖1 =
∫ ∞

−∞
|(φn ∗α ψn)(x)|dx

=
∫ ∞

−∞

∣∣∣∣ ∫ ∞

−∞
φn(x− t)ψn(t)e−it(x−t) cot αdt

∣∣∣∣dx

≤
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣φn(x− t)ψn(t)e−it(x−t) cot αdt
∣∣∣∣dx

= ‖φn‖1‖ψn‖1

≤ M2, ∀n ∈ N.

Thus, ‖φn ∗α ψn‖1 ≤ M2.
3.

lim
n→∞

∫
|t|>ε

|(φn ∗α ψn)(x)|dx ≤ lim
n→∞

∫
|t|>ε

∫ ∞

−∞
|φn(x− t)ψn(t)|dtdx

= ‖φn‖1 lim
n→∞

∫
|t|>ε

|ψn(t)|dt.

Since {ψn} ∈ Δ, then

lim
n→∞

∫
|t|>ε

|ψn(t)|dt = 0, for ε > 0.

Hence, ∫
|t|>ε

|(φn ∗α ψn)(x)|dx → 0 as n → ∞, for ε > 0.

This completes the proof.

Lemma 4. If f ∈ L1 and φn ∈ Δ then the convolution f ∗α φn ∈ L1.

Proof. Let f ∈ L1 and φn ∈ Δ. To show that f ∗α φn ∈ L1, we consider the L1-norm.

‖ f ∗α φn‖1 =
∫
R
|( f ∗α φn)(x)|dx,

=
∫
R

∣∣∣∣ ∫ ∞

−∞
f (x− t)φn(t)e−it(x−t) cot αdt

∣∣∣∣dx,

≤
∫
R

∫ ∞

−∞

∣∣∣∣ f (x− t)φn(t)e−it(x−t) cot α

∣∣∣∣dtdx,

=
∫ ∞

−∞
| f (x− t)|dx

∫ ∞

−∞
|φn(t)|dt,

= ‖ f ‖1‖φn‖1.
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Since f ∈ L1 and {φn} ∈ Δ, ‖ f ∗α φn‖1 ≤ ‖ f ‖1‖φn‖1 < ∞, which proves that
f ∗α φn ∈ L1.

Lemma 5. If f , g ∈ L1, φ ∈ S, then ( f + g) ∗α φ = f ∗α φ + g ∗α φ.

The proof of this lemma is straightforward. Therefore, we omitted the details.

Lemma 6. Let fn → f in L1 as n → ∞ and φ ∈ S. Then fn ∗α φ → f ∗α φ in L1.

Proof. From Lemma 4, we can write

‖( fn ∗α φ)− ( f ∗α φ)‖1 = ‖( fn − f ) ∗α φ‖1

≤ ‖ fn − f ‖1‖φ‖1

≤ M‖ fn − f ‖1 → 0 as n → ∞ for M > 0.

Hence, fn ∗α φ → f ∗α φ in L1 whenever fn → f in L1.

Lemma 7. Let fn → f in L1 and {φn} ∈ Δ. Then fn ∗α φn → f in L1.

Proof. Let {φn} ∈ Δ then
∫ ∞
−∞ φn(t)eit(x−t)dt = 1; therefore, we can write

( fn ∗α φn)(x)− f (x) =
∫ ∞

−∞
fn(x− t)φn(t)e−it(x−t) cot αdt− f (x)

∫ ∞

−∞
φn(t)eit(x−t) cot αdt

=
∫ ∞

−∞

(
fn(x− t)e−2it(x−t) cot α − f (x)

)
eit(x−t) cot αφn(t)dt.

Now, we consider the L1-norm of the above equation:

‖ fn ∗α φn − f ‖1 =
∫ ∞

−∞

∣∣∣∣ ∫ ∞

−∞

(
fn(x− t)e−2it(x−t) cot α − f (x)

)
eit(x−t) cot αφn(t)dt

∣∣∣∣dx

≤
∫ ∞

−∞

∫ ∞

−∞
| fn(x− t)e−2it(x−t) cot α − f (x)||φn(t)|dtdx.

As an application of Fubini’s theorem and via Property 2 of delta sequences, we have

‖ fn ∗α φn − f ‖1 ≤
∫ ∞

−∞
|φn(t)|dt

∫ ∞

−∞
| fn(x− t)e−2it(x−t) cot α − f (x)|dx

≤ M‖( fn)te−2it(x−t) cot α − f ‖1, (M > 0).

Using the triangular inequality of normed spaces,

‖ fn ∗α φn − f ‖1 ≤ M‖( fn)te−2it(x−t) cot α − fte−2it(x−t) cot α‖1 + ‖ fte−2it(x−t) cot α − f ‖1

≤ M‖( fn)te−2it(x−t) cot α − fte−2it(x−t) cot α‖1 + M‖ fte−2it(x−t) cot α − f ‖1.

By using the convergence of fn ∈ L1 and Theorem 1, we have

‖( fn)te−2it(x−t) cot α − fte−2it(x−t) cot α‖1 → 0 as n → ∞,

and
‖ fte−2it(x−t) cot α − f ‖1 → 0 as t → 0.

Therefore, ‖ fn ∗α φn − f ‖1 → 0 as n → ∞, hence, fn ∗α φn → f in L1.

In order to extend the FHT to the class of Boehmians, we define another class of Boehmi-
ans (as the codomain of the extended fractional Hilbert transform) B2 = B2(C∞, S, ∗α, Δ) [7].
The notion of delta sequences, quotients, and their equivalence classes remains the same as
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that in the prior case. We also retain the definitions of addition and scalar multiplication.
Now, we define

Dm
[

fn

φn

]
=

[
Dm fn

φn

]
for any

[
fn

φn

]
∈ B2.

In addition, [
fn

φn

]
∗α

[
gn

ψn

]
=

[
fn ∗α gn

φn ∗α ψn

]
.

Since a concept of convergence is required to construct a Boehmian space, we prove
two convergences on C∞.

Lemma 8. Let fn → f as n → ∞ in C∞ then fn ∗α φ → f ∗α φ in C∞ for all φ ∈ D; further, for
each delta sequence {δn}, fn ∗α δn → f as n → ∞ in C∞.

Proof. Let K ⊂ R be any compact set, such that x ∈ K. To prove the convergence of
a sequence of functions in C∞, we must show that the functions and their derivatives
converge uniformly on compact sets.

First, we prove that fn ∗α φ → f ∗α φ in C∞. For this, consider

|( fn ∗α φ− f ∗α φ)(x)| = |(( fn − f ) ∗α φ)(x)| ≤
∫ ∞

−∞
|( fn − f )(x− t)|φ(t)dt.

Since t varies over the compact support of φ; therefore, x− t also varies over a compact
set in R. So, |(( fn − f ) ∗α φ)(x)| → 0 as n → ∞ uniformly on compact sets. Then,

|( fn ∗α φ− f ∗α φ)(x)| → 0 as n → ∞,

or we can write

fn ∗α φ → f ∗α φ as n → ∞, (6)

uniformly on compact sets.
In addition,

Dm(( fn ∗α φ)− ( f ∗α φ)) = (Dm fn ∗α φ)− (Dm f ∗α φ). (7)

Replacing Dm fn by fn and Dm f by f in (7), we have

Dm(( fn ∗α φ)− ( f ∗α φ)) = ( fn ∗α φ)− ( f ∗α φ), (8)

the right-hand side of (8) approaches zero by (6). Thus,

Dm( fn ∗α φ)→ Dm( f ∗α φ)

uniformly on compact sets. Hence, fn ∗α φ → f ∗α φ as n → ∞ in C∞.
Next, without any loss of generality, let us suppose that {δn} ∈ Δ is such that it has a

compact support. Then,

|( fn ∗α δn − f )(x)| =
∣∣∣∣ ∫ ∞

−∞
fn(x− t)δn(t)e−it(x−t) cot αdt− f (x)

∫ ∞

−∞
eit(x−t) cot αδn(t)dt

∣∣∣∣
≤

∫ ∞

−∞
| fn(x− t)e−2it(x−t) cot α − f (x)|δn(t)dt,

≤
∫ ∞

−∞

(
| fn(x− t)e−2it(x−t) cot α − f (x− t)e−2it(x−t) cot α|+ | f (x− t)e−2it(x−t) cot α − f (x)|

)
δn(t)dt.

Now, both x and t vary over compact sets; therefore, x− t also varies over a compact
set. Thus,
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∫ ∞

−∞

(
| fn(x− t)e−2it(x−t) cot α − f (x− t)e−2it(x−t) cot α|+ | f (x− t)e−2it(x−t) cot α − f (x)|

)
δn(t)dt → 0

as n → ∞ and t → 0.
We have fn ∗α δn → f uniformly on compact sets.
Similarly, Dm( fn ∗α δn)→ Dm( f ) uniformly on compact sets.
Hence, fn ∗α δn → f as n → ∞ in C∞.

Lemma 9. If fn → f as n → ∞ in L1, then fn ∗α δ → f ∗α δ as n → ∞ in C∞ for every δ ∈ S.

Proof. To show the convergence in C∞, we assume that x varies over a compact set K.

|( fn ∗α δ− f ∗α δ)(x)| = |(( fn ∗ − f ) ∗α δ)(x)|

=

∣∣∣∣ ∫ ∞

−∞
( fn − f )(x− t)δ(t)e−it(x−t) cot αdt

∣∣∣∣
≤

∫ ∞

−∞
|( fn − f )(x− t)||δ(t)|dt

≤ ‖ fn − f ‖1‖δ‖∞.

Since fn → f in L1 and δ ∈ S has a compact support, x− t varies over a compact set,
and |( fn ∗α δ− f ∗α δ)(x)| → 0 as n → ∞ on compact sets. Similarly, we have

|Dm[( fn ∗α δ− f ∗α δ)](x)| ≤ ‖ fn − f ‖1‖Dmδ‖∞.

Thus, Dm( fn ∗α δ)→ Dm( f ∗α δ) on compact sets.
Hence, fn ∗α δ → f ∗α δ as n → ∞ in C∞.

3.3. Fractional Hilbert Transform on Boehmians

The following result is very important in the aftermath. The proof of the following
theorem is similar to the proof of convolution theorem for FHT as in Theorem 2; we omitted
the details.

Theorem 4. If f ∈ L1 and δ ∈ Δ, then Hα[ f ∗α δ] = Hα[ f ] ∗α δ.

Definition 3. The fractional Hilbert transformHα : B1 → B2 on Boehmians is defined by

Hα

[
fn

φn

]
=

[Hα fn

φn

]
,

where fn
φn

is an arbitrary representative of any given Boehmian B ∈ B1. Since

fn ∗α φm = fm ∗α φn ∀m, n ∈ N.

By Theorem 4, we can writeHα[ fn] ∗α φm = Hα[ fm] ∗α φn ∀m, n ∈ N.
Therefore, Hα [ fn ]

φn
represents a Boehmian in B2. In a similar manner, let gn

ψn
be another

representative of B; then, again, with an application of Theorem 4,

Hα[ fn]

φn
∼ Hα[gn]

ψn
,

thus the extended FHT on BoehmiansHα : B1 → B2 is well-defined.

Theorem 5. LetHα : B1 → B2 be the extended FHT; then,

1. If fn
φn
∈ B1 then Hα fn

φn
∈ B2.
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2. Hα is well-defined.
3. Hα is a continuous linear map.
4. Hα is an injective map.

Proof. The proof of the above theorem is similar to those of Hilbert transform on Boehmi-
ans; we omitted the details. For details, the reader is referred to [7].

4. Conclusions

This paper gave an extension of the fractional Hilbert transform to a class of general-
ized functions known as Boehmians. It introduces a new convolutional operator, and the
consequent convolutional theorem was also presented. In addition, the extended fractional
Hilbert transform is a well-defined map between the spaces of Boehmians having properties,
such as continuity and linearity, identical to the classical properties of their corresponding
classical versions. Lastly, convergence concerning δ and Δ was also examined.

The methods of this paper can also be utilized to extend FHT to the space of ultradistri-
butions. We suggest that readers consider the expansion of the fractional Hilbert transform
to q-calculus and develop the theory of the quaternion fractional Hilbert transform.
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Abstract: This paper investigates the composition structures of certain fractional integral operators
whose kernels are certain types of generalized hypergeometric functions. It is shown how composi-
tion formulas of these operators can be closely related to the various Erdélyi-type hypergeometric
integrals. We also derive a derivative formula for the fractional integral operator and some appli-
cations of the operator are considered for a certain Volterra-type integral equation, which provide
two generalizations to Khudozhnikov’s integral equation (see below). Some specific relationships,
examples, and some future research problems are also discussed.

Keywords: composition operators; Erdélyi-type integral; fractional integral operator; generalized
hypergeometric function

MSC: 26A33; 33C20

1. Introduction

In 1978, Saigo [1] introduced his widely used fractional integral operators Iα,β,η and
Jα,β,η (see Equations (16) and (17) below). Saigo’s operators involve the Gauss hypergeo-
metric functions 2F1 as kernels and possess many properties (see, for example, Refs. [1–5]).
Over the past few decades, Saigo’s operators have been applied in various branches of
mathematics, especially in the Geometric Function Theory (see Refs. [6–8]). The symmetry of
parameters of various hypergeometric functions injects more choice and flexibility into the
theory of Generalized Fractional Calculus.

A natural question that arises is: Can an operator involving a generalized hypergeometric
function pFq as kernel have such properties as Saigo’s operators? In this direction, some efforts
have been made by some authors to find particular forms of operators. In 1987, Goyal
and Jain [9] introduced two fractional integral operators Ih

α and Kλ
β , which involve the

generalized hypergeometric functions pFq as kernels. Later, Goyal et al. [10,11] introduced
two more general fractional integral operators involving the generalized hypergeometric
function pFq and Srivastava’s polynomial Sm

n .
Although very general in form, the properties of the operators Ih

α and Kλ
β introduced

by Goyal et al. are far less succinct than those of Saigo’s operators. For Saigo’s operators
Iα,β,η and Jα,β,η , we have the following useful properties (see Refs. [12,13]):

Iα,β,η xλ =
Γ(λ)Γ(λ− β + η + 1)

Γ(λ− β + 1)Γ(λ + α + η + 1)
xλ−β (1)

(�(α) > 0, �(λ) > max{0,�(β− η)} − 1)
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and

Jα,β,η xλ =
Γ(β− λ)Γ(η − λ)

Γ(−λ)Γ(α + β + η − λ)
xλ−β (2)

(�(α) > 0, �(λ) < max{�(β),�(η)}).
Under certain conditions, we also have the following composition properties (see

Ref. [1], p. 140, Equations (2.22) and (2.23), see also Ref. [3]):

Iα,β,η Iγ,δ,α+η f = Iα+γ,β+δ,η f , (3)

Iα,β,η Iγ,δ,η−β−γ−δ f = Iα+γ,β+δ,η−γ−δ f , (4)

Jγ,δ,α+η Jα,β,η f = Jα+γ,β+δ,η f (5)

and
Jγ,δ,η−β−γ−δ Jα,β,η f = Jα+γ,β+δ,η−γ−δ f . (6)

However, it seems rather difficult to find properties for the operators Ih
α and Kλ

β similar
to those given above by (1)–(6). Moreover, it is still unknown whether the corresponding
generalized fractional derivatives of the forms (see Ref. [3], Equations (3.2) and (3.4))

Iα,β,η f =
dn

dxn Iα+n,β−n,η−n f and Jα,β,η f = (−1)n dn

dxn Jα+n,β−n,η−n f (7)

can be defined for the operators Ih
α and Kλ

β .
Very recently, the authors [14] introduced two fractional integral operators I and J

(see below Equations (12) and (13)) whose kernels involve a very special class of generalized
hypergeometric function. The authors have to some extent overcome the limitations of the
operators Ih

α and Kλ
β and obtained results similar to (1) and (2). Subsequently, some further

results and applications related to I and J were discovered in the papers [15,16].
The aim of the present paper is to first establish for the operators I and J some results

relating to the composition structures of the defined operators analogous to
Formulas (3)–(7). We also consider defining the corresponding fractional derivative opera-
tors of these operators I and J . Finally, we shall consider some connections of our work
with Khudozhnikov’s work [17] on Volterra-type integral equations.

2. Preliminaries

In this paper, the symbols N, R+, and C denote the set of natural, positive real, and
complex numbers, respectively. The Pochhammer symbol (a)k is defined by

(a)k :=
Γ(a + k)

Γ(a)
=

{
1 (k = 0; a ∈ C \ {0})
a(a + 1) · · · (a + k− 1) (k ∈ N; a ∈ C).

In addition, we shall use the convention of writing the finite sequence of parameters
a1, · · · , ap by (ap) and the product of p Pochhammer symbols by ((ap))k ≡ (a1)k · · · (ap)k,
where an empty product p = 0 is treated as unity.

We are particularly interested in the generalized hypergeometric function r+pFr+q of
the form

r+pFr+q

[
(ap), ( fr + mr)
(bq), ( fr)

; z
]

:=
∞

∑
k=0

((ap))k

((bq))k

(( fr + mr))k
(( fr))k

zk

k!
, (8)

where m1, · · · , mr ∈ N. The conditions of convergence of (8) follow easily from the usual
definition of the generalized hypergeometric function; see Ref. [18], p. 62 and Ref. [19],
p. 30. Several recent results concerning this particular type of generalized hypergeometric
function have been obtained in Ref. [20] (see also Ref. [21]).

For convenience, we put
m := m1 + · · ·+ mr, (9)
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and let σj (0 ≤ j ≤ m) be determined by the generating relation

r

∏
j=1

( f j + x)mj =
m

∑
j=0

σm−jxj. (10)

Obviously, σj’s depend only on f j (1 ≤ j ≤ r). Additionally, we define Ak (0 ≤ k ≤ m)
by

Ak =
m

∑
j=k

{
j
k

}
σm−j, A0 = ( f1)m1 · · · ( fr)mr , Am = 1, (11)

where the notation
{

j
k

}
denotes the Stirling number of the second kind.

Definition 1 ([14], p. 423, Definition 1.1). Let x, h, ν ∈ R+, δ, a, b, f1, · · · , fr ∈ C and
m1, · · · , mr ∈ N. Also, let �(μ) > 0 and ϕ be a suitable complex-valued function defined
on R+. Then the fractional integral of the first kind of a function ϕ is defined by

(Iϕ)(x) ≡
(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

:=
νx−δ−ν(μ+h)

Γ(μ)

∫ x

0
(xν − sν)μ−1

r+2Fr+1

[
a, b,
μ,

( fr + mr)
( fr)

; 1− sν

xν

]
ϕ(s)sνh+ν−1ds, (12)

and the fractional integral of the second kind of a function ϕ(x) is defined by

(J ϕ)(x) ≡
(
J μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

:=
νxνh+ν−1

Γ(μ)

∫ ∞

x
(sν − xν)μ−1

r+2Fr+1

[
a, b,
μ,

( fr + mr)
( fr)

; 1− xν

sν

]
ϕ(s)s−δ−ν(μ+h)ds. (13)

When r = 0, we obtain(
I μ;a,b

h;ν,δ ϕ
)
(x) =

νx−δ−ν(μ+h)

Γ(μ)

∫ x

0
(xν − sν)μ−1

2F1

[
a, b
μ

; 1− sν

xν

]
ϕ(s)sνh+ν−1ds (14)

and(
J μ;a,b

h;ν,δ ϕ
)
(x) =

νxνh+ν−1

Γ(μ)

∫ ∞

x
(sν − xν)μ−1

2F1

[
a, b
μ

; 1− xν

sν

]
ϕ(s)s−δ−ν(μ+h)ds. (15)

Some properties of the operators (12) and (13) have been presented in Refs. [14,16].
Further, the operators I μ;a,b

h;ν,δ and J μ;a,b
h;ν,δ have the following special cases:

(a) For h = 0, ν = 1 and δ = 0 in (14) and (15), we obtain(
I μ;a,b

0;1,0 ϕ
)
(x) = 2 Iμ

0+(a, b)ϕ(x) and
(
I μ;a,b

0;1,0 ϕ
)
(x) = 4 Iμ

−(a, b)ϕ(x),

where 2 Iμ
0+(a, b) and 4 Iμ

−(a, b) are two of the four operators introduced by Grinko and
Kilbas [22].

(b) When h = 0, ν = 1, δ = β, μ = α, a = α + β and b = −η in (14) and (15), then we
obtain Saigo’s fractional integral operators(

Iα,β,η ϕ
)
(x) =

(
I α;α+β,−η

0;1,β ϕ
)
(x)

=
x−β−α

Γ(α)

∫ x

0
(x− s)α−1

2F1

[
α + β,−η

α
; 1− s

x

]
ϕ(s)ds (�(α) > 0) (16)

and
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(
Jα,β,η ϕ

)
(x) =

(
J α;α+β,−η

0;1,β ϕ
)
(x)

=
1

Γ(α)

∫ ∞

x
(s− x)α−1

2F1

[
α + β,−η

α
; 1− x

s

]
ϕ(s)s−β−αds (�(α) > 0). (17)

(c) When a = b = 0, it is not difficult to observe that I μ;a,b
h;ν,δ and J μ;a,b

h;ν,δ contain the
Erdélyi–Kober operators (see Ref. [19], p. 105 and Ref. [23], p. 322)(

Iμ
+;ν,h f

)
(x) =

(
I μ;0,0

h;ν,0 f
)
(x)

=
νx−ν(μ+h)

Γ(μ)

∫ x

0
(xν − sν)μ−1 f (s)sνh+ν−1ds

=
1

Γ(μ)

∫ 1

0
(1− u)μ−1 f

(
xu1/ν

)
uhdu (�(μ) > 0, ν, h ∈ R+) (18)

and(
Iμ
−;ν,h

)
f (x) =

(
J μ;0,0

h−1+1/ν;ν,0 f
)
(x)

=
νxνh

Γ(μ)

∫ ∞

x
(sν − xν)μ−1 f (s)sν(1−μ−h)−1ds

=
1

Γ(μ)

∫ ∞

1
(u− 1)μ−1 f

(
xu1/ν

)
u−μ−hdu (�(μ) > 0, ν, h ∈ R+) (19)

as special cases. The operators obtained by letting ν = 1 in (18) and (19) are usually
denoted by I+η,α and K−η,α, respectively (see Ref. [19], p. 106).

The operators defined above by (12) and (13) were previously studied in Refs. [14,16]
in the space Xp

c (c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue measurable
functions ϕ on R+ for which ‖ϕ‖Xp

c
< ∞, where

‖ϕ‖Xp
c

:=
(∫ ∞

0
|uc ϕ(u)|p du

u

)1/p
. (20)

It follows at once that Xp
1/p = Lp(R+). For convenience, we define

c1(t) := 1 + h +
t
ν

and c2(t) := c1(δ− 1)− t
ν

.

The following lemma gives some useful properties of the operators I and J relating
to the norm defined in (20).

Lemma 1. Let ϕ ∈ Xp
c .

(i) If �(μ) > 0 and c1(−c) + min{0,�(μ− a− b−m)} > 0, then the operator I is bounded
from Xp

c into Xc+�(δ), and
‖Iϕ‖Xp

c+�(δ)
≤ C1‖ϕ‖Xp

c
.

(ii) If �(μ) > 0 and �(c2(−c)) + min{0,�(μ− a− b−m)} > 0, then the operator J is
bounded from Xp

c into Xc+�(δ), and

‖J ϕ‖Xp
c+�(δ)

≤ C2‖ϕ‖Xp
c
.

(iii) If �(μ) > 0 and c1(−c) + min{0,�(μ− a− b)} > 0, then the operator I μ;a,b
h;ν,δ is bounded

from Xp
c into Xp

c , and
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‖xδI μ;a,b
h;ν,δ ϕ‖Xp

c
≤ C∗1‖ϕ‖Xp

c
.

(iv) If �(μ) > 0 and �(c2(−c)) + min{0,�(μ− a− b)} > 0, then the operator J μ;a,b
h;ν,δ is

bounded from Xp
c into Xp

c , and

‖xδJ μ;a,b
h;ν,δ ϕ‖Xp

c
≤ C∗2‖ϕ‖Xp

c
.

(v) If �(μ) > 0 and c1(−c) > 0, then the operator Iμ
+;ν,h is bounded from Xp

c into Xp
c , and

‖Iμ
+;ν,h ϕ‖Xp

c
≤ C∗∗1 ‖ϕ‖Xp

c
.

(vi) If �(μ) > 0 and νh + c > 0, then the operator Iμ
−;ν,h is bounded from Xp

c into Xp
c , and

‖Iμ
−;ν,h ϕ‖Xp

c
≤ C∗∗2 ‖ϕ‖Xp

c
.

Proof. The results (i) and (ii) are established in Ref. [14], p. 437, Theorem 3.1.
On the other hand, the results (iii) and (iv) are the corollaries of (i) and (ii) (see also

Ref. [16], p. 614).
Finally, the results (v) and (vi) follow immediately from (iii) and (iv). These results

are consistent with the classical ones. It may be noted that if we set c = 1/p in (v) and (vi),
then the operator Iμ

+;ν,h is bounded in Lp(R+) provided that �(μ) > 0 and h > −1 + 1/pν,
and the operator Iμ

−;ν,h is bounded in Lp(R+) provided that �(μ) > 0 and h > −1/pν
(see Ref. [19], p. 107, Lemma 2.28 and Ref. [23], p. 323).

It should be particularly emphasized here that the operators I andJ are quite different
from the multiple Erdélyi–Kober fractional integral operators (see Ref. [4], p. 11, see also
Refs. [24,25]), though some special cases of I and J when r = 0 (e.g., Saigo’s operators)
can be expressed as multiple Erdélyi–Kober fractional integral operators. The cases that
r = 0 are very special because Meijer’s G-function G2,0

2,2 [σ] and 2F1[1− σ] have the following
relationship (see [4], p. 18, Equation (1.1.18))

G2,0
2,2

[
σ

∣∣∣∣γ1 + δ1, γ2 + δ2
γ1, γ2

]
=

σγ2(1− σ)δ1+δ2−1

Γ(δ1 + δ2)
2F1

[
γ2 + δ2 − γ1, δ1

δ1 + δ2
; 1− σ

]
(21)

for σ < 1. However, there is no such relationship between Gm,0
m,m[σ] and r+2Fr+1[1− σ]. A

slightly more general case than (21) will lead us to the Marichev–Saigo–Maeda fractional
integral operators (see Refs. [26,27]), which are also very different from our operators I and
J . In addition, the operators I and J cannot be regarded as special cases of G-transform
studied in Ref. [28]. Since the kernels of I and J are not of Sonine’s type, they cannot be
included in the theory developed very recently by Luchko (see Ref. [29]).

3. The Main Results

3.1. Composition Formulas

Theorem 1. Assume that ϕ ∈ Xp
c . Let

λ1 ≡ λ− a−m, λ2 ≡ λ− b−m and pm ≡ λ− a− b−m, (22)

where m is given by (9). Let (ϑm) be the nonvanishing zeros of the parametric polynomial Qm(t)
defined by

Qm(t) =
m

∑
k=0

(−1)k Ak(λ1)k(λ2)k(t)k(a + k)m−k(b + k)m−k

· 3F2

[
k−m, k + t,−pm

a + k, b + k
; 1
]

, (23)
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where Ak (0 ≤ k ≤ m) is defined in (11). Then for �(γ) > 0, �(μ) > 1/p > 0,

h + min{0,�(γ + μ− a− b−m)} > �(γ + pm + (ρ− c)/ν)

and h + 1 + min{0,�(μ− λ− pm)} > �((c + ρ)/ν), we have(
I μ;λ1,λ2: ( fr+mr)

h;ν,δ: ( fr)

(
I γ;−pm ,λ−μ

h−γ−pm−ρ/ν;ν,ρ ϕ
))

(x) =
(
I γ+μ;a,b: (ϑm+1)

h−γ−pm−ρ/ν;ν,δ+ρ: (ϑm)
ϕ
)
(x) (24)

where I μ;a,b: ( fr+mr)
h;ν,δ: ( fr)

and I μ;a,b
h;ν,δ are defined by (12) and (14), respectively.

Proof. Denote the left-hand side of (24) by Φ(x). Then by interchanging the order of
integration, we obtain

Φ(x) =
νx−δ−ν(μ+h)

Γ(μ)

∫ x

0
(xν − sν)μ−1

r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
; 1− sν

xν

]
sνh+ν−1

·
{

νs−ν(h−pm)

Γ(γ)

∫ s

0
(sν − tν)γ−1

2F1

[−pm, λ− μ
γ

; 1− tν

sν

]
ϕ(t)tν(h−γ−pm)−ρ+ν−1dt

}
ds

=
ν2x−δ−ν(μ+h)

Γ(μ)Γ(γ)

∫ x

0
ϕ(t)tν(h−γ−pm)−ρ+ν−1Δ1(t)dt, (25)

where

Δ1(t) :=
∫ x

t
sνh+ν−1−νh+νpm(xν − sν)μ−1(sν − tν)γ−1

· r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
; 1− sν

xν

]
2F1

[−pm, λ− μ
γ

; 1− tν

sν

]
ds. (26)

We shall tackle Equation (24) and leave the verification of the validity of interchanging
the order of integration in (25) at the end of the proof.

Letting sν = xν − u(xν − tν) in (26), we have

Δ1(t) =
1
ν

xνpm(xν − tν)μ+γ−1
∫ 1

0
uμ−1(1− u)γ−1

(
1−

(
1− tν

xν

)
u
)pm

· r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
;
(

1− tν

xν

)
u
]

2F1

[−pm, λ− μ
γ

;
(1− u)(1− tν/xν)

1− u(1− tν/xν)

]
du. (27)

The right-hand side of (27) can be evaluated by using an Erdélyi-type integral estab-
lished by Luo and Raina [21]. For �(γ) > �(μ) > 0 and z ∈ C \ [1, ∞), Luo and Raina
proved that (Ref. [21], p. 482, Theorem 3.2)

m+2Fm+1

[
a, b, (ϑm + 1)
γ, (ϑm)

; z
]
=

Γ(γ)
Γ(μ)Γ(γ− μ)

∫ 1

0
tμ−1(1− t)γ−μ−1(1− tz)pm

· r+2Fr+1

[
λ1, λ2, ( fr + mr)

μ, ( fr)
; zt

]
2F1

[−pm, λ− μ
γ− μ

;
(1− t)z
1− tz

]
dt, (28)

where λ1, λ2 and pm are given by (22) and (ϑm) are the nonvanishing zeros of the parametric
polynomial defined in (23). We note that the parametric polynomial is independent of
parameter γ, and thus we may replace γ by γ + μ (without changing the values of λ1, λ2,
pm and Qm(t)) in (28) to get

m+2Fm+1

[
a, b, (ϑm + 1)

γ + μ, (ϑm)
; z
]
=

Γ(γ + μ)

Γ(μ)Γ(γ)

∫ 1

0
tμ−1(1− t)γ−1(1− tz)pm

· r+2Fr+1

[
λ1, λ2, ( fr + mr)

μ, ( fr)
; zt

]
2F1

[−pm, λ− μ
γ

;
(1− t)z
1− tz

]
dt, (29)
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where min{�(γ),�(μ)} > 0.
Using the Erdélyi-type integral (29) in (27), we obtain

Δ1(u) =
Γ(μ)Γ(γ)
Γ(γ + μ)

xνpm(xν − tν)μ+γ−1
m+2Fm+1

[
a, b,

γ + μ,
(ϑm + 1)
(ϑm)

; 1− tν

xν

]
. (30)

Finally, substituting (30) into (25), we get

Φ(x) =
νx−δ−ρ

Γ(γ + μ)
x−ν(μ+γ+(h−γ−pm−ρ/ν))

∫ x

0
(xν − tν)μ+γ−1

· m+2Fm+1

[
a, b,

γ + μ,
(ϑm + 1)
(ϑm)

; 1− tν

xν

]
ϕ(t)tν(h−γ−pm−ρ/ν)+ν−1dt

=
(
I γ+μ;a,b: (ϑm+1)

h−γ−pm−ρ/ν;ν,δ+ρ: (ϑm)
ϕ
)
(x),

which is the desired right-hand side of (24).
Now, we validate the interchanging of the integration. It is sufficient to show that

I =
∫ x

0
(xν − sν)�(μ)−1

∣∣∣∣r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
; 1− sν

xν

]∣∣∣∣sν+�(νpm)−1Δ2(s)ds < ∞,

where

Δ2(s) =
∫ s

0
(sν − tν)�(γ)−1

∣∣∣∣2F1

[−pm, λ− μ
γ

; 1− tν

sν

]∣∣∣∣|ϕ(t)|tνh−�(νγ+νpm+ρ)+ν−1dt

=
1
ν

sνh−�(νpm+ρ)
∫ 1

0
(1− u)�(γ)−1

∣∣∣∣2F1

[−pm, λ− μ
γ

; 1− u
]∣∣∣∣

·
∣∣∣ϕ(su1/ν

)∣∣∣uh−�(γ+pm+ρ/ν)−1du.

Note that (see Ref. [18], p. 63, Theorem 2.1.3 and [30], p. 387)

2F1

[
a, b
c

; 1− z
]
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O(1), �(c− a− b) > 0;

O
(

z�(c−a−b)
)

, �(c− a− b) < 0;

O(log z), a + b = c;

O
(

z�(c−a−b)
)
+O(1), �(c− a− b) = 0, c �= a + b

(31)

as z → 0+, so for each s, we have

Δ2(s) ≤ D1 · sνh−�(νpm+ρ)
∫ 1

0
(1− u)�(γ)−1

· uh−�(γ+pm+ρ/ν)+min{0,�(γ+pm−λ+μ)}−1
∣∣∣ϕ(su1/ν

)∣∣∣du,

where D1 is a positive number. In view of the definition of the Erdélyi–Kober operator (18),
we have

Δ2(s) ≤ D2 · sνh−�(νpm+ρ)F(s),

where D2 := D1Γ(�(γ)) (�(γ) > 0) and

F(s) :=
(

I�(γ)
+;ν,h−�(γ+pm+ρ/ν)+min{0,�(γ+pm−λ+μ)}−1|ϕ|

)
(s).

From Lemma 1, we have F ∈ Xp
c , since ϕ ∈ Xp

c and

h + min{0,�(γ + pm − λ + μ)} > �(γ + pm + (ρ− c)/ν).
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For the generalized hypergeometric function p+1Fp[z], we have (see, for example Ref.
[31], p. 149)

p+1Fp

[
a1, · · · , ap+1

b1, · · · , bp
; 1− z

]
=

⎧⎪⎪⎨⎪⎪⎩
O(1), �(ψp) > 0;

O
(

z�(ψp)
)

, �(ψp) < 0;

O(log z), ψp = 0,

(32)

as z → 0+, where ψp := ∑
p
�=1 b� −∑

p+1
�=1 a�. Therefore, for each x ∈ R+, we find that

I ≤ D2D3x−ν min{0,�(μ−λ1−λ2)−m}

·
∫ x

0
(xν − sν)�(μ)−1sν min{0,�(μ−λ1−λ2)−m}+νh+ν−�(ρ)F(s)

ds
s

≤ D2D3x−ν min{0,�(μ−λ1−λ2)−m}‖F‖Xp
c

·
(∫ x

0
(xν − sν)p′�(μ)−p′ sp′ν min{0,�(μ−λ1−λ2)−m}+p′ν(h+1)−p′�(ρ)−p′c−1ds

)1/p′

≤ D2D3v−1/p′xν�(μ−ρ/ν)+νh−c‖F‖Xp
c

·
(∫ 1

0
(1− u)p′�(μ)−p′up′ min{0,�(μ−λ1−λ2)−m}+p′(h+1)−p′�(ρ)/ν−p′c/ν−1ds

)1/p′

< ∞,

where D3 is a positive number, 1/p + 1/p′ = 1, p′�(μ)− p′ + 1 > 0 and

min{0,�(μ− λ1 − λ2)−m}+ h + 1 > �((c + ρ)/ν).

Thus, Fubini’s theorem is applicable and the proof is complete.

Remark 1. When r = 0, we can set h = 0, ν = 1, μ = α, δ = λ− b− α and ρ = a + b− λ− γ
in (24) to get(

I α;λ−a,λ−b
0;1,λ−b−α

(
I γ;a+b−λ,λ−α

0;1,a+b−λ−γ ϕ
))

(x) =
(
I α;λ−b,λ−a

0;1,λ−b−α

(
I γ;a+b−λ,λ−α

0;1,a+b−λ−γ ϕ
))

(x)

=
(
I γ+α;a,b

0;1,a−α−γ ϕ
)
(x). (33)

By comparing it with (16), we find that (33) is equivalent to the identity(
Iα,λ−b−α,a−λ

(
Iγ,a+b−λ−γ,α−λ ϕ

))
(x) =

(
Iγ+α,a−γ−α,−b ϕ

)
(x). (34)

If we let further a = β + γ + δ + α, b = γ + δ− η and λ = β− η + γ + δ + α, then (34)
reduces to (4).

Theorem 2. Assume that ϕ ∈ Xp
c . Let λ1, λ2, and pm be defined in (22). Let (ϑm) be the

nonvanishing zeros of the parametric polynomial Qm(t) defined in (23). Then for �(γ) > 0,
�(μ) > 1/p > 0,

h + 1 +�((ρ + δ)/ν− pm − γ) + min{0,�(γ + pm − λ + μ)}+ (c− 1)/ν > 0

and 1 + h + (1 + c)/ν + min{0,�(μ− λ− pm)}+�((ρ + δ)/ν) > 0, we have(
J μ;λ1,λ2: ( fr+mr)

h;ν,δ: ( fr)

(
J γ;−pm ,λ−μ

h−γ−pm+δ/ν;ν,ρ ϕ
))

(x) =
(
J γ+μ;a,b: (ϑm+1)

h−pm−γ;ν,δ+ρ: (ϑm)
ϕ
)
(x), (35)

where J μ;a,b: ( fr+mr)
h;ν,δ: ( fr)

and J μ;a,b
h;ν,δ are defined by (13) and (15), respectively.
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Proof. Denote the left-hand side of (35) by Ψ(s). Then, following a similar procedure as
described in the proof of Theorem 1, we have

Ψ(s) =
νxνh+ν−1

Γ(μ)

∫ ∞

x
(sν − xν)μ−1

r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
; 1− xν

sν

]
s−δ−ν(μ+h)

·
{

νsνh+ν−1

Γ(γ)
s−ν(γ+pm)+δ

∫ ∞

s
(tν − sν)γ−1

2F1

[−pm, λ− μ
γ

; 1− sν

tν

]

· ϕ(t)t−ρ−ν(h−pm)−δdt

}
ds

=
ν2xνh+ν−1

Γ(μ)Γ(γ)

∫ ∞

x
ϕ(t)t−ρ−ν(h−pm)−δΔ3(t)dt, (36)

where

Δ3(t) =
∫ t

x
sν−1−ν(μ+γ+pm)(sν − xν)μ−1(tν − sν)γ−1

· r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
; 1− xν

sν

]
2F1

[−pm, λ− μ
γ

; 1− sν

tν

]
ds.

Letting

s =
tx

(tν + (xν − tν)u)1/ν
,

so that

ds =
1
ν

tx(tν − xν)(tν + (xν − tν)u)−1−1/νdu and u =
tν(xν − sν)

sν(xν − tν)
∈ (0, 1),

we have

Δ3(t) =
1
ν
(tν − xν)μ+γ−1t−νμx−ν(γ+pm)

∫ 1

0
uμ−1(1− u)γ−1

(
1−

(
1− xν

tν

)
u
)pm

· r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
;
(

1− xν

tν

)
u
]

2F1

[−pm, λ− μ
γ

;
(1− u)(1− xν/tν)

1− u(1− xν/tν)

]
du.

The use of Erdélyi-type integral (29) gives

Δ3(t) =
1
ν

Γ(μ)Γ(γ)
Γ(γ + μ)

(tν − xν)μ+γ−1t−νμx−ν(γ+pm)
m+2Fm+1

[
a, b, (ϑm + 1)

γ + μ, (ϑm)
; 1− xν

tν

]
,

and thus (36) becomes

Ψ(s) =
νxν(h−γ−pm)+ν−1

Γ(μ + γ)

∫ ∞

x
(tν − xν)μ+γ−1

m+2Fm+1

[
a, b, (ϑm + 1)

γ + μ, (ϑm)
; 1− xν

tν

]
· ϕ(t)t−(ρ+δ)−ν(μ+γ+h−γ−pm)dt

=
(
J γ+μ;a,b: (ϑm+1)

h−pm−γ;ν,δ+ρ: (ϑm)
ϕ
)
(x),

where (ϑm) are the nonvanishing zeros of the parametric polynomial (23).
As in the proof of Theorem 1, we verify the validity of interchanging the order of

integration by checking the finiteness of the integral

I =
∫ ∞

x
(sν − xν)�(μ)−1

∣∣∣∣r+2Fr+1

[
λ1, λ2,

μ,
( fr + mr)

( fr)
; 1− xν

sν

]∣∣∣∣sν−1−�(νμ+νγ+νpm)Δ4(s)ds,
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where

Δ4(s) =
∫ ∞

s
(tν − sν)�(γ)−1

∣∣∣∣2F1

[−pm, λ− μ
γ

; 1− sν

tν

]∣∣∣∣|ϕ(t)|t−�(ρ+δ−νpm)−νhdt

=
1
ν

s1−ν−�(ρ+δ−νγ−νpm)−νh
∫ ∞

1
(u− 1)�(γ)−1

∣∣∣∣2F1

[−pm, λ− μ
γ

; 1− 1
u

]∣∣∣∣
· |ϕ

(
su1/ν

)
|u1/ν−1−�(ρ/ν+δ/ν−pm)−hdu.

Using (31) gives

Δ4(s) ≤ D4 · s1−ν−�(ρ+δ−νγ−νpm)−νh
∫ ∞

1
(u− 1)�(γ)−1

·
∣∣∣ϕ(su1/ν

)∣∣∣u−�(γ)−h+�(γ)+1/ν−1−�(ρ/ν+δ/ν−pm)−min{0,�(γ+pm−λ+μ)}du,

where D4 is a positive number. Thus we have

Δ4(s) ≤ D4 · s1−ν−�(ρ+δ−νγ−νpm)−νhG(s),

where D5 := D4Γ(�(γ)) (�(γ) > 0) and

G(s) :=
(

I�(γ)−;ν,h−1/ν+1+�(ρ/ν+δ/ν−pm−γ)+min{0,�(γ+pm−λ+μ)}|ϕ|
)
(s) ∈ Xp

c .

Then from (32) we have

I ≤ D5D6xν min{0,�(μ−λ1−λ2)−m}

·
∫ ∞

x
(sν − xν)�(μ)−1s−ν min{0,�(μ−λ1−λ2)−m}−νh−�(ρ+δ+νμ)−1G(s)

ds
s

≤ D5D6xν min{0,�(μ−λ1−λ2)−m}‖G‖Xp
c

·
(∫ ∞

x
(sν − xν)p′�(μ)−p′ s−p′ν min{0,�(μ−λ1−λ2)−m}−p′νh−p′�(ρ+δ+νμ)−p′−p′c−1ds

)1/p′

≤ D5D6x−ν−νh−�(ρ+δ)−1−c−1/p′ ‖G‖Xp
c

·
(∫ ∞

1
(u− 1)p′�(μ)−p′u−p′ min{0,�(μ−λ1−λ2)−m}−p′h−p′�((ρ+δ)/ν+μ)−p′(1+c)/ν−1ds

)1/p′

< ∞.

This completes the proof.

Remark 2. When r = 0, we can set h = 0, ν = 1, δ = γ + λ− a− b and ρ = a + b− λ− γ
in (35) to get (

J μ;λ−b,λ−a
0;1,γ+λ−a−b

(
Iγ,a+b−λ−γ,μ−λ ϕ

))
(x) =

(
J γ+μ;a,b

a+b−λ−γ;1,0 ϕ
)
(x). (37)

Letting further a = μ + γ in (37), we have(
Iμ,λ−μ−b,γ+μ−λ

(
Iγ,μ+b−λ,μ−λ ϕ

))
(x) =

(
J γ+μ;γ+μ,b

μ+b−λ;1,0 ϕ
)
(x)

=
(

Iγ+μ
−;1,μ−λ ϕ

)
(x) =

(
K−μ−λ,γ+μ ϕ

)
(x). (38)

Additionally, by putting b = β + λ− μ in (38) and then letting λ = μ− η in the resulting
equation we get the following clearer form(

Iμ,−β,γ+η
(

Iγ,β,η ϕ
))

(x) =
(

K−η,γ+μ ϕ
)
(x),

260



Symmetry 2022, 14, 1845

which is a special case of (5) when δ = −β. It does not seem possible to deduce (5) by merely
specializing the parameters in (35). Therefore, it should be interesting to find a composition formula
from (35) which may include (5) or (6) as particular cases.

As depicted in Theorems 1 and 2, the study of the composition structure of the opera-
tors I and J rests heavily on the existence of a suitable Erdélyi-type integral, because we
derive (24) and (35) from the Erdélyi-type integral (29). However, there may possibly be an
alternative approach by which the Erdelyi-type integral may be obtained from a known
composition structure [1] (see also Refs. [22,32]). Such an approach may be of special
interest since our operators involve the generalized hypergeometric function r+2Fr+1 and
the methodology may lead to some new results.

3.2. Derivative Formula

In this section we derive a derivative formula involving the fractional integral opera-
tor (12).

We introduce here some notations describing necessary concepts that would be used
in the sequel. Let (ξm) be the nonvanishing zeros of the parametric polynomial Qm(t) of
degree m defined by

Qm(t) =
m

∑
j=0

σm−j

j

∑
k=0

{
j
k

}
(b)k(t)k(μ− b− t)m−k, (39)

where the σj (0 ≤ j ≤ m) are determined by the generating relation (10). We define the
parametric polynomial Q̃m(t) by

Q̃m(t) =
m

∑
j=0

σ̃m−j

j

∑
k=0

{
j
k

}
(μ− b−m)k(t)k(b + m− n− t)m−k, (40)

where σ̃j (0 ≤ j ≤ m) are determined by the generating relation

m

∏
j=1

(ξ j + x) =
m

∑
j=0

σ̃m−jxj. (41)

Theorem 3. For �(μ) > n (n ∈ N), we have

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

}
= νnxδ+ν(μ−n−a+h)

(
I μ−n;a,b−n: (ηm+1)

h;ν,δ: (ηm)
ϕ
)
(x), (42)

where (ηm) are the nonvanishing zeros of the parametric polynomial Q̃m(t) given by (40).

Proof. Using the Euler-type transformation due to Miller and Paris [20], p. 305, Theorem 3

r+2Fr+1

[
a, b,
μ,

( fr + mr)
( fr)

; x
]
= (1− x)−a

m+2Fm+1

[
a, μ− b−m,

μ,
(ξm + 1)
(ξm)

;
x

x− 1

]
, (43)

we have

xδ+ν(μ−a+h)
(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

=
ν

Γ(μ)

∫ x

0
(xν − sν)μ−1

m+2Fm+1

[
a, μ− b−m,

μ,
(ξm + 1)
(ξm)

; 1− xν

sν

]
ϕ(s)sν(h−a)+ν−1ds,

where (ξm) are the nonvanishing zeros of the parametric polynomial Qm(t) defined by (39).
By making use of the Leibniz integral rule, we obtain
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∂

∂x

{
xδ+ν(μ−a+h)

(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

}
=

ν

Γ(μ)
∂

∂x

∫ x

0
(xν − sν)μ−1

m+2Fm+1

[
a, μ− b−m,

μ,
(ξm + 1)
(ξm)

; 1− xν

sν

]
ϕ(s)sν(h−a)+ν−1ds

=
ν

Γ(μ)

∫ x

0

∂

∂x

{
(xν − sν)μ−1

m+2Fm+1

[
a, μ− b−m,

μ,
(ξm + 1)
(ξm)

; 1− sν

xν

]}
· ϕ(s)sν(h−a)+ν−1ds.

Taking into account the formula [33], p. 442, Equation (51)

∂n

∂zn

{
zσ−1

pFq

[
(ap)

(bq−1), σ
; z
]}

= (σ− n)nzσ−n−1
pFq

[
(ap)

(bq−1), σ− n; z
]

, (44)

we have

∂

∂x

{
xδ+ν(μ−a+h)

(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

}
=

ν2

Γ(μ− 1)

∫ x

0
(xν − sν)(μ−1)−1

· m+2Fm+1

[
a, μ− b−m,

μ− 1,
(ξm + 1)
(ξm)

; 1− xν

sν

]
ϕ(s)sν(h−a)+ν−1ds.

Next, differentiating n times, we obtain

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

}
=

ν1+n

Γ(μ− n)

∫ x

0
(xν − sν)μ−n−1

· m+2Fm+1

[
a, μ− b−m,

μ− n,
(ξm + 1)
(ξm)

; 1− xν

sν

]
ϕ(s)sν(h−a)+ν−1ds.

By applying the Euler-type transformation (43) again, we get

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,b: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

}
=

ν1+nx−νa

Γ(μ− n)

∫ x

0
(xν − sν)μ−n−1

m+2Fm+1

[
a, b− n,
μ− n,

(ηm + 1)
(ηm)

; 1− sν

xν

]
ϕ(s)sνh+ν−1ds

= νnxδ+ν(μ−n−a+h)
(
I μ−n;a,b−n: (ηm+1)

h;ν,δ: (ηm)
ϕ
)
(x), (45)

where the sequence of parameters (ηm) are the nonvanishing zeros of the parametric
polynomial Q̃m(t) of degree m given by (40). This completes the proof of (42).

Before proceeding further, we consider here a simple example.

Example 1. When r = 1 and m = m1 = 1, f1 = f and η1 = η in (42), we get

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,b: f+1

h;ν,δ: f ϕ
)
(x)

}
= νnxδ+ν(μ−n−a+h)

(
I μ−n;a,b−n: η+1

h;ν,δ: η ϕ
)
(x), (46)

where η is the nonvanishing zero of the parametric polynomial

Q̃1(t) =
1

∑
j=0

σ̃1−j

j

∑
k=0

{
j
k

}
(μ− b− 1)k(t)k(b + 1− n− t)1−k

= σ̃1

{
0
0

}
(b + 1− n− t) + σ̃0

{
1
0

}
(b + 1− n− t) + σ̃0

{
1
1

}
(μ− b− 1)t

= σ̃1(b + 1− n) + [σ̃0(μ− b− 1)− σ̃1]t.
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Therefore, η can be expressed as

η =
σ̃1(b + 1− n)

σ̃1 − σ̃0(μ− b− 1)
.

It follows from (41) that σ̃0 = 1 and σ̃1 = ξ, where ξ is the nonvanishing zero of the
parametric polynomial

Q1(t) = σ1(μ− b) + [σ0b− σ1]t.

From (10), we have σ0 = 1 and σ1 = f and thus ξ can be written as ξ = f (μ− b)/( f − b).
Hence,

η =
f (μ− b)(b + 1− n)

f + b(μ− b− 1)
,

wherein we note that η depends on n.

It may be observed that the Euler-type transformation (43) is used twice, so we need
to be careful while finding special cases of Theorem 3.

(i) By letting b = n (n ∈ N) in (42) and noting that m+2Fm+1-function in (42) reduces to 1,
we get

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,n: ( fr+mr)

h;ν,δ: ( fr)
ϕ
)
(x)

}
=

ν1+nx−νa

Γ(μ− n)

∫ x

0
(xν − sν)μ−n−1 ϕ(s)sνh+ν−1ds

= νnxν(μ−n−a+h)
(

Iμ−n
+;ν,h ϕ

)
(x), (47)

where Iμ−n
+;ν,h denotes the Erdélyi–Kober type fractional integral defined by (18).

In fact, letting b = n changes the parametric polynomials Qm(t) and Q̃m(t) defined
by (39) and (40), respectively. However, if the new polynomials, say Q∗m(t) and
Q̃∗m(t), also have nonvanishing zeros, denoted by (ξ∗m) and (η∗m) respectively, then
(47) holds true. To illustrate here, let us set b = n in Example 1, then Q1(t) becomes
Q∗1(t) = f (μ− n) + (n− f )t with ξ∗ = f (μ− n)/( f − n) its nonvanishing zero and
Q̃1(t) becomes Q̃∗1(t) = ξ∗ + (μ− n− 1− ξ∗)t. The nonvanishing zero of Q̃∗1(t) is

η∗ =
f (μ− n)

f + n(μ− n− 1)
( f �= 0, μ �= n).

Therefore, we obtain from (46) that

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,n: f+1

h;ν,δ: f ϕ
)
(x)

}
= νnxδ+ν(μ−n−a+h)

(
I μ−n;a,0: η∗+1

h;ν,δ: η∗ ϕ
)
(x)

= νnxν(μ−n−a+h)
(

Iμ−n
+;ν,h ϕ

)
(x).

We also observe that the subsitution b = n may always reduce the right-hand side
of (42) to a Erdélyi–Kober type integral.

(ii) When r = 0, then in view of (14) and (42), we simply obtain

∂n

∂xn

{
xδ+ν(μ−a+h)

(
I μ;a,b

h;ν,δ ϕ
)
(x)

}
= νnxδ+ν(μ−n−a+h)

(
I μ−n;a,b−n

h;ν,δ ϕ
)
(x). (48)

Further, if h = 0, ν = 1, δ = β, a = α + β, b = −η + n and μ = α + n in (48), we then
have

∂n

∂xn

{
xn
(
I α+n;α+β,−η+n

0;1,β ϕ
)
(x)

}
=
(
I α;α+β,−η

0;1,β ϕ
)
(x).

In addition, in view of (16) and the relation
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xn
(
I α+n;α+β,−η+n

0;1,β ϕ
)
(x) =

x−β−α

Γ(α + n)

∫ x

0
(x− s)α+n−1

2F1

[
α + β,−η + n

α + n
; 1− s

x

]
ϕ(s)ds

=
(

Iα+n,β−n,η−n
0,x ϕ

)
(x),

we note the following interesting and remarkable relation:

∂n

∂xn

(
Iα+n,β−n,η−n
0,x ϕ

)
(x) =

(
Iα,β,η
0,x ϕ

)
(x),

which serves as the definition of Saigo’s generalized fractional derivative (see Ref. [3],
p. 8, Equation (3.2)).

4. Relationship with Khudozhnikov’s Work

In a very short paper, Khudozhnikov [17] considered in a certain class of integrable
functions the following Volterra-type integral equation

∫ x

a

(x− s)γ−1

Γ(γ) 3F2

[
α, β,
γ,

ε + m
ε

; 1− x
s

]
ϕ(s)ds = g(x), (49)

where 0 < �(γ) < 1, m ∈ N and 0 < a ≤ x ≤ b < +∞. By using some known formulas
from Ref. [33], Khudozhnikov obtained the following result [17], p. 79, Equation (2).

Theorem 4 (Khudozhnikov). The Volterra-type integral Equation (49) can be reduced to the
following system of differential and integral equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m

∑
k=0

(
m
k

)
(α)k(β)k

(ε)k(−x)k y(m−k)(x) = g(x)xα+β−γ,

∫ x

a

(x− s)γ+m−1

Γ(γ + m) 2F1

[
γ− α, γ− β

γ + m
; 1− x

s

]
sα+β−γ ϕ(s)ds = y(x),

with initial conditions y(a) = y′(a) = · · · = y(m−1)(a) = 0.

In Ref. [17], Khudozhnikov briefly mentioned that the result can be generalized
to those equations involving the generalized hypergeometric functions p+1Fp, pFp and
p−1Fp. However, he did not give possible forms of the generalizations or the formulas to
be used. In fact, the most likely generalization requires use of a generalized Euler-type
transformation, which is not included in Ref. [33]. Therefore, we think that the question of
finding a generalization of Theorem 4 is still open.

In this section, we first propose a generalization of Theorem 4. We then consider a
Volterra-type integral equation generated by the operator I defined by (12) and obtain an
analogue of Khudozhnikov’s theorem.

4.1. A Generalization of Khudozhnikov’s Theorem

Let us consider the Volterra-type integral equation

∫ x

a

(x− s)γ−1

Γ(γ) r+2Fr+1

[
α, β,
γ,

( fr + mr)
( fr)

; 1− x
s

]
ϕ(s)ds = g(x), (50)

where 0 < �(γ) < 1, m ∈ N and 0 < a ≤ x ≤ b < +∞. Obviously, (50) reduces to (49)
when r = 1, f1 = ε and m1 = m.

By using a lemma due to Miller and Paris [20], p. 298, Lemma 4, and the classical
Euler transformation [18], p. 68, Equation (2.2.7), we can express the r+2Fr+1-function as a
finite sum of 2F1-functions given by
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r+2Fr+1

[
α, β,
γ,

( fr + mr)
( fr)

; x
]
=

m

∑
k=0

Ak
A0

(α)k(β)k
(γ)k

2F1

[
α + k, β + k

γ + k,
; x
]

xk

= (1− x)γ−α−β
m

∑
k=0

Ak
A0

(α)k(β)k
(γ)k

2F1

[
γ− α, γ− β

γ + k,
; x
](

x
1− x

)k
. (51)

Then (50) can be written as

g(x) =
∫ x

a

(x− s)γ−1

Γ(γ) r+2Fr+1

[
α, β,
γ,

( fr + mr)
( fr)

; 1− x
s

]
ϕ(s)ds

=
m

∑
k=0

Ak
A0

(α)k(β)k

(−x)k xγ−α−β
∫ x

a

(x− s)γ+k−1

Γ(γ + k) 2F1

[
γ− α, γ− β

γ + k
; 1− x

s

]
sα+β−γ ϕ(s)ds. (52)

Let

y(x) :=
∫ x

a

(x− s)γ+m−1

Γ(γ + m) 2F1

[
γ− α, γ− β

γ + m
; 1− x

s

]
sα+β−γ ϕ(s)ds.

In view of the derivative Formula (44), we have

∂m−k

∂xm−k

{
(x− s)γ+m−1

Γ(γ + m) 2F1

[
γ− α, γ− β

γ + m
; 1− x

s

]}
=

(x− s)γ+k−1

Γ(γ + k) 2F1

[
γ− α, γ− β

γ + k
; 1− x

s

]
,

and therefore

y(m−k)(x) =
∫ x

a

(x− s)γ+k−1

Γ(γ + k) 2F1

[
γ− α, γ− β

γ + k
; 1− x

s

]
sα+β−γ ϕ(s)ds

and y(m−k)(a) = 0 for k = 1, · · · , m− 1. Now (52) can be expressed as

m

∑
k=0

Ak
A0

(α)k(β)k

(−x)k y(m−k)(x) = xα+β−γg(x).

The above steps concerning the integral Equation (50) therefore yield the
following theorem.

Theorem 5. The Volterra-type integral Equation (50) can be reduced to the following system of
differential and integral equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m

∑
k=0

Ak
A0

(α)k(β)k

(−x)k y(m−k)(x) = g(x)xα+β−γ,

∫ x

a

(x− s)γ+m−1

Γ(γ + m) 2F1

[
γ− α, γ− β

γ + m
; 1− x

s

]
sα+β−γ ϕ(s)ds = y(x),

with initial conditions y(a) = y′(a) = · · · = y(m−1)(a) = 0, where Ak (0 ≤ k ≤ m) is defined
in (11).

To show that Theorem 5 contains Khudozhnikov’s result as a special case, we only
need to prove that

Ak
A0

=

(
m
k

)
1

(ε)k
. (53)

Our calculations require some basics on the theory of combinatorics.
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When r = 1, f1 = ε and m1 = m, we get

A0 = (ε)m and Ak =
m

∑
j=k

{
j
k

}
σ̂m−j, (54)

where σ̂m−j is generated by

(ε + x)m =
m

∑
j=0

σ̂m−jxj. (55)

We need in fact to find an explicit expression for σ̂m−j. By using the Chu–Vandermonde
identity [18], p. 70, we have

(ε + x)m =
m

∑
k=0

(
m
k

)
(ε)m−k(x)k. (56)

Recall that

(x)k =
k

∑
j=0

(−1)k−js(k, j)xj =
k

∑
j=0

[
k
j

]
xj, (57)

where s(k, j) is the Stirling number of the first kind and the symbol
[

k
j

]
is usually used to

denote the unsigned Stirling number of the first kind (see Ref. [34], p. 239). Substituting (57)
into (56) and then interchanging the order of summation, we obtain

(ε + x)m =
m

∑
k=0

(
m
k

)
(ε)m−k

k

∑
j=0

[
k
j

]
xj =

m

∑
j=0

m

∑
k=j

(
m
k

)
(ε)m−k

[
k
j

]
xj. (58)

Comparing (58) with (55), it follows that

σ̂m−j =
m

∑
k=j

(
m
k

)
(ε)m−k

[
k
j

]
, (59)

and combining (54) with (59) and taking into account the index factorization

[k ≤ j ≤ m][j ≤ � ≤ m] = [k ≤ j ≤ � ≤ m] = [k ≤ � ≤ m][k ≤ j ≤ �],

we obtain

Ak =
m

∑
j=k

{
j
k

} m

∑
�=j

(
m
�

)
(ε)m−�

[
�
j

]
=

m

∑
�=k

(
m
�

)
(ε)m−�

�

∑
j=k

{
j
k

}[
�
j

]

=
1

(k− 1)!

m

∑
�=k

(
m
�

)(
�
k

)
(ε)m−�(1)�−1 =

1
(k− 1)!

m−k

∑
�=0

(
m
�+ k

)(
�+ k

k

)
(ε)m−�−k(1)�+k−1

=

(
m
k

) m−k

∑
�=0

(
m− k
�

)
(ε)m−k−�(k)� =

(
m
k

)
(ε)m
(ε)k

, (60)

where we have used the familiar convoluation identity (see, for example Ref. [34], p. 240)

�

∑
j=k

{
j
k

}[
�
j

]
=

(
�
k

)
(�− 1)!
(k− 1)!

(� ≥ k ≥ 1).

Evidently, (60) is equivalent to (53).
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4.2. A Variant of Khudozhnikov’s Theorem

A comparison of the fractional integral operator I with Equations (49) and (50) inspire
us to consider the following integral equation

∫ x

ρ

(xν − sν)μ−1

Γ(μ) r+2Fr+1

[
a, b,
μ,

( fr + mr)
( fr)

; 1− sν

xν

]
ϕ(s)sνh+ν−1ds = g(x), (61)

where 0 < �(μ) < 1 and 0 < ρ ≤ s ≤ x < ∞.
Using the Euler-type transformation (43), then Equation (61) can be converted into

∫ x

ρ

(xν − sν)μ−1

Γ(μ) m+2Fm+1

[
a, μ− b−m,

μ,
(ξm + 1)
(ξm)

; 1− xν

sν

]
ϕ(s)sν(h−a)+ν−1ds

= x−νag(x), (62)

where (ξm) are nonvanishing zeros of the parametric polynomial Qm(t) of degree m given
by (39).

By using the same lemma of Miller and Paris [20], p. 298, Lemma 4 and the Euler
transformation [18], p. 68, Equation (2.2.7) or else using Equation (51), we can express (as
in the proof of Theorem 5) the m+2Fm+1-function as a finite sum of 2F1-functions given by

m+2Fm+1

[
a, μ− b−m,

μ,
(ξm + 1)
(ξm)

; x
]

=
m

∑
k=0

Ak
(μ)k

2F1

[
a + k, μ− b−m + k,

μ + k,
; x
]

xk

= (1− x)b−a+m
m

∑
k=0

Ak
(μ)k

2F1

[
μ− a, b + m,

μ + k,
; x
](

x
1− x

)k
, (63)

where

Ak :=
(a)k(μ− b−m)k

ξ1 · · · ξm

m

∑
j=k

{
j
k

}
σ̃m−j (64)

and σ̃j (0 ≤ j ≤ m) are generated by (41). With the help of (63), the integral Equation (62)
can then be written as

m

∑
k=0

Ak

(−xν)k

∫ x

ρ

(xν − sν)μ+k−1

Γ(μ + k) 2F1

[
μ− a, b + m,

μ + k,
; 1− xν

sν

]
ϕ(s)sν(h−b−m)+ν−1ds

= x−ν(b+m)g(x). (65)

By making use of (44), we obtain

∂m−k

∂zm−k

{
zμ+m−1

2F1

[
μ− a, b + m

μ + m
; z
]}

=
(μ)m

(μ)k
zμ+k−1

2F1

[
μ− a, b + m

μ + k
; z
]

,

and thus

∂m−k

∂xm−k

{
(xν − sν)μ+m−1

Γ(μ + m) 2F1

[
μ− a, b + m

μ + m
; 1− xν

sν

]}
= νm−k (xν − sν)μ+k−1

Γ(μ + k) 2F1

[
μ− a, b + m

μ + k
; 1− xν

sν

]
. (66)

Substituting (66) into (65), we get
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m

∑
k=0

Akνk

(−xν)k

∫ x

ρ

∂m−k

∂xm−k

{
(xν − sν)μ+m−1

Γ(μ + m) 2F1

[
μ− a, b + m,

μ + m,
; 1− xν

sν

]}
ϕ(s)sν(h−b−m)+ν−1ds

= νmx−ν(b+m)g(x).

Finally, using the Leibniz integral rule and simplifying the resulting formula by the
Pfaff transformation [18], p. 68, Equation (2.2.6), we obtain

m

∑
k=0

Akνk

(−xν)k
∂m−k

∂xm−k

{
xν(a−μ)

∫ x

ρ

(xν − sν)μ+m−1

Γ(μ + m) 2F1

[
μ− a, μ− b,

μ + m,
; 1− sν

xν

]

ϕ(s)sν(h+μ−b−a−m)+ν−1ds

}
= νmx−ν(b+m)g(x).

If

y(x) = xν(a−μ)
∫ x

ρ

(xν − sν)μ+m−1

Γ(μ + m) 2F1

[
μ− a, μ− b,

μ + m,
; 1− sν

xν

]
ϕ(s)sν(h+μ−b−a−m)+ν−1ds,

then the above details concerning the integral equation (61) may be put in the
following theorem.

Theorem 6. The Volerra-type integral Equation (61) can be reduced to the following system of
differential and integral equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m

∑
k=0

Akνk

(−xν)k y(m−k)(x) = νmx−ν(b+m)g(x),

xν(a−μ)
∫ x

ρ

(xν − sν)μ+m−1

Γ(μ + m) 2F1

[
μ− a, μ− b,

μ + m,
; 1− sν

xν

]
ϕ(s)sν(h+μ−b−a−m)+ν−1ds = y(x),

with initial conditions y(ρ) = y′(ρ) = · · · = y(m−1)(ρ) = 0, where Ak (0 ≤ k ≤ m) is given
by (64).

5. Conclusions

In this paper, some composition formulas of I and J defined by (12) and (13) are ob-
tained by making use of a Erdélyi-type integral. We find a derivative formula, which in the
future may enable us to define a new fractional derivative operator. Finally, we generalize
Khudozhnikov’s work on Volterra-type integral equation and find its relationship with our
operator I .

Considering the obtained properties of the operators I and J , we briefly mention
here some problems that deserve further study.

(i) Since only two composition formulas for I and J are found in the present work, which
is still a very small number compared to the number of the composition formulas
of Saigo’s operators Iα,β,η and Jα,β,η , it may be worthwhile if additional composition
structures can be discovered for the operators I and J . The exploration in this
direction may also lead us to new discoveries related to the Erdélyi-type integrals;

(ii) The present work together with our previous papers [14,16] have established many
fundamental properties of I and J . For further possible work, some new properties
and problems may be worthy of attention in view of the classical books [4,23] on
the subject and some recent review articles contained, for example, in Ref. [35].
In particular, it may be worthwhile to first focus on the problem of finding a reasonable
analogue of the well known limit case formula, viz. lim

α→0
(Iα

a+ϕ)(x) = ϕ(x) concerning

the Riemann–Liouville fractional integral operator (see Ref. [23], p. 51, Theorem 2.7).
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Abstract: The symmetry design of the system contains integer partial differential equations and
fractional-order partial differential equations with fractional derivative. In this paper, we develop
a scheme to examine fractional-order shock wave equations and wave equations occurring in the
motion of gases in the Caputo sense. This scheme is formulated using the Mohand transform (MT)
and the homotopy perturbation method (HPM), altogether called Mohand homotopy perturbation
transform (MHPT). Our main finding in this paper is the handling of the recurrence relation that
produces the series solutions after only a few iterations. This approach presents the approximate
and precise solutions in the form of convergent results with certain countable elements, without any
discretization or slight perturbation theory. The numerical findings and solution graphs attained
using the MHPT confirm that this approach is significant and reliable.

Keywords: Mohand transform; homotopy perturbation method; shock wave equation

1. Introduction

In recent decades, various fractional models in science and technology have been
designed in terms of nonlinear partial differential equations (PDEs), such as plasma physics,
fluid dynamics, nonlinear optics, quantum mechanics, solid-state physics, mathematical
biology and chemical kinetics [1–3]. Fractional differential equations have been widely
used to model complex phenomena in various branches of science and engineering, such
as wave propagation, lattice vibration, optical fiber, nanotechnology and biology [4,5].
The scientific theory of shock waves played a role in the problems of motion of gases and
compressible liquids in the second half of the 19th century. They are described by nonlinear
hyperbolic PDEs and can be written in their simplest form as [6]

Dα
℘ϑ(�,℘) + f

(
ϑ(�,℘)

)
�
= 0, � ∈ R, ℘ > 0 (1)

with the initial condition

ϑ(�, 0) = ϑ0(�), � ∈ R. (2)

The shock wave equation is a nonlinear PDE and has given an important contribution
to various studies, such as those of explosions, traffic flow, glacier waves and airplanes
breaking the sound barrier. Goswami et al. [7] used an effective scheme based on the
Sumudu transform and the homotopy perturbation method to find the numerical solutions
of time fractional Schrodinger equations with harmonic oscillator. Singh and Gupta [8]
presented the homotopy perturbation method (HPM) to examine the numerical solution of
the time fractional shock wave equation and wave equation. Allan and Khaled [9] employed
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the Adomian decomposition method to provide the analytical solution of the shock wave
equation. Das and Kumar [10] proposed a method for calculating the approximate solution
of the shock wave equation and shallow water equation with time derivatives. Later, many
researchers [11–14] have developed different strategies to achieve the approximate solution
of nonlinear shock wave equations of fractional order.

A differential problem of symmetry is a modification that generates the differential
equation continuously in such a way that these symmetries can help to achieve the solution
of the differential equation. Solving these equations is sometimes easier than solving the
Volterra integro-differential equations [15]. Symmetries can be identified by solving a set
of connected ordinary differential equations. PDEs of fractional order are PDEs whose
symmetry condition is separated into two segments of integer order and fractional order, and
the linear scheme of fractional PDEs reveals a wide dimensional trivial solution continuously.
Various numerical and analytical approaches have been demonstrated to attain the semi-
analytical solution of nonlinear PDEs, such as the (G′/G)-expansion method [16], the neural
network approach [17], the variational iteration method [18], the Exp-function method [19],
the homotopy perturbation method [20], the homotopy analysis method [21], residual power
series [22], the residual power series method [23], the quasi-wavelet method [24], the Haar
wavelet method [25] and the two-scale approach [26]. New developments of the HPM can
be found in [27,28].

The aim of this paper is to present the idea of the MT coupled with the HPM for
the numerical investigation of nonlinear shock wave equations of fractional order. The
obtained results are expressed in terms of series with easily computable components. This
series solution converges to the exact solution rapidly. This study is summarized as follows:
In Section 2, we demonstrate some basic preliminary concepts. In Section 3, a new strategy
is sorted out to handle nonlinear expressions. In Section 4, some numerical examples are
demonstrated to determine the competence of the proposed strategy, and at last, some
results are discussed with our conclusions in Sections 5 and 6.

2. Preliminary Concepts

Definition 1. Let ϑ(℘) be a function precise for ℘ ≥ 0 [29]; then, we have

L [ϑ(℘)] = V(r) =
∫ ∞

0
ϑ(℘)e−r℘d℘,

which is said to be a Laplace transform, where ℘ is a function (i.e., a function of the time domain),
defined on [0, ∞), to a function of r (i.e., of the frequency domain).

Definition 2. If V(r) symbolizes the Laplace transform of ϑ(℘), then

ϑ(℘) = L −1V(r),

is termed as the inverse Laplace transform of V(r).

Definition 3. Mohand and Mahgoub [30,31] developed the MT to facilitate ordinary and PDEs.
Let the MT be expressed with the help of operator M (.). Then =⇒

M [ϑ(℘)] = S(r) = r2
∫ ∞

0
ϑ(℘)e−r℘d℘, k1 ≤ r ≤ k2, k1, k2 ∈ N

where k1 and k2 are constants. On the other hand, if S(r) is the MT of ϑ(℘), then ϑ(℘) is said to be
the inverse of S(r), so

M−1{S(r)} = ϑ(℘) =⇒ M−1 is the inverse MT.

One may see that the Laplace transform and the Mohand transform differ in the function of r (i.e.,
the frequency domain).
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Lemma 1. The MT of a function of fractional order is [32]

M {Sα(℘)} = rαS(r)−
n−1

∑
k=0

uk(0)
rk − (α + 1)

, 0 < α ≤ n

Proposition 1. Let M {ϑ(℘)} = S(r); then, the MT of ϑ′(℘) has the following properties:

(a) M {ϑ′(℘)} = rS(r)− r2ϑ(0);

(b) M {ϑ′′(℘)} = r2S(r)− r3ϑ(0)− ϑ2ϑ′(0);

(c) M {ϑn(℘)} = rnS(r)− rn+1ϑ(0)− rnϑ′(0)− · · · − r2ϑn−1(0).

Definition 4. The fractional derivative [15] in the Caputo sense is

Dα
τϑ(�,℘) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂nϑ(�,℘)

∂℘n , α ∈ N

1
Γ(n− α)

∫ ℘
0 (t− φ)n−α−1ϑn(φ)∂φ, n− 1 < α < n

3. Idea of MHPT

In this section, we construct the idea of the MHPT to find the approximate solution of
fractional problems. Therefore, consider a differential equation of fractional order

Dα
℘ϑ(�,℘) + Rϑ(�,℘) + Nϑ(�,℘) = g(�,℘), (3)

ϑ(�, 0) = h(�), (4)

where Dα
℘ =

∂α

∂℘α
is an operator with fractional order α; ϑ is the function in the direction of

spital � and time ℘; R is the linear; N represents the nonlinear differential operator; and
g(�,℘) is the source term. Employing the MT in Equation (3), we obtain

M
[

Dα
℘ϑ(�,℘) + Rϑ(�,℘) + Nϑ(�,℘)

]
= M

[
g(�,℘)

]
, (5)

using the differentiation property of the MT, we obtain

rα
[

R(r)− rϑ(0)
]
= −M

[
Rϑ(�,℘) + Nϑ(�,℘)

]
+M

[
g(�,℘)

]
,

which leads to

R(r) = rϑ(0)− 1
rα

M
[

Rϑ(�,℘) + Nϑ(�,℘) + g(�,℘)
]
.

Using the initial condition (4), we obtain

R(r) = rh(�)− 1
rα

M
[

Rϑ(�,℘) + Nϑ(�,℘) + g(�,℘)
]
,

thus, operating the inverse MT, we obtain

ϑ(�,℘) = G(�,℘)−M−1

[
1
rα

M
[

Rϑ(�,℘) + Nϑ(�,℘)
]]

, (6)

which is called the recurrence relation of ϑ(�,℘), where
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G(�,℘) = M−1

[
rh(�) +M

{
g(�,℘)

}]
.

The approximate solution of Equation (3) can be expressed in terms of the power series

ϑ(�,℘) =
∞

∑
n=0

pnϑn(�,℘), (7)

and

Nϑ(�,℘) =
∞

∑
n=0

pn Hnϑ(�,℘), (8)

where p ∈ [0, 1] is an embedding parameter and considered as a small parameter, whereas
ϑ0(�,℘) is an initial guess of Equation (3). The following strategy can be operated to
acquire He’s polynomials as

Hn(ϑ0 + ϑ1 + · · ·+ ϑn) =
1
n!

∂n

∂pn

(
N
( ∞

∑
i=0

piϑi

))
p=0

. n = 0, 1, 2, · · ·

With the help of Equations (7) and (8), we can obtain Equation (6) as

∞

∑
n=0

pnϑn(�,℘) = G(�,℘)− pM−1

[
1
rα

M

{
R
( ∞

∑
n=0

pnϑn(�,℘)
)
+

∞

∑
n=0

pn Hnϑn(�,℘)

}]
.

Equating the similar components of p, we obtain

p0 : ϑ0(�,℘) = G(�,℘),

p1 : ϑ1(�,℘) = −M−1

[
1
rα

M

{
Rϑ0(�,℘) + H0

}]
,

p2 : ϑ2(�,℘) = −M−1

[
1
rα

M

{
Rϑ1(�,℘) + H1

}]
, (9)

p3 : ϑ3(�,℘) = −M−1

[
1
rα

M

{
Rϑ2(�,℘) + H2

}]
,

...

Thus, we can generate Equation (7) in the collection of orders as

ϑ(�,℘) = ϑ0(�,℘) + p1ϑ1(�,℘) + p2ϑ2(�,℘) + +p3ϑ3(�,℘) + · · · . (10)

Let p = 1; the analytical solution of Equation (3) is

ϑ(�,℘) = lim
N→∞

N

∑
n=0

ϑn(�,℘). (11)

We put forward this strategy in the strength of upcoming mathematical applications.

Theorem 1. Consider that � and ζ are two Banach spaces with I : � → ζ as nonlinear operator,
such that ϑ; ϑ∗ ∈;�, ‖I(ϑ)− I(ϑ∗)‖ ≤ K‖ϑ− ϑ∗‖, 0 < K < 1. According to the Banach
contraction theorem, I has a unique fixed point ϑ, i.e., Iϑ = ϑ. Let us recall Equation (11); we have
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ϑ(�,℘) = lim
N→∞

N

∑
n=0

ϑn(�,℘), (12)

and let us assume that �0 = ϑ0 ∈ Sp(ϑ), where Sp(ϑ) = {ϑ∗ ∈ � : ‖ϑ− ϑ∗‖ < p}; then, we
have

(B1)�n ∈ Sp(ϑ),

(B2) lim
n→∞

�n = ϑ.

Proof. ( B1) In view of the mathematical induction for n = 1, we have

‖�1 − ϑ1‖ = ‖T(�0 − T(ϑ))‖ ≤ K‖ϑ0 − ϑ‖.

Consider that the result is true for n = 1, so

‖�n−1 − ϑ‖ ≤ Kn−1‖ϑ0 − ϑ‖.

Thus, we have

‖�n − ϑ‖ = ‖T(�n−1 − T(ϑ))‖ ≤ K‖�n−1 − ϑ‖ ≤ Kn||ϑ0 − ϑ‖.

Hence, using (B1), we have

‖�n − ϑ‖ ≤ Kn‖ϑ0 − ϑ‖ ≤ Kn p < p,

where p is a contact point of a super norm S, which shows �n ∈ Sp(ϑ).
B2: Since ‖�n − ϑ‖ ≤ Kn||ϑ0 − ϑ‖ and limn→∞ Kn = 0.

Therefore, we have limn→∞‖ϑn − ϑ‖ = 0 ⇒ limn→∞ ϑn = ϑ.

4. Numerical Examples

In this segment, we deal with the MHPT to present the analytical and numerical
solutions of time fractional shock wave equations and time fractional wave equations. The
obtained results of these two problems show the performance and high accuracy of the
suggested approach. The graphical results declare that this approach has good agreement.

4.1. Example 1

Consider the time fractional shock wave equation

Dα
℘ϑ +

( 1
c0
− γ + 1

2
ϑ

c2
0

)
D�ϑ = 0, (�,℘) ε R× [0, T], 0 < α ≤ 1, (13)

where c0 and γ are constants, and γ is the specific heat. If c0 = 2, and γ = 1.5, the study
case under consideration relates to the flow of air, as

∂αϑ

∂℘α
+
(1

2
− 5

16
ϑ
) ∂ϑ

∂� = 0, (14)

with the initial condition

ϑ(�, 0) = e
−
�2

2 . (15)

Taking the MT of Equation (14), we obtain

M

[
∂αϑ

∂℘α
+
(1

2
− 5

16
ϑ
) ∂ϑ

∂�

]
= 0.
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Using the definition of the MT, we can write it as

R(r) = rϑ(0)− 1
rα

M

[(1
2
− 5

16
ϑ
) ∂ϑ

∂�

]
.

The inverse MT is

ϑ(�,℘) = ϑ(�, 0)−M−1

[
1
rα

M

{(1
2
− 5

16
ϑ
) ∂ϑ

∂�

}]
,

which is the recurrence relation of Equation (14); now, using Equation (7) together with the
HPM, we obtain

∞

∑
n=0

pnϑn(�,℘) = ϑ(�, 0)− pM−1

[
1
rα

M

{
1
2

∞

∑
n=0

pn ∂ϑn

∂� − 5
16

∞

∑
n=0

pnϑn
∂ϑn

∂�

}]
, (16)

by comparing, we can obtain the iterations

p0 : ϑ0(�,℘) = ϑ(�, 0),

p1 : ϑ1(�,℘) = −M−1

[
1
rα

M

{
1
2

∂ϑ0

∂� −
5

16
ϑ0

∂ϑ0

∂�

}]
,

p2 : ϑ2(�,℘) = −M−1

[
1
rα

M

{
1
2

∂ϑ1

∂� −
5

16

(
ϑ0

∂ϑ1

∂� + ϑ1
∂ϑ0

∂�
)}]

,

...

which give the solutions

ϑ0(�,℘) = e−
�2
2 ,

ϑ1(�,℘) =

[
1
2

xe−
�2
2 − 5

16
xe−�

2

]
tα

Γ(α + 1)
,

ϑ2(�,℘) =
1

256

[
− 25e−

3�2
2 + 80e−�

2 − 64e−
�2
2 + 75�2e−

3�2
2 − 160�2e−�

2 − 64�2e−
�2
2

]
t2α

Γ(2α + 1)
,

...

Proceeding with a similar process, the other elements of ϑn can be calculated, and the series
solutions are thus completely obtained. This series converges to the exact solution for high
iterations. Finally, the analytical solution of ϑ(�, t) can be obtained by using Equation (10),
which is in full agreement with [6,13].

4.2. Example 2

Again, assume the time fractional wave equation

Dα
℘ϑ + ϑD�ϑ− D��℘ϑ = 0, (17)

with the initial condition

ϑ(�, 0) = 3 sech2
(�− 15

2

)
, (18)
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According to the HPTM, the recurrence relation of Equation (17) can be written as

ϑ(�,℘) = ϑ(�, 0)−M−1

[
1
rα

M

{
ϑ

∂ϑ

∂� −
∂

∂℘

( ∂2ϑ

∂�2

)}]
,

Now, using Equation (7) together with the HPM, we obtain

∞

∑
n=0

pnϑn(�,℘) = ϑ(�, 0)− pM−1

[
1
rα

M

{ ∞

∑
n=0

pnϑn
∂ϑn

∂� − ∂

∂℘

( ∂2

∂�2

∞

∑
n=0

pnϑn

)}]
, (19)

by comparing, we can obtain the iterations

p0 = ϑ0(�,℘) = ϑ(�, 0),

p1 = ϑ1(�,℘) = −M−1

[
1
rα

M

{
ϑ0

∂ϑ0

∂� −
∂

∂℘

(∂2ϑ0

∂�2

)}]
,

p2 = ϑ2(�,℘) = −M−1

[
1
rα

M

{
ϑ0

∂ϑ1

∂� + ϑ1
∂ϑ0

∂� −
∂

∂℘

(∂2ϑ1

∂�2

)}]
,

...

which give the solutions

ϑ0(�,℘) = 3 sech2
(�− 15

2

)
,

ϑ1(�,℘) = 9 sech2
(�− 15

2

)
tanh

(�− 15
2

) ℘α

Γ(1 + α)
,

ϑ2(�,℘) =

[
− 27

2
sech8

(�− 15
2

)
+ 81 sech6

(�− 15
2

)
tanh2

(�− 15
2

)] ℘2α

Γ(1 + 2α)

−
[

63
2

sech6
(�− 15

2

)
tanh

(�− 15
2

)
− 36 sech4

(�− 15
2

)
tanh3

(�− 15
2

)]℘2α−1

Γ(2α)
,

...

Proceeding with a similar process, the other elements of ϑn can be calculated, and the series
solutions are thus completely obtained. This series converges to the exact solution for high
iterations. Finally, the analytical solution of ϑ(�,℘) can be obtained by using Equation (10) as

ϑ(�, 0) = 3 sech2
(�− 15− ℘

2

)
, (20)

which is in full agreement with [6,13].

5. Results and Discussion

In this segment, we demonstrate the physical interpretations of the illustrated prob-
lems. We observe that the HPTM is fully capable of handling time fractional shock wave
equations. Figure 1a–d show the surface solutions of ϑ(�,℘) for various time fractional
equations in Brownian motion, and it is observed that ϑ(�,℘) reduces with the growth of
� and ℘ for α = 0.25, 0.50, 0.75 and 1. Figure 2a–d show the surface solutions of ϑ(�,℘)
for the analytical solution obtained by the MHPT and the exact solution for various values
of � and ℘, respectively. It is observed that ϑ(�,℘) increases with the increase in � and
decreases with the increase in ℘ for α = 0.25, 0.50, 0.75 and 1.
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(a) (b)

(c) (d)

Figure 1. The surface solutions of u(�,℘) with respect to � and ℘ for distinct values of α. (a) Surface
solution of ϑ(�,℘) when α = 0.25. (b) Surface solution of ϑ(�,℘) when α = 0.50. (c) Surface solution
of ϑ(�,℘) when α = 0.75. (d) Surface solution of ϑ(�,℘) when α = 1.

(a) (b)

(c) (d)

Figure 2. The surface solutions of ϑ(�,℘) with respect to � and ℘ for different values of α. (a) Surface
solution of ϑ(�,℘) when α = 0.25. (b) Surface solution of ϑ(�,℘) when α = 0.50. (c) Surface solution
of ϑ(�,℘) when α = 0.75. (d) Surface solution of ϑ(�,℘) when α = 1.
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6. Conclusions

In this paper, we successfully apply the HPTM to achieve the approximate and ana-
lytical solutions of nonlinear time fractional shock wave and wave equations. This study
demonstrates the importance of fractional derivatives and the technique of dealing with
the recurrence relation. Since the MT is limited to linear problems only, whereas the HPM
is applicable to nonlinear problems, we conclude that the MHPT is the best tool to provide
significant results for both linear and nonlinear problems. The MHPT is here directly
applied to obtain the series solutions. The present scheme shows higher efficiency and
fewer computations than other approaches studied in the literature. All the iterations were
calculated with the help of MAPLE Software. The solution graphs show that this approach
is suitable for a broad variety of nonlinear fractional differential equations in science and
engineering. In future work, this approach could further be extended to solve various
nonlinear obstacle problems.
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Abstract: The algebras of the symmetry operators for the Klein–Gordon equation are important
for a charged test particle, moving in an external electromagnetic field in a space time manifold on
the isotropic hydrosulphate. In this paper, we develop an analytical and numerical approach for
providing the solution to a class of linear and nonlinear fractional Klein–Gordon equations arising in
classical relativistic and quantum mechanics. We study the Yang homotopy perturbation transform
method (YHPTM),which is associated with the Yang transform (YT) and the homotopy perturbation
method (HPM), where the fractional derivative is taken in a Caputo–Fabrizio (CF) sense. This
technique provides the solution very accurately and efficiently in the form of a series with easily
computable coefficients. The behavior of the approximate series solution for different fractional-order
℘ values has been shown graphically. Our numerical investigations indicate that YHPTM is a simple
and powerful mathematical tool to deal with the complexity of such problems.

Keywords: fractional Klein–Gordon equation; Yang transform; homotopy perturbation method;
series solution

1. Introduction

Recently, fractional calculus has grown in popularity due to its significant prospective
applications in physics and engineering such as biology, mathematics, chemistry, fluid
mechanics, physics, and nonlinear optics [1,2]. Fractional partial differential Equations
(FPDEs) are a contemporary tool in calculus that can be used to simulate a wide range of
classifications in applied sciences and engineering [3–5].

The Klein–Gordon (KG) equation performs a significant role in mathematical physics
and many other scientific studies such as quantum field theory, nonlinear optics, and solid-
state physic [6–10]. On the other hand, the fractional-order KG equation is derived from
the classical KG equation by substituting the time order derivative with the fractional
derivative of order ℘. The fractional-order KG equation can be illustrated as below

D℘
q ϑ(ε, q)− D2

εϑ(ε, q) + a1ϑ(ε, q) + a2G(ϑ(ε, q)) = f (ε, q), (1)

with initial conditions

ϑ(ε, 0) = f1(ε), ϑq(ε, 0) = f2(ε), (2)

where D℘
q represents the Caputo fractional time derivative, a1 and a2 are real constants,

f (ε, q), f1(ε) and f2(ε) are known as analytical functions, whereas G(ϑ(ε, q)) is a nonlinear,
and ϑ is an unknown function of ε and q.

Various authors [11–15] have investigated different analytical and numerical strategies
to examine the solution to the KG equation but with some restrictions and lacks. Tamsir
and Srivastava [16] used fractional reduced differential transform to obtain the analyti-
cal solution of linear and nonlinear KG equation with time-fractional order. Bansu and
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Kumar [17] used a radial basis approach, and Kurulay [18] applied the homotopy analy-
sis method to evaluate the numerical solution of the space-time fractional KG equation.
Later, Khader and Adel [19] applied a hybridization scheme to achieve the solution of the
fractional KG equation. Zhmud and Dimitrov [20] developed the fractional integration
method, which is based on extrapolation using a series of integrating and differentiating
links with a time constant that changes symmetrically from one step to another. In order to
obtain the solution of FPDEs, several valuable strategies have been considered, such as the
generalized differential transform method [21], the adomian decomposition method [22],
the homotopy analysis method [23], the variational iteration method [24], the homotopy
perturbation method [25], the Elzaki transform decomposition method [26], the fractional
wavelet method [27,28] and the residual power series method [29,30].

In this paper, we present the Yang homotopy perturbation transform method (YHPTM),
which is a composition of YT and HPM. The primary objective of this approach is to investi-
gate the approximate solution of fractional KG equations and minimize the computational
work that overcomes nonlinear problems easily. Next, this scheme can promptly deal with
the nonlinear KG equation. Finally, this method can reduce the range of the computations
and generate an approximate solution with elegantly computed expressions, which is its
most impressive advantage. The design of this paper is framed as follows. In Section 2, we
start with some primary definitions of Caputo–Fabrizio. In Section 3, we formulate the
idea of the Yang homotopy perturbation transform method. In Section 4, we perform this
scheme on some illustrative examples to show its capability and efficiency. Concluding
remarks are given in Section 5.

2. Preliminaries and Concepts

Definition 1. The CF derivative is described as [31]

CFD℘
q ϑ(ε, q) =

S(℘)
1− ℘

∫ q

0
[Q′(�)K(q, �)]d�, n− 1 < ℘ ≤ n (3)

S(℘) is the normalization function with S(0) = S(1) = 1, and then, Equation (3) becomes as

CFD℘
q ϑ(ε, q) =

S(℘)
1− ℘

∫ q

0
[Q(q)−Q(�)]K(q, �)d�, n− 1 < ℘ ≤ n (4)

Definition 2. The fractional CF integral is stated as [32]

CF I℘q ϑ(ε, q) =
1− ℘
S(℘)

Q(q) +
℘

S(℘)

∫ q

0
Q(�)d�, q ≥ 0, ℘ε(0, 1]. (5)

Definition 3. For S(℘) = 1, the Laplace transform of the CF derivative is [33]

L
[CF

D℘
q Q[(q)]

]
=

vL[Q(q)−Q(0)]
v + ℘(1− v)

. (6)

Definition 4. The YT of Q(q) is framed as [34]

Y[Q(q)] = χ(v) =
∫ ∞

0
Q(q)e−

q
v dq. q > 0 (7)

Remarks

The YT of some helpful expressions are as follows:

Y[1] = v;

Y[q] = v2;

Y[qi] = Γ(i + 1)vi+1.
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Lemma 1. Let the Laplace transform of Q(q) be F(v), and then χ(v) = F(1/v) [35].

Proof. From Equation (7), we can obtain the Yang transform by putting q/v = ζ as

L[Q(q)] =
∫ ∞

0
Q(vζ)eζ dζ, ζ > 0 (8)

since L[Q(q)] = F(v), which implies that

F(v) = L[Q(q)] =
∫ ∞

0
Q(q)e−vqdq. (9)

Putting q = ζ/v in Equation (9), we obtain

F(v) =
1
v

∫ ∞

0
Q
( ζ

v

)
eζ dζ. (10)

Thus, from Equation (8), we obtain:

F(v) = χ
(1

v

)
. (11)

Furthermore, from Equations (7) and (9), we obtain

F
(1

v

)
= χ(v). (12)

The links between Equations (11) and (12) represent the duality connection among the
Laplace and Yang transforms.

Lemma 2. Let Q(q) be a function, then YT of CF derivatives of Q(q) is [35]

Y

[
Q(q)

]
=

Y

[
Q(q)− vQ(0)

]
v + ℘(v− 1)

. (13)

Proof. The fractional Laplace transform of CF is defined as in Equation (13)

L
[

Q(q)
]
=

L
[
vQ(q)−Q(0)

]
v + ℘(1− v)

. (14)

However, we have a correlation among the YT and Laplace properties, namely χ(v) = F(1/v),
so put 1/v for v in Equation (14), and we obtain

Y

[
Q(q)

]
=

Y

[
1
v Q(q)−Q(0)

]
1
v + ℘(1− 1

v )
,

Y

[
Q(q)

]
=

Y

[
Q(q)− vQ(0)

]
1 + ℘(v− 1)

.

(15)

Thus, the proof is satisfied.

3. Idea of Yang Homotopy Perturbation Transform Method (YHPTM)

In this part, we will demonstrate the concept of YHPTM. Let us assume a nonlinear
fractional-order PDE, such as

CFD℘
q ϑ(ε, q) + Rϑ(ε, q) + Nϑ(ε, q) = g(ε, q), (16)
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ϑ(ε, 0) = h(ε), (17)

where g(ε, q) is called the source function. Applying the YT to Equation (16),

1
v℘

Y

[
ϑ(ε, q)− vϑ(ε, 0)

]
= −Y[R(ϑ(ε, q)) + N(ϑ(ε, q)) +Y[g(ε, q)]],

Y[ϑ(ε, q)] = vh(ε)− v℘
[
Y[R(ϑ(ε, q)) + N(ϑ(ε, q))]

]
+Y[g(ε, q)].

By using inverse YT,

ϑ(ε, q) = ϑ(ε, 0)−Y−1
[
v℘
[
Y[R(ϑ(ε, q)) + N(ϑ(ε, q))]

]
+Y[g(ε, q)]

]
. (18)

However, HPM is stated as

ϑ(ε, q) =
∞

∑
i=0

piϑi(ε, q), (19)

and

Nϑ(ε, q) =
∞

∑
i=0

pi Hiϑ(ε, q). (20)

The following strategy can be operated to acquire the He’s polynomials,

Hi(ϑ0 + ϑ1 + · · ·+ ϑi) =
1
n!

∂i

∂pi

(
N
( ∞

∑
i=0

piϑi

))
p=0

. n = 0, 1, 2, · · ·

With the help of Equations (19) and (20), we can obtain Equation (18), such as

∞

∑
i=0

piϑi(ε, q) = ϑ(ε, 0)− pY−1

[
v℘Y

{
R
( ∞

∑
i=0

piϑi(ε, q)
)
+

∞

∑
i=0

pi Hnϑi(ε, q)

}]
.

We can obtain the following terms by evaluating the p components:

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = −Y−1

[
v℘Y

{
Rϑ0(ε, q) + H0(ϑ)

}]
,

p2 = ϑ2(ε, q) = −Y−1

[
v℘Y

{
Rϑ1(ε, q) + H1(ϑ)

}]
, (21)

p3 = ϑ3(ε, q) = −Y−1

[
v℘Y

{
Rϑ2(ε, q) + H2(ϑ)

}]
,

...

pi = ϑi(ε, q) = −Y−1

[
v℘Y

{
Rϑi(ε, q) + Hi(ϑ)

}]
,

Thus, we can summarize the set of Equations (21) in the series form, such as

ϑ(ε, q) = ϑ0(ε, q) + ϑ1(ε, q) + ϑ2(ε, q) + · · ·

ϑ(ε, q) = lim
N→∞

N

∑
n=0

ϑn(ε, q) (22)
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4. Numerical Applications

4.1. Example 1

Consider a linear time-fractional KG problem

D℘
q ϑ(ε, q)− D2

εϑ(ε, q)− ϑ(ε, q) = 0, (23)

with the initial condition

ϑ(ε, 0) = 1 + sin(ε). (24)

Taking YT of Equation (23), we obtain

Y

[∂℘ϑ

∂q℘
]
= Y

[∂2ϑ

∂ε2 + ϑ
]
.

Executing the differential property of YT, we obtain

1
v℘

Y

[
ϑ(ε, q)− vϑ(ε, 0)

]
= Y

[∂2ϑ

∂q2 + ϑ
]
,

Y

[
ϑ(ε, q)

]
= vϑ(ε, 0) + v℘Y

[∂2ϑ

∂q2 + ϑ
]
.

The inverse YT indicates

ϑ(ε, q) = ϑ(ε, 0) +Y−1
[
v℘
{
Y

(∂2ϑ

∂q2 + ϑ
)}]

.

Employing HPM such as

ϑ(ε, q) = ϑ0 + pϑ1 + p2ϑ2 + · · · ,

∞

∑
i=0

piϑi(ε, q) = 1 + sin(q) + p

(
Y−1

[
v℘
{
Y

( ∞

∑
i=0

pi ∂2ϑi
∂q2 +

∞

∑
i=0

piϑi

)}])
,

on comparing the identical of p, we obtain

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ0

∂q2 + ϑ0

)}]
,

p2 = ϑ2(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ1

∂q2 + ϑ1

)}]
,

p3 = ϑ3(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ2

∂q2 + ϑ2

)}]
,

...

With help of Equation (24), we gain the iterations successively ϑi(ε), i = 1, 2, 3, · · · ,
as follows:

ϑ0(ε, q) =1 + sin(ε),

ϑ1(ε, q) =
1

Γ(1 + ℘)
q℘,

285



Symmetry 2022, 14, 907

ϑ2(ε, q) =
1

Γ(1 + 2℘)
q2℘,

ϑ3(ε, q) =
1

Γ(1 + 3℘)
q3℘,

...

ϑi(ε, q) =
1

Γ(1 + i℘)
qi℘,

Thus, the approximate solution can be obtained by:

ϑ(ε, q) =1 + sin(ε) +
1

Γ(1 + ℘)
q℘ +

1
Γ(1 + 2℘)

q2℘ +
1

Γ(1 + 3℘)
q3℘ + · · · (25)

=1 + sin(ε) +
∞

∑
i=0

pi qi℘

Γ(1 + i℘)
,

which implies the exact solution of Equation (23), In particular, at ℘ = 1, we obtain

ϑ(ε, q) =1 + sin(ε), (26)

which is in full agreement.
Figure 1a–d indicate the physical behavior of the obtained solution at ε ∈ [0, 4] and

q ∈ [0, 0.8]. From these figures, it can be observed that the solution graphs of the problem
show the friendly touch with each other. Figure 1a–d demonstrate that the solution achieved
by YHPTM approaches the precise solution very rapidly with more iterations. In Figure 2,
we have plotted the graph of ϑ(ε, q) at different fractional order of ℘ = 0.25, 0.50, 0.75, 1
and ε ∈ [0, 2π] with different values of q.

(a) (b)

(c) (d)

Figure 1. The surface solution of ϑ(ε, q) with respect to ε and q for distinct values of ℘: (a) surface
solution of ϑ(ε, q) when ℘ = 0.25; (b) surface solution of ϑ(ε, q) when ℘ = 0.50; (c) surface solution
of ϑ(ε, q) when ℘ = 0.75; (d) surface solution of ϑ(ε, q) when ℘ = 1.
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Figure 2. Plot of ϑ(ε, q) for different values of ℘.

4.2. Example 2

Assume a nonlinear time-fractional KG problem

D℘
q ϑ(ε, q)− D2

εϑ(ε, q) + ϑ2(ε, q) = 0, (27)

with the initial condition

ϑ(ε, 0) = 1 + sin(ε). (28)

Taking the Yang transform of Equation (27), we obtain

Y

[∂℘ϑ

∂q℘
]
= Y

[∂2ϑ

∂ε2 − ϑ2
]
.

Executing the differential property of YT, we obtain

1
v℘

Y

[
ϑ(ε, q)− vϑ(ε, 0)

]
= Y

[∂2ϑ

∂q2 − ϑ2
]
,

Y

[
ϑ(ε, q)

]
= vϑ(ε, 0) + v℘Y

[∂2ϑ

∂q2 − ϑ2
]
.

The inverse YT indicates

ϑ(ε, q) = ϑ(ε, 0) +Y−1
[
v℘
{
Y

(∂2ϑ

∂q2 − ϑ2
)}]

.

Employing HPM such as

∞

∑
i=0

piϑi(ε, q) = 1 + sin(q) + p

(
Y−1

[
v℘
{
Y

( ∞

∑
i=0

pi ∂2ϑi
∂q2 −

∞

∑
i=0

piϑ2
i

)}])
,

on comparing the identical of p, we obtain

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ0

∂q2 − ϑ2
0

)}]
,

p2 = ϑ2(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ1

∂q2 − 2ϑ0ϑ1

)}]
,

p3 = ϑ3(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ2

∂q2 − ϑ2
1 − 2ϑ0ϑ2

)}]
,

...
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With help of Equation (28), we gain the iterations successively ϑi(ε), i = 1, 2, 3, · · · ,
as follows:

ϑ0(ε, q) =1 + sin(ε),

ϑ1(ε, q) =
−q℘

Γ(1 + ℘)

(
1 + 3 sin(ε) + sin2(ε)

)
,

ϑ2(ε, q) =
q2℘

Γ(1 + 2℘)

(
11 sin(ε) + 12 sin2(ε) + 2 sin3(ε)

)
,

ϑ3(ε, q) =
q3℘

Γ(1 + 3℘)

(
18− 57 sin(ε)− 160 sin2(ε)− 82 sin3(ε)− 10 sin(4ε)

)
,

...

Thus, the approximate solution can be obtained by:

ϑ(ε, q) =1 + sin(ε)− q℘

Γ(1 + ℘)

(
1 + 3 sin(ε) + sin2(ε)

)
+

q2℘

Γ(1 + 2℘)

(
11 sin(ε) + 12 sin2(ε) + 2 sin3(ε)

)
+

q3℘

Γ(1 + 3℘)

(
18− 57 sin(ε)− 160 sin2(ε)− 82 sin3(ε)− 10 sin(4ε)

)
+ · · ·

Figure 3a–d indicate the physical behavior of the obtained solution at ε ∈ [0, 1] and
q ∈ [0, 1]. From these figures, it can be observed that with the increase in the value of ℘, the
approximate solution become close to the exact solution at ℘ = 1. In Figure 4, we have plotted
the graph of ϑ(ε, q) with different fractional orders of ℘ = 0.25, 0.50, 0.75, 1 at ε ∈ [0, 2π] with
different values of q. It is obvious that this approximation can only be employed numerically,
even though a closed form solution is not accessible. It can be seen that our approximate
solution using YHPTM in Table 1 is more significant than that obtained in [36,37].

(a) (b)

(c) (d)

Figure 3. The surface solution of ϑ(ε, q) with respect to ε and q for distinct values of ℘: (a) surface
solution of ϑ(ε, q) when ℘ = 0.25 ; (b) surface solution of ϑ(ε, q) when ℘ = 0.50; (c) surface solution
of ϑ(ε, q) when ℘ = 0.75; (d) surface solution of ϑ(ε, q) when ℘ = 1.
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Figure 4. Plot of ϑ(ε, q) for different values of ℘

Table 1. Comparison between the value ϑ(ε, q) for the solution of the KG equation.

Sr. No. q = 0.1 q = 0.2 q = 0.3

ε [36] [37] YHPTM [36] [37] YHPTM [36] [37] YHPTM
0.0 0.9949999861 0.9950000249 0.903 0.9799991162 0.9800015775 0.824 0.9549900052 0.9550176534 0.781
0.1 1.093291132 1.093291179 0.976100 1.073723730 1.073726319 0.871321 1.073723730 1.073726319 0.792208
0.2 1.190502988 1.190503087 1.04725 1.166134875 1.166138050 0.915126 1.125945576 1.125974851 0.794835
0.3 1.285668610 1.285668848 1.11584 1.256326130 1.256331032 0.955409 1.208114007 1.208147932 0.789972
0.4 1.377844211 1.377844710 1.18132 1.343423788 1.343432104 0.992136 1.287043874 1.287088824 0.778571
0.5 1.466118315 1.466119219 1.24317 1.426594492 1.426608263 1.0252 1.362025218 1.362089477 0.761295
0.6 1.549620480 1.549621939 1.3009 1.505052082 1.505073495 1.05442 1.432404521 1.432497282 0.738476
0.7 1.627529538 1.627531694 1.35406 1.578063673 1.578094808 1.07951 1.497587424 1.497717706 0.710192
0.8 1.699081273 1.699084244 1.40223 1.644954933 1.644997540 1.0023 1.557040327 1.557215916 0.676451
0.9 1.763575490 1.763579356 1.44504 1.705114628 1.705169916 1.11635 1.610291023 1.610517519 0.63744
1.0 1.820382425 1.820387216 1.48219 1.757998450 1.758066925 1.12781 1.656928567 1.657208637 0.593784

4.3. Example 3

Consider another nonlinear time-fractional KG problem

D℘
q ϑ(ε, q)− D2

εϑ(ε, q) + ϑ(ε, q)− ϑ3(ε, q) = 0, (29)

with the initial condition

ϑ(ε, 0) = − sech(ε). (30)

According to the idea of YHPTM, we can obtain the following relation

∞

∑
i=0

piϑi(ε, q) = sech(ε) + p

(
Y−1

[
v℘
{
Y

( ∞

∑
i=0

pi ∂2ϑi
∂q2 −

∞

∑
i=0

piϑi +
∞

∑
i=0

piϑ2
i

)}])
,

when the coefficients of like powers of p are compared, we obtain

p0 = ϑ0(ε, q) = ϑ(ε, 0),

p1 = ϑ1(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ0

∂q2 − ϑ0 + ϑ3
0

)}]
,

p2 = ϑ2(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ1

∂q2 − ϑ1 + 3ϑ2
0ϑ1

)}]
,

p3 = ϑ3(ε, q) = Y−1

[
v℘
{
Y

(∂2ϑ2

∂q2 − ϑ2 + 3ϑ0ϑ2
1 + 3ϑ2

0ϑ2

)}]
,

...
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with help of Equation (30), we gain the iterations successively ϑi(ε), i = 1, 2, 3, · · · , as follows:

ϑ0(ε, q) =− sech(ε),

ϑ1(ε, q) =− q℘

Γ(1 + ℘)

(
2 sech(ε)− 3 sech3(ε)

)
,

ϑ2(ε, q) =− q2℘

Γ(1 + 2℘)

(
3 sech(ε)− 34 sech3(ε)− 18 sech5(ε)

)
,

ϑ3(ε, q) =− q3℘

Γ(1 + 3℘)

(
64 sech3(x)− 288 sech5(ε) + 240 sech7(ε)

)
,

...

Thus, the approximate solution can be obtained by:

ϑ(ε, q) =− sech(ε)− q℘

Γ(1 + ℘)

(
2 sech(ε)− 3 sech3(ε)

)
− q2℘

Γ(1 + 2℘)

(
3 sech(ε)− 34 sech3(ε)− 18 sech5(ε)

)
− q3℘

Γ(1 + 3℘)

(
64 sech3(ε)− 288 sech5(ε) + 240 sech7(ε)

)
+ · · ·

Figure 5a–d indicates the physical behavior of the obtained solution at ε ∈ [−2, 2]
and q ∈ [0, 0.1]. From these figures, it can be observed that with increase in the value of ℘,
the approximate solution graph comes close to the exact exact solution at ℘ = 1. In Figure 6,
we have plotted the graph of ϑ(ε, q) at different fractional orders of ℘ = 0.25, 0.50, 0.75, 1
and ε ∈ [0, 2π] with different values of q. We compared our graphical results obtained
by YHPTM, which converges to the exact solution very rapidly with a small amount of q
compared to [38] at ℘ = 1.

(a) (b)

(c) (d)

Figure 5. The surface solution of ϑ(ε, q) with respect to ε and q for distinct values of ℘. (a) surface
solution of ϑ(ε, q) when ℘ = 0.25; (b) surface solution of ϑ(ε, q) when ℘ = 0.50; (c) surface solution
of ϑ(ε, q) when ℘ = 0.75; (d) surface solution of ϑ(ε, q) when ℘ = 1.
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Figure 6. Plot of ϑ(ε, q) for different values of ℘.

5. Conclusions

In this study, YHPTM has been utilized to achieve an approximate solution of nonlin-
ear time-fractional KG equations. We demonstrate some illustrations to show the validity
of the method, which reveals that the obtained findings are satisfactory. It is important to
note that in order to improve the accuracy, a greater number of iterations with excessive
order of p are required. The best advantage of YHPTM is that it generates the approximate
solution in a quickly convergent power series form. As a result, this strategy can be adopted
to elucidate a wide classification of nonlinear challenges in science and engineering with
no need for linearization, discretization or perturbation. The proposed strategy has the
privilege of being able to tackle linear and nonlinear time-fractional KG problems simul-
taneously. Mathematica package 11.0.1 has been operated for the graphical analysis as
well as for the computations in this paper. We recommend the readers to consider this
problem for the Atangana–Baleanu fractional derivative and many others in the place of
the Caputo–Fabrizio operator.
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