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Preface

Electric machines are key components for both power generation and industrial propulsion.

Electric machines include not only rotating motors/generators, but also all kinds of electric energy

conversion/transformation machines (power transformers, linear motors, etc.). The development

tendency of current electric machines is moving towards a larger capacity, higher power density,

lower mass, and better strength. This tendency places stricter demands for the stable and reliable

operation of the components in electric machines.

Since the unexpected breakdown of electric machines leads to considerable economic loss

and even disaster, the condition monitoring and failure prevention of electric machines is pretty

significant. With the rapid development of computer science and intelligent technologies, more

and more novel monitoring and diagnosis approaches/methods are being developed. To provide

a qualified gathering for readers/researchers on this topic, this reprint contains 11 recent studies. The

authors are from China, Russia, USA, and Mexico. We believe these 11 recent studies will offer a

good reference for scholars and technicians working in the field of electric machine monitoring and

failure prevention.

Last but not least, we appreciate the contributors of the 11 articles for their excellent work. Also,
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Analysis of Direct Torque Control Response to Stator and Rotor
Faults in Permanent Magnet Synchronous Machines

Ibrahim M. Allafi and Shanelle N. Foster *
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allafiib@msu.edu
* Correspondence: hogansha@egr.msu.edu

Abstract: Direct-torque-control-driven permanent magnet synchronous machines eliminate the need
for a position sensor while providing improved torque dynamics. However, the structure, regulation
principle and nature of compensation of hysteresis-based controllers used in direct torque control
impacts performance under faulty operating conditions. This paper analyzes the reaction of direct
torque control to the presence of various faults that occur in permanent magnet synchronous machines.
The analysis presented reveals that the direct torque control injects a negative sequence voltage and
manipulates the torque angle to meet the control objectives when a fault occurs. The co-simulation of
finite element analysis and a multi-physic circuit simulator is used to validate the response of the
hysteresis-based controller to the machine health. The results indicate that the hysteresis comparators
have the ability to mask the impact of the faults in the direct-torque-control-driven permanent magnet
synchronous machines.

Keywords: demagnetization; direct torque control; eccentricity; field-oriented control; high resistance
connection; symmetrical components; turn-to-turn short circuit; permanent magnet synchronous machine

1. Introduction

Permanent magnet synchronous machines (PMSMs) are widely used in various
industries such as transportation, manufacturing and renewable energy [1,2]. The simple
structure of direct torque control (DTC), coupled with its encoderless operation and fast
dynamics, are of great interest for PMSM [3]. Nevertheless, the occurrence of faults, such
as turn-to-turn short circuit (TTSC), high resistance contact (HRC), static eccentricity and
partial demagnetization, remains a concern [4]. As PMSMs are increasingly utilized in
safety critical applications, it is important that the controller can maintain a safe, stable
operation independent of the machine health state [5]. As discussed in reference [6],
variations in stator resistance and measurement errors can degrade performance and
result in torque oscillations at the electrical frequency. Under heavy load or high speed, it
has been shown in reference [7] that DTC cannot satisfy both the flux and torque control
requirements simultaneously, resulting in the torque losing control. Considering that
the presence of faults impacts the characteristic parameters of the PMSM, faults can
prevent the smooth drive operation of DTC and potentially lead to catastrophic losses if
not detected and mitigated in their early phases. Hence, fault diagnosis in DTC-driven
PMSM is paramount to ensuring reliable drive operation.

Most of the fault diagnosis algorithms for inverter-driven PMSMs were developed
for field-oriented control (FOC) drives [8–13]. However, it is important to consider that
the different structure, regulation principle and nature of compensation for controllers can
affect the fault diagnosis. As shown in reference [4], the controller type impacts the use
of motor voltage signature analysis (MVSA) for fault diagnosis. The MVSA diagnostic
strategy has lower accuracy for the DTC-driven PMSM than the FOC-driven PMSM. The
lack of a consistent trend in the frequency spectrum of the voltage command for the DTC-

Energies 2023, 16, 6940. https://doi.org/10.3390/en16196940 https://www.mdpi.com/journal/energies
1



Energies 2023, 16, 6940

driven PMSM under faulty operating conditions leads to higher incidence of incorrect
fault classification.

Understanding the impact of faults on drive operation and its corresponding reaction is
a fundamental aspect of developing effective fault detection and separation methods. This
becomes especially critical in the context of inverter-driven PMSM, where the compensatory
capability of the drive system impacts the fault detectability [14]. In the case of DTC-driven
PMSM, the electromagnetic torque error and stator flux linkage error are compensated
directly through hysteresis comparators. Therefore, it is essential to comprehensively
examine the nonlinear behavior that arises from the utilization of flux and torque hysteresis
comparators, both in healthy and faulty conditions. Some efforts have been made to
develop fault diagnosis techniques suitable for DTC-driven PMSMs [15–22]; however, the
existing literature still lacks a comprehensive understanding of the potential ramifications
of these faults on the operation of DTC-driven PMSMs.

This work analyzes the operation of DTC-driven PMSMs under four common faults:
TTSC, HRC, static eccentricity and partial demagnetization. The analysis provides insight
into the response of DTC to faulty motor conditions and its effect on fault detection, fault
separation and control stability. The major contributions of this work are as follows:

(1) Its thorough analysis of the DTC reaction to the faulty operation of a PMSM; and
(2) Its summary of the challenges in stability for DTC-driven PMSMs.

These contributions facilitate the further development of DTC schemes that are robust
to the presence of faults in PMSMs.

2. Faulty Operation of DTC-Driven PMSM

The schematic diagram of DTC drive, developed for PMSMs in reference [23], is shown
in Figure 1. Measured currents (is =

[
iα, iβ

]
) and estimated voltages (vs =

[
vα, vβ

]
) in

the stationary frame are required to estimate the stator flux linkages (λs =
[
λα, λβ

]
), as

described in (1).

λs =
∫
(vs − rsis)dt + λs0 (1)

where, (rs) is the phase resistance and (λs0 ) is the initial condition for flux linkage estimation.
Consequently, the electromagnetic torque (te) is estimated using the cross product of the
current and stator flux linkages, as described in (2), where (Pn) is the number of pole pairs.

te =
3Pn

2
(
iβλα − iαλβ

)
(2)

Figure 1. Electromagnetic torque and stator flux linkage control loops in DTC-driven PMSM.

2
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Machine currents or voltages will include additional harmonics as a result of the
comparator’s response to the fault occurrence. Therefore, a thorough analysis of the
reaction of the flux and torque hysteresis comparators upon a fault occurrence is essential.
However, it is known that the nonlinear nature of the hysteresis comparators in DTC poses
challenges to addressing this problem analytically [24–26]. Here, the behavior of the current
under faulty conditions is described analytically to investigate the DTC reaction.

The initial consequence of the fault occurrence is the generation of a negative sequence
component in addition to the positive sequence of the machine stator currents. The resulting

machine current space vector (
⇀
is ) is given in (3).

⇀
is =

∣∣∣I f
P

∣∣∣ej(ωst+φiP) +
∣∣∣I f

N

∣∣∣e−j(ωst+φiN) (3)

The variables I f
P and I f

N represent the magnitudes of the positive and negative sequence
components of the machine currents, while φiP and φiN represent their phase angles,
respectively. As the stator current is required for the flux linkage estimation in (1), the
resulting stator flux linkage space vector is described in (4).

⇀

λ
f
s =

∣∣∣λ f
P

∣∣∣ej(ωst+αP) +
∣∣∣λ f

N

∣∣∣e−j(ωst+αN) + λ0 (4)

where, λ
f
P and λ

f
N are the positive and negative sequence component of the stator flux link-

ages while αP and αN are their phase angles, respectively. Since the electromagnetic torque
is a function of the stator currents and flux linkages of the machine, as described in (2), the
resulting electromagnetic torque would be the sum of three parts, given in (5).

te = tmechanical + tstatic + tdynamic (5)

The machine output torque, tmechanical , is produced by the interaction of the positive
sequence components of the machine current and flux linkage, described in (6).

tmechanical =
3Pn

2

(∣∣∣I f
P

∣∣∣∣∣∣λ f
P

∣∣∣ sin(φiP − αP)
)

(6)

The DC component of the torque tstatic, described in (7), is a function of the negative
sequences introduced by the fault occurrence.

tstatic =
3Pn

2

(∣∣∣I f
N

∣∣∣∣∣∣λ f
N

∣∣∣ sin(αN − φiN)
)

(7)

Finally, tdynamic is a torque component oscillating at double fundamental frequency
(2 fs), as shown in (8); it is introduced in the machine output torque by the fault.

tdynamic =
3Pn

2

(∣∣∣I f
P

∣∣∣∣∣∣λ f
N

∣∣∣ sin(2ωt + φiP + αN) +
∣∣∣I f

N

∣∣∣∣∣∣λ f
P

∣∣∣ sin(2ωt + φiN + αP)
)

(8)

It is worth mentioning that the errors in the stator flux linkage and machine torque
due to a fault occurring, described in (4) and (5), are derived prior to the DTC reaction and
compensation for them.

3. Response of Flux and Torque Comparators

The DTC technique employs hysteresis comparators to regulate the magnitude of
stator flux linkage and electromagnetic torque. The bandwidth in the DTC scenario is
determined by the torque and flux hysteresis bands (ΔT and Δλ), respectively. Figure 2
presents the torque and flux variation within the hysteresis bands.

3
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(a)

(b)
Figure 2. Torque and stator flux linkage variations due to hysteresis comparators. (a) Actual torque
variation within torque hysteresis bands. (b) Actual flux variation within flux hysteresis bands.

The bands can either have fixed values, that remain constant regardless of oper-
ating conditions [27], or they can be percentages of a preset value based on operating
conditions [28]. Alternatively, they can be variables that enable nearly constant switching
frequency [29]. The utilization of wider hysteresis bands leads to a reduction in bandwidth
and switching frequency due to the infrequent violation of the hysteresis bands during the
control cycle. Conversely, a high controller bandwidth necessitates narrow bands, leading
to increased switching frequency due to the likelihood of torque and flux errors exceeding
the hysteresis bands during a significant portion of the control cycle. In general, DTC
permits deviations in the estimation of flux and torque, provided that they fall within the
predetermined tolerance margin established by the hysteresis band. Nonetheless, the esti-
mated torque and flux linkage should follow the reference ones regardless of the machine
condition, whether it is healthy or faulty.

3.1. Flux Comparator Response

Since a negative sequence component appears in the flux linkages due to its presence
on the current, the flux comparator should cancel it by imposing another negative sequence

component (
⇀
λc) in the flux linkage, as described in (9).

⇀
λc =

∣∣∣λ f
N

∣∣∣e−j(ωst+αN) (9)

As a result, even in the presence of the fault, the actual flux linkage of the machine
would follow the reference flux linkage:

⇀

λh
s =

⇀

λ
f
s −

⇀
λc =

∣∣∣λh
P

∣∣∣ej(ωst+φλs) + λ0 (10)

Considering (1), the DTC drive injects a negative sequence component on the reference

voltages to inject the cancellation term (
⇀
λc). As a result of (9), the static torque error in (7)

and the first term of (8) are cancelled. However, the second term of the torque dynamic
error in (8) remains.

4
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The flux hysteresis band limits the maximum acceptable change in the stator flux
linkage, which, in turn, limits the negative flux linkage sequence component that can be
generated by applying a negative voltage sequence, as expressed in (11).∣∣∣λ f

N

∣∣∣∣∣∣λ f
P

∣∣∣ ≈ 2Δλ

|λs| (11)

The upper limit of the negative voltage sequence that the DTC flux comparator can
apply in response to the flux linkage error is directly related to the flux hysteresis band, as
described by (12).

|VN |
|VP| ≈ 2Δλ

|λs| (12)

3.2. Torque Comparator Response

The regulation of output torque in DTC drive is achieved through the use of a torque
hysteresis comparator. As a result, it is expected that the output torque will conform to the
torque reference regardless of the condition of the machine. However, the flux comparator
response does not eliminate all the consequences of the fault, as the second term of the
torque dynamic error in (8) remains. This error is tolerated by DTC as long as this error
falls within the hysteresis band of the torque comparator. However, if the error exceeds the
maximum allowable torque error, the torque comparator must find an alternative method
to compensate for it.

The variables that DTC can adjust to maintain the desired torque can be known by
considering the torque equation given in (13).

te =
3Pn

8LdLq
λs
[
2λPMLq sin(δ) + λs(Ld − Lq) sin(2δ)

]
(13)

where, (Ld, Lq) are the inductances in the synchronous rotating frame; (λPM) is the magnet
flux linkage; and (δ) is the torque angle, which represents the difference between the stator
flux linkage angle (θs) and the rotor flux linkage angle (θr). It is clear that the two variables
that DTC can adjust are λs and δ. DTC has the capability to adjust the stator flux linkage
vector during the transient conditions to either accelerate it to increase the torque angle
and generate additional torque, or decelerate it to reduce the torque angle and produce less
torque. Under steady-state conditions, the stator flux linkage vector rotates at the same
speed as the rotor flux linkage vector, such that the torque is constant. However, λs is
almost fixed as it is controlled by the flux comparator. Therefore, the only option for DTC
to respond to the torque error is by manipulating the torque angle.

According to [30], the PMSM torque ripple exhibits harmonic orders that are multiples
of the sixth harmonic, ftripple = 6 · k · fs, where fs is the machine electric frequency and
k = 1, 2, 3, . . .. The frequency spectrum, obtained through Fast Fourier Transform (FFT), of
the torque produced by an IPMSM driven by Field-Oriented Control (FOC) and DTC are
provided in Figure 3. It is evident that the FOC driven PMSM exhibits significant magni-
tudes of the 6th and 12th harmonics in its output torque, whereas such high magnitudes
are not observable in the case of DTC. However, if the magnitude of the second term in (8)
increases the torque beyond the hysteresis bands (2ΔT), DTC will attempt to compensate
for it in order to maintain the torque error within the band. Since the DTC drive provides
the ability to adjust the torque angle (δ), any induced harmonics are expected to manifest
in the torque angle instead of the torque. This can be observed in the frequency spectrum
of the torque angle depicted in Figure 4.
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Figure 3. Frequency spectrum of the IPMSM torque magnitude under both FOC (left) and DTC
(right) drives. The 6th and 12th harmonics are not observed in the DTC drive.
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Figure 4. Frequency spectrum of the torque angle in DTC-driven PMSM.

The torque comprises two components: the magnetic torque (tm) and the reluctance
torque (tre), as shown in (14).

te = tm + tre

tm = A · sin(δ) = Im
[

Aejδ
]

tre = B · sin(2δ) = Im
[

Bej2δ
]

A =
3PnλsλPM

4Ld

B =
3Pnλ2

s (Ld − Lq)

8LdLq

(14)

The 6th and 12th harmonics are introduced into the torque angle for both the magnetic
and reluctance torque equations given in (14), as shown in (15) and (16).

tm1 =A · sin(δ + m) = Im
[

Aej(δ+m)
]

m =x6 cos(6δ + γ6) + x12 cos(12δ + γ12)
(15)

tre1 =B · sin(2δ + d) = Im
[

Bej(2δ+d)
]

d =2x6 cos(6δ + γ6) + 2x12 cos(12δ + γ12)
(16)

The terms x6, x12, γ6, and γ12 correspond to the amplitudes and phases of the 6th and
12th harmonics present in the frequency spectrum of the torque angle. The trigonometric

6
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identity described in (17) is used to expand the electromagnetic and reluctance torque
equations as shown in (18) and (19).

sin(x + y) = sin(x) cos(y) + sin(y) cos(x) (17)

tm1 = tm cos(m) + A · cos(δ) sin(m) (18)

tre1 = tre cos(d) + B · cos(2δ) sin(d) (19)

By considering the presence of the 6th and 12th harmonics in the torque angle fre-
quency spectrum, it can be observed that the magnitudes of tm and tre are subject to multi-
plication by cos(m) and cos(d), respectively. Besides that, additional terms are present in
tm and tre. These offset terms are A · cos(δ) sin(m) and B · cos(2δ) sin(d). In the presence of
the fault, the torque of the machine would attempt to follow the reference torque through
variations in the torque angle.

4. Impact of Variations in Stator Flux Linkage Angle

The robustness and tolerance of DTC can also be attributed to its discrete control
action, which involves selecting a finite set of possible actions rather than continuous
modulation. The finite set of actions, namely the voltage vectors, is chosen based on
heuristics and system dynamics, whereby an exact position of the stator flux linkage vector
is not necessary. Figure 5 presents the sector partitions and voltage vectors available for
selection in DTC. It consists of six voltage vectors (V1 − V6) within six sectors (S1 − S6) that
are displaced by 60◦. The appropriate voltage vector is chosen as shown in Table 1.

Figure 5. Sector partitions and the available set of voltage vectors in the DTC drive.

Table 1. Voltage vector selection table used in DTC-driven PMSM.

Sector

δλs δte S1 S2 S3 S4 S5 S6

+1 +1 V2 V3 V4 V5 V6 V1
+1 −1 V6 V1 V2 V3 V4 V5
−1 +1 V3 V4 V5 V6 V1 V2
−1 −1 V5 V6 V1 V2 V3 V4

As described in reference [18], the accurate estimation of the flux of a faulty PMSM
requires additional terms that are not included in (1). Provided that the actual and estimated
stator flux linkage vectors are in the same sector, identical voltage vectors will be applied.
However, if they are situated at the boundaries between sectors, different voltage vectors
are applied, which will lead to a deviation in both desired torque and flux. For illustration
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purposes, the error in estimating the flux caused by the fault has been assumed to result
in the estimated stator flux linkage vector (|λ|est) being in the second sector, while it is
assumed that the actual vector (|λ|act) is in the third sector, as depicted in Figure 6. It is
clear that the estimated value of |λs| is higher than the reference value, which requires
the selection of a voltage vector that can reduce the estimated value of |λs|. By assuming
that the electromagnetic torque should be increased at this instant, the voltage vector (V4)
should be applied to the estimated stator flux linkage based on Table 1 since it lies in the
second sector. Figure 7 presents the trace of (|λ|est) where (V4) results in moving the vector
from the second sector to the third one. Subsequently, a varying pattern is introduced now
between V4 and V5 to the estimated stator flux linkage vector, which is located in the third
sector, in order to align it with the reference vector.

Figure 6. Illustration of the error between the actual and estimated stator flux linkages after the
occurrence of a fault.

Figure 7. Path of the estimated stator flux linkage based on the voltage vector selection table shown
in Table 1.

Nonetheless, when dealing with the actual stator flux linkage vector, the voltage vector
(V5) must be utilized because the flux vector is situated in the third sector. This decision
is supported by the information provided in Table 1, where a decrease in flux linkage is
required while simultaneously increasing torque. Figure 8 depicts the trace of the actual
stator flux linkage vector in the case that the voltage vector (V5) is applied first.

8
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Figure 8. Optimal path of the actual stator flux linkage based on the voltage vector selection table
shown in Table 1.

As the feedback loop of DTC relies on the estimated stator flux linkage signal instead
of the actual one, the actual stator flux linkage vector will follow the same voltage vector
pattern illustrated in Figure 7. However, this can cause inaccuracies in the control process,
leading to differences between the actual stator flux linkage magnitude and the desired
reference value, as shown in Figure 9, even if the estimated value is shown to be properly
regulated. The actual stator flux linkage will be adjusted to a new reference position that
takes into account the offset caused by the erroneous control action. Nonetheless, if the
error is not substantial, it may be within the hysteresis bands. Hence, the unmodeled
fault dynamics in the flux estimation lead to unobservable effects of the fault that may be
tolerated by DTC. However, if the changes in the PMSM characteristic parameters due to
the fault violate (20), the controller may become unstable, as discussed in reference [31].

λs <

∣∣∣∣ Lq

Lq − Ld

∣∣∣∣λpm (20)

Figure 9. Path of the actual stator flux linkage based on the voltage vector selection table shown
in Table 1.

5. Numerical Results

The validation of the DTC response to the presence of faults is conducted numerically.
A co-simulation study of the DTC drive and finite element model of a PMSM within ANSYS
software is conducted.
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5.1. Numerical Setup

The DTC-driven PMSM is simulated for both healthy and faulty cases. The specifica-
tion of the finite elements model (FEM) of the simulated PMSM in MAXWELL simulator
are listed in Table 2 while the settings of the implemented DTC drive in SIMPLORER
simulator are listed in Table 3.

Table 2. Specifications for the IPMSM used in the co-simulation.

Parameter Value

Rated power 3.8 kW
Rated RMS phase current 18 A
Rated RMS line voltage 480 V
Phases/Poles/Slots 3/10/12
Turns per slot 150
Phase resistance 2 Ω
Magnet flux linkage 0.287 Wb
Residual flux density 1.2 T
Air gap length 1 mm

Table 3. Settings of the DTC-Driven PMSM

Controller Settings Symbol Value

Flux hysteresis band Δλ 0.05 · |λ∗
s |

Torque hysteresis band ΔT 0.09 · t∗e
Sampling frequency fsample 25 μs
Initial conditions (λα0 , λβ0 ) (0.287, 0) Wb
Operating points (t∗e , |λ∗

s |) (20 Nm, 0.52 Wb)

To simulate the faulty conditions of DTC-driven PMSM, modifications are made to
both the geometry of the studied machine and its drive circuit. To model the TTSC fault
occurring within the coils of the phase A winding, the coil area is divided into two separate
parts: one comprising the healthy turns and the other consisting of the shorted turns, as
described in Figure 10. The shaded section within the slot, allocated for phase A winding,
represents the turns, located near the air gap, shorted through a fault resistance. The TTSC
severity is indicated by the number of faulty turns (Nf ) and the short circuit resistance
(R f ). The non-shaded section within the slot indicates the remaining healthy turns of the
phase A winding. To mimic the HRC fault, a resistance (Δrs) is connected in series with
the phase resistance (rs). Here, the fault is implemented in phase B, and the severity of the
fault is indicated by varying the magnitude of Δrs. To model the partial demagnetization
fault in the PMSM, the remnant flux density of selected magnets is reduced. Each pole in
the studied machine includes two magnets of V-shape. The material of the demagnetized
magnets is replaced with a new material having zero flux density, while the other properties
remain unchanged. To implement the static rotor eccentricity, the rotor and its rotation axis
are moved in the direction of the fault while keeping the stator coordinates fixed. The fault
severity is determined by shifting the components along the positive Y-axis, using different
values (ε) relative to the length of the air gap (ga). The severity levels of each fault are given
in Table 4.

10
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Figure 10. Machine model in MAXWELL coupled with DTC circuit in SIMPLORER including the
TTSC fault circuit on phase A winding.

Table 4. Severity levels of the studied faults.

Fault Type Severity Value

TTSC (Nf , R f ) (15, 0.5 Ω)
(30, 0.25 Ω)

HRC (Δrs/rs) 100%
150%

Partial Demagnetization Number of Affected Magnets 1 Magnet
3 Magnets

Static Eccentricity (ε/ga) 40%
60%

5.2. Flux Comparator

To evaluate the response of the flux comparator to fault presence in DTC-driven
PMSM, the symmetrical components of the commanded voltages are studied. The positive,
negative, and zero sequence components of the commanded voltages (VP, VN , V0) are
computed using (21). ⎡⎣VP

VN
V0

⎤⎦ =
1
3

⎡⎣1 a a2

1 a2 a
1 1 1

⎤⎦⎡⎣Va
Vb
Vc

⎤⎦ (21)

where a = 1∠120◦. Under normal operating conditions, the negative sequence component
is absent because the commanded voltages are balanced, as shown in Figure 11.

In the event of a fault, the commanded voltages become unbalanced, which causes
the negative sequence voltage component to appear for TTSC, HRC and demagnetization
faults, as shown in Figures 12–14. This component helps to mitigate the effect of the fault
on the stator flux linkage magnitude. However, the negative sequence voltage is nearly
zero under eccentricity fault, as shown in Figure 15. The absence of the negative sequence
voltage under eccentricity fault is similar to the healthy case, Figure 11. It is expected
that the operation of the DTC-driven PMSM will remain stable despite the presence of an
eccentricity fault. Nonetheless, this may lead to challenges in detecting the eccentricity
fault in DTC-driven PMSM.

11
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Figure 11. Sequence components of the commanded voltages in DTC-driven PMSM under healthy
operating conditions.
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Figure 12. Sequence components of the commanded voltages in DTC-driven PMSM under TTSC
fault with different severity levels. The healthy sequence components, from Figure 11, are shown in
the faded color. (a) Case 1: (15, 0.5 Ω). (b) Case 2: (30, 0.25 Ω).
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Figure 13. Sequence components of the commanded voltages in DTC-driven PMSM under HRC fault
with different severity levels. The healthy sequence components, from Figure 11, are shown in the
faded color. (a) Case 1: 100%. (b) Case 2: 150%.
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Figure 14. Sequence components of the commanded voltages in DTC-driven PMSM under demagne-
tization fault with different severity levels. The healthy sequence components, from Figure 11, are
shown in the faded color. (a) Case 1: 1 Magnet. (b) Case 2: 3 Magnets.
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Figure 15. Sequence components of the commanded voltages in DTC-driven PMSM under eccentricity
fault with different severity levels. The healthy sequence components, from Figure 11, are shown in
the faded color. (a) Case 1: 40%. (b) Case 2: 60%.

5.3. Torque Comparator

To investigate the response of the torque comparator to fault presence in DTC-driven
PMSM, the multiplication terms and offset terms on the torque signal given in (18) and (19)
are studied. The multiplication terms are cos(m) and cos(d) and they are shown in
Figure 16. It can be observed that their effect on tm and tre is negligible, as their magnitude is
near unity.

The offset terms A · cos(δ) sin(m) and B · cos(2δ) sin(d) are shown in Figure 17. It can
be noticed that these terms mostly offset each other and, hence, their overall effect on the
torque is negligible, as depicted in Figure 17.

In summary, the DTC drive has the capability to incorporate the 6th and 12th
harmonics in the torque angle instead of the torque signal itself. Although these addi-
tional harmonics are present, they have a negligible impact on the torque signal. As a
result, the DTC drive can maintain the torque error within the torque hysteresis bands.
This nonlinear behavior of the torque hysteresis comparator justifies the compensation
of the second term of dynamic torque error in (8) due to the fault presence through the
manipulation of the torque angle.

0 0.5 1 1.5 2 2.5
0.9999975

0.999999

1

Figure 16. The magnitude of the magnet and reluctance torque multipliers, cos (m) and cos (d),
in (18) and (19).
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Figure 17. The magnitude of the offset error in (18) and (19).

6. Conclusions

The impact of various faults on the performance of DTC-driven PMSMs has been
studied. Four types of faults were studied: TTSC, HRC, partial demagnetization, and static
eccentricity. An analytical description of the stator current behavior under faulty conditions
was used to evaluate the response of the flux and torque hysteresis comparators. Faults
introduce negative sequence components in the stator current that impact flux linkage
estimation. The presence of the fault also introduces (1) a DC offset and (2) a double
frequency component in the torque. The flux comparator adjusts the applied voltage vector
to maintain the desired flux linkage by applying a negative sequence voltage to compensate
for the fault effect. However, the negative sequence voltage applied to correct the error
due to the fault is limited by the flux hysteresis bandwidth. If the bandwidth for the flux
comparator is adequate, the DC offset and a portion of the double frequency component
of the torque will be suppressed. The torque comparator manipulates the torque angle to
keep the machine torque within the specified hysteresis bands.

Initially, it may seem advantageous for DTC to compensate for the flux linkage and
torque errors introduced by the presence of the fault. However, excessive variations in the
torque angle and unmodeled dynamics may lead to instability. Ideally, the torque angle
should remain relatively constant to maintain synchronization between the stator and rotor
flux linkage vectors. Additionally, violations of (20) due to the presence of the fault may
cause the controller to become unstable.

As shown in Figures 12–14, low severity faults result in minimal changes to the
negative sequence component of the voltage. As the fault severity increases, the negative
sequence component of the voltage increases. As long as the flux comparator is able to
keep the flux within the specified hysteresis bands, the torque angle variations are minimal.
Moreover, it is observed that the impact of the static eccentricity fault on overall drive
operation is minimal compared to other faults. This indicates that the flux and torque
hysteresis comparators employed in DTC can also mask the impact of faults. Therefore,
the compensatory nature of DTC necessitates the development of fault detection and
separation techniques that are suitable for the DTC structure to deploy mitigation schemes
and maintain stability in the drive system. The results of this work are as follows:

(1) Provided insight into the DTC reaction to faulty operation of a PMSM; and
(2) Identified challenges in stability for DTC-driven PMSMs.

Future research should, therefore, focus on other factors that may affect fault detectabil-
ity, such as the controller bandwidth, machine saturation level and sampling frequency.
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Abstract: This paper analyzes the electromagnetic torque (EMT) fluctuation characteristics in syn-
chronous generators under rotor interturn short-circuit (DRISC) fault. The novelty of this paper
is that the DRISC fault is proposed based on the intermittent interturn short circuit existing in the
actual operation and compared with the static rotor interturn short-circuit (SRISC) fault. In the
work, by studying the influence of DRISC with different positions and different short-circuit degrees,
the fluctuation characteristic of the EMT is analyzed and verified. The results show that when the
DRISC5% fails, the location is in slot 3, the amplitude of first harmonic decreases by 7.2%, second
harmonic amplitude increases by 33.4%, third harmonic decreases by 4.3%, and fourth harmonic
increases by 26.8%. As the degree increased and positioned away from the large tooth of the DRISC,
the overall EMT amplitude and reverse pulse increased, first and third harmonics decreased, and
second and fourth harmonics increased.

Keywords: synchronous generator; dynamic rotor interturn short circuit (DRISC); electromagnetic
torque (EMT); magneto-motive force (MMF); harmonic component

1. Introduction

Rotor interturn short circuit (RISC) is a common fault, and can usually be divided
into dynamic rotor interturn short circuit (DRISC) and static rotor interturn short circuit
(SRISC). This kind of fault is usually due to the small radius, and the external insulation
part will be broken and cause a short circuit. On the other hand, in the operation of the
generator, the high temperature makes the rotor winding expand, causing deformation and
displacement. Meanwhile, the generator vibration will lead to insulation damage. Further,
the rotor short-circuit failure occurs [1–3].

At present, the domestic and foreign RISC diagnosis method is mainly based on
electrical and mechanical parameters. Electrical parameters include stator voltage, stator
current [4–6], and parallel branch circulation characteristics [7–9]. The mechanical pa-
rameters include unbalanced magnetic tension, stator core vibration, winding vibration
characteristics, electromagnetic torque, etc. [10,11].

In terms of the electrical characteristics, Huang et al.’s study concluded that when RISC
appears, it will reduce the excitation current, resulting in reactive power [12]. D’Angelo
proposed a simulation model of a generator rotor winding detection system, which is a
mathematical model established by using the divine network MLP to study the operating
power of generator set when RISC appears [13]. Junqing Li et al. analyzed the mathematical
expressions of the magnetic momentum and current under RISC conditions and presented
the relationship between different harmonic changes of the stator branch current and the
RISC short-circuit position [14]. In [15,16], the stator current and circulation characteristics
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of the composite failure of the generator are analyzed, and the stator voltage RMS decreases
when the RISC occurs. Hao et al. used the multi-loop theorem to obtain an expression
for the current of each loop. Both the experiment and simulation met the theoretical
analysis, and therefore a method of online fault monitoring using a multi-loop current was
obtained [6]. Mazzoletti et al. calculated the stator current difference, obtained the fault
correspondence of the residual current vector, and realized the fault diagnosis of RISC for
the permanent magnet generator [17].

According to the mechanical characteristics, Albright, D. R. measured the change rate
of the air-gap flux density of the rotor by a fixed search coil, which can obtain the short-
circuit position more sensitively [18]. In [15], the expression of the unbalanced magnetic
pull is obtained by the analysis of the magnetic flux density. Through simulation and ex-
perimental verification, the unbalanced magnetic tension makes the generator rotor vibrate
at the base frequency under the RISC condition. When RISC occurs, the influence of elec-
tromagnetic torque on motor vibration is more obvious. By analyzing the electromagnetic
torque under the composite fault of rotor short circuit and eccentric, it was concluded that
the generator rotor vibrates at three times the frequency, and the vibration intensifies with
the deepening of the fault [16]. Hao used the virtual displacement method to analyze the
steady-state harmonic characteristics after EMT failure, and concluded that RISC produces
AC pulsation components, which are closely related to the stator winding structure [3].
Hang, J detected the positions of the interturn fault based on the amplitude and initial phase
angle of the zero-order voltage component (ZSVC), and proposed a method to directly
diagnose the interturn fault by directly collecting the electromagnetic torque [19].

The above literature establishes the basis for the diagnosis of RISC, but rarely studies
DRISC. As an improvement, this paper presents a comprehensive study on the EMT
fluctuating properties via the new DRISC model with different degrees and positions in
synchronous generators. On the basis of comparative studies, variable differences between
SRISC and DRISC are further obtained.

2. Analysis Model of DRISC

When the rotor short circuit occurs, the effective turns of the rotor winding decrease,
which will affect the decrease of the air-gap magnetic potential. The excitation current in
the rotor winding no longer circulates through the fault site and creates a new loop. There
will be a reverse current in this loop to create a reverse magnetic potential.

The DRISC from rotor insulation damage over time is investigated by analyzing fault
schematics and simplified models, see Figure 1.

0 

t 

d 
d2 

SRISC 
DRISC 

 

U

End Straight Part End

FEA 

e

LrR 
U

Equivalent simplified model

Winding model

 
(a) (b) 

Figure 1. (a) Fault schematic diagram, (b) simplified model.

At the initial stage of short-circuit failure in the generator, intermittent contact occurs
at the coil insulation damage. Therefore, in a steady-state excitation circuit, a new circuit
occurs in the form of a pulse signal. Moreover, in the late stage of short-circuit fault, the
insulation is seriously damaged, and the exposed line is completely touching. Meanwhile,
a reverse loop occurs in the excitation circuit, and the reverse signal appears in the form of
a step, such as:
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step
{

0 · · · · · · t < 0
R0 · · · · · · t ≥ 0

pulse
{

0 · · · · · · t < 0, t > ε
H
ε · · · · · · 0 ≤ t ≤ ε

(1)

The response of the pulse and step signals to a stable system is shown in Figure 2.

 

Figure 2. Signal response map.

It is known that the rotor dynamic short circuit is a transient short-circuit process,
which can be equivalent to the reverse pulse current generated by the short circuit, resulting
in the addition of a reverse pulse magnetic potential based on the original magnetic
potential. The static short circuit can be understood as a reverse magnetic potential in
generating a step, as shown in Figure 3.
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(a) (b) 

Figure 3. (a) Rotor MMF in SRISC case, (b) rotor MMF in DRISC case.

In DRISC, T is the fault cycle, k is the duty cycle of the short circuit, and h is the peak
generated by the short circuit. When the short circuit starts and ends, the h pulse is infinite.

According to the Gaussian magnetic flux theorem, the reverse magnetic potential
generated by the reverse current is:

Fd(θr) =

{
− I f nm(2π−αr)

2π · · · · · · · · · β′ ≤ θr ≤ β′ + αr
I f nmαr

2π · · · · · · · · · · · · · · · · · · θr < β′, θr > β′ + αr
(2)

In (2), Fd is the reverse MMF, If is the excitation current, nm is the number of short-
circuit turns, θr is the circumferential angle of the rotor surface, β’ is the starting angle of
the groove, where the interturn short circuit occurs, and αr is the angle of the two grooves,
and the angle where the short circuit turns are located.

For a better understanding, the schematic DRISC and the rotor magnetic potential
vector diagram are displayed in Figure 4.
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Figure 4. (a) Schematic diagram of short-circuit principle, (b) normal MMF vector, (c) MMF vector
under short-circuit conditions.

In Figure 4, Fr is the normal base principal magnetic potential, Fs is the normal
armature reaction magnetic potential, and Fc is the synthetic magnetic potential for the
composite magnetic potential of the gap base wave. Eo is the empty load potential, I is the
positive phase current, and ψ is the internal power angle of the generator. In Figure 4c, the
sub-angle marked 1 indicates the parameters after the interturn rotor.

2.1. Impact of DRISC on MFF

The reverse magnetic potential may be expanded by a Fourier series as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fd(θr) = A0 +
∞
∑

n=1
[An cos(nθr) + Bn sin(nθr)]

A0 = 1
2π

∫ 2π
0 Fd(θr)dθr = 0

An = 1
π

∫ 2π
0 Fd(θr) cos(nθr)dθr = − I f nm [sin(n(αr+β′))−sin(nβ′)]

nπ

Bn = 1
π

∫ 2π
0 Fd(θr) sin(nθr)dθr =

I f nm [cos(n(αr+β′))+cos(nβ′)]
nπ

(3)

Moreover, Fd can be represented as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fd(θr) =

∞
∑

n=1
Fdn cos(nθr − φ) =

∞
∑

n=1
Fdn cos(nωt − φn)

Fdn =
√

A2
n + B2

n =

√
2I f nm
nπ

√
1 − cos(nαr) =

2I f nm
nπ sin nαr

2
φn = arctan Bn

An
= cos[n(αr+β)]−cos(nβ)

sin(nβ)−sin[n(αr+β)]

(4)

In order to simplify the calculation model, the higher harmonics can be ignored, and
only the cases when n = 1 (indicating odd harmonic) and n = 2 (representing even harmonic)
are considered. After the DRISC, the air-gap magnetic potential of the generator is as shown
in Figure 4c. Fd1 and Fd2 are the base amplitude and second harmonic amplitude of the
reverse magnetic potential after the DRISC. Therefore, the magnetic potential after the
DRISC can be expressed as:

f (αm, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fs cos
(
ωt − αm − ψ − π

2
)
+ Fr cos(ωt − αm)

= Fc cos(ωt − αm − γ1) · · · · · · · · · · · · · · · · · · · · ·Normal
Fs1 cos

(
ωt − αm − ψ − π

2
)
+ (Fr − Fd1) cos(ωt − αm)

−Fd2 cos 2(ωt − αm − φ2)
= Fc1 cos(ωt − αm − γ2)− Fd2 cos 2(ωt − αm − φ2) · · · SRISC⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Fc cos(ωt − pαm) · · · · · · (i − 1)T < t < (i − 1 + k)T
Δh1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = (i − 1 + k)T

Fc1 cos(ωt − pαm)− Fd2 cos 2(ωt − pαm)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (i − 1 + k)T < t < iT

Δh2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = iT

· · ·DRISC

(5)
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It can be seen that when DRISC occurs in the generator, the even harmonic component
increases. In the DRISC cycle, during the short circuit and normal state switch, the RMS of
the magnetic potential should be between normal and SRISC (SRISC can be considered a
special case of DRISC with a duty cycle of 1). Due to the DRISC period of the normal state,
the fluctuation of the magnetic potential amplitude will change accordingly.

2.2. Impact of DRISC on MFD

When DRISC occurs, the magnetic tension per unit area remains unchanged, and the
magnetic flux density is:

B(αm, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fc cos(ωt − pαm)Λ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·Normal
[Fc1 cos(ωt − pαm)− Fd2 cos 2(ωt − pαm)]Λ0 · · · · · · · · · · · · · · · · · · · · · SRISC⎧⎪⎪⎨⎪⎪⎩

Fc cos(nωt − pαm)Λ0 · · · · · · · · · · · · · · · · · · · · · · · · (i − 1)T < t < (i − 1 + k)T
Δh1Λ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = (i − 1 + k)T
[Fc1 cos(ωt − pαm)− Fd2 cos 2(ωt − pαm)]Λ0 · · · (i − 1 + k)T < t < iT
Δh2Λ0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t = iT

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·DRISC

(6)

Combined with the previous analysis, the B amplitude of the DRISC of the rotor
can be seen from (6). In addition to the original odd harmonic component, the harmonic
component also increases. With the increase of the short circuit, the amplitude of the original
odd subharmonic decreases, and the amplitude of the newly generated even subharmonic
increases. There is a pulse at the short-circuit and normal state transition moments, and the
overall magnetic density amplitude of DRISC is between normal and SRISC.

As mentioned above, both location and degree will affect the change of the air-gap
magnetic density, so the influence on the air-gap magnetic density can be obtained by
Formula (7): ⎧⎪⎨⎪⎩

Fd1 =
2I f
π nm sin αr

2 =
2I f N

π
nm
N sin αr

2 = 0.637FrPs sin αr
2

Fd2 =
I f
π nm sin αr =

I f N
π

nm
N sin αr = 0.3185FrPs sin αr

Ps =
nm
N

(7)

where Ps is the percentage of short circuit (the ratio of short circuit turns, nm, to the total
turns, N), which can be obtained from Formula (7). As the degree of RISC increases, both
Fd1 and Fd2 will increase. When the short circuit is away from the large tooth, Fd1 increases,
and Fd2 increases first and then decreases.

2.3. Impact of DRISC on EMT

According to the virtual displacement principle, the EMT studied here can be ex-
pressed as: ⎧⎨⎩ T = p ∂W

∂ψ

W =
∫

v
[B(αm ,t)]2

2μ0
dv

(8)

The EMT depends on the square of the MFD. Qualitatively, the trend of EMT should
be consistent with MFD, and the trend of the squared operation will be more obvious.
Consequently: (1) The appearance of DRISC will reduce the RMS value of EMT, and with
the increase of the degree of DRISC, the RMS value of EMT is smaller. (2) The DRISC
position also affects the electromagnetic torque, while the farther the DRISC is from the
large tooth, the smaller the EMT will be. (3) The appearance of DRISC will bring additional
odd harmonics in the electromagnetic torque, because even harmonics are newly produced
in MFD, and normally only even harmonics (usually only odd harmonics in MFD, because
the DC excitation current can only produce odd harmonics, and the square of MFD only
contains even harmonics). The DC component and even harmonics decrease, while the odd
harmonics increase. (4) The time domain curve of EMT will be affected by the influence of
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the dynamic short-circuit pulse. (5) Under the same position and degree, the SRISC fault
has more of an effect on the RMS of EMT than DRISC.

3. FEA and Experimental Validation

In this paper, the CS-5 hidden pole synchronous generator is studied. The finite
element calculation and the experimental verification were conducted on the dynamic and
static rotor. Parameters are listed in Table 1.

Table 1. Parameters of the CS-5 prototype generator.

Parameters Values Parameters Values

rated power 5 kW stator core length 130 mm
pole-pairs 1 stator coil turns per slot 22

Power factor (cosϕ) 0.8 rotor slots 16
radial air-gap length 1.2 mm rotor core outer diameter 142.6 mm

stator slots 36 rotor core inner diameter 40 mm
stator outer diameter 250.5 mm rotor coil turns per slot 60
stator inner diameter 145 mm Internal power factor (cosψ) 0.62

On the generator, there is a plate with different short-circuit taps. By connecting
different taps, varied short-circuit degrees and positions can be simulated, respectively.
The tap settings are indicated in Figure 5a. During the experiment, four group tests were
performed: (1) common condition without RISC, (2) 5% RISC in slot 1 (L1–L2), (3) 10% RISC
in slot 1 (L1–L3), and (4) 10% RISC in slot 2 (L2–L4). Tests (1)–(3) formed a comparison
for different short-circuit positions, while (3) and (4) were employed for varied short-
circuit degrees.

This prototype generator was specifically designed and manufactured by us, and is
able to simulate RISC. This paper establishes the FEA model in ANSYS Maxwell according
to the CS-5 hidden pole synchronous generator design parameters, and verifies the stability
and convergence of the model through previous calculations.

For vividly simulated failures in the experiment, we treated the photoelectric coupler
in the DC solid-state relay as a short-circuit coil. When the photoelectric coupler moves, the
short-circuit fault starts. Otherwise, the short-circuit fault ends. For a schematic diagram of
the DC solid-state relay, see Figure 5d. During the experiment, the start of the DC solid-state
relay was controlled by the PWM. Moreover, the corresponding short-circuit taps were
connected by the DC solid-state relay to realize DRISC. In this study, square-wave pulses
with a 20 ms period and a forward voltage duty cycle of 15% were generated using PWM.
When the square-wave voltage exceeds the DC solid-state relay trigger threshold, the above
method can realize the high-frequency DRISC simulation of the generator.

To match of finite element analysis and the experimental settings, the physical model
in finite elements was coupled to an external circuit. The external coupling circuit of the
generator excitation winding and the armature winding is shown in Figure 5e. S_A1 is
a short-circuit trigger switch, setting the trigger voltage interval [Von, Voff] to control the
short-circuit switch with the pulse voltage source. The dynamic and static rotor interturn
short-circuit model can be realized. The pulse time setting of the DRISC is shown in
Figure 5c.

To reasonably simulate the short-circuit behavior, the section of the short-circuit
winding bar was divided into two components in the 3D model. One is to represent the
short-circuit part, and the other is to represent the normal part (see Figure 5b). The short-
circuit degree was set by changing the short-circuit turn-numbers of the slot as well as the
values of Rf and Rw (see Figure 5e). During simulation, the band rotation was 3000 rpm,
the start time was 0 s, the termination time was 0.2 s, and the step size was 0.0002 s.
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Figure 5. CS-5 generator: (a) picture, (b) FEA model, (c) short-circuit switch control, (d) DRISC
trigger circuit, (e) external coupling circuit model.

During the finite element analysis, the external circuit contains parameters such as
normal and short-circuit winding and changes the resistance values of the corresponding
resistors Rw and Rf. Different degrees of fault simulation can be achieved. In Figure 5c, Td
is the delay time, Tr is the rise time, Tf is the fall time, Pw is the pulse width, the DRISC
cycle corresponds to the pulse cycle, and Von is the control switch of the voltage trigger
voltage. When the voltage value of the pulse voltage source is greater than Von, the switch
S_A1 acts and the excitation circuit is a short circuit. Voff represents the blocking voltage of
the voltage control switch. When the voltage value of the pulse voltage source is less than
Voff, the switch S_A1 is turned off and the excitation circuit is normal. Both the duty cycle
of the short-circuit portion and the DRISC frequency can be changed by adjusting the Pw
and the period. The short-circuit portion produced an external circuit of the DRISC with a
period of 20 ms (15% duty cycle) under the same settings used in the experiment.

In the experiment, DRISC simulation with different degrees and at different positions
can be realized by short-connecting short-circuit taps to different degrees. In the finite
element simulation, it corresponds to the experiment by changing the finite element model
and the external coupled circuit parameters.
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The fault types described in this paper are shown in Table 2. This paper analyzed the
harmonic growth ratio on the basis of the normal harmonic amplitude value.

Table 2. Abbreviation of different cases.

Full Name Abbreviation Full Name Abbreviation

Normal N DRISC 5%0 D5-0
SRISC 5%3 S5-3 DRISC 5%5 D5-5

SRISC 10%3 S10-3 Short Circuit 5%0 5%0
DRISC 5%3 D5-3 Short Circuit 5%3 5%3
DRISC 10%3 D10-3 Short Circuit 5%5 5%5
SRISC 5%0 S5-0 Short Circuit 10%3 10%3
SRISC 5%5 S5-5

1. Effect of Short-Circuit Degree

The MFD results at different RISC degrees by finite element analysis are shown
in Figure 6. As shown in Figure 6a, the appearance and increase of DRISC decreased
the MFD amplitude compared to normal, and the odd harmonic decreased and the even
harmonic increased. Compared with SRISC, the appearance of DRISC caused the amplitude
fluctuation of the reverse pulse produced by the short circuit. As the degree of the short
circuit intensified, the pulse impact became greater. The equivalent degree of DRISC failure
had less effect on harmonics than SRISC, but with the same trend (see Figure 6b). This
result is consistent with a previous theoretical analysis (see Equation (15)).The EMT results
of the FEM model and experiments established in this paper are shown in Figure 7. It
is shown that odd harmonic and amplitude pulses occurred when DRISC occurred. As
shown by the FEA curve in Figure 7d,e, when the short circuit 5% occurred, the amplitude
of first harmonic decreased by 7.2%, second harmonic amplitude increased by 33.4%, third
harmonic decreased by 4.3%, and fourth harmonic increased by 26.8%. With the increase of
DRISC degree, the total electromagnetic torque amplitude, constant component amplitude,
and second harmonic amplitude decreased, while the fourth harmonic and pulse amplitude
increased. The reason for the amplitude fluctuation spikes in EMT is that DRISC generated
reverse pulses in the original stable excitation circuit. The reverse pulse increased as the
short circuit increased.

    
(a) (b) (c) (d) 

Figure 6. MFD variations: (a,b) varied dynamic short-circuit degrees, (c,d) varied dynamic short-
circuit positions.
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Figure 7. EMT in varied DRISC degree cases: (a–c) waves by model, FEA, and experiment, and
(d–g) harmonic variations.

Compared to SRISC, the amplitude of the EMT second harmonics decreased by 17.6%
and fourth harmonic decreased by 10.8% when the same degree of DRISC failure occurred.
The theoretical analysis, FEA, and experiment had the same trends.

2. Effect of Short-Circuit Position

The results of the finite element model analysis are shown in Figure 6. When DRISC
occurred and the position was far from the large tooth, the reverse magnetic potential
generated by the short circuit had a greater influence on the rotor excitation potential.
The overall amplitude of the MFD was compressed, with the odd harmonic component
increasing and the even harmonic component decreasing. When the DRISC occurred, the
MFD curve had a smaller amplitude pulse compared with the SRISC.

The EMT obtained from the proposed model and from the finite element analysis
and experiments are shown in Figure 8. It can be seen that the odd harmonic component
appeared when the DRISC fault occurred. When the DRISC5% fault position changed
from slot 3 to slot 5, the amplitude of first harmonic decreased by 42.5%, second harmonic
amplitude increased by 11.4%, third harmonic decreased by 19.4%, and fourth harmonic
increased by 32.3%. With the short-circuit position away from the large tooth, the total
electromagnetic torque amplitude, constant component amplitude, and second harmonic
component amplitude will decrease, while the fourth harmonic and reverse amplitude
pulse value will increase. This is consistent with the qualitative analysis conclusion obtained
by (19).
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Figure 8. EMT in varied DRISC position cases: (a–c) waves by model, FEA, and experiment, and
(d–g) harmonic variations.

4. Conclusions

This paper presented a new analytical model for RISC fault in synchronous generators.
Further, the EMT fluctuations were comprehensively studied based on the proposed DRISC
model with different degrees and positions. Using the CS-5 fault simulation generator for
the analysis, the FEA calculation and the experimental tests confirmed the validity and the
eligibility of the proposed model. The results showed that:

(1) When the DRISC5% failed, the location was in slot 3, the amplitude of first harmonic
decreased by 7.2%, second harmonic amplitude increased by 33.4%, third harmonic
decreased by 4.3%, and fourth harmonic increased by 26.8%. As the degree of the
DRISC increased, the overall EMT amplitude and reverse pulse increased, first and
third harmonics decreased, and second and fourth harmonics increased.

(2) When the DRISC5% fault position changed from slot 3 to slot 5, the amplitude of
first harmonic decreased by 42.5%, second harmonic amplitude increased by 11.4%,
third harmonic decreased by 19.4%, and fourth harmonic increased by 32.3%. At
the DRISC position away from the large tooth, the overall EMT amplitude and re-
verse pulse increased, first and third harmonics decreased, and second and fourth
harmonics increased.

(3) Compared with SRISC, DRISC had less influence on the EMT amplitude and each
harmonic, but the electromagnetic torque curve showed obvious amplitude pulse.

(4) When a DRISC failure occurred, significant amplitude spikes appeared in the EMT
curve. As the DRISC failure intensified and the fault was away from the large tooth,
the reverse pulse generated by the short circuit became larger. Therefore, the vibration
amplitude of the EMT became larger.
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Abstract: Condition monitoring and preventative maintenance are essential for reliable and efficient
operation of permanent magnet synchronous machines driven by inverters. There are two types of in-
dustrial inverter drives available: field oriented control and direct torque control. Their compensation
nature and control structure are distinct and, therefore, the condition monitoring approach designed
for the former control may not be applicable to the latter one. In this paper, we investigate the Motor
Voltage Signature Analysis approach for both inverter drives under healthy and faulty conditions.
Four typical fault conditions are addressed: turn-to-turn short circuit, high resistance contact, static
eccentricity, and local demagnetization. High fidelity cosimulation is developed by coupling the finite
element machine model with both control drives. The spectral elements of the commanded stator
voltage are utilized as indicators for supervised classification to identify, categorize, and estimate the
severity of faults. Linear discriminate analysis, k-nearest neighbor, and support vector machines are
the classification techniques used. Results indicate that the condition monitoring based on the Motor
Voltage Signature Analysis performs adequately in field oriented control. Nevertheless, the utilized
monitoring scheme does not exhibit satisfactory performance in direct torque control owing to the
nonlinear characteristics and tolerance nature of this drive.

Keywords: condition monitoring; demagnetization; direct torque control; eccentricity; fault diagnosis;
field oriented control; high resistance connection; turn-to-turn short circuit; permanent magnet
synchronous machine; supervised classification

1. Introduction

The use of Permanent Magnet Synchronous Machines (PMSMs) has increased dra-
matically during the last three decades. This is due to the development of new magnets
with high residual flux density, high energy product, and considerable demagnetization
resilience, such as the Neodymium-Iron-Boron (NdFeB) magnet [1]. Therefore, PMSMs
outperform induction machines in terms of efficiency, rotor mass, and torque density [2,3].
Such advantages make PMSMs more prevalent in different critical industries such as au-
tomotive, aerospace, and renewable energy applications [4]. In these critical applications,
where safety is a must, highly reliable and efficient electricity-driven PMSMs systems are
required. However, a failure may occur unexpectedly due to material aging, assembly
defects, poor installation, or inappropriate operation, all of which may result in costly
shutdowns and tragic loss of human lives [5–7]. Therefore, inverter-driven PMSMs systems
necessitate health monitoring and fault diagnosis algorithms to guarantee the highest level
of safety and reliability.

Fault diagnosis is considerably demanding and challenging in inverter-driven PMSMs
as compared to the line-fed ones. This is evidenced by the fact that fault detectability in
inverter-driven PMSM systems is diminished by the compensatory capability of the drive
system [8]. The two most common drives for PMSMs are Field Oriented Control (FOC)
and Direct Torque Control (DTC). FOC was introduced in the late 1960s for alternating
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current machines and then first adopted by the Toshiba industry a decade later. The main
concept of FOC is to control the stator current vector in the rotor flux linkage frame at
fixed switching frequency [9,10]. DTC, on the other hand, aims to directly control the
stator flux linkage and the electromagnetic torque through hysteresis comparators. Thus,
the switching frequency is variable and a position sensor is not necessary to achieve the
complex current orientation into the rotor flux linkage frame [11]. It was proposed in the
early 1970s and then commercialized by the ABB industry two decades later [12,13]. Both
control schemes have a simple structure and provide satisfactory performance with better
steady-state behavior in the case of FOC and faster torque dynamics in DTC. However, one
control scheme can be more appropriate than the other based on the drive requirements of
the application.

Intensive research on fault diagnosis has been conducted in the literature for FOC-
driven PMSMs under different faults [14–16]. For the most precise fault detection in various
operating conditions, the Machine Voltage or Current Signature Approach (MVSA/MCSA)
has been commonly used at high loads. This method allows remote machine monitoring
through the Motor Control Center (MCC) with no extra hardware for implementation.
Turn-to-Turn Short Circuit (TTSC) and eccentricity faults cause changes in the sideband
harmonics of the stator current; therefore, they could be used as features for fault pres-
ence [17,18]. As the Signal-to-Noise Ratio (SNR) of the utilized features drops in the
presence of increasing noise levels, so does the reliability of the detection method. There-
fore, the main spectral elements in the stator current or voltage have been considered
because of their higher SNR for identifying and classifying TTSC, eccentricity, and demag-
netization faults using Linear Discriminate Analysis (LDA) classifier [19]. Harmonics in
the stator current or voltage waveforms, however, are sensitive to the bandwidth of the
controller. Thus, it is recommended that the harmonics in the voltage waveform be used for
fault diagnosis since they are prominent when a high bandwidth is utilized to obtain better
control performance [20]. Despite the fact that the MVSA method has had widespread
use in the research community for FOC drives, it has not been examined for DTC-driven
PMSMs.

The change in commanded voltages in the rotor flux linkage frame, according to [14],
may be utilized to identify and discriminate eccentricity, demagnetization, and TTSC
faults. Monitoring magnitude variations of these voltage signals present in the FOC drives
allows for nonintrusive fault detection. Due to the DTC drive being executed in the
stationary reference frame, where these voltages are not accessible and the position sensor
is unnecessary, this method could not be extended for DTC.

Few contemporary studies examine condition monitoring for DTC-driven PMSMs [20–24].
Zero-sequence voltage component (ZSVC) magnitude and its initial phase have been proposed
by authors in [21] for TTSC fault detection. The negative influence of TTSC on DTC performance
is then compensated by using torque injection and an enhanced flux observer. To calculate the
zero-sequence network, however, neutral point access is required by paralleling a balanced
three-phase resistive load with the machine. In [22], the High Resistance Contact (HRC) fault
has been investigated by including a fixed flux deviation in the stator flux linkage estimate
necessary for DTC drive operation. However, further analysis is needed to ensure reliable DTC
operation considering the importance of accurate flux estimation to DTC. To accommodate
PMSM drives with open phase fault, recent research adapted the DTC system for use as a fault
tolerant control [25–27].

Fault identification is required to enhance drive performance considering multiple
faults to avoid false alarms. Fault diagnosis methods of PMSMs that exist in the literature
based on the FOC scheme are not suitable for DTC-driven PMSMs as they have a different
nature of compensation, a different structure, and a different regulation principle. There is a
clear gap in the research on the reliability of DTC-driven PMSMs. The major contributions of
this work are: (1) Reliable multiple fault detection and separation is introduced by adopting
multifeature analysis to avoid misclassification and false alarms, as the vast majority of
the existing detection methods in the literature consider single fault. (2) Evaluating the
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supervised learning techniques in fault diagnosis for both FOC and DTC-driven PMSMs.
(3) Reducing the research gap in the reliability of DTC-driven PMSMs by addressing the
MVSA approach and examining its performance in detecting and discriminating faults
for DTC-driven PMSMs. (4) The challenges in fault diagnosis for DTC-driven PMSMs are
highlighted in order to pave the path for further development in monitoring approaches
that suit the DTC scheme.

2. Theoretical Background

2.1. PMSM Faults and MVSA Approach

Stator faults are most commonplace in low and medium power machines [28]. They
could be TTSC due to the degradation in winding insulation or HRC due to the loose
connection between the machine and inverter terminals. Machine overloading in harsh
environments and electric stress from switching devices lead to electrical stator faults even-
tually. TTSC fault propagates faster than the other faults and results in further insulation
degradation and motor outage in the end [29]. HRC results in excessive heat at the motor–
inverter joints and can lead to open phase fault if left unaddressed [22]. Therefore, stator
fault detection and discrimination help in reducing the risk of motor outage, reducing the
maintenance cost, and selecting the proper mitigation scheme.

Rotor faults occur more commonly in high power machines; they are 49% of failure
distribution [30]. Eccentricity faults are an example of the mechanical rotor failures that in-
herently exist at the manufacturing phase. It increases the Noise, Vibration, and Harshness
(NVH) and can lead to rotor rubbing the stator laminations [18]. Additionally, demagnetiza-
tion is another rotor fault that could take place within driven PMSMs if the electromagnetic
constraints are exceeded by improper operation in the field weakening region or due to the
severe TTSC fault occurrence [31]. As a result, the rotor magnets get demagnetized causing
asymmetric flux distribution in the air gap. Reduction in the average torque and increase
in the torque ripple are the main consequences of the demagnetization fault. Therefore,
rotor fault detection is crucial to avoid any damage to the machine structure and improve
the drive performance.

Stator and rotor faults manifest themselves in the spectrum of the machine voltage
signal and leave either distinct or similar trends. Proper utilization of these trends, which
is known as MVSA, does not help only in identifying whether the PMSM is healthy or
faulty but also helps in fault classification and severity estimation. Several signal processing
techniques are available to obtain the frequency spectrum of the machine voltage signal [32].
The spectrum is obtained at a steady state using Fast Fourier Transform (FFT), or under
nonstationary conditions using time–frequency analysis methods like Short Time Fourier
transform (STFT). Variations in magnitude and/or phase of the obtained spectral elements
could be utilized as features for supervised classifiers to detect faults.

2.2. PMSM Drives
2.2.1. Field Oriented Control

Magnetizing and torque current components in the direct and quadrature axes (id and
iq) of the rotor flux linkage frame are regulated separately using a proportional–integral
(PI) controllers in FOC so that the output torque is regulated indirectly. Hence, FOC is also
called indirect torque control. Figure 1 depicts the implementation of FOC-driven PMSM,
where an encoder is needed to estimate the rotor position (θr) required for current vector
decoupling. The widely applied modulation technique to control the inverter switching
scheme in FOC is the Space Vector Pulse Width Modulation (SVPWM) due to its high
utilization of the DC link and low harmonic distortion [33]. The principle behind SVPWM
is to synthesize a reference space voltage vector using timely applied active and zero
voltage vectors at a fixed switching frequency.
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Figure 1. Stator current regulation loop in FOC drive.

The expressions of dq currents and the corresponding machine torque as a function of
both currents are shown in (1) and (2), respectively.

iq = |is|cos(β)

id = −|is|sin(β)
(1)

te =
3Pn

4
iq

[
λPM + (Ld − Lq)id

]
(2)

where |is| and β are the stator current magnitude and angle measured from the q-axis,
respectively. te is the machine electromagnetic torque. Pn is the number of rotor poles in
PMSM. Ld and Lq are the inductance of the direct and quadrature axes. λPM is the magnet
flux linkage.

By controlling |is| and β, different (id,iq) combinations can be generated and different
control modes can be achieved as follows: Maximum Torque Per Ampere (MTPA), field
weakening, maximum torque per voltage, and unity power factor [34]. The control mode
selection is based on the PMSM type and operating speed. Below the base speed, the MTPA
control is utilized to generate the maximum torque for a given current in order to minimize
the copper losses [35,36]. The excitation angle in MTPA region (βTmax ) is expressed in (3).
PMSM control in MTPA region is used in this work. Here, the excitation angle (β), to get
the optimum dq currents, for a given torque is found.

βTmax = sin−1

[√
8(Lq − Ld)2|is|2 + λ2

PM − λPM

4|is|(Lq − Ld)

]
(3)

PMSM control in MTPA region is used in this work. Here, the excitation angle (β), to
get the optimum dq currents, for a given torque is found.

2.2.2. Direct Torque Control

The nonlinear form of DTC drive, which employs hysteresis comparators, was first
presented for PMSMs in [37]. Figure 2 depicts the basic block diagram utilized for DTC
implementation where δte and δλs are the outputs of hysteresis comparators.
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Figure 2. Torque and flux regulation loop in DTC drive.

The amplitude of the torque output (te) and the stator flux linkage (λs) are both
adjusted by using two hysteresis comparators. Thus, the feedback loop needs flux and
torque estimates. These estimates are typically computed in the stationary (αβ) frame, as
explained in (4) and (5), to obviate the requirement for a position sensor.

λαβ = λα0β0 +
∫
(vαβ − rsiαβ)dt (4)

te =
3Pn(iβλα − iαλβ)

4
(5)

where iα and iβ are the currents in the stationary frame. rs is the stator phase resistance.
λα0 and λβ0 represent the initial flux linkage estimates based on the frame alignment. The
voltages vα and vβ in stationary frame are calculated as in (6) where (swA, swB, swC) are the
switching signals to the inverter legs and (vlink) is the bus link voltage.

vα =
vlink[2swA − swB − swC]

3

vβ =
vlink[swB − swC]√

3

(6)

2.3. Supervised Classification

The method of developing a prediction model using specified data input is known as
supervised machine learning [38]. A class may be anticipated for a sample that has not yet
been classified using this data-driven method. Three classification methods are utilized in
this paper: LDA, k-nearest neighbor (k-NN), and support vector machines (SVM).

The training data in LDA are assumed to have a normal distribution with a fixed class-
independent covariance matrix. The decision border partitioning classes in a two-indicator
situation is linear using LDA. Nevertheless, this discriminant technique is highly biased
if the assumption of normal data distribution is violated [39]. Here, the dataset is split to
(K) classes, with every class containing a number of samples belonging to the same class.
Each class is associated with weighting factors that are used to determine the discriminant
function for that class. The discriminant function (Υk) for kth class is calculated as following:

Υk(X) = α1kx1 + α2kx2 + · · ·+ αNkxN (7)

where X = [x1, x2, . . . , xN ] is the N dimensional observation vector and [α1k, α2k, . . . , αNk] is
the matrix of weighting elements of the kth group. A sample will be placed in a given class
if and only if its discriminant function is greater than those of other classes. For example,
an unidentified sample Xa will be assigned to a class b if

Υb(Xa) ≥ Υk(Xa), ∀b 
= k (8)
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Both k-NN and SVM may be used to eliminate the reliance on the assumption of
normal data distribution, but their classification capability is proportional to the amount of
training data provided. An assessment of k-NN and SVM classifiers is carried out in [40]
for the purpose of identifying bearing and uneven shaft rotation failures in directly line
connected induction motors. The k-NN method classifies an unidentified sample according
to the majority vote of its closest neighbors. Its performance is determined by the distance
measure being used to locate the neighbors and the number of these neighbors. The
Euclidean distance measure and the closest four neighbors demonstrate the highest level
of classification accuracy for this work when employing k-NN. The Euclidean distance is
given by:

DXY =

√
n

∑
i=1

(xmi − ypi)2 (9)

where X = [xm1, . . . , xmn] is the tested samples vector, Y = [yp1, . . . , ypn] is the vector of
training data, p = 1, . . . , l is the sample counter for unidentified samples and m = 1, . . . , j
is the sample counter for labeled samples.

Another type of supervised machine learning is SVM, which is notable for its resistance
to any bias or noise in the training sample space [41]. The aim of the SVM classification
model is to generate the optimal hyperplane using support vectors that results in the
best discrimination between two distinct data sets. Support vectors are the outlying
samples closest to the discrimination boundary. The optimal hyperplane obtained by
SVM is used to classify an unidentified sample by measuring the perpendicular distance
between the sample and the hyperplane. SVM training will be a constrained optimization
problem in which the weighting vector η(X) is minimized so that every sample satisfies
the following criteria:

η(X) = ηo + υTX ≥ 0 (10)

where υ is the vector containing each class weight and ηo is a threshold setpoint for classifier
modeling. SVM incorporates kernel functions if the data classification cannot be achieved
linearly in the original dimensional space of the training data. As a consequence, SVM
turns the training data into higher-dimensional spaces where it may be separated linearly.
It is possible that the SVM classification model might be modified to handle situations
involving more than one class by pitting one class against all of the other classes or by
pitting one class against another class at a time. The latter method is the one that is used to
investigate the various fault classes in this research.

One way to evaluate the effectiveness of the abovementioned classifiers is by using
the leave-one-out method, in which a selected sample from the training dataset is removed
and thereafter treated as an unidentified sample to be predicted. This procedure is repeated
until all samples in all classes have been processed. The classifier accuracy is then evaluated
as follows:

Λ = (
Nlabeled
Ntotal

)× 100% (11)

where Λ represents classifier accuracy and Nlabeled represents the number of properly
labeled samples out of the total samples count in the training pool Ntotal .

3. Finite Element Analysis Simulations

Coupling the finite element model (FEM) of an electric machine with a control circuit
demonstrates the capability of simulating the machine harmonics due to the slotting,
saturation, and switching frequency. Such a model would allow the efficient representation
of the PMSM, considering the aforementioned faults, at different operating states. Besides
that, this high-fidelity simulation would allow the maintenance and reliability engineers
to study the extreme fault severities on the machine without destructive or dangerous
experimentation. PMSM modeling, control, and fault implementation are discussed in this
section. FOC- and DTC-driven PMSM are assessed in both healthy and faulty situations
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by integrating the control circuit of FOC or DTC in SIMPLORER simulator with the FEM
model of the studied PMSM in MAXWELL simulator within the ANSYS software. Four
faulty situations are considered: TTSC, HRC, static eccentricity, and local demagnetization.

3.1. Healthy Machine Modeling and Control

To develop a fault diagnosis approach, it is necessary to model the PMSM in the
healthy case and use the obtained measurement as a reference in case of fault occurs. Any
deviation from the processed healthy data could be considered as fault symptoms. In order
to implement the aforementioned faults in the FEM of the studied PMSM, geometric and
electrical modifications should be made. Table 1 lists the main electric and geometrical
parameters of the investigated PMSM.

Table 1. Nameplate data of the studied PMSM.

Machine Specification Symbol Value Machine Specification Symbol Value

Pole pairs Pn 5 d-axis inductance Ld 31.3 mH
Slots Q 12 q-axis inductance Lq 62.4 mH
Turns per slot Ns 150 Mutual inductance Ms ≈0 H
Air gap length g 1 mm Rated phase current Irms 18 A
Residual flux density Br 1.2 T Rated line voltage Vrms 480 V
Magnet flux linkage λPM 287 mWb Rated torque Te 65 N·m
Phase resistance rs 1.5 Ω Rated speed nm 800 rpm

The FEM of the simulated PMSM in ANSYS MAXWELL software is depicted in
Figure 3. It could be observed that the machine winding of each phase are wound around
one slot. This winding configuration is referred as concentrated winding machine where
the winding are physically isolated and, therefore, the mutual inductance is negligible.

(a) (b)

Figure 3. The electromagnetic simulation of studied PMSM machine: (a) FEM of the studied machine
and (b) Mesh of the machine model.

The MTPA profile was first obtained by characterizing the PMSM using the approach
described in [35]. Figure 4a depicts the MTPA profile for various operating currents. For
FOC-driven PMSM, it can be noticed that the excitation angle should be βTmax = 30◦ to
get the MTPA operation below the rated speed. For DTC, the stator flux linkage (λs) was
changed in step of 0.25 Wb from the permanent magnet flux linkage to the rated one at
different operating torque levels. A look-up table stores the stator flux linkage that yields
the minimal current for different torque levels. Figure 4b shows the machine MTPA profile
for the operating torque range.
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(a) (b)

Figure 4. The MTPA profile of the driven PMSM: (a) In FOC drives and (b) In DTC drives.

3.2. Turn-to-Turn Short Circuit Fault Implementation

The implementation of TTSC fault requires modification to the geometrical model in
MAXWELL by dividing the coil region into two: (1) a region reflecting the healthy turns
and (2) one proportional to the faulty turns. Figure 5 depicts the PMSM model as well as
the phase A circuit with a TTSC fault, assuming that phase A is the one that is faulty. After
splitting the coil region of the faulty phase in MAXWELL, additional terminals appear
in the PMSM model in SIMPLORER to provide access to the shorted turns, as shown in
Figure 5b. Consequently, the electric circuit in SIMPLORER has been modified by inserting
a short circuit path with fault resistance (R f ) over the shorted turns of the faulted phase.

(a) Electrical model of phase A with TTSC fault.

(b) External coupling circuit of the geometrical model of phase A with TTSC.

Figure 5. TTSC fault simulation in the PMSM model.

where rsh , Lsh , and esh are the resistance, inductance, and back-EMF of the healthy
turns. rs f , Ls f , and es f are the resistance, inductance, and back-EMF of the shorted turns.
Lh f is the mutual inductance between healthy and faulty turns of the faulted phase. i f
is the fault circulating current in the short circuit path between the healthy and faulted
turns. Early detection of an incipient TTSC fault enables better treatment and prevents
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total machine failure. The worst-case scenario for a TTSC fault is a bold short circuit with
almost zero fault resistance while an incipient short circuit fault is represented with higher
fault resistances [42]. As indicated in Table 2, different severities of incipient TTSC fault are
examined by adjusting the faulted turns Nf and the resistance shorting them R f . The fault
resistance R f is selected high, in this work, to mimic incipient stages of TTSC fault.

Table 2. Severity levels of TTSC fault.

Case Nf R f

SC1 15 0.5 Ω
SC2 15 0.25 Ω
SC3 30 0.5 Ω
SC4 30 0.25 Ω

3.3. High Resistance Contact Fault Implementation

The implementation of the HRC fault involves simply a change to the SIMPLORER
circuit in which the affected phase circuit is linked in series with an adjustable fault
resistance (Δrs) proportional to the fault severity. The extreme case of HRC fault is when
a relatively large fault resistance is used with the faulted phase circuit. This situation is
considered as an open phase fault. Figure 6 depicts the HRC fault implementation in phase
B circuit of the faulted driven PMSM.

Figure 6. Electrical model of inverter-driven PMSM with HRC fault in phase B.

Three different fault severity levels of HRC are analyzed as given in Table 3, all based
on the assumption that the fault occurred in the phase B circuit.

Table 3. Severity levels of HRC fault.

Case Δrs
rs

%

HRC1 50%
HRC2 100%
HRC3 150%

3.4. Static Eccentricity Fault Implementation

The machine is considered healthy if the stator and rotor geometrical centers are
concentric with the rotational axis. If the rotor center and rotational axis are shifted from
the stator center by a constant value, the machine is considered faulty with static eccentricity.
The coordinate center of the stator remains unchanged while the rotor and its axis of rotation
move in the direction of the fault as shown in Figure 7.
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Figure 7. Shift direction of the static eccentricity fault.

The fault is simulated along the positive Y-axis by modifying the shift (ε) value, taking
the three severities shown in Table 4 into account. Since the eccentricity fault is inherently
available during the manufacturing process, the machine is considered healthy if the
severity level of static eccentricity is below than 10%.

Table 4. Severity levels of static eccentricity fault.

Case ε
g %

ECC1 10%
ECC2 40%
ECC3 60%
ECC4 80%

3.5. Local Demagnetization Fault Implementation

The demagnetization fault is applied in FEM by lowering the density of the remnant
flux in the affected magnets. This could be uniform demagnetization in all magnets or
locally in some magnets. Three magnets have their top corners (near to the air gap)
replaced with an identical material with flux density reduced to 1 T. This is the most
prevalent case for demagnetization failures in PMSM. Figure 8 shows the affected magnets
by demagnetization fault.

Figure 8. Demagnetized magnets.

Changes in the number of demagnetized magnets in the modeled machine provide
different fault severities, as shown in Table 5. The local demagnetization fault is considered
in this study as some magnets get demagnetized in the machine model.
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Table 5. Severity levels of demagnetization fault.

Case Severity

Demag1 One Magnet
Demag2 Two Adjacent Magnets
Demag3 Three Nonadjacent Magnets

4. Numerical Results

4.1. Analysis in FOC-Driven PMSM

The spectral domain of the commanded phase A voltage is obtained using FFT for
different machine health conditions. The sampling period is set to 400 μs. The fundamental,
5th, and 7th harmonics are used here to show the fault effect on the voltage spectrum at
different severity levels. For FOC, the results are shown for the considered PMSM when
it is loaded with (I = 10 A). The machine is running at 600 rpm; therefore, the electrical
frequency of the machine is (50 Hz). Figure 9 shows the commanded voltage of phase A in
FOC drive for the healthy case.

Figure 9. The commanded voltage of phase A in FOC drive.

The stator voltage spectrum is shown in Figure 10 for healthy and faulty machine
under different severity levels of TTSC fault.

Figure 10. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under TTSC fault in FOC drive.

It could be observed that the magnitude of the fundamental, 5th, and 7th harmonics
in the voltage spectrum is reduced when TTSC fault is present and becomes more severe.
The magnitude changes in the spectrum are significant to distinguish between the healthy
case and TTSC fault. Besides that, it has been noticed that there is an increase in the
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2nd harmonic when TTSC is present. However, this analysis will show the fault effect
on the fundamental, 5th, and 7th harmonics in the voltage spectrum. Nevertheless, the
first eight harmonics will be used as features for diagnosis, as will be described in the
following section.

The stator voltage spectrum is shown in Figure 11 for healthy and faulty machine
under different severity levels of HRC fault.

Figure 11. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under HRC fault in FOC drive.

It could be observed that the magnitude of the fundamental harmonic in the voltage
spectrum is increasing significantly when HRC fault is present and become more severe. On
the other hand, the magnitude of the 5th and 7th harmonics is reduced, but these magnitude
changes might be too small to distinguish between the healthy case and the HRC fault.
However, the considered severity levels of HRC are relatively low, and this would justify
the insignificant changes in the magnitude of the 5th and 7th harmonics. Nevertheless,
these changes would be higher once the fault was present at a higher severity level.

The stator voltage spectrum is shown in Figure 12 for healthy and faulty machine
under different severity levels of eccentricity fault.

Figure 12. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under eccentricity fault in FOC drive.

It could be observed that the magnitudes of the fundamental and seventh harmonics
in the voltage spectrum are increasing when the eccentricity fault is present and becoming
more severe, while the magnitude of the fifth harmonic is significantly reduced. These
magnitude changes are significant to distinguish between the healthy case and eccentricity
fault. Besides that, these magnitude changes due to eccentricity faults are different from
those for TTSC and HRC faults. This would help in fault classification later on.
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The stator voltage spectrum is shown in Figure 13 for healthy and faulty machine
under different severity levels of demagnetization fault.

Figure 13. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under demagnetization fault in FOC drive.

It could be observed that the magnitude of the fundamental and 5th harmonics in the
voltage spectrum is increasing when demagnetization fault is present and becoming more
severe, while the magnitude of the 7th harmonic is reduced. These magnitude changes
could be used to distinguish between the healthy case and demagnetization fault. It is worth
mentioning that the considered severity levels of demagnetization fault are relatively low
as the outer corners of selected magnets get demagnetized only from 1.2 T to 1 T. Besides
that, the trend in magnitude change of the fundamental harmonic due to demagnetization
fault is similar to the trend due to HRC and eccentricity faults, while it is the opposite in
case of the 5th harmonic. This would help the classifier in discriminating between these
three faults, for instance.

4.2. Analysis in DTC-Driven PMSM

The spectral domain of the commanded phase A voltage is obtained using FFT for
different machine health conditions under DTC drive. The sampling period is set to 100 μs;
DTC requires a high sampling frequency to function properly. The fundamental, 5th, and
7th harmonics are also used here to show the fault effect on the voltage spectrum at different
severity levels. For DTC, the results are shown for the considered PMSM when it is loaded
with (T = 20 N·m). The machine is running at 600 rpm; therefore, the electrical frequency
of the machine is (50 Hz). Figure 14 shows the commanded voltage of phase A in DTC
drive for the healthy case.

Figure 14. The commanded voltage of phase A in DTC drive.
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The stator voltage spectrum is shown in Figure 15 for healthy and faulty machine
under different severity levels of TTSC fault when the machine is driven by DTC.

Figure 15. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under TTSC fault in DTC drive.

It could be observed that the magnitude of the fundamental, 5th, and 7th harmonics
in the voltage spectrum is reduced when TTSC fault is present, similar to the fault effect
in the FOC drive. However, it could be noticed that the magnitude of the 7th harmonic is
increased from SC1 to SC2 and from SC3 to SC4, where the number of shorted turns is the
same but different fault resistance is used. This is the same case for the 5th harmonic from
SC1 to SC2 but it is not from SC3 to SC4. Additionally, the magnitude of the 7th harmonic
is increased from SC1 to SC3 and from SC2 to SC4, where the number of shorted turns
is different but with the same fault resistance. This is the same case for the 5th harmonic
from SC1 to SC3, but it is not from SC2 to SC4. If these harmonics are used as features
for diagnosis approach, the classifier will be overwhelmed since the changes in the used
harmonics due to different TTSC severity levels are not consistent with an increase in the
fault severity.

The stator voltage spectrum is shown in Figure 16 for healthy and faulty machine
under different severity levels of HRC fault when the machine is driven by DTC.

Figure 16. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under HRC fault in DTC drive.

It could be observed that the magnitude of the fundamental harmonic in the voltage
spectrum is increasing significantly when HRC fault is present and become more severe. On
the other hand, the magnitude of the 5th has inconsistent change, where it does not change
significantly at HRC1 but it increases at HRC2 and then decreases at HRC3. Similarly, the
magnitude of the 7th starts decreasing at HRC1 but then starts increasing at HRC2 and
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HRC3. Once again, these inconsistent changes in the voltage spectrum due to different
HRC severity levels will result in high false classification results.

The stator voltage spectrum is shown in Figure 17 for healthy and faulty machine
under different severity levels of eccentricity fault when the machine is driven by DTC.

Figure 17. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under eccentricity fault in DTC drive.

It could be observed that the magnitude of the fundamental harmonic in the voltage
spectrum has inconsistent changes due to different severity levels of the eccentricity fault,
where it is reducing at ECC1 and ECC2 while it is increasing at ECC3 and ECC4. Similarly,
the magnitude of the 5th harmonic reduces at all eccentricity severity levels. However,
it decreases from healthy case to ECC1 and ECC2, increases from ECC2 to ECC3, and
then decreases from ECC3 to ECC4. It could be also noticed a similar inconsistent pattern
happens with the 7th harmonic. These irregular changes in the spectrum will result a
difficulty in performing fault detection and separation in DTC drives.

The stator voltage spectrum is shown in Figure 18 for healthy and faulty machine
under different severity levels of demagnetization fault when the machine is driven by DTC.

Figure 18. Variations in the harmonic content of stator voltage spectrum for healthy and faulty
machine under demagnetization fault in DTC drive.

It could be noticed that the magnitude of the fundamental harmonic in the voltage
spectrum has inconsistent changes due to different severity levels of demagnetization fault
where it is increasing at Demag1 and Demag2 but then reducing at Demag3. Similarly,
the magnitude of the 5th and 7th harmonics have inconsistent changes with increasing
the demagnetization fault severity. In comparison with applying FOC drives, the changes
in the voltage spectrum would not help the classifier in identifying fault, discriminating
between them, and estimating their severity.
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5. Diagnosis Approach

The spectrum of the commanded phase A voltage was obtained using the FFT method
in MATLAB, and the amplitude of the first eight harmonics was then extracted. The
inclusion of additional harmonics allows fault identification, categorization and estimate
for TTSC, HRC, static eccentricity and local demagnetization without the need for extra
sensors. This limits possible false indication using the proposed detection methods in the
literature that rely on using only single feature for fault diagnosis.

In this section, supervised classification algorithms (LDA, k-NN, and SVM) are com-
pared in regards to their capability in identifying faulty cases, discriminating them, and
evaluating their severity. Figure 19 shows the flowchart of the fault detection, separation,
and severity estimation algorithm.

In the stage of classification, the amplitude of considered harmonics serves as features
for fault occurrence and its severity increase. The number of samples for each machine
condition should be greater than the number of features that are utilized for detection in
order to ensure that the training of the classifier will eventually converge to a representative
classification model [43]. In this work, eight features are used for detection; therefore, ten
samples are utilized. Therefore, the speed is adjusted in FEM from 250 rpm up to 700 rpm in
50 rpm increments to obtain representative samples for healthy and faulty conditions. For
FOC, the magnitude of the stator current is set to be 10 A at β = 30◦, while the commanded
torque in DTC is set at 20 N·m at 0.57 Wb to get the MTPA operation for both controllers.
The numerical setup generates from each drive system a total of 140 data samples: 10 for a
healthy case, 40 for all severity levels of TTSC fault, 30 for all severity levels of HRC fault,
40 for all severity levels of static eccentricity fault, and 30 for all severity levels of local
demagnetization fault.

Figure 19. Flowchart of fault detection, separation, and severity estimation algorithm.

The first stage of the classification approach is aimed at identifying the fault type at
its early level, allowing for the application of appropriate mitigation techniques to avoid
any further damage, if possible. The fault severity is monitored using the second stage
of the classifiers and the severity estimation could be used to determine remedial actions.
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Therefore, samples of the faulty cases at the lowest severity are considered only in the
training pool to perform fault detection and separation in the first stage. The overall
detection accuracy may be determined by averaging the sum of the accuracy of each
individual case as the sample size is ten for each case. Table 6 displays the accuracy of
identifying and classifying the faults using the classifiers under consideration.

Table 6. Detection accuracy using MVSA approach for FOC- and DTC-driven PMSM.

FOC DTC
Case

LDA k-NN SVM LDA k-NN SVM

Healthy 100% 100% 97.5% 0% 0% 50%
TTSC 100% 100% 100% 80% 70% 75%
HRC 70% 100% 80% 40% 40% 67.5%
Eccentricity 70% 100% 97.5% 30% 50% 57.5%
Demagnetization 80% 70% 87.5% 70% 40% 80%

Overall 84% 94% 92.5% 44% 42% 66%

It is clear that the considered classifiers are capable of fault detection and separation
using the MVSA approach in FOC-driven PMSM while their overall performance is signifi-
cantly degraded in case of DTC-driven PMSM. Moreover, in contrast to FOC drives, it can
be observed that all classifiers achieve reduced detection accuracy of the healthy machine
status in DTC drives. This results in a high number of erroneous indications in DTC drives
and unneeded drive shutdowns. Furthermore, in both drives, the SVM classifier has the
best detection and separation accuracy. Therefore, it is demonstrated that relying on the
MVSA approach for fault diagnosis in DTC drives would result in poor performance and
significant amount of false alarms.

Figure 20 provides the confusion matrix of LDA classifier for fault diagnosis to show
the false alarms and incorrect classification in FOC and DTC drives.

(a) (b)

Figure 20. Confusion matrix of LDA classifier for fault diagnosis for: (a) FOC drives and (b) DTC
drives.

The accuracy of the fault severity estimation using the LDA and SVM classifiers is
shown in Table 7. Once the faulty operation is indicated and fault type is detected from
the first stage of the supervised classification, then the second classification stage will be
dedicated for severity estimation of the detected fault. Therefore, samples of the detected
fault at each severity level are considered in the training pool to perform fault severity
estimation.
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Table 7. The accuracy of fault severity estimation using MVSA approach for FOC- and DTC-
driven PMSM.

FOC DTC
Fault Type

LDA SVM LDA SVM

TTSC 85% 97.5% 42.5% 64.167%

SC1 100% 100% 50% 63.333%
SC2 100% 100% 40% 66.667%
SC3 80% 93.333% 30% 66.667%
SC4 60% 96.667% 50% 60%

HRC 96.667% 86.667% 30% 38.333%

HRC1 100% 100% 30% 35%
HRC2 90% 80% 20% 30%
HRC3 100% 100% 40% 50%

Eccentricity 100% 100% 30% 62.5%

ECC1 100% 100% 20% 53.333%
ECC2 100% 100% 20% 53.333%
ECC3 100% 100% 40% 70%
ECC4 100% 100% 40% 73.333%

Demagnetization 86.667% 71.667% 46.667% 56.667%

Demag1 100% 100% 80% 75%
Demag2 90% 50% 20% 55%
Demag3 70% 60% 40% 40%

It can be observed from Table 7 the degradation in the performance of LDA and
SVM classifiers for the fault severity estimation when DTC is applied in comparison
with FOC. This is related to the earlier mentioned fact of inconsistent changes in the
voltage spectrum due to different severity levels of each fault in case of DTC drives.
Therefore, further investigation for reliable fault diagnosis is required in DTC-driven
PMSMS. It is also important to note that the classification accuracy of the studied approach
is directly impacted by the density of the supervised learning. Accuracy may be enhanced
by collecting more samples. Furthermore, the investigated method is appropriate for
steady-state PMSM operations. Different signal processing techniques may be incorporated
to study the PMSM during nonstationary operation. Nevertheless, the incorporation of
extra harmonics enables fault recognition, classification, and estimation for TTSC, HRC,
static eccentricity, and local demagnetization without the need for additional sensors. This
reduces the likelihood of false indication utilizing detection techniques presented in the
literature that depend on a single feature for fault diagnosis.

6. Conclusions

The accuracy of the MVSA approach and three supervised classifiers (LDA, k-NN,
and SVM) for fault identification and severity estimation in inverter-driven PMSM was
investigated. Features used for classifier training to identify fault type and severity were
the amplitudes of harmonics in the phase voltage signal. Four faults were addressed: TTSC,
HRC, static eccentricity, and local demagnetization. The results show that the studied
MVSA diagnostic strategy worked well in FOC-driven PMSM while deteriorating in DTC-
driven PMSM. This is due to the compensatory nature of each controller. When FOC drive
is applied, there is a consistent correlation between the magnitude variations in the voltage
spectrum that are caused by the incidence of faults and the rise in the severity of faults.
The utilization of hysteresis comparators and variable switching frequency cause these
variations to be inconsistent in the case of DTC-driven PMSM, despite the fact that these
features are present. The vast majority of the existing detection and separation methods in
the literature for inverter-driven PMSMs were developed either for FOC drives or without
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addressing the controller type. As a result, when developing fault diagnosis algorithms,
the controller type and its impact on fault detectability should be addressed.
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Abbreviations

The following abbreviations are used in this manuscript:

DTC Direct Torque Control
FEM Finite Element Model
FFT Fast Fourier Transform
FOC Field Oriented Control
HRC High Resistance Contact
k-NN K-Nearest Neighbor
LDA Linear Discriminate Analysis
MCC Motor Control Center
MTPA Maximum Torque Per Amperes
MVSA/MCSA Machine Voltage or Current Signature Analysis
NdFeB Neodymium-Iron-Boron Magnet
NVH Noise, Vibration, and Harshness
PMSM Permanent Magnet Synchronous Machine
SNR Signal-to-Noise Ratio
STFT Short Time Fourier transform
SVM Support Vector Machines
SVPWM Space Vector Pulse Width Modulation
TTSC Turn-to-Turn Short Circuit
VFD Variable Frequency Drives
ZSVC Zero-Sequence Voltage Component
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Abstract: Because the linear motor feeding system always runs in complex working conditions
for a long time, its performance and state transition have great randomness. Therefore, abnormal
detection is particularly significant for predictive maintenance to promptly discover the running
state degradation trend. Aiming at the problem that the abnormal samples of linear motor feed
system are few and the samples have time-series features, a method of abnormal operation state
detection of a linear motor feed system based on normal sample training was proposed, named
GANomaly-LSTM. The method constructs an encoding-decoding-reconstructed encoding network
model. Firstly, the time-series features of vibration, current and composite data samples are extracted
by the long short-term memory (LSTM) network; Secondly, the three-layer fully connected layer is
employed to extract potential feature vectors; Finally, anomaly detection of the system is completed
by comparing the potential feature vectors of the two encodings. An experimental platform of the X-Y
two-axis linkage linear motor feeding system is built to verify the rationality of the proposed method.
Compared with other classical methods such as GANomaly and GAN-AE, the average AUROC
index of this method is improved by 17.5% and 9.3%, the average accuracy is enhanced by 11.6% and
15.5%, and the detection time is shortened by 223 ms and 284 ms, respectively. GANomaly-LSTM
has successfully proved its superiority for abnormal detection for running state of linear motor
feeding systems.

Keywords: linear motor feeding system; lack of abnormal samples; deep neural network; anomaly
detection; semi-supervised anomaly detection generative adversarial network (GANomaly); long
short-term memory (LSTM) network

1. Introduction

As a key component of position tracking and positioning control for high-end CNC
equipment, robots and precision motion platforms [1], a linear motor feeding system has the
characteristics of multi-domain coupling, high integration of functions and dynamic and
changeable performance. The complexity of electromechanical thermomagnetic coupling
increases the probability of performance degradation, functional failure and malfunction.
At the same time, under the combined effect of high-speed operation, mechanical friction,
wear, high temperature and corrosion for a long time, unforeseen abnormal states and
failures will occur. Therefore, abnormal detection, timely identification of abnormal states
and predictive maintenance of the linear motor feeding system are particularly important.

With the increasing complexity of industrial equipment, the traditional way of re-
placing parts on schedule or judging abnormalities based on human experience can no
longer meet the demand. Currently, the methods for anomaly detection of complex me-
chanical equipment are mainly divided into statistical-based, graph-based and machine
learning-based approaches.

Statistical-based approaches need to collect historical data from equipment for statis-
tical analysis to form a large number of normal data samples and abnormal data samples,
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and detect anomalies by extracting their features. Statistical models for anomaly detection
mainly include the Gaussian model, regression model and expectation maximization
model. Wang et al. [2] adopted an anomaly detection method based on the Gaussian model,
which used the Gaussian model to represent the normal distribution of the data, and then
scored the data according to the similarity between the model and the data. While this
method can only be applied to data sets with a single attribute, and the distribution law
of the data set needs to be known in advance. It is not applicable to the processing of
high-dimensional data. Jin et al. [3] developed a bearing anomaly detection and fault
prediction method based on an autoregressive model. The abnormality threshold was
set by the attributes of Box-Cox transformation and Gaussian distribution. When the
health index of the test data was greater than the abnormality threshold, it was judged as
abnormal data. However, the threshold set often had errors, and an accurate dividing line
between abnormal and normal data cannot be obtained. Liu et al. [4] proposed a novel
filter based on an expectation-maximization model to identify anomalies in time-series data.
The disadvantage of this model was the absolute dependence on the abnormal threshold.
Statistical-based approaches do not re-quire establishing precise system models, and the
algorithms are simple and easy to implement. However, this method is unsuitable for
dealing with multivariate data, and the lack of fault data samples will lead to inaccurate
detection results.

Graph-based approaches abstract entities as vertices and relationships as edges con-
necting vertices in the graph, providing a powerful means to express the complex rela-
tionships between entities. The traditional graph anomaly detection technology mainly
obtains the graph statistical information through statistics and probability methods for
anomaly detection. The shortcomings of these kind of methods are slow con-tent collec-
tion and low efficiency. In recent years, graph-based anomaly detection techniques have
gradually developed, mainly used to solve the problem of anomaly detection in complex
networks [5,6]. The key to this method is learning the correlation between different graph
data. However, the nodes of objects in graph data are connected by edges, resulting in often
complex correlations among the nodes. Recently, there is no precedent for their application
in linear motor feeding systems.

Machine learning-based approaches include distance-based, deviation-based, density-
based, and deep learning-based approaches.

The distance-based methods calculate point or collective anomalies by measuring the
distances between data points and adjacent points or between data sequences and adjacent
sequences. Objects farther away from others are considered anomalies. Zhang et al. [7]
proposed a k-nearest neighbor (KNN) anomaly detection algorithm. It calculated the
anomaly score by calculating the average distances between all K adjacent nodes. Li et al. [8]
presented a clustering-based anomaly detection approach. The similarity of the time-series
was evaluated by using the Euclidean distance function in the original feature space to
judge whether the amplitudes are abnormal or not. The advantage of distance-based
methods is that they are very efficient and easy to implement when dealing with low-
dimensional data. The disadvantage is that they are expensive with regard to calculating
distances between multivariable data sets.

The deviation-based approach uses models to make predictions on time-series data. If
the deviation between the predicted value and the actual value of a data point exceeds a
certain threshold, the data point is judged as abnormal. Li et al. [9] proposed a prediction-
based anomaly detection method for time-series. An exception is detected by setting a
threshold. Outliers are identified when the deviation between the predicted and actual
values is greater than the threshold. Zhou et al. [10] proposed a deviation-based approach
to anomaly detection for combined models; whether the sequence is abnormal is judged by
the comparison. The abnormal score of a fragment in the sequence is calculated according
to the deviation, and then the average score of all fragments is obtained. However, this
approach is less effective for datasets with unknown prior knowledge and high-dimensional
multivariate data.
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The density-based approaches identify outliers by calculating the density of data
objects. When the local density of the data object is different from the adjacent area, it will
be dis-criminated as an outlier. Classical algorithms based on this method are Local Outlier
Factor (LOF) and INFLuenced Outlierness (INFLO). Abdulghafoor et al. [11] proposed a
density-based outlier detection method. This method compared the density of the observed
object with the surrounding local density, using the LOF as a variable to measure the
outliers. When the INFLO [12] algorithm estimates the density distribution of objects, it
considers the relationship between the neighborhood and the reverse neighborhood of the
object to rank the outliers. The higher the INFLO value of the detected object, the more
likely it is to be an outlier. The advantage of the density-based method is that it can detect
not only global outliers but also local outliers. The disadvantage is that time correlation on
time step is not considered. Therefore, this method cannot be effectively used for anomaly
detection of multivariate time-series data.

In recent years, deep learning has been widely adopted in image recognition, object
detection, semantic analysis, etc. In order to efficiently and accurately mine effective state
information from big mechanical data, deep learning has also been popularly applied in
mechanical fault diagnosis [13]. Hoang et al. [14] proposed a convolutional neural network
(CNN) that used vibration signals to detect bearing faults. Shao et al. [15] designed a
stack transfer autoencoder and used the particle swarm optimization algorithm for fault
diagnosis of rotating machinery. Jiang et al. [16] put forward the deep belief networks
(DBNs), which directly extracted fault-related features from the original vibration signal
and current signal, and the two features for fault diagnosis of a wind turbine gearbox.
However, the above deep learning methods require a large amount of historical data
in different health states for training. In the operation of linear motor feeding systems,
data samples are often only available for normal operating conditions, but not for fault
conditions. Due to the insufficient failure samples of the linear motor feed system, the
deep learning method is difficult to apply. The reasons for this phenomenon are as follows:
(1) The fault situation is far less than the normal situation, and it is difficult to collect fault
data; (2) Even if the fault data can be collected, it takes a long time and costs a lot; (3) Some
fault data cannot be measured under laboratory conditions. The data generated by the
linear motor feeding system is mostly time-series data, with apparent time and sequence
features, such as vibration signal and current signal. Collecting abnormal samples for linear
motor feeding systems is challenging under current conditions. Therefore, it is an exigent
issue to realize the abnormal detection of the running state of the linear motor feeding
system in the absence of fault samples.

Recently, the generative adversarial network (GAN) has brought new hope for solving
the problem of insufficient samples. GAN is a new network structure that was proposed
by Goodfellow [17] in 2014, which is an unsupervised feature learning algorithm based
on the idea of adversarial training. The method has been extensively used in anomaly
detection because it can use adversarial learning of sample representations for anomaly
inference [18]. With the continuous improvement of generative adversarial ideas, many
improved generative adversarial networks have been derived, such as the efficient GAN-
based anomaly detection (EGBAD) network [19], deep convolutional generative adversarial
network (DCGAN) [20], anomaly generative adversarial networks (AnoGAN) [21], et al.
These improved GANs can generate training samples by learning the probability distri-
bution of real data, so as to solve the problem of insufficient fault samples in the process
of model training. Wang et al. [22] achieved a fault diagnosis approach combining GAN
and a stacked denoising autoencoder (SDAE) to generate fault data for the problem of
a small number of fault samples in planetary gearboxes. Mao et al. [23] combined GAN
with the stacked denoising auto encoder (SDAE) to solve the problem of data imbalance in
bearing fault diagnosis. Gao et al. [24] proposed a data augmentation method based on
the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) and
verified the feasibility of generating fault samples on three datasets. The above studies
show that GAN can generate fault samples, dramatically expanding the range and diversity
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of generated data samples. However, the above models still require a small amount of fault
samples, and it is difficult to complete training with a complete lack of them.

Given the above particular situation, Akcay et al. [25] proposed a GANomaly method,
which can complete the training of the model without abnormal samples. Subsequently,
Akcay et al. [26] further achieved a Skip-GANomaly detection method for images based
on GANomaly, which only used normal samples for training. Luo et al. [27] proposed a
geological image anomaly detection method based on GANomaly. Liu et al. [28] applied
an anomaly detection method based on GANomaly and CNN, which adopted normal
time-series data samples for training, and encodes them into two-dimensional images using
the Gramian Angular Field (GAF) method. The abnormal detection of vibration signals of
long-span bridges was realized, and a good detection effect was achieved. GANomaly is an
anomaly detection method commonly used in images. When dealing with time-series data,
the gradient disappearance and gradient explosion problems are its traditional limitations,
influenced by the choice of activation function and the error back propagation method [29].
The deeper the network layer, the more obvious the problem becomes [30]. Therefore, it is
necessary to find an efficacious method.

The long-short-term memory (LSTM) network includes a memory unit, gate structure
and attention mechanism, which can effectively solve the aforesaid problems. Methods
based on LSTM have excellent anomaly detection capability for time-series data [31].
Li et al. [32] adopted a method based on stacked autoencoders (SAE) and LSTM networks
for anomaly detection in vibration signals of rotating machinery. Chen et al. [33] raised
an anomaly detection method for time-series data of wind turbines based on LSTM and
an auto-encoder (AE) neural network. Vos et al. [34] developed a gear anomaly detection
algorithm combining deep learning and LSTM. Ou et al. [35] provided a bearing state
anomaly detection method based on the LSTM network. In the training process of this
method, only health data was used. Bai et al. [36] used the LSTM network for fault detection
of gas turbines. Aiming at the problem that the newly-run gas turbine was difficult with
regard to obtaining fault data, this method only used normal data to train the network.
Kong et al. [37] developed an anomaly detection method for industrial multidimensional
time-series data. This method used a bi-directional LSTM with the attention mechanism
in the generator and discriminator of GAN. The results indicated that the method had
favorable performance in the task of anomaly detection for industrial time-series data.

On the one hand, GANomaly can complete model training without abnormal samples.
On the other hand, LSTM can avoid gradient disappearance and gradient explosion when
training time-series data.

Therefore, combining the advantages of GANomaly and the LSTM neural network,
an abnormal detection method for the running state of the linear motor feeding system is
proposed in this paper. Based on the analysis of the factors affecting the running state of the
linear motor feeding system, the abnormal detection network framework is designed by
taking vibration signals and current signals as the original data. Firstly, the LSTM network
is used to extract the input sample time-series features, then the three-layer fully connected
layer is employed to extract potential feature vectors. Secondly, the anomaly score of the
input sample is obtained by comparing the difference between the latent feature vectors
obtained by the two encodings. The relationship between the abnormal score value and
the threshold value is used to judge whether the input sample is abnormal, so as to realize
the abnormal detection of the running state of the linear motor feeding system. Finally, the
experimental platform of the X-Y two-axis linked linear motor feeding system is built to
validate the proposed method experimentally.

The main contributions of this article are listed below:

1. A GANomaly-LSTM method is proposed, which can effectively avert the teasers of
gradient disappearance and gradient explosion during the course of training time-
series data, and the extracted features can achieve a good clustering effect.

2. This method can realize anomaly detection in the absence of abnormal sample training.
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3. The proposed model performs well in anomaly detection of phase-missing current
signals and vibration signals, verified under three input conditions.

4. A mass of experiments have been actualized, and the results indicate that the proposed
method achieves excellent advantages in effectiveness and performance compared
with other classical methods.

The rest of this paper is organized as follows. Section 2 provides a theoretical introduc-
tion to the GANomaly-LSTM method. Section 3 builds the experimental platform for the
X-Y two-axis linked linear motor feeding system and describes the process of experimental
setup, data acquisition and feature extraction. Section 4 provides a detailed analysis of
the experimental results. In Section 5, we draw conclusions and discuss directions for
future work.

2. Anomaly Detection Model of Linear Motor Feeding System

2.1. Factors Affecting the Running State of Linear Motor Feeding System

The feeding system of the X-Y two-axis linkage linear motor is employed as the
research object. The X-axis is cross orthogonal to the Y-axis, and the Y-axis is located above
the X-axis and coupled with the X-axis stator. Factors affecting the running state of the
linear motor feeding system mainly include three aspects: (1) Abnormal vibration. Because
the linear motor feeding system has no intermediate transmission link, the mechanical
damping of the linear motor is small, so the vibration is difficult to be effectively attenuated,
which seriously affects the running state of the feeding system. At the same time, the
vibration in the processing process is one of the critical factors affecting the machining
accuracy, which will reduce not only the surface quality of the workpiece and the dynamic
precision of the machine tool but also the productivity [38]; (2) Motor overheating. Severe
wear of motor guides will lead to overheating, and increase stator resistance, further
leading to abnormal acceleration changes of the linear motor, ultimately affecting the
operation state of the feeding system; (3) Excessive load. The vibration will accelerate
the wear of power transmission components and overload the transmission and machine
tool structures, resulting in the current fluctuation of the linear motor feeding system,
thus leading to the change of the operating state [1]. It can be seen that acceleration and
current are the two key factors to reflect the evolution of the running state of the linear
motor feeding system. Therefore, vibration signals and current signals of the experimental
platform under different working conditions are used as the original acquisition time-series
data in this paper.

2.2. Anomaly Detection Model
2.2.1. The Structure of GANomaly

The GANomaly method adds an adversarial learning strategy to the autoencoder
generation model, which is an anomaly detection method that compares the potential
features of sample coding. GANomaly determines whether a data sample is abnormal
or not based on the difference between the potential feature vector Z and Ẑ obtained
from the two encoders. GANomaly has strong robustness and anti-noise interference
capability, requiring only a small number of abnormal samples or no abnormal samples
during learning and training [39].

The GANomaly model framework consists of three parts: a generator, a reconstructed
encoder, and a discriminator. The network structure of GANomaly is shown in Figure 1.
The encoder GE(x) and decoder GD(Z) in Figure 1 are collectively referred to as gener-
ators. The input data x passes through the encoder GE(x) to obtain the latent feature
vector Z, then passes through the decoder GD(Z) to obtain the reconstructed data x̂. The
reconstructed encoder E(x̂) encodes the reconstructed data x̂ again to get the potential
feature vectors Ẑ of the reconstructed data. The idea of adversarial learning is introduced in
discriminator D(x, x̂) to distinguish the differences between the original input data x and
the reconstructed data x̂. It determines original input data x to be true and reconstructed
data x̂ to be false. The discriminator is designed as a network with the same structure as
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the encoder in the generator. Meanwhile, the gap between the reconstructed and original
input data is continuously optimized.

Figure 1. Network structure of GANomaly.

In the training stage, the whole model is trained with normal samples. When the
model is inputted with an abnormal sample in the testing stage, there is a certain difference
between the potential feature vectors obtained by the encoder and the reconstructed encoder
because the decoder is trained by normal samples. When the difference is greater than a
certain threshold, the input sample is identified as abnormal [40].

2.2.2. The Structure of LSTM

LSTM is a special RNN which can solve the long-term dependency problem well [41].
The standard RNN has only one tanh layer, while the internal structure of LSTM is more
complex, consisting of four neural network layers: forgetting gate, input gate, cell state and
output gate (as shown in Figure 2) [42]. The advantages and limitations of RNN and LSTM
are listed in Table 1.

 

(a) 

 

(b) 

Figure 2. Network structure of LSTM: (a) Unit structure of LSTM; (b) Recurrent structure of LSTM.
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Table 1. Advantages and limitations of RNN and LSTM.

LSTM RNN

Advantages

1. The problem of gradient
disappearance and gradient
explosion can be overcome
when training long sequence
data;
2. Able to learn long-term
dependence;
3. Simple to implement.

1. Train the time-series data;
2. The network is simple and
easy to operate.

Limitations

1. Because of the large amount
of computation in network
training, high performance
computers are needed.

1. Cannot process long
time-series data;
2. There are problems of
gradient disappearance and
gradient explosion.

The first layer is “forget gate”, and its input is ht−1 and xt, mainly focusing on selec-
tively forgetting the information of ht−1. Through σ, a sigmoid activation function, the
output ft is the value within the interval of [0, 1]. “0” represents that the state is inactive
and all information is forgotten, while “1” represents the opposite. The sigmoid activation
function is shown in Figure 3a. The equation of the forget gate is as follows:

ft = σ
(

Wf [ht−1, xt] + b f

)
(1)

where σ is the sigmoid activation function; xt is the input at time t; ht−1 is the output of the
time t−1; and Wf and bf are the weight and bias parameters of the forget gate, respectively.

 
 

(a) (b) (c) 

Figure 3. Three activation functions: (a) Sigmoid; (b) Tanh; (c) ReLU.

The second layer is “input gate”. It determines what information of the cell state needs
to retain. The input gate includes the sigmoid layer and tanh layer. The sigmoid layer
determines what information needs to be updated at the input gate. The tanh layer creates
a matrix to add to the cell state. The tanh activation function is shown in Figure 3b. The
input of the input gate is ht−1 and xt, so that the equation can be expressed as:

it = σ(Wi [ht− 1, xt] + bi) (2)

C̃t = tanh(WC[ht−1, xt] + bC) (3)

where Wi is the weight of sigmoid function in the input gate; bi is the bias parameter of
sigmoid function; WC is the weight of tanh function; bC is the bias parameter of the tanh
function.
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The third layer is “cell state”. It can update the cell state Ct−1 to the current cell state
Ct, which can be expressed as:

Ct = ftCt−1 + itC̃t (4)

The fourth layer is “out gate”. It influences the output of the current cell state. The
sigmoid function layer determines which parts should be updated. And the tanh function
can operate on the cell state Ct, so that tahn(Ct) ranges (−1, 1). Multiply the output of
the sigmoid function, then the part ht will be gotten. The output gate equation can be
expressed as:

ot = σ(Wo[ht−1, xt] + bo) (5)

ht= ot·tanh(Ct) (6)

where ot is the output gate; Wo and bo are the weight and the bias parameter, respectively;
ht is the output of the current cell state and the input of the next state as well.

Besides, Rectified Linear Unit (ReLU) is also a popular activation function, as shown
in Figure 3c.

2.2.3. Proposed Method
The Structure of GANomaly-LSTM

Based on the theories of the GANomaly and LSTM network, an anomaly detection
method for linear motor feeding system based on GANomaly-LSTM is proposed. As shown
in Figure 4, the GANomaly-LSTM network structure comprises three sub-networks: the
generation network, the reconstructed encoder network and the discriminant network.

Figure 4. The network structure of GANomaly-LSTM.

The first sub-network is the generative network, including encoder GE(x) and decoder
GD(Z). The encoder GE(x) structure is expressed in Figure 5. A three-layer LSTM is used to
extract time-series features of samples, and then a three-layer fully connected layer is used
to extract potential feature vectors. Three batch standardization layers and three rectifying
linear unit (ReLU) activation functions are used to optimize the output distribution of the
middle layer. The structures of decoder GD(Z) and encoder GE(x) are opposite. For the
input data x, the latent feature vector Z is obtained through the encoder GE(x), and then
the reconstructed data of x̂ is obtained through the decoder GD(Z).
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Figure 5. Network structure of encoder.

The second subnetwork is the reconstructed encoder network, and by re-encoding the
reconstructed data x̂, the latent feature vector Ẑ of the reconstructed data is obtained. In
this subnetwork, the structure of the reconstructed encoder E(x̂) is the same as GE(x).

The third sub-network is the discriminant network, which continuously narrows the
gap between the reconstructed data and the original input data by judging the original
input data x as true and the reconstructed data x̂ as false. Ideally, the reconstructed data is
no different from the original input data. By introducing the idea of adversarial training,
the generative and discriminant networks play games. On the one hand, it improves the
ability of the decoder to recover the input samples, and on the other hand, it enhances the
feature extraction ability of the encoder. The discriminator D(x, x̂) has the same structure
as GE(x).

Loss Function

In the generative network, the reconstruction error loss is defined as the gap between
the original input data and the reconstructed data.

Lcon =|x − x̂| (7)

where Lcon is the reconstruction error loss function of the generative network.
A feature matching error is set in the discriminant network for optimization in the

data feature layer.
Ladv =| f (x)− f (x̂)| (8)

where Ladv is the loss function of the discriminant network, and it specifically refers to the
loss of confrontation between the generation network and the discriminant network; f is
the transfer function of the model.

Ideally, for normal data, the difference between the latent eigenvector Ẑ of the recon-
structed data and the latent eigenvector Z is extra small. In order to quantify and optimize
this difference in the training phase, the error between latent feature vectors is introduced:

Lenc =
∣∣Z − Ẑ

∣∣ (9)

where Lenc is the loss function of the latent eigenvector error of the reconstructed data.
For the entire network model, the loss function can be expressed as:

Ltotal = ωadvLadv + ωconLcon + ωencLenc (10)

where ωadv, ωcon and ωenc represent the weights of Ladv, Lcon and Lenc, respectively.
The gradient descent method is a popular optimization algorithm in deep learning.

Its basic idea is to update the parameters along the opposite direction of the gradient of

61



Energies 2022, 15, 5671

the loss function about the parameters as the search direction, so that the loss function
gradually decreases and finally reaches the minimum value. The gradient descent method
can be divided into fixed learning rate optimization algorithms (e.g., SGD, Momentum,
and NGA) and adaptive learning rate optimization algorithms (e.g., Adagrad, RMSprop,
and Adam) [43].

The Adam optimization algorithm adopts the adaptive learning rate and momentum
mechanism to determine the updated direction by considering the previous gradient and
the current gradient together, so that the function convergence process is more stable.
Moreover, the first-order moment estimation and second-order moment estimation of the
gradient can be used to dynamically adjust the learning rates of different parameters to
accelerate the convergence rate of the function, so as to obtain the global optimal parameters
with less iterations [44]. Therefore, the Adam optimization algorithm is selected to optimize
the model parameters in this paper.

Model Validation and Evaluation Criteria

After the training is complete, the model is validated using the test set. Firstly, the
generative network can generate reconstructed test samples. In order to obtain the similarity
between the potential feature vector Z of the first encoding and the potential feature
vector Ẑ of the second encoding, the gradient descent method Adam is chosen to update
continuously, and then the optimal potential feature vector will be obtained.

min
Ẑ E(Z, Ẑ) = 1 − Simi(Z, Ẑ) (11)

where Simi is the similarity function and E is the error function.
Secondly, anomalies are detected using the gap between the latent feature vector after

the first encoding of the test sample and the latent feature vector of the reconstructed data
after the second encoding. The anomaly score A(X) of the test sample according to the loss
functions Lcon and Lenc. is calculated.

A(X) = λLcon+(1 − λ)Lenc (12)

where λ is the weight of the adjustment loss.
Finally, the specific score for judging abnormality is a(X i), and A(X) is controlled

between 0 and 1 by normalization processing. A threshold value ϕ is set, and once the
abnormal score a(X i) > ϕ of the test sample, the sample is judged as an abnormal sample.

a(X i) =
A(X i) − min(A(X))

max(A(X)) − min(A(X))
(13)

In this paper, AUROC, AUPRC, F1 score and accuracy are chosen as the performance
evaluation metrics of the proposed method. According to the actual classification and
predicted classification of the test samples, the samples can be divided into four types:
true positive (TP), true negative (TN), false positive (FP) and false negative (FN). Then the
formulas for calculating recall (R), precision (P), accuracy and F1 score can be expressed as:

R =
TP

TP + FN
(14)

P =
TP

TP + FP
(15)

accuracy =
TP + TN

TP + FN + FP + TN
(16)

F1 =
2RP

R + P
(17)

62



Energies 2022, 15, 5671

AUROC is the area under the receiver operating characteristic (ROC) curve with false
positive rate (FPR) and true positive rates (TPR), respectively, as its abscissa and ordinate at
different threshold conditions. The value of AUROC usually ranges from 0.5 to 1. A larger
value indicates better model performance. AUPRC is the area under the precision recall
(PR) curve, consisting of the precision and recall rates at different threshold conditions.
Accuracy refers to the proportion of correctly predicted samples in all samples. The F1
score comprehensively considers the recall and precision, which is the harmonic mean of
the two.

2.3. Anomaly Detection Process

The abnormal detection process of the linear motor feeding system proposed in this
paper is displayed in Figure 6.

A X

a Xi

X X

 

Figure 6. Anomaly detection workflow.

Training phase:

• STEP1: The sensor collects relevant time-series signals in real time, and a sample
matrix X is constructed for the collected normal samples.

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦ (18)
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where m is the number of samples in a sequence, and n is the number of sensors.
• STEP2: The normal-sample matrix X is inputted into the encoder GE(x), then the

LSTM network extracts the time-series features, later the latent feature vector Z is
gained through three-layer fully connected layers, and lastly the reconstructed data
X̂ is obtained through the decoder GD(Z).

• STEP3: The discriminant network D(x, x̂) discriminates the normal samples X and
the reconstructed data samples X̂, and continuously narrows the gap between the two
during the confrontational training process.

• STEP4: The reconstructed data X̂ is inputted into the reconstructed encoder E(x̂) net-
work, and then the latent feature vector Ẑ is attained.

Test phase:

• STEP1: After the model training, the normal and abnormal samples are used to
construct the sample matrix X for testing. At this time, the discriminant network is no
longer used. In the testing stage, network model parameters are fixed and outputted
by training stage. The potential feature vector Z is obtained through GE(x), then the
reconstructed data X̂ is gained through GD(Z), and finally, the potential feature vector
of the reconstructed data Ẑ is garnered through E(x̂).

• STEP2: The anomaly score A(X) of the input sample X is computed according to the
loss functions Lcon and Lenc. The final anomaly score a(X i) is obtained by normaliz-
ing A(X).

• STEP3: It is determined whether the input sample is abnormal or not according to
the relationship between the abnormal score a(X i) and a certain threshold ϕ. If
a(X i) > ϕ, the input sample will be classified as an abnormal sample; otherwise it is
a normal sample.

3. Experimental Setup and Feature Extraction

3.1. Construction of Experimental Platform and Data Collection

In order to verify the validity of the proposed method, an experimental platform
for the linear motor feeding system is built, as presented in Figure 7 and Table 2. The
platform consists of an X-Y two-axis linkage linear motor feeding system, a YD623 tri-axial
accelerometer, a TL-1 signal conditioner, a USB-1608FS data acquisition card, a linear motor
feeding system controller, and a computer processing center. The changeable working
conditions of the experimental platform include feed speed, displacement and load, etc.
The vibration signals in three directions and three-phase current signals are collected by
setting different working conditions.

 

Figure 7. X-Y two-axis linkage linear motor feeding system experimental platform.
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Table 2. Numbers and names of acquisition devices.

Number Equipment Name

1 Computer processing center
2 Linear motor feeding system controller
3 Data acquisition card
4 Signal conditioner
5 Accelerometer
6 X-axis feeding system
7 Y-axis feeding system

In order to obtain the vibration signals and current signals of the linear motor feeding
system, the YD623 tri-axial accelerometer is fixed directly above the linear motor feeding
system, and the vibration signals are collected by the USB-1608FS data acquisition card.
The current sensor is located inside the system and connected to the computer via the
appropriate data line. The current signals are measured by the software Composer. In
this experiment, the sampling frequency is set to 50 kHz, and the sampling interval is
1 min. During the experiment, vibration signals in three directions are collected, and
only the signals in the vertical direction are used in the data processing. The vibration
signals of 2029 sampling points in the vertical direction are collected each time, and a
total of 1,623,200 data points are collected in 800 groups. The three-phase current signals
of 1533 sampling points are collected each time, and a total of 1,226,400 data points are
collected in 800 groups.

During the experiment, vibration signals collected each time are stored in CSV files,
and current signals are stored in MAT files. According to experimental conditions, each
CSV file and MAT file are stored in corresponding folders, respectively.

3.2. Design of Experimental Working Conditions and Description of Data Samples

In order to obtain comprehensive and diverse experimental samples, the vibration
signals and current signals of the linear motor feeding system under different operation
commands are collected in this experiment. The collected data is divided into 16 categories
according to the execution command parameters, and each category contains several time-
acceleration sequence data and time-current data. The experimental working conditions
for collecting the vibration and current signals in this experiment are shown in Table 3.
Figure 8a,b shows the vertical vibration signals and three-phase current signals which are
collected in working condition 5 under a displacement interval of How 420 mm.

In this experiment, 800 samples of each of the vibration signal and current signal are
collected. The dataset is divided into a 70% training set and 30% test set [45,46]. There are
560 samples in the training set, all of which are normal samples. The number of samples
in the test set is 240, which are divided into two parts equally. Part of them are directly
used as a normal sample for testing, and the other part are replaced with an abnormal
sample. However, the life cycle of the linear motor feeding system is very long, and the
probability of abnormality is small. Therefore, running to an abnormal state is an extremely
time-consuming experiment in order to perform abnormal testing to obtain abnormal data.
To overcome this difficulty, we introduce abnormal samples containing random amplitude
shock noise in random positions of vibration signals. The abnormal samples of the vibration
signal test set are shown in Figure 8c (the arrow position is the position where the noise is
introduced). In order to obtain abnormal samples of the current signals, we collected the
current signals of the missing phase. The abnormal samples of the current signals test set
are shown in Figure 8d.

65



Energies 2022, 15, 5671

Table 3. Experimental working condition settings.

Number Load (kg) X/Y Axis
Displacement
Interval (mm)

Speed (mm/s)

1 No load X axis 60, 180, 300, 420 60
2 No load X axis 60, 180, 300, 420 80
3 No load X axis 60, 180, 300, 420 100
4 No load X axis 60, 180, 300, 420 120
5 No load Y axis 60, 180, 300, 420 60
6 No load Y axis 60, 180, 300, 420 80
7 No load Y axis 60, 180, 300, 420 100
8 No load Y axis 60, 180, 300, 420 120
9 No load X-Y axis linkage 60, 180, 300, 420 60
10 No load X-Y axis linkage 60, 180, 300, 420 80
11 No load X-Y axis linkage 60, 180, 300, 420 100
12 No load X-Y axis linkage 60, 180, 300, 420 120
13 Load 10 kg X axis 60, 180, 300, 420 60
14 Load 10 kg X axis 60, 180, 300, 420 80
15 Load 10 kg X axis 60, 180, 300, 420 100
16 Load 10 kg X axis 60, 180, 300, 420 120
17 Load 10 kg Y axis 60, 180, 300, 420 60
18 Load 10 kg Y axis 60, 180, 300, 420 80
19 Load 10 kg Y axis 60, 180, 300, 420 100
20 Load 10 kg Y axis 60, 180, 300, 420 120
21 Load 10 kg X-Y axis linkage 60, 180, 300, 420 60
22 Load 10 kg X-Y axis linkage 60, 180, 300, 420 80
23 Load 10 kg X-Y axis linkage 60, 180, 300, 420 100
24 Load 10 kg X-Y axis linkage 60, 180, 300, 420 120

 

  
(a) (b) 

  
(c) (d) 

Figure 8. Normal and abnormal time domain vibration and current signals in working condition
5 under (displacement interval 420 mm): (a) Normal vibration signals; (b) Normal current signals;
(c) Abnormal vibration signals (the arrow position is the position where the noise is introduced);
(d) Abnormal current signals.

66



Energies 2022, 15, 5671

3.3. Experimental Environment and Model Parameters

This paper adopts PyTorch, a deep learning open-source framework, to construct the
neural network model, complete the training, and test the model. PyTorch is widely used
in computer vision, natural language processing and other fields.

The hardware environment of the computing deviceincludes a 4-core CPU Intel Xeon
E3-123lv3, with a clock speed of 3.4 GHz; the GPU is AMD Radeon VII, with a memory
capacity of 16 GB, and a memory speed of 4 Gbps and 3840 cores.

The Adam optimization algorithm is used in the training process, and the first-order
moment weight β1 = 0.6, while the second-order moment weight β2 = 0.999. Since the
GPU used in this experiment has enough video memory, the batch size used is 128, which
can speed up the operation speed and convergence speed, and reduce the parameter jitter
during training. Other model parameters are shown in Table 4.

Table 4. The parameters of the model.

Parameters ωadv ωcon ωenc λ Learning Rate

Value 1 1 0.5 0.8 0.0001

3.4. Signal Feature Extraction

In order to achieve a better abnormality detection effect of the linear motor feeding
system, the extracted features must be appropriately selected. There is a lot of high noise
and redundant information in the original data collected by sensors, which causes the
dimension problem. The method based on deep learning can solve the above issues very
well. An LSTM network is used to extract three effective time domain features from the
original vibration and current signals, namely, standard deviation, skewness and kurtosis.
After repeated experiments, it is found that these three statistical features are susceptible to
the abnormal changes in the vibration signals and current signals. Two hundred and forty
feature datasets are extracted from the vibration and current signal test sets, respectively.
Figure 9 shows three time-domain feature scatter plots of vibration signals and current
signals in working condition 5 under a displacement interval of 420 mm. The results show
that both the sample features of the vibration signals and the current signals can achieve
good classification. However, the sample feature aggregation effect of the current signals is
better than that of the vibration signal, and the classification effect is more pronounced.

  
(a) (b) 

Figure 9. The distribution scatters diagram of the three-time domain features in working condition
5 under displacement interval 420 mm: (a) Feature distribution of vibration signals; (b) Feature
distribution of the current signals.
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4. Analysis of Experimental Results

To verify the performance of the proposed method, the performances under the
following three different input conditions are compared.

• Case1: Vibration data sample;
• Case2: Current data sample;
• Case3: Vibration and Current Composite Data Sample.

Figure 10 exhibits the ROC curves of our method under different input conditions.
It is obvious that the AUROC indicators under the three input conditions are above 90%,
especially in Case2, which reaches 98.5%, the maximum value, compared to 94.6% and
97.7% in the other two cases, an improvement of 3.9% and 0.8%, respectively. In order
to further certify the accuracy of the comparison, we introduce the AUPRC indicator for
comparison. The experimental results are shown in Table 5, and the change trends of
the two indicators are generally consistent. For the AUPRC, it reaches 98.2% in Case2,
compared to 94.8% and 96.9% in the other two cases, an improvement of 3.4% and 1.3%,
respectively. Figure 11 is the histogram of normal and abnormal scores when the method
in this paper uses current data samples alone. It can be seen that our model can distinguish
normal and abnormal classes well. To further compare the accuracy of the models under
the three input conditions, we calculated the precision score, recall score and F1 score
under the three input conditions. As shown in Figure 11, the dividing line between normal
and abnormal scores is about 0.5, that is, the threshold ϕ = 0.5. Therefore, our model
distinguishes samples with scores less than 0.5 as normal samples and otherwise abnormal.
We set the threshold at 0.44, when the recall rate of abnormal samples is 1, to compare the
scores under three input conditions. As can be seen from Table 6, the proposed method
achieves the maximum values on the three metrics of Case2, which are 96.5%, 100%, and
98.2%, respectively.

Figure 10. ROC curves of our method under different input conditions.
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Table 5. Experimental results of our method under three input conditions.

Case AUROC AUPRC

Case 1 0.946 0.948
Case 2 0.985 0.982
Case 3 0.977 0.969

 
Figure 11. Histograms of normal and abnormal scores for samples of current data tested with our
method.

Table 6. Evaluation results of our method under three input conditions (the threshold is set to 0.44).

Case Precision Recall F1

Case 1 0.921 0.953 0.937
Case 2 0.965 1.000 0.982
Case 3 0.943 0.984 0.963

The aforementioned experimental results reflect that the proposed method is a valid
and feasible anomaly detection method for time-series data, and remarkable results are
achieved under the above three input conditions. That is, the GANomaly-LSTM method
has excellent effects on the identification of current phase missing and abnormal vibration
of the linear motor feeding system.

To further test and verify the performance of the proposed method, we compared the
performances of the three methods under three input conditions. The other two methods are
GANomaly and GAN-AE. In order to ensure the effectiveness of the method comparison,
the parameter settings of these two methods are exactly the same as the proposed method.
The reasons for choosing these two methods to compare with the proposed method are:
(1) The network structures of these two methods are similar to that of the proposed method,
which is based on the extension of the GAN and adopts the structure of encoding-decoding-
encoding; (2) These two methods and the proposed method only use normal samples
during training, and use normal and abnormal samples during testing; (3) All three detect
anomalies by the difference between the latent features after two encodings. Therefore, it is
essential to choose these two methods to compare with our method.
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During training, Case1 uses 560 normal samples of vibration signals, Case2 uses
560 normal samples of current signals, and Case3 uses the training set of the first two. In the
testing process, Case1 uses the vibration signals of 120 normal samples and 120 abnormal
samples, Case2 uses the current signals of 120 normal samples and 120 abnormal samples,
and Case3 uses the test sets of the former two at the same time. Figure 12 shows the
ROC curves of the three methods under three input conditions. It can be seen that the
AUROC metric of the proposed method under the three input conditions is significantly
higher than the other two methods. It is shown in Table 7 that our method achieves
the optimal accuracy in the AUROC indicator under the three input conditions, and
achieves good performance in the task of abnormal detection of the running state of the
linear motor feeding system, showing tremendous advantages. Specifically, the AUROC
indicators of GANomaly are 87.3%, 88.1% and 87.5%, respectively, while GAN-AE performs
poorly, at only 72.8%, 83.2% and 82.2%, respectively. That is, the AUROC metrics of the
proposed method are 94.6%, 98.5% and 97.7%, which are 7.3%, 10.4% and 10.2% higher
than GANomaly. Figure 13 compares the experimental results of the three methods under
three input conditions in the form of histograms. It can be distinctly shown that all three
methods achieve the best results under the condition of Case2. Under Case2, we further
compare the average accuracy and detection time of the three methods, shown in Table 8,
the average accuracies of the proposed method, GANomaly, and GAN-AE achieves 98%,
86.4% and 82.5%; the detection times are 134 ms, 357 ms and 418 ms, respectively. Our
method has an average accuracy improvement of 11.6% and 15.5%, and a detection time
shortened by 223 ms and 284 ms, respectively, compared with the classical two methods.

Table 7. AUROC metrics for three methods under three input conditions.

AUROC Case1 Case2 Case3

GAN-AE 0.728 0.832 0.822
GANomaly 0.873 0.881 0.875
Our method 0.946 0.985 0.977

Table 8. Comparison of the average accuracy and detection time of the three methods when using
current data samples alone.

Case Average Accuracy Detection Time (ms)

GAN-AE 0.825 418
GANomaly 0.864 357
Our method 0.980 134

The above experimental results demonstrate that the proposed method achieves a
more pronounced improvement in detection accuracy, a shorter detection time and more
significant results. In general, the proposed method is highly effective for abnormal
detection of the running state of linear motor feeding systems, meeting the application
requirements in industrial production. This method solves the task of anomaly detection
in the absence of abnormal sample training, and has profound significance for improving
industrial production efficiency and equipment predictive maintenance.
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(a) 

 
(b) 

 
(c) 

Figure 12. ROC curves of three methods under three input conditions: (a) Case1; (b) Case2; (c) Case3.
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Figure 13. Histograms of experimental results for three methods under three input conditions.

5. Conclusions

This paper proposes an anomaly detection method based on GANomaly-LSTM for
the running status of the linear motor feeding system. This method solves the problem
of anomaly detection in the linear motor feeding systems when there is no abnormal
sample and the sample timing is significant. This method compares the anomaly detection
performance of the model under three input conditions (vibration data sample, current
data sample, vibration and current combination data sample). The AUROC indexes are
94.6%, 98.5% and 97.7%, and the F1 scores are 93.7%, 98.2% and 96.3%, respectively. The
consequences show that the proposed method has favorable detection performances. In
addition, compared with GANomaly and GAN-AE, the proposed method improved the
average AUROC indicator by 9.3% and 17.5%, respectively, thus greatly enhancing the
anomaly detection accuracy. In sum, the GANomaly-LSTM method has excellent effects on
the identification of the current phase missing and abnormal vibration of the linear motor
feeding system. Due to the variety of abnormal conditions in the linear motor feeding
system and varying types of abnormal samples, the limitation of our method lies in the
need for retraining and retesting different types of samples. In addition, the applicability
of the method for other anomalies such as current single phase short circuit and voltage
anomalies needs to be further investigated. For future works, we expect to investigate
more data types such as torque and power along with the current and vibration signals
of the linear motor feeding system, and to compare the effects of different sample sizes
on detection accuracy to achieve more efficient and comprehensive anomaly detection. In
future research, we hope to realize further fault location based on anomaly detection to
achieve more accurate predictive maintenance.
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Abstract: The accuracy estimation of induction motors’ efficiency is beneficial and crucial in the
industry for energy savings. The requirement for in situ machine efficiency estimation techniques
is increasing in importance because it is the precondition to making the energy-saving scheme.
Currently, the torque and speed identification method is widely applied in online efficiency estimation
for motor systems. However, the higher precision parameters, such as stator resistance Rs and
equivalent resistance of iron losses Rfe, which are the key to the efficiency estimation process with
the air gap torque method, are of cardinal importance in the estimation process. Moreover, the
computation burden is also a severe problem for the real-time data process. To solve these problems,
as for the torque and speed-identification-based efficiency estimation method, this paper presents a
lower time burden method based on Quantum Particle Swarm Optimization-Trust Region Algorithm
(QPSO-TRA). The contribution of the proposed method is to transform the disadvantages of former
algorithms to develop a reliable hybrid algorithm to identify the crucial parameters, namely, Rs and
Rfe. Sensorless speed identification based on the rotor slot harmonic frequency (RSHF) method is
adopted for speed determination. This hybrid algorithm reduces the computation burden by about
1/3 compared to the classical genetic algorithm (GA). The proposed method was validated by testing
a 5.5 kW motor in the laboratory and a 10 MW induction motor in the field.

Keywords: in situ efficiency; induction motors; quantum particle swarm optimization; trust region
algorithm; QPSO-TRA; rotor slot harmonics frequencies

1. Introduction

The increasing demand for energy combined with rising energy costs has led to
a desire to increase energy utilization efficiency. Induction motors (IMs) are the most
commonly used motors in the industry. They are essential components in the chains of
drive systems. The efficiency estimation strategies of all induction motors require good
knowledge of the machine parameters to ensure an accurate estimation. The problem
of estimating the parameters of induction motors and their efficiency is considered the
most critical and complex matter in industries, in in situ situations. However, the higher
accuracy of IM parameters is of capital importance in all industrial processes since it directly
affects the performance of the control systems. One of the main reasons for monitoring a
motor’s efficiency is to ensure that energy conversion occurs with the least energy supply.
Another reason is that the nominal parameters obtained from manufacturers might not be
the same as those under actual motor operating conditions. This is due to several factors
such as aging, rewinding, and voltage unbalance. Hence, it is necessary to estimate these
parameters in in situ for any in situ induction motors efficiency estimation. As for the
speed, it can be affected by bearing faults. Estimating the speed in in situ has several
advantages. It can be used to check bearing faults and motor efficiency estimation online.

Energies 2022, 15, 4905. https://doi.org/10.3390/en15134905 https://www.mdpi.com/journal/energies
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Therefore, estimating induction motors’ parameters and speed in in situ can be helpful
for all industrialists because it can give information about the motors’ healthy state and
avoid extra cost for speed measuring devices. While effort is being made to design and
manufacture more efficient induction motors (IMs), monitoring a machine’s operational
efficiency helps reduce energy costs by ensuring that it is running in its optimal efficiency
range. Numerous works have been published for estimating the efficiency of the electrical
machines in situ, under the loaded condition without disturbing their operation [1,2]. To
assess energy efficiency and enhance the overall performance of the industrial processes, it
is essential to identify energy loss and monitor the efficiency in real time [3].

Generally, torque and speed measurements are made to estimate the induction motor’s
efficiency. However, if an efficiency estimation of an induction motor is required for an
in situ situation, whose operation cannot be disrupted because of the ongoing critical
industrial process, torque determination becomes problematic.

The procedure of determining the parameters of an induction motor is well-known
for estimating efficiency. The parameters of the induction motor’s per-phase equivalent
model can be determined by the no-load and locked rotor test or the IEEE Standard 112
impedance test method. No-load and locked rotor tests are not practicable in in situ [4,5]. In
in situ situations, the Genetic Algorithm (GA) is mainly used for parameter identification,
demanding more central processing unit (CPU) and computational time [6]. To sum up,
the methods for efficiency estimation can be categorized as follows.

(1) Slip methods;
(2) Current methods;
(3) Segregated loss method;
(4) Equivalent circuit-based method;
(5) Nonintrusive air gap torque (NAGT) methods;
(6) Air gap torque (AGT) methods;
(7) Shaft torque method.

Among the above methods, each of the following methods for efficiency estimation
has its advantages and disadvantages according to the application domain. Some of them
cannot be employed for in situ efficiency estimation. However, the current and slip methods
are straightforward and nonintrusive, but they are lacking in high accuracy [7], which is
unsuitable for any efficiency assessment. Despite having very high precision, the segregated
loss method [8] is intrusive for use in in situ conditions. To limit the intrusiveness, empirical
results are used, which could diminish the accuracy of those procedures [9]. The equivalent
circuit method requires no-load and locked rotor tests or variable voltages and frequency
supplies, making them unsuitable for in situ applications. The air-gap torque (AGT) and
the shaft torque method consider harmonic distortion because it uses the operating voltage
and current signals to calculate this torque [10], which makes it appreciable for in situ
efficiency estimation.

The most challenging task in efficiency estimation is the determination of the output
power. The online efficiency estimation method can be classified into the equivalent
circuit and the torque and speed methods from the above analysis. The first method
must determine all the losses and subtract them from the input power. The second one
must determine the shaft torque through the air gap torque, and the speed is estimated
as described in Section 2.1 to determine the output power. For the second method, the
core losses resistance Rfe and the stator resistance Rs must first be identified online for air
gap torque calculation, these are dependent on the operating condition. Furthermore, the
problem in the current identification method of these parameters is that the time and the
computation burden of the algorithm used are high enough, or the algorithm used for
parameters identification is not accurate enough. The AGT and the shaft torque method
are adopted in this paper to calculate the output power.

The contribution of this paper is firstly to propose a new algorithm to identify the
motor parameters simultaneously. The computation time and burden can be reduced
significantly since the global search is avoided. In the presented method, a hybrid algorithm
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derived from PSO and TRA is used, the Quantum Particle Swarm Optimization-Trust
Region Algorithm QPSO-TRA, to improve the deficiencies of PSO and TRA. The time
burden of the proposed hybrid QPSO-TRA is slightly larger than that of the standard PSO,
but the identification is more accurate than the standard PSO.

2. Efficiency Estimation Method

This study adopts an efficiency estimation method based on torque and speed identifi-
cation. The output torque and rotor speed should first be determined by air gap torque
and rotor slot harmonic methods [11]. Then, the output power P2 can be obtained. The
input power P1 is calculated by measured current and voltage. Finally, efficiency can
be calculated by P2/P1. To obtain P2, several processes are involved, which have to be
accurately investigated to avoid calculation mistakes.

2.1. Torque and Speed Determination Methods

During the operation of the induction motors, despite many internal excitations that
can rise to system complexity, the external environment, such as unsymmetrical voltage
sags or external load variation, can also be unstable, etc. The electromechanical behavior
of an induction motors change according to the actual load changes from the start-up
no-load to the full-load condition. In addition, considering that the electromechanical
power is the transmitted power from the stator to the rotor through the air gap, it includes
the actual load effect since it depends on the actual current and voltage and the core loss
power Pfe as can be seen in (2) because the motors’ running current is affected by the load
changes. The AGT method was proposed in [12] for in situ efficiency estimation. It is
calculated by using the voltage, current, and stator resistance Rs and the core losses Pfe
data. However, the authors in [12] did not consider the change of the resistance under
the operating temperature, which make it unsuitable for real-time calculation. Because of
variable current in the winding under different load conditions, the temperature changes
affect the motor’s winding resistance. The temperature of a machine at the actual loading
condition is required to adjust or correct the stator and rotor windings resistances. An
initial temperature is determined from the input current at each measured load to overcome
this problem, as shown in Equation (1), or directly measured with a temperature sensor. For
the best calculation of the air gap torque, the resistance is corrected according to real-time
temperature in this study, whereas there is the presence of Rs,cor in Equation (2) instead of
Rs. The AGT is calculated as in Equation (2).

Tload,Est =
Iload
Irated

(Trated − Tambien) + Tambien (1)

where Irated is the rated load current stated on the machine’s nameplate, Iload is the actual
load current, Tload,Est is the actual temperature, Tambien is the ambient temperature, and
Trated is the rated load temperature

Tag =
p ∗ √3

6
{(2 ∗ ia + ic) ∗

∫
[vca − Rs,cor(ic − ia)dt]− (ib − ia) ∗

∫
[vab − Rs,cor(2 ∗ ia + ib)dt]} − 60Pf e

2πn1
(2)

where p is the number of poles; ia and ic are line currents; vab and vca are line voltages;
Rs,cor is the stator resistance at the operating temperature, and Pfe is the core losses. Pfe is
calculated using the identified core resistance Rfe.

Speed determination is crucial in motors’ efficiency estimation. This technique is
designed to work without interrupting the industrial process. Measuring the speed of a
built IM is a relatively easy task. Still, to measure it, one needs an extra device (speed sensor)
which can be expensive and can increase the manufacturing costs for the manufacturer.
Therefore, we need to estimate the speed to avoid these additional costs. One phase current
is analyzed to extract the rotor harmonics high frequency and then estimate the IM speed.
In this method, one does not need to calculate the losses between the input and output
power separately to have efficiency. The output power is directly calculated by using the
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torque and speed as in (15) and (16). To do so, we need to use Rs,cor and Rfe in the air gap
torque calculation process. This method can avoid extra production costs and considers the
motor’s temperature change. The different techniques for rotor slot harmonic frequency
(RSHF) are summarized below.

An enhanced approach to speed determination utilizing the motor’s current harmonics,
which arise for stator core form, rotor shaft misalignment, bearing position, and rotor bar
resistance variation, was conducted in [13]. The current harmonics can be expressed by
Equation (3):

fsh = f1

[
(λZ + nd)

(1 − s)
p

+ δ

]
(3)

where fsh is the current harmonic frequency; f 1 is the supply frequency; λ = 0, 1, 2, 3, . . . ,
Z is the number of rotor slots; nd = 0 ± 1, . . . is the order of rotor eccentricity; s is the slip
ratio; p is the number of pole pairs; δ = ±1,±3,±5, is the air gap magnetomotive force
(MMF) harmonic order.

The fast Fourier transform (FFT) technique successfully improved the speed detection
of inverter-fed induction motors via the stator current signal [14]. The generation of rotor
slot harmonics (RSHs) in machines is primarily due to the irregular allocation of rotor
currents in a finite number of slots as well as the permeance fluctuation in the air gap
related to slot opening [15]. In [16], harmonics were used to detect the rotor slot number. It
is possible to study the speed and the slip estimation in induction motors using rotor slot
harmonics. Thus, the slip can be expressed by Equation (4):

s = 1 − p
Z
(

fsh
f1

− δ) (4)

From Equation (4), it is possible to determine the rotational speed on the shaft of the
induction motor. For that, the expression of the slip is required to be n = ns(1 − s), where ns
is the synchronous speed and s is the slip; ns is given by ns = 60 f 1/p. The rotational speed
is thus given by Equation (5):

n =
60
Z
( fsh − δ f1) (5)

where f 1 is supply frequency, and the rotor slot harmonics frequency fsh is determined by
applying digital signal processing techniques.

2.2. Core Losses Determination

Core losses are caused by time-varying magnetic flux. The core losses can be separated
into two components, the hysteresis and eddy current effects, as in Equation (6).

Pf e = Ph + Pe = Khωeψ2 + Keω2
e ψ2 (6)

where Ph and Pe are the hysteresis and eddy current components of core losses, respectively,
Ψ is the stator winding flux linkage, ωe is the angular frequency, and Kh and Ke are the
coefficients of hysteresis and eddy current loss, respectively.

According to Equations (7) and (8), core losses depend only on the angular frequency
and the flux linkage if the variation of the coefficients Kh and Ke are neglected. In fact,
Kh and Ke rely on the core material’s lamination and its thickness. Their variation is slow
compared to the angular frequency and flux linkage variation. However, knowing that
the core losses are linked to the winding flux linkage and based on the classical electric
machine theory, which is assumed to be a sinusoidally varying field, it is evident that the
winding flux linkage is proportional to the air gap flux density.

Pf e = ψ2(Khωe + Keω2
e ) (7)

Pf e = ω2
e ψ2/R f e (8)
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The standard way to determine the core losses is the no-load test. This method is not
practicable in the field due to the ongoing production process. After analyzing the above
phenomena, this paper proposes a new algorithm to determine the core losses resistance.
The core resistance Rfe is identified by the new algorithm QPSO-TRA and then uses the
voltage to determine the core losses as shown in Equation (9). After Rfe identification, this
method is robust and straightforward because it considers the voltage fluctuation.

Pcore = 3
V2

ph

R f e
(9)

2.3. Stray Load Loss Determination

According to the IEEE Standard 112-2004 [8], stray load loss at rated load can be
assumed, as shown in Table 1.

Table 1. Assumed values for stray load loss [8].

Machines Rating (kW) Stray Load Loss Percent

1–90 1.8%
91–375 1.5%

376–1850 1.2%
1851 and greater 0.9%

Moreover, it can also be calculated using the International Standard IEC 60034-2-1 [7],
as in Equation (10).

Psll = Pin, f l

[
0.025 − 0.005 log10(

Pout

1 kW
)

]
(10)

where Psll is the full-load stray load loss, Pin,fl is the full-load input power, and Pout is the
full-load output power.

In [17], a new stray load loss formula has been proposed. It also uses the input power,
but it does not use the output power, unlike in Formula (10). The increase in input power
due to the unbalance and voltage distortion can be considered. The proposed procedure is,
as in Equation (11):

Psll = 0.011 ∗ Pin, f l (11)

where Psll is the stray load loss, and Pin,fl is the input power under full-load conditions.
Figure 1 compares three stray load loss determination methods, namely, IEEE method,

IEC method, and the improved method in [14]. It is imperative to emphasize that all of the
foregoing similarities are only valid if, and only if, the motor under test and the data motor
have an identical power rating value. It is found that compared with the tested stray losses,
the method in [14] is more accurate. Therefore, this method is adopted to estimate the stray
losses in this study.

Figure 1. Comparison of three methods of stray load loss determination.
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2.4. Friction and Winding (PFW) Losses Determination

An estimation strategy for friction and windage losses has been developed to eliminate
this intrusive requirement. This new strategy is based on full-load input power and depends
on the motor pole pair number [18], as follows:

(a) If the number of poles is 2, then the friction and windage losses will be calculated
using the Equation (12):

PFW = 2.5% ∗ Pin, f l (12)

(b) If the number of poles is 4, the friction and windage losses will be calculated by
Equation (13).

PFW = 1.2% ∗ Pin, f l (13)

(c) If the number of poles is 6, the friction and windage losses can be calculated by
Equation (14).

PFW = 1.0% ∗ Pin, f l (14)

2.5. Output Torque and Efficiency Determination

From the identified electromagnetic torque, the shaft output torque can be obtained
by subtracting stray load loss and friction windage loss as in Equation (15) [19]:

Tsha f t = Tag − Psll + PFW
ωr

(15)

where Tshaft is the shaft torque, Tag is the air gap torque, and ωr is the rotor speed.
Then, output and input power can be calculated by Equations (16) and (17).

Poutput = Tsha f t ∗ ωr (16)

Pin =
√

3 ∗ U ∗ I ∗ cos ϕ (17)

where U is the phase-to-phase voltage, I is the stator current, and cos ϕ is the power factor.
The motor’s efficiency is calculated as in Equation (18).

ηest =
Pout

Pin
=

Tshaft ∗ ωr

Pin
(18)

2.6. Problems in Current Efficiency Determination

The main problem with the above method is accurately identifying the parameters
Rs and Rfe, which are used in the torque estimation process. In most recent papers, the
core loss resistance Rfe is ignored, affecting the online efficiency because of the loss caused
by this resistance since the AGT will not be accurately determined for the output torque
calculation. Several versions of the GA and optimization-based algorithms were used
to help to obtain the parameters. The problems of parameters identification technique
accuracy are summarized as follows:

(1) Rs and Rfe identification with higher precision is vital in all efficiency estimation
processes. However, both of them are variants; the first one is a function of the oper-
ating condition and the second one is a function of the voltage condition. Therefore,
identifying them in real time is essential for efficiency estimation.

(2) A Genetic Algorithm (GA)’s computation time and burden are high. In [4], it is stated
that three GAs were constructed to extract the necessary parameters; some versions
of GA use binary coding [14], which demands significant time and computational
space. The standard PSO is a global search algorithm. Despite having a fast and
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straightforward convergence, one of the drawbacks of this algorithm is its global
research abilities. If the best particle is a local one in a PSO system, it cannot be
accurately identified. In fact, in PSO, the particles will congregate near the global
particles if the number of iterations increases.

A new algorithm is proposed to solve these problems. This algorithm does not need to
be used three times or coded in binary like some versions of GA, which significantly reduces
the computation time and burden, and it is not a global search algorithm. The conception
of any optimization algorithm is not a simple task. In this study, the proposed algorithm
is more complicated than the standard PSO algorithm in conception and implementation.
Still, from the point of view of accuracy, it is better than the standard PSO and some other
PSO-based algorithms since it makes full use of the research space. The details of this new
algorithm are given in Section 3.

3. Quantum Particles Swarm Optimization-Trust Region Algorithm (QPSO-TRA)

QPSO-TRA is inspired by the PSO algorithm, other PSO-based algorithms, and the
TRA algorithm. QPSO-TRA has been inspired by the advantages and disadvantages of
some standard former algorithms. It studies the weaknesses of these algorithms and
transforms them into benefits for a better investigation of the problems to be solved.

3.1. Standard Particle Swarm Optimization PSO

The mechanism of standard PSO is motivated by the complex social movement shown
by biological species such as flocks of birds, schools of fish, swarms of bees, and sometimes
social behaviors of the human being. PSO is a relatively simple algorithm and converges
fast [20].

In a PSO system, each particle represents a potential solution to the problem and it
updates its location by following two optima. One is its personal best location named Pbest,
the best position found by it so far. The other is the global best position Pgbest, namely, the
best position located by its neighborhood particles so far. The movement of every particle
is regulated by the efficacy of its previous location and that of their neighbors. The velocity
and the location are formulated as in Equations (19) and (20):

vi(t + 1) = ω ∗ vi(t) + c1 ∗ r1 ∗ (Pbesti (t)− xi(t)) + c2 ∗ r2 ∗ (PPgbesti
(t)− xi(t)) (19)

Xi(t + 1) = xi(t) + vi(t + 1) (20)

The inertia weight can be updated by Equation (21):

ω(t) = ωmax − t(ωmax − ωmin)

itermax
(21)

The velocity value is chosen to be 0.1 ≤ k ≤ 0.5 and is set by the user [21]. However,
the problem with the PSO algorithm is that it is a global research algorithm. It quickly and
easily falls into a local optimum.

3.2. Quantum Particles Swarm Optimization (QPSO)

Inspired by trajectory analysis of the PSO and quantum mechanics, the Quantum
Particle Swarm Optimization (QPSO) is an algorithm for problem optimization. The QPSO
can find the optimal solution in search space and has the advantage of fewer control
parameters, simplicity in software programming, and a relatively fast convergence rate.
QPSO is better than standard PSO because, in the standard PSO algorithm, the particles
are restricted to a small space for every iteration of the swarm. This restriction will
weaken the global search abilities, affect the optimization accuracy, and lead to premature
convergence [22]. To improve the search abilities and optimization efficiency and to avoid
premature convergence, a quantum is introduced into the PSO. This quantum performs the
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mutations of particles to increase the particles’ diversity, and their movement is governed
by quantum displacement.

The Gaussian sample is based on the personal best position Pi and the global personal
best position Pg. The position of each particle is updated by Equation (22). However,
if the global best particle is a local optimum of the problem to be optimized, it is more
challenging to break out from this local optimum. Thus, to have a complete and satisfactory
use of research space, QPSO must join a local optimal research algorithm such as the “Trust
Region Algorithm (TRA)” to enhance its performance.

xij = (t + 1) = G
(

μij(t), σ2
ij(t)

)
(22)

where xij(t) =
(

pij(t) + pgj(t)
)
/2, σ2

ij(t) =
∣∣pij(t)− pgj(t)

∣∣ are, respectively, the mean and
standard deviation of the Gaussian distribution.

3.3. Trust Region Algorithm (TRA)

TRA is a well-known iterative approach for solving unbounded optimization problems.
It uses the method developed by Newton and offers a high degree of convergence and
stability [23]. For a given problem, TRA divides the research space into subspaces for a
better investigation. At the start, a small region is initialized at each iteration as the trust
region centering on the current iteration point. This operation is continuously conducted
until all the research space is investigated.

However, multimodal and multivariate problems which necessitate optimization are
sometimes trapped in local optima, making it challenging to obtain the optimal global
solution. This trap is due to the fact that the following searching direction of TRA is only
based on the capacity of the locally developed objective function. Therefore, to overcome
this problem, the TRA needs to be associated with a global optimization algorithm.

3.4. Hybrid Algorithm Formed by QPSO and TRA (QPSO-TRA)

Because QPSO is a global optimization algorithm, if the global best particle is a local
optimum of the problem to be optimized, it is challenging for QPSO to break out from
this local optimum. As for the TRA, it frequently becomes stuck in local optima. A hybrid
algorithm is formed by combining QPSO and TRA to avoid the early convergence at the
last step of the QPSO algorithm and improve the convergence speed. The advantage of
TRA and its research abilities is applied to QPSO. This hybrid algorithm helps to increase
or enhance the particle diversity and the global search abilities of the QPSO algorithm.
The combined, joined, or hybrid algorithm is then called QPSO-TRA. QPSO-TRA achieves
quick and efficient convergence performance at a low computational cost compared to GA.
Its computation time is slightly higher than PSO, but it is more accurate than PSO. In the
hybrid algorithm, each personal best position is updated according to Equation (23):⎧⎨⎩

pq(t + 1) = xq(t + 1),

pi(t + 1) =
{

pi(t), f it(pi(t)) ≤ f it(xi(t + 1))
xi(t + 1), f it(pi(t)) > f it(xi(t + 1))

(i 
= q)
(23)

Let Equation (23) be a function (F) and
{

pg(t)
}∞

t=0 a series or succession generated by
the algorithm. Then lim

n→∞
P
(

pg(t)
) ∈ Rε = 1, where Rε is the optimal region, P

(
pg(t)

) ∈ Rε

is the probability at stage α, and the point pg(t) generated by the algorithm is in Rε.
It should be considered that

{
pg(t)

}
is a sequence generated by the QPSO-TRA

algorithm, where pg(t) is the current best position of the swarm on time (t). As the
function F is defined as in Equation (24), from the limit, it can be seen that the algorithm
converges well. {

F(pg(t), xi(t)) =
{

pg(t), f it
(

pg(t)
) ≤ f it(xi(t))

xi(t), f it
(

pg(t)
)
> f it(xi(t))

(24)
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QPSO-TRA satisfies the convergence theories from the above statements, so it is an
optimization algorithm. Moreover, from the theorem, QPSO-TRA is an optimum search
algorithm that benefits from different algorithms.

The different steps of implementing the algorithm are detailed in Figure 2 and ex-
plained in the next section. As constraints, the values of each particle’s lower and upper
bounds are set. The lower bound (lb) and upper bound (ub) are set for the motor’s pa-
rameters. One can set as lb = [0.00 0.00 0.00 0.00 0.00 0.00], ub = [2.4.00 1.00 1.20 2853
155.00 5.50] for the six parameters of the motors, namely, stator resistance, stator reactance,
rotor reactance, core resistance, magnetizing reactance, and rotor resistance, respectively.
The lower and upper bounds depend on the size of the motors. Once the parameters are
obtained, they are used in the efficiency estimation process.

Figure 2. Flowchart of QPSO-TRA.

4. Experimental Validation

4.1. Laboratory Test

A Matlab program was made for the implementation to identify the parameters of a
5.5 kW, 380 V, 11.7 A, 1450 r/min, and design B induction motor using the proposed algo-
rithm in the laboratory. Figure 3 depicts the test rig of 5.5 kW motor. The test was performed
with a power analyzer, a torque transducer and visualizer, a data acquisition system, a DC
generator as load, and an auto-transformer used for different voltage conditions. The motor
was run at full-load condition to obtain its stable temperature, and the hot temperature was
measured. The equivalent circuit parameters method was associated with the algorithm
to estimate the motor parameters. The optimization of parameters identification of the
induction motor was mathematically expressed as follows: find X = (x1, x2, . . . , xn) such
that F(X) is a minimum. The following are the identification variables for the optimization
(X): stator leakage reactance X1; core resistance Rfe; core magnetization reactance Xm, and
rotor resistance R2. The rotor leakage reactance X2 is calculated with the value of stator
leakage reactance X1, as shown in Table 2. Four parameters out of six will be determined
using the QPSO-TRA algorithm, as cited above.
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Figure 3. Test rig of 5.5 kW motor.

Table 2. Ratio of X1/X2 according to the design class [8].

Design Class X1/X2

A 1.00
B 0.67
C 0.43
D 1.00

Wound rotor 1.00

Those four parameters represent the four variable particles in the QPSO-TRA algo-
rithm. The algorithm needs one initial value, the value of stator resistance Rs. This value
is measured at standstill and is corrected with temperature rise during the identification
process. In addition, the values of Rs,cor, and X2 were monitored during all the iterations
to respect the algorithm’s lower and upper bounds constraints. A stagnation_iteration
coefficient [i] is used to monitor each particle’s fitness value to record the particle’s location
change. If the fitness value of a particle Xi does not improve during an iteration, the
stagnation_iteration [i] is extended by one, otherwise it is dropped by one. To consider
a particle to be dormant or inactive, its stagnation_iteration [i] must respond to [i] ≥ λ
and then has to be reinitialized to give it a chance to be a new candidate for the research.
Reinitialization will assist the dormant particle in escaping from the local optimum and
enhancing its search skills. The dormant coefficient is chosen by the user based on the
research space, and also its value is determined by the problem’s severity. The dormant
coefficient λ was set to 0.95 in our case.

In the iteration process of the QPSO, the TRA technique is performed on the current
global best particle at each iteration k. Considering the computing severity of TRA, this
combined approach harnesses the experience and knowledge of each particle swarm during
the iteration. In the implementation process, a beginning point α0 and trust region radius r0
are first specified. Then, using the iterative procedures, a series of points {αa} is constructed
to search for the ideal solution. At each iteration, a tiny region is created called the trust
region, centered on the current iteration point. By dealing with a subproblem inside this
region, a trial step k is determined. Next, an evaluation function is utilized to evaluate if
the trial step should be accepted, and the trust region radius for the following iteration is
determined. If the testing step is accepted, α(a+1) = αa − βa; otherwise, α(a+1) = αa. If the
trial stage is successful, the new radius will be enlarged or maintained. The trust region
exclusively uses the problem’s information and region knowledge. The ideal combination
is depicted in Equation (25). Because the original QPSO-TRA method is an optimization
technique for obtaining optimum values, it leads the particle to deviate from the subregional
minimum value and returns the optimal values when the iteration ends, where the fitness
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represents the objective function, {Xi} is the function of parameters to be identified, β = [K,α],
K is an integer in the interval [1,6], and α = 50 is the population size for the optimization:⎧⎨⎩

f itness = minβ=[K,α]{Xi}
K = [1, 6]
α = 250

(25)

As constraints, the values of each particle’s lower and upper bounds are set. The
lower bound (lb) and upper bound (ub) are set for the motor’s parameters. In our case, the
lower and upper bounds were set to lb = [0.00 0.00 0.00 0.00 0.00 0.00] and ub = [2.4.00 1.00
1.20 2853 155.00 5.50] for the six parameters of the motors, namely, stator resistance, stator
reactance, rotor reactance, core resistance, magnetizing reactance, and rotor resistance,
respectively. These lower and upper bounds depend on the size of the motors. Then,
the algorithm runs until the stopping criterion is reached. After their identification by
QPSO-TRA, Rs,cor is used for air gap torque determination, and Rfe is used for core losses
determination in the proposed efficiency estimation algorithm. The remaining parameters
can be used to judge the motor winding healthy state.

The current signal is collected using a data acquisition system for the motor speed
detection technique, as shown in Figure 4a. FFT was used to obtain the current frequency
spectrum. All the frequency components in the spectrum cannot be directly used. A
range of harmonic frequencies must be defined as a criterion for harmonics frequency
determination. The number of the spectrum component is reduced by determining lower
and upper threshold values, a range of probable frequencies for harmonics investigation.
The high harmonics frequencies determine this range in no-load fsh1 and fsh2 in the full-load
conditions. For example, suppose n1, n2, and z are, respectively, the synchronous speed
(no-load speed), the rated speed, and the rotor slot number. In that case, the harmonic
frequency is determined using the formulas fsh1 = n1z

60 ± f0 and fsh2 = n2z
60 ± f0, where f 0

is the supply frequency. The frequency components that are not in the range are eliminated
to reduce or limit the research space. Then, those frequencies that are in the range are
investigated to calculate the probable rotor slot harmonic frequency (RSHF). In our case,
the determination range was 680–800 Hz. The frequency that has high amplitude is the
identified slot harmonic frequency. Once the RSHF is obtained, Equation (5) is used to
determine the motor speed. Figure 4b shows that the identified slot harmonic frequency is
734 Hz, and the speed is 1466 r/min. Figure 5a illustrates the estimated versus measured
speed according to load ratio; whiles Figure 5b depicts estimated versus measured efficiency
according to load ratio, which show a good agreement with the measured results.

 
(a) (b) 

Figure 4. Measured stator current and rotor harmonic frequency: (a). measured phase-A currents;
(b). extracted rotor slot harmonics frequency (734 Hz) for 5.5 kW motor, with slot number Z = 28 and
pole pair number p = 2; the corresponding speed is 1465.71 r/min after recorded data analysis.
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(a) (b) 

Figure 5. Measured versus estimated: (a). estimated versus measured speed according to load ratio;
(b). estimated versus measured efficiency according to load ratio.

Table 3 shows the extracted parameters and compares PSO and QPSO-TRA algorithms
for motor parameters determination. The speed has also been measured using a contactless
method and both results were compared to evaluate the speed detection technique. After
the full load, partial loads such as 75%, 50%, and 25% were also tested. Table 4 depicts the
motor measured efficiencies and their associated speeds. The full charge and partial loads
results are shown in Table 4. The relative errors of both efficiencies and speed can also be
seen. Table 4 also illustrates the estimated efficiencies with PSO and QPSO-TRA and the
estimated speeds versus measured speeds of the partial loads in the laboratory. The relative
error deviations of the estimated efficiencies from the measured values are presented. For
comparison purposes, PSO and QPSO-TRA results are shown in Table 4 for a laboratory test.

Table 3. Comparison of determined parameters of 5.5 kW motor.

Parameters PSO QPSO-TRA

R1 2.43 2.43
R2 1.92 1.72
Rfe 2803.87 2687.675
Xm 114.15 150.003
X1 0.88 0.85
X2 1.31 1.27

Table 4. 5.5 kW motor estimated efficiencies and speeds versus measured in the laboratory.

Load (%)

Speeds (r/min)

Relative Errors

Efficiencies (%)
Relative Errors

PSO/QPSO-TRAMeasured Estimated Measured
Estimated

PSO QPSO-TRA

100 1468.04 1465.71 0.0158 88.63 91.05 89.32 0.1900
75 1475.08 1473.88 0.0081 91.41 90.94 91.65 −0.0780
50 1481.4 1482.5 −0.0007 90.04 89.55 89.95 −0.0446
25 1489.5 1490.8 −0.0008 83.86 89.33 83.53 0.6492

It is evident that the error increases with the load factor of 25%. At 25%, the motor is
under light load condition. At this point, the losses are more considerable than if the load
point is close to the rated load and the output power is small, which is not recommended
because it is not beneficial.

4.2. Field Application

The proposed algorithm has been applied on an 11,000 kW, 10 kV feeding pump
induction motor in a power plant, the rated current and speed are 710 A and 1491 rpm,
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respectively. Figure 6 shows the measured voltage and current waveforms of the above
motor. In the field test, a self-developed monitoring system is installed on the motor
terminal, and the running interface is to complete the corresponding data monitoring and
analysis. Besides of the voltage and current waveforms, the monitored data also include
voltage, current, torque, speed, power factor, efficiency, voltage deviation, unbalance and
harmonic components and so on. Here, when monitoring and recording a large amount of
data, only a typical example of data is given in Figure 6 and Table 5. It can be seen that.

Figure 6. Measured waveforms with the developed monitoring system and estimated air-gap torque
and slot harmonic obtained by the presented method. (a). Voltage. (b) Current. (c) Air-gap torque.
(d) Rotor slot harmonic.

Table 5. Extracted parameters by QPSO-TRA and PSO.

Parameters
10 MW Motor

QPSO-TRA PSO

R1 0.223 0.351
R2 0.172 0.272
Rfe 28,687.675 29,381.178
Xm 2350.003 2715.078
X1 0.115 0.231
X2 0.115 0.231

(1) Figure 6a,b are the measured voltage and current waveforms, and Figure 6c,d
are identified rotor slot harmonics and electromagnetic torque. The input power can be
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calculated by measured voltage and current waveforms, namely, 8922.27 kW. Furthermore,
it is difficult to measure the shaft torque directly in the field, therefore, the output power
are derived by the measured speed and pressure and flow of pumped water, namely,
8565.92 kW, respectively. And motor efficiency under this condition is 96.01%.

(2) From Figure 6c,d, the identified rotor slot harmonic is 2540 Hz, and the related
rotor speed is 1494.5 rpm, and average electromagnetic torque under this condition based
on Equation (2) is 55 kNm. It can be calculated that the output power is 8603.33 kW. And
the identified efficiencies are 95.63% and 96.43%, with PSO and QPSO-TRA, respectively.

(3) Table 5 shows the extracted parameters of the motor using QPSO-TRA and PSO
algorithms, respectively. Table 6 shows the motor data and the estimation results. It can
be concluded that the estimated results show that the relative error is about 0.83% in the
field test, which indicates that the proposed method can meet the efficiency estimation
requirement of motor systems.

Table 6. Measured versus estimated efficiencies of the motors by PSO and QPSO-TRA methods.

Measured Efficiency
(%)

Estimated Efficiency
by PSO (%)

Estimated Efficiency
QPSO-TRA (%)

Relative Errors
PSO/QPSO-TRA

96.01 95.63 96.43 0.83

To sum up, the proposed algorithm demonstrates an sufficient accuracy level when
the predicted or estimated efficiencies are compared to their related measured values.

5. Conclusions

This study proposes an approach for in situ efficiency estimation of induction motors
based on the QPSO-TRA algorithm. With the proposed method, the stator resistance Rs
and the core losses resistance Rfe can be accurately identified online. The main conclusions
are as follows.

(1) A new algorithm to identify the motor parameters is designed to deal with the problem
mentioned early for induction motor parameters identification. This new algorithm is
called QPSO-TRA. After comparing the extracted parameters with QPSO-TRA and
standard PSO, it is found that QPSO-TRA can achieve a better result than the standard
PSO, as can be seen in Tables 3 and 5.

(2) With the proposed hybrid algorithm, global research is avoided when investigating the
full research space. The computation time and burden are reduced to 1/3 compared
to the Genetic Algorithm and also the algorithm is faster, reducing the computational
time, compared to simple TRA.

(3) Experiments in the laboratory and the field were performed to analyze the perfor-
mance of the proposed efficiency estimation algorithm by testing some induction
motors of various types and rating power in the laboratory rather than in the field.
The relative errors in Tables 4 and 6 are less than 2%, which is a good indicator to
show the high accuracy of the proposed method. Finally, the high accuracy level
showed by the proposed technique validated the efficiency estimation technique.
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Abstract: The pulse-jet cleaning process is a critical part of the bag filter workflow. The dust-cleaning
effect has a significant impact on the operating stability of bag filters. Aiming at the multi-parameter
optimization problem involved in the pulse-jet cleaning process of bag filters, the construction
method of hybrid surrogate models based on second-order polynomial response surface models
(PRSMs), radial basis functions (RBFs), and Kriging sub-surrogate models is investigated. With four
sub-surrogate model hybrid modes, the corresponding hybrid surrogate models, namely PR-HSM,
PK-HSM, RK-HSM, and PRK-HSM, are constructed for the multi-parameter optimization involved in
the pulse-jet cleaning process of bag filters, and their objective function is the average pressure on the
inner side wall of the filter bag at 1 m from the bag bottom. The genetic algorithm is applied to search
for the optimal parameter combination of the pulse-jet cleaning process. The results of simulation
experiments and optimization calculations show that compared with the sub-surrogate model PRSM,
the evaluation indices RMSE, R2, and RAAE of the hybrid surrogate model RK-HSM are 9.91%, 4.41%,
and 15.60% better, respectively, which greatly enhances the reliability and practicability of the hybrid
surrogate model. After using the RK-HSM, the optimized average pressure F on the inner side wall
of the filter bag at 1 m from the bag bottom is −1205.1605 Pa, which is 1321.4543 Pa higher than the
average pressure value under the initial parameter condition set by experience, and 58.4012 Pa to
515.2836 Pa higher than using the three sub-surrogate models, verifying its usefulness.

Keywords: hybrid surrogate model; performance optimization; Kriging; RBF; genetic algorithm;
pulse-jet cleaning

1. Introduction

Industrial dust and industrial soot emissions are the main pollution sources affecting
the quality of the atmospheric environment [1]. As effective facilities for controlling dust,
especially fine particles, bag filters have the characteristics of high efficiency and good
economy and are widely used for dust treatment in coal, electric power, steel, cement, and
waste incineration industries [2,3]. The pulse-jet cleaning process is an important part of
the bag filter workflow, and its performance is directly related to the effect of energy saving
and emission reduction. By adopting advanced methods, optimized cleaning parameters
can be obtained, thus improving the overall operating efficiency of bag filters.

In order to optimize the pulse-jet cleaning parameters of bag filters, relevant scholars
obtained better cleaning parameters by constructing a digital simulation and optimization
model for bag filters, which can improve cleaning performance. Kang et al. [2] adopted a
numerical simulation for a slit-nozzle optimization design to remove the caked-on dust
of the dead zone. Park et al. [4] relied on numerical simulation to study the influence of
filter bag length on the distribution of filtration velocity and proposed a scheme to improve
the uniformity of filtration velocity. Fan et al. [5] conducted a numerical simulation of the
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bag filter dust-cleaning process based on fluid dynamics to study the effects of factors such
as pulse-jet pressure, nozzle diameter, pulse-jet height, and filter bag length on the flow
field distribution inside the bag, established a quadratic polynomial prediction model with
four influencing factors, and modified the models to provide theoretical guidance for the
optimization of the bag filter dust-cleaning system.

Complex and computationally expensive simulations and physical experiments
are often required to quantify the economic and engineering performance of complex
products such as bag filters. The surrogate model approach has been widely recognized
to avoid the computational burden of directly adopting the finite element model for
parameter optimization.

The surrogate model refers to the mapping between the design variables and the
optimization objective based on the existing design point data with low computational effort
and a short calculation period, while the calculation results are similar to the numerical
analysis or physical test results. The focus of surrogate modeling is the construction of
approximate models to evaluate system performance and obtain the relationship between
the inputs and outputs, so as to obtain the influence of each specific variable on the
optimization target, which can bring a more refined design experience to the designers [6].
Common surrogate model methods include the polynomial response surface method
(PRSM), radial basis function (RBF), and Kriging.

Xu et al. [7] applied the PRSM surrogate model to the improvement of bentonite in
shield construction. The results displayed the optimal parameters for strongly weathered
granite strata at different shield advance speeds, thus providing a technical guarantee for
efficient construction. Thakre et al. [8] used the PRSM surrogate model in the parameter
sensitivity analysis of the selective laser sintering process, which provided conditions for
realizing the robust performance of additive manufacturing processes.

Sun et al. [9] introduced the global optimization technique based on the RBF surrogate
model into the correction and optimization of key parameters of honeycomb sandwich
plates in spacecraft, which reduced the dynamics analysis error. Xu et al. [10] used the
RBF surrogate model to optimize the parameters of the annular jet pump to improve its
hydraulic performance in submarine trenching and dredging.

Wang et al. [11] employed the Kriging surrogate model to optimize the design of drum
brake stability, and it was found that the introduction of Kriging could greatly improve
the solution efficiency. Li et al. [12] adopted the Kriging model for the design parameter
optimization of a flat-type permanent magnet linear synchronous motor for improving
average thrust while reducing thrust fluctuation.

Different surrogate models have their own applicable scenarios [13]. The PRSM is
suitable for solving low-order problems in low-dimensional spaces, Kriging is appropriate
for solving complex nonlinear problems in low-dimensional spaces and slight nonlinear
problems in high-dimensional spaces, and RBF is fit for solving high-order nonlinear
problems in high-dimensional spaces. Moreover, the optimization results of a single
surrogate model for different problems are highly variable and unpredictable, which brings
some risks to engineering optimization.

To address the above issues, a hybrid surrogate model approach based on multiple
surrogate models can reduce the risk of using a single surrogate model for optimization
while improving the accuracy of the model. Li et al. [14] combined three surrogate models
to construct a hybrid surrogate model for the structural design of permanent magnet drives,
and the optimization design effect was significantly improved. Xie et al. [15] applied
the hybrid surrogate model to the comprehensive dynamic performance optimization of
rail vehicles to obtain more reasonable suspension parameters, resulting in significant
improvements in both the smoothness and stability of the vehicle operation. He et al. [16]
applied the hybrid surrogate model to the shape and structural optimization design of the
multi-bubble pressure cabin in an underwater vehicle, which enabled the pressure cabin to
have a stronger load capacity and a significantly lower weight.
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Compared with different single surrogate models, optimization approaches based
on the hybrid surrogate model can combine the superior characteristics of sub-surrogate
models to make the model more accurate, thus improving the accuracy of prediction and
optimization results. The pulse-jet cleaning process of the bag filter is a complex, nonlinear,
dynamic process. In this paper, a more suitable hybrid surrogate model approach will be
selected to optimize the pulse-jet cleaning-related parameters to improve the performance
of the bag filter.

2. Analysis of the Bag Filter Dust-Cleaning Optimization Problem

The dust-cleaning system of the pulse-jet bag filter is mainly composed of the com-
pressed air cylinder, the clean air chamber, the tube sheet, several filter bags, and the
corresponding pulse-jet valves, injection pipes, nozzles, etc. The dust-cleaning process
starts with the initiation of the pulse-jet valves, and the pulse-jet time is only roughly 0.1 s
to 0.5 s. The schematic diagram of the pulse-jet cleaning state is shown in Figure 1 [17].
When the pulse-jet valve is activated, the high-speed pulse airflow immediately enters
the filter bag from the compressed air cylinder through the injection pipe and nozzle. At
the same time, it will also cause a low-pressure area at the entrance of the filter bag, thus
inducing a secondary airflow into the bag filter, while the secondary airflow rate is several
times the initial pulse-jet compressed air [18]. As a large amount of airflow enters the filter
bag, the pressure inside the filter bag rises sharply.

Figure 1. The schematic diagram of the pulse-jet cleaning state.

The strong airflow impact will make the filter bag vibrate, while the pressure difference
between the inside and the outside of the filter bag will make the bag, along with its surface
dust cake, move outward in a radial direction. Under the action of tension, the radial
velocity of the filter bag will gradually drop to zero, and then the filter bag will shrink
inward in a radial direction [19]. Because the dust cake attached to the outer wall of the
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filter bag is not subject to the tension, the dust cake will overcome the adhesion with the
filter bag under the action of inertia and fall into the dust hopper under the action of gravity,
thus completing the dust-cleaning process.

In the process of pulse-jet cleaning, there are many factors that affect the dust-cleaning
performance [18] such as the air cylinder volume, pulse-jet pressure, pulse-jet height, pulse-
jet time, structure of nozzles, filter material type, filter bag diameter and length, clean air
chamber volume, and so on.

An optimization model should be established for the pulse-jet system, and then
the multiple relevant design parameters can be optimized simultaneously to obtain the
optimum dust-cleaning performance. In the study of the optimization of dust-cleaning
performance, four parameters which have a significant impact on the dust-cleaning per-
formance, as well as being easily accessible in engineering, were selected. They are the
pulse-jet pressure (P), filter bag length (L), filter bag diameter (D), and nozzle diameter (d).
According to the actual conditions of engineering, the design intervals of the variables are
shown in Table 1.

Table 1. The design intervals of the variables.

Variable Initial Empirical Value Lower Limit Value Upper Limit Value

P/kPa 250 100 400
L/m 8 6 10

D/mm 145 130 160
d/mm 16 8 20

In previous studies on the optimization of bag filter dust-cleaning performance, dust
detachment from the filter bag was mainly evaluated by the sidewall peak pressure. In the
process of dust cleaning, the sidewall pressure of the filter bag is unevenly distributed in
the axial direction, and the pressure is relatively small in the bottom part of the filter bag, so
the effect of dust cleaning is also poor. In other words, when the conditions at the bottom
of the filter bag meet the cleaning requirements, the entire bag’s cleaning performance will
also be guaranteed. When considering the force required, the dust cake and the filter bag
should be considered as a whole. In practical engineering applications, it is difficult to
accurately obtain the outer pressure of the filter bag due to the complex characteristics of
the dust cake. Therefore, the average pressure on the inner side wall of the filter bag at 1 m
from the bag bottom is selected as the optimization target, which is recorded as F. That is,
the maximum F is the optimization goal of the cleaning performance. The multi-parameter
optimization model for pulse-jet cleaning of the bag filter can be expressed as:

f indP, L, D, d
max.F

s.t.100 kPa ≤ P ≤ 400 kPa
6 m ≤ L ≤ 10 m

130 mm ≤ D ≤ 160 mm
8 mm ≤ d ≤ 20 mm

(1)

3. Hybrid Surrogate Model for Multi-Parameter Optimization

The surrogate model transforms the black box problem into a smooth and continuous
explicit mathematical problem, which greatly reduces the computational complexity while
satisfying the accuracy requirements. Different surrogate models have different characteris-
tics and apply to different optimization problems. If they can be combined to build on their
strengths and avoid their weaknesses, the optimization results may be better. Therefore,
the hybrid surrogate model method is proposed to expect better optimization results.

Set as follows, x = (x1, · · · , xn) is the n-dimensional input variable, y is the output

response, and the corresponding response data set is Y =
(

y(1), · · · , y(N)
)T

for the training
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sample data set X =
(

x(1), · · · , x(N)
)T

of size N. The functional relationship between x

and y can be expressed as:
y = ŷ(x) + ε (2)

where ŷ(x) is the surrogate model output function, and ε is the error when approximating
y with ŷ(x).

The essence of the hybrid surrogate model is a weighted linear superposition of differ-
ent single surrogate models called sub-surrogate models [20], which can be expressed as:

ŷHSM(x) =
m
∑

i=1
αi ŷi(x)

m
∑

i=1
αi = 1

(3)

where ŷHSM(x) is the output of the hybrid surrogate model, m is the number of sub-
surrogate models, ŷi(x) is the output of the ith sub-surrogate model, and ai is the weight
of ŷi(x).

Using two sub-surrogate models cannot provide enough sub-surrogate model hybrid
modes, and using four or more sub-surrogate models will greatly increase the amount of
calculation. In order to make better use of the advantages of each sub-surrogate model
and reduce the influence of its defects on the hybrid surrogate model, there are three
sub-surrogate models selected by the proposed hybrid surrogate model method, which are
the PRSM model, the RBF model, and the Kriging model.

3.1. Sub-Surrogate Model
3.1.1. PRSM

PRSM was first proposed by the mathematicians Box and Wilson in 1951. The process
of PRSM is to construct a mapping relationship between the design variables and the target
response through least squares regression based on the given input and output values. It
can be expressed as:

y = βT · f(x)

= β1 f1(x) + β2 f2(x) + · · ·+ βk fk(x)
(4)

where fi(x)(i = 1, 2, · · · , k) is the ith polynomial, βi is the corresponding polynomial
coefficient to be solved, f(x) is the polynomial matrix, and β is the coefficient matrix.

The most common usage of PRSM in engineering applications is the second-order
PRSM [21]. Its general formula can be expressed as:

ŷPRSM = β0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i +

n

∑
i=1

n

∑
i<j

βijxixj (5)

where ŷPRSM is the estimated value of the response, and xi is the ith component of the
n-dimensional variable x. β0, βi, βii, and βij are the coefficients of the objective function
to be solved, respectively, which can be arranged in a certain order to form the column
vector β.

The polynomial response surface method uses polynomials with explicit expressions
to replace complex simulation analysis models, which are easy to construct. The models
constructed by PRSM have good continuity and derivability to reduce the influence of
numerical noise. At the same time, the influence of each variable on the output target
response can be judged by the coefficient of each component [22]. The engineering practice
shows that the PRSM can effectively reduce the number of simulation analyses. However, if
there are too many design variables, the number of sample points will increase accordingly,
and the computational burden will increase significantly.
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3.1.2. RBF

RBF is a method that uses discrete multivariate data to fit unknown functions. The
basic principle is to linearly weight the model constructed with a typical radial function as
the basis function, transforming the multi-dimensional problem into a one-dimensional
problem with the Euclidean distance between the known sample points and the unknown
point to be measured as the independent variable [23]. The function value corresponding
to the unknown sample point x based on RBF can be expressed as:

ŷRBF =
N

∑
i=1

λi ϕ
(∥∥∥x − x(i)

∥∥∥) = λTϕ (6)

where ‖·‖ is the Euclidean distance, and λi is the weight coefficient of the radial function
for the ith sample point x(i).

The response vector [24] can be expressed as:

y = A · λ

A =

⎛⎜⎜⎜⎝
ϕ
(∥∥∥x(1) − x(1)

∥∥∥) · · · ϕ
(∥∥∥x(1) − x(N)

∥∥∥)
...

. . .
...

ϕ
(∥∥∥x(N) − x(1)

∥∥∥) · · · ϕ
(∥∥∥x(N) − x(N)

∥∥∥)
⎞⎟⎟⎟⎠

N×N

(7)

where ϕ(r) is the radial function and r is the Euclidean distance. When the sample points
do not coincide and A is positive definite [25], the above equation has a unique solution
λ = A−1 · y. After that, the function value at the unknown sample point can be predicted.

Among these common radial functions, the multiquadric (MQ) function ϕ(r, c) =
(
r2 + c2)0.5

shows good effects in terms of accuracy, stability, and computational efficiency [26]. The
RBF is an interpolation-type surrogate model, and the approximation accuracy is strongly
influenced by the shape coefficient c(c > 0). The optimal value of c depends on the
distribution of sample points and approximate targets.

The RBF has the advantages of simple structure, good flexibility, high computational
efficiency, and fast convergence, making it suitable for solving problems with multiple
variables. However, the model is sensitive to numerical noise, so it is slightly insufficient
for fitting strongly non-linear responses [27].

3.1.3. Kriging

Kriging is an unbiased estimation model with minimum estimation variance [28].
This model adds a random process on the basis of the global regression model, which not
only considers the influence of the distance relationship between the sample points on the
output, but also the influence of the spatial distribution and location relationship between
the sample points on the output [29]. It can be generally expressed as:

y = F(β, x) + z(x) = fT(x)β + z(x) (8)

where F(β, x) is the global regression model to reflect the overall trend of the system
response in the design space, f(x) is the polynomial function vector, β is the regression
coefficient vector, and z(x) is a stochastic process with a mean of zero, a variance of
σ2, and a non-zero covariance, which reflects the approximation of local deviation. The
covariance satisfies:

Cov
[
z
(

x(i)
)

, z
(

x(j)
)]

= σ2R
(

x(i), x(j)
)

(9)
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where R
(

x(i), x(j)
)

is a spatial correlation function, indicating the spatial correlation between

sample points x(i) and x(j), which plays a decisive role in the accuracy of the simulation [30].

R
(

x(i), x(j)
)
=

n

∏
k=1

Rk(θk, dk) (10)

where Rk(θk, dk) is the kernel function of the correlation function R; dk is the difference
between the kth component of the sample points x(i)k and x(j)

k , namely dk = x(i)k − x(j)
k ; n is

the dimension of the sample points, that is, the number of design variables; and θk is the
model parameter of the kernel function in the kth direction.

The GAUSS model has the characteristics of being smooth and differentiable every-
where [31]; therefore, it is usually adopted in engineering applications to construct the
correlation function model.

R
(

x(i), x(j)
)
= exp

(
−

n

∑
k=1

θk

∣∣∣x(i)k − x
(j)
k

∣∣∣2) (11)

The Kriging model needs to minimize the mean square error of prediction ϕ(x) under
the condition of unbiased estimation.

E(ŷKRG) = E(y)

ϕ(x) = MSE[ŷKRG] = E
[
(ŷKRG − y)2

] (12)

The Kriging model is based on the information of known sample points, fully con-
sidering the spatial correlation characteristics of variables. Moreover, the model has both
local and global statistical properties. These characteristics make Kriging advantageous in
solving problems of high nonlinearity to achieve desirable results [32].

3.2. Method for Determining the Weighting Factor

There are two key aspects of the modeling process of the hybrid surrogate model: one
is to choose suitable single surrogate models as its sub-surrogate models, and the other is
to determine the hybrid strategy, that is, to determine the weight coefficients through an
effective calculation method.

The inverse proportional averaging method regards the accuracy indexes of each
sub-surrogate model as irrelevant and has no systematic deviation [33]. The proportion of
each sub-surrogate model in the hybrid surrogate model will be calculated according to
this method.

ωi =
E−1

i
m
∑

i=1
E−1

i

(13)

where Ei is the approximate capability evaluation value of the ith sub-surrogate model. In
this paper, the root mean square error (RMSE) is picked as E.

3.3. Hybrid Surrogate Model Optimization Algorithm

The optimization algorithm proposed in this paper is a multi-parameter optimization
strategy based on a hybrid surrogate model. The initial sample set is obtained through
simulation experiments, and the hybrid surrogate model will be constructed. The accuracy
of the hybrid surrogate model should be inspected in combination with the actual problem,
and if it meets the requirements, the global optimal solution of the model will be obtained by
the genetic algorithm; otherwise, the hybrid agent model needs to be updated by selecting
a suitable addition strategy until the model accuracy meets the requirements. The process
of optimization based on the hybrid surrogate model is displayed in Figure 2.
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Figure 2. The process of optimization based on the hybrid surrogate model.

4. Optimization of Dust-Cleaning Performance of Bag Filter

4.1. Simulation and Modeling

This study relies on the bag filter laboratory, as shown in Figure 3a, and the digital
model of the bag filter, as shown in Figure 3b, is constructed based on physical equip-
ment. In order to facilitate the study, a single filter bag is taken as the object, and some
simplifications are applied. The finite element analysis model is shown in Figure 3c.

In this paper, the main settings of the numerical simulation are as follows:

1. The pressure inlet boundary condition is adopted at the inlet of the injection pipe.
Considering the change of outlet pressure during the opening and closing process of
the pulse-jet valve, the user-defined function (UDF) is adopted to define the function
of pulse-jet pressure changing with time. According to the physical experiment, the
curve of pulse-jet pressure changing with time is shown in Figure 4.

2. The boundary condition of the filter bag is set to the porous-jump medium.
3. The pulse-jet cleaning process satisfies the law of conservation of energy, the law of

conservation of mass, and the law of conservation of momentum.
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(a) (b) (c)

Figure 3. The simplification of bag filter: (a) the bag filter laboratory; (b) the digital model; (c) the
finite element analysis model.

Figure 4. The curve of pulse-jet pressure changing with time.

Too few sample points make it difficult to guarantee the surrogate model’s accuracy,
while too many sample points will increase the computation cost. To ensure the space-
filling of sample points and improve the computational efficiency, the Latin hypercube
sampling method [34] based on the maximizing minimum distance criterion is employed
to perform the experimental design, and 70 sets of sample points are obtained to construct
the surrogate models. To confirm the correctness of the proxy model, 30 sets of validation
sample points are obtained using the same method to test the accuracy. The distribution of
modeling sample points and validation sample points is shown in Figure 5.

According to the experimental design conditions of 100 sets of sample points, the
ANSYS is used to simulate the pulse-jet dust-cleaning process of the bag filter, as shown in
Figure 6.
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(a) (b) 

(c) (d) 

Figure 5. The distribution of modeling sample points and validation sample points: (a) P-L-D,
(b) P-L-d, (c) P-D-d, (d) L-D-d.

(a) (b) 

Figure 6. The simulation process: (a) the mesh; (b) the iterations and residuals image of the simula-
tion process.

The surrogate models will be constructed based on the data of the 70 sample points.
Meanwhile, considering the large range of data variation in each dimension, it is necessary
to normalize the input variables to reduce their impact on the accuracy of the surrogate
models [35].

xnew =
xi − ximin

ximax − ximin
(14)
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where xnew is the normalized design variable, xi is the initial design variable, and ximax
and ximin are the minimum and maximum values of the initial design variable. It can
be obtained:

xP = P−100
300

xL = L−6
4

xD = D−130
30

xd = d−8
12

(15)

where xP, xL, xD, and xd are the normalized values of P, L, D, and d, respectively.
According to the normalization and simulation results of the modeling sample points,

the sub-surrogate models can be constructed.

1. Second-order PRSM sub-surrogate model

FPRSM(x) = 0.0430x2
P − 1.2778x2

L − 0.1340x2
D − 3.3243x2

d − 0.2987xPxL

−0.3057xPxD − 3.5838xPxd − 0.0723xLxD − 0.2685xLxd − 0.4268xDxd

+1.1371xP + 1.7622xL + 0.4638xD + 3.6502xd − 2.9011

(16)

2. RBF sub-surrogate model

In this paper, the MQ function is employed as the kernel function of the RBF sub-
surrogate model, which can be expressed as:

FRBF(x) =
70

∑
i=1

λi

[
(xP − xiP)

2 + (xL − xiL)
2 + (xD − xiD)

2 + (xd − xid)
2 + c2

] 1
2 (17)

where xiP , xiL , xiD , and xid denote the four-dimensional components of the ith model-
ing sample point, respectively. The solution can be obtained: c = 0.3457,
λ = [−13.8543, 70.6401,−9.6336, 7.0372, · · · , 13.9376, 13.0330].

3. Kriging sub-surrogate model

In this paper, the quadratic function g(x) is used as the global approximation function
in the Kriging sub-surrogate model.

FKRG(x) = g(x) + z(x) (18)

4.2. Accuracy Evaluation

In order to ensure the validity of sub-surrogate models, error analysis is required.
Commonly used indicators for evaluating the model accuracy are root mean square error
(RMSE), coefficient of certainty (R2) [36], and relative average absolute error (RAAE) [37].

RMSE =

√
N
∑

i=1
(yi−ŷi)

2

N

R2 = 1 −
N
∑

i=1
(yi−ŷi)

2

N
∑

i=1
(yi−yi)

2

RAAE =

N
∑

i=1
|yi−ŷi |

N·
√

1
N

N
∑

i=1
(yi−yi)

2

(19)

According to the formulas, the accuracy indexes of three sub-surrogate models are
shown in Table 2. It can be seen that the accuracy of the RBF sub-surrogate model is better
than the other two.
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Table 2. Model accuracy of three sub-surrogate models.

Sub-Surrogate Model RMSE R2 RAAE

Second-order PRSM 0.358211 0.810372 0.353255
RBF 0.327596 0.841400 0.309310

Kriging 0.342097 0.827049 0.331309

4.3. Construction of Hybrid Surrogate Model

The basic form of the hybrid surrogate model for pulse-jet cleaning performance can
be expressed as:

FHSM(x) = ωPRSMFPRSM + ωRBFFRBF + ωKRGFKRG (20)

Three sub-surrogate models can construct multiple hybrid surrogate models. When
the number of sub-surrogate models is 2, there are three hybrid surrogate models. When
the number of sub-surrogate models is 3, there is one hybrid surrogate model.

1. Hybrid surrogate model constructed by the second-order PRSM and RBF (PR-HSM)

According to formula 13, the weights of the second-order PRSM model and the RBF model
in the hybrid surrogate model RH-HSM are ωPR-PRSM = 0.477680 and ωPR-RBF = 0.522320.

FPR-HSM(x) = 0.477680FPRSM(x) + 0.522320FRBF(x) (21)

2. Hybrid surrogate model constructed by the second-order PRSM and Kriging (PK-HSM)

According to formula 13, the weights of the second-order PRSM model and the Kriging
model in the hybrid surrogate model PK-HSM are ωPK-PRSM = 0.488495 and ωPK-KRG = 0.511505.

FPK-HSM(x) = 0.488495FPRSM(x) + 0.511505FKRG(x) (22)

3. Hybrid surrogate model constructed by the RBF and Kriging (RK-HSM)

According to formula 13, the weights of the RBF model and the Kriging model in the
hybrid surrogate model RK-HSM are ωRK-RBF = 0.510827 and ωRK-KRG = 0.489173.

FRK-HSM(x) = 0.510827FPRSM(x) + 0.489173FKRG(x) (23)

4. Hybrid surrogate model constructed by three sub-surrogate models (PRK-HSM)

According to formula (13), the weights of the second-order PRSM model, the RBF model,
and the Kriging model in the hybrid surrogate model PRK-HSM are ωPRK-PRSM = 0.318415,
ωPRK-RBF = 0.348172, and ωPRK-KRG = 0.333413.

FPRK-HSM(x) = 0.318415FPRSM(x) + 0.348172FRBF(x) + 0.333413FKRG(x) (24)

The accuracy indexes of four hybrid surrogate models are shown in Table 3. It can be
seen from Table 3 that the accuracy of the hybrid surrogate model RK-HSM is better than
the other three hybrid surrogate models.

The accuracy of the hybrid surrogate model is affected by the accuracy of its sub-surrogate
model. Comparing the accuracy of three sub-surrogate models and four hybrid surrogate
models, it can be seen that hybrid surrogate models are better, among which the hybrid
surrogate model RK-HSM performs best. The model accuracy indexes RMSE, R2, and RAAE
of RK-HSM are improved by 9.91%, 4.41%, and 15.60%, respectively, compared with the
sub-surrogate model PRSM. With RMSE as the overall evaluation metric, the performance of
the seven surrogate models is ranked as RK-HSM > RBF > PR-HSM > PRK-HSM > Kriging
> PK-HSM > Second-order PRSM; with R2 as the overall evaluation metric, the ranking is
similarly RK-HSM > RBF > PR-HSM > PRK-HSM > Kriging > PK-HSM > Second-order
PRSM; and, with RAAE as the overall evaluation metric, the ranking is RK-HSM > PR-HSM >
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PRK-HSM > RBF > Kriging > PK-HSM > Second-order PRSM. The accuracy metrics of the
sub-surrogate model RBF and Kriging are better than some constructed hybrid agent models,
which is related to the construction principle of the surrogate model.

Table 3. Model accuracy of four hybrid surrogate models.

Hybrid Surrogate Model RMSE R2 RAAE

PR-HSM 0.329314 0.839732 0.303630
PK-HSM 0.348637 0.820373 0.342030
RK-HSM 0.322719 0.846087 0.298155

PRK-HSM 0.330431 0.838644 0.308248

Applying the best-performing hybrid surrogate model RK-HSM in this study, the
values of the average pressure FRK-HSM on the inner side wall of the filter bag at 1 m
from the bag bottom during the pulse-jet dust-cleaning process under different parameter
combinations can be obtained, as shown in Figure 7, which can be used to study the
influence of different parameters on the pulse-jet dust-cleaning process. The parameter
conditions corresponding to the images in Figure 7 are shown in Table 4.
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Figure 7. The variation of FRK-HSM with parameters: (a) P-L-FRK-HSM; (b) P-D-FRK-HSM; (c) P-d-
FRK-HSM; (d) L-D-FRK-HSM; (e) L-d-FRK-HSM; and (f) D-d-FRK-HSM.
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Table 4. The parameter conditions corresponding to the images.

Image Sub-Image P/kPa L/m D/mm d/mm

(a)
initialization

100~400 6~10
145 16

maximum 160 20
minimum 130 8

(b)
initialization

100~400
8

130~160
16

maximum 10 20
minimum 6 8

(c)
initialization

100~400
8 145

8~20maximum 10 160
minimum 6 130

(d)
initialization 250

6~10 130~160
16

maximum 400 20
minimum 100 8

(e)
initialization 250

6~10
145

8~20maximum 400 160
minimum 100 130

(f)
initialization 250 8

130~160 8~20maximum 400 10
minimum 100 6

As can be seen from Figure 7, the output response FRK-HSM is comprehensively
affected by the multiple parameters. The change rules of the average pressure on the
inner side wall of the filter bag at 1 m from the bag bottom FRK-HSM can be roughly
understood through these images. However, as these response surfaces are interlaced,
it is difficult to describe the variation completely and accurately. In order to obtain the
optimal parameter combination which results in the maximum F, the genetic algorithm
is chosen in this paper.

4.4. Genetic Algorithm for Seeking Optimal Parameters

A genetic algorithm [38] is a bionic algorithm conceived to search for the optimal solu-
tion based on the principle of biological evolution. As a global search heuristic algorithm,
the genetic algorithm is suitable for solving complex optimization problems with strong
robustness [39]. In this paper, combining the characteristics of the genetic algorithm and
the common experience of parameter setting, the operational parameters of the genetic
algorithm are set as shown in Table 5.

Table 5. Genetic algorithm parameters.

Genetic Algorithm Parameter Set Value

Number of populations 200
Termination algebra 150

Crossover probabilities 0.8
Probability of variation 0.05

Under the initial experience setting condition (P0 = 250 kPa, L0 = 8 m, D0 = 145 mm,
and d0 = 16 mm), the simulation result of F is −2526.6148 Pa. For the seven surrogate
models constructed above, including three sub-surrogate models and four hybrid surrogate
models, the genetic algorithm is applied to seek the optimal combination of the four variable
parameters (P, L, D, and d) involved in the pulse-jet dust-cleaning process to maximize F.
The results are shown in Table 6.
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Table 6. Genetic algorithm-optimization-seeking results.

Surrogate Model Configuration
Optimized Parameter Combination Simulation

Result/Pa

Pressure
Increase/%P/kPa L/m D/mm d/mm

Sub-Surrogate
model

Second-order
PRSM 399.9669 8.2384 143.0993 8.0004 −1723.4441 31.79

RBF 225.3032 9.1380 147.1087 12.7751 −1430.5546 43.38
Kriging 267.3377 8.0878 131.7959 12.1181 −1263.5617 49.99

hybrid surrogate
model

PR-HSM 108.1891 8.6201 135.7152 14.4433 −1333.7011 47.21
PK-HSM 100.0094 8.7184 140.9819 14.5812 −1532.9513 39.33
RK-HSM 265.7430 8.0866 130.7656 12.11737 −1205.1605 52.30
PRK-HSM 100.0550 8.7151 135.9512 14.6379 −1331.2843 47.31

As can be seen from Table 6, the adoption of the genetic algorithm based on surrogate
models can increase the simulation result of average pressure F in the pulse-jet dust-
cleaning process by more than 30% compared with the result under the initial empirical
parameter condition (P0 = 250 kPa, L0 = 8 m, D0 = 145 mm, and d0 = 16 mm). In addition,
the comprehensive performance of the hybrid surrogate models is better than that of
the sub-surrogate models. Among these surrogate models, the hybrid surrogate model
RK-HSM performs more outstandingly, increasing the F by 52.30% to −1205.1605 Pa,
which significantly improves the dust-cleaning effect of the bag filter. In summary, the
hybrid surrogate model RK-HSM performs superiorly in both model accuracy and genetic
algorithm seeking, that is, the hybrid surrogate model RK-HSM is more suitable for solving
the optimization of bag filter dust-cleaning performance.

5. Conclusions

This paper proposes a hybrid surrogate model construction method based on the
second-order PRSM, the RBF, and the Kriging as sub-surrogate models. Based on dif-
ferent hybrid modes, four hybrid surrogate models are constructed, namely PR-HSM,
PK-HSM, RK-HSM, and PRK-HSM. On this basis, combined with the genetic algorithm-
parameter-seeking strategy, the hybrid surrogate model optimization methods are provided
for optimizing the pulse-jet cleaning process of industrial bag filters.

For the multi-parameter optimization of the bag filter pulse-jet cleaning process,
the accuracy indexes RMSE, R2, and RAAE of the hybrid surrogate model RK-HSM are
improved by 9.91%, 4.41%, and 15.60%, respectively, compared with the sub-surrogate
model PRSM, which greatly enhances the reliability and practicality of the surrogate
model method. What’s more, the accuracy metrics of the sub-surrogate models RBF and
Kriging are better than some constructed hybrid agent models, which is related to the
construction principle of the surrogate model. Therefore, the choice of the surrogate
model should be appropriate to the problem to be solved, rather than aiming at the
complexity of the method.

Aiming at maximizing the average pressure F on the inner side wall of the filter bag at
1 m from the bag bottom, the genetic algorithm is used to search for the optimal parameter
combination, which includes the pulse-jet pressure (P), filter bag length (L), filter bag
diameter (D), and nozzle diameter (d). The simulation results show that among the seven
surrogate models, including three sub-surrogate models and four hybrid surrogate models,
the hybrid surrogate model RK-HSM performs more prominently, increasing the F by
52.30% to −1205.1605 Pa, compared with the results under the initial empirical parameter
condition. The application of the optimization method based on the hybrid surrogate
model RK-HSM can greatly improve the dust-cleaning effect.
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Abstract: The transformer is one of the most important electrical machines in electrical systems. Its
proper operation is fundamental for the distribution and transmission of electrical energy. During its
service life, it is under continuous electrical and mechanical stresses that can produce diverse types
of damage. Among them, short-circuited turns (SCTs) in the windings are one of the main causes of
the transformer fault; therefore, their detection in an early stage can help to increase the transformer
life and reduce the maintenance costs. In this regard, this paper proposes a signal processing-based
methodology to detect early SCTs (i.e., damage of low severity) through the analysis of vibroacoustic
signals in steady state under different load conditions, i.e., no load, linear load, nonlinear load, and
both linear and nonlinear loads, where the transformer is adapted to emulate different conditions,
i.e., healthy (0 SCTs) and with damage of low severity (1 and 2 SCTs). In the signal processing stage,
the contrast index is analyzed as a fault indicator, where the Unser and Tamura definitions are tested.
For the automatic classification of the obtained indices, an artificial neural network is used. It showed
better results than the ones provided by a support vector machine. Results demonstrate that the
contrast estimation is suitable as a fault indicator for all the load conditions since 89.78% of accuracy
is obtained if the Unser definition is used.

Keywords: artificial neural networks; contrast estimation; fault diagnosis; short-circuited turns;
transformer fault; vibroacoustic signals

1. Introduction

The condition monitoring and fault diagnosis of electrical machines have become
essential tools for industrial processes since their reliability and safety can be improved [1].
Among the electric machines, the transformer can suffer various internal faults such as
winding and core deformations, broken clamping structures, short-circuit turns (SCT),
bending, and others [2]. For this machine, the winding is an essential operating component
and, at the same time, it is one of the most vulnerable components; in fact, the associated
faults to windings are nearly 40% [3], whereas in the most cases the initial damage can
lead to the complete fault of the transformer, increasing repairment costs and people risks.
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In this regard, the development and application of early fault detection methods are of
paramount importance [4,5].

In literature, different techniques to carry out the monitoring and diagnosis of trans-
former windings by analyzing different types of signals have been proposed [6–9]. How-
ever, the vibration signal analysis has proven to be an effective tool for monitoring and
diagnosing internal faults in transformers [6], since the vibrational response changes if
the winding mechanical properties are modified [7], e.g., when a fault condition appears.
Some studies measure acoustic signals instead of vibration signals [8,9]. It is observed that
acoustic signals are produced by the vibration of a source, thus, they contain the same
information about the source behavior. In this way, the vibration and acoustic signals are
interrelated and homologous [8,9].

The machinery diagnosis that employs vibroacoustic (VA) signals typically consists of
three essential steps: acquisition and preprocessing of data, feature extraction from the data,
and classification based on the extracted features. Successful methods have shown that
feature extraction is the most crucial step in machinery monitoring and diagnosis [7,10]. In
literature, several techniques extract features from VA signals in distinct domains (e.g., time,
frequency, or time-frequency) for assessing the transformer condition [11–22]. A widely em-
ployed tool to change from time-domain to frequency-domain is the Fourier Transform (FT).
The FT allows extracting frequential information related to the system condition. In [11],
they employ the FT in VA signals and estimate the total harmonic distortion (THD) to assess
the transformer healthy condition. Meanwhile, in [9], the THD, dominant frequencies, and
the ratio of frequencies from the spectrum of acoustic signals are estimated. They establish
a warning threshold that allows identifying a direct current bias state. Although the FT
presents promising results, it has some limitations. These limitations compromise the detec-
tion of changes in frequency over time, mainly due to the nonstationary nature of the signal
and its high-level noise, among others [12]. To overcome these limitations, the short-time
Fourier Transform (STFT) is introduced. This technique provides a two-dimensional repre-
sentation of the analyzed signal in time, i.e., a time-frequency representation (TFR) in the
time-frequency domain. In [13], the STFT is used to analyze a VA signal, where the changes
in frequency are associated to the anomalous behavior in the transformer. Nevertheless,
the STFT has the resolution trade-off issue, i.e., it can gain frequency resolution but, at the
same time, loss resolution in time, and vice versa, which can compromise the accuracy
of the results; in addition, if the signal presents a severe level of noise, the performance
decreases due to the spectral leakage problem, compromising the diagnosis as well [14].
Another effective way to construct a TFR is using the Wavelet transform (WT) and its
variations. The WT has better time and frequency localization, making it more effective
than STFT for some applications [15]. The work presented in [16] uses the WT to analyze
the transient state of the transformer from its vibration signals. Also, a WT-based work
called Empirical WT is used in [17], in which it is employed to build a TFR and estimate
the multiscale entropy as a fault feature. On the other hand, in [18], the Wavelet packet is
applied to detect DC bias in transformers, obtaining very effective results. Yet, the success
of a WT-based approach depends on the proper selection of both the mother wavelet and
the decomposition level [19], which is different in each application.

As mentioned above, the changing of domain (i.e., time or frequency) always requires
the application of a transformation technique, implying a computational cost. In this
regard, feature extraction in the time domain has been explored. The work presented
in [20] diagnoses a transformer under a SCT fault by employing different fractal algorithms.
They extract information from the vibration signals to detect diverse SCT fault severities.
In [21], several statistical features are extracted from the vibration signals, then, the most
representative ones are selected to diagnose the transformer under different SCT fault
severities. Also, a mathematical statistics-based method for the analysis of vibration signals
is presented in [22], where the probability distribution is used to identify the SCT fault.
Although promising results have been obtained, there are still some issues that have
not been completely addressed, e.g., damage detection of low severity (i.e., 1 or 2 SCTs)
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under different load conditions, which is of paramount importance since online condition
monitoring systems for predictive maintenance can be developed. It is worth noting that
the detection of early faults is a challenging task since the behavior of the transformer
slightly changes. The challenge increases if both the high-level noise in the VA signals and
the electrical stresses associated to the different load conditions are considered. Therefore,
the development and application of new methods are still current needs.

Recently, the contrast index used in image processing for analyzing texture [23,24] has
been used for diagnosing broken rotor bars in induction motors through the analysis of
electric current signals [25], showing that it can provide information about variations into
a signal waveform, which is congruent as it detects variations in color and brightness in
an image. In this regard, as the main contribution, this work explores the application of
the contrast index to diagnose early SCT faults, where a complete methodology (i.e., signal
processing and automatic pattern recognition) is proposed. Also, unlike other works, the
proposal is assessed when the transformer is under different load conditions, increasing its
applicability in real operating scenarios; besides, it is worth noting that the detection of
early SCT faults is not an easy task due to imperceptible changes in the transformer and
the high noise into the VA signals. In order to develop and validate the proposed method,
the VA signals from a transformer capable to emulate different early SCT severities, i.e., 0,
1, and 2 SCTs, where 0 SCTs represents the healthy condition, are firstly acquired. At this
stage, four different load conditions, i.e., (1) no load, (2) linear load, (3) nonlinear load, and
(4) both linear and nonlinear loads, are considered. In general, these loads represent real
life operating conditions [5]. Once the signals have been acquired, two contrast definitions,
i.e., Unser and Tamura, are computed and compared in order to observe which one provides
the best sensibility to the fault. Finally, the different values of contrast for the different
SCT conditions are processed by an artificial neural network (ANN) for automatic pattern
recognition, where the performance of a support vector machine (SVM) is also compared.
Results demonstrate the effectiveness of the proposal. The rest of the paper is organized as
follows. Section 2 presents the theoretical background for transformer vibrations, contrast
index, and ANNs. The proposed methodology is described in Section 3. Section 4 shows
the experimental setup and the obtained results. A discussion of works is presented in
Section 5. Finally, Section 6 draws the obtained conclusions.

2. Theoretical Background

2.1. Transformer Vibration

Transformer vibration is from two principal sources: windings and core. Although the
vibration components of each source are distinct, the winding component is smaller than
the component from the core [9].

The winding vibration is principally caused by the electric force, which is generated
by the current that circulates through the windings and its interaction with the magnetic
leakage flux [26]. The forces created by winding vibration have two components: axial and
radial, where the force is proportional to the square of the current as shown in Equation (1)
and its fundamental frequency is twice the fundamental frequency of the current signal [27].

Fwinding ∝ I2 (1)

On the other hand, the main cause of core vibration is the magnetostriction phe-
nomenon. This phenomenon changes the shape of a ferromagnetic material when it is
under the influence of a magnetic field. Then, in Equation (2), the force magnitude from
core vibration is proportional to the square of the voltage [28]. The fundamental frequency
due to the magnetostriction is twice the fundamental frequency of the voltage signal, but
high frequency harmonics can appear due to the nonlinear magnetostriction behavior. Also,
the force direction is perpendicular to the core plane [29].

Fcore ∝ V2 (2)
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As mentioned above, the vibration signals and acoustic signals are homologous. In
this regard, any change in the VA signal is directly related to the transformer performance.
Therefore, the characterization of these changes through time-domain indicators (e.g., the
contrast index) can help to determine the transformer condition.

2.2. Contrast

The contrast index is a textural feature that measures the variations present in an
image [30]. In a simple way, it is the difference between a pair of black and white dots. The
contrast value can be maximum when two pair of dots have opposite values in the gray
scale, e.g., 0 and 255, and be minimum when their values are similar. Although this index
is intended for images, it can also be applied to 1D signals. Two simple ways to estimate
the contrast are presented by Unser [31] and Tamura et al. [32].

2.2.1. Unser Contrast

Unser employs the sum and difference of histograms to estimate the contrast [31]. In
order to do so, firstly, the variation between two points separated by d samples in a signal
L(n) is computed as follows:

Dn,d = L(n)− L(n + d) (3)

where n∈{0, 1, . . . , N − 1}. With this value, the histogram of differences is computed as:

hd(j) = card
{

n ∈ N, Dn,d = j
}

(4)

where j = −Ng + 1,−Ng + 2, . . . , Ng − 2, Ng − 1 for at least Ng levels of gray. card{ } refers
to the number of elements of a set.

The normalized difference histogram is then given by:

PD =
hd(j)

T
(5)

where T is the total number of counts. It is computed by:

T = ∑
j

h(j) (6)

Finally, the contrast can be computed as:

C = ∑
j

j2PD(j) (7)

2.2.2. Tamura Contrast

Tamura et al. propose the contrast in function of [32]:

1. Dynamic range of gray levels;
2. Polarization of the distribution of black and white on the histogram of gray levels or

the ratio between the black and white areas.

In this regard, the kurtosis provides the polarization factor as:

α4 =
μ4

σ4 (8)

where μ4 is the fourth moment around the mean and σ2 is the variance that represents the
distribution of the gray levels. Therefore, the Tamura contrast is defined as:

C =
σ

(α4)
n (9)
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where n is a positive number, which is experimentally defined as n = 1/4.

2.3. Artificial Neural Networks

ANNs are a computational structure designed to emulate a neurological structure of a
human brain, which are constructed by individual elements with similar behavior to the
biologic neuron also called neurons, having the capability to learn and solve problems [33].
One of the most employed ANN architectures is the feed-forward neural network due to
its reduced computational load and its simplicity to be used as a classifier [33]. Figure 1a
shows the ANN architecture. This architecture includes an input layer, hidden layers, and
an output layer. The information moves from the input layer the output layer. In each layer,
it can have a single or multiple neurons. In Equation (10), the mathematical function of
a neuron is shown, whereas its structure appears in Figure 1b. The neuron consists of a
summation of multiplications between the inputs xi and weights wi, which emulates the
synapsis process, and a bias b. The result of the summation is evaluated by a function called
the activation function f (·), which is a nonlinear function that provides the capability of
modeling nonlinear relationships. Finally, a training data stage is carried out to characterize
the ANN weights, i.e., a set of inputs and the desired outputs are presented to the ANN.
Consequently, comparing the desired outputs and the computed outputs, the error can be
estimated. Employing a training rule, the weights can be adjusted to minimize the error in
a subsequent iteration. This process is repeated until the error is acceptable.

O1 = f

(
l

∑
i=1

wixi + b

)
(10)

 

Figure 1. ANN architecture: (a) ANN with hidden layers and (b) a single neuron.

3. Proposed Methodology

Figure 2 shows the flowchart for the proposed methodology. In general, as depicted
by the red dashed rectangle, it is a three-step process: (1) signal processing which consists
of the signal segmentation and the gray-scale normalization, (2) estimation of contrast
as fault index, and (3) design and validation of a classification algorithm. To test the
proposal, VA signals from a transformer under early SCT fault conditions and different
load conditions are analyzed. In order to do so, firstly, VA signals are acquired from a
single-phase transformer which can emulate different early SCT fault conditions: 0, 1, and
2 SCTs, where 0 SCTs is the healthy condition. To select the SCT condition, a conductor cable
is connected to different taps with a resistor R. This resistor helps to limit the short-circuit
current. For carrying out the transformer energization and connecting/disconnecting the
different loads, three solid-state relays are used (see the switches in Figure 2). Once the
VA signals are acquired, they are segmented, taking 1 s of the signal in each different load
case: (1) no load, (2) linear load, (3) linear and nonlinear loads, and (4) nonlinear load.
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This process is repeated for all the SCT conditions previously mentioned. Then, as part of
the proposed methodology, the VA signals are normalized into a gray-scale, i.e., the VA
signal takes values from 0 to 255. For each new signal, two different contrast indicators,
i.e., Tamura and Unser, are computed to obtain the best fault indicator. Finally, in the
automatic classification step, two different algorithms, i.e., ANN and SVM, are evaluated to
detect and classify the SCT transformer condition under different load conditions. Results
demonstrates that the Unser contrast and the ANN algorithm present the best results for
detection and classification of SCT fault conditions regardless the load type.

 

Figure 2. Flowchart for the proposed methodology.

4. Experimental Setup and Results

This section shows the experimental setup and the obtained results

4.1. Experimental Setup

The experimental setup for the proposed work is shown in Figure 3. For the tests, a
single-phase transformer of 1.5 kVA operated to 220 V with a relation 2:1 is employed. The
transformer is modified to emulate early SCT fault conditions in the secondary winding.
In order to do so, the transformer winding is unwound and, then, various taps are pulled
out while rewinding. To protect the winding during the SCT fault, a resistor, R, of 2 ohms
is used.

For the transformer energization and the connection/disconnection of the linear
and nonlinear loads, three solid-state relays, model SAP4050D, are used. The linear and
nonlinear loads represent approximately the 93% of the total load of the transformer, i.e.,
900 W and 500 W, respectively. The linear load is a resistive array of 15 ohms and the
nonlinear load is the combination of a resistive array of 24 ohms and a rectifier. The rectifier
is composed by an array of diodes of 800 V and 8 A with a capacitor filter of 210 μF and
450 V. To measure the VA signals from the transformer and provide a low-cost, easy-to-use,
and commercial solution, a contact microphone piezoelectric pickup (TP-6 model from
RECKLESS) is used. Its operating principle is based on a piezoelectric diaphragm that
measures the vibrations (i.e., acceleration in m/s2) from the contact zone with 6.4 kHz of
maximum bandwidth which is good enough to capture the frequency range of interest,
i.e., 1 kHz. It is located at the top center of the transformer core; in this location, the core
and winding vibrations as well as the generated noise can be received in a similar way
from a geometrical point of view. The data are acquired by using a data acquisition system
(DAS) based on the National Instruments NI-USB-6211 board which is configured with
a sampling frequency of 7812.5 samples/s. For each condition, i.e., 0, 1, and 2 SCTs, and
the different combinations of load, 20 tests are carried out. All the data acquisition and
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their processing are on MATLAB software by using a personal computer (PC), featuring
Windows 10, a processor 17-4510U at 2.6 GHz, and 8 GB of RAM.

Figure 4 shows an example of the acquired signals. The acquisition time is of 10 s;
thus, the transient and steady states can be captured. Current signals (bottom images) show
clearly the changes associated to load condition. There are four load conditions: (1) no load
(S0), (2) linear load (S1), (3) both linear and nonlinear loads (S2), and (4) nonlinear load
(S4), where the activation/deactivation times are 2, 4, 6, and 8 s, respectively. From these
time-windows, sections of 1 s are selected. This time-window contains enough information
about the steady state and avoids overlaps with other load scenarios (see the red dashed
rectangles in Figure 4). Once the signals are segmented, the data processing (i.e., the
contrast index estimation and the classification based on a pattern recognition algorithm) is
carried out.

 

Figure 3. Experimental setup.

 

Figure 4. Signals acquired from the transformer: VA signals for: (a) 0 SCTs, (b) 1 SCTs, and (c) 2 SCTs.
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4.2. Results
4.2.1. Gray-Scale Normalization

For the contrast estimation, the signals have to be normalized to a grayscale, i.e., to
values from 0 to 255. Through this linear conversion, the minimum value of the VA signal
is mapped to zero, whereas the maximum value is mapped to 255. Also, rounding down
is carried out only to consider integer numbers (see Figure 5e–h). In general, this change
in the VA signal values does not modify its behavior but it helps to maintain the same
reference level, minimizing and generalizing the impact of different load levels.

 

Figure 5. Example of a VA acquired signal and its gray-scale normalization: (a) section S0,
(b) section S1, (c) section S2, (d) section S3, and gray-scale normalization for sections (e) S0, (f) S1,
(g) S2, and (h) S3.
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4.2.2. Unser and Tamura Contrast Estimations

Two contrast definitions, i.e., Unser and Tamura, are used with the purpose of deter-
mining which approach is the most adequate to characterize variations associated to an
early SCT fault condition in VA signals from a transformer.

The Unser [31] definition uses the normalized differences histograms, i.e., Equation (7),
to compute the contrast. In order to do so, a distance of separation between two data points
from the VA signal, i.e., d, has to be selected. After different trial-and-error tests, a value of
d = 15 is selected since it presented the best results as will be discussed at the end of this
section. Table 1 and Figure 6 show the obtained results. Table 1 presents the mean (μ) and
the standard deviation (σ) for the values of contrast by including the three SCT conditions
(i.e., 0, 1, and 2 SCTs), the four load conditions (i.e., S0, S1, S2, and S3), and the 20 tests
carried out for each condition. From the results (Table 1 or Figure 6a), it can be observed
that the mean of the contrast value does not exhibit considerable variations for the different
load combinations, i.e., the load does not influence the contrast index estimation.

In a similar way, the Tamura contrast index is estimated for the SCT fault conditions
and their different load conditions, but with the difference that the Tamura contrast is a
statistical-based calculation, i.e., Equation (9). As can be observed in both Table 1 and
Figure 6, this index also presents a similar behavior for the different load combinations.
Although the estimated contrast values for both Unser and Tamura indexes are not on the
same scale, both graphs are quite similar, which reaffirms the low influence of the load in
the contrast estimation.

Table 1. Mean (μ) and standard deviation (σ) for the contrast values, different load combinations,
and different SCT fault conditions.

Unser Contrast, d = 15 Tamura Contrast

S0 S1 S2 S3 S0 S1 S2 S3

0 SCTs
μ 3862.5413 3426.7146 3597.4812 3511.6746 38.1231 35.4044 36.5590 36.0443
σ 683.7739 690.3487 652.7069 848.0176 4.6503 4.6849 4.4967 5.4222

1 SCTs
μ 6732.2393 6363.5508 6543.8623 6294.7972 53.8102 51.9030 53.0096 51.8991
σ 1441.4742 1220.7590 1301.9952 1195.6256 7.5780 6.6916 6.9990 6.5757

2 SCTs
μ 8699.9884 8304.6975 8529.3658 8147.1655 62.6589 60.8933 62.1086 60.5648
σ 1084.0015 1022.1635 1049.8129 1016.2967 4.3483 4.1768 4.2930 4.2054

 

Figure 6. Mean (μ) of the contrast values for different loads: (a) Unser contrast with d = 15 and
(b) Tamura contrast.
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As the values of the Unser contrast does not change with the load, the values for
each section (load combinations: S0, S1, S2, and S3) can produce a bigger cluster of
SCT conditions.

Figure 7 shows the distributions of the clusters for each SCT condition. From this
figure, it is also observed that the contrast indices are sensitive to the SCT severity since
their value increases when the SCT fault severity increases. In Table 2, the values of the
mean (μ) and the deviation standard (σ) for these clusters are shown. All these results
characterize in a numerical way the behavior of each SCT condition. It is worth noting that
some conventional time features (e.g., peak factor, kurtosis, standard deviation, among
others) have also been analyzed. However, although some of them present a certain degree
of separation, their clusters are overlapped due to their more significant variances which
are also affected by the load condition, resulting in lower classification accuracy.

 

Figure 7. Data distributions of the contrast values for the VA signals with different SCT fault
conditions: (a) Unser contrast and (b) Tamura contrast.

Table 2. Mean (μ) and standard deviation (σ) for the different contrast distributions of the different
SCT fault conditions.

Unser Contrast, d = 15 Tamura Contrast

0 SCTs 1 SCTs 2 SCTs 0 SCTs 1 SCTs 2 SCTs
μ 3599.6029 6483.6124 8420.3043 36.5327 52.6555 61.5564
σ 740.9540 130.6383 1064.5340 4.9304 7.0183 4.3420

Once the concept of grouping the contrast values for different load conditions (i.e., the
contrast index does not change with the load as was shown in Figure 7) is described,
the results for different values of d in the Unser contrast definition are shown for clarity
purposes (see Figure 8).

In Figure 8, the clusters for different values of d are shown. For d = 5, the clusters do
not show separation among them. The separation can be observed from d = 10, where the
clusters maintain a similar separation but in a different scale (y-axis). Despite this fact, as
mentioned above, the most suitable value for d is 15. This is not merely for the separation
observed between the clusters but also for the accuracy obtained when the classification
algorithm is applied.
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Figure 8. Unser contrast clusters for different values of d: (a) d = 5, (b) d = 10, (c) d = 15; (d) d = 20,
(e) d = 25, (f) d = 30, (g) d = 35, and (h) d = 40.

4.2.3. Classification Results

As shown in Figure 7, the contrast index is sensitive to the fault; however, there
are some overlaps between the different conditions, which can produce uncertainty and,
consequently, misclassification. In order to automate the diagnosis process and improve
the classification accuracy, a pattern recognition algorithm is proposed. In this regard,
two different classifiers, i.e., ANN and SVM, are tested to detect and classify the early
SCT fault. These classifiers are applied to both contrast definitions: Unser and Tamura.
The application of both classifiers helps to compare their performance, selecting the best
method and obtaining the highest classification accuracy. To obtain the parameters of the
classifiers that achieve more accurate results, an exhaustive analysis in a trial-and-error
process is carried out, i.e., the algorithms with different parameters are applied and the
parameters with the best results are selected. In addition, for both classifiers, the training
and validation processes are carried out using the k-fold validation, where k is set to 5 due
to the number of samples. Figure 9 shows the accuracy percentage for each k-fold iteration
and Table 3 shows their mean (μ).

 

Figure 9. Accuracy results for the ANN and SVM methods during the k-fold validation.
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Table 3. Accuracy percentage mean (μ) for the ANN and SVM classifiers by considering different
contrast estimation methods.

Unser with d = 15 Tamura

ANN (%) 89.78 86.38
SVM (%) 86.1 85.96

As can be seen in Table 3, the ANN for Unser contrast has the best performance
among the classifiers, i.e., 89.78%. The parameters that provide the accuracy previously
mentioned in the ANN configuration are: one neuron as input, two hidden layers with 5
and 25 neurons, respectively, and three neurons in the output layer. The activation functions
are log-sigmoid for all the layers. The difference with the ANN used for the Tamura contrast
is that in its first hidden layer there are ten neurons, i.e., the hidden layers are of 10 and
25 neurons. On the other hand, when a SVM classifier is employed, the parameters with
the most significant influence on the classification accuracy are the kernel scale, δ, and the
penalty function, C, [34]. Consequently, the resulting SVM parameters (δ, C) for the Unser
contrast are 0.03 and 25, respectively. The parameter d for the Unser contrast definition also
changes for the SVM, taking the value of 25. For the Tamura contrast, the SVM parameters
(δ, C) are 0.4 and 35, respectively.

Table 4 shows the confusion matrix for the k-fold validation when k = 1 (see Figure 9),
in which 91.7% of effectiveness is obtained. It is worth noting that 16 tests, i.e., 20%, from
the 80 available tests are used for the testing. In these results, the healthy condition is
clearly identified; however, the 1 and 2 SCTs conditions present two errors. These values
represent for the healthy condition (0 SCTs) a recall and a specificity of 1, which is a perfect
score to diagnose the healthy condition. Despite these results, the effectiveness that is
considered corresponds to the average obtained during the k-fold validation, i.e., 89.78%.

Table 4. Confusion matrix for SCTs classification.

SCTs 0 1 2

0 16 0 0
1 0 14 2
2 0 2 14

Accuracy 100% 87.5% 87.5% Average = 91.7%

5. Discussion

After designing and validating the proposal by using experimental data, two major
advantages are observed: (i) its sensitivity to early SCT faults (i.e., it can react to little
changes in the vibration patterns) and (ii) its robustness to the load changes (i.e., the
contrast index barely changes when different load conditions appear).

Table 5 shows a comparison between the proposal and other works reported in the
literature. Although in [28] an early fault condition is presented, it does not report a pattern
recognition algorithm for automatic diagnosis unlike the proposed work that implements a
neural network with 89.78% of effectiveness. In [20,35], different severity levels of SCT fault
are analyzed; however, the impact of the load in the transformer is not taken into account,
which compromises and limits their practical application. On the contrary, the proposal
is tested under four load conditions: (i) no load, (ii) linear load, (iii) nonlinear load, and
(iv) both linear and nonlinear loads. On the other hand, the works presented in [17,36] also
demonstrate that vibration signals can provide information to detect faults in windings;
however, the analysis of different fault severities and their automatic detection are not
presented. Finally, from the works presented in Table 5, the proposal can be considered as
the lowest complex method since the contrast index in the time domain is only required to
process the VA signal.

Although promising results have been obtained, some opportunities of research still
remain. For instance, in this work, the tests are carried out in a controlled environment;
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therefore, real operating conditions such as load intermittences, power quality issues,
vibrations generated by other faults, and vibrations from external sources, among others,
can negatively affect the performance of the proposal. In this regard, the obtained results
can be considered as preliminary.

Table 5. Comparison of the proposed work and other methods.

Work Method Signal
Fault Detected
in Windings

Early
Detection/Severities

(SCTs)

Load
Conditions

Automatic
Classification

Proposed
Work Contrast index Vibrations SCTs Yes

1, 2 4 ANN

[17]

Empirical
Wavelet

transform, HT,
and entropies

Vibrations Winding
deformation No - -

[20]

Fractal
algorithms,

ANOVA, Data
mining

Vibrations SCTs No
5, 10, . . . , 35 No load

Decision trees,
Naïve Bayes,

k-nearest
neighbor

[28]
FFT and total

harmonic
distortion

Vibrations SCTs Yes
Initiation 1 -

[35]

Complete
ensemble

empirical mode
decomposition,

Shannon
entropy, RMS,

and energy
index

Current SCTs No
5, 10, . . . , 40 - -

[36]

Short time
Fourier

transform and
RMS

Vibrations Winding
loosening No 1 -

- Not mentioned.

6. Conclusions

This paper presents a methodology for detecting and classifying the transformer
condition under different early SCT fault conditions (i.e., 1 and 2 SCTs) from its VA signals.
To develop, validate, and test the methodology, a transformer capable of emulating the
conditions previously mentioned is used, where different load conditions (no load, linear
load, nonlinear load, and both loads) are considered to represent a more realistic scenario
and open the possibility to offer an online fault detection method.

In this regard, the main findings are:

• The proposed method can diagnose early SCT fault conditions, i.e., 0, 1, and 2 SCTs. De-
tection of early SCT faults helps to increase the transformer life, reduce the breakdown
maintenance, and avoid possible catastrophic failures.

• One image processing feature used for the texture analysis, i.e., the contrast, allows
characterizing the variations in a VA signal to detect early SCTs in a transformer.

• Two contrast definitions, i.e., Unser and Tamura, are tested, where the Unser definition
with d = 15 demonstrated to provide the best results.

• The contrast measure is unaffected by the different load combinations connected to
the transformer, when early SCTs are present.

• The classification effectiveness from both the Unser contrast definition and the ANN
as classifier (i.e., 89.78%) is higher than the one obtained by the SVM (i.e., 86.1%). The
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Tamura contrast definition with an ANN obtained 86.38% of effectiveness and with a
SVM 85.96% of effectiveness.

Forthcoming work will focus on employing the methodology to diagnose three-phase
transformers under different operation conditions, e.g., under unbalance and harmonic
content in the power supply, including different types of loads and other faults such as
core faults, partial discharges, and winding loosening, among others. In addition, the
combination of other signal preprocessing techniques, statistical time features, and pattern
recognition algorithms, as well as the fusion of sensors, i.e., the information provided by
different types of signals, e.g., current and voltage signals, to improve the fault detection
and classification accuracy will be also explored.
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Abstract: In this article, the stator winding circulating current inside parallel branches (CCPB) of
a doubly fed induction generator (DFIG) is comprehensively investigated. Different from other
studies, this study not only focuses on the CCPB in radial static air-gap eccentricity (RSAGE) and
radial dynamic air-gap eccentricity (RDAGE) but also takes the radial hybrid air-gap eccentricity
(RHAGE) cases into account. Firstly, the detailed expressions of CCPB in normal and radial air-gap
eccentricity (RAGE) are obtained. Then, the finite element analysis (FEA) and experimental studies
are performed on a four-pole DFIG with a rated speed of 1470 rpm in order to verify the theoretical
analysis. It is shown that the RAGE increases the amplitude of the CCPB and brings new frequency
components to the CCPB. For RSAGE, the CCPB brings new frequency components, which are f 1

(50) and fμ (540/640). For RDAGE, the newly generated frequency components are f 1 ± f r (25/75),
f u ± fr (515/565/615/665, and k = ±1). For RHAGE, the newly added frequency components in
RSAGE and RDAGE are present at the same time. In addition, the more the RAGE degree is, the
larger the amplitude of characteristic frequency components will be. The results obtained in this
paper can be used as a supplementary criterion for diagnosing DFIG eccentric faults.

Keywords: doubly fed induction generator (DFIG); radial static air-gap eccentricity (RSAGE); radial
dynamic air-gap eccentricity (RDAGE); radial hybrid air-gap eccentricity (RHAGE); circulating
current inside parallel branches (CCPB)

1. Introduction

In contrast to traditional fossil energy sources such as oil and coal, wind energy is a
new energy source, which is renewable and clean [1]. Against the backdrop of the double-
carbon goal, the cumulative installed capacity of China’s wind generators has maintained
a steady growth trend. At present, the onshore wind generators are mainly double-fed
induction generators (DFIGs). However, due to their complex structure, high assembly
requirements, and severe operating environment, eccentricity failure often occurs in DFIGs.
Therefore, it is essential to study the operating characteristics of DFIG under eccentric
faults [2,3].

Radial air-gap eccentricity (RAGE) is a common machinery failure, which is produced
by various factors [4,5]. When eccentric failures occur, additional induction current compo-
nents are generated in the generator stator winding due to variations in the air-gap length,
resulting in a decrease in the quality of the output electrical energy of the generator. In
addition, RAGE will cause generator vibration to intensify, resulting in serious production
liability accidents, such as rotor shaft bending, a shortened generator life, and even burnout
of the generator [6,7]. Based on the above reasons, it is necessary to study RAGE faults,
which will benefit the early diagnosis and treatment of faults.
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During the actual generator operation, the eccentricity of DFIGs can be divided into
three categories, which are radial static air-gap eccentricity (RSAGE), radial dynamic air-
gap eccentricity (RDAGE), and radial hybrid air-gap eccentricity (RHAGE), respectively.
Particularly, RHAGE is the composite of RSAGE and RDAGE [8].

Currently, many scholars have researched the characteristics of the eccentricity of
the generator. Y. Da used the search coil to detect the magnetic field characteristics of the
electrical machinery after RSAGE [9]. S. Attestog studied the magnetic field characteristics
after an RDAGE failure [10]. D.G. Dorrell detected eccentric faults in wound rotor induction
motors and suppressed unbalanced magnetic pull by using pole-specific search coils and
auxiliary windings [11]. Based on the work of the predecessors, several studies [6,12,13]
used non-embedded search coils to detect various types of air-gap eccentric faults. In
addition, the use of vibration characteristics to detect the eccentric failure of the generator
is also favored by researchers. Wan Shu-ting studied the vibration characteristics of stator
and rotor under the eccentricity fault of the turbine generator [14]. D. Zarko studied the
unbalanced magnetic force of the rotor under the eccentricity of the generator and measured
the axis trajectory of the rotor [15]. Y.-L. He studied the vibration characteristics of the rotor
under 3D eccentricity [16]. The winding vibration characteristics of the generator under
eccentric failure were also addressed [17].

Another widely used approach is to detect the changes in voltage/current amplitude
and frequency to determine whether an eccentric failure occurs. R.N. Andriamalala de-
tected eccentricity faults by detecting fault signals in the stator voltage [18]. J. Faiz used
the frequency spectrum detection of line currents as an indicator for eccentricity fault
diagnosis [19]. C. Bruzzese used a split-phase current to detect eccentricity faults in syn-
chronous machines [20] and DFIGs [21]. Xiang Gong proposed a pulse detection algorithm
to detect eccentricity faults by identifying excitations from the spectrum of simultaneously
sampled stator current signals [22]. A.A. Salah used the changes in the magnitude of stator
current components to detect eccentricity faults [23]. E. Hamatwi detected short-circuit and
eccentricity faults in DFIGs by collecting and analyzing real-time stator current signals [24].

The stator winding circulating current inside parallel branches (CCPB) of genera-
tors under faults is also addressed by researchers. As early as 1999, A. Foggia mea-
sured the CCPB of synchronous generators under eccentricity and short-circuit faults [25].
P. Rodriguez pointed out the advantages of using the CCPB of a synchronous motor stator
as an early indicator of motor faults (RSAGE and RDAGE) [26]. Wan Shuting studied stator
CCPB characteristics under turbo-generator eccentricity [27]. M.M. Mafruddin studied
CCPB characteristics under RSAGE failure of synchronous generators [28]. Xu studied the
influence of the degree and location of short circuits between the turns of the generator
rotor on the CCPB [29].

The above references provide a valuable research idea for this paper. Table 1 is used to
show the previous research work more clearly. From Table 1, it can be seen that few studies
have investigated the CCPB characteristics of DFIGs under RHAGE failure. In fact, the
occurrence of eccentricity faults can have a significant impact on the stator CCPB. Studying
CCPB changes in DFIG can help determine the type and extent of eccentricity.

Table 1. Overview of previous work in the literature.

Reference Fault Type Detection Object Research Method

[21] eccentricity DFIG split-phase current
[24] eccentricity and short circuit DFIG stator current
[25] eccentricity and short circuit synchronous generator CCPB
[26] RSAGE and RDAGE synchronous motor CCPB
[27] RHAGE turbo-generator CCPB
[28] RSAGE synchronous generator CCPB
[29] short circuit synchronous generator CCPB

This work RHAGE DFIG CCPB
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In this paper, we present a comprehensive analysis of the characteristic of CCPB in
RSAGE, RDAGE, and RHAGE faults. The structure of this paper is as follows: In Section 2,
we mainly describe the theoretical derivation process, while in Section 3, the finite element
model calculations and experimental verification are carried out. Finally, Section 4 is the
summary of this paper.

2. Theoretical Analysis

Theoretical Model

Magnetic flux density (MFD) can be obtained by multiplying the magnetomotive force
(MMF) by the permeance per unit area (PPUA) as follows:

b(αm, t) = f (αm, t)Λ(αm, t) (1)

where b is MFD, f is MMF, and Λ is PPUA.
The air-gap MMF in the spatial angle αm can be written as

f (αm, t) = fp(αm, t) + ∑
v

fv(αm, t) + ∑
μ

fμ(αm, t) (2)

where fp (αm, t), fv (αm, t), and fμ (αm, t) are the main wave composite MMF, the stator
winding harmonic MMF, and the rotor winding harmonic MMF, respectively. In addition,
p is the number of pole pairs of the main wave composite MMF. v and μ are the number of
pole pairs of the stator and rotor winding tooth harmonic MMF, respectively.

The specific expression of each part of the MMF is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fp(αm, t) = F0 cos(pαm − ω1t − ϕp)
fv(αm, t) = Fv cos(vαm − ω1t − ϕv)
fμ(αm, t) = Fμ cos(μαm − ωμt − ϕμ)
v = ±k1Z1 + p, k1 = 1, 2 · · ·
μ = ±k2Z2 + p, k2 = 1, 2 · · ·

(3)

where F0, Fv, and Fμ are the amplitude of the main wave composite MMF, the stator
winding harmonic MMF, and the rotor winding harmonic MMF, respectively. ϕp is the
initial phase angle of the main wave composite MMF. ϕv and ϕμ are the initial phase angles
of the stator v and rotor μ subharmonic MMFs. ω1 is the angular frequency of the main
wave synthesized MMF, and ωμ is the angular frequency of the rotor μ order harmonic
MMF relative to the stator. Z1 is the number of stator slots, and Z2 is the number of
rotor slots.

The ωμ can be expressed as

ωμ = ω1[1 + k2Z2(1 − s)/p] (4)

where s is the slip ratio of the DFIG.
The air-gap length affects the magnetic PPUA, which in turn affects the air-gap MFD.

Firstly, a geometric model of the generator stator and rotor motion during eccentricity is
established, and the expression of air-gap length is obtained, as indicated in Figure 1. Given
that the stator and rotor cross-sectional edges are approximately ideal circles, and the shape
and position of the stator and rotor do not alter in the axial direction, there is no axial
eccentricity. According to the rotor movement characteristics, the eccentricity faults are
divided into RSAGE, RDAGE, and RHAGE, as shown in Figure 1. In this article, RSAGE is
the situation where O′ (O”) deviates from O, RDAGE is the case where O′ deviates from O
(O”), and the numerals behind are offset distances (the unit is millimeter). RHAGE is the
coexistence of both RSAGE and RDAGE (RHAGE0.1 = RSAGE0.1 + RDAGE0.1). Details
are as follows:
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(1) O, O′, and O” coincide when there is no eccentricity;
(2) In RSAGE, O′ coincides with O” but not with O;
(3) In RDAGE, O and O” coincide but not with O′;
(4) In RHAGE, O, O′, and O” do not coincide.

Figure 1. Air-gap under the generator is RAGE.

O, O′, and O” in different cases are shown in Figure 2.

Figure 2. Air-gap of generator: (a) normal; (b) RSAGE; (c) RDAGE; (d) RHAGE.

PPUA should depend on the radial air-gap length, which is affected by RAGE. Ac-
cording to Figure 1, the radial air-gap length can be written as

g(am, t) =

⎧⎪⎪⎨⎪⎪⎩
g0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·normal
g0(1 − δs cos αm) · · · · · · · · · · · · · · · · · · · ·RSAGE
g0[1 − δd cos(ωrt − αm)] · · · · · · · · · · · · · ·RDAGE
g0[1 − δs cos αm − δd cos(ωrt − αm)] · · · ·RHAGE

(5)

where g0 is the air-gap length in normal conditions, and αm is the circumferential angle
of the air gap. δs and δd are the values of static eccentricity and dynamic eccentricity,
respectively. ωr is the rotational frequency of the rotor under RDAGE.

Then, based on Equation (5), PPUA can be obtained as

Λ(am, t) =
μ0

g(am, t)
≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·normal

(Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2)(1 + δs cos αm + δ2
s cos2 αm) · · · · · · · ·RSAGE

(Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2)[1 + δd cos(ωrt − αm)] · · · · · · · · · · · · · RDAGE

(Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2)[1 + δs cos αm + δd cos(ωrt − αm)] · · · RHAGE

(6)

where Λ0 is the constant part of the air-gap permeance. λk1 is the harmonic permeance
caused when the stator is slotted, and the rotor surface is smooth. λk2 is the harmonic
permeance caused when the rotor is slotted, and the stator surface is smooth. λk1 λk2 is
the harmonic permeance caused by a simultaneous slotting interaction of the stator and
the rotor.
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MFD can be obtained by feeding Equations (3) and (6) into Equation (1) as follows:

B(αm , t) = f (αm , t)Λ(αm , t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0Λ0 cos
(

pαm − ω1 t − ϕp
)
+ ∑

v
FvΛ0 cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ Λ0 cos

(
μαm − ωμ t − ϕμ

)
+ ∑

k1

F0Λ0λk1
2 cos

(
vαm − ω1 t − ϕv

)
+∑

k2

F0Λ0λk2
2 cos

(
μαm − ωμ t − ϕμ

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·normal

F0Λ0 cos
(

pαm − ω1 t − ϕp
)
+ ∑

v
FvΛ0 cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ Λ0 cos

(
μαm − ωμ t − ϕμ

)
+ ∑

k1

F0Λ0λk1
2 cos

(
vαm − ω1 t − ϕv

)
+∑

k2

F0Λ0λk2
2 cos

(
μαm − ωμ t − ϕμ

)
+

F0Λ0δs
2 cos

[
(p ± 1)αm − ω1 t − ϕp

]
+ ∑

v
FvΛ0δs

2 cos
[
(v ± 1)αm − ω1 t − ϕv

]
+∑

μ

FμΛ0δs
2 cos

[
(μ ± 1)αm − ωμ t − ϕμ

]
+ ∑

k1

F0Λ0λk1
δs

2 cos
[
(v ± 1)αm − ω1 t − ϕv

]
+ ∑

k2

F0Λ0λk2
δs

2 cos
[
(μ ± 1)αm − ωμ t − ϕμ

]
· · · · · · · · · · · · · · · · · · · · · ·RSAGE

F0Λ0 cos
(

pαm − ω1 t − ϕp
)
+ ∑

v
FvΛ0 cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ Λ0 cos

(
μαm − ωμ t − ϕμ

)
+ ∑

k1

F0Λ0λk1
2 cos

(
vαm − ω1 t − ϕv

)
+∑

k2

F0Λ0λk2
2 cos

(
μαm − ωμ t − ϕμ

)
+

F0Λ0δd
2 cos

[
(p ± 1)αm − (ω1 ± ωr )t − ϕp

]
+ ∑

v
FvΛ0δd

2 cos
[
(v ± 1)αm − (ω1 ± ωr )t − ϕv

]
+∑

μ

FμΛ0δd
2 cos

[
(μ ± 1)αm − (ωμ ± ωr )t − ϕμ

]
+ ∑

k1

F0Λ0λk1
δd

2 cos
[
(v ± 1)αm − (ω1 ± ωr )t − ϕv

]
+ ∑

k2

F0Λ0λk2
δd

2 cos
[
(μ ± 1)αm − (ωμ ± ωr )t − ϕμ

]
· · · RDAGE

F0Λ0 cos
(

pαm − ω1 t − ϕp
)
+ ∑

v
FvΛ0 cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ Λ0 cos

(
μαm − ωμ t − ϕμ

)
+ ∑

k1

F0Λ0λk1
2 cos

(
vαm − ω1 t − ϕv

)
+∑

k2

F0Λ0λk2
2 cos

(
μαm − ωμ t − ϕμ

)
+

F0Λ0δs
2 cos

[
(p ± 1)αm − ω1 t − ϕp

]
+ ∑

v
FvΛ0δs

2 cos
[
(v ± 1)αm − ω1 t − ϕv

]
+

∑
μ

FμΛ0δs
2 cos

[
(μ ± 1)αm − ωμ t − ϕμ

]
+ ∑

k1

F0Λ0λk1
δs

2 cos
[
(v ± 1)αm − ω1 t − ϕv

]
+ ∑

k2

F0Λ0λk2
δs

2 cos
[
(μ ± 1)αm − ωμ t − ϕμ

]
+

F0Λ0δd
2 cos

[
(p ± 1)αm − (ω1 ± ωr )t − ϕp

]
+ ∑

v
FvΛ0δd

2 cos
[
(v ± 1)αm − (ω1 ± ωr )t − ϕv

]
+ ∑

μ

Fμ Λ0δd
2 cos

[
(μ ± 1)αm − (ωμ ± ωr )t − ϕμ

]
+∑

k1

F0Λ0λk1
δd

2 cos
[
(v ± 1)αm − (ω1 ± ωr )t − ϕv

]
+ ∑

k2

F0Λ0λk2
δd

2 cos
[
(μ ± 1)αm − (ωμ ± ωr )t − ϕμ

]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · RHAGE

(7)

According to Equation (7), RSAGE introduces extra MFD harmonic components,
whose spatial coefficients are p ± 1, v ± 1, and μ ± 1, and the corresponding frequencies
are ω1, ω1, and ωμ. The stator winding adopts a double Y-shaped connection, and each
phase has two parallel branches, as shown in Figure 3.

Figure 3. Schematic diagram of a double Y-shaped connection of the stator winding.

In Figure 3, U1U2 is the two branches of the A-phase winding. V1V2 is the two
branches of the B-phase winding. W1W2 is the two branches of the C-phase winding.

Using the knowledge of electrical machinery, the high order and small amplitude
harmonics can be ignored, and the instantaneous value of the induced electromotive force
of a single parallel branch of the generator stator winding is determined as

E(αm, t) = qwckw1b(αm, t)lv = qwckw1b(αm, t)l(2τ f ) = 2qwckw1τl f Λ0

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
F0 cos

(
pαm − ω1t − ϕp

)
+ ∑

v
Fv cos(vαm − ω1t − ϕv) + ∑

μ
Fμ cos

(
μαm − ωμt − ϕμ

)} · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · normal{
F0 cos

(
pαm − ω1t − ϕp

)
+ ∑

v
Fv cos(vαm − ω1t − ϕv) + ∑

μ
Fμ cos

(
μαm − ωμt − ϕμ

)
+ F0δs

2 cos
[
(p ± 1)αm − ω1t − ϕp

]
+ ∑

v

Fvδs
2 cos[(v ± 1)αm − ω1t − ϕv] + ∑

μ

Fμδs
2 cos

[
(μ ± 1)αm − ωμt − ϕμ

]} · · · · · · · · · · · · · · · · · · · · · RSAGE{
F0 cos

(
pαm − ω1t − ϕp

)
+ ∑

v
Fv cos(vαm − ω1t − ϕv) + ∑

μ
Fμ cos

(
μαm − ωμt − ϕμ

)
+ F0δd

2 cos
[
(p ± 1)αm − (ω1 ± ωr)t − ϕp

]
+ ∑

v

Fvδd
2 cos[(v ± 1)αm − (ω1 ± ωr)t − ϕv] + ∑

μ

Fμδd
2 cos

[
(μ ± 1)αm − (ωμ ± ωr)t − ϕμ

]} · · · RDAGE⎧⎪⎨⎪⎩
F0 cos

(
pαm − ω1t − ϕp

)
+ ∑

v
Fv cos(vαm − ω1t − ϕv) + ∑

μ
Fμ cos

(
μαm − ωμt − ϕμ

)
+ F0δs

2 cos
[
(p ± 1)αm − ω1t − ϕp

]
+ ∑

v

Fvδs
2 cos[(v ± 1)αm − ω1t − ϕv] + ∑

μ

Fμδs
2 cos

[
(μ ± 1)αm − ωμt − ϕμ

]
+

F0δd
2 cos

[
(p ± 1)αm − (ω1 ± ωr)t − ϕp

]
+ ∑

v

Fvδd
2 cos[(v ± 1)αm − (ω1 ± ωr)t − ϕv] + ∑

μ

Fμδd
2 cos

[
(μ ± 1)αm − (ωμ ± ωr)t − ϕμ

]
⎫⎪⎬⎪⎭ · · · · · · · · · · · · · · · · · · · RHAGE

(8)

where f is the mechanical rotation frequency of the rotor. l is the air-gap length. q is
the number of slots per pole per phase. τ is the pole pitch. wc is the number of turns of a
single coil. kw1 is the fundamental winding factor, the expression of which is

kw1 = ky1 × kq1 = sin
(

90
◦ × y/τ

)
× sin(qα1/2)/(q sin(α1/2)) (9)

In Equation (9), ky1 is the fundamental wave pitch factor, kq1 is the fundamental wave
distribution factor, α1 is the slot angle, and y is the stator winding pitch.
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The corresponding sides of the two parallel branches of the generator have a certain
law in the spatial distribution. The equivalent circuit of the parallel branch of the A-phase
stator winding can be drawn as shown in Figure 4.

Figure 4. Circulating current loop between parallel branches of stator winding.

Where R1, R2, L1, and L2 are the resistance and self-inductance of two parallel branches
of the A-phase, respectively. M1 and M2 are the mutual inductances of each branch and
other branches, respectively. I1 and I2 are the currents corresponding to the two branches,
Ic is the circulating current.

The induced electromotive force of the two branches can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
Ea1(αm , t) = 2qwckw1τl f Λ0 =

{
F0 cos

(
pαm − ω1 t − ϕp

)
+ ∑

v
Fv cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μαm − ωμ t − ϕμ

)}

Ea2(αm , t) = 2qwckw1τl f Λ0 =

{
F0 cos

(
p(αm + π)− ω1 t − ϕp

)
+ ∑

v
Fv cos

(
v(αm + π)− ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μ(αm + π)− ωμ t − ϕμ

)}
⎤⎥⎥⎥⎥⎦ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·normal

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea1(αm , t) = 2qwckw1τl f Λ0 =

⎧⎪⎪⎨⎪⎪⎩
F0 cos

(
pαm − ω1 t − ϕp

)
+ ∑

v
Fv cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μαm − ωμ t − ϕμ

)
+

F0δs
2 cos

[
(p ± 1)αm − ω1 t − ϕp

]
+ ∑

v
Fvδs

2 cos
[
(v ± 1)αm − ω1 t − ϕv

]
+ ∑

μ

Fμ δs
2 cos

[
(μ ± 1)αm − ωμ t − ϕμ

]
⎫⎪⎪⎬⎪⎪⎭

Ea2(αm , t) = 2qwckw1τl f Λ0 =

⎧⎪⎪⎨⎪⎪⎩
F0 cos

(
p(αm + π)− ω1 t − ϕp

)
+ ∑

v
Fv cos

(
v(αm + π)− ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μ(αm + π)− ωμ t − ϕμ

)
+

F0δs
2 cos

[
(p ± 1)(αm + π)− ω1 t − ϕp

]
+ ∑

v
Fv δs

2 cos
[
(v ± 1)(αm + π)− ω1 t − ϕv

]
+ ∑

μ

Fμδs
2 cos

[
(μ ± 1)(αm + π)− ωμ t − ϕμ

]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· · · · · · · · · · · · · · · · · · · · · ·RSAGE

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea1(αm , t) = 2qwckw1τl f Λ0 =

⎧⎪⎪⎨⎪⎪⎩
F0 cos

(
pαm − ω1 t − ϕp

)
+ ∑

v
Fv cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μαm − ωμ t − ϕμ

)
+

F0δd
2 cos

[
(p ± 1)αm − (ω1 ± ωr )t − ϕp

]
+∑

v
Fvδd

2 cos
[
(v ± 1)αm − (ω1 ± ωr )t − ϕv

]
+ ∑

μ

Fμ δd
2 cos

[
(μ ± 1)αm − (ωμ ± ωr )t − ϕμ

]
⎫⎪⎪⎬⎪⎪⎭

Ea2(αm , t) = 2qwckw1τl f Λ0 =

⎧⎪⎪⎨⎪⎪⎩
F0 cos

(
p(αm + π)− ω1 t − ϕp

)
+ ∑

v
Fv cos

(
v(αm + π)− ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μ(αm + π)− ωμ t − ϕμ

)
+

F0δd
2 cos

[
(p ± 1)(αm + π)− (ω1 ± ωr )t − ϕp

]
+∑

v
Fv δd

2 cos
[
(v ± 1)(αm + π)− (ω1 ± ωr )t − ϕv

]
+ ∑

μ

Fμδd
2 cos

[
(μ ± 1)(αm + π)− (ωμ ± ωr )t − ϕμ

]
⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· · · RDAGE

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ea1(αm , t) = 2qwckw1τl f Λ0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F0 cos
(

pαm − ω1 t − ϕp
)
+ ∑

v
Fv cos

(
vαm − ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μαm − ωμ t − ϕμ

)
+

F0δs
2 cos

[
(p ± 1)αm − ω1 t − ϕp

]
+∑

v
Fv δs

2 cos
[
(v ± 1)αm − ω1 t − ϕv

]
+ ∑

μ

Fμδs
2 cos

[
(μ ± 1)αm − ωμ t − ϕμ

]
+

F0δd
2 cos

[
(p ± 1)αm − (ω1 ± ωr )t − ϕp

]
+∑

v
Fvδd

2 cos
[
(v ± 1)αm − (ω1 ± ωr )t − ϕv

]
+ ∑

μ

Fμδd
2 cos

[
(μ ± 1)αm − (ωμ ± ωr )t − ϕμ

]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

Ea2(αm , t) = 2qwckw1τl f Λ0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F0 cos
(

p(αm + π)− ω1 t − ϕp
)
+ ∑

v
Fv cos

(
v(αm + π)− ω1 t − ϕv

)
+ ∑

μ
Fμ cos

(
μ(αm + π)− ωμ t − ϕμ

)
+

F0δs
2 cos

[
(p ± 1)(αm + π)− ω1 t − ϕp

]
+∑

v
Fvδs

2 cos
[
(v ± 1)(αm + π)− ω1 t − ϕv

]
+ ∑

μ

Fμδs
2 cos

[
(μ ± 1)(αm + π)− ωμ t − ϕμ

]
+

F0δd
2 cos

[
(p ± 1)(αm + π)− (ω1 ± ωr )t − ϕp

]
+∑

v
Fvδd

2 cos
[
(v ± 1)(αm + π)− (ω1 ± ωr )t − ϕv

]
+ ∑

μ

Fμ δd
2 cos

[
(μ ± 1)(αm + π)− (ωμ ± ωr )t − ϕμ

]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · · · · · · · RHAGE

(10)

where wa1 = wa2 = wc, R1 = R2, L1 = L2, I1 = I2, and E1 = E2. Therefore, the CCPB of the
stator can be expressed as

Ua12(αm, t) = Ea1(αm, t) + jωLa1 Ia1 + Ra1 Ia1 + jω∑
i

Ma1i Ii

− jω∑
k

Ma2k Ik − Ra2 Ia2 − jωLa2 Ia2 − Ea2(αm, t)
(11)

Feeding Equation (10) into Equation (11), we can obtain the potential difference
between the two parallel branches of the generator stator winding before and after SAGE,
which can be expressed as

Ua12(αm , t) = 2qwc kw1τl f Λ0

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · normal
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]
+ ∑

v
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[
(v ± 1)αm − ω1 t − ϕv

]
+ ∑

μ
Fμδs cos

[
(μ ± 1)αm − ωμ t − ϕμ

]
· · · · · · · · · · · · · · ·RSAGE

F0δd cos
[
(p ± 1)αm − (
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)
t − ϕp

]
+∑

v
Fvδd cos
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)
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]
+ ∑

μ
Fμ δd cos

[
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(
ωμ ± ωr

)
t − ϕμ

] · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·RDAGE

F0δs cos
[
(p ± 1)αm − ω1 t − ϕp

]
+∑

v
Fvδs cos

[
(v ± 1)αm − ω1 t − ϕv

]
+ ∑

μ
Fμδs cos

[
(μ ± 1)αm − ωμ t − ϕμ

]
+ F0δd cos

[
(p ± 1)αm − (

ω1 ± ωr
)
t − ϕp

]
+∑
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Fv δd cos

[
(v ± 1)αm − (
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)
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+ ∑

μ
Fμ δd cos

[
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(
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)
t − ϕμ

] · · ·RHAGE

(12)
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For the sake of analyzing the effect on CCPB characteristics before and after the SAGE
fault, the components introduced in different air-gap eccentricity faults were classified
according to the same frequency, as shown in Table 2.

Table 2. Circulating current characteristics of stator parallel branches before and after eccentricity.

Cases Amplitude Number of Pole Pairs Freq. Impact Factor

Normal - - - -
2qwckw1τlf Λ0δsF0 p ± 1 ω1 q, wc, kw1, τ, l, f, F0, Λ0, δs
2qwckw1τlf Λ0δsFv v ± 1 ω1 q, wc, kw1, τ, l, f, Fv, Λ0, δsRSAGE
2qwckw1τlf Λ0δsFμ μ ± 1 ωμ q, wc, kw1, τ, l, f, Fμ, Λ0, δs
2qwckw1τlf Λ0δdF0 p ± 1 ω1 ± ωr q, wc, kw1, τ, l, f, F0, Λ0, δd
2qwckw1τlf Λ0δdFv v ± 1 ω1 ± ωr q, wc, kw1, τ, l, f, Fv, Λ0, δdRDAGE
2qwckw1τlf Λ0δdFμ μ ± 1 ωμ ± ωr q, wc, kw1, τ, l, f, Fμ, Λ0, δd
2qwckw1τlf Λ0δsF0 ω1 q, wc, kw1, τ, l, f, F0, Λ0, δs
2qwckw1τlf Λ0δdF0

p ± 1
ω1 ± ωr q, wc, kw1, τ, l, f, F0, Λ0, δd

2qwckw1τlf Λ0δsFv ω1 q, wc, kw1, τ, l, f, Fv, Λ0, δs
2qwckw1τlf Λ0δs Fv

v ± 1
ω1 ± ωr q, wc, kw1, τ, l, f, Fv, Λ0, δd

2qwckw1τlf Λ0δdFμ ωμ q, wc, kw1, τ, l, f, Fμ, Λ0, δs

RHAGE

2qwckw1τlf Λ0δdFμ
μ ± 1

ωμ ± ωr q, wc, kw1, τ, l, f, Fμ, Λ0, δd

According to Table 2 and Equation (12), there is no CCPB of the stator winding under
normal operation. The CCPB of the stator winding appears after the occurrence of RAGE.
It is mainly composed of three parts: The first part is caused by an additional magnetic
field with a pole pair number of p ± 1 and a corresponding frequency of ω1 that will be
introduced by the static eccentricity fault. The second part is caused by an additional
magnetic field with a pole pair number of v ± 1 and a corresponding frequency of ω1
caused by the static eccentricity fault. The third part is caused by the additional magnetic
field with a pole pair number of μ ± 1 and a corresponding frequency of ωμ caused by
the static eccentricity fault. RDAGE also introduces new frequency components compared
with normal conditions, which are f 1 ± f r and f u ± f r, respectively. The f 1 ± f r frequency
component includes magnetic pole log numbers of p ± 1 and v ± 1, and the f u ± f r
frequency component includes a magnetic polar log of μ ± 1. The RHAGE frequency
ingredient is an overlay of RSAGE and RDAGE.

In order to clarify the influence of the variables in MFD and CCPB expressions, the
changes in the frequency components and amplitude of the MFD and CCPB before and
after the different types of eccentricity are listed in Table 3.

Table 3. Frequency components and trends in normal and RAGE cases (theory).

Condition MFD CCPB Trend

normal f 1, fμ f 1, fμ -
RSAGE0.1
RSAGE0.2
RSAGE0.3

f 1, fμ f 1, fμ increase

RDAGE0.1
RDAGE0.2
RDAGE0.3

f 1, fμ, f 1 ± fr, fμ ± fr f 1, fμ, f 1 ± fr, fμ ± fr increase

RHAGE0.1
RHAGE0.2
RHAGE0.3

f 1, fμ, f 1 ± fr, fμ ± fr f 1, fμ, f 1 ± fr, fμ ± fr increase

According to Table 3, RSAGE only changes the amplitude of the MFD and CCPB
without changing their frequency components. Conversely, RDAGE and RHAGE faults
change the frequency components and amplitude of the MFD and CCPB at the same time.
In addition, with an increase in the eccentric volume, the amplitude of the frequency
component of the MFD (the side of the decrease in air gap) and CCPB also increases.
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3. FEA and Experiment Validation

3.1. FEA and Experiment Setup

In this study, FEA and experiments were performed on a double-fed asynchronous
wind turbine with two pairs of poles. The main parameters of the generator are shown in
Table 4. The simulation model established by using ANSYS Electronic is shown in Figure 5,
and the experimental units are shown in Figure 6.

Table 4. Parameters of DFIG prototype generator.

Parameters Value Parameters Value

Rated capacity 5.5 kW Rated rotating speed nr = 1500 rpm
Stator core length l = 155 mm Stator external diameter 210 mm
Parallel branches α = 2 Rotor external diameter 134 mm

air-gap length 1 mm Power factor cos ϕ = 0.8
Rated voltage 380 V Stator slots Z1 = 36

Pole pairs p = 2 Rotor slots Z2 = 24

Figure 5. FEA model: (a) DFIG two-dimensional model; (b) external circuit model.

Figure 6. Experimental device of DFIG system.

According to the working principle of the ANSYS Electronics ACT, the following
assumptions can be made: The origin of the coordinate axis (the geometric center of the
stator) is defined as Os, and the center of rotation of the rotor is defined as Or. The rotor
rotates at an angular velocity ω around Or. In RDAGE, the rotation of the rotor also
simultaneously occurs around a point with the angular velocity ω, so the center of the
rotational trajectory of Or is defined as Or’. The RSAGE, RDAGE, and RHAGE can be
obtained by combining Os, Or, and Or’. In addition, the eccentricity fault level was set to
0.1, 0.2, and 0.3 in each case. In this paper, the positive direction of the X-axis was chosen
as the eccentricity direction.
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Since the air-gap eccentricity fault is a mechanical fault, it has no effect on the external
circuit. Therefore, all the external circuits used in this paper are shown in Figure 5b.

The actual speed of the simulation model of this paper is 1470 rpm, that is, the slip
rate s= (1500 − 1470)/1500 = 2%. Therefore, the value of fu = 540/640 (k2 = ±1). This article
only lists the frequency components for which the absolute value of k2 is less than 2.

The overall structure of the generator is shown in Figure 6. The degree of the RSAGE of
the generator was achieved by the radial displacement of the stator. The radial displacement
of the stator was controlled by adjusting four screws on the front and back, and the specific
offset distance was measured by dial indicators, as indicated in Figure 6. In addition, the
degree of RDAGE was adjusted by exchanging the wedges embedded in the grooves of the
rotor core, as seen in Figure 6. Specifically, normal wedges flushed with the circumferential
surface of the rotor, and 0.1 mm, 0.2 mm, and 0.3 mm wedges above the circumferential
surface were prepared in advance; the degree of the RDAGE eccentricity increased as the
height of the replacement wedges increased. The external equipment of the generator
(control cabinet and load bank) is shown in Figure 6. The experiments and FEA calculations
had the same parameter settings and were conducted four times in the following order:

(1) Common normal condition;
(2) RSAGE of 0.1, 0.2, and 0.3 mm;
(3) RDAGE of 0.1, 0.2, and 0.3 mm;
(4) RHAGE of 0.1, 0.2, and 0.3 mm.

3.2. FEA Results’ Discussion

The air-gap MFD results in different cases are shown in Figure 7 and Table 5. The anal-
ysis of the simulation time domain results revealed that as the extent of the degree of eccen-
tricity increased, the amplitude of the local magnetic field density of the air gap increased.

Table 5. Simulation results of MFD.

RSAGE (×10−3) RDAGE (×10−3) RHAGE (×10−3)
Type Freq.

Normal
(×10−3) 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

f 1 50 709.10 751.80 799.4 856.45 697.20 716.45 717.15 754.60 809.90 879.55
540 91.80 104.23 118.12 137.55 92.64 94.39 94.60 106.05 121.59 149.06f u 640 23.25 25.452 27.21 30.14 23.19 24.20 25.19 25.71 28.50 32.99

f 1 ± f r
25 - - - - 13.88 32.41 48.75 19.13 46.65 85.12
75 - - - - 15.86 40.39 59.57 22.39 50.54 86.45

515 - - - - 8.05 13.53 18.18 10.47 20.27 36.99
564 - - - - 11.39 20.06 27.93 13.87 28.02 52.46
615 - - - - 2.32 2.71 3.78 2.71 4.13 6.24

f u ± fr

664 - - - - 3.59 6.11 8.34 4.13 7.96 15.22
Trend - - increase increase increase

The occurrence of RAGE changed the frequency component of the MFD. The RSAGE
condition did not change the composition of the frequency components and only affected
the size of the amplitude, as shown in Figure 7a,b. However, RDAGE resulted in f 1 ± fr
(25/75) fu ± fr (515/564, k2 = ±1) for the MFD, as shown in Figure 7c,d. The result of RHAGE
was the superposition of RSAGE and RDAGE. Therefore, the frequency components of
RHAGE were consistent with RDAGE, as shown in Figure 7e,f and Table 5. The amplitude
of these frequency components was enlarged with an increase in eccentricity.

According to the setting of the simulation model speed, one cycle of the DFIG was
approximately 40 ms, and the CCPB in this article used a stable waveform of 60–100 ms,
as shown in Figure 8 and Table 6. According to Figure 8a–e, the amplitude of the CCPB
was close to zero under normal conditions. However, the amplitude of the CCPB increased
with the development of RAGE, as indicated in Figure 8 and Table 6.
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Figure 7. The MFD in before and after RAGE conditions: (a) the MFD time domain in RSAGE; (b) the
frequency domain in RSAGE; (c) the MFD time domain in RDAGE; (d) the frequency domain in
RDAGE; (e) the MFD time domain in RHAGE; (f) the frequency domain in RHAGE.

From Figure 8b,d,f, it can be derived that the CCPB frequency components f 1 (50) and f u
(540/640) were induced when RSAGE occurred. Similarly, RDAGE yielded f 1 ± f r (25/75)
and f u ± fr (515/565/615/665, k2 = ±1) for the CCPB frequency components. The frequency
components of the CCPB during RHAGR were the superposition of RSAGR and RDAGR.
Generally, with the increase in RAGE, the amplitude of each component also increased. The
frequency component calculated by using FEA was consistent with the theoretical analysis.
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Figure 8. The stator CCPB in normal and RAGE conditions: (a) the time domain of stator CCPB in
RSAGE; (b) the frequency domain in RSAGE; (c) the time domain of stator CCPB in RDAGE; (d) the
frequency domain in RDAGE; (e) the time domain of stator CCPB in RHAGE; (f) the frequency
domain in RHAGE.

3.3. Experiment Results’ Discussion

The experimental data were obtained on the DFIG experimental unit, as indicated in
Figure 6. Regardless of the branches of the A-phase, B-phase, or C-phase, it can be seen
that the degree of eccentricity caused an increase in the amplitude of the CCPB, as shown
in Figure 9a–c. The change in frequency components also changed the curves’ shape. The
frequency components of each case are shown in Figure 9. More details can be seen in
Table 7.
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Table 6. Simulation results of CCPB.

RSAGE (×10−3) RDAGE (×10−3) RHAGE (×10−3)
Type Freq. Normal

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

f 1 50 - 65.15 127.01 195.01 - - - 14.16 71.34 212.8
540 - 1.582 3.134 4.789 - - - 1.754 3.511 5.616f u 640 - 0.063 1.148 1.453 - - - 0.933 1.86 2.591

f 1 ± f r
25 - - - - 89.38 210.9 319 103.5 210.3 320.5
75 - - - - 85.45 223.9 338.7 110.5 226.3 353.8

515 - - - - 1.337 3.011 4.302 1.717 3.758 6.481
565 - - - - 0.561 1.329 1.91 0.763 1.479 2.113
615 - - - - 0.331 0.736 1.244 0.444 0.948 1.132

f u ± fr

665 - - - - 0.553 1.474 2.366 0.632 1.088 1.216
Trend - - increase increase increase

Figure 9. The stator CCPB in normal and RAGE conditions: (a) the time domain of stator CCPB
in RSAGE; (b) the time domain of stator CCPB in RDAGE; (c) the time domain of stator CCPB in
RHAGE; (d) the frequency domain in RSAGE; (e) the frequency domain in RDAGE; (f) the frequency
domain in RHAGE.

According to Figure 9d–f, after RSAGR, the components with frequencies f 1 (50) and
f u (540/640) appeared in the CCPB. However, RDAGE yielded f 1 ± f r (25/75) and f u ± fr
(515/565/615/665, k2 = ±1) for the CCPB. Additionally, RHAGR was the superposition
of RSAGR and RDAGR, as shown in Table 7. At this point, the theoretical derivation,
FEA conclusions, and experimental results were basically consistent, thus, the model was
well-verified.
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Table 7. Experiment results of CCPB.

RSAGE (×10−3) RDAGE (×10−3) RHAGE (×10−3)
Type Freq. Normal

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

f 1 50 - 229.2 281.4 725 - - - 180.6 242 536.5
540 - 11.92 77.23 163 - - - 23.13 127.6 238f u 640 - 30.87 56.53 118.7 - - - 59.88 93.4 173.4

f 1 ± f r
25 - - - - 387.6 467.3 586.9 465.9 561.8 706.9
75 - - - - 530.9 636.2 794.2 637.7 764.3 954.2

515 - - - - 10.54 16.77 29.42 12.7 20.27 35.64
565 - - - - 10.54 16.77 29.42 12.88 20.26 35.34
615 - - - - 10.94 13.73 15.64 13.22 16.55 18.82

f u ± fr

665 - - - - 10.94 13.73 15.64 13.13 16.47 18.76
Trend - - increase increase increase

4. Conclusions

In this paper, we studied the CCPB with RSAGE, RDAGE, and RHAGE faults in a
DFIG, derived the corresponding theoretical formula of the MFD and CCPB, and established
a finite element model for simulation. Later, experimental verification was carried out
on the fault simulation. The theoretical derivation, finite element simulation results, and
experimental results were consistent with each other. The conclusions are as follows:

(1) For the MFD, the increase in eccentricity resulted in a gradual increase in the air-gap
magnetic field density. Different kinds of air-gap eccentricity changed the composition
of the MFD. For RSAGE, the frequency component was the same as normal. For RDAGE
and RHAGE, the frequency component of f 1 ± f r, f u ± fr was newly present relative to the
normal condition. The increase in eccentricity would cause an increase in the values of the
frequency components.

(2) For the CCPB, the change in eccentric species caused a change in the shape of the
time domain curve, which was caused by changes in the frequency components. At the
same time, the increase in eccentricity caused a significant increase in the CCPB. Similarly,
different kinds of air-gap eccentric also changed the composition of CCPB. For RSAGE,
the frequency component had new frequency components of f 1 and f μ compared with
normal conditions. For RDAGE, the frequency components of f 1 ± f r and f u ± fr were
newly present relative to the normal condition. For RHAGE, the frequency components at
RSAGE and RDAGE appeared at the same time. The increase in eccentricity would result
in an increase in the amplitude of the frequency components.
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Abbreviations

The following abbreviations are used in this manuscript:
DFIG Doubly fed induction generator
RAGE Radial air-gap eccentricity
RSAGE Radial static air-gap eccentricity
RDAGE Radial dynamic air-gap eccentricity
RHAGE Radial hybrid air-gap eccentricity
CCPB Circulating current inside parallel branches
MFD Magnetic flux density
MMF Magnetomotive force
PPUA Permeance per unit area
FEA Finite element analysis
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Abstract: The Francis hydro-turbine is a typical nonlinear system with coupled hydraulic, mechanical,
and electrical subsystems. It is difficult to understand the reasons for its operational failures, since the
main cause of failures is due to the complex interaction of the three subsystems. This paper presents
an improved dynamic model of the Francis hydro-turbine. This study involves the development
of a nonlinear dynamic model of a hydraulic unit, given start-up and emergency processes, and
the consideration of the effect of water hammer during transients. To accomplish the objectives
set, existing models used to model hydroelectric units are analyzed and a mathematical model is
proposed, which takes into account the dynamics during abrupt changes in the conditions. Based
on these mathematical models, a computer model was developed, and numerical simulation was
carried out with an assessment of the results obtained. The mathematical model built was verified on
an experimental model. As a result, a model of a hydraulic unit was produced, which factors in the
main hydraulic processes in the hydro-turbine.

Keywords: hydro-turbine modeling; dynamic modeling; transient processes; hydropower; hy-
dropower plants; mathematical modeling; water flow inertia

1. Introduction

Currently, stochastic renewable (wind and solar) energy sources are rapidly developing
in the world, and hydropower plays a key role in ensuring the security and stability of
the energy system with a high share of renewable energy sources. Global hydropower
continues to increase with relatively higher rates of total installed capacity in the last
10 years alone. This expansion means that it is becoming increasingly more important to
investigate various hydropower plants (HPPs). A significant number of studies examine
the dynamics of the Francis turbine. In particular, the work by E.Vagnonia, et al. [1]
focuses on the study of the dynamics of the Francis turbine under the action of a voltage
regulator. The paper presents the results of the studies on the behavior of the generator
operating as a synchronous compensator, given the pressure fluctuations in the turbine.
The study presented in [2] is devoted to the minimization of fluctuations in the rotation
speed at the idle start of the turbine and the optimization of starting the unit with the
turbine control algorithm based on the theory of fuzzy logic. This approach provides the
flexibility of the regulator settings and reduces vibration during unit start-up. Article [3]
provides an analysis of the algorithms and their impact on the turbine operating conditions
and the effects of disturbances from the load side. Article [4] presents the construction
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of dynamic models of the turbine and their transfer functions, which affect the quality
of the transient process in the case of various auxiliary systems during the hydraulic
unit operation, but do not take into account emergency processes in the power system.
There are studies focusing on the modeling of power fluctuation that occurs during the
start-up of the unit [5]. However, the authors of this work do not provide a condition
for the emergency shutdown of the unit. The authors of [6] analyze the dynamics of
the HPP pump-turbine in terms of an improvement of the model of the Francis turbine.
Article [7] addresses quantitative analysis and identification of the mechanism of influence
of hydraulic damping of low-frequency oscillations in power systems. In [8], the authors
present the results of the analysis of complex power systems, which have a large number of
various energy sources, and the dynamic simulation of their electromechanical transients.
Article [9] presents various transfer functions for turbine models used in pumped-storage
plants, given the process constraints. The authors of [10] present some simulation models of
a hydro-turbine governing system with different water diversion system topologies, which
make it possible to calculate the damping of low-frequency oscillations. The focus of [11] is
on the analysis of various nonlinear dynamic characteristics of regulation systems, which
ensure the stability of the control system. Article [12] performs an analysis of the stability of
the hydro-turbine controller, which is the most important stage in the design of the prime
mover operating in the power system, since it is essential for the safety of both the power
plant and the power system. Given the nonlinearity of the hydro-turbine, a comprehensive
analysis of the stability of the hydro-turbine control system was carried out for the cases of
frequency control and power control. However, the algorithms of emergency scenarios are
not provided. In [13], authors consider a nonlinear modal method, which was introduced
to analyze the dynamic modal interactions between the subsystems of the HPP hydraulic
unit, and compare the results obtained by different methods to check the feasibility of the
method. There are studies of the multi-frequency dynamic characteristics of a hydropower
plant under the coupling effect of the power grid and the turbine regulating system with a
surge tank [14]. In article [15], the study examines the hydraulic oscillations between two
pump-turbines after the water flow rate is reduced to zero for the parallel operation of the
two units. The findings indicate that two pump-turbine units have the same oscillation
cycle, but their transient processes are significantly different. In [16], the influence of
the conduit geometry on the dynamic parameters of the unit is analyzed. The finite
element method is used to evaluate the performance of the turbine. Article [17] analyzes
the influence of backlash nonlinearity on the stability of island power systems, where the
Nyquist stability criterion and the numerical modeling method are used to control hydraulic
turbines. Another focus of the study is on the mechanism of the influence of four important
hydromechanical time constants on the stability of a nonlinear system of a hydraulic unit.
Article [18] considers simplified mathematical models to help in monitoring the vibration
of hydro-generators and illustrates this proposal by modeling a hydro-generator with a
capacity of 700 MW. In [19], fluctuations between two hydroelectric power plants in a
separate power system of China are investigated, where different excitation systems are
considered. Article [20] considers quaternary storage hydropower technology as one of
the new advanced technologies, which combines a variable speed pumping unit and a
conventional hydropower turbine in a four-component configuration, which allows it to
have a greater competitive ability to provide fast power support in a future system with
a high degree of penetration of renewable energy sources. The above studies do not take
into account the transient processes associated with emergency processes during load
shedding. There is a study investigating transient processes during fast unloading of
the turbine [21]. The findings suggest that the output real power characteristic is highly
dependent on the guide vane opening speed in both field and simulation tests, however, the
studies consider load shedding without analyzing different load ranges. The development
of such a model would make it possible to create a system of automatic diagnostics in
real time. The study [22] focuses on the development of turbine models for wider ranges
of hydraulic unit start-up. The contribution of this article is that an accurate real-time
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equivalent circuit model of HPP with error compensation is proposed to resolve the conflict
between real-time online simulation and accuracy under various operating conditions. In
the future, this can help build a system for the automatic distribution of operating units,
taking into account the model implemented by the station [23,24]. Article [25] is devoted to
modeling the turbine of pumped-storage plants operating in a wide range of power. The
finite element method is applied to simulate the pulsation. Numerical transient simulation
can support the operation of hydropower plants and help avoid hazardous operating
conditions, thereby indirectly extending plant run time and improving economic effect.

Currently, there is a whole host of works constructing mathematical models to study
a wide variety of processes from electromechanical oscillations to the influence of hydro-
dynamic processes on the behavior of the unit. According to the analysis of the literature,
many previous studies use the finite element method and the construction of transfer
functions for modeling individual main components of hydroelectric power plants, but the
developed models are simplified and cannot simulate some complex transients during the
emergency unloading of the turbine. The design of a modern hydroelectric power plant or
theoretical research in the field of hydropower are unthinkable without the widespread
use of mathematical modeling at all stages of development [26–29]. Therefore, this paper
develops a nonlinear dynamic model of a hydraulic unit, given start-up and emergency
processes, and considers the effect of water hammer during transients. To analyze transient
processes, a model is implemented in the SimInTech simulation environment, which al-
lows dynamic simulation for a huge number of various technical systems and automatic
control devices.

2. Construction of a Mathematical Model

Figure 1 shows a block diagram of a hydroelectric power plant (HPP) [3]. Running
water from the upstream enters the spiral chamber after passing through the guide vanes,
thus contributing to the rotation of the turbine connected to the generator through the shaft.
Hydro-generator speed is maintained by changing the opening angle of the guide vanes,
which are regulated by an oil servomotor. The system consists of four main parts: piping
system, water turbine, servosystem, and generator. In recent years, linear and nonlinear
dynamic models of the main parts have been proposed [3,30], but modeling with these
models is carried out in ideal situations or is too simplified.

Generator

Water 
turbine

Draft tube

Penstock

Reservoir
Surge
tank

q

Figure 1. A general layout scheme of a hydropower plant. An HPP conduit model (Conduit penstock model).

According to the theory of hydrodynamics, the flow equation is as follows:[
Hp(s)
Qp(s)

]
=

[
cosh(rΔx) −zcsinh(rΔx)

−sinh(rΔx)/zc cosh(rΔx)

][
Hq(s)
Qq(s)

]
(1)

143



Energies 2022, 15, 8044

where the subscripts q and p are the designations of the conduit sections for the upper and
lower pools of the HPP, Δx = L is the conduit length, and r and zc are HPP the conduit
equation components.

3. The Mathematical Model Development

3.1. Model of a Water Turbine with Elastic Water Hammer

The turbine equation for a small perturbation around the target point is:{
mt = exxt + eyy + ehh
q = eqxxt + eqyy + eqhh (2)

Partial derivatives of the turbine torque and flow with respect to the turbine speed
have the form [30]: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

eh = ∂mt/∂h
ex = ∂mt/∂x
ey = ∂mt/∂y
eqh = ∂q/∂h
eqx = ∂q/∂x
eqy = ∂q/∂y

(3)

Transfer function of the turbine and conduit [3] are:

Gt(s) = − ey

egh
·

ems3 − 3
hwTr

s2 + 24em
T2

r
s − 24

hwT3
r

s3 + 3
eqhhwTr

s2 + 24
T2

r s
+ 24

eqhhwT3
r

(4)

where em = eqyeh/ey − eqh are Francis turbine performance parameters.

3.2. Generator Model

This paper considers the operation of a hydroelectric power plant for an isolated load.
The mathematical model can be represented as follows:⎧⎪⎨⎪⎩

.
δ = xt.

xt = (mt − me − D · xt)/Ta
.
E
′
=

(
Ef − E′

q − (zd − z′d) · id

)
/Td

(5)

where: {
id =

(
E′

q − Vs cos δ
)
/z′d

me =
Vs
z′d

E′
q sin δ + V2

s
2

(
1
zq
− 1

z′d

)
sin(2δ)

(6)

δ is the rotor angle, me is the output electric moment, D is the damper factor, Ta is the
generator mechanical time constant, Ef is the field voltage, E′

q is the generator voltage, zd is
the positive sequence reactance, z′d is the positive sequence transient impedance, Td is the
field winding time constant, id is the positive sequence current, vs. is the network voltage,
and Zq is the generator reactance.

4. Francis Turbine Control Dynamics

The main expression, which takes into account the control dynamics of the unit, can
be represented by an integrating factor that describes the inertia of the water flow in the
turbine conduit [27]:

dq
dt

=
1

TR
(h0 − h) (7)
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where q is the turbine flow, h0 is the full head of the hydraulic turbine, h is the turbine inlet
head, p.u.; TB is the water hammer time constant (s) calculated from:

TR =
L

A · g
(8)

where L is conduit length, m; A is the conduit area, m2; g = 9.81 m2/s is the gravitational
acceleration, or:

Wq(s) =
1

TRs
(h0 − h) (9)

To study the behavior of a hydraulic unit, a simplified mathematical model (Figure 2)
is usually used [27]. Its derivation is provided in [31,32]. All formulas are provided for
parameters reduced to per units.

At * +

*

 qH

q

 

h
(+)

(+) Pm

 

T

Figure 2. A simplified model of a hydraulic turbine.

To calculate the flow through the unit, a simplified equation is used for the liquid
outflow through a surface area S, which depends on the opening of the guide vane. This
study assumes a linear dependence of change in the flow rate on opening. In actuality, the
dependence is not linear and depends on the geometry of the guide vane; however, such
an assumption will not affect the quality of the transient process.

q = a0
√

h (10)

where a0 is the guide vane opening, p.u.
Figure 3 shows the model according to the block diagram shown in Figures 1 and 2.

To verify the correctness of the resulting model, numerical modeling at the initial stage was
carried out with the following conditions: Δw = 0.05, qnl = 0.05, H0 = 1, TR = 0.1, β = 1.

T A
P

q
 

H

Figure 3. The proposed model of the hydraulic turbine.

To test the model, the response of the system to the step input that occurs at the time
of 10 s was investigated. A graph of the turbine transient process, with a sharp step change
in the opening of the guide vane (GV) (αst) from 0.5 to 0.9, is provided in Figure 4. The
graph shows a dip at the time of GV opening (t = 10 s), which is explained by a sharp
change in the water flow rate in the penstock conduit, causing water hammer. Thus, at the
initial moment, most of the flow energy is applied to increase the pressure, and the turbine
power drops.
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Figure 4. Change in power for the guide vane opening from 0.5 to 0.9 p.u.

In practice, such a sharp dip does not occur, due to the inertia of the control system.
The movement of the guide vanes takes a few seconds but does not happen instantly. The
servomotor can be simulated aperiodically by an expression with time constant Ts:

WS(s) =
1

TSs + 1
(11)

The diagram of a hydro-turbine with an aperiodic inertia element, which takes into
account the servomotor, is shown in Figure 5. The result is shown in Figure 6. The power
dip caused by the change in setpoint (at the time t = 10 s) is much less compared with
the previous result. At the same time, the time of the transient process increased. Such a
response of the turbine to a stepped input is more adequate and closer to the behavior of a
real-world turbine, in contrast to the transient process shown in Figure 4. All this proves
the need to take into account the inertia of the control element, in addition to the inertia of
the impeller itself.

T
A P

q
H

Figure 5. A hydraulic turbine diagram with the servomotor.

146



Energies 2022, 15, 8044

Po
w

er
, p

.u
.

Time t, s
Figure 6. Transient process with a smooth opening of the guide vane.

5. Comparison of Results with Experimental Data

The modeling results allow the conclusion that the behavior of the model is adequate;
however, to make sure of this, it is necessary to compare the results obtained by calculation
with real data. To this end, the data obtained in the experiment [33] for the Francis radial–
axial turbine are used.

5.1. Simulated Plant

The object of simulation in the work is an experimental stand with a radial–axial
turbine, provided by the Norwegian Hydropower Centre for open-source access [34] The
stand consists of two tanks simulating the upstream and downstream; the penstock conduit
is represented by a pipe closed by a valve. The model turbine diameter is 0.35 m. A
magnetic system flow meter is used to measure the water flow. The nominal head of the
plant is 12 m. The nominal flow rate at the optimum point is 0.2 m3/s. The nominal power
of the hydraulic unit is 24 kW. To measure the water flow parameters, several pressure
sensors are placed on the stand: at the turbine inlet (between the guide vanes and the
impeller blades), on the turbine blades, and at the turbine outlet (in the suction pipe cone).
The sampling frequency of the sensors is 2 KHz. The diagram of this plant is shown
in Figure 7.

This experiment involved the investigation of the processes during the turbine acceler-
ation from the minimum opening to the optimal one and the turbine deceleration from the
optimal opening angle to the minimum one.

The initial data for the experiment are shown in Table 1.
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Figure 7. Experimental stand of a hydro-turbine plant [34].

Table 1. Limiting parameters of the experiment.

Parameter Minimum Load Optimal Load

Guide vane angle (◦) 0.8 9.84
Net head (m) 12.14 11.94

Discharge (m3/s) 0.022 0.200
Torque to the generator (Nm) 11.16 616.13

Friction torque (Nm) 4.66 4.52
Efficiency (%) 20.94 98.39

Runner angular speed (rpm) 332.8 332.59
Casing inlet pressure-abs (kPa) 221.03 215.57

Draft tube outlet pressure-abs (kPa) 101.85 111.13
Water density (kg/m3) 999.59 999.8

Kinematic viscosity (m2/s) 9.57 × 10−7 9.57 × 10−7

Gravity (m/c2) 9.82 9.82

5.2. Braking Process

The study examines the process of braking, in which the opening angle of the guide
vane changes from 9.84 to 0.8 degrees. Changing the opening angle of the guide vane is
shown in Figure 8.

The change in the flow through the turbine, in time, causes a head surge. This can
be seen from the pressure measured at the turbine inlet in Figure 9. When the guide vane
reaches the minimum opening angle, the change in the flow stops and the inlet pressure
begins to recover. The difference between the steady-state pressure before and after the
opening of the guide vanes is explained by a decrease in the speed losses in the conduit,
which are virtually absent at the turbine idling.
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Figure 8. The opening angle of the GV versus time (α).

Figure 9. The GV opening angle versus time (α).

5.3. Acceleration Process

For the case with turbine acceleration, the opening angle changes from 0.8 degrees to
9.84, as shown in Figure 9. The graph of the inlet pressure is shown in Figure 10.

Figure 10. Transient process in the case of closing the guide vane and the pressure value before
the turbine.

To set the opening of the guide vane, the model employs a piecewise linear approxi-
mation. The base value of the guide vane opening is taken to be 12.5◦. The maximum and
minimum opening values are 9.84 and 0.8, respectively. The opening value is fed to the
input of the hydro-turbine model; the results are shown in Figures 10 and 11. Closing the
guide vane within 6 s leads to an increase in pressure due to a decreasing flow. When the
turn of the guide vanes ends, the pressure value reaches its original value. The basic head
value is 12.14 m, and the working head is 11.80 m.
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Figure 11. Transient process in the case of closing the guide vane and the value of the flow through
the turbine.

The results of the load increase modeling are shown in Figures 12 and 13. When the
guide vane is opened, the flow energy is used to increase the flow rate and the pressure
drops. In contrast to the model characteristic, the steady-state value of the head is different
for measurements before and after the guide vane opening. The pressure at the turbine inlet
decreases with an increase in the flow, which is caused by water speed losses in the conduit.

Figure 12. Transient process in the case of opening the guide vane before opening the optimum point
and the value of the pressure before the turbine.

Figure 13. Transient process for the case of opening the guide vane before opening the optimum
point and the value of the flow through the turbine.
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Based on the modeling and comparison of the modeling results with empirical data,
we can conclude that the behavior of the model is not only adequate, but also corresponds
to the behavior of a real-world turbine.

After the successful verification of the mathematical model, we will model a hydro-
turbine as part of a hydroelectric unit. The modeling object will be the above-described
radial–axial turbine impeller operating on a shaft with a hydro-generator for an isolated load.

The “bidirectional bus” block (which transmits the values of the power on the shaft, the
speed setting, and the actual speed) is used to relate the turbine model with the generator
model. The internal structure of the “hydro-turbine” block is shown in Figure 14.

Set model 
properties

st

T
A P

q
H

Figure 14. A diagram of the hydro-turbine block.

The above-described mathematical model is used to build an electrical circuit (Figure 15).
The circuit simulates the energy block “hydraulic unit—transformer” operating for the load.

 
Figure 15. Model of the block “hydraulic unit—transformer” operating for the isolated load.

To set the current operating conditions of the hydraulic unit and provide feedback,
automatic control circuits are used, which, based on an array of input signals, generate
output signals according to a given algorithm.

The following conditions are considered:

1. Shutdown of the hydraulic unit
2. No-load conditions of the hydraulic unit
3. No-load conditions of the generator
4. Generator normal operating conditions

Switching to another operating condition is performed on an appropriate command.
The described algorithm is shown in Figure 16.
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Figure 16. An algorithm of automatic control of the hydraulic unit operating conditions.

To control the power of the hydraulic turbine and maintain a given speed, it is neces-
sary to use a controller. Therefore, we use a feedback PID controller. The diagram of such a
controller is described in [34].

PID controller maintains the speed of the hydraulic turbine (Figure 17), and, in addition
to speed control, implements mechanisms for limiting the maximum and minimum opening
of the guide vane. The minimum and maximum opening setpoints depend on the operating
conditions of the turbine. For example, when the speed rises from 0 to 100%, the opening
limit is 40%, which does not allow the controller to force the opening of the guide vane
because of a large speed deviation from the setpoint. Such action of the controller would
lead to a significant overshoot and an increase in the time necessary to reach a steady-state
value [35–37].

 

Figure 17. Model of the speed controller.
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6. Analysis of Results

6.1. Turbine and Generator No-Load Operating Conditions

Based on the comparative studies, the mathematical models were verified for various
operating conditions of the hydraulic turbine. Relying on the comparative data obtained,
we built a model of the hydraulic unit operating for an isolated load. The calculation
for a generator with known parameters can be carried out and the previously modeled
hydro-turbine can be scaled using known similarity formulas. The similarity equations
for hydraulic machines are used to switch from a model turbine to a turbine of a different
power [36]:

Qp = Q′
1D2

1

√
H (12)

n′
1 = nD1/

√
H (13)

Thus, a hydraulic unit with an active power of 42 MW, a nominal voltage of 10.5 kV,
and a rotation speed of 100 rpm was chosen as an object to be simulated.

First of all, we check the no-load operation of the unit. When the “generator no-
load operation” command is given, the unit sequentially switches to the turbine no-load
operation mode, and then to the generator no-load operation mode, supplying the field
current to the rotor winding. Figure 18 shows the parameters of this transient process. At
the first time instant, the guide vane (GV) opens for start-up (40%), then, when approaching
the nominal speed, it is closed to the opening of no-load conditions. At the same moment,
the excitation of the synchronous machine is turned on and the stator voltage rises to the
nominal value (10.5 kV). Rotation speed deviation is less than 2%.

 
Figure 18. Parameters of the transient process during the turbine acceleration to idle speed.

6.2. On-Load Operation and Load Increase

Another operating condition to explore is an increase in the load. Figure 19 shows the
transient process during the acceleration of the hydraulic unit to the nominal speed under
no load, which is followed by the connection of a 12 MW load [38–40].

When the turbine unit is started and generator reaches the idle speed, the generator
breaker is turned on. In this case, a slowly damping oscillatory process occurs with a swing
of 12.5 Hz (25%).

In real-world control systems, the controller coefficients are often changed for different
operating conditions. Figure 20 presents the frequency response characteristic for the
current PID controller (Table 2) and for the desired controller operating under load.
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Figure 19. Parameters of the transient process during the load surge.

Figure 20. Logarithmic amplitude and phase–frequency response curves for the current and
desired controllers.
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Table 2. Final controller settings.

Parameter Value

Proportional link P 4-2

Integral link I 0.08

Differential link D 2

Time Tf 0.1 s.

Analysis of the diagrams indicates that in order to obtain the desired response, it is
enough to reduce the proportional coefficient of the PID controller [41–43]. Therefore, we
made a proportional change in the coefficient of the controller from 4 to 2. The result of
this change is shown in Figure 21. After load surge, the frequency dropped to 43 Hz and
recovered to the nominal value within 50 s.

Figure 21. Parameters of the transient process.

6.3. Emergency Load Shedding

Compared to load surge, load shedding is much more dangerous. To simulate load
shedding, we increased the load to the nominal value and when the generator reached the
nominal conditions, the load was shed. As soon as the transient process ended and the
frequency was nominal, the generator circuit breaker was turned off. The time of tripping
corresponds to the simulation time, i.e., 90 s (Figure 22).

Figure 22. Parameters of the transient process during emergency load shedding.
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When the load dropped to 12 MW, the unit accelerated to a frequency of 57 Hz (114%);
at the same moment, the controller operated and closed the guide vane to the minimum
opening. It took approximately a minute for the frequency to recover. The controller
responded instantly, at the moment of load shedding, by “landing” the guide vane on the
lower opening limit, thereby preventing further acceleration of the rotor of the unit.

7. Conclusions

The paper presents a model developed to simulate the electromechanical transient
processes of a hydraulic unit operating for an isolated load. With the constructed model,
numerical modeling was carried out and the characteristics of transient processes were ob-
tained for various operating conditions of the unit (no-load, load surge, and load shedding).
Similar results can be used to study and analyze the operation of existing systems.

The modeling results can be used not only to examine but also to tune the controllers
and debug automatic systems used at hydropower plants. Moreover, such real-time
simulations can be used to build simulators for the plant personnel to study all the nuances
of the process control systems of a hydroelectric unit and its auxiliary equipment.
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Abstract: Line start permanent magnet assisted synchronous reluctance motor (LSPMaSynRM)
is an important high-efficiency and high-quality motor. Its parameter matching and operating
characteristics are complex, with an increase in salient ratio resulting in a valley in the power factor
curve. In this study, the formation principle of power factor curve valley was first deduced by the
mathematical model of LSPMaSynRM. Then, the parameter matching principle of power factor curve
valley was analyzed in detail. On this basis, the characteristics of load rate corresponding to the
critical state of the power factor curve valley were obtained, and its influence on whole load efficiency
was analyzed. The design principles for optimal efficiency in wide high-efficiency region and specific
load point were obtained. Finally, a 5.5 kW LSPMaSynRM was designed and manufactured to verify
the validity of the principle.

Keywords: line start permanent magnet assisted synchronous reluctance motor; power factor curve
valley; efficiency; whole load region

1. Introduction

High-efficiency, light-weight, and high-quality motor systems are the basic component
of high-end equipment in the field of engineering. Permanent magnet synchronous motor
(PMSM) has the advantages of high efficiency and high power density [1,2]. It is often
used in high-quality motor but requires high cost. Without permanent magnet material,
synchronous reluctance motor (SynRMs) relies on reluctance torque to drive the motor. Its
cost is low, but its power factor and torque density are also low. Meanwhile, its current is
large, and it is difficult for it to be efficient and light.

Permanent magnet assisted synchronous reluctance motor (PMaSynRM) is a special
permanent magnet motor that combines the respective characteristics of PMSM and SRM [3].
Reasonable selection and design of rotor blades can improve the salient ratio and power
factor of PMaSynRM to reduce the running current. At the same time, the performance
of the motor can be optimized under certain constraints by optimizing the matching of
permanent magnet torque [4,5].

Many studies have been carried out in this field, including the aspects of power factor
and efficiency. In [6], the influence of the shapes of flux barriers and the number of “rotor
virtual slots” was investigated based on the multiphysics model, which can achieve low
vibration for PMSynRMs. In [7], in order to obtain maximum torque and minimum torque
ripple in the design, optimal values of motor parameters were obtained by improving the
rotor geometry of the three-phase PMaSynRM. In [8], the influence of permanent magnet
flux linkage on power factor was analyzed, and it was proposed that the power factor
could be raised to more than 0.8 when the permanent magnet flux linkage was more
than 3 times the q-axis. In [9], a PMaSynRM prototype with four poles was designed
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by placing ferrite magnets inside the rotor of a SynRM, and experimental measurements
were performed under various loading conditions. In [10], the optimizing rotor structure
was found to improve the power factor, with the power factor of the prototype increasing
from 0.879 to 0.918. In [11], the power factor was found to increase from 0.35 to 0.63 by
adding AlNiCo on the basis of synchronous reluctance motor. In [12,13], the multilayer
magnetic barrier structure was considered, and it was shown that the choice of the first
permanent magnet thickness had a great influence on the power factor. In [14], the shape
parameters were used to redefine the load rate so as to realize optimization of the load
rate to meet the requirements of high efficiency. In [15], a simple structure was proposed
with the topology composed of an internally inserted V-shape permanent magnet (IVPM)
machine and a synchronous reluctance machine (SynRM). The main novelty was that the
PMs in the rotor were diverted so that the reluctance component of the torque and the
magnetic component of the torque reached their maximum values at the same load angle,
which eventually led to a higher output torque for the same volume. In [16], a PM-assisted-
SynRM design was proposed for high torque performance. Although it used the torque
components to the fullest, it suffered from high torque ripple and relatively complex rotor
geometry. In [17], time-stepping FEM and multiobjective genetic algorithm were used
to optimize PMaSynRM, which improved the motor efficiency to more than 92% under
rated working conditions and met the IE4 standards. In [18], a two-pole multibarrier
ferrite-assisted SynRM for water pumps was designed, with the prototype having high
power factor and efficiency. Many scholars have analyzed the operating characteristics
of PMaSynRM, such as efficiency and power factor, but most of them have focused on
specific rotor structure and geometric parameters. There have been few studies on the
efficiency and power factor characteristics of PMaSynRM in the whole load range from the
perspective of parameter matching.

In this study, the formation principle of power factor curve valley was deduced by
the mathematical model of LSPMaSynRM. The deduction was not confined to any specific
rotor structure so that the conclusion could be universal. On this basis, the matching
of parameters and the characteristics of the corresponding load rate were analyzed in
detail. Then, further analysis of the impact on whole load efficiency was carried out.
Finally, a 5.5 kW LSPMaSynRM was designed and manufactured to verify the validity of
the principle.

2. Analysis of the Principle of Power Factor Curve Valley of PMaSynRM

Power factor is the rate of active power to apparent power, which is essentially the
phase relationship between the voltage and current in a specific operating state of the
motor determined by parameters under the determination of torque. According to the
mathematical model of PMaSynRM, the torque equation can be obtained as follows:

Te =
mpE0U

ωXd
sin θ +

mpU2

2ω
(

1
Xq

− 1
Xd

) sin 2θ (1)

where Te is electromagnetic torque, m is the number of phases, p is poles, E0 is no-load
back electromotive force (EMF), θ is the angle between voltage and no-load back EMF, U
is voltage, ω is angular frequency, Xd is d-axis reactance, and Xq is q-axis reactance. The
vector diagram was shown in Figure 1.

The torque equation can also be expressed as follows:

Te = p[ψfis sin β +
1
2
(Ld − Lq)i2s sin 2β] (2)

where ψf is permanent magnet flux linkage, β is the angle between current and permanent
magnet flux linkage, is stator current, Ld is d-axis inductance, and Lq is q-axis inductance.

160



Energies 2022, 15, 3866

Figure 1. The vector diagram.

In sine steady state, the torque equation can be changed as follows:

Te = mp[
E0

ω
Is sin β +

1
2
(Ld − Lq)I2

s sin 2β] (3)

Ignoring resistance, the d-axis and q-axis current are as follows:

Id =
E0 − U cos θ

Xd
(4)

Iq =
U sin θ

Xq
(5)

The stator current can be expressed as follows:

Is =

√
(

E0 − U cos θ

Xd
)

2
+ (

U sin θ

Xq
)

2
(6)

Putting it into torque Equation (3), the torque equation can be expressed as follows:

Te =
mpE0

ω

√
( E0−U cos θ

Xd
)

2
+ (U sin θ

Xq
)

2
sin β

+mp
2ω (Xd − Xq)[(

E0−U cos θ
Xd

)
2
+ (U sin θ

Xq
)

2
] sin 2β

(7)

Torque is a function of θ and β. Equation (1) shows that the shape of the torque curve
depends on E0, U, Xd, and Xq, and the torque increases as θ increases. Equation (7) shows
that the shape of the torque curve depends on E0, U, Xd, Xq, and θ. For a manufactured
motor, E0, Xd, and Xq are constants, and U can also be regarded as a fixed value. As the
torque increases, there is a one-to-one correspondence between θ and β. This corresponding
relationship depends on the motor parameters E0, U, Xd, and Xq, which can be attributed
to two parameters, namely λ = E0/U, which indirectly reflects the amount of permanent
magnets, and the salient ratio ρ = Xq/Xd. Different parameters have different corresponding
relationships between θ and β, which ultimately reflect different power factor curve states.

The relationship between θ and β can be obtained by simultaneous Equations (1) and (7).
Because the equation is very complicated, it is impossible to obtain the analytical expression
of the relationship. One solution of θ corresponding to two β can be obtained by numerical
methods. According to the running state of the motor, the true solution and false solution
can be judged as shown in Figure 2.

The introduction of the square term of θ in the process of deriving Equation (7) results
in two β solutions. According to the voltage and torque equations, the voltage circle and
the torque curve are obtained in the current plane of the d–q axis, and the true solution is
obtained according to the intersection point, as shown in Figure 3.

In this way, a torque curve with θ and β as independent variables can be obtained.
The state of the curve depends on parameters λ and ρ. Under certain conditions, the two
curves will have special states, as shown in Figure 4.
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Figure 2. β corresponding solution at θ = 60.

Figure 3. The torque curve in plane of the d-q axis with per unit value of id-iq.

Figure 4. The θ-Te and β-Te curves with per unit value.

In order to observe the relationship of the curves more clearly, the β-Te curve was
shifted to the left by 90◦, as shown in Figure 5. It can be seen that there are three intersections
between the two curves, and the torque at the rightmost intersection is in the unstable
range, so it will not be discussed. At the two intersections on the left, the two torque curves
correspond to the same angle, and the power factor is 1. Between the crossing points and
on both sides, the two curves of the same torque correspond to different angles, and the
power factor is less than 1. This shows that there will be a valley in the power factor curve
in the middle of two maximum values.
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Figure 5. The θ-Te and (β − 90◦)-Te curves with per unit value.

At the same time, the θ and β relationship curve and the power factor curve can be
drawn as the torque increases. As shown in Figure 6, the valley in the power factor curve
is apparent.

Figure 6. The power factor curve.

From the above analysis, it can be seen that the power factor curve valley is caused
by two torque curves with two intersection points in the stable operating interval under
matching parameters. It can also be understood that θ and β increase at different speeds.

3. The Influence of Parameter Matching on Power Factor Curve Valley of PMaSynRM
and Its Corresponding Load Rate

3.1. The Condition of Power Factor Curve Valley and the Principle of Parameter Matching

The analysis in the previous section shows that the power factor curve valley is
caused by the increasing speed of θ and β being different as load increases. Therefore, the
condition is that there is a β − θ > 90◦ state during load increases. Whether there is a state
of β − θ > 90◦ depends on the parameters of the motor. Starting with the matching of λ
and ρ, the principle that produces power factor curve valley are analyzed in this section.

The change curves of β with θ under different salient ratio with λ = 0.2 are shown in
Figure 6. With the increase in salient ratio, the middle part of curve stretches and protrudes
to the upper left corner. The slope of the front part increases, but the slope of the back
part decreases. This shows that as the salient ratio increases and as the load increases, the
growth rate of β of the low load zone increases significantly, while the growth rate of β
of the high load zone decreases. Throughout the whole load range, the value of β − θ
increases first and then decreases. There must be a salient ratio state that makes a certain
load point of β − θ = 90◦, which can be called the critical point of the power factor curve
valley. Then, there will be a valley on the power factor curve with increasing salient ratio.
As can be seen from the rectangular box in Figure 7, the value of θ at the starting point
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of the curve is around 80◦. As the salient ratio increases, the range of change is relatively
small, but the range of change of β is relatively large.

Figure 7. The curves of different ρ at λ = 0.2.

The change curves of β with θ are shown in Figure 8 for the condition of λ = 0.5. The
state of the curves as the salient ratio increases is similar to Figure 7. The difference is that
the initial value of θ in the rectangular box is about 60◦.

Figure 8. The curves of different ρ at λ = 0.5.

The change curves of β with θ are shown in Figure 9 for the condition of λ = 0.8. The
overall state of the curve is similar to Figures 7 and 8, and the initial value of θ is further
reduced to about 30◦.

Figure 9. The curves of different ρ at λ = 0.8.

As can be seen from Figures 7–9 as λ increases, the initial value of θ gradually decreases.
The smaller the value of θ, the less difficult it is to reach β − θ > 90◦, which means that
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it is easier for a valley to be formed on the power factor curve. At the same time, the
distribution range of entire curve β and θ increases as λ increases.

The above analysis shows that there are different parameter matching principles that
result in a valley in the power factor curve. The states of β − θ = 90◦ can be obtained by
calculation, as shown in Figure 10. The required salient ratio increases as λ decreases. As
the corresponding critical point of the power factor curve valley value of θ increases, the
distance to the initial point is closer and the initial value of β and θ are larger.

Figure 10. The curves under different parameter matching.

By linking the critical point of the power factor curve valley in the λ-ρ coordinate plane,
the power factor curve valley area can be obtained. The parameter matching principles can
be obtained as shown in Figure 11.

Figure 11. Diagram of power factor curve valley area.

The dividing line is not a straight line, and the required ρ increases nonlinearly. The
linear relationship is basically between λ = 0.6 and 0.9, and the required ρ value increases
sharply in the interval less than 0.5. When the value is low, it is difficult to reach the state
of power factor curve valley.

3.2. The Influence of Parameter Matching on the Load Rate of the Critical Point of Power Factor
Curve Valley

In the previous section, the conditions and parameter matching of power factor curve
valley were analyzed. From Figure 10, it can be seen that the critical points of different states
correspond to different θ values, indicating that the load rates are different. In order to
obtain the principles, the torque curve in different states were calculated, and the β-Te curve
was moved to the left by 90◦ to make the relationship clearer, as shown in Figures 12–16.
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Figure 12. The curve of per unit value of torque at λ = 0.2.

Figure 13. The curve of per unit value of torque at λ = 0.3.

Figure 14. The curve of per unit value of torque at λ = 0.5.

Figure 15. The curve of per unit value of torque at λ = 0.6.
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Figure 16. The curve of per unit value of torque at λ = 0.8.

As can be seen from the above figures, the greater the value of λ, the greater the load
rate corresponding to the critical point of the power factor curve valley. When the value of
λ is small, the β-Te curve is distributed in a smaller β angle range, while the torque range
is relatively large. At the same time, the slope of the rising interval of the θ-Te curve is
relatively small, so the interval between two curves is smaller. When the value of λ is larger,
the interval between two curves is larger, indicating that the interval of high power factor
is larger. The load rate curve corresponding to the critical point of the power factor curve
valley under different λ is shown in Figure 17.

Figure 17. The load rate curve with different λ.

The load rate and value of λ basically change linearly, and the minimum current state
at any load point can be obtained by selecting the reasonable parameters according to
the curve.

3.3. Adjustment of Load Rate Corresponding to the Minimum Current Point

The load rate of the power factor curve valley can also be understood as the minimum
current at a specific load rate. According to the analysis in the previous section, the mini-
mum current under different load rates can be achieved under specific λ and ρ matching.
This is a method of adjusting the load rate corresponding to the minimum current point.
Its characteristic is to achieve the minimum current with the minimum ρ under each λ.
The high load point requires a larger λ and a smaller ρ, and the low load point requires
a smaller λ and a larger ρ. This can save the amount of permanent magnets. This is the
most reasonable method in theory. However, its disadvantage is that low load requires a
large ρ, which is difficult to achieve with the existing rotor manufacturing technology in
engineering.

From the analysis, it can be seen that two minimum current load points are generated
under the power factor curve valley. One point tends toward low load, and the other point
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tends toward high load. In this way, there can be a second method of adjusting the load rate
corresponding to the minimum current point. The curves are shown in Figures 18 and 19
when λ is 0.8.

Figure 18. The curve of per unit value of torque at λ = 0.8 ρ = 7.

Figure 19. The curve of per unit value of torque at λ = 0.8 ρ = 20.

The minimum current point gradually moves to low load as the salient ratio increases,
so the minimum current at any load point can also be achieved. Compared with the first
method, the second method can achieve the minimum current at the low load point with a
smaller salient ratio. The disadvantage of this is that the load point current between two
minimum points of current is large.

4. Influence of Power Factor Curve Valley of PMaSynRM on Whole Load Efficiency

The analysis of efficiency involves losses and needs to be targeted at specific research
objects. A 5.5 kW motor was taken as an example for the present analysis.

4.1. The Influence of the Power Factor Curve Valley on the Efficiency of Load Rate Point

Different parameter matching can realize the power factor curve valley of any load
point. In this state, further analysis is needed to determine whether the efficiency of the
load point is optimal. λ = 0.5 and λ = 0.8 were selected to calculate the efficiency under
different salient ratios. The load rate efficiency under the power factor curve valley is
shown in Figures 20 and 21.

As shown in Figure 20, the efficiency of the critical point of the power factor curve
valley is not the highest. As the salient ratio increases, the efficiency changes from high
to low.

As can be seen in Figure 21, the power factor curve valley occurs at a critical point with
the highest efficiency, and the efficiency on both sides gradually decreases. The highest
efficiency in different states is different. This is because the corresponding load point
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is the high load point when λ is 0.8. Here, copper loss accounts for a larger proportion
of the total loss, and the magnitude of the current determines efficiency. Therefore, the
power factor curve valley occurs at the critical point with the highest efficiency. The
corresponding load point is the low load point when λ is 0.5. The copper loss accounts for a
smaller proportion of the total loss, and the current cannot completely determine efficiency.
The demagnetization field increases as the salient ratio decreases, the iron loss gradually
decreases, and the efficiency gradually increases. By combining the loss rate of each load
point, a reasonable design of motor parameters can obtain optimal efficiency of any load.

Figure 20. Efficiency curve with different ρ at λ = 0.5.

Figure 21. Efficiency curve with different ρ at λ = 0.8.

4.2. The Influence of the Corresponding Load Rate Point of Power Factor Curve Valley on Whole
Load Efficiency

Although a reasonable design of motor parameters can obtain optimal efficiency of any
load, the effect of the size of the high-efficiency zone in the whole load range needs further
research. The conditions of λ = 0.5 and λ = 0.8 were again selected for analysis. The power
factor and efficiency of the whole load were calculated and are shown in Figures 22–24.

Compared with the state of λ = 0.5, the power factor of low load is higher and the
power factor of high load is lower, as shown in Figure 22. Compared with the state of
λ = 0.5, the low load efficiency is high, and the high load efficiency is low, as shown in
Figures 23 and 24. The copper loss accounts for a large proportion of total loss in the high
load area. The current state of λ = 0.8 is small and has high efficiency. The current of λ = 0.5
in the low load area is small and has high efficiency, but the copper loss is small. Therefore,
the low load efficiency difference between the two states is less than that for high load
efficiency. As can be seen, the larger the λ, the larger the range for high efficiency, and the
smaller the λ, the higher the efficiency range for low load.
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Figure 22. Power factor curves.

Figure 23. Efficiency curves.

Figure 24. Magnification diagram of efficiency.

5. Prototype Test

A 5.5 kW PMaSynRM was designed and manufactured. The parameters of the motor
are shown in Table 1, and the structure of the rotor is shown in Figure 25. The inductance
of the prototype was tested as shown in Figure 26. The d-axis inductance was 41.1 mH, the
q-axis inductance was 127.8 mH, and the salient pole rate of the motor was 3.11.
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Table 1. Main parameters of the prototype.

Parameters Value

Power 5.5 kW
Rated speed 1500 r/min
Poles 4
Inner/outer diameter of stator 210 mm/136 mm
Stator slots 36
Air gap 0.5 mm
Core length 145 mm
Phase resistance 0.559 Ω
d-axis inductance 41.1 mH
q-axis inductance 127.8 mH
Flux linkage of the permanent magnet 0.723 Wb
Leakage stator inductance 5.54 mH
Rotor leakage inductances in q-axis referring to the stator side 3.06 mH
Rotor leakage inductances in d-axis referring to the stator side 3.06 mH
Rotor resistance in d-axis 0.740 Ω
Rotor resistance in q-axis 0.740 Ω
Moment of inertia 0.05 kg·m2

Maximum moment of inertia with a static load moment
torque to the rated value 3.5 kg·m2

Magnet grade N38SH
Electric steel grade 35W270

Figure 25. The prototype of the rotor.

Figure 26. The inductance test of the prototype.

The rated phase voltage of the prototype was 220 V, and the back-EMF was 160.5 V by
experimental test. λ and ρ were not on the curve of the critical point of the power factor
curve valley discussed above, and the back-EMF and ρ could not be changed after the
prototype was produced. In order to verify the correctness of the above conclusions, the
input voltage was only changed for testing. According to the previous curve, when input
voltage is adjusted to 174.3 V, the motor is in a critical state of the power factor curve valley.
The input voltage was adjusted to 174.3 V, and the power factor was tested as shown in
Figure 27. The PMaSynRM was used as the tested motor linked to a torque sensor, and the
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load motor was a DC generator. The test power factor curve is shown in Figure 28, and the
efficiency curve is shown in Figure 29.

Figure 27. The load test of the prototype.

Figure 28. The power factor curve (U = 174.3 V).

Figure 29. The efficiency curve.

The test results showed that, when the power factor reached 1, the load rate was
between 0.3 and 0.4, which is the critical state of the power factor curve valley.

6. Conclusions

From the LSPMaSynRM mathematical model, the principle of the power factor curve
valley was derived, and its parameter matching principle was analyzed. Then, the char-
acteristics of the corresponding load rate and the influence on whole load efficiency were
further analyzed. The conclusion reached in this study is not confined to any specific rotor
structure. As long as the parameter matching conforms to the analysis carried out here,
the corresponding power factor characteristics can be obtained, thus providing a certain
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theoretical basis for the detection and judgment of the motor running state. The conclusions
are as follows:

(1). The principle of the power factor curve valley of LSPMaSynRM is that the matching of
specific motor parameters causes the torque curve to deform, and a valley is generated
by two intersection points when two torque curves are in the stable operating range.
The parameter matching relationship is shown in Figure 11, λ is basically a linear
relationship between 0.6 and 0.9, and the required ρ value increases sharply in an
interval of less than 0.5.

(2). The load rate at the critical point of the power factor curve valley is basically linear to
λ and increases with increasing λ.

(3). A reasonable design of motor parameters can obtain the minimum current for any
load. In the critical state of power factor curve valley of different parameter matching,
the larger the λ, the larger the high-efficiency range and the higher the efficiency of
the high load, whereas the smaller the λ, the higher the efficiency of the low load,
Shengnan Wu, Zhanyang Yu and Lihui Chen.
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Abstract: Asynchronous loads (AL), because of their low negative-sequence resistance, produce the
effect of reduced unbalance at their connection points. Therefore, proper modeling of unbalanced
load flows in power supply systems requires properly accounting for AL. Adequate models of the
induction motor can be realized in the phase frame of reference. The effective use of such models is
possible only if accurate data on the parameters of induction motor equivalent circuits for positive
and negative sequences are available. Our analysis shows that the techniques used to determine
these parameters on the basis of reference data can yield markedly disparate results. It is possible
to overcome this difficulty by applying parameter identification methods that use the phase frame
of reference. The paper proposes a technique for parameter identification of models of individual
induction motors and asynchronous load nodes. The results of computer-aided simulation allow
us to conclude that by using parameter identification, we can obtain an equivalent model of an
asynchronous load node, and such a model provides high accuracy for both balanced and unbalanced
load flow analysis. By varying load flow parameters, we demonstrate that the model proves valid over
a wide range of their values. We have proposed a technique for the identification of asynchronous
load nodes with such asynchronous loads, including electrical drives equipped with static frequency
converters. With the aid of the AL identification models proposed in this paper, it is possible to solve
the following practical tasks of management of electric power systems: increasing the accuracy of
modeling their operating conditions; making informed decisions when taking measures to reduce
unbalance in power grids while accounting for the balancing adjustment effect of AL.

Keywords: power supply systems; unbalanced load flows; unbalanced load; parameter identification

1. Introduction

The electric power system (EPS) is a set of complex devices that generate, transmit,
distribute, and consume electric power. Improving the reliability of operation and effi-
ciency of power system use is impossible without solving a set of problems relating to
load dispatching in ordinary and emergency states. Due to the introduction of transient
monitoring tools, it became possible to determine the parameters of power system elements
in real-time.

Solving the problems of load dispatching in EPSs is based on the use of mathematical
models. They are used for steady-state load flow analysis, optimization, state estimation,
transient analysis, etc. The basis of the mathematical model of an EPS is an equivalent
circuit, which is formed from the circuits of individual components, namely: power trans-
mission lines, power transformers, generating equipment, load nodes, etc. The parameters
of the equivalent circuit of each component are usually determined by reference data or
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nameplate data and are considered immutable, although they depend on wear and tear
of components, weather conditions, and other factors. The errors in determining these
parameters on the basis of reference data are quite significant. For example, the error of
the active resistance of a line can be in the range of +16–−20%, and the representation of
corona discharge losses by a constant value of active conductivity can lead to an error of
1.5–3 times the actual value when determining the losses. The most significant errors can
occur in the process of building the models of load nodes. This is due to the considerable
uncertainty in the mix of consumers served and their operating conditions. The problem of
adequate modeling of load nodes can be solved on the basis of identification methods.

Issues of parameter identification of induction machines and nodes with predomi-
nantly unbalanced loads have been addressed in a sizeable number of studies. For example,
article [1] proposed a technique for identifying the parameters of a three-phase induction
motor in the case when the initial values of the estimates change in a wide range. Study [2]
presented the results of an experimental study of the efficacy of the technique of adaptive
identification of electrical parameters of the induction machine under steady-state condi-
tions on the basis of the power balance. Article [3] dealt with the issues of the identification
of load nodes and their stability control. In [4–6], the results of the modeling and identi-
fication of an induction machine were presented. Article [7] discussed the identification
of the parameters of an induction motor in its operational mode. Study [8] described an
algorithm proposed by its authors for the identification of induction machine parameters
by a recursive least-squares method. Article [9] studied mathematical methods of identifi-
cation of lumped parameters of electrical machines. It discussed the basic principles and
mathematical foundations of lumped parameter identification methods for various types
of electrical machines, including induction machines. Article [10] proposed an approach to
parameter identification of induction machines. The excitation input signal was determined
by optimization methods. Instrumental variable estimation was introduced to improve the
quality of identification by least-squares estimation. A method for magnetizing curve iden-
tification of induction machines was described in [11]. The study proposed an experimental
method for determining the magnetization curve specifically designed for vector-controlled
drives. The method employed an indirect vector controller and a PWM inverter, which
were used during normal operation of the drive. The method was verified by extensive
experimentation. A novel parameter identification method for the induction motor (IM)
was proposed in [12]. The study pointed out that the effect of vector control depends
largely on the accuracy of setting its parameters, which change with temperature varia-
tion. Based on the relationship between motor winding resistance and temperature, the
authors presented a method for calculating dynamic resistance by on-line detection of the
winding temperature. The experiment results attested to the high identification accuracy
of the approach. Article [13] considers real-time parameter identification algorithms for
effective control of electrical machines. Study [14] proposed a technique of flux estimation
of induction machines with the linear parameter-varying system identification method.
The identification algorithm was tested on data obtained from a nonlinear simulation
model with continuous time. Paper [15] described a method for parameter identification of
nine-phase induction machines with concentrated windings. Studies [16,17] considered a
method of induction machine parameter identification suitable for self-commissioning. An
algorithm for parameter identification of electrical machines using numerical simulations
was proposed in articles [18,19]. The problem of reducing the electrical energy consumption
of fans through parameter identification of the drive was solved in [20]. A method for
identification of induction machine parameters, including core loss resistance, using a
recursive least mean square algorithm was proposed in [21].

An analysis of the research contributions reviewed above allows us to conclude that
the relevance of problems with parameter identification of IMs and asynchronous load
nodes has been well established. However, most of the reviewed works dealt with the
determination of parameters of individual IMs, whereas load nodes were considered
only in [3]. The study relied on a single-line representation of the power system, which
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significantly hindered the modeling of unbalanced load flows. Adequate models of IMs
and asynchronous load nodes in the phase frame of reference, which is the most natural
form of representation of multiphase circuits, were proposed in [22,23]. However, effective
use of such models is possible only if accurate data on the parameters of IM equivalent
circuits for positive and negative sequences are available. The parameter identification
techniques discussed below can be used to solve this problem.

2. Modeling of Unbalanced Loads in the Phase Frame of Reference

On the basis of phase coordinates, adequate models [22] of asymmetric modes of
complex electric power systems at the fundamental frequency and frequencies of higher
harmonics can be implemented. So, for example, an experimental verification of the EPS
modeling technique in phase coordinates, performed on the basis of comparison with
synchronized measurement data for a model containing 619 nodes and 2996 branches,
showed that the differences between the calculated and measured values of the asymmetry
coefficients do not exceed 0.6%, and for the phase values stresses 2.3%.

Compared to the static elements of an EPS, such as power lines and transformers, an
asynchronous load, including a large number of motors, is a more complex object.

The asymmetry of the resistance matrix corresponding to the motor poses challenges
to simulation based on the lattice circuit with RLC elements. The difficulties are due to the
presence of two magnetic fields rotating clockwise and counterclockwise. When the supply
voltages are unbalanced, the induction motor has sine wave processes running at three
frequencies: 50 Hz, the frequency of the slip s, and about 100 Hz.

The behavior of induction motors under balanced three-phase voltage, when the motor
can be represented by a single-line equivalent circuit, has been thoroughly researched.
Induction motors can have different parameters of equivalent circuits during starting up
and operation with low slip values. Furthermore, there are several variants of equivalent
circuits. From the standpoint of load flow analysis in the phase frame of reference, when it
is necessary to consider motor parameters at low slip values as well as at slip values close
to 2 (electromagnetic brake mode), it is advisable to make the following assumptions.

First, it is convenient to use the equivalent circuit of an induction motor with the
external magnetizing circuit placed on the primary terminals, according to Figure 1a. It is
assumed that at start-up and the slip value of 2 − s (for negative sequence voltage), the
equivalent circuit will have different parameters of the rotor circuit, Figure 1b. Figure 1
shows the magnetization branch components Rμ, Xμ, stator resistances R1, X1, and equiv-
alent rotor resistances referred to the stator R2

s , X2, as well as the corresponding starting
parameters R2P

2−s , X2P.

μX
U

kX

s
R

I
kPX

s
R P

−μX

I

Figure 1. Positive (a) and negative (b) sequence equivalent circuits.

Second, it was assumed that in the start-up and electromagnetic brake modes (for the
negative voltage sequence), the square of the reactive resistance is much greater than the
square of the active resistance.

Third, with respect to the magnetization branch, a dual approach was adopted. When
the no-load parameters are known (cosϕx and active power Px), its parameters are deter-
mined on the basis of the relations presented below, and when the parameters are unknown,
the magnetization branch is ignored.
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Fourth, the parameters of the circuit components in Figure 1 are determined from
the rated values of efficiency η, power factor cos ϕH, current IGH, and the current flowing
through the part of the circuit that determines the load flow.

Fifth, the values of the positive and negative sequence voltages and the given mechan-
ical power of the motor are used to determine the positive and negative sequence currents.
In this case, the motor is modeled by current sources connected in a star (Figure 2). The
values of the source currents are adjusted at each step of the iterative process. The motor
neutral is considered to be insulated, and no zero-sequence currents occur in its circuits.

 
Figure 2. Equivalent circuit in the phase frame of reference. (A, B, C—Phase A, Phase B, Phase C,
respectively, N—neutral point).

According to Figure 1a, the parameters of the circuit at rated power settings for the
positive sequence are determined from the values of efficiency η, rated current IGH, and
power factor cos ϕH.

If the active power Px and cos ϕx of the no-load operation of the motor are known, the
parameters of the magnetizing branch and the current flowing through it can be determined
from them:

Zμ =
3 U1

2 cosϕx

Px
, Rμ = Zμ cosϕx, Xμ =

√
Zμ

2 − Rμ
2 (1)

The mechanical shaft power of the motor at rated settings is determined by the active
power dissipated in the resistance R2(1−sH)

sH
, where sH is the rated slip. The efficiency factor

is made up of the following loss components:

• mechanical losses in the rotor ΔPM;

• steel losses in the stator U1
2

Zμ
2 Rμ;

• additional losses in the stator ΔPd;
• copper losses due to stator and rotor resistances R1 and R2.

The efficiency at rated power settings is defined as the ratio of shaft power to gross power:

η = PH

PH +ΔPM +ΔPd + 3ICH
2(R1 + R2) +

3U1
2

Zμ2 Rμ

,

R0 = R1 + R2,

R0 = PH
3IGH

2

(
1
η − 1 − ΔPM +ΔPd

PH
− 3U1

2Rμ

PH Zμ
2

)
.

(2)

The magnetizing branch current when the vectors are counted from the voltage
.

U1 is

.
Iμ =

U1

Rμ + j Xμ
= Iμ′ + j Iμ ′′ =

U1 Rμ

Rμ
2 + Xμ

2 − j
U1 Xμ

Rμ
2 + Xμ

2 . (3)

At rated load, the motor current is

.
IH = IH

′ + j IH
′′ =

PH
3 U1 η

− j
PH

3 U1 η

√
1

cos2 ϕH
− 1, (4)

where PH
η is the active power consumed at rated power settings.
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The rated current and power factor are determined by the expressions:

IGH =

√
(IH ′ − Iμ′)2 + (IH ′′ − Iμ ′′ )2; (5)

cosϕGH =
IH

′ − Iμ′

IGH
. (6)

However, if the no-load operation parameters of the motor are unknown, it is possible
to assume, by way of approximation, that IGH = PH

3 U1 η cosϕH
neglecting the magnetizing

current and considering that cos ϕGH = cos ϕH .
According to the equivalent circuit of Figure 1a, we can write:

.
IG =

.
U1(

R1 +
R2
s

)
+ j Xk

, Xk = X1 + X2,

IGH =
U1√(

R1 +
R2
sH

)2
+ Xk

2

, (7)

cosϕGH =
R1 + R2/sH√(

R1 +
R2
sH

)2
+ Xk

2

=
R√

R2 + Xk
2

, (8)

R = R1 + R2/sH . (9)

The system of Equations (2), (7) and (8) is solved by simple substitution. From
Equation (8) we determine

Xk
2 = R2

(
1

cos2ϕGH
− 1

)
,

and it follows from Equation (7) that Z2 =
(

U1
IGH

)2
= R2 + Xk

2, so that R = Z cosϕGH .
From relations (2) and (9) we can determine components R1 and R2:

R2 =
sH(R − R0)

1 − sH
; R1 = R0 − R2.

When determining R0 from relation (3), it can be assumed that the added losses are
0.5% of the input power and that the mechanical losses are 1.0% of the rated power.

Denoting X1 + X2p = Xkp and assuming that
(

R1 + R2p
)2

<< Xkp
2, we obtain

Xkp =
U1

KP IGH
,

where KP is the locked-rotor current ratio. From the equation of the electromagnetic
locked-rotor torque when the magnetization branch is ignored, we get the relation

MP =
3 U2

1
R2p p

X2
kp
ω

, or R2p =
ω

p

MX2
p

3 U2
1

,

where p is the number of motor pole pairs.
The locked-rotor torque was determined from the locked-rotor torque ratio kMP = MP

MH

and the rated torque MH = 2PH p
(1+η)2π f , from which it follows that

R2p =
2 kMPPHX2

kp

3 U2
1
(1 + η)

.
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The multiplier 2
1+η allows one to convert the shaft power to the electromagnetic

power of the motor with a small error.
Effective use of the described model is possible only if accurate data on the param-

eters Xk, R2, XkP, R2P, Xμ of IM equivalent circuit for positive and negative sequences
are available. This problem can be solved by applying the parameter identification tech-
nique [22], described below. Identification results can be used in the unbalanced load flow
analysis of complex power supply systems. In this case, the asynchronous load node can
be represented by an equivalent IM according to the technique detailed in [24].

3. Induction Motor Identification Technique

The problem of adequate modeling of load nodes can be solved on the basis of identi-
fication methods. In the context of power system control, it is advisable for identification
purposes to use information about parameters of operating conditions obtained from
information and measurement systems built using PMUs (Figure 3).

( ) ( )m
HA

m
HA jQP +
( ) ( )m

HB
m

HB jQP +
( ) ( )m

HC
m

HC jQP +

( ) ( )
HAHA jQP +

( ) ( )
HBHB jQP +

( ) ( )
HCHC jQP +

( ) ( ) ( )
HCHBHA U,U,U ( ) ( ) ( )m

HC
m

HB
m

HA U,U,U

 

Figure 3. Synchronized measurements.

The problem of topology and parameter identification of load nodes can be formalized
as follows [22,25]. To this end, we can introduce a class of models � =

(�1 �2 . . . �m
)

describing the processes occurring at load nodes. Each of the models is represented as

�i = �i(X, Z, P, Σ, L)

where xk ∈ X, k = 1 . . . nX—state variables; zk ∈ Z, k = 1 . . . nZ—input variables; pk ∈ P,
k = 1 . . . nP—model parameters subject to identification; σk ∈ Σ, k = 1 . . . nΣ—internal rela-
tions defining the model structure; lk ∈ L, k = 1 . . . nX—functional relationships acting as
mathematical relations operators allowing to find the parameters describing the object state
xk ∈ X, k = 1 . . . nX by inputs zk ∈ Z, k = 1 . . . nZ, with the required degree of certainty.

Then we can write
X = L(Y, P, Σ). (10)

This relationship is called the rule governing the functioning of the model. To form the
relationship (10), it is necessary to choose from a class of models � =

(�1 �2 . . . �m
)

a model �k ∈ � with the rule
L∗ :

(
�(O)

)
→ �k.
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The parentheses in the last relation denote that L∗ is a partially defined relation; that
is, not all characteristics of the original �(O) are captured by the model, but only those that
are deemed significant in solving the stated problem of modeling power system conditions.

The functional transformation L∗ can be chosen subject to the following condition

‖X − L∗(Y, P, Σ)‖ → min
pk ∈ P

σk ∈ Σ

in some parts of the chosen class of functions.
In addition, the choice of L∗ can be made subject to the condition that there be a

minimum of some criterion of discrepancy between the model and the original:

ℵL∗ → min
L∗∈L

.

As a rule, the choice of the functional transformation L∗, carried out at the stage of
structural identification, is subjective and does not lend itself easily to rigorous formaliza-
tion. Figure 4 is a diagram showing possible types of load node models.

Figure 4. On the problem of structural identification of load nodes.

181



Energies 2023, 16, 1893

Parameters Xk, R2, XkP, R2P can be determined on the basis of measurements of
complexes of currents consumed by the motor and voltages at its terminals, as well as its
rotation speed. To solve this problem, it is necessary to know the resistance of the magne-
tizing branch Xμ. This parameter can be found on the basis of additional measurements,
e.g., under no-load conditions, or determined by the indirect technique described below.

If the value of Xμ is known, the parameters of the equivalent circuit of the positive
sequence can be found based on measurements of the moduli and phases of the IM currents
and voltages, as well as the speed of rotation (slip s) based on the following relation:

ZD1 =
jXμZk

jXμ + Zk
, (11)

where Zk = R2
s + jXk; ZD1 =

.
U1.
I1

;
.

U1,
.
I1 are complexes of positive sequence voltage and

current, determined on the basis of measurements of phase currents
.
IA,

.
IB,

.
IC and voltages

.
UA,

.
UB,

.
UC according to the known relations of the method of symmetrical components.

Measurements can be made under both balanced and unbalanced load flows.
The main practical focus of the research presented in the article is to create methods

for adequately taking into account load nodes when modeling stationary modes of electric
power systems. Therefore, for further consideration, the model of the load node in phase
coordinates in the form of an equivalent asynchronous electric motor was adopted. To
solve the identification problem, it is necessary to measure the parameters of load nodes,
which can be determined on the basis of PMU-WAMS devices (Figures 3 and 5).

Figure 5. A set of problems for identifying load nodes in an electric power system.
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Based on (11), we can write the following expression:

Zk =
jXμZD1

jXμ − ZD1
.

If the slip s is known, the parameter R2 can be determined from the above equation.
The parameters of the equivalent circuit of the negative sequence can be found as per

equations similar to those given above:

Zkp =
R2p

2 − s
+ jXkp =

jXμZD2
jXμ − ZD2

; ZD2 =

.
U2
.
I2

,

where
.

U2,
.
I2— complexes of negative sequence currents and voltages are determined

by measurements of phase currents and voltages. To obtain acceptable accuracy, the
parameters of start-up conditions should be found in the power flow with a voltage
unbalance (k2U of about 10%).

The resistance Xμ can be determined by the data provided in reference books. All that
is required is information about the rated voltage and the rated motor power. An acceptable
accuracy of calculation of Xμ can be obtained on the basis of a nonlinear approximation of
the following kind:

Xμ∗ = Xμ 0[1 + ΔXμ(1 − e− α P)]. (12)

Parameters Xμ0, ΔXμ, and α, for IM powers exceeding 5 kW are given in Table 1.

Table 1. Parameters of the approximation of the relationship Xμ∗ = Xμ∗(P).

Parameter 750 rpm 1000 rpm 1500 rpm 3000 rpm

Xμ0, per unit 1.4 1.7 2.0 2.3
ΔXμ, per unit 1.0 1.2 1.4 1.4

α, kW−1 0.04 0.05 0.045 0.04

The obtained value Xμ∗ should be multiplied by the basic resistance, determined by
the rated parameters of the IM.

4. Identification Results

Input information in the form of moduli and angles of current and voltage, as well as
those of slip, was formed on the basis of computer-aided simulation using the software
package Fazonord [22]. For this purpose, an equivalent circuit of an IM with a rated power
of 90 kW was created. In the obtained currents and voltages of the calculated load flow, the
errors corresponding to the accuracy classes of measuring instruments (0.1, 0.2, 0.5, and
1) were introduced. The resistance Xμ was calculated on the basis of expression (12). The
results of the identification are shown in Figure 6. The parameter R2 was determined with
an error close to zero.

The results obtained show that in order to achieve acceptable identification accuracy, it
is necessary to use measuring instruments with an accuracy class that provides a maximum
error of no more than 0.2%.

The proposed technique can be used to solve the problem of parameter identification
for a group of IMs connected to a node in an electrical network. To confirm this possibility,
we performed identification of the AL node, the circuit of which is shown in Figure 7. The
IM parameters are summarized in Table 2. The equivalent circuit is shown in Figure 8.
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Figure 6. Identification errors.

Figure 7. Original circuit.

Table 2. Parameters of the nodal IM.

IM No. PH, kW Efficiency, % cosϕ, p.u. R2, p.u. Xk, p.u. R2P, p.u. XkP, p.u. Xμ*, p.u.

1 45 92 0.9 0.017 0.222 0.034 0.16 4.6
2 110 92.5 0.9 0.019 0.282 0.048 0.21 4.9
3 160 93.5 0.91 0.017 0.257 0.045 0.19 4.6

Figure 8. Equivalent circuit.

In the process of identification, the slip value was set on the basis of the data for
the equivalent IM given in [25]. The load flow analysis errors that arise when using
the equivalent model of an asynchronous load node, obtained on the basis of parameter
identification, are shown in Figures 9–12.

184



Energies 2023, 16, 1893

 
(a) (b) 

Figure 9. Errors in determining the moduli of voltages (a) and currents (b).

  
(a) (b) 

Figure 10. Errors in determining phases of voltages (a) and currents (b).

 
(a) (b) 

Figure 11. Errors in determining the active and reactive power consumed by the AL node (a), and
power losses in the transmission line (b).
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Figure 12. Errors in determining the unbalance ratio in the negative sequence.

Table 3 and Figure 13 show the static characteristics of P = P(UPH) and Q = Q(UPH),
where P, Q stands for active and reactive powers consumed by the AL node; UPH is the
phase voltage. These dependencies were plotted for the original and equivalent AL node
models. Our analysis of the results thus obtained allows us to conclude that the AL node
model, formed on the basis of parameter identification, provides for valid simulation of the
asynchronous load node within a wide range of changes in network operating conditions.

Table 3. Static load characteristics.

UPH, kV

Original Model Equivalent Model Discrepancy

P Q P Q δ P δ Q
kW kVar kW kVar % %

0.18 325 179 324 180 0.19 −0.72
0.19 325 166 324 167 0.19 −0.31
0.21 325 160 324 160 0.19 −0.01
0.22 325 158 324 157 0.19 0.23
0.23 325 157 324 156 0.19 0.43
0.24 325 159 324 158 0.19 0.61
0.25 325 162 324 161 0.19 0.77
0.26 325 166 324 165 0.19 0.90

Figure 13. Static reactive power characteristic.

The results obtained also allow us to conclude that, with the aid of parameter identifica-
tion, we can arrive at an equivalent model of an asynchronous load node that provides high
accuracy for both balanced and unbalanced load flow analysis. It should be emphasized
that the model was validated in a wide range of changing power flow parameters.

The proposed technique is also valid for AL circuits of a more general type, the models
of which are shown in Figure 14. In these circuits, induction motors are connected to the
buses of the node through cable lines. In addition, the node was powered by a busbar
trunking system.
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×

×

×

 

×

×

×

(a) (b) 

Figure 14. Models of AL node circuits (a)—first type of connection, (b)—second type of connection).

The simulation results are presented in Table 4, which shows that equivalent models
with a structure similar to the one presented in Figure 8 provided acceptable accuracy for
unbalanced load flow analysis.

Table 4. Identification errors.

Parameters
Error, %

Circuit of Figure 1a Circuit of Figure 1b

δ UA, % –0.04 −1.51
δ UB, % –0.05 −0.05
δ UC, % 0.00 0.00
δ IA, % 2.56 0.33
δ IB, % 8.71 6.96
δ IC, % 1.88 −2.08
δP, % 3.26 0.25
δQ, % 2.82 −0.32

δΔP, L% 2.40 3.21
δΔQ, L% 3.94 4.09
δ k2U , % –0.18 −0.17

Figures 15 and 16 show the results of parameter identification for the case when, in
addition to the IM, a static load was connected to the nodal point of the network, with
such a load specified by the amount of power

.
SC = P + jQ drawn by it. Percentage of

stationary load

λ =
SC

SAH
· 100

ranged from 0–80%. Here SAH is the total power of the IM group.

Figure 15. Relationship δ U = δ U(λ).
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Figure 16. Relationship δ I = δ I(λ).

The obtained relationships δ U = δ U(λ) and δ I = δ I(λ) attested to the fact that with
an increase of the parameter λ, the errors of load flow analysis using the equivalent IM
model increased but remained quite acceptable for practical applications over a sufficiently
wide range of variation of λ.

The following conclusions can be drawn on the basis of the results obtained:
1. The technique of parameter identification of an asynchronous load node allows

one to obtain adequate models of IMs that provide high accuracy for balanced load flow
analysis. In the numeric example presented in the paper, the calculation error of phase
voltage moduli for different motor connection schemes did not exceed 1.5%;

2. If a static load is present at the node, the error of the equivalent model increases; in
the numeric example above, when the value of the parameter λ = was equal to 75%, the
error of the voltage moduli increased to 5%, and the error of the currents increased to 3.3%.

5. Parameter Identification of Asynchronous Load Nodes with Variable Frequency Drives

At modern production facilities, variable-frequency induction-motor drives equipped
with static frequency converters (SFC) are widely used. Therefore, the problem of iden-
tifying AL nodes that contain, along with conventional IMs, frequency-controlled asyn-
chronous electric drives that can create harmonic distortions in networks becomes rele-
vant [26]. The technique described above can be used to solve this problem.

The verification of its efficacy and accuracy in the presence of electric drives at the
load node that are equipped with an SFC was carried out for the circuit shown in Fig-
ure 17 as follows. Based on the SimPowerSystems MATLAB package, a load node model
was generated.

Figure 17. Network circuit.

The power of the IM controlled by the SFC was assumed to be 22 kW. The power of
the fixed-speed IM ranged from 22 kW to 45 kW. The power ratio was set by the coefficient

α =
Pspch

Paed
,
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where Pspch—power of the motor equipped with an SFC; Paed—power of the fixed-speed
IM. The power supply system was fed from a source with unbalanced voltage (k2U = 3%),
which corresponded to real-life conditions that hold true for many facilities connected
to district windings of traction substations on mainline AC railroads. The results of the
simulation are presented in Table 5.

Table 5. Voltages and currents at load node buses.

α

Voltages Currents

Phase A Phase B Phase C Phase A Phase B Phase C

Modulus, B
Angle, Deg.

Modulus, B
Angle, Deg.

Modulus, B
Angle, Deg.

Modulus, A
Angle, Deg.

Modulus, A
Angle, Deg.

Modulus, A
Angle, Deg.

1 215.4
27.8

209.2
–91.3

215.5
149.6

79.97
2.1

69.59
–102.8

90.59
134.7

0.6 209.7
27.5

203.8
–91.5

209.1
149.4

105.7
7.5

96.52
–98.9

120.7
137.6

0.5 204.7
27.4

198.7
–91.7

204.2
149.3

125.3
1.7

113.9
–107.9

137.8
130.7

In accordance with the identification technique described above, we determined the
parameters of AL equivalent circuits (Table 6). Next, we created a model of the power
supply system in the software package Fazonord, in which the load node was represented
by an equivalent induction motor (see Figure 18). With the aid of this model, a load
flow analysis was performed using the parameters of the AL node obtained as a result
of identification. Comparative results of a simulation run in MATLAB and Fazonord are
shown in Table 7. Errors in determining the active and reactive powers drawn from the
network, as well as the unbalance ratio k2U , are shown in Figures 19 and 20.

Table 6. Equivalent circuit parameters.

α R2, Ohm Xk, Ohm R2P, Ohm XkP, Ohm Xμ, Ohm

1 0.056 0.224 0.430 0.250 12.005
0.6 0.04 0.023 0.315 0.216 8.991
0.5 0.034 0.237 0.313 0.236 7.566

Figure 18. Load node model formed based on identification results (1–6—numbers of nodes).

Table 7. Parameters characterizing the load flow of the load node.

α
P, kW Q, kVar k2U,%

MATLAB Fazonord MATLAB Fazonord MATLAB Fazonord

1 48.76 48.85 16.52 15.49 1.90 1.93
0.6 65.29 65.25 15.88 15.47 1.84 1.82
0.5 71.58 71.54 27.11 26.57 1.90 1.89
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(a) (b) 

Figure 19. Errors of active (a) and reactive (b) powers as functions of the parameter.

Figure 20. Unbalance ratio error as a function of the parameter k2U , % α.

In Figures 19 and 20, the index “M” refers to the results obtained using the SimPow-
erSystems package, and the index “F” refers to the data calculated using the Fazonord
software package.

The results obtained allow us to draw the following conclusions:
1. Our technique of parameter identification in the phase frame of reference is based

on the substitution of a load node with an equivalent induction motor. The technique
allows one to obtain high accuracy in unbalanced load flow analysis in the presence of
conventional induction machines and electric motors with variable-frequency drives at the
node. The error in determining the unbalance ratio of the negative sequence did not exceed
two percent.

2. As the share of static frequency converters at the load node increased, the errors in
determining the unbalance ratios k2U also increased but remained within the limits deemed
acceptable for solving practical problems;

3. The error in determining the reactive power, which reaches 6.5%, can be explained
by differences in approaches to its determination adopted in the MATLAB and Fazonord
software systems. In calculations aided by the Fazonord package, only one of its segments
was used, which provided the fundamental harmonic for the unbalanced load flow analysis.
When using the MATLAB system, the simulation was carried out so as to take into account
the non-linear current-voltage characteristics of SFC components, and the reactive power
was determined by factoring in the higher harmonics.
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The reactive power error can be reduced by additional non-sine load flow modeling
using the technique reported in [22]. After determining the higher harmonic voltages,
it is possible to recalculate the reactive power, e.g., using the technique of equivalent
sine waves.

6. Conclusions

Based on the evidence provided in this study, we can claim we have solved a currently
relevant scientific and engineering problem of enhancing the accuracy of modeling unbal-
anced load flows in electric power systems. Our solution is based on an adequate model of
induction motors and a technique of parameter identification for asynchronous loads. The
following results were obtained:

1. We have developed a technique for modeling complex load nodes. The technique
stands out from other known solutions for its use of the phase frame of reference. Its
application scope covers the problems of load dispatching in smart grids;

2. The study has contributed a technique for parameter identification of load nodes.
The technique is applicable to the problems of power system load dispatching. A key
defining feature of the technique is the structure of the model, which is made up of three
sources of current with parameters that are refined in the process of iterative load flow
analysis of the power system;

3. We have proposed a technique for the identification of asynchronous load nodes with
such asynchronous loads, including electrical drives equipped with static frequency converters;

4. With the aid of the asynchronous load identification models proposed in this paper,
it is possible to solve the following practical tasks of electric power system management:
increasing the accuracy of load flow modeling; making informed decisions when taking
measures to reduce unbalance in power grids; and accounting for the balancing adjustment
effect of asynchronous loads.
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