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Abstract: The propulsion systems of hybrid electric ship output and load demand have substantial
volatility and uncertainty, so a hierarchical collaborative control energy management scheme of
the ship propulsion system is proposed in this paper. In a layer of control scheme, the traditional
perturbation algorithm is improved. Increasing the oscillation detection mechanism and establishing
the dynamic disturbance step length realizes the real-time stability of maximum power point tracking
control. In the second-layer control scheme, the power sensitivity factor and voltage and current
double closed-loop controller is introduced. By designing a two-layer coordinated control strategy
based on the dynamic droop coefficient, the problem of voltage and frequency deviation caused by
load switching is solved. In the third-layer control scheme, due to the need of the optimal scheduling
function, the multi-objective particle swarm optimization algorithm was improved through three
aspects: introducing the mutation factor, improving the speed formula, and re-initializing the strategy.
Compared with other algorithms, this algorithm proves its validity in day-ahead optimal scheduling
strategy. The superiority of the hierarchical collaborative optimization control schemes proposed
was verified, in which power loss was reduced by 39.3%, the overall tracking time was prolonged by
15.4%, and the environmental cost of the diesel generator was reduced by 8.4%. The control strategy
solves the problems of the steady-state oscillation stage and deviation from the tracking direction,
which can effectively suppress voltage and frequency fluctuations.

Keywords: multi-energy integrated ship; energy management strategies; hierarchical control; dy-
namic droop control; improved PSO algorithm

1. Introduction

Ship electric propulsion systems have grown significantly over the last century, but at
present advanced new energy ship propulsion technologies require lower pollutant emis-
sions from ships [1]. Clean energy (fuel cells, photovoltaic power generation, wind power
generation), advanced control technology, and power energy management technology are
being introduced into ship power systems [2–4]. As these technologies develop and change,
future marine power systems are expected to include generator sets and other alternative
power sources with different characteristics. Therefore, electric propulsion systems will
become multi-energy complementary, and new hybrid-energy ship propulsion systems
will be built to meet the new demands [5–7].

Mixing the two types of energy storage systems, Fang, S., et al., proposed a two-step
multi-objective optimization method for optimizing the management of all-electric ships,
striving to minimize the total operating cost [8]. In order to optimize the operating cost of
diesel generators and energy storage systems, Anvari, M., et al., extended the principles
of optimal planning and economic dispatch problems to shipboard systems in order to
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realize the coordinated power supply of diesel generators and energy storage systems [9].
Mistress, G., et al., focused on the parameter identification method of the onboard battery
storage system electrical model, which solves the energy storage system degradation
problem [10]. Lee, K., et al. realized green ship and low-carbon operation by showing
the experimental results of a prototype green ship and achieved the demanding output
on the load side with the minimum cost and less volatility [11]. In order to minimize
fuel consumption and verify the feasibility of its scheme through simulation, Accetta et al.
proposed an energy management system for the electrical system of yachts [12], but most of
the existing research focuses on optimizing energy storage. Energy systems and controllers
ignore the overall scheduling of power system energy. In addition, previous work has
rarely noted that for the hybrid propulsion systems of photovoltaic power generation
systems, wind turbines, and diesel generators. It is necessary to carry out the maximum
power point tracking control of wind and photovoltaic power generation systems and the
system connection of distributed power sources.

Hybrid electric ships are generally designed to improve energy utilization: Brizuela-
Mendoza, J.A., et al. [13] analyzed in detail the efficiency of a ship’s DC hybrid power
system, constructed an optimization strategy aiming at improving energy efficiency, and
provided the optimal on-load operating point of the generator set. Zhu, L., et al. [14]
proposed an energy management strategy based on fuzzy logic for a hybrid ship that uses
fuel cells, batteries, and supercapacitors as energy sources, aiming to optimize the power
distribution among generating units and optimize the performance and fuel economy of
the hybrid system.

Fully electric ships in the military field, equipped with sophisticated electronic in-
struments, require high power quality and fault handling capabilities: Feng, X., et al. [15]
proposed a multi-agent system coordination controller for the Marine MVAC power system,
which can balance load and power generation in real-time while meeting system operation
constraints while considering load priority and reducing the influence of pulse load on
power quality by coordinating pulse load and propulsion load. Seenumani, G., et al. [16]
proposed a hierarchical control method to meet the real-time requirements, aiming at the
power failure problem of all-electric ships for military applications. The top-level controller
realized the suboptimal power decomposition of batteries and online power supply to meet
the system power demand, while the local controller regulated the power command of
each independent power supply. Nelson, M., et al. [17] proposed the use of graph theory to
provide complete autonomous control for the power system when the power system fails
or the ship task changes.

There are also some energy management strategies for specific needs: Mensah, E.,
et al. [18] built a model for the design of energy management systems for simulation and
including system reconfiguration and load shedding functions, allowing the simulation and
analysis of power systems with discrete events. Hou, J., et al. [19] evaluated the interaction
of multiple power sources in the ship electric propulsion system with a hybrid energy
storage system on the basis of model analysis and revealed the important role of system-
level energy management strategy. Kanellos, F. D., et al. [20] proposed an optimization
method of load-side management and power generation planning, in which the load-side
management is realized by adjusting the power consumption of the propulsion motor and
the dynamic programming algorithm is used to solve the optimization problem according
to the constraints of ship operation and environment, so as to ensure the operation mode
with minimum cost. López, A. R., et al. [21] proposed the adoption of load-shedding
technology based on expert system rules in order to control the voltage level of the ship
power grid, and the application was verified in a ship power grid. Paran, S., et al. [22]
proposed the energy management of ship DC power system based on model predictive
control to ensure reasonable load-sharing among generators while maintaining a stable DC
bus voltage.

There have been several identified optimization methods for hybrid schemes, such as
the use of artificial intelligence, as the appropriate way to enhance the optimization process.
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Hatata, A. Y., et al. [23] used clonal selection techniques to optimize hybrid solar and wind
power schemes with batteries to utilize their outputs with minimal cost and small volatility.
Hadidian, M. J., et al. [24] used an intelligent pollination algorithm to optimize the power
output of a hybrid system (solar/wind/hydrogen) so as to minimize the total operating
cost. Sanajaoba Singh, S., et al. [25] analyzed and studied the effectiveness of cuckoo search
using a hybrid solar/wind/battery scheme design problem in remote areas of India. De la
Cruz, J., et al. [26] used a well-known heuristic algorithm based on simulated annealing
to optimize independent wind power and photovoltaic systems. In another paper, the
influence of using predicted load information on the performance of small independent
hybrid power was studied [27]. Maleki, A., et al. [28] optimized the size of the battery
pack, the area of the PV system, and the fuel consumption of the diesel generator in the
hybrid system to minimize the cycle operation cost of the system and used a heuristic
algorithm based on tabu search. These hybrid methods provide a new way for microgrid
optimization and show certain advantages and application prospects.

In the master–slave control, one of the distributed power supply (or energy storage
unit) controllers is selected as the master controller, and the others are used as the slave
controllers. In this mode, the distributed power supply of the main control unit needs
to track the change of charge, which requires its power output to be controlled within a
certain range, and it can also respond quickly to charge fluctuation. In peer-to-peer control,
all distributed power controllers are in the same position [29]. Therefore, when the power
required by the load changes, the distributed power supply can make the microgrid return
to a stable state by properly adjusting its voltage and frequency, but its control results have
certain deviations.

According to the existing research literature, the strategies of paralleling multiple
distributed power sources are generally divided into master–slave control and peer-to-peer
control. The master–slave control method is simple and easy to implement, mainly relying
on high-speed communication units, but the communication cost is high and the system
redundancy is poor. The peer-to-peer control in the form of point-to-point, such as droop
control, does not require high-bandwidth communication and is easy to implement using
the “plug and play” of micro-sources, which meets the needs of the distributed system.
Therefore, droop control can be used as an ideal load voltage and frequency control method
for the ship propulsion system. There is a conflict between current sharing and voltage
regulation due to the virtual impedance introduced by droop control. Additionally, there
are problems with the steady-state oscillation phase and deviation from tracking direction.
In order to solve the above contradictions, a hierarchical control collaborative optimization
strategy for propulsion systems with multiple distributed power sources is proposed.

2. Typical System Structure and Mathematical Modeling of Hybrid Electric Ship

2.1. Typical System Structure

The typical system structure of a ship propulsion system consists of the wind turbine,
photovoltaic power generation system, diesel generator set, energy storage system, load,
electric energy conversion device, and energy management system. A typical system
structure diagram of a hybrid ship is shown in Figure 1. In the following sections, the
working principle and mathematical model of the leading equipment in the system will
be presented.
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Figure 1. Typical system structure diagram.

2.2. Distributed Power Mathematical Model
2.2.1. Diesel Engine and Speed-Governing System Model

The diesel engine converts the released chemical energy into thermal energy by burn-
ing diesel oil and then converts the thermal energy into the mechanical energy of the
rotating shaft to provide the motive power for the synchronous generator, forming a closed-
loop speed to ensure the stability of the generator speed [30]. The block diagram of the
system structure is shown in Figure 2.

Figure 2. Schematic diagram of the diesel engine system.

According to the external characteristic curve of the diesel engine (torque–speed
characteristic curve), when the diesel engine is in a standard and operation state, the
resistance torque is balanced with the output torque of the diesel engine. The load power
driven by the diesel engine changes, the fuel injection quantity of the diesel engine will
change, and the output torque will also change until a new equilibrium state is reached.

According to D’Alembert’s principle, the equation of motion of the unit is:

J
dωg

dt
+ Kpωg = Md − Mc (1)

where K represents the damping coefficient, which is related to the damping winding; ωg is
the angular velocity of the diesel engine; p is the number of pole pairs of the synchronous
generator; Md and Mc represent, respectively, the output torque and resistance torque of
the diesel engine.

When the load carried by the diesel engine decreases, the rotor speed increases.
Therefore, in order to keep the speed change of the diesel engine within a reasonable range,
a speed control link should be installed on the diesel generator to ensure that the speed
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of the diesel engine does not fluctuate considerably. The diesel engine speed adjustment
system is shown in Figure 3.

 

Figure 3. Block diagram of diesel engine speed regulation system.

When the load increases, the speed of the diesel engine will decrease. Then by
comparing with the given speed, the speed feedback unit obtains a speed difference signal
and acts on the speed control unit, transmits the control amount to the actuator, and finally
injects the oil pump increases the amount of fuel injected, so that the speed of the diesel
engine rises to the rated speed. The model of the diesel engine speed control system in
Power Systems Computer Aided Design (PSCAD software) is shown in Figure 4.

 
Figure 4. Diesel engine speed control system model.

2.2.2. Synchronous Generator and Excitation System Model

Driven by the diesel engine, the synchronous generator rotates and converts the
mechanical energy on the rotating shaft into electrical energy and outputs a three-phase
alternating current through the stator [31]. The generator excitation system changes the
reactive power output by adjusting the excitation current, thereby changing the output
voltage to ensure the stability of the generator output voltage.

When the synchronous generator is mathematically modeled, the rotating dq0 coordi-
nate system is adopted through Park transformation, which can simplify the model and
reduce the amount of calculation. The transformation from the abc coordinate system to the
dq0 coordinate system is realized through the Park transformation, which can be written as
a matrix: ⎛

⎝ id
iq
i0

⎞
⎠ =

2
3

⎛
⎝cos α cos(α − 2

3 π) cos(α + 2
3 π)

sin α sin(α − 2
3 π) sin(α + 2

3 π)
1
2

1
2

1
2

⎞
⎠
⎛
⎝ ia

ib
ic

⎞
⎠ (2)

The potential equation of the dq0 system after Park transformation is:⎧⎨
⎩

ud = − .
ϕd − ωϕq − rid

uq = − .
ϕq − ωϕd − riq

u0 = − .
ϕ0 − ri0

(3)
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The flux linkage equation of the dq0 system after Parker transformation is:

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕa
ϕb
ϕc
ϕ f
ϕD
ϕQ

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ld 0 0 ma f maD 0
0 Lq 0 0 0 maQ
0 0 L0 0 0 0

3
2 m f a 0 0 L f L f D 0
3
2 mDa 0 0 LD f LD 0

0 3
2 mQa 0 0 0 LQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

id
iq
i0
i f
iD
iQ

⎞
⎟⎟⎟⎟⎟⎟⎠ (4)

The synchronous generator excitation system model adopts the AC1A excitation
model recommended by IEEE preset in PSCAD, which further stabilizes the output voltage
of the synchronous generator by adjusting the magnitude of the excitation current. The
model of the synchronous generator and excitation system in PSCAD is shown in Figure 5.

 

Figure 5. Simulation diagram of synchronous generator and excitation system.

2.2.3. Photovoltaic Power Generation System Model

The photovoltaic cell is the core device of photovoltaic power generation. Its primary
function is to convert the light energy of solar radiation into electrical energy through the
photovoltaic effect. Since the single-diode model is relatively simple and can be applied
to higher irradiance conditions, it can better simulate the actual loss and charge diffusion
effect inside the photovoltaic cell, so this paper chooses the single-diode model, and its
equivalent circuit is shown in Figure 6.

LI DI I

R

R I

V
+

−

Figure 6. Equivalent circuit diagram of single diode model.

where IL is the constant current source that produces the photogenerated current and ID
represents the current passing through the diode.

A mathematical model of photovoltaic cells is established under standard irradiance
Rre f = 1 kW/m2 and ambient temperature conditions Tre f = 25 ◦C. Through the above brief
analysis of the circuit diagram, the output current characteristics of the photovoltaic cell
can be obtained, and the following formula can express its mathematical function:

I = ISC

(
1 − A

(
U − D
eBUOC

− 1
))

+ C (5)
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A =

(
1 − Im

ISC

)
e−

Um
BUoc (6)

B =
Um
Uoc

− 1

ln
(

1 − Im
ISC

) (7)

C =
αR

Rre f
E +

(
R

Rre f
− 1

)
ISC (8)

D = −βE − RsC (9)

E = Tm − Tre f (10)

where α represents the temperature coefficient, Im and Um represent the current and voltage
corresponding to the maximum power output, U represents the voltage to the photovoltaic
array, Uoc represents the open circuit voltage, and Tm represents the temperature of the
photovoltaic array, and the formula is calculated as follows:

Tm = Ta + t · R (11)

where Ta is the ambient temperature, t is the temperature of the photovoltaic array, and R
is the actual solar irradiance. Therefore, the following formula can specifically describe the
output power of the photovoltaic array:

P = IU =

[
ISC

(
1 − A

(
U − D
eBUOC

− 1
))

+ C
]

U (12)

The I–V characteristic curve and the P–V characteristic curve under ambient temper-
ature and irradiance can be obtained by fitting them with the above formula, as shown
in Figure 7.

 

(a) (b) 

Figure 7. Simulation curves of I–V (a) and P–V (b) for PV power generation system.

The model of the photovoltaic power generation system in PSCAD is shown in Figure 8:
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Figure 8. Photovoltaic power generation system simulation diagram.

2.2.4. Doubly-Fed Wind Power Generation System Model

The doubly-fed wind power generation system comprises wind turbines, shafting
modules, doubly-fed wind turbines, and back-to-back double PWM converters. The
external wind drives the wind turbine and converts the wind energy into mechanical energy.
After the wind turbine rotor passes through the shafting module, the rotational speed is
converted to a rotational speed suitable for the doubly-fed generator. The conversion of
mechanical energy to electrical energy is realized in the doubly-fed generator [32,33]. The
doubly-fed generator generally uses a three-phase wound asynchronous motor. The power
system and the stator winding are directly connected, and the rotor winding is connected
to the power system through the back-to-back double PWM converter. The schematic
diagram of the doubly-fed wind power generation system is shown in Figure 9.

Figure 9. Schematic diagram of the doubly-fed wind power generation system.

According to Bates’s theory, the calculation formula of the wind energy utilization
coefficient Cp(β, λ) is as follows:⎧⎨

⎩ Cp(β, λ) = 0.5176
(

116
λ∗ − 0.4β − 5

)
e−

21
λ∗ + 0.0068λ

1
λ∗ = 1

λ+0.08β − 0.035
β3+1

(13)

where β is the pitch angle of the blade and λ is the tip speed ratio, which can be expressed as:

λ =
ωT R
V0

(14)

where ωT is the rotational speed, R is the radius of the rotor, and V0 is the wind speed.
The maximum power point tracking control of wind turbines means that under differ-

ent wind speed conditions, CP can always be kept at the maximum value by controlling
the speed of wind turbines. The mechanical power Pm captured by the wind turbine can be
expressed as:

Pm =
1
2

ρSV0
3Cp(β, λ) (15)

where ρ is the air density and S sweeps the area of the rotor. The model of the doubly-fed
wind power generation system in PSCAD is shown in Figure 10.
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Figure 10. Model of a doubly-fed wind power generation system.

2.3. Mathematical Model of Energy Storage System

At present, the lithium-ion battery is the most widely used power battery, so a lithium-
ion battery is selected as the energy storage system in the ship propulsion system in the
research process [34,35]. The equivalent modeling of the lithium battery and the functions
of its voltage and capacity in the charging and discharging process are as follows.

When discharging:

VBT = E0 − KQt
Q

Q − Qt
− KI∗ Q

Q − Qt
− IR + AIe−BQt (16)

When charging:

VBT = E0 − KQt
Q

Q − Qt
− KI∗ Q

Qt − 0.1Q
+ IR + AIe−BQt (17)

and
Qt = Q(t − 1)− Q(t) = I · Δt · ε (18)

SOC(t) =
Q(t)

Q
(19)

where VBT is the lithium battery voltage (V); E0 is the constant voltage source voltage
(V); K is the polarization resistance proportional constant; Q is the battery capacity (Ah);
Qt is the lithium battery charge/discharge capacity (Ah); I∗ is the Filtered current (A);
R is the internal resistance of lithium battery (Ω); A is the amplitude coefficient of the
exponential region; B is the time the inverse proportion of the exponential region; ε is the
charge-discharge efficiency; and SOC(t) is the state of charge of the lithium battery. The
simulation model of the energy storage system in PSCAD is shown in Figure 11.

Figure 11. Simulation model of energy storage system.
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3. Hierarchical Control Scheme and Optimization Algorithm Design for Hybrid Ships

3.1. Hierarchical Control Scheme

As the core of the ship propulsion system, the energy management system is not
only responsible for the management of the generation and scheduling of the entire ship’s
electrical energy but also needs to manage the operation status of the propulsion system.
To ensure that the ship propulsion system can provide continuous, stable, and economic
power support during operation [36–39]. Based on the above functional requirements, this
paper designs the overall scheme of the layered control of the ship propulsion system, as
shown in Figure 12.

Figure 12. Design diagram of the hierarchical control scheme.

This hierarchical control structure defines three primary control levels, component-
level control, device-level control, and system-level control, and communication lines
connect them. Among them, the first-level control mainly focuses on controlling a single
unit (load, distributed power supply), and the second-level and third-level controls, re-
spectively, focus on coordinated and stable control and the improvement of power quality.
The adjustment speed needs to be faster and more responsive to meet the fast dynamic
characteristics of the system.

3.2. Maximum Power Point Tracking Control Strategy for Ship Propulsion Systems

The traditional disturbance observation method has two main problems: steady-state
oscillation and deviation from the tracking trajectory [40]. If the system wants to achieve
the fast and stable tracking of the maximum power point, it needs to achieve the following:
(1) MPPT must be able to automatically locate the maximum power point; (2) the tracking
must be dynamic, and the operating point must be continuously adjusted according to the
measured irradiance and temperature conditions.

Based on the above two viewpoints, this paper designs a P&O algorithm based
on dynamic perturbation step size, which improves the tracking efficiency of the P&O
algorithm by reducing steady-state oscillation and adding perturbation steps [41,42]. The
improved algorithm adds two features: (1) The algorithm includes a built-in oscillation
detection mechanism to ensure the consistent detection of oscillations and changes the
size of the disturbance accordingly to achieve adaptive performance. (2) The algorithm
establishes a dynamic disturbance step long to ensure that the working point not deviate
from its tracking trajectory.

The initial operating voltage VMPP is set to 65% VOC, and VOC is the open-circuit
voltage of the photovoltaic array. ΔP and ΔV represent the amount of slope change. The
value is the sign of the two quantities multiplied and normalized, as shown in Table 1.

10
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Table 1. Slope value table.

ΔP Symbol ΔV Symbol Slope Value

+ + +1
+ − −1
− + −1
− − +1

The oscillation detection mechanism detects oscillations by recording three consecutive
slope values. When the sign of the disturbance voltage is the same as the sign of the power
variation, the value of the slope is +1. Otherwise, it is −1. From this, the following
oscillation state detection formula can be obtained:

∣∣∑ slope
∣∣ = {

3, no converge to steady state oscillation
1, Convergence to Steady-State Oscillation

(20)

Dynamic perturbation step adjustment strategy: The initial perturbation size is set to
2% of VOC, and when the operating point converges to near the maximum power point, the
perturbation size is reduced by 0.5% of VOC in each iteration step. The perturbation step
size is continuously reduced until it reaches 0.5% of VOC. This tiny oscillation allows the
algorithm to consume almost zero power while simultaneously making it immune to the
circuit’s radiation and noise.

Under normal conditions, the maximum irradiance variation can reach up to
0.027 KW/m2/s. To enhance the algorithm robustness, this paper choose T1 and T2 to be
0.001 s and 0.05 s, and any change in irradiance between 1.0 W/m2/s and 50 W/m2/s is
considered a gradual change. When the perturbation step size changes, if a value greater
than 50 W/m2/s is detected, it is considered a rapid step change and the perturbation step
size is increased to 2%. The algorithm flowchart is shown in Figure 13.

 

Figure 13. Flowchart of the improved P&O algorithm.

The algorithm adopts dynamic perturbation step size to reduce the oscillation and in-
troduces boundary conditions to prevent it from deviating from the maximum power point.
The performance of the P&O algorithm is improved by eliminating steady-state oscillation
and preventing the algorithm from deviating from the maximum power point trajectory.

3.3. Design of Two-Layer Coordinated Control Strategy Based on Dynamic Droop Controller

A dynamic droop controller is designed to aim at the problem of voltage and frequency
deviation caused by one-layer control and switching loads. This control strategy can quickly
adjust the fixed droop coefficient, realize the adaptive change of the droop coefficient, and
introduce power at the same time. The sensitivity factor improves the system dynamic
performance. A voltage and current double closed-loop controller is designed to further
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improve immunity and power quality of the inverter and reduce the influence of random
disturbances on the voltage and frequency of the ship propulsion system [43–45]. The
schematic diagram of the droop controller is shown in Figure 14.

 

Figure 14. Block diagram of the droop controller.

where ioabc and Uoabc represent the three-phase current and voltage output by the inverter;
P and Q are the actual active and reactive power of the inverter; P0 and Q0 are the reference
active and reactive power of the control system; m, n is the droop coefficients of active
and reactive conditions; ω and U represent the given actual voltage frequency and voltage;
ω0 and U0 represent the given reference frequency and voltage; and u∗ is the SPWM
modulation signal.

Droop control plays an essential role in the entire inverter control system. When
the propulsion system inverter adopts traditional droop control, the droop coefficient is
fixed. Fluctuations are likely to occur in the propulsion system at the moment of load
switching on the system-connected side, resulting in the distributed circulating current
occurring between the power supplies. This paper adopts a real-time dynamic change
control method of the droop coefficient, which can effectively suppress the circulation
phenomenon. Through this method, the droop coefficient and power are combined to
form a new droop coefficient term with dynamic adjustment ability, suppressing the
circulation phenomenon and enhancing frequency and voltage stability. Designing the
power sensitivity factor can reduce the transient impact caused by power fluctuations
during system load switching. The formula of this dynamic droop control strategy is:⎧⎪⎪⎨

⎪⎪⎩
f = f0 −

(
k f 1 + k f 2P

)
P − η f

√∣∣∣ P
P0

− 1
∣∣∣

U = U0 − (kU1 + kU2Q)Q − ηU

√∣∣∣ Q
Q0

− 1
∣∣∣ (21)

where k f 1 and k f 2 represent the dynamic droop coefficient during active power regulation,
kU1 and kU2 represent the dynamic droop factor during reactive power regulation, and η f
and ηU are sensitivity factors. Using the minimum and maximum values of voltage and
frequency to solve the dynamic droop coefficient formula is as follows:⎧⎨

⎩ k f 1 = fmax− fmin
Pmax

, k f 2 =
0.6k f 1
Pmax

kU1 =
vd_max−vd_min

Qmax
, kU1 = 0.6kU1

Qmax

(22)

where fmax and fmin are the maximum and minimum frequencies due to the instantaneous
change of the load with values of 50.5 Hz and 49.5 Hz; Pmax and Qmax are the maximum
active power and reactive power values of the system overload, which are 5 kW and
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2 kW; and vd_max and vd_min are the maximum and minimum values of the d-axis voltage
component, which are 150 V and 145 V.

3.4. Research on Day-Ahead Optimal Dispatching Strategy of Ship Power System

In this part, based on the third-layer control of the ship power system, the relevant
research of the optimization scheduling method is carried out. In order to give full play to
the advantages of renewable energy, a multi-objective optimization model of the power
system under the cooperative work of multiple power generation systems is established.

3.4.1. Mathematical Model of Day-Ahead Optimal Scheduling Problem in Power System

The day-ahead optimal scheduling of the power system is to predict the output power
of the wind and photovoltaic power generation system, which, based on the wind and solar
data of the next day, formulate the load power usage curve according to the load usage and
schedule the renewable energy reasonably.

The following formula can describe the mathematical model of the day-ahead optimal
scheduling problem. These include the operating costs FL, FB, FR of diesel power generation
systems, energy storage systems, and renewable power generation systems, and the overall
benefit FL of the ship load.

y(P, u) = FD(PD, uD) + FB(PB, uB) + FR
(

Ppv, Pwt
)− FL(uL) (23)

Diesel power generation system:
Without considering the influence of external factors, such as vibration and friction, it

is assumed that the diesel generator operate in a stable state. Therefore, its fuel cost can be
described by the following mathematical formula:

fD = p f

T

∑
t=1

v f (t) (24)

where p f is the fuel price and v f is the total fuel consumption. On the other hand, in the
wind–solar diesel-storage ship power system, only diesel generators emit pollutants, and
the following mathematical formula can describe its environmental cost:

gD =
n

∑
j=1

Eε jVF,j (25)

where n = 4 represents four air pollution sources, SO2, CO2, CO, and NOX; E is the total
output power of diesel generators per day (kWh); ε j is the emission coefficient of pollution
source (g/kWh); VF,j represents the penalty amount for the pollution source (CNY/kWh),
and its specific parameters are shown in Appendices A and B.

Energy storage system:
For the ship power system, the charging and discharging function of the energy storage

system is essential, so the cost of the energy storage unit must be calculated. The following
mathematical formula can describe its running cost:

FB =
T

∑
t=1

nB

∑
j=1

uB,j(t)CB
∣∣PB,j(t)

∣∣ (26)

where nB = 4 is the number of lithium-ion battery packs; uB,j(t) is 1 or 0 to indicate two
states of operation and shutdown; CB is the operating cost coefficient (CNY/kW); and
PB,j(t) is the lithium-ion battery pack output power.

Renewable energy power generation system:
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The core power generation sector in the ship power system is the renewable energy
power generation system, and its operating cost can be described by the following mathe-
matical formula:

FR
(

Ppv, Pwt
)
=

T

∑
t=1

(
nwt

∑
m=1

[ fwtPwt,m(t)] +
npv

∑
n=1

[
fpvPpv,n(t)

])
(27)

where fwt and fpv are the operating cost coefficients of wind and photovoltaic power gener-
ation systems; nwt and npv are the numbers of wind and photovoltaic power generation
units; and Pwt,m(t) and Ppv,n(t) are the output power of wind and photovoltaic power
generation systems at the moment.

Overall benefit of load:
The overall benefit of the load refers to the sum of the benefits obtained from the sale

of electricity through marine loads, and its mathematical description is as follows:

FL =
T

∑
t=1

nL

∑
k=1

fL,salePL,k(t) (28)

where FL is the income value; nL is the number of loads; fL,sale is the electricity price; and
PL,k(t) is the power of the load.

Restrictions:
The constraints are set according to the power generation characteristics of the dis-

tributed power generation. In order to obtain more accurate optimization results, the
system must meet the following constraints.

Power balancing constraints:

PD(t) + PB(t) + Pwt(t) + Ppv(t) = PL(t) (29)

Energy storage power constraints:

Pc ≤ PB(t) ≤ Pd (30)

Energy storage electric constraints:

SocB,min ≤ SocB(t) ≤ SocB,max (31)

Diesel generator operating power constraints:

αPD,r ≤ PD(t) ≤ PD,r (32)

Renewable energy operating constraints:

0 ≤ Pwt(t) ≤ Pp
wt(t) (33)

0 ≤ Ppv(t) ≤ Pp
pv(t) (34)

3.4.2. Research on Day-Ahead Optimization Scheduling Method Based on Improved PSO

In this section, a particle swarm optimization algorithm based on mutation particles is
designed to solve the multi-objective function problem [46–48].

Introduce mutation factor: improve the particle swarm optimization algorithm in each
generation to evolve a population, which can be expressed as Xi,G, where i = 1, 2, 3 . . . , NP
and NP is the population size. After initialization, padding is randomly generated within
the search domain. The algorithm mixes the set information of some top-ranked vec-
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tors with the new mutation particles generated by mutation and generates the following
mutation vectors:

Xipso_best,G =
m

∑
k=1

wk · Xk,G (35)

where m represents the number of top-ranked vectors and wk represents the weight of the k
selected vectors Xk,G. The weights for each selected vector are calculated as follows:

wk =
m − k + 1

1 + 2 + . . . + m
, k = 1, 2, . . . m (36)

Improvement of the speed formula: In order to improve the search performance of
the algorithm, the method of improving the speed formula in sections is adopted in the
algorithm. To make better use of the mutated particles in IPSO, the velocity update formula
should be changed to:

vi(t + 1) = ω · vi(t) + λc1r1(pi(t)− xi(t)) + c2r2(pg(t)− xi(t)) (37)

where λ is the adjustment function:

λ =

{
2η · g

gmax
, 0 < g ≤ gmax

2

η ·
(

2 − 2 · g
gmax

)
, gmax

2 < g ≤ gmax
(38)

where η is a random coefficient between 0 and 1, g is the number of iterations, and gmax is
the maximum number of iterations.

Re-initialization strategy: Since the current IPSO suffers from premature and stagnant
problems, there will be premature convergence when the population falls into a local
optimum. A re-initialization strategy is designed to deal with premature convergence and
stagnation. Both of the above cases can be detected by the following formula:

stg =

{
0 f (Ui) < f (Xi)∀i ∈ {1, 2, . . . , NP}
stg f (Ui) ≥ f (Xi)∃i ∈ {1, 2, . . . , NP} (39)

where f (Ui) is the test vector function, f (Xi) is the target vector function, and stg is an
indicator used to monitor whether the current population reaches a stagnation state in a
particular generation.

4. Simulation Verification and Analysis

4.1. Simulation and Verification of MPPT Control Strategy Based on Improved Disturbance
Observation Method

In order to verify the feasibility and effectiveness of the algorithm, a mathematical
model of the related system is built in this paper, in which the maximum output power
of the wind and photovoltaic power generation systems are 200 kW and 120 kW and the
wind speed drive simulates the input wind speed. The MPPT module is used to achieve
the maximum wind mechanical power tracking.

1. Simulation of photovoltaic power generation system:

The irradiance change curve shown in Figure 15a is used as the test input signal, and
the simulation duration is set to 400 s to verify the effectiveness of the control strategy in
dealing with the gradual and sudden change of irradiance.
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(a) (b) 

Figure 15. Photovoltaic power generation system simulation diagram. (a) Irradiance variation
diagram; (b) output power curve diagram.

The two curves in the figure are the output power curves of the traditional and
improved P&O algorithms, and the voltage disturbance is fixed at 2% of VOC. From the
overall simulation results, the improved algorithm only consumes 6.3 s in approaching the
maximum power point at the beginning, the oscillation amplitude is relatively small, and
the trajectory can be tracked well.

The tracking effects of the two algorithms are shown in Table 2. It can be seen more
intuitively that the tracking time of the improved P&O algorithm is increased by 15.4%
compared with the traditional P&O algorithm, and the power loss is reduced by 39.3%.
Therefore, the improved P&O algorithm can effectively reduce power loss to achieve the
full tracking of the maximum power point, which will improve the efficiency of renewable
energy generation.

Table 2. Comparison of algorithm effects.

Algorithm Track Time (s) Maximum Power Loss (kW)

traditional P&O 341.1 15.46
improved P&O 393.7 4.74

2. Wind Power System Simulation

Based on the improved P&O algorithm to verify the performance of the system
in dealing with sudden changes in wind speed and in steady state, two main working
conditions are set to detect in the simulation verification; step signal detection is working
condition one and steady output signal is working condition two. The simulation time
is set to 4 s, and the initial wind speed is set to 8 m/s. Entering the step signal detection
part at 1 s, the wind speed suddenly changes from 8 m/s to 12 m/s, and then enters the
steady-state output part of working condition two.

At the beginning of the simulation, the wind turbine is in the state of starting. Since
the wind speed has not stabilized, the power will fluctuate in a small range, but it is still
within the controllable range. At 1 s, the system enters the step signal detection stage of
working condition one, the wind speed suddenly increases from 8 m/s to 12 m/s, the
output power fluctuates slightly, and the output power remains stable at 180 kW. Then
enter the steady state stage of working condition two, and the output power curve does
not fluctuate.

Figure 16b is the simulation diagram of the wind energy utilization coefficient curve.
The transient fluctuation occurs at the time of 1 s. After the dynamic adjustment of the
algorithm, it quickly recovers and stabilizes, and finally stabilizes at a maximum value of
about 0.48.
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(a) (b) 

Figure 16. Simulation diagram of wind power generation system. (a) Wind power system output
power; (b) Cp curve.

4.2. Simulation Verification of Control Strategy Based on the Dynamic Droop Controller

In the system-connected mode of distributed power generation, the process of adding
and cutting off the load of the propulsion system is simulated. The simulation time is set to
4 s, and the initial value of the load power is set to 10 kW. The load power suddenly changes
from 10 kW to 70 kW in 2 s and then drops back to 10 kW in 3 s, and the system-connected
side voltage, current waveform, and frequency fluctuation are detected.

It can be seen from the figure that the output voltage and current are standard sinu-
soidal waveforms. The system enters a stable state at about 0.2 s, the current amplitude
increases to about 16.5 A after a sudden load is applied at 2 s, and the current waveform sta-
bilizes around 16.5 A in 2~3 s; Figure 17b shows the voltage curve of the system-connected
side, which is maintained at around 300 V after the system is stable, and the voltage
waveform not change significantly after the load suddenly changes; Figure 17c displays
the frequency change curve when the system is running, where the system frequency can
be maintained at around 50 Hz and the load switching process can be realized smoothly
and quickly.

  
(a) (b) 

 
(c) 
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Figure 17. Simulation result of control system. (a) Current waveform; (b) Voltage waveform;
(c) System frequency.
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It can be seen from the simulation results that the designed two-layer coordinated
control strategy of the propulsion system, which is based on the dynamic droop coefficient,
has a significant effect on eliminating the voltage and frequency deviation. The system has
the characteristics of rapid dynamic response and strong stability.

4.3. Simulation Verification of Day-Ahead Optimal Scheduling Control Strategy

Through the wind and solar forecast data and the electricity consumption of the
shipload, the forecast curve of the day-ahead load power and the output power of the
renewable energy is given, as shown in Figure 18.

 
(a) (b) 

Figure 18. Load day-ahead power forecast (a) and renewable energy day-ahead power forecast (b).

The day-ahead load power and renewable energy output power are input into system,
and the day-ahead optimal dispatch curve and the energy storage system SOC curve can be
obtained through the control calculation of each layer, as shown in Figure 19. It can be seen
that the diesel generator set is basically maintained near the minimum operating power,
which effectively reduces the pollutants produced by diesel generator sets.

 
 

(a) (b) 

Figure 19. Power curve of each power generation (a) and SOC curve of energy storage system (b).

During the period from 0:00 to 5:00, since the light intensity is zero, renewable energy
is supplied by the wind power generation part, and through the charge and discharge
control of the energy storage system, the output power of the diesel unit is maintained at
the minimum operating power of about 100 kW. From 6:00 to 11:00, the first peak period
of electricity consumption is ushered in. The load power increases, and the output power
of the diesel generator needs to be started to make up for the remaining power required
by the load. From 12:00 to 16:00, since the light intensity reaches the highest value, the
total output power of renewable energy reaches the maximum. From 17:00 to 21:00, the
second peak period of electricity consumption is ushered in. The load power of the ship
power system increases. Due to the reduction of the light intensity to zero, the total output
power of renewable energy begins to decrease. After 21:00, as the power required by the
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ship power system load decreases, SOC returns to around 50% and the SOC value remains
within the optimal range.

In order to verify the economy of the IPSO algorithm proposed in the optimal schedul-
ing problem in this paper, the day-ahead optimal scheduling strategy of traditional logic
is used as a comparison with the strategy proposed in this paper. In the fixed logic day
ahead optimal scheduling strategy, the energy storage unit only charges and discharges
according to the predetermined fixed time period (selects the charging and discharging
periods according to the wind and solar load day ahead prediction results to ensure the life
of energy storage) and uses the diesel generator set as the main power source for distributed
discharge to track the ship load data and the total charging and discharging power of the
energy storage system. The economic cost is shown in Table 3.

Table 3. Economic cost.

Day-Ahead Planned Cost Improvement Strategy Fixed Strategy *

Diesel generator fuel cost 7663.2 8371.2
Environmental cost of diesel generator 751.51 820.93

Operating cost of diesel generator 28.74 28.74
Cost of energy storage system 280 400

Renewable energy cost 99.19 99.19
Load profit 1215 1215
Total cost 10,037.64 10,935.06

* Calculated from basic data.

The above economic operation cost formula is used to calculate the economic costs of
the two methods. Since renewable energy always maintains the maximum power output
and no load is in the state of power loss, the renewable energy operation cost and load
income of the two strategies are consistent. Through calculation, it can be concluded
that compared with the fixed logic strategy, the diesel generator fuel cost of the proposed
strategy is reduced by 8.4%, the energy storage cost is reduced by 30%, and the total cost is
saved by 8.2%. It not only saves energy but also reduces the pollution to the environment,
which proves the superiority of the optimization algorithm proposed in this paper.

Traditional PSO, GA, and DE algorithms are used as comparison algorithms for a
performance comparison test to prove the superiority of the proposed IPSO algorithm. The
dimension of the standard test function is D = 30. For all test functions and algorithms, the
initial value of the algorithm is set as follows: population size NP = 100; the maximum
number of iterations gmax = 30; threshold stgmax = 20; and the maximum number of fitness
calculations FEmax = 3 × 105 and the convergence error ε = 10−5 is set as the termination
condition of the algorithm. The simulation results are shown in Figure 20.

In addition to the function speed of IPSO algorithm is slightly slower than DE algo-
rithm except for (a) f1 function, compared with the other three algorithms, the convergence
speed is faster. Among them, when solving function (a) f1, (c) f3, PSO and GA algorithms
have not converged to the allowable error range of ε = 10−5 when the maximum com-
putation times of 10,000 D are reached, and the same situation also occurs when solving
function (d) f4 for PSO algorithm. Both DE and IPSO algorithms achieve global optimal
solutions on (a) f1, (b) f2 functions. In addition, the GA algorithm achieves global optimal
solutions on (b) f2 functions, but its performance in other functions is not as good as the
IPSO algorithm. Although the convergence speed of the DE algorithm is faster than that of
the IPSO algorithm on (a) f1 function, the convergence speed of the DE algorithm is not
as fast as that of the IPSO algorithm on other functions, so it can be seen that the overall
quality of its solution is not as good as that of the IPSO algorithm.

The above figure show the convergence curve of the tested algorithm. Under different
test functions, the IPSO algorithm (the solid red line in the figure) is more competitive than
the other three algorithms regarding solution quality and convergence speed. The search
speed has also been improved while ensuring the accuracy of solution.
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Figure 20. Algorithm comparison graph.

5. Conclusion and Discussion

The energy management strategy of a ship propulsion system based on hierarchical
control is studied, including research on the MPPT control strategy for renewable energy
and the two-layer coordinated control strategy for distributed power system-connected
inverters. The following primary research results were obtained:

• The overall scheme of the layered control system of the ship propulsion system is
designed, and a detailed and complete mathematical model is established. An overall
simulation model of the ship propulsion system is built, which meets the needs of
subsequent related research and simulation tests.

• A P&O algorithm based on dynamic perturbation step size is designed, including
oscillation detection mechanism, dynamic perturbation step adjustment strategy, and
voltage boundary setting. Through the comparison example simulation test with
the traditional algorithm, the results show that the power loss of the MPPT control
strategy using the P&O algorithm with a dynamic disturbance step size is reduced by
39.3%, and the overall tracking time is prolonged by 15.4%.

• A three-layer coordinated control strategy of the propulsion system based on the
dynamic droop coefficient is designed, which dynamically adjusts the fixed droop
coefficient. Realizing the adaptive change of the droop coefficient solves the problem
of voltage and frequency deviation. In order to improve the system performance, the
power sensitivity factor is designed simultaneously; moreover, a voltage and current
double closed-loop controller are further designed to improve the inverter noise
immunity and power quality. The simulation results show that the proposed control
strategy can effectively suppress the voltage and frequency fluctuations and improve
the system-connected security and power quality of the system-connected side.

• A PSO algorithm based on mutation particles is designed, and the collection in-
formation of some top-ranked vectors is mixed in the generated mutation vector;
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furthermore, the method of the segmental improvement speed formula is adopted
in order to improve the accuracy and search speed. Through the standard function
performance test with other intelligent optimization algorithms, the results show that
the improved algorithm has a faster convergence speed and higher accuracy in solving
the load optimization problem. The total running cost of the algorithm is reduced
8.4%, and the total cost was reduced by 8.2%.

In addition, the ship energy management system designed in this paper can give
distributed power supply output results through the predicted data. However, there is
no relevant operating software and interface display. Despite the lack of visualization-
related research, the equipment involved is assumed to be in good operating condition.
The built simulation model focuses more on the overall design of the control strategy,
ignoring the actual multi-interference situation. Therefore, follow-up work should mainly
focus on the above aspects for further study in order to improve the practicability of the
simulation model.
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Nomenclature

Category Symbol Implication

abbreviations

PSO Particle Swarm Optimization
IPSO Improved Particle Swarm Optimization
PV Photovoltaic
MPPT Maximum Power Point Tracking
P&O Perturbation Observation Algorithm
GA Genetic Algorithm
DE Differential Evolution
PWM Pulse Width Modulation

parameter

K the damping coefficient
ωg the angular velocity of the diesel engine
p the number of pole pairs of the synchronous generator
Md the output torque of the diesel engine
Mc resistance torque of the diesel engine
IL the constant current source
ID the current passing through the diode
α the temperature coefficient
β the pitch angle of the blade
Im the maximum power output of the current
Um the maximum power output of the voltage
U the voltage to the photovoltaic array
Uoc the open circuit voltage
Tm the temperature of the photovoltaic array
Ta the ambient temperature
R the actual solar irradiance
λ the tip speed ratio
ωT the rotational speed
V0 the wind speed
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Category Symbol Implication

CP the speed of wind turbines
VBT the lithium battery voltage
E0 the constant voltage source voltage
Qt the lithium battery charge/discharge capacity
I∗ the filtered current
SOC(t) the state of charge of the lithium battery
ioabc the three-phase current output by the inverter
Uoabc the three-phase voltage output by the inverter
P0 the reference active power
Q0 the reference reactive power
u∗ the SPWM modulation signal
ω0 the given reference frequency
U0 the given reference voltage
k f 1 the dynamic droop coefficient
kU1 the dynamic droop factor
η f the sensitivity factor
fwt the operating cost coefficients
nwt the numbers of wind power generation units
Pwt,m(t) the output power of wind power generation systems
gmax the maximum number of iterations
f (Ui) the test vector function
f (Xi) the target vector function
stg an indicator used to monitor

Appendix A

Table A1. Diesel generator pollutant emission factor (g/kWh).

SO2 CO2 CO NOX

4.34 2.32 0.47 232.04

Appendix B

Table A2. Environmental pollutant penalty amount (CNY/kg).

SO2 CO2 CO NOX

0.75 0.0028 0.125 1.00
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Abstract: The complex dynamic characteristics of a shipboard power system (SPS) are not only
related to its continuous dynamics but also influenced by discrete control behavior. Especially, during
combat mission execution of high-power pulse loads (HPPLs), their operation plan as a sequence of
discrete control events will cause successive abrupt changes in the continuous dynamics of SPS due
to the sudden and intermittent nature of the external attacks, which requires overall comprehension
of the hybrid dynamics evolution process driven by discrete events. In this paper, considering the
zonal distribution structure of SPS and the influences of extreme events on the discrete dynamics
of each zone, the extended hybrid models for each zone, including normal operation configuration
and fault configuration, are obtained based on the hybrid automata theory. Then, the global hybrid
model of SPS is developed. The mapping relationship of discrete state transition to the continuously
controlled system is analyzed to reconstruct the set of differential equations model of the continuous
system for the purpose of simulation. Two case studies are carried out to perform the simulation
under the proposed hybrid model. It is demonstrated that this proposed method can reveal the
operating characteristics of the hybrid dynamic evolution process driven by discrete events, both in
normal operation and pulse loads operation. Although the precise measure of discrete states of SPS
can be challenging to obtain, especially during the confrontation phase, the proposed method still
provides valuable insights on evaluating the sophisticated dynamics of an SPS.

Keywords: shipboard power system; hybrid model; simulation; high-power pulse loads

1. Introduction

The integrated power system of ships has become the main development direction of
future ships, which can supply power to various loads on board, including daily electrical
loads, maneuvering systems, communication, navigation, and propulsion systems [1,2].
Compared with conventional ships, a shipboard power system (SPS) can significantly
reduce life-cycle costs, support more payloads, and provide greater survivability. By
centralizing the propulsion system and other electrical equipment into a unified grid,
SPS can rationally distribute energy throughout the ship. This will enable “unlocking”
of propulsion energy and provide opportunities for high-powered pulsed loads (HPPLs,
e.g., electromagnetic catapults, high-energy radars, and laser weapons) to be used on board,
which will fundamentally transform the weaponry and significantly improve the maritime
countermeasures capability of naval vessels [3–5].

The main purpose of HPPLs on board is to perform countermeasures [6,7]. External
attacks are sudden and intermittent, and SPS also has the capability to actively combat
extreme events. This means that the entire countermeasure process does not stop until the
end of the event or the system is compromised. Random arrival of multiple concurrent
attacks and fluctuating pulse loads during intense attack and defense will have a dramatic
impact on SPS dynamics, making it difficult to build a system model that can characterize
the entire operation of the confrontation.

Taking the electromagnetic rail gun (EMRG) as an example, the single launch duration
is about 9ms, and the power demand is 160 MJ [8]. With the continuous demand (12/min)
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that must occur in the fierce confrontation process, such significant power must be pro-
vided by SPS. To reduce the impact of instantaneous ultra-high-power demand, energy
storage devices should be used before HPPLs integration, such as batteries, supercapacitors,
flywheels, and other hybrid energy storage devices [9–11].

However, the uncertainty of the countermeasure process and the complexity of the
countermeasure target will cause the dynamic characteristics of SPS to change drastically
in a short period of time, and the traditional system model can no longer meet the demand
of real-time countermeasure decisions. In order to deal with multiple concurrent attacks
arriving randomly and pulse-load operation plans for combating external targets, a model
that can describe the system’s mixed dynamic evolution process driven by random discrete
events in a holistic manner is required.

In addition, the zonal power distribution structure of SPS allows each zone to handle
an external attack autonomously, and the damage caused by the attack will not spread
beyond the damaged zone, which also determines that the system hybrid dynamic model
must take into account the need for distributed control and provide a model basis for
subsequent defense and recovery strategies. These are difficult to achieve by traditional
modeling theory, simulation, and controller design.

The current research on modeling and simulation of SPS mainly focuses on con-
tinuous dynamic electromagnetic transient modeling and simulation methods [12–14].
High-accuracy models for medium-voltage DC (MVDC) SPS were developed to accu-
rately capture the complex and nonlinear system continuous dynamics in physical test
systems [15–17]. Attempts to use reduced-order models have also appeared in the study of
AC ship integrated power systems [18,19] and in the authors’ previous work for MVDC
SPS [20]. To minimize the computational time, a mixed SPS model using different compo-
nent models with varying fidelity was established based on the bond graph method [21].
However, modeling and simulation studies that comprehensively consider the evolution of
the mixed dynamics of SPS are still rarely addressed.

Some studies of power electronic systems proposed discrete-state event-driven hybrid
models and simulation methods to analyze the multi-timescale mixing characteristics of
power electronic systems [22–24]. However, these studies consider discrete events triggered
by the evolution of the system’s own state, which is quite different from the external discrete
attack events that SPS must actively respond to during a countermeasure.

Basically, hybrid modeling methods can be divided into two categories:
The first type considers the system as a continuous dynamic system and describes the

whole system using differential equations. Events that make system equations change are
used as discrete inputs, which means embedding the discrete events into the continuous
dynamic system. This kind of method focuses on the stability and controllability of the
system, and its main modeling methods are switching system model, hybrid logic dynamic
model, etc. For example, a microgrid switching system model was established to ensure sta-
bility of microgrids in different operating states [25]. An AC/DC hybrid system switching
system model was established and applied to the field of power system transient stability
assessment [26]. The hybrid logic dynamic model was used to study the economic dispatch
problem [27].

The second type is to embed continuous dynamic behavior into discrete event dynamic
systems, focusing on performance verification and comprehensive design of controllers,
whose main modeling methods are the hybrid automaton model, hybrid Petri net model,
etc. The Petri net model was used to deal with the discrete switching control events in smart
microgrids [28], and this model was also used to analyze the reachability of microgrids
consisting of green energy sources [29]. A discrete hybrid automaton was used to model
the storage system and controllable electrical loads of the UFES pilot microgrid [30].

While research efforts have been undertaken to study SPS as a hybrid system, the
focus was prioritized to studying operations such as load shedding [31] and supervisory
control [32]. For example, an equation of state model with integer inequality constraints
was developed by building a hybrid logic dynamic model to analyze the optimal control
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behavior of SPS after loss of a generator [33]. However, this method always requires coarse
discretization of the continuous state, and a large set of differential equations must be
solved in the search space formed by the discretized continuous and discrete states at each
moment, which is not suitable for describing the dynamic characteristics of SPS driven
by a sequence of discrete events with drastic sudden changes in a short period of time.
Moreover, it also cannot meet the needs of the subsequent defense and recovery strategy
optimization considering accuracy and computational efficiency.

In the authors’ previous work, a centralized hybrid automaton model for the whole
SPS was established for reconfiguration [34], and it was further extended to the model
under partial observation in Ref. [35]. In this paper, we would like to continue the previous
research by developing a distributed, hybrid model for SPS considering HPPLS integration,
which not only provides a complete description of the system dynamics but also accommo-
dates the requirements for zonal autonomy. A hybrid automaton model of SPS including
both continuous and discrete dynamics of the system is established to completely describe
the system dynamics. The simulation process of the hybrid model is divided into an itera-
tive forward process: differential equations solving of the continuous controlled system in
the discrete state, differential equations reconstruction of the continuous controlled system
after discrete state transition and initial status resetting, and differential equations solving
after the transfer. The implementation steps and algorithms of this process are provided.
Further, two case studies are provided to show the SPS hybrid dynamic evolution process
driven by discrete events.

Compared with the existing SPS modeling and simulation approaches, the novelty
and intellectual merits of this paper can be summarized as follows:

(1) This paper seeks a hybrid model for shipboard power systems considering high-
power pulse loads integration, which can deal with multiple concurrent extreme
events arriving randomly and fluctuating pulse-load operation, to illustrate the hybrid
dynamic evolution process of SPS.

(2) This paper presents the hybrid model in a distributed manner. The proposed model
takes full advantage of the zonal distribution structure of SPS and allows each zone in
SPS to handle the external events autonomously.

(3) The proposed hybrid model provides a direct input/output interface to be integrated
with different-scale continuous models, which allows easy refinement and adjustment
to adapt to different ship design intentions and control requirements.

The rest of this paper is organized as follows. Section 2 introduces a representative
MVDC SPS and derives its hybrid model description, while Section 3 illustrates the sim-
ulation process for this hybrid model. The simulation results are presented in Section 4,
followed by the conclusions.

2. Hybrid Model Description for SPS

Based on the theory of hybrid automata, a hybrid model of SPS consisting of four
zones is proposed in this section. The continuous dynamics of each zone are represented in
the time domain by differential equations, and the continuous state reset relations caused
by discrete state transition are provided to realize simulation of this hybrid model.

2.1. Representative SPS

The next-generation ship integrated power system proposed in Ref. [4], as shown
in Figure 1, is provided as the baseline topology for this paper. This system consists of
two main gas-turbine generator sets (MTGs) and two auxiliary gas-turbine generator sets
(ATGs). These generator sets are connected to the port and starboard buses to form a
zonal power distribution network connected at the bow and stern of the ship. This zonal
distribution network supplies power to four kinds of loads: propulsion loads on each port
and starboard side, consisting of the propulsion motor with its drive (variable speed drive,
VSD) and propeller; inside the zonal network, there are three pulse loads connected to the
port and starboard through energy storages; there are also four zonal loads representing the
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daily electrical loads of the ship, each of which is internally a small distribution network
with a different internal structure depending on the actual needs of the ship. All generators
and loads are connected to the distribution network through power conversion modules
(PCM) and circuit breakers (black squares in the figure). It should be noted that, although
there are connection switches for the port and starboard DC buses at the bow and stern of
the ship, the port and starboard are normally operated separately.

 

Figure 1. Schematic diagram of the four-zone SPS.

The dotted lines connecting port and starboard breakers divide the entire SPS into
four zones. The power supply devices (generator sets and energy storage equipment) are
distributed among the zones and can supply power to the loads across the zones. The
zonal distribution network allows each zone to be autonomous, and the damage caused by
attacks does not spread beyond the damaged zone. Establishing separate hybrid models
for each zone will facilitate implementation of subsequent distributed control schemes.

2.2. Automata-Based Hybrid Model for Each Zone

For each zone of SPS, its basic hybrid structure can include discrete controllers and
continuous controlled systems and their interfaces, describing the discrete event dynamics
and continuous dynamics, respectively. Its basic hybrid model can be represented by a
hybrid automaton:

H = (Q, X, Y, U, Init, f , g, Σ, EG, T, R) (1)

where Q ∪ X is the state space, Q is finite, Y is the set of output variables, U is the set of con-
tinuous control inputs, Init ⊆ Q×X×U is the set of initial conditions, f : Q × X × U → X
is the set of continuous state evolution laws describing the continuous state correspond-
ing to each q ∈ Q, g : Q × X × Y × U → Y is the set of algebraic equations for each
q ∈ Q, Σ = Σc ∪ Σu is the set of discrete events, where Σc is the set of controllable events,
Σu is the set of uncontrollable events, EG : X × U → Σ is the event generator function,
T : Σ × Q → 2Q is the discrete state transition relation, R : Q × X × U → 2X×U is the reset
relation, that is, the control behavior generator function.
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The impact of extreme events on the discrete dynamics of the zones is considered
to develop an extended zonal hybrid model. The extreme events, i.e., external attacks,
have two effects on the discrete dynamics of the zones: one is the intra-zone initiation of
pulse loads, and the second is the fault caused by the attacks on the damage of each zone
(including communication and cables, etc.). The former can be considered as the normal
operation configuration of the zone, while the latter is the fault configuration, according to
which the discrete event transfer of each zone is classified. The operational configuration of
each zone is regarded as the set of normal operational configuration and fault configuration,
and the set of transition events between the two configurations is defined. Then, we can
obtain the extended hybrid model of each zone:

S = (H, FT, RE, H0) (2)

where H is the set of all possible configurations of the subsystem, S and H0 is the initial
configuration of the subsystem S. FT and RE are the set of transition events between the
normal operation configuration and the failure configuration:

FT =
{

f ti
j : i = 1, 2, · · · , n; j = 1, 2, · · · , m

}
(3)

RE =
{

rj
r : r = 1, 2, · · · , n; j = 1, 2, · · · , m

}
(4)

where f ti
j is the fault events, and rj

r is the recovery events.
In this hybrid model, each discrete state of a zone has its corresponding differential

equations to describe the continuous dynamics. Take zone 1 as an example: its continuous
controlled dynamics in the discrete state qi can be expressed as:

.
x = fqi

(
xqi , yqi , uqi

)
0 = gqi

(
xqi , yqi , uqi

) (5)

The continuous dynamic modeling process for SPS can be found in a previous publi-
cation by the authors [28]. Here, we only provide the basic description of variables in (5),
where xqi is the continuous state variables (including state variables of MTG, pulse load,
DC bus voltage, and current, etc.), yqi is the output variables (including variables we want
to monitor), and uqi is the continuous control inputs (including preset values for MTG and
other device controllers inside zone 1). fqi and gqi are the differential functions that can be
derived from Ref. [20].

For the discrete states in this model, let us express the online status of the MTG, ATG,
PM, pulse load, and zonal load as integer values, as well as the connection status of breakers
in the zone. The set of current states of all these devices is a discrete state in this hybrid
model. In addition, take zone 1 as an example: it includes an ATG, two types of load, and a
breaker connecting the port and starboard. We use “0”, “1”, “2”, and “3” to indicate the
connection status of loads, with “0” indicating no connection, “1” indicating the connection
to the starboard bus, and “2” indicating the connection to zone 2, and “3” indicating a
simultaneous connection to port and starboard. Then, for ATG, indicators of “0” and “1”
can be used to represent their online status, with “0” indicating offline and “1” indicating
online. Moreover, for the breaker, “0” indicates open, and “1” indicates closed. Combining
these indicators, we can use a string to express the discrete states of zone 1. For example,
“1310” means that the ATG is online, the pulse load is connecting to the port and starboard
simultaneously, the zone load is connecting to the starboard bus, and the breaker is open.

The discrete dynamics of a zone are represented by event-driven discrete state tran-
sitions, such as the discrete state transition of zone 1 from “1310” to “0130” is caused by
the event “ATG shutdown”. With the transition of discrete states, not only the differential
equations describing the continuous dynamics change but also the initial conditions after
the transition must be recalculated. This will be discussed in Section 4.
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2.3. Global Hybrid Model for SPS

Assume that there are s zones in the SPS (in this paper, it is 4), and the zone
Sk(k = 1, 2, . . . , 4) has (n + m)k configurations. Therefore, the distributed configuration of
SPS can then be denoted by

C=
(

H1,l1 , H2,l2 , . . . , Hs,ls
)

(6)

where Hk,lk is the zone configuration in C, lk = 0, 1, . . . , (n + m)k. The set of all possible
distributed configurations of SPS can be denoted by C. Therefore, the global model for SPS
can be represented as:

S= (C,C0) (7)

where C0 is the initial distributed configuration of SPS.
This global hybrid model fully reflects the autonomous nature of each zone, where

each zone can handle its own internal operation and management as well as respond to
external attacks.

3. Hybrid Simulation Method for SPS

Simulation of the hybrid model involves the continuous dynamic mutation caused by
a discrete state transition. Therefore, the simulation necessarily includes two steps: (1) cal-
culating the initial conditions of the system after discrete state transition; (2) continuous
dynamics simulation of the system in the discrete state after the transition.

3.1. Continuous Dynamic Mutation Due to Discrete State Transition

Suppose that system is first in a discrete state qi with differential equations as (8); after
the discrete state transition occurs, the system is in qj and differential equations as (9):

x(k + 1) = fqi

(
xqi (τ

′), yqi (τ
′), uqi (τ

′)
)

0 = gqi

(
xqi (τ

′), yqi (τ
′), uqi (τ

′)
) (8)

x(k + 1) = fqj

(
xqj(τ

+), yqj(τ
+), uqj(τ

+)
)

0 = gqj

(
xqj(τ

+), yqj(τ
+), uqj(τ

+)
) (9)

where x(τ+), y(τ+), u(τ+) are continuous state variables, output variables, and continuous
control inputs after discrete state transition, respectively.

The change in output variables and continuous state variables caused by discrete
state transition, which is also the reset relationship of continuous state after discrete state
transition, has the following initial condition calculation flow chart:

It should be noted that the numbers of output variables, continuous state variables,
and control inputs may change after the discrete state transition. During the flow chart in
Figure 2, the output variables are solved first, followed by the continuous state variables;
after that, the continuous state variables at the end of time step k are calculated in normal
order by using the following backward differencing method:

xqj(k)− xqj

(
τ+
)
=

h
2

⎛
⎝ fqj

(
xqj(k), yqj(τ

+), uqj(k)
)

+ fqj

(
xqj(τ

+), yqj(τ
+), uqj(τ

+)
)
⎞
⎠ (10)
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Figure 2. Initial condition calculation flow chart when the discrete state transition occurs.

After the above steps, the system simulation can continue until another discrete state
transition occurs.

3.2. Continuous Dynamic Model Reconstruction and Solving after Discrete State Transition

Basically, besides reformulating the differential equations of the system and resetting
the initial conditions when the discrete state transition occurs, simulation of hybrid systems
only requires solving the differential equations under the current discrete state.

First, differential equations set for each zone are formed by differential equations for
all components in that zone with their input–output relationships. Detailed differential
equations for each component can be found in Ref. [20], including the power generation
module, propulsion module, power conversion module, energy storage module, loads, and
power distribution module. These equations cover the parameters, state variables, control
inputs, and outputs of each component. Based on the current discrete state of the zone, the
operating status of each component is determined. Then, we can construct the differential
equations for the zone by connecting the input–output relationships of these components
based on the internal distribution network, as shown by fZ(x, y, u) in Figure 3.
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Figure 3. Inter-dependency of the zones.

Then, the global hybrid model can be formed by (7). In this paper, the proposed
global hybrid model is a loosely distributed structure under weak restrictions. Each
zone can execute its internal operations and calculate the continuous dynamics driven by
discrete events. Figure 3 provides the inter-zone power flow relationships under the zonal
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distribution network. In this way, the hybrid model proposed here can be easily applied to
further distributed control and management studies.

Finally, the generalized discretization method (fourth-order Runge–Kutta method) is
used to solve the differential equations. The whole simulation is implemented in MAT-
LAB platform.

4. Simulation and Results Analysis

In order to verify the hybrid modeling and simulation method proposed in this paper,
a typical SPS shown in Figure 1 is used here to build a hybrid model and perform simulation
cases. Table 1 displays the component specifications of the SPS under study, whose detailed
parameters can be found in Ref. [28].

Table 1. Components specification in benchmark SPS.

Components Zone 1 Zone 2 Zone 3 Zone 4

PGM ATG 4MW MTG 36MW MTG 36MW ATG 4MW
PM 36MW 36MW

Pulse Load 20MW 1MW 1MW
Zonal Load 2MW 2MW 2MW 2MW

The discrete states of SPS are determined by the working status of all components
and the connection status of power cables. Due to the large number of power cables in the
system, here, we only provide the possible discrete states of all components in Table 2. The
discrete status of the generator set indicates whether it is online or not. The propulsion
motor can be offline or operating at 50% or rated power. The zonal load and pulse load can
be disconnected or supplied by port, starboard, or both port and starboard equally. The
port and starboard connecting breakers can be open or closed.

Table 2. Discrete status of components in benchmark SPS.

Devices/Components
Status

0 1 2 3

Z1

ATG1 Offline Online
PL1 Offline Port Supply Stbd Supply Both Supply
ZL1 Offline Port Supply Stbd Supply Both Supply
Brk1 Open Close

Z2

MTG1 Offline Online
PL2 Offline Port Supply Stbd Supply Both Supply
ZL2 Offline Port Supply Stbd Supply Both Supply
PM1 Offline 50% power Rated power

Z3

MTG3 Offline Online
PL3 Offline Port Supply Stbd Supply Both Supply
ZL3 Offline Port Supply Stbd Supply Both Supply
PM2 Offline 50% power Rated power

Z4
ATG2 Offline Online
ZL4 Offline Port Supply Stbd Supply Both Supply
Brk2 Open Close

4.1. SPS Start-Up Scenario

First, consider the scenario where the ship starts up to full speed, which means that
the final propulsion motor will run at its maximum power of 37 MW, and, with four zone
loads, the full system load power is close to 80 MW. The discrete event sequences and their
occurrence moments during the whole simulation are shown in Table 3. In addition, the
operation of the pulsed load is not considered in this condition, and the EMRG will remain
disconnected during the whole process.
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Table 3. Discrete event sequences during startup.

ID Time (s) Event Description

1 0 Simulation starts; all generator sets running at rated speed
2 5 All generator sets connect to the DC bus
3 20 All zone loads online

4 30 Propulsion subsystems connect to DC bus and ship speed
gradually increases to 32 knots

5 300 Simulation ends and record the results

The simulation results are shown in Figures 4–9, which provide the full-system simu-
lation results under the starting condition, including the mechanical torque and speed of
the gas turbine, DC bus voltage, output current of the generator set, electromagnetic torque
and speed of the propulsion motor output, ship’s speed and resistance, mechanical power
output of the gas turbine, power output of the generator set, mechanical power output of
the propulsion motor, and zonal loads power curves.

 
Figure 4. Case 1 gas turbine speed, torque, and power.

Figure 5. Case 1 generator current and power.
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Figure 6. Case 1 DC bus voltage.

Figure 7. Case 1 PM torque, speed, and power.

Figure 8. Case 1 zonal loads power.

Figure 9. Case 1 ship speed and resistance.

34



J. Mar. Sci. Eng. 2022, 10, 1507

The simulation result curve shows that, from the initial moment to 20 s, the gas turbine
is first started under the action of the governor, and its speed is gradually stabilized at
the rated value of 377.0 rad/s. Meanwhile, the DC bus voltage rises continuously under
the action of the generator excitation controller and remains stable when it reaches the
rated value of 5000 V. At 20 s, the zonal loads are online; at this time, the power of the
generator sets undergoes a small increase. At 30 s, the propulsion system is connected to
the DC bus, and a given electromagnetic torque is added at a speed of 50,000 N·m/s. When
the torque reaches 3MN·m, it remains stable. At this time, there is a significant increase
in the output current of MTG, which causes a slight fluctuation in the DC bus voltage.
The electromagnetic torque of the propulsion motor rises gradually with the given value,
driving the propeller to rotate, and the propeller starts to produce resistance torque and
thrust for the ship to sail forward. After the electromagnetic torque of the propulsion motor
reaches stability, the rotational speed also gradually reaches stability, while the ship’s speed
takes a longer time to stabilize due to the large inertia time constant, and it finally reaches
32 knots in about 200 s.

4.2. Pulse Load Launch Scenario

Next, consider the pulse load launch scenario. It should be noted that the pulse load
of zone 1 in Figure 1 includes the energy storage module, which rises to 15 MW in 5 s
and then performs pulse load firing with the whole pulse period of 6 s. This pulse load is
powered by the port and starboard together. The pulse power curve is shown in Figure 10,
whose load demand will rise to 15 MW in 3.33 s and fall at a rate of 50 MW/s. The discrete
event sequence and its occurrence moment during the whole simulation are shown in the
Table 4. The gas turbine is controlled by the governor to drive the synchronous generator
to always run at a constant speed, and the zonal loads and radar are always kept online
with an initial ship speed of 8 knots and accelerated to 25 knots after two launches. The
simulation time is 200 s.

Figure 10. EMRG operation power profile.

Table 4. Discrete event sequences during pulse load launch.

ID Time (s) Event Description

1 0 Simulation starts, ship speed 8 knots
2 5 EMRG starts charging
3 10 EMRG launches
4 11 EMRG charging again
5 16 EMRG launches again
6 17 EMRG disconnects, ship accelerates to 25 knots
7 200 Simulation ends and record the results

The simulation results are shown in Figures 11–16. They also provide the mechanical
torque and speed of the gas turbine, DC bus voltage, output current of the generator
set, electromagnetic torque and speed of the propulsion motor output, ship’s speed and
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resistance, mechanical power output of the gas turbine, power output of the generator set,
mechanical power output of the propulsion motor, and zonal loads power curves.

Figure 11. Case 2 gas turbine speed, torque, and power.

Figure 12. Case 2 generator current and power.

Figure 13. Case 2 DC bus voltage.
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Figure 14. Case 2 PM torque, speed, and power.

Figure 15. Case 2 zonal load power.

Figure 16. Case 2 ship speed and resistance.

The simulation result curves show that the system is in a steady state at the beginning,
at a speed of 8 knots. Before the launch of EMRG, the energy storage device absorbs and
accumulates energy from SPS, and this energy is released for pulse load during the mission.
In this case, during each pulse duration, the energy storage device is charged at 15 MW
for 5 s and then discharged for 1 s as the EMRG is fired. With the launch of the pulse load
in 5 s, there is a small oscillation in the speed of the gas turbine. After the pulse load is
put into use, its power rises to 15 MW in 3.3 s. As seen from the output power curve of
the generator set, there is a sharp rise in the output power of both MTGs to meet the load
power. At the same time, the DC bus voltage drops. During the charging and discharging
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process of the pulse load, there are four oscillations in the DC bus voltage curve, but they
all return to the set value quickly. Although it is not obvious in the simulation curve, the
output power of the propulsion motor also shows a slight oscillation, which is directly
related to the oscillation of the DC bus voltage. After the pulse load stops working, the ship
enters an acceleration phase by adding a given electromagnetic torque at 25,000 N·m/s to
reach 0.9 MN·m. The ship speed reaches 25 knots in about 200 s.

4.3. Comparison and Discussion

Our work presents a hybrid model architecture for SPS that focuses on the continuous
dynamics triggered by discrete events transition. Benefiting from the properties of the
hybrid model, SPS can be treated as a discrete event system by event and control action
generation. Thus, this hybrid model can accept pulse loads operation plans as discrete
event sequences and perform simulation and analysis. Other modeling methods can
also be used for SPS simulation but may not be suitable for the following control and
energy management requirements of SPS. As we emphasized in the introduction, multiple
concurrent attacks arriving randomly and the pulse loads operation plan will cause the
dynamic characteristics of SPS to change drastically in a short period of time, making it
important to focus on the discrete event sequences and their impact on the dynamics in
each zone. This is exactly the reason why we propose this hybrid model.

In the following discussion, different modeling methods are compared from five
different aspects: application SPS topology, model type, configuration, method, and case
studies. The results are shown in Table 5. It can be seen that most modeling studies do
not take into account the distributed feature of SPS, and they are more concerned with
computational efficiency. However, it is obvious that a distributed solution will be more
economical in terms of computational resources. Additionally, previous hybrid model
studies have tended to focus on system reconfiguration after components failed but have
not considered the impact of external attacks. As we mentioned in the introduction, pulse
loads operation plans and faults caused by external attacks will have a significant impact on
system dynamics, which requires attention to system dynamics affected by discrete event
sequences. Among the few hybrid modeling pieces of research for SPS in the literature, our
work shows its advantages in distributed and pulse loads adaptability.

Table 5. Comparison of different modeling methods.

Research
SPS

Topology
Model
Type

Model
Configuration

Modeling
Method

Case Studies

[12] DC + Zonal Continuous Centralized Simulink Pulse load
[13] DC + Radial Continuous Centralized Simulink Ship acceleration and deceleration

[14] DC + Radial Continuous Centralized Simulink Ship acceleration + Overloaded +
Restoration

[15] DC + Zonal Continuous Centralized RTDS N/A
[20] DC + Zonal Continuous Centralized Simulink Ship acceleration + Pulse load
[31] DC + Radial Hybrid Centralized Simulink Load shedding
[32] AC + Ring Hybrid Centralized Simulink Supervisory control
[33] AC + Ring Hybrid Centralized Simulink Reconfiguration

Our work DC + Zonal Hybrid Distributed Simulink Ship acceleration + Pulse load

5. Conclusions

This paper proposes a hybrid modeling method for SPS that takes into account dis-
crete control events and continuous system dynamics. In particular, considering HPPLs
integration with discrete and random attack event sequences, the hybrid model of each
zone is established separately according to the zonal power distribution structure, which
enables dealing with external attack events and actual damage from the perspective of zone
autonomy. Through continuous states reset after discrete state transition and reconstruction
and solving of continuous differential equations, simulation of the SPS hybrid model is
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realized. The simulation results show that the hybrid model developed in this paper can
specifically describe the hybrid dynamic evolution process of SPS driven by discrete events,
as well as the operating characteristics of the whole process into the confrontation phase.
This research can improve the modeling theory of SPS and enrich system analysis.

As an extension of our work, one can systematically investigate the effect of cyber
failures on the onboard control and communication systems, which will cause abnormal
operation of SPS and result in the unobservable state of some equipment. Especially during
the confrontation phase, it is probable that the system state is partially observable. State
estimates, as with our previous research in Ref. [35], can be further introduced to provide a
prediction of system dynamics.
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Abstract: The control system is one of the important components of the hydrofoil craft. By adjusting
the navigation attitude of the craft, the hydrofoil craft can navigate stably and safely in the turbulent
environment. Aiming at the problem that existing control algorithms have poor stability in the
longitudinal motion control of hydrofoil craft, the longitudinal motion reduction is limited, and
there are excessive requirements for accurate disturbance wave data. Based on the fully submerged
hydrofoil craft model, this article proposes a joint control method LQRY-SMC combining linear-
quadratic optimal control with output regulation (LQRY) and sliding-mode control (SMC), and adds
genetic algorithm to optimize the weighting matrix parameters, get better control-feedback gain,
improve the global optimal-control stability, thus improving the comfort of the crew, and prevent
the attack of the hull, deck wetness and damage to instruments. The simulation results show that
compared with the existing methods, the heave displacement and pitch angle obtained by LQRY-SMC
under the turbulent flow of different significant wave heights are reduced by about 50%, and the
influence of longitudinal motion on hydrofoil crafts is avoided to a large extent, which proves the
effectiveness and superiority of the method proposed.

Keywords: fully submerged hydrofoil craft; longitudinal movement; LQRY-SMC control method;
wave disturbance

1. Introduction

The fully submerged hydrofoil craft is a new type of high-performance ship. When
sailing at high speed, the hydrofoil installed at the bottom of the craft body is used to
generate hydrodynamic lift to lift part or all of the craft body off the water surface, so as to
reduce the resistance and improve the sailing speed. The maximum speed can reach more
than 50 knots. Compared with traditional ships, it has the characteristics of low resistance,
high speed and good seakeeping. The appearance of hydrofoil crafts enables people to
save time at sea and obtain a more comfortable shipping experience. However, under
the interference of sea waves, hydrofoil crafts will inevitably produce heave and pitch
motion, which seriously affects the comfort and work efficiency of the crew. On the other
hand, the intense longitudinal movement will cause damage to the onboard instruments
and equipment, increase the probability of the attack of the hull, deck wetness, and even
hydrofoil out of the water, bring danger to navigation [1].

In order to make the hydrofoil craft navigate stably and safely in the turbulent envi-
ronment, an important way is to add a control algorithm to the longitudinal motion system
of the hydrofoil craft to reduce the heave displacement and pitch angle to a certain extent.
By controlling the control surface of the hydrofoil trailing edge flap of the hydrofoil craft,
the lift of the hydrofoil craft can be continuously adjusted to offset the interference of the
waves and improve the seakeeping performance of the hydrofoil craft. At present, the
most commonly used control methods of hydrofoil crafts are based on the improved PID
algorithm or classical robust control, and for this multi-input and multi-output nonlinear
strong coupling system with uncertain disturbance and unknown parameter disturbance,
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the above method has poor application effect, large error and cannot meet the requirements.
Therefore, many scholars convert the nonlinear model into a linear model for research [2–4].
The longitudinal motion control system of ships can be traced back to the 1950s. Matdaud
Z. summarized the key technologies used by the United States and the Soviet Union to
control the longitudinal motion of ground-effect ships to stabilize ships in the past, and
classified and summarized the control system [5]. Kaiye Hu et al. found that the active
hydrofoil structure has better stability effect than the fixed hydrofoil in regular waves, and
the stability effect decreases with the increase of sea conditions in irregular waves [6]. The
longitudinal motion of the high-speed catamaran stability control model also provides a
reference for the study of the automatic control system of hydrofoil crafts. Sang Hyun Kim
combines LQR controller and Kalman filter to form a totally submerged hydrofoil model
and control system. The final results show that it is very effective in still water, but it is not
effective under the influence of sea waves, because it cannot reduce the impact of wave
track motion and hydrofoil lift change [7]. An optimized preview servo system is designed
for the problem, so that the stability of the control system can be enhanced in regular and
irregular waves [8]. Hongli Chen et al. designed a PID controller capable of intelligent
adaptive interference compensation by using backstepping and online calculation based
on generalized dynamic fuzzy neural network, which can greatly reduce the output error
of heave displacement and pitch angle, and have a certain control effect on longitudinal
attitude [9], and can even use reinforcement learning to make the effect comparable to
that of a PID controller [10]. Inspired by the aerospace vehicle [11], the unmanned aerial
vehicle [12,13] and the underwater vehicle [14], Sheng Liu et al. proposed an improved
adaptive complementary sliding mode controller with disturbance observer, and proved
the stability of the system with the Lyapunov stability theory. The improved sliding surface
can attenuate the switching gain and maintain the interference reflection performance, and
can stabilize the longitudinal motion of the hydrofoil craft with small stability error and fast
response [15–17]. Jangwhan Bai compared the advantages and disadvantages of the above
three control methods under the same state space equation and gave a conclusion [18].

Based on the analysis of the above documents, the following problems exist: PID
control is sensitive to the wave height in irregular waves, and there is even a large instability
factor. LQR control is applicable in various wave environments. The algorithm uses small
control inputs and can attenuate the motion, but it still cannot make the heave displacement
and pitch angle reach the longitudinal stable state. Sliding-mode control provides the
maximum reduction of quasi-static motion. However, when the disturbance conditions
are uncertain, the performance of sliding mode control is greatly affected by the wave
environment. In addition, it also needs a larger flap angle of front and rear hydrofoil than
LQR control.

In the field of control, not only can separate control methods be used, but also they can
be combined.Subsequently, some scholars have proposed a sliding mode controller based
on LQR sliding surface for the balance control of the rotating two-stage inverted pendulum
(RDIP) system. The sliding surface is designed based on LQR optimal gain. Under external
interference and model and parameter uncertainty, LQR-SMC can maintain the stability of
the system and obtain better performance than using them alone [19–21], wwhereas the
LQR system considers only the size of the system state and the control quantity. For the
model of hydrofoil craft, the output quantity needs to be taken as one of the performance
indexes to form a linear quadratic state feedback regulator (LQRY). In document [22], it is
also mentioned that LQRY has smaller overshoot and shorter regulation time.

It is found from the above documents that under-the-sea conditions with significant
wave height less than 3 m, the heaving displacement amplitude of the current best control
method is about 0.5 m, and the pitch angle amplitude is about 4◦, which can maintain the
basic safety of navigation, but still cannot meet the requirements of stability. Therefore, this
article will use LQRY-SMC joint control to reduce the heave displacement and pitch angle
of the hydrofoil craft, which can enhance the robustness of the system, greatly reduce the
longitudinal motion amplitude and maintain the longitudinal motion stability.
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The structure of this article is as follows: In Section 2, the disturbance force and
moment of the submerged hydrofoil boat and irregular waves are modeled. Section 3
introduces the control methods used in this article and the algorithm improvement for
LQRY optimization. In Section 4, the software is used to establish the simulation model
and get the corresponding data for comparison. Finally, Section 5 summarizes the research
work of this article. The flow chart of this article is shown in Figure 1.

 

Figure 1. The flow chart of this article.

2. Mathematical Model of Longitudinal Motion

2.1. Construction of Longitudinal Model of Hydrofoil Craft

Hydrofoil craft is composed of four parts: hull, hydrofoil, propulsion system and
control system. This article is based on PCH-1 made in the United States [23,24]. It is a
fully submersible seaplane designed by the United States, which is suitable for marine
conditions and meets military standards. The duckbill configuration is adopted and a
control flap is used to control the heave of the fully submerged hydrofoil craft. A hydrofoil
with a larger aspect ratio is used as the rear hydrofoil to provide more lift. The control flap
is connected to it to control the pitch and heave attitude together with the front flap. The
three views of the hydrofoil craft model and the hydrofoil-flap assembly drawing used are
shown in Figures 2 and 3 respectively.

 

Figure 2. Three views of hydrofoil.

 
Figure 3. Hydrofoil-flap assembly drawing.

In order to comprehensively study the motion of a ship, it is necessary to establish
a fixed coordinate system and a moving coordinate system [25]. The coordinate system
fixed on the earth is also called the fixed coordinate system, and O is the origin of the
coordinate system fixed on the earth’s surface. The X-axis is in the still water plane, and it
can usually be selected as the general motion direction of the ship. The Y-axis is selected
as the direction in which the X-axis rotates clockwise in the hydrostatic plane. The Z-axis
is perpendicular to the hydrostatic plane and points to the earth center. The coordinate
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system fixed to the ship is also called the moving coordinate system. The origin G of the
coordinate system is usually taken at the center of gravity of the ship and moves with
the ship. The x-axis is taken as the longitudinal section perpendicular to the midship and
pointing to the bow. The y-axis is perpendicular to the midship cross section and points to
the right chord. The z-axis is perpendicular to the waterline plane and points to the keel. In
ship motion, there are usually six degrees of freedom, of which three degrees of freedom
are longitudinal motions, namely, surge, pitch and heave. This article mainly studies pitch
and heave, and does not consider surge. As shown in Figure 4, it is the coordinate system
of fully submerged hydrofoil craft.

 

Figure 4. Definition of hydrofoil coordinate system.

Because of the irregularity of the hull shape and the randomness of the sea state, the
hydrofoil craft is assumed to move in an infinite uniform flow field. The mathematical
expressions of heave and pitch are as follows [26]:{

m(
..
h + Ue

.
θ) = Zf + Zc + Zw

Iyy
..
θ = Mf + Mc + Mw

(1)

where m is the mass of the hydrofoil craft, h is the heave displacement, Ue is the ship speed,
θ is the pitch angle, Zf, Mf is the lift and moment of the hydrofoil, Zc, Mc is the control force
and control moment, and Zw, Mw is the disturbance force and disturbance moment of the
sea wave. The expansion of formula (1) can be written as follows:⎧⎪⎪⎨

⎪⎪⎩
m(

..
h + Ue

.
θ) =

2
∑

i=1
(Ff i + Ff pi) + mg cos θ + Zw

Iyy
..
θ = − 2

∑
i=1

(x f i − xG)(Ff i + Ff pi) + Mw

(2)

where Ffi is the force generated by the hydrofoil, Iyy is the moment of inertia of the hull,
and xfi, xG is the distance from the hydrofoil and the center of gravity to the center of the
ship. The symbol of xfi, xG is determined by the position of the relative stress action point
in the ship. The “+” sign is taken before and “−” sign is taken after. When i = 1, it is related
to the front wing, and i = 2, it is related to the rear wing.

Then rewrite the above formula into the following form to obtain:⎧⎪⎪⎨
⎪⎪⎩

Z(
..
h,

.
h, h,

..
θ,

.
θ, θ) = m(

..
h + Ue

.
θ)− 2

∑
i=1

(Ff i + Ff pi)− mg cos θ − Zw = 0

M(
..
h,

.
h, h,

..
θ,

.
θ, θ) = Iyy

..
θ +

2
∑

i=1
(x f i − xG)(Ff i + Ff pi)− Mw = 0

(3)

Linearize the left end of the equation and substitute the parameters of PCH hydrofoil
craft to obtain:{

Z..
h

..
h + Z .

h

.
h + Zhh + Z..

θ

..
θ + Z .

θ

.
θ + Zθθ = −Zδe δe − Zδ f δ f − Zw

M ..
h

..
h + M .

h

.
h + Mhh + M..

θ

..
θ + M .

θ

.
θ + Mθθ = −Mδe δe − Mδ f δ f − Mw

(4)
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{ ..
h + 6.06h + 0.338h + 3.41

..
θ + 42.4

.
θ + 454θ = −51.5δe − 62.9δ f − Zw

0.016
..
h + 0.069

.
h +

..
θ + 8.45

.
θ + 0.654θ = 4.58δe − 1.88δ f − Mw

(5)

In modern control theory, state feedback and matrix operation are adopted to convert
the above differential equation into the form of state equation, so the continuous state
equation of longitudinal motion is:

[ ..
h
..
θ

]
=

[−0.6079 −6.412 −478.024 −14.3747
0.0791 0.1033 7.0452 −8.2187

]⎡⎢⎢⎢⎣
h
.
h
θ
.
θ

⎤
⎥⎥⎥⎦+

[−71.016 −59.7706
5.7234 −0.9177

][
δe
δ f

]
+

[
1.0577 −3.6069
0.017 1.0577

][
Zw
Mw

]
(6)

2.2. Force analysis of Hydrofoil

The hydrofoil installed at the bottom is the biggest difference between hydrofoil crafts
and other ships, which is the key to ensure its stable navigation. When traveling at a certain
speed, the pressure difference caused by the flow velocity difference between the upper and
lower hydrofoil plates will generate buoyancy, which will make the hull come completely
out of the water, reduce the resistance, improve the speed, and provide better stability.
The plane geometric structure and wing section structure of the hydrofoil are shown in
Figures 5 and 6.

 

Figure 5. Plane geometry of hydrofoil.

 

Figure 6. Wing section structure drawing.

In Figure 5, where b is the wingspan, lr is the tip chord, lt is the root chord, the average
chord length is l, and the aspect ratio is λ= b/l. In Figure 6, the section along the inflow
direction is called the wing section. The foremost point LE on the wing section is the leading
edge, and the rearmost point TE is the trailing edge. AB is the maximum thickness of the
wing section and the distance from AB to the leading edge is xc. The longest line segment
CD is the maximum camber, and the distance from CD to the leading edge is xf.

Next, the force analysis is carried out. The characteristic that the hydrofoil can generate
lift is also called the hydrodynamic characteristic. The complete force analysis of the
hydrofoil during the navigation of the hydrofoil craft is shown in Figure 7 [27].
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Figure 7. Force analysis of hydrofoil.

In the figure, F is the resultant force of the hydrofoil, Fl is the lift of the hydrofoil,
and Fd is the resistance of the hydrofoil. δ is the angle between the resultant force and
the vertical line of the water surface, θ is the angle between the hydrofoil plane and the
horizontal direction, β is the angle between the lift force and the resultant force, γ is the
angle between the lift and the vertical water surface line. Lift, drag and lift drag ratio can
be expressed as follows:

Fl =
1
2

CLρUe
2S (7)

Fd =
1
2

CDρUe
2S (8)

K =
Fl
Fd

=
CL
CD

(9)

where ρ is the sea water density, Ue is the ship speed, and S = l·b is the area of the
hydrofoil. Among them, the lift drag ratio K is one of the important parameters reflecting
the performance of the hydrofoil, and it is the ratio of the lift coefficient and the drag
coefficient. The lift coefficient can be obtained by two methods of test or calculation
according to the hydrofoil theory. Generally, it is assumed that the thickness, camber and
angle of attack of the airfoil section are small and the airfoil is deep from the water surface.
The formula is as follows:

CL = 2π(α +
2 f
l
) (10)

where α is the attack angle of the hydrofoil and f is the camber. When the camber coefficient
of the thin wing of the plate is approximately 0, the lift coefficient is obtained CL = 2πα.

The flap is the part that provides stable control force for the longitudinal movement of
the hydrofoil craft. The control force formula generated by the flap is as follows:

Ff =
1
2

CL f ρUe
2S f α f (11)

where, Sf is the area of the flap, αf is the angle of attack of the flap, CLf is the lift coefficient
of the flap, and its calculation method is similar to that of the hydrofoil. However, due
to the limitation of the mechanical structure, the lift coefficient of the flap is linear within
a certain angle, so the flap servo system needs to set the maximum angle to ensure the
appropriate control force of the hydrofoil craft.

Since the waves have great randomness and complexity in time and space, they can
be considered to be formed by the superposition of multiple regular waves with different
wavelengths, frequencies, wave amplitudes, phases and propagation directions, and then
the disturbance force and moment are analyzed. The irregular wave model is as follows:

ξ =
n

∑
i=1

Ai cos(ωeit + εi + ψi) (12)
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where n = 50, εi is the ith phase randomly generated on [0, 20], and the formula of wave
amplitude Ai and encounter frequency ωei is as follows:

Ai = (2S(ωi) ω)
1
2 (13)

ωei = (
2π

λi
)(UR cos χ − c) (14)

ψi = (
2π

λi
)(x cos χ + y sin χ) (15)

ωi =
2πc
λi

(16)

where, S(ωi) is the P-M spectrum, λi is the wavelength, c is the wave velocity, χ is the
encounter angle, and ωi is the actual frequency. In this article, the P-M spectrum used in
the research of ship hull, which is currently popular internationally, is used for analysis.
The spectral density function is as follows [28].

S(ω) =
A

ω5 e−
B

ω4 (17)

A = 8.1 × 10−3 g2, B = 3.11/H1/3
2, H1/3 is significant wave height, and Figure 8 is the

curve under different significant wave heights.

 

Figure 8. P-M spectra with different significant wave heights.

After analysis and collation, it is concluded that the forces and moments generated by
irregular waves on the hydrofoil are:

Z2 =
n

∑
i=1

Fzi cos(ωeit + φzi + εi) (18)

M2 =
n

∑
i=1

Mei cos(ωeit + φMi + εi) (19)

where:

Fzi = 2πUR Aic/λie−2πz/λi [(Kb cos ψbi + K f cos ψ f i)
2 + (Kb sin ψbi + K f sin ψ f i)

2]
1
2 (20)

Kb = (1/2)ρUR
2 A f b(∂CL/∂α)b (21)

ψbi = (2πXb/λi) cos χ (22)
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K f = (1/2)ρUR
2 A f f (∂CL/∂α) f (23)

ψ f i = (−2π/λi)(Ls − Xb) cos χ (24)

φzi = arctan(−Kb cos ψbi + K f cos ψ f i

Kb sin ψbi + K f sin ψ f i
) (25)

Mei = 2πUR Aic/λie−2πz/λi [(−XbKb cos ψbi + (Ls − Xb)K f cos ψ f i)
2

+(−XbKb sin ψbi + (Ls − Xb)K f sin ψ f i)
2]

1
2

(26)

φMi = arctan[−−XbKb cos ψbi + (Ls − Xb)K f cos ψ f i

−XbKb sin ψbi + (Ls − Xb)K f sin ψ f i
] (27)

where, Xb is the distance from the center of gravity of the hull to the front hydrofoil, and
Ls is the distance between the front and rear hydrofoils. It should be noted that when the
encounter frequency ωei is negative, the minus sign before Equations (25) and (27) should
be removed to calculate ϕzi and ϕMi.

3. Design of Longitudinal Motion Controller of Hydrofoil Based on LQR/LQRY-SMC

The control system has a very important role in the stable navigation of the hydrofoil
craft, and is also the focus of this article. According to the changes of the sea conditions, the
flap angle is adjusted to generate the required restoring force and restoring moment, reduce
the longitudinal motion of the full-submerged hydrofoil craft, and realize the stabilization
of the longitudinal motion attitude of the full-submerged hydrofoil craft. Generally, a
closed loop is composed of the controlled object (hull), sensor, controller and actuator.
The state observer is used to obtain the required state value. The controller gives the
flap-command angle signal according to the attitude angle and displacement to reduce
the deviation between the actual value and the expected value. The actuator is mainly
composed of the servo system, the flap-mechanical structure and the flap-angle feedback
measurement device. Figure 9 is a block diagram of the control system.

 

Figure 9. Structure diagram of control system.

The joint control in this article first needs to analyze the LQR control part. This method
is easy to realize, and the optimal control law of state-linear feedback can be obtained. At
the same time, the original system can achieve a better performance index with low cost.
The performance index function J(u) needs to be defined to have a minimum value.

J(u) =
1
2

xT(T)S(T)x(t) +
1
2

∫ T

0
(xT(t)Q(t)x(t) + uT(t)R(t)u(t))dt (28)

The Q and R matrices are used to adjust the input variables and state variables of the
cost function to find the optimal value. If not only the influence of system state x(t) and
control quantity u(t) is considered, but also the output quantity y(t) is introduced, it can be
called LQ optimal control based on output regulation, also called LQRY control.

J(u) =
1
2

xT(T)S(T)x(t) +
1
2

∫ T

0
(xT(t)Q(t)x(t) + uT(t)R(t)u(t) + yT(t)F(t)y(t))dt (29)
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The optimal feedback gain matrix of LQR/LQRY can be expressed as:

u(t) = −R−1BT Px(t) (30)

K = −R−1BT P (31)

where P is the solution of Riccati equation, the equation is as follows:

PA + AT P + Q − PBR−1BT P = 0 (32)

PA + AT P + Q + CT FC − PBR−1BT P = 0 (33)

The above control mode can also use some optimization algorithms to further reduce
the longitudinal motion of the hydrofoil craft. In this article, the genetic algorithm is used
to select the appropriate fitness function to optimize the Q and R matrix [29]. The process
diagram is shown in Figure 10.

 

Start

Generate 
population

Whether the suspension 
conditions are met

Genetic 
manipulation

End

Individuals are assigned to the 
weight matrix in turn

Output optimal feedback 
control matrix K

Substitute into hydrofoil 
simulation model

No

Yes

Figure 10. Schematic diagram of genetic algorithm.

Then analyze the sliding mode control part, let a system be:
.
x = f (x), x ∈ Rn, there is

a plane s(x) = s(x1, x2, . . . , xn) = 0, as shown in Figure 11.

 

Figure 11. Sliding surface.

As can be seen from the figure, this plane divides the state space into two parts. Once
the moving point in the state space enters the plane range during the movement, there are
three different states, namely, the normal point A, the starting point B and the ending point
C. In order to keep the system stable, it is desirable that the motion point in the plane range
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be the termination point, because other motion points in the state space will become the
constant motion of the termination point in the region when they enter the plane range, so
this region is called the sliding-mode region. From the sliding-mode analysis, it needs to
meet the following requirements: lims

.
s

s→0
≤ 0.

According to formula (6), the hydrofoil craft can be regarded as the following second-
order uncertain nonlinear dynamic system:{ .

x1 = x2.
x2 = f (x) + g(x) + b(x)u

(34)

f(x), g(x) and b(x) can be determined by formula (6) to obtain:

f (x) =
[−0.6079 −478.024 −6.4120 −14.3747

0.0791 7.0452 0.1033 −8.2187

]⎡⎢⎢⎢⎣
h
.
h
θ
.
θ

⎤
⎥⎥⎥⎦ (35)

b(x) =
[−71.016 −59.7706

5.7234 −0.9177

]
(36)

g(x) =
[

1.0577 −3.6069
0.017 1.0577

][
Zw
Mw

]
(37)

According to the characteristics of the fully submerged hydrofoil craft, the sliding-
mode function selected by the sliding mode variable structure control part in this article is
as follows:

s = x1 +
1
β

x2
p/q (38)

where β > 0, p > q, p and q are positive odd numbers. The sliding-mode controller designed
according to the linearization feedback theory is:

u = −b−1(x)
(

f (x) + β
q
p

x2
2−p/q + 0.1sgn(s)

)
(39)

Its stability is proved as follows:

.
s =

.
x1 +

p
βq x2

p/q−1 .
x2

= x2 +
p

βq x2
p/q−1[ f (x) + g(x) + b(x)u]

= p
βq x2

p/q−1(g(x)− 0.1sgn(s))
(40)

Multiply both sides by s:

s
.
s =

p
βq

x2
p/q−1(sg(x)− 0.1|s|) (41)

Because 1 < p/q < 2, then 0 < p/q − 1 < 1, x2
p/q−1 > 0, it can be proved that

s
.
s ≤ −0.1p

βq
x2

p/q−1|s| (42)

Because −0.1p/βq ∗ x2
p/q−1 ≤ 0, then s

.
s ≤ 0, the controller satisfies the Lyapunov

stability condition. In order to further enhance the control effect, it is considered to combine
the above two control methods to form LQRY-SMC. The controller formula is as follows:

u = −Kx − b−1(x)
(

f (x) + β
q
p

x2
2−p/q + 0.1sgn(s)

)
(43)
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4. Design of Longitudinal Motion Controller of Hydrofoil Based on LQR/LQRY-SMC

The simulation in this section firstly needs to substitute the disturbance force and
disturbance moment under irregular wave waves with different parameters into the for-
mula in Section 2.2, and then substitute the data results into the controller simulation as
the external disturbance part. Under different wave heights, the LQRY and sliding-mode
control alone and the LQRY-SMC using them together are simulated and the data diagram
is obtained.

4.1. Simulation of Disturbance Force and Moment

In order to more intuitively show the disturbance effect of the hydrofoil craft by the
sea waves, the ship model is used as a reference to simulate the disturbance force and
moment of the ship under the action of random sea waves according to the above formula.
The parameters of the hull model used are shown in Table 1. The disturbance force and
moment curves of 180◦ encounter angle and 1.5 m, 2 m, 3 m significant wave heights of the
turbulent flow will be given in the article, as shown in Figures 12–14.

Table 1. Hydrofoil craft parameters.

Parameter Symbolic Representation Value Unit

Craft weight m 26,200 kg
Craft speed Ue 35 kn

Average immersion depth Z 1.52 m
Front hydrofoil area Afb 6.08 m2

Rear hydrofoil area Aff 13.90 m2

Distance from front hydrofoil to center
of gravity Xb 12.68 m

Distance between two hydrofoils Ls 17.86 m

It can be seen from the figure that the disturbance force of the hydrofoil craft is
basically stable at 104, and the disturbance moment is basically stable at 105. The data
results obtained here provide preconditions for the following control system simulation.

 

 

Figure 12. Disturbance force and moment curve (significant wave height 1.5 m).
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Figure 13. Disturbance force and moment curve (significant wave height 2 m).

 

 

Figure 14. Disturbance force and moment curve (significant wave height 3 m).

4.2. Comparative Simulation of Optimized LQR and LQRY Simulation

After the data of disturbance force and moment are obtained, the control performance
of LQR and LQRY will be compared in this section. After comparison, the method more
suitable for the next joint control will be selected to obtain better performance. The pa-
rameter table of optimization algorithm simulation is shown in Table 2, and the results are
shown in Figure 15.

Table 2. Genetic algorithm parameters.

Parameter Value

Initial population size 100
Number of elite individuals 10

Cross offspring ratio 0.75
Lower limit [0.1 0.1 0.1 0.1 0.1 0.1]
Upper limit [1000 1000 1000 1000 500 500]

Evolutionary algebra 30
Fitness function deviation 1e−100
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Figure 15. Result graph of LQRY optimized by genetic algorithm.

As can be seen from Figure 14, the result shows that the optimal fitness is 6.072,
Q = diag [999.8614 918.9989 116.3479 618.8724], R = diag [415.6694 427.8040], and the value
of K is:

Klqr =
[−1.1878 −1.0902 5.8968 0.5587
−0.9730 −0.9119 0.9275 −0.3399

]
Klqry =

[−1.1884 −1.0908 5.8970 0.5590
−0.9735 −0.9125 0.9274 −0.3403

]
The simulation results of the longitudinal motion model substituted into the hydrofoil

craft are shown in Figure 16 and Table 3 below:

 

 

Figure 16. Heave displacement and pitch angle of uncontrolled, LQR, LQRY.
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Table 3. Comparison results of uncontrolled, LQR, LQRY.

Control Method hmax E(h) STD(h) θmax E(θ) STD(θ)

Uncontrolled 3.3372 0.0036 1.2489 12.1330 0.0049 4.0937
LQR 0.8865 −0.0064 0.3535 4.6508 0.0236 1.8429

LQRY 0.4801 −0.0035 0.1930 2.1788 0.0113 0.8784

In the specific case selected, it can be found that the optimized LQRY algorithm is
better than the LQR algorithm in all indicators, in which the maximum-heave displacement
and pitch angle are reduced by 45.8% and 53.2%, so the optimized LQRY will be used in
the joint control with the sliding-mode algorithm.

4.3. Comparative Simulation of LQRY, SMC and LQRY-SMC

After the superiority of LQRY is proved in the previous section, this section will verify
the joint control and compare the heave displacement and pitch angle of LQRY and SMC
alone. First of all, the control rate of the sliding mode control part shall be determined. It
can be seen from Equation (39) that the parameter β, p, q shall be determined. In this article,
β = diag [19.2 7.5], p = 7, q = 5.

In this section, in order to reflect the universality of joint control, to be applicable
to a variety of complex sea conditions and to be more stable, the case of 180◦ encounter
angle and 1.5 m, 2 m, 3 m significant wave heights of the turbulent flow are selected in the
simulation. The simulation results are shown in Figures 17–19, and the numerical values
are arranged in Table 4.

 

 

Figure 17. Heave displacement and pitch angle of LQRY, SMC, LQRY-SMC (significant wave height
1.5 m).

54



J. Mar. Sci. Eng. 2022, 10, 1390

 

 

Figure 18. Heave displacement and pitch angle of LQRY, SMC, LQRY-SMC (significant wave height
2 m).

 

 

Figure 19. Heave displacement and pitch angle of LQRY, SMC, LQRY-SMC (significant wave height
3 m).
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Table 4. Comparison results of LQRY, SMC, LQRY-SMC.

Wave Height Control Method hmax E(h) STD(h) θmax E(θ) STD(θ)

1.5 m
LQRY 0.2625 1.9601 × 10−5 0.0814 1.6591 3.5457 × 10−4 0.5508
SMC 0.2219 −0.0057 0.0611 1.3888 0.0355 0.3792

LQRY-SMC 0.1429 −3.2011 × 10−4 0.0438 0.4515 9.4201 × 10−4 0.1386

2 m
LQRY 0.4552 8.6007 × 10−4 0.1221 2.4925 −8.4116 × 10−4 0.7204
SMC 0.4506 0.0538 0.0949 2.8112 −0.3344 0.5907

LQRY-SMC 0.2453 9.2481 × 10−4 0.0644 0.9975 −0.0019 0.2132

3 m
LQRY 0.4801 −0.0035 0.1930 3.3249 0.0113 0.8784
SMC 0.5864 −0.0242 0.1673 3.8698 0.1399 1.0303

LQRY-SMC 0.2462 −0.0026 0.0942 1.4875 0.0053 0.3173

It can be seen from the simulation curves from Figure 17 to Figure 19 that when the
significant wave height is 3 m, the sliding-mode control is greatly affected by the high
sea conditions and cannot effectively suppress the longitudinal attitude movement of the
hydrofoil craft. Although LQRY control can reduce the longitudinal motion, the index still
stays at a large value. After combining the two, it can be seen that the maximum absolute
value of the heave displacement curve is about 0.2 m, and the maximum absolute value of
the pitch angle curve is about 1.5◦, which has a good control effect.

It can be seen from this Table 4 that the joint control of LQRY and SMC is better
than each individual control algorithm, and its maximum value and standard deviation
are greatly reduced. It is suitable for various significant wave heights of hydrofoil crafts,
especially in high sea conditions. Compared with LQRY and SMC alone, the maximum
heave displacement and pitch angle are reduced by 48.7% and 58.0% respectively, and 55.3%
and 61.6% respectively. Therefore, the controller designed in this article can effectively
offset the wave interference, and the amplitude of pitch angle and heave displacement is
significantly reduced, which basically meets the requirements of stability and comfort.

Through the research on the control system in this article, we propose the following
suggestions: hydrofoil craft can basically reach a stable state in the low speed state of
entering and leaving the port, or under the conditions of good sea conditions. As shown in
Figure 20, when the significant wave height is 0.5 m, the maximum heave displacement
is about 0.2 m, and the maximum pitch angle does not exceed 1.5◦, then it is unnecessary
to use the control system during navigation, and energy can be saved. Under high sea
conditions or severe weather conditions, the control system of hydrofoil craft will gradually
saturate, thus losing stability and causing severe shaking. As shown in Figure 21, when the
significant wave height is 5 m, the control system can still work normally at first, but the
heave displacement can reach more than 2 m, and the pitch angle can reach 10◦. Therefore,
we suggest that the hydrofoil craft reduce its speed or not go to sea in this case.
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Figure 20. Heave displacement and pitch angle without control (significant wave height 0.5 m).

 

 

Figure 21. Heave displacement and pitch angle of LQRY-SMC (significant wave height 5 m).
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5. Conclusions

In this article, a control method of LQRY-SMC is proposed to reduce the heave dis-
placement and pitch angle in the longitudinal motion of the fully submerged hydrofoil craft.
Firstly, the longitudinal-motion mathematical model of the hydrofoil craft is established and
the force of the hydrofoil is analyzed. Then the hull and hydrofoil structure are analyzed.
The simulation results of the disturbance force and moment of the craft in the irregular
wave environment are obtained. In the LQRY control part, the genetic algorithm is used
to optimize the controller parameters. After simulation and verification, the joint control
method’s heave displacement and pitch angle are smaller than LQRY and sliding mode
control under different sea conditions, which further reduces the longitudinal motion and
makes the hull more stable, and improves the comfort of hydrofoil crafts in sea navigation.
Therefore, it has some enlightening effects on practical engineering applications.
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Abstract: The marine boiler-turbine system is the core part for the steam-powered ships with com-
plicated dynamics. To improve the power tracking performance and fulfill the requirement of high
utilization rate of fossil energy, the control performance of the system should be improved. In this
paper, a nonlinear model predictive control method is proposed for the boiler-turbine system with
fractional order cost functions. Firstly, a nonlinear model of the boiler-turbine system is introduced.
Secondly, a nonlinear extended predictive self adaptive control(EPSAC) method is designed to the
system. Then, integer order cost function is replaced with a fractional order cost function to improve
the control performance, and also the configuration of the cost function is simplified. Finally, the
superiority of the proposed method is proved accordring to the comparison experiments between the
fractional order model predictive control and the traditional model predictive control.

Keywords: boiler-turbine; nonlinear model predictive control; fractional order calculus; distributed
control

1. Introduction

In order to reduce the waste of fossil energy and CO2 emissions, many countries have
released different policies. China has released a policy document to fulfill its target of
reaching peak carbon emissions by 2030. The United States of America released policy
to cut carbon emissions in half by 2030. A lot of renewable power technologies were
also proposed. However, most applied energy still comes from the combustion of fossil
fuels. In addition, the control performance has a close relationship with the utilization
of fossil fuels [1]. In this paper, the fossil fuels in ships are focused. Many of the ships
are equipped with internal combustion engine, or gas turbine. However, for large scale
ships, the power systems based on boiler-turbine still occupy a large proportion [2–4].
For example, many aircraft carriers are powered with boiler-turbine system. Hence, a
lot of academics and companies are doing research to improve the control performce of
the boiler-turbine system [5–9], of which there are three manipulated variables and three
controlled variables with complicated dynamics. For the marine steam power plant, the
disturbance and the energy required changes more frequently compared than that on land.
However, there is not so much research about the control for the marine boiler-turbine
system.

In the boiler-turbine system, the interactions of rvariables and constraints are the
mainly reasons which make it difficult to obtain a satisfied control performance. The input
variables for the system are the flow rates of fuel, steam to the turbine, and feedwater to the
boiler, while the output variables are the steam pressure in the drum of the boiler, power
required of the turbine, and the water level of the drum. The constraints are the limitations
for the actuator, including the upper and lower bound, and rate limiter. In addition, power
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requirement changes a lot, which is usually treated as disturbance. In order to compensate
unknown disturbances in the boiler-turbine system, a high order sliding mode observer
was designed for a baseline exponentially stable feedback controller [9]. To improve the
economy of the boiler-turbine system, the economic index was utilized directly in the cost
function, and a global economic optimum routine was obtained for the system [10]. In the
literature [11], the model of the boiler-turbine system was linearized and decoupled with
an adaptive feedback linearization method, and a second order sliding mode controller
was designed to deal with the disturbances and uncertainties. Ref. [12] applied an online
policy iteration integral reinforcement learning method to the boiler-turbine system, and
optimal tracking control performance was obtained.

The model predictive control( MPC) has the advantages in dealing with the nonlinear
dynamics, interactions and constraints problems [13], hence, MPC is a preferred choice for
researchers. The MPC is studied in many fields such as building energy management [14],
landscape office lighting regulatory system [15,16], wind turbines [17], tank-system [18],
pressure oscillation adsorption process [19,20], permanent-magnet synchronous motor [21],
autonomous underwater vehicle [22], and so on. For the boiler-turbine system, there are
also some applications of MPC. A nonlinear model predictive control method was designed
for boiler-turbine system with a data driven model [23], and the optimal problem was
solved by immune genetic algorithm. Ref. [24] presented a zone economic model predictive
cotroller to fulfill the economic target of the boiler-turbine system. Fuzzy model predictive
control was designed to realize load tracking and economy of the boiler-turbine system,
and a fuzzy model was used to approximate the nonlinear dynamics of the system [25].
Other MPC applications on boiler-turbine system can be found in [26–28].

For the MPC method, the weighting factors have a significant different effect on the
control performance, and the number of the weighting factors is large, which makes it
diffcult to obtain a good choice for these parameters. For example, if the Nip denotes the
prediction horizon for the ith output, and Njc for the jth control horizon, the number of
weighting factor will be ∑n

i=1 Nip + ∑m
j=1 Njc, where m and n are the numbers of output and

input. The commonly used method to tune the weighting factors is trial and error or choose
them empirically. Another alternative way to choose the control parameters is optimization
method [29,30]. However, due to the high dimension of the weighting factors, it is difficult
to optimize them. So, in this paper, the fractional order model predictive control(FOMPC)
for the boiler-turbine system is proposed. By two fractional order papermeters (one for
the tracking error, and another for the control effort), the weight factors matrices can be
obtained, which reduces the difficulties in weighting factors configuration. The boiler-
turbine system is a nonlinear multiple inputs and multiple outputs system, so the nonlinear
distributed structure of MPC is studied for the system.

The rest of the paper is structured as follows. The boiler-turbine system is formulated
in Section 2; Section 3 presents the nonlinear distributed MPC with EPSAC framework.
Fractional order MPC is designed for the boiler-turbine system in the Section 4. The
simulation experiments are presented in Section 5. The last section gives the conclusions.

2. Boiler-Turbine System

The boiler-turbine system is a core part in the power plant, and Figure 1 shows the
structure of the system [9]. The details elements are indicated in the figure, and they
are listed as follows: 1—drum; 2—superheater; 3—water spray desuperheater; 4—valve
for the steam to turbine; 5—turbine high-pressure cylinders; 6—foward control valve;
7—backward control valve; 8—turbine middle- and low- pressure cylinders; 9—shafting;
10—condenser; 11—replenish water; 12—condensate pump; 13—low-pressure heater;
14—deaerator; 15—feed water pump; 16—high-pressure heater; 17—feed water valve;
18—economizer; 19—downcomers; 20—water-cooled walls; 21—furnace; 22—heat flow
control valve; 23—nozzle; 24—blower; 25—preheater for air; 26—air conditioner; 27—flue
gas baffle; 28—induced draft fan; 29—flue; 30—gearbox; 31—turbine.
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Figure 1. The structure of a boiler-turbine unit.

Due to the lack of data for marine boiler-turbine sytem, it is difficult to obtain its
model. The structure is similar to that on land. Hence, a model of on load power plant is
chosen for study, and the nonlinear model of the boiler-turbine system is shown as follows
according to the literature [31]:

ẋ(t) = F(x(t)) + G(x(t))u(t), (1)

and the F(x(t)), G(x(t)) are defined as follows:

F(x(t)) =

⎡
⎣ 0
−0.1x2 − 0.016x9/8

1
0.0022x1

⎤
⎦ (2)

G(x(t)) =

⎡
⎣0.9 −0.0018x9/8

1 −0.15
0 0.073x9/8

1 0
0 −0.0129x1 1.6588

⎤
⎦ (3)

where the inputs u = [u1, u2, u3]
T for the system are the valve opening of fuel, steam to the

turbine and feedwater to the drum. The states are drum steam pressure, power required
for the turbine and steam water density denoted by x = [x1, x2, x3]

T . The outputs are drum
steam pressure, power required for the turbine and water level in the drum. The level of
the drum can be calculated as:

L = 0.05(0.13073x3 + 100αs + qe/9 − 67.975) (4)

and qe = (0.854u2 − 0.147)x1 + 45.59u1 − 2.51u3 − 2.096; αs =
(1−0.001538x3)(0.8x1−25.6)

x3(1.0394−0.0012304x1)
. The

qe and αs denote the evaporation rate and steam quality, respectively.
The rates and amplitudes limitaion for the inputs are listed as follows:⎧⎪⎨

⎪⎩
−0.007 ≤ du1

dt ≤ 0.007 0 ≤ u1 ≤ 1
−2.0 ≤ du2

dt ≤ 0.02 0 ≤ u2 ≤ 1
−0.05 ≤ du3

dt ≤ 0.05 0 ≤ u3 ≤ 1
(5)

For the boiler-turbine, there are different operating points. To evaluate the effectiveness
of the proposed method, experiments around the following operating points shown in
Table 1 are carried out.
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Table 1. Operating points for the boiler-turbine system.

Operating Point Pressure Power Density

1 99.3 kg/m2 80.9 MW 396
2 120 kg/m2 110 MW 331

The drum water level should always be kept as zero meters.

3. Nonlinear Distributed MPC for the Boiler-Turbine System

According to the introduction of the boiler-turbine, it can be found that this system is a
nonlinear multiple inputs multiple outputs system. Hence, the nonlinear MPC is designed
for the system with distributed structure.

3.1. The Basic of the EPSAC

This part presents the basic of EPSAC. For more details about the EPSAC, it can be
found in the refs. [32–34]. For a discrete system, the system output can be expressed as:

y(t) = x(t) + w(t) (6)

where y(t) is the system output; x(t) is the model output and the w(t) is the disturbances.
x(t) can be calculated according to the model of the system as follow:

x(t) = f [x(t − 1), x(t − 2), . . . , u(t − 1), u(t − 2), . . .] (7)

In Equation (7), the f (x, u) denotes the model of the system, x(t − i) and u(t − i)
i = 1, 2, . . . indicate the past model outputs and inputs.

In the EPSAC, the input scenario for the future is composed with two parts:

u(t + k|t) = ubase(t + k|t) + δu(t + k|t) (8)

where the ubase(t + k|t) and δu(t + k|t) are the basic and optimized future control actions.
Then the future system output can be predicted as:

y(t + k|t) = ybase(t + k|t) + yopt(t + k|t) (9)

where ybase(t + k|t) is the result of the basic future control action; ubase(t + k|t) and yopt(t +
k|t) can be calculated according to the optimized future control action δu(t + k|t).

The yopt(t + k|t) can be obtained with:

yopt(t + k|t) = hkδu(t|t) + hk−1δu(t + 1|t) + ... + gk−Nc+1δu(t + Nc − 1|t) (10)

In Equation (10), the hi and gi are the impulse response and step response coefficients
of the system, respectively; Nc and Np are the control horizon and the prediction horizon,
respectively. The system output can be re-written in matrix form:

Y = Ȳ + GU (11)

where Y = [y(t + N1|t) . . . y(t + Np|t)]T , U = [δu(t|t) . . . δu(t + Nc − 1|t)]T , Ȳ = [ybase(t +
N1|t) . . . ybase(t + NP|t)]T ; N1 is the time delay of the system, and

G =

⎡
⎢⎢⎣

hN1 hN1−1 . . . gN1−Nc+1
hN1+1 hN1 . . . . . .

. . . . . . . . . . . .
hNP hNP−1 . . . gNP−Nc+1

⎤
⎥⎥⎦
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The disturbance term w(t) in (6) includes all the effects on the system output. It can
be modeled by a colored noise process as:

w(t + k|t) = C(q−1)

D(q−1)
w f (t + k|t) (12)

where q−1 is the backward shift operator.
In this work, the C(q−1) and D(q−1) are designed as follows:

C(q−1)

D(q−1)
=

1
(1 − q−1)(1 − ae+jαq−1)(1 − ae−jαq−1)

(13)

with α = 2π f0Ts and a ≈ 1; Ts is the sampling time and a ≤ 1 for stability.
The cost function for the boiler-turbine system can be defined as:

JMPC =
N2

∑
k=N1

pk[r(t + k|t)− y(t + k|t)]2 +
Nu

∑
k=1

qku(t + k)2 (14)

The pk and qk are nonnegative weighting factors, and they are usually kept as constants.
The matrix form of Equation (14) can be written as:

JMPC = (R − Y)TP(R − Y) + UTQU = (R − Ȳ − GU)TP(R − Ȳ − GU) + UTQU (15)

with P = diag(p1, p2, . . . , p(N2−N1+1)) and Q = diag(q1, q2, . . . , qNu).
For systems with constraint, the optimization problem can be solved with quadratic

programming. Otherwise, the results of the optimal input part, which are indicated by
δu(t + k|t), can be obtained as:

U∗
MPC = (GTPG + Q)−1GTP(R − Ȳ) (16)

3.2. The Fractional Order MPC

For the fractional order MPC, the cost function is designed as:

JFOMPC =γ IN2
N1

pk[r(t + k|t)− y(t + k|t)]2 +λ INc
1 qku(t + k)2 (17)

where γ IN2
N1

and λ INc
1 indicate fractional order integral with fraction order of γ and λ; [N1,

N2] and [1, Nc] are the integration intervals.
According to [35], the Equation (17) can be written by:

JFOMPC = (R − Y)TPΓ(Ts, γ)(R − Y) + UTQΛ(Ts, λ)U

= (R − Ȳ − GU)TPΓ(Ts, γ)(R − Ȳ − GU) + UTQΛ(Ts, λ)U
(18)

Γ(Ts, γ) = Tγ
s diag(mN2−N1 , mN2−N1−1, . . . , m1, m0) (19)

Λ(Ts, λ) = Tλ
s diag(mNc , mNc−1, . . . , m1, m0) (20)

The mi in Equations (19) and (20) with fractional order α can be calculated as:

mj = ω
(−α)
j − ω

(−α)
j−n (21)

where n is the number of the mi, and ω can be calculated with:

ω−α
j =

⎧⎪⎨
⎪⎩
(1 − (1 − α)/j)ω(−α)

j−1 j > 0;
1 j = 0;
0 j < 0.

(22)
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According to Equation (19) to Equation (22), the weight matrix in the cost function
JFOMPC can be easily tuned with fractional order γ and λ. For system with constraints, the
optimization for input sequence can be solved with quadratic programming. For the case
without constraints, the results for the optimal input δu(t + k|t) can be calculated as:

U∗
FOMPC = (GTP(Γ + ΓT)G + Q(Λ + ΛT))−1GTP(Γ + ΓT)(R − Ȳ) (23)

3.3. Application of the Fractional Order EPSAC to the Nonlinear MIMO System with
Distributed Structure

The fractional order MPC introduced above is for the linear case. In order to apply
the FOMPC to the boiler-turbine system, the nonlinear FOMPC is studied. According to
the Equation (8) and (9), the principle of superposition is applied for linear system. To get
over the superposition, the optimal future input δu(t + k|t) should be removed iteratively
smaller tends to zero [36]. The procedure for the nonlinear MPC is summarized as follows:

• Choose an initial base input sequence ubase(t + k|t), k = 0 . . . Nu − 1, this part should
be as close as possible to the optimal input u(t + k|t) to make the δu(t + k|t) close to
zero, which means that the term yopt(t + k|t) equals to zero;

• After chooseing the base future input, the δu(t + k|t) can be calculated. The δu(t + k|t)
is not close to zero at the moment;

• Take the u(t + k|t) from the second step as the new ubase(t + k|t), and calculate δu(t +
k|t) again.

• Repeat step 2 and 3 until the δu(t + k|t) is as close as possible to zero, then the
ubase(t + k|t) can be applied to the system at the time t + 1.

The flow chart of nonlinear MPC is shown in Figure 2.

Figure 2. The flow chart of nonlinear MPC.

The boiler-turbine is a MIMO system, and there are strong interactions between
variables. In order to calculate the optimal input sequence, the effect from coupling
variables should be considered and the communication network should be established. In
this work, the distributed structure is applied. The pseudocode is provided in Algorithm 1.

The boiler-turbine system is a nonlinear MIMO system, hence, the nonlinear MPC
with distributed scheme will be applied. According to the procedure of nonlinear MPC
and algorithm for the distributed MPC, the optimal future input sequence should fulfill the
follow conditions: {‖|δUiter+1

i − δUiter
i || � εi)

δUiter+1
i ≈ 0.

(24)
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Algorithm 1 Algorithm for the distributed MPC

1: The loop i receives an optimal local control action δUi for the first time, which will be
marked as iter = 0, and the local control action δUi can be marked as δUiter

i , where δUi
indicates the vector of the optimizing future control actions with length of Nci;

2: The information of coupling variables δUiter
j (j ∈ Ni, Ni = {j ∈ N : Gij �= 0}) will be

sent to the loop i, and the δUiter+1
i will be recalculated with the information of δUiter

j
from other loops;

3: The termination condition can be designed as: (||δUiter+1
i − δUiter

i || � εi) ∨ (iter + 1 >

iter). where ε is a positive constant and iter indicates the upper bound of the number
of iteration times. If the termination condition is reached, the δUiter+1

i will be adopted
to the system. Otherwise, iter = iter + 1, and return to the Step 2.

4: The final optimal control effort can be obtained as Ut = Ubase + δUiter, which will be
applied to the system;

5: t = t + 1, return to Step 1.

4. Simulation of the Fractional Order MPC on Boiler-Turbine System

This section shows the simulation results of the fractional order MPC. Firstly, different
fractional order terms are applied to different loops. Then, the best fractional order terms
are applied to the drum steam pressure loop, power for turbine loop and water level loop,
and the results are compared with the integer order MPC. Finally, the results are discussed.

The parameters configuration are listed in Table 2.

Table 2. Parameters for the MPC.

Parameters Nc Ts Np N1 Ns

Values
Nc1 = 1, Nc2 = 1,
Nc3 = 1 samples 5s

Np1 = 15, Np2 = 15,
Np3 = 15 samples 1 100

In Table 2, Nci and Npi (i = 1, 2, 3) are control horizon and prediction horizon, respec-
tively; Ns is the number of simulation steps. The termination conditions for the nonlinear
iteration are set as: δUiter

i � 0.05; or the iteration times iternmpc > 5. The termination
conditions for the distributed MPC are set as: ||δUiter+1

i − δUiter
i || � 0.005; or iter > 5.

4.1. The Influence of Fractional Order Terms to the Different Loops

In order to test the effect of different fractional order on the control performance,
different fractional order terms are introduced to the cost function for each loop. The details
for fractional order terms are listed in Table 3. In this work, the γ for the reference tracking
and λ for the control effort are chosen the same for simplification.

Table 3. Fractional order terms for each loop.

Loops Fractional Order Terms

Drum steam pressure loop [0.5, 1, 1.5, 3]
Power loop [0.8, 1, 1.2, 1.5]

Drum water level loop [0.5, 1, 1.7, 2, 2.5]
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According to the results shown in Figures 3–5, it can be seen that the effectiveness of
different fractional order terms varies a lot. For the drum steam pressure control, the best
fractional order term is 1.5; for the required power control, it is 1; and for the drum water
level control, the fractional order term of 1.7 is the best.

Figure 3. The drum steam pressure with different fractional orders.

Figure 4. The required power for turbine with different fractional orders.
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Figure 5. The drum water level with different fractional orders.

4.2. The Influence of Fractional Order Terms to the Different Loops

This section shows the comparison experiment between FOMPC and traditional MPC.
The fractional order terms applied in the boiler-turbine system are chosen as 1.5, 1, 1.7 for
the three loops, respectively.

In order to evaluate the effectiveness of the proposed method, the following perfor-
mance indexes are compared, including Integrated Absolute Relative Error (IARE), Integral
Secondary control output (ISU), Ratio of Integrated Absolute Relative Error (RIARE), Ratio
of Integral Secondary control output (RISU) and combined index (J).

IAREi =
Ns−1

∑
k=0

|ri(k)− yi(k)|/ri(k) (i = 1, 2, 3) (25)

ISUi =
Ns−1

∑
k=0

(ui(k)− ussi(k))
2 (i = 1, 2, 3) (26)

RIAREi(C2, C1) =
IAREi(C2)

IAREi(C1)
(i = 1, 2, 3) (27)

RISUi(C2, C1) =
ISUi(C2)

ISUi(C1)
(i = 1, 2, 3) (28)

J(C2, C1) =
1
3

3

∑
i=1

w1RIAREi(C2, C1) + w2RISUi(C2, C1)

w1 + w2
(29)

where ussi is the steady state value of ith input; C1,C2 are the two compared controllers; the
weighting factors w1 and w2 in equation (29) are chosen as w1 = w2 = 0.5.

The combined index J for the reference tracking case is 0.6564. From Figure 6, Tables 4
and 5, it shows that the IARE and ISU of fractional order MPC are both smaller than that
of traditional MPC, which means the fractional order MPC can obtain better performance
with less control effort changes. By choosing suitable fractional order terms, the fractional
order MPC shows superiority compared with integer order MPC.
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(a)

(b)

(c)

Figure 6. Outputs and inputs of the boiler-turbine system with FOMPC and MPC in the reference
tracking experiment (the outputs are listed on the left hand, and the inputs are listed on the right
hand). (a) control loop for drum steam pressure, (b) control loop for required power, (c) control loop
for drum water level.
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Table 4. Performance indexes for IARE and ISU in the power reference tracking experiment.

Index Drum Steam Pressure Power Drum Water Level

IARE MPC 2.0072 1.5837 3.5389
FOMPC 1.8342 1.4955 3.4534

ISU MPC 1.1961 0.1068 18.8118
FOMPC 0.9444 0.1042 17.1870

Table 5. Performance indexes for RIARE and RISU in the power reference tracking experiment
(MPC is the C2 and FOMPC the C1 according to Equations (27) and (28)).

Index Drum Steam Pressure Power Drum Water Level

RIARE 1.0943 1.0590 1.0248

RISU 1.2664 1.0251 1.0945

5. Conclusions

This paper proposed a fractional order model predictive controller for the boiler-
turbine system. Due to the nonlinearity and multiple variables of the boiler-turbine, the
nonlinear MPC with distributed scheme is designed, and the termination conditions are
given. The integer order cost function is replaced with the fractional order cost function,
which simplified the configration of the weighting factor matrices in the cost function.
The number of weighting factors required to be tuned decreases from Np + Nc to two.
According to the simulation for power tracking, it is proved that the fractional order MPC
improves the control performance compared with the traditional MPC method. In this
work, better control performance is obtained with fractional order MPC; however, how
the fractional order effects the control performance is not clear, which can be researched
further in the future.
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Abstract: Electrical power systems on hybrid-electric ferries are characterized by the intensive use of
power electronics and a complex usage profile with the often-limited power of battery storage. It is
extremely important to detect faults in a timely manner, which can lead to system malfunctions that
can directly affect the safety and economic performance of the vessel. In this paper, a power distur-
bance classification method for hybrid-electric ferries is developed based on a wavelet transform and
a neural network classifier. For each of the observed power disturbance categories, 200 signals were
artificially generated. A discrete wavelet transform was applied to these signals, allowing different
time-frequency resolutions to be used for different frequencies. Three statistical parameters are
calculated for each coefficient: Standard deviation, entropy and asymmetry of the signal, providing a
total of 18 variables for a signal. A neural network with 18 input neurons, 3 hidden neurons, and 6
output neurons was used to detect the aforementioned perturbations. The classification models with
different wavelets were analyzed based on accuracy, confusion matrices, and other parameters. The
analysis showed that the proposed model can be successfully used for the detection and classification
of disturbances in the considered vessels, which allows the implementation of better and more
efficient algorithms for energy management.

Keywords: hybrid-electric ferry; maritime transport; marine electrical systems; electrical power
disturbances; wavelet transform; neural network

1. Introduction

Ferry transport of goods and passengers plays an important socio-economic role in
most coastal countries. This is particularly true in Europe, where an estimated 900 ferries are
currently active, accounting for about 70% of global ferry traffic [1]. Despite its undoubted
importance, the increase in ferry traffic brings with it a number of problems, of which
environmental pollution is perhaps the most important.

The majority of ferries in operation today use conventional marine diesel engines
for propulsion and electrical power generation, which pose a significant challenge in
meeting the requirements of future environmental standards [2]. For this reason, there is a
trend towards hybridization and electrification of the existing ferry fleet, especially in EU
countries, which is further encouraged by generous government subsidies for the use of
alternative and environmentally friendly energy sources [3].

Key technologies for the development of the current generation of hybrid-electric
ferries and associated land-based infrastructure are electric propulsion and energy storage
systems (ES) [4–6]. At the beginning of the application, in the first decade of the 21st century,
all-electric and hybrid ferries had a relatively small capacity of passengers and cars and
operated on short routes. These first ships served primarily as test platforms for evaluating
new technologies and gaining in-depth knowledge of the advantages of use and possible
disadvantages compared to conventional propulsion systems. As operational experience
has shown that such solutions offer significant potential to reduce fuel consumption,
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pollutant emissions and operating costs [7], ferry operators have started to introduce
all-electric and hybrid vessels with higher capacity and range in their fleets. The largest
hybrid-electric plug-in ferry currently in operation has a capacity of 2000 passengers,
419 cars and 642 trailers, with an installed 5000 kWh Li-Ion battery ES [8].

Conventional ferries with diesel-mechanical propulsion (which still represent the
majority in the global ferry fleet) have simple power grids fed by relatively low-power
diesel generators, requiring simple rule-based power management systems and electrical
protection systems. On the other hand, due to the peculiarities of the power plant on such
ships and the increased requirements for installed power, it is necessary to develop new
design solutions based on the integration of several different power sources that often
requires the use of a combination of DC and AC networks within the same system. One of
the challenges is the need to connect the ship’s own power plant to the shore-side power
grid for cold ironing and ES charging.

It can be said that electrical networks on hybrid-electric ships have become very
similar to terrestrial micro grids mainly due to topology, islanding and increased use of
power electronics and energy storage devices, but in some segments, they have to meet
much stricter requirements. This refers primarily to very high reliability requirements,
the deployment restraints in relatively limited ship space and fast dynamic load changes,
especially in consideration of large pumps and electric propulsion [9].

An increased number of power electronics converters for energy storage grid con-
nection and power flow control can be the source of power quality disturbances (PQ). A
review of the literature found that these disturbances are mainly manifested in voltage
and frequency fluctuations, transients, sags, swells, harmonic distortions, power factor
variations, etc. [10–13]. The mentioned types of interference and their characteristics are
clearly defined by industry standards, which apply regardless of whether it is a ship- or
land-based system [14,15]. The maximum permissible voltage and frequency deviations of
the ship’s network, as well as the duration of transients, are specified in the regulations
of the leading classification societies, and the electrical protection devices are adjusted
accordingly [16–18]. On most ships with classical propulsion and a standard rule-based
power management system (PMS), the protection is activated only when a certain param-
eter exceeds the set point, but most phenomena, especially transients of short duration,
harmonics and voltage and frequency changes, whose values are below the limits at which
the protection operates, are not detected. It is precisely such unrecognized phenomena that
very often lead to disruptions in the ship’s energy supply system, often with serious conse-
quences. This problem, which points to the necessity of continuous monitoring detecting
the aforementioned phenomena, is discussed in great detail in the paper [19].

On hybrid-electric ships with fast dynamic load changes as well as island grids with
limited power, such undetected changes can have a very strong impact on the power qual-
ity [20], and may cause various side effects, such as failure of digital and communication
devices, unwanted tripping of circuit breakers and protection devices, overheating of elec-
tric motors, etc. Micro grid topology on hybrid and electric ferries, as well as the number
and type of power sources, depend on the planned route, speed, number of voyages, and
characteristics of land infrastructure at ports. This ultimately leads to very different power
grid solutions, which often also react differently to the above phenomena. It presents a ma-
jor challenge to the PMS, which must respond to any changes in power system parameters
that may jeopardize the safety of the ship and the availability of power through the timely
coordination of multiple power sources.

Research and practice have shown that conventional rule-based PMSs are not up
to these challenges and that optimization-based PMSs and machine learning are better
suited for hybrid and electric ships [21–25]. In order for such a PMS to properly perform
its function, it is important that, among other things, it receives timely and accurate
information about disturbances and changes in the parameters of the power system. In
addition, the detected disturbances must be classified so that the PMS can associate them
with a possible system failure or human error and take the necessary action.
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The first step towards overcoming the aforementioned challenges is to identify the
faults present in the system which often involve a very large number of complex or non-
linear perturbations that must be generalized, quickly identified and classified. In addition,
the method used should be generally applicable to all types of the aforementioned faults,
detect them all quickly and accurately, and be relatively easy to implement in the ship’s
PMS. The information by which the computer can distinguish different disturbances is
obtained by signal analysis. Nowadays, it is possible to analyze the disturbances using
different transforms, of which the best known are the Fourier transform, the short-time
Fourier transform and the Wavelet transform, which is used in this work.

By reviewing recent scientific literature [26–30] and similar examples from other
industrial branches, it has been shown that it can be beneficial to use neural networks for
classification of such signals. With proper preparation and processing of input data, the
neural network can classify faults quickly and with great accuracy, which is a great help in
achieving the ultimate goal of timely detection of faults and improvement of power quality
and power supply reliability on board hybrid-electric ferries. Although this work deals
with hybrid electric ferries, because these vessels present special challenges for power and
energy management, mentioned in the introduction, the proposed method can be useful in
identifying power quality problems on all other types of vessels, regardless of the type and
propulsion systems, and can contribute to the safety of the vessel, increase the efficiency of
the power system, and develop better and more efficient PMS systems.

This paper is organized as follows. Electrical power disturbances and their effects
in ship micro grids are analyzed in Section 2. The motivation and reasons for using the
wavelet transform are presented in Section 3. Analysis of electrical power disturbances
using discrete wavelet transform is described in Section 4. In Section 5, neural network
classifier is presented. Neural network input data are explained in Section 6. Description
of the power disturbance classification process is described in Section 7. Classification
model performance analysis was carried out in Section 8. Finally, conclusions are outlined
in Section 9.

2. Power Disturbances and Their Effects in Ship Micro Grids

Power disturbances can have harmful consequences for power grid components, but
also for the devices of the end users. What makes this phenomenon even more problematic
is the fact that the impact on equipment is usually not visible until a fault occurs. Even
if equipment failure does not occur, poor power quality increases losses and reduces
equipment lifetime [31].

Electromagnetic interference can be divided into low-frequency interference with a
range up to 9 kHz and high-frequency interference with a range above 9 kHz. Here, each
frequency range is subdivided into the conducted range and the radiated range, depending
on the propagation mode. In addition to frequency range, disturbances can be divided by
state (stable and unstable), by duration (very short to 3 periods of fundamental frequency,
short to 3 min, long to 3 h, and very long over 3 h), and by waveform [31]. Some of the
most common low-frequency disturbances that occur in marine electrical systems are:
Voltage surges, voltage dips, higher order harmonic disturbances, oscillatory transients,
and voltage notches.

Voltage surges are a phenomenon in the electrical system when the RMS value of the
voltage increases by 10% to 80% of the nominal value. They can generate additional thermal
load on the equipment and wiring, stressing and accelerating the wear of the insulation
material. Typically, voltage spikes last between 10 ms and 1 min [15]. They can occur
during a ground fault of a single-phase conductor in an insulated neutral system, which is
the predominant topology on ships. In this case, the voltages of the healthy phases toward
ground rise from the phase value to the line value, i.e., there is an overvoltage on the right
phases that continues as long as the ground fault is not removed. Internal voltage surges
can also occur when the system is suddenly unloaded due to intentional or unintentional
disconnection of a large load or when capacitor banks are switched on [32].
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Voltage dips are defined as the reduction of the RMS value of the grid voltage to
between 10% and 90% of the nominal value. Most voltage dips do not fall below 50% of
the nominal value and usually last between 10 ms and 1 min [31]. They are usually caused
by switching on large loads with high inrush current, such as large induction motors or
propulsion transformers. An internal voltage drop in the ship’s electrical network can
also occur in the event of a phase short circuit. Voltage drops can cause computers and
programmable logic controllers (PLCs) to reset or shut down, relays and contactors to trip
unintentionally [33], and frequency inverter operation problems due to unstable firing
circuits that generate control pulses for semiconductor valves. In electric motors, the
voltage drop causes a reduction in torque, which can result in the motor not starting when
loaded.

Both voltage surges and voltage dips can be represented by Equation (1):

v(t) = A·(1 + α·(h(t − t1)− h(t − t2)))· sin(ωt − ϕ), (1)

where v(t) is instantaneous voltage, A voltage magnitude, α coefficient that determines
the amplitude of the interference, h(t) Heaviside step function, t time, t1 moment of the
beginning of interference, t2 moment of the end of interference, ω angular frequency and ϕ
phase angle.

Harmonics are considered sinusoidal voltages or currents whose frequency differs
from the fundamental frequency of the network and can be divided into three groups:
integer harmonics, interharmonics, and subharmonics. The main cause of harmonic voltage
distortion in the electrical network of ships is power electronic converters used to control
propulsion and general service motors. The presence of harmonics in the grid voltage
causes a number of problems, mainly in electric motors and transformers. Increased
iron losses occur due to hysteresis losses proportional to frequency and eddy currents
proportional to the square of the frequency. Harmonic currents in electric motors cause
torsional vibrations that can damage the bearings and shaft, especially if there is resonance
between the torsional vibrations and the shaft.

Oscillatory transients are defined as momentary deviations in voltage or current from
steady state. There is no clear boundary between voltage fluctuations and oscillatory
transients, but any event lasting less than 10 ms can be considered a transient. [34]. They
can be divided into low frequency with a frequency of less than 5 kHz and a duration of
0.3 ms to 50 ms, medium frequency with frequencies of 5 kHz to 500 kHz and a duration
of several tens of microseconds, and high frequency with a transition frequency of more
than 500 kHz and a duration of several microseconds [35]. Oscillatory transients can be
represented by Equation (2):

v(t) = A·
[

sin(ωt − ϕ) + αe
−(t−t1)

τ · sin(ωn(t − t1)− ϑ)·(h(t − t2) h(t − t1))

]
, (2)

where τ is time constant and ϑ disturbance phase angle. The rest of the parameters are
same as in (1).

Microcomputers and PLCs are particularly sensitive to oscillatory transients, which
may significantly reduce their service life [36]. If the oscillatory transient voltage is applied
to the input of the voltage source frequency converter, a current flow, which charges the
capacitor used to stabilize the voltage in the DC circuit. If this current is not limited by
serial chokes or a transformer, the capacitor is suddenly charged to a value higher than
the predicted one, which creates a state of overvoltage. In this case, a surge protection
is activated which disconnects the frequency converter and the electric motor from the
mains [37].

Voltage notches are periodic short-term disturbances of power quality caused by oper-
ation of power electronics devices during current commutation. This type of interference is
located between harmonics and transients. The reason is that, on the one hand, notches
occur during normal operation and can be isolated as part of the harmonic spectrum of
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the voltage signal, but on the other hand their frequency is high and cannot be analyzed
with standard equipment for harmonic distortion analysis [35]. Voltage notches can be
represented by Equation (3):

v(t) = A[sin(ωt − ϕ)− sgn(sin(ωt − ϕ))
i

∑
n=0

k(v(t − (tc + s·n))− v(t − (td + s·n)))] (3)

where k is coefficient that determines the depth of the notch, n certain period in which the
disturbance occurs, i the total number of periods in which the disturbance occurs, tc and td
the moment of the start or end of the disturbance, respectively.

Voltage notches in the mains voltage cause problems with synchronization clocks and
counters that use the natural voltage zero crossing for counting. If a voltage notch that
reaches zero occurs, then the counter will increase the value and thus count more than
the actual value [38]. Also, in the event that the additional mains voltage passes through
zero, the circuit breakers may break prematurely. If voltage notches occur together with
harmonic distortion in the voltage and frequency control circuits for generators, voltage
and frequency instability in the network can occur [39].

A summary of power disturbances and their causes and effects is given in Table 1.

Table 1. Summary of power disturbances, their causes and effects.

Type of Disturbance and Typical
Waveform

Causes of Disturbance Negative Effects

Voltage surges

Ground fault of a single-phase conductor
in an insulated neutral system.

Sudden disconnection of large load.
Switching on capacitor bank.

Thermal loading on the equipment and
wiring.

Stressing the and accelerating the wear of
the insulation material.

Voltage dips

Switching on large loads with high
inrush current.

Interphase short circuit.

Reset or shutting down PLCs and
computers.

Trip of relays and contactors.
Unstable firing circuits that generate

control pulses for semiconductor valves.
Torque reduction in electric motors.

Higher order harmonic disturbances

Power electronic converters used to
control propulsion and general service

motors.

A number of problems, mainly in electric
motors and transformers.

Iron losses due to hysteresis losses and
eddy currents proportional to frequency.
Torsional vibrations that can damage the

bearings and shaft.

Oscillatory transients

Switching on/off inductive loads.
Loose connections.

Power electronics switching.
Sudden circuit breaker trips.

Electrostatic discharge.
Arc faults.

Reducing service life of PLCs,
microcomputers and other sensitive

equipment.
Overvoltage at DC link capacitors in

voltage source converters.

Voltage notches

Current commutation in power
electronics devices

Problems with synchronization clocks
and counters.

Circuit breakers may break
prematurely.May cause voltage and

frequency instability.

3. Motivation for Using Wavelet Transform

Displaying signals in the time domain does not provide enough information to effec-
tively identify different types of disturbances in the power system. Therefore, it is necessary
to apply a mathematical transformation to the base signal to obtain additional information
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about it and to obtain relevant and sufficiently accurate parameters required for neural
network training.

The Fourier transform, which is most commonly used to analyze periodic signals, is
a reversible transform, meaning that it can be switched between the time and frequency
domains at will, but only one of the two domains can be represented at a time. This means
that information from the frequency domain is not available in the time domain and vice
versa. For stationary signals whose frequency content does not change over time, i.e., which
have the same frequency components throughout, this is not a problem, since it is not
necessary to know at what time certain frequency components of the signal occur. On the
other hand, the disturbances mentioned in the previous chapter are typical representatives
of non-stationary signals whose time-frequency characteristics and duration depend on a
series of random events such as disturbances and operating conditions.

The above-mentioned drawbacks of the Fourier transform for the analysis of non-
stationary signals can be solved by applying the short-time Fourier transform (STFT), in
which the original signal is divided into equal parts at which the signal can be considered
stationary. Using a suitable window function, a three-dimensional diagram is obtained in
which the vertical axis represents amplitude and the horizontal axis represents time and
frequency. From such a diagram, one can see at what time there are frequency components
belonging to that part of the signal, i.e., one obtains the time-frequency representation of
the signal [40].

The disadvantage of STFT is that one does not know which individual frequency
components are present at any given time. Instead, it is only possible to know the time
intervals in which certain frequency bands are present. This problem is caused by the
window function having a finite width that covers only a portion of the signal, resulting in
poor frequency resolution. When the window is infinite, the same result is obtained as with
the Fourier transform, i.e., excellent resolution in the frequency domain and no resolution
in the time domain. The narrower the window, the better the time resolution and the better
the approximation to a stationary signal, but at the same time the frequency resolution is
lower and vice versa. Therefore, the main problem of the short-time Fourier transform is
the correct choice of the width of the window function that can be used to analyze different
signals.

The wavelet transform allows the analysis of signals with multiple resolutions by
using different resolutions at different frequencies. Multiresolution analysis is particularly
suitable for signals where high-frequency components are short-lived while low-frequency
components are long-lived, and these are precisely the interference signals considered
in this work. Short-lived high-frequency components require very accurate temporal
localization achieved by a narrow wavelet, resulting in poor frequency resolution, and
vice versa. Low frequency components often determine most of the signal characteristics,
and these characteristics are best quantified when the frequency resolution is as good as
possible [41,42]. In view of the above, a multilevel discrete wavelet transform (DWT) is
chosen for the power disturbance signal analysis.

4. Power Disturbance Analysis Using Multilevel DWT

The DWT is the most common method for implementing the wavelet transform in
computers. It allows signal analysis (decomposition) and synthesis (reconstruction), and
filters are used for this purpose. Multilevel decomposition and signal reconstruction is
most often used in practice. The reason is that it allows higher frequency resolution, which
means that the presence of individual frequency bands in time can be determined with
greater accuracy.

The DWT uses filters with different cutoff frequencies to analyze signals at different
scales. At each level of signal analysis, two half-band filters with impulse response are
used, one of which is a low-pass filter and the other a high-pass filter. Each filter consists
of a number of coefficients that differ for the low-pass filter, the high-pass filter, and for
signal decomposition and reconstruction. The number of coefficients depends on the type
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of wave. In signal processing, only orthonormal waves such as Daubechies, Coiflet, and
Symlet waves are used because they have both the DWT and inverse DWT capability.

Daubechies waves used in this study are referred to as dbN, where N is the order of
the waves, i.e., the number of vanishing moments. The length of the filter or the number
of filter coefficients is 2N. The largest wave order is 45, but waves up to order 10 are most
commonly used [43].

As the order of the waves increases, the time required to perform the transformation
increases. On the other hand, such waves are smoother and better localized in the time
domain, which is why the oscillations in the original signal can be better represented.

The operation of DWT can be explained with reference to Figure 1. The discrete input
signal x[n] consists of n samples and contains the maximum frequency f. HP and LP denote
high and low bandwidth filters, the symbol ↓ 2 denotes the subsampling method with 2,
while cD and cA denote the detail coefficients and the approximation coefficients, respec-
tively. The signal x[n] must be sampled at twice the frequency of the signal bandwidth.
Since the bandwidth is B = f - 0, the sampling frequency is 2f.

Figure 1. Example of signal decomposition (3 levels).

The interfering signal x[n] is first passed through a LP which transmits frequencies
from 0 Hz to half the maximum frequency of the signal. Since the signal after filtering
contains half the bandwidth than before filtering, the signal contains twice as many samples
as required. A subsampling of 2 is performed (every other sample of the filtered signal is
discarded) to remove this redundancy of information on the filtered signal and obtain cA.

Then, the same input signal x[n] is passed through a HP that sweeps frequencies
from f/2 to f. As with LP, the bandwidth is reduced by half, and subsampling must be
performed. During subsampling, the content of the frequency components in the range
f/2 to f is shifted to the new range 0 to f/2. Since there are no frequency components in
this frequency range because they were previously removed by a HP filter, there is no
loss of information and it is possible to reconstruct the signal if necessary. In this way,
the cD is obtained, which are twice the number of samples of the input signal x [n]. The
process that constitutes one stage of the decomposition can be described mathematically by
Equations (4) and (5),

cA[k] = ∑
n

x[n]·LP[2k − n] (4)

cD[k] = ∑
n

x[n]·HP[2k − n] (5)

where k is the number of approximation samples (details), n is the number of samples, and
LP and HP are the low-pass and high-pass filter functions, respectively.

The approximation coefficients represent the general trend of the original signal, while
the details contain the high frequency components of the signal. The approximation is a
low-resolution representation of the original signal, and the details represent the difference
between two successive approximations [44].
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The values of the low-pass and high-pass filters with length L are not chosen arbitrarily,
but the rule described in Equation (6) applies.

HP[L − 1 − n] = (−1)n·LP[n] (6)

The coefficients of the high-pass filter are actually the coefficients of the low-pass
filter in reverse order, and every other coefficient has the opposite sign. Such filters are
called quadrature mirror filters and are often used in signal processing.The symbolic
representation of the frequency responses of the filters obtained by decomposition into
three stages is shown in Figure 2.

Figure 2. Symbolic representation of filter frequency responses for three level decomposition.

As the degree of decomposition increases, narrower frequency bands are obtained.
The narrowest and lowest frequency band is always that of the approximation coefficients
of the last stage. The bandwidth can be calculated according to Equations (7) and (8) [45],

BcA =
[
0, 2−p−1· fs

]
(7)

BcDp =
[
2−p−1· fs, 2−p· fs

]
(8)

where p is the decomposition level, BcA is the bandwidth of the approximation coefficients,
BcDp is the bandwidth of the detail coefficients at the level p of the samples (details), and fs
is the sampling frequency.

The signal reconstruction process is shown in Figure 3. The oversampling procedure
with 2 (↑ 2) is performed over the coefficients cA and cD. This means that another sample
with the value 0 or an interpolated value of adjacent samples is added between each of
the two samples of the mentioned coefficient. Such signals are passed through a high-pass
filter HP’ and a low-pass filter LP’ for signal synthesis [40]. These filters are responsible
for returning the coefficients to the original frequency domain [46]. The filters for signal
synthesis are identical to those for signal analysis, except that their coefficients are listed
in reverse order. After the signal has passed through the filters, they add up to obtain the
output signal x[n].

Figure 3. Example of signal reconstruction (3 levels).
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The signal reconstruction can be described by Equation (9) [40].

x[n] =
∞

∑
k=−∞

(
cA[k]·LP′[2k − n]

)
+
(
cD[k]·HP′[2k − n]

)
(9)

As an example, the DWT decomposition of the oscillatory transient is performed with
a db6 wavelet with composition level p = 5. The example noise signal lasts 1 s and is
sampled at fs = 8 kHz, which means that the maximum frequency that can be detected
is 4 kHz. The transform coefficients of DWT have the frequency bands calculated using
Equations (7) and (8) and listed in Table 2.

Table 2. Frequency range of DWT coefficients for db6 wavelet and fs = 8 kHz.

DWT
Coefficient

cA cD5 cD4 cD3 cD2 cD1

Frequency range
(Hz) 0–125 125–250 250–500 500–1000 1000–2000 2000–4000

The DWT decomposition of the oscillatory transient is shown in Figure 4, which
shows a total of seven plots. The first diagram shows the original signal, the second
the approximation coefficient cA, and from the third to the last diagram the cD1-cD5 are
plotted.

Figure 4. DWT decomposition on the example of oscillatory transient.
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It should be noted that for clarity, Figure 4 shows only the first 2000 samples of
the signal, but each signal displayed consists of 8000 samples. The original signal has a
fundamental frequency of 50 Hz, while a frequency of 733 Hz occurs during the oscillating
transient. The cA contains a frequency component of 50 Hz, which makes the signal shown
in this diagram look like a pure sinusoidal voltage.

The graphs of cD5 and cD4 are zero because there is no frequency component of the
original signal in these frequency bands. The frequency component of the 733 Hz signal
is included in the cD3 graph, where it can be seen that it begins at the 380th sample, after
which the amplitude decreases as the oscillatory transient phase in the original signal
decreases until it disappears. In the cD2 diagram, the same phenomenon can be observed
as in the cD3 diagram, but with a much smaller amplitude. Ideally, this detail should have
a value of zero, but due to the imperfection of the wave filters, the frequency bands overlap,
as symbolically shown in Figure 2. Finally, in the cD1 diagram, all values are close to zero
because the original signal has no frequency components in this frequency band.

Similarly, the DWT decomposition of voltage rise, fall and dip also shows the funda-
mental frequency component in the approximation diagram as in the previous cases. A
sudden change of the voltage value in the original signal at the beginning and at the end of
the transient causes peaks in the detail plots at the same time.

5. Neural Network Classifier

The proposed model for classifying electromagnetic disturbances in the energy system
of the considered ships is based on the use of a shallow feed-forward neural network.

The neurons receive input signals multiplied by the associated weights, add the
obtained products, add a sensitivity threshold to this sum, and pass it through the activation
function. The output of the jth neuron yj can be expressed by Equation (10) as follows:

yj = ψ

(
n

∑
i=0

wijxi + θ

)
(10)

where ψ is transfer or activation function of the j-th neuron, xi input signal, wij weight
coefficients at the input of j-th neuron and ι sensitivity threshold.

Input layer receives the input signals and forwards them to the hidden layer. It does
not perform any processing on the input signals, nor are weights or sensitivity thresholds
assigned to them. The number of neurons in the input layer is equal to the number of input
variables.

The central layer is called the hidden layer and contains neurons that perform data
processing. The number of neurons in the hidden layer is determined by the trial-and-error
method, starting with the smallest number and observing the resulting error. Then, a
minimal number of neurons is chosen at which a satisfactorily small error is obtained. Too
few hidden neurons will result in large learning errors and poor generalization due to
undertraining, while too many hidden neurons will result in a small learning error but
learning will be unnecessarily slow. The activation function in the hidden layer must be
nonlinear to approximate the nonlinear and linear relationships between input and output
variables [47]. In this classification model, the hyperbolic tangent function is used. It
provides values in the bounded range from −1 to 1. The outputs are oriented to zero, so
that it can be achieved that the mean of all outputs in a layer is zero, which facilitates and
accelerates learning in the next layer of neurons.

The outputs of the hidden layer are directed to the last, the output layer, which is
the output of the network. The number of neurons in the output layer corresponds to the
number of categories used in classification, i.e., each neuron represents a category. When
the input vector of the corresponding category is input to the network, the corresponding
neuron in the output layer should provide output 1 and the other neurons should provide
output 0 [47]. To achieve this, a SoftMax function is used in the output layer to generate a
probability vector for each category.
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After the neural network is formed, the weight coefficients and thresholds must be
determined. This procedure is important because the time required for the neural network
to learn “well” depends on these parameters, i.e., it directly affects the convergence rate
of the objective function towards a minimum [48]. If the network is known a priori, this
knowledge can be used to set weights to specific values. In most cases, such knowledge
is not available, so the weights are initialized with random values that are uniformly
distributed in a certain interval. One of the methods used to achieve this is the Nguyen–
Widrow method, which is standard in the MATLAB environment. This method generates
random values in the interval [−1, 1]. This distributes the neuron inputs (sum of weights)
approximately uniformly in the active region of the neuron, avoiding saturation of the
neuron and slowdown in learning the network. The interval [−2, 2] is considered as the
active region for the hyperbolic tangent function. It should also be mentioned that this
method can only be used for those transfer functions that have a limited active range, as is
the case for the sigmoidal function or the hyperbolic tangent function [49].

When using a neural network, it goes through three phases of work: Learning, Valida-
tion, and Testing. Each phase requires separate data sets, which are obtained by dividing
the total number of samples into three subsets in certain proportions. Often 70% of the
samples are reserved for learning, 15% for validation, and 15% for testing the network, but
other ratios are possible. The partitioning is usually done by random sampling.

Training of the neural network is an iterative process to adjust the network parameters
according to a given algorithm. The learning process aims to determine such values of the
network parameters for which the error is minimal for the whole set of learning patterns.
Simultaneously with the learning process, the validation of the network is performed on a
set of samples for validation. During the validation process, only the input variables of the
sample without results are passed to the network to check whether the network has the
property of generalization, and this can be done only on a set of samples that has not been
used for learning.

The learning and validation process end when one of the conditions for the completion
of the learning process is met. The most common conditions are: a sufficiently small squared
error has been achieved in all samples, a sufficiently small gradient has been achieved, the
maximum number of learning epochs has been achieved, the set learning time has elapsed,
the allowed number of consecutive epochs has been exceeded, etc. The network is then
trained and can be used to evaluate the category of new data.

6. Preprocessing of Data

Signals obtained via DWT cannot be fed directly into the neural network input layer
because they contain a different number of samples. Even if this problem could be solved by
interpolating the values or by other means, the problem of too many input signals remains.
Therefore, it is necessary to perform statistical data processing. Each signal obtained by
DWT is represented using standard deviation, asymmetry and entropy.

The standard deviation of DWT coefficients is expressed by Equation (11):

σi =

√√√√ 1
N
·

N

∑
j=1

(
Dij − μi

)2 (11)

where σi is standard deviation of the i-th level of DWT coefficient, N number of samples
the i-th level of DWT coefficient, Dij the j-th sample i-th level of DWT coefficient and μi
arithmetic mean i-th level of DWT coefficient.

The arithmetic mean of the samples in the individual DWT coefficient can be calculated
according to the Equation (12) and the asymmetry according to the Equation (13).

μi =
∑N

j=1 Dij

N
(12)
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Ski =
1
N
·

N

∑
j=1

(Dij − μi

σi

)3

(13)

where Ski is asymmetry of the i-th level of DWT coefficient.
The entropy of the i-th level of DWT coefficient Hi can be calculated according to the

Equation (14).

Hi = −
N

∑
j=1

D2
ijlog

(
D2

ij

)
(14)

Some of the calculated parameters may have values very close to zero, while others
may have very large values. If such data were input directly into the neural network,
the error function would converge very slowly toward the minimum, i.e., the neural
network would take a very long time to learn. To avoid this, it is necessary to scale the
input data to the same scale. The input data should be reduced to the interval where the
activation functions have the largest derivative to increase the learning speed [46]. Since
the hyperbolic tangent function or the sigmoidal function is widely used, the input data is
often scaled to the interval [−1, 1] and in some cases to the interval [0, 1]. There are two
common methods for this purpose: Normalization and Standardization. The patternnet
tool in MATLAB automatically scales the input data to the interval [−1, 1] using the
mapminmax function for normalization and mapstd for standardization. Tests have shown
that standardization of this particular input data results in less variation in classification
accuracy than normalization, so this method is used in this work.

7. Power Disturbance Classification

The low frequency power disturbances used to test the neural network classifier were
artificially generated using the MATLAB script pqmodel.m developed by R. Igual et al. [15].
With this script it is possible to generate all the mentioned low frequency interferences as
well as many others. This part of the program is executed only the first time, because after
that the generated signals are stored and recalled at each restart, so that the classification is
done with the same signals.

To create power disturbance signals, six parameters must be entered into the script,
namely: number of signals per disturbance type ns, signal sampling frequency fs, funda-
mental frequency of the electrical signal f, number of fundamental frequency periods in a
signal n, signal amplitude A and disturbance category number. The current disturbance
parameters used in this work are listed in Table 3.

Table 3. Power disturbance parameters.

Parameter Value

Number of signals per type of interference ns 200

Sampling frequency fs (Hz) 8000

Fundamental frequency of electric signal f (Hz) 60

Number of fundamental frequency periods in one signal n 60

Signal amplitude A 440·√2

Power disturbance category number 1, 2, 3, 4, 5, 6

The numbers of the current disturbance categories have the following meanings:
1. pure sinusoidal voltage, 2. voltage sag, 3. voltage swell, 4. oscillatory transient,
5. harmonically distorted voltage, and 6. voltage notches. Figure 5 shows examples of the
training data for each of the disturbance categories (three randomly selected signals from
each category are shown).
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Figure 5. Samples of figures of the training data for each disturbance category.

With a total of six disturbance categories to classify and 200 signals in each category,
the total data set consists of 1200 signals. When signals are generated, they are in a
variable representing a three-dimensional matrix with the following dimensions: Number
of signals per disturbance type × Number of points of the discrete signal × Total number
of disturbance types.

In the script, the time of the beginning of the disturbance is chosen randomly. It is
possible to define the limits within which the duration of the disturbance is randomly
chosen in terms of the number of fundamental signal periods. Thus, for voltage sags and
swells, a minimum duration of one fundamental signal period and a maximum duration of
25 periods, or half the duration of the entire signal, was chosen. In addition, it is possible
to specify the limits of voltage dip or overshoot. In case of voltage drop, the minimum
amplitude is 40% and the maximum amplitude is 70% of the nominal amplitude. In case
of overvoltage, the minimum amplitude increase is 40% and the maximum is 70% of the
nominal amplitude. It is also possible to change the proportion of harmonics and the limits
of the proportion of each harmonic component in relation to the nominal value of the
voltage. In the case of harmonic disturbances, third-, fifth- and seventh-order harmonics
are generated, and the proportion can be arbitrarily selected between 5% and 15% of
the nominal value. For the oscillatory transients, a minimum frequency of 300 Hz and a
maximum frequency of 900 Hz were chosen, and the duration from half of the fundamental
period to one third of the total number of fundamental periods in a signal. Finally, for
the voltage dips, the minimum and maximum dip depths are set to 10% and 40% of the
nominal voltage, while the number of voltage dips in a period is randomly chosen between
1, 2, 4 and 6.

In the next part of the program, the DWT is performed over the input signals. The
signal decomposition was performed in five stages. Since there are no subharmonics or
interharmonics in the observed disturbances, increasing the decomposition level would
not do much good since only the lowest frequency band (0, 125) Hz would be further
decomposed.

The decomposition into five levels results in one approximation coefficient and five
detail coefficients, which are forwarded to the third part of the program, where the statistical
parameters are calculated. The obtained statistical parameters form a vector of features or
variables that are input into the neural network. For each signal, a total of 18 variables are
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entered into the network. In addition, a matrix of the actual signal categories is formed,
which is also input into the neural network.

A neural network with 18 input neurons, 3 hidden neurons and 6 output neurons is
used (Figure 6). This corresponds to 54 weight and 3 threshold values between the input
and hidden layer as well as 18 weight and 6 threshold values between the hidden and
output layer.

Figure 6. Neural network structure.

The hyperbolic tangent function is used in hidden neurons and the softmax function
in output neurons. The Algorithms section lists in order: the method of data division,
the training algorithm used, performance, and the method of computation. The settings
listed correspond to those specified in the program. The Progress section lists in order: the
number of epochs, the time needed for learning, the value of the achieved error function,
the value of the achieved gradient and the number of epochs in which successive validation
checks take place. After the neural network has completed the phase of learning, validation
and testing, the classification results are obtained, i.e., the parameters for evaluating the
performance of the classification model.

Neural network weight and threshold values obtained for db6 wavelet transformed
signal are presented in Table 4.

Table 4. Weights and threshold values for db6 wavelet neural network classifier.

Weights and Thresholds between Input and Hidden Layer

w1,19 −0.298519580949239 w1,20 0.573554788819570 w1,21 0.286054507247907

w2,19 0.156077024142990 w2,20 −0.137243161824565 w2,21 −0.064347075470886

w3,19 −0.052284659140329 w3,20 0.021402634499325 w3,21 −0.190678878045148

w4,19 −0.011912221291351 w4,20 0.127952132194397 w4,21 0.120522335003772

w5,19 −0.021996393296008 w5,20 −0.275408989161263 w5,21 −0.074618183723548

w6,19 0.063521112301365 w6,20 −0.018403108555472 w6,21 0.313055123012981

w7,19 −0.392382737896585 w7,20 0.002803919613340 w7,21 0.240030895482742

w8,19 0.176613943184293 w8,20 0.103925620290560 w8,21 −0.269552733626524

w9,19 −0.011425555997867 w9,20 0.032749310865204 w9,21 0.020971568691560

w10,19 −0.193378589493338 w10,20 −0.000671270540329 w10,21 0.044525515844779

w11,19 0.363169912275016 w11,20 0.267588491178083 w11,21 −0.221081241558572

w12,19 −0.122999692890526 w12,20 −0.015892009080086 w12,21 0.175425105871244

w13,19 −0.403948257488173 w13,20 −0.112707134890068 w13,21 −0.105929848861931
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Table 4. Cont.

Weights and Thresholds between Input and Hidden Layer

w14,19 0.393404059820330 w14,20 0.124871188772520 w14,21 −0.058015684884989

w15,19 0.029308887371915 w15,20 0.010596256476507 w15,21 0.085798887395684

w16,19 0.024963910356675 w16,20 0.547350170841016 w16,21 −0.538364141596885

w17,19 −0.110016756323621 w17,20 −0.493349919024467 w17,21 0.449691963917287

w18,19 0.002318311565705 w18,20 −0.001846135528970 w18,21 0.043504571855962

θ19 2.284738654822070 θ20 0.014763925589916 θ21 1.303520578192060

Weights and Thresholds between Hidden and Output Layer

w19,22 −0.704382524220114 w20,22 1.250463967932700 w21,22 0.463049317886266

w19,23 −0.868528085817271 w20,23 −0.334297999377398 w21,23 −0.318359623499615

w19,24 −0.291087228904490 w20,24 0.117701354689571 w21,24 0.296370784297989

w19,25 0.338912896407098 w20,25 1.092644168370200 w21,25 −1.169136285597290

w19,26 0.115646559642188 w20,26 −0.679149729403622 w21,26 −0.723165104726665

w19,27 −0.113249804098582 w20,27 0.404736715990662 w21,27 0.176437998074745

θ22 0.256026164 θ23 0.719171291 θ24 −0.578629812

θ25 0.189845986 θ26 0.030325979 θ27 −0.830338618

Since the training, testing, and validation datasets are randomly partitioned from the
overall dataset, the weights and thresholds of a given neural network classifier may vary.
However, the Hinton diagram can be used to visualize the value of weights and thresholds
within each layer of the neural network, where a particular rectangle correlates with the
influence of the particular weight or threshold [50,51]. The overall configuration of weights
and thresholds for the db6 wavelet transform neural network classifier is shown with the
Hinton plot in Figure 7.

Figure 7. Hinton plot of weights and thresholds for db6 wavelet transform-based neural network.

8. Performance Analysis of Classification Models

Performance analysis is performed for three classification models that use different
wavelets, while all other parameters remain unchanged. The root wavelets to be used
are db1, db4 and db6 wavelets. The classification models are analyzed using a confusion
matrix for the test data set, which consists of 180 randomly selected signals used to test
the neural network. A total of 30 signals are sinusoidal (category 1), 27 with voltage sag
(category 2), 32 with voltage swell (category 3), 24 with oscillatory transients (category
4), 31 with harmonic distortions (category 5), and 36 with voltage notches (category 6).
Since each signal category contains approximately the same number of signals and the
signal categories are equally important, the accuracy of classification can be considered as
a relevant parameter.
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The classification model performance results for all three wavelets used are shown
in Figure 8. The execution time refers to the execution of the entire program. The true-
positive rate (TPR), precision, and F1 value are calculated separately for each signal category.
These parameters are not critical for selecting a classification model but may help in
selecting models where the other parameters are approximately the same, especially for
large datasets.

Figure 8. Classification model performance results.

The confusion matrix provides more detailed information about the classification
model. The neural network interface provides four confusion matrices: the first for the
learning dataset, the second for the validation dataset, the third for the testing dataset, and
the fourth is the overall confusion matrix. Only the third matrix, which is based on a test
data set, is of interest for performance analysis. The confusion matrix for the classification
model with db1 wavelet is shown in Figure 9.

Figure 9. Confusion matrix for classification model with db1 wavelet.

Figure 9 shows that the classifier poorly detects category 4 signals or oscillatory
transients. This conclusion comes from examining the TPR in the fourth column, which
is only 37.5%. Out of a total of 24 signals of this type, only nine signals are correctly
classified, while six signals are classified as sinusoidal voltage, one signal as a signal with
harmonic distortion, and eight signals as voltage notches. This means that this model is
very poor at distinguishing oscillatory transitions from sinusoidal voltage and voltage
notches. Examination of column 6 shows that the TPR is 86.1% and out of a total of
36 signals with voltage dips, 31 are correctly classified, two as sinusoidal voltage, one as
voltage dips and two signals as oscillatory transients. Other signal categories are well
distinguished by the classifier. Looking at the first row of the confusion matrix, it is found
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that the classifier classified a total of 41 signals as sinusoidal voltage, which is why the
lowest accuracy in this row is 73.2%. This data shows that the classifier often predicts
the category of sinusoidal voltage for different signals and was correct only 73.2% of the
time. Low prediction accuracy also exists in row 6, where it is 79.5%. The confusion matrix
shows that this model detects voltage sags, voltage boosts and harmonic distortions very
well, since the values of the TPR parameters and the precision are high for the mentioned
signal categories. It can be concluded that, despite the high precision, the classification
model with db1 or Haar wavelet is not satisfactory since it has a very poor knowledge of
oscillatory transients and therefore distinguishes them poorly from sinusoidal voltages and
voltage notches.

The confusion matrix for the classification model with a db4 wavelet is shown in
Figure 10. Looking at this confusion matrix and the one shown in Figure 9, a significant
improvement can be seen in the classification of signals with oscillatory transients. This
classification model correctly classified all signals with oscillatory transients, however, it
classified four signals with voltage notches as oscillatory transients, which still indicates
that the model does not perfectly distinguish between these two categories of disturbances.
It is also noted that the model achieves higher accuracy for the sinusoidal signal category,
as fewer signals are misclassified as sinusoidal voltage. Looking at the 6th column of the
matrix, it is noticeable that out of a total of 36 signals with voltage notches, 32 were correctly
classified, while the remaining 4 were classified as oscillatory transients. Thus, this is the
only relevant direction for further improvement of the model.

Figure 10. Confusion matrix for classification model with db4 wavelet.

The confusion matrix for the classification model with db6 wavelet is shown in
Figure 11. It can be seen that this classification model distinguishes the signal categories
very clearly. Examination of the confusion matrix shows that this model is an improvement
over the db4 wavelet model because it detects voltage notches better and thus classifies
with fewer errors. It classifies other signal categories as well as the db4 model, and the
entire program executes 0.4 s faster, making it the best classification model of all the models
examined in this dataset. In case of an increase in the size of the data set, equally good
results or even an improvement of the results can be expected, since the network then has
more learning patterns.
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Figure 11. Confusion matrix for classification model with db6 wavelet.

9. Conclusions

Any electrical power system is subject to disturbances, most of which are caused by
the operation of power electronics equipment, outages, the connection and disconnection
of loads, or human error. In complex marine microgrids, which consist of several differ-
ent power sources and energy storage devices, require connection to shore infrastructure
during port calls, and are characterized by frequent rapid dynamic load changes, timely
detection and classification of disturbances is a prerequisite for their elimination or mitiga-
tion. In this work, voltage dips, overvoltage, oscillatory transients, harmonic distortions
and voltage notches were observed. The aforementioned disturbances must be analyzed
to obtain additional information by which the neural network will be able to distinguish
the disturbances. The Fourier transform is not satisfactory because it does not provide
information about when the frequency component occurs, and in the short-time Fourier
transform there is only time-frequency resolution, which makes it difficult to analyze fast
and slow changes in the signal simultaneously. Therefore, a discrete wavelet transform
was chosen for the analysis, which analyzes low-frequency components with high time
resolution and high-frequency components with high frequency resolution. The decom-
position of each signal was performed in five stages and separately with db1, db4 and
db6 filters. For each obtained coefficient (frequency band), three statistical parameters are
determined: standard deviation, entropy and signal asymmetry. This results in a total
of 18 variables representing a signal, which are introduced into the neural network. For
interference detection, a probabilistic feed-forward neural network with 18 input neurons,
3 hidden neurons and 6 output neurons was used.

Classification models with different filters were tested on a separate dataset of 180 in-
terferences with an approximately uniform distribution of samples across interference
categories. The models were analyzed based on program execution time, accuracy, preci-
sion, TPR parameters, and F1 value. The confusion matrices of each classification model
were also analyzed. The analysis showed that the model with the db1 valve had the shortest
program execution time and satisfactory values for all parameters. However, the analysis
of the confusion matrix shows that it is very poor at distinguishing oscillatory transients
from sinusoidal voltages and voltage notches. Therefore, this model is still not satisfactory.
The model with the db4 valve distinguishes the mentioned disturbances better and gives
significantly better results for all parameters, except for the program execution time, which
increases by 18.4% compared to the model with the db1 valve. The last tested model with a
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db6 valve gives the best results in terms of accuracy and other performance parameters,
and also has a slightly shorter execution time than the model with a db4 valve. Thus, it is
the best model for the given data set. The proposed model can be successfully applied to
the detection and classification of faults in the considered vessels, which can contribute to
the safety and reliability of the power supply and serve as a basis for the development of
advanced machine learning-based power management systems.
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Abstract: Robust nonlinear filtering is an important method for tracking maneuvering targets in
non-Gaussian noise environments. Although there are many robust filters for nonlinear systems, few
of them have ideal performance for mixed Gaussian noise and non-Gaussian noise (such as scattering
noise) in practical applications. Therefore, a novel cubature formula and maximum correntropy
criterion (MCC)-based robust cubature Kalman filter is proposed. First, the fully symmetric cubature
criterion and high-order divided difference are used to construct a new fifth-degree cubature formula
using fewer symmetric cubature points. Then, a new cost function is obtained by combining the
weighted least-squares method and the MCC loss criterion to deal with the abnormal values of
non-Gaussian noise, which enhances the robustness; and statistical linearization methods are used to
calculate the approximate result of the measurement process. Thus, the final fifth-degree divided
difference–maximum correntropy cubature Kalman filter (DD-MCCKF) framework is constructed.
A typical surface-maneuvering target-tracking simulation example is used to verify the tracking
accuracy and robustness of the proposed filter. Experimental results indicate that the proposed filter
has a higher tracking accuracy and better numerical stability than other common nonlinear filters in
non-Gaussian noise environments with fewer cubature points used.

Keywords: maximum correntropy criterion; fully symmetric cubature criterion; weighted
least-squares method; cubature Kalman filter; surface target tracking

1. Introduction

Accurate and robust state estimation is important for the stable target tracking of
conventional ships and surface unmanned ships. It is one of the main target-tracking
processes for realizing sensor data fusion and anti-interference performance via a filtering
algorithm. For linear Gaussian state space models, the Kalman filter (KF) is a powerful
optimal estimation algorithm based on minimum mean square error. It is the most widely
used adaptive filter because of its analytical optimality, algorithm stability, and simplicity.
However, most commonly used target-tracking models are nonlinear, and this limits the
role of the traditional KF, which only applies to linear models in practical applications.

Therefore, a nonlinear filtering algorithm in the Gaussian filter framework is required
for target tracking. The extended Kalman filter (EKF) [1–3] is a common filtering method
that linearizes the nonlinear model by using the multivariate Taylor formula of the nonlinear
function to perform local linear approximation for obtaining a linear model, which degrades
the model to the general KF model. However, for functions with strong local nonlinearity,
the fitting accuracy is poor, the effect of filtering is not ideal, and the calculation of the
Jacobian matrices of complex multivariate functions is difficult. As a better alternative to the
EKF, the unscented Kalman filter (UKF) [3–5] was proposed to deal with highly nonlinear-
state estimation problems. While optimizing the model performance, the Jacobian matrix in
the EKF need not be calculated, solving the problem of complex calculations. It is a widely
used nonlinear filtering method, but has a disadvantage in that the weight may have a

J. Mar. Sci. Eng. 2022, 10, 1070. https://doi.org/10.3390/jmse10081070 https://www.mdpi.com/journal/jmse
97



J. Mar. Sci. Eng. 2022, 10, 1070

negative value in the process of untraced transformation, and the positive definiteness of
the covariance matrix is difficult to maintain with an increase in the system dimension,
eventually leading to filtering divergence [6]. Thus, filtering stability is poor for systems
with strong nonlinearity.

To avoid the Jacobian matrix that must be calculated in the EKF, Norgarrd et al.
proposed the central difference Kalman Filter (CDKF) [7]. The CDKF uses the Stirling
polynomial interpolation formula to approximate the nonlinear system and inserts it into
the nonlinear Bayesian filter framework for obtaining a new nonlinear KF. However, the
accuracy and computational performance of the filter must be improved for a highly
nonlinear system. The Gauss–Hermite quadrature filter (GHQF) [8] is a more accurate
nonlinear filter method that uses the Gauss–Hermite numerical integration formula to
estimate the parameters of the nonlinear KF and embed it into the framework of the KF
to form a new nonlinear filter. Although the numerical integration formula of GHQF
improves the parameter estimation accuracy of filtering obviously compared with CDKF,
the number of points required in the integral formula grows exponentially as the system
dimension increases, which increases the computational burden for parameter estimation,
leading to the problem of “dimension explosion”.

Arasaratnam et al. [6] proposed a cubature Kalman filter (CKF) based on the third-
degree spherical–radial criterion, which uses the spherical–radial cubature criterion to solve
the probability density integrals in the framework of the nonlinear KF, providing a system-
atic solution to the problem of high-dimensional nonlinear filtering. Furthermore, the CKF
based on the square-root criterion was derived to improve the numerical stability in the
calculation process [9]. The growth rate of the cubature points used in the spherical–radial
numerical integration formula with an increase in the dimension is significantly lower
than that for the GHQF, avoiding the problem of “dimension explosion” and bringing
considerable advantages with regard to computational complexity and stability. However,
the filter constructed by the third-degree spherical–radial criterion is not as accurate as
the GHQF. Bin Jia et al. [10] proposed a high-degree spherical–radial criterion that can
calculate an arbitrary order accuracy according to the third-degree spherical–radial crite-
rion, and on this basis, they proposed the high-degree cubature Kalman filter (HDCKF).
Because high-degree cubature formulas are used, the nonlinear KF has higher precision,
and better numerical stability is achieved. According to the spherical–radial criterion, Dong
Meng et al. [11] proposed a high-degree CKF calculation formula for the seventh-degree
spherical–radial criterion. Table 1 shows the performance comparison of some commonly
used filters.

Table 1. Performance comparison of some commonly used filters.

Filters
Linearization

Error

Suitable
for Nonlinear

Systems

Dimension
Error

Problem

Dimension
Explosion
Problem

Jacobian
Matrix

Calculation

EKF Yes Yes No No Yes
UKF No Yes Yes No No
CKF No Yes No No No

GHQF No Yes No Yes No

Xinchun Zhang et al. [12] used the fully symmetric cubature criterion of J. McNamee [13]
to approximate the probability density function integral in the nonlinear KF and then
combined it with the KF framework to obtain an embedded CKF (ECKF). Compared
with the previous five-degree filter constructed according to the spherical–radial cubature
criterion, the embedded cubature filter has fewer cubature points and can reduce the
number of computations while maintaining the filtering accuracy. Additionally, because the
coordinates of the cubature points do not increase with the system dimension n, compared
with spherical–radial quadrature filter, the stability of the nonlinear filter is enhanced.
However, even the embedded KF with fewer cubature points and a lower structural
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complexity than the HDCKF has problems related to computational stability. It is necessary
to develop a quadrature formula that can improve the stability of CKF iteration while
maintaining the filtering accuracy and controlling the number of computations.

Conventional CKFs and high-order spherical–radial filtering algorithms have high
performance under Gaussian noise conditions, but their accuracies decrease or even diverge
under non-Gaussian noise or mixed Gaussian noise conditions because they are based
on second-order information estimation via the KF framework. Unfortunately, in most
practical applications, because the system is affected by the surrounding environment,
e.g., unmanned equipment maneuvering extensively in a short time, process noise and
measurement noise typically do not obey the simple Gaussian distribution, which degrades
the performance of the conventional target-tracking algorithm of the cubature-based filter.

To solve this problem, scholars proposed some robust filters based on the conventional
KF framework, which can adapt to the noise of non-Gaussian systems. For a general linear
system containing non-Gaussian noise, Izanloo R et al. [14] developed a new optimization
objective function based on the maximum correntropy criterion (MCC) and combined it
with the weighted least squares (WLS) method. The fixed-point iteration method was used
to obtain the optimal solution of the state estimation equation, which was inserted into
the standard flow of the conventional KF to obtain the MCC-KF. The MCC-KF has the
same structure as the KF and uses higher-order (>2) statistics to obtain state estimation
parameters. Compared with the UKF and the Gaussian sum filter (GSF) [15], the MCC-KF
has a smaller estimation error and does not require the use of multiple filters or sigma
points; additionally, it has a lower computational complexity and less computations than
the UKF and GSF. Guoqing Wang et al. [16] proposed the maximum correlation entropy
unscented Kalman filter (MC-UKF) and unscented information filter (MC-UIF) based on
the MCC combined with the framework of the UKF and information filtering to solve the
filtering problem of nonlinear systems in non-Gaussian noise environments. Compared
with the existing UKF algorithm, similar or better estimation results are obtained. When the
core bandwidth is infinite, the proposed MC-UKF and MC-UIF converge to the UKF and
UIF, respectively. Qingwen Meng et al. [17] proposed a robust KF based on the third-degree
spherical–radial CKF and the smallest Cauchy kernel loss (CKL) function. Under the
filtering framework of the third-degree CKF, a new optimization objective function was
obtained by combining the WLS method with the smallest CKL function. The simulation
results of typical nonlinear systems verify that the MCK-CKF has strong robustness and a
high filtering efficiency against non-Gaussian noise. He et al. [18] proposed an adaptive
and robust CKF based on the MCC of the variable decibel Bayesian (VB) method to solve
the problems of unknown measurement noise covariance and outliers in a visual and dual
inertial measurement unit integrated-attitude system.

To overcome the shortcomings of robust KFs based on the MCCKF, MC-UKF, and
GSF algorithms with regard to the filtering accuracy and numerical stability, a new robust
nonlinear KF, based on a novel cubature formula and MCC is proposed in this study. In
contrast to the general spherical–radial criterion-based CKF, a new numerical integral
quadrature formula was first constructed using a fully symmetric quadrature criterion
and high-order divided difference formula to approximate the probability density of the
Gaussian weighted integral form in the CKF state and measurement update. A cubature
formula with good comprehensive performance is obtained, which considers the number
of cubature points, numerical stability, and calculation accuracy. Then, a new optimization
objective function and parameter estimation equation are defined by combining the WLS
method and MCC. The solving process is combined with the filtering process of the
constructed high-degree CKF framework to obtain a nonlinear KF, i.e., the fifth-degree
divided difference-maximum correntropy cubature Kalman filter (DD-MCCKF). Finally,
typical surface-target-tracking simulation examples were used to verify the performance
of the filter. The experimental results indicate that the fifth-degree DD-MCCKF has high
filtering accuracy and stability as compared to third-degree MCCKF, fifth-degree MCCKF,
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embedded MCCKF, and MC-UKF when there are two different types of non-Gaussian
mixture noise.

2. Construction of New High-Degree Cubature Formula

2.1. Nonlinear Filtering Problem and Gaussian Weighted Integral (GWI)

Consider the following nonlinear systems that can be described by discrete nonlinear
state–space models: {

xk+1 = f(xk, uk) + wk
zk = h(xk, uk) + vk

, (1)

where f(x, u) and h(x, u) are arbitrary nonlinear functions and wk and vk are the mutually
independent system process noise and measurement noise with covariance matrices Qk
and Rk, respectively. Further, uk represents the control input, and xk and zk represent the
system state and measurement, respectively, at time k.

The state posterior distribution p(xk|Zk) of the above discrete system at time k can
be estimated using the measurement set Zk = {z1, z2, . . . , zk} formulated in Equation (1),
according to the Bayesian estimation theory. Using the Chapman–Kolmogorov equation,
the posterior density can be estimated and updated as follows:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 (2)

p(xk|Zk) =
p(zk|Zk)p(xk−1|Zk−1)∫
p(zk|Zk)p(xk|Zk−1)dxk

(3)

For nonlinear systems, the posterior density cannot be directly calculated because
the high-dimensional integral in the equation does not have an exact analytical solution.
Therefore, approximate or suboptimal Bayesian algorithms must be used for nonlinear
systems. There are some limitations to using the existing methods to filter nonlinear
non-Gaussian systems.

Because Equations (2) and (3) cannot be calculated accurately, and in consideration of
the accuracy and computational complexity, CKF is typically used as a Gaussian approxi-
mation filtering algorithm. Before using it, the following key assumptions of the one-step
posterior predictive PDF of the state xk and measurement zk conditioned by Zk must first
be made:

p(xk|Zk−1) = N
(

xk; x̂k|k−1, Pk|k−1

)
(4)

p(zk|Zk−1) = N
(

zk; ẑk|k−1, Pzz
k|k−1

)
(5)

By Equations (4) and (5) and the Bayesian rule, the posterior PDF of the state is also
Gaussian, that is, p(xk|Zk) = N

(
xk; x̂k|k, Pk|k

)
. In this manner, we transform the general

nonlinear filtering problem into a Kalman filtering problem under a Gaussian framework.
CKF is a suboptimal filtering algorithm that combines precision and computational

performance. The difficulty in the CKF filtering process lies mainly in calculating the
following Gaussian weighted integral (GWI):

G(f) =
∫

Rn
f(x)N(x; μ, Σ)dx . (6)

where f(x) is a multivariate function, x = (x1, x2, . . . , xn), which does not yield exact results
that conform to analytical expressions when f(x) is nonlinear and must be calculated by
numerical integral approximation methods.

As we know the expression of normal distribution function N(x; μ, P) from
Equation (7), this integral can be simplified by linear transformation of the integral variable.

N(x; μ, Σ) =
1

(2π)n/2|Σ|1/2 exp

(
− (x − μ)TΣ−1(x − μ)

2

)
. (7)
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Then, let x =
√

2Σv + μ. The specific integral form of the Gaussian weighted integral
can be simplified as follows:

G(f) =
∫

Rn
f(x)

(2π)n/2|Σ|1/2 exp
(
− (x−μ)TΣ−1(x−μ)

2

)
dx

= 1
(π)n/2

∫
Rn f

(√
2Σv + μ

)
exp

(−vTv
)
dv

. (8)

The integral can be approximated numerically via many proposed numerical ap-
proximation methods. A typical example is the use of unscented transform (UT) or the
spherical–radial cubature criterion for approximation, which can be combined with the
KF framework to obtain the UKF or CKF, respectively. The third-degree spherical–radial
numerical integration formula is as follows:

∫
Rn

f
(√

2Σv + μ
)

exp
(
−vTv

)
dv ≈ (π)n/2

2n

N

∑
k=1

(
f
(√

2nΣek + μ
)
+ f

(
−
√

2nΣek + μ
))

(9)

where N = n represents the system dimension, and ek is the kth column in the n-order identity
matrix E. The identity matrices E and −E form the first set of fully symmetric cubature points in the
numerical approximation formula. This formula can stably approach the original integral with a
minimum number of cubature points.

From the numerical analysis point of view, the formula of untraced transformation (UT) shows
that when the dimension of the system, n, exceeds three, its stability decreases linearly with the
increase in dimension N, thus causing a significant disturbance in the numerical estimation of the
moment integral. Because there is no square root solution in the UKF, when the pseudo-square root
operation is performed on the error covariance matrix, a non-positively determined updated matrix
can be obtained owing to the existence of sigma points with negative weights in the UKF. Therefore,
it is impossible to express the square root UKF with a numerical advantage similar to the square
root-CKF by formula. The covariance matrix calculated by the UKF is not always guaranteed to be
positive definite, and the unavailability of the square root covariance causes the UKF to stop running.
However, the set of cubature points in the CKF does not have these problems. The cubature point
method is mathematically more accurate and principled than the sigma point method [6].

2.2. Commonly Used High-Degree Cubature Rules
The accuracy of the numerical integration formula is determined primarily by the order of the

fitting polynomial. Cubature formulas of the fifth degree can obtain higher numerical approximation
accuracy at the cost of using more cubature points. In the third-degree cubature formula, only the
GWI corresponding to polynomial

{
1, x2

1
}

is accurate, and its approximation error mainly comes from
the fourth order or higher polynomial integration in the expansion of function f (x). In the formula of
the fifth degree, the GWI corresponding to

{
1, x2

1, x4
1, x2

1x2
2
}

is accurate, and its approximation error
mainly comes from the GWI corresponding to the sixth and higher order polynomials. To ensure
numerical stability, the fifth degree can approximate GWI with higher numerical accuracy and obtain
more accurate integral results in simple numerical calculation problems.

To increase the approximation accuracy of the numerical integration for the cubature formula,
the third-degree cubature criterion in the CKF can be extended to higher degrees. For simplicity, we

use u(x) instead of f
(√

2Σx + μ
)

in this section.

2.2.1. Basic Formulas and Theorems
We consider the fully symmetric numerical integration formula of the following form:

G(u) =
∫

Rn
u(x) exp

(
xTx

)
dx ≈

N

∑
k=1

Wk∑
FS

u
(

r1k, r2k, . . . , rpk, 0
)

k
(10)

where
(

r1k, r2k, . . . , rpk, 0
)

k
represents the kth generator of cubature coordinate points and rpk repre-

sents the pth coefficients of the points. Further, Wk is the weight of the corresponding part of each
generator, and FS is a set of fully symmetric cubature points. The integral region Rn and the integrand
weighted function exp

(−xTx
)

are completely symmetric, with exp
(−xTx

)
> 0. In Rn, if the set of

evaluation points is fully symmetric and S is the union of the fully symmetric set Si, Equation (10)
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is called a fully symmetric numerical integration formula. The cubature points are generated by

different generators
(

r1k, r2k, . . . , rpk, 0
)

k
, and each generator corresponds to exactly one weight.

In addition, another integration method, the spherical–radial quadrature method, was proposed. In
Gaussian weighted integrals, the integrand weight function is of the form exp

(−xTx
)
. Thus, Cartesian in-

tegration can be converted into a spherical integration via the n-dimensional spherical coordinate transfor-
mation x = rp with p = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 . . . sin θn−2 cos θn−1, sin θ1 . . . sin θn−2 sin θn−1).
Using the above coordinate transformation, variable substitution of the Gaussian weighted integral is
performed as follows:

G(u) =
∫

Rn u(x) exp
(−xTx

)
dx

=
∫

Sn
dS
∫ ∞

0 u(rp)rn−1 exp
(−r2)dr ≈

Nr

∑
k=1

Np

∑
l=1

wrkwplu(rksl)
(11)

This is the spherical radial integral. The integral region of the surface integral
Sn =

{
p ∈ Rn : p2

1 + p2
2 + . . . + p2

n = 1
}

is an n-dimensional hypersphere with radius 1. This spe-
cial surface integral can be approximated using the spherical isomorphic integration criterion and
Stroud’s integration formula. The radial integral can be calculated using the moment matching
algorithm and the generalized Gauss–Laguerre quadrille criterion.

In the approximate expression of Equation (11), rk and wrk are the corresponding points of radial
integrals and their weights respectively. sl and wpl are vectors corresponding to spherical integrals
and their weights, respectively. According to the cubature integration rules and the numerical
method of radial integration, the Gaussian weighted integral can be approximated using a fifth-
degree numerical integration formula with the radial integral formula and spherical integral formula.
All the fifth-degree cubature formulas based on the spherical–radial criterion can be summarized by
the form of Equation (11) [19].

To evaluate the computational complexity and numerical stability of the cubature formula, the
following two theorems were introduced:

Theorem 1. The cubature formula of degree 2s–1 has the minimum number of cubature points and given as
follows [20]:

Pmin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n + s − 1

n

)
+

n−1
∑

k=1
2k−n

(
k + s − 1

k

)
, s = 2p, p ∈ N+

(
n + s − 1

n

)
+

n−1
∑

k=1

(
1 − 2k−n

)(k + s − 2
k

)
, s = 2p − 1, p ∈ N+

. (12)

Theorem 2. When the system dimension n is so large that the signs of different weights of the cubature
formula are not always positive, the stability of the cubature formula can be evaluated according to the stability
coefficient discriminant, as follows:

stb =

M
∑

u=0

N
∑

k=1

∣∣Wu,k
∣∣

M
∑

u=0

N
∑

k=1
Wu,k

=

M
∑

u=0

N
∑

k=1

∣∣Wu,k
∣∣

G(1)
≥ 1 . (13)

According to Theorem 1, for all third-degree cubature formulas (including the common third-
degree spherical–radial rule-based formula), the minimum number of cubature points is 2n. Next, we
consider formulas of the fifth degree.

2.2.2. Fifth-Degree Cubature Formulas
• Formula I

Stroud et al. [21] provided a fully symmetric fifth-degree cubature formula based on the
spherical–radial integration method, which is one of the most widely used cubature formulas
in high-degree CKF robust algorithms. This formula uses Stroud’s formula [22] to approximate
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the spherical integral, and the radial integral is approximated via the Gauss–Laguerre numerical
integration method. It can be expressed as

G(u) ≈ 2(π)n/2

n + 2
u(0) +

(4 − n)(π)n/2

2(n + 2)2 ∑
FS

u(s, 0) +
(π)n/2

(n + 2)2 ∑
FS

u(r, r, 0) , (14)

where s =
√

n
2 + 1 and r =

√
n
4 + 1

2 . The generation method for fully symmetric cubature points is
as follows:

(s, 0) =
√

2

⎡
⎣ s 0 0 −s 0 0
· · · · · · · · · · · · · · · · · ·
0 0 s 0 0 −s

⎤
⎦

U1 =
√

2r(e1 + e2, . . . , e1 + en, e2 + e3, . . . , e2 + en, . . . , en−1 + en)︸ ︷︷ ︸
n(n−1)/2

U2 =
√

2r(e1 − e2, . . . , e1 − en, e2 − e3, . . . , e2 − en, . . . , en−1 − en)︸ ︷︷ ︸
n(n−1)/2

(r, r, 0) = (U1,−U1, U2,−U2)

(15)

Bin Jia et al. applied Stroud’s cubature formula to the parameter estimation of a nonlinear KF
and obtained the HDCKF. In the high-degree KF of [10], Equation (14) is rewritten as

G(u) ≈ 2(π)n/2

n+2 u(0) + (4−n)(π)n/2

2(n+2)2

n
∑

k=1

(
u
(√

n + 2ek
)
+ u

(−√
n + 2ek

))
+ (π)n/2

(n+2)2

n(n−1)/2
∑

k=1

(
u
(√

n + 2l+k
)
+ u

(−√
n + 2l+k

)
+u

(√
n + 2l−k

)
+ u

(−√
n + 2l−k

)
) , (16)

where l+k = ek + el, l−k = ek − el, k < l ≤ n. Equations (14) and (16) are essentially identical. The
total number of cubature points is 2n2 + 1. According to Theorem 2, when n is sufficiently large, its
asymptotic stability coefficient converges to 3, resulting in a cubature formula with good numerical
stability.

• FormulaII

Mysovskikh [23] derived the spherical integral formula according to the transformation group
of the regular simplex. Lu and Darmofal [24] proposed a new fifth-degree cubature formula based on
the integral formula of Mysovskikh, which is similar to the formula proposed by Stroud et al. It also
decomposes the Gaussian weighted integral into the product of the spherical and radial integrals:

G(u) ≈ 2(π)n/2

n+2 u(0)

+
n2(7−n)(π)n/2

2(n+1)2(n+2)2

n+1
∑

k=1

(
u
(√

n
2 + 1ak

)
+ u

(
−
√

n
2 + 1ak

))

+
2(n−1)(π)n/2

(n+1)2(n+2)2

n(n+1)/2
∑

k=1

(
u
(√

n
2 + 1bk

)
+ u

(
−
√

n
2 + 1bk

))
.

(17)

In this formula, the values of the cubature points and parameters are given as follows:

ak =
(
a1,k, a2,k, . . . , an,k

)T , k = 1, 2, . . . , n + 1

ai,k =

⎧⎪⎪⎨
⎪⎪⎩
−
√

n+1
n(n−i+2)(n−i+1) , i < k√
(n+1)(n−k+1)

n(n−k+2) , i = k
, bk =

√
n

2(n−1)vk,

Vn× n(n+1)
2

= (a1 + a2, . . . , a1 + an+1, a2 + a3, . . . , a2 + an+1, . . . , an + an+1)︸ ︷︷ ︸
n(n+1)/2

,

(18)

where ak represents the n + 1 vertices of n-dimensional hypersphere Sn, and bk represents the
topological mapping of the midpoints of the vertices of the simplex on hypersphere Sn. The number
of cubature points required by this formula is n2 + 3n + 3. For low dimensional systems, this formula
requires more cubature points than the cubature formula of HDCKF, and resulting in unnecessary
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costs. According to Theorem 2, the stability index of the formula can be calculated as stb = 3,
indicating that the algorithm has good numerical stability. However, it is difficult to extend and
improve the formula, because of the complex structure of the spherical simplex criterion.

• FormulaIII

According to Stroud’s invariance theory for cubature integrals, McNamee et al. [13] constructed
a group of fully symmetric integration formulas with order 2k + 1 in the n-dimensional space as:

G(u) ≈ T(u) = W0u(0) + W1∑
FS

u(r, 0) + W2∑
FS

u(r, r, 0) (19)

This cubature formula is a special form of Equation (10) in the fifth-degree case. Zhang et al. [12]
applied it to nonlinear Kalman filtering and formed an ECKF. The fully symmetric quadrature
formula of the fifth degree is

G(u) ≈ (n2−7n+18)(π)n/2

18 u(0)

+ (4−n)(π)n/2

18 ∑
FS

u
(√

3
2 , 0

)
+ (π)n/2

36 ∑
FS

u
(√

3
2 ,
√

3
2 , 0

)
.

(20)

In this formula, nonlinear equations are constructed and weight coefficients are obtained by
solving the fully symmetric cubature criterion. The number of required cubature points is 2n2 + 1,
leading to a simple structure and a small number of calculations. In contrast to Equations (16) and (17)
obtained using spherical radial integration, the coefficient of cubature points

√
3/2 is a fixed value

and does not increase with the system dimension n. The problem of cubature points exceeding the
integral domain in the spherical integral formula is avoided. However, according to Theorem 2, the
stability coefficient is 2n2−8n+9

9 ; thus, the numerical stability of this formula is poor. In addition, for
systems with sufficiently large values of n, the weights are negative, which further affects the stability.

2.3. Novel High-Order Cubature Formula Based on Fully Symmetric Cubature Criterion and
Divided Difference Formula

This section describes the construction of a novel fifth-degree cubature formula using a new
method to maintain the filtering accuracy and numerical stability while controlling the number of
cubature points required for integration.

First, the partial-derivative formula is used to modify the original formula to increase accuracy.
Generally, it is difficult to directly calculate the partial derivative of a multivariable continuous
function at a certain point. To avoid complex calculations, we use discrete high-order divided
difference formulas to approximate the value of the partial derivatives and write them as linear
combinations of the original functions. Because the weight function of the Gaussian weighted integral
is a fully symmetric function, the integral of the partial derivatives of odd order is zero, and only
the partial derivatives of the even order must be considered. From Equation (19), the new cubature
formula modified by the high-order divided difference and even-order divided difference formula of
f (x) is expressed as follows:

Ĝ( f ) = T( f ) +
n
∑

k=1
∇xk

4 f (x)x=0 + ∑
k<l

∇xk
2
(∇xl

2 f (x)
)

x=0

∇x
2n f (x) =

2n
∑

k=0

(2n)! f (x−(n−k)r)
2n−k−1

∏
u=0

(r(2n−k)−ur)
2n
∏

u=2n−k+1
(r(2n−k)−ur)

.
(21)

For example, the first two high-order divided difference formulas can be expressed as follows:

∇x
2 f (x) = f (x−r)−2 f (r)+ f (x+r)

r2 ,

∇x
4 f (x) = f (x−2r)−4 f (x−r)+6 f (r)−4 f (x+r)+ f (x+2r)

r4 . . .
, (22)

where r represents the selected step size for the divided differences. By combining the above formulas,
Equation (21) with the fully symmetric integral formula with Equation (19), a new form of the fifth-
degree cubature formula is obtained as follows:

Ĝ(u) = W0u(0) + W1∑
FS

u(r, 0) + W2∑
FS

u(2r, 0) + W3∑
FS

u(r, r, 0) . (23)
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The definitions of cubature generators (r, 0) and (r, r, 0) are identical to those in Equation (15).
Compared with Equations (14), (17), and (20), the newly constructed cubature formula uses discrete
derivatives and has a higher accuracy. However, it uses more cubature points. To determine the
weight coefficient of the above equation, it is necessary to construct a set of higher-order algebraic
equations. According to the fully symmetric cubature criterion, consider the Gaussian weighted
integral of the following even-power monomial function:

I2s1,2s2,...2sv =
∫ ∞

0 (x1)
2s1 (x2)

2s2 . . . (xv)
2sv exp

(−xTx
)
dx

i ≤ j, 0 ≤ si ≤ sj, 2 ∑
k≤v

sk ≤ 5. (24)

Note the above conditions for the sk value; in the fifth-degree cubature formula, only the
integrals I0,0, I0,2, I0,4 and I2,2 must be calculated. The following formula based on the gamma
function is used to calculate the integrals:

I2a,2b =
∫

Rn (x1)
2a(x2)

2b exp
(−xTx

)
dx

=
(∫ ∞

0 (x1)
2ae−x2

1 dx1

)2(∫ ∞
0 (x2)

2be−x2
2 dx2

)2∫
Rn−2 exp

(
−
(

x(n−2)
)T

x(n−2)
)

dx(n−2)

= Γ
(

a + 1
2

)
Γ
(

b + 1
2

)
(π)n/2−1, a, b ≥ 0.

(25)

By combining the coefficients of the above monomial function with the newly constructed
cubature formula of Equation (23), the following fully symmetric polynomial can be obtained [13]:

Mua,b ,Ia,b = 2rN

p

∑
k1=1

· · ·
p

∑
kv=1

(n − v)!r2s1
k1

. . . r2sv
kv

(n − rN)!

⎛
⎝ p

∏
j=1

(
pj − qj

)
!

⎞
⎠−1

(k1,...,kv)

(26)

This polynomial is used to calculate the coefficient-matrix elements of the higher-order algebraic
equations corresponding to the newly constructed cubature formula. Here, rN represents the number
of nonzero vector coefficients at the cubature points used in each part of Equation (23), and p
represents the number of nonzero vector coefficients in each generator of the new formula which is
different from the others. Thus, rN and p can be easily obtained using the above formula. pj and qj
represent the numbers of times that the coefficient r of the cubature points and the integer j appear in
the counting units k1, . . . , kv of the sum, respectively.

According to the different cubature points in Equation (23), different integral trajectories are
selected, and the parameters are calculated using Equations (25) and (26). Thus, the coefficient matrix
of the higher-order algebraic equation can be obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
rN = 2, p = 1 ⇒ (r, r, 0)
rN = 1, p = 1 ⇒ (ar, 0)

rN = 0, p = 0 ⇒ 0
→

0 (r, 0) (2r, 0) (r, r, 0)
⇓ ⇓ ⇓ ⇓⎛
⎜⎜⎜⎝

1 2n 2n 2n(n − 1)
0 2r2 2(2r)2 4(n − 1)r2

0 2r2 2(2r)2 4(n − 1)r4

0 0 0 4r4

⎞
⎟⎟⎟⎠

Mu,I

.
(27)

Using Equations (23), (25), and (26), we can construct a higher-order algebraic system for solving
weight coefficients: ⎛

⎜⎜⎜⎜⎝
W0 + 2nW1 + 2nW2 + 2(n − 1)nW3 = I0,0

2W1r2 + 8W2r2 + 4(n − 1)W3r2 = I0,2

2W1r4 + 32W2r4 + 4(n − 1)W3r4 = I0,4

4r4W3 = I2,2

⎞
⎟⎟⎟⎟⎠ . (28)

To solve the above algebraic equations, the following unique solution of the weight coefficients
can be obtained:

W0 =
πn/2(2n2−10nr2+n+16r4)

16r4 , W1 =
πn/2(8r2−3n)

24r4 ,

W2 =
πn/2(3−2r2)

96r4 , W3 = πn/2

16r4

. (29)
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To maintain the approximate accuracy and numerical stability while minimizing the number
of cubature points used, we can take r =

√
3n/8 or

√
3/2 obtain a new set of weight coefficients.

When r =
√

3/2, we obtain the cubature formula of the embedded KF in Equation (20), which has
inadequate numerical stability; thus, we take r =

√
3n/8. The weight solution is as follows:

W0 =
2(n + 2)πn/2

9n
, W1 = 0, W2 = − (n − 4)πn/2

18n2 , W3 =
4πn/2

9n2 . (30)

Therefore, Equation (23) can be written as

Ĝ(u) = 2(n+2)πn/2

9n u(0)− (n−4)πn/2

18n2 ∑
FS

u
(√

3n
2 , 0

)

+ 4πn/2

9n2 ∑
FS

u
(√

3n
8 ,
√

3n
8 , 0

)
.

(31)

The total number of points in the new cubature formula is 2n2 + 1, and the stability coef-
ficient is 11n−8

9n > 1 (when n > 4). The numerical stability of this formula is superior to that of
Equation (20) for the embedded KF, and the number of cubature points used is equal to that for
Equation (16). The new formula has a simpler structure and a smaller cubature-points coefficient
r than Equations (14) and (17), which improves the numerical stability. To ameliorate the non-local
sampling problem of point coordinates caused by the increase in system dimensions, we adjust the
coordinate parameters of the cubature points in the above cubature formula:

Ĝ(u) = 2(n+2)πn/2

9n u(0)− (n−4)πn/2

18n2 ∑
FS

u
(√

3(n−c)
2 , 0

)

+ 4πn/2

9n2 ∑
FS

u
(√

3(n−c)
8 ,

√
3(n−c)

8 , 0
)

, 0 < c < 1.
(32)

Fine-tuning the parameters can not only maintain the accuracy of the cubature formula but also
reduce the influence of nonlocal sampling problems.

3. Robust KF Based on New Cubature Formula and MCC

3.1. Cross-Correntropy Formula
As a statistical measure of the similarity between two random variables, the cross-correntropy

formula has been widely used in non-Gaussian noise-signal processing. Cross-correntropy is a
generalized variable that characterizes the correlation between a pair of scalar random variables
and can measure not only second-order information but also high-order moments of the joint
probability density. The cross-correntropy between two scalar random variables can be expressed by
the mathematical expectation of the positive-definite kernel function Kσ(x, y) [14]:

Hσ(X, Y) = E(Kσ(X, Y)) =
�
R2

Kσ(x, y) fXY(x, y)dτ. (33)

Here, fXY(x, y) is the joint probability density function between two random variables. Under
normal circumstances, the joint distribution function between random variables cannot be accurately
obtained; thus, it can only be estimated using a discrete approximation formula and a limited number
of sample data points:

HσE =
1
n

n

∑
k=1

Kσ(xk, yk). (34)

In the above expression, {xk, yk}n
1 is a sample extracted from the joint distribution function

FXY(x, y). We selected the Gaussian correlation entropy function for the estimation, which is a
positive definite kernel function that satisfies Mercer’s theory:

Kσ(x, y) = Gσ(e) = exp
(
− e2

2σ2

)
. (35)

where e = x − y and σ represents the bandwidths of the kernel function. The Gaussian function has a
series of advantageous properties. For example, it is positive and bounded, and the maximum point
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is zero. The MCC is obtained using the correlation entropy estimation formula based on the Gaussian
function. Expanding the kernel function in Equation (34) using the Taylor series:

HσE =
∞

∑
k=0

1
k!

(
− 1

2σ2

)k
E
[
(X − Y)2k

]
(36)

According to the series expression above, the correlation entropy can extract the information
of all even moments of X − Y under the appropriate kernel bandwidth. This helps us to use the
higher-order moment information of the signal better.

3.2. Parameter Estimation Method Based on Correntropy Criterion
According to the derivation process of the original Kalman filter, the state update equation of

the conventional Kalman filter can be obtained under the assumption that the innovation conforms
to a Gaussian distribution. When interference values and outliers exist in the noise of the state or
observation information, the hypothesis that innovation conforms to the Gaussian distribution in
Equations (4) and (5) is no longer satisfied, resulting in a reduced filtering effect. Therefore, a robust
method should be introduced to optimize the original Kalman filter framework.

Izanloo R et al. [14] combined the weighted matrix with the cost function of the c-filter and
obtained the cost function of the WLS method and the MCC for a linear system, so that the least-
variance estimation and high-order moment information were combined in the filtering process, and
the estimation process was embedded into the conventional KF framework. A KF with robustness
was obtained. According to this cost function, a new generalized cost function is designed, and its
parameter estimation process is extended to the filtering process of nonlinear systems. Using the
nonlinear filter framework presented in Section 2.1, together with the WLS method and MCC, we
give the generalized cost function as follows:

J = Gσ

(
‖xk − ^

xk|k−1‖2
P−1

k|k−1

)
+ γGσ

(
‖zk −

¯
Hkxk − ^

zk|k−1 +
¯
Hk

^
xk|k−1‖2

¯
R
−1

k

)
, (37)

where ‖x‖2
R = xTRx, xk,

^
xk|k−1, zk

^
zk|k−1 and Pk|k−1 are the prediction, the update state vector, the

observation vector and the state covariance matrix in the KF framework, respectively. γ is an
undetermined constant. We use statistical linearization [25] to solve nonlinear filtering problems.
¯
Rk = Pzz −

¯
HkPk|k−1

¯
H

T

k is the noise covariance matrix of the statistically linearized observation

vector, and
¯
Hk = PT

xzP−1
k|k−1 is the coefficient matrix of the statistically linearized observation vector.

To minimize the above objective function J, we first calculate its derivative with respect to xk:

∂J
∂xk

= γ
HT

k R−1
k Gσ

(
‖zk−Hkxk−ẑk|k−1+Hkx̂k|k−1‖2

R−1
k

)
(zk−Hkxk−ẑk|k−1+Hkx̂k|k−1)

σ2

−Gσ

(
‖xk − x̂k|k−1‖2

P−1
k|k−1

)
P−1

k|k−1(xk−x̂k|k−1)
σ2

. (38)

By setting this to 0, the following matrix equation is obtained:

γGkHT
k R−1

k

(
zk − Hkxk − ẑk|k−1 + Hkx̂k|k−1

)
= P−1

k|k−1

(
xk − x̂k|k−1

)

Gk =
Gσ

(
‖zk−Hkxk−ẑk|k−1+Hkx̂k|k−1‖2

R−1
k

)
Gσ

(
‖xk−x̂k|k−1‖2

P−1
k|k−1

) (39)

According to the equation, we take the constant parameter γ = 1, and simplify the above
equation to obtain a simple equation involving xk:(

P−1
k|k−1 + GkHT

k R−1
k Hk

)
xk = GkHT

k R−1
k

(
zk − ẑk|k−1

)
+
(

P−1
k|k−1 + GkHT

k R−1
k Hk

)
x̂k|k−1

xk =
(

P−1
k|k−1 + GkHT

k R−1
k Hk

)−1
GkHT

k R−1
k

(
zk − ẑk|k−1

)
+ x̂k|k−1

(40)
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Then, we obtain the new state-estimation expression for a robust KF:

x̂k|k = x̂k|k−1 + K̂G
k

(
zk − ẑk|k−1

)
;

K̂G
k =

(
P−1

k|k−1 + GkHT
k R−1

k Hk

)−1
GkHT

k R−1
k .

(41)

In the KF framework, we replace Hkxk with Hkx̂k|k−1 and substitute the corresponding state
estimation vector of xk:

Gk =
Gσ

(
‖zk − Hkxk − ẑk|k−1 + Hkx̂k|k−1‖2

R−1
k

)
Gσ

(
‖xk − x̂k|k−1‖2

P−1
k|k−1

) ⇒
Gσ

(
‖zk − ẑk|k−1‖2

R−1
k

)
Gσ

(
‖x̂k|k−1 − x̂k−1|k−1‖2−1

Pk|k−1

) (42)

Then, we obtain the following state-estimation expression for a robust KF:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kk = Pxz
k|k−1(P

zz
k|k−1)

−1

x̂k|k = x̂k|k−1 + Kk

(
zk − ẑk|k−1

)
Pk|k = Pk|k−1 − KkPPz

z
k|k−1KT

k

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hk =
(

Pxz
k|k−1

)T
P−1

k|k−1

Rk = Pzz
k|k−1 − HkPk|k−1HT

k

Gk =
Gσ

(
‖zk−ẑk|k−1‖2

R−1
k

)

Gσ

(
‖x̂k|k−1−x̂k−1|k−1‖2

Pk−1−1

)

K̂G
k =

(
P−1

k|k−1 + GkHT
k R−1

k Hk

)−1
GkHT

k R−1
k

x̂k|k = x̂k|k−1 + K̂G
k

(
zk − ẑk|k−1

)
Pk|k =

(
E − K̂G

k Hk

)
Pk|k−1

(
E − K̂G

k Hk

)T

+K̂G
k Rk

(
K̂G

k

)T

traditional(a) robust(b)

(43)

The above formula is used to replace the gain in the original Kalman filtering process and to update the
state vector and covariance estimation. The algorithm flow of robust Kalman filtering can be obtained using the
new cubature formula derived in Section 2.3.

3.3. Robust KF Based on New Fifth-Degree Cubature Formula and MCC
In the following algorithm, we use diagonalization transformation to solve the square root of the matrix.

With regard to numerical stability, the diagonalization transformation is better than the Cholesky decomposition
method used in the general CKF algorithm. Cholesky decomposition requires the matrix to be positive-definite,
which may lead to process instability or even to algorithm divergence.

We now present the time update and measurement update processes of the proposed robust KF algorithm.

3.3.1. Initialization of Cubature Points and Parameters
The state vector and covariance matrix are initialized as follows:

x̂0|0 = E(x0), P0|0 = E
[(

x0 − x̂0|0
)(

x0 − x̂0|0
)T
]

. (44)

The trajectory nodes of the integration required by the fifth-degree algorithm are generated:

U1 =
√

3(n−c)
4 (e1 + e2, . . . , e1 + en, e2 + e3, . . . , e2 + en, . . . , en−1 + en)︸ ︷︷ ︸

n(n−1)/2

U2 =
√

3(n−c)
4 (e1 − e2, . . . , e1 − en, e2 − e3, . . . , e2 − en, . . . , en−1 − en)︸ ︷︷ ︸

n(n−1)/2

(45)

Then, we initialize the different weights in the cubature formula and their corresponding cubature points:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N f = 2n2 + 1
χ(1) = 0
χ(2,...,2n+1) =

√
3(n − c)(E,−E)

χ(2n+2,...,2n2+1) = (U1,−U1, U2,−U2)

,

⎧⎪⎨
⎪⎩

w(1) =
2(n+2)

9n

w(2,...,2n+1) = − (n−4)
18n2

w(2n+2,...,2n2+1) =
4

9n2

. (46)
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3.3.2. Time Update
The diagonalization transformation given above is used to calculate the square-root matrix of the covariance

matrix [26]:
Pk|k = UIΛk|kUT

I , Uk|k = UI
√

Λk|kUT
I

Λk|k =

⎛
⎜⎜⎝
√

λ1 0 · · · 0
0

√
λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · √

λn

⎞
⎟⎟⎠

Pk|k

.
(47)

Then, the new cubature points are calculated by substituting the integral variable into Equation (8) and its
corresponding state function value:

Xl
k−1|k−1 = Uk−1|k−1χk−1 + x̂k−1|k−1, X(l)

k−1|k−1 = f
(

Xl
k−1|k−1

)
(48)

Next, the state-vector prediction and state error covariance matrix prediction are calculated:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂k|k−1 =
Nf

∑
l=1

wlf
(

Xl
k−1|k−1

)
=

Nf

∑
l=1

wlX
(l)
k−1|k−1

Pk|k−1 =
Nf

∑
l=1

wl

(
X(l)

k−1|k−1 − x̂k|k−1

)(
X(l)

k−1|k−1 − x̂k|k−1

)T
+ Qk−1

. (49)

3.3.3. Measurement Update
Similar to Equation (46), diagonalization transformation is performed on the state prediction covariance

matrix to obtain the square-root matrix:

Pk|k−1 = UJΛk|k−1UT
J , Uk|k−1 = UJ

√
Λk|kUT

J . (50)

The new cubature points are calculated after the Gaussian integral substitution, along with the correspond-
ing measurement-function value:

Xl
k|k−1 = Uk|k−1χk + x̂k|k−1, Zl

k|k−1 = h
(

Xl
k|k−1

)
. (51)

The measurement vector estimation, autocorrelation covariance matrix, and cross-covariance matrix
are evaluated: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑk|k−1 =
Nf

∑
l=1

wlh
(

Xl
k|k−1

)
=

Nf

∑
l=1

wlZl
k|k−1

Pzz
k|k−1 =

Nf

∑
l=1

wl

(
Zl

k|k−1 − ẑk|k−1

)(
Zl

k|k−1 − ẑk|k−1

)T
+ Rk

Pxz
k|k−1 =

Nf

∑
l=1

wl

(
Xl

k|k−1 − x̂k|k−1

)(
Zl

k|k−1 − ẑk|k−1

)T
.

(52)

We calculate the statistical linearization update matrix and covariance matrix of the measurement function:

Hk =
(

Pxz
k|k−1

)T
P−1

k|k−1, Rk = Pzz
k|k−1 − HkPk|k−1HT

k . (53)

We then compute the correlation entropy coefficient based on the Gaussian kernel function and
weighted norm:

Gk =

Gσ

(
‖zk − ẑk|k−1‖2

¯
R
−1

k

)

Gσ

(
‖x̂k|k−1 − x̂k−1|k−1‖2

P−1
k|k−1

) . (54)

Finally, we calculate the new gain matrix of the robust KF; then, the updated state vector estimation and
updated covariance matrix are computed according to the new gain matrix:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
K̂G

k =
(

P−1
k|k−1 + GkHT

kR−1
k Hk

)−1
GkHT

kR−1
k

x̂k|k = x̂k|k−1 + K̂G
k

(
zk − ẑk|k−1

)
Pk|k =

(
E − K̂G

k Hk

)
Pk|k−1

(
E − K̂G

k Hk

)T
+ K̂G

k Rk

(
K̂G

k

)T

. (55)

4. Simulation Experiment of Target Tracking Based on Proposed Algorithm

4.1. Filtering Simulation Experiment and Numerical Analysis of Cubature Formulas
We evaluated the filtering performance of the CKF using the cubature formula proposed in Section 2 through

simulation experiments.
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Consider the following nonlinear system equation with trigonometric functions, exponential functions, and
power functions [20]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Process equation :

xk =

⎛
⎜⎜⎜⎜⎝

x(1)k

x(2)k

x(3)k

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

3 sin2
(

5x(2)k−1

)
x(1)k−1 + e−0.05x(3)

k−1 + 10

0.2x(1)k−1

(
x(2)k−1 + x(3)k−1

)

⎞
⎟⎟⎟⎟⎟⎠+ wk−1

Measurement equation :

zk = cos
(

x(1)k

)
+ x(2)k x(3)k + vk

. (56)

The process noise is wk ∼ N(0, Q), Q = 0.1E3, where En is the n-dimensional identity matrix.
The measurement noise is vk ∼ N(0, R), R = 1.0. In the simulation experiment, the initial vector
was set as x0 = (1, 1, 1)T , and the initial covariance matrix was set as P0|0 = diag(0.1, 0.1, 0.1). In
addition to the proposed 5th-degree DDCKF (Equation (32)), the following HDCKFs were used
for comparison:

• Equation (11), 3rd-degree CKF;
• Equation (14), 5th-degree simplified CKF (SCKF);
• Equation (17), 5th-degree CKF; and
• Equation (20), 5th-degree ECKF.

The initial conditions of all the filters were identical at the beginning of each simulation, and the
simulation time was 40 s. The root-mean-square error (RMSE) was used as an evaluation index for
the filtering performance. The RMSE and average RMSE (ARMSE) were defined as follows:

RMSE(x,xt) =

√
1
N

N
∑

k=1

3
∑

l=1

(
x(l)k − x̂(l)k|k

)2

ARMSE(x) =
1
A

A
∑

k=1
RMSE(x,xk)(k)

(57)

where N represents the number of Monte Carlo simulation runs, and A represents the timestep
(in s) of the simulation experiment. We set N = 100 and A = 40. Additionally, we set c = 0 in
Equations (45) and (46). The simulation results are shown in Figure 1.

From the RMSE results of the simulation experiment in Figure 1, it can be concluded that the
filtering accuracy of the 3rd-degree CKF was the lowest when the system was highly nonlinear,
because it only used 2N cubature points and the low-order cubature formula with low accuracy to
approximate the probability density; thus, it could not obtain a good approximation. Among the
5th-degree formulas, the SCKF had a slightly higher average filtering accuracy than the ECKF, and
the proposed DDCKF had the highest accuracy. In such a low-dimension nonlinear system, the
cubature of the 5th-degree CKF is n2 + 3n + 3; thus, the number of cubature points required by the
5th-degree CKF exceeded those for the other filters, leading to a larger number of computations.
According to the experimental results, compared with the other 5th-degree algorithms, the DDCKF
has better filtering performance for systems with a high degree of nonlinearity. The ARMSE values of
the algorithms are presented in Table 2.

Table 2. Performance indices of the different filters used in Experiment 4.1.

Cubature Filters Number of Points ARMSE Pos

3rd -degree CKF 2n = 6 2.2091
5th-degree SCKF 2n2 + 1 = 19 1.3428
5th-degree CKF n2 + 3n + 3 = 21 1.5959

5th-degree ECKF 2n2 + 1 = 19 1.5284
(Proposed) 5th-degree

DDCKF 2n2 + 1 = 19 1.0193
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Figure 1. RMSE for different filters in Experiment 4.1.1.

According to the ARMSE results, the 3rd-degree CKF requires the least number of cubature
points, but it has the lowest filtering accuracy. The proposed DDCKF algorithm achieved the highest
filtering accuracy when the number of cubature points was maintained.

4.2. Simulation Experiment of Robust Target Tracking Based on DD-MCCKF and Surface
Target-Tracking Models
4.2.1. Simulation Experiment of Robust Filtering Based on the Constant Velocity (CV)
Tracking Model of the Surface Target

In this experiment, the following target-tracking model is used to verify the filtering performance
of the proposed robust CKF algorithm for the model with high maneuvering speed and non-Gaussian
noise. Consider the following constant velocity (CV) surface target-tracking model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

State equation :

xk =

⎛
⎜⎜⎝

xk.
xk
yk.
yk

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

xk−1.
xk−1
yk−1.
yk−1

⎞
⎟⎟⎠+

⎛
⎜⎜⎜⎝

T2

2 0
T 0
0 T
0 T2

2

⎞
⎟⎟⎟⎠wk−1

Measurement equation :

zk =

⎛
⎜⎝

√
x2

k + y2
k

arctan
(

yk−yl
xk−xl

)
⎞
⎟⎠+ vk

. (58)

The CV model is a type of coordinate-uncoupled model. These models assume that the target
maneuvering process in three orthogonal directions is uncoupled in three-dimensional space. Target
maneuvering is caused by acceleration changes caused by external forces. Therefore, the difficulty
of maneuvering modeling lies in the description of the target acceleration. For high-speed surface
targets, the CV model is often used to describe the movement of such targets.

In this model, wk and vk are the mutually independent system process noise and measurement
noise with covariance matrices Qk and Rk, and the sampling period is T.

The position RMSE, velocity RMSE, and ARMSE were defined as the filtering-accuracy evalua-
tion criteria:

RMSECVpos =

√
1
N

N
∑

k=1

[(
xk − x̂k|k

)2
+
(

yk − ŷk|k
)2
]

RMSECVvel =

√
1
N

N
∑

k=1

[( .
xk −

.̂
xk|k

)2
+
( .

yk −
.̂
yk|k

)2
]

ARMSEany = 1
A

A
∑

k=1
RMSEany(k) ,

(59)
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where N represents the number of Monte Carlo simulation runs, and A represents the timestep of the
simulation experiment. The initial values of the state variable and the error covariance matrix are x0
and P0|0, respectively. In this experiment, the parameters were initialized as follows:

Q1 = q2
1

[
M1 0
0 M1

]
, Q2 = q2

2

[
M2 0
0 M2

]

q1 = 0.2, q2 = 0.3, Mk =

[
T3

k /3 T2
k /2

T2
k /2 Tk

]
, T1 = 1, T2 = 1

2

R1 = 0.1diag
{
(20 m)2,

(
6π
180

)2
rad

}
, R2 = 0.1diag

{
(30 m)2,

(
8π
180

)2
rad

}
. (60)

To set different types of the non-Gaussian state noise and measurement noise environment

based on
{

wk ∼ (1 − η)N(0, Q1) + ηN(0, Q2)
rk ∼ (1 − η)N(0, R1) + ηN(0, R2)

, we considered the following conditions:

Condition 1. Under mixture noise, η = 1
2 :

wk1 ∼ 1
2

N1(0, Q1) +
1
2

N2(0, Q2) , rk1 ∼ 1
2

N1(0, R1) +
1
2

N2(0, R2) . (61)

Condition 2. Under mixture noise, η = 2
3 :

wk2 ∼ 1
3

N(0, Q1) +
2
3

N(0, Q2) , rk2 ∼ 1
3

N(0, R1) +
2
3

N(0, R2) . (62)

Experiment 1. Comparison of the filtering performance between robust and regular 3rd-degree CKF in the
non-Gaussian noise Environment (61).

First, to verify the strong tracking performance of the algorithm proposed in this study and
compare it with the traditional nonlinear Kalman filter in a non-Gaussian noise environment, a target
tracking experiment based on a 3rd-degree CKF was carried out for the above CV tracking model, in
which the status update process of CKF(regular) was implemented using Formula (43a). The status
updating process of CKF(robust) was realized using Formula (43b).

We set the initial value of the state variable and the error covariance matrix as
x0 = (100 m, 30 m/s, 100 m, 20 m/s)T and P0|0 = diag

(
10 m2, 1 m2/s2, 10 m, 1 m2/s2

)T
, respec-

tively. In this experiment, we set N = 200 times and A = 150 s. Additionally, we set c in Equations (45)
and (46) as 1/3. Other parameters and initial values in the experiment were evaluated according to
Equation (60).

The simulation results are shown in Figures 2 and 3:
Therefore, from the above experiments, the state-updating process proposed in this study is

more robust than the traditional nonlinear Kalman filter in a strong non-Gaussian noise environment.
This experiment proved that the proposed method is effective and feasible.

Experiment 2. Comparison of the filtering performance of five types of robust nonlinear Kalman filters in a
non-Gaussian noise environment, Equations (61) and (62), respectively:

In the experiment in this section, the robust filter MCUKF proposed in [16], MCSCKF proposed
in [27], and E-MCCKF and S-MCCKF, which are formed by Equations (14) and (20), and the MCC
method proposed in this study were compared with the robust algorithm DD-MCCKF proposed in
this study in a non-Gaussian state and measured noise Environment (61) and (62).

We set the initial value of the state variable and the error covariance matrix as
x0 = (100 m, 30 m/s, 100 m, 20 m/s)T and P0|0 = diag

(
10 m2, 1 m2/s2, 10 m, 1 m2/s2

)T
, respec-

tively. The number of Monte Carlo simulation N = 1 × 105 times and A = 120 s. Additionally, we
set c in Equations (45) and (46) as 1/3, and the other parameters and initial values in the experiment
were evaluated according to Equation (60).
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Figure 2. Tracking trajectory of the 3rd-drgree CKF and the 3rd-degree MCCKF under non-Gaussian
noise conditions in Equation (61).

(a) (b) 

Figure 3. RMSE of the position and velocity for different filters under non-Gaussian noise conditions
in Equation (61) ((a) is the position RMSE and (b) is the velocity RMSE).

The simulation results are shown in Figures 4–6:
The running time of the algorithm was 120 s. The results show that, similar to related properties

introduced in Section 2.1, the comprehensive numerical performance of UKF was not as good as
that of 3rd-degree CKF, resulting in the highest mean square error and the lowest filtering accuracy
of MCUKF. In addition, when n = 4, the number of cubature points used by 5th-degree SCKF and
ECKF was the same as those used by the DDKCF proposed in this study. The formula structure was
similar. Thus, the calculation amount was very similar. Because DD-CKF maintains the numerical
stability when the system dimension is large while calculating with fewer cubature points, and
Formula (32) carries out a certain displacement of the coefficient of cubature points to reduce the
non-sampling error, the accuracy of DD-MCCKF was slightly higher than that of other algorithms in
tracking experiments.

As shown in Table 3, the proposed DD-MCCKF algorithm had the highest estimation accuracy
under the premise of using fewer cubature points in a non-Gaussian noise environment.
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(a) (b) 

Figure 4. Tracking trajectories of a surface target (unmanned surface vessel) under non-Gaussian
noise conditions ((a) is the result under Equation (61) and (b) is the result under Equation (62)).

(a) (b) 

Figure 5. Position RMSEs of robust target-tracking algorithms under non-Gaussian noise conditions
((a) is the result under Equation (61) and (b) is the result under Equation (62)).

(a) (b) 

Figure 6. Velocity RMSEs of robust target-tracking algorithms under non-Gaussian noise conditions
((a) is the result under Equation (61) and (b) is the result under Equation (62)).

Table 3 shows the number of points and ARMSE of each algorithm in Experiment 2 above.
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Table 3. Number of points used by different filtering algorithms in Experiment 1, along with the
ARMSE for the position and velocity.

Robust Filters
Number of

Points
ARMSE Pos

(C1, C2)
ARMSE Vel

(C1, C2)

MCUKF 2n = 8 63.26 39.98 3.261 2.444
3rd-degree MCSCKF 2n = 8 25.28 24.47 1.496 1.428
5th-degree E-MCCKF 2n2 − 2n + 1 = 25 21.92 20.91 1.432 1.354
5th-degree S-MCCKF 2n2 − 2n + 1 = 25 20.37 19.43 1.401 1.323
(Proposed) 5th-degree

DD-MCCKF 2n2 − 2n + 1 = 25 18.96 18.49 1.392 1.320

4.2.2. Simulation Experiment of Robust Filtering Based on Cooperative Turning Tracking
Model of Surface Targets

The cooperative turning (CT) model is a coordinate coupling model. In most cases, the coordi-
nate coupling model refers to a turning motion model. Because this type of model is closely related
to the coordinates, it can be divided into two types: two-dimensional and three-dimensional turning
models. The two-dimensional turning model is also called the planar turning model, that is, the
CT model.

The CT model is one of the most important maneuvering models in surface target tracking. It is
a commonly used model to describe maneuvering target in USV tracking. The state equation and
measurement equation of the CT model are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk =

⎛
⎜⎜⎜⎜⎝

xk.
xk
yk.
yk
ωk

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 sin(ωk−1T)
ωk−1

0 cos(ωk−1T)−1
ωk−1

0

0 cos(ωk−1T) 0 − sin(ωk−1T) 0

0 1−cos(ωk−1T)
ωk−1

1 sin(ωk−1T)
ωk−1

0

0 sin(ωk−1T) 0 cos(ωk−1T) 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

xk−1.
xk−1
yk−1
yk−1
ωk−1

⎞
⎟⎟⎟⎟⎠+ wk−1

zk =

⎛
⎜⎝

√
x2

k + y2
k

arctan
(

yk−yl
xk−xl

)
⎞
⎟⎠+ vk

, (63)

where xk is the system state variable, and xk, yk and
.
xk

.
yk represent the position and velocity of the

target in the x and y directions, respectively. T represents the sampling period, and ωk represents
the steering angular velocity. wk represents the process noise, which has covariance matrix Qk, and
vk represents the measurement noise, which has covariance matrix Rk. The initial value of the state
variable is x0, and the correlation covariance matrix is P0|0. To enhance the mobility of the surface
target, the parameters were initialized as follows:

Q1 = q2
1

⎡
⎣ M1 0 0

0 M1 0
0 0 T1/3

], Q2 = q2
2[

M2 0 0
0 M2 0
0 0 T2/3

⎤
⎦

q = 0.05, q1 = 0.2, q2 = 0.3, Mk =

[
T3

k /3 T2
k /2

T2
k /2 Tk

]
, T1 = 1

4 , T2 = 1
6

x0 =
(

100 m, 80 m/s, 100 m, 120 m/s,− 8π
180 rad

)T

P0|0 = diag
(

10 m2, 1 m2/s2, 10 m2, 1 m2/s2, 0.1 rad2/s2
)

R1 = qdiag
{
(25 m)2,

(
3π
180

)2
rad

}
, R2 = qdiag

{
(30 m)2,

(
9π
180

)2
rad

}

. (64)

To set up the different types of non-Gaussian state noise and measurement noise environment

based on
{

wk ∼ (1 − η)N(0, Q1) + ηN(0, Q2)
rk ∼ (1 − η)N(0, R1) + ηN(0, R2)

, we considered the conditions as follows:
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Condition 3. Under mixture noise, η = 1
2 :

wk3 ∼ 1
2

N1(0, Q1) +
1
2

N2(0, Q2) , rk3 ∼ 1
2

N1(0, R1) +
1
2

N2(0, R2) . (65)

Condition 4. Under mixture noise, η = 2
3 :

wk4 ∼ 1
3

N(0, Q1) +
2
3

N(0, Q2) , rk4 ∼ 1
3

N(0, R1) +
2
3

N(0, R2) . (66)

In the simulation experiment, we used the RMSE and ARMSE to evaluate the filtering perfor-
mance. The RMSE and ARMSE of the displacement, velocity, and steering angle were defined as
follows:

RMSECTpos =

√
1
N

N
∑

k=1

[(
xk − x̂k|k

)2
+
(

yk − ŷk|k
)2
]

RMSECTvel =

√
1
N

N
∑

k=1

[( .
xk −

.̂
xk|k

)2
+
( .

yk −
.̂
yk|k

)2
]

RMSECTomg =

√
1
N

N
∑

k=1

[(
ωk − ω̂k|k

)2
]

ARMSEany = 1
A

A
∑

l=1
RMSEany(l).

(67)

Here, N represents the total number of Monte Carlo simulations, and A represents the timestep
of each Monte Carlo simulation. In the simulation experiment, We set c in Equations (45) and (46) as
1/3, and we set N = 1 × 105 times and A = 140 s. Lines 1–3 of Equation (67) give the position RMSEs
obtained from the real value and estimated value of the position vector and the velocity RMSE and
angular-velocity RMSE obtained via the same method as the position RMSE, respectively. Finally, the
calculation formula for the ARMSE is presented.

Because the CT model has a strong nonlinearity, and the collaborative CT model can better
describe the USV high-speed maneuvering steering process on the water surface in reality than
the uniform turning model, this experiment used the CT model to conduct the last robust filtering
experiment based on the nonlinear system in a non-Gaussian environment.

As with Experiment 2 in Section 4.2.1, in the experiment of this section, the robust filter MCUKF
proposed in reference [16], the MCSCKF proposed in reference [27] and E-MCCKF and S-MCCKF
which are formed by Formula (14), Formula (20) and the MCC method proposed in this paper are
used to compare with the robust algorithm DD-MCCKF proposed in this paper in a non-Gaussian
state and measured noise environments above. The simulation results for the CT target-tracking
model are presented in Figures 7–10.

(a) (b) 

Figure 7. Tracking trajectories of surface target (unmanned surface vessel) under non-Gaussian noise
conditions ((a) is the result under Equation (65) and (b) is the result under Equation (66)).
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(a) (b) 

Figure 8. Position RMSEs of robust target-tracking algorithms under non-Gaussian noise conditions
((a) is the result under Equation (65) and (b) is the result under Equation (66)).

(a) (b) 

Figure 9. Velocity RMSEs of robust target-tracking algorithms under non-Gaussian noise conditions
((a) is the result under Equation (65) and (b) is the result under Equation (66)).

(a) (b) 

Figure 10. Course angular-velocity RMSEs of robust target-tracking algorithms under non-Gaussian
noise conditions ((a) is the result under Equation (65) and (b) is the result under Equation (66)).

The running time of the algorithm was 140 s. Among the position errors of the simulation
results, the accuracy of the MCUKF was the worst owing to the numerical instability and inaccurate
UT. Because of the high system dimensions, the approximation process of the ECKF was unstable,
and its filtering performance was worse than that of the S-MCCKF. Especially in the position RMSE
index, the ECKF was particularly affected by the instability of its formula value, and its filtering
accuracy is even lower than that of the 3rd-degree MCCKF.

The DD-MCCKF and S-MCCKF were similar with regard to the structure of the cubature
formula and the number of cubature points used. Thus, they had similar filtering accuracies. Because
the DD-CKF integrates the two indexes of numerical stability and the number of cubature points
used, it is better at improving accuracy and reducing the calculation amount. In addition, the smaller
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coefficient of the cubature points of the DD-CKF can better reduce non-local sampling problems,
which helps further improve its filtering accuracy.

By fine-tuning parameter c in Equations (45) and (46), the non-local sampling problem caused by
the increase in the system dimension was alleviated, and the filtering accuracy was increased. For the
estimation of the velocity and course angular velocity, the UKF and 3rd-degree CKF had the lowest
accuracy, whereas the 5th-degree ECKF and SCKF had similar performance, and the DD-MCCKF had
the highest accuracy. Furthermore, as indicated in Table 4, the ARMSEs obtained via the proposed
algorithm were lower than those for the 5th-degree ECKF and SCKF.

Table 4. Number of points and the ARMSEs of the position, velocity and course angular velocity for
different robust filtering algorithms in the target tracking simulation of Experiment 4.2.2.

Robust
Filters

Number of
Points

ARMSE
Pos-C1

ARMSE
Pos-C2

ARMSE
Vel-C1

ARMSE
Vel-C2

ARMSE
Omg-C1

ARMSE
Omg-C2

MCUKF 2n = 10 10.41 18.84 40.38 27.29 4.532 4.613
3rd-degree
MCSCKF 2n= 10 11.78 14.66 26.88 26.07 4.430 4.539

5th-degree
E-MCCKF 2n2 + 1 = 51 9.824 15.17 23.29 26.63 4.143 3.923

5th-degree
S-MCCKF 2n2 + 1 = 51 8.456 13.78 22.47 19.21 4.087 3.931

(Proposed)
5th-degree

DD-MCCKF
2n2 + 1 = 51 5.956 11.85 15.50 17.42 3.492 3.869

5. Conclusions

A high-degree robust CKF algorithm, based on a new cubature formula and MCC, was devel-
oped. First, according to the construction method of the fully symmetric cubature formula, different
cubature-point coordinate generators were used to construct a new high-degree cubature formula
and fine-tune its parameters to increase its accuracy. Subsequently, a new robust cost function was
constructed by combining the MCC and WLS methods.

As a statistical measure of the similarity between random variables, MCC can extract information
from all even moments under the appropriate kernel bandwidth. This helped us make better use of
the higher-order moment information of the signal. Therefore, in filtering applications, MCC is more
robust to non-Gaussian mixture noise than the conventional nonlinear Kalman filter, which can only
use second-order information. The fixed-point iteration solution of the equation was embedded in the
nonlinear Kalman filtering process to obtain a robust filtering algorithm. Finally, a new high-degree
robust CKF algorithm was obtained by combining the new estimation process with the KF framework.
The aim was to use as few cubature coordinate points as possible to achieve the highest filtering
accuracy and stability in a non-Gaussian noise environment. The proposed method was applied to
the target tracking of an unmanned surface vessel. The simulation experiment exhibited a smaller
number of computations, higher filtering accuracy, and better numerical stability when compared to
(or similar results to) other algorithms of the same order.

The new-proposed filter probably has a certain application value in practical application scenar-
ios, such as the course tracking of unmanned surface vessels, tracking for maritime moving targets
or surface vessel rescuing, and in the sea area with strong environmental interference (e.g., wind
and waves). The autonomous navigation target of obstacle avoidance on the water surface may be
achieved under the condition of large errors in sensor distance and angle measurement. However,
owing to the uncertainty and complexity of the surface environment, the measurement process based
on sensors and satellite positioning may be affected or temporarily unavailable. At the same time,
some state estimation problems in more complex environments are also the focus of research, such as
estimation with bias compensation, nonlinear filtering based on state constraints, robust constraints,
state estimation in complex domain impulsive noise etc. As mentioned in References [28–45]. These
issues need to be further studied in the following work.
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Abstract: The importance of mathematical and numerical simulation in marine engineering is growing
together with the complexity of the designed systems. In general, simulation a makes it possible to im-
prove the engineering design, reducing working time and costs of production as well. In this respect,
the implementation of a simulation model for cycloidal propellers is presented. Cycloidal thrusters are
being increasingly used in marine applications. Their best performance concerns low-speed applications,
due to their ability to steer thrust in any direction. The proposed simulator is able to assess the performance
of cycloidal propellers in terms of the generated thrust and torque, without resorting to consuming and
demanding computational tools, such as CFD methods. This feature makes the presented model partic-
ularly suitable for the simulation in the time domain of the maneuverability of surface units, equipped
with cycloidal propellers. In this regard, after embodying the implemented model in an already existing
simulation platform for maneuverability, we show the most significant outputs concerning some simulated
maneuvers, performed at cruise speed.

Keywords: marine propulsion; simulation-based design; cycloidal propellers

1. Introduction

Until the past century, the only way that naval architects had to predict the behav-
ior of the system (intended as the ship or a part of it, such as the propulsion plant,
or the auxiliary systems) they were working on, was to build a prototype and test it.
Nowadays, thanks to the development and the progress of computer science, it is possible
to shape not prototypes but simulators, based on mathematical laws, that can predict
in advance the behavior not only of a single subsystem, but also of the whole ship. Indeed,
one of the main advantages of mathematical and numerical simulation is the possibility
to compare different design choices, so improving the engineering design and reducing
working time and costs as well.

For example, making use of mathematical models, the hull performance can be an-
alyzed under any weather conditions [1–3], it is possible to assess whether the designed
machinery can guarantee the needed power [4], the magnitude and the direction of propul-
sion and steering forces can be predicted [5,6], or any kind of failure conditions can be
analyzed [7–9].

Among the several thruster types, cycloidal propellers (CPs) are widely used on water
tractors, ferries and some naval vessels. CPs are made of a set of vertical blade protruding
from the hull and performing two main rotations: one around the rotor axis and one around
the axis passing through the blade pivoting centre. Depending on their eccentricity value e,
namely the ratio between the distance of the steering centre from the propeller axis and
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the radius of the rotor, they can be classified into true cycloidal (e = 1), epicycloidal (e < 1)
and trochoidal propellers (e > 1). Being able to generate almost the same thrust in every
direction and combine both thrust and steering in a singel unit, CPs are very suitable
for low-speed applications, such as dynamic positioning operations for instance.

To date, some investigations have been performed in order to model the behavior of such
devices. In [10–13], some performances of cycloidal rudders have been shown, while propeller–
hull interactions have been presented in [14], mainly in connection with maneuverability aspects.
In this paper, the main features of a time domain simulation model for CPs are presented.
The model is developed on a Matlab©Simulink platform and is able to calculate the time
histories of the provided thrust and torque. The implemented model relies on a mixture
of theoretical and empirical considerations. In particular, the propeller thrust and torque
evaluation is based on the kinematics of each single blade, taking into account suitable correction
factors in order to properly consider “dissipative” phenomena (such as interference between
blades, the shielding induced by the half of the rotor which receives the oncoming flow, and
the slight reduction of back thrust). The calibration of the simulator is carried out by comparing
simulation outputs with real data found in open source. The final result is a simulation platform
able to predict the performance of a CP in terms of generated thrust and torque, avoiding
consuming and demanding computations, such as CFD methods. This is one of the significant
aspects of the developed simulator that makes its use really effective when integrated into
a platform for the simulation of ship motions.

In this regard, a first application of the developed simulator has been the validation
of different thrust allocation logics of a DP system for a surface vessel equipped with a bow
thruster and two cycloidal propellers at stern [15,16]. After that, in order to assess the re-
liability of the obtained simulation model, some maneuvers at cruise speed have been per-
formed, embodying the CP simulator into a more complex dynamic model for maneuverability.
In the following, the simulation outputs for one of these maneuvers are presented.

2. The Simulation Platform

As mentioned above, the present work is based on the simulation model which has
been presented in [17,18] and concerns a 80 m long patrol vessel from the Italian Coast
Guard. Such a simulation platform has been developed modular in order to be able to dealt
with and possibly replace separately different sub-systems.

In modeling vessel dynamics, a crucial aspect is developing suitable mathematical
models that reproduce the forces acting on the ship, as accurately as possible. In such a pro-
cess, a complex system of coupled time-domain equations determines the evolution in time
of each quantity which contributes to the ship dynamics. Usually, simulation platform are
represented by means of flow–charts. In this work, the modular concept of the adopted plat-
form is described by the mind map drawn in Figure 1, where the main part is represented
by the motion equations of the ship (1) that mutually interact with the other sub-systems
describing all the forces acting on the ship itself. Such forces mainly concern the interaction
of the hull with the propulsion and steering systems as well as the environmental disturbs.

Whenever dealing with maneuvering problems, it is common to introduce two ref-
erence frames: the Earth-fixed reference frame {Ω, n1, n2, n3} and the body-fixed frame
{O, b1, b2, b3}. Choosing the origin O as located on the mean water-free surface at midship,
the main equations governing the ship motion are expressed as⎧⎪⎨

⎪⎩
Δ(u̇ − xGr2 − uv)) = X
Δ(v̇ − xGṙ + ur)) = Y
Izṙ + mxG(v̇ + ru) = N

(1)

where vO = u b1 + v b2 denotes the linear velocity of O expressed in the body-fixed basis
and ω = rb3 is the angular velocity, Δ is the vessel displacement, xG is the longitudinal
coordinate of gravity center w.r.t. {O, b1, b2, b3}, Δ is the vessel mass, Iz is the moment
of inertia about b3-axis, R = X b1 + Y b2 and M = N b3 are the resultants of forces and
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the moments expressed in the b-basis, respectively. In addition, X = XH + XP + XE,
Y = YH + YP + YE, N = NH + NP + NE, where subscripts H, P, and E refer to hull,
propellers, and environmental forces and moments respectively.

Ship Motion
Equations

Portside
Propulsion

System

Engine
Governor

Prime
Mover

Gearbox

Shaftline

Porside
Propeller

Bow Thuster
System

Governor Shaftline

Propeller

Starboard
Propulsion

System

Engine
Governor

Prime
Mover

Gearbox

Shaftline

Starboard
Propeller

Hull Forces

Environ-
mental

Disturbances

Wind

Waves

Figure 1. Vessel model layout.

3. Cycloidal Propeller Model

Cycloidal propellers allows precise and stepless thrust generation since propulsion
and steering forces can be generated and varied simultaneously. As a result of the rotation
around its vertical axis, the same amount of thrust can be provided almost over 360◦ by
blades with hydrodynamically shaped profiles that assure a high degree of efficiency. In this
section, a detailed description of the mathematical model developed for the computation
of the thrust T and the torque QP delivered by a CP is presented.

3.1. Blade Motion

The rapid and precise thrust variation of CPs is based on the kinematics of the blades
(usually from 4 to 6 and equally spaced from each other) that move along a circular
path, centered at the rotor center, and at the same time perform a superimposed pivoting
motion around a suitable vertical axis. When the steering center overlaps the center
of the rotor casing, the blades are not angled with respect to the tangent to the blade circular
trajectory and no thrust is originated in this circumstance. Instead, if the steering center is
moved away from the center of the rotor casing, the blades are set at a variable angle with
respect to the tangent of their circular path, and thrust is generated. From top to bottom,
Figure 2 shows an example of the installation of two CPs on a ship, with some details
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of the machinery. During the revolution motion, the maximum angle reached by the blades
increases with the eccentricity e, defined as:

e =
OC
D/2

(2)

where OC is the distance between the center of the rotor O and the steering center C,
and D/2 is the radius of the rotor. The motion of the pivot point (assumed as the center
of mass) of the blade, relative to a stationary observer, results from the superimposition
of the rotational movement of the rotor casing along a straight line representing the forward
motion of the vessel. The pivot point follows the curve of a cycloid. The rolling radius
of the cycloid is D/2 and the advance coefficient λ is:

λ =
VA

πnD
(3)

where VA is the advance velocity and n is the rotor speed. During one revolution, the pro-
peller travels a distance λDπ in the direction of the vessel motion.

To generate thrust, the blades are angled with respect to the circular path described
by their pivoting point. To achieve this, the steering center is moved from O to C.
The resulting angle of attack leads to the generation of hydrodynamic lift and drag forces
on each blade. The thrust provided by the propeller is the sum of such hydrodynamic
forces, is always perpendicular to the line OC and its intensity increases with the distance
OC. By shifting the steering center C, it is possible to produce thrust in any direction and
of different intensities. Therefore, the thrust provided by an epicycloidal propeller can be
represented as a function of two plane polar coordinates:

• the geometric or driving pitch (between 0 and 0.8R for constructive limits): that
is the distance (expressed as a percentage of the rotor radius R = D/2) between
the steering center C and the center of the rotor O;

• the steering pitch (between 0◦ and 360◦): the angle between a fixed axis (with respect
to the hull) and the line OC.

Figure 2. General overview of voith installation on a vessel on the top and some sketch of the machinery.
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3.2. Thrust Generation

Changing the steering center, the blades acquire a certain attack angle, so generating
corresponding lift and drag forces which give rise to the desired thrust. The hydrodynamic
forces components acting transversely to the desired thrust direction cancel each other
out. It is possible to produce thrust in any direction putting the steering center in the right
position. The zero-thrust condition can be selected at any time, making the ship very safe
to handle.

Each blade generates instantly a hydrodynamic force which is the sum of the lift
(component of the hydrodynamic force, perpendicular to the oncoming flow) and the drag
(parallel to the oncoming flow). The sum of all the hydrodynamic forces generated by
all the blades gives rise to the corresponding total thrust. Also, each blade generates
a corresponding torque which contributes to the total torque M acting on the propeller.
For each choice of driving and steering pitch, there are corresponding curves of thrust and
torque coefficients KS and KD as functions of the advance coefficient λ. The coefficients
KS and KD are defined in analogy with the corresponding screw-propeller coefficients,
respectively KT and KQ, by the formulae reported in Table 1.

Table 1. Cycloidal and screw propeller non-dimensional coefficients.

Coefficients Cycloidal Screw

advance coefficient λ = VA
πnD J = VA

nD

thrust coefficient KS = T
1
2 ρDLu2 KT = T

ρn2D4

torque coefficient KD = 4M
ρD2 Lu2 KQ = QO

ρn2D5

efficiency ηO = KS
KD

λ ηO = KT
KQ

J
2π

where VA is the advance velocity, T is the propeller thrust, M and QO are the CP and screw propeller torque
respectively, L is the blade length, D is the rotor diameter, ρ is the sea water density, L is the blade length, u is
the tangential speed (u = nπD).

3.3. Kinematics of the Blade

In this section, the kinematical model of a blade is presented. In particular,
a 2−dimensional plane model has been adopted, propellers have been modeled as counter-
rotating and two distinguished coordinate systems have been introduced: the first one
is the hull-fixed frame, while the second one {O, e1, e2, e3} is rotated clockwise, about
the vertical axis passing through O and parallel to b3 = e3, by an angle β ∈ [0, 2π]
(the steering pitch) which determines (the perpendicular of) the steering force direction.
The angle β is related to the rudder pitch of the cycloidal propeller. The steering center
C lies on the straight line passing through O and parallel to e2. The relationship between
the bases {bi} and {ei}, in accordance with Figure 3, is expressed as⎧⎪⎨

⎪⎩
e1 = cos β b1 + sin β b2

e2 = − sin β b1 + cos β b2

e3 = b3

(4)

During the rotation, the projection P of the blade shaft on the plane 〈O, b1, b2〉 de-
scribes a circumference having center O e radius R coinciding with the rotor radius. Such
a circumference is parameterized by

P(θ) :

⎧⎪⎨
⎪⎩

x = R cos θ

y = R sin θ

z = 0

(5)
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where θ denotes the angle (function of time) describing the revolution motion of the blade.
The unit vector t tangent to the circular path of P has components in the vector basis {bi}
of the form

t(θ) :

⎧⎪⎨
⎪⎩

t1 = − sin θ

t2 = cos θ

t3 = 0

(6)

Introducing the vector

(C − O) = s e2 = −s sin β b1 + s cos β b2, s ∈ [0, 0.8R] (7)

the vector joining the steering center C with the point P can be expressed as

(P − C) = (R cos θ + s sin β) b1 + (R sin θ − s cos β) b2 (8)

The variable s is usually called driving pitch and controls the magnitude of the thrust.
The unit vector orthogonal to (P − C) and belonging to the plane 〈O, b1, b2〉 identifies with
the unit vector of the blade chord and it is given by

(P − C)⊥

|(P − C)⊥| =
(−R sin θ + s cos β) b1 + (R cos θ + s sin β) b2√

(−R sin θ + s cos β)2 + (R cos θ + s sin β)2
(9)

The pivoting motion of the blade around its own vertical axis can be described by

the angle α (function of time) between the unit vectors t and (P−C)⊥
|(P−C)⊥| . Due to the relation

cos α =
(P − C)⊥

|(P − C)⊥| t =
R + s sin(β − θ)√

(−R sin θ + s cos β)2 + (R cos θ + s sin β)2
(10)

where the dot denotes the usual scalar product between vectors, choosing anticlockwise
the positive direction of rotation around the blade shaft, the pivoting angle α can be
defined as

α = ± arccos

(
(P − C)⊥

|(P − C)⊥| t
)

where
+ if cos(θ − β) ≥ 0
− if cos(θ − β) < 0

(11)

The above outlined kinematical model can be summarized by the following figure.

Figure 3. Kinematics of the blade.
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Supposing now that the vessel is moving, let vO = ûb1 + v̂b2 be the velocity of O (with
respect to an Earth-fixed frame) expressed in the hull-fixed basis. Denoting by

v′p = −Rθ̇ sin θb1 + Rθ̇ cos θb2 (12)

the velocity of the point P with respect to the body-fixed frame, the velocity of P with
respect to the Earth-fixed frame is given by

vp = v′p + vO + ω ∧ (P − O) =
[
û − R(θ̇ + ψ̇) sin θ

]
b1 +

[
v̂ + R(θ̇ + ψ̇) cos θ

]
b2 (13)

where ω = ψ̇b3 is the angular velocity of the vessel. The velocity of the oncoming flow
experienced at P by a blade-fixed observer is then −vP; its unit vector t̂ is expressed as

t̂ = − vP
|vP|

= −
[
û − R(θ̇ + ψ̇) sin θ

]
b1 +

[
v̂ + R(θ̇ + ψ̇) cos θ

]
b2√[

û − R(θ̇ + ψ̇) sin θ
]2

+
[
v̂ + R(θ̇ + ψ̇) cos θ

]2
(14)

Making use of the unit vector t̂ it is possible to characterize the attack angle of the inci-
dent flow as

α̂ = π − arccos

[
(P − C)⊥

|(P − C)⊥| · t̂

]
(15)

3.4. Hydrodynamic Forces

Making use of some simplifying assumptions, a suitable model for evaluating the hy-
drodynamic forces generated by each blade is presented. It is supposed that the velocity
of the incident flow is the same on the entire surface of the blade and coincides with −vP.
Under such a condition, the lift and drag produced by each blade can be expressed as

L = CL
1
2

ρw A|vP|2n̂ (16a)

D = CD
1
2

ρw A|vP|2 t̂ (16b)

where CL and CD are the lift and drag coefficients, respectively; ρw is the sea water density;
A is the blade lateral area; vP is the oncoming flow velocity; t̂ is the unit vector of the lift
force (unit vector of the oncoming flow at P); and n̂ is the unit vector of the drag force
(perpendicular to t̂).

The unit vector n̂ can be determined by the following procedure, in which two main
scenarios are distinguished:

• the attack angle α̂ belongs to the interval
]
0, π

2
[

, namely the oncoming flow hits
the blade from the front. In such a circumstance, the unit vector n̂ is determined
according to the requirements

n̂ =

⎧⎪⎪⎨
⎪⎪⎩

b3 ∧ t̂ when t̂ ∧ (P−C)⊥
|(P−C)⊥| · b3 > 0

−b3 ∧ t̂ when t̂ ∧ (P−C)⊥
|(P−C)⊥| · b3 < 0

(17)

• α̂ ∈ ]
π
2 , π

[
, the oncoming flow hits the blade from the back. In this case, n̂ is singled

out by the requests:

n̂ =

⎧⎪⎪⎨
⎪⎪⎩
−b3 ∧ t̂ when t̂ ∧ (P−C)⊥

|(P−C)⊥| · b3 > 0

b3 ∧ t̂ when t̂ ∧ (P−C)⊥
|(P−C)⊥| · b3 < 0

(18)
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As remaining particular cases, if α̂ = 0 or α̂ = π there is no lift while if α̂ = π
2 then

n̂ = t̂. The above described procedure allows us to determine the lift and drag provided
by each single blade. The resultant hydrodynamic force generated by the epicycloidal
propeller can be computed as the sum of all contributions given by each blade.

3.5. Torque Acting on the Rotor

Figure 4 shows the implemented model for the propulsion system. Input data
of the model are the desired engine speed RPMset, the desired propeller pitch s, and
the desired thrust angle β. The output is the array

[
Xp, Yp, Np

]� composed by the longitu-
dinal and lateral propeller forces and the resulting moment.

Engine Governor Prime Mover Gearbox Shaft-Line Propeller
ṁf

XP

YP

NP

QB QS

RPMP

QP

RPMset

Figure 4. Layout of propulsion simulation platform.

The dynamics of the shaft line is described by the equation:

dn
dt

=
1

Itot

(
Qeng − Qp − Q f ric

)
(19)

where n is the shaft speed; Itot is the total axial inertia taking into account: (i) engine,
(ii) gears, (iii) shaft and (iv) propeller contributions; Qeng is the engine torque; Q f ric repre-
sents frictions; and Qp is the propeller torque.

In order to compute the torque acting on the rotor, the Newton-Euler moments equa-
tions for each single blade and for the rotor are taken into account separately.
Developed in the hull-fixed reference frame and with respect to the point O (center of the ro-
tor), the Newton-Euler moments equation for each blade can be expressed as

MH
O + MG

O + MR
O + MI

O = IB
GB

(ω̇) + ω ∧ IB
GB

(ω) + mB(GB − O) ∧ aGB
(20)

where MH
O , MG

O, MR
O, and MI

O are the moments acting on the blade, respectively due
to hydrodynamic, weight, reactive and inertial forces; IB

GB
is the inertia tensor of the blade

w.r.t. its gravity center GB (which is assumed to coincide with the pivot point P); ω = (θ̇ −
α̇)b3 is the blade angular velocity w.r.t. the hull-fixed frame; aGB

is the acceleration of GB
w.r.t. the hull-fixed frame; and mB is the blade mass. The moment of the hydrodynamic
force MH

O is given by:
MH

O = (P − O) ∧ (L + D) (21)

where the hydrodynamic force is described in terms of lift and drag. Expressing all vectors
in the basis {bi} as (L + D) = f1b1 + f2b2 and (P − O) = Rb1 cos θ + Rb2 sin θ, one has:

MH
O = (R f2 cos θ − R f1 sin θ)b3 (22)

The weight force moment is given by:

MG
O = (P − O) ∧ mg = mBg(R sin θb1 − R cos θb2) (23)

where g = gb3 is the gravity acceleration. In order to evaluate the inertial force moment
MI

O, it is necessary to assess the dragging and Coriolis forces acting on the blade and
their associated moments MS

O and MC
O. After that, the total inertial forces moment can be

expressed as the sum:
MI

O = MC
O + MS

O (24)
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The moments MS
O and MC

O are calculated by means of the well-known formulae:

MC
O = MC

P + FC ∧ (O − P) (25a)

MS
O = MS

P + FS ∧ (O − P) (25b)

where MC
P and MS

P are the moments, w.r.t. the pivot point P, of the Coriolis and the dragging
forces acting on the blade, while FC and FS denote the resultants of the Coriolis and
dragging forces. The Coriolis force acting on any single blade is given by:

FC = −2
∫
B

kωψ ∧ vQdτ (26)

where ωψ = ψ̇b3 is the angular velocity of the vessel, vQ = vP + ω ∧ (Q − P)
(with ω = (θ̇ − α̇)b3) is the velocity of a generic point Q of the blade w.r.t. the hull-
fixed frame and k is the mass density of the blade. After implementing calculations, one
gets the expression:

FC = −2mBωψ ∧ vP − 2mBωψ ∧ [ω ∧ (GB − P)] = −2mBωψ ∧ vGB

= −2mB(ψ̇vGB1b2 − ψ̇vGB2b1) (27)

where vGB
= vGB1b1 + vGB2b2 denotes the velocity of the gravity center of the blade w.r.t.

the hull-fixed frame. By definition, the moment MC
P of the Coriolis force with respect

to the pivot point P is given by:

MC
P = −2

∫
B

k(Q − P) ∧
[
ωψ ∧ [vP + ω ∧ (Q − P)]

]
dτ

= −2
∫
B

k(Q − P) ∧
[
ωψ ∧ vP

]
dτ − 2

∫
B

k(Q − P) ∧
[
ωψ ∧ [ω ∧ (Q − P)]

]
dτ (28)

Making use of the results shown in [19], the moment MC
P can be expressed as:

MC
P = −2mB(GB − P) ∧

[
ωψ ∧ vP

]
− ω ∧ IB

P (ωψ)− ωψ ∧ IB
P (ω) + IB

P (ω ∧ ωψ) (29)

where now IB
P denotes the inertia tensor of the blade w.r.t. the pivot point P. Expression (29)

holds in general. In our case, since the considered mathematical model is two-dimensional
and in view of the assumption GB ≡ P, it is easily seen that all terms appearing in
Equation (29) vanish, so having MC

P = 0.
For what concerns the dragging force, by definition it reads as:

Fs = −
∫
B

k
[

aO + ωψ ∧
[
ωψ ∧ (Q − O)

]
+ ω̇ψ ∧ (Q − O)

]
dτ

= −mBaO − mBωψ ∧
[
ωψ ∧ (GB − O)

]
− mBω̇ψ ∧ (GB − O)

= −mB(aO1b1 + aO2b2) + mBωψ ∧ (Rψ̇ sin θb1 − Rψ̇ cos θb2) + mB(Rψ̈ sin θb1 − Rψ̈ cos θb2)

= −mB(aO1b1 + aO2b2) + mBψ̇2(R cos θb1 + R sin θb2) + mBRψ̈(sin θb1 − cos θb2) (30)

where aO = aO1b1 + aO2b2 is the acceleration of the rotor center O w.r.t. the Earth–fixed
frame. The moment MS

P of the dragging force w.r.t. the pivot point P is given by:
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MS
P =

∫
B

k(Q − P) ∧
[

aO + ωψ ∧
[
ωψ ∧ (Q − O)

]
+ ω̇ψ ∧ (Q − O)

]
dτ

= −mB(GB − P) ∧ aO −
∫
B

k(Q − P) ∧
[
ωψ ∧

[
ωψ ∧ [(Q − P) + (P − O)]

]]
dτ+

−
∫
B

k(Q − P) ∧
[
ω̇ψ ∧ [(Q − P) + (P − O)]

]
dτ

= −mB(GB − P) ∧ aO − ωψ ∧ IB

(
ωψ

)
− mB(GB − P) ∧ ωψ ∧

[
ωψ ∧ (P − O)

]
+

− IP
B (ω̇ψ)− mB(GB − P) ∧

[
ω̇ψ ∧ (P − O)

]
(31)

= −mB(GB − P) ∧
[

aO + ωψ ∧
[
ωψ ∧ (P − O)

]
+ ω̇ψ ∧ (P − O)

]
− ωψ ∧ IB

P

(
ωψ

)
− IB

P

(
ω̇ψ

)
Again, since the model is two-dimensional and GB ≡ P, only the last term does not

vanish, so yielding:
MS

P = −IB
P (ω̇ψ) = −I33ψ̈b3 (32)

where I33 is the moment of inertia of the blade w.r.t. the vertical axis passing for P. In order
to implement Equation (25), the terms FS ∧ (O − P) and FC ∧ (O − P) need to be calculated:

FS ∧ (O − P) = mR(aO1 sin θ − aO2 cos θ)b3 − mR2ψ̈b3 (33a)

FC ∧ (O − P) = −2mR
(
ψ̇vGB2 sin θ + ψ̇vGB1 cos θ

)
b3 (33b)

Now, inserting all the obtained results into Equation (24), we end up with the final
expression of the moment w.r.t. O of the inertial forces:

MI
O = −2mR

(
ψ̇vGB2 sin θ + ψ̇vGB1 cos θ

)
b3 − I33ψ̇b3 + mR(aO1 sin θ − aO2 cos θ)b3 − mR2ψ̈b3 (34)

For our two-dimensional model with GB = P, the first two terms on the right side
of (20) are:

IB
GB

(ω̇) = I33
(
θ̈ − α̈

)
b3 (35a)

ω ∧ IB
GB

(ω) = 0 (35b)

mB(GB − O) ∧ aGB = mB(RaG2 cos θ − RaG1 sin θ)b3 (35c)

Inserting all the above calculated contributions into Equation (20), we obtain the ex-
plicit expression of the reactive moment:

MR
O = −MH

O − MG
O − MI

O + IB
GB

(ω̇) + ω ∧ IB
GB

(ω) + mB(GB − O) ∧ aGB
(36)

Inserting the reactive moments (36) acting on each single blade into the moments
equation for the rotor, the engine torque can be calculated as:

ME
O =

n

∑
i=1

(
MR

O

)
i
· b3 − MI

O · b3 + Irot
O (ω̇r) · b3 (37)

where MI
O is the inertial forces moment acting on the rotor, Irot

O is the inertia tensor of the ro-
tor w.r.t. its center O, ωr = θ̇b3 is the angular velocity (w.r.t. the hull–fixed frame) of the ro-
tor and n is the number of blades. The moment MI

O can be calculated as already made
for the blades, namely as the sum MI

O = MC
O + MS

O. In this case, since the center of the ro-
tor O is fixed w.r.t. the hull, the same arguments as in [20] can be applied so obtaining
the general explicit expressions:

MC
O = −ωr ∧ Irot

O (ωψ)− ωψ ∧ Irot
O (ωr) + Irot

O (ωr ∧ ωψ) (38)
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MS
O = −mrot(Grot − O) ∧ aO − ωψ ∧ Irot

O (ωψ)− Irot
O (ω̇ψ) (39)

with Irot
O the inertia tensor of the rotor w.r.t. its center O (which is assumed to coincide

with the gravity center Grot) and mrot is the mass of the rotor. Again, since the model is
two-dimensional and Grot = O, we have MC

O = 0 and MS
O = −Irot

O (ω̇ψ).
Inserting now all the obtained results into Equation (37), we obtain the final expression

for the engine torque:

ME
O =

n

∑
i=1

(
MR

O

)
i
· b3 + Irot

O (ψ̈b3) · b3 + Irot
O
(
θ̈b3

) · b3 (40)

In conclusion, a detailed model for the evaluation of forces and torques acting on the CP
has been expound. The relevance of the presented approach concerns the possibility to eas-
ily change the propeller characteristics (number, length and shape of blades as well as rotor
diameter) and evaluate the corresponding performance variations.

4. Numerical Modeling and Validation: Free Running Test

The mathematical model illustrated in Section 3 has been used to develop a Mat-
lab©Simulink simulator for cycloidal propellers. In this section, the main features and
the validation of such simulator are presented.

In order to simplify the simulation platform, some hypotheses have been assumed:
(i) the propeller has been considered in free-running conditions; (ii) the problem has been
assumed stationary; (iii) the model has been implemented two dimensional; (iv) linear
superposition of the contributions of each blade in terms of generated forces and moments
has been adopted.

The propeller model input data are:

• the propeller geometry (length, chord and orbit diameter of the blade—see Table 2);
• the sea water characteristics (viscosity and density);
• the lift CL and drag CD coefficients of the blade;
• the rotor speed and maximum available pitch;
• the steering pitch angle β (0◦ in forward direction, 180◦ in astern condition) and

the driving pitch s (expressed as a percentage of the rotor radius).

In the present case study, data are:

Table 2. Geometric parameters of the propeller.

Parameter Value

Number of blades 5
Rotor diameter (m) 3.2

Blade length (m) 2.65
Blade chord (m) 0.7744

Maximum tip thickness (m) 0.242

The whole simulation model consists of a set of identical subsystems, each of them
representing the behavior of a single blade. Making use of (16) and (40), the components
of total thrust and torque are calculated in the basis {bi}.

Free-running characteristics have been evaluated through a simulation campaign where
KS and KD coefficients have been evaluated, in accordance with Table 1, for several λ ∈ (0, 0.6)
and s ∈ (30%, 90%) values. In particular, the evaluation of coefficients KS and KD has been
performed in the pitch range from 30% to 90%, with steps of 20%. Results are reported
in Figure 5 that shows the comparison between propeller manufacturer data (dashed lines) and
the coefficients KS and KD obtained through simulation (continuous lines). The available data
concern an existing cycloidal propeller, with the same geometry of the simulated one.
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Figure 5. Thrust and torque propeller coefficients: model (solid lines) VS manufacturer data
(dashed lines).

The discrepancies between real and simulated data appearing in Figure 5 have been
supposed to be due to the stated simplifying assumptions about the interactions among
the blades. In order to overcome this issue, some correction factors have been introduced,
based on physical considerations: a shielding effect that can affect the oncoming flow
for some blades and the interference of each blade with the others.

4.1. Shielding Correction

This correction concerns the shielding effect experienced by the blades that are
in the half circumference not directly exposed to the oncoming water flow. Figure 6
gives a qualitative idea of how the flow is deviated by the blades. A corresponding correc-
tion factor, consisting in a matrix of corrective coefficients ws(s) < 1, has been introduced
in order to reduce the velocity of the oncoming flow in the part of the rotor not directly
invested by the flow itself. The corrective factors depend only on the driving pitch values
and not on the advance coefficient λ and are implemented as it follows

û =

{
û ws(s) if cos θ < 1
û otherwise

(41)

where û is the velocity component of the rotor center along b1.

132



J. Mar. Sci. Eng. 2022, 10, 505

Figure 6. Shielding phenomena [21].

4.2. Interference Correction

As sketched in Figure 7, each blade influences the flow of the adjacent blade, so
modifying the angle of attack of the incident flow itself. This interference among the blades
has been modeled by reducing the attack angle of the incoming flow by a suitable quantity
wi. This correction depends on the advance coefficient λ and the pitch values

α̂corr = α̂ wi(s, λ) (42)

where α̂corr is the angle of attack defined in (15).

Figure 7. Interference phenomena [21].

Figure 8 shows the values of free-running propeller coefficients, obtained by applying
the above mentioned corrections. Although the proposed corrections are purely empirical,
the graph in Figure 8 exhibits a good agreement between simulated and real data.
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Figure 8. Thrust and torque propeller coefficients: model (solid lines) VS manufacturer (dashed lines) data.

5. Simulation Results

In this section results concerning a simulated maneuver are presented. In this con-
test, two counter rotating CPs have been fitted on a vessel, whose dynamics were known.
In the proposed simulation, initially the vessel is moving forward, the propeller pitch is
set at s = 50% and the shaft speed is constant. At a certain instant the steering pitch β is
required to move from 0 to 20◦. Figure 9 shows the required and delivered shaft speed.
Generally, this kind of propellers work at constant shaft speed and the thrust is controlled
through the pitch value s, as for controllable pitch screw propellers. Figure 10 shows
the ship motion, made dimensionless with respect to the vessel length. From top to bottom,
advance motion, side drift and heading are respectively shown. Figure 11 shows the vessel
speed, the components of the linear and angular vessel velocities in the body-fixed basis,
and the vessel drift angle. As expected, at instant 100s when a twenty-degree change
in steeering is required and kept constant for the rest of the maneuver, the ship begins to ro-
tate and drift, it slows down, while drift and rotation velocities increase until they stabilize
to constant values. The delivered forces and moment are reported in Figure 12, where
they are expressed in the b−basis. It is worth noticing that the model is able to evaluate
the lateral forces (16) generated by each single propeller. Although two counter-rotating
thrusters ensure the compensation of the lateral forces in the case of the forward navigation,
this is no longer true during the maneuverings where the evaluation of such forces is
an important aspect. Moreover, the implemented kinematic approach allows us to observe
the asymmetry of Xp, that is the force component along b1, during the evolution. This is
due to the fact that the two drifting thrusters are actually undergoing two different inlet
flows. Such effect is also reflected in the torque. Indeed, time histories of required torque by each
propeller at the shaft are reported in Figure 13. In this case, some differences can be evaluated
during the vessel rotation where load on the portside shaft is different from the starboard one.
The integration of the propeller models together with the propulsion system, Figure 14, allows us
to assess the matching between available power, represented by the underlying area of the black
curve, and the power required by the propellers at every time–step. Portside and starboard
required powers (red and blue lines respectively) are clustered in a small area of the motor
load diagram. Finally, the required fuel flow rate time history is reported in Figure 15, in terms
of percentage of its maximum value, allowing us to compute fuel consumption.
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Figure 10. Vessel motions.
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Figure 11. Vessel speed and velocity components in the body-fixed basis.

Figure 12. Propeller delivered forces and moment.
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Figure 14. Propeller required power on the engine load diagram.
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Figure 15. Fuel flow time history.

6. Conclusions

This work presents a simulation approach for both low and high speed manoeuvring
of ships equipped with cycloidal propellers. The real strength comes from not having to calcu-
late the propeller fluid dynamics, avoiding demanding computations that would make very
difficult and complex an effective simulation of the whole ship propulsion plant behaviour
(in the proposed approach, CFD method is just used for the evaluation of the lift and drag
coefficients of the single blade). However, reliable results, concerning both the steady state
and transient performance of the cycloidal propeller, are achieved. This is essentially due
to the rigorous description of the motion of each blade and by introducing specific empiri-
cal correction factors that can be used for a preliminary performance estimation of several
cycloidal propulsion units, characterized by different lengths and number of blades. In this
sense, the propulsion simulator can be regarded as a parametric one. Indeed, open water
diagrams can obtained for a wide range of cycloidal propellers only by changing the rotor di-
ameter, number and length of blades. Through appropriate insights concerning the correction
coefficients and therefore a dedicated hydrodynamic analysis, the simulator can reproduce
the open water performance maps of other types of cycloidal thrusters, for which the literature
and the industry provide very little information. Right because the lack of data, the proposed
approach could be useful also to predict the behaviour of the ship during the design phase
in terms of general performances, forces generation, response times and evaluation of en-
ergy/fuel consumptions. Moreover, a training platform for personnel could be implemented
on this basis. Next developments should include the integration of the hydrodynamic inter-
action between the hull and the cycloidal propeller and vice versa, as well as the calculation
of the hydrodynamic resistance of the cycloidal propellers intended as hull appendages,
mainly by comparing empirical corrections with CFD results. Further improvements could
include the study of different sizes of the main engine, represented by a thermodynamic
model coupled to the cycloidal thruster model, in order to better analyse the engine-propeller
dynamics (especially during transient conditions). Finally, the present research should be
completed through a proper validation of the simulation approach, by means of experimental
data of a cycloidal propulsion system installed on board a real ship.

138



J. Mar. Sci. Eng. 2022, 10, 505

Author Contributions: Conceptualization, M.A., S.V. and S.D.; methodology, M.A. and S.V.; software,
V.S. and S.D.; validation, S.V. and S.D.; writing—original draft preparation, S.D.; writing—review and
editing, M.A., S.V. and S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Acanfora, M.; Montewka, J.; Hinz, T.; Matusiak, J. Towards realistic estimation of ship excessive motions in heavy weather.
A case study of a containership in the Pacific Ocean. Ocean. Eng. 2017, 138, 140–150. [CrossRef]

2. Acanfora, M.; Altosole, M.; Balsamo, F.; Micoli, L.; Campora, U. Simulation Modeling of a Ship Propulsion System in Waves
for Control Purposes. J. Mar. Sci. Eng. 2022, 10, 36. [CrossRef]

3. Altosole, M.; Boote, D.; Brizzolara, S.; Viviani, M. Integration of Numerical Modeling and Simulation Techniques for the Analysis
of Towing Operations of Cargo Ships. Int. Rev. Mech. Eng. 2013, 7, 1236–1245.

4. Altosole, M.; Figari, M.; Martelli, M.; Orrù, G. Propulsion control optimisation for emergency manoeuvres of naval vessels. In
Proceedings of the INEC 2012-11th International Naval Engineering Conference and Exhibition, Edinburgh, UK, 15–17 May 2012.

5. Ghaemi, M.; Zeraatgar, H. Analysis of hull, propeller and engine interactions in regular waves by a combination of experiment
and simulation. J. Mar. Sci. Technol. 2021, 26, 257–272. [CrossRef]

6. Saettone, S.; Tavakoli, S.; Taskar, B.; Jensen, M.V.; Pedersen, E.; Schramm, J.; Steen, S.; Andersen, P. The importance of the engine-
propeller model accuracy on the performance prediction of a marine propulsion system in the presence of waves. Appl. Ocean.
Res. 2020, 103, 102320. [CrossRef]

7. Altosole, M.; Campora, U.; Martelli, M.; Figari, M. Performance decay analysis of a marine gas turbine propulsion system. J. Ship
Res. 2014, 58, 117–129. [CrossRef]

8. Zaccone, R.; Altosole, M.; Figari, M.; Campora, U. Diesel engine and propulsion diagnostics of a mini-cruise ship by using
artificial neural networks. In Proceedings of the 16th International Congress of the International Maritime Association of the
Mediterranean, Pula, Croatia, 21–24 September 2015; pp. 593–602. [CrossRef]

9. Campora, U.; Capelli, M.; Cravero, C.; Zaccone, R. Metamodels of a gas turbine powered marine propulsion system for simulation
and diagnostic purposes. J. Nav. Archit. Mar. Eng. 2015, 12, 1–14. [CrossRef]

10. Halder, A.; Walther, C.; Benedict, M. Hydrodynamic modeling and experimental validation of a cycloidal propeller. Ocean. Eng.
2018, 154, 94–105. [CrossRef]

11. Hu, J.; Li, T.; Guo, C. Two-dimensional simulation of the hydrodynamic performance of a cycloidal propeller. Ocean. Eng. 2020,
217, 107819. [CrossRef]

12. Prabhu, J.; Nagarajan, V.; Sunny, M.; Sha, O. On the fluid structure interaction of a marine cycloidal propeller. Appl. Ocean. Res.
2017, 64, 105–127. [CrossRef]

13. Bakhtiari, M.; Ghassemi, H. CFD data based neural network functions for predicting hydrodynamic performance of a low-pitch
marine cycloidal propeller. Appl. Ocean. Res. 2020, 94, 101981. [CrossRef]

14. Prabhu, J.; Dash, A.; Nagarajan, V.; Sha, O. On the hydrodynamic loading of marine cycloidal propeller during maneuvering.
Appl. Ocean. Res. 2019, 86, 87–110. [CrossRef]

15. Altosole, M.; Donnarumma, S.; Spagnolo, V.; Vignolo, S. Marine cycloidal propulsion modelling for DP applications.
In Proceedings of the VI International Conference on Computational Methods in Marine Engineering, Rome, Italy, 15–17 June
2017; pp. 206–219.

16. Altosole, M.; Donnarumma, S.; Spagnolo, V.; Vignolo, S. Simulation of a marine dynamic positioning system equipped with
cycloidal propellers. In Progress in Maritime Technology and Engineering; CRC Press/Balkema: Boca Raton, FL, USA, 2018; pp. 257–264.

17. Donnarumma, S.; Figari, M.; Martelli, M.; Vignolo, S.; Viviani, M. Design and Validation of Dynamic Positioning for Marine
Systems: A Case Study. IEEE J. Ocean. Eng. 2018, 43, 677–688. [CrossRef]

18. Donnarumma, S.; Figari, M.; Martelli, M.; Zaccone, R. Simulation of the Guidance and Control Systems for Underactuated Vessels.
In Proceedings of the International Conference on Modelling and Simulation for Autonomous Systems, Palermo, Italy, 29–31
October 2019; Springer: Cham, Switzerland, 2020; Volume 11995, pp. 108–119. [CrossRef]

19. Martelli, M.; Viviani, M.; Altosole, M.; Figari, M.; Vignolo, S. Numerical modelling of propulsion, control and ship motions in 6
degrees of freedom. Proc. Inst. Mech. Eng. 2014, 228, 373–397. [CrossRef]

20. Martelli, M.; Figari, M.; Altosole, M.; Vignolo, S. Controllable pitch propeller actuating mechanism, modelling and simulation.
Proc. Inst. Mech. Eng. Part J. Eng. Marit. Environ. 2014, 228, 29–43. [CrossRef]

21. Battistoni, L. Numerical Simulation Approach for the Preliminary Design of a Cycloidal Propeller. Master’s Thesis, University
of Genoa, Genoa, Italy, 2014.

139





Citation: Acanfora, M.; Altosole, M.;

Balsamo, F.; Micoli, L.; Campora, U.

Simulation Modeling of a Ship

Propulsion System in Waves for

Control Purposes. J. Mar. Sci. Eng.

2022, 10, 36. https://doi.org/

10.3390/jmse10010036

Academic Editor: Tie Li

Received: 13 December 2021

Accepted: 27 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Simulation Modeling of a Ship Propulsion System in Waves for
Control Purposes

Maria Acanfora 1,*, Marco Altosole 1, Flavio Balsamo 1, Luca Micoli 1 and Ugo Campora 2

1 Department of Industrial Engineering (DII), School of Polytechnic and Basic Sciences,
University of Naples “Federico II”, 80125 Naples, Italy; marco.altosole@unina.it (M.A.);
flavio.balsamo@unina.it (F.B.); luca.micoli@unina.it (L.M.)

2 Department of Mechanical, Energy, Management and Transportation Engineering (DIME), Polytechnic School,
University of Genoa, 16145 Genoa, Italy; ugo.campora@unige.it

* Correspondence: maria.acanfora@unina.it

Abstract: The article deals with a simulation approach to the representation of the ship motions in
waves, interacting with the propulsion system behavior (diesel engine and propeller). The final goal
is the development of a simulator, as complete as possible, that allows the analysis of the main engine
thermodynamics in different sea conditions, also in the unfavorable event of dynamic instability
of the hull, and the correct management of the other propulsion components. This latter aspect
is particularly interesting in some of the last new energy solutions for decarbonization of ships,
concerning, for example, auxiliary electric motors, powered by batteries, to support the traditional
diesel-mechanical propulsion (especially in heavy weather conditions). From this point of view, a
proper analysis of the engine dynamic performance, affected by particular sea states, is fundamental
for a smart management and control of shaft generators/auxiliary electric motors, batteries, etc. To
this end, the work presents and highlights the main features of a ship simulator, suitable for the
study of the new propulsion solutions that are emerging in maritime transport. Some representative
results will point out the complex non-linear behavior of the propulsion plant in waves. Moreover,
a parametric roll scenario will be investigated, in order to highlight the capability of the conceived
simulator in modeling the effects of the dynamic instability of the hull on the propulsion plant.

Keywords: ship propulsion; simulation; diesel engine; wave; ship motions; control

1. Introduction

Marine time-domain simulation has traditionally found its main use in the field of ship
maneuverability, especially for the development of training simulators, which have become
increasingly effective with the advent of virtual reality [1]. However, the scientific literature
shows that dynamic simulation techniques have also been significantly adopted in ship
design, although the most representative industrial applications are just only from the last
twenty years. This is essentially due to the enhancement of computers and the development
of particular commercial software for a more user-friendly application. In this framework,
Genoa University was a pioneer in the development of simulators for evaluating the ship
propulsion performance and analyzing pertinent machinery control logics [2]. A first signif-
icant example of a ship propulsion simulation with a full-scale validation is reported in [3].
It concerns the mechanical diesel propulsion system of a cruise ferry, while [4] proposes
again the same approach to the validation of the methodology in the case of a small naval
vessel. After the presentation and validation studies of the simulation method, Genoa Uni-
versity developed the first simulators for industrial applications in the cases of the aircraft
carrier Cavour [5,6] and the Italian Navy Multi-Mission Frigates (FREMM) [7–9]. In both
projects, real-time simulation was used to design and test the propulsion control system.
The collaboration with the Italian Navy continued in the development of a simulation study
for the propulsion system refitting of the tall ship Amerigo Vespucci (in this case, the square
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sail’s behavior was reproduced too [10,11]). These three applications represented a typical
use of simulation in the design stage of a vessel, although it can also be used to evaluate the
performance decay of already operating systems. In this regard, References [12,13] show
simulation approaches to the representation of malfunctions/faults of marine engines and
auxiliary systems for the thermal energy recovering from the exhaust gas of the engines. In
the same research field, References [14–16] propose different simulation techniques (e.g.,
neural networks) for the marine engine diagnostics, while [17–19] show further examples
of dynamic simulation approaches to the design of the ship energy systems

Focusing on marine propulsion systems, a good simulator is made up of several nu-
merical sub-models that represent the main elements involved in ship propulsion. Surely,
the main mover model can strongly characterize the complexity of the simulator as it can
be faced with different approaches. Specific programming languages [20–25] or commer-
cial software [26–29] can represent the engine behavior, with different levels of accuracy,
according to the different purposes. On the contrary, the propeller is traditionally modeled
by numerical tables, unless you want to describe further aspects, such as the dynamics of
the rotation of the blades in the case of a controllable pitch propeller [30]. For other types
of marine thruster, such as waterjet or cycloidal propellers, more complex models can be
adopted [31–33]. Another important sub-model of the simulator certainly concerns the
representation of the ship motions, which can be simulated with one [3,34], three (e.g., typi-
cal maneuverability simulators [35–37]), four [38] up to six degrees of freedom (DOF) [39].
Obviously, the complexity of the modeling grows in relation to the DOF number increasing.
Moreover, different mathematical approaches may turn out to be more or less suitable
for representing the motions of the ship at high or low speed (e.g., dynamic positioning
applications [40]).

Due to the complexity of the whole ship dynamics, it is very difficult to develop a
complete propulsion simulator taking into account both hull motions and main engine
behavior. The whole ship dynamics in the time domain is usually studied by six DOF
numerical models based on the equations of the rigid body motions. Several methods
for the assessment of ship dynamic instabilities and maneuverability in waves have been
extensively studied and compared [41,42]. However, all these numerical approaches
disregard the propulsion power delivered by the main engine and rather assume ideal
constant propeller revolutions or assume constant ship speed.

Several approaches of hull-propeller-engine interaction are available in the technical
literature, although they mainly focus on the effects of the added resistance in waves, as
underlined by [43]. In particular, in [43] the authors propose an interaction model of hull-
propeller-engine by combining experimental data and numerical simulation in regular seas.

In [44], the simulation of the propeller performance accounts for the propeller emer-
gence in waves, calculated beforehand from the estimation of ship motions in a head sea.
The importance of developing a numerical model accounting for ship dynamics effects
on the marine propulsion system performances has been recently pointed out in [45,46].
These research works account for simplified modeling of ship dynamics by means of a
linear transfer function of heave and pitch and includes wake and propeller characteristic
variations in regular waves.

Differently from the others, the present work shows a complete simulation approach to
the description of the interaction between ship motions (six DoF) and machinery (i.e., prime
mover and propeller), applicable in irregular sea, by combining the most sophisticated
sub-models available in the state of the art, for a comprehensive simulation.

Indeed, the numerical model for ship dynamics is based on the so-called hybrid or
blended non-linear approach, as described by [47,48].

Differently from [47], implemented in FORTRAN, the model adopted herein is de-
veloped and implemented in MATLAB/Simulink [49,50]. Similar to [47,51,52], it allows
for the estimation of ship dynamic instabilities and maneuvering simulations in irregu-
lar waves with a fair level of accuracy. The main innovation of the present work is the
interaction among the different propulsion components, in the presence of different sea

142



J. Mar. Sci. Eng. 2022, 10, 36

states, accounting also for the possibility of simulating critical behaviors of the hull, such
as dynamic instabilities. The weather conditions, in fact, greatly affect the hull motions,
which, in turn, influence the behavior of the propeller and therefore the propulsion system.
A constant wake factor in irregular sea is assumed, while ship speed changes because of
the time-varying added resistance and propeller thrust.

The proposed simulation approach, described in its several sub-models, can become a
useful tool for evaluating any critical issues on the engine, to be solved through appropriate
control strategies. For the current application, a Ro-pax ship sailing in irregular sea is
under investigation, assuming a thermodynamic model of a four-stroke medium diesel
engine [53]. The results of several operational conditions are presented in order to point out
the need for consistent interaction among the different sub-models for a proper depiction
of the phenomena.

2. Numerical Model of the Simulator

The developed simulator aims at connecting existing sub-models of ship dynamics in
irregular seas and a diesel engine, accounting for propeller actions in waves. The following
subsections describe in brief each sub-model. The whole simulator is implemented in the
MATLAB/Simulink platform.

2.1. Ship Dynamics in Wave

The numerical six DoF model for ship dynamics in waves (in the time domain) included all
forces and moments acting on a sailing vessel in irregular sea. The hull surface was discretized
by means of triangular panels up to the freeboard deck. Mass and inertia actions included
all non-linear coupling terms of the rigid body dynamics. All non-linearities regarding hull
geometry were accounted for in the calculation of Froude–Krylov and restoring actions.

Radiation forces and moments were implemented by means of the convolution integral
technique, while diffraction forces and moments were obtained by linear superposition of
regular wave components. The regular force components, which were the input data for
both radiation and diffraction actions, were taken from potential strip theory calculations,
carried out beforehand [54].

Additional details together with validations of the implemented numerical model,
regarding ship motions and accelerations in waves, are available in [49]. It is worth noting,
that the ship speed, in the reference applications, was set as constant, thus no attention
was given to the effects of added resistance in waves (in addition to ship resistance in still
water), which represents a demanding second-order problem [55].

In the current form of the simulation model, the ship resistance curve in still water
was given as input data, while added wave resistance accounted only for first-order effects.
In general, this approach could lead to approximate results, especially in the range of small
wave components (i.e., smaller than ship length), where radiation and diffraction actions
are predominant and the numerical modeling for these forces is not suited to the added
wave resistance problem. On the other hand, the current approach provided quite accurate
restoring and Froude–Krylov non-linear components, that for long waves (i.e., longer than
ship length) became predominant.

Therefore, limiting the case studies to sea states characterized by a wavelength greater
than ship length, this numerical model can be considered suited at the scope of the paper.

A brief validation of the model is presented in Table 1 for the hull KVLCC2, extensively
studied for benchmark researches [56]. The experimental data (exp) available for this
ship [56] concerned the speed reduction in regular waves given a fixed propeller revolution.
The numerical simulations were carried out, including propeller actions but neglecting
engine contribution. The obtained speed reduction in wave (sym) was compared against
the experimental speed data.

As expected, the comparison of the results disclosed that the error on the speed
reduction in waves decreased with wavelengths (λ) longer than ship length L. For this
range of wavelength, the error remained below 10%.
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Table 1. Comparison of experimental and numerical speed reduction in waves for KVLCC2.

λ/L Exp (Knots) Sim (Knots) Error (Knots) Err %

0.5 12.1 15.3 3.2 26%
0.7 10.9 15.1 4.2 39%
1 8.6 9.5 0.9 10%

1.2 10.2 9.2 −1 −10%
1.5 12.6 11.6 −1 −8%

2.2. Propeller Actions

The numerical model of the sailing ship in waves included screw propeller actions
that were implemented by means of still water propeller coefficient KT and KQ, given as
a function of the advance coefficient J. Propeller thrust has to balance ship resistance in
waves, while propeller torque has to be balanced by the torque provided by the engine.
The wake and the thrust deduction factors for modeling the propeller-hull interaction in
irregular sea, refer to the still water condition.

The thrust Tprop and the torque Qprop at the propeller were obtained as follows:

Tprop = ρKT*Nprop
2Dprop

4 Qprop = ρKQ*Nprop
2Dprop

5 (1)

In Equation (1), KT* and KQ* are modified propeller coefficients in order to account
for a propeller operating very close to the free surface due to the wave effects. In particular,
the simulation approach proposed by [57], for modeling generalized ventilation losses, was
used. According to [57], thrust and torque ventilation loss factors (βtv and βqv, respectively)
can be introduced:

KT* = βtvKT KQ* = βqvKQ

where βtv depends on the propeller type, propeller loading, and on the relative blade
submergence 2h/Dprop, while βqv = (βtv)m, where m = 0.85 for open propeller type. When
2h/Dprop = −1, it means that the propeller is fully emerged, thus βtv = βqv = 0.

In this paper, a hull equipped with twin-screw open propellers was chosen for the
purpose of the applications; therefore the forces at the left-side and the right-side propellers
were modeled independently. Indeed, due to the hull dynamics in waves (in particular
due to the roll motions), the twin propellers can experience different submergences and
loadings, resulting in different thrust and torque.

2.3. Diesel Engine

Whereas the diesel engine model is part of the whole ship dynamics, it should catch
the engine behavior during transients with acceptable accuracy but without excessive
computational work. A 0D model based on a filling and emptying approach can be a good
compromise between these different requirements [20,22]. All the main engine components
were assumed as blocks connected to each other representing algebraic and/or differential
equations according to the principles of mass and energy conservation. The fluid that
followed the so-called air path was considered as an ideal gas which composition varied
when flowing through the engine components; in each, the fluid parameters (temperature,
pressure, and composition) were supposed to be uniform, so neglecting the momentum
conservation equation. The engine was a four-stroke turbocharged and the turbine and com-
pressor were modeled using steady-state maps, where flow rate and isentropic efficiency
are a function of pressure and speed, corrected as usual.

Engine speed and turbocharger speed were calculated from time to time by dynamic
equilibrium equations and represent two of the main states of the engine model, as pressures
in inlet and outlet manifolds. The heat release due to the fuel-injected and burned in the
cylinders was modeled by a classical double zone Wiebe function. The inlet valves timing
could be varied to control the airflow at different engine speeds and loads.
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The model was fine-tuned by comparing the simulation results with the data extracted
from the factory data sheet until a good agreement was reached between them. A detailed
description of the engine model and data accuracy evaluation can be found in [23].

2.4. Engine Controller

The function of the engine governor is to keep the rotation speed of the diesel engine
constant despite the variation of propeller load because of wind, current, waves, and
fouling by allowing the engine to increase or decrease the torque generated. In the case
of wave-induced propeller torque variations, whose characteristic time is between 5 and
15 s, quite lower than the other cases listed, the governor must operate quickly enough
to avoid excessive engine speed variations that could cause an engine power failure and,
consequently, represent a potential risk for ship safety.

The governor determines the torque supplied by the engine acting on the amount of
fuel injected at each engine cycle by means of the so-called fuel rack; the engine response
depends on many engine states, as crankshaft speed, turbocharger speed, pressure in the
receivers, and other parameters.

In this paper, the engine governor was modeled as a conventional PI (proportional
integral) controller, which action is proportional to the shaft speed error and its integral over
time. The two values that represent the controller proportional (kp) and integral (ki) gains
were determined by analyzing the engine response to a sudden variation of the fuel rack
position, starting with the Ziegler Nichols method and followed by a further fine-tuning.

Even in its basic configuration, the engine governor must have more functions, as
smoke limiters, torque limiter to avoid overload, and set point rate limiter to prevent the
risk of compressor surging.

In order to check the effectiveness of the implemented regulator, the following numeri-
cal test was carried out. Given the engine working at a reduced load, an acceleration ramp
was set for an increase of 1/3 of the revolutions. From the results presented in Figure 1,
the control action of the regulator guaranteed the realization of such acceleration within a
time range of approximately three minutes. This confirmed that the overall behavior of the
regulator was acceptable for the purposes of the current paper. The engine revolutions were
the result of the solution of the classic dynamic equation of the shaft line [2,5], dependent on
the rotating inertia of the whole propulsive chain (i.e., engine, gearbox, shaft, and propeller).

Figure 1. Revolution response to rpm ramp.
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3. Case Study and Results

The hull chosen for the case study was a ro-pax ferry named SeatechD, which has
been used for previous validations and applications of the method for ship dynamics in
waves [49]. Since the hull model was developed mainly for research purposes on ship
stability and maneuvering in waves [58], no precise information on propeller and engine
at full scale are available. Therefore, at the scope of the case study, the maximum speed
was set as 24 knots, (that is reasonable for the hull under investigation compared to other
similar vessels) and two Wageningen B-series propellers (for which KT and KQ coefficients
are available from [59]) were assumed in a twin-screw configuration.

These design choices allowed the use of two diesel engines of 12 MW each [60], for
which the numerical model was developed in [53]. Table 2 provides a summary of the hull,
propeller, and engine main data.

Table 2. Principal particulars of SeatechD.

Hull Seatech-D

Length between perpendiculars, L (m) 158.00
Breadth, B (m) 25.00
Depth, D (m) 15.00

Draft forward, TF (m) 6.10
Draft aft, TA (m) 6.10

Displacement, Δ (tons) 13,766
Center of gravity above the keel, KG (m) 11.834

Long. coordinate of the center of gravity from aft perpendicular, LCG (m) 74.77
Transv. radius of gyration in air, kXX (m) 10.06
Long. radius of gyration in air, kYY (m) 39.36

Propeller Wageningen B-series

Number of blades Z 4
Ae/A0 0.750

Dprop (m) 4.8
P/Drop 1.2

Engine

Number of cylinders 12
Bore (m) 0.51

Stroke (m) 0.60
Engine revolution Neng (rpm) 514

Engine power PB (MW) 12

The sample irregular sea state for the simulation was obtained from the JONSWAP
spectrum, given the significant wave height (Hs) and the zero-crossing period (Tz). The
technique described in [49] was used for the generation of the irregular wave train.

The following application focuses on a realization of wave trains having a ratio of 1:2 of
HS, i.e., two similar wave profiles were generated, differing only in the HS values that were
HS = 6.5 m and HS = 3.25 m, respectively (see Figure 2). This analysis aimed at disclosing
the non-linear behavior of the whole propulsion chain interacting with ship dynamics in
waves. Moreover, an additional application will be carried out at a reduced speed in order
to trigger a parametric roll that leads to non-symmetric loads on each propeller.
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Figure 2. Time history of the two irregular wave trains (in the inertial reference frame).

3.1. Results

The results of this subsection regard the hull–propeller–engine performances for the
ship sailing in the head sea in irregular waves characterized by TZ = 12.5 s, HS = 6.5 m, and
TZ = 12.5 s, HS = 3.25 m. For the sake of synthesis, we limited the outcomes of the time
history to 300 s.

Figure 3 shows ship dynamics and propeller behavior: green dash-dotted line refers
to still water results; solid blue line refers to the sea state characterized by the smaller wave
height; solid orange line refers to the wave train with the doubled wave height. It is possible
observing that, as expected, ship motions (heave and pitch) exhibited larger amplitude
in case of larger wave height, but they were not in phase. This was related to a visible
reduction in ship speed (approximately 2 knots for Hs = 6.5 m) that significantly changed
the encounter frequency of the hull. Moreover, ship dynamics modified the value of h/R,
that is the head of water at the propeller h divided by the propeller radius R. Keeping in
mind that h/R = −1 implies a fully emerged propeller; in both cases, the propeller stayed at
least partially immersed. While for the case Hs = 3.25 m the propeller was scarcely affected
by the wave effects (as observable also from revolutions Nprop and torque Qprop), the larger
wave amplitude Hs = 6.5 m induced a significant partial emergence of the propeller with
h/R close to zero. This induced irregular profiles of propeller torque and revolution, with a
reduction in torque and increase in the revolution when h/R tended to zero.

The propeller load directly influences the engine performances in terms of torque
and revolutions, Qeng and Neng, respectively. Indeed, in Figure 4, it is possible to observe
how the power profile provided by the engine PB exhibited larger fluctuations for sea state
Hs = 6.5 m, together with an increase in the specific fuel consumption SFCS. Figure 4 also
shows the temperature Tout of the exhaust gases at the cylinder, in order to point out the
capabilities of the model in simulating the thermodynamics of the whole turbocharged
diesel engine.

At the same scope, Figure 5 illustrates compressor behavior given the compressor map.
For the sea state with Hs = 3.25 m, the working conditions of the compressor remained
close to the steady working condition (i.e., referring to still water), while they became
scattered in the case of Hs = 6.5 m.

147



J. Mar. Sci. Eng. 2022, 10, 36

 

Figure 3. Time history of ship dynamics and propeller behavior in a head sea, for two proportional
irregular sea states and still water.

Figure 4. Time history of diesel engine performances in a head sea, for two proportional irregular sea
states and still water.
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Figure 5. Comparison of compressor performances in a head sea, for two proportional irregular sea
states and still water. Surge line in black, compression ratio at constant revolutions in blue.

3.2. Results for Parametric Roll Scenario

A ship sailing at maximum speed in a severe–moderate sea state is quite unrealistic,
for safety reasons; indeed, it is quite usual that the vessel operates at reduced speed, i.e.,
at a lower engine load. Actually, this situation could be even more dangerous for ships
prone to dynamic instabilities, such as the parametric roll, as in the case of the ro-pax ferry
under investigation. The developed code also allowed simulating engine performances in
these peculiar circumstances, related to the non-linearities of the immersed hull geometry
in waves.

It was found that the ship developed a parametric roll in a head sea in the presence of a
sea state characterized by Hs = 4.5 m and Tz = 9.0 s, for a speed of around 15 knots. In such
a scenario, the mean wave encounter period was half of the natural roll period of the hull
(around 17.5 s), as observable in Figure 6. This figure shows the ship dynamics in waves,
focusing on the development of a parametric roll with maximum oscillations of around 20◦.
This situation induced a non-symmetric behavior of the two propellers and consequently
of the two diesel engines. In Figure 7, the starboard propeller and engine outcomes are
identified by solid blue lines, while the port propeller and engine outcomes are identified
by solid orange lines. It is possible to notice that in presence of a small roll perturbation
(i.e., absence of roll), the two propulsion drive chains behaved equally. Once parametric
roll develops, the behaviors of starboard-side and port-side propellers and engines were
almost 180◦ out of phase; actually, they were not completely opposite due to the effects of
coupling of roll, heave, and pitch on propellers. This results in a large oscillation of engine
powers due to the reduction in the propeller torque in correspondence with the propeller
emergence, associated with a significant increase in revolutions.
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Figure 6. Time history of the ship dynamics in a head sea, Hs = 4.5 m Tz = 9.0 s: parametric roll development.

Figure 7. Time history of starboard-side and port-side propellers and engine in a head sea, Hs = 4.5 m
Tz = 9.0 s, depending on ship roll motion (black line).
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4. Conclusions

This paper concerned the development of a comprehensive numerical model for
simulating engine performances accounting for ship dynamics in waves and its effects on
propeller loading characteristics. This model represents a first step in the development of a
numerical tool to analyze and control the ship propulsion system in unsteady conditions.

From the overall analysis of the numerical outcomes, it is possible to disclose that there
was no proportional behavior between the sea state and hull–propeller–engine interaction.
In other words, the variation in engine power and consumption did not show a linear
behavior with the height of the sea state but depended on multiple interacting factors.
Therefore, due to the complexity of phenomena, a simplified approach is not recommended
for the assessment of engine performance in waves.

The numerical model presented herein is capable to account for non-linearities that
arise from the hull dynamics in waves and interact with the propulsion system. In particular,
in this research, the performances of the twin propellers and engines were simulated in
event of parametric roll instability in head sea navigation (where usually no roll motion
is expected). The main outcomes showed that this critical condition induced a somewhat
nonsymmetrical behavior of the thermodynamic engine parameters with large oscillations
of torque and revolutions

However, all obtained results can currently provide only a qualitative assessment of hull–
propeller–engine behavior, since relevant validations of the complete model are still missing.

It is worth underlining that the main idea behind this research was the possibility
to connect hull dynamics with any kind of propulsion system configurations, therefore
allowing the modeling and the analysis of the performances of, among other, hybrid
propulsion systems. In particular, by combining the prime mover (e.g., a diesel engine
equipped with a PTO/PTI shaft generator) to batteries (or fuel cells or even renewable
energy sources) for smoothing out the fluctuation of the propeller load, it is possible to
optimize the ship propulsion efficiency in sizeable sea waves. The proposed simulator
could test a specific control strategy, in order to achieve an averaged load of the diesel
engine in severe waves, while the battery system, through the PTO/PTI modes of the
shaft generator, will be discharged during short peaks and charged during short dips.
Therefore, the engine load can be more constant, by improving fuel efficiency and reducing
maintenance costs.
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Nomenclature

Dprop Propeller diameter
h Head of water on the propeller shaft
HS Significant wave height
J Advance coefficient
KQ Propeller torque coefficient
KT Propeller thrust coefficient
L Ship length
Neng Engine revolutions
Nprop Propeller revolutions
Qeng Engine torque
Qprop Propeller torque
R Propeller radius
SFCF Specific fuel consumption
Tout Temperature of the exhaust gases at the cylinder outlet
Tprop Propeller thrust
TZ Zero crossing period
V Ship speed
waveenc Wave profile encountered by the ship
ζfix Wave profile in the inertial (fixed) frame
βqv Torque ventilation loss factors
βtv Thrust ventilation loss factors
λ Wavelength
ρ Density of the sea water
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Abstract: The performance of a marine dual-fuel engine, equipped with an innovative hybrid
turbocharger producing electric power to satisfy part of the ship’s electric load, is presented by a
simulation comparison with the traditional turbocharging technology. The two distinct fuel types,
combined with the hybrid turbocharger, involve a substantial change in the engine control modes,
resulting in more flexible and efficient power management. Therefore, the investigation requires
a numerical analysis depending on the engine load variation, in both fuelling modes, to highlight
different behaviours. In detail, a dual-fuel engine simulation model is validated for a particular
application in order to perform a complete comparison, reported in tabular and graphical form,
between the two examined turbocharging solutions. The simulation analysis is presented in terms of
the engine working data and overall energy conversion efficiency.

Keywords: marine engine; dual fuel; hybrid turbocharger; power management; efficiency; simulation

1. Introduction

Due to the need to mitigate the harmful impact deriving from marine engines powered
by fossil fuels, the regulations implemented over the years by the International Maritime
Organisation (IMO) have set a challenging horizon, which requires new solutions to
minimise the environmental footprint of the maritime sector [1]. In particular, IMO rules
are increasingly restrictive about the ship’s polluting emissions of nitrogen and sulphur
oxides (IMO Tier II and III, and ECA world areas [2]), while the energy efficiency design
index (EEDI) has become mandatory for carbon dioxide [3,4]. This framework needs
new measures to improve the energy conversion efficiency of propulsion engines and
diesel–electric generators.

Currently, marine diesel engines have an efficiency of close to 50% but can be glob-
ally more efficient when combined with waste heat recovery (WHR) from their exhaust
gas [5–10]. WHR steam plants allow achieving an overall efficiency improvement of 3 ÷ 5%,
which corresponds to about the same percentage of carbon dioxide emission reduction. A
further improvement in the ship’s energy efficiency can be achieved by installing WHR
systems for dual-fuel (DF) marine engines [11–13]. It should be noted that natural gas (NG),
in comparison with the traditional heavy fuel oil (HFO), reduces significantly emissions
from the engine, as well as being 1 ÷ 2% more efficient at medium-high engine loads [14].

Mitsubishi Heavy Industries has recently developed an alternative method of exploita-
tion regarding the engine’s exhaust gas thermal power, based on the hybrid turbocharger
(HTC) technology [15,16]. The compressor turbine’s shaft line of the engine turbocharger
integrates the high-speed electric motor/generator (EM/G). Thus, when the EM/G oper-
ates as an electric generator, it produces electricity to satisfy part of the ship’s electric load,
reducing the diesel generators’ electric power, with a positive effect on fuel consumption
and emissions. As far as the authors know, it is the only important application currently
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existing in the ship propulsion field. On the contrary, Formula One cars have been using
HTC since 2014, and there are good application prospects for hybrid electric passenger
cars [17,18] and fuel cell vehicles [19]. Scientific studies on marine applications are also
rather limited: the study in [20] considers the HTC use for high-speed diesel engines aboard
fast naval combatants, while in [21], the authors compare the simulation of a four-stroke
DF marine engine equipped with its original turbocharger (TC) and, alternatively, with
the HTC. The comparison between the two turbochargers demonstrated the validity of the
HTC solution to increase the overall efficiency of the energy conversion system in the NG
fuel mode. Obviously, this innovative turbocharging configuration requires controlling
some important operational data, paying due attention especially to the different combus-
tion control methods for the two fuel modes. Therefore, this second article extends the
analysis of the two turbocharging solutions (TC and HTC) at different loads and speeds
of the engine, including the HFO mode, for optimal management of the engine power in
all its possible operating conditions. The main idea would be to provide, by numerical
simulation, a series of operational data in the widest possible working range of the engine,
for the evaluation of new smart ship propulsion solutions to complement the existing
applications or studies [22–24]. In fact, the proposed innovation combines the advantages
of thermal energy recovery with a new concept of hybrid power generation, differentiating
itself from the traditional meaning of hybrid propulsive applications [22,25–28]. To this
end, simulation results, concerning a MAN 51-60 DF 12V marine engine (Germany), are
discussed after a brief description of a DF engine’s working principles and numerical
modelling.

2. Materials and Methods

2.1. DF Engines

A marine DF engine is substantially derived from a compression-ignition (CI) engine
by adding the capability to operate as a positive-ignition (PI) engine burning a gaseous fuel.
The two working modes are completely different. In the diesel mode, the fuel is injected
into the cylinder in a liquid phase and it ignites by compression; the air–fuel ratio (AFR)
varies with the load. In NG mode, the fuel is injected and mixed with the air before the inlet
valve and the ignition occurs as in a spark-ignition engine. In DF engines, the spark plug is
replaced by a small liquid fuel injection, whose combustion is promoted by compression.
The natural gas, depending on methane contents, has good resistance to autoignition,
particularly when the mixture is lean; therefore, the engine compression ratio can be as
high as in CI engines. The pilot fuel flame behaves as multiple sources of high-temperature
points that move in the combustion chamber and fire up gaseous mixture burning. The
value of air–fuel ratio (AFR), to avoid knocking and to achieve a stable combustion, varies
between 1.7 and 2.1, depending on brake mean effective pressure (b.m.e.p.) and methane
number; hence, in NG mode, a more refined and precise AFR regulation is required, mainly
during transients. The airflow towards the cylinders can be controlled by acting on the
pressure in the air inlet manifold; a fuel controller determines the right amount of gaseous
fuel to be injected according to the value of the air receiver pressure, which becomes the
main parameter to manage the NG-powered engine load. The turbocharger system must
be designed to supply the proper airflow to the engine at the different loads, and this
requires accurate control of the energy transferred from the exhaust gas to the charge air.
Due to the increased efficiency of current turbochargers for marine engines, at higher loads,
only a part of the exhaust flow is needed to guarantee a stable operation of the compressor
and to avoid a dangerous increase of the boost pressure. A waste gate valve (WGV) on the
exhaust line can control the boost pressure, bypassing the turbine and therefore reducing
the energy to the compressor. The WGV system can be overcome by a variable geometry
turbine that allows the pressure in the exhaust to be controlled manifold. In fact, the
turbine cross-sectional area variation corresponds to a change in the turbine aspect ratio
(AR) and, consequently, in the turbine performance map. There are different technical
solutions to obtain such AR variation, including variable nozzle turbine, variable volute

156



J. Mar. Sci. Eng. 2021, 9, 663

turbine, variable sliding ring turbine. In this study, a variable nozzle turbine area (VTNA)
is considered. Although the peak efficiency of an AR variable turbine is lower than a
corresponding fixed aspect ratio one, the overall turbocharger system efficiency is generally
higher [29]. A further system to control pressure in the air inlet manifold is the adoption of
a bleed valve (BV) at the intercooler outlet to discharge outside part of the airflow at the
compressor outlet. Blowing off part of the air allows a faster and more precise control of
the pressure in the air receiver, suitable for application requiring a constant set value of
AFR during the transient. From the energetic point of view, blow-off operation, as in the
case of WGV or VTNA, dissipates part of the compressor work without the possibility of
further recovery.

2.2. Hybrid Turbochargers

Since the mid-1980s, the non-negligible energy content of the engine exhaust gases has
been used to produce mechanical or electrical energy by means of auxiliary turbines [30].
More recently, taking advantage of the improved efficiency of marine turbochargers, a
parallel configuration has also been adopted by deriving a portion of the exhaust gas
flow (generally about 10%) to the auxiliary turbine. In this context, Mitsubishi Heavy
Industries has developed an HTC, i.e., a turbocharging system, integrating an electric
motor/generator (EM/G) [15]. The shaft of the turbogenerator is equipped with EM/G
in a very compact installation so that a unique turbine drives the compressor and the
electric motor. Installing an HTC gives the possibility to control the turbocharging system
dynamics (i.e., turbocharger speed) and the compressor work to avoid BV use. Thus,
the HTC generator mode can favourably convert the energy, otherwise dissipated by the
blow-off process, into electric power. Alternatively, the HTC electrical machine can operate
as a motor to support the compressor during transients at low loads, when the exhaust gas
energy from the engine cylinders decreases considerably. Due to the very fast dynamics
of electrical machines, this solution can improve greatly the overall system dynamics,
particularly useful in gensets’ application, where sudden and large load variations can
be common. Adding a VTNA gives the turbocharging system two degrees of freedom
to optimise the working point for each load condition. The electric machine should be
designed compactly enough to be mounted on the turbocharger shaft (usually on the
compressor silencer side [15] or in the TC shaft [20]) and to withstand the very high
rotational speeds (12 ÷ 20 krpm). In addition, the electrical design has to take into account
the problems related to the high-frequency currents and magnetic flux variations. Finally,
the HTC speed depends on the engine load condition; therefore, a bidirectional AC/AC
converter is required to adapt current frequency and voltage to the ship’s electric power
grid [21].

3. Simulation Case Study

The present analysis shows the behaviour of a marine DF engine in the TC/HTC
alternative configurations, in both fuel modes. The examined engine is a four-stroke MAN
51-60 DF 12V [31], whose main characteristics are listed in Table 1 [21].

In the original version (i.e., TC equipment), the engine uses a BV to control the pressure
in the air inlet manifold, determining the airflow rate to the cylinders. On the contrary, in
the HTC configuration, illustrated in Figure 1, the BV is no longer essential for controlling
the manifold air pressure, as previously stated. The compressor and turbine characteristics
for the numerical modelling are assumed identical in the two different configurations.
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Table 1. Engine dimensions and design data [21].

MAN 51-60 DF 12V HFO/NG

engine length (mm) 10,254

height (mm) 5517

width (mm) 4713

dry weight (t) 189

cylinders number 12V

bore (mm) 510

stroke (mm) 600

fuel type HFO/NG

brake power (kW) 12,000

speed (rpm) 514

b.m.e.p. (bar) 19.1

s.f.c. (g/kWh) 189/157

charge air pressure (barg) 4.29/3.77

 
Figure 1. Engine equipment scheme in HTC configuration.

3.1. Numerical Modelling

The HTC behaviour in the two possible operating modes is assessed through a com-
plete thermodynamic simulation model of the engine, based on previous work [32]. Later,
the authors updated the code by adding the HTC modelling [21] to show a performance
comparison between the two different turbocharging systems, although limited to the
NG fuel mode. As a next step, the present study aims to extend the comparison analysis
to include the case of the HFO-powered engine in order to have a valid overview of the
influence of the different working conditions and related combustion control methods
on the behaviour of the engine in the two distinct turbocharging configurations. There
is a large scientific literature on modelling of marine diesel engines, while simulation
studies on DF engines are still limited. The models can be developed through specific
programming languages [32,33] or commercial software [34,35], according to the different
purposes [36–39]. The present DF engine simulator is arranged in a modular form, by
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using MATLAB-Simulink software. It is shown in Figure 2, where each engine module is
represented [21].

Figure 2. HTC engine simulator in Simulink environment [21].

The simulation follows a filling and emptying approach, in which each block provides
features and performance of the pertinent engine components by means of algebraic,
differential equations, and steady-state performance maps. The ideal gas equation is
used to model the working fluid, while the specific internal energy and enthalpy are
evaluated according to the temperature and fluid composition. The engine simulator
requires the following main data: cylinders number and pertinent geometric characteristics;
intake and exhaust valve data with opening/closing timing logics; compressor and turbine
performance maps; VTNA variation; BV control details and ambient conditions.

As shown in Figure 2, the engine working conditions are represented by the rotational
speed (N_E), the load signal (LOAD_s), and fuel type (HFO/NG_f). The actual engine cycle
is calculated by the ‘cylinder’ module, in which the thermodynamic processes are modelled
through a single zone approach, depending on the crank angle value. The cylinder inlet
and exhaust mass flow rates through the poppet valves are given by the gas-dynamic
equations adopted for the compressible fluid through a flow restriction (both subsonic and
choked flow conditions are considered).

The combustion heat release fraction, depending on the crank angle and proportional
to the fuel mass burned, is calculated through the double Wiebe equation, while the in-
cylinder pressure variation is determined by integrating, at each crank angle step, the
energy differential equation of a closed system.

However, the authors have already provided a broad explanation of the numerical
model in [21,32]; therefore, this article prefers to delve into the main aspects of combustion
control and power management, depending on the specific operating modes of the engine.
The engine operates in the Miller cycle mode, being equipped with variable timing of the
opening and closing phases of the intake valve. In this regard, different settings depend
on fuel type (HFO or NG) and engine load, managed by the ‘engine governor’ module
(Figure 2) giving the valves timing control signal (VT_cs) as output.

To optimise the engine performance under all operating conditions, the turbine of the
turbocharger is characterised by a variable nozzle area (VTNA). This could represent a
problem in the case of DF engines, because of the significant difference between the fuels’
lower heating value (42,700 kJ/kg for HFO, 49,000 kJ/kg for NG), the substantial difference
in the combustion processes, and in the cylinder air–fuel ratios. For these reasons, the
optimal turbocharger performance is different depending on the fuel used.
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According to manufacturer indications [40], the VTNA is adopted only when using
NG as fuel, while maximum turbine nozzle area is selected for the engine powered by
HFO, under all operating conditions. Indeed, the exhaust gas flow rate is significantly
higher over the entire operating range of the engine in HFO mode; therefore, the turbine
in fully open condition can exploit all the exhaust thermal power. On the contrary, the
gas mass flow rate is reduced by about 20% in NG mode [31], and therefore, it requires
an appropriate adjustment of the turbine nozzle area, as the engine load decreases. The
simulation of the VTNA turbine is based on the typical steady-state turbine performance
maps [33]. As shown in Figure 3, reduced mass flow rate (M

√
Toi/poi) and efficiency (ηT)

are functions of the expansion ratio. The VTNA is described by different curves, depending
on the variable nozzle turbine actuator signal (VTNA_as), which is an output of the ‘VT
nozzle area governor’ block in Figure 2. The influence of this parameter is evident in the
generic turbine performance curves reported in Figure 3.

Figure 3. Typical VTNA turbine performance map.

The TC turbine variable geometry nozzle ring is controlled, according to the logic
indicated by the manufacturer [40], taking into account inlet and outlet turbine temperature
(T_Ti and T_To), VTNA control signal (VTNA_cs) (depending in turn on the used fuel),
compressor outlet pressure (p_Co), and turbocharger shaft speed (N_TC).

3.2. Engine Load Control

In the original version of the considered DF engine [31], equipped with a traditional
TC, the engine load, proportional to the delivered torque, is controlled in different ways,
depending on the fuel type used. When the engine is fuelled by HFO, the reference
thermodynamic cycle is the diesel one; therefore, the classical approach of graduating the
fuel mass injected into the cylinders is adopted. The engine load control considers also the
BV opening, according to a logic depending on the engine speed and the fuel mass injected
into the cylinders, as reported in [31]. In NG mode, the engine torque is controlled only by
the BV, since the NG injection system keeps an almost constant value for the air–fuel ratio
(about twice the stoichiometric value), in accordance with the Otto cycle. Similar to the
HFO mode, an increase of the BV opening determines an engine torque decrease and vice
versa. The amount of the bled air at the different operating points represents the capability
of the control system to increase more or less quickly the boost pressure, depending on the
manifold volume; when the BV is completely closed, there is the maximum increase in the
inlet manifold pressure. In the engine simulator, the BV is modelled in the same way as
a cylinder poppet valve [32]. On the contrary, in HTC engine configuration, the EM/G
governor can vary its delivered electric power to control the turbocharger shaft speed [21],
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while the BV remains always closed. In fact, the HTC speed is obtained hrough he shaft
dynamics equation as follows:

dω/dt = (1/J)·(Q′
T − Q′

C − Q′
EM/G) (1)

where ω is the HTC shaft angular speed, J the rotor inertia, Q′
T, Q′

C, and Q′
EM/G, respec-

tively, the torque of HTC turbine, compressor, and electric motor/generator. Equation (1)
shows that the HTC speed can depend on the EM/G torque (Q’EM-G), which can be used
to control the turbocharger speed in both fuelling modes. In addition, the electric power
generated by the EM/G is available to satisfy part of the ship’s electric load. The engine
dynamic performance can also be improved by allowing the electrical machine to operate
as a motor during the load transients. In the Simulink model, the ‘engine governor’ block
is able to manage the engine load in all the possible engine control configurations (use of
BV or HTC EM/G) and working conditions (i.e., HFO or NG fuel, constant or variable
speed load). In particular, in the HTC engine configuration, the ‘engine governor’ block is
scheduled to maintain the same working conditions of cylinders and turbocharging turbine
considered in the case of the original TC, corresponding at the same engine load and speed.
This is possible through its output EM/G control signal (‘EM/G_cs’ in Figure 2), which
controls the EM/G delivered electric power (‘P_el’, output of the ‘electric motor-generator’
block). The ‘P_el’ parameter has an influence on the Q′

EM/G value, therefore on the HTC
angular velocity (ω), according to Equation (1).

4. Results and Discussion

In this section, the simulator results obtained for the TC engine configuration are
compared with the engine data sheet [31], referred to as steady-state working conditions
between 25% and 100% of the load, both at constant (514 rpm) and at variable speed.

Table 2 shows the results of this comparison as percentage errors, for both possible
fuels (HFO or NG). The table (where Co and To represent the compressor and turbine outlet
sections) shows good accuracy of the engine simulator results, particularly at medium-high
engine loads, for both types of used fuels. No significant differences between constant and
variable speed running conditions are detected.

Table 2. Errors (%) comparison between reference data and simulation.

Delivered
Engine Power

Results at Constant Engine Speed (514 rpm): Without Brackets
Results at Variable Engine Speed: In Brackets [ ]

% (rpm) s.f.c Co Air Mass Flow Charge Air pr. Co Temp. To Temp.

HFO NG HFO NG HFO NG HFO NG HFO NG

100 (514 rpm) 0.21 0.49 0.06 0.32 0.12 −0.23 1.37 0.46 0.00 1.05
[0.17] [0.36] [−0.11] [0.21] [0.08] [0.07] [−0.56] [0.18] [−0.32] [0.82]

85 (514 rpm) −0.79 −0.57 −2.18 0.78 −0.48 1.02 −1.03 0.01 1.23 1.36
[−0.65] [−0.46] [1.82] [0.85] [−0.36] [0.74] [1.08] [0.02] [1.15] [0.93]

75 (501 rpm) 0.29 −0.45 −0.97 −1.52 −1.97 2.21 −1.23 0.00 0.87 1.39
[−0.31] [−0.48] [−0.45] [−1.08] [−2.04] [1.51] [1.74] [0.02] [−1.06] [1.78]

50 (442 rpm) −0.19 0.24 0.31 −0.65 −1.21 1.52 −1.42 1.38 −2.11 2.42
[0.43] (0.71] [−0.19] [−1.02] [−0.84] [1.03] [1.05] [1.53] [−1.73] [1.67]

25 (402 rpm) −1.01 −0.34 _ _ _ _ _ _ _ _
[−0.67] [−0.43]

As regards the engine efficiency (ηE), the simulation results reported in Figure 4a
(HFO-powered TC engine) and Figure 4b (NG-powered TC engine) depend on engine
power, fuel mass flow rate, and fuel lower heating value. The data are normalised with
respect to the TC engine configuration, working at the maximum continuous rating (MCR)
of the HFO-powered engine. The figure shows for both fuel types a very good agreement
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between calculated and reference data, in every operating condition (constant/variable
speed). The NG mode is more efficient than HFO at high engine loads; on the contrary, the
engine efficiency is greater in HFO mode at very low loads and at variable speed.

 
(a) (b) 

Figure 4. Comparison between calculated and reference efficiencies (normalised with respect to the HFO-powered TC
engine) in diesel fuel mode (a) or gas mode (b).

In order to investigate the influence of some important parameters on engine power
management, the VTNA device performance is assessed in Figure 5. In addition to the
good agreement between simulation and reference data [40], in both conditions of VTNA
fully opened (HFO mode) and for different nozzle areas (i.e., variable VTNA, NG-powered
engine), the best efficiency is provided at 70% of the engine load.

Figure 5. VTNA turbocharger efficiency comparison between simulation and reference data.

The good accuracy of the overall simulation results makes the simulator suitable for
the examined case study.

4.1. Turbochargers’ Influence on Engine Performance

The simulation model is mainly used to show the engine performance differences
due to the use of the HTC as an alternative to the original TC. The comparison is carried
out in both HFO and NG modes, for different engine loads at constant and variable speed
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working points. In detail, Tables 3 and 4 and refer to the engine loads equal to 100%, 85%,
75%, 50%, and 25% of MCR.

Table 3. TC and HTC comparison for different fuels and engine working points at constant speed.

Line Engine Parameters Engine Loads and Fuel Type

1 Engine power (%) 100 85 75 50 25

2 Engine power (kW) 12,000 10,260 9000 6000 3000

3 Engine speed (rpm) 514 514 514 514 514

4 Fuel type HFO NG HFO NG HFO NG HFO NG HFO NG

5 EM/G electric power (kW) 526 498 426 551 320 671 203 562 87 351

6 EM/G electric power (%) 4.38 4.15 4.15 5.37 3.55 7.45 3.38 9.37 2.91 11.70

7 Turbocharger speed (Δ%) −5.29 −4.86 −5.81 −7.51 −4.88 −10.97 −11.31 −28.41 −10.52 −23.68

8 Air compression ratio (Δ%) −9.73 −7.70 −5.72 −10.95 −3.64 −15.15 −5.34 −24.79 −1.37 −17.69

9 Compressor temperature (Δ%) −3.26 −3.85 −2.84 −4.44 −2.09 −5.46 −3.13 −6.52 −1.43 −6.89

10 Compressor air flow rate (Δ%) −8.19 −7.70 −10.53 −10.31 −10.03 −14.47 −15.23 −22.70 −14.68 −16.95

11 Compressor efficiency (Δ%) 2.09 −0.12 1.65 0.65 1.86 1.60 1.21 0.97 2.68 1.06

12 Cylinder air flow rate (Δ%) 0.06 0.01 −0.18 −0.01 −0.31 0.01 0.03 0.01 0.08 0.01

13 Cylinder air temperature (Δ%) −0.29 −0.51 −0.25 −0.68 −0.23 −0.61 −0.06 −0.29 −0.07 −0.79

14 Cylinder exhaust gas flow (Δ%) 0.06 0.01 −0.18 0.02 −0.32 0.01 0.04 0.02 0.08 0.02

15 Turbine expansion ratio (Δ%) −0.03 0.22 −0.51 1.17 −0.24 0.58 −0.17 2.62 −0.15 5.42

16 Turbine inlet pressure (Δ%) −0.03 0.21 −0.18 0.39 −0.28 0.61 −0.22 0.25 0.07 0.32

17 Turbine inlet temperature (Δ%) −0.11 −0.12 0.10 −0.17 0.18 −0.34 −0.07 −0.21 −0.06 −0.58

18 Turbine outlet temperature (Δ%) −0.10 −0.11 0.13 −0.14 −0.21 −0.27 −0.01 −0.10 −0.05 −0.24

19 Turbine efficiency (Δ%) 0.00 0.00 0.00 0.01 0.01 0.01 −0.01 −0.01 −0.01 0.01

20 Engine i.m.e.p. (Δ%) 0.02 −0.02 −0.01 −0.02 −0.01 −0.03 0.03 −0.01 0.00 −0.02

Table 4. TC and HTC comparison for different fuels and engine working points at variable speeds.

Line Engine Parameters Engine Loads and Fuel Type

1 Engine power (%) 100 85 75 50 25

2 Engine power (kW) 12,000 10,260 9000 6000 3000

3 Engine speed (rpm) 514 514 501 462 402

4 Fuel type HFO NG HFO NG HFO NG HFO NG HFO NG

5 EM/G electric power (kW) 526 498 426 551 293 571 98 576 27 226

6 EM/G electric power (%) 4.38 4.15 4.15 5.37 3.25 6.34 1.63 9.60 0.90 7.53

7 Turbocharger speed (Δ%) −5.29 −4.86 −5.81 −7.51 −3.59 −11.85 −22.21 −29.12 −17.15 −21.36

8 Air compression ratio (Δ%) −9.73 −8.19 −5.72 −10.95 −3.84 −14.11 −3.17 −21.69 −1.15 −18.68

9 Compressor temperature (Δ%) −3.26 −3.85 −2.84 −4.44 −1.92 −5.46 −1.23 −6.52 −0.61 −6.89

10 Compressor airflow rate (Δ%) −8.19 −7.70 −10.53 −10.31 −7.41 −13.27 −7.34 −20.66 −6.89 −17.95

11 Compressor efficiency (Δ%) 2.09 0.12 1.65 0.65 2.21 1.71 2.44 1.29 1.09 2.02

12 Cylinder airflow rate (Δ%) 0.06 0.01 −0.18 0.02 0.24 0.01 −019 −0.01 −0.23 0.01

13 Cylinder air temperature (Δ%) −0.29 −0.55 −0.25 −0.63 −0.19 −0.59 −0.14 −0.43 −0.02 −0.66

14 Cylinder exhaust gas flow (Δ%) 0.06 0.01 −0.18 −0.01 0.23 0.01 −0.20 −0.01 −0.23 0.02

15 Turbine expansion ratio (Δ%) −0.03 0.21 −0.51 1.18 −0.49 0.58 −0.22 2.43 0.00 3.29

16 Turbine inlet pressure (Δ%) −0.03 0.22 −0.18 0.16 −0.04 0.53 −0.17 0.34 −0.08 0.27

17 Turbine inlet temperature (Δ%) −0.11 −0.14 0.10 −0.16 −0.23 −0.39 0.08 −0.26 0.12 −0.45

18 Turbine outlet temperature (Δ%) −0.10 −0.11 0.13 −0.14 −0.19 0.26 0.11 0.15 0−09 −0.33

19 Turbine efficiency (Δ%) 0.00 0.00 0.00 −0.01 0.00 0.00 0.01 0.01 −0.01 0.01

20 Engine i.m.e.p. (Δ%) 0.02 −0.01 −0.01 −0.03 −0.04 −0.01 −0.02 −0.02 −0.03 −0.02
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The electric power generated by the HTC is also reported in Table 3 as a percentage of
the mechanical engine power (line 6) and shows the significant power rate recovered by
the HTC, for both fuels, especially at high loads (i.e., 100% and 85%).

At the engine medium loads (i.e., 75% and 50%), the recovered power increases in gas
mode, while it reduces progressively in the HFO-powered engine condition. At a very low
engine load (25%), the EM/G power decreases but remains quite substantial in the case of
NG fuel, while it drops considerably for HFO. The different values of the EM/G power
between the two fuels are mainly due to the following:

• A greater NG lower heating value, compared to that of HFO (49,000 kJ/kg for NG;
42,700 kJ/kg for HFO);

• A substantial difference of the combustion processes;
• A different equivalence ratio in the cylinders (this last quantity is defined by dividing

the AFR value by the stoichiometric ratio).

As regards the latter, Figure 6 reports the equivalence ratio values versus the engine
load, at constant and variable speed conditions, for both fuels.

Figure 6. Cylinder equivalence ratio for different fuel types and engine speed conditions.

The equivalent ratio, in the case of constant engine speed and HFO mode, strongly
decreases when the engine load increases, while it remains almost constant in the other
operating conditions.

The quantities in Table 3, from line 7 to line 20, are shown in a form expressed through
the following generic equation:

Δx% = (xHTC − xBV)·100/xBV (2)

where x is the generic variable, and the subscripts HTC and BV indicate, respectively, the
engine adopting the HTC and the conventional TC using BV. The HTC use, in compar-
ison with the original TC, involves not negligible and sometimes high variations of the
parameters, considered from lines 7 to 11 as the TC speed and the compressor behaviour.
On the other hand, the cylinder and the turbine parameters (lines 12–20), as well as the
engine indicated mean effective pressure (i.m.e.p.), show negligible variations in these
parameters consequent to the HTC adoption. This is mainly due to the abovementioned
‘engine governor’ setting of the simulator. Table 4 reports the same simulation analysis,
although referring to the engine working at variable speeds. A similar behaviour is noticed
between the two engine speed conditions.

Figure 7 reports the compressor working points for the HFO-powered engine, accord-
ing to a normalised representation.
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(a) (b) 

Figure 7. Working points in the compressor map for the HFO-powered engine, with original TC (a) and HTC (b), at constant
and variable engine speeds NE.

In particular, Figure 7a, pertaining to the TC engine configuration, shows the working
conditions in the compressor map, for different engine loads (100%, 85%, 75%, 50%, and 25%
of the MCR power) at both constant and variable engine speed settings. The comparisons
with Figure 7b, concerning the HTC compressor map, show a reduction in the compression
ratio, volumetric mass flow, and TC speed in all the engine load conditions. The main
reason for these differences is that the whole air mass flow rate is introduced into the HTC
engine cylinders, while in the case of the original TC, a part of the airflow is discharged
into the environment by the bleed valve (see Figure 1).

The compressor outlet pressure is higher in the TC application, while by using HTC
(at the same engine power and speed), the conditions of the flow in the intake manifold (i.e.,
pressure, temperature) are about the same in the two cases. In fact, with the BV partially
opened to control the TC engine, the air pressure in the intake manifold becomes lower
than the compressor outlet pressure. This does not occur for the HTC, because in this case,
the BV is always closed and the pressure in the intake manifold is practically equal to that
of the turbocharger compressor outlet (except for a small pressure loss due to friction). In
the engine simulation model, the BV effect on the inlet manifold flow conditions is assessed
by the mass and energy dynamic equations [33].

Figure 8a shows again the compressor working points corresponding to the same
engine loads and speeds of Figure 7a but for the NG-powered TC engine. For every engine
load condition, the comparison shows a reduction in the compression ratio, volumetric
mass flow, and TC speed. This difference between the two fuels is mainly due to the same
reasons regarding the power recovered by HTC. The comparison between Figure 8a,b, with
the latter pertaining to the engine equipped with HTC, shows that similar to the HFO mode
and for the same reasons, the HTC for the NG-powered engine also involves a reduction in
the compressor compression ratio, volumetric mass flow, and TC speed.
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(a) (b) 

Figure 8. Working points in the compressor map for the NG-powered engine, equipped with original TC (a) and HTC (b),
at constant and variable engine speeds NE.

4.2. Turbochargers’ Influence on the Engine Overall Efficiency

Figure 9 reports the normalised engine efficiency versus engine load and working
conditions (constant/variable speed) in HFO (Figure 9a) and NG (Figure 9b) engine modes.

 
(a) (b) 

Figure 9. Normalised efficiency of the engine powered by HFO (a) and NG (b) for TC/HTC engine conditions (con-
stant/variable speed).

The HTC engine efficiency is defined as:

ηE HTC% = ((PE + Pel EM/G)·100)/(Mf FLHV) (3)

where Pel EM/G is the electric power delivered by the electric motor/generator.
Both Figure 9a,b show that the use of the HTC increases the overall engine efficiency

by about 2.5% at high loads (85–100% of the MCR power), in both constant and variable
engine speed conditions.

For the HFO-powered engine, Figure 9a shows also that the difference between the
efficiency of the HTC engine and TC engine remains about constant; a slight reduction is
mainly observed at minimum load (25% of the MCR power) when the engine is running at
a constant speed. The reduction in the efficiency difference between TC and HTC is more
evident at the variable speed condition, especially at 25% of the engine load; this is due
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to the strong reduction in the HTC EM/G electric power produced at the low loads, as
reported in line 5 of Table 4.

Figure 9b, relating to the NG engine mode, shows the efficiency advantage already
observed for all engine loads (25 ÷ 100% of the MCR power), with an increase of up to
about 3% at 50% engine load, at variable speed. At constant speed (dash and dot lines
in Figure 9b), the efficiency advantage of the HTC engine increases progressively as the
engine load decreases, to almost 5% at 25% of the engine load.

This different behaviour of the engine powered by HFO or NG is due to several
factors as the VTNA turbocharger for the NG-powered engine (see Figure 5), the different
combustion modes, and reference thermodynamic cycles of the two fuels (i.e., Diesel cycle
for HFO, Otto for NG). Moreover, the two fuels require different cylinder equivalence ratio
values, depending on the engine load (see Figure 6).

5. Conclusions

The present simulation analysis aims to investigate the behaviour of a marine DF
engine for distinct turbocharging configurations and fuel modes. The particular engine
load control, due to the use of an innovative hybrid turbocharger, combined with a proper
combustion control method (depending on whether gas or diesel oil is used), can lead to
significant advantages in the system’s overall efficiency and hence should be considered
for better power management in ships. To this end, an engine simulator has allowed
testing control devices and performance for the examined application. The comparative
analysis of the simulation results represents the main purpose of the work, as the shown
numerical tables and graphs collect useful information for efficient use of the innovative
hybrid system. In this regard, although the HTC use, in comparison with the traditional
turbocharger, leads to significant variations of the compressor operating conditions, no
relevant changes in the engine hot components (cylinder and TC turbine), and consequently,
in the efficiency of the thermodynamic cycle, are present. Again, the mass flow rate of
the exhaust gases and their temperature downstream of the turbocharging turbine do not
depend on the type of turbocharger used (original TC or HTC). This last aspect could
be important because, for example, the turbocharger configuration would not affect the
possible installation of WHR steam plants to improve the ship’s energy efficiency further.

Finally, with a view to the development of adequate smart control strategies, it is
useful to notice a more significant increase in the overall efficiency of the NG-powered
HTC engine, especially at low and medium loads.
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Abbreviations

Nomenclature
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AFR Air–fuel ratio
AR Aspect ratio
b.m.e.p. Brake mean effective pressure
BV Bleed valve
CI Compression ignition
DF Dual fuel
ECA Emission control areas
EEDI Energy efficiency design index
EM/G Electric motor/generator
FLHV Fuel lower heating value
HFO Heavy fuel oil
HTC Hybrid turbocharger
i.m.e.p Indicated mean effective pressure
IMO International maritime organisation
J Rotor inertia
m or M Mass
MCR Engine Maximum Continuous Rating
NG Natural gas
P Power
PI Positive ignition
Q′ Torque
s.f.c. Specific fuel consumption
T Temperature
TC Turbocharger
V Volume
VTNA Variable turbine nozzle area
WGV Waste gate valve
WHR Waste heat recovery
x Generic variable
xb Fuel mass burned fraction
η Efficiency
ω Angular speed
Subscripts

a Ambient
b Burned
BV Bleed valve
C Compressor
E Engine
el Electric
EM/G Electric motor/generator
f Fuel
HTC Hybrid turbocharger
i Inlet
o Outlet
T Turbine
TC Turbocharger
Symbols
EM/G_cs Electric motor/generator control signal
HFO/NG_f Engine fuel type
HFO/NG_Mf Cylinder fuel mass flow rate
LOAD_s Engine load signal
M_BV Bleed valve mass flow rate
M_C i Compressor inlet mass flow rate
M_cy Cylinder inlet mass flow rate
M_cy o Cylinder outlet mass flow rate
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M_T o Turbocharger turbine outlet mass flow rate
N_E Engine speed
N_TC Turbocharger speed
p_C o Compressor outlet pressure
p_cy i Cylinder inlet pressure
p_T i Turbocharger turbine inlet pressure
P_el Electric motor/generator electric power
Q′_C Turbocharger compressor torque
Q′_E o Engine torque
Q′_EM/G Electric motor/generator torque
Q′_T Turbocharger turbine torque
T_C o Compressor outlet temperature
T_cy i Cylinder inlet temperature
T_cy o Cylinder outlet temperature
T_T i Turbocharger turbine inlet temperature
T_T o Turbocharger turbine outlet temperature
VT_c Cylinder valves timing control signal
VTNA_as Turbocharger variable turbine nozzle area actuator signal
VTNA_cs Turbocharger variable turbine nozzle area control signal
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Abstract: Simulation models of the ship propulsion system play an increasingly important role, for
instance in controller design and condition monitoring. However, creation of such simulation models
requires significant time and effort. In this paper, the application of deterministic identification
techniques on a DC-electric ship drive train is explored as an alternative for data-driven identification
techniques that require extensive measured data sets collected over long periods of ship operation.
First, a nonlinear and a linear simulation model that represent the dynamic behavior of the propulsion
plant are developed, and the main parameters to be identified are defined. Then, a set of experiments
on a model scale boat in the bollard pull condition are conducted using an ad hoc experimental setup
and data acquisition system. Subsequently, various types of identification techniques are applied,
aiming to determine the unknown model parameters. Eventually, a comparison is made between
experimental and simulated results, using the different sets of the estimated parameters. The value
of the demonstrated approaches lies in the fast determination of unknown system parameters. These
parameters can be used in simulation models, which in turn can be used for various purposes such
as system controller development and tuning. Furthermore, periodic determination of system param-
eters can support condition monitoring to detect faults or degradation of the system. The latter point
directly deals with the condition-based maintenance issue; in fact, monitoring the propulsion plant
parameters over time could allow for better management (and timing) of maintenance. Although
the developed ideas are far from ready to be used on the full-scale, the authors believe that the
methodologies are promising enough to be developed further towards a full-scale application.

Keywords: marine propulsion system; parameter identification; data-driven ship propulsion model;
condition-based maintenance; digital twin

1. Introduction

Simulation models of the ship propulsion system play an increasingly important role,
for instance in controller design [1,2] and condition monitoring [3]. The drawback of using
simulation models, however, is that the required parameters are often unknown or very
uncertain. Therefore, building a simulation model and determination or estimation of its
parameters can be a time-consuming task, which often requires significant experience (see
for recent examples [4–6]). After building and verifying the model, its validity can some-
times be quantified, at least for a specific domain of applications [7]. Periodic re-validation
is not commonly reported, while it is known that many of the physical parameters that
play a role in the performance of the ship propulsion plant are time-variant. Examples of
time-variant factors are fouling of the hull and propeller, turbocharger contamination, and
so on.

A comprehensive description of identification techniques is given by Ljung [8]. Since
the 1990s artificial neural network techniques have been widely used to identify electric
motor parameters [9–11] as well as linear and nonlinear least-squares algorithms [12,13].
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Despite the abundant literature on identification techniques, publication of their appli-
cation to determine marine propulsion plant parameters is not widespread. A noteworthy
exception is the research effort that has been put into the identification of parameters of a
dynamic thruster performance model for remotely operated underwater vehicles, which
attempts to capture the dynamic response of propeller thrust and torque to the applied
electric motor torque [14–25]. The following observations are made regarding these papers:

• They do not all adhere to general accepted ship propulsion theory and notation. In
various papers the system parameters are lumped together such that direct comparison
between different cases becomes difficult, and in the opinion of the authors of this
paper, the physical viewpoint is easily lost;

• Various papers account for the axial and/or rotational acceleration of the water flow-
ing through the propeller disc. The assumptions and modeling approach, however,
differ. Although the effect of flow dynamics on propulsion performance is very in-
teresting, this effect is not included in this paper and does not seem to lead to poor
agreement between simulation and measurement;

• None of the papers includes a differential equation for motor current, which is in-
cluded in this paper to ensure that all relevant electric parameters are captured in
the model.

• Examples are given of the use of various input signals for identification purposes, such
as the triangular wave, square wave, and single sinusoidal wave. In this paper the use
of multiple sinusoidal waves and band-limited white noise as input signals will be
treated as well, aiming to ensure good agreement between model and measurement
over a wide frequency domain.

Data-driven modeling approaches such as those reported by Coraddu et.al. [26]
might offer benefit in the sense that by making use of large amounts of historical data in
combination with advanced algorithms, a ”superfit” model can be generated. Drawbacks
of using such a black box approach are the amount of required data, the time over which the
data are to be collected, and the lack of insight on the physical behavior of the underlying
system.

Although the data-driven approaches based on huge datasets will, without doubt,
play an important role in the future, in this paper multiple identification techniques are
proposed to obtain the propulsion system parameters, based on short (but information-
rich) controlled performance tests, and are tested on model scale. The potential benefit of
application of these approaches on full scale is that they can be used to, in a relatively short
time span (possibly in real time), quantify system performance during sea acceptance trials,
after periodic maintenance or following a system upgrade. Comparison of this fingerprint
with sister ships or with previous fingerprints could potentially be used to understand
the state of decay of components giving a significant contribution to a condition-based
approach to ship maintenance operations [27].

To demonstrate the idea, a model scale ship available at Delft University of Technology
(DUT) and Genoa University (UNIGE) is used. First, the non-linear system model of its
propulsion plant including electric DC-motor, gearbox, and propeller is derived and
subsequently linearized. Both models contain the same unknown parameters. Note that
this paper focuses on bollard pull conditions, although the ideas can be extended to free
sailing conditions as well.

Subsequently, multiple identification methods are explained and applied, making
use of data collected during various types of experiments. The resulting parameter sets
are implemented in the non-linear and linear simulation models, and their behavior is
validated in both time and frequency domains.

At the end of the paper, a possible path is given for the development of full-scale ship
propulsion ”fingerprinting” techniques through system performance tests. Such a path in-
cludes simulation-based research and both model-scale and full-scale experimental research.
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2. Ship Drive Train and Its Mathematical Model

The ship propulsion simulation model is based on a model scale ship called “Tito
Neri”, which is shown in Figure 1. A detailed picture of its azimuthing thrusters is shown
in Figure 2, and its main particulars are given in Table 1. A schematic representation of
one of its two drive trains is given in Figure 3. It consists of a DC motor that drives an
azimuthing thruster with a ducted fixed pitch propeller. Although not shown in the figure,
the upper shaft is supported by a shaft bearing.

Figure 1. Tito Neri overview.

Figure 2. Tito Neri azimuthing thrusters from astern.

Figure 3. Schematic representation of Tito Neri drive train.
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Table 1. Main particulars of Tito Neri.

Loa 0.97 [m]

Boa 0.32 [m]

draft forward/aft 0.10/0.13 [m]

displacement Δ with/without battery 15.4/13.5 [kg]

upper bevel gear teeth ratio 13:39 [-]

total gear reduction ratio igb,13 3 [-]

Propeller diameter D 0.065 [m]

The system behavior is governed by two differential equations that interact with each
other. One is related to the (faster) electrical circuit, and the other related to the (slower)
mechanical part of the drive train. The differential equation commonly used to model an
electric DC motor circuit is given by

La
dia

dt
= Ua − Keωem − Raia (1)

in which La is the inductance, ia the current, Ua the supply voltage, Ke the motor coefficient,
ωem the motor speed (in rad/s), and Ra the resistance.

The reduction ratio between motor shaft and intermediate vertical shaft igb,12 between
intermediate vertical shaft and propeller shaft igb,23 and the resulting total reduction ratio
igb,13 are defined by

igb,12 =
ωem

ωint
, igb,23 =

ωint
ωp

, igb,13 = igb,12 igb,23

The differential equation for electric motor speed, assuming constant friction torque
on all three shafts, is given by

Ip
dωem

dt
= Mb,em − Mf −

Mp

igb,13
(2)

in which brake motor torque Mb,em is given by

Mb,em = Keia (3)

and in which the total polar moment of inertia is given by

Ip = Ip,1 +
Ip,2

i2gb,12
+

Ip,3

i2gb,13

and in which the total friction is given by:

Mf = Mf ,1 +
Mf ,2

igb,12
+

Mf ,3

igb,13

The propeller torque Mp and thrust T are modeled following Carlton [28], making
use of the torque and thrust coefficients KQ and KT at advance ratio J = 0:

Mp =
Q
ηR

=
KQ,J=0 ρ ω2

emD5

ηR4π2 i2gb,13
(4)
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in which Q is the open water propeller torque, ηR is the relative rotative efficiency, ρ is the
water density, and D is the propeller diameter. Although not further used in this paper,
propeller thrust T and bollard pull force FBP are modeled by

T =
KT,J=0 ρ ω2

emD4

4π2i2gb,13
(5)

and
FBP = kpT(1 − t) (6)

in which kp is the number of operating propellers, and (1 − t) corrects for thrust deduction.
To summarize, the following system of differential equations describes the nonlinear

system dynamics: {
La

dia
dt = Ua − Keωem − Raia

Ip
dωem

dt = Keia − Mf − Mp
igb,13

(7)

in which Mp is given by Equation (4). The unknown parameters of this model are induc-
tance La, resistance Ra, motor coefficient Ke, polar moment of inertia Ip, friction torque Mf ,
propeller torque coefficient KQ,J=0, and relative rotative efficiency ηR. However, KQ,J=0
and ηR are observationally equivalent, meaning that (with the sensors in this experimental
setup) they cannot be distinguished from each other. Therefore, propeller torque coefficient
and relative rotative efficiency are combined into a single combined unknown parameter
KQ,J=0

ηR
, leaving a total of six unknown parameters.

Note that the unknown parameters KT,J=0 and (1 − t) are not further considered in
this paper due to difficulties in measuring the small thrust force during the experiment.

Linearized Propulsion System Model and Step-Responses

In this section the ship propulsion system model (7) is linearized, and its analytical
step responses are given. Later these will be shown to be useful tools for the identification
of the unknown parameters.

The linearization process of the ship propulsion plant in free sailing mode is described
in detail in [29,30], although in both papers no electric circuit including DC-motor was
included. Note that in the main text of this paper only the main results are given, and
details of the notation and the full derivations are available in Appendixes A–C. The
normalized and linearized versions of (7) are given by

τem
di∗a
dt

=
Ua,0

Raia,0
δU∗

a − Keωem,0

Raia,0
δω∗ − δi∗a (8)

τω
dω∗

dt
= δi∗a − 2ηtrm,0δω∗ (9)

in which the delta-asterisk notation indicates normalized difference as follows:

δi∗a =
δia

ia,0
=

ia − ia,0

ia,0

such that for example a value of δU∗
a = 0.05 means a +5% perturbation from the nominal

value Ua,0. The two integration constants are defined as

τem =
La

Ra
, τω =

Ipωem,0

Mb,em,0
=

Ipωem,0

Keia,0
(10)

The transmission efficiency ηtrm,0 is related to the friction torque Mf by

ηtrm,0 =
Mb,em,0 − Mf

Mb,em,0
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When Equations (8) and (9) are put in state space notation, this results in the following
linear system: [

di∗a
dt

dω∗
dt

]
=

[
− 1

τem
− 1

τem

Keωem,0
Raia,0

1
τω

− 2ηtrm,0
τω

][
δi∗a
δω∗

]
+

[
1

τem

Ua,0
Raia,0

0

]
δU∗

a (11)

The benefit of this notation is that it can easily be programmed and analyzed in
software like MATLAB. Alternatively, the Laplace transfer function can be used. As
derived in Appendix B, the two transfer functions from the supply voltage δU∗

a to the two
state variables electric current δi∗a and rotation speed δω∗ are

δi∗a (s)
δU∗

a (s)
=

(τω,es + 1) Ua,0
Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(12)

δω∗(s)
δU∗

a (s)
=

1
2ηtrm,0

Ua,0
Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(13)

in which τω,e =
τω

2ηtrm,0
. The transfer function for current is recognizable as a summation of

a bandpass system and a (lowpass) second-order system, while the transfer function for
motor speed is (only) a second-order lowpass system.

Analytic expressions for the two poles s1 and s2, the single zero z1, and the two
DC-gains of the transfer functions are derived in Appendix B.

As derived in Appendix C the approximate response of motor speed to a unit step in
supply voltage is given by

δω∗(t) ≈ K
(
1 − es2t) (14)

in which K =
Ua,0

Keω0+2ηtrm,0Raia,0
. The response of current to a unit step in supply voltage is

δi∗a (t) ≈ KLP
(
1 − es2t)+ KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t

)
(15)

with KLP =
Ua,02ηtrm

Keω0+2ηtrm,0Raia,0
and KBP =

Ua,0
Laia,0

.

3. Applied Identification Techniques

Once both the non-linear and the linearized plant models have been formulated,
measurement data can be used to determine the unknown model parameters by making
use of parameter identification techniques.

Many different identification techniques can be used, such as for instance the various
possibilities that are included in the ”system identification” toolbox of MATLAB. A possi-
bility is to search for an optimal parameter vector θ by minimizing the (weighed) sum of
squared errors given by the cost function Vt:

Vt(θ) =
1
N

N

∑
t=1

e(t, θ)TW(θ)e(t, θ) (16)

where the error e is the difference between the vectors of measurement and simulation,
containing all output signals that are to be taken into account:

e(t) = y(t)measured − y(t)model (17)
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Another approach, which prevents usage of all time samples in the minimization
algorithm and which ensures a balanced representation of system behavior throughout the
frequency domain, is to define the cost function Vω directly in the frequency domain:

Vω(θ) =
1
N

N

∑
ω=1

e(ω, θ)TW(θ)e(ω, θ) (18)

in which the error is defined as the Euclidean norm of the error in the complex frequency
response:

e = ||Y(ω)

X(ω)
− G(θ, ω)|| (19)

in which Y(ω)
X(ω)

indicates the measured frequency response data (FRD), model and G(θ, ω)

indicates the modeled frequency response.
Within the two main groups “time domain approach” and “frequency domain ap-

proach”, there are various possible refinements and alternatives. For an in-depth review,
reference is made to Ljung [8].

The “goodness of fit” of a model with a given parameter set can be expressed in various
ways. The quality metrics ”FitPercent” and mean squared error “MSE” are used here:

FitPercent = 100
(

1 − ||ymeasured − ymodel ||
||ymeasured − ymeasured||

)
(20)

MSE =
1
N

N

∑
t=1

eT(t)e(t) (21)

Equivalent versions of quality metrics can be defined for the goodness of fit in the
frequency domain.

From the following non-exhaustive list of possible identification techniques, in this
paper three different parameter identification procedures (1, 4, and 5) are applied to the
“Tito Neri” drive train in the bollard pull condition:

1. a time domain identification approach based on multiple steady operating points and
a step response;

2. a time domain approach, aiming at minimization of cost function (16) by fitting the
linear model (11);

3. a time domain approach as 2, but now fitting the non-linear model defined by (7)
and (4);

4. a frequency domain identification approach based on experimental FRD generated
by processing the experimental time domain data obtained with multiple single
frequency input voltage signals with a correlation algorithm;

5. a discrete transfer function estimation based on the Welch method combined with a
modified periodogram method [31].

Note that the frequency domain approaches 4 and 5 only differ in the way that they
generate the experimental FRD. The subsequent parameter identification procedure is the
same and aims to minimize cost function (18). 2 and 3 are not taken into account in the
present work since they are investigated in open literature.

3.1. Time Domain Identification: 1

In this first method, for the sake of computational simplicity, the procedure to obtain
parameters is split into two parts, assuming that the parameters do not change during the
experimental time.
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First, the stationary condition dωe
dt = 0 and dia

dt = 0 is considered to reduce the number
of unknowns, and a least-squares algorithm is applied. Starting from Equation (7) it is
possible to obtain {

0 = Keia − Mf − Mp
igb,13

0 = Ua − Keωem − Raia
(22)

These equations are rearranged in matrix notation as follows, separating known from
unknown variables:

(
1 −ia 0 c
0 ωem ia 0

)⎛⎜⎜⎜⎝
Mf
Ke
Ra

KQ,j=0
ηR

⎞
⎟⎟⎟⎠ =

(
0

Ua

)
(23)

where c is obtained from Equation (4):

c =
ρω2

emD5

4π2i3gb,13
(24)

In this way the system consists of two equations and four unknown variables (Mf , Ke,

Ra, and
KQ,j=0

ηR
), such that ∞2 solutions exist. However, if measurements at n different

steady state operating points are available, n quadruplets have to satisfy the system of
Equation (23), resulting in the following over-determined system:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −ia,1 0 c1
... ... ... ...
1 −ia,n 0 cn
0 ωem,1 ia,1 0
... ... ... ...
0 ωem,n ia,n 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Mf
Ke
Ra

KQ,j=0
ηR

⎞
⎟⎟⎟⎠ =

(
0

Ua

)
(25)

The last can be written in general form, as follows:

Ax = b (26)

The system (25) cannot be solved in principle since it is overdetermined. Although an
exact solution does not exist, an approximate solution to (25) can be determined by means
of, for instance, a (weighed) least-squares approach; in our case we used unweighted least
squares. The final goal, according to notation reported in (26), is to evaluate the vector x

that minimizes the squared l2norm of the residual, naming A, x, b, the coefficient matrix,
the unknown vector, and the constant terms vector, respectively. The quantity S(x) to be
minimized is written as follows, in matrix notation:

S(x) = ||b − Ax||2 (27)

Differentiating the above equation, and setting to zero the solution, it is possible to
obtain the Normal Equation:

AT Ax = AT(b) (28)

If AT A is non-singular, the solution is given by solving the linear algebraic system (28).

Once Mf , Ke, Ra, and
KQ,j=0

ηR
are known, the second part of the procedure is deter-

ministic. By using Equation (10), it is possible to evaluate the inertia Ip and the motor
inductance La :

La = τemRa

Ip = τω
Keia

ωem,0

(29)
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To obtain the two parameters, knowledge of the time constants τem and τω is necessary,
and the step response of both current and motor speed reported in Appendix C is used.
From Equation (14) and fixing whichever time, t∗ (authors suggest to use the t∗ when the
response is at 63.2%), since parameters are time independent, it is possible to obtain s2, as
follows:

s2 ≈ 1
t∗ ln

(
1 − δω∗(t∗)

K

)
(30)

Substituting the value of s2 into Equation (A34) and remembering the difference
between τω,e and τω gives

τω ≈ −C
s2

ηtrm,0 (31)

The evaluation of τω, as it can be intuitive from the last equations, it is an approximate solution.
The electric time-constant τem is more challenging to estimate. As reported in Ap-

pendix C the step response of current could be obtained as a summation of two terms. The
first term is represented by a low-pass filter in its simplified form and the second by a
bandpass filter as reported in Equation (15). The total response is known from the experi-
ment, and all terms describing the low-pass filter are known at this stage; so, numerically,
it is possible to obtain the shape of the bandpass filter response over time. A specific time
called t∗ should be fixed, and at that time the value of δi∗a,BP(t

∗) can be obtained. After
some adjustment the following relation is obtained:

δi∗a,BP(t
∗)− Ua,0

τemRaia,0

(
1

− c
τω,e

+ 1
τem

)(
e−

c
τω,e t∗ − e−

1
τem t∗

)
= 0 (32)

From the previous equation, it is not possible to obtain a solution in closed form for
τem, and numerical methods must be used (i.e., bisection methods or Newton–Raphson
method). Eventually, using Equation (29) La can be obtained.

3.2. Frequency Domain Approach Using Sinusoidal Input Voltage Signals 4

The idea of the this method is to generate a sinusoidal voltage of a specific frequency
and amplitude, to superimpose it on a constant voltage value Ua,0, and to apply the
resulting signal as a voltage input to the system, while recording the response of current ia
and electric motor speed ωem. Based on the input and response at each frequency, the gain
and phase of the transfer functions of the system are estimated with a correlation-based
single-frequency approach [8,32], in line with Figure 4. Since this method does not deliver
the unknown parameters of the model directly, it is called a non-parametric identification
method. The non-parametric frequency response data (FRD) model can however be used
as a basis to determine the parameters of the model.

Model 

scale ship

Signal 

generator

Signal 

logging

ia

ωem
Amplifier

User input

via GUI

UaUa,set

Figure 4. Block diagram of experimental setup.

In more detail the basis of the method is to generate two harmonic signals:

x(t) = X sin(ωt)

and the out-of-phase signal

x′(t) = X sin(ωt + π/2) = X cos(ωt)
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of which the first signal is used to excite the system. The response of the system is

y(t) = Y sin(ωt + ϕ) + n(t)

in which n(t) is a noise signal which is assumed uncorrelated with input and output signals.
Both input signals x(t) and x′(t), in combination with the output y(t), are used to

determine the cross-correlations and auto-correlation according to

Rxy =
1
T

T∫
0

X sin(ωt) Y sin(ωt + ϕ)dt + Rxn =
XY
2

cos ϕ + Rxn (33)

Rx′y =
1
T

T∫
0

X cos(ωt)Y sin(ωt + ϕ)dt + Rx′n =
XY
2

sin ϕ + Rx′n (34)

Rxx =
1
T

T∫
0

X sin(ωt)X sin(ωt)dt =
X2

2
(35)

where X is the amplitude of the input signal (in this case the amplitude of voltage δU∗
a ),

and Y is the amplitude of the output signal under consideration (in this case the amplitude
of motor current δi∗a or motor speed δω∗

em). Rxn is the cross-correlation between input and
noise, which reduces to zero with increasing measurement time. Division of Equation (33)
by Equation (35) delivers the in phase (real) component of the frequency response:

Rxy

Rxx
=

Y
X

cos ϕ (36)

while division of Equation (34) by Equation (35) gives the out-of-phase (imaginary) part of
the response:

Rx′y
Rxx

=
Y
X

sin ϕ (37)

Based on the real and imaginary components the gain and phase of the transfer
function are calculated by

Y
X

=

√(
Rxy

Rxx

)2
+

(Rx′y
Rxx

)2

(38)

ϕ = arctan
(Rx′y

Rxy

)
(39)

By using this approach, the gain and phase can be determined experimentally for mul-
tiple appropriately spaced frequencies, resulting in a non-parametric frequency-response
data (FRD) model. The results of the procedure are presented in Table 2. Subsequently,
the procedure to derive the unknown system parameters from the obtained FRD model is
based on minimization of the cost function (18).

The main advantage of the correlation method to determine an FRD model is the
inherent high noise immunity.
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Table 2. Experimental FRD based on single sinusoidal testing, followed by processing with the
correlation approach.

ω [rad/s] 0.3 1 5 10 20 100 500 1000 5000

| δi∗
δU∗

a
| [-] 0.71 0.79 1.62 2.31 2.94 3.08 2.99 2.90 2.11

∠ δi∗
δU∗

a
[deg] 8.6 19.4 37.7 31.3 19.6 3.5 −4.5 −8.8 −26.8

| δω∗
δU∗

a
| [-] 1.24 1.18 1.05 0.81 0.54 0.12 0.02 0.01 0.00

∠ δω∗
δU∗

a
[deg] −2.2 −7.0 −26.2 −45.4 −64.3 −95.5 −144.9 146.3 20.7

3.3. Noise Input Testing: 5

An FRD model of a system can also be determined from the measured system response
to a random input signal. This approach is often practical for processes that cannot be taken
off-line for dedicated testing, but due to their nature do contain measurable random input
disturbances. In this paper, a sequence of random supply voltage will be superimposed
on the nominal supply voltage. The method is based on the relation between the transfer
function H(jω), power spectral density of the input Sxx(jω), and cross-spectral density
Sxy(jω) [8,31]:

H(jω) =
Sxy(jω)

Sxx(jω)
(40)

The estimation of both the input power spectral density Sxx and the cross-spectral
density Sxy requires sufficient length of data, and can be improved by application of
suitable “windowing” and “smoothing”, which can be done by averaging the spectrum
derived from multiple segments of the total time-trace. Secondly, it is possible to increase
the number of portions of a given time-trace by allowing a specific percentage of overlap
between the parts.

For this method to work well, it is essential to ensure that the input signal is persistently
exciting, which indicates that the signal power is sufficiently large for all frequencies
of interest.

When using this method, the coherency γ usually is presented side by side with the
estimated transfer function. It expresses the correlation between the input and output
signal of the system with a value between 0 and 1, where 0 means no correlation and
1 means full correlation, thereby giving an idea of the quality of the estimated transfer
function at different frequencies. Note that operations such as windowing, smoothing, and
quantization of signals due to A-D conversion in the measurement system and noise in the
measurement influence the coherency negatively.

4. Experimental Campaign

4.1. Setup and Experimental Matrix

The schematic experimental setup used is shown in Figure 4. The signal generator is
operated via a customized graphical user interface and delivers the required voltage signal
Ua,set to the amplifier, which in turn feeds the electric motor of the model scale ship with
the supply voltage Ua. Two sensors are installed: a current sensor just before the electric
motor and a 15 pulse encoder mounted on the motor shaft. The two sensor signals ia and
ωem, together with the voltages Ua,set and Ua, are recorded with a data acquisition system.
Although not discussed in detail in this paper, the transfer function of the amplifier itself
could be determined experimentally, showing that the amplifier only causes a small drop
in voltage (<1%), and a small phase lag (<2°) over the frequency range of interest.

Several experiments with varying sequences of voltage Ua,set have been done. The
sampling rate of the data acquisition system was established based on the goals and
duration of the specific experiment.

Trials were performed with the following input voltage signals: one staircase, nine
sinusoidal waves with the different amplitudes and frequencies, a band-limited white noise
input signal, and at the end a mix of the previous signals. Each identification technique
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uses data from a specific (set of) experiments. The final “mixed” test is used for validation
purposes, as reported in Table 3.

Table 3. Experimental test matrix.

Test Identification Validation

Staircase yes (1) yes (4)

9 × Sinusoidal yes (4) yes (1,4,5)

White noise yes (5)

Mix of signals yes (1,4)

4.2. Inspection of Current and Motor Speed Signals

Initial measurements of the current revealed some unexpected behavior. The current
signal showed a considerable amount of noise, and the reason was investigated. In partic-
ular, specific higher-order frequencies appeared when inspecting the FFT of the current
signal. It was hypothesized that these higher-order frequencies, which are not captured by
the linear or non-linear system model, could be caused by unmodeled system behavior. Ex-
amples could be, for instance, the gear-meshing frequency, shaft misalignment, unbalance
in the shafting system, propeller blade passing frequencies, or cogging of the electric motor
due to a discrete number of permanent magnets and the gaps in between them.

To obtain insight into the cause of the higher-order frequencies, an order tracking
of current in the motor speed range from 220 to 1995 rpm was carried out, as shown
in Figures 5 and 6. The figures reveal that although many harmonic frequencies were
present in the current signal, the 6th and 12th harmonics of motor speed were particularly
dominant. A similarly strong 6th and 12th harmonic were found when carrying out the
test with disconnected gearwheels. Manual rotation of the motor shaft revealed a strong
cogging effect at 6 times the motor shaft rate. Based on this it is concluded that the root
cause of the higher-order frequencies lies in the interaction between rotor and stator of the
electric motor.

Filtering has been considered to reduce the visually disturbing effect of cogging-
related harmonics from the plotted current signal. However, by filtering additional phase
lag would be introduced, which would result in less steep current increase following a step
in voltage, and it could reduce the amplitude of the current signal following a sinusoidal
voltage input. In the end, it was decided to show the unfiltered current measurements.

Figure 5. Order waterfall plot.
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Figure 6. FFT waterfall plot.

In addition, the motor speed signal showed unexpected behavior, which appeared to
be caused by the sensor. A sketch of the encoder disk used in the experiments is shown in
Figure 7. It is a round disk with 15 holes, which causes 15 pulses per revolution, generated
by a photosensitive sensor. The motor speed is derived from the time interval between
two upcoming flanks of the pulses. The resulting motor speed signal as shown in Figure 8
shows a repeating sequence of 15 motor speed values, indicating that the angle ΔΨi,j
between the holes varied slightly around 360/15 = 24°. No further corrections have been
made to the signal, which explains the relatively ”noisy” motor speed signal presented in
the following sections.

��i-j

Figure 7. Encoder disk.
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Figure 8. Magnification of motor speed time history.
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5. Results and Discussion

In this section, the results obtained with the different identification techniques are
reported. Both the identification and validation analyses are carried out in both time and
frequency domains.

In Table 4 the steady-state operating points recorded during the staircase experiment
are reported. The time domain approach (1) uses all the five operating points to deter-
mine four out of the total of six unknown parameters. To determine the remaining two
parameters La and Ip the transient response from operating point C to D is used.

The other identification approaches focus on operating point C. The reason to choose
this point is that it corresponds to around 75% of the maximum supply voltage, which is a
reasonable value thinking about the design of a full-scale propulsion plant.

Table 4. Evaluated operating points.

Operating Points

A B C D E Unit

Ua,0 3.91 4.91 5.89 6.88 7.87 [V]

ωem,0 117 163 215 255 295 [rad/s]

ia,0 1.00 1.13 1.29 1.44 1.62 [A]

First, the resulting parameter sets of the different approaches are reported in Table 5
to appreciate the difference in terms of numerical value. The parameters derived from
the spectral approach (5) are not reported as will be explained later. The table shows
that the parameters obtained with the methods were of the same order of magnitude, but
differences up to ≈100% were present. The effect of the different sets of parameters on the
simulated system behavior is shown in the validation graphs.

Table 5. Identified parameters.

METHOD I IV Unit

La 4.87 × 10−4 6.03 × 10−4 [H]

Ke 1.37 × 10−2 1.83 × 10−2 [Nm/A]

Ra 2.31 1.51 [Ω]

Ip 1.72 × 10−5 3.18 × 10−5 [kg m2]

Mf 1.23 × 10−2 1.70 × 10−2 [Nm]

KQ,J=0
ηR

1.02 × 10−1 1.36 × 10−1 [-]

5.1. Results Time Domain Analysis (1)

The time domain identification method was used to derive the parameters from the
staircase experiment. The supply voltage Ua during this experiment is shown in Figure 9,
while the measured motor speed and current are shown in Figures 10 and 11.

Following the procedure outlined earlier, the five steady-state operating points during
the staircase experiment were determined, and the parameters Mf , Ke, Ra, and KQ,J=0/ηR
were derived by the least-squares method. Subsequently, the transient response of motor
speed and current, following the voltage step from C to D, was used to determine the
parameters Ip and La.

The resulting set of parameters was implemented in the non-linear simulation model,
and by using the staircase voltage signal as input, the model and its parameters are verified.
The result is shown as the dashed red line in Figures 10 and 11. The motor speed matched
the experimental data well: the stationary value errors were within 3% at all voltage
levels. Close inspection of the transient responses showed that these were also captured
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well. The simulated current signal had to be compared with very noisy experimental data,
as explained earlier. Nevertheless, the static values seemed to be predicted well. Close
inspection of the transient response shows that the simulation model could catch the timing
and the initial steep slope of the current, but it was not able to represent the peak values in
the current. It is concluded that this is either due to the limitations of the mathematical
model, which might be too simple to describe the real physical phenomena, or due to the
quality of the measured current signal.
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Figure 9. Voltage time history of the staircase test.
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Figure 10. Motor speed time history of the staircase test.
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Figure 11. Current time history of the staircase test.
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Figures 10 and 11 also show the results of the correlation approach, in continuous black
line. However, since the staircase experiment was not used to determine the parameters
using the correlation approach, this can be seen as validation of that method.

Figure 10 shows that the correlation approach predicted the motor speed behavior
nearby the linearization point well, although the error between simulated and experimental
data increased moving further away from the nominal operating point that was used in
the sine experiments. Figure 11 shows that, compared to the time domain approach, the
correlation approach was better able to predict the transient, although this method was
also not able to catch the maximum current value.

To have an independent validation for the time-domain method, an experiment based
on a mix of different input voltages, as shown in Figure 12, was used. Figure 13 shows
that the parameter sets found by both methods led to similar dynamic behavior as the
experiment, although a constant bias of around 50 rpm between simulated and sampled
time histories was present. Figure 14 shows that the two parameter sets, in general, gave
good correlation with the experiment, but both were unable to capture the maximum
amplitudes of the current, which was particularly evident in the “sine wave” part from t =
10–13 s.
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Figure 12. Voltage time history.
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Figure 13. Motor speed time history.
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Figure 14. Current time history.

5.2. Results of Frequency Domain Analysis (4 and 5)

The single frequency testing method was applied in the nominal operating point C
that is defined in Table 4. The results of the nine experiments are plotted as asterisks data
points in the Bode plots shown in Figures 15 and 16. The data points at 1000 and 5000 rad/s
were discarded, as closer inspection of the time signals showed that the signal-to-noise
ratio was too low to lead to meaningful results.

Based on the data points, the procedure as outlined above was followed, leading to the
estimated parameters as listed in Table 5. The following values were iteratively determined
from the experimental data points: s1 = −2500 rad/s, s2 = −9 rad/s, z1 = −2 rad/s,
δω∗
δU∗

a
(s → 0) = 1.24, δi∗a

δU∗
a
(s → 0) = 0.71. Note that the locations of the poles and zero were

read from the dB versions of the Bode plots.
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To verify whether the estimation procedure was followed correctly, the found parame-
ters were implemented in the transfer functions (12) and (13), which are plotted as solid
lines in Figures 15 and 16. The agreement in trend and absolute numbers indicates that the
procedure was followed correctly and that the linearized model can capture the reality well
in the operating point under consideration. Validation in the time domain of the parameter
set obtained with this method is reported in the previous section.

The shape of the transfer function for motor speed shows that up to 2 rad/s the
response remained flat but then quickly dropped off due to the inertia of the drive train.
The transfer function for current showed a flat response up to 1 rad/s and then started to
rise due to the zero in the transfer function. Around 20 rad/s, it flattened out due to the
inertia of the drive train. Somewhere after 1000 rad/s it dropped off, due to the electric
pole, indicating that the current cannot follow the voltage variations anymore.

Figure 15 also shows the transfer function based on the parameter set derived with the
time-domain approach. The response to low frequencies was good, but the drop in gain
started slightly too early, which aligns with the low estimate of Ip in Table 5. In Figure 16 a
substantial deviation from the data points is visible at frequencies higher than 10 rad/s,
although the shape is clearly recognizable.

Finally, Figures 15 and 16 also show the results from approach 5. Between 0.4 and
400 rad/s the method resulted in a non-parametric frequency response that aligned well
with the asterisk data points. In hindsight, the duration of the experiment should have
been extended up to 1–2 min or even longer, instead of 30 s. A more extended trial would
allow the estimation of the transfer function up to lower frequencies and would allow for
further averaging over multiple data blocks to smooth out irregularities in the results. At
frequencies above 400 rad/s, the signal-to-noise ratio dropped leading to bumps in the
estimated frequency response.

Although the parameter estimation based on noise injection could be used to assess
the unknown parameters from the frequency response, this is not performed here but is left
for a further study on the potential of spectral methods for ship drive train identification.

6. Future Outlook

Application of the identification procedures on-board a real ship is expected to make
the analytic derivations more complex because the system will, in that case, include
other/additional components such as, for instance, a diesel engine and engine speed
governor. This introduces at least one extra state equation due to the integral term in
the PI(D) governor. An additional state, due the longitudinal equation of motion, and
additional parameters would be added if the approach would be extended to free sailing
instead of bollard pull conditions. The effect of such additions on the ability to determine

190



J. Mar. Sci. Eng. 2021, 9, 268

parameters needs to be investigated in the future. On the positive side, it has to be noted
that in reality it is not likely that all ship drive-train parameters are unknown, which helps
to determine estimates of other unknown or more uncertain parameters. More work is
required to investigate what parameter estimation procedure would be required for a real
ship and drive train.

In the authors’ opinion, in the future the presented algorithms could potentially be
part of a condition-based maintenance system. By monitoring parameter variations of
a propulsion drive train in real time, it could be possible to detect the degradation (or
malfunction) of the machinery, and perhaps even to identify the root cause. For instance, an
increase in friction coefficient Mf could mean wear in the bearings, an increase in KQ could
mean that the propeller needs to be cleaned, etc. Another possible use of the presented
techniques is to assess the correspondence between the design values with the real one,
in fact, during the shipbuilding progress some change, or unexpected modification, can
modify the original design values.

7. Conclusions and Recommendations

In this paper different parameter identification techniques were discussed and applied
to experimentally determine the unknown parameters of a model scale ship drive train in
bollard pull conditions.

A set of dedicated experiments was conducted using different DC voltage signals. In
all tests the current was affected by a strong noise due to motor cogging. It is therefore
recommended to use an electric motor with less strong cogging effect for future experiments.
Moreover, the 15 holes encoder was found to give a low-quality motor speed measurement
and should be improved.

Three different approaches to determine the unknown DC-electric propulsion plant
parameters are discussed including their merits and weaknesses. For now, all three ap-
proaches remain candidates to be part of a (real-time) full-scale parameter identification
system, which is one of the primary goals.

Two obtained parameter sets have been implemented in a simulation model, and the
results were validated against independent measurements, both in the frequency and in
the time domains. The time domain results obtained by implementing both parameter sets
in the model compared well against the measurements, although differences were present.

In order to move towards firm conclusions about the value of the applied parameter
estimation methods for condition monitoring, it is recommended to consider the sensitivity
and uncertainty related to the approaches. This recommendation is supported by the
relatively large differences between the parameter sets as determined in this paper, and the
relatively small differences in time domain response.
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Nomenclature

Boa ship breadth [m]
C constant
c constant
D propeller diameter [m]
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e general exponent
FBP bollar pull force [N]
Ip moment of inertia [kgm2]
ia motor current [A]
igb gearbox ratio [-]
J advance ratio [-]
K constant
KQ torque coefficient [-]
KT thrust coefficient [-]
Ke motor speed constant [V/rad/s ]
Ke motor back EMF constant [Nm/A]
kp propeller number [-]
Loa ship length [m]
La motor inductance [H]
Mb,em motor torque [Nm]
Mf friction torque [Nm]
Mp delivered torque [Nm]
Q open water torque [Nm]
Ra motor resistance [Ω]
s1 first pole [-]
s2 second pole [-]
T propeller thrust [N]
t time [s]
t thrust deduction factor [-]
Ua voltage supply [V]
Δ ship displacement [kg]
ζ ratio of time constants [-]
ηR relative rotative efficiency [-]
ηtrm shaftline efficiency [-]
ρ water density [kg/m3]
τem electric time constant [s]
τω mechanical time constant [s]
τω,e effective mechanical time constant [s]
ωem motor speed [rad/s]
ωp propeller speed [rad/s]
ω frequency [rad/s]

Subscripts and Superscripts

0 nominal
∗ normalized
δ small increment

Appendix A. Normalisation and Linearisation

Assume a variable that is the product of powers of other variables:

Z = c YeX (A1)

where c is a constant multiplier and e is a constant exponent. In an equilibrium point the
variable Z equals

Z0 = c Ye
0 X0 (A2)
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Normalisation of Equation (A1) by Equation (A2) results in

Z
Z0

=

(
Y
Y0

)e X
X0

(A3)

If, by definition,

X∗ = X
X0

, Y∗ = Y
Y0

, Z∗ = Z
Z0

(A4)

then
Z∗ = Y∗eX∗ (A5)

Now that the constant value c has been removed by the normalization, the next step is
to remove the non-linearity from Equation (A5). Differentiation of Equation (A3) by using
the chain rule gives

dZ
Z0

=

(
Y
Y0

)e dX
X0

+ e
(

Y
Y0

)e−1 X
X0

dY
Y0

(A6)

Near equilibrium dX, dY and dZ become small increments δX, δY and δZ. Division of
X = X0 + δX by X0 delivers X

X0
= 1 + δX

X0
and likewise Y

Y0
= 1 + δY

Y0
. Substitution of this in

Equation (A6) gives

δZ
Z0

=

(
1 +

δY
Y0

)e δX
X0

+e
(

1 +
δY
Y0

)e−1(
1 +

δX
X0

)
δY
Y0

(A7)

Taylor series expansion of Equation (A7) and neglecting the second and higher order
terms leaves

δZ
Z0

=
δX
X0

+ e
δY
Y0

(A8)

which by introduction of the shorthand notation for differential increment:

δZ∗ = δZ
Z0

=
Z
Z0

− 1 (A9)

this can be written as
δZ∗ = δX∗ + e δY∗ (A10)

The latter equation relates the relative change in output Z to the relative change in
inputs X and Y, where the constant e, which was present as an exponent in the original
Equation (A2), has changed to a constant multiplication factor. Secondly the multiplication
of X and Y has turned into a summation. For further background on the linearization
process, reference is made to Dorf and Bishop [33] and Franklin et al. [34].

The demonstrated concepts of normalization and linearization are the basis for the
following section where they will be applied in the linearization of the system model.

Appendix B. Derivation of Linearized System Model

The electrical circuit of the DC motor is modeled by

La
dia

dt
= Ua − Keωem − Raia (A11)

All three right hand side terms vary around equilibrium:

Ua = Ua,0 + δUa, ωem = ωem,0 + δωem, ia = ia,0 + δia
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In static conditions the right hand side of Equation (A11) equals zero:

0 = Ua,0 − Keωem,0 − Raia,0 (A12)

This means that only the small increments are of importance:

La
dia

dt
= δU∗

a − Keδω∗
em − Raδi∗a (A13)

Division of all terms of Equation (A13) by nominal supply voltage minus the nominal
emf (Ua,0 − Keωem,0) or alternatively by its equivalent Raia,0 gives

La

Raia,0

dia

dt
=

1
Raia,0

Ua,0

Ua,0
δUa − Ke

Raia,0

ωem,0

ωem,0
δωem − Ra

Raia,0
δia (A14)

This can be shortened to

τem
di∗a
dt

=
Ua,0

Raia,0
δU∗

a − Keωem,0

Raia,0
δω∗ − δi∗a (A15)

in which the subscript em is intentionally dropped from δω∗
em because δω∗

em = δω∗
p

and where
τem =

La

Ra
(A16)

The shaft dynamics including constant friction term are described by

Ip
dωem

dt
= Mb,em − Mf −

Mp

igb,13
(A17)

in which shaft inertia is assumed constant implying that change of mass of water, entrained
by the propeller, is neglected. The brake motor torque is related to current by

Mb,em = Ke ia (A18)

The non-constant torque terms of Equation (A17) vary around equilibrium:

Mb,em = Mb,em,0 + δMb,em = Ke(ia,0 + δia)

and
Mp = Mp,0 + δMp

such that:

Ip
dωem

dt
= Ke(ia,0 + δia)− Mf −

Mp,0

igb,13
− δMp

igb,13
(A19)

In steady nominal condition the driving torque and the load-torque are equal:

0 = Keia,0 − Mf −
Mp,0

igb,13
(A20)

Subtracting Equation (A20) from Equation (A19) shows that only the small increments
are of importance:

Ip
dωem

dt
= Keδia − δMp

igb,13

Normalizing all terms with nominal motor torque gives

Ipωem,0

Keia,0

dω∗

dt
= δi∗a −

Mp,0

Mb,em,0igb,13
δM∗

p (A21)
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in which the subscript em is intentionally dropped. The integration constant is defined as

τω =
Ipωem,0

Mb,em,0
=

Ipωem,0

Ke ia,0
(A22)

After noting that the multiplier in the second term of the right hand side of Equation (A21)
can be written as

Mp,0

igb,13Mb,em,0
= ηtrm,0 (A23)

and implementing
δM∗

p = 2δω∗

the normalised linearised differential equation for shaft rotation is given by

τω
dω∗

dt
= δi∗a − 2ηtrm,0δω∗ (A24)

Introduction of the Laplace operator into Equation (A24) and re-arranging gives(
τω

2ηtrm,0
s + 1

)
δω∗ = 1

2ηtrm,0
δi∗a (A25)

which can be shortened by introduction of the effective time-constant:

τω,e =
τω

2ηtrm,0
(A26)

such that
(τω,es + 1)δω∗ = 1

2ηtrm,0
δi∗a (A27)

Similarly, introduction of the Laplace operator in the differential equation for current
Equation (A15) and reordering gives

δi∗a =

(
Ua,0

Raia,0

)
(τems + 1)

δU∗
a −

(
Keωem,0

Raia,0

)
(τems + 1)

δω∗ (A28)

Substitution of Equation (A28) into Equation (A27) and reordering gives the transfer
function from supply voltage to rotation speed:

δω∗

δU∗
a
=

1
2ηtrm,0

Ua,0
Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(A29)

In a similar way substitution of Equation (A27) into Equation (A28) and reordering
gives the transfer function from supply voltage to current:

δi∗a
δU∗

a
=

(τω,es + 1) Ua,0
Raia,0

τemτω,es2 + (τem + τω,e)s + 1 + 1
2ηtrm,0

Keωem,0
Raia,0

(A30)

The characteristic equation of the two transfer functions Equations (A29) and (A30) is
given by

τemτω,es2 + (τem + τω,e)s + 1 +
1

2ηtrm,0

Keωem,0

Raia,0
(A31)

If we define
C = 1 +

1
2ηtrm,0

Keωem,0

Raia,0
(A32)

195



J. Mar. Sci. Eng. 2021, 9, 268

and
ζ =

τem

τω,e

then the characteristic equation can be written as

ζτω,es2 + (1 + ζ)s +
C

τω,e

The two exact roots of Equation (A31) can now be determined by the ABC formula:

s12 =
−(1 + ζ)±

√
(1 + ζ)2 − 4Cζ

2ζτω,e

which can be written as

s12 =

−(1 + ζ)± (1 + ζ)

√
1 − 4Cζ

(1+ζ)2

2ζτω,e

The electrical time constant is much smaller than the effective time constant for the
shaft; therefore, ζ � 1. Application of Taylor expansion for the square root operation and
leaving out second order terms gives

s12 ≈
−(1 + ζ)± (1 + ζ)

(
1 − 2Cζ 1

(1+ζ)2 . . .
)

2ζτω,e

Another Taylor expansion for the inverse square operation gives

s12 ≈ −(1 + ζ)± (1 + ζ)(1 − 2Cζ(1 − 2ζ . . .) . . .)
2ζτω,e

Further simplification gives the two approximate poles as

s1 ≈ −1
ζτω,e

=
−1
τem

(A33)

and
s2 ≈ −C

τω,e
(A34)

Besides the two system poles, transfer function (A30) has a single zero which lies at

z1 =
−1
τω,e

(A35)

The DC-gain of transfer function (A29) is given by

δω∗

δU∗
a
(s → 0) =

Ua,0

2ηtrm,0Raia,0 + Keωem,0
(A36)

The DC-gain of transfer function (A30) is given by

δi∗a
δU∗

a
(s → 0) =

2ηtrm,0Ua,0

2ηtrm,0Raia,0 + Keωem,0
(A37)
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Appendix C. Step Response of Motor Speed and Current

The exact response of motor speed to a unit step in voltage is given by

δω∗(t) = K
(

1 +
s1

s2 − s1
es2t − s2

s2 − s1
es1t

)
(A38)

in which K =
Ua,0

Keω0+2ηtrm,0Raia,0
. However, because |s1| >> |s2|, the step-response can be

approximated by a first order system response:

δω∗(t) ≈ K
(
1 − es2t) (A39)

The derivation of the step response of current starts with Equation (A30), which can
be written as the summation of an overdamped second order lowpass (LP) system and a
second order bandpass (BP) system:

G(s) = GLP(s) + GBP(s) (A40)

The step response of the lowpass system is given by

δi∗a,LP(t) = KLP

(
1 +

s1

s2 − s1
es2t − s2

s2 − s1
es1t

)
(A41)

with KLP =
Ua,02ηtrm

Keω0+2ηtrm,0Raia,0
. Again, because |s1| >> |s2|, this can be approximated by a

first order system response:
δi∗a,LP(t) ≈ KLP

(
1 − es2t) (A42)

The step response of the bandpass part of the system is given by

δi∗a,BP(t) = KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t

)
(A43)

where KBP =
Ua,0

Laia,0
. The total response of current to a unit step in voltage is the sum of

Equations (A41) and (A43):

δi∗a (t) = KLP

(
1 +

s1

s2 − s1
es2t − s2

s2 − s1
es1t

)
+ KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t

)
(A44)

or including the simplification:

δi∗a (t) ≈ KLP
(
1 − es2t)+ KBP

(
1

s2 − s1
es2t − 1

s2 − s1
es1t

)
(A45)
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