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Preface

This book focused on recent advances in land-atmosphere interactions and their effects on the

climate change over the Tibetan Plateau and surrounding regions using multisource remote sensing

data and in situ measurements.

Retrieval of land surface variables and surface heat fluxes, as well as change monitoring in snow,

glaciers, lakes, and other land-surface covers are of particular interest. Special attention is given to

quantitative assessments of land surface temperature, sensible heat flux, soil moisture, vegetation

and drought indices, groundwater storage, runoff, condensation, and desublimation, as well as the

distinct surface processes over lakes and glaciers coupling with climate warming.

This book was funded by the the Second Tibetan Plateau Scientific Expedition and Research

(STEP) Program, Ministry of Science and Technology of the People’s Republic of China (Grant No.

2019QZKK0103); the National Natural Science Foundation of China (Grant Nos. 42375071, 42230610

and 41875031) and CLIMATE-Pan-TPE (ID 58516) in the framework of the ESA-MOST Dragon 5

program.

Yaoming Ma, Li Jia, Massimo Menenti, and Lei Zhong

Editors
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1. Introduction

As the world’s highest and largest plateau, the Tibetan Plateau (TP) is referred to as
‘the Asian Water Tower’ and ‘the Third Pole of the World’ [1]. A better understanding of
the water and energy cycles in the TP is not only critical for revealing the mechanisms of
regional land–atmosphere interactions, but also essential for assessing the causes of changes
in the cryosphere and hydrosphere in relation to changes in the plateau atmosphere in the
Asian monsoon system [2]. Since the TP is an ecologically fragile region that is sensitive to
climate change [3], the systematic evaluation of land–atmosphere interactions in this region
also contributes to the quantitative understanding of climate change.

To this end, the aim of this Special Issue was to present recent advances in quantifying
(1) processes in the atmospheric boundary layer, (2) soil properties, drought, and freezing–
thawing processes, (3) lake and glacier monitoring, (4) hydrological processes, and (5) data
assimilation and validation by applying in situ measurements, remote sensing or numerical
modelling approaches to the TP region.

Eighteen papers (sixteen articles, one communication, and one technical note) are
published in this Special Issue, covering the quantitative assessments of land surface
temperature, sensible heat flux, soil moisture, vegetation and drought indices, groundwater
storage, runoff, condensation, and desublimation, as well as the distinct surface processes
over lakes and glaciers driven by climate warming. The MODIS and GIMMS datasets
are validated, and a new high-resolution assimilated dataset is released. In addition, the
application of coherent Doppler wind LiDARs is analysed. Additionally, the formation and
climatic–environmental significance of the yardangs surrounding the Suoyang city ruins
are also discussed.

Remote Sens. 2023, 15, 4540. https://doi.org/10.3390/rs15184540 https://www.mdpi.com/journal/remotesensing
1



Remote Sens. 2023, 15, 4540

2. Overview

The surface air temperature difference and sensible heat flux are critical variables in
the atmospheric boundary layer, both of which have undergone significant changes due
to climate change. Wang et al. [4] reported that although the entire TP was found to be
dominated by a positive surface air temperature difference both annually and seasonally,
from 1950 to 2021 the TP experienced a significant decreasing trend in the annual surface
air temperature difference at a rate of −0.07 K/decade. Additionally, a decreasing trend in
sensible heat flux from the mid-1980s to the beginning of the 21st century was also reported
by Wang et al. [5] via Noah-MP simulations. The decrease in sensible heat flux was found to
be linked to the decrease in both the surface air temperature difference and wind speed [5].

Using the Community Land Model version 4.5, Fu et al. [6] demonstrated that the
TP has become warmer and wetter from 1981 to 2016, with increases in both regional
average temperature and precipitation. In addition, soil temperature and moisture in
most areas of the TP were affected by air temperature and precipitation in turn, and both
showed an upwards trend. Consequently, the duration of the freeze–thaw process over
the TP has shortened. Despite the increase in the northwest TP, the freeze–thaw duration
decreased in the rest of the whole plateau [6]. Additionally, Fang et al. [7] also found that
an area of 0.60 × 106 km2 of permafrost in the TP degraded to seasonally frozen ground in
the 1960s–2000s, and the primary shrinkage period occurred in the 2000s. However, the
seasonal and diurnal variation characteristics of soil moisture are diverse in different in situ
stations. According to Li et al. [8], the soil moisture at depths of 5 and 10 cm for the Lhari,
Biru, Nyainrong, Amdo, Nagqu, Baingoin, and Seng-ge Kambab stations was measured
to be 0.55, 0.4, 0.34, 0.3, 0.25, 0.14, and 0.1 cm3/cm3, respectively. These large differences
also indicated that it was unreasonable to use only the soil moisture of several stations to
represent the overall soil moisture of one region [8].

Drought is a major disaster across the TP, and drought indices that can describe
drought evolution at a fine temporal scale are still scarce. Cheng et al. [9] constructed
daily drought indices based on multisource remote sensing and reanalysis data using four
machine learning methods, and a new daily drought index, the standardized integrated
drought index (SIDI), was developed via the extreme gradient boosting regression model,
which showed the best performance for monitoring agricultural drought. In addition, to
analyse the mechanism of drought in Southwest China, Ye et al. [10] constructed a binary
linear regression forecast model, which successfully relates precipitation to the anomaly of
500 hPa relative vorticity and relative divergence. Additionally, the spatiotemporal varia-
tion characteristics of drought on the TP from 2016 to 2099 were predicted by Liu et al. [11],
showing that the overall future climate of the TP will still develop towards warm and hu-
mid conditions. However, as the concentration of carbon dioxide emissions increases in the
future, the proportion of extremely significant aridification and humidification areas in the
TP will significantly increase, and the possibility of extreme disasters will also increase [11].

Changes in lake water volume and glacier mass are sensitive indicators of regional
environmental change. Ma et al. [12] systematically analysed the interannual changes
from 1970 to 2021 in three typical inland lake basins using multisource remote sensing and
water level observations. The results showed that lakes in the monsoon-dominated region
showed a significant trend of expansion from 2000 to 2014, but the trend slowed down and
stabilized after 2014; lakes in the westerlies-dominated region showed a small expansion
trend, while lakes in the region affected by both westerlies and the monsoon showed an
overall shrinking trend [12]. On the other hand, Yao et al. [13] reported that the Yala Glacier
and the Qiyi Glacier were shrinking, with change rates of −736 mm w.e./a and −567 mm
w.e./a, respectively, both undergoing a state of intensive and accelerating mass loss [13].

Condensation, desublimation, runoff, and groundwater storage are all important
processes in land–atmosphere interactions. Li et al. [14] evaluated the spatiotemporal
variations in condensation and desublimation from 1950 to 2020 on the TP using hourly
ERA5-Land and ERA5 reanalysis datasets. The annual mean condensation was estimated to
be 8.45 mm, with an increasing trend of 0.24 mm/10a, and the annual mean desublimation
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was 11.45 mm, with a decreasing trend of −0.26 mm/10a, with the total annual mean
condensation and desublimation reaching 19.89 mm, with a weak decreasing trend on
the TP overall. Wei et al. [15] investigated the relationships between fourteen landscape
patterns and four hydrological indices for ten watersheds in the TP and found that runoff
increases when a watershed is dominated by a small patch of landscape. Regarding the
variability in groundwater storage, Ren et al. [16] reported that the groundwater storage of
the TP decreased at an average rate of −0.89 mm/a from January 2003 to December 2021.
However, since January 2016, it has gradually recovered at a rate of 1.47 mm/a. It was
found that the rising temperature may result in an increase in groundwater storage in
regions where glaciers are distributed [16].

Several articles have evaluated the current products or released new datasets via data
assimilation. Lazhu et al. [17] validated the MODIS lake surface water temperature dataset
over the TP region. The MODIS LSWT agrees well with the in situ measurements, with
a root mean square error < 1 K at nighttime and <2 K in the daytime, indicating a high
accuracy of the MODIS LSWT data. However, the MODIS lake surface water temperature
data were questionable in the monsoon-controlled region [17]. In addition, Wang et al. [18]
applied the MODIS and GIMMS datasets to analyse the annual and seasonal trends in
vegetation responses and feedback to temperature on the TP. The results showed that
both MODIS and GIMMS data showed a common increase in the normalized difference
vegetation index on the TP for all timescales, while the former has had a larger greening
area since 2000 [18]. In addition, Wen et al. [19] utilized the weather research and forecasting
(WRF) model and a three-dimensional variational assimilation method to create a high-
resolution assimilated dataset (HRAD) with a spatial resolution of 0.05◦ × 0.05◦ and a
temporal resolution of 1 h. The correlation coefficients of the 2 m temperature, surface
temperature and surface pressure were relatively high, all above 0.9, and those of relative
humidity and wind speed were approximately 0.7 and 0.5, respectively [19].

Moreover, Song et al. [20] evaluated the observations of the wind field and boundary
layer height from coherent Doppler wind LiDARs located at the northern edge of the TP
from 1 May to 30 August 2021, showing that coherent Doppler wind LiDAR has good
applicability in reproducing wind fields in dust, precipitation, and clear-sky conditions.
Fan et al. [21] analysed the formation of yardangs surrounding the Suoyang City ruins in
the Hexi Corridor of northwestern China. According to 14C dating and historical records
of local human activities, the formation of yardangs in the Suoyang City oasis has been
suggested to start in the mid-Yuan Dynasty of China, around AD 1291 [21].

3. Summary

In summary, this Special Issue mainly presents up-to-date advances in the quantitative
assessments of land surface temperature, sensible heat flux, soil moisture, vegetation and
drought indices, groundwater storage, runoff, condensation, and desublimation, as well as
the distinct surface processes over lakes and glaciers on the TP. These selected papers are
novel and timely in informing the knowledge on land–atmosphere interactions driven by
climate warming.

We trust that the collation of these papers will provide quantitative references for the
better assessment and prediction of the land–atmosphere interactions in the “Third Pole”.

Funding: This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and
Research (STEP) Program (Grant No. 2019QZKK0103), the National Natural Science Foundation
of China (Grant Nos. 42375071, 41875031 and 42230610) and CLIMATE-Pan-TPE (ID 58516) in the
framework of the ESA-MOST Dragon 5 program.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Freezing/thawing indices are important indicators of the dynamics of frozen ground on the
Qinghai-Tibet Plateau (QTP), especially in areas with limited observations. Based on the numerical
outputs of Community Land Surface Model version 4.5 (CLM4.5) from 1961 to 2010, this study
compared the spatial and temporal variations between air freezing/thawing indices (2 m above the
ground) and ground surface freezing/thawing indices in permafrost and seasonally frozen ground
(SFG) across the QTP after presenting changes in frozen ground distribution in each decade in the
context of warming and wetting. The results indicate that an area of 0.60 × 106 km2 of permafrost
in the QTP degraded to SFG in the 1960s–2000s, and the primary shrinkage period occurred in the
2000s. The air freezing index (AFI) and ground freezing index (GFI) decreased dramatically at rates of
71.00 ◦C·d/decade and 34.33 ◦C·d/decade from 1961 to 2010, respectively. In contrast, the air thawing
index (ATI) and ground thawing index (GTI) increased strikingly, with values of 48.13 ◦C·d/decade
and 40.37 ◦C·d/decade in the past five decades, respectively. Permafrost showed more pronounced
changes in freezing/thawing indices since the 1990s compared to SFG. The changes in thermal
regimes in frozen ground showed close relations to air warming until the late 1990s, especially in
1998, when the QTP underwent the most progressive warming. However, a sharp increase in the
annual precipitation from 1998 began to play a more controlling role in thermal degradation in frozen
ground than the air warming in the 2000s. Meanwhile, the following vegetation expansion hiatus
further promotes the thermal instability of frozen ground in this highly wet period.

Keywords: freezing/thawing indices; permafrost dynamics; Community Land Surface Model;
Qinghai-Tibet Plateau

1. Introduction

The Qinghai-Tibet Plateau (QTP) ranks as the highest plateau in low-latitude areas
around the world. It has also been called the “third pole” for its high average elevation [1–4].
In terms of the global mid-latitude area, the QTP has the largest distribution of permafrost
(~1.06 million km2), which is defined as the rock or soil that remains at or below 0 ◦C
for two or more consecutive years and is a key component in the cryosphere [5–7]. Due
to its lower latitude and higher elevation, the permafrost on the QTP is more sensitive
to climate change compared with permafrost in high-altitude areas such as Canada and
Russia [8,9]. The dynamic change of the frozen ground distribution under the background
of global warming is of great importance for hydrology cycles, ecosystems, engineering
infrastructure, and climate change [10–13].

Previous studies have reported that, as a result of global warming, the frozen ground
on the QTP had warmed up in recent decades and the warming is more intense than the
Arctic and similar mid-latitude regions [14,15]. Wu and Zhang [16] monitored 10 boreholes

Remote Sens. 2023, 15, 3478. https://doi.org/10.3390/rs15143478 https://www.mdpi.com/journal/remotesensing
5



Remote Sens. 2023, 15, 3478

in permafrost areas along the Qinghai-Tibetan Highway up to 10.7 m depth half-monthly
from 1996 to 2006. They reported that the mean annual temperatures at 6.0 m depth
have increased from 0.12 ◦C to 0.67 ◦C, with an average value of 0.43 ◦C. Simultaneously,
they conducted a further investigation on the active layer thickness and found that it
increased sharply (about 39 cm) from 1983 to 2005 [17]. To characterize the freezing and
thawing states of the frozen ground, changes in near-surface air freezing/thawing indices
(AFI/ATI) and ground-surface freezing/thawing indices (GFI/GTI) on the QTP have
also been analyzed using in situ observations [18]. The results show that the QTP has
undergone a prominent increasing trend in the thawing index and a decreasing trend in
the freezing index since 1998 [19]. It is consistent with the pivotal year of 1998, when the
QTP experienced dramatic wetting and warming thereafter [20]. Climate warming also
benefits vegetation growth [21–24] and can induce an earlier start date of freezing through
feedbacks to regional climates [25]. Furthermore, observational analysis has shown that the
greening QTP can amplify the warming impact of spring snow cover on surface seasonally
frozen ground (SFG) and can also intensify the warming effect of summer rainfall on top
permafrost [26]. These studies have demonstrated the uneven thermal responses of frozen
ground to the accelerating climate change and the related vegetation growth on the QTP,
serving as a potential connection. Due to the complex terrain and harsh natural conditions,
the monitoring sites on the QTP are relatively sparse, and there are uncertainties in the
satellite products, especially in the western high-altitude region [27]. Consequently, studies
on the changes in the thermal state of the frozen ground on the wetting and warming QTP
are still spatially and temporally confined and need further investigations.

Numerical simulation can be an appropriate method for expanding a site study to
regional and long-term time scales. Recently, considerable studies regarding the thermal
dynamics of frozen ground on the QTP have been conducted employing numerical model
simulations [28–31]. Guo and Wang [32] investigated the extent of permafrost degradation
on the QTP using the Community Land Surface Model (CLM). The results indicated that the
near-surface permafrost area decreased at a rate of 0.09 × 106 km2/decade, and the average
active layer thickness increased by 0.15 m/decade from 1981 to 2010. It was projected
that the shrinkage of permafrost area will exceed 58% by the end of the 21st century, and
the most sustainable permafrost may only exist in the northwestern QTP [9,33]. Actually,
the total area of thermally degraded permafrost was about 1.54 × 106 km2 in the past,
and the key period of degradation was from the 1960s to the 1970s and from the 1990s
to the 2000s [14]. A recent numerical experiment further reveals that winter warming
has amplified the thermal degradation of permafrost since 2000 [34]. These works have
extended our understanding of the thermal responses of frozen ground to climate warming,
whereas the temperature gradient transition between near-surface atmosphere and frozen
ground in long-term time series and the associated thermal dynamics in the context of
climate change still need further investigation. It is of great importance to reasonably project
the changes in the frozen ground on the QTP in the foreseeable future. For this purpose,
Liu et al. [6] analyzed the spatial and temporal variations of the air freezing/thawing
indices and the ground surface freezing/thawing indices in the southwestern QTP from
1900 to 2017. Their results suggest that these indices consistently experienced abrupt
changes around the 2000s. It has been recognized that these thermal changes in permafrost
were influenced by air warming. Nonetheless, it should also be noted that the QTP has
undergone prominent wetting process since the late 1990s [20,35,36], where super-heavy
precipitation can cause dramatic rises in soil temperatures by 0.3 to 0.5 ◦C at shallow depths
and advancement thawing of the active layer by half a month in permafrost regions on the
northeastern QTP [37]. However, there still exist some uncertainties regarding the thermal
responses of permafrost and SFG to intensified wetting and warming conditions, especially
with the occurrence of vegetation cover expansion across the QTP in the long run.

This study aims to characterize the thermal dynamics in both permafrost and SFG
regions on the QTP from 1961 to 2010 by investigating the differences in freezing/thawing
indices between the near-surface atmosphere and the ground surface. In terms of temporal
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and spatial changes, the analysis is based on a high-resolution (0.05◦ × 0.05◦) simulation
conducted by the Community Land Surface Model version 4.5 (CLM4.5). The reminder
in this paper is organized as follows: Section 2 describes the data and methods; Section 3
presents the spatial transitions between permafrost and SFG distribution in each decade
and the variations of freezing/thawing indices between atmosphere and ground surface in
permafrost and SFG regions, respectively; Section 4 provides a discussion of the ground
surface freezing/thawing index anomalies and the air freezing/thawing index anomalies
and their relation to precipitation and the vegetation cover conditions in the permafrost
and SFG areas on the QTP; conclusions and an outlook are presented in Section 5.

2. Materials and Methods

2.1. Data
2.1.1. Land Surface Model Data

An atmospheric forcing dataset at a temporal-spatial resolution of 3 h and 5 km
from 1961 to 2010 was used to force the land surface model (http://globalchange.bnu.
edu.cn/research/forcing (accessed on 3 January 2020)). It includes seven meteorological
factors, including gridded near-surface temperature, relative humidity, wind speed, surface
pressure, precipitation, and downward shortwave (longwave) radiation. The forcing fields
are generated through a recently proposed approach based on observations collected at
approximately 700 stations on mainland China. Before it was released by the Beijing
Normal University (China, hereafter BNU), the reasonability of the dataset was validated
through comparisons of the corresponding components with the National Centers for
Environmental Prediction Climate Forecast System Reanalysis dataset and the Princeton
meteorological forcing dataset [38]. Moreover, the reliabilities of the air temperature and
precipitation components of the dataset have also been confirmed using the observational
records on the QTP prior to the numerical simulation [39]. The precipitation amount across
the QTP utilized in this study was also derived from the BNU dataset. Additionally, the
in-situ observations across the QTP also confirmed the simulation ability of the CLM4.5 to
reproduce the soil temperature values in a long run [36,39], which were used to calculate
the ground freezing/thawing indices (GFI/GTI) in this study. The air freezing/thawing
indices (AFI/ATI) presented in this study were also calculated using the near-surface (2 m
above the ground) air temperatures derived from this data set.

2.1.2. Remote Sensing Data

The Normalized Difference Vegetation Index (NDVI) from July 1981 to December 2015
was used to characterize vegetation cover conditions across the QTP. It is the latest release
of the long-sequence product of the NOAA Global Inventory Monitoring and Modeling
System (GIMMS), version 3g.v1. The temporal resolution of the NDVI is half a month,
and the spatial resolution is 0.08◦ × 0.08◦, respectively. It is the classic dataset used to
detect vegetation dynamics, and their influences on the thermal regimes of frozen ground
across the QTP [40]. The data set is available from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn (accessed on 12 June 2022)).

2.2. Methods
2.2.1. Freezing/Thawing Indices

Freezing/thawing indices were calculated using the accumulated monthly air tem-
perature or ground surface temperature of numerical outputs [41,42]. The AFI and GFI
can be conceptualized as the accumulated near-surface air temperature (2 m above the
ground) and ground surface temperature (4.51 cm under the ground) to avoid the potential
impact of random weather processes on the movement from one soil phase to the next
when determining the onset of freezing or thawing in the whole freezing period from 1 July
to 30 June in the next year. Similarly, the ATI and GTI are the sum of the air and ground
surface temperatures with positive monthly mean values in a whole thawing period from
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1 January to 31 December within a calendar year [6,19,36]. Specific equations are shown
as follows:

FI = ∑MF
i=7

∣∣∣∣−Ti

∣∣∣∣·Di

(−
Ti < 0

)
(1)

TI = ∑MT
i=1

∣∣∣∣−Ti

∣∣∣∣·Di

(−
Ti > 0

)
(2)

where FI and TI (◦C·d) are freezing and thawing indices calculated by mean monthly tem-
peratures (Ti, near-surface atmosphere, or ground surface), respectively; Di is the number
of days of the ith month; MF and MT represent months with negative and positive mean
monthly values of near-surface air temperature or ground surface temperature, respectively.

2.2.2. Surface Frost Index

To estimate the frozen ground distribution in each decade, the surface frost in-
dex, which has been validated to capture permafrost distribution reasonably on the
QTP [36,43,44], was calculated and used to diagnose permafrost. In this study, the boundary
of permafrost is determined by the ground surface freezing index and thawing index:

F =

√
GFI+√

GFI+ +
√

GTI
(3)

where F is a parameter to diagnose permafrost. Using a negative exponential function
depending on snow density, depth, heat capacity, and thermal conductivity, the effects of
snow cover were adjusted while evaluating the ground freezing index. As a result, the
GFI with a superscript (+) represents the underlying ground freezing index under snow
cover [45]. The value of F ranging from 0.50 to 0.60 indicates sporadic permafrost, 0.60 to
0.67 indicates extensive permafrost, and above 0.67 indicates continuous permafrost [46].
A threshold value of 0.58 was taken to estimate the absence or presence of permafrost
in this study because a minimum frost index value of 0.58 has been confirmed by Slater
and Lawrence [46], matching the observed permafrost area. The simulated permafrost
and SFG distribution in the 2000s (Figure 1e) were very similar to the new map of the
Plateau’s frozen ground from 2009–2014 (Figure 1f). It covers a total area of 1.02 × 106 km2

(excluding glaciers and lakes) in the 2000s, which is similar to but slightly lower than the
value of 1.06 × 106 km2 presented in the new map [5]. Less permafrost was simulated
in the northeastern parts and southern regions of the QTP. The discrepancies between
the simulations and the new frozen ground map could be partially attributed to possible
inaccuracies in the permafrost parameterization schemes in the model and could also be
due to possible inaccuracies in the frozen ground map.

2.2.3. Statistical Analysis Method

The modified Mann–Kendall (MMK) trend and Sen’s slope estimator methods were
applied in this study to detect the tendencies and estimate the trends of variations in
freezing and thawing indices across the QTP. The two nonparametric methods have been
widely used to conduct statistical diagnosis in climate analysis studies, and a detailed
description of these methods can be found in the previous study [47].

2.2.4. Model and Numerical Simulation Design

The Community Land Surface Model version 4.5 (CLM 4.5) was used in this study
to obtain the essential monthly air and ground surface temperatures to calculate freez-
ing/thawing indices across the QTP. As the land component of the Community Climate
System Model and the Community Earth System Model, CLM 4.5 simulates the partitioning
of mass and energy from the atmosphere, redistributes the mass and energy of the land
surface, and then exports the fresh water and heat to the oceans [48]. It explicitly considers
the coupling interaction between water and heat flows in the frozen soil by modifying the
snow cover setting and hydraulic properties parameterization, which reflect the hysteresis
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of snow between accumulation and melt phases at a given depth [48] during the freezing
and thawing processes of frozen ground on the QTP. Previous studies have proven CLM is
effective for thermal dynamics research on the QTP at different spatial scales [49,50]. In
this study, the CLM4.5 was driven by the BNU dataset, and the numerical simulation was
conducted at a spatial resolution of 0.05◦ × 0.05◦ across the QTP. The outputs were set to
a monthly time step from 1961 to 2010. It is important to state that the reliabilities of the
simulated soil temperature and moisture have been validated with station records and in
situ observations across the QTP in preceding works [36,39].

Figure 1. Simulated spatial distribution of frozen ground types in (a) the 1960s, (b) the 1970s, (c) the
1980s, (d) the 1990s, and (e) the 2000s, against the (f) new map of permafrost distribution on the
QTP (QTP-2016). The yellow, navy blue, purple, and white colors represent the areas of permafrost,
seasonally frozen ground (SFG), unfrozen ground (UFG), glaciers, and lakes, respectively. The spatial
distribution pattern of permafrost in the current decade served as the benchmark for determining the
type of transition between permafrost and SFG in the next one.

3. Results

3.1. Decadal Changes of Permafrost Distribution on the QTP from 1961 to 2010

The spatial patterns of frozen ground distribution in each decade from 1961 to 2010
across the QTP are presented in Figure 1. A new presentation of permafrost distribution
on the QTP, mapping permafrost, SFG, and unfrozen ground based on remote sensing
land surface temperature products from 2009 to 2014 (Figure 1f, hereafter as QTP-2016),
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is also included to provide a contrast benchmark [5]. It is obvious that the conversion
between permafrost and SFG occurred mostly around the rims of mountainous permafrost
areas on the southwestern QTP and the sporadic permafrost regions on the eastern QTP
during the 1970s and 1980s (Figure 1b,c). Statistically, the permafrost area shrank from
1.62 × 106 km2 to 1.40 × 106 km2 in the 1960s–1980s (Table 1), broadly consistent with
previous studies. A remote sensing-based study estimated that the total area of permafrost
was 1.74 × 106 km2 in the 1960s and turned to 1.58 × 106 km2 in the 1980s [14]. The
significant decreases in the AFI occurred in the 1980s, which implies the occurrence of
dramatic warming of air temperature over the entire QTP in the freezing period during
this decade. The air warming over the permafrost region was also detected during the
thawing period, as evidenced by the increased rate of 0.65 ◦C·d/decade in the ATI. The
prominent atmospheric warming should have exerted important effects on the permafrost
degradation (6.67% reduction in area) and the thermal instability in SFG, where the GFI
decreased significantly (11.73 ◦C·d/decade). Furthermore, we noticed that the GTI showed
an opposite decreasing trend in permafrost areas, even though the ATI increased (as did air
warming in the thawing period) in the 1980s. It suggests that the top permafrost showed
fewer thermal responses within the active layer to the rise in air temperature during the
thawing process in the 1980s. While the intensified air warming in the cold season (from
November to March) [26] was more favorable for the remarkable shrinkage of permafrost
areas during this period.

Table 1. Decadal permafrost areas (km2) and the trends of AFI, GFI, and ATI, GTI (◦C·d/decade) in
permafrost, SFG, and the entire QTP from 1961 to 2010.

Periods
Permafrost Area

(×106 km2)
Region

AFI
(◦C·d/Decade)

GFI
(◦C·d/Decade)

ATI
(◦C·d/Decade)

GTI
(◦C·d/Decade) AFI/ATI GFI/GTI

1960s 1.62
permafrost −20.75 14.99 2.07 2.25 4.94 1.15

SFG −20.87 8.13 −4.79 −9.10 * 0.64 0.28
QTP −10.59 16.57 −8.31 −11.09 1.57 0.57

1970s 1.50
(7.41% ↓)

permafrost 0.40 1.72 −0.53 0.25 4.73 1.18
SFG 2.14 1.16 0.05 2.40 0.64 0.29
QTP 1.32 0.73 0.45 2.67 1.44 0.57

1980s 1.40
(6.67% ↓)

permafrost −23.28 * −13.68 * 0.65 −1.95 4.83 1.28
SFG −14.87 * −11.73 * −3.79 −5.19 0.68 0.31
QTP −22.64 * −17.13 * 0.81 −0.13 1.45 0.56

1990s 1.53
(9.29% ↑)

permafrost −6.93 −5.55 1.17 −4.09 4.31 1.44
SFG −13.03 * −14.75 * 16.39 24.33 * 0.60 0.36
QTP −19.23 −18.60 20.96 27.21 1.18 0.59

2000s 1.02
(33.33% ↓)

permafrost 13.37 14.73 −6.41 10.98 3.36 0.98
SFG 25.68 32.66 * −12.91 −9.57 0.53 0.24
QTP 38.07 52.42 * −20.07 −38.16 1.20 0.49

Trends with an asterisk (*) denotes p < 0.10. Downward (upward) arrow indicates shrinkage (expansion) per-
mafrost in area.

The QTP has experienced obvious permafrost expansion in the 1990s (0.13 × 106 km2)
after the pronounced shrinkage of permafrost area in the 1980s. Ran et al. [14] also claimed
similar thermal condition improvement in a specific permafrost area located primarily east
of Lhasa in the southeastern part of QTP, where there are numerous marine glaciers and
substantial snow cover. Figure 1d shows that the conversions from SFG to permafrost
mostly occurred in the south of the Qiangtang High Plain, including the Yarlung Zangbo
River, as well as the Hengduan Mountains in the southeastern QTP. However, the AFI
and the ATI in permafrost areas show decreasing and increasing trends with rates of
6.93 ◦C·d/decade and 1.17 ◦C·d/decade, respectively (Table 1), implying that the atmo-
sphere over permafrost regions exhibited warming changes in both freezing and thawing
periods in the 1990s. These results indicate that air warming does not always decrease
the permafrost area because the active layer shortens in freezing (5.55 ◦C·d/decade) and
thawing (4.09 ◦C·d/decade) periods. Zhang et al. [20] reported that the Qiangtang High
Plain has experienced the most intensive precipitation increase since 1998, and it has ex-
erted a cooling effect on the top permafrost regions by reducing their thermal responses
to climate change. Numerical tests showed that an increase of 100 mm in summer pre-
cipitation causes a mean reduction of 0.35 m in active layer thickness and 0.36 ◦C in the
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top of permafrost [20]. More precipitation increases soil wetness and soil moisture, so
surface ground heat loss occurs inevitably. It will reduce the heat transferred to the deeper
layer while rainfall with higher temperatures percolates into the frozen soil column [36].
Furthermore, abundant heat will also be absorbed by increased liquid water in soil pores
due to its higher specific heat capacity than ice, thus diminishing heat transfer to the deeper
layer. Intensified rainfall will have a cooling effect on permafrost when heat is consumed
more by evaporating and percolating liquid water than by transferring to soils [20]. This
phenomenon is more prominent in permafrost regions, which belong to the arid zone on
the QTP, as evidenced by the remarkable positive and negative correlation coefficients
between the annual precipitation and the GFI and GTI, respectively, since the 1990s [36].
Based on these results, we can conclude that precipitation has played an important role in
favoring permafrost development in the 1990s, despite the background of air warming.

Table 1 shows that the permafrost area grew in the 1990s and dropped to a new low
in the 2000s, attaining a minimum value of 1.02 × 106 km2, which is also comparable
but slightly lower than the observational-based value of 1.33 × 106 km2 in the same
period [14]. Figure 1e shows that the conversions from permafrost into SFG prevailed
across the entire QTP, especially in the southern QTP. The reduction of the freezing and
thawing durations in the active layer in the 1990s is likely to cause permafrost to be more
vulnerable to climate change, which coincides with previous results [51]. Permafrost
monitoring through 10 boreholes on the QTP shows that mean annual temperatures at
6.0 m depth have increased by 0.12 ◦C to 0.67 ◦C, with an average increase of 0.43 ◦C from
the mid-1990s to the late 2000s [16]. The increase in active layer thickness was driven
mainly by increases in the thawing index and annual precipitation [52]. Meanwhile, a field
investigation conducted in the permafrost region from 2005 to 2009 in the interior QTP
demonstrated that declines in vegetation cover in alpine meadows led to an increase in the
thawing and an advance in the onset of seasonal changes within the active layer [53]. Our
results further indicated that, in contrast to the 1990s, a permafrost area of 33.33% thawed
into SFG in the 2000s over the entire QTP. While the AFI increased and the ATI decreased
at rates of 13.37 ◦C·d/decade and 6.41 ◦C·d/decade, respectively, in permafrost regions
during this decade (Table 1). It illustrates that the QTP has undergone a warming hiatus
during the 2000s as the period of air temperature below (above) 0 ◦C extended (shortened).
SFG also exhibited an increasing trend in GFI and a decreasing one in GTI, following the
variations in AFI and ATI. However, the variations in ATI and GTI have shown an opposite
direction in the permafrost parts since the 2000s. The temperature of top permafrost above
0 ◦C lasted longer while the atmospheric temperature exceeding 0 ◦C lasted shorter, as
evidenced by the increasing rate of 10.98 ◦C·d/decade in the GTI and the decreasing rate
of 6.41 ◦C·d/decade in the ATI (Table 1). It is reported that dramatic wetting over cold
and arid permafrost zones tends to induce a cooling of the atmosphere [36], because the
surface energy balance responds to variations in annul precipitation by influencing the
surface radiation components, which alter the near-surface air temperature [54]. However,
the warming hiatus during thawing duration has not restrained the thermal degradation
in permafrost regions in the 2000s. Persistent wetting and more heavy rainfall events in
summer are favorable for liquid water to rapidly reach and accumulate at the bottom of the
active layer, which will serve to warm the permafrost body during the subsequent freezing
period [20,37].

As a whole, the QTP witnessed prominent permafrost shrinkage in the 1960s–2000s,
accounting for 37.04% of the permafrost area in the 1960s. The most pronounced decline
in permafrost area took place in the 2000s, when QTP was undergoing a warming hiatus.
From the perspective of the surface freeing/thawing processes, the ratios of the AFI and
the ATI fell in the 1970s and decreased again in the 1990s–2000s from 4.31 to 3.36. However,
the ratios of the GFI and the GTI rose in the 1990s and dropped sharply to a minimum of
0.98 in the 2000s in response to the atmospheric warming during the freezing period over
the permafrost (Table 1). It signifies the QTP has presented more complicated permafrost
responses to climate warming and wetting since the 1990s. The frozen ground was thermally
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unstable in the 1980s owing to the strikingly atmospheric warming in the cold season. The
dramatic thermal degradation in the 2000s, which might be due to the accelerated wetting
process over the QTP, mainly occurred in permafrost regions in the warm season (from May
to October) [26]. This differs from the 1980s. Although recent studies have confirmed that
intensified summer precipitation has exerted an important warming effect on permafrost
bodies [20,36,37], our results further reveal that thermal degradation also terminated in
SFG in the 2000s. Relatively warmer and wetter conditions in SFG regions might experience
more heat loss via evaporation when gradually plentiful water occupies soil pores, which
alters the thermal regimes of surface ground [36].

3.2. Comparisons of Thermal States between Near-Surface Atmosphere and Ground Surface
in Climatology

The mean values of GFI and GTI from 1961 to 2010 across the QTP show spatial
patterns similar to the AFI and ATI, respectively (Figure 2). From the perspective of value,
the climatology of the GTI (GFI) is higher (lower) than that of the ATI (AFI), especially
in the permafrost regions. The maximum value of the ATI is 1505.80 ◦C·d, which is
substantially lower than that of the GTI (2485.06 ◦C·d). The maximum AFI reaching the
value of 2042.24 ◦C·d is higher than that of the GFI (1463.06 ◦C·d) for the entire QTP. This
implies that, in general, the period of ground temperature above 0 ◦C lasted longer than air
temperature in the thawing period, while air temperature below 0 ◦C retained longer than
ground surface temperature in the freezing period in past decades. The maximum value of
the averaged annual ground surface temperature is 3.44 ◦C, which is more than five times
the value of the air temperature (−0.61 ◦C, Figure 2c,f).

Figure 2. Spatial patterns of climatology of freezing/thawing indices (a) GTI, (b) GFI, (c) surface
ground temperature, (d) ATI, (e) AFI, and (f) air temperature from 1961 to 2010 across the QTP.

The spatial patterns for the AFI and GFI, ATI, and GTI climatology show distinctive
regional differences (Figure 2). In contrast to the GFI, permafrost and SFG tend to show
more pronounced distinctions in the GTI from 1961 to 2010, with a value of 1267.83 ◦C·d.
However, the difference between the AFI in permafrost and SFG is 1298.38 ◦C·d, which
is comparable to the ATI value of 1222.01 ◦C·d. It shows apparent distinctions between
permafrost and SFG responses to climate change in terms of thawing intensities. Dra-
matic higher differences between the AFI and the GFI in permafrost regions suggest more
pronounced freezing intensity. Conversely, the differences between the ATI and GTI are
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more remarkable in SFG parts, which illustrate that SFG regions are more vulnerable to
thawing when air temperature increases. However, owing to the wetting and warming
conditions over the QTP, the decreased cold stress in high altitude parts of the QTP encour-
aged an expansion of climatically suitable areas for plant growth [55]. Air temperature
and precipitation changes over time appear to exert substantial impacts on regulating the
thermal regimes of the surface permafrost. As one of the typical characteristics of land
surface processes at high altitudes in the QTP, alpine permafrost is also not immune to
these impacts. The vegetation expansion and snow cover reduction in high-altitude areas
can produce positive feedback on permafrost degradation when the underlying snow with
high albedo is replaced by vegetation with a lower albedo [26,56].

3.3. Spatial Changes of Freezing and Thawing Indices in Permafrost and Seasonally Frozen Ground

As the 1990s represent the pivotal period of permafrost area variations and freez-
ing/thawing indices dynamics, the spatial patterns of changes in the AFI and GFI, the
ATI, and the GTI in permafrost and SFG regions before and after the 1990s are shown in
Figures 3 and 4, respectively. Before the 1990s, the changes in AFI in permafrost regions
were dominated by negative values, which illustrates the air warming during the freezing
period (Figure 3a). Persistent negative trends of the GFI in the Qilian Mountains, Tanggula
Mountains, and parts of Qiangtang High Plain in the interior QTP, which indicate these sur-
face permafrost areas have warmed substantially, are broadly consistent with the dynamics
of permafrost distribution during these decades (Figure 1b,c). It can be well explained
that the increased air temperature, which has been widely recognized to control thermal
regime changes in recent studies [19,34,35], has triggered the thermal regime changes of the
underlying permafrost. However, it should also be emphasized that the major Qiangtang
High Plain in the western QTP exhibited prominent increases in the GFI, where the freezing
duration was maintained longer within the surface active layer. It appears that the air
warming before the 1990s in the cold season only induced thermally unstable conditions in
some small portions of surface permafrost. Statistically, in contrast to the decreasing trend
of the AFI (13.59 ◦C·d/decade) from 1961 to 1990, the annual GFI in permafrost regions
was growing at a rate of 67.59 ◦C·d/decade (Table 2). Meanwhile, positive-dominated
changes in the ATI before the 1990s have consistently shown that the QTP has experienced
a prevalent warming process in thawing duration, except for some portions in the sporadic
permafrost regions in the Hengduan Mountains and Qilian Mountains where negative
trends were present (Figure 3c). Table 2 demonstrates that the ATI increased significantly
at a rate of 39.86 ◦C·d/decade during 1961–1990, while the GTI shows pronounced spatial
distinctions in terms of permafrost responses to warming. The eastern parts of the Qiang-
tang High Plain in the interior QTP exhibited decreasing changes in the GTI, which implies
that the thawed duration has a tendency to decline to some extent even through an acceler-
ated warming process over the permafrost body. However, the western parts exhibit an
extended thawing duration as a response to the warming. Being different from the freezing
process, which releases heat to the surroundings, the extension of the thawing process to
the surface of the ground should be accompanied by a certain amount of heat input from
the surroundings. Positive changes in the GTI and the GFI took place consistently in the
western parts of the Qiangtang High Plain (Figure 3b,d). The longer freezing duration and
extended thawing times that occurred in the top continuous permafrost regions tend to
deepen the active layer, although the permafrost in these areas remained relatively stable
in type before the 1990s (Figure 1c).

13



Remote Sens. 2023, 15, 3478

 

Figure 3. Spatial changes of freezing and thawing indices in permafrost regions between 1961–1990
and 1991–2010. (a,e) AFI, (b,f) GFI, (c,g) ATI, and (d,h) GTI on the QTP.

Figure 4. The same as Figure 3, but for seasonally frozen ground on the QTP. (a,e) AFI, (b,f) GFI,
(c,g) ATI, and (d,h) GTI on the QTP.

In contrast to the slight decrease at a rate of 13.59 ◦C·d/decade before the 1990s, the
AFI started to decrease dramatically since the 1990s and reached a magnified value of
202.57 ◦C·d/decade (Table 2). However, the freezing duration within the surface active
layer extended intensively, as evident by the prevalent GFI increase in permafrost regions
(Figure 3f). This is in contrast to the changes in AFI (Figure 3e). The warming effect of
increased air temperature shows less control over thermal regimes in permafrost in the
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cold season from 1991 to 2010. Furthermore, spatial changes in the ATI also presented a
reverse pattern after 1990. Most areas of the Qiangtang High Plain experienced a warming
hiatus during the thawing period. From the perspective of magnitude, the increasing rate
of the ATI is 16.94 ◦C·d/decade after 1990, which is substantially lower than that before
1990 (39.86 ◦C·d/decade). It is shown that air warming in the cold season eventually
exceeded that in the warm season after 1990. This corroborates the findings of previous
numerical experiments, which reported that summer warming has slowed and winter
warming has begun to accelerate over the QTP around 1998 [34]. Meanwhile, the ground
surface, however, presented shortened thawing periods in the active layer of permafrost
regions (Figure 3h), with a rate of 83.58 ◦C·d/decade in the GTI (Table 2). Considering the
relative milder increase in the ATI (16.94 ◦C·d/decade), it can be reasonably concluded that
the top permafrost has not been particularly sensitive to the air warming in warm seasons
since the 1990s. That is, pronounced air warming in the warm season had only marginal
effects on thermal regime changes in permafrost on the western QTP.

Table 2. Comparison of the annual mean (◦C·d) and trends (◦C·d/decade) of the AFI, GFI, ATI, and
GTI over the QTP in permafrost and SFG regions from 1961 to 1990 and 1991 to 2010.

Periods Frozen Type AFI GFI ATI GTI

Mean Trend Mean Trend Mean Trend Mean Trend

1961–1990
permafrost 3357.15 −13.59 2427.27 67.59 187.27 39.86 * 940.77 29.26

SFG 1806.63 −44.27 * 1258.67 1.48 1165.43 19.61 2120.32 −10.70
QTP 1991.66 −41.85 1397.33 8.58 1063.34 27.71 2009.92 −0.11

1991–2010
permafrost 3168.49 −202.57 * 2393.41 −85.22 * 263.83 16.94 918.51 −83.58

SFG 1640.24 −148.97 * 1184.92 −42.39 1297.28 68.33 2162.22 −15.20
QTP 1796.94 −57.24 1275.56 3.21 1203.37 2.35 2154.49 −45.90

1961–2010
permafrost 3286.73 −72.74 2413.87 −0.50 217.57 32.73 * 931.96 −5.38

SFG 1740.77 −68.74 1229.48 −24.35 1217.62 47.98 2136.69 6.13
QTP 1914.58 −71.00 * 1349.13 −34.33 * 1118.77 48.13 * 2067.14 40.37 *

* Trends with an asterisk (*) denotes p < 0.10.

Nevertheless, the QTP has also experienced a dramatic wetting process around 1998
and a remarkable greening process after 2000, which was favored by substantial climate
change [20,26,57]. Permafrost monitoring has indicated that intensified rainfall imposed a
cooling effect in the freezing duration and a warming effect in the thawing duration in the
active layer [58], which has a pivotal impact on deepening the active layer thickness [59].
Meanwhile, an expansion of climatically suitable areas for plant growth might favor the
increasing impact of vegetation on regulating the current thermal regimes of permafrost
over the QTP [26]. From these results, it can be inferred that variations in freezing/thawing
indices after 1990 might also be related to local variations in precipitation and to vegetation
cover dynamics in permafrost ranges.

In SFG areas, the changes in AFI decreased significantly with rates of 44.27 ◦C·d/decade
and 148.97 ◦C·d/decade during the two subperiods of 1961–1990 and 1991–2010 (Table 2).
Spatially, the largest decreasing areas of the AFI expanded from the Qaidam Basin to the
eastern parts of the QTP (Figure 4a,e). These remarkable declines in the AFI indicate the
near-surface atmosphere over the SFG has warmed substantially in the freezing period
during the study period. Figure 4b shows that the Qaidam Basin presented a prominent
decreasing tendency in the GFI as responses to air temperature increased. However, some
portions of the eastern QTP underwent cooling processes where the GFI decreased. As a
whole, the significant air temperature rise over the SFG has not exerted prominent warming
effects on frozen surface ground before the 1990s because the GFI was increasing at a rate
of 1.48 ◦C·d/decade (Table 2).

From 1991, the ground surface underwent an obvious GFI decrease at a rate of
42.39 ◦C·d/decade (Table 2). Spatial patterns also indicate that SFG in the southeast-
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ern parts of the QTP also presented increasing GFI trends (Figure 4f). It is suggestive of
diminishing thermal responses of SFG in these areas to air warming during the freezing
period since the 1990s. Moreover, distinct from freezing indices changes, the changing
thawing indices show reversed patterns before and after the 1990s. It is clear that the
SFG experienced progressive increases in the ATI after 1990 (Figure 4g). Correspondingly,
prominent increases in the GTI occurred in the eastern QTP (Figure 4h). While the south-
western QTP, where belong the rims of the transitional areas between permafrost and SFG
in the 1990s–2000s (Figure 1d,e), showed strikingly decreasing tendencies in the ATI and
GTI (Figure 4g,h). These results suggest that atmospheric warming over SFG after 1990
mainly occurred in the warm season, which differs from that in permafrost parts. The
SFG degraded from permafrost in transitional areas shows fewer thermal responses to air
warming in the cold season. A warming hiatus in the warm season was also favorable for
permafrost development in these regions, as it occurred in the 1990s (Figure 1d).

4. Discussion

To characterize the effects of seasonal warming on frozen ground, we compared
the freezing/thawing indices between the near-surface atmosphere and frozen ground
surface after presenting the changes in frozen ground distribution in each decade. Air
warming, which has shifted between freezing and thawing processes since the 1990s, shows
a diminished control role on thermal regimes in both permafrost and SFG areas since
the 1990s. More specifically, after 1990, air temperature rise over permafrost was more
pronounced in the freezing period, while in the thawing period, air warming over SFG
exhibited more intensive increase. The warming hiatus over permafrost in thawing period
and the prominent shrinkage of permafrost area in the 2000s implies that air warming
appears to play only a marginal controlling role in thermal regime changes, especially in
western QTP.

As the occurrence of annual precipitation increases and the vegetation cover extends,
especially in the 2000s [6,20,26,55], it is essential to investigate the effects on reregulating
surface thermal regimes of frozen ground. Focused on a single precipitation event on the
QTP, Li et al. [58] reported that increased rainfall created a heating effect on active layers in
the thawing period, which led to a cooling effect in the freezing period. Similar warming
effects of rainfall on the thermal regimes of permafrost have also been concluded over the
Russian Arctic drainage basin [60]. Moreover, vegetation expansion in the warmer and
wetter Arctic coincides with that on the QTP [55,61]. It will partially reduce permafrost
degradation in the Siberian tundra [62]. Furthermore, on the QTP, recent observational
results reveal that increases in vegetation greenness since the 2000s promote the role
of SFG in responding to the intensified wetting process [18]. In this study, we more
deeply investigate the changes in ground freezing and thawing indices responding to
the atmospheric freezing and thawing indices on the entire QTP. To state this conclusion
more reasonably, we also presented the relations between freezing/thawing indices and
precipitation, the NDVI, respectively (Figure 5).

It is obvious that the precipitation anomaly over the QTP experienced a first peak
in 1998 and rose to a new high of 191.10 mm in 2005. This corroborates the findings of
the previous numerical study [20]. A similar breakpoint was also detected in northern
Canada [63]. Permafrost borehole records from Canadian stations indicate that air tem-
peratures have generally been higher since the 1980s and then decreased since the peak
temperature in 1998. In this study, it was found that the negative AFI and positive ATI
anomalies reach the maxima of 453.72 ◦C·d/decade and 255.90 ◦C·d/decade, suggesting
that the QTP also underwent the most progressive atmospheric warming in 1998. The GFI
anomaly generally followed the evolution of the AFI anomaly until 2001. After that, the GFI
reaches a new minimum anomaly of 359.79 ◦C·d/decade in 2004, whereas the AFI anomaly
remains stable. Furthermore, the ATI showed weakening but stable positive anomalies
during 2001–2005, while the GTI presented strikingly negative ones during this period,
especially in the permafrost regions (Figure 5c,d). These results suggest that the ground
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thawing duration shortened sharply even though the air temperature rose. Instead, the
intensified precipitation began to act as a control mechanism for regulating surface thermal
regimes. Statistical results indicate that precipitation anomalies yield significant negative
correlation relationships with the AFI, GFI, and GTI (p < 0.05, Figure 5a,b,d) but a positive
one with the ATI (p < 0.05, Figure 5c). The increased rainfall has a tendency to promote
air temperature rise but restrain freezing and thawing cycles within the active layer of
permafrost. This conclusion is coincident with the work of Luo et al. [37], who reported
that increased summer precipitation amounts tend to reduce ground thawing indices and
exert an obvious cooling effect on top permafrost, based on permafrost monitoring in the
northeastern QTP. However, when a large amount of rainfall percolates into the deeper
soils, it may cause an opposite warming effect on permafrost [20]. It can be explained that
the liquid rainfall that commonly comes with a higher temperature than that in deep soils
will effectively transfer heat to the surroundings after percolating through the soil quickly
and, as a result, warm the permafrost body.

Figure 5. The time series of anomaly comparisons between precipitation (left panels), NDVI (right
panels), and freezing/thawing indices during 1961–2010, respectively. (a,e) AFI; (b,f) GFI; (c,g) ATI;
and (d,h) GTI. Two colors of green (red) bars represent index anomalies in permafrost (SFG), and the
black lines with circles indicate those across the whole QTP. The blue lines with triangles represent
the anomalies in the precipitation and the NDVI. Figures in the same colors as permafrost, SFG, and
the entire QTP indices shown in the plots represent their correlation coefficients with precipitation
and NDVI anomalies. One asterisk (*) denotes p < 0.10 and two asterisks (**) denote p < 0.05.
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It is important to note that the NDVI started to increase in 2004 and reached a maxi-
mum value of a positive anomaly (0.10) in 2005. As shown in Figure 5, the NDVI anomaly
yields a negative correlation relationship with the AFI anomaly and a positive one with
the ATI anomaly, although they are not statistically significant. It implies that the short-
ened periods of air temperature below zero in the freezing process and the extended ones
above zero in the thawing process are favorable for vegetation cover expansion. For top
permafrost, a positive anomaly in the NDVI will also reduce its thermal response to cli-
mate warming because of its negative correlation relationship with the GFI and the GTI,
respectively. Similar conclusions have also been drawn in a recent study [25]. However, the
hiatus in vegetation greening after 2006 (Figure 5) mainly showed warming effects due to
nighttime warming [64]. It could accelerate permafrost thawing [64], as evidenced by the
increased GFI and GTI (Figure 5f,h). The vegetation dynamics coincide with the persistent
wetting over the QTP in the 2000s, which intensified thermal instability in permafrost.
As a result, these results suggest that the dramatic permafrost shrinkage and thermal
degradation across the QTP are not always only induced by air warming; intensive wetting
and greening dynamics over the QTP also play important roles. Further research into the
influences of vegetation growth and precipitation anomalies on the thermal regime changes
of frozen ground at different altitude levels of the QTP is also required in the near future.

5. Conclusions

Based on the numerical simulation results, this study analyzed the thermal dynamics
of frozen ground on the QTP from a new perspective. Freezing and thawing indices
between frozen ground and near-surface atmosphere are analyzed in five decades from
1961 to 2010 and related to the changes in frozen ground distribution in each decade. The
main conclusions are the following:

The net shrinkage of permafrost area in the 2000s was 37.04% relative to the 1960s
across the QTP. The permafrost area rose in the 1990s and dropped to a new low value of
1.02 × 106 km2 in the 2000s. Decadal permafrost distribution patterns indicate the first
occurrence of degradation in the 1970s–1980s lies in the Tanggula Mountain areas on the
southwestern QTP, followed by the pronounced permafrost reduction in areas of the Qilian
Mountain in the northwestern QTP and the Hengduan Mountain in the interior QTP in
the 2000s.

The ratios of the AFI and the ATI presented a steady decrease from 1.57 to 1.44 in the
1960s–1980s, in contrast to the slight decrease in the ratios of the GFI and the GTI from 0.57
to 0.56 during this period. Atmospheric warming over the QTP played a more controlling
role in the thermal dynamics of frozen ground before the 1990s. The air temperature
reached a peak in 1998 in both freezing and thawing periods. The ratios of the GFI and the
GTI in permafrost and SFG also reached their maximum in the 1990s, with values of 1.44
and 0.36, respectively. The ratio of the GFI and the GTI was <1 in the 2000s, indicating their
prominent thermal responses to intensified wetting and warming processes.

A warming hiatus was detected in the 2000s, especially for the permafrost regions in
the cold season, which favorably restrained the permafrost degradation. In this decade,
the QTP has been under the influence of prominently thermally unstable conditions, with
the permafrost area shrinking by 33.33%. The occurrence of increasing precipitation over
the QTP began to play a more controlling role in permafrost degradation. The hiatus in
vegetation greening after 2006 could promote the thermal responses of frozen ground to
climate change.
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Abstract: The Qinghai–Tibet Plateau (QTP) is a crucial component of the global climate system,
influencing the regional and global climate through complex thermal and dynamic mechanisms. The
high-altitude region, which is the largest part of the extra-polar cryosphere, encompasses extensive
mountain glaciers, permafrost, and seasonally frozen land, making it highly sensitive to global climate
change. However, the challenging environmental conditions, such as the harsh terrain and high
altitude, coupled with sparse weather station distribution and weak observatory representation, make
it difficult to accurately quantify the atmospheric conditions and land–atmosphere coupling systems
and their effects on the surrounding areas. To address these challenges, we utilized the Weather
Research and Forecasting (WRF) model and a three-dimensional variational (3DVAR) assimilation
method to create a high-resolution assimilated dataset (HRAD). The QTP-HRAD, covering the spatial
range of 70 to 110◦E and 25 to 40◦N, was validated using both surface weather station observations
and the European Center for Medium-Range Weather Forecasts Reanalysis V5, and can now be
utilized for further studies on land–atmosphere interactions, water cycling and radiation energy
transfer processes, and extreme weather events in the region.

Keywords: Tibetan Plateau; assimilation dataset; land–atmosphere interaction; WRF model

1. Introduction

The Qinghai–Tibet Plateau (QTP) is widely recognized as the world’s highest and
largest plateau, with a highly complex terrain that includes mountain ranges, vast plains,
and numerous lakes and rivers. This unique geographical region, sometimes referred to
as the “Roof of the World,” is situated in the heart of Asia and covers an area of over
2.5 million square kilometers. Due to its high elevation, harsh climate, and unique ecology,
the QTP is often referred to as the “third pole” of the Earth, after the North and South
Poles. The region plays a crucial role in global climate, as it is a major source of freshwater
and a key driver of atmospheric circulation patterns that affect weather patterns around
the world [1]. It serves as the origin of numerous major Asian rivers, making it a vital
“hydrological tower” in Asia [2,3]. However, the plateau is particularly susceptible to
the impacts of global climatic alteration, exhibiting a heightened rate of temperature
amplification in comparison to other regions [4,5]. The impacts of global warming on
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the Tibetan Plateau have become a subject of great scientific interest in recent years [6–8].
Multiple observational and monitoring projects were implemented on the QTP. To better
understand the mechanism of the land–atmosphere interaction and land surface processes
on the Plateau, researchers have conducted numerical simulation studies [6].

The Tibetan Plateau’s thermal impact on the atmosphere significantly impacts the
land–atmosphere circulation of China, East Asia, and the entire world [9–16]. The Plateau’s
cryospheric processes, such as the absorption of solar radiation and seasonal variations
in surface heat and water fluxes, lead to complex interactions between the land surface
and atmosphere that make it challenging to fully understand and simulate the energy and
water cycle of the QTP and its impact on global climate change [10,12,17]. Although there
has been a growing amount of research on land–atmosphere interactions over the QTP,
observational experiments to determine terrestrial and atmospheric parameters are limited
by the harsh environmental conditions, high altitudes, and sparse distribution of weather
stations. Additionally, most observational experiments are conducted only in summer at a
few locations, leaving gaps in our quantitative understanding of the local land–atmosphere
coupling systems and their effects on the surrounding areas [18].

A series of atmospheric field experiments have been conducted over the Tibetan
Plateau (TP) since the 1970s. Notable examples include the first Qinghai–Xizang Plateau
Meteorology Experiment (QXPMEX) [19], the Global Energy and Water Cycle Exchanges
(GEWEX) Asian Monsoon Experiment (GAME)/Tibet intensive observation [20], and the
Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the
Tibetan Plateau (CAMP/Tibet) [21]. Through these experiments, several field observa-
tional stations were established and kept in operation. After decades of effort and with an
optimized scientific design and layout, the level of atmospheric observation has greatly im-
proved with respect to observation infrastructure, technology, and meteorological elements
observed. Since 2014, the third Tibetan Plateau Atmospheric Science Experiment (TIPEX-III)
has been underway. As part of this experiment, routine automatic sounding systems were
deployed in the western plateau region, filling the gap of routine operational sounding stations
previously lacking in this area. Additionally, observational networks for soil temperature and
moisture in the central and western TP were established. TIPEX-III also conducted plateau
and regional-scale boundary layer observations, measured cloud–precipitation microphysi-
cal characteristics through the use of multiple radars and aircraft campaigns, and collected
tropospheric–stratospheric atmospheric compositions at multiple sites [22].

With the development of numerical simulations and data assimilation techniques,
regional numerical models have become widely used for studying climate change over
the QTP [23–26]. However, existing numerical models have defects in reflecting the earth–
atmosphere coupling process, particularly the physical process of clouds and precipitation,
and their influence on complex terrain conditions [27–29]. The simulation of the 2 m
temperature over the QTP using regional climate and global circulation models tends to
have a consistent underestimation or cold bias. This systematic error affects the accuracy
of the climate model simulations for the QTP region [30], and the cold bias of different
regional models over the QTP is between −11 ◦C and −0.3 ◦C [31–35]. At present, there
are large uncertainties in the numerical simulation data of the precipitation in high-altitude
mountainous areas. The rugged and steep terrain, location of observation sites, wind-blown
snow, and low-temperature environments hinder the establishment of high-quality grid
precipitation data [36]. Because of the coarse resolution, model physics, and dynamics, the
global climate model showed a substantial bias over the QTP, and the simulated precipita-
tion was significantly overestimated over this area. The dynamic downscaling simulation
of precipitation is better than that of the global climate model, but the overestimation of
precipitation still exists, with the highest value of 35% [34]. Atmospheric reanalysis data
and various remote sensing products in the QTP region also have significant uncertain-
ties [37–40]. These factors cause a low accuracy of regional numerical models in the QTP
region, which seriously affects the assessment of climate change in this region [41].
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With advances in computational resources, dynamic downscaling has become a candi-
date for climate studies with small-scale information, which can now be simulated over
decades at a 1–10 km resolution [42,43]. The regional model can generate high spatial
and temporal resolutions and climate-relevant long-term series of local climatic factors.
In addition, the consistency of model physical processes can be used to generate datasets
across different climatic scales [44]. Therefore, with the continuous improvement of model
resolution and the establishment of a rapid assimilation update cycle system [45], ground,
radiosonde, satellite, and aerial observation data with high spatial and temporal resolutions
are playing an increasingly important role in assimilation systems [46,47].

In the assimilation process, the assimilation of large amounts of ground observation
data not only makes the ground elements of the model closer to the actual ground observa-
tions, but also affects the simulation of the boundary layer and above the boundary layer,
as well as the vertical motion and structure related to the surface features observed by
these ground elements [46,48]. Therefore, effectively integrating multi-source observational
data into the numerical model system improves the numerical simulation results of the
complex underlying surface of the QTP, enhances the simulation accuracy of the numerical
model, and uses the assimilation data results to analyze the occurrence and evolution of
extreme temperature and precipitation events. Understanding and exploring the formation
mechanism and response to global warming of extreme weather and climate events in the
southeastern plateau of the QTP is of significant importance.

For the first time, we generated high spatial and temporal resolution (horizontal
5 × 5 km, once every 1 h) assimilation data in the QTP (QTP-HRAD) over 11 years
(2010–2020). The assimilation data include 28 near-surface meteorological variables, includ-
ing the radiation and energy field variables. The hourly values of the 2 m temperature,
land surface temperature, relative humidity, surface pressure, water vapor mixing ratio,
10 m U and V wind components, precipitation, and dew point temperature at 5 × 5 km are
available online [49].

Our compiled QTP-HRAD is expected to help more users to understand the spatial–
temporal characteristics of key attributes in the QTP region of China and be applied in
different fields. In addition, the QTP-HRAD can provide data references for the compre-
hensive evaluation of plateau ecological environment, extreme weather, and climatology.
The flowchart for constructing the QTP-HRAD is shown in Figure 1.

Figure 1. Flowchart for generating the QTP-HRAD.
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2. Methods

2.1. Introduction to WRF Model Configuration

This dataset is generated and produced by the Weather Research and Forecasting
(WRF) model version 4.2.2 and the three-dimensional variation (3DVAR) module. The
atmospheric vertical layer has 35 layers, the atmospheric pressure at the upper boundary
of the WRF model is 50 hPa, and the “CONUS” physics suite was selected as the parame-
terization series scheme of the simulation and assimilation. The “CONUS” series scheme
is a combination of physical options that are highly tested and show reasonable results.
The configuration is as follows: The microphysics was characterized using the Thomp-
son scheme [50], and the Rapid Radiative Transfer Model for General Circulation Models
(RRTMG) [51,52] was utilized to determine the calculation of longwave and shortwave
radiations and their atmospheric transfer. The cumulus clouds were modeled using the
“Tiedtke and Zhang” convection scheme [53,54]. The Noah land surface model (Noah-LSM)
is particularly effective in simulating soil temperature and moisture in multiple layers,
which allows for a more precise representation of the vertical structure of the land surface
within the WRF, taking into account soil temperature and moisture in four layers, fractional
snow cover, and frozen soil physics. This helps to accurately represent processes over
ice sheets and snow-covered areas [55]. The Mellor–Yamada–Janjic (MYJ) scheme was
utilized to resolve planetary boundary layer processes [56]. The thermal roughness length
and standard similarity functions were obtained from look-up tables in the surface layer
scheme, which is based on the Monin–Obukhov theory with Zilitinkevich and used in the
Eta model [57]. During long simulations, the model offers the option to input time-varying
data and continuously update these fields [58,59]. The 12-month values of vegetation
fraction and albedo were obtained from the geogrid program to be used in the WRF model,
but it does not have the capability of predicting sea surface temperature, vegetation fraction,
albedo, or sea ice. To overcome this limitation, time-varying sea surface temperature (SST)
and sea ice fields must be read into the model, allowing for updates of these fields during
long simulations.

The WRF configuration is presented in Table 1. In this study, a double-nested grid
system was utilized, with a horizontal grid spacing of 25 km in domain 1 and 5 km
in domain 2 (Figure 2). The two domains used the geographic data resolution of the
“usgs_lakes + default” option. The central latitude and longitude of domain 2 are 87.76◦E
and 33.41◦N, and the latitude and longitude of domain 2 ranges from 72.3 to 103.2◦E
and from 25.9 to 40.3◦N, respectively. The National Centers for Environmental Prediction
(NCEP) Final Analysis with a 6-h resolution and 1 degree × 1 degree spatial resolution
were used as the initial and lateral boundary conditions for the WRF model. The data
were obtained from the Global Forecast System (GFS). The simulation covered a period
of 10 years, starting on 1 January 2010, at 00:00 UTC and ending on 31 December 2020, at
23:00 UTC.

2.2. Introduction to NCEP_ADP Data and Assimilation Methods

For the assimilation data source, global observation data from the National Centers
for Environmental Prediction (NCEP) Automated Data Processing (ADP) was utilized.
The timeframe of this data spans from 1 January 2010 to 31 December 2020, and was
incorporated into the WRF-3DVAR system for assimilation.

The NCEP-ADP data contain surface synoptic observations (SYNOP), radio-sounding
data (SOUNDING), satellite observations (SATOBs), and a few aircraft reports (AIRREPs)
and the Meteorological Terminal Air Report (METAR). Satellite observations (SATOBs) track
cloud and wind data using cloud motion obtained using space-borne infrared derivations
or water vapor imagers. These data and reports include air pressure, geopotential height,
air temperature, dew point temperature, wind direction, and wind speed, with up to
20 layers of upper-air observations available ranging from 1000 to 10 hPa. The reporting
intervals range from hourly to 12 h (https://rda.ucar.edu/datasets/ds461.0/, accessed on
31 December 2020).
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Figure 2. The schematic diagram of simulated region, underlying land use/vegetation types, and
the distribution of the NCEP_ADP observation data. There are a total of 10 stations (Qamdo, Garz,
Hotan, Nyingchi, Nagqu, Pulan, Qumacai, Zoige, Tuotuohe, and Yushu) at different locations With
the blue triangle in and around the QTP as representative stations. The Hotan station stands on
the northwest side of the QTP, located in the northwest arid region, and represents the simulated
situation in the arid region north of the plateau. Nyingchi and Qamdo stations are located in the
semi-humid and humid regions of the southeastern plateau, representing a simulated situation in the
humid region of the southeastern plateau. Except for the Hotan station, which has a lower altitude of
1370 m, all other stations are located in the hinterland of the QTP at an altitude of over 3000 m.
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Table 1. Summary of the WRF configuration.

Domain Configuration Domain 1 Domain 2

Horizontal grid spacing 25 km 5 km
Grid dimensions 370 × 270 544 × 304
Time step 180 s 30 s
Central longitude–latitude 103◦E, 38◦N 87.76◦E, 33.41◦N
Geog data resolution usgs_lakes + default usgs_lakes + default

Model physics

Microphysics Thompson scheme
Cumulus parameterization Tiedtke scheme
Longwave and shortwave radiation RRTMG scheme
Surface layer Eta-similarity scheme
Land surface Noah land surface model
Planetary boundary layer Mellor–Yamada–Janjic scheme

Other physics options for long simulations
tmn_update: update deep soil temperature

sst_skin: calculate skin SST based on Zeng and Beljaars [60]
sst_update: update sea-surface temperature, vegetation fraction, albedo

The NCEP-ADP was used in the NCEP-FNL analysis. However, due to the resolution
of FNL data being 1 × 1 degree, it is difficult to reconcile multiple observation data within
a grid when assimilating these dense observation data. Therefore, when using the WRF
model with 3DVAR method for assimilation, we not only increase the grid resolution, but
also consider some control and constraint options when setting assimilation parameters to
better iterate and converge. For example:

(1) The multi-level q adjustment should be made while ensuring the conservation of
column-integrated water vapor, considering the need to verify the supersaturation
(RH > 95%) and the minimum relative humidity (RH < 11%) requirements.

(2) The assimilation of surface observations will rely on the surface similarity theory within
the planetary boundary layer instead of using the lowest model level’s first guess.

(3) Any stations where the model’s interpolated height differs from the actual observation
station’s height by more than 100 m will be deemed invalid and excluded.

(4) This specifies the method used to interpolate the background into the observation
space. The method involves selecting the neighboring model grid point with the
smallest height difference, while disregarding the grid points over water.

Figure 2 shows a schematic diagram of the simulated region, underlying land use/vegetation
types, and distribution of the NCEP_ADP observation data. It can be seen that the surface
SYNOP and SOUNDING sites are mostly distributed in the eastern part of the QTP, whereas
there are only a few ground and radio-sounding sites in the western part of the plateau.
SATOBs were evenly distributed in the entire simulated region. A few AIRREPs and the
METAR are available for the areas south of the Himalayas.

The three-dimensional variational assimilation theory entails the minimization of the
cost function as follows [61,62]:

J =
1
2

{[
H(x)− y0

]T
R−1

[
H(x)− y0

]
+

(
x − xb

)T
B−1

(
x − xb

)}
(1)

where y0 is the observed data, x is the model state, xb is the background guess, and B is
the background error covariance matrix. The first term of the cost function represents the
difference between the observed data and the model state, and the second term represents
the difference between the model state and the background. The purpose of the assimilation
process is to minimize the cost function, which means that the difference between the
observed data and the model state is reduced as much as possible, and the background error
is controlled [63]. The last stage involves updating the lower boundary and inserting the
analysis obtained from the WRF data assimilation system into the WRF model. This study
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utilizes a cycling assimilation approach that incorporates a quasi-isentropic coordinate
for the analysis increment. By utilizing the potential temperature structure around the
observation, this method dynamically adjusts the impact of observations. The 6 h update
cycle guarantees that the analysis and short-term forecast remain current [46].

Every 6 h, the cycling 3DVAR technique assimilates recent observations by utilizing
the previous 6 h model output as a reference to generate a fresh estimate of 3D atmospheric
fields. The approach involves analyzing the observation-minus-simulation residuals, or
innovations, to obtain a 3D multivariate error field estimate known as the analysis in-
crement. This increment is then combined with the 6 h forecast background to produce
the updated analysis. Through the model’s filter, the 6 h forecast incorporates insights
from previous observations into the current analysis [46]. The 3DVAR system operates in
cycling mode, which allows the background cloud water and rainwater from the previous
cycle to be incorporated into the current cycle. By including these variables in the 3DVAR
system, their information can be transferred to the subsequent cycle, reducing the time
required for the model’s cloud water and rainwater spin-up during the integration from
the analysis stage [64]. At the same time, the “SST update” option is turned on to update
the lower boundary conditions in the WRF model, including sea surface temperature
(SST), background albedo (ALBBCK), green vegetation fraction (GVF), and underlying soil
temperature (TMN) once every 6 h. These variables are updated to the forecast file via
“warm start” after the assimilation.

A schematic diagram of the cycling assimilation process is shown in Figure 3.

Figure 3. The schematic diagram of cycling assimilation data in the WRF model. The bottom brackets
mean every cycle of assimilation, and the bold arrows mean the observations are assimilated from
the time window “00”, “06”, “12”, and “18”.

2.3. Introduction to Observational Data and ERA-5 Data

The National Meteorological Information Center (NMIC) of the China Meteorolog-
ical Administration (CMA) published the China surface climatic daily dataset (V3.0) on
http://data.cma.cn/, accessed on 29 March 2023. This dataset comprises daily meteorologi-
cal observations from 91 stations located in the simulated QTP region. This dataset includes
the daily averaged surface pressure (hPa), 2 m temperature (◦C), 2 m relative humidity (%),
precipitation (mm), evaporation (mm), 10 m wind direction (◦), wind speed (m/s), and
ground surface temperature (◦C) from 1 January 2010 to 31 December 2019. Before being
utilized, the NMIC conducts quality control and inspection on the data. We used these
observation data for the model evaluation.

The European Center for Medium-Range Weather Forecasts Reanalysis V5 (ERA-5)
reanalysis data were used to provide additional information on atmospheric variables
such as temperature, humidity, wind speed, wind direction, and precipitation in the QTP
region [65,66]. These data were used in conjunction with the China surface climatic daily
dataset to evaluate the performance of the WRF model simulations. To encompass the
timeframe from January 2010 to December 2020, monthly mean data from ERA-5 were
employed in this investigation. These data cover a 30 km grid and span 137 atmospheric
levels, up to 80 km in altitude from the surface [67].
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The QTP-HRAD from the WRF model was averaged to a daily time scale for compari-
son and error analysis with observations from meteorological stations. We also compared
the QTP-HRAD with the gridded dataset of ERA-5, comparing variables such as tem-
perature, 2 m temperature, surface temperature, surface pressure, 2 m specific humidity,
10 m wind speed, and total precipitation. We used patch interpolation and the Earth
System Modeling Framework (ESMF) re-gridding toolbox in the National Center for At-
mospheric Research (NCAR) Command Language (NCL) (https://www.ncl.ucar.edu/
Document/Functions/ESMF/ESMF_regrid.shtml, accessed on 8 June 2022) and calculated
the difference between the two datasets.

3. Results

3.1. Comparison of Observations and QTP-HRAD Simulations from 10 Weather Stations

We selected 10 stations (Qamdo, Garz, Hotan, Nyingchi, Nagqu, Pulan, Qumacai,
Zoige, Tuotuohe, and Yushu) at different locations in and around the QTP as representative
stations to compare the daily mean values of the 2 m temperature, relative humidity,
precipitation, and evaporation.

Figure 4 shows the time series comparison of the 2 m temperature and relative humid-
ity observations and the QTP-HRAD data at 10 stations from 2010 to 2019. It can be seen
that the observed values of the 2 m temperature at the Garz, Nyingchi, and Pulan stations
are all higher than the simulated values throughout the year, and the observed values at
the other stations are in good agreement with the QTP-HRAD values. It can also be seen
from the error analysis table (Table 2) that the RMSE between the observed and simulated
daily mean 2 m temperatures of the Garz, Nyingchi, and Pulan stations are higher than
6.8 ◦C, and the bias is below −6.6 ◦C. The RMSE and bias of the other stations between
the observations and simulations were lower in the Hotan, Nagqu, Zoige, and Tuotuohe
stations, at approximately 2 ◦C (RMSE)and between −1 and 1 ◦C (bias), respectively. The
correlation coefficients of the 2 m temperature between the observed and simulated values
were all from 0.95 to 0.99 at these 10 stations, which all passed the 95% significance test.

The simulated value of the relative humidity also varied annually. Except for the
Hotan station, the simulated values of the other stations showed that the relative humidity
peaks in the summer and valleys in the winter, mainly due to the higher temperature in
the summer and more water vapor evaporating into the air. The Hotan station is located
at the edge of the Taklimakan Desert. Owing to the lack of adequate water supply on the
underlying surface, less water vapor evaporates into the atmosphere in the summer. The
relative humidity increases in the winter when the temperatures are lower, and therefore,
the annual variation in the relative humidity and temperature is reversed. Both the observed
and simulated results reflect this trend. The average annual relative humidity and specific
humidity at the Hotan station are 37% and 4.1 g/kg, respectively, which are much lower
than those at the other stations. The statistical error results (Table 2) show that the RMSE and
bias of the specific humidity in the Hotan station are the lowest among the 10 observation
stations (0.75 and 0.26 g/kg, respectively). The Garz station, located in southeast Tibet, has
the highest annual average relative humidity of 79% and a specific humidity of 5.1 g/kg.

In general, the WRF model showed a good simulation effect on the 2 m temperature
and relative humidity in the QTP region. The daily averaged simulated values were
consistent with the observed values, and accurately reflected the annual and interannual
variations in the temperature and humidity. For some stations located in the complex
terrain area, the simulation errors for the temperature and humidity were slightly larger
than those in the flat terrain area. As the Garz and Nyingchi stations are located in the
Hengduan Mountains in the southeast of the QTP, and the Pulan station is located in the
Ali Plateau in the southwest of the QTP, the complex and steep terrain caused a large 2 m
temperature simulation error. Other stations such as Hotan are located in the Tarim Basin
north of the Kunlun Mountains on the northern side of the QTP. The Zoige station is located
in the flat Zoige Wetland in the east of the QTP, and the Nagqu station is positioned in the
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northern QTP on hilly terrain that lies between the Tanggula Mountains, Nyainqentanglha
Mountains, and Gangdise Mountains. The terrain of the area gently slopes.

Figure 4. Comparison of observations and QTP-HRAD simulations for daily averaged 2 m tempera-
ture (◦C) and relative humidity (%) of 10 weather stations in QTP region from 2010 to 2019. The left
vertical axis shows the range of 2 m temperature value and the right vertical axis shows the range of
relative humidity value.

Table 2. RMSE, bias, and correlation coefficient of the daily averaged 2 m temperature, specific
humidity, surface pressure, and 10 m wind speed values between observations and QTP-HRAD from
10 weather stations; * means the correlation coefficient passed the significance t-test level of 0.05.

Weather Stations
2 m Temperature (◦C) Specific Humidity (g/kg) Surface Pressure (hPa) 10 m Wind Speed (m/s)

RMSE Bias R RMSE Bias R RMSE Bias R RMSE Bias R

Qamdo 4.88 −4.51 0.96 * 1.07 −0.51 0.95 * 59.9 −59.86 0.89 * 0.22 1.65 0.22 *
Garz 8.39 −8.11 0.96 * 1.14 −0.82 0.96 * 93.9 −93.84 0.85 * 1.72 1.29 0.22 *

Hotan 1.35 0.36 0.99 * 0.75 −0.26 0.96 * 11.56 −11.45 0.96 * 1.73 1.34 0.51 *
Nyingchi 6.84 −6.61 0.95 * 0.90 −0.48 0.97 * 74.93 −74.89 0.79 * 1.151 0.536 −0.15

Nagqu 2.01 −0.54 0.97 * 0.77 −0.39 0.97 * 9.08 −9.03 0.97 * 1.54 1.16 0.54 *
Pulan 8.66 −8.24 0.95 * 0.81 −0.46 0.97 * 62.48 −62.44 0.85 * 1.259 0.117 0.003

Qumacai 4.97 −4.43 0.96 * 1.18 −0.89 0.96 * 52.21 −52.16 0.95 * 2.59 2.0 0.23 *
Zoige 2.24 −0.31 0.96 * 0.73 −0.22 0.97 * 8.24 −8.153 0.96 * 1.67 1.25 0.33 *

Tuotuohe 2.19 −1.00 0.97 * 1.24 −0.93 0.95 * 20.48 −20.46 0.97 * 1.38 0.44 0.56 *
Yushu 3.68 −2.95 0.96 * 1.08 −0.78 0.97 * 39.50 −39.47 0.90 * 1.67 1.41 0.39 *

Figure 5 shows a comparison of the daily total precipitation and the daily mean actual
evaporation at 10 stations in the QTP region. The red and blue column lines represent the
observed and simulated daily total precipitation, respectively, and the gray line represents
the actual simulated daily evaporation. As no actual evaporation was observed, only the
simulated evaporation was plotted on the graph. It can be seen that the annual variations of
the simulated and observed precipitation were relatively consistent, with more precipitation
in the summer and less in the winter. Except for the Hotan station, the maximum daily
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precipitation of the other stations can reach between 30 and 40 mm in the summer, or even
50 mm, which indicates heavy rain and rainstorm. The simulated value reflects the peak
value of summer precipitation. At the Pulan station, more precipitation days were observed
than those that were simulated. At the Nyingchi station, the observed precipitation in
the winter was slightly greater than the simulated value. The annual evaporation was
positively correlated with the precipitation. The daily average value of evaporation in the
summer is approximately 2–4 mm/d, and the evaporation in the winter tends to be zero.
In general, the stations in the eastern and southern parts of the QTP, such as the Qamdo,
Garz, Nyingchi, and Zoige stations, have more precipitation and evaporation, while the
western stations and the stations in the arid region on the north side of the plateau, such
as Hotan and Tuotuohe, have less precipitation and evaporation. The variation trend of
precipitation was simulated well by the WRF model, which was in good agreement with
the observed values.

Figure 5. Comparison of observations and QTP-HRAD simulations for daily precipitation (mm)
and evaporation (mm) from 10 weather stations in the QTP region from 2010 to 2019. The left
vertical axis shows the range of precipitation values, and the right vertical axis shows the range of
evaporation values.

The observed and simulated hourly values of 2 m air temperature, dew point temper-
ature, and precipitation at 10 representative stations on the plateau were also compared
(figure omitted). The hourly simulated values of some stations are closer to the observed
values, such as in the Hotan, Nagqu, Zoige, Tuotuohe, and Yushu stations, but the simu-
lated values of some stations are higher than the observed values by about 3 to 5 ◦C, such
as the Garz, Nyingchi, and Pulan stations. The simulated hourly precipitation can also
reflect sporadic precipitation events over the plateau in the summer. At the Hotan and
Pulan stations, precipitation events rarely occur, and the simulated value is almost zero.
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The large bias between the hourly simulation values and the observation values at stations
such as Garz, Nyingchi, and Pulan is caused by the large difference between the model
grid altitude and the station altitude under complex terrain. Therefore, it is recommended
to make corrections to the “pressure-altitude” height difference in order to make better
comparisons between the assimilation data and the station observation data.

It can be seen from Table 2 that the RMSE between the observed and simulated 2 m
temperatures at the Garz, Pulan, and Nyingchi stations are higher at 8.39, 8.66, and 6.84 ◦C,
respectively, and the bias is negative, indicating that the simulated values are lower than the
observed values. Nevertheless, the correlation coefficient was above 0.95 at these 10 stations
and passed the 95% confidence test, indicating that the daily variations in the simulated and
observed values are in good agreement. The RMSE between the observed and simulated
values of the specific humidity at the 10 stations was all below 1.24 g/kg, and the bias was
also negative. The minimum bias value appeared in Zoige (−0.22 g/kg). The error statistics
of the surface pressure show that the observed and simulated values of the RMSE and bias
in the Nagqu, Hotan, and Zoige stations are lower than those at the other stations, which
are approximately 10 hPa, and the RMSE and bias between the simulated and observed
values of the 2 m temperature and specific humidity were also lower in these three stations.
The RMSE between the simulated and observed surface pressure in the Garz, Pulan, and
Nyingchi stations were higher, which was above 60 hPa, and the simulated 2 m temperature
and specific humidity also showed a larger bias compared with the observations. This
may be due to the large difference in altitude between the observation site and the grid
corresponding to the model, which increases the simulation errors of other meteorological
elements, such as temperature and humidity. The simulated value can be corrected using
the actual altitude of the observation site to reduce the errors. From the simulation error
results of the 10 m wind speed, the correlation coefficient of only two sites failed the
95% confidence test, and the RMSE and bias of the simulated and observed values of the
10 sites were between 1 and 2 m/s. For high altitude complex terrain mountain areas,
the location and orientation of the weather stations, as well as the type of underlying
surface, can significantly impact the simulation accuracy of the temperature, humidity,
wind direction, and wind speed. Table 2 shows that the root mean square error (RMSE)
and bias of the temperature, humidity, and wind speed are also significant when there is a
large difference between the simulated and observed atmospheric pressure values at the
stations. For instance, the bias of the observed and simulated surface pressure values at the
Garz, Nyingchi, and Pulan stations reaches −93.84, −74.89, and −62.44 hPa, respectively.
Meanwhile, the bias of the observed and simulated 2 m temperature values at the three
stations also reached −8.11, −6.61, and −8.24 ◦C, respectively, with the RMSE values of
8.39, 6.84, and 8.66 ◦C. This may be due to the significant difference in elevation between the
simulated grid and the observation site. Despite generating 5 × 5 km horizontal simulation
data in the QTP region, the grid distance of 5 × 5 km is still relatively coarse compared to
these sites. At the Hotan, Nagqu, and Zoige stations, there was little difference between
the simulated surface pressure and observed values, and the simulated 2 m temperature,
relative humidity, and wind speed were also consistent with the observed values. The
RMSE and bias of the 2 m temperature and humidity were the lowest among the ten
representative stations. This is likely because the three stations are not obstructed by high
mountains and the terrain is relatively flat, and the elevation of the observation stations
is close to that of the model grid points. When using these simulation data, it is better to
correct the altitude to reduce the error.

3.2. Comparison of Observations and QTP-HRAD over QTP Region

We selected 91 meteorological stations located in the QTP from 2010 to 2019 to compare
the statistical errors between the simulated and observed daily mean values of the 2 m
temperature, surface temperature, surface pressure, relative humidity, and 10 m wind
speed, and plotted the regional distribution of the correlation coefficients, RMSE, and bias.
Since most observation stations are located in the eastern part of the plateau, with fewer in
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the north of the Kunlun Mountain and Altun Mountain, there are almost no meteorological
observation stations in the central and western parts of the plateau.

It can be seen from Figure 6a that the correlation coefficients of the 2 m temperature
between the observed and simulated values are all above 0.9, and those in the north of the
plateau are above 0.97. The RMSE ranged from 1.4 to 12 ◦C. The RMSE of some stations
in the eastern and northern parts of the QTP was lower, while the RMSE of stations along
the Himalayan Mountains, Tanggula Mountains, and Qilian Mountains was higher. This
may be caused by the large difference between the station altitude and the model grid
altitude owing to the complex topography of the mountains. A total of 70% of the stations
(64 stations) had negative bias values, indicating that the simulated values were lower
than the observed values, and only some stations in the southeastern plateau and north
of the Kunlun Mountains had a positive bias. The statistical error distribution of the land
surface temperature was similar to the 2 m temperature (Figure 6b), and the correlation
coefficient between the simulations and the observations was slightly lower than that of
the 2 m temperature. However, the correlation coefficient for almost all stations exceeded
0.9. The RMSE and bias of the surface temperature were larger than those of the 2 m
temperature. The RMSE of 70% of the stations (64 stations) was above 4 ◦C, and the bias
of 85% of the stations (76 stations) was negative. This may be due to the underestimation
of the air and surface temperatures in the QTP by the NCEP data of the forcing field in
the WRF model. Studies have shown that the temperature in the QTP is underestimated
in the NCEP data [68,69]. According to the research conducted by Frauenfeld et al. [70],
there was an approximate difference of 7 ◦C between the ERA-40 reanalysis data and
the observations. Similarly, Baolin et al. [71] discovered that the NCEP reanalysis data
significantly underestimated the observational data for the QTP.

As shown in Figure 6c, the correlation coefficient between the observed and simulated
values of the surface pressure was above 0.9. There were 17 stations with the RMSE
exceeding 80 hPa, accounting for 19% of all stations, and only 15 stations had an RMSE
between 1 and 10 hPa, accounting for 16.7% of the total. The distribution of bias also
showed that the values of the simulated surface pressure at 68 stations were lower than
the observed values, and 50% of the stations had a bias between −20 and −75 hPa. The
low simulated surface temperature values can be explained by the simulation error of the
surface pressure. The average elevation of the model grid cell was higher than the elevation
of the observation station point, which led to a low simulated surface pressure and low
simulated 2 m and surface temperatures.

The correlation coefficients between the observed and simulated values of relative
humidity between 0.35 and 0.9, all passing the 95% significance level test, are illustrated in
Figure 6d. The RMSE with 60 stations (66.7%) was less than 15%, and only 14 stations had
an RMSE between 17% and 30%. The bias of stations along the Himalayan Mountains and
near the Hengduan Mountains was positive (30 stations, accounting for 33%), indicating
that the simulated value was higher than the observed value. The simulation error of the
10 m wind speed showed that the simulated value of the wind speed at most stations was
approximately 2 m/s higher, and 21 stations had a correlation coefficient higher than 0.5,
accounting for 24% of the total (Figure 6e). The RMSE ranged between 0.5 and 3.2 m/s, and
the bias error statistics showed that the bias in most of the stations was positive (60 sites),
and the simulated value was higher than the observed value. The simulated wind speed
in the WRF model was high, possibly because the model underestimated the roughness
of the underlying surface. This is because the simulation of the wind speed requires the
consideration of many parameterization schemes, such as turbulence parameterization
schemes and boundary layer parameterization schemes, and the inaccurate estimation
of parameters, such as surface roughness, within these schemes can cause errors. Due
to the uncertainty and randomness of atmospheric turbulence, the current mesoscale
meteorological models have a lower simulation accuracy for the wind speed compared to
other variables such as temperature, humidity, and atmospheric pressure [72]. Due to the
complex terrain and the limited data input into the meteorological model, the deviation

34



Remote Sens. 2023, 15, 2906

of the average wind speed between the simulation and observation can reach 2 m/s, and
the RMSE can be as high as 6 m/s. Even with better models, reducing uncertainties in
the simulations of near-surface wind speed and direction can be challenging, as they stem
from random or turbulent fluctuations. Furthermore, the randomness is compounded by
variations in sub-grid topography and land use [72–74].

 

Figure 6. Correlation coefficient, RMSE, and bias between observation and the QTP-HRAD daily
mean (a) 2 m temperature (◦C), (b) land surface temperature (◦C), (c) surface pressure (hPa), (d) rela-
tive humidity (%), and (e) 10 m wind speed (m/s) from 2010 to 2019. (f) Topographic height from
QTP-HRAD, SRTM data, and the difference value.

Overall, the QTP-HRAD showed good results for the QTP. Except for the wind speed,
the correlation coefficients between the simulated and observed values of the temperature,
humidity, and surface pressure were higher than 0.8. However, the QTP-HRAD underesti-
mated the air temperature and surface temperature in the QTP region, and underestimated
the surface pressure at most observation stations, with simulated biases ranging from
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−20 to −180 hPa. The model overestimated the relative humidity at the southern and
southeastern stations and underestimated the relative humidity in the northern part of the
plateau. The simulated wind speed value of the QTP-HRAD was higher, and the bias was
between 1 and 2.8 m/s.

3.3. Comparison of QTP-HRAD and ERA-5 Data over QTP Region

We compared the QTP-HRAD data with the ERA-5 data for 2020 and calculated the
difference between the QTP-HRAD and ERA-5 data in the QTP. To calculate the differ-
ence, we used bilinear interpolation to scale up the QTP-HRAD data from 5 × 5 km to
0.25◦ × 0.25◦, corresponding to the grid size of the ERA-5 data, and then subtracted. Six
meteorological elements, including 2 m temperature, land surface temperature, surface
pressure, 2 m specific humidity, 10 m wind speed, and annual accumulated precipitation
were compared.

Figure 7 shows the spatial distribution of the QTP-HRAD and ERA-5. As can be seen
from Figure 7, the spatial distribution characteristics of the meteorological elements of the
QTP-HRAD are consistent with those of the ERA-5, which reflects the distribution of the
2 m temperature, surface pressure, specific humidity, and 10 m wind speed over the QTP.
As the spatial resolution of the QTP-HRAD is 5 × 5 km, the distribution of near-surface
meteorological elements is finer than that of the ERA-5, which can better demonstrate the
differences caused by large topographic fluctuations.

The spatial distribution of the 2 m temperature data is depicted in Figure 7a. In the
plateau, the annual average temperature at this height is below 0 ◦C, with the western
part of the plateau having a temperature of around −10 ◦C, and the eastern part having
a temperature of around 0 ◦C. The 2 m temperature of the ERA-5 is more consistent with
the spatial distribution of the QTP-HRAD, but is not as fine as that of the QTP-HRAD. The
difference diagram reveals that, with the exception of the central and western regions of
the plateau, the difference value is around −4 ◦C and negative, while the rest of the regions
show positive values. The spatial distribution of the surface temperature is comparable to
that of the 2 m air temperature. Both the QTP-HRAD and ERA-5 are capable of capturing the
extremely low surface temperatures in the western part of the plateau, near the Karakoram
Mountains, which are around −15 ◦C. As the average altitude of the Karakoram Mountains
is above 5500 m, the annual 0 ◦C isotherm is approximately the same as the 4200 m contour
line, which is caused by low temperatures throughout the year in the vast mountainous
area. From the difference map of the surface temperature, it can be seen that the difference
between the central and western parts of the plateau and the Qaidam Basin in Qinghai
Province was also found to be negative, and the lowest value was under −5 ◦C. This
value was positive in the central and northern parts of the plateau and the southeastern
Hengduan Mountains (6–10 ◦C).

The regional distribution of the annual average surface pressure is as follows: the
surface pressure in the plateau area is low (below 600 hPa), where the lowest in the
central and western parts of the plateau can reach 500 hPa, and the surface pressure in
the Qaidam Basin on the north side of the plateau is approximately 700 hPa. The areas
with significant discrepancies between the QTP-HRAD and ERA-5 are primarily located
along the southern Himalayas and the northern Kunlun Mountains, Altun Mountains,
and Qilian Mountains. The difference in surface pressure is between −50 and 50 hPa
(Figure 7c). The 2 m specific humidity of the QTP-HRAD is a high value area in the south
of the Himalayan Mountains, above 10 g/kg, while the annual average specific humidity
in the plateau area is approximately 5 g/kg. The specific humidity of the ERA-5 is lower
than that of the QTP-HRAD in the plateau area at approximately 3 g/kg, and the difference
value is positive (Figure 7d). The 10 m wind speed of the QTP-HRAD in the eastern
part of the plateau is below 3 m/s, and the wind speed in other parts of the plateau is
higher. The ERA-5 data only reflect that the wind speed in the central and western regions
of the plateau is higher than 3 m/s, whereas the wind speed in the Pamir Plateau and
Hengduan Mountains is lower than 1 m/s (Figure 7e). As there are only a few surface
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observation stations in the central and western parts of the plateau, the QTP-HRAD and
ERA-5 data have large differences in the 10 m wind speed simulation of the Pamir region,
and more observational data need to be obtained in the future for verification. The spatial
distribution of the total annual precipitation is shown in Figure 7f. Along the Himalayan
Mountains, the precipitation on the southern side can reach more than 2000 mm/year,
which occurs on the windward slope and Hengduan Mountains in the southern QTP,
while the precipitation in the hinterland of the plateau is less than 200 mm/year. There
is slightly more precipitation in the eastern part of the plateau, which is between 500 and
1000 mm/year, and the difference between these two datasets is positive in the southeastern
part of the plateau, and negative in other areas, indicating that the total annual precipitation
simulated by the QTP-HRAD is higher than that of the ERA-5 (Figure 7f).

 

Figure 7. Spatial distribution of the QTP-HRAD (left column), ERA-5 (middle column), and their
difference values (right column) over QTP region in 2020. The bold black line is the zero contour
line. (a) Annual mean 2 m temperature (◦C); (b) annual mean land surface temperature (◦C); (c) sur-
face pressure (hPa); (d) specific humidity (g/kg); (e) 10 m wind speed (m/s); and (f) total annual
precipitation (mm).

4. Data Records and Availability

The assimilation data in the QTP were generated with a spatial resolution of 5 × 5 km
at a temporal resolution of once every hour from 2010 to 2020. The assimilation data
include 28 near-surface meteorological variables, including the radiation and energy field
variables. The latitude and longitude of the dataset area range from 72.3◦E to 103.2◦E and
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from 25.9◦N to 40.3◦N. This dataset began at 00:00 (UTC) on 1 January 2010 and ended at
23:00 (UTC) on 31 December 2020, which includes the 2 m temperature (K), land surface
temperature (K), relative humidity (%), surface pressure (Pa), 2 m water vapor mixing
ratio (kg/kg), 10 m U and V wind components (m/s), 10 m wind speed (m/s), wind
direction (◦), precipitation (mm), and dew point temperature (◦C), are available online
(https://doi.org/10.57760/sciencedb.01840, accessed on 31 December 2020).

The structure of the dataset is as follows:
<Year-Short_name>.nc. Here, “Year” represents the data of a certain year, and

“Short_name” represents the short name of the variable as presented in Table 3. The
“Short_Name”, “Long_name”, “Missing_value”, and the “Unit” of the variables are also
summarized in Table 3. From 2010 to 2020, there are 8760 times per variable in each year,
and 8784 times in leap years (2012, 2016, and 2020), and the variables are double-precision
floating-point data (float type).

Table 3. The description and spatiotemporal variables of QTP-HRAD.

Data Description

Data type Gridded

Projection Mercator projection

Horizontal coverage The QTP region, 72.3◦E to 103.2◦E and 25.9◦N to 40.3◦N

Horizontal resolution 0.05◦ × 0.05◦, about 5 × 5 km

Vertical coverage Land surface, 2 m and 10 m above the surface level

Temporal coverage Began at 00:00 (UTC) 1 January 2010 and ended at 23:00 (UTC) 31 December 2020

Temporal resolution Hourly

File format NETCDF

Variables of QTP-HRAD

Variables Short_name Long_name Missing_value Unit

2 m temperature t2 TEMP at 2 m 1 × 1030 K

Land surface temperature tsk Surface skin temperature 1 × 1030 K

2 m relative humidity rh2 Relative Humidity at 2 m 1 × 1030 %

Surface pressure prs Sfc pressure 1 × 1030 Pa

2 m water vapor mixing ratio q2 QV at 2 m 1 × 1030 kg·kg−1

10 m U wind components u10 U at 10 m 1 × 1030 m·s−1

10 m V wind components v10 V at 10 m 1 × 1030 m·s−1

10 m wind speed ws10 Wind speed at 10 m 1 × 1030 m·s−1

10 m wind direction wd10 Wind direction at 10 m 1 × 1030 Degrees

Precipitation pre Accumulated total cumulus precipitation,
accumulated total grid scale precipitation

1 × 1030

1 × 1030
mm,
mm

2 m dew point temperature td2 Dewpoint temperature at 2 m 1 × 1030 ◦C

5. Conclusions

The WRF model and its assimilation system can precisely replicate the near-surface
meteorological parameters in the QTP region, and the simulation data time series demon-
strated good correspondence with the observed data. The simulation results reflect the
interannual variations and regional distribution characteristics of meteorological field ele-
ments such as temperature, humidity, precipitation, evaporation, air pressure, and wind
speed. A comparison between the observations and simulations shows that the simulated
values are more consistent with the observations in flat areas, whereas the statistical error
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is larger in areas with complex terrain conditions. The main conclusions of this study are
as follows:

1. We selected 10 representative weather stations in the QTP region and compared
the observed and simulated values of the 2 m temperature, relative humidity, and
precipitation for the period 2011–2020. It was found that the simulated surface
pressure bias and RMSEs of the stations located in complex mountainous and terrain
areas on the plateau were significantly different from the observed values. The bias
between the observed and simulated surface pressure values at the Garz, Nyingchi,
and Pulan stations were −93.84 hPa, −74.89 hPa, and −62.44 hPa, respectively, and
the temperature and relative humidity bias of these sites were also large. However,
at the stations with relatively flat terrain on the plateau such as Hotan, Nagqu, and
Zoige, the disparities between the simulated and observed surface pressure values
were minor, and the simulated values of the 2 m temperature, relative humidity, and
wind speed were mostly in agreement with the observed values.

2. The annual variations in the simulated and observed precipitation are relatively
consistent. The simulated values can reflect the peak periods and magnitudes of
summer precipitation on the plateau. The daily average evaporation and precipitation
at the 10 stations show a significant positive correlation. The daily average evaporation
in the summer is about 2–4 mm/d, while in the winter, it tends to be zero. Overall,
there is more precipitation and evaporation at the stations in the eastern and southern
parts of the QTP, such as Qamdo, Garz, Nyingchi, and Zoige, while the stations in the
western and northern arid areas of the plateau, such as Hotan and Tuotuohe, have
less precipitation and evaporation.

3. An error statistical analysis was conducted on the observed and simulated values of
the 2 m temperature, surface temperature, surface pressure, relative humidity, and 10
m wind speed at all 91 meteorological stations in the QTP region. It was found that
the correlation coefficients of the 2 m temperature, surface temperature, and surface
pressure were relatively high, all above 0.9. The correlation coefficient between the
observed and simulated values of relative humidity was around 0.7 for most stations
on the plateau, with positive bias at the stations in the southern part of the plateau and
negative bias at the stations in the northern part. The correlation coefficient between
the observed and simulated values of wind speed was relatively low, around 0.5, with
positive bias at most stations on the plateau, indicating that the simulated values of
the near-surface wind speed were higher than the observed values.

4. We also compared the QTP-HRAD with ERA-5 on a regional scale and calculated
their differences. The spatial distribution patterns of the two datasets for the 2 m
temperature and surface temperature are quite consistent, with the QTP-HRAD values
slightly lower than the ERA-5 in the southwest region of the plateau. The difference
in the surface pressure between the two datasets shows clear positive and negative
differences along the plateau boundary. The QTP-HRAD simulated specific humidity
is about 2–5 g/kg higher than the ERA-5. The simulated values of the 10 m wind speed
near the ground are also higher than the ERA-5, except for the central plateau area,
with a difference of 1–3 m/s. The simulated precipitation amount shows the largest
difference along the southern side of the plateau, particularly along the Himalayan
range, and the annual total simulated precipitation amount by the QTP-HRAD is
higher than that of the ERA-5.

When using the QTP-HRAD, it should be noted that the grid data near the Himalayan
Mountains in the south, the Hengduan Mountains in the southeast, and the Kunlun
Mountains in the northwest of the plateau may be inaccurate, which is the limitation of
using this dataset.
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Abstract: The vegetation–temperature relationship is crucial in understanding land–atmosphere
interactions on the Tibetan Plateau. Although many studies have investigated the connections
between vegetation and climate variables in this region using remote sensing technology, there
remain notable gaps in our understanding of vegetation–temperature interactions over different
timescales. Here, we combined site-level air temperature observations, information from the global
inventory modeling and mapping studies (GIMMS) dataset, and moderate-resolution imaging
spectroradiometer (MODIS) products to analyze the spatial and temporal patterns of air temperature,
vegetation, and land surface temperature (LST) on the Tibetan Plateau at annual and seasonal scales.
We achieved these spatiotemporal patterns by using Sen’s slope, sequential Mann–Kendall tests, and
partial correlation analysis. The timescale differences of vegetation-induced LST were subsequently
discussed. Our results demonstrate that a breakpoint of air temperature change occurred on the
Tibetan Plateau during 1994–1998, dividing the study period (1982–2013) into two phases. A more
significant greening response of NDVI occurred in the spring and autumn with earlier breakpoints
and a more sensitive NDVI response occurred in recent warming phase. Both MODIS and GIMMS
data showed a common increase in the normalized difference vegetation index (NDVI) on the Tibetan
Plateau for all timescales, while the former had a larger greening area since 2000. The most prominent
trends in NDVI and LST were identified in spring and autumn, respectively, and the largest areas
of significant variation in NDVI and LST mostly occurred in winter and autumn, respectively. The
partial correlation analysis revealed a significant negative impact of NDVI on LST during the annual
scale and autumn, and it had a significant positive impact during spring. Our findings improve the
general understanding of vegetation–climate relationships at annual and seasonal scales.

Keywords: vegetation change; near-surface air temperature; annual and seasonal variations;
land–atmosphere interactions; Tibetan Plateau

1. Introduction

Vegetation is an important part of the global terrestrial ecosystem and can significantly
impact global physical energy cycles, carbon balance regulations, and regional climate [1,2].
Global vegetation cover generally increases with the warming of the Earth’s climate [3],
and the surface albedo changes caused by vegetation change affect both the net amount
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of solar radiation absorbed by the earth surface and the evapotranspiration rate. Conse-
quently, vegetation-related evapotranspiration and albedo affect vegetation–temperature
relationships [4,5]. The Tibetan Plateau (TP) is the highest plateau on earth and possesses
a complex topography, which generates a unique relationship between vegetation and
temperature that is extremely sensitive to global climate change [6]. Investigating the
responses and feedbacks of vegetation to the TP’s temperature is crucial for understanding
land–atmosphere interactions.

Numerous researchers have studied the vegetation–temperature relationships on the
TP through different approaches, including field observations [7,8], numerical simulations,
and remote sensing observations [9,10]. However, given the challenging topography and
extreme climate of the TP [11], fieldwork and in situ analysis can be logistically difficult
to perform. It is not easy to consistently assess vegetation–temperature relationships at
different timescales. As such, many studies have employed numerical models to simulate
and analyze their relationships [12], and significant research progress has been made using
these techniques. However, since models often have considerable uncertainties and coarse
spatial resolution, it is unfeasible to numerically simulate the vegetation–temperature
relationships at different timescales for long periods [13]. Satellite Earth observation is
an effective instrument for monitoring bio-geophysical variables of vegetation at large
scales [14]. The vegetation index and albedo derived from satellite observations can capture
vegetation greening and browning and surface albedo change. These changes alter surface
bio-geophysical properties and near-surface aerodynamics, leading to an effect on local
temperature through bio-geophysical feedbacks [15–17]. As satellite remote sensing tech-
nology has developed, the products of widespread vegetation–temperature interactions
that accumulate on the TP can be measured remotely, allowing a quantitative investigation
of vegetation coverage at large scales and over extended periods [6,18]. Consequently, re-
mote sensing observations are becoming a valuable instrument for investigating vegetation
and climate interactions.

Using the available remote sensing data, previous papers report the trends and the
spatial variability of vegetation, surface albedo, and land surface temperature (LST) on the
TP at annual scales. The satellite-derived normalized difference vegetation index (NDVI)
indicates the status of plant growth. This indicator can be quantified by the difference
between the near-infrared (representing vegetation reflection) and red bands (representing
vegetation absorption) [19]. Global inventory modeling and mapping studies (GIMMS)
data suggest an increasing NDVI trend on the TP during 1985–1999, which is likely due to
the shift from an arid to a warm-humid climate and the reduction in human activities in
this region [20]. Similar studies have found an increasing NDVI trend during the latter two
decades of the 20th century [21], which has been confirmed by researchers since the year
2000. Statistical analysis of SPOT (Satellite Pour l’ Observation de la Terre) data collected
during 1999–2014 shows an overall increasing trend in NDVI on the TP coupled with a
moderate increase in air temperature [6]. Studies based on MODIS data collected over
the TP during 2001–2019 also support this, as they show an increasing trend in NDVI
and LST but a decreasing trend in albedo during that period. Increased forest coverage
and decreased snow coverage are considered to be the dominant factors that drove these
changes [22]. Further studies have shown that increased snowfall induced an increase
in albedo on the southwestern TP due to anomalous water vapor transport [23]. Indeed,
the LST warmed at a significantly faster rate than the air temperature, with the annual
temperature increase during 1987–2008 in the former showing 0.78 ± 0.0631 K/decade,
but in the latter, it showed 0.275 ± 0.0216 K/decade [24]. LST on the TP is influenced by
various factors such as elevation, surface radiation, subsurface temperature, and surface
properties [25–27]. Nevertheless, vegetation and albedo are becoming the hot spots for
LST warming studies. This can be attributed to the significant linear relationship between
vegetation and LST [28], the direct contribution of surface albedo to LST [25], and satellite
advantages [29]. Despite different spatial patterns being inferred from different datasets,
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they show consistent support for the overall observed trends and patterns of vegetation
and temperature on the TP.

Most of the studies mentioned above focused on the annual scale, which leaves two
important issues unresolved: (1) no systematic analysis has been performed to analyze the
differences in both the warming phases (well known as a period of increasing temperature)
and the vegetation response to temperature across different timescales over the TP; and
(2) the spatial–temporal pattern of vegetation and its effects on LST across the TP remains
unclear. We addressed these problems by combining site-level observations with GIMMS
data to (1) analyze spatial and temporal patterns at the annual and seasonal scales of air
temperature and NDVI during different warming phases in 1982–2013 and (2) examine
the annual and seasonal scales of NDVI and LST changes during 2000–2021 using MODIS
data products and thus discuss the possible impacts of vegetation on LST at the annual and
seasonal scales. Our results have revealed systematic annual and seasonal characteristics
of air temperature, LST, and vegetation changes on the TP, and this can be used to form a
better understanding of land–atmosphere interaction patterns across the TP.

2. Study Area and Datasets

2.1. Study Area

With an area of 257 × 104 km2 and an average altitude above 4000 m, the TP is the
largest and highest plateau in the world, and it exhibits a complex topography and diverse
underlying surface conditions (Figure 1). The climate and ecological environment on the
TP have both changed dramatically since the middle of the 20th century due to intensified
human activity [30]. Significant warm and wet trends on the TP have occurred since the
1960s as documented by temperature and precipitation data [31]. Due to its distinctive geo-
graphic location and susceptibility to climate change, the TP serves as a natural laboratory
for investigating the intricate relationship between vegetation and temperature.

Figure 1. Location of meteorological stations on the Tibetan Plateau.

2.2. Data Sources and Processing

The data used in this study were obtained from meteorological station observations
(Figure 1) (near-surface air temperature) and remote sensing (Table 1). Remote sensing data
comprised NDVI products derived from GIMMS and MODIS, albedo, land cover type, and
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LST products derived from MODIS. In this study, winter, spring, summer, and autumn
are defined as extending from December to the following February (DJF), March to May
(MAM), June to August (JJA), and September to November (SON), respectively.

Table 1. Data sources used in this study.

Parameter Dataset Spatial
Resolution

Temporal
Resolution

Download Links

GIMMS NDVI Version 5 8 km 15 days

https://climatedataguide.ucar.edu/climate-
data/ndvi-normalized-difference-vegetation-

index-3rd-generation-nasagfsc-gimms,
accessed on 3 October 2022

Normalized difference
vegetation index (NDVI) MOD13A2 1000 m 16 days https://lpdaac.usgs.gov/products/mod1

3a2v061, accessed on 3 October 2022
Land surface

temperature (LST) MOD11A1 1000 m 8 days https://lpdaac.usgs.gov/products/mod1
1a2v061, accessed on 3 October 2022

Albedo MCD43A3 500 m daily https://lpdaac.usgs.gov/products/mcd4
3a3v061, accessed on 3 October 2022

Land Cover Type MCD12Q1 500 m yearly https://lpdaac.usgs.gov/products/mcd1
2q1v061, accessed on 3 October 2022

Air temperature / / monthly https://www.ncdc.noaa.gov/cdo-web,
accessed on 3 October 2022

2.2.1. Meteorological Station Data

Air temperature data were collected from the National Climate Data Center, which is
affiliated with the National Oceanic and Atmosphere Administration (NOAA) (Figure 1).
These data were used to produce the average air temperature at different timescales
from 1982 to 2013. First, we acquired 44 high-quality meteorological stations considering
the geographical scope of the TP and the requirement of high-density temperature data.
Second, we collected the daily mean temperature data for each station during 1982–2013
and replaced the missing values for a few of stations using the average air temperature of
the neighboring days [32,33]. Finally, the mean temperature of annual and seasonal scales
was calculated and used to detect trends and breakpoints in different warming phases of
the TP.

2.2.2. Remote Sensing Products

The remote sensing data used in this study included the GIMMS and MODIS datasets.
The GIMMS NDVI product (1982–2013) was derived from the AVHRR sensor of the Na-
tional Oceanic and Atmospheric Administration (http://www.ncdc.noaa.gov/cdo-web,
accessed on 3 October 2022), and it has a temporal resolution of 15 days and a spatial
resolution of 8 km. The initial version of this dataset is not ideal for capturing vegetation
dynamics, and therefore, the latest version mitigates this problem by correcting sensors,
aerosols, and view geometry [34–36]. A maximum value composite procedure was used to
remove some sources of interference, such as clouds, the atmosphere, and variation in solar
altitude angle; after that, annual and seasonal NDVI values were obtained [37].

Compared to the AVHRR instrument, the updated MODIS instrument has a better
sensitivity to chlorophyll with higher spatial resolution. We employed MODIS datasets
of 2000–2021 including NDVI (MOD13A2), LST (MOD11A1), albedo (MCD43A3), and
land cover types (MCD12Q1). Specifically, MOD13A2 and MOD11A1 have a 1 km spa-
tial resolution and a 16-day temporal resolution. MOD11A1 and MCD43A3 were used
in this study to better understand the relationships between LST and vegetation change.
MCD12Q1 (version 6.1), providing annual land cover types (2001–2021), was also ob-
tained to analyze the effect of land cover change on NDVI change trends. Additionally,
all of the MODIS datasets were aggregated to 1 km to ensure the consistent spatial
resolution of these datasets. We adopted different strategies in processing the MODIS-
derived surface parameters by referring to previous studies. For each timescale, we
processed the NDVI data using the maximum value composite method [37], and we
processed the LST and albedo data using the mean value composite method [29,38].

48



Remote Sens. 2023, 15, 2475

2.3. Methods

Our analyses were performed in three major steps. Firstly, to analyze the NDVI re-
sponses at different warming phases, we performed breakpoint detection of air temperature
data. Considering previous artificial temporal segmentation on NDVI variation [17,39–41],
the Sequential Mann–Kendall (SQMK) [32–34,42] was employed to estimate the breakpoints
of temperature change, and it was used as a proxy for classifying the different phases of
NDVI responses. Please see the Supporting Information S1 for the detailed introduction to
the SQMK test.

Secondly, we analyzed trends and performed a significance analysis [43,44] on key
surface parameters. Sen’s slope estimator, a nonparametric test [45], was employed to
determine trends in NDVI, LST, and albedo for different warming phases of all timescales.
Please see the Supporting Information S2 for the detailed introduction to the Sen’s slope.

Thirdly, to identify the impacts of the NDVI on LST, both the detrending method
and partial correlation analysis were performed among the NDVI, albedo, and LST. The
purpose of using the detrending method was to eliminate any spurious correlations among
the three parameters that may have been caused by temporal variations. As for the partial
correlation analysis, it was used to better quantify the individual impact of NDVI or
albedo on LST. The specific procedures included two aspects: (1) Using the first-difference
detrending method (i.e., the difference of values in one year to the previous year), we
examined and filtered the temporal trends of NDVI and albedo. (2) For partial correlation
analysis, the partial correlation coefficient is an assessment of the net correlation between
a single factor and the target value, provided that the impact of other factors is fixed or
deducted. Considering the significant co-impact of vegetation and albedo on LST, the partial
correlation coefficient is a good indicator for analyzing the relationship between them.

3. Results

3.1. Air Temperature and Vegetation Trends during 1982–2013 at Annual and Seasonal Scales
3.1.1. Annual Trends in Air Temperature and Vegetation

The air temperature and vegetation coverage on the TP generally increased on an
annual scale (Figure 2a), while vegetation changes during each warming phase showed
significant spatial and temporal variation. A significant abrupt change (p < 0.05) occurred
in 1996 for air temperature trends on the TP (Figure 2b), and the warming trend during
1996–2013 (0.043 ◦C/year) was notably higher than that during 1982–1996 (0.042 ◦C/year),
suggesting that the warming rate on the TP accelerated after 1996. The significant result
(p < 0.05) revealed that the annual NDVI is generally increasing (Figure 2a) and the clustered
NDVI increase and decrease in the second warming phase are greater than that in the first
warming phase (Figure 2d,f). Specifically, the NDVI greened more than it browned during
the first warming phase (Figure 2d), and there was clustered NDVI greening and browning
in the eastern and western plateau (Figure 2f), respectively.

Figure 2. Cont.
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Figure 2. Vegetation and air temperature trends on the annual scale. GIMMS-based NDVI and air
temperature trends during 1982–2013 (a); air temperature breakpoint detection based on the MK
method (b). In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB
refer to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends
(c) and regions of significant change (d) during the first warming phase; GIMMS-based NDVI trends
(e) and regions of significant change (f) during the second warming phase.

3.1.2. Seasonal Trends in Air Temperature and Vegetation

The air temperature and vegetation coverage on the TP during the spring seasons gen-
erally showed an increasing trend throughout the study period (Figure 3a). The breakpoint
and warming rates were very different from those of the annual scale. The breakpoint for
spring’s air temperature trend occurred in 1994, with a slope of 0.040 ◦C/year in the first
warming phase and 0.034 ◦C/year in the second warming phase (Figure 3b), indicating
that warming on the TP during the spring has slowed down. The NDVI showed a general
increase over time, although the trend was more significant during the second warming
phase (Figure 3c,e). Furthermore, the NDVI showed a significant increasing trend (p < 0.05)
in the eastern TP and a significant decreasing trend in the northwestern part (Figure 3e).
The significance statistics (p < 0.05) suggested that the clustered NDVI changes occurred
in the second phase rather than in the first phase (Figure 3d,f). For example, TP NDVI
decreased in the western part and increased in the eastern part (Figure 3f).

Figure 3. Cont.
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Figure 3. Vegetation and air temperature trends in spring. GIMMS-based NDVI and air temperature
trends during 1982–2013 (a); air temperature breakpoint detection based on the MK method (b).
In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to
the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (c) and
regions of significant change (d) during the first warming phase. GIMMS-based NDVI trends (e) and
regions of significant change (f) during the second warming phase.

For summer, the TP exhibited both the largest NDVI value and the most significant
warming trend (Figure 4a, p < 0.05), as did the largest pre- and post-phase difference in air
temperature (Figure 4b). The breakpoint for the summer temperature on the TP occurred in
1998, which is slightly later than for the spring and annual scales. The trend for the second
warming phase reached a rate of 0.047 ◦C/year, which is notably higher than that of the
first warming phase. This implied that the warming rate in summer on the TP is much
greater than that in other timescales. The significance analysis (p < 0.05) indicated that the
NDVI increase is greater in the first warming phase than that in the second warming phase
(Figure 4d,f), particularly in the western TP.

Figure 4. Cont.
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Figure 4. Vegetation and air temperature trends in summer. GIMMS-based NDVI and air temperature
trends during 1982–2013 (a); air temperature breakpoint detection based on the MK method (b).
In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to
the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (c) and
regions of significant change (d) during the first warming phase. GIMMS-based NDVI trends (e) and
regions of significant change (f) during the second warming phase.

Autumn vegetation trends and warming both showed a lower value compared to
the summer (Figure 5a). The breakpoint of temperature during the autumn occurred
in 1994 (Figure 5b), similar to the spring. The first and second phases during autumn
recorded trends of 0.029 ◦C/year and 0.018 ◦C/year, respectively. As such, the trend for the
second phase was significantly weaker than that of the first phase, demonstrating that the
warming rate on the TP becomes slow during autumn. The NDVI showed a non-significant
fluctuation in general, and the significance statistics (p < 0.05) showed that the increase or
decrease in the TP’s NDVI is less significant in the first phase than that in the second phase
(Figure 5d,f), which is similar to the vegetation change pattern in spring.

Figure 5. Cont.
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Figure 5. Vegetation and air temperature trends in autumn. GIMMS-based NDVI and air temperature
trends during 1982–2013 (a); air temperature breakpoint detection based on the MK method (b).
In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to
the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (c) and
regions of significant change (d) during the first warming phase. GIMMS-based NDVI trends (e) and
regions of significant change (f) during the second warming phase.

The vegetation and air temperature changes on the TP documented during the winter
were similar to those during the autumn, although they showed much smaller magnitudes
than other timescales (Figure 6a,b). The breakpoint in the winter temperature between
warming phases on the TP occurred in 1998; the trends of the first and second warming
phases were 0.017 ◦C/year and 0.021 ◦C/year, respectively, indicating that the winter
warming on the TP is accelerating (Figure 6b). Winter changes in the NDVI values were
generally small. A fragmented NDVI increase occurred in the eastern TP of the first phase,
but a massive NDVI decrease occurred in the second phase, which was not found for any
other timescales (Figure 6d,f).

Figure 6. Cont.
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Figure 6. Vegetation and air temperature trends in winter. GIMMS-based NDVI and air temperature
trends during 1982–2013 (a); air temperature breakpoint detection based on the MK method (b).
In (b), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to
the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (c) and
regions of significant change (d) during the first warming phase. GIMMS-based NDVI trends (e) and
regions of significant change (f) during the second warming phase.

3.1.3. The Spatial and Temporal Responses of NDVI to Air Temperature

Our study identified consistent breakpoints in air temperature for spring and autumn
as well as for summer and winter. We observed that the first warming phase showed a
smaller trend than the second warming phase on most timescales. This suggests that while
warming continues on the TP, the later warming trend is slightly decreasing.

We also investigated the spatial trends of NDVI at different warming phases. During
the first warming phase, we found that the area of NDVI greening is smaller in spring and
autumn with earlier breakpoints compared to summer and winter with later breakpoints.
However, in the second warming phase, we observed that the area of NDVI increase is
larger in spring and autumn with earlier breakpoints compared to summer and winter with
later breakpoints. This indicates that the timescale with the earlier breakpoints exhibits
a greater NDVI increase in the second warming phase. For instance, the air temperature
breakpoint at the annual scale earlier than summer and winter showed a significantly larger
area of NDVI increase in the second warming phase.

Furthermore, we found that in the relatively weaker second warming phase, there
is more NDVI decrease at all timescales across the sparsely vegetated northwestern TP.
This may be attributed to two factors: (1) limitations in the ability of the AVHRR sensor to
capture detailed NDVI changes in sparsely vegetated areas, and (2) an increased vegetation
sensitivity to air temperature during the second warming phase.

3.2. LST, Vegetation, and Albedo Trends during 2000–2021 at Annual and Seasonal Scales
3.2.1. LST Trends at Different Timescales

The spatial pattern of LST trends recorded at different timescales was more concen-
trated than that for the NDVI data. Alongside being common in winter, the LST warming
trend on the TP from 2000 to 2021 was most prominent in the southern TP (Figure 7a–e).
The LST warming rate was significantly higher in summer and autumn than during winter
and spring, and it was mainly concentrated in the southwestern TP (Figure 7c,d). The LST
cooling trend was most prominent on the northern TP on an annual scale and during spring,
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summer, and autumn (Figure 7a–d). During the winter, cooling mostly occurred in the
southwestern TP. The spatial distribution of significance trends (p < 0.05) showed that the
most significant decrease in LST occurs at annual scale and in spring (Figure 7f,j), with 7.06%
and 7.93% of all pixels recording these changes, respectively. Significant LST increases
(p < 0.05) in autumn were represented by 10.60% of all pixels (Figure 7i), which covered a
much larger area than that for spring (5.01%; Figure 7g), summer (6.71%; Figure 7h), and
winter (1.42%; Figure 7j).

Figure 7. MODIS-based LST trends during 2000–2021 at annual and seasonal scales. (a–e) denote the
LST trends for 2000–2021 in annual, spring, summer, autumn, and winter, respectively; (f–j) denote the
LST trends with p < 0.05 for 2000–2021 in annual, spring, summer, autumn, and winter, respectively.
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3.2.2. NDVI Trends at Different Timescales

Spatial variations in the surface parameters across the study region revealed that
MODIS-based NDVI data show significantly more greening trends than GIMMS-based
NDVI data (Figure 8). These NDVI data showed that the eastern TP records the largest
greening area during 2000–2021 at all timescales (Figure 8a–e), and the greening rate in
the spring is significantly higher than for the other timescales (Figure 8b). The southern
TP showed the highest NDVI browning rate (Figure 8a–d), which was highest in autumn
out of all the considered timescales (Figure 8d). The NDVI data recorded an increasing
trend on an annual scale, with 40.16% of pixels showing a significant increase and only
3.56% showing a significant decrease trend (Figure 8f, p < 0.05). Approximately 44.62%
of the NDVI pixels showed a significant increase in the spring, and 2.53% significantly
decreased (Figure 8g). Furthermore, 38.84% of the NDVI pixels showed significant greening
(p < 0.05), and 3.49% showed a considerable browning during the summer (Figure 8h). An
approximately equal proportion of NDVI pixels showed browning (21.13%) and greening
(21.35%) in autumn (Figure 8i). Finally, 52.56% and 2.24% of the NDVI pixels recorded
greening and browning in winter, respectively, with these values being significantly higher
than their equivalents during the other seasons (Figure 8j).

3.2.3. Albedo Trends at Different Timescales

Albedo trends at all timescales showed relatively few spatial hotspots except for in
winter (Figure 9a–e). The fastest albedo growth rates during 2000–2021 occurred in spring
and winter (Figure 9b,e); however, the albedo trends in summer and autumn were less
pronounced (Figure 9c,d). The decreasing rate of albedo was similar to its increasing rate in
the temporal pattern. A significant increase in albedo was observed in the western plateau
region at all timescales, and a significant decrease is found in the south and northeast
plateau (Figure 9f–j, p < 0.05). In terms of areas distribution, a relatively high percentage of
pixels showed a significant increase during spring (7.78%; Figure 9g) and winter (4.92%;
Figure 9j), and they were notably higher than the values of 0.49% in summer and 0.38%
in autumn. This effect may have been due to snow accumulation in spring and winter.
The largest areas with significant decreasing trends in albedo were monitored in summer
and autumn (Figure 9h,i, p < 0.05). These areas comprised 26.30% and 16.36% of the total
number of pixels in the study region, respectively, and these changes might potentially be
linked to increased vegetation coverage during the growing season.

3.2.4. Vegetation Impacts on LST at Different Time Scales

A statistical method was used to quantify the individual effect of vegetation on
LST, and we simultaneously considered the varying albedo (see Section 3.2.3) due to its
significant role in the vegetation–LST relationship [46,47]. Specifically, we employed the
detrending method and partial correlation analysis to analyze the individual effects of the
NDVI and albedo on LST. First, we examined the linear trends of the NDVI and albedo
(see the Supporting Information S3 for details). The results suggested that the NDVI of the
TP shows significant temporal trends at different timescales, and the summer albedo also
shows significant temporal trends (Table 2). Consequently, we filtered the temporal trends
of the indicated six variables using the detrending method. Second, we fixed NDVI (albedo)
to analyze the correlation between albedo (NDVI) and LST. The results showed that the
partial correlation coefficients of the NDVI and albedo with LST are significant except in
summer (Table 3). This may be due to the saturation effect of the summer vegetation and
albedo contributions on the LST [48], resulting in their insignificant trend of contribution.
The individual contribution of albedo to LST was larger than that of NDVI at all timescales,
especially in spring and autumn. This may be attributed to the fact that (1) the individual
contribution of albedo to LST includes both the indirect contribution of vegetation altering
albedo [49] and the direct contribution of albedo; and (2) an advanced vegetation growing
season and a delayed vegetation ending season can alter surface albedo strongly [50,51],
causing the contribution of surface albedo to be larger in spring and autumn. In terms
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of winter, faded vegetation and deepened snow cover would reduce the contribution of
vegetation but increase the contribution of albedo [47].

Figure 8. MODIS-based NDVI trends during 2000–2021 at annual and seasonal scales. (a–e) denote the
NDVI trends for 2000–2021 in annual, spring, summer, autumn, and winter, respectively; (f–j) denote the
NDVI trends with p < 0.05 for 2000–2021 in annual, spring, summer, autumn, and winter, respectively.

57



Remote Sens. 2023, 15, 2475

Figure 9. MODIS-based albedo trends during 2000–2021 at annual and seasonal scales. (a–e) denote the
albedo trends for 2000–2021 in annual, spring, summer, autumn, and winter, respectively; (f–j) denote the
albedo trends with p < 0.05 for 2000–2021 in annual, spring, summer, autumn, and winter, respectively.
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Table 2. Significance of temporal trends in NDVI and albedo over 2000–2021.

Independent Variables R2 F-Test Sig.

MODIS-based annual NDVI 0.628 33.729 0.000
MODIS-based spring NDVI 0.437 15.509 0.001

MODIS-based summer NDVI 0.581 27.779 0.000
MODIS-based autumn NDVI 0.412 14.040 0.001
MODIS-based winter NDVI 0.567 26.174 0.000
MODIS-based annual albedo 0.000 0.004 0.950
MODIS-based spring albedo 0.008 0.156 0.697

MODIS-based summer albedo 0.490 19.188 0.000
MODIS-based autumn albedo 0.030 0.608 0.445
MODIS-based winter albedo 0.050 1.061 0.315
MODIS-based annual NDVI 0.628 33.729 0.000

Table 3. Partial correlation coefficients and significance of NDVI (albedo) with LST after fixing for
albedo (NDVI).

MODIS-Based LST
MODIS-Based NDVI MODIS-Based Albedo

Partial Correlation Coefficient Two-Tailed Test Partial Correlation Coefficient Two-Tailed Test

annual −0.478 0.028 −0.603 0.004
spring 0.467 0.033 −0.856 0.000

summer −0.283 0.214 −0.277 0.223
autumn −0.436 0.048 −0.883 0.000
winter 0.041 0.858 −0.803 0.000

Note that we utilized a statistical method to elucidate the relationship between vegeta-
tion, albedo, and LST, but we acknowledge its limitations due to the absence of a detailed
surface radiation balance analysis. Achieving an accurate decomposition of surface radia-
tion components would require further discussion beyond the scope and word limit of this
paper. Therefore, for the purpose of this study, we considered the statistical method as a
reasonable proxy for interpreting the individual impacts of vegetation and albedo on LST
at various timescales. The individual impacts of vegetation and albedo to LST using surface
radiative balance methods is expected in the near future. In addition, vegetation data are
considered in producing LST products, yet it is difficult to estimate the contribution of
vegetation data due to a lack of robust methods. Therefore, the vegetation contribution
to LST estimation may have some uncertainties in the dense vegetation growth of the
southeastern TP.

4. Discussion

Vegetation–temperature relationships can be affected by estimation methods, data
sources, and land cover types. We therefore discussed the breakpoint method for vegetation
trends, the differences between GIMMS and MODIS NDVI datasets, and the impacts of
land cover types on annual NDVI trends.

Firstly, we analyzed vegetation–temperature relationships during different warming
phases. In terms of methodology, the relationship between vegetation and climate variables
on the TP presented remarkable phase changes. However, the phase division of such a
relationship was usually subject to the limitation of the time span of remote sensing observed
vegetation datasets and the study period. For example, a 5-year time step was used to
investigate the relationship between climatic and non-climatic factors and vegetation on the TP
during 1980–2010 [40], and a visual graphical approach was used to determine the breakpoints
in TP vegetation during 1982–2002 [41] as well as artificial time segmentation to investigate
the TP vegetation feedback to climatic factors [39,46]. These methods may lead to bias in the
vegetation response analysis. We therefore used the breakpoints in temperature change as
the reference time points when analyzing the TP vegetation changes at different phases. We
found that the breakpoints of TP temperature during 1982–2013 at different time scales largely
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occurred between 1994 and 1998 (Figures 2–6). This result is not only closer to direct NDVI
segmentation investigation on the TP [52], but it is also closer to the artificial breakpoint of
2000 years in some investigations of TP NDVI response analysis [39,46]. Nevertheless, our
results strongly imply that the artificial abrupt points later than 2000 may bring greater bias in
TP NDVI response analysis. Our study also found that a common warming trend occurred
at all timescales during 1982–2013, and the breakpoints of the TP were earlier in spring and
autumn than those annually and in the summer and winter (Figures 2–6). This indicates that
the growth and end season of vegetation may advance the warming breakpoint of the TP [50].
With the TP warming, the second phase of NDVI increase was significant at all timescales
except winter, implying potential temperature accumulation induced by the first warming
phase contributing to the vegetation growth in the second phase.

Secondly, our investigation demonstrated a significant NDVI trend difference between
the GIMMS and MODIS datasets. Overall, NDVI trends were greater in MODIS data than
in GIMMS, and this finding was consistent with [46,53]. The GIMMS NDVI data did not
show a significant increase in 2000–2013, which was also found in [46,54]. This may be
attributed to the wider NIR band [55] and the imperfect atmospheric effects processing
technique for GIMMS data [56]. Fortunately, MODIS data are usually more reliable than
GIMMS data and fill the GIMMS data gap well [57]. For example, our results indicated a
significant increase in MODIS NDVI trends during 2000–2021 (Figure 8). Nevertheless, both
GIMMS and MODIS products showed a common trend of vegetation changes on the TP
(Figures 3a and 8a). However, given the advantages of the long time series of GIMMS data
and the moderate accuracy of MODIS data, it is of great significance to integrate multiple
datasets to analyze the future vegetation and climatic factors on the TP.

Thirdly, given the recent warm and wet trends on the TP [31,58], we further estimated
the relative impact of NDVI changes in different land cover types on annual NDVI trend
on the TP. Based on the MODIS land cover product, we detected annual land cover data in
2001 and 2021 and produced change pixels and unchanged land cover types on the TP. The
results showed that 89% of the land cover types on the TP have remained unchanged over
the 2001–2021 period (Figure 10). Given that the unchanged pixels cover the majority of the
TP, a stepwise backward method based on these areas was employed to filter the intended
land cover types and then evaluate their relative impact on the estimation of NDVI trends
of TP. The results suggested that only bare land has a relative impact of 9.746% on the
TP NDVI trend, but the relative impact of other land cover types on the TP NDVI trend
does not exceed 5% (Table 4). This implied that the NDVI growth of bare land contributes
significantly to the TP vegetation. In addition, we also found that the mean NDVI value
of the TP reaches the highest after filtering the bare land compared to other cover types
(Figure 11). Accordingly, we suggest that future NDVI trend and intensity studies on the
TP should pay more attention to vegetation changes in bare land.

Table 4. Relative impact of land cover on annual NDVI trends on the Tibetan Plateau.

Filtered Land Cover Trend R2 Sig. Relative Impact (%)

Evergreen Needleleaf Forests 10.839 0.625 0.000 0.324
Evergreen Broadleaf Forests 10.826 0.624 0.000 0.204

Deciduous Needleleaf Forests 10.804 0.628 0.000 0.000
Deciduous Broadleaf Forests 10.798 0.627 0.000 0.056

Mixed Forests 10.828 0.622 0.000 0.222
Closed Shrublands 10.804 0.628 0.000 0.000
Open Shrublands 10.814 0.628 0.000 0.093
Woody Savannas 10.785 0.621 0.000 0.176

Savannas 10.782 0.626 0.000 0.204
Grasslands 10.986 0.883 0.000 1.685

Permanent Wetlands 10.802 0.628 0.000 0.019
Croplands 10.787 0.628 0.000 0.157

Urban and Built-Up Lands 10.809 0.628 0.000 0.046
Cropland/Natural Vegetation Mosaics 10.804 0.628 0.000 0.000
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Table 4. Cont.

Filtered Land Cover Trend R2 Sig. Relative Impact (%)

Permanent Snow and Ice 10.834 0.625 0.000 0.278
Barren 11.857 0.518 0.000 9.746

Water Bodies 10.293 0.599 0.000 4.730
Null 10.804 0.628 0.000 /

Notes: Null means no filtered land cover type.

Figure 10. Land cover change detection on the Tibetan Plateau during 2001–2021.

Figure 11. Mean NDVI distribution for 2000–2021 after removing different land cover types. L1, L2,
L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, and L17 represent evergreen needleleaf
forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed
forests, closed shrublands, open shrublands, woody savannas, savannas, grasslands, permanent
wetlands, croplands, urban and built-up lands, cropland/natural vegetation, mosaics, permanent
snow and ice, barren, and water bodies, respectively. Null means no filtered land cover type.
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5. Conclusions

This study aimed to investigate the differences in vegetation changes during various
warming phases on the Tibetan Plateau (TP) as well as the trends and patterns of NDVI
at different timescales and its influence on LST over the past two decades. First, the
warming trend on the TP occurred at different timescales, corresponding to breakpoints
that took place in 1994–1998, with earlier occurrences observed in spring and autumn.
Secondly, as the warming of the TP continued, the vegetation in the second warming phase
exhibited a larger greening area. These findings suggested that the time of temperature
breakpoints may have an impact on the area of vegetation increase, and NDVI changes
are more sensitive to air temperature during the recent warming phase. Third, MODIS
data highlighted more greening compared to GIMMS data. Using MODIS data, we also
found the fastest NDVI increase trend in spring and the fastest LST warming in autumn.
The partial correlation analysis indicated that NDVI has a significant negative impact on
LST during the annual scale and autumn while also having a significant positive impact
on LST during spring. This suggests that the contribution of NDVI to LST varies across
different timescales since 2000. To summarize, our findings systematically uncover the
spatiotemporal patterns of air temperature, LST, and NDVI on the TP across different
timescales. These results provide significant insights into the annual and seasonal patterns
of vegetation responses and feedback to climate change on the TP. Furthermore, our analysis
reveals distinct seasonal trends between NDVI and LST, which can be leveraged to enhance
the accuracy of numerical simulations that aim to replicate the relationships between
vegetation and climate over the TP.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15092475/s1, Section S1: Detailed procedures of SQMK test; Section S2:
Detailed procedures of Sen’s slope; Section S3: Overall trends of NDVI, LST, and albedo over the
Tibetan Plateau (Figure S1: MODIS-based NDVI, LST, and albedo trends over the Tibetan Plateau at
annual and seasonal scales during 2000–2021) [59,60].
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Abstract: Known as the “Asian Water Tower”, the Tibetan Plateau (TP) is a rich water resource and
serves an important ecological function. Climate change may cause changes to the water cycle, and
these changes may affect the alpine vegetation growth. However, the variation characteristics of
groundwater storage (GWS) and its driving factors and associated ecological effects in the TP are
poorly understood. In this study, terrestrial water storage changes retrieved by GRACE (Gravity
Recovery and Climate Experiment) were combined with GLDAS (Global Land Data Assimilation
System) to estimate the GWS changes in the TP. The temporal and spatial variation characteristics of
GWS were identified using linear regression and the modified Mann–Kendall (MMK) test, respectively.
The analyses showed that the GWS of the TP decreased at an average rate of −0.89 mm/a from
January 2003 to December 2021, but since January 2016, it gradually recovered at a rate of 1.47 mm/a.
This shows that the GWS in the eastern and northern parts of the TP is decreasing, while the GWS in
the western and southern parts is increasing. The influence of climate change on GWS in time and
space was determined using the correlation analysis method. Decreased precipitation and permafrost
degradation caused by increasing temperatures will lead to a decrease in GWS. On the other hand,
rising temperatures may result in an increase in GWS in regions where glaciers are distributed. In
this study, the ecological effects were represented by the relationship between GWS and vegetation
change. A decline in GWS means that the vegetation will not receive enough water, leading to a
decrease in the NDVI and the eventual degradation of grassland to sand, desert, or other kinds of
unused land on the TP. On the other hand, an increase in GWS would promote vegetation restoration.
The results of this study offer a new opportunity to reveal the groundwater changes in a cryosphere
region and to assess the impact of changes in hydrological conditions on ecology.

Keywords: groundwater storage; GRACE; GLDAS; climate change; vegetation response

Remote Sens. 2023, 15, 2418. https://doi.org/10.3390/rs15092418 https://www.mdpi.com/journal/remotesensing
67



Remote Sens. 2023, 15, 2418

1. Introduction

The Tibetan Plateau (TP) has important ecological functions such as global water
circulation, ecological security, and protection [1–3]. It is one of the most sensitive regions
to climate change due to its unique geographic location [4–6]. Due to its rich water
resources, the TP is also called the “Asian Water Tower”; it has a profound impact on
the survival and development of about two billion people downstream and important
implications in the protection and sustainability of water resources [7]. Unlike surface
water, groundwater is invisible, and its distribution and change are difficult to understand.
Compared with extensive and well-developed studies on other surface-water resources
(glaciers [8,9], snow [10,11], lakes [12,13], rivers [14,15], etc.), there are relatively few studies
on the TP groundwater [16]. Therefore, groundwater is one of the most challenging but
most important components of the “Asian Water Tower”.

The traditional groundwater monitoring method is to regularly monitor the changes
to the groundwater levels by monitoring wells. However, considering its high altitude, ex-
tensive size, remote geographical location, harsh climate, and difficult working conditions,
the adoption of this method in the TP is unrealistic. Therefore, a new method must urgently
be adopted to enable long-term and large-scale monitoring. The development of satellites
means that remote sensing technology can be effectively used as a method to monitor water
storage changes. The Gravity Recovery and Climate Experiment (GRACE) gravity satellite
and GRACE-FO, which is GRACE’s follow-up satellite, launched in 2002 and 2018, respec-
tively, were shown to have significant advantages in monitoring the changes in regional
terrestrial water storage (TWS). The TWS in the TP have been confirmed to have undergone
significant changes [17,18]. Additionally, the changes in GWS can be obtained by removing
known contributors (soil moisture, accumulated snow, and plant canopy surface water)
from the changes in TWS which were observed by GRACE/FO [18–23]. This method has
been widely used, and relatively accurate results were obtained. The difference between
the results obtained using the well-based and GRACE model-based GWS trends was not
more than 1.5 cm/year in Poland [24]. Xiang et al. [16] quantitated the GWS changes in
the TP and the surrounding area from 2003 to 2009 and showed increasing trend rates in
eight basins. Li et al. [7] pointed out that the GWS in the endorheic and exorheic TP basins
decreased during 2002–2017, with a rate of 1.17 Gt/a and 4.89 Gt/a, respectively. However,
alongside continual climate change, GWS has changed significantly. The exploration of the
latest changes in GWS in the TP remains challenging.

Changes in groundwater storage are mainly influenced by climate change and human
activities. Different levels of climate change in different regions have different impacts on
the changes in GWS. Compared with decreased precipitation, the influence of increased
temperatures on the decrease in GWS is much more pronounced in Turkey [19]. However,
in arid Central Asia, precipitation in mountainous areas is considered the main factor
affecting the water storage in the piedmont area, while human activities may have a
significant impact on the water storage in the Turgay Valley [25]. Human activities do
have a great impact on GWS in some small basins. In the Shiyang River Basin, there
are many large reservoirs, and irrigation agriculture has been developed in several large
oases. Therefore, groundwater storage has been decreasing in recent years due to human
activities [26]. The TP covers a vast area but is sparsely populated, accounting for one
quarter of China’s total area but less than 1% of China’s total population, and it contains
large uninhabited areas. Therefore, from the perspective of the entire TP, human activities
have a relatively low impact on GWS [7,18]. It is widely acknowledged that the climate in
the TP has changed significantly in the past half century, mainly due to climate warming
and wetting [27]. Rising temperatures are not only accelerating the melting of glaciers [28],
but also permafrost degradation [29], both of which, together with precipitation, directly or
indirectly affect GWS. Therefore, the elicidation of the influence of climate factors on GWS
is key.

As an indicator of ecological environment change, vegetation is highly dependent
on groundwater [30–32], especially when the groundwater level is lower than the root
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depth [31]. However, in a large number of studies, the effect of conventional climatic
indicators on ecological systems has been studied [32–35]. Zhang and Zhou [36] found that
grassland has undergone the largest decrease in area, which has decreased by 9.47%, while
the LUCC that has undergone the largest increase in area is unused land, which increased by
7.25% in the TP from 1980 to 2018. However, they attributed this difference to temporal and
spatial variations in precipitation. Xu et al. [32] pointed out that the effect of the changes
to soil water storage on vegetation in the Three Rivers Source Region was considerably
greater than the effects of precipitation and temperature. The response of vegetation to
groundwater changes has been poorly studied, and the impact of groundwater changes
has been ignored in the TP [37].

Therefore, the objectives of the present study are to (1) identify the spatial–temporal
characteristics of groundwater storage in the TP and its ten sub-regions during 2002–2021;
(2) clarify the spatial–temporal characteristics of climate factors and the influence of climate
factors on GWS; and (3) illustrate the spatial–temporal characteristics of vegetation changes
and assess the vegetation responses to GWS changes. The results of the present study can
act as a reference for the management of groundwater resources in different sub-regions in
the TP.

2. Methodology

2.1. Study Area

The study area was in the geographic domain of the Tibetan Plateau (TP) in China
and was composed of ten sub-regions with diverse geographical environments (Figure 1),
including the Hexi Corridor (HC), the Qaidam Basin (QB), the Yellow River Basin (YRB),
the Yangtze River Basin (YB), the Lancang River (upper Mekong River) Basin (L-MRB),
the Nu River (upper Salween River) Basin (N-SRB), the Yarlung Zangbo River (upper
Brahmaputra River) Basin (YZ-BRB), the Inner Basin (IB), the Sengezangbu River (upper
Indus River) Basin (S-IRB), and the Tarim Basin (TB) [38].

Figure 1. Location map of the TP.
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These different sub-regions are characterized by different climate and hydrogeological
conditions [3,39]. The western, eastern, and southern TP are affected by the westerlies, the
East Asian monsoon, and the Indian monsoon, respectively, and other areas are generally
controlled by a combination of two or three of these conditions. Therefore, the water cycle
patterns in the TP will be significantly affected by large-scale atmospheric circulation [3].
The abundant precipitation caused by monsoons can greatly replenish large rivers on the
edge of the TP. During 1980−2018, the annual runoff of these rivers showed different
change characteristics, such as a significant increase in the Sengezangbu River (+3.9 Gt
per decade), but a stable status in the Yangtze River and Nu River, while the Yellow River
recorded a decline (–1.5 Gt per decade) during the same period [3]. In the center of the TP,
there are numerous endorheic lakes, rather than large exorheic rivers, because of the lower
annual precipitation level [39].

2.2. Data Sources
2.2.1. GRACE/FO

The CSR GRACE/FO RL06 mascon dataset has been frequently used in the study of
terrestrial water storage changes due to its highest spatial resolution at this stage compared
with other products [40–42]. The spatial resolution was 0.25 degrees. We used the GRACE
data for 237 consecutive months (from April 2002 to December 2021). The cubic spline
interpolation method was used to interpolate the short-term missing data of GRACE in the
time series. For the long-term data interruption caused by the replacement of the GRACE
and GRACE-FO satellites, the reconstruction method based on precipitation, which was
invented in previous research, was used, and more detailed information regarding this
method can be found in previous studies [43,44]. Additionally, all the grids used in this
study were relative to the 2004–2009 mean baseline. The TWS was recorded in terms of
equivalent water height (EWH) in cm.

2.2.2. GLDAS

The Global Land Data Assimilation System (GLDAS) uses data assimilation technology
to fuse satellite-based data and in situ ground observation data to generate surface state
quantities and fluxes that are closest to the observation data [45,46]. GLDAS includes four
land surface models, NOAH, VIC, CLM, and MOSAIC. Compared with the other models,
the NOAH model has the advantages of being an advanced model, having a high spatial
resolution, and having a stable driving field. Thus, the model selected in this study was the
GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25-degree V2.1 [47,48]. It has been
widely used worldwide and is a highly recognized data source [24,45,46,49]. The spatial
resolution is 0.25 degrees and is consistent with GRACE.

2.2.3. Temperature and Precipitation

Temperature (Tmp) and precipitation (Pre) are the most widely studied and important
meteorological factors. Previous studies also showed that Tmp and Pre have significant
effects on the variation in GWS [23,50].

The Climatic Research Unit gridded Time Series (CRU TS) can provide 0.5-degree-
resolution monthly data covering the global land surface [51]. The dataset of Tmp and
Pre from the CRU TS from April 2002 to December 2021 was used in this study. It is
worth noting that the spatial resolution was interpolated to 0.25 degrees using the bilinear
interpolation method to match the resolution of GRACE.

2.3. Vegetation Response

The vegetation response to the GWS changes was represented by the Normalized
Difference Vegetation Index (NDVI) and Land Use and Cover Change (LUCC). The satellite-
based NDVI, which has become the most popular index to reflect the state of regional
climates and environments, is obtained by monitoring the vegetation growth status and
estimating the vegetation coverage without damaging or altering the vegetation [52,53].
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The satellite-based LUCC is one of the essential driving factors for regional climate vari-
ability, and its impact on hydrological cycle has become an important aspect of water
resources [54,55]. The monthly data of the NDVI from April 2002 to December 2019 and
the LUCC data of five periods in 2000, 2005, 2010, 2015, and 2020, were used in this study.
The NDVI dataset is generated by calculating the maximum values of the first, middle, and
last three ten days of each month. The LUCC types are divided into six first-level groups,
which include cropland, forest, grassland, water, urban land, and unused land.

2.4. Method
2.4.1. Groundwater Storage Anomalies (GWSA)

The Terrestrial Water Storage Anomaly (TWSA) consists of four parts, namely, ground-
water storage anomalies (GWSA), soil storage anomalies (SMSA), snow water equivalent
anomalies (SWEA), and canopy water storage anomalies (CWSA) [26]. The GWSA could
be isolated using the following formula [26]:

GWSA = TWSA − (SMSA + SWEA + CWSA) (1)

where TWSAs were derived from gravity anomalies observed by GRACE/FO and the other
three components were provided by GLDAS.

It should be emphasized that all data are also relative to the 2004–2009 mean baseline,
meaning the value of the GWSA can be positive, negative, or zero. If the GWSA calculated
for a certain pixel in a certain month are positive, this indicates that the GWSA in this area
increase compared with the 2004–2009 mean baseline; a negative value indicates a decrease,
and zero indicates no change.

2.4.2. Trend Test and Significance Analysis

Temporally, unitary linear regression analysis was used to construct a linear regression
equation, and the k was used to quantify the trends as follows [52,56]:

k =

n × n
∑

i=1
(i × xi)−

n
∑

i=1
i × n

∑
i=1

xi

n × n
∑

i=1
i2 − (

n
∑

i=1
i)2

(2)

where n is the number of months and xi is variable in month i. If k > 0, the variables show a
positive trend; otherwise, they would show a negative trend. k = 0 means no change.

Spatially, the change trend for various factors in each pixel was analyzed using the
modified Mann–Kendall (MMK) test and represented by Slope [52,56–59]. Additionally,
whether this trend has statistical significance was determined by t-tests. The corresponding
formulas were as follows:

Slope = median
( xj − xk

j − k

)
(1 ≤ k<j ≤ n) (3)

sgn(xj − xk) =

⎧⎪⎨
⎪⎩

1 xj > xk

0 xj = xk

−1 xj < xk

(4)

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(xj − xk) (5)

Var(S) =
n(n−1)(2 n+5)

18
(6)
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η = 1+
2

n(n−1)(n−2)
×

n−1

∑
k=1

(n − k)(n − k − 1)(n − k)ρACF(k) (7)

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
η×Var(S)

for S > 0

0 for S = 0
S+1√

η×Var(S)
for S < 0

(8)

Here, xj is the parameter value at time j, and xk at time k. Slope > 0 represents an
upward trend; Slope < 0 represents a downward trend; and Slope = 0 means no change.
ρACF(k) is the autocorrelation function (ACF) of the ranks of the observations [58]. The Z
value indicates the trend of factors. In this study, the given significance levels were 99%,
95%, and 90%, when p = 0.01, 0.05, and 0.1, and |Z| − p/2 was equal to 2.58, 1.96, and 1.64,
respectively [52,56]. Based on the factors trend, the nine levels were further divided and
are presented in Table 1.

Table 1. Index classification.

Level Description of the Trend or Correlation Slope or CC p |Z|

1 Extremely significant increase or positive correlation

>0

p < 0.01 |Z| > 2.58

2 Significant increase or positive correlation 0.01 < p ≤ 0.05 1.96 < |Z| ≤ 2.58

3 Weakly significant increase or positive correlation 0.05 < p ≤ 0.1 1.64 < |Z| ≤ 1.96

4 Insignificant increase or positive correlation p > 0.1 |Z| ≤ 1.64

5 Extremely significant decrease or negative correlation

<0

p < 0.01 |Z| > 2.58

6 Significant decrease or negative correlation 0.01 < p ≤ 0.05 1.96 < |Z| ≤ 2.58

7 Weakly significant decrease or negative correlation 0.05 < p ≤ 0.1 1.64 < |Z| ≤ 1.96

8 Insignificant decrease or negative correlation p > 0.1 |Z| ≤ 1.64

9 Unchanged or uncorrelated =0 - -

2.4.3. Correlation Analysis

The correlation analysis method was used to analyze the relationship between two
variables in each pixel [52]. The corresponding formula was as follows:

CCxy =

n
∑

i=1
[(xi − x)(yi − y)]√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(9)

where CCxy represents the correlation coefficient (CC) between variables x and y; xi and yi
represent the value of the variables x and y in month I, respectively; and x and y are the
mean value of the variables x and y, respectively. The CC ranged from −1 to 1. There was a
positive correlation when the CC was greater than 0 and a negative correlation when it was
less than 0. Additionally, the significance of the results was evaluated using a t-test, and it
could be divided into four groups, extremely significant, significant, weakly significant,
and insignificant. Thus, the relationships between the dependent variable and independent
variable were further divided into nine levels, as detailed in Table 1.

3. Results and Discussion

3.1. Spatial–Temporal Patterns of GWSA

The GWSA across the TP had obvious spatial heterogeneity, with a mean of 0.17 cm
(Figure 2a) and a decreasing rate of −0.25 mm/a (Figure 2b). The higher values were
mainly distributed in the QB, the IB, the source of the Yangtze River, and the southeastern
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edge of the TP. The difference in the GWSA reached 9.26 mm. The value of the GWSA in
the QB was the highest, 3.42 cm, ranking first in the sub-regions. However, it had been
decreasing with the highest decreasing rate of −1.24 mm/a (Figure 2b) and in a large area
of 79.3% of the region (Figure 2c). On the contrary, the YZ-BRB had the lowest GWSA of
−5.84 cm, with the highest increasing rate at 2.12 mm/a and a large increasing area of
80.2% of the basin. Furthermore, it revealed an increasing trend in 42.0% of the plateau area,
while a decreasing trend was present in 58.0% of the plateau area (Figure 2c,d). The areas
where the slope of the GWSA was positive were mainly HC, S-IRB, YZ-BRB, and south
and southwest of the IB. In the HC and S-IRB, 53.9% and 33.3% of the regions showed a
significant increasing trend, and a significant decrease was observed in <2% of these two
basins, which indicated that the GWS levels in these sub-regions were increasing. In the YB
and the YRB, 83.0% and 63.7% showed a decreasing trend, while 31.2% and 17.0% showed
a significant decreasing trend, respectively.

The GWSA varied seasonally, with an increase in rainy seasons (May–October) and a
decrease in dry seasons (November to April in the next year) (Figure 2e). The difference in
the GWSA in the YB reached 1.06 cm, where the GWSA in rainy seasons and dry seasons
were 1.15 cm and 0.09 cm, respectively. The variation in the GWSA in the YB was consistent
with the variation in rainfall, indicating that the annual variation in groundwater may be
affected by the recharge of rainfall. The GWSA of the IB in rainy seasons and dry seasons
were 3.67 cm and 3.09 cm, respectively. As the amount of precipitation in this basin is
still less in the rainy season, it is possible that permafrost degradation and glacier melting
caused by increasing temperature have a stronger impact on the GWS than precipitation.
The minimum negative anomaly of the interannual variation in the GWSA was −2.16 cm
in 2009, while the maximum positive anomaly of 2.11 cm occurred in 2012 (Figure 2f).
Although the GWS increased rapidly from 2009 to 2012, it was still declining overall from
2003 to 2021, which was similar to the result inferred from the monthly GWSA from April
2002 to December 2021 (Figure 2g). The latter was divided into five periods, April 2002 to
June 2005, July 2005 to June 2010, June 2010 to May 2013, June 2013 to December 2015, and
January 2016 to December 2021. Overall, the GWS in the TP was decreasing at an average
rate of −0.89 mm/a from January 2003 to December 2021. Despite the lowest GWSA value
of −2.66 cm occurring in October 2004, the GWS was still rising at a speed of 15.23 mm/a
from April 2002 to June 2005. Then, there was a 60-month decrease at −7.31 mm/a from
July 2005 to June 2010. The third period, from June 2010 to May 2013, was an increasing
period. The increasing speed was 11.29 mm/a, and the GWSA reached the maximum value
of 5.82 cm in May 2013. The largest decrease rate of −21.29 mm/a occurred from June 2013
to December 2015. It had been slowly rising since January 2016, with a speed of 1.47 mm/a.
The results of the study by Liu et al. [22] were the same. Liu et al. [22] also came to a similar
conclusion that GWS in the Qinghai province and the Tibet Autonomous Region reached
a split point in 2016, and the groundwater storage changed from decreasing with a mean
rate of −0.2 mm/a from 2003 to 2015 to increasing with a mean rate of 3.28 mm/a from
2016 to 2019. The GWSA in the TP showed an overall downward trend, but increases after
2016. This shows that the amount of groundwater storage is gradually recovering.
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Figure 2. Characteristics of GWS in the TP and ten sub-regions. (a) Spatial distribution of monthly
mean GWSA from January 2003 to December 2021; (b) spatial distribution of slope of annual mean
GWSA from 2003 to 2021; (c) spatial distribution of significant changes in annual mean GWSA
from 2003 to 2021; (d) significance analysis of changes in annual mean GWSA from 2003 to 2021;
(e) variation in monthly mean GWSA; (f) variation in annual mean GWSA; (g) temporal variations in
monthly GWSA from April 2002 to December 2021.
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3.2. The Influence of Climate Change on GWS in the TP
3.2.1. Fluctuation Characteristics of Regional Climate

The changes in temperature and precipitation were calculated, and the spatial charac-
teristics of climate change are shown in Figure 3.

Figure 3. Spatial characteristics of climate change from 2003 to 2021. (a) Spatial distribution of slope of
annual mean temperature; (b) spatial distribution of significant changes in annual mean temperature;
(c) spatial distribution of slope of annual precipitation; (d) spatial distribution of significant changes
in annual precipitation.

As shown in Figure 3a,b, the changes indicate that the temperature increased in 64.1%
of the TP and decreased in 35.1% of the TP. The areas where the temperature increased were
mainly distributed in the YRB, the L-MRB, the N-SRB, the S-IRB, the east of the YB, the east
of the YZ-BRB, and the south of the IB. The increase rate of the temperature in the YRB was
0.016 ◦C/a. Additionally, 89.0% of the YRB showed an increasing trend. The decrease rate
of the temperature in the QB, in which 88.3% showed a decreasing trend, was −0.015 ◦C/a.

The precipitation showed a decreasing trend at −0.04 mm/a and in 49.6% of the TP
from 2003 to 2021, mainly over the YZ-BRB, the N-SRB, the TB, the south of the YB, the
south of the L-MRB, the center of the IB, and the northwest of the QB (Figure 3c,d). The
Brahmaputra River Basin had the highest decreasing rate of −3.55 mm/a and a decreasing
area of 90.5%. Meanwhile, the largest increase in precipitation was shown to be in the Indus
River Basin, with an increasing rate of 4.57 mm/a and an increasing area of 92.4%. These
results indicate that there have been different or even opposite trends in the rate of climate
change in different sub-regions of the TP in recent years.

3.2.2. Relationship between Climate Change and GWS

The correlation coefficients between the GWSA and Tmp and Pre were calculated to
analyze the relationships between the GWS and climate change. Then, significance tests
were carried out. The results are shown in Figure 4.

Overall, the GWSA were positively correlated with Tmp, and the mean correlation
coefficient was 0.0492 (Figure 4a). The correlation coefficient in the YB was 0.143, which was
the highest among the ten sub-regions. The HC, the QB, the YRB, the YB, the IB, and the
S-IRB were the main regions that showed positive correlations. This shows that the areas
that had positive correlations accounted for about 74.94% of the study area. In these areas,
15.23% showed extremely significant positive correlations. There were mostly insignificant
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positive correlations in 47.51% of the study area, which were mainly the HC, the QB, and
the YRB (Figure 4b). The negatively correlated area covered 25.06% of the study area, with
insignificant negative correlation occupying 13.66% of the area (Figure 4a,b). In the L-MRB,
the N-SRB, the YZ-BRB, and the TB, the GWSA were insignificantly negatively correlated
with the temperature in 25.87% of the area.

Figure 4. Relationship between climate change and GWS. (a) The correlation coefficients between
GWSA and temperature; (b) the significance test between GWSA and temperature; (c) the cor-
relation coefficients between GWSA and precipitation; (d) the significance test between GWSA
and precipitation.

As shown in Figure 4c, the mean correlation coefficient was 0.054, which was greater
than 0, indicating a positive correlation between the GWSA and Pre in the TP. The variables
were positively correlated in 70.81% of the study area and negatively correlated in 29.19% of
the study area. The mean correlation coefficient was 0.148 in the YB, which was the highest
among the ten sub-regions. The L-MRB, the N-SRB, the YZ-BRB, the IB, and the TB were
the main regions showing negative correlations, accounting for 68.24% of the negatively
correlated areas in total. The results of the significance tests in Figure 4d indicate that the
GWSA were extremely significantly positively correlated with precipitation in 13.96% of
the TP, mainly in the YB and south of the IB.

Increasing precipitation will lead to more groundwater recharge, and thus, an increase
in the GWS. Precipitation in the TP has been slightly increasing since the 1960s and is
projected to further increase in the future in most areas of the TP [60]. The direct manifes-
tation of permafrost degradation caused by increased temperature is the increase in the
number and area of thermal karst lakes, which leads to the reduction in GWS in the form
of runoff or evaporation [61,62]. However, when a large number of glaciers are distributed
in the basin, the increase in glacial meltwater caused by the increase in temperature will
recharge the groundwater, weaken the decrease in GWS, and even cause the increase in
GWS. This is the reason why the GWS in the north and south of the IB showed different
trends. There are many glaciers in the southern part of the IB and almost no glaciers in
the northern part of the IB. Similar results were obtained in previous studies in the central
Qiangtang Nature Reserve and the Upper Indus Basin [16]. The GWS in the L-MRB, N-SRB,
and YZ-BRB increased in the context of decreased precipitation and increased temperature.
As decreased precipitation and increased glacial melt due to temperature increases may
cause decreased GWS, these three regions may require more groundwater recharge. The
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decreased GWS in the YRB and YB, where the temperature and precipitation increased,
may indirectly support this hypothesis that the groundwater in the YRB and YB may seep
to the L-MRB, N-SRB, and YZ-BRB [16].

3.3. Ecological Effect of Groundwater Storage
3.3.1. Vegetation Change

As shown in Figure 5, grassland has the largest area of 84.285 × 104 km2 of the TP
(Table 2), mostly distributed in the IB, YB, YRB, and YZ-BRB. The area of unused land has
the second largest area, which is 59.736 × 104 km2, mainly covering the IB and QB. The
forest land that is mainly distributed in the YB and YZ-BRB covers 23.457 × 104 km2. The
area of water, mainly lakes and glaciers, is 9.577 × 104 km2. The cropland and urban land
types cover 1.994 × 104 km2 and 0.210 × 104 km2, respectively, which means there is a low
level of human activity on the TP. However, these areas have increased by 0.19 × 104 km2

and 0.10 × 104 km2 from 2000 to 2020, respectively, indicating that human activities cannot
be ignored.

The highest decrease and increase in land cover changes from 2000 to 2020 were
grassland and unused land, with changed areas of −17.19 × 104 km2 and 12.18 × 104 km2,
respectively. This means that large areas of grassland have degraded to sand, desert, and
other kinds of unused land, especially in the IB, where the area of grassland decreased to
14.926 × 104 km2 and the unused land increased to 12.284 × 104 km2. It should be noted
that different trends occurred in the LUCC of the YRB and YB. The area of unused land
decreased while the area of forest and grassland increased, which proved the effectiveness
of ecological protection and construction projects, such as eco-migration, grazing bans,
forest and wetland reservations, etc. [16,63].

As LUCC is discrete data, it is difficult to quantify the vegetation response to GWS.
Therefore, the influences of groundwater change on vegetation in time and space were
discussed using the NDVI, an indicator of vegetation change.

Figure 5. Land use map of the TP in 2020.

77



Remote Sens. 2023, 15, 2418

Table 2. Area of different land use types in 2020 and changed area from 2000 to 2020 (104 km2).

Basin Cropland Forest Grassland Water Urban Land Unused Land

HC
Area 0.009 0.382 2.181 0.200 0.002 2.027

Changed area 0.002 0.001 0.017 0.080 0.001 −0.125

QB
Area 0.061 0.169 5.730 0.522 0.035 12.090

Changed area 0.009 −0.006 0.106 0.171 0.015 −0.294

YRB
Area 0.634 2.022 12.367 0.696 0.093 2.121

Changed area −0.010 0.015 0.654 0.066 0.033 −0.762

YB
Area 0.745 9.313 18.935 0.723 0.041 3.197

Changed area 0.044 0.388 0.210 0.059 0.023 −0.694

L-MRB
Area 0.150 1.720 3.870 0.063 0.003 0.398

Changed area 0.046 0.242 −0.060 0.028 0.002 −0.247

N-SRB
Area 0.046 1.664 4.429 0.166 0.005 1.266

Changed area −0.001 0.355 0.128 −0.032 0.004 −0.447

YZ-BRB
Area 0.339 7.097 11.342 1.093 0.027 5.920

Changed area 0.090 0.920 −2.278 −0.158 0.019 1.486

IB
Area 0.001 0.692 21.507 4.752 0.002 22.990

Changed area 0.001 0.681 −14.926 2.022 0.002 12.284

S-IRB
Area 0.001 0.376 3.036 0.375 0.002 2.962

Changed area 0.001 0.374 −1.840 0.164 0.002 1.321

TB
Area 0.007 0.023 5.889 0.989 0.001 6.765

Changed area 0.006 −0.001 0.800 −0.449 0.001 −0.342

The TP
Area 1.994 23.457 89.285 9.577 0.210 59.736

Changed area 0.19 2.97 −17.19 1.96 0.10 12.18

3.3.2. Vegetation Responses to GWS Changes

Overall, the NDVI increased with the mean rate of 0.0035 per ten years, but the increase
was lower in the west and faster in the east from 2003 to 2019 (Figure 6a). The YB showed
the fastest increasing rate of 0.0144 per ten years, while the lowest was in the QB, with
a rate of −0.0071 of per ten years. The areas where the NDVI increased significantly are
mainly distributed over the east edge of the TP (Figure 6b). In Figure 6c, it can be seen
that the GWS and the NDVI were positively correlated, and the correlation coefficient was
0.068. Additionally, they had a positive correlation relationship in 73.17% of the study area.
The highest correlation coefficient was 0.113 in the YB, while the lowest was −0.016 in the
L-MRB. The weakly to extremely significant positive correlations were in 36.91% of the
aforementioned areas, mostly in the QB, YB, and YZ-BRB (Figure 6d). The regions where
there was a negative correlation between the GWS and the NDVI covered 26.83% of the TP,
of which only 23.59% were significantly or extremely significantly negatively correlated
(Figure 6d).

The GWS was positively correlated with the NDVI, which indicated that the vegetation
was dependent on the groundwater condition. In the IB, large areas of grassland have
degenerated into unused land because of the decline in the groundwater level in the
context of climate change [64,65]. This is analogous to the earlier findings reported in the
TP. Peng et al. [66] also found that the decline of the groundwater level in the source area
of the Yellow River was closely related to the deterioration of the ecological environment in
the permafrost-degraded area. This may have been due to the decrease in the groundwater
level, which would have caused a great loss to occur in the shallow soil moisture, which
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would have meant that the root system of some vegetation in cold areas could not effectively
use soil water, eventually leading to the degradation or disappearance of vegetation [67–69].

Figure 6. Relationship between NDVI and GWS. (a) Spatial distribution of slope of annual mean
NDVI; (b) spatial distribution of significant changes in NDVI; (c) the correlation coefficients between
GWS and NDVI; (d) the significance test between GWS and NDVI.

4. Conclusions

Based on the linear regression and modified Mann–Kendall test analysis methods,
the temporal and spatial variations in GWS were analyzed using the GRACE and GLDAS
data from April 2002 to December 2021. Then, the driving factors and ecological effects of
the changes in GWS in the Tibetan Plateau were discussed, using the correlation analysis
model and multi-source remote sensing data. This study of groundwater storage changes
provides a useful reference for ecological protection and the high-quality development of
the TP. The conclusions are as follows:

1. The higher values were mainly distributed in the QB, the IB, the source of the Yangtze
River, and the southeastern edge of the TP. An increasing trend in the GWS was
revealed in 42.0% of the plateau area and a decreasing trend was revealed in 58.0%
of the plateau area. The areas where the GWS increased were mainly the HC, S-IRB,
YZ-BRB, and the south and southwest of the IB.

2. Overall, the GWS in the TP was decreasing at an average rate of −0.89 mm/a from
January 2003 to December 2021. However, the GWS has been slowly rising at a rate of
1.47 mm/a since January 2016. This shows that the level of groundwater storage is
gradually recovering.

3. The different climate conditions in the different sub-regions had different impacts
on the change in the GWS. The change in precipitation may be the main reason for
the change in the GWS in the YB. Rising temperatures have a two-sided effect on the
groundwater storage. On the one hand, the melting of ice and snow caused by rising
temperatures will replenish the groundwater, which will increase the groundwater
storage in some areas, such as the south of the IB. On the other hand, permafrost
degradation caused by climate change will lead to a decrease in the GWS in other
regions, such as the north of the IB.

4. The potential ecological effects were investigated, with the results showing that the
reduction in the GWS is an important cause of vegetation degradation. The decrease in
the GWS reduced the efficiency of plant roots in absorbing and utilizing groundwater
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and eventually led to the degradation of 17.19 × 104 km2 of grassland to sand, desert,
or other kinds of unused land on the TP.

The results of this study could offer a new opportunity to reveal the groundwater
changes in a cryosphere region and to assess the impact of the changes in hydrological
conditions on ecology. However, this study only provided a preliminary investigation of
the changes to GWS, and more in-depth studies should focus on the following specific
aspects: (1) in situ groundwater monitoring with high temporal and spatial resolution at
the regional scale to gain insight into the accurate variation mechanism of groundwater
storage on the TP; (2) the integration of multivariate satellite data and improving modeling
capacity to deal with the quality change signals caused by rapid structural uplift; (3) the
quantitative analysis of the response of groundwater to climate change and the evaluation
of the effects of groundwater changes on vegetation evolution under climate change.
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Abstract: With rapid economic development, extensive human activity has changed landscape
patterns (LPs) dramatically, which has further influenced hydrological processes. However, the effects
of LPs changes on hydrological processes, especially for the streamflow–sediment relationship in the
subtropical monsoon climate zone, have not been reported. In our study, 10 watersheds with different
sizes in the subtropical monsoon climate zone of southeastern China were chosen as the study area,
and the effect of the 14 most commonly used landscape metrics (LMs) on 4 typical hydrological indices
(water yields (WY), the runoff coefficient (RC), the soil erosion modulus (SEM), and the suspended
sediment concentration (SSC)) were analyzed based on land use maps and hydrological data from
1990 to 2019. The results reveal that the LP characteristics within the study area have changed
significantly. The number of patches and landscape shape indices were significantly positively
correlated with watershed size (p < 0.01). For most watersheds, the largest patch index was negatively
correlated with WY, RC, and SEM, and the perimeter area fractal dimension was positively correlated
with WY, RC, SEM, and SSC. The effects of several LMs on the hydrological indices had scale effects.
WY/RC and the interspersion and juxtaposition index were negatively correlated in most larger
watersheds but were positively correlated in most smaller watersheds. Similar results were found for
Shannon’s diversity/evenness index and SEM. In general, an increase in a small patch of landscape
and in landscape diversity would increase WY, the fragmentation of LPs would result in more soil
erosion, and LPs would affect the relationship between streamflow and sediment yield. As a result, a
proper decrease in landscape fragmentation and physical connectivity in the subtropical monsoon
climate zone of southeastern China would benefit soil erosion prevention. These results enhance
the knowledge about the relationship between LPs and hydrological processes in the subtropical
monsoon climate zone of southeastern China and benefit local water and soil conservation efforts.

Keywords: landscape pattern; runoff coefficient; soil erosion modulus; suspended sediment concen-
tration; subtropical monsoon climate zone; southeastern China
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1. Introduction

With the rapid development of human society, land use has changed dramatically [1],
which has altered ecosystem structures, functions, and services [2], further influencing
eco-hydrological processes [3,4]. The characteristics of land use changes mainly contain
land use quantity and landscape patterns (LPs). Scholars have investigated the differences
in hydrological effects for various land uses [5–8] to better determine a proper quantity for
each land use type for these study regions. Afterward, some scholars further explored the
evolution of land use spatial distribution based on various land use prediction models such
as the CLUE-S [9], CA [10], and FLUS [11] models. In addition, the spatial distribution and
configuration of various land use types could also affect hydrological processes, even with
the same quantity. In recent decades, more and more scholars have focused on the effect of
LPs on hydrological processes such as runoff and soil erosion [12–14].

LPs are the spatial configuration characteristics of various landscape units with dif-
ferent sizes and shapes [15]. Various landscape metrics (LMs) have been developed to
describe the characteristics of LPs [16–18]. Over recent decades, scholars have indicated
that LPs have significant correlations with runoff [12], soil erosion [13,14], water qual-
ity [19,20], and organic matter decomposition [21,22]. Sadeghi et al. [23] investigated the
relationships between LMs and hydrographic components within the Galazchai watershed
in Iran. The results show that the number of disjunct core areas (NDCA) was positively
correlated with flood volume, and patch density (PD) was positively correlated with peak
discharge. Zhao and Huang [24] examined the effects of LPs on runoff within a small
watershed in southern China. The results indicate that PD and landscape shape index
(LSI) were negatively correlated with runoff, whereas Shannon’s diversity index (SHDI)
and the landscape division index (DIVISION) were positively correlated with runoff. In
addition, PD, SHDI, and largest patch index (LPI) had the largest impacts on variations in
runoff. Zhang et al. [25] attempted to reveal the effect of changes in LPs on soil erosion in a
small watershed. The results suggest that soil erosion was positively correlated with the
patch cohesion index (COHESION) but negatively correlated with LPI, modified Simpson’s
evenness index (MSIEI), and aggregation index (AI). Another study conducted on the
island of Crete in Greece [26] found that there was a significant correlation between average
soil erosion and PD, edge density (ED), LPI, and percentage of landscape (PLAND). The
topic of the effects of LPs variations on various hydrological processes has been a research
hotspot over the last decade.

The most popular methods used to investigate the relationships between LPs and hy-
drological processes are various correlation analysis (the correlation coefficient method [27],
stepwise regression analysis [28], multiple linear regression [25], etc.) methods. In addition,
hydrological series have mainly been simulated using multiple hydrological or soil erosion
models such as the SWAT [29], InVEST [30], IUH [23], RUSLE [26], WaTEM/SEDEM [31]
models with various land use maps as inputs, which are further used for analysis with
LMs calculated from the corresponding land use maps. The number of land use maps
ranges from 3 to 8 in the previously mentioned works, which is insufficient and possibly
brought uncertainty into the results. In addition, most of them used simulated hydrological
series from multiple eco-hydrological models that ignored the effect of different LPs on
hydrological processes. For instance, the SWAT model separates the watershed into several
sub-watersheds and further divides them into more hydrological response units (HRUs)
based on different combinations of land use, soil, and slope belt [32]. The hydrological
processes were simulated at an HRU scale and then aggregated into a sub-watershed scale.
The SWAT model is used to calculate the runoff and sediment generation based on specific
combinations of land use, soil, and slope belt, but it does not consider the effects of LPs on
the streamflow convergence process and the sediment transportation process. As reported
by previous studies, the impacts of LPs on hydrological processes are mainly concentrated
in the streamflow converge process and sediment transportation process [33]. Hence, simu-
lated hydrological processes based on the SWAT model ignore the major effects of LPs on
these hydrological processes. The RUSLE model simulates soil erosion using an experience
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equation containing six factors [26], which also does not take LPs into consideration. In
addition, the simulation results also contain errors compared to the observed data to some
extent.

The existing relevant studies mainly focus on specific watersheds all over the world,
and the areas of these watersheds range from 16.6 to 320,000 km2 [17,23,24,26]. As scale is
a fundamental concept, analyses at various scales may have resulted in different results or
even reverse results [34]. In addition, differences in soil type, topography, and meteorology
within various regions could also have been a possible driver for the different results. For
example, SHDI was positively correlated with runoff in some regions [17,35] and negatively
correlated with runoff in other regions [36,37]; PD was positively correlated with the
sediment yields load (SYL) in some regions [34,38] and negatively correlated with SYL in
other regions [35,36]. Similar reverse results were also observed for COHESION, LPI, SHEI,
AI, CONTAG, LSI, etc. in various regions [25,31,33,39]. These phenomena may suggest
that it is insufficient to reveal the relationships between LPs and hydrological processes
using relevant data from only one watershed. To investigate the impacts of LPs on water
quality across Taiwan, Chiang et al. [40] revealed relationships between 12 water quality
parameters and 12 LMs based on water quality records for 10 watersheds. The results show
that temperature, PH, NO3-N, and TN are significantly correlated with most LMs in these
watersheds. A similar relevant study has not been reported to have been conducted for
runoff/SYL and LMs. In addition, the relationship between LMs and suspended sediment
concentration (SSC) has not been reported until now. As SSC is an important hydrological
index that could reflect the relationship between streamflow and suspended sediment in
a watershed, understanding the driving factors behind SSC would benefit not only soil
erosion prevention, but also the prevention and control of river reservoir siltation. As the
existing studies report, LPs influence runoff and SYL, mainly during the transportation
process. It is necessary to conduct a relevant study to investigate whether LPs changes
affect SSC to better understand the driving factors behind SSC.

In previous studies, scholars investigated the relationships between LPs and hydrolog-
ical processes in specific watersheds, but relevant studies focused on climate zones are still
rare. Soil erosion brought by rainfall and runoff is strongly controlled by climate [41], and
it is important to investigate the effects of LPs on hydrological processes in various climate
zones. The subtropical monsoon climate zone is characterized by high annual rainfall
and concentrated summer rainfall, which would result in severe soil erosion [42]. The
subtropical monsoon climate zone covers ~29% of China’s total area, is mainly distributed
in southeastern China, and has experienced rapid economic development and land use
changes. In addition, southeastern China contains a variety of landforms and shows a
general conversion from mountains and hills to plains from south to north, which are more
likely to suffer soil erosion. As pronounced by the Resource and Environment Science and
Data Center, Chinese Academy of Sciences (RESDC), ~56.39% of Chinese land suffers from
water erosion, with this percentage accounting for almost all of southeastern China [43].
However, how LPs changes affect hydrological processes within the subtropical monsoon
climate zone of southeastern China is still unclear. Under the background of global climate
change and land use change resulting from extensive human activity, it is significant to
reveal the relationships between LPs and representative hydrological processes for better
land use management for water and soil conservation. To settle this issue, 10 watersheds
with area ranging from 1700 to 80,900 km2 were chosen as the study area, and water yields
(WY), runoff coefficient (RC), soil erosion modulus (SEM), and SSC were chosen as the
representative hydrological indices to determine the correlations between the chosen hy-
drological indices and the most studied LMs from 1990 to 2019 in the subtropical monsoon
climate zone of southeastern China. The results enhance the knowledge about the effects of
LPs on hydrological processes in the subtropical monsoon climate zone of southeastern
China for better land use management with an objective of soil and water conservation.
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2. Study Area

A total of 10 watersheds (Zhuji (ZJ), Dufengkeng (DFK), Hushan (HS), Lijiadu (LJD),
Lanxi (LX), Boluo (BL), Chaoan (CA), Shijiao (SJ), Zhuqi (ZQ), and Waizhou (WZ)) of
different sizes in southeastern China, which were dominated by the subtropical monsoon
climate, were chosen as the study area (Figure 1). The study area covered a region between
112.1◦~120.7◦E, and 22.5◦~30.0◦N, which is mainly dominated by hills and mountainous
terrain, with its highest elevation being 2191 masl and its lowest elevation being −136 masl.
The main climatological characteristics in the subtropical monsoon climate zone are tem-
perature and precipitation, which are higher in the summer and lower in the winter, and
annual precipitation, which is high but unevenly distributed throughout the year. The
annual average temperature and precipitation in southeastern China range from 15 to
22 ◦C and from 1500 to 2200 mm, respectively. The region is rich with river networks
and has a developed water system, which is mainly replenished by precipitation. The
main geographical and hydrological characteristics of the chosen watersheds are shown in
Table 1. The dominant land use of the study area is forest and agricultural land, and LPs
have changed rapidly in the last 30 years due to intensive human activity. The main LP
changes were an expansion of urban land and water areas and a reduction in forest and
agricultural land from 1990 to 2019.

 

Figure 1. The distribution of the study regions. “ZJ”, “DFK”, “HS”, “LJD”, “LX”, “BL”, “CA”,
“SJ”, “ZQ”, and “QZ” represent the “Zhuji”, “Dufengkeng”, “Hushan”, “Lijiadu”, “Lanxi”, “Boluo”,
“Chaoan”, “Shijiao”, “Zhuqi”, and “Waizhou” watersheds, respectively.
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Table 1. Hydrological and geographical characteristics of the chosen watersheds from 1990 to 2021.

Stations DA (km2) AE (m) PRE (mm) WY (108 m3) RC SYL (104 t) SEM (t/km2) SSC (mg/L)

ZJ 1700 232 1686 12.17 0.41 8.90 52.38 0.07
DFK 5000 243 2054 50.44 0.48 52.97 105.94 0.09
HS 6400 255 2162 71.01 0.52 104.16 162.75 0.13
LJD 15,800 222 2003 124.99 0.39 120.76 76.43 0.09
LX 18,200 352 1942 180.89 0.50 232.69 127.85 0.12
BL 25,300 288 2006 222.21 0.44 131.96 52.16 0.05
CA 29,100 397 1825 235.32 0.45 321.79 110.58 0.12
SJ 38,400 384 1994 416.69 0.55 463.70 120.75 0.11

ZQ 54,500 533 1982 544.55 0.50 278.93 51.18 0.04
WZ 80,900 300 1812 713.52 0.49 382.66 47.30 0.05

Note: DA, AE, and PRE represent drainage area, average elevation, and precipitation, respectively.

3. Data and Methods

3.1. Data Description

The main data used in this study consist of land use maps, precipitation records, and
annual runoff and sediment yield records. The land use maps from 1990 to 2019 were
obtained from Wuhan University [44] with a spatial resolution of 30 m. The land use maps
were generated using the random forest classifier and the visual interpretation method,
and they were validated with three sources of test samples. They divided the land use type
into 9 categories: cropland, forest, shrub, grassland, water, snow and ice, barren, imperious,
and wetland. They can be obtained at https://zenodo.org/record/4417810 (accessed
on 28 December 2022), and they have been employed in many studies [19,45,46]. The
precipitation records were obtained from China Scientific Data with a temporal resolution
of monthly (1960–2020) and a spatial resolution of 1 km [47]. The precipitation records
were interpreted with ANUSPLIN 4.4 based on ~2400 precipitation monitoring stations
within China and were validated by comparing them with the precipitation records from
precipitation gauges and the Chinese hydrological yearbook. The precipitation records that
were used can be downloaded at http://doi.org/10.11922/sciencedb.01607 (accessed on
25 December 2022). The measured annual runoff and sediment yield records from 1990
to 2019 of the DFK, LJD, LX, BL, CA, SJ, ZQ, and WZ watersheds and those from 2002 to
2019 of the ZJ and HS watersheds were obtained from the Bulletin of River Sediment in
China and were downloaded at http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/ (accessed on
30 December 2022). The bulletins were compiled jointly by the Department of Hydrology of
the Ministry of Water Resources, the Monitoring and Forecasting Center for Hydrology and
Water Resources of the Ministry of Water Resources, the International Sediment Research
and Training Center, and the hydrology bureaus of the river basin institutions, which are
very credible. The annual runoff and sediment yield records were used to represent the
historical hydrology conditions within the chosen watersheds.

3.2. LMs Selection

LMs were used to represent the spatial distribution characteristics of the various land
use patches, and they have been widely used to investigate the relationships between LPs
and eco-hydrological processes [21,25,39,48]. The LMs were divided into three categories
based on different levels: patch-level, class-level, and landscape-level metrics [39]. The
LMs on a landscape level integrated all patch types or classes over the entire study region,
and they were separated into four categories reflecting different types of characteristics of
landscapes: edge area, shape, aggregation, and diversity metrics [49]. The main purpose of
this study was to reveal the relationships between landscape patterns and representative
hydrological indices in the subtropical monsoon climate zone. Hence, 14 widely used
LMs, which were found to have different relationships with runoff/sediment in various
regions, were chosen for this study [17,25,27,31,33,35,36,38,39,50,51]. The selected LMs
were LPI, ED, perimeter area fractal dimension (PAFRAC), number of patches (NP), DIVI-
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SION, AI, interspersion and juxtaposition index (IJI), contiguity index (CONTAG), PD, LSI,
COHESION, SHDI, Shannon’s evenness index (SHEI), and MSIEI. Their definitions and
relevant literature are shown in Table A1, and these LMs were calculated using Fragstats
v4.2.1 software for all land use maps from 1990 to 2019 for all chosen watersheds. Before
calculation, the land use types were reclassified into seven categories: agricultural land,
forest land, shrubland, grassland, water area, urban land, and bare land.

3.3. Hydrological Indices

To better evaluate the relationships between hydrological processes and LPs, five
fundamental hydrological indices (WY (m3); RC; SYL (t); SEM (t/km2); SSC (mg/L))
relevant to runoff, sediment yields, and streamflow–sediment relationships were chosen
for the study and obtained on an annual scale. These hydrological indices have been
employed in previous studies to investigate the hydrological characteristics of various
regions [29,52–55]. In this paper, WY, SYL, and SSC values were collected from the Bulletin
of River Sediment in China. RC and SEM were calculated using Equations (1) and (2).

RC =
WY

1000 · DA · PRE
(1)

SEM =
SYL
DA

(2)

where WY represents annual water yield (m3); DA represents drainage area (km2); PRE
represents annual precipitation (mm); SYL represents the annual sediment yield load (t).

3.4. Analysis Methods

Linear regression [56] was used to analyze the change trends of various hydrological
indices and of LMs from 1990 to 2019 for the chosen watersheds. This type of analy-
sis has been widely employed in previous relevant works and has shown reasonable
results [43,57,58]. In addition, the F-test [59] was adopted to test the significance of the
trend for each series at confidence levels of 0.05 and 0.01. The equation form of the linear
regression is as follows:

y = ax + b (3)

where y represents the dependent variable (WY, RC, SYL, SEM, and SSC); a represents the
change trend per year; x represents year; b represents the constant.

To investigate the exchanges between different land use types from 1990 to 2019, the
period was separated into two stages: 1990–2005 and 2005–2019. Land use conversion
analysis was conducted for land use maps in 1990, 2005, and 2019 in the ArcGIS 10.2 plat-
form. To better show the exchanges between different land use types, land with no land
use type exchanges was ignored when conducting relevant analyses. With this method,
the exchanges between each land use type from 1990 to 2019 were analyzed for the chosen
watersheds.

The effects of LPs changes that propagate to hydrological processes have lag times
that vary according to differences in watershed size, climate, landscape, topography, soil
type, etc. [60–62]. In previous studies, lag times of 0–4 years were needed before significant
responses of hydrological processes to landscape changes could be observed [63,64]. Hence,
a slip correlation analysis [43] was conducted with a lag time of 0–4 years to investigate the
relationships between LPs and hydrological indices. A description of the slip correlation
analysis is as follows:

(1) The origin series X and Y are: X(x 1, x2, . . . , xn−1, xn); Y(y 1, y2, . . . , yn−1, yn). The X
and Y series are the landscape series and hydrological indices, respectively; n is the
series number, which corresponds to the year.

(2) The clip correlation series for X and Y were established. For the lag time of i years, the
X′ and Y′ series are X′(x1, x2, . . . , xn−i−1, xn−i) and Y′(yi, yi+1, . . . , yn−1, yn), respec-
tively. The value of i ranges from 0 to 4, and it represents lag times of 0–4 years.
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(3) The correlation coefficient (CCi) between X′ and Y′ was calculated, and the result was
the lag correlation between X and Y with a lag time of i years. The highest value of
CCi with a significance of 0.05 was regarded as the lag time between X and Y.

As SEM was calculated by dividing SYL by DA, the SEM series was linearly correlated
with SYL and removed the effect of watershed size on soil erosion. In this paper, a slip
correlation analysis was conducted between the 14 LMs and 4 hydrological indices (WY,
RC, SEM, and SSC) in the chosen watersheds.

4. Results

4.1. Variations in SY, RC, SYL, SEM, and SSC

Table 1 shows the annual average values of various hydrological indices, and Figure 2
shows variations in WY, RC, SYL, SEM, and SSC. The annual average WY, SYL, RC, SEM,
and SSC values for the chosen watersheds ranged from 12.17 × 108 to 713.52 × 108 m3,
from 8.9 × 104 to 463.7 × 104 t, from 0.39 to 0.55, from 47.3 to 162.75 t/km2, and from 0.05
to 0.13 mg/L, respectively. The variations in WY were higher within ZQ and WZ, followed
by LJD, LX, BL, CA, and SJ, and the variations in SYL were obviously higher within CA, SJ,
ZQ, and WZ compared to the other watersheds. In addition, the variations in SEM and
SSC were higher within DFK, HS, LX, and CA compared to the other watersheds, which
indicates that soil erosion in these watersheds was much more serious compared to the
other watersheds.

Figure 2. Variations in hydrological indices from 1990 to 2019. (a–e) represent WY, RC, SYL, SEM,
and SSC, respectively.

The change trends of the hydrological indices are shown in Table 2, and their temporal
variations are shown in Figure A1. WY showed a decreased trend in the DFK, BL, CA,
SJ, and WZ watersheds while exhibiting an increased trend in the ZJ, HS, LJD, LX, and
ZQ watersheds. RC increased in all watersheds except for CA and SJ. In particular, DFK,
BL, and WZ suffered decreases in WY, whereas their RC values increased. As a whole,
the change trends of WY and RC were not significant for all watersheds. Differing from
WY and RC, SYL and SEM decreased in all watersheds except for the ZJ, HS, and LX
watersheds. SYL and SEM values increased significantly (p < 0.01) in HS and decreased
significantly (p < 0.01) in CA and WZ. Interestingly, LJD and ZQ increased in WY and RC
but decreased in SYL and SEM. This phenomenon may have been caused by LP changes and
human activity in these regions. As for SSC, it significantly increased in HS (p < 0.01) and
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significantly (p < 0.05) decreased in LJD, ZQ, BL, CA, and WZ. In general, soil erosion was
mitigated in most watersheds, whereas water resources decreased in the larger watersheds
and increased in the smaller watersheds.

Table 2. Change trend statistics of hydrological indices from 1990 to 2019.

Indices ZJ DFK HS LJD LX BL CA SJ ZQ WZ

WY 0.25 −0.003 1.53 0.16 0.64 −0.12 −1.22 −1.00 0.75 −1.13
RC 0.0048 0.0012 0.0064 0.0008 0.0016 0.0013 −0.0009 −0.0001 0.0008 0.0004
SYL 0.04 −0.02 10.90 ** −1.19 4.43 −3.04 −19.01 ** −4.72 −7.63 −19.76 **
SEM 0.23 −0.04 17.03 ** −0.75 2.43 −1.20 −6.53 ** −1.23 −1.40 −2.44 **
SSC −0.0005 0.0002 0.0128 ** −0.0011 * 0.0019 −0.0015 ** −0.0073 ** −0.0008 −0.0016 * −0.0026 **

Note: The units of WY, SYL, SEM, and SSC are 108 m3, 104 t, t/km2, and mg/l, respectively, and RC is a
dimensionless quantity. The change trends of these indices are shown as the average variations for each year.
* and ** represent significant correlations at confidence levels of 95% and 99%, respectively.

4.2. Temporal Variations in LPs in the Chosen Watersheds
4.2.1. Land Use Changes from 1990 to 2019

As shown in Figure 3, the dominant land use type of the chosen watersheds was
forest land, followed by agricultural land. The ratio of agricultural land was higher
in ZJ, LJD, LX, BL, and WZ compared to the other watersheds, which were also more
intensively distributed. In addition, from 1990 to 2019, urban land expanded drastically
in all watersheds, especially in ZJ, LJD, LX, and WZ. The regions in which the land use
types for different watersheds were altered occupied about 3.01–8.46% (average of 6.03%),
4.22–9.78% (average of 6.81%), and 5.11–11.47% (average of 8.83%) of the total area from
1990 to 2005, from 2005 to 2019, and from 1990 to 2019, respectively. Interestingly, the
average area of the regions whose land use types had been altered from 1990 to 2019 was
much lower than the sum of these regions from 1990 to 2005 and from 2005 to 2019. This
may suggest that some unreasonable land use conversions from 1990 to 2005 had been
corrected from 2005 to 2019. From 1990 to 2019, urban expansion was the only long-lasting
land use conversion process.

Figure 4 shows the details of land use conversions among different land use types
from 1990 to 2005 and from 2005 to 2019. We found that land use conversions mainly
happened on agricultural land, forest land, and urban land. From 1990 to 2005, the main
land use conversions were forest land–agricultural land, agricultural land–urban land,
and agricultural land–forest land; part of the agricultural land had also been converted
into water areas within ZJ, HS, LJD, LX, BL, and SJ. From 2005 to 2019, the main land
use conversions were agricultural land–urban land, agricultural land–forest land, and
forest land–agricultural land; some urban land was converted from forest land within DFK,
HS, LX, CA, ZQ, and WZ. These results reveal that the urban expansion in southeastern
China was mainly facilitated by occupying agricultural land, especially from 1990 to 2005.
During recent decades, urban expansion also happened in some forest regions for most
watersheds. This was reasonable, as urban development had extended to the surrounding
rural areas first in most regions, which had large areas of agricultural land and forest
land [65–67]. In addition, conversions between agricultural land and forest land were
relatively greater. These results may have been caused by land use exchanges. For better
soil erosion prevention, some sloped agricultural land was abandoned and converted into
forest land, whereas some flat forest land was converted into agricultural land to preserve
the amount of agricultural land and promote guaranteed crop production.
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Figure 3. Land use maps of ZJ, DFK, HS, LJD, LX, BL, CA, SJ, ZQ, and WZ in 1990, 2005, and 2019.

4.2.2. LM Changes from 1990 to 2019

As shown in Figure 5, the variations in all LMs of ZJ were the largest among all
watersheds. In addition, several LMs of LX, ZQ, and WZ also showed larger variations
compared to the other watersheds. The average values of LPI and PAFRAC had similar
trends with increases in watershed size. The analogical character was also shown for
DIVISION, IJI, PD, SHDI, SHEI, and MSIEI. It is notable that the LPs within ZJ changed
intensively in 1998, 2001, 2007, and 2017, with obvious variations in LPI, DIVISION, and
COHESION. The LPs within LX changed intensively in 1993, 2007, and 2016 (Figure A2).
Different from the other LMs, COHESION changed little in all watersheds except ZJ
compared to the other LMs. This may suggest that COHESION was not as sensitive as
other LMs to LPs changes.
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Figure 4. Land use conversion statistics between 1990, 2005, and 2019 for the chosen watersheds.
Land whose land use type did not change is not included in this figure. (a–j) represent the ZJ, DFK,
HS, LJD, LX, BO, CA, SJ, ZQ, and WZ watersheds, respectively.

The change trend statistic results of the chosen LMs from 1990 to 2019 are shown in
Table 3. For most watersheds, most LMs changed significantly (p < 0.05), which demon-
strates that LPs characteristics changed significantly during this period. Among all water-
sheds, the LPs within ZQ was the most intensively changed, as all LMs of ZQ changed
significantly (p < 0.01). In detail, COHESION (ED, PAFRAC, AI, IJI, CONTAG, LSI, and
SHEI) and SHDI (LPI and DIVISION) significantly (p < 0.05) changed in nine (individually,
eight and seven, respectively) watersheds; NP and PD (MSIEI) significantly (p < 0.01)
changed in six (four) watersheds. Among these significant trends, ED, DIVISION, IJI, LSI,
SHDI, SHEI, and MSIEI (AI, CONTAG, COHESION, LPI, and PAFRAC) all significantly
(p < 0.05) increased (or decreased) in most watersheds. These uniformities in the change
trends of the LMs may suggest that the development directions in land use planning were
similar across the regions of southeastern China. In addition, COHESION significantly
decreased in most watersheds, which did not show obvious variations. The change trends
of SHDI and SHEI were similar in all watersheds, and the change trend of SHDI was more
obvious than that of SHEI (Figure A2). In general, the LPs within the chosen watersheds
significantly changed from a landscape perspective.

94



Remote Sens. 2023, 15, 2290

 

Figure 5. Variations of LMs from 1990 to 2019. (a–n) represent LPI, ED, PAFRAC, NP, DIVISION, AI,
IJI, CONTAG, PD, LSI, COHESION, SHDI, SHEI, and MSIEI, respectively.

95



Remote Sens. 2023, 15, 2290

Table 3. Change trend statistics of LMs within the chosen watersheds from 1990 to 2019.

Metrics ZJ DFK HS LJD LX BL CA SJ ZQ WZ

LPI 0.62 * −0.06 ** −0.01 −0.04 * −0.09 −0.08 ** 0.02 −0.07 ** −0.11 ** −0.11 *
ED 0.26 ** 0.05 * 0.03 0.12 ** 0.15 ** 0.11 ** −0.01 0.14 ** 0.13 ** 0.06 *

PAFRAC 0.0001 0.0002 ** −0.0005 ** −0.0005 ** −0.0004 ** −0.0002 ** −0.0009 ** 0.00005 −0.0004 ** −0.0008 **
NP 0.0013 ** 0.0004 −0.0006 −0.0045 ** 0.0045 ** 0.0072 −0.0264 ** 0.0108 0.0263 ** −0.0436 **

DIVISION −0.0043 0.0010 ** 0.0002 0.0007 ** 0.0021 ** 0.0013 ** −0.0003 0.0011 ** 0.020 ** 0.0014 *
AI −0.129 ** −0.025 * −0.015 −0.058 ** −0.074 ** −0.054 ** 0.007 −0.068 ** −0.065 ** −0.029 *
IJI 0.55 ** 0.24 ** 0.18 ** 0.11 ** 0.08 * 0.16 ** 0.05 * −0.03 0.12 ** −0.02

CONTAG −0.376 ** −0.082 ** −0.14 −0.063 ** −0.097 ** −0.073 ** −0.001 −0.087 ** −0.137 ** −0.049 **
PD 0.008 ** 0.001 −0.001 −0.003 ** 0.002 ** 0.003 −0.009 ** 0.003 0.005 ** −0.006 **
LSI 0.27 ** 0.09 * 0.06 0.36 ** 0.50 ** 0.44 ** −0.06 0.67 ** 0.76 ** 0.39 *

COHESION −0.0034 −0.0011 ** −0.0003 ** −0.0013 ** −0.0045 ** −0.0013 ** −0.0001 ** −0.0005 ** −0.0003 ** −0.0005 **
SHDI 0.005 ** 0.002 ** 0.001 * 0.001 ** 0.004 ** 0.002 ** 0.001 0.002 ** 0.003 ** 0.001 **
SHEI 0.005 ** 0.001 ** 0.001 0.001 ** 0.001 ** 0.001 ** 0.001 0.001 ** 0.002 ** 0.001 **
MSIEI 0.0031 ** 0.0006 ** 0 −0.0001 0.0005 0 −0.0001 0.0006 ** 0.0011 ** 0.0003

Note: The units of LPI, ED, DIVISION, AI, IJI, CONTAG, and PD are %, meters/hectare, proportion, %, %, %, and
number/100 hectares, respectively, and PAFRAC, NP, LSI, COHESION, SHDI, SHEI, and MSIEI are dimensionless
quantities. The change trends of these indicators are shown as the average variations each year. * and ** represent
significant correlations at confidence levels of 95% and 99%, respectively.

4.3. Relationships between Hydrological Indices and LPs

The CC between the hydrological indices (WY, RC, SEM, and SSC) and LMs (LPI, ED,
PAFRAC, NP, DIVISION, AI, IJI, CONTAG, PD, LSI, COHESION, SHDI, SHEI, and MSIEI)
of the chosen watersheds are shown in Tables 4 and 5. There were discrepancies in the lag
times of the correlations between the hydrological indices and LMs in different watersheds
in the subtropical monsoon climate zone of southeastern China. In addition, the lag times
between the hydrological indices and LMs did not show an obvious relationship with
watershed size.

Table 4. CC values between the landscape metrics and the WY and RC.

Hydrological
Indices

LMs ZJ DFK HS LJD LX BL CA SJ ZQ WZ

WY

LPI 0.57 1 −0.28 0 −0.46 0 −0.29 1 −0.46 3 −0.22 1 −0.21 0 0.28 1 −0.08 0 −0.40 4

ED 0.48 1 0.27 0 0.39 0 −0.03 1 0.14 4 0.13 0 0.25 2 −0.13 1 0.10 0 0.29 2

PAFRAC −0.12 2 0.12 0 0.50 0 0.16 3 −0.33 1 0.21 2 0.24 2 0.34 4 0.19 2 0.26 2

NP 0.53 1 0.33 1 0.33 0 0.16 2 0.37 4 0.20 3 0.27 2 0.30 4 0.19 2 0.35 2

DIVISION −0.56 1 0.28 0 0.46 0 0.16 1 0.36 3 0.22 1 0.21 0 −0.28 1 0.08 0 0.39 4

AI −0.48 1 −0.27 0 −0.39 0 0.03 1 −0.14 4 −0.13 0 −0.25 2 0.13 1 −0.10 0 −0.29 2

IJI 0.47 1 −0.11 0 0.60 4 0.08 4 0.11 0 −0.17 2 −0.26 0 −0.26 3 0.14 4 −0.35 0

CONTAG −0.47 1 −0.23 0 −0.53 1 −0.12 0 −0.24 0 −0.12 0 −0.22 2 0.18 1 −0.09 0 −0.31 4

PD 0.53 1 0.33 1 0.33 0 0.16 2 0.37 4 0.20 3 0.27 2 0.30 4 0.19 2 0.35 2

LSI 0.48 1 0.27 0 0.39 0 −0.03 1 0.14 4 0.13 0 0.25 2 −0.13 1 0.10 0 0.29 2

COHESION 0.59 3 −0.16 4 −0.51 0 0.16 2 −0.21 4 −0.08 4 −0.09 4 0.30 2 −0.11 3 −0.33 4

SHDI 0.50 1 0.20 0 0.41 0 0.26 1 0.17 4 −0.16 3 0.18 0 −0.21 1 0.08 0 0.32 4

SHEI 0.46 1 0.20 0 0.54 1 0.26 1 0.27 0 −0.16 3 0.18 0 −0.21 1 0.08 0 0.32 4

MSIEI 0.34 0 0.25 0 0.48 0 0.32 1 0.34 0 −0.13 3 0.21 0 −0.23 1 0.08 1 0.30 2

RC

LPI 0.58 1 −0.44 0 −0.55 0 −0.28 0 −0.52 3 −0.34 1 −0.27 2 0.19 1 −0.18 0 −0.41 1

ED 0.45 1 0.43 0 0.50 0 0.11 3 0.18 4 0.30 0 0.30 2 0.13 4 0.19 0 0.39 2

PAFRAC −0.17 3 0.28 0 0.53 1 −0.12 0 −0.33 0 0.14 2 0.21 2 0.37 4 0.14 2 0.16 2

NP 0.49 1 0.44 1 0.48 2 0.17 2 0.33 4 0.27 3 0.25 2 0.31 4 0.25 2 0.31 2

DIVISION −0.57 1 0.44 0 0.55 0 0.22 0 0.41 3 0.34 1 0.27 2 −0.19 1 0.18 0 0.41 1

AI −0.45 1 −0.43 0 −0.50 0 −0.11 3 −0.18 4 −0.30 0 −0.30 2 −0.13 4 −0.19 0 −0.39 2

IJI 0.48 1 0.18 4 0.63 4 0.13 4 −0.19 3 −0.09 2 −0.28 0 −0.25 3 0.18 4 −0.42 0

CONTAG −0.46 1 −0.40 0 −0.57 1 −0.19 0 −0.22 0 −0.28 0 −0.29 2 0.09 1 −0.18 0 −0.40 3

PD 0.49 1 0.44 1 0.48 2 0.18 2 0.33 4 0.27 3 0.25 2 0.31 4 0.25 2 0.31 2

LSI 0.45 1 0.43 0 0.50 0 0.11 3 0.18 4 0.30 0 0.30 2 0.13 4 0.19 0 0.39 2

COHESION 0.59 3 −0.34 4 −0.54 0 0.12 1 −0.24 4 −0.19 1 −0.17 4 0.222 −0.18 3 −0.37 4

SHDI 0.47 1 0.38 0 0.51 0 0.28 0 0.24 4 0.25 0 0.28 2 −0.11 1 0.18 0 0.40 3

SHEI 0.45 1 0.38 0 0.58 1 0.28 0 0.27 0 0.24 0 0.28 2 −0.11 1 0.18 0 0.40 3

MSIEI 0.33 1 0.42 0 0.56 1 0.28 0 0.35 0 0.18 0 0.27 2 −0.13 1 0.18 1 0.39 2

Note: bold font indicates a correlation was significant at a confidence level of 95%, bold and underlined font
indicates a correlation was significant at a confidence level of 99%, and a superscript number indicates the lag
time of the correlation between the LMs and the WY or RC.
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Table 5. CC values between LMs and the SEM and SSC.

Hydrological
Indices

LMs ZJ DFK HS LJD LX BL CA SJ ZQ WZ

SEM

LPI 0.62 1 −0.30 2 −0.72 0 −0.18 1 −0.63 3 0.16 0 −0.44 3 −0.35 3 0.13 0 −0.21 4

ED 0.24 1 0.27 3 0.69 0 −0.15 0 0.34 4 −0.25 0 0.42 2 −0.17 0 −0.12 0 0.35 4

PAFRAC −0.33 0 −0.10 2 0.76 0 0.29 2 −0.46 0 0.30 2 0.63 0 0.34 3 0.17 2 0.82 2

NP 0.30 1 0.41 3 0.66 0 0.27 2 0.59 4 −0.16 0 0.58 0 0.32 3 0.13 2 0.71 2

DIVISION −0.63 1 0.30 2 0.72 0 −0.13 2 0.59 3 −0.17 0 0.44 3 0.34 3 −0.13 0 0.20 4

AI −0.24 1 −0.27 3 −0.69 0 0.15 0 −0.34 4 0.25 0 −0.42 2 0.17 0 0.12 0 −0.35 4

IJI −0.75 4 −0.16 3 0.76 4 −0.16 2 0.33 0 −0.36 2 −0.45 2 0.12 1 −0.29 2 −0.30 4

CONTAG 0.64 4 −0.23 2 −0.76 0 0.07 2 −0.44 0 0.30 2 −0.38 3 0.18 0 0.14 0 0.21 0

PD 0.30 1 0.41 3 0.66 0 0.27 2 0.59 4 −0.16 0 0.58 0 0.32 3 0.13 2 0.71 2

LSI 0.24 1 0.27 3 0.69 0 −0.15 0 0.34 4 −0.25 0 0.42 2 −0.17 0 −0.12 0 0.35 4

COHESION 0.53 1 −0.09 1 −0.73 0 0.28 2 −0.48 4 0.33 2 0.47 0 0.21 2 0.14 0 0.35 2

SHDI 0.27 1 0.20 2 0.72 0 0.14 1 0.36 0 −0.31 2 0.31 3 −0.18 0 −0.14 0 −0.24 0

SHEI −0.69 4 0.20 2 0.77 0 0.14 1 0.47 0 −0.31 2 0.31 3 −0.18 0 −0.14 0 −0.24 0

MSIEI −0.74 4 0.26 2 0.75 0 0.35 1 0.42 0 0.15 4 0.41 3 0.25 3 −0.25 0 0.25 4

SSC

LPI 0.52 1 −0.34 2 −0.65 0 0.18 2 −0.58 2 0.30 0 −0.50 3 −0.45 3 0.21 0 0.23 0

ED −0.37 4 0.34 3 0.68 0 −0.35 0 0.34 4 −0.44 0 0.48 4 −0.15 0 −0.17 0 0.26 4

PAFRAC −0.49 0 0.16 0 0.78 0 0.54 2 −0.41 0 0.35 2 0.70 0 0.27 3 0.26 0 0.89 2

NP −0.41 4 0.45 3 0.66 0 0.51 4 0.61 3 −0.22 0 0.62 0 0.26 3 0.12 2 0.74 4

DIVISION −0.53 1 0.34 2 0.65 0 −0.34 2 0.55 2 −0.32 0 0.50 3 0.44 3 −0.21 0 −0.23 0

AI 0.37 4 −0.34 3 −0.68 0 0.35 0 −0.34 4 0.44 0 −0.48 4 0.15 0 0.17 0 −0.27 4

IJI −0.71 4 −0.09 3 0.73 4 −0.36 2 0.39 0 −0.49 2 −0.51 2 0.19 1 −0.38 2 −0.36 4

CONTAG 0.73 4 −0.30 3 −0.70 0 0.24 2 −0.46 0 0.46 0 −0.45 4 −0.16 4 0.22 0 0.33 0

PD −0.41 4 0.45 3 0.66 0 0.51 4 0.61 3 −0.22 0 0.62 0 0.26 3 0.12 2 0.74 4

LSI −0.37 4 0.34 3 0.68 0 −0.35 0 0.34 4 −0.44 0 0.48 4 −0.15 0 −0.17 0 0.26 4

COHESION 0.53 0 −0.20 1 −0.66 0 0.46 0 −0.47 4 0.49 0 0.59 0 0.15 0 0.26 0 0.49 2

SHDI −0.36 4 0.28 3 0.72 0 −0.20 4 0.37 0 −0.44 0 0.38 4 0.19 4 −0.23 0 −0.37 0

SHEI −0.75 4 0.28 3 0.70 0 −0.20 4 0.47 0 −0.44 0 0.38 4 0.19 4 −0.23 0 −0.37 0

MSIEI −0.74 4 0.32 3 0.70 0 0.43 0 0.38 0 0.32 4 0.47 3 0.33 3 −0.35 0 −0.15 0

Note: bold font indicates a correlation was significant at a confidence level of 95%, bold and underlined font
indicates a correlation was significant at a confidence level of 99%, and a superscript number indicates the lag
time of the correlation between the LMs and the WY or RC.

In most watersheds, WY and RC were negatively correlated with LPI, AI, and COHE-
SION and positively correlated with ED, PAFRAC, NP, DIVISION, PD, LSI, SHDI, SHEI,
and MSIEI; SEM was negatively correlated with LPI and IJI and positively correlated with
PAFRAC, NP, PD, COHESION, and MSIEI; SSC was negatively correlated with IJI and
positively correlated with PAFRAC, NP, PD, COHESION, and MSIEI. In addition, the
correlation between WY/RC and IJI varied in watersheds with different sizes. In general,
runoff decreases when a landscape becomes more fragmented or its shape gains complex-
ity [51], and sediment transportation is disturbed when a landscape patch becomes larger
or fragmented, further reducing sediment yields [35]. In addition, the results show that
the effect of LPs on SSC and SEM were similar, which indicates that the LPs affect SSC by
affecting SEM. It can be seen in Table 4 that most watersheds with larger areas had negative
correlations between WY/RC and IJI, whereas most watersheds with smaller areas had
positive correlations between WY/RC and IJI. A similar phenomenon was found between
SHDI/SHEI and SEM. Most watersheds with larger areas had negative correlations be-
tween SHDI/SHEI and SEM, whereas most watersheds with smaller areas had positive
correlations between SHDI/SHEI and SEM.

The effects of LMs on different hydrological indices varied, even in the same watersheds.
For instance, for DKF, no significant (p < 0.05) correlations were found between WY and
any LMs, but all LMs except for PAFRAC, IJI, and COHESION were significantly (p < 0.05)
correlated with RC; for WZ, all LMs except for LPI and DIVISION did not show significant (p
< 0.05) correlations with WY, whereas all LMs except for PAFRAC, NP, PD, and COHESION
were significantly (p < 0.05) correlated with RC. In general, the effects of the LMs on SEM and
SSC were more significant than their effects on WY and RC. Among the chosen watersheds,
only four watersheds (LJD, BL, SJ, and ZQ) did not show significant (p < 0.05) correlations
between SEM and the LMs. In particular, all LMs were significantly (p < 0.01) correlated
with the SEM in HS; seven, ten, and eleven LMs were significantly (p < 0.05) correlated
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with the SEMs in ZJ, LX, and CA, respectively. Based on the CC between SSC and all LMs,
it seems that LPs changes could closely affect the relationship between streamflow and
sediment yields. SSC was found to be significantly (p < 0.05) correlated with at least one LM
in all of the chosen watersheds. In particular, all LMs were significantly (p < 0.01) correlated
with the SSC in HS, and eight, eleven, eight, and twelve LMs were significantly (p < 0.05)
correlated with the SSCs in ZJ, LX, BL, and CA, respectively.

5. Discussion

5.1. Correlations between LMs and Watershed Size

Different LMs represent different LPs characteristics, which may be different in differ-
ent regions due to the varied landscape. In our study, the average LMs were correlated with
watershed size (Figure 6). In detail, ED, DIVISION, PD, SHDI, SHEI, and MSIEI had similar
correlations to watershed size. These LMs were negatively correlated with watershed
size when it ranged from 20,000 to 60,000 km2 and positively correlated with watershed
size when it was in other ranges. LPI, AI, and CONTAG had similar correlations with
watershed size. These LMs showed reverse correlations with watershed size compared to
ED, DIVISION, PD, SHDI, SHEI, and MSIEI. Generally, ED, DIVISION, PD, SHDI, SHEI,
and MSIEI represent the fragmentation of the landscape, whereas LPI, AI, and CONTAG
represent the aggregation of the landscape. This result indicates that the LMs that represent
similar landscape characteristics had similar correlations with watershed size, whereas
the LMs with opposite landscape characteristics had reverse correlations with watershed
size. The thresholds of 20,000 and 60,000 km2 may suggest that fragmentation of the
landscape would be decreased in southeastern China where the area ranges from 20,000 to
60,000 km2. PAFRAC and COHESION showed similar correlations with watersheds, with
slow increasing trends where the watershed size ranged from 0 to 30,000 km2. Interestingly,
NP and LSI were significantly (p < 0.01) positively correlated with watershed size. The
increasing trend was smaller where the watershed size ranged from 25,000 to 55,000 km2

compared to other ranges. NP represents the number of patches in the watershed, and LSI
represents the ratio of edge and area of landscape. Generally, NP and LSI would increase
with the increase in watershed size, but the slight increasing trend of NP and LSI where the
watershed size ranges from 25,000 to 55,000 km2 may suggest that the number of patches
and the ratio of the edge to the area of a landscape would not be changed obviously where
the area of watershed ranges from 25,000 to 55,000 km2. When the watershed area fell in
this scope, the increased area mainly had less fragmentation. These correlations between
LMs and watershed size may suggest that the effects of LMs on hydrological processes also
have scale effects, as suggested by Xiao, Cao, Liu, and Lu [34]. More LMs should be taken
into consideration within more watersheds with wider size ranges to further verify this
interesting hypothesis.

5.2. Effects of Various LMs on Hydrological Processes

The relationships between four hydrological indices (WY, RC, SEM, and SSC) and
fourteen LMs (LPI, ED, PAFRAC, NP, DIVISION, AI, IJI, CONTAG, PD, LSI, COHESION,
SHDI, SHEI, and MSIEI) within ten representative watersheds with various area sizes in
the subtropical monsoon climate zone of southeastern China were evaluated using the
slip correlation analysis method. In our study, for most watersheds, the land use maps
and hydrological series for 30 consecutive years were used to investigate the relationships
between landscapes and hydrological processes. Compared to previous studies, the amount
of land use maps was much greater, and the hydrological series were measured rather than
simulated with various models, which could greatly reduce the uncertainty brought by
various models. In addition, the measured hydrological series under different landscapes
could directly reflect the effect of landscape on hydrological processes. Taking the SWAT
model as an example, as mentioned in the Introduction section, it simulates hydrological
processes based on different combinations of land use, soil types, and slope belt. The SWAT
model considers the land use amount but ignores the effects of land use spatial variations
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on hydrological processes. For example, an HRU in a subwatershed would distribute in
several places within the subwatershed, which makes it hard to represent the effect of land
use spatial distributions on hydrological processes. Hence, it is more reliable to investigate
the relationships between landscapes and hydrological processes using measured data
compared to using simulated data from various models.

Figure 6. Statistics of the watershed area and average LMs for the chosen watersheds from 1990 to
2019. (a–n) represent LPI, ED, PAFRAC, NP, DIVISION, AI, IJI, CONTAG, PD, LSI, COHESION,
SHDI, SHEI, and MSIEI, respectively.
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Similar to previous studies, the relationships between the different hydrological indices
and LMs in various watersheds had discrepancies [35]. In our study, some hydrological
indices and LMs had the same correlations in most watersheds, and a few hydrological
indices and some LMs even had the same correlation in all watersheds. For most watersheds
(≥7), WY was negatively correlated with LPI, AI, CONTAG, and COHESION and positively
correlated with ED, PAFRAC, DIVISION, LSI, SHDI, SHEI, and MSIEI; RC was negatively
correlated with LPI, CONTAG, and COHESION and positively correlated with PAFRAC,
DIVISION, SHDI, SHEI, and MSIEI; SEM was negatively correlated with LPI and IJI; and
SEM and SSC were positively correlated with PAFRAC, NP, PD, COHESION, and MSIEI.
Interestingly, several LMs had the same relationships with WY and RC in all watersheds. As
for SEM and SSC, there were no consistent correlations with any LMs for any watersheds.
This discrepancy may have been caused by the soil erosion process being easier to disturb
with human activity than the runoff process [68,69]. Hence, the relationships between LMs
and SEM/SSC have discrepancies in various watersheds with differences in human activity
intensity and mode.

LPI and ED were both related to the edge-area characteristic of LPs, and they had
reverse effects on the runoff process. As mentioned before, LPI was negatively correlated
with WY and RC, whereas ED was reversed. This result suggests that runoff increases in
the subtropical monsoon climate zone when a watershed is dominated by a small patch
of landscape. Similar results have also been reported in other regions [17], and a reverse
result was also obtained [38]. In addition, SEM was negatively correlated with LPI in most
watersheds, whereas it had no consistent correlation with ED. The dominant land use was
forest and agricultural land, which may suggest that the dispersal of forest and agricultural
land would increase soil erosion. The negative correlation between IJI and SEM also proved
this result. A similar result was obtained by Zhang, Fan, Li and Yi [25]. In our study, seven
aggregation LMs were chosen to analyze their correlation with four hydrological indices.
For most watersheds, NP, PD, LSI, and DIVISION were positively correlated with WY and
RC, whereas NP, PD, and COHESION were positively correlated with SEM and SSC. These
results suggest that a proper increase in the fragmentation and physical connectivity of
LPs was beneficial for water and soil conservation. A similar result was reported within
the Upper Du River Basin in the middle of the Yangtze River [51], which is also within
the subtropical monsoon climate zone. In addition, reverse results have been found in
northern China, which belongs to the semi-arid continental monsoon climate zone [36,39]
and may be caused by differences in rainfall patterns in different climate zones. The average
annual precipitation in the study regions ranges from 1686 to 2162 mm (Table 1), whereas
the average annual precipitation within the semi-arid continental monsoon climate zone
ranges from 300 to 500 mm [70]. Furthermore, Ouyang, Skidmore, Hao, and Wang [33]
pointed out that properly improving the fragile landscape status could prevent soil erosion,
which may suggest that there is a threshold for landscape fragility. The changes in the
fragmentation in the upper or lower fragmentation thresholds may be different, which
may be another reason for the different correlations between relevant LMs and soil erosion.
WY and RC were positively correlated with SHDI, SHEI, and MSIEI in most watersheds,
which suggests that an increase in landscape diversity would increase runoff generation
in the subtropical monsoon climate zone. As for SEM and SSC, the effect of landscape
diversity varied in different regions [36,39,71], which may have resulted from discrepancies
in land use type conversions. The main land use conversions from 1990 to 2019 within
these watersheds were forest land–agricultural land, agricultural land–urban land, and
agricultural land–forest land (Figure 4). Generally, small agricultural patches increased in a
large forest patch, small urban patches increased in a large agricultural patch, and small
forest patches increased in a large agricultural patch, which increased landscape diversity
but may have affected soil erosion differently. A further investigation should be conducted
to verify this hypothesis.
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The correlations between LMs and RC were more obvious than those between LMs and
WY (Table 4). There are no glaciers in the subtropical monsoon climate zone, and the main
source of water yields was precipitation recharge [72]. Precipitation variation plays a more
important role in interannual WY changes compared to LPs variations [73]. RC removed
the effect of precipitation variations and watershed size to some extent compared to WY,
and it was mainly affected by LULC, soil property, and slope [74]. These results suggest that
relevant studies should choose RC to represent runoff generation character rather than WY.
In addition, the relationships between LMs and SEM/SSC were not consistent in different
watersheds. This may have been caused by the erosion process, which was also influenced
by precipitation patterns, soil properties, slope, and topography [73,75–77]. WY/RC and
SEM/SSC were both positively correlated with PAFRAC, NP, PD, and MSIEI in most
watersheds. This shows that the soil erosion in these regions is mainly caused by rainfall
erosion and surface runoff transportation [78]. In addition, the extensive construction
projects brought about by rapid urban expansion also could have led to a lot of soil
erosion [79], further influencing these results.

5.3. Recommendations for LM Selection in Future Relevant Studies

Our study selected 10 watersheds located in the subtropical monsoon climate zone
in southeastern China. For the 10 chosen watersheds, the temporal variations and change
trends of the 14 chosen LMs from 1990 to 2019 are shown in Figure A2 and Table 3. The
results showed that the change trends of LPI and ED were opposite in all watersheds
except for ZJ; the change trend of AI was opposite to LSI in all watersheds and similar to
CONTAG and COHESION in all watersheds except for CA; and finally, SHDI and SHEI had
similar change trends in all watersheds. In addition, the temporal variation in CONTAG
was more obvious than those of AI and COHESION, but the change trend of COHESION
was more significant compared to those of AI and CONTAG. SHDI was less disturbed by
landscape changes compared to SHEI, as SHEI changed abruptly in some years, whereas
similar changes did not appear for SHDI (Figure A2). In addition, the correlations with
WY/RC for LPI and ED were opposite; the correlations with WY/RC for AI, CONTAG,
and COHESION were similar, and COHESION had a positive correlation with SEM/SSC
in most watersheds; the correlations with WY/RC for SHDI and SHEI were similar. Similar
results were also reported in previous studies [17,35,37,80]. Hence, when analyzing the
correlations between LPs and hydrological processes, it would be better to choose LPI,
ED, PAFRAC, AI, COHESION, and SHDI as the representative LMs for fundamental LPs
characteristics that include the edge area, shape, aggregation, and diversity aspects.

5.4. Implications, Limitations, and Prospects

Understanding the relationships between LPs and hydrological processes has a benefit
for water and environmental management [27]. The results suggest that a proper decrease
in landscape fragmentation and connectivity in the subtropical monsoon climate zone of
southeastern China would benefit soil erosion prevention. In addition, meaningless land
use conversions (forest land–agricultural land and agricultural land–forest land) should be
decreased during local economic development, which would benefit decreasing landscape
fragmentation and connectivity. In addition, the effects of LPs on SSC were also revealed in
our study. Soil erosion and sediment transportation have a similar response to LPs changes,
which indicates that it is possible to adjust LPs to mitigate river and reservoir siltation in
some special locations. Overall, these results could benefit land use management for better
soil and water conservation under the rapid development of southeastern China.

The effects of human activity on the results were not taken into consideration in
our study. As mentioned before, construction engineering results in serious soil erosion
events [79], and agricultural activity and industrial development consume many water
resources [81,82]. A water use dataset should be collected to be used in relevant investi-
gations in the future to reduce the influence of these human activities. In addition, it has
been reported that the effects of various LPs on hydrological processes may have discrep-
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ancies in different seasons during a year [40,48]. The variations in hydrological processes
characteristic in different seasons were not taken into consideration in our study due to the
limitations of the hydrological data. A further study should be conducted to clarify these
differences. Finally, though the watershed size in our study ranges from 1700 to 80,900 km2,
the number of watersheds used in this study was relatively few. More watersheds with
various size should be taken into consideration to obtain more stable correlations between
various LMs and hydrological processes.

6. Conclusions

In our study, the relationships between 14 LPs and 4 hydrological indices were inves-
tigated for 10 watersheds with various areas in the subtropical monsoon climate zone of
southeastern China. The main conclusions are as follows:

(1) From 1990 to 2019, the change trends of WY and RC were not significant for any
watersheds, and SEM and SSC decreased in all watersheds except for ZJ, HS, and LX.
The main land use conversions were forest land–agricultural land, agricultural land–
urban land, and agricultural land–forest land, and urban land expanded drastically
in all watersheds. In addition, most LMs changed significantly (p < 0.05) for most
watersheds, which demonstrates that LPs characteristics changed significantly.

(2) For most watersheds (≥7), WY was negatively correlated with LPI, AI, CONTAG,
and COHESION and positively correlated with ED, PAFRAC, DIVISION, LSI, SHDI,
SHEI, and MSIEI; RC was negatively correlated with LPI, CONTAG, and COHESION
and positively correlated with PAFRAC, DIVISION, SHDI, SHEI, and MSIEI; SEM
was negatively correlated with LPI and IJI; SEM and SSC were positively correlated
with PAFRAC, NP, PD, COHESION, and MSIEI. In addition, the effects of several
LMs (IJI, SHDI, and SHEI) on WY, RC, and SEM had scale effects.

(3) In the subtropical monsoon climate zone, runoff increases when a watershed is dom-
inated by a small patch of landscape. In addition, landscape fragmentation and
diversity also increase runoff. Proper landscape fragmentation and physical connec-
tivity would benefit soil erosion and river and reservoir siltation prevention.

More studies should be conducted in various climate zones to enhance the under-
standing of the relationships between LPs and various hydrological indices, and human
activity and seasonal discrepancies should be taken into consideration.
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Glossary

Abbreviation Full name Abbreviation Full name
LP(s) Landscape pattern(s) LMs Landscape metrics
WY Water yields RC Runoff coefficient
SEM Soil erosion modulus SSC Suspended sediment concentration
SYL Sediment yields load p Significance level
NDCA Number of disjunct core areas PD Patch density
LSI Landscape shape index SHDI Shannon’s diversity index
DIVISION Landscape division index LPI Largest patch index
COHESION Patch cohesion index MSIEI Modified Simpson’s evenness index
AI Aggregation index ED Edge density
PLAND Percentage of landscape SWAT Soil and Water Assessment Tool

InVEST
Integrated Valuation of Ecosystem Services
and Trade-offs

WaTEM/SEDEM
Water and Tillage Erosion Model and Sediment
Delivery Model

RUSLE Revised Universal Soil Loss Equation IUH Instantaneous Unit Hydrograph
HRUs Hydrological response units ZJ Zhuji
DFK Dufengkeng HS Hushan
LJD Lijiadu LX Lanxi
BL Boluo CA Chaoan
SJ Shijiao ZQ Zhuqi
WZ Waizhou masl Meters above the sea level
DA Drainage area AE Average elevation
PRE Precipitation PAFRAC Perimeter area fractal dimension
NP Number of patches IJI Interspersion and Juxtaposition index
CONTAG Contiguity index SHEI Shannon’s evenness index
R Correlation coefficient

Appendix A

Table A1. The descriptions of the selected landscape metrics and relevant references.

Categories Metrics Definition Relevant Literature

Edge area LPI The ratio of the largest patch to the total landscape area. Unit (%) [25,31,35,38,50,51]
ED The length of the edges per unit area. Unit (Meters/hectare) [25,38,50,51]

Shape PAFRAC An index of patch shape complexity across a wide range of
spatial scales. [25,27,31,35,39,51]

Aggregation

NP Extent of subdivision or fragmentation of the landscape pattern. [31,35,38]

DIVISION Reflects the degree of fragmentation of the landscape.
Unit (Proportion) [17,35,36]

AI Connectivity between patches of landscape types. Unit (%) [25,31,38,50]

IJI The observed interspersion over the maximum possible interspersion
for the given number of patch types. Unit (%) [27,31,39,51]

CONTAG An index measuring the extent to which patch types are aggregated or
clumped. Unit (%) [25,31,33,35,38,50,51]

PD The number of patches within 1 km2. Unit (Number per 100 hectares) [25,31,35,38,50,51]

LSI This index reflects the complexity of the boundaries of all patches
within the region. [31,35,50,51]

COHESION Measures the physical connectedness of the corresponding patch type. [25,27,35,38,39,50,51]

Diversity

SHDI The number of different patch types and the proportional area
distribution among patch types. [25,33,35,38,50,51]

SHEI The proportional abundance of each patch type. [25,27,33,38,39]

MSIEI
MSIEI equals minus the logarithm of the sum, across all patch types, of
the proportional abundance of each patch type squared, which is then

divided by the logarithm of the number of patch types.
[25,33]
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Figure A1. The temporal variations of WY, RC, SYL, SYM, and SSC in the ZJ, DFK, HS, LJD, LX, BL,
CA, SJ, ZQ, and WZ watersheds.
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Figure A2. Cont.
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Figure A2. The temporal variations of LPI, ED, PAFRAC, NP, DIVISION, AI, IJI, CONTAG, PD,
LSI, COHESION, SHDI, SHEI, and MSIEI in the ZJ, DFK, HS, LJD, LX, BL, CA, SJ, ZQ, and WZ
watersheds.
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Abstract: The two westerly branches have a significant impact on the climate of the area on the eastern
side of the Tibetan Plateau when flowing around it. A continuous drought event in Southwest China
from the winter of 2009 to the spring of 2014 caused huge economic losses. This research focuses
on the dynamic field anomalies over the Tibetan Plateau during this event using statistical analysis,
attempts to decipher its mechanism on drought in Southwest China, and provides a regression model.
We established that the anticyclone and downdraft over the Tibetan Plateau were weaker than usual
during the drought, which would reduce the southward cold airflow on the northeast of the Tibetan
Plateau and strengthen the west wind from dry central Asia on the south of the plateau. As a result, a
larger area of the southwest region in China was controlled by the warm and dry air mass, which
was acting against precipitation. The results will be of reference value to the drought forecast for
Southwest China, and also encourage further research about how the Tibetan Plateau influence the
climate on its eastern side.

Keywords: Tibetan Plateau; drought in Southwest China; dynamic effects; anticyclone on Tibetan Plateau

1. Introduction

The Tibetan Plateau, located in the interior of the Asian continent, is the highest
plateau in the world. It has a total area of about 2.5 × 106 km2 and an average elevation
>4000 m (about 600 hPa) with a variety of landforms. The climate of the Tibetan Plateau
is controlled by cold high-pressure systems (anticyclones) in winter, whereas in summer,
the main controls are thermal depressions (cyclones) in the lower atmosphere and the
South Asian high at upper levels [1]. The thermodynamic and dynamic effects of the
atmosphere over and around the Tibetan Plateau affect the local atmospheric circulation
and also propagate outward via Rossby waves [2]. This region, therefore, has a significant
impact on the climate of Asia and the wider world [3,4].

There has been much research over a long period of time on the dynamic fields of the
atmosphere over the Tibetan Plateau. The huge Tibetan Plateau has a significant blocking
effect [5]. Mid-latitude westerly winds encounter the plateau while moving eastward. Part
of the airflow is forced to lift over the plateau, whereas the other part is deflected into two
branches to the north and south, both of which continue to move eastward along the edges
of the plateau. The flows around the plateau have more significant effects and change with
the season [6]. The northern branch is generally stronger than the southern branch [7].

The two airflows pass through different areas and lead to different types of weather.
The northern branch generates an anticyclonic circulation north of the plateau, leading
to cold advection on the northeast side [8]. Variations in the intensity of the flow affect
temperatures in its eastern and southern regions—for example, in Northeast China and
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the Jianghuai region (downstream along the Yangtze River) to the east of the Tibetan
Plateau [9,10]. The northern branch also influences the intensity of precipitation on the
southeastern side of the plateau in South China [11]. By contrast, the southern branch
bends cyclonically on the south side of the plateau, forming a semi-permanent low-pressure
trough (the south trough), which splits the subtropical high in this region [8] and forms
southwesterly warm advection to the southeast of the plateau. This branch affects the
outbreak and persistence of the South Asian summer monsoon, in addition to the spatial
and temporal distribution of precipitation in Eastern China [12–16]. There has not been
enough attention paid to how the dynamic effects of the atmosphere over and around the
Tibetan Plateau influence the strength of advection in the northern and southern branches,
further affecting the climate on the eastern side.

The cold northern branch and the warm southern branch converge on the eastern
side of the plateau, resulting in different climatic phenomena at different times of the
year. In spring and summer, the northern and southern branches flowing around the
plateau converge in the downstream areas of the Yangtze River (in Jianghuai region),
affecting the local distribution of temperature and rainfall [7,17–19]. In winter, guided
by the anticyclone circulation formed by thermal action over the Tibetan Plateau, the
northern airflow merges with cold air from the north and moves southward. Where it is
blocked by the terrain of the Yunnan–Guizhou Plateau, and it meets the southwesterly
warm air brought by the southern branch to form a quasi-stationary front (the Kunming
quasi-stationary front) between Kunming and Guiyang. The weather varies on the two
sides of the front. It is relatively wet with rain or sometimes snow on the cold northern
side (e.g., in Guizhou, Sichuan and Chongqing). The warm southern side in Yunnan and
other regions is controlled by a warm air mass, with sunshine and little rainfall. If the cold
air flow is stronger, then the quasi-stationary front moves southward, leading to more rain
in Yunnan [20,21]. There have been few studies of the mechanisms by which the dynamic
effects of the atmosphere over and around the Tibetan Plateau influence the position of the
intersection between warm and cold advection.

Winter rainfall in Southwest China is primarily generated by the quasi-stationary
front in this region and should therefore be affected by the westerly flow around the
Tibetan Plateau. Southwest China suffered severe droughts in winter and spring for
five consecutive years from 2009 to 2014 (compared to the average of the same seasons
in 1960–2019) (Figure 1). There has been a variety of research about drought using different
metrics or indexes. For example, Aksoy et al. [22] raised a methodology related to the
standardized precipitation index (SPI) to develop critical drought intensity–duration–
frequency (IDF) curves; Huang et al. [23] used SPI and Standardized Runoff Index (SRI), as
well as Copula functions, to study the temporal and spatial evolution of meteorological
drought and hydrological drought in the Jinghe River Basin by driving SWAT model. Here,
we adopted the Percentage of Precipitation Anomaly, complying with the Chinese official
document GBT20481-2017 [24], to characterize this drought event in Southwest China by its
spatial and temporal distributions, as well as its severity. In autumn 2009, precipitation was
more than 50% lower than the average in central and eastern Yunnan, western Guizhou,
northwestern Guangxi and the southern margin of Chongqing. Some areas in central
Yunnan had a >80% reduction in precipitation, reaching the level of extreme drought
(regions in the darkest red). The drought worsened during the winter of 2009. Almost the
whole of Yunnan, southwest Guizhou and a major part of Sichuan experienced moderate-
to-severe drought, and large areas of Yunnan and southwest Sichuan were affected by
severe drought. This drought caused water shortages for 25 million people in the winter of
2009 and the following spring, resulting in 660 × 104 ha of crop failure in Yunnan, Guizhou,
Guangxi and Sichuan provinces and >40 billion yuan of direct economic losses [25–27].
In 2011, a severe drought in this region affected 39.52 million people, with 11.882 million
people suffering shortages of freshwater and total economic losses of 21.8 billion yuan. The
drought in Southwest China in 2013–2014 was rated as one of the top ten weather and
climate events in China [25–27].
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Figure 1. Percentage of Precipitation Anomaly in southwest China during spring, autumn and
winter periods from 2009 to 2014 (comparing to the average of the same seasons in 1960–2019). The
rating in the color bar indicates different drought levels given by the Chinese official document
GBT20481-2017 [24]: mild drought from −50% to −25%, moderate drought from −70% to −50%,
severe drought from −80% to −70% and extreme drought under −80%.
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Anomalous precipitation in Southwest China is closely related to the position of
the confluence between warm and cold advection. However, it is unclear whether the
circulation over the Tibetan Plateau during this period of extreme drought was different
from the average field, so there would be unusual changes in the westerly flow around the
Tibetan Plateau, leading to abnormal rainfall in Southwest China.

The work reported here is based on a statistical analysis of the dynamic fields over
the Tibetan Plateau and precipitation in Southwest China from 1960 to 2019. It focuses
on the continuous drought event in Southwest China from 2009 to 2014 and explores the
mechanisms by which the dynamic fields over the Tibetan Plateau affected the precipitation
anomaly in Southwest China. A regression model is proposed for the dynamic fields over
the plateau and precipitation in Southwest China. The results of this study will contribute
to the prediction of precipitation in Southwest China and encourage further research about
how the flow around the Tibetan Plateau affects the climate on its eastern side.

2. Data and Methods

The data and methods used in the paper and the results are shown in Figure 2. Two
kinds of data were used in the paper. The first was the reanalysis data (including dynamic
elements such as relative divergence, relative vorticity and horizontal and vertical wind
velocity) from the Japanese 55-year Reanalysis (JRA-55), which was used to analyze the
dynamical characteristics of the atmosphere over and around the Tibetan Plateau. The other
was a precipitation observation from meteorological stations in Southwest China, which
was used to introduce the drought event that happened in 2009–2014. In Sections 3 and 4,
to study the relation between the Tibetan Plateau and the severe drought in Southwest
China, these two kinds of data were connected using statistical methods, such as empirical
orthogonal function (EOF) and regression.

 

Figure 2. Flowchart including data, methods and results.
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2.1. Data

It was found that the Japanese Reanalysis and the European Centre for Medium-
Range Weather Forecasts (ECMWF) ReAnalysis (–ERA) datasets can better describe surface
air temperatures and vertical wind velocity in China. In addition, the Japanese 55-year
Reanalysis (JRA-55) is the most stable dataset over China [28,29]. Therefore, the dynamic
field data of the Tibetan Plateau used in this paper was taken from the JRA-55 reanalysis
data set, and the time range was 1960.1–2020.2. The latitude and longitude range of the
Tibetan Plateau is 25◦N–46◦N, 75◦E–105◦E (see Figure 3), the spatial resolution of which
was 1.25◦ × 1.25◦. The meteorological elements we used included relative divergence,
relative vorticity, vertical velocity and wind speed. For the isobaric surface, 600 hPa,
500 hPa, 400 hPa, 300 hPa, 200 hPa and 100 hPa were selected. As the mean altitude of the
Tibetan Plateau is over 3000 m (about 700 hPa), selections begin at 600 hPa to avoid any
effects from the boundary layer.

Figure 3. Terrain of the Tibetan Plateau (the color bar referring to the altitude measured in meters)
and Meteorological National Stations (dots) in Southwest China.

In order to ensure the reliability of the data, the ERA-5 dataset with higher accuracy
0.25◦ × 0.25◦ was also analyzed with the same method and compared with the JRA-55
data, and it was found that the distribution of elements was similar. Therefore, the JRA-55
dataset was considered reliable.

The precipitation data of Southwest China used in this was from ‘Dataset of monthly
climate data from Chinese surface stations’ (http://101.200.76.197:93/data/cdcdetail/
dataCode/SURF_CLI_CHN_MUL_MON.html, accessed on 1 February 2021). The data is
quality controlled as the true rate of each meteorological element item data is generally
more than 99%, and the accuracy rate of data is close to 100%. The observation data
in the files of the monthly surface report from the national station from 1951 till now
were repeatedly tested and controlled for quality, during which the incorrect records were
corrected, and missing data were supplemented, which significantly improved the data
quality. In addition, the quality controls and verifications for meteorological indices from
1951 till now were carried out during the production of the dataset, and the suspicious and
incorrect values were generally checked and corrected manually. Finally, all meteorological
indices were marked with quality control codes.

In this paper, Southwest China refers to Yunnan, Sichuan, Guangxi, Guizhou provinces
and Chongqing Municipality (see Figure 3). Only national stations established before 1960
with data records were counted, which yielded a total of 104 stations.
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2.2. Methods

Empirical Orthogonal Function (EOF) is a method of analyzing the structural features
of matrices and extracting the characteristic quantities of major data. It was first intro-
duced into meteorological and climate research in 1956 by Lorenz [30]. This method has
been widely extended and applied in geosciences, including meteorology, climate and
other subjects.

The basic principle of EOF decomposition is to decompose the meteorological ele-
ment field with m observation space points and n time series points. The anomalous
values xij corresponding to space point i and time point j in the field can be regarded as
a linear combination of m spatial function vik and temporal function yki (k = 1, 2, . . . , p),
expressed as:

xij =
m

∑
k=1

vikykj = vi1y1j + vi2y2j + . . . + vimymj (1)

It can also be written as matrix form: X = VY.
X is m × n spatial–temporal data matrix. The element Xij is the anomaly value. V is

the spatial function matrix. Y is the temporal function matrix. V and Y are orthogonal.
Decomposition method: XXT = VYYTVT = VΛVT. Λ is the diagonal matrix composed

of the eigenvalues of XXT matrix. V is the spatial matrix composed of eigenvectors, where
each column corresponds to an eigenvector of an eigenvalue.

It can be inferred that YYT = Λ.
Therefore, the spatial function matrix V can be obtained by finding the eigenvectors of

XXT matrix, while the temporal function Y can be obtained by Y = VTX.
The spatial functions can generalize the spatial distribution characteristics of variables

to a certain extent, and the time functions consist of linear combinations of variables, which
means rotating the original coordinate system to create a new coordinate system, in order
to make the variance as large as possible. The time coefficient is also called the principal
component. If the variance contribution of several principal components accounts for
the main part of the total variance of all variables in the original field, these principal
components can be used to approximately show the main information of the original
factor field. Therefore, the analysis of the temporal variation of the meteorological element
anomaly field in this paper can be simplified to the analysis of the characteristics of the
principal component of the meteorological element anomaly field changing with time, so
as to analyze and explain the physical characteristics of the element field.

In this work, the eigenvectors show the spatial distribution characteristics of the
elements in the modes, and the time coefficients represent the change in the eigenvectors
with time. To consider this fact, the product of an eigenvector and its corresponding time
coefficient is generally taken [31]. To determine whether the first spatial eigenvector has a
physical meaning, we used the rule suggested by North et al. [32] to test the results.

ej = λj(
2
N
)

1
2

(2)

where ej is the error range of the eigenvalue λj and N = 60 is the sample size. When the
adjacent eigenvalues satisfied λj − λj + 1 ≥ ej, we considered that the EOFs corresponding
to these two eigenvalues were significant.

Regression analysis is a common meteorological statistical analysis method, which
is based on the existing elements of the meteorological data for statistical analysis and
model fitting, aimed at looking for a statistical relationship between variables and the
development of a regression model. By using this model, the future value of the elements
can be evaluated [31]. Only linear regression is considered in this paper.

The unary regression analysis includes a predicting factor and a predictor variable,
and mainly constructs the statistical relationship between them.

The general unary linear regression equation can be written as: ŷi = b0 + bxi, where
ŷi is the estimated value of the predictor variable. It is easy to deduce that, for all xi, if the

116



Remote Sens. 2023, 15, 2198

total deviation between ŷi and yi (the observed values) is the minimum, this equation can
be considered to best represent the dispersion pattern of all measured points. To ensure
that the deviation will not affect the results, the variance is generally taken to represent
the deviation level between the observed value and the forecast value. The sum of the
variances between all observed values yi and the regression forecast value ŷi is denoted as:

Q(b0, b) =
n

∑
i=1

(yi − ŷi)
2 (3)

According to the extremum principle, it is required that:

∂Q
∂b0

= 0
∂Q
∂b

= 0

The regression coefficient can be determined:⎧⎪⎨
⎪⎩

b0 =
−
y − b

−
x

b =
∑n

i=1 xiyi− 1
n (∑n

i=1 xi)(∑n
i=1 yi)

∑n
i=1 xi

2− 1
n (∑n

i=1 xi)
2

Multiple linear regression is similar to the unary.

3. Results

3.1. Dynamic Anomaly on the Tibetan Plateau in 2009–2014

Figure 4 shows the EOFs of the anomaly field and the mean field of the relative
divergence at 500 hPa over the Tibetan Plateau from November to next April 2009–2014.

It can be found that there was little difference in the explained variances of the first
two modes, which can both be regarded as relatively significant modes. Compared with
the mean field (Figure 4e), it can be seen that the divergence anomaly in the first mode
was almost completely opposite to the average divergence, that is, there were negative
anomalies in the Himalayan Mountains (on the south) and the central plateau, and positive
anomalies in the southern Tibetan Valley (on the north of the Himalayan Mountains), the
north and the mid-eastern part of the plateau (Figure 4a). The time coefficients indicated
that this feature was more obvious from the winter of 2009 to the spring of 2010, and the
opposite feature was found for the period of the 2011 winter to 2012 spring (Figure 4b). In
the second mode, there was a positive anomaly in the Himalayan mountains, a negative
anomaly in the main region of the plateau, and a positive anomaly in the northern part
(Figure 4c). With the time coefficients also taken into consideration, this feature was obvious
in the spring and winter of 2010, and in the winter of 2011 to the winter of 2012 (Figure 4d).
In general, in 2009 and 2012, when the drought was severe, divergence anomalies of the
main part of the plateau (including the central plateau and the northern mountains) were
obviously opposite to the mean field (white circles in Figure 4). In other words, in the
period of severe drought in Southwest China, the relative divergence field of 500 hPa over
the Tibetan Plateau tended to weaken, no matter whether it was convergence or divergence.

The EOF of the anomaly field and the mean field of the relative vorticity at 500 hPa
over the Tibetan Plateau from November to next April 2009–2014 were shown in Figure 5.
The first two modes have passed the North Test [32].

It can be seen that the plateau vorticity anomaly at 500 hPa was mainly positive,
with the positive vorticity strengthening and the negative vorticity weakening, which
was contrary to the large-area negative vorticity in the mean field (Figure 5c). In other
words, the relative vorticity field near the plateau surface also tended to weaken in the
winter season.
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Figure 4. EOF of the relative divergence anomaly field and mean field of the relative divergence at
500 hPa over the Tibetan Plateau from November to next April 2009–2014 (10−4 s−1). (a) Eigenvec-
tors of the first mode (with explained variance of 18.06%); (b) Time coefficients of the first mode;
(c) Eigenvectors of the second mode (with explained variance of 12.25%); (d) Time coefficients of the
second mode; (e) Mean field. The first two modes have passed the North Test [32]. The white ovals
highlight the opposite part in the EOF modes and the mean field.
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Figure 5. EOF of the relative vorticity anomaly field and mean field of the relative vorticity at 500 hPa
over the Tibetan Plateau from November to next April 2009–2014 (10−4 s−1). (a) Eigenvectors of the
first mode (with explained variance of 19.68%); (b) Time coefficients of the first mode; (c) Mean field.

Finally, the EOF of the anomaly field and the mean field of the vertical wind component
velocity at 500 hPa over the Tibetan Plateau from November to next April 2009–2014 was
shown in Figure 6.

The main vertical movement over the Tibetan Plateau in winter was the downdraft
caused by both thermal and dynamic action, which can also be reflected in the mean field
(Figure 6e). The first and the second EOF mode, both with significant explained variances
(22.68% and 17.58%, respectively), showed that the main region of the Tibetan Plateau was
negative anomalous with dominant negative time coefficients, that is, during the drought
in Southwest China, the downdraft over the Tibetan Plateau had an abnormal tendency to
be weaker than the average state.
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Figure 6. EOF of the vertical velocity anomaly field and mean field of the vertical velocity at 500 hPa
over the Tibetan Plateau from November to next April 2009–2014 (Pa/s). (a) Eigenvectors of the first
mode (with explained variance of 22.68%); (b) Time coefficients of the first mode; (c) Eigenvectors of
the second mode (with explained variance of 17.58%), (d) Time coefficients of the second mode; (e)
Mean field. The first two modes have passed the North Test [32].

3.2. The Flow of Westerly Wind and the Intersection of Cold and Warm Air

As mentioned above, Southwest China is alternatively controlled by winter and
summer monsoons, and the distribution of precipitation is uneven among the seasons. The
rainy season is formed under the influence of the summer monsoon system, and the dry
season is formed under the influence of the winter monsoon system [33]. Until now, it has
been generally believed that the main precipitation system in winter in Southwest China is
the Kunming quasi-stationary front (in the southwest) and the South China quasi-stationary
front (in the southeast). The South China quasi-stationary front is located in the east of
Southwest China and only affects part of Guangxi. In winter, the westerlies are blocked
by the Tibetan Plateau, which they bypass. The northern branch forms a ridge of high
pressure, which merges with the cold air from the north and moves southward under the
influence of the anticyclone formed by the thermal effect over the Tibetan Plateau. Then,
it is blocked again by the Yunnan–Guizhou Plateau. The southern branch bypasses the
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Tibetan Plateau to form the south trough near the Bay of Bengal, and merges with the warm
current towards the north. The cold and dry continental air flowing along the Northern
Slope of Yunnan–Guizhou Plateau intersects with the warm air between Kunming and
Guiyang, forming the Kunming quasi-stationary front. The weather on two sides of the
front is quite different: on the cold air (northeast) side of the Kunming quasi-stationary
front, Guizhou, Sichuan, Chongqing and other places are wet with rain (or snow) from
time to time, while Yunnan and other areas on the warm (southwest) side are controlled
by the warm air mass, hence are sunny with less rain. Once the cold air is strong and the
quasi-stationary front moves westward and southward crossing over the mountains, there
may be more rainy days in winter in Yunnan [20,21].

During the drought events in Southwest China from 2009 to 2014, the convergence of
the dynamic field in the upper level and the divergence in the lower level of the Tibetan
Plateau both weakened, the absolute value of relative vorticity in the lower level was
smaller, and the downdraft was also weaker. It can be concluded that during the drought
in Southwest China, the high-pressure anticyclone formed by the thermal effect over the
Tibetan Plateau tended to diminish.

When the clockwise circulation of the anticyclone slowed down, the intensity of the
northern and southern air flows formed by the westerlies meeting the plateau terrain would
also change. The flow on the northeast towards the south weakened, while the flow on the
southeast towards the north strengthened. By comparing the mean wind field of the dry
season of 2009–2014 with that of 1960–2019 (Figure 7), it can be found that at about 106◦E at
700 hPa (red dotted lines), at the mean field of 1960–2019 (a) and (c), the latitude where the
northward and southward branch airflow met on the east side of the Tibetan Plateau was
lower than 35◦N. However, under the mean state during the drought event in Southwest
China (b) and (d), the intersection of northward and southward branch airflows exceeded
35◦N, which was about 1◦ north of that in the average state.

At 850 hPa where warm and cold air often intersect (see Figure 8), there were two air
currents controlling the Southwest China climate: one was the southeast air flow coming
from the Pacific Ocean, and the other was the southwest current. Part of the latter was
from the dry continent in central Asia, and the other part was the current turned from
the southeast Pacific trade winds. According to the 1960–2019 average, the east and west
wind converged near 101◦E at around 20◦N, while during the 2009–2014 drought, the
convergence line moved eastward to near 104◦E, with a gap of 2–3◦. As can be seen from
Figure 8e, on the west side of the convergence line, there was a strong positive abnormal
center of southwest wind speed, while on the east side, there was also a southwest wind
anomaly where the easterly (weaker) air wind flow used to be (which means a weaker east
wind flow), indicating that the strong dry west wind pushed the southeast wind from the
Pacific to the east, resulting in the reduction in water vapor content in Southwest China.
This was also confirmed by the abnormal increase in the dew point depression (see Figure 9).
During the drought event, the dew point depression in the region at 700 hPa and 850 hPa
was 0.5–1 ◦C higher than the 1960–2019 dry season average. It could be demonstrated that
the difference between the dew point temperature and the actual temperature during this
period was larger, and the relative humidity was lower.
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Figure 7. Average wind field at 700 hPa over east Asia (m/s). (a) Mean field from November to next
April during 1960–2019; (b) Mean field from November to next April during 2009–2014. (c,d) enlarge
the regions of red rectangles in (a,b). The arrow marks with numbers near (a,b) represent the size of
the vectors in the graphs. The red solid lines in (c,d) refer to the boundaries between south and north
wind. And the red dotted lines are referential lines at 106◦E.

3.3. The Regression Analysis of Dynamic Anomaly of the Tibetan Plateau and Precipitation in
Southwest China

As long as we confirmed that the dynamic field anomalies on the Tibetan Plateau
were inherently related to the precipitation in Southwest China, it was reasonable to try
a quantitative method to measure this relationship. Here, we chose regression. It was
found that each dynamic field element had similar distribution characteristics at 600 hPa to
400 hPa (low level) and 300 hPa to 100 hPa (high level), respectively. Therefore, a total of
six dynamic field elements at 500 hPa and 200 hPa levels were selected in the regression
analysis. They were relative divergence, relative vorticity and vertical velocity at 500 hPa
and 200 hPa, respectively. Each factor was averaged from November to April (the months
affected by winter monsoon), and then EOF analysis with 59 years of time series from 1960
to 2019 was conducted. At last, unary and multiple (up to four variables) linear regression
analyses were conducted between the time coefficients of EOF and the anomaly percentage
of precipitation average of all stations in the same period in Southwest China. All the
below-listed regression equations have passed the F-test.
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Figure 8. Average wind field and wind speed anomaly at 850 hPa over east Asia (m/s). (a) Mean
field from November to next April during 1960–2019, (b) Mean field from November to next April
during 2009–2014, (e) Mean field of wind (vector) and wind speed anomaly (shaded) at 850 hPa over
east Asia from 2009 to 2014. (c,d) enlarge the regions of red rectangles in (a,b). The arrow marks with
numbers near (a,b,e) represent the size of the vectors in the graphs. The red solid lines refer to the
boundaries between west and east wind.
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Figure 9. Dew point depression anomaly over east Asia from 2009 to 2014 (K). (a) 700 hPa, (b) 850 hPa.

Among all the tested linear regression equations, the one that worked best was the
following binary regression equation:

y = 0.063 + 0.138x1 + 0.297x2

In the formula, y denotes the forecast value of precipitation anomaly percentage,
x1 denotes the EOF time coefficient of 500 hPa relative vorticity anomaly in 59 years, and
x2 denotes the EOF time coefficient of 500 hPa relative divergence anomaly in 59 years.

Next, the time coefficients were substituted into the regression equation to obtain
the forecast values; the comparison between the forecast value and the observed value
is described below. The Mean Absolute Error (MAE) of the equation was 0.106, and the
Root Mean Square Error (RMSE) was 0.138, both of which were acceptable (when the
difference between the maximum and the minimum of the observation was about 0.79).
The Pearson correlation coefficient between the forecast value and the observed value
was 0.408, which exceeded the critical value of correlation coefficient 0.336 (degree of free-
dom: N − M − 1 = 56) at the significance level of 0.01, which means passing the reliability
test with 99%.

It can be seen from Figure 10 that the regression equation could predict the overall
trend and most peak and valley situations, while the absolute value prediction of some
peak and valley values was not accurate.

We also made further attempts. In unitary linear regression analysis, the best result
was the equation with relative vorticity at 500 hPa, whose correlation coefficient was 0.368
between the forecast value and the observed value, and it was not as accurate as the binary
equation in the prediction of peak and valley values. For the equation with four unknowns,
when the value was close to 0, the difference of the quaternionic regression equation was
larger than that of the binary equation, and it was more prone to qualitative forecast errors,
which had a great influence on the accuracy of the forecast.
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Figure 10. The forecast results of the regression equations, variables including relative divergence
and relative vorticity at 500 hPa. The blue line represents the observed percentage of precipitation
anomaly, and the yellow line represents the prediction.

4. Discussion

When comparing the surface temperature field (see Figure 11a) with precipitation
anomalies (see Figure 11b) during drought events in Southwest China, it was noticed
that the areas with positive temperature anomalies coincided greatly with the areas with
drought, and the boundary of the drought was close to the boundary of positive and
negative temperature anomalies. In 2009 and 2012, when the winter droughts were quite
severe, almost the entire area of Southwest China experienced warmer temperatures than
usual. There were also quite high Pearson correlation coefficients between two groups
of grid data, such as 0.222 for 2010 and 0.427 for 2013 (with 818 grids) at the significance
level of 0.001. All these observations indicate that the location changes of cold and warm
air masses did have a strong relationship with precipitation in Southwest China, which is
consistent with our results.

To summarize the above-listed results, we raised a conceptual model of the dynamic
effect influencing drought in Southwest China (see Figure 12). It could be inferred that
during the drought events, the momentum of cold air moving southward from the north
weakened, while the westerly wind from the dry region of Central Asia was strong in the
south. The convergence area of cold and warm air was more to the north and east than
usual, and the area controlled by warm air mass in the southwest was larger, which was
not conducive to precipitation.

To some extent, the above result is also in line with some previous research. A few stud-
ies have attributed this drought event to the negative phase of the Arctic Oscillation [34–39],
which caused the cold air in East Asia to move through an eastern route, so that less air
flows southwards along the plateau, consistent with that illustrated in this model.

Through the EOF analysis and regression analysis above, it has been found that during
the same period of drought in Southwest China, the anticyclone was abnormally weak
over the Tibetan Plateau, and its influence mechanism on drought in Southwest China was
discussed. However, there are still other problems worthy of additional research.
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Figure 11. Temperature anomalies and percentage of precipitation anomalies in southwest China in
winter of 2009–2014. (a) Temperature anomalies (◦C), (b) percentage of precipitation anomalies.

Firstly, the reasons for the weakening of the anticyclone over the Tibetan Plateau
in winter deserve further investigation. The reasons may include abnormal circulation
caused by global warming, that is, abnormal weakening of the sinking branch of Hadley
circulation or Ferrer circulation in the subtropical zone [40]; the thermal anomaly of the
Tibetan Plateau itself, that is, the higher temperature at a low level, which may be caused
by global warming and the change of snow-covered area [41].

In addition, it is expected that more ground and upper air observation stations will
be built on the Tibetan Plateau and its adjacent areas along with the regular collection of
more complete data, so that we can obtain a more accurate prediction of drought events in
Southwest China.
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Figure 12. Conceptual Model of dynamic effect influencing drought in southwest China. The blue
arrows represent cold airflows, while the red ones represent warm airflows. Note: The South China
Sea has not been marked due to layout reasons.

5. Conclusions

The westerlies are separated into two branches, i.e., the northern branch and southern
branch, when encountering the Tibetan Plateau. These two branches have great impacts
on the weather and climate of the area where they pass, and then converge on the eastern
side of the plateau, affecting the local distribution of temperature and rainfall. However,
there have been few studies on how the Tibetan Plateau influence these two branches of
the westerlies. It has not been clear whether there was a relationship between the Tibetan
Plateau, the branches of the westerlies and the severe drought event that happened in
Southwest China in 2009–2014. In addition, most previous research did not regard this
continuous drought as a whole, as there was more specific work about the drought in
one single year. This paper tried to deal with the problems above using some statistical
methods such as EOF analysis and regression analysis. The following conclusions have
been drawn:

(1) Most areas in Southwest China experienced different degrees of continuous abnor-
mal drought in spring, autumn, and especially winter, between 2009 and 2014.

(2) The relative divergence, relative vorticity and vertical velocity at a low level over
the Tibetan Plateau all showed the abnormal characteristics of a smaller absolute value
of elements from November to April in the period of 2009–2014. Namely, during the
drought in Southwest China, the downdraft over the Tibetan Plateau and the anticyclone
both weakened.

(3) When the anticyclone weakened over the Tibetan Plateau in the winter season, the
cold air from the northern branch of the westerly weakened, such that the cold air flowing
southward on the northeast of the plateau weakened dwindled. In the south, the westerly
wind from the arid region of Central Asia strengthened, and the intersection of cold and
warm air moved eastward and northward, so that a larger area of Southwest China was
controlled by a dry and warm air mass, which was not conducive to precipitation.

(4) A binary linear regression forecast model for precipitation in Southwest China
was established: y = 0.063 + 0.138x1 + 0.297x2, where y denotes the forecast value of
precipitation anomaly percentage, x1 denotes the EOF time coefficient of 500 hPa relative
vorticity anomaly from 1960 to 2019, and x2 denotes the EOF time coefficient of 500 hPa
relative divergence anomaly from 1960 to 2019. The correlation coefficient between the
forecast value and the observed value was 0.408, passing the reliability test with 99%.
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Abstract: Many extreme meteorological events are closely related to the strength of land–atmosphere
interactions. In this study, the heat exchange regime between the shallow soil layer and the atmo-
sphere over the Qinghai–Tibetan Plateau (QTP) was investigated using a reanalysis dataset. The
analysis was conducted using a simple metric ΔT, defined as the difference between the temperatures
of the shallow soil and the air. First, the performance of 4 widely used reanalysis data products
(GLDAS-Noah, NCEP-R2, ERA5 and ERA5-land) in estimating ΔT on the QTP at soil depths of
0~7 or 0~10 cm was evaluated during the baseline period (1981–2010); the ERA5-land product was
selected for subsequent analysis, because it yielded a better performance in estimating the annual and
seasonal ΔT and finer spatial resolution than the other datasets. Using the soil temperature at depths
of 0~7 cm and the air temperature at 2 m above the ground, as provided by the ERA5-Land reanalysis
dataset, the entire QTP was found to be dominated by a positive ΔT both annually and seasonally
during the baseline period, with large differences in the spatial distribution of the seasonal values
of ΔT. From 1950 to 2021, the QTP experienced a significant decreasing trend in the annual ΔT at a
rate of −0.07 ◦C/decade, and obvious decreases have also been detected at the seasonal level (except
in spring). In the southern and northeastern parts of the QTP, rapid rates of decrease in the annual
ΔT were detected, and the areas with significantly decreasing trends in ΔT were found to increase in
size gradually from summer, through autumn, to winter. This study provides a holistic view of the
spatiotemporal variations in ΔT on the QTP, and the findings can improve our understanding of the
land–atmosphere thermal interactions in this region and provide important information pertaining to
regional ecological diversity, hydrology, agricultural activity and infrastructural stability.

Keywords: land–atmosphere interaction; soil temperature; air temperature; ERA5-land;
Qinghai–Tibetan Plateau

1. Introduction

Land–atmosphere interactions play a major role in shaping and projecting regional
climates [1], and studies have identified a close relationship between the strength of
such interactions and extreme meteorological events such as heat waves, droughts, and
heavy precipitation [2–7]. Variations in atmospheric conditions can directly alter the soil
hydrothermal status by modulating meteorological conditions, such as air temperature and
precipitation, while changes in the soil temperature and moisture level can trigger changes
in the surface energy distribution and water balance and, ultimately, affect atmospheric
processes [8–11]. Climate warming, which is caused primarily by greenhouse gas emissions,
has intensified in high-latitude and mountainous regions [12,13]; inevitably, the land–
atmosphere interactions in these regions can be altered and, subsequently, exert a profound
impact on energy and moisture exchanges, carbon release, agricultural activity, ecosystem
diversity, engineering construction and hydrological processes [14–19].
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Some variables, such as the surface net radiation, sensible heat flux, and latent heat flux
and ground heat flux, can directly reflect the exchange of heat between the land and atmo-
sphere; however, long-term series of measurements of these variables are rare and difficult
to obtain, especially in high-latitude and mountainous regions [20]. In contrast, variations
in air and soil temperatures, which are the result of energy and moisture partitioning at
the surface, have long been observed and recorded, and the difference between these two
temperatures, ΔT, is commonly used to assess land–atmosphere heat exchange regimes
over long periods [10]. ΔT has been identified as having a crucial influence on climates
and environments at the regional and even global level [21]. Over the past few decades,
considerable research has been performed to investigate the spatiotemporal variations in
ΔT, as well as the relationships of this variable with environmental factors on the regional,
national and hemispheric scales, using station observations, reanalysis data or satellite
remote-sensing data [9,10,22–36].

Regarded as the “Third Pole of the World”, the Qinghai–Tibetan Plateau (QTP) has
unique topographic and thermodynamic effects that have exerted an obvious influence on
the weather and climate systems of China and East Asia and have even been shown to have
global effects [20,37–41]. Over the past few decades, the QTP has experienced rapid surface
air warming and humidification, leading to changes in atmospheric and hydrological cycles
and profound effects on regional land–atmosphere heat exchange [42,43]. Under such
circumstances, increased knowledge of the spatiotemporal variations in ΔT on the QTP
can inform analyses of the regional climate, ecology and other parameters. Studies have
used ground observations to investigate the relationship of soil temperature at different
depths with air temperature on the QTP [44–46]. However, the results of such analyses may
have been subject to low-elevation bias, because the study sites were sparsely distributed,
with most being less than 4000 m above sea level due to the harsh natural environment
and high cost of observation. By combining in situ observations with remote sensing data,
the release of reanalysis datasets provide substantial data for large-scale studies of land–
atmosphere interactions with relatively high spatial and temporal resolutions [47–49], and
such datasets have been used in a series of scientific studies on the QTP [11,47–54]. Using
multi-source reanalysis datasets, Wang et al. (2020) investigated spatiotemporal variations
in the difference between skin (0 cm of the land surface) and air temperatures from 1979
to 2018 [11]. As ecological, hydrological and biological activities mainly occur within the
near-surface soil layer, understanding the exchange of heat between the shallow soil layer
and the atmosphere is crucial for understanding temperature-dependent processes in fields
such as regional ecology and agriculture. However, there has been little research on ΔT
between shallow soil and air on the QTP.

Following the identification of a reanalysis data product with a relatively high simula-
tion accuracy of ΔT, this study investigated the spatiotemporal variations in ΔT between
shallow soil and air over the QTP. The dataset used in this study was selected from four
widely used reanalysis data products on the QTP [11,50,54,55]: the Global Land Data
Assimilation System (GLDAS) Version 2.0, National Centers for Environmental Prediction
(NCEP) and the Department of Energy (DOE) Reanalysis 2, the fifth-generation European
Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5)
and an enhanced-resolution version of the ERA5 (ERA5-land).

2. Materials and Methods

2.1. Study Area

The QTP stretches more than 2945 km from east to west and more than 1532 km
from south to north, within the approximate geographic boundaries of 25◦N–40◦N and
73◦E–105◦E (Figure 1). Known as the “Roof of the World,” the QTP has an average elevation
exceeding 4000 m, which has promoted the development of an alpine climate characterized
by strong radiation, low temperatures and a large diurnal temperature range. The QTP has
an annual mean temperature of approximately −2.5 ◦C and annual mean precipitation of
approximately 380 mm.
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Figure 1. Location of the Qinghai–Tibetan Plateau (QTP) and the spatial distribution of 84 mete-
orological stations. The boundary of the QTP is provided by the National Tibetan Plateau Data
Center (https://data.tpdc.ac.cn/zh-hans/data/0231c972-8460-4691-a187-70e4cc356f60 (accessed on
1 October 2022)). The background coloration reflects the altitude. DEM: digital elevation model.

2.2. Data
2.2.1. Reanalysis Data

Four reanalysis data products that contain long-term series data on soil and air tem-
peratures were evaluated in this study (Table 1). GLDAS is a global, high-resolution, offline
terrestrial modeling system that can produce optimal fields of land surface states and fluxes
in near-real time [56]. GLDAS-Noah is the Noah Land Surface Model driven by GLDAS
V2.0; it has a spatial resolution of 0.25◦ × 0.25◦ and provides time series from 1948 to
2015 [56,57]. NCEP-DOE Reanalysis 2 (hereafter, NCEP-R2) is an improved version of the
NCEP Reanalysis 1 model; in NCEP-R2, errors have been corrected, and updated parame-
terizations of physical processes are provided [58] along with data at a spatial resolution of
1.875◦ (longitude) × 1.889◦ (latitude) and a time range from 1979 to the present.

Table 1. Summary of the four reanalysis datasets evaluated in this study.

Dataset Institutes Time Resolution (h) Spatial Resolution Time Period Soil Temperature (cm)

GLDAS-Noah NASA/NCEP 3 h 0.25◦ × 0.25◦ 1948~2015 0~10, 10~40, 40~100, 100~200
NCEP-R2 NCEP 6 h 1.875◦ × 1.889◦ 1979~present 0~10, 10~200

ERA5 ECMWF 1 h 0.25◦ × 0.25◦ 1959~present 0~7, 7~28, 28~100, 100~289
ERA5-Land ECMWF 1 h 0.1◦ × 0.1◦ 1950~present 0~7, 7~28, 28~100, 100~289

NASA: National Aeronautics and Space Administration, USA. NCEP: National Centers for Environmental
Prediction, USA. ECMWF: the European Centre for Medium-range Weather Forecasts, European.
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As the fifth-generation reanalysis data product of the ECMWF, ERA5 uses data as-
similation to combine model data with global observations and provides hourly values
for a large number of atmospheric, ocean–wave and land–surface parameters at a spatial
resolution of 0.25◦ × 0.25◦ and a time range from 1959 to the present [59]. Compared with
ERA5, ERA5-land provides a consistent view of the land variables over several decades at
an enhanced resolution (i.e., 0.1◦ × 0.1◦) from 1950 to the present and is forced by ERA5
atmospheric parameters with lapse rate correction [60–62].

2.2.2. Observational Data

In accordance with the ground meteorological observation standard of the China Me-
teorological Administration (CMA), meteorological stations can provide soil temperatures
at depths of 0, 5, 10, 15, 20, 40, 80, 160 and 320 cm [63]. To better match the soil layer
of the reanalysis products (Table 1) with the observation data, this study focused on the
shallow soil layer corresponding to depths of 0~10 cm for GLDAS-Noah and NCEP-R2
products and 0~7 cm for ERA5-land and ERA5 products. A set of observed soil temperature
(at depths of 0, 5 and 10 cm) collected at 84 meteorological stations within and around
the QTP were used to calculate the mean shallow soil temperature at depths of 0~10 cm
(Figure 1). For all 84 stations, the average elevation was 2866 m, ranging from 1422 m to
4800 m. Time series of daily air and soil temperature observations within and around the
QTP were obtained from the CMA; these were measured at 02:00, 08:00, 14:00 and 20:00
Beijing time (18:00, 00:00, 06:00 and 12:00 UTC) at a height of 1.5 m above the ground
and depths of 0, 5 and 10 cm, respectively. Time series of daily air temperature from the
4 reanalysis datasets corresponded to a height of 2.0 m above the ground.

2.3. Methods

We used ΔT as a metric for evaluating land–atmosphere interactions. To evaluate the
performances of the four reanalysis datasets in estimating ΔT, the annual and seasonal ΔT
values calculated from in situ observations within and around the QTP were compared
with those calculated from the four reanalysis datasets using three evaluation indexes:
the root mean square error (RMSE), mean absolute error (MAE) and mean relative error
(MRE). The soil and air temperature data were extracted from the 4 products using
ArcGIS software for the grid cells, corresponding to the longitude and latitude of each of
the considered 84 stations.

Inevitably, the high altitude and harsh natural environment of the QTP have led to a
lack of soil temperature observation data. In this study, the mean annual and seasonal soil
temperatures at depths of 0, 5 and 10 cm were calculated for each station only when all
monthly values were available in a year, and the values for each month were computed
when daily values were available for more than three quarters of a month. The data were
also divided into four seasons as follows: spring, March to May; summer, June to August;
autumn, September to November; and winter, December to February of the next year. The
mean shallow soil temperature was the arithmetic means of soil temperatures at depths of
0, 5 and 10 cm.

It is noteworthy that the soil temperature data provided by the ERA5-land and ERA5
products were obtained at depths of 0~7 cm, which was used to correspond with ob-
served soil temperatures collected at depths of 0~10 cm [50]. During the baseline period
(i.e., 1981–2010), the comparative analysis on the performance of the four reanalysis datasets
in estimating annual and seasonal ΔT were performed. After comparison, we selected
the reanalysis data product with relatively better performance in estimating ΔT and used
this dataset in further in-depth investigations of the spatiotemporal variations in annual
and seasonal ΔT over the QTP. Long-term trends of the variations in ΔT at the grid lev-
els were assessed using the modified Mann–Kendall test and the Sen’s slope estimator
method [64,65], and the trend of ΔT across the entire QTP was estimated using a time series
of anomalies (with respect to the mean ΔT from 1981 to 2010).
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3. Results

3.1. Performance of the Four Reanalysis Datasets in Estimating ΔT

For the estimation of the annual ΔT, the ERA5-land and ERA5 products yielded the
lowest RMSE value of 1.57 ◦C, followed by the GLDAS-Noah product (3.30 ◦C), while the
NCEP-R2 product yielded the largest RMSE value of 9.62 ◦C. Similarly, the ERA5-land and
ERA5 products yielded the smallest MAE and MRE values, whereas the NCEP-R2 product
yielded the largest MAE and MRE values (Table 2).

Table 2. Error statistics of the ΔT values estimated using the 4 reanalysis data products against those
calculated from the observation data of 84 stations across the QTP from 1981 to 2010.

ERA5 ERA5-Land GLDAS-Noah NCEP-R2

RMSE MAE MRE RMSE MAE MRE RMSE MAE MRE RMSE MAE MRE

Spring 1.85 1.76 0.39 1.94 1.86 0.41 2.29 2.22 0.49 12.31 11.61 3.27
Summer 1.33 1.22 0.25 1.32 1.22 0.24 1.74 1.64 0.30 6.30 6.16 1.51
Autumn 2.30 2.22 0.62 2.15 2.07 0.58 1.70 1.62 0.38 10.56 9.94 3.40
Winter 2.59 2.44 1.87 2.38 2.23 1.66 1.49 1.35 1.52 12.21 11.64 18.53
Annual 1.57 1.47 0.41 1.57 1.47 0.41 3.30 2.85 0.58 9.62 8.94 2.96

The ΔT values estimated using the ERA5-land and ERA5 products represent the difference between the soil
temperature at depths of 0~7 cm and the air temperature at a height of 2 m above the ground. The ΔT values
estimated using the GLDAS-Noah and NCEP-R2 products represent the difference between the soil temperature
at depths of 0~10 cm and the air temperature at a height of 2 m.

For the estimation of the seasonal ΔT, the ERA5-land and ERA5 products performed
best in spring and summer ΔT, with slight differences in the RMSE, MAE and MRE. For
the autumn and winter ΔT, the GLDAS-Noah product yielded the smallest RMSE, MAE
and MRE values, followed by the ERA5-land product, while NCEP-R2 product yielded the
largest RMSE, MAE and MRE.

Overall, the ERA5-land and ERA5 products were superior to the other products
in terms of estimating the annual, spring and summer ΔT. The GLDAS-Noah prod-
uct performed best in terms of estimating the autumn and winter ΔT, followed by the
ERA5-land product. Given the high spatial and time resolution of the ERA5-land product
(Table 1), the ERA5-land reanalysis data product was selected for further investigation of
the detailed spatiotemporal variations in the annual and seasonal ΔT over the QTP.

3.2. Spatial Distribution of ΔT

The annual and seasonal spatial distributions of the mean ΔT varied widely over the
QTP during the 30-year baseline period (1981–2010) (Figure 2). The mean annual ΔT across
the QTP was 4.13 ◦C, with a range from −8.08 ◦C to 11.15 ◦C. Positive values indicated
a relatively high annual shallow soil temperature compared with the corresponding air
temperature. Areas with positive ΔT values accounted for the majority of the QTP, whereas
areas with negative values were found only in the southeastern and southern margins of
the QTP. The areas with a mean annual ΔT exceeding 6 ◦C were mainly concentrated in
the southeastern QTP, whereas the areas with a mean annual ΔT of 0–3 ◦C were mainly
concentrated in the northern edge of the plateau and around the Qaidam Basin, with
sporadic distribution in the western QTP.

The mean ΔT of the entire QTP was largest in winter (5.66 ◦C), followed by autumn
(4.46 ◦C) and spring (3.25 ◦C), and smallest in summer (3.13 ◦C). Compared with the other
three seasons, the total area with a negative value of ΔT was larger in spring and distributed
mainly along the edge of the QTP, especially in the northwestern and southeastern margins.
The eastern part of the plateau had a low mean ΔT in summer, which increased gradually
in autumn and reached a maximum in winter (Figure 2).
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Figure 2. Geographic distribution of the mean ΔT on the QTP during the baseline period
(i.e., 1981–2010); annual (a), spring (b), summer (c), autumn (d) and winter (e).

3.3. Changes in ΔT

Across the QTP, a significant decreasing trend in anomalies of the annual ΔT (p < 0.01)
was observed from 1950 to 2021 at a rate of −0.07 ◦C/decade (Figure 3). Similarly, signifi-
cant decreasing trends in ΔT (p < 0.01) were detected seasonally, with the largest rate of
decrease in winter (−0.14 ◦C/decade), followed by those in autumn (−0.11 ◦C/decade) and
summer (−0.03 ◦C/decade). Notably, the spring ΔT exhibited a nonsignificant increasing
trend (p = 0.43) but no evident decreasing trend.

Figure 3. Changes in the mean ΔT on the QTP based on a time series of anomalies (with respect to
the mean of the 30-year baseline period, i.e., 1981–2010) from 1950 to 2021; annual (a), spring (b),
summer (c), autumn (d) and winter (e).
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Compared with the mean ΔT from 1950 to 1985, the mean annual and autumn ΔT
from 1986 to 2021 has decreased widely across the QTP (Figure 4). The areas with increased
ΔT exceeded 50% of the entire QTP in spring, but less than 30% in summer. In winter, the
magnitude of the decrease in ΔT (<−1 ◦C) was large in the southeastern part of the plateau.
From 1950 to 2021, a large area with decreasing trends in the annual ΔT was detected, with
the largest rates of decrease (e.g., −0.2 to −0.1 ◦C/decade, and −0.3 to −0.2 ◦C/decade)
mainly concentrated in the southern and northeastern parts of the QTP. Spatial trends in ΔT
were observed by season, with most areas showing an increasing trend in spring, especially
in the central and northern parts of the plateau. During summer, autumn and winter, the
proportion of the QTP with a decreasing trend in ΔT was larger than the proportion with
an increasing trend. From summer, through autumn, to winter, the area with a significant
decreasing trend in ΔT gradually increased in size. The largest decrease in ΔT was detected
in winter, when the decreased rate of ΔT was more than 0.3 ◦C/decade in the southeastern
part of the QTP (Figure 5).

Figure 4. Spatial distributions of the difference in mean ΔT between 1986–2021 and 1950–1985 on the
QTP; annual (a), spring (b), summer (c), autumn (d) and winter (e).

Figure 5. Geographic distribution of the rates of change in ΔT annually (a) and in spring (b),
summer (c), autumn (d) and winter (e) on the QTP from 1950 to 2021. The oblique lines indicate
significant changes in the trends at the 95% confidence level.
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4. Discussion

Employing a simple metric, ΔT, this study aimed to assess the land–atmosphere heat
exchange regime over the QTP using reanalysis data products. Similar studies have been
conducted to investigate spatiotemporal variations in ΔT at the regional, national and
hemispheric scales over the past few decades [9,10,22–36]. As ecological, hydrological and
biological activities mainly occur in the near-surface soil layer, this study focused on the
annual and seasonal spatiotemporal variations in ΔT between the shallow soil and air over
the QTP.

From 1950 to 2021, both air and soil temperatures have exhibited warming trends
on the QTP, especially in winter (Table 3). The asynchronism of air temperature and soil
temperature variations could lead to the differences in the changes of the mean ΔT on the
QTP both annually and seasonally (Figure 3). For example, a relatively large difference of
increase in soil temperature and air temperature in winter could result in a relatively large
decrease in winter ΔT during the study period (Table 3). Here, we investigated the possible
influence of snow cover and soil moisture on ΔT during the study period, and precipitation
is not considered, because it mainly affects the soil thermal state via soil moisture feedback
in the warm season [22,28] and in the form of snow cover in the cold season. Results
showed that snow depth was closely associated with the ΔT dynamics during the study
period, except in summer (Table 3). Although snow only covers the ground during cold
seasons, snow cover could modulate the land–atmosphere relationship, owing to its high
albedo, low thermal conductivity and latent heat of phase changes [66]. Wang et al. (2017)
reported a close association of ΔT with winter snow depth across China and also pointed
out that such relationship might be complex and nonlinear [32]. Soil moisture conditions
control the energy–water balance between the land surface and atmosphere, which can
affect the surface albedo and heat capacity and then regulate the local net radiation flux
and heat exchange between the land and atmosphere [3]. In this study, soil moisture was
significantly and negatively correlated with summer ΔT during the study period (Table 3),
which may be due to the soil moisture feedback. Relatively wet soil during summer may
increase the energy consumption for evaporation and eventually cool the soil. During the
soil freeze phase, relatively wet soil will have more liquid water freeze into ice compared
with the soil with relatively low water content. This phase change leads to a greater release
of latent heat and then slows down the cooling of the soil. This can partially explain
why soil moisture was significantly and positively correlated with ΔT during autumn and
winter, especially in winter (Table 3). In reality, snow cover and soil moisture are just two
possible elements that influence the variation of ΔT. Some other regional variables, such
as vegetation, air pollution and land albedo, could also affect the ΔT variation. Future
research should, therefore, pay more attention to the investigations on the links of multiple
environmental variables with ΔT variation.

Table 3. Changes in the mean shallow soil temperature and air temperature and correlation between
the ΔT with snow depth and soil moisture across the QTP from 1950 to 2021.

Change Rate (◦C/Decade) Correlation Coefficient

Soil Temperature Air Temperature Snow Depth Soil Moisture

Spring 0.07 0.05 0.25 0.12
Summer 0.05 0.08 - −0.32
Autumn 0.08 0.18 0.84 0.37
Winter 0.14 0.26 0.86 0.46
Annual 0.09 0.17 0.61 0.25

The soil temperature (0~7 cm), air temperature (2 m above ground), snow depth and soil moisture (0~7 cm) data
were obtained from the ERA5-land products. Bold values indicate statistical significance of p < 0.05.

Great attention had been paid to investigate the potential causes of errors for the
reanalysis products, and soil properties, input parameters, underlying surface (such as
vegetation, snow cover), model structures and geographical conditions (such as altitude,
aspect, slope) were thought to partially affect the simulation accuracy of air and soil
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temperatures [50,53,54,67–72]. In this study, the accuracy of the 4 tested reanalysis data
products was compared with the observation data of 84 meteorological stations in terms
of estimating ΔT and was supported by metrics, namely the MAE, RMSE and MRE.
The distribution of these meteorological stations is very heterogeneous, with almost no
stations in the central and western parts of the QTP (Figure 1), and this undoubtedly
affected the accuracy of the validation of the estimated ΔT values when using the four
reanalysis products. Therefore, more station observations and field survey data should
be included in future studies.

In a previous study, the ERA5 product was found to yield the most accurate simulation
of soil temperature at depths of 0~7 cm over the QTP among four tested reanalysis products
(GLDAS-Noah, ERA5-land, the Climate Forecast System Reanalysis version 2 and the
ECMWF interim reanalysis) [50]. Another study recommended the use of ERA5 and
GLDAS-2.1 to represent air temperatures over the QTP [54]. As the ERA5-land product
yielded better annual and seasonal ΔT values in our study, and its finer spatial resolution
could provide more detailed spatial information about extreme events, we selected the
ERA5-land reanalysis data product for our investigation of spatial and temporal changes in
the annual and seasonal values of ΔT over the QTP. It is important to note, however, that
the ERA5-land product was not superior to the GLDAS-Noah product in estimating the
autumn and winter ΔT (Table 2). To obtain more reasonable estimations of the annual and
seasonal ΔT on the QTP, future studies should consider including multiple, downscaled
and remote sensing datasets with high spatial and temporal resolutions.

5. Conclusions

This study evaluated the performance of four widely used reanalysis data products,
namely GLDAS-Noah, NCEP-R2, ERA5 and ERA5-land, in estimating ΔT over the QTP.
The ERA5-land product provided superior estimations of ΔT both annually and seasonally,
and its fine spatial resolution enabled it to provide more detailed spatial information on
extreme events. Using the soil temperature at depths of 0~7 cm and air temperature at
a height of 2 m above the ground, which were provided by the ERA5-Land reanalysis
data product, the spatiotemporal variations in the annual and seasonal ΔT over the QTP
were assessed in detail. Positive values of ΔT dominated the entire QTP both annually
and seasonally during the baseline period (1981–2010), with negative annual values of
ΔT only in the southeastern and southern margins of the QTP. The spatial distribution of
the seasonal ΔT varied greatly, and a large area of the QTP had a negative value of ΔT in
spring. In the eastern QTP, the mean ΔT was relatively small in summer, increased basically
from spring to autumn and reached a maximum in winter. From 1950 to 2021, the QTP
experienced significant decreasing trends in both annual and seasonal ΔT, except in spring
when a nonsignificant increasing trend was observed. Spatially, the areas with higher rates
of decrease in the annual ΔT were concentrated mainly in the southern and northeastern
parts of the QTP, and the areas with a significant decreasing trend in ΔT gradually increased
in size from summer, through autumn, to winter.

This study has some limitations. The heterogeneous distribution of the observation
network on the QTP, with sparse coverage of some areas, may have reduced the accuracy
of validation of the ΔT values estimated using the four reanalysis data products, and future
studies should include additional station observations and field survey data. To obtain
more accurate estimations of the annual and seasonal ΔT on the QTP, future studies should
include multiple, high-resolution datasets that combine more station observations and field
survey data.
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Abstract: The spatial distribution and temporal variation of land surface sensible heat (SH) flux on
the Tibetan Plateau (TP) for the period of 1981–2018 were studied using the simulation results from
the Noah-MP land surface model. The simulated SH fluxes were also compared with the simulation
results from the SEBS model and the results derived from 80 meteorological stations. It is found
that, much larger annual mean SH fluxes occurred on the western and central TP compared with the
eastern TP. Meanwhile, the inter-annual variations of SH fluxes on the central and western TP were
larger than that on the eastern TP. The SEBS simulation showed much larger inter-annual variations
than did the Noah-MP simulation across most of the TP. There was a trend of decrease in SH flux
from the mid-1980s to the beginning of the 21st century in the Noah-MP simulations. Both Noah-MP
and SEBS showed an increasing SH flux trend after this period of decrease. The increasing trend
appeared on the eastern TP later than on the western and central TP. In the Noah-MP simulation,
the western and central TP showed larger values of temperature difference between the ground
surface and air (Ts–Ta) than did the eastern TP. Both mean Ts–Ta and wind speed decreased from the
mid-1980s to approximately 2000, and then increased slightly. However, the Ts–Ta transition occurred
later than that of wind speed. Changes in mean ground surface temperature (Ts) were the main cause
of the decreasing and increasing trends in SH flux on the TP. Meanwhile, changes in wind speed
contributed substantially to the decreasing trend in SH flux before 1998.

Keywords: Tibetan Plateau; sensible heat flux; Noah-MP; SEBS

1. Introduction

As the Earth’s third pole, the Tibetan Plateau (TP) plays a critical role in influencing
regional and global climate. Over the past few decades, the TP has experienced evi-
dent climate change, which has contributed to amplifying environmental changes on the
global scale. The large heat source in the mid-troposphere provided by the TP is per-
ceived as an important factor contributing to the formation and variation of the Asian
summer monsoon [1–3]. Land surface sensible heat (SH) flux is a major component of this
heat source, and plays a considerable role in modulating large scale atmospheric circu-
lation and the summer monsoon precipitation patterns [4–9]. Hence, many studies have
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attempted to estimate the spatiotemporal changes in SH flux over the TP using meteo-
rological data [10–13], reanalysis data [14–16], remote sensing products [17–19] or model
simulations [20,21].

Duan and Wu [10] calculated the SH flux on the TP for the period 1980–2003 using data
from meteorological stations and satellites. They found that the SH flux on the TP exhibited
a large diurnal range, but much smaller annual range. The SH flux also showed a significant
decreasing trend from the mid-1980s to the beginning of the 21st century, with a subdued
surface wind speed contributing highly to the decreasing trend. Further, Duan et al. [11]
reexamined the SH flux trend during 1980–2008, and confirmed the weakening trend. They
found that the trend was induced mainly by a reduction in surface wind speed, despite a
sharp increase in the ground-air temperature difference in 2004–2008. They also considered
the trend to be a primary response to the spatial nonuniformity of large scale warming over
the East Asian continent. Yang et al. [13] investigated the differences between different
methods in estimating SH flux trends on the TP using meteorological station data for the
period 1984–2006. Their results showed that different schemes produced different trends,
and they claimed that the SH flux on the TP weakened by 2% per decade using their own
newly developed method. They suggested that a decrease in wind speed and increase in
ground–air temperature difference may moderate the trend of the heat transfer coefficient,
which in turn may influence the SH flux trend. Wang and Ma [21] performed several
simulation experiments on the TP using the Noah-MP land surface model. Their results
showed that the SH flux is very sensitive to the thermal roughness length parameterization
scheme, and also supported the SH flux weakening trend from the mid-1980s onwards.

However, the SH flux weakening trend did not continue during the last decade [22–25].
Zhang et al. [23] calculated the SH flux over the TP from 1970 to 2015 using meteorological
station data, and analyzed the temporal characteristics of SH flux. They pointed out that
there was an increasing trend in SH flux during the period 2001–2015. Chen et al. [25]
investigated the spatiotemporal variability in SH over the TP from 1980 to 2015 using
data from meteorological station and reanalysis products. They also confirmed that an
increasing trend followed the earlier decreasing trend, and stated that the declines in SH
prior to 2000 resulted from changes in wind speed, while the subsequent recovery can be
attributed to increases in both wind speed and air–surface temperature gradient.

Most previous studies estimated the SH flux on the TP using reanalysis datasets or
meteorological station data from the China Meteorological Administration (CMA), and
bulk transfer algorithms. There are many uncertainties in estimating the SH flux on the TP
using data from unevenly distributed meteorological stations and/or diverse reanalysis
datasets. Hence, the decadal SH flux trends, especially when and how the trends changed,
remain controversial. This study presents high resolution simulations of SH flux using
the Noah-MP land surface model and SEBS (surface energy balance system) model, and
compares these with the results from CMA meteorological stations. The climatic features of
SH flux on the TP and possible causes of the annual variation trends are then analyzed. In
the next section, observations and the experimental design will be described.

2. Materials and Methods

To evaluate the simulation results from the Noah-MP model, SH flux datasets collected
from the eddy covariance (EC) systems at three observation stations were used. The QOMS
station is situated at the bottom of the lower Rongbuk Valley, to the north of Mt. Everest;
here, the EC system was installed at a height of 3.25 m above ground level. The Nam
Co station is located on the southeast shore of the Nam Co Lake on the central TP; here,
the EC system was installed at a height of 3.06 m above ground level. The Ali station is
located within a flat and open mountain valley on the northwestern TP, where the Indian
monsoon and westerly wind interact intensively; here, the EC system was installed at a
height of 2.75 m above ground level. Figure 1 shows the locations of the stations (yellow
dots), and Table 1 gives the observation periods and EC system information. The details
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of the stations and data have been introduced in previous studies [26,27]. All the datasets
were quality-controlled using the TK3 software [28].

Figure 1. Locations of the three EC stations (yellow dots) and 80 CMA stations (red dots) on the TP.

Table 1. Details of the three EC systems and observation periods.

Station Location Land Use
Sonic

Anemometer
Period (yr)

QOMS 28.21◦N, 86.95◦E Bare soil CSAT3 2011–2015
Nam Co 30.77◦N, 90.98◦E Alpine steppe CSAT3 2011–2015

Ali 33.39◦N, 79.70◦E Desert CSAT3 2011–2015

The Noah-MP land surface model was developed from the Noah land surface model
(version 3.0) with multiple parameterization options [29,30]. This model is suitable for
land surface process simulation over the TP according to previous studies [31,32]. In our
simulation, the SIMGM runoff scheme, Noah β-factor scheme, and BATS snow surface
albedo scheme were selected. Table 2 gives the schemes for the key processes.

Table 2. Parameterization schemes for the key processes in the Noah-MP model.

Process Scheme

Runoff SIMGM
β-factor Noah
Snow surface albedo BATS
Stomatal resistance Ball-Berry
Frozen soil permeability Koren99

The thermal roughness length scheme proposed by Zeng and Dickinson [33] was
selected for our simulation experiment, because this scheme provided the best estimation
of monthly mean SH flux in terms of squared correlation coefficients [21]. The simulation
experiment was conducted at a spatial resolution of 0.1◦ and temporal resolution of 3 h
using the CMFD (China meteorological forcing dataset) data [34] as the atmospheric forcing
dataset for the TP area. The Noah-MP model was run continuously for the period from
1 January 1981 to 31 December 2018. The 38-yr simulation results were calculated and
analyzed in this study.

We also used the 18-yr dataset produced by the SEBS model, which was developed by
Su [35] and updated by Chen et al. [36] and Han et al. [37,38]. In the process of calculating
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the turbulent flux, the sub-grid scale topography drag parameterization scheme was
introduced to improve the simulation of SH flux [39]. The simulation was conducted for the
period 2001–2018 based on satellite remote sensing data (MODIS) and meteorological data
(CMFD). The MODIS monthly land surface products, including land surface temperature
and emissivity, land surface albedo, and vegetation index, provides the land surface
conditions for the SEBS model. The SH flux was computed using the Monin-Obukhov
similarity theory. The values of land surface variables in the MODIS monthly products
were derived by compositing and averaging the values from the corresponding month of
MODIS daily files. Detailed information on the MODIS land surface variables is listed in
Table 3.

Table 3. Input datasets for the SEBS model. MOD11C3 is the short name of the MODIS/Terra land
surface temperature and emissivity monthly L3 global products, MOD09CMG is the short name of
the MODIS/Terra surface reflectance daily L3 global products, MOD13C2 is the short name of the
MODIS/Terra vegetation indices’ monthly L3 global products, GLAS stands for the Geoscience Laser
Altimeter System, and SPOT stands for the Systeme pour l’Observation de la Terre sensor.

Variables Data Source Data Period
Temporal
Resolution

Spatial
Resolution

Downward shortwave CMFD 2001–2018 3 h 0.1◦
Downward longwave CMFD 2001–2018 3 h 0.1◦
Air temperature CMFD 2001–2018 3 h 0.1◦
Specific humidity CMFD 2001–2018 3 h 0.1◦
Wind speed CMFD 2001–2018 3 h 0.1◦
Land surface temperature MOD11C3 2001–2018 Monthly 0.05◦
Land surface emissivity MOD11C3 2001–2018 Monthly 0.05◦
Height of canopy GLAS and SPOT 2001–2018 Monthly 0.01◦
Albedo MOD09CMG 2001–2018 Daily 0.05◦
NDVI MOD13C2 2001–2018 Monthly 0.05◦

The simulated SH fluxes from the two models were also compared with the SH flux
dataset estimated using routine meteorological data from CMA stations. This CMA station-
based dataset was provided by Duan et al. [40], and was derived from 80 CMA stations
(Figure 1) using a physical method developed by Yang et al. [41]. The daily mean heat flux
is calculated by

SH = ρcpCHu(Ts − Ta) (1)

where ρ is air density, cp is the specific heat at a constant pressure, u is the wind speed at a
reference level, Ts is the ground surface temperature, Ta is the air temperature at a reference
level, and CH is the heat transfer coefficient. CH is not a given constant value, and its value
can be obtained by different parameterization schemes [42].

In this method, CH is determined from micro-meteorological theory and experimental
analysis. It exhibits clear diurnal variations, which significantly affect the estimation of
SH flux [41]. This method (hereafter, the Yang method) produces higher SH fluxes than
conventional empirical methods that are widely used in climatological studies [25,43,44].

To assess the simulations, we used statistical methods including the correlation co-
efficient, squared correlation coefficient (R2), linear least-squares regression, and Mann–
Kendall trend test.

3. Results

3.1. Assessment of the Simulation

Before analyzing the trends in simulated SH flux, a validation was performed using
the in-situ observation data at the 3 stations. The linear regression method was applied
here. Figure 2a shows the comparison between simulated and observed monthly mean
SH fluxes at the QOMS station for 5 yrs (2011–2015). The blue dots represent the monthly
mean values, and the blue line is the best-fit line. The squared correlation coefficient (R2)

148



Remote Sens. 2023, 15, 714

was 0.81, with a root-mean-square error (RMSE) of 8.27 Wm−2. Overall, the simulated
SH fluxes were higher than the corresponding observations. At the Nam Co station, there
were many missing observations in the dataset during the observation period (2011–2015).
Hence, the mean values of SH flux in 5 months were not obtained. The R2 was 0.68, with
a RMSE of 9.65 Wm−2. The simulated mean SH fluxes fit well with observations during
the equivalent period (Figure 2b). Figure 2c show the comparison between simulated and
observed monthly mean SH fluxes at the Ali station for 5 yrs (2011–2015). As there were
many missing values in the dataset, only 36 monthly mean values were obtained here. The
R2 was 0.72, and the RMSE was larger those at the other two stations.

 

 

 

Figure 2. Comparison of simulated and observed monthly mean SH fluxes (Wm−2) at the QOMS
station (a), Nam CO station (b), and Ali station (c). The green line is the best-fit line.

Han et al. [38,39] previously evaluated the dataset produced by SEBS during the
period 2007–2012. The SH flux was underestimated, with a mean bias of 4.7 Wm−2 at the
QOMS station, and 7.8 Wm−2 at the Nam Co station. The correlation coefficients between
the SEBS simulation and EC observations were 0.41 at the QOMS station, and 0.63 at the
Nam Co station, respectively.

3.2. Simulated SH Flux and Its Trends

From the analysis performed in the section above, the simulations of SH flux were
deemed to be suitable overall. The spatial distribution of annual mean SH flux (2001–2018)
based on Noah-MP is shown in Figure 3a, and the corresponding SEBS-based annual mean
SH flux is shown in Figure 3b. In Figure 3a, it can be seen that the eastern TP received
much weaker mean SH fluxes than the central and western TP during the period 2001–2018.
The areas with mean SH fluxes greater than 50 Wm−2 were mainly in the southwestern
TP region. In the SEBS simulation (Figure 3b), most areas of the western TP received more
than 60 Wm−2 SH fluxes. Overall, SEBS gave larger SH flux values in the northwestern TP
region, but smaller SH flux values in the southeastern TP region than did Noah-MP.
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Figure 3. Annual mean SH fluxes (Wm−2) simulated by (a) Noah-MP and (b) SEBS on the TP during
the period 2001–2018.

Figure 4 shows the variations in the annual mean SH flux during the period 2001–2018.
A large standard deviation (STD) value indicates large inter-annual variation in the SH
flux, and vice versa. In the Noah-MP simulation (Figure 4a), large STD values were mainly
observed over the central and western TP, while small STD values were mainly observed
over areas to the east of 92◦E. This means that the central and western TP recorded larger
inter-annual variations in SH flux than did the eastern TP. The SEBS simulation (Figure 4b)
showed much larger inter-annual variation in SH flux than did the Noah-MP simulation
(Figure 4a) in most areas of the TP.

Figure 4. Standard deviation (STD) of annual mean SH fluxes (Wm−2) simulated by (a) Noah-MP
and (b) SEBS on the TP during the period 2001–2018.

We also analyzed the annual variation trends in the SH flux over the whole TP. We
divided the TP into 3 climate zones: dry western TP (west of 85◦E), transitional central
TP (85◦E–95◦E), and wet eastern TP (east of 95◦E). The weather stations established by
the CMA are unevenly distributed on the TP, with most located in the eastern and central
regions of the TP. Figure 5 shows the annual variations in SH flux from Noah-MP, SEBS,
and CMA station data for the western, central, eastern and entire TP. In the Noah-MP
simulation, the SH fluxes among the 3 sub-regions and over the entire TP all exhibited
significant decreasing trends beginning in the mid-1980s, as was also reported in previous
studies [11,13]. These decreasing trends were more obvious on the western and central TP
than on the eastern TP. However, all regions showed an increasing trend from the beginning
of the 21st century, with the eastern TP experiencing the increasing trend later than the
western and central TP. Overall, the decreasing trend was approximately 0.31 W m−2 per yr,
while the increasing trend was 0.64 W m−2 per yr. Both the decreasing and increasing
trends were more significant than those obtained from CAM station-based results. In the
SEBS simulation on the western TP (Figure 5a), the annual mean SH fluxes were much
stronger than those in the Noah-MP simulation, and the trend was not significant during
the period 2001–2018. There was a big difference between the two simulation results during
the period 2001–2004. The SH flux from SEBS showed an upward trend beginning in 2001,
while Noah-MP gave an increasing trend only after a decrease in 2002. On the central TP
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(Figure 5b), both Noah-MP and SEBS gave an increasing trend in the annual mean SH flux.
The CAM station-based SH fluxes were larger than those from the Noah-MP and SEBS
simulations. On the eastern TP (Figure 5c), trends obtained from the two models were
relatively consistent. Meanwhile, the annual mean SH fluxes from SEBS became weaker
than those from Noah-MP from 2008 onwards. However, both Noah-MP and SEBS gave
smaller values of SH flux compared with the CAM station-based results. Moreover, the
CAM station-based SH fluxes began to increase earlier than those of Noah-MP and SEBS.
Figure 5d shows the variations in annual mean TP-averaged SH fluxes from Noah-MP,
SEBS, and CMA station data. The changes in CAM station-based SH flux were similar to the
simulated results on the eastern TP (Figure 5c), because 54 of the 80 stations were installed
on the eastern TP. Overall, simulated TP-averaged SH fluxes began to increase later than
the CAM station-based results. Chen et al. [25] also reported similar results, showing that
the reversal of trends derived from reanalysis products (ER-Interim and NCEP) happened
later than for those derived from CAM station data.

Figure 5. Variations in annual mean SH flux (Wm−2) from Noah-MP, SEBS, and CMA data for the
western (a), central (b), eastern (c), and entire TP (d) during the period 1981–2018.

3.3. Causes of the Trends

The bulk transfer coefficient method is typically used to calculate the surface SH flux.
The surface wind speed, temperature difference between the ground surface and air (Ts–Ta),
and heat transfer coefficient (CH) are key determinants of SH flux. Hence, Ts–Ta, wind
speed, and CH were analyzed to determine the main causes of the increasing and decreasing
trends in the Noah-MP simulations.

Figure 6 shows the variations in annual mean Ts–Ta in the Noah-MP simulations
on the TP during the period 1981–2018. There was an obvious decreasing trend from
the mid-1980s to the beginning of the 21st century on the western TP (Figure 6a). Then,
the trendline turned sharply upwards. This phenomenon also existed on the central TP
(Figure 6b). Figure 6c shows the annual mean values of Ts–Ta and the corresponding trends
on the eastern TP. The values of Ts–Ta were smaller than those of the western and central TP.
Meanwhile, both the decreasing and increasing trends were not as significant as those of the
western and central TP. The TP-average trends are shown in Figure 6d. Both the decreasing
trend and increasing trend were significant, similar to the trends based on Noah-MP shown
in Figure 5d. The correlation coefficient between annual mean SH flux and Ts–Ta was 0.74.
This conflicts with the results of Yang et al. [9], who reported an increase in Ts–Ta from
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approximately 1970 to 2006. However, the Ts–Ta trends reported herein agree with the
results based on reanalysis products (ERA-Interim and NCEP) reported by Chen et al. [25].

Figure 6. Variations in annual Ts–Ta (◦C) in the Noah-MP simulation for the western (a), central (b),
eastern (c), and entire TP (d) during the period 1981–2018. All of the trends are derived from linear
least–squares regressions and are significant at the 95% confidence level using the Mann–Kendall
trend test.

For the whole TP, the variations in Ts and Ta in the Noah-MP simulation were also
calculated, and are shown in Figure 7. We found that, Ta showed an increase during
the period 1981–2018. This increasing trend was also reported in previous studies [9,11].
However, Ts experienced a period of decrease before 2002; from then on, Ts also showed an
increase. This shift resulted in the transition of Ts–Ta in approximately 2002. In the Noah-
MP and SEBS simulations, SH fluxes began to increase later than in the CAM station-based
results. The annual Ts variation trends of correlate well with those of Ts–Ta and SH flux on
the TP.

Figure 8 shows the annual variation in wind speed (10 m above the ground), which
was derived from the atmospheric forcing data (CMFD). The central and western TP
experienced greater wind speeds than did the eastern TP during the 38-yr study period.
The values of annual mean wind speed in all the 3 sub-regions declined from the mid-1980s,
and then increased from approximately 1998. However, these changes were not very clear,
especially on the eastern TP. Overall, the wind speed over the TP decreased from 1981 to
1998, and then increased after 1998 (Figure 8d). The changes in wind speed contributed
substantially to the SH flux before 1998. Duan et al. [11] also considered this reduction
in surface wind speed was also considered to be the cause of the decrease in SH flux.
Yang et al. [9] attributed the changes in surface wind speed to the downward momentum
transport of upper-air wind modulated by the upper-air pressure gradient.

Nevertheless, the heat transfer coefficient CH in the Noah-MP simulations was also
analyzed to determine its annual variations. However, this showed were no clear trends
across the whole TP. The changes in surface wind speed and ground-air temperature
gradient were the two major factors that contributed to the changes in the SH flux, as
reported in previous studies [9,11]. From the analysis above, we found that surface wind
speed began to increase from approximately 1998, while Ts–Ta increased sharply after 2002.
During the period 1998–2002, Ts–Ta retained a decreasing trend, and this contributed to the
decreasing trend in SH flux during this period. This was caused by Ts retaining a decreasing
trend during this period. Overall, Ts–Ta trends were similar to those of annual mean SH flux
in both Noah-MP and SEBS. Both Ts–Ta and SH flux showed a transition at the beginning
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of the 21st century in the Noah-MP and SEBS simulations and in the reanalysis products
(ERA-Interim and NCEP) reported by Chen et al. [25].

Figure 7. Variations in annual Ts (◦C) and Ta (◦C) in the Noah-MP simulation for the entire TP during
the period 1981–2018. All of the trends are derived from linear least–squares regressions and are
significant at the 95% confidence level using the Mann–Kendall trend test.

Figure 8. Variations in annual mean wind speed (m/s) derived from CMFD reanalysis data for the
western (a), central (b), eastern (c), and entire TP (d) during the period 1981–2018. All of the trends
are derived from linear least−squares regressions and are significant at the 95% confidence level
using the Mann–Kendall trend test.
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4. Conclusions and Discussion

Decadal trends in SH flux on the TP, especially when and how the trends changed,
remain controversial. Here, we analyzed the climatic features of the SH flux on the TP
using the high-resolution Noah-MP and SEBS simulations, and compared these results
with the CMA station-based results.

The western and central TP witnessed much larger mean SH fluxes than did the
eastern TP in both the Noah-MP and SEBS simulations. Meanwhile, the inter-annual
variations in SH fluxes on the central and western TP were larger than that on the eastern
TP. The SEBS simulation showed much larger inter-annual variations than did the Noah-MP
simulation in most areas of the TP. The Yang method [41] applied to CMA station data
here produced higher SH fluxes compared with the Noah-MP and SEBS simulations. We
confirmed the decreasing trend in SH flux on the TP from the mid-1980s to the beginning
of the 21st century, as also reported in previous studies [11,13]. Overall, the subsequent
increasing trend in SH flux began in approximately 2002. The SEBS simulation showed
much stronger SH fluxes on the western TP, but weaker SH fluxes on the eastern TP
during 2001–2018 compared with the Noah-MP simulation. Both the Noah-MP and SEBS
simulations showed an increasing trend in the TP-averaged SH flux from the beginning of
the 21st century. The CAM station-based results showed an increasing trend before 2000,
earlier than that recorded by both Noah-MP and SEBS. The model-based results showed
consistent trends with those obtained from reanalysis products (ERA-Interim and NCEP)
reported by Chen et al. [25].

Overall, there was a close relationship between changes in mean Ts–Ta and trends in
the SH flux. Annual mean Ts experienced a period of decrease period before 2002, and then
increased significantly. This shift in Ts resulted in the Ts–Ta transition in approximately
2002. Hence, the changes in Ts were the main cause of the changing trends in SH flux on
the TP. The central and western TP experienced greater wind speeds than did the eastern
TP during the 38-yr study period. Overall, the wind speed over the TP decreased from 1981
to 1998, and then increased after 1998. This explains why SH fluxes derived from CMA
station data using conventional methods showed an early transition before 2000 in previous
studies [13,25,43]. The changes in wind speed after 1998 were not as important as Ts–Ta in
terms of modulating the SH flux trends. During the period 1998–2002, Ts–Ta continued to
decrease, and this contributed to the decreasing trend in SH flux during this period.

It should be pointed out that the wind speed derived from reanalysis products was
recorded at a height of 10 m above the ground. Wind speed at 10 m has been widely used
to calculate CH and SH flux based on the bulk transfer coefficient method. This may result
in larger SH fluxes than compared with using the EC system. From the analysis of the
Noah-MP simulation, the SH flux on the TP showed a decreasing trend from the mid-1980s,
but an increasing trend since approximately 2002. The changes in mean Ts–Ta are here
credited as the main cause of the decreasing and increasing trends in SH flux on the TP.
The nonconformity of changes in surface wind speed and ground-air temperature gradient
may result in disagreements as to the cause of SH flux trends on the TP, as highlighted by
some previous studies. Additional in situ and remote sensing-based datasets are needed to
clarify this issue.
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Abstract: Drought is a major disaster over the Tibetan Plateau (TP) that exerts great impacts on
natural ecosystems and agricultural production. Furthermore, most drought indices are only useful
for assessing drought conditions on a coarse temporal scale. Drought indices that describe drought
evolution at a fine temporal scale are still scarce. In this study, four machine learning methods,
including random forest regression (RFR), k-nearest neighbor regression (KNNR), support vector
regression (SVR), and extreme gradient boosting regression (XGBR), were used to construct daily
drought indices based on multisource remote sensing and reanalysis data. Through comparison
with in situ soil moisture (SM) over the TP, our results indicate that the drought index based on
the XGBR model outperforms other models (R2 = 0.76, RMSE = 0.11, MAE = 0.08), followed by
RFR (R2 = 0.74, RMSE = 0.11, MAE = 0.08), KNNR (R2 = 0.73, RMSE = 0.11, MAE = 0.08) and
SVR (R2 = 0.66, RMSE = 0.12, MAE = 0.1). A new daily drought index, the standardized integrated
drought index (SIDI), was developed by the XGBR model for monitoring agricultural drought. A
comparison with ERA5-Land SM and widely used indices such as SPI-6 and SPEI-6 indicated that the
SIDI depicted the dry and wet change characteristics of the plateau well. Furthermore, the SIDI was
applied to analyze a typical drought event and reasonably characterize the spatiotemporal patterns
of drought evolution, demonstrating its capability and superiority for drought monitoring over the
TP. In addition, soil properties accounted for 59.5% of the model output, followed by meteorological
conditions (35.8%) and topographic environment (4.7%).

Keywords: drought monitoring; machine learning method; Tibetan Plateau

1. Introduction

Drought is one of the most widespread and costly natural disasters that not only
affects agricultural and livestock production but also leads to a series of ecological and
socioeconomic problems [1,2]. Globally, dry areas are increasing at a rate of approximately
1.74% per decade from 1950 to 2008 [3]. The Tibetan Plateau (TP) is known as the “Asian
Water Tower”. Nevertheless, the areas of the arid and semiarid regions of the TP account
for 23% and 44%, respectively [4], and approximately 62% of the plateau area is covered by
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alpine meadows and grasslands [5]. The ecosystems over the TP are fragile due to their
high elevation and unique geographical location. Meanwhile, the TP is highly susceptible
to global climate change. Zhong et al. [6] noted that the air temperature over the TP has
been 1.27 ◦C higher than normal since 2014. The average increase was 2.2 times the global
average (0.57 ◦C). Overall, it easily suffers from drought under the combined effects of
climate change and fragile ecosystems. Gao et al. [7] calculated the ratio of precipitation
to potential evapotranspiration (P/PET) at 83 stations in the TP between 1979 and 2011
and found that the eastern TP was becoming drier. Wang et al. [8] investigated the plateau
drought variation based on the self-calibrating Palmer drought severity index (scPDSI)
from 1961 to 2009 and revealed that the southern TP experienced a wetting trend even
though the northern TP became significantly drier, particularly in spring and autumn.
Feng et al. [9] calculated the standardized precipitation evapotranspiration index (SPEI)
using data from 274 meteorological stations over the TP during 1970–2017, indicating that
severe drought frequency in winter and drought risk in summer showed an increasing
trend. According to the statistics of the China Meteorological Administration, drought is
the most dominant meteorological disaster among all meteorological disasters over the
TP [10]. Therefore, a comprehensive understanding of drought characteristics on the TP is
of great importance for drought early warning, prevention, and mitigation.

In general, a universal objective definition of drought is impractical and does not exist
without knowledge of the climatologically expected values for the availability of stored
water for a given need [11]. Wilhite and Glantz in 1985 [12] classified droughts into four
categories: meteorological droughts, agricultural droughts, hydrological droughts, and so-
cioeconomic droughts, which have been widely recognized by the scientific community [13].
Recently, some new drought types were proposed, such as ground water droughts [14],
ecological droughts [15], agroecological droughts [16], and environmental droughts [17].
The aridity index, defined as the ratio between precipitation and evapotranspiration, is
usually used to classify climatic zones and monitor drought [18]. The aim of this study is to
develop a comprehensive index characterizing the complex drought conditions affected by
climatic, hydrometeorological, and environmental factors. Accordingly, the drought index
was adopted instead of the aridity index. To objectively quantify the onset, intensity, and
spatial extent of drought, more than one hundred drought indices have been developed
thus far. Among these indices, the Palmer drought severity index (PDSI) [19], the standard-
ized precipitation index (SPI) [20], and the standardized precipitation evapotranspiration
index (SPEI) [21] are the most popular and widely used drought indices. However, most of
these indices are developed and evaluated on a monthly time scale. Although some daily
drought indices, such as the standardized drought and flood potential index (SDFPI) [22]
and drought potential index (DPI) [23], have been developed recently, drought indices
with high resolution are generally scarce and need to be further investigated. With an
average elevation of approximately 4000 m, the TP has the largest frozen soil zone in the
mid-latitudes. In the freeze-thaw process, especially for the seasonal transitional period,
the soil water phase and energy budget have dramatic changes at the daily temporal scale,
which can affect the soil-vegetation-atmosphere interaction. Drought indices with high
resolution have been expected to reflect this variation [24]. On the other hand, drought
indices with high resolution can provide valuable drought information, such as the onset,
end, and duration of drought, which are capable of guiding vulnerable agricultural and
livestock production over the TP. In addition, some of these indices are based on a single
variable, such as the vegetation condition index (VCI) [25] and temperature condition
index (TCI) [26], which mainly reflect one specific aspect of drought. In terms of agricul-
tural drought related to meteorology, soil, and vegetation systems, they cannot adequately
capture the complex features of drought evolution. Integrating multiple drought-related
variables and indices is an effective method for addressing this issue [27]. For example,
Huang et al. [28] constructed an integrated drought index (IDI) based on precipitation,
runoff, and soil moisture using the entropy weight method. It is an objective method for
weight determination and gives soil moisture a low weight, causing the insensitivity of IDI
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to agricultural drought. Lu et al. [29] developed the integrated scaled drought index (ISDI)
based on precipitation, the normalized difference vegetation index (NDVI), soil moisture,
and land surface temperature. ISDI is a linear combination of four drought factors. It can-
not reflect the nonlinear relationships between hydrometeorological factors and drought.
Previous studies have demonstrated that these integrated drought indices improved the
capacity of drought monitoring. To date, there are three types of fusion methods: linear
combination [30], copula-based methods [31,32], and machine learning (ML). Hao and
Singh [33] noted that the former two approaches may suffer from the linearity assumption.
In comparison, the ML approach has a strong capability of extracting target information
from a large amount of random, noisy data and capturing the nonlinear characteristics of
physical processes. It has therefore recently been favored by many scholars for the construc-
tion of drought indices. For example, Liu et al. [34] proposed an integrated agricultural
drought index (IDI) based on remote sensing data and the backpropagation (BP) neural
network, and it can effectively monitor drought events on the North China Plain.

Therefore, the objectives of this study are to (1) compare daily integrated drought
indices developed by the four ML methods, namely, random forest regression (RFR),
k-nearest neighbor regression (KNNR), support vector regression (SVR), and extreme
gradient boosting regression (XGBR), based on multisource remote sensing and reanalysis
data with the in situ soil moisture and obtain the optimal drought index as the new
standardized integrated drought index (SIDI); (2) evaluate the SIDI performance in dry
and wet changes against SPI-6, SPEI-6, and European Centre for Medium-Range Weather
Forecasts Reanalysis 5 Land (ERA5-Land) soil moisture; and (3) assess the spatiotemporal
applicability of SIDI for a typical drought event. The SIDI is expected to monitor plateau
droughts with more detail and accuracy for agricultural water resource management.

2. Materials and Methods

2.1. Materials

In situ soil moisture data are obtained from the time-lapse observation dataset of soil
temperature and humidity on the Tibetan Plateau from 2015 to 2020 [35–38] and a long-term
dataset of integrated land–atmosphere interaction observations on the Tibetan Plateau from
2008 to 2016 [39]. The data were downloaded through the National Tibetan Plateau Data
Center (https://data.tpdc.ac.cn/ (accessed on 20 April 2021)). The locations of the field
observation stations can be found in Figure 1. These stations over different climates and
underlying surface conditions are representative. Soil moisture data in units of percent
with an hourly temporal resolution were converted to m3/m3 and further averaged to daily
means. Soil moisture has been one of the most direct indicators of agricultural drought.
Approximately 62% of the plateau area is covered by alpine meadows and grasslands with
shallow root systems [5]. Therefore, the depth of soil moisture data used in this study was
10 cm. Moreover, drought during the critical stage of vegetation growth is more destructive
to agricultural production. Hence, the soil moisture data collected at a 10 cm depth during
the growing season (from May to October) were selected as the “ground truth” for assessing
the performance of drought indices [34,40].

To develop the integrated drought index, we comprehensively consider the overall
effects of the meteorological conditions, vegetation information, soil properties, and to-
pographic environment. Thirteen variables in total were selected as predictor variables
and summarized as follows [34,41]: four near-surface meteorological elements, includ-
ing 2 m air temperature (TEMP), specific humidity (SHUM), 10 m wind speed (WIND),
and precipitation rate (PREC), are provided by the China meteorological forcing dataset
(CMFD) with a temporal resolution of three hours and a spatial resolution of 10 km
(http://poles.tpdc.ac.cn (accessed on 20 April 2021)). Land surface temperature (LST)
was acquired by a daily 1 km all-weather land surface temperature dataset for western
China from 2000 to 2021 (http://data.tpdc.ac.cn (accessed on 15 July 2022)). Evaporation
(EVAP) is provided by the ERA5-Land hourly reanalysis dataset at a spatial resolution
of 10 km from 1950 to the present (https://cds.climate.copernicus.eu (accessed on 12
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July 2019)). The fraction of absorbed photosynthetically active radiation (FAPAR) was
obtained from the daily global QA4ECV FAPAR product at 5 km × 5 km during 1982–2016
(http://www.qa4ecv-land.eu (accessed on 16 February 2018)). Five soil characteristic data
are provided by the SoilGrids 250 m 2.0 product, which includes bulk density (BDOD), clay,
silt, sand, and soil organic carbon (SOC) at six depths: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm,
60–100 cm, and 100–200 cm (https://soilgrids.org (accessed on 4 May 2020)). The 5–15 cm
soil depth characteristic data were chosen as the input variables. Digital elevation model
(DEM) data at 1 km are derived from the Resource and Environment Science and Data
Center (https://www.resdc.cn (accessed on 1 September 2008)). The final resolution of all
input data is 10 km × 10 km by using bilinear interpolation.

Figure 1. Distribution of field observation stations: (a) TP, (b) Pali, and (c) Naqu. The contour color
represents different elevations. Pentagrams represent the station locations.

SPI-6 and SPEI-6 represent six months of rainfall and evaporation anomalies. Zhao et al.
investigated the correlations of SPI and SPEI at different timescales (1, 3, 6, and 9 months)
with NDVI at 33 stations around the Gannan region in the eastern TP and found that SPI-6
and SPEI-6 have good correlations with NDVI. SPI-6 and SPEI-6 are suitable for monitoring
the drought conditions of alpine meadows [42]. Therefore, referring to McKee et al. [20]
and Vicente-Serrano et al. [21], the SPI-6 and SPEI-6 were calculated. SPI-6, SPEI-6, and the
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ERA5-Land hourly volume of water (m3/m3) at the 7–28 cm soil layer (ERA5-Land SM)
(https://cds.climate.copernicus.eu/ (accessed on 12 July 2019)) were chosen as contrasts to
evaluate the performance of the SIDI over the entire TP. The datasets used in this study are
shown in Table 1.

Table 1. Datasets used in this study.

Variables Temporal Interval Spatial Resolution Data Source

In situ soil moisture (SM) Hour - https://data.tpdc.ac.cn (accessed
on 20 April 2021)

2 m air temperature (TEMP),
Specific humidity (SHUM),

10 m wind speed (WIND), and
Precipitation rate (PREC)

3 h 10 km http://poles.tpdc.ac.cn (accessed
on 20 April 2021)

Land surface temperature (LST) Day 1 km http://data.tpdc.ac.cn (accessed
on 15 July 2022)

Evaporation (EVAP),
ERA5-Land SM Hour 10 km

https:
//cds.climate.copernicus.eu

(accessed on 12 July 2019)

Fraction of absorbed
photosynthetically

active radiation (FAPAR)
Day 5 km http://www.qa4ecv-land.eu

(accessed on 16 February 2018)

Bulk density (BDOD),
Clay, Silt, Sand, and

Soil organic carbon (SOC)
- 250 m https://soilgrids.org (accessed on

4 May 2020)

Digital elevation model (DEM) - 1 km https://www.resdc.cn (accessed
on 1 September 2008)

2.2. Methods
2.2.1. Machine Learning Models

RFR is an ensemble model that consists of multiple decision trees [43]. “Random”
means that the input of each tree is randomly extracted from the training dataset, and
a subset of features at each tree node is randomly selected from the available features
to expand the tree. The model’s final output is calculated as the average of predictions
created by all individual trees. Consequently, RFR decreases the overall variance and
avoids overfitting. For both small sample sizes and high-dimensional data, RFR captures
nonlinear relationships between features and target variables and hence provides reliable
results [34,44].

SVR is a supervised machine learning algorithm. SVR employs the kernel function
where the input feature is projected into a high-dimensional feature space for building
the optimal hyperplane to regress the training dataset with the minimum loss [45]. The
performance of SVR depends on the proper selection of the kernel function. Many applica-
tions have demonstrated that the Gaussian radial basis function (RBF) is an excellent kernel
function in SVR. In this study, we used SVR with the RBF kernel function.

KNNR is a nonparametric model. Its major advantage is its simplicity and efficiency.
Given a data point, KNNR searches for the closest K data points based on the distance
between that point and the remaining points in the training dataset. The model finally out-
puts the average of the target predictions for these K neighbors [46]. The target predictions
of K neighbors are equally weighted in the KNNR we used.

XGBR is an advanced ensemble model designed by Chen et al. [47] on the basis of
a gradient boosting machine (GBM). Compared with the traditional GBM, XGBR imple-
mentation adopts a regularized boosting technique and parallel processing, which help to
reduce overfitting and speed up. Therefore, XGBR is a powerful machine learning model,
especially when speed and accuracy are taken into consideration.
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The detailed technical framework for the development of SIDI can be found in Figure 2.

Figure 2. The technical framework for the development of SIDI. Green boxes represent the input
data; yellow boxes represent the machine learning models; red boxes represent the model output;
blue boxes represent the validation processes.

2.2.2. Statistical Indicators

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2) were calculated to evaluate the performance of the ML models, as
defined below [48,49].

RMSE =

√
∑N

i=1(Pi − Oi)
2

N
(1)

MAE =
∑N

i=1(|Pi − Oi|)
N

(2)

R2 = 1 − ∑N
i=1(Pi − Oi)

2

∑N
i=1

(
Pi − P

)2 (3)

where N is the number of observations. Pi and Oi are the predictions and observations,
respectively. P represents the average of the predictions.
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2.2.3. Shapley Additive Explanation

SHAP was first proposed by Shapley in 1953 to calculate the contribution of each
player and allocate the value created by them in a collaborative game [50]. Lundberg
and Lee in 2017 first introduced the SHAP to explain the output of machine learning
models regarded as black boxes [51]. The SHAP value can be used to interpret individual
machine learning predictions. The main idea of the SHAP value is to obtain the marginal
contribution across all the possible permutations of the features and then take the average.
The expression of the SHAP value is as follows [52]:

Øi = ∑s∈N{i}
|S|!(N − |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (4)

where, ∅i is the contribution of feature i, N is the set of features, n is the number of features
in N, S is the subset of N that contains feature i, and v(N) is the base value meaning the
predicted outcome for each feature in N without knowing the feature values.

The sum of the SHAP value of each feature for each observation is considered the
model outcome for each observation. Therefore, the explanation model g is formulated as
follows:

g(z′) = Ø0 +
M

∑
i=1

Øiz′i (5)

where, z ε {0, 1}M and M is the number of features.

3. Results

3.1. Construction and Comparison of Drought Monitoring Index with In Situ Soil Moisture
Measurements, SPI-6 and SPEI-6
3.1.1. Construction of Drought Monitoring Index

To achieve an independent assessment of the performance of ML models, we used
70% of the input data (thirteen predictor variables and in situ SM) as the training dataset to
construct the drought index, and the remaining 30% was employed as the validation dataset
to assess the performance of the drought index. Moreover, min-max standardization was
performed on the input data to eliminate the effects of dimensionality and accelerate the
convergence speed. Regarding the in situ SM during the growing season as the ground
truth, the drought indices were outputted by four ML regression models at the station scale.
Figure 3 shows the comparisons of drought indices using four machine learning models
with the in situ soil moisture in the training process. All 32,509 samples in the training
dataset were used. The drought index based on the SVR model had a poor performance
with a low R2 of 0.66 and a high RMSE of 0.12. This may be because the RBF kernel
function is not suitable for these complicated data sets. Another reason may be that SVR
hyperparameters such as C and gamma are not good, although they have been optimized
by the grid search. In contrast, the drought indices based on the RFR, XGBR, and KNNR
models performed well, with R2 values of 0.86, 0.82, and 0.78; RMSE values of 0.08, 0.09,
and 0.1; and MAE values of 0.06, 0.07, and 0.08, respectively. The results indicate that the
three ML models have good application potential in the construction of the drought index
in our study.
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Figure 3. Comparisons of drought indices using four machine learning models with the in situ soil
moisture in the training process: (a) RFR, (b) KNNR, (c) SVR, and (d) XGBR. Colors represent data
density: the redder the color, the larger the data density is.

3.1.2. Comparison of Drought Monitoring Index with In Situ Soil Moisture Measurements,
SPI-6 and SPEI-6

The prediction ability of the model is determined by the validation dataset because
it was not involved in its construction. Hence, comparisons of drought indices using
four machine learning models with in situ soil moisture were performed in the validation
dataset (Figure 4). There are a total of 13,933 data points in the validation dataset. The
result in the validation dataset for each model was slightly worse than that of the training
dataset, indicating a high generalization level for each model due to the independence
between the training and validation datasets [53]. In the validation process, the drought
index based on the XGBR model outperformed that based on other models (R2 = 0.76,
RMSE = 0.11, MAE = 0.08), followed by RFR (R2 = 0.74, RMSE = 0.11, MAE = 0.08), KNNR
(R2 = 0.73, RMSE = 0.11, MAE = 0.08), and SVR (R2 = 0.66, RMSE = 0.12, MAE = 0.1) [54,55].
The two ensemble models of XGBR and RFR achieve better accuracy and higher correlation
compared with other models, suggesting the superiority of ensemble learning. The primary
advantage of XGBR lies in the fact that a regularization term is added to the cost function
to control the complexity of the model (regularization boosting technique). This technique
reduces the variance and overfitting and makes the model simpler and faster [56]. The
result confirms that the optimal drought index is the XGBR-based drought index, and thus,
the XGBR model is used to construct the SIDI.
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Figure 4. Comparisons of drought indices using four machine learning models with the in situ soil
moisture in the validation process: (a) RFR, (b) KNNR, (c) SVR, and (d) XGBR. Colors represent data
density: the redder the color, the larger the data density is.

Furthermore, the SIDI from 2000 to 2016 was obtained by inputting the spatial maps
of thirteen predictor variables into the XGBR model. SIDI was switched to the monthly
average, and then the spatial and temporal distributions of the monthly averaged SIDI were
compared against ERA5-Land SM, SPI-6, and SPEI-6 in 2012, as shown in Figure 5. In terms
of four variables, a smaller value corresponds to a drier area, and vice versa. In Figure 5a–d,
the SM decreases gradually from the southeast to the northwest and exhibits obvious
seasonal variability with a small (large) value in winter (summer). The SIDI has a similar
spatial pattern and seasonal variability to the SM (Figure 5e–h). The spatial distributions
of the SPI-6 and SPEI-6 are generally consistent, and there are some differences compared
with the SM. For example, the SPI-6 and SPEI-6 display arid characteristics in the relatively
humid southeastern region. This result suggests that they are not able to capture the dry
and wet characteristics of the plateau well (Figure 5i–p). SPI-6 is formulated based on
precipitation, ignoring the impact of temperature on drought. Considering this, the SPEI-6
is calculated based on precipitation and potential evaporation. However, previous studies
found that the Thornth-waite algorithm failed to calculate the potential evapotranspiration
when the average monthly temperature was below 0 ◦C, resulting in the poor applicability
of SPEI-6 in arid and alpine regions such as the TP [57].
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Figure 5. Comparisons of spatial and seasonal distributions of SIDI (e–h) against ERA5-Land SM
at 7–28 cm ((a–d), units: m3/m3), SPI-6 (i–l), and SPEI-6 (m–p) in 2012. Colors represent drought
degree: the redder the color, the stronger the drought degree is.

3.2. Drought Monitoring Performance for Typical Drought Events

The drought monitoring ability of the SIDI was evaluated for a typical drought event.
This event occurred in the Xizang Autonomous Region in May and June of 2009 [58,59]. SIDI
classifications are divided into 9 levels using the percentile threshold method (Table 2) [57].
Figure 6 illustrates the spatial evolution characteristics of the drought process captured by
the SIDI at an interval of nine days from 22 April to 1 July 2009. As shown in Figure 6a,b, an
abnormal drought occurred over most regions of Xizang on 22 April, and then the drought
intensity rapidly increased. In particular, the central part of Xizang exhibited extreme
drought. Subsequently, the drought eased, whether in drought range or intensity, to a large
extent on 10 May (Figure 6c). The drought area constantly expanded from the northwestern
to southeastern regions of Xizang, with a higher drought magnitude on 19 May (Figure 6d).
Thereafter, the drought continued to weaken (Figure 6e–h).

Table 2. Dry and wet classifications for the SIDI.

Classification Percentile Chance k (%) SIDI

Extreme drought (Edry) k ≤ 2 0.04~0.14
Severe drought (Sdry) 2 < k ≤ 10 0.14~0.18

Moderate drought (Mdry) 10 < k ≤ 20 0.18~0.20
Abnormal drought (Adry) 20 < k ≤ 30 0.20~0.22

Normal 30 < k ≤ 70 0.22~0.33
Abnormal wet (Awet) 70 < k ≤ 80 0.33~0.38
Moderate wet (Mwet) 80 < k ≤ 90 0.38~0.48

Severe wet (Swet) 90 < k < 98 0.48~0.62
Extreme wet (Ewet) ≥98 0.62~0.84

In addition, the temporal evolution characteristics of this drought event are depicted
in Figure 7. There are two valleys (1 May and 18 May) in the SIDI. A valley indicates
drought aggravation. Compared with the SM variation, the SIDI is more sensitive and
detailed in capturing the key points of the drought process. In addition, with the increase
in precipitation, the SIDI increased gradually, revealing that the drought had been relieved.
Overall, the SIDI is capable of accurately describing the evolution process of drought events
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in space and on a daily temporal scale, owing to its combination with the meteorological,
vegetation, soil, and topographic environmental factors. Therefore, the SIDI is a reliable
and comprehensive indicator for drought assessment.

 

Figure 6. Spatial evolution characteristics of the drought process captured by the SIDI in the Xizang
Autonomous Region from 22 April to 1 July 2009 at an interval of nine days: (a) 22 April 2009, (b) 1
May 2009, (c) 10 May 2009, (d) 19 May 2009, (e) 28 May 2009, (f) 06 June 2009, (g) 15 June 2009, and
(h) 24 June 2009. Colors represent drought degree: the redder the color, the stronger the drought
degree is.

Figure 7. Temporal evolution characteristics of drought processes captured by SIDI in the Xizang
Autonomous Region from 22 April to 01 July 2009, against ERA5-Land SM and CMFD PREC.

Furthermore, the SIDI and daily SPEI were adopted to identify drought characteristics
at the BJ station, a representative station covering the alpine meadow on the central TP
based on run theory [60] (Figure 8). A short-term drought event lasting 19 days was
identified by the SIDI. However, the SPEI cannot identify it. It began on 26 March 2001, and
lasted until 13 April 2001 (Figure 8a). The SIDI detected that the drought developed quickly
and reached the intensity of extreme drought in several days. Thereafter, the drought
eased slowly. Referring to the dry and wet classifications in Table 2, this drought event
belonged to a moderate drought (I = 0.19). However, the SPEI shows wet conditions during
this period (Figure 8b). The SIDI has a superior ability to identify drought information
compared with other traditional indices, such as the SPEI.
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Figure 8. Daily drought evolution of a drought event identified by the SIDI (a) and SPEI (b) at the BJ
station based on run theory. D: drought duration; S: drought severity, which is the cumulative sum of
drought conditions on D days; I: drought intensity, which can be calculated by dividing S by D. Red
patterns represent dry conditions, and blue patterns represent wet conditions.

3.3. Importance of the Predictor Variables

The performance of ML models has significant advantages for large data volumes
with multiple predictor variables. Relationships between these predictor variables and
model output are complicated and poorly identified due to the multiple predictor variables
involved in the models and the black-box nature of ML models. How much did each
predictor variable (feature value) contribute to the model output? To explain this, the SHAP
was introduced into the XGBR model [61]. The average SHAP value of every feature and
the SHAP value of every feature for every sample in the training dataset are presented in
Figure 9. The color bar represents the feature value (red high, blue low). According to the
averaged SHAP value, soil properties contributed 59.5% to the model output, followed
by the meteorological (35.8%) and topographic environmental conditions (4.7%). The top
three features that influence the model output are bulk density (BDOD), soil organic carbon
(SOC), and silt, which are soil properties (Figure 9a). Moreover, the other two features, in
addition to bulk density, have positive impacts on the model output (Figure 9b).

To interpret the interactions among predictor variables toward the model output, the BJ
station covered by the representative alpine meadow on the central TP was chosen to apply
the SHAP for different drought conditions (Figure 10). Figure 10 is the individual SHAP force
plot, which includes three important characteristics: model output f(x), base value (the average
of model outputs), and colors. The red color pushes the model output higher, whereas the
blue color pushes the model output lower. For extreme and severe drought conditions, bulk
density, land surface temperature, and soil organic carbon were the three major contributors to
decreasing the model output (Figure 10a,b). In the case of moderate drought, abnormal drought,
and nondrought conditions (Figure 10c–e), bulk density and soil organic carbon decreased
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the model output, while specific humidity slightly increased it. Overall, bulk density (bdod)
and soil organic carbon (soc) were two major contributors influencing the model output for all
drought conditions, which is consistent with the result in Figure 9b.

Figure 9. Average SHAP value of every feature (a) and SHAP value of every feature for every sample
(b) in the XGBR model. Soil properties include BDOD, SOC, SLIT, SAND and CLAY; meteorological
conditions include LST, FAPAR, SHUM, EVAP, TEMP, WIND and PREC; and topographic environment
includes DEM.

Figure 10. The individual force plots at the BJ station for different drought conditions: (a) extreme
drought on 6 August 2006, (b) severe drought on 28 May 2013, (c) moderate drought on 11 June 2015,
(d) abnormal drought on 27 June 2012 and (e) nondrought on 19 September 2012.
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4. Discussion

The aforementioned results showed that the XGBR-based SIDI can serve as an efficient
drought index for TP drought monitoring. Traditional vegetation-based remote sensing
indices at 8 days or 16 days are capable of monitoring agricultural drought. However,
these vegetation-based indices usually identify drought characteristics through vegetation
conditions, which reflect one specific aspect of drought. In fact, agricultural drought is
related to meteorology, soil, and vegetation systems. In comparison, the new drought
index, SIDI, comprehensively considered multiple factors. Nevertheless, detailed drought
information, such as the onset, end, and intensity of drought, can be identified by the SIDI,
which is capable of guiding vulnerable agricultural and livestock production, particularly
for the growing season over the TP. The time span of the SIDI is from 2000 to 2016 and, thus,
can be used to analyze drought change characteristics over a long time scale. However,
there remain some issues with the construction of the SIDI. First, in the process of building
the ML model, the model input is only from several stations in the central and western
parts of the plateau. Moreover, some special underlying surfaces, such as deserts and
glaciers, were not included in the model input. In the future, it is expected that more
newly collected in situ data will be added to optimize the model, especially data at new
stations where no data have been collected before. On the other hand, this new data can
be used for model precision evaluation. Second, despite the development of SIDI, which
considers multivariate factors, the mutual response relationship between factors is ignored.
For example, the memory of soil moisture leads to a time lag effect between soil moisture
and meteorological factors. Liu et al. [34] considered the lagging effect of NDVI on LST
and precipitation changes in the newly developed integrated agricultural drought index
(IDI). Qing et al. [62] constructed a comprehensive agricultural drought index (CADI)
that comprehensively integrated the lagging times of soil moisture with precipitation
and evapotranspiration. It is also worthwhile to further investigate whether the time
lag effect will improve the prediction accuracy. In addition, many drought indices were
developed under the assumption of a statistically stationary distribution of meteorological
variables. In fact, the meteorological variables are not stationary due to the influences
of climate change and human activities. Considering this, some nonstationary drought
indices, such as the standardized nonstationary precipitation index (SnsPI) [63] and the
nonstationary standardized runoff index (SRINS) [64] have been developed. Therefore, the
nonstationarity of meteorological variables should be taken into account when optimizing
the drought index. Third, the definition of the drought threshold level is a crucial step for
drought severity categorization. However, drought studies currently focus on drought
identification rather than categorization, resulting in various drought categorizations [65].
Fixed threshold levels and the percentile method are the two commonly used drought
categorizations, which are not applicable to every region. Standardization of drought
categorization is still an issue.

It is worth discussing the interesting finding revealed by the SHAP results: soil
characteristics are more important than some meteorological variables in modeling drought.
The climatological point is striking due to the negligence of soil in previous studies and
deserves more attention. In addition, it remains unclear whether the inclusion of soil bulk
density and soil organic content is what makes this model an improvement over others,
which needs to be validated in future work.

5. Conclusions

In this study, based on multisource remote sensing and reanalysis data, daily drought
indices developed by four machine learning methods, including RFR, KNNR, SVR, and
XGBR, were compared. The optimal drought index was selected as the SIDI. Furthermore,
the drought monitoring ability of the SIDI was investigated based on the SPI-6, SPEI-6,
ERA5-Land SM, and a typical drought event. In addition, the impact of predictor variables
on the model output was also explored. The main conclusions are as follows.
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(1) By comparing drought indices from four ML models with in situ SM data during
the growing season, the drought index based on the XGBR model outperformed that
based on other models (R2 = 0.76, RMSE = 0.11, MAE = 0.08), followed by RFR (R2 = 0.74,
RMSE = 0.11, MAE = 0.08), KNNR (R2 = 0.73, RMSE = 0.11, MAE = 0.08), and SVR (R2 = 0.66,
RMSE = 0.12, MAE = 0.1). The result proves the superiority of the XGBR model, and this
model is used to develop the SIDI.

(2) Compared with the spatial and seasonal distributions of SPI-6, SPEI-6, and ERA5-
Land SM, the SIDI reflects the spatial characteristics of the plateau, which is dry in the
northwest and humid in the southeast. It also depicts obvious seasonal variability, with
large values in winter and small values in summer. For a typical drought event that occurred
in the Xizang Autonomous Region in May and June of 2009, the SIDI accurately describes
the evolution process of drought spatial evolution on a daily timescale, demonstrating its
application potential in drought detection.

(3) Of the thirteen prediction variables, the contribution of 59.5% to model output
was from soil properties, 35.8% was from meteorological conditions, and 4.7% was from
the topographic environment. The top three variables that influence the model output are
bulk density, soil organic carbon, and silt. Moreover, except for bulk density, the other two
features have positive impacts on the model output. This suggests that soil information is
an important factor affecting drought evolution, which should be taken into account in the
construction of the drought index in the future.
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Abstract: Soil freeze–thaw processes are remarkable features of the land surface across the Tibetan
Plateau (TP). Soil moisture and temperature fluctuate during the freeze–thaw cycle, affecting the soil
water and energy exchange between the land and atmosphere. This study investigates variations
in the soil temperature, humidity, and freeze–thaw state and their responses to air temperature and
precipitation on the TP from 1981 to 2016. Regional simulations of the TP using Community Land
Model version 4.5 demonstrate that the climate of the TP has become warmer and wetter over the
past 37 years, with increases in both regional average temperature and precipitation. Using empirical
orthogonal function analysis and the Mann–Kendall trend test of air temperature, we show that
1980–1998 was relatively cold, and 1999–2016 was relatively warm. Soil temperature and moisture in
most areas of the TP were affected by air temperature and precipitation, and both showed an upward
trend during the past 37 years. Overall, from 1981 to 2016, the freezing date of the TP has become
delayed, the thawing date has been hastened, and the duration of the freeze–thaw state has shortened.
The surface soil freezes and thaws first, and these processes pervade deeper soil with the passage
of time; freeze–thaw processes have an obvious hysteresis. Precipitation and air temperature had
marked effects on the freeze–thaw processes. Higher air temperatures delay the freezing date, hasten
the thawing date, and shorten the freeze–thaw period. Areas with the highest precipitation saw late
soil freeze, early thaw, and the shortest freeze–thaw duration. Areas with less vegetation froze earlier
and thawed later. The freeze–thaw duration increased in the northwest of the plateau and decreased
on the rest of the plateau. This article informs research on frozen soil change in the context of
global warming.

Keywords: freezing–thawing processes; climate change; air temperature and precipitation; Community
Land Model; Tibetan Plateau

1. Introduction

With an average elevation of more than 4000 m, the Tibetan Plateau (TP), also known
as the “Roof of the World”, lies adjacent to the subtropical zone in the south and approaches
mid-latitudes in the north [1,2]. It is the highest plateau on Earth and has the most compli-
cated topology. Owing to its unique geographical position and altitude and the complex
underlying surface, the TP creates a unique regional atmospheric circulation; this has a
considerable influence on the weather and climate of China, the atmospheric circulation in
East Asia, and even the global climate [3–5]. Land surface processes are closely related to
atmospheric movement and constitute momentum, energy, and water exchange activities
between the land and atmosphere. Land surface processes and climate change have a
reciprocal relationship. While simultaneously being affected by climate change, the land
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surface also further influences atmospheric turbulence and ocean movement by partici-
pating in land–atmosphere and land–ocean energy and water interactions; these, in turn,
have a notable impact on climate change, providing further feedback to influence the land
surface [6–9]. The realistic simulation of land surface processes, particularly the process of
hydrothermal transport, is critical for climate change research.

Frozen soil is a major forcing factor on land surface processes and is a highly sensitive
indicator of climate change [10]. The substantial warming of the climate over the past few
decades has caused a significant increase in surface temperature and a sharp degradation
of frozen soil [11–13]. Moreover, the accelerated climate change has driven a widespread
area expansion of lakes across the Changtang Plateau (CP) and desertification in the northern
TP [14,15]. Frozen soil is widely distributed across the planet. According to the duration
of freezing, frozen soil can be divided into two types: permafrost and seasonally frozen
soil. Currently, permafrost covers 23–25% of the Earth’s land surface, and a further 25% is
covered by seasonally frozen soil. The TP contains approximately 2.7 × 106 km2 of frozen
soil, with permafrost and seasonally frozen soil covering 1.5 × 106 and 1.2 × 106 km2,
respectively [16,17]. Frozen soil has unique hydrothermal characteristics, which play an
essential role in land surface processes. The presence of ice in frozen soil renders the process of
soil water and heat transfer more complicated; it also affects the infiltration of precipitation, ice
melt, and snow melt, which can regulate energy and water circulation between the land and
atmosphere. The processes of soil freezing and thawing not only play an important role in the
transition between dry and wet seasons on the TP but also greatly affect the exchange of water
and energy between the land and atmosphere. Features of the spatiotemporal distribution
of temperature and moisture, as well as continual changes in the processes of soil moisture
and heat transport, are critical to the alteration of the plateau ecosystem [18–21]. Furthermore,
there is a good correlation between summer precipitation in China and atmospheric circulation
on the TP and East Asia [22–24].

Soil moisture and temperature are the two core elements of land surface processes.
Soil moisture controls the energy–water balance between the land surface and atmosphere;
it can affect the surface albedo and heat capacity, with the former regulating the local net
radiation flux and the latter affecting heat exchange between the land and atmosphere.
Soil moisture also affects surface evaporation and vegetation transpiration, which together
determine water vapor and latent heat transport to the atmosphere. Soil temperature
directly controls sensible heat transport from the land to the atmosphere and the presence
and phase of water in the soil; this, in turn, affects soil moisture and the series of physical
and biochemical processes that it controls. Soil moisture and temperature are also the
most direct reflections of the freeze–thaw processes on the plateau. Studies have shown
that freeze–thaw processes can directly change the hydrothermal properties of the soil,
thereby affecting the surface energy budget and hydrological cycle and, further, affecting
the exchange of energy and water between the land and atmosphere.

Soil moisture plays an important role in the climate system, second only to sea surface
temperature (SST), and its role even exceeds that of SST on land [25]. Evaporation from the
land surface accounts for 65% of precipitation on land [26], and soil moisture is one of the
key elements that influences evaporation. Changes in surface albedo, heat capacity, and
sensible and latent heat delivered to the atmosphere all influence climate change [26,27].
The freeze–thaw processes of soil and the spatiotemporal distribution of soil temperature
are notably affected by changes in the soil moisture on the TP [28]. Frozen soil contains
nearly twice as much organic carbon as the atmosphere [29]; organic carbon initially
trapped in frozen soil will be released into the atmosphere as a result of climate change,
enhancing the greenhouse effect. Therefore, the study of the soil freeze–thaw state is of
great significance for global climate change.
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2. Study Area and Data

2.1. Study Area

The study area of this paper is the Tibetan Plateau (25◦N~40◦N, 74◦E~104◦E). This
part of China starts from the Pamir Plateau in the west and the Hengduan Mountains in
the east. It spans 31 degrees of longitude and is about 2945 km long from east to west.
The width is about 1532 km. The average altitude of the TP is about 4000 m. China is the
third-largest country with frozen soil in the world, and its frozen soil is mainly distributed
on the TP, which is known as the “third pole in the world”; the spatial distribution of the
TP’s permafrost is shown in Figure 1a [30]. In addition, the map of vegetation types is
given in Figure 1b.

Figure 1. (a) Spatial distribution of permafrost on the TP [30]. (b) Spatial patterns of different
vegetation types on the TP. The vegetation type map is derived from the MODIS land–cover product.

2.2. Data

Land–cover data. A collection of the 5.1 MODIS land-cover product (MCD12C1)
was used in this study for statistical analysis. There were five land–cover classification
schemes in this dataset, and the International Geosphere and Biosphere Programme (IGBP),
at a spatial resolution of 0.05◦ from 2001–2008, was developed. This dataset consists of
17 general land–cover types, which include 11 natural vegetation classes, three developed
and mosaicked land classes, and three non-vegetated land classes [31,32]. We selected three
vegetation types: forest, grassland, and bare land.

Atmospheric forcing data for our study, comprising shortwave radiation, precipitation,
pressure, specific humidity, surface air temperature, and wind, were obtained from the
China Meteorological Forcing Dataset (CMFD), which was created by the Chinese Academy
of Sciences’ Institute of TP Research. This dataset, which was produced by merging a variety
of data sources (i.e., remote sensing data, reanalysis data, station data), spans the years
1979–2012 and has a 0.1◦ spatial resolution and a 3 h temporal resolution. The CMFD has
been utilized in many previous studies [33], and its precision has been confirmed to be
sufficient for modeling. The data sources used to produce the forcing data include:

1. Wind, relative humidity, sunshine duration, air temperature, precipitation, and surface
pressure observations from China Meteorological Administration (CMA) weather
stations for the years 1980 to 2016; true values of the meteorological parameters
calculated using the observed data and radiation data estimated from the observed
sunshine duration.

2. Tropical Rainfall Measuring Mission (TRMM) satellite precipitation analysis data
(3B42) for the years 1998 to 2016 and Global Land Data Assimilation System (GLDAS)
precipitation for the years 1980 to 2016.
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3. GLDAS downward shortwave radiation data for the years January 1980–June 1983
and January 2008–December 2016 and Global Energy and Water Exchanges-Surface
Radiation Budget (GEWEX-SRB) downward shortwave radiation data for the years
July 1983–December 2007.

4. The modern era-retrospective analysis for research and applications (MERRA) surface
pressure for the years 1979 to 2015. GLDAS surface pressure data after 2015.

5. GLDAS air temperature, wind, and relative humidity data for the years 1979 to 2018.

To investigate the responses of soil freeze–thaw processes to climate change on the
entire TP, the atmospheric forcing data from the CMFD on the TP (25◦–40◦N, 75◦–105◦E)
was used to drive the regional simulation of CLM4.5. We ran CLM4.5 for 37 years from
1980 to 2016, and the spatial resolution of CLM4.5 is 10 km × 10 km.

The observed data. The relevant research is based on field weather station data from
the BJ site, Amdo site, and NewD66 site of the Nagqu Plateau Climate and Environment
(NPCE) station on the TP. The location of the BJ site is 31.37◦N, 91.90◦E, the Amdo site is
32.24◦N, 91.62◦E, and the NewD66 site is 35.43◦N, 93.59◦E.

3. Methods

3.1. Model Description

The land surface process model utilized in this study was the Community Land Model
(CLM) version 4.5 [34], which is the land surface module of the Community Earth System
Model (CESM) developed by the National Center for Atmospheric Research (NCAR). The
CLM is currently one of the most widely used land surface process models; it includes
biogeophysical processes, hydrological cycle processes, surface heterogeneity, dynamic
processes of the biological system, and biochemical processes, among others. Compared
with the previous version, CLM4.5 has expanded the performance of the model, updated
the atmospheric and surface forcing datasets, added the concept of surface water storage,
replaced the original wetland unit of the model, adjusted the photosynthetic parameters,
and improved some parameterization schemes. Improvements to the frozen soil water con-
duction parameterization scheme [35–37], as well as changes to the plant canopy radiation
scheme, mean that CLM4.5 can better simulate water and heat transfer processes within
the soil.

The simulation of soil temperature is related to the surface energy balance equation;
the equation describing the surface energy balance in CLM4.5 is:

h = Ssoil − Lsoil − Hsoil − λEsoil , (1)

where h is the heat flux entering the soil (W/m2); Ssoil is the solar short-wave radiation
absorbed by the surface (W/m2); Lsoil is the long-wave radiation absorbed by the surface
(W/m2, defined with upwards being the positive direction); Hsoil is the surface sensible
heat flux (W/m2); and λEsoil is the surface latent heat flux. The heat that enters the soil
from the atmosphere is determined by the net surface radiation and surface sensible and
latent heat; in turn, the surface sensible and latent heat are determined by the difference in
temperature and humidity between the land and atmosphere. Precipitation affects changes
in surface temperature. The simulation of soil temperature is, thus, related to both air
temperature and precipitation.

In CLM4.5, the change in soil moisture with time is calculated by the surface water
balance equation:

dW
dt

= Pr − ET − Rof, (2)

where w is soil moisture (mm); t is time (s); Pr is precipitation rate (mm/s); ET is evap-
otranspiration (mm/s); and Rof is surface runoff (mm/s). The strength of evaporation
depends on the temperature. Runoff is affected by precipitation and the water-holding
capacity of the soil. Hence, changes in soil moisture are also related to temperature and
precipitation [38,39].
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To better analyze the characteristics of freeze–thaw processes based on soil tempera-
ture, the soil temperature simulated by the CLM4.5 was validated by the observation data
of three field sites. The correlation between the simulated soil temperature values and the
observed values can reach more than 90% (Figure 2); in other words, the reliability of the
results by CLM4.5 simulation was validated, so the CLM4.5 model simulation results was
used to analyze freeze–thaw processes in this paper.

Figure 2. Comparison of simulated and observed soil temperature in 4 soil layers at BJ site, Amdo
site, and NewD66 site.

3.2. Empirical Orthogonal Function (EOF) Analysis

Empirical orthogonal function analysis is a common method in meteorology, which has
fast convergence and a good reflection of the basic structural characteristics of meteorologi-
cal elements. In this paper, the EOF analysis method was used to study the spatiotemporal
distribution characteristics of temperature on the TP. The original meteorological data were
projected on an orthogonal basis in the EOF analysis. In addition, the orthogonal basis was
calculated using the eigenvector of the spatially weighted anomaly covariance matrix, with
the associated eigenvalues reflecting the percentage variance explained by each pattern.
As a result, the EOFs of spatiotemporal physical processes can reflect mutually orthogonal
spatial patterns in the data change set, with the first pattern accounting for the majority of
the variance, the second pattern accounting for the majority of the residual variance, and
so on. We selected the matching principal component (PC) of the dominant mode as the
reference time series for air temperature, because the PC of an EOF mode illustrates how
the spatial pattern of this mode oscillates over time.

In this paper, the CMFD data was used to force CLM4.5 to simulate soil temperature
and moisture on the Tibetan Plateau from 1980 to 2016, empirical orthogonal function
analysis and the Mann–Kendall trend test of air temperature were used to divide the
37 years of TP into different climate situations, and the characteristics of freeze–thaw
processes based on soil temperature were analyzed.
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4. Results

4.1. Regional Climate Change on the TP

The CMFD provided temperature and precipitation data from 1980 to 2016, which
were used to calculate the climatology and the trends of temperature and precipitation
(Figure 3). The climatology of regional average temperature and precipitation is −0.15 ◦C
and 465.14 mm, respectively, and their regional average trend is 0.41 ◦C/decade and
6.44 mm/decade, respectively. The regional distributions of precipitation and temperature
are similar, as the monsoon advances, with values roughly increasing gradually from
the northwest to the southeast of the TP. The southeast region of the TP has the highest
annual average temperature and the most annual average precipitation; moreover, high
temperature and low precipitation occur in the Qaidam Basin. The trends of temperature
and precipitation show that the temperature and precipitation in most parts of TP have
increased significantly in the past 37 years as a result of global warming, though the temper-
ature in the Karakoram area has a decreased trend, and, at the same time, precipitation has
increased in this area. The Karakoram Mountains have always been the focus of scientists
due to their unusually stable glaciers. According to a study published in Nature Geoscience,
the glaciers in the Karakoram Mountains have risen rather than reduced during the last
10 years, which contradicts the global trend of glacial melting [40]; the combination of
temperature and precipitation trends may be the cause of this phenomenon.

Figure 3. Climatology and trends in temperature and precipitation on the TP from 1980 to 2016.
(a) Climatology of temperature (unit: ◦C). (b) Climatology of precipitation (unit: mm). (c) Trend
in temperature (unit: ◦C/decade). (d) Trend in precipitation (unit: mm/decade). Grid points with
statistically significant anomalies at the 90% confidence level are denoted by an oblique line.

To identify the change characteristics of the annual average temperature, EOF analysis
was performed using the air temperature data and was carried out on the covariance matrix.
The spatial pattern of the first dominant mode (EOF1) is depicted in Figure 4a, which was
created using the air temperature data. The spatial distribution of EOF1 is marked by
consistent variations in temperature in the entire TP, with an explained variance of 50.7%.
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The corresponding normalized PC1 shows that the temperature has changed with time,
with a significant increase since 1980. The Mann–Kendall trend test was conducted on the
average temperature of the TP from 1980 to 2016 and showed that the obvious warming of
the TP after the 1990s was an abrupt phenomenon, and the average temperature mutational
change occurred in 1998 (Figure 4c). Therefore, according to the time when this mutational
change occurred (1998), the average temperature of the TP was divided into two sections
for discussion; the years from 1980 to 1998 were relatively cold (hereafter RC), and the
years from 1999 to 2016 were relatively warm (hereafter RW).

Figure 4. Temperature patterns on the TP from 1980 to 2016. (a) EOF1 spatial pattern. (b) Time
coefficient. (c) Mann–Kendall trend test.

4.2. Responses of Soil Temperature and Moisture

As shown in Figures 5 and 6, on average, both the soil temperature and soil moisture
across most parts of the TP have increased between 1980 and 2016. The trend in soil
temperature is closely related to that in air temperature. The trends in soil temperature and
moisture at different soil depths across the TP are essentially the same. In areas where the air
temperature has risen, the soil temperature has also risen, indicating that soil temperature is
directly affected by the air temperature. The average soil temperature trends at soil depths
of 10, 20, 40, and 60 cm were 0.294, 0.291, 0.287, and 0.282 ◦C/decade, respectively. The
average soil moisture trends at soil depths of 10, 20, 40, and 60 cm were 0.00241, 0.00242,
0.00250, and 0.00265 m3·m−3/decade, respectively. With an increase in soil depth, soil
temperature increased at a lower rate, while soil moisture increased at a slightly higher rate,
indicating that the shallow soil temperature is more susceptible to air temperature. The
trend seen in soil moisture is roughly the same as that seen in precipitation. In areas where
precipitation has increased, soil moisture has also tended to increase; where precipitation
has decreased, soil moisture has also decreased, indicating that changes in soil moisture
are affected by precipitation. In the northern part of the TP, the soil has become noticeably
wetter, while in some parts of the southern TP, soil moisture has noticeably decreased.
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Figure 5. Trends in soil temperature at four different soil depths across the TP from 1980 to 2016 (unit:
◦C/decade). (a) 10 cm; (b) 20 cm; (c) 40 cm; (d) 60 cm.

Figure 6. Same as Figure 5, but for soil moisture (unit: m3·m−3/decade).

To better study the influence of air temperature on soil temperature, soil moisture, and
freeze–thaw processes, Figure 7 shows comparisons of the annual average soil temperature
between RW (from 1999 to 2016) and RC (from 1980 to 1998); the average soil temperature
differences, at depths of 10, 20, 40, and 60 cm between RW and RC, were 0.568, 0.562, 0.555,
and 0.546 ◦C, respectively. The soil temperature differences across most of the TP were
positive (and above 0.5 ◦C) at all four depths, but the differences in the northwestern TP
were negative. In addition, the maximum difference was found in the southwest, indicating
that the soil temperature in this region is most sensitive to changes in air temperature. As
the soil depth increased, the difference in soil temperature decreased slightly. The spatial
distribution of the difference in soil temperature is consistent with the temperature trend.
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On the one hand, this shows that shallow soil will be affected by the air temperature, to
a certain extent; on the other hand, it shows that the vertical gradient in soil temperature
is not obvious, and temperature changes are not sensitive to changes in depth. Figure 8
depicts the differences in annual average soil moisture between RW and RC; at depths of
10, 20, 40, and 60 cm, these differences were 0.00586, 0.00584, 0.00591, and 0.00611 m3/m3,
respectively. As the soil depth increased, the vertical change in soil moisture is not obvious,
and the difference value increased slightly. In terms of the type of land cover, the soil
in alpine steppe areas was considerably wetter than that in alpine meadow and alpine
desert areas.

Figure 7. Same as Figure 5, but for differences in average soil temperature between RW and RC.

Figure 8. Same as Figure 7, but for soil moisture (unit: m3/m3).
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4.3. Responses of Soil Freeze–Thaw Processes to Climate

To analyze the characteristics of freeze–thaw processes, this study divided the soil
state into two periods: frozen and unfrozen. To consider a complete freeze–thaw cycle, we
adjusted the data to start on 1 September. The criteria for judging whether a freeze–thaw
occurred were as follows: (a) if the soil temperature was below 0 ◦C for five consecutive
days, the current time was regarded as the beginning of the freezing period; (b) if the soil
temperature was above 0 ◦C for five consecutive days, the current time was regarded as the
end of the freezing period. The freezing date means the start date of the freezing season,
and the thawing date is the end date of the freezing season.

As can be seen from Figure 9 and Table 1, over the past 37 years, the multi-year means
of the freezing and thawing dates at the four soil depths were delayed with increasing soil
depth; the shallow soil of the TP began to freeze from early November, while the soil at a
60 cm depth was frozen, on average, for 84.16 days after 1 September. The soil at 10 cm
depth started to thaw in early April, on average, while the soil at s 60 cm depth began to
thaw approximately 20 days later. On the entire TP, the surface soil freezes and thaws first,
and these processes pervade deeper soil layers as time goes by; these freezing and thawing
processes have an obvious hysteresis. Since the average freezing and thawing times of each
layer are both delayed with increasing soil depth, the average period over which the soil
remains frozen is similar, ranging from 144 to 146 days. The spatial distributions of the
soil freeze–thaw processes in each layer also reflect the characteristics of air temperature
distribution. Where temperatures were high, each layer of the soil froze later and thawed
earlier. We can see in the northeast of the TP—the Qaidam Basin, the freezing date was later
than that of the surrounding area, the thawing date was earlier than that of the surrounding
area, and the freeze–thaw duration was shorter than that of the surrounding area. The
most likely reason for this phenomenon is mainly due to the drought and little rainfall in
this area, as the soil is dominated by sandy soil, the vegetation is relatively sparse, and the
coverage rate is low.

Figure 9. Spatial distributions of multi-year means of the freezing date, thawing date, and freeze–
thaw duration for two soil depths from 1980 to 2016 (units: days after 1 September (a,b,d,e);
days (c,f)). (a) Freezing date of soil at 10 cm depth. (b) Thawing date of soil at 10 cm depth.
(c) Freeze–thaw duration of soil at 10 cm depth. (d) Freezing date of soil at 60 cm depth. (e) Thawing
date of soil at 60 cm depth. (f) Freeze–thaw duration of soil at 60 cm depth.
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Table 1. Multi-year means of soil freeze–thaw processes at different soil depths.

Soil Depth
Freezing Date (Days
after 1 September)

Thawing Date (Days
after 1 September)

Freeze–Thaw
Duration (Days)

10 cm 67.42 212.12 144.70

20 cm 70.62 215.42 144.78

40 cm 76.12 220.70 144.59

60 cm 84.16 230.45 146.59

As shown in Figure 10 and Table 2, across most of the TP, all soil layers exhibited that
the freezing date moved later from 1980 to 2016. On average, the decreasing trend was
>2 days decade−1, and the trend was more pronounced in deeper soil layers. Meanwhile,
there were also delaying trends in thawing date and freeze–thaw duration, with these
change trends being less pronounced in deeper soil layers. As the global climate changed,
the freeze–thaw processes also changed dramatically, especially in shallow soils. The
thawing date varied more significantly than the freezing date, which also explains changes
in the duration of frozen soil. In the Karakoram Mountains and parts of the Qiangtang
Plateau, the freezing date has tended to advance (i.e., the soil freezes earlier in the year),
while the rest of the plateau essentially shows a delayed trend; the thawing date in the two
aforementioned regions has tended to be delayed, while the thawing date of the rest of
the plateau has advanced. Therefore, the freeze–thaw duration of each layer of soil in the
northwestern part of the TP has increased, while the permafrost in the rest of the region
has declined.

Figure 10. Trends in freezing date, thawing date, and freeze–thaw duration at two soil depths from
1980 to 2016 (unit: day/decade). Grid points with statistically significant anomalies at the 90%
confidence level are denoted by an oblique line.

Table 2. Trends in soil freeze–thaw processes at different soil depths (unit: day/decade).

Soil Depth Freezing Date Thawing Date Freeze–Thaw Duration

10 cm 2.15 −2.17 −4.32

20 cm 2.15 −2.23 −4.38

40 cm 2.23 −1.62 −3.85

60 cm 2.30 −1.49 −3.79
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Figure 11 and Table 3 illustrate the differences in annual average soil freeze–thaw
processes between the RW and RC periods. Air temperature was one of the most important
factors affecting the freeze–thaw processes on the TP. In recent decades, a clear signal of
elevation-dependent warming (EDW) of the air temperature has been observed on the
TP, based on observational and satellite data [41–43]. The decrease in maximum freezing
depth with elevation is a reaction to the EDW of the air temperature. The freezing dates
of soil at depths of 10, 20, 40, and 60 cm were 3.87, 3.70, 4.28, and 4.41 days, respectively,
while their thawing dates were −5.76, −5.22, −3.76, and −3.39 days, respectively; hence,
their freeze–thaw durations were −9.54, −8.92, −8.05, and −7.80 days, respectively. The
effect of air temperature on freeze–thaw processes can, thus, clearly be seen. The spatial
distribution of freeze–thaw processes between the RW and RC periods is similar to that
shown in Figure 10; shallow soils are more susceptible to climate change, and their changes
are more dramatic.

Figure 11. Differences in freezing date, thawing date, and freeze–thaw duration at two soil depths
between the RW and RC periods (unit: day).

Table 3. Differences in soil freeze–thaw processes between the RW and RC periods (unit: day).

Soil Depth Freezing Date Thawing Date Freeze–Thaw Duration

10 cm 3.87 −5.67 −9.54

20 cm 3.70 −5.22 −8.92

40 cm 4.28 −3.76 −8.05

60 cm 4.41 −3.39 −7.80

Satellite data (satellite-based 2 m air temperature (SBAT), Moderate Resolution Imag-
ing Spectroradiometer (MODIS)-based LST, snow cover, and daytime/nighttime cloud
extent) indicate that the annual mean 2 m air temperature above 4500 m on the TP rapidly
declined between 2001 and 2015 [44]. As a result, long-term freeze–thaw trends are compli-
cated, because other local parameters play important roles; in addition to changes in air
temperature, precipitation is another important meteorological element. To better study
the effect of precipitation on freeze–thaw processes, we divided the TP into climate zones
according to average annual precipitation. Areas with annual precipitation <200 mm were
classified as arid areas, those between 200 and 400 mm as semiarid, those between 400
and 800 mm as subhumid, and those >800 mm as humid. Figure 12 shows the climate
zones on the TP. The average annual precipitation decreases sequentially from southeast to
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northwest, while its spatial distribution of values is similar to that of soil temperature and
soil moisture.

Figure 12. Climate zones on the Tibetan Plateau.

As shown in Figure 13, each layer of soil has specific freeze–thaw characteristics; that
is, with an increase in soil depth, there are changes in the freezing date, thawing date, and
freeze–thaw duration, which can reflect the hysteresis of freeze–thaw processes. There are
obvious differences between the climate zones, notably in humid areas. Areas with the
least precipitation freeze first, and other areas freeze sequentially, mirroring increases in
the average annual precipitation. On average, the soil at a 10 cm depth in arid areas began
to freeze at the end of October, while soil at a 60 cm depth in humid areas began to freeze
in mid-December; freezing started much later in humid regions than in other regions. The
soil in humid areas began to thaw in mid-March, while soil at a 60 cm depth in the rest of
the regions began to melt at the end of April. Humid regions also have a much shorter
freeze–thaw duration than other regions, with the freeze–thaw duration of every soil layer
being over 40 days less than in other areas. Hence, the effect of precipitation on freeze–thaw
processes is very clear.

(a) (b) (c) 

Figure 13. Multi-year means of the (a) freezing date, (b) thawing date, and (c) freeze–thaw duration
at four different soil depths from 1980 to 2016, plotted with respect to climate zone (unit: day).

As shown in Figure 14, the soil freeze–thaw processes of the underlying surface of
different vegetation types are very different, so we can also see the hysteresis of soil freeze–
thaw processes with increasing soil depth. Compared with the underlying surface of other
types of vegetation, the soil underlying the surface of the forest froze the latest, began to
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thaw the earliest, and had the shortest freeze–thaw duration. The freeze–thaw duration of
the bare land underlying the surface of each layer of soil was more than one month longer
than that of the underlying surface of the forest. Different vegetation types have a great
influence on soil freeze–thaw processes. The soil freeze–thaw processes of the underlying
surface of the bare land were more sensitive to climate change.

Figure 14. Same as Figure 13, but plotted with respect to vegetation types (unit: day).

5. Discussion

Freeze–thaw processes on the TP have a considerable influence on both regional and
Asia-wide climate. Therefore, it is critical to understand and forecast such freeze–thaw
processes. This study first investigated the characteristics of the temperature-dominant
mode using data from 1980 to 2016. According to EOF analysis, a pattern of interdecadal
increase in air temperature has emerged over almost all of the TP between 1980 and 2016.
According to the latest publication from the Intergovernmental Panel on Climate Change’s
Sixth Assessment Report Working Group I, the global climate has warmed significantly
over the last century (since 1850–1900); the average global surface temperature has risen by
approximately 1 ◦C, and the average temperature rise over the next 20 years is expected to
approach or surpass 1.5 ◦C [45]. Changes in the environment, such as permafrost, glacier,
and ice cap melting, are expected to be exacerbated as a result of global warming, and
this will have an impact on human existence. There are also substantial differences in
the responses of different underlying substrates to global warming. Arctic sea ice and
permafrost are particularly sensitive to a warming climate. The soil at various depths also
has a clear warming tendency under a background of rising air temperature. Previous
research has demonstrated that the warming trend of soil temperature in each layer was
more significant in western China from 1980 to 2017 than before 1980 [46]. Changes in the
features and spatial distribution of permafrost have been caused by the influence of global
warming and human activities in recent years, manifesting as the elevation of permafrost’s
lower limits, rising ground temperature, and thickening of the active layer. Permafrost
has been diminished in certain areas, resulting in seasonally frozen soil. Nearly half of the
permafrost on the TP will be reduced to seasonally frozen soil by the end of the century
under the Representative Concentration Pathway 4.5 (RCP 4.5) emissions scenario [47]. The
maximum freezing depth and freeze–thaw duration of seasonally frozen soil in western
China have shown downward trends in recent decades as a result of climate change,
whereby there have been delayed freezing start dates and early melting end dates [48].
Before soil freezes, soil moisture exists in the form of liquid water, which is conducive to
water transmission, and surface soil moisture is transported upwards in the form of liquid
or vapor; precipitation will directly change the value of soil moisture, causing surface
sensible and latent heat by affecting surface albedo; energy and water exchange between
the earth and atmosphere is relatively frequent at this time. When soil freezes, moisture in
the soil freezes into ice, and the amount of liquid water in the soil reduces dramatically,
making soil moisture transport difficult. As shown herein, freeze–thaw processes vary
with air temperature and precipitation. Indeed, the two most important factors impacting
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freeze–thaw processes on the TP are air temperature and precipitation. Freeze–thaw process
trends are complicated, because other local elements or parameters play important roles, in
addition to changes in air temperature and precipitation. Hence, further research into how
freeze–thaw processes respond to climate change is required.

Frozen soil is a kind of soil that is very sensitive to temperature and is extremely
unstable [49]. As the global temperature increases, the exchange process between the surface
and the atmosphere of energy, water, soil temperature, etc., rises, and the ice melts, the
soil moisture increases, the freezing date is delayed, the thawing date is advanced, and the
freeze–thaw duration is shortened; the freezing–thawing process significantly affects the
energy balance and water cycle of the soil surface through water phase transformation [50,51].
In addition, the abnormal soil moisture caused by snowmelt and the thawing process has
an impact on summer precipitation in eastern China [52]. The multi-process interaction
and complex influence mechanism of hydrothermal elements and vegetation activities have
formed obvious regional differentiation characteristics. Moreover, areas with lush vegetation
generally have more precipitation and higher temperatures.

6. Conclusions

On the basis of the remote sensing data and CLM4.5 model simulation results, this
study investigated the main modes of air temperature on the TP, as well as the spatiotem-
poral distribution and changing trends in air temperature and precipitation. In addition,
the characteristics of freeze–thaw processes and their response to climate change were also
studied. The main conclusions are as follows:

1. The climate of the TP has become warmer and wetter over the past 37 years; the rates
of the increase in regional average temperature and precipitation were 0.41 ◦C/decade
and 6.44 mm/decade, respectively. As the monsoon moved forward, the regional
distributions of precipitation and temperature were similar, with values steadily rising
from the northwest to the southeast of the TP. We depicted the spatial pattern of the
first dominant mode (EOF1), which was created using air temperature data. The
spatial distribution of EOF1 was marked by consistent variations in temperature on
the whole TP; the years from 1980 to 1998 were relatively cold, and the years from
1999 to 2016 were relatively warm.

2. Soil temperature and moisture across most parts of the TP showed an increasing
trend. Soil temperature and moisture were shown to be affected by air temperature
and precipitation.

3. Surface soil was first to freeze and thaw on the TP; freezing and thawing then pervaded
deeper soil as time passed, with an obvious hysteresis in the freeze–thaw cycle. On
average, the four analyzed layers of soil on the TP began to freeze in November
and began to thaw in April. The mean freeze–thaw duration of these four layers
of soil was 144–146 days. Between 1980 and 2016, the freezing date of each soil
layer in most regions of the TP has moved later in the year, with an average rate of
>2 days decade−1. Meanwhile, the thawing date has moved earlier in the year, and
the freeze–thaw duration has declined.

4. Areas with the least amount of precipitation were the first to freeze, with other
areas freezing sequentially, in line with increasing average annual precipitation. Soil
thawing occurred sooner in areas with more precipitation. Hence, precipitation
appears to have a substantial impact on freeze–thaw processes.

5. The areas under the bare land were the first to freeze, and the areas under the forest
were the first to thaw. Different vegetation types had a major impact on the freeze–
thaw process.

Author Contributions: Conceptualization, C.F. and Z.H.; methodology, C.F. and Y.Y.; software, C.F.
and D.W.; investigation, C.F. and Z.H.; writing—original draft preparation, C.F., M.D., Y.Y. and H.Y.;
writing—review and editing, C.F., Z.H., Y.Y., M.D., H.Y., S.L., D.W. and W.F. All authors have read
and agreed to the published version of the manuscript.

189



Remote Sens. 2022, 14, 5907

Funding: This research was supported by the Second Tibetan Plateau Scientific Expedition and
Research (STEP) program (grant no. 2019QZKK0103), the National Natural Science Foundation
of China (grant no. 91837208), the Strategic Priority Research Program of the Chinese Academy
of Sciences (grant no. XDA20060101), the Systematic Major Project of the China Railway (grant
no. P2021G047), and the National Key Research and Development Program of China (grant no.
2018YFC1505701).

Data Availability Statement: The MODIS land-cover product (MCD12C1) is available online at:
https://lpdaac.usgs.gov/resources/data-action/ (accessed on 29 June 2022); the China Meteorologi-
cal Forcing Dataset (CMFD) can be obtained at: http://data.tpdc.ac.cn/en/data/8028b944-daaa-45
11-8769-965612652c49/ (accessed on 7 November 2019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Li, B.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–8.
[CrossRef]

2. Ma, Y.; Yao, T.; Hu, Z.; Wang, J. The cooperative study on energy and water cycle over the Tibetan Plateau. Adv. Earth Sci. 2009,
24, 1280.

3. Liu, X.; Hui, X.; Chen, B. Influence of heat source anormal of underlying surface over Tibet Plateau and western tropical Pacific
on short-term climate in China. Plateau Meteorol. 1991, 10, 305–316. (In Chinese)

4. Wang, L.; Zheng, Q.; Song, Q. Numerical simulation of the influence of the underlying surface of the western Qinghai-Tibet
Plateau on the seasonal transition of the atmospheric circulation in East Asia. Plateau Meteorol. 2003, 22, 179–184. (In Chinese)

5. Wu, G.X.; Zhu, B.Z.; Gao, D.Y. The Impact of the Tibetan Plateau on Local and Regional Climate. In Theoretical Research Progress of
the Second Qinghai-Tibet Plateau Atmospheric Science Experiment (1); Meteorological Press: Beijing, China, 1999; pp. 257–273.

6. Duan, A.; Liu, Y.; Wu, G. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation
anomaly over East Asia in midsummer. Sci. China Ser. D Earth Sci. 2005, 48, 250–257. [CrossRef]

7. Duan, A.; Li, F.; Wang, M.; Wu, G. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its
impact on the Asian summer monsoon. J. Clim. 2011, 24, 5671–5682. [CrossRef]

8. Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006,
440, 165–173. [CrossRef] [PubMed]

9. Hu, Q.; Feng, S. How have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent?
Geophys. Res. Lett. 2005, 32, L14711. [CrossRef]

10. Lawrence, D.M.; Slater, A.G.; Swenson, S.C. Simulation of present-day and future permafrost and seasonally frozen ground
conditions in CCSM4. J. Clim. 2012, 25, 2207–2225. [CrossRef]

11. Zhang, T.; Barry, R.; Gilichinsky, D.; Bykhovets, S.; Sorokovikov, V.A.; Ye, J. An amplified signal of climatic change in soil
temperatures during the last century at Irkutsk, Russia. Clim. Change 2001, 49, 41–76. [CrossRef]
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Abstract: Condensation and desublimation are important processes of nocturnal land–atmosphere
interactions, energy transfer, and the water cycle, and have important ecological and hydrological
roles in mitigating physiological water deficits caused by low temperatures and reducing the risk
of frost damage to plants, animals, and microorganisms near the surface in the Alpine Region. The
aim of the present study is to evaluate the spatial and temporal variations of condensation and
desublimation from 1950 to 2020 based on Penman model using hourly ERA5-Land and ERA5
reanalysis datasets on the Qinghai–Tibet Plateau (QTP), where condensation and desublimation occur
frequently but lack quantitative evaluation. The results showed that: (1) Condensation showed a
decreasing trend from southeast to northwest, with annual mean condensation ranging from 0 mm
to 72.8 mm, while desublimation showed regional enrichment rather than zonal variation, with the
annual mean desublimation ranging from 0 mm to 23.6 mm; (2) At 95% confidence level, condensation
showed a significant increasing trend in the central and western QTP, while desublimation showed a
significant decreasing trend in most regions of the QTP, and the decreasing trend of desublimation was
more obvious than the increasing trend of condensation; (3) Both condensation and desublimation
showed significant seasonal characteristics; the maximum monthly condensation was 2.37 mm and
the monthly mean condensation was 0.70 mm, while the maximum monthly desublimation was
1.45 mm and the monthly mean desublimation was 0.95 mm; (4) The annual mean condensation was
8.45 mm, with an increasing trend of 0.24 mm/10a, the annual mean desublimation was 11.45 mm,
with a decreasing trend of −0.26 mm/10a, and the total annual mean condensation and desublimation
was 19.89 mm, with a weak decreasing trend on the QTP; (5) The increase in condensation is most
associated with the increase in precipitation, while the decrease in desublimation is most associated
with the increase in air temperature on the QTP.

Keywords: condensation; desublimation; land–atmosphere interactions; latent heat flux; ERA5-Land;
Qinghai–Tibet Plateau

1. Introduction

Condensation and desublimation are both phase transition processes of gaseous water
after radiation cooling, where condensation is the process of supersaturation of gaseous
water to liquid water [1,2], while desublimation is the process of supersaturation of gaseous
water to solid water directly [3]. The main difference between condensation and desublima-
tion is whether the dew point temperature is above or below 0 ◦C when the gaseous water
is supersaturated. That is, when the dew point temperature is equal to or greater than 0 ◦C,
the supersaturation of gaseous water leads to condensation, while when the dew point
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temperature is below 0 ◦C, the supersaturation of gaseous water leads to desublimation [4].
Both condensation and desublimation are processes of water transfer from the air to the
surface (downward water transfer), as opposed to evaporation and sublimation, which are
processes of water transfer from the surface to the air (upward water transfer) [5]. Evapora-
tion and sublimation occur mainly during the day and result in water loss near the surface,
while condensation and desublimation occur mainly at night and result in water input
near the surface [6,7]. Due to the large difference in the intensity of daytime and nighttime
land–atmosphere interactions, results in condensation and desublimation are of a much
smaller order of magnitude than evaporation and sublimation [5]. Therefore, condensation
and desublimation are often neglected in the study of land–atmosphere interactions.

Although much smaller in order of magnitude than evaporation and sublimation,
condensation and desublimation have specific ecological and hydrological roles. Conden-
sation and desublimation are often specifically referred to as dew and hoarfrost, respec-
tively, and are often considered to be important components of non-rainfall water inputs
(NRWI) [8–11]. The ecological and hydrological roles of condensation and desublimation
can usually be summarized in two aspects: on the one hand, condensation (dew) is an
effective source of water for plants, animals, and microorganisms in arid and semi-arid
regions and in other regions during the dry season, and is ecologically important for al-
leviating water stress and maintaining ecosystem functioning in these regions [4,11]. On
the other hand, the release of large amounts of latent heat when condensation (dew) and
desublimation (hoarfrost) occur can alleviate the temperature stress caused by low tem-
peratures, and plays an ecological role in protecting plants, animals, and microorganisms
from frost damage [4,12]. Therefore, the study of condensation and desublimation not
only provides a clearer understanding of land–atmosphere interactions, energy transfer,
and water cycles near the surface, but also contributes to the understanding of ecosystem
functioning mechanisms.

The main limitations to the study of condensation and desublimation are not only their
small magnitude, but also their difficulty of measurement [7,13,14]. For the measurement
of condensation and desublimation, direct weighing of condensation and desublimation
amounts is the more commonly used method [15–17], but this method is not suitable for
long periods of time and large spatial scales. Due to condensation and desublimation
both being phase transitions of gaseous water, which are accompanied by the release of
latent heat, the observation or calculation of latent heat flux to estimate the condensation
and desublimation iares the most effective indirect methods at present [4,13,18,19]. The
common methods for estimating condensation and desublimation based on the observa-
tion or calculation of latent heat flux include the Eddy Covariance method [20,21], the
Bowen Ratio Energy Balance method [7,18], the Aerodynamic method [22] and the Penman
model [12,23,24]. Among these methods, the Penman model was chosen for the present
study to calculate the latent heat flux because of its applicability and easy access to parame-
ters. When the latent heat flux is negative, it indicates the occurrence of condensation or
desublimation, while when the latent heat flux is positive, it indicates the occurrence of
evaporation or sublimation.

Located in South-Central Asia, the QTP is the highest plateau in the world with its
average altitude. The high altitude leads to a unique type of plateau climate on the QTP,
characterized by strong radiation, low temperatures and greater diurnal temperature dif-
ference, which result in condensation and desublimation occurring more frequently [25].
However, the harsh environment and complex topography have led to the sparse meteoro-
logical stations, limiting the study of land–atmosphere interactions, such as condensation
and desublimation on the QTP [26–28]. With the development of remote sensing and the
data assimilation principle, the produced reanalysis datasets compensate for the scarcity
of meteorological stations on the QTP, providing sufficient data support for large-scale,
high-precision studies of land–atmosphere interactions, energy transfer and water cycle on
the QTP [29]. In view of this, this study uses the ERA5-Land and ERA5 reanalysis datasets
with high spatial and temporal resolution to conduct condensation and desublimation eval-
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uation, which is useful for improving the understanding of land–atmosphere interactions,
energy transfer, and water cycles on the QTP. Climate change and global warming are
already indisputable facts nowadays, with the changes in temperature and precipitation
having attracted widespread attention [30–32]. Climate change and global warming have
caused changes in land surface processes such as evaporation and sublimation, however,
the effects of climate change and global warming on condensation and desublimation
processes are not yet known. The QTP is a sensitive area for climate change and global
warming, and the effects of climate change and global warming on condensation and
desublimation may be more significant, so it is necessary to quantitatively evaluate the
variations of condensation and desublimation on the QTP under climate change.

In the present study, the spatial and temporal variations of condensation and desubli-
mation on the QTP during 1950~2020 were evaluated based on the Penman model using
the hourly meteorological variables from ERA5-Land and ERA5 reanalysis datasets. The
main objectives of this study are (1) to evaluate the magnitude of condensation and desub-
limation, (2) to analyze the spatial variations of condensation and desublimation, (3) to
quantify the temporal variations of condensation and desublimation, and (4) to discuss
the impact of condensation and desublimation on alpine ecosystem on the QTP under
climate change.

2. Materials and Methods

2.1. Study Area

Located in South-Central Asia, the QTP is the highest plateau in the world by average
altitude, and has long been known as the Roof of the World. With an average altitude of
over 4000 m, the QTP has developed an alpine climate characterized by strong radiation,
low temperatures, and large temperature differences between day and night. The extremely
cold climate has led to the widespread glaciers, snow cover, and permafrost on the QTP,
which is the source of many rivers in Asia, so it is thus also known as the Water Tower of
Asia [33].

The annual mean temperature of the QTP is approximately −2.5 ◦C and the annual
mean precipitation is approximately 380 mm. Both temperature and precipitation show
significant seasonal differences, with high temperature and high precipitation in summer
and low temperature and low precipitation in winter. In addition, both temperature and
precipitation have a decreasing trend from southeast to northwest, and the temperature
has a clear tendency to decrease with increasing altitude, while precipitation has the
characteristic of increasing with increasing altitude [34]. Due to the spatial pattern of
temperature and precipitation, the vegetation cover also has a decreasing trend from
southeast to northwest and decreasing with increasing altitude on the QTP [35].

Due to the complex topography and harsh climatic conditions, the meteorological sta-
tions are sparsely distributed within the QTP; therefore, the reanalysis datasets produced by
the data assimilation principle based on models and observations, effectively complements
the lack of data for land surface process studies, such as condensation, desublimation,
evaporation, and sublimation.

The unique climatic characteristics lead to frequent water and heat exchange, espe-
cially influenced by climate warming in recent decades, which has accelerated the energy
transfer and water cycle within the QTP, while the frequency and rate of condensation and
desublimation, as well as evaporation and sublimation, are increasing. Therefore, it is im-
portant to evaluate the spatial and temporal variations of condensation and desublimation
to improve the understanding of the variations in the land–atmosphere interactions, energy
transfer, and water cycles on the QTP.

195



Remote Sens. 2022, 14, 5815

2.2. Datasets
2.2.1. ERA5-Land and ERA5 Reanalysis Datasets

Two reanalysis datasets, ERA5-Land and ERA5, were used as data input for this
study. Among these, ERA5 is the fifth generation of the European Centre for Medium-
range Weather Forecasts (ECMWF) reanalysis for the global climate and weather for the
past 4 to 7 decades, which combines model data with observations from across the world
into a globally complete and consistent dataset using data assimilation principle [36,37].
Compared to ERA5, ERA5-Land provides a consistent view of the evolution of land
variables over several decades at an enhanced resolution [38–40]. ERA5 provides hourly
estimates for a large number of atmospheric, ocean-wave, and land-surface quantities,
while ERA5-Land has been produced by replaying the land component of the ERA5
climate reanalysis. Although no additional data assimilation was performed in ERA5-
Land compared to ERA5, ERA5-Land produced at a higher resolution and forceed by
ERA5 atmospheric parameters with lapse rate correction. Therefore, ERA5-Land has
better applicability than ERA5 in the analysis of land surface processes [28]. According
to the method of Penman model parameter calculation, eight variables from ERA5-Land
and one variable from ERA5 were selected as meteorological variables needed for model
parameter calculation in this study, and the details of all selected meteorological variables
are listed in Table 1. In order to keep the spatial resolution uniform for all meteorological
variables, the friction velocity from ERA5 was resampled to a spatial resolution of 0.1◦. In
addition, the total precipitation from ERA5-Land was used in order to assess the variations
of precipitation on the QTP.

Table 1. Meteorological variables required from ERA5-Land and ERA5 reanalysis datasets.

Meteorological Variables Symbols Units Spatial Resolution Temporal Resolution Datasets

2 m temperature Ta K 0.1◦ × 0.1◦ Hourly ERA5-Land
2 m dewpoint temperature Td K 0.1◦ × 0.1◦ Hourly ERA5-Land
10 m u-component of wind u m s−1 0.1◦ × 0.1◦ Hourly ERA5-Land
10 m v-component of wind v m s−1 0.1◦ × 0.1◦ Hourly ERA5-Land

Surface pressure Pa Pa 0.1◦ × 0.1◦ Hourly ERA5-Land
Surface net solar radiation Rs J m−2 0.1◦ × 0.1◦ Hourly ERA5-Land

Surface net thermal radiation Rt J m−2 0.1◦ × 0.1◦ Hourly ERA5-Land
Skin temperature Ts K 0.1◦ × 0.1◦ Hourly ERA5-Land
Friction velocity u* m s−1 0.25◦ × 0.25◦ Hourly ERA5

Total precipitation pre m 0.1◦ × 0.1◦ Hourly ERA5-Land

2.2.2. Observed Meteorological Variables

To verify the accuracy of the Penman model for estimating condensation and desub-
limation using nine meteorological variables as inputs from the ERA5-Land and ERA5
reanalysis datasets, the monthly and annual condensation and desublimation estimated
by the Penman model were compared with those observed by the Eddy Covariance at
nine flux stations on the QTP, respectively. The locations of the nine flux stations on the
QTP are shown in Figure 1, and the basic information of each station is shown in Table 2.
The meteorological variables observed by the nine flux stations used include temperature,
relative humidity, and latent heat flux, which obtained from the datasets of a long-term
dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau
(2005–2016) [41,42] and the datasets of Heihe integrated observatory network [43–45], at
the National Tibetan Plateau Data Center.
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Figure 1. Overview of the Qinghai–Tibet Plateau and the location of nine flux stations.

For comparison, the latent heat flux observed by Eddy Covariance collected from
the nine flux stations on the QTP was converted into condensation and desublimation
as measured condensation and desublimation, based on the relationship between latent
heat flux and moisture transport (Equation (5)). The reason why we choose the observed
condensation and desublimation by Eddy Covariance as the measured condensation and
desublimation is that the Eddy Covariance technique is currently recognized as a flux ob-
servation technique with a high degree of confidence [46]. The dew point temperature was
used to distinguish between measured condensation and measured desublimation. When
the dew point temperature is below 0 ◦C, the downward water transfer is condensation,
while when the dew point temperature is greater than or equal to 0 ◦C, the downward
water transfer is desublimation. The dew point temperature was calculated according to
the method recommended by the FAO [47], which has the general form of:

Td =
116.91 + 237.3 · ln(ea)

16.78 − ln(ea)
(1)

where ea is the actual water vapor pressure (kPa), which is calculated as follows:

es = 0.6108 · exp
(

17.27 · Ta

237.3 + Ta

)
(2)

ea =
es · RH

100
(3)

where es is the saturation water vapor pressure (kPa), Ta is the air temperature (◦C), and
RH is the relative humidity (100%).

Table 2. Information of the nine flux stations and the required meteorological variables on the QTP.

Station Name Longitude Latitude Elevation
Meteorological

Variables
Temporal

Resolution
Period

◦ ◦ m ◦C, %, W m−2

Nagqu 91.90 31.37 4509 Ta, RH, λE Hourly 2005~2016
Qomolangma 86.95 28.36 4298 Ta, RH, λE Hourly 2005~2016
Southeast QTP 94.74 29.77 3327 Ta, RH, λE Hourly 2005~2016

Ngari 79.70 33.39 4270 Ta, RH, λE Hourly 2005~2016
Muztagh 75.03 38.42 3668 Ta, RH, λE Hourly 2005~2016
Namtso 90.96 30.77 4730 Ta, RH, λE Hourly 2005~2016
Xiyinghe 101.86 37.56 3616 Ta, RH, λE Half-hour 2016~2020

Jingyangling 101.12 37.84 3750 Ta, RH, λE Half-hour 2016~2020
Dashalong 98.94 38.84 3739 Ta, RH, λE Half-hour 2016~2020
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2.3. Methods

In the present study, the above-mentioned eight meteorological variables from the
ERA5-Land reanalysis dataset and one meteorological variable from the ERA5 reanalysis
dataset (Table 1) were used as inputs to calculate the latent heat flux based on the Penman
model. According to the rules of the Penman model, when the latent heat flux is negative,
it indicates the transport of moisture from the air to the surface, which represents the
occurrence of condensation or desublimation.

The premise of calculating latent heat flux based on the Penman model is that the
surface of ground or feature is in a sufficiently wet state; otherwise, both negative and posi-
tive latent heat flux represent potential latent heat flux, such as potential evaporation [48].
When the surface temperature is equal to or lower than the dew point temperature, the
near-surface air reaches saturation and supersaturation, at which point the surface of the
ground or feature can be considered to be in a wet state, satisfying the conditions for the
applicability of the Penman model [4]. Therefore, the negative latent heat flux calculated
based on the Penman model can represent the actual condensation and desublimation only
when the surface temperature is equal to or lower than the dew point temperature. Where
the negative latent heat flux represents the occurrence of condensation when the dew point
temperature is greater than or equal to 0 ◦C, and the negative latent heat flux represents
the occurrence of desublimation when the dew point temperature is lower than 0 ◦C.

Based on the results of condensation and desublimation calculated by the Penman
model, the MK trend test and Sen’s slope analysis, as well as other common numerical
statistical methods, were used to quantify the condensation and desublimation at different
time scales, thus providing a more comprehensive understanding of the spatial and tem-
poral variations of condensation and desublimation on the QTP during 1950~2020. The
specific flow of this study is given by Figure 2.

 
Figure 2. Flow chart of this study.
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2.3.1. Penman Model

The Penman model has a good physical basis with two parts, the thermal term on the
left and the dynamic term on the right [48,49], with the form:

λE =
Δ(Rn − G0)

Δ + γ
+

ρacp(es − ea)/ra

Δ + γ
(4)

where λE (W m−2) is the latent heat flux, Δ (kPa ◦C−1) is the slope of the saturation vapor
pressure curve, Rn (W m−2) is the net radiation flux, G0 (W m−2) is the surface soil heat flux,
ρa (kg m−3) is the air density, cp (J kg−1 ◦C−1) is the specific heat of air at constant pressure,
here the value of 1013 J kg−1 ◦C−1 is used. es (kPa) is the saturated vapor pressure, ea (kPa)
is the actual vapor pressure, ra (m s−1) is the aerodynamic resistance of vapor transport,
and γ (kPa ◦C−1) is the psychrometric constant. All the model parameters are on the hourly
timescale. The negative latent heat flux is converted to condensation or desublimation by:

E =
A
ρ

λE
λ

(5)

where E (mm) is the hourly water equivalent of condensation or desublimation, λ (MJ kg−1)
is the latent heat of vaporization or sublimation, A (s) is the time interval of hourly me-
teorological variables, and ρ (kg m−3) is the water density. By accumulating the hourly
condensation and desublimation, the monthly and annual condensation and desublimation
used for quantitative analysis can be obtained. The parameters for the Penman model and
their calculation methods are listed in detail by Table 3, and the required meteorological
variables are listed in detail by Table 1.

Table 3. Parameters for the Penman model and their calculation method.

Model Parameters Symbols Units Calculation Methods References

Slope of saturation vapor
pressure curve Δ kPa ◦C−1 Δ = 4098·es

(237.3+Ta)
2 [50,51]

Net radiation Rn W m−2 Rn = Rs + Rt [47,52]

Surface soil heat flux G0 W m−2 G0 = 0.5 · Rn (Rn ≤ 0) [47,52]

Air density ρa kg m−3 ρa = 1.293 Pa
Patm

273.15
273.15+Ta

[53,54]

Specific heat of air at
constant pressure cp J kg−1 ◦C−1 1013 [47]

Saturated vapor pressure es kPa es = 0.6108 · exp( 17.27·Ta
237.3+Ta

) [50,55]

Actual vapor pressure ea kPa ea = 0.6108 · exp( 17.27·Td
237.3+Td

) [50,55]

Aerodynamic resistance of
vapor transport ra m s−1 ra =

√
u2+v2

u∗2

(
4.87

ln(67.8z−5.42)

)
(Rn ≤ 0) [47,52,56]

Height of wind component z m 10 [38–40]

Psychrometric constant γ kPa ◦C−1
γ =

⎧⎨
⎩ 0.665 × 10−3Pa Td > 0

0.588 × 10−3Pa Td ≤ 0
[47,52]

Latent Heat of
Vaporization/Sublimation λ MJ kg−1

λ =

⎧⎨
⎩ 2.501 − (2.361 × 10−3)Ta Td > 0

2.835 − (2.361 × 10−3)Ta Td ≤ 0
[47,52]

Time interval A s 3600 Constant

Water density ρ kg m−3 1000 Constant
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2.3.2. MK Trend Test

To analyze the trend of condensation and desublimation, the Mann–Kendall (MK)
trend test [57–60] was used to quantify the trend and its significance of condensation and
desublimation on the QTP during 1950~2020. The MK trend test is performed as follows:

S = ∑n−1
i=1 ∑n

j=i+1 sgn(xj − xi) (6)

sgn(xj − xi) =

⎧⎨
⎩

1
0
−1

(xj − xi) > 0
(xj − xi) = 0
(xj − xi) < 0

(7)

var(S) =
n(n − 1)(2n + 5)− ∑m

k=1 tk(tk − 1)(2tk + 5)
18

(8)

Zc =

⎧⎪⎪⎨
⎪⎪⎩

(S − 1)/
√

var(S)

0

(S + 1)/
√

var(S)

S > 0
S = 0
S < 0

(9)

where S is the statistic of the dataset, n is the length of the dataset, xi and xj are the sequential
data values in time series i and j, m is the number of tied groups, and tk denotes the number
of ties of extent k and a tied group is a set of sample data having the same value, Zc is
the standardized statistics of the dataset, and the positive Zc indicates an increasing trend
of the dataset, while the negative values Zc indicate a decreasing trend of the dataset. If
|Zc| > Z1−α/2, the trend is statistically significant, otherwise, the trend is not statistically
significant. Trend test of condensation and desublimation was done at the significance level
of α = 0.05 (|Z1−α/2| = 1.96, 95% confidence level), i.e., when the Zc of condensation or
coagulation was greater than 1.96, it indicates that condensation or desublimation shows a
significant increasing trend, while when the Zc of condensation or desublimation was lower
than −1.96, it indicates that condensation or desublimation shows a significant decreasing
trend; otherwise, there was no significant trend of condensation or desublimation.

2.3.3. Sen’s Slope Analysis

The magnitude of the trend (i.e., slope in variation per unit time) of condensation
and desublimation was determined using a non-parametric method known as Sen’s slope
analysis [59–61], and the slope is expressed as:

β = Median(
xj − xi

j − i
) 1 < i < j < n (10)

where β is the slope of the dataset, a positive β denotes an increasing trend of condensation
or desublimation, while a negative β means a decreasing trend of condensation or desubli-
mation. A larger value of |β| means a greater increase or decrease in condensation and
desublimation.

3. Results

3.1. Accuracy of Estimated Condensation and Desublimation

The comparison of the monthly condensation and desublimation measured by the
Eddy Covariance with those estimated by the Penman model at nine flux stations on
the QTP is shown in Figures 3 and 4, respectively. As can be seen from Figure 3, the
coefficient of determination (R2) between estimated and measured monthly condensation
is greater than or equal to 0.55 for all stations, indicating that the Penman model with
nine meteorological variables from ERA5-Land and ERA5 reanalysis datasets as inputs has
good applicability in estimating monthly condensation on the QTP. Among the nine flux
stations on the QTP, the largest R2 between estimated and measured monthly condensation
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is 0.94 for Xiyinghe station, the smallest R2 between estimated and measured monthly
condensation is 0.55 for Ngari station, and the average R2 between estimated and measured
monthly condensation is 0.82 for all stations.

Figure 3. Comparison of estimated and measured monthly condensation at the nine flux stations on
the QTP.

Compared with the R2 between estimated and measured monthly condensation, the
R2 between estimated and measured monthly desublimation is much smaller at the nine
flux stations on the QTP (Figure 4). As can be seen from Figure 4, the R2 between estimated
and measured monthly desublimation is less than or equal to 0.71 for all stations, indicating
that the Penman model with nine meteorological variables from ERA5-Land and ERA5
reanalysis datasets as inputs is less applicable in estimating monthly desublimation than
in estimating monthly condensation on the QTP. Among the nine flux stations on the
QTP, the largest R2 between estimated and measured monthly desublimation is 0.71 for
Qomolangma station, the smallest R2 between estimated and measured monthly desubli-
mation is 0.46 for Xiyinghe station, and the average R2 between estimated and measured
monthly desublimation is 0.59 for all stations.

Although the R2 between estimated and measured monthly condensation is higher
than the R2 between estimated and measured monthly desublimation, the R2 between
estimated and measured annual condensation is much smaller than the R2 between esti-
mated and measured annual desublimation, as shown in Figure 5. The average R2 between
estimated and measured annual condensation for all stations is 0.56, while the average R2

between estimated and measured annual desublimation is 0.91.
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Figure 4. Comparison of estimated and measured monthly desublimation at the nine flux stations on
the QTP.

Clearly, the Penman model with nine meteorological variables from ERA5-Land and
ERA5 as inputs is more accurate for estimating monthly condensation than for estimating
annual condensation, and less accurate for estimating monthly desublimation than for
estimating annual desublimation. Overall, the accuracy of the estimated monthly and
annual condensation and desublimation is adequate for the study.

Figure 5. Comparison of estimated and measured annual condensation, annual desublimation at all
flux stations on the QTP.

3.2. Spatial Distribution of Condensation and Desublimation

The spatial distribution characteristics of annual mean condensation, annual mean
desublimation, and annual mean total condensation and desublimation on the QTP from
1950 to 2020 and their standard deviations are shown in Figure 6. As can be seen in
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Figure 6a, the annual mean condensation on the QTP showed a decreasing trend from
southeast to northwest, with a large difference between the annual condensation in the
southeast and northwest, and the annual mean condensation ranges from 0 mm to 72.8 mm.
However, areas with condensation between 36 mm and 72.8 mm account for less than 5%
of the total area of the QTP. The areas with the highest annual condensation were in the
southeastern river valleys, and the areas with the lowest annual condensation were in the
Northwest QTP and the Tsaidam Basin. The spatial distribution of the standard deviation
of annual condensation was basically consistent with that of annual mean condensation,
and the greater the annual mean condensation, the greater the standard deviation of annual
condensation, and vice versa (Figure 6d).

Figure 6. Spatial distribution characteristics of annual mean condensation, annual mean desublima-
tion and annual total mean condensation and desublimation from 1950 to 2020 and their standard
deviations. (a) Annual mean condensation; (b) Annual mean desublimation; (c) Annual mean
total condensation (Con) and desublimation (Des); (d) the Standard divisions of annual condensa-
tion; (e) the Standard divisions of annual desublimation; (f) the Standard divisions of annual total
condensation and desublimation.
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Unlike the spatial distribution characteristics of annual mean condensation, the spatial
distribution of annual mean desublimation did not have zonal characteristics seen in
Figure 6b. The annual mean desublimation in the Qiangtang Plateau, Tsaidam Basin, and
the eastern edge of the QTP were significantly lower than those in other regions. The
annual mean desublimation on the QTP as a whole ranges from 0 mm to 23.6 mm, and
the difference in annual mean desublimation between regions is much smaller than that
of annual mean condensation. The spatial distribution of the standard deviation of the
annual desublimation was not consistent with the spatial distribution of the annual mean
desublimation, and the standard deviations were small overall (Figure 6e).

Influenced by the spatial distribution of annual mean condensation and annual mean
desublimation, the spatial distribution of total annual mean condensation and desublima-
tion showed obvious regional differences, i.e., the southeastern and northeastern parts of
the QTP were the regions with the largest total condensation and desublimation, followed
by the Qiangtang Plateau and the lowest in the Tsaidam Basin (Figure 6c). The range of the
total annual mean condensation and desublimation for the whole QTP was from 0 mm to
76.8 mm, but only less than 5% of the areas have the total annual mean condensation and
desublimation exceeding 45 mm. In addition, the spatial distribution characteristics of the
standard deviation of the total annual condensation and desublimation were consistent
with the spatial distribution of the annual condensation, with the Qiangtang Plateau being
the region with the larger standard deviation of the total annual condensation and desubli-
mation, and the Tsaidam Basin being the region with the smaller standard deviation of the
total annual condensation and desublimation (Figure 6f).

3.3. Spatial Trends of Condensation and Desublimation

In order to quantify the spatial trends of condensation, desublimation, and total
condensation and desublimation on the QTP, a significance analysis based on MK trend
test and magnitude of the trends based on Sen’s slope analysis were conducted for annual
condensation, annual desublimation, and total annual condensation and desublimation as
shown in Figure 7. As can be seen from Figure 7a, the annual condensation showed a clear
increasing trend in the central part of the QTP, and only a small part of the northeastern
QTP showed a clear decreasing trend, while the annual condensation in other regions did
not show a clear trend. In addition, it can also be seen from Figure 7d that the annual
condensation showed an increasing trend in most regions of the QTP and a decreasing trend
in the Tsaidam Basin and the eastern and southern margins of the QTP, with a maximum
increase rate of 1.70 mm/10a and a maximum decrease rate of −1.16 mm/10a.

Figure 7b shows that the annual desublimation showed a significant decreasing trend
in most regions of the QTP, and only in a very small part of the eastern QTP showed a
significant increasing trend. The magnitude of the annual desublimation trend in Figure 7e
also indicates that desublimation showed a decreasing trend in the majority of the QTP, with
a maximum decrease rate of −0.9 mm/10a and a maximum increase rate of 0.43 mm/10a.

Since the decreasing trend of desublimation on the QTP was more significant than the
increasing trend of condensation, the decreasing trend of total condensation and desublima-
tion was more obvious than the increasing trend shown in Figure 7c. The total condensation
and desublimation showed a regionally significant decreasing trend in the northeastern
QTP, and southeastern QTP and the Qiangtang Plateau, while the increasing trend of total
condensation and desublimation was not regional, and the maximum decreasing rate of
annual condensation and desublimation was −1.49 mm/10a and the maximum increasing
rate was 1.62 mm/10a.
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Figure 7. Significance and magnitude of the trend of annual condensation, annual desublimation,
and annual total condensation and desublimation from 1950 to 2020 based on MK trend test (95% con-
fidence level) and Sen’s slope analysis. (a) Trend test of condensation; (b) Trend test of desublimation;
(c) Trend test of total condensation (Con) and desublimation (Des); (d) Sen’s slope of condensation;
(e) Sen’s slope of desublimation; (f) Sen’s slope of total condensation and desublimation.

3.4. Spatial Variations in Condensation and Desublimation

To better visualize the spatial variation characteristics of condensation and desubli-
mation on the QTP, the percentage change of condensation and desublimation in the last
two decades compared to the first two decades of the study period from 1950 to 2020 was
quantified, as shown in Figure 8. From Figure 8a,b, it is clear that the increasing proportion
of annual condensation on the QTP has an increasing trend from southeast to northwest,
while the decreasing proportion of annual desublimation and the decreasing proportion
of total annual condensation and desublimation showed a regional rather than a zonal
pattern. In general, in the last two decades compared to the first two decades of the QTP
from 1950 to 2020, the mean percentage increase of annual condensation was 19.6%, the
mean percentage decrease of annual desublimation was 11.5%, and the mean percentage
decrease of annual total condensation and desublimation was 4.6%.
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Figure 8. Proportional variations in annual condensation, annual desublimation and annual total
condensation and desublimation on the QTP in the last two decades compared to the first two
decades, from 1950 to 2020.

3.5. Monthly Variations in Condensation and Desublimation

Figure 9 shows the monthly variations of condensation, desublimation, and the total
condensation and desublimation averaged over 1950~2020. From Figure 9a, it can be
seen that condensation showed obvious seasonal differences, i.e., the summer was the
season with the highest amount of condensation, while the winter was the season with
the lowest amount of condensation. The August was the month with the highest amount
of condensation of 2.37 ± 0.44 mm, and January was the month with the lowest amount
of condensation of 0.02 mm, which was almost negligible. As can be seen from Figure 9b,
the desublimation also showed a clear seasonality, but the seasonality of desublimation
was different from the seasonality of condensation, i.e., there were two seasons in the year
when desublimation was enriched, namely, spring and autumn, in which the month with
the highest amount of desublimation was October of 1.45 ± 0.2 mm, and the month with
the lowest amount of desublimation was July of 0.5 ± 0.15 mm. The monthly variations
of the total condensation and desublimation was influenced by the monthly variations of
condensation and desublimation, with July to September being the period of maximum total
condensation and desublimation, while December to February of the following year was
the period of minimum total condensation and desublimation (Figure 9c). The maximum
amount of the total condensation and desublimation was in August, with an average value
of 2.97 ± 0.37 mm, and the minimum amount of the total condensation and desublimation
was in February, with an average value of 0.77 ± 0.10 mm.
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Figure 9. Variations of monthly condensation, monthly desublimation, and monthly total condensa-
tion and desublimation. (a) Monthly condensation; (b) Monthly desublimation; (c) Monthly total.

Although the monthly maximum amount of condensation was much larger than the
monthly maximum amount of desublimation, the monthly mean amount of desublimation
was larger than the monthly mean amount of condensation. The monthly mean amount of
condensation was 0.70 mm, the monthly mean amount of desublimation was 0.95 mm, and
the monthly mean total amount of condensation and desublimation was 1.66 mm.

3.6. Annual Variations in Condensation and Desublimation

The variations of annual condensation, annual desublimation, and their sums for
the entire region of the QTP are shown in Figure 10. From Figure 10a, it is clear that
the annual desublimation showed a continuous decreasing trend, while the annual con-
densation fluctuated more in the initial years and then showed a continuous increasing
trend. The rate of decrease of desublimation was −0.26/10a and the rate of increase of
condensation in the later years was 0.24/10a. Since the absolute value of the decrease rate
of annual desublimation was greater than the increase rate of annual condensation, the
total annual condensation and desublimation also showed a weak decreasing trend, as
shown in Figure 10b. Furthermore, it can be found from Figure 10a that the increase in
annual condensation will exceed the decrease in annual desublimation in recent years,
and the increase in condensation will dominate in the future, and the annual total con-
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densation and desublimation will change from a decreasing trend to an increasing trend.
It can also be found in Figure 10a that the annual mean desublimation was greater than
the annual mean condensation, with annual mean desublimation of 11.45 ± 0.85 mm and
annual mean condensation of 8.45 ± 0.94 mm, for annual mean total condensation and
desublimation of 19.89 ± 1.2 mm. The higher annual mean desublimation than the annual
mean condensation reflects the cold climate characteristics of the QTP, while the increasing
trend of condensation and decreasing trend of desublimation also reflect the warming of
the regional climate.

 
Figure 10. Variations of annual condensation, annual desublimation, and annual total condensation
and desublimation. (a) Annual variations of condensation and desublimation; (b) Annual variations
of the total condensation and desublimation. kC represents the rate of variation in annual condensa-
tion, kD represents the rate of variation in annual condensation, and kT represents the rate of variation
in annual total condensation and condensation.

3.7. Influencing Factors of Condensation and Desublimation Variations

The occurrence of condensation and condensation is the result of a combination of
meteorological factors, among which temperature and relative humidity are the most
important meteorological variables affecting the occurrence of condensation and desub-
limation. Since the relative humidity is closely related to variations in air temperature
and precipitation, the current study focuses on analyzing the variations in air temperature,
precipitation, and the relationship between variations in condensation and desublimation
and variations in air temperature and precipitation on the QTP.

As shown in Figure 11a,d, the annual mean temperature and annual precipitation
showed an overall increasing trend, but both trends were phased, i.e., both the annual mean
temperature and annual precipitation showed a decreasing trend followed by an increasing
trend on the QTP from 1950 to 2020. Since the 1970s, the average annual temperature has
been increasing at a rate of 0.25 ◦C/10a, and the annual precipitation has been increasing at
a rate of 13.02 mm/10a. From 1950 to 2020, the mean annual temperature was −3.95 ◦C
and the mean annual precipitation was 388 mm of the QTP.
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Figure 11. Variations in annual mean temperature and annual precipitation, and the correlation
between annual condensation, annual desublimation, and annual mean temperature, annual precipita-
tion on the QTP from 1950 to 2020. (a) Annual mean temperature; (b) The correlation between annual
condensation and annual mean temperature; (c) The correlation between annual desublimation and
annual mean temperature; (d) Annual precipitation; (e) The correlation between annual condensation
and annual precipitation; (f) The correlation between annual desublimation and annual precipitation.

From Figures 10a and 11a,b, it can be seen that the variations in annual mean tempera-
ture and annual precipitation are more consistent with the variations in annual conden-
sation. In addition, from Figure 11b,c,e,f, it can be seen that there is a positive correlation
between annual mean temperature, annual precipitation, and annual condensation, and
a negative correlation with annual desublimation, indicating that the increase in annual
mean temperature and annual precipitation is favorable to the occurrence of condensation
and unfavorable to the occurrence of desublimation on the QTP.

The above results show that the increase in annual condensation is most correlated
with the increase in annual precipitation, while the decrease in desublimation is most
correlated with the increase in temperature, and the increase in precipitation is the dom-
inant meteorological variable in the increasing trend of annual condensation, while the
increase in temperature is the dominant meteorological variable in the decreasing trend of
annual desublimation.
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4. Discussion

4.1. Uncertainty in the Evaluation of Condensation and Desublimation

In the present study, nine meteorological variables from the ERA5-Land and ERA5
reanalysis datasets were used as inputs to generalize the occurrence of condensation and
desublimation based on the Penman model, which inevitably resulted in systematic errors
in the evaluation of condensation and desublimation. Therefore, the main uncertainties in
this study arise from the two following aspects: the applicability of ERA5-Land and ERA5
reanalysis datasets for land surface process studies on the one hand, and the applicability
of the Penman model in evaluating condensation and desublimation occurrence studies on
the other hand.

ERA5-Land and ERA5 are currently more recognized reanalysis datasets with high
spatial and temporal resolution, and they have been widely used in studies of land surface
processes including land–atmosphere interactions, meteorology, and hydrology [28]. The
applicability evaluation of ERA5-Land on the northeastern QTP shows that the correlation
between the assimilated temperature in ERA5-Land and the observed temperature at
meteorological stations was very high, and ERA5-Land reproduced the spatial distribution
of temperature more accurately; however, ERA5-Land underestimated the temperature of
different degrees, and this phenomenon was also found in the applicability evaluation of
ERA5-Land on a national scale [28,62]. In addition, the evaluation of different variables
in ERA5-Land in different regions also shows that ERA5-Land has better performance in
reproducing corresponding meteorological elements [63–65]. Compared to ERA5-Land,
ERA5 is more widely applicable due to its earlier development. Most studies based on
ERA5 reanalysis datasets have shown that ERA5 variables have good spatial and temporal
consistency with the observed meteorological elements, despite under- and over-estimation
of some meteorological variables [66]. Compared with other types of reanalysis data,
ERA5-Land and ERA5 have higher spatial and temporal resolution, making them the most
widely used reanalysis datasets at present. In general, the ERA5-Land and ERA5 reanalysis
datasets have good applicability in land surface process studies, especially for large scale
land–atmosphere interactions, and meteorological and hydrological process studies.

The widely accepted method for estimating the latent heat flux is the Eddy Covariance
method [67], but the Eddy Covariance equipment is expensive and only applicable to
in situ observations, which cannot be used for large scale and regional latent heat flux
estimation. Compared with the Eddy Covariance method, the Penman model also has a
better physical basis and can be used for large scale and regional latent heat flux estima-
tion [68]. The estimation of condensation (dew) and desublimation (hoarfrost) based on the
Penman model shows very good agreement between the total amount of dew and hoarfrost
estimated by the Penman model and the total amount of dew and hoarfrost measured by
microlysimeters; and the Penman model slightly underestimates the total amount of dew
and hoarfrost [4,24].

From Figures 3–5, the average R2 between the estimated and measured monthly
condensation and monthly desublimation are 0.82 and 0.59, respectively, and the average
R2 between the estimated and measured annual condensation and annual desublimation are
0.56 and 0.91, respectively, for the nine flux stations on the QTP, indicating that the accuracy
of the monthly and annual condensation and desublimation, estimated by the Penman
model with nine meteorological variables from ERA5-Land and ERA5 as inputs, is adequate
for the present study. Overall, although there are uncertainties in evaluating condensation
and desublimation based on the Penman model using the ERA5-Land and ERA5 reanalysis
datasets, the method can effectively reproduce the spatial and temporal variations of
condensation and desublimation, which is useful for improving the understanding of
condensation and desublimation over the QTP.

4.2. Impact of Condensation and Desublimation on Alpine Ecosystem

Previous studies of condensation and desublimation mainly focused on arid and semi-
arid regions [8,18,69–71], and there are less studies of condensation and desublimation in
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alpine regions [4,12]. However, the magnitude of condensation and desublimation in alpine
regions is much larger than that in arid and semi-arid regions [72,73], and the ecological
and hydrological roles of condensation and desublimation in alpine regions and arid and
semi-arid regions is obviously different [25]. The alpine regions are the generally referred
to areas with high altitude, low temperature, and large diurnal temperature differences,
as well as areas with short growing periods and low effective accumulation temperatures
due to the high altitude [74]. The near-surface atmospheric hydrothermal conditions in
alpine regions are highly variable, with frequent evaporation, sublimation, condensation,
and desublimation interaction processes, which play an important role in the ecological
and water vapor internal circulation processes in the region [75–77].

Observation experiments on condensation and desublimation carried out in recent
years in alpine regions have shown that condensation and desublimation have unique
ecological and hydrological roles in alpine regions, and that condensation and desublima-
tion are one of the water sources in alpine regions that are no less important than in arid
and semi-arid regions [11,78,79]. Observations in the coarse gravel accumulation area of
Siberian slopes show that condensation recharge of water vapor exists in the pore space
of mountain gravel and gravel layers, the amount of condensation can reach 80 mm in
summer [80], and condensation recharge accounts for 15−20% of the total recharge. Kuhle
found in the alpine mountains of the northern slopes of the Himalayas that condensation
causes alpine rocky slopes to be completely covered by alpine meadows [81]; and in the
alpine belt, where 80% of the soil is coarse-boned, the potential soil moisture can last
only 13 days under continuous sunny weather but 22 days with surface condensation
occurring [82]. The present study shows that the annual mean total condensation and
desublimation is 19.89 mm, the annual mean precipitation is 388 mm, and the ratio of total
annual condensation and condensation to annual precipitation is 5.13% on the QTP. In
fact, the direct contribution of condensation and desublimation to surface water input in
alpine regions is low, and condensation and desublimation mainly moderates the periodic
physiological water deficit of vegetation caused by low temperatures [25]. In alpine regions
with greater diurnal temperature differences and strong radiative cooling at night, the
greater the land–atmosphere temperature difference, the higher the risk of frost damage to
vegetation; the formation process of condensation and desublimation releases part of the la-
tent heat, which replenishes the energy deficit at the surface, alleviates the low temperature
stress on vegetation, and reduces the risk of frost damage to vegetation [12].

In summary, the ecological and hydrological roles of condensation and condensation
in alpine regions like the QTP are reflected in the two following aspects: on the one
hand, condensation and desublimation are part of surface water input, which alleviate
the physiological water deficit of surface plants, animals, and microorganisms due to low
temperatures; on the other hand, the occurrence of condensation and desublimation releases
latent heat, which replenishes the energy deficit near the surface, alleviates the difference
in ground temperature, and serves to reduce the risk of frost damage to surface plants
and animals and microorganisms. Therefore, it can be considered that condensation and
desublimation play an important role in maintaining the development of alpine ecosystems,
with areas of increased condensation and desublimation indicating a trend towards better
ecosystem conditions, while areas of decreased condensation and desublimation imply a
trend towards worse ecosystem conditions.

5. Conclusions

The present study focuses on evaluating the spatial and temporal variations of conden-
sation and desublimation on the QTP from 1950 to 2020 based on the Penman model using
meteorological variables from ERA5-Land and ERA5 reanalysis datasets. Condensation
and desublimation were often neglected, but condensation and desublimation were major
processes of land–atmosphere interactions, energy transfer, and water cycle at night and
have important ecological and hydrological roles in alpine regions to alleviate the physio-
logical water deficit of surface plants, animals, and microorganisms due to low temperature
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and reduce the risk of frost damage to surface plants, animals, and microorganisms. There-
fore, evaluating the spatial and temporal variations of condensation and desublimation not
only improves the understanding of land–atmosphere interactions, energy transfer, and
water cycles, but also contributes to the understanding of the operational mechanisms of
alpine ecosystems on the QTP.

The results showed that there were large regional differences in condensation and
desublimation on the QTP, with annual mean condensation ranging from 0 mm to 72.8 mm,
annual mean desublimation ranging from 0 mm to 23.6 mm, and annual mean total
condensation and desublimation ranging from 0 mm to 76.8 mm. Condensation showed a
significant increasing trend in the central and northwestern parts of the QTP, desublimation
showed a significant decreasing trend in most parts of the QTP, and the decreasing trend of
desublimation was more significant than the increasing trend of condensation.

Both condensation and desublimation have significant seasonal characteristics, with
condensation being most abundant in the summer, and desublimation in the spring and
autumn. The maximum monthly condensation was 2.37 mm, the monthly mean condensa-
tion was 0.70 mm, the maximum monthly desublimation was 1.45 mm, the monthly mean
condensation was 0.95 mm, and the total monthly mean condensation and desublimation
was 1.66 mm. The annual mean condensation was 8.45 mm, the annual mean desublimation
was 11.45 mm, and the total condensation and desublimation was 19.89 mm. The annual
condensation hadan increasing trend of 0.24 mm/10a, the annual desublimation had a
decreasing trend of −0.26 mm/10a, and the total annual mean condensation and desubli-
mation had a weak decreasing trend. The increase in condensation is most associated with
the increase in precipitation, while the decrease in desublimation is most associated with
the increase in air temperature on the QTP.

The ratio of total annual condensation and desublimation to precipitation is 5.13%.
Although the annual mean desublimation was higher than the annual mean condensation,
the increase in condensation will exceed the decrease in desublimation in the future. As
condensation exceeds desublimation, the total amount of condensation and desublimation
tends to increase, indicating that the ecosystem shows a trend toward improvement on
the QTP.
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Abstract: The yardangs surrounding the Suoyang City ruins are proven to be wind-eroded landforms
developed in an oasis which was used for agriculture in history. According to OSL and 14C dating,
as well as historical records of local human activities, we suggest that the formation of yardangs
in the Suoyang City oasis probably started in the mid-Yuan Dynasty of China (AD 1291). After
being abandoned, the Suoyang City oasis quickly evolved into desert land with yardangs and
nebkhas under the background of desertification enlargement in a cold, dry climate in the Hexi
Corridor. Although human factors are considered to have played an important role in the process
of desertification, the effect imposed by climatic changes should not be ignored. Desertification
constitutes a serious threat to human survival and development, we should reasonably develop and
utilize water and land resources, effectively prevent and control desertification, and promote the
harmonious development between man and nature in arid areas.

Keywords: yardangs; wind erosion; climatic–environmental significance

1. Introduction

The word yardangs are used in geomorphology to describe elongated, streamlined
landforms that are produced by wind erosion [1–4]. Yardangs are present in many of
the world’s major deserts, including the Sahara Desert in Africa, the Namib Desert in
Namibia, the Lut Desert in Iran, and the Taklimakan Desert in China, as well as on planets
such as Mars and Venus [3,4]. Early explorers and geographers were attracted by the
unique morphology and mysterious origin of these landforms and referred to them as
Dragon City or Demon Castle. For example, yardangs in the Lop Nur region of China were
described as “White Dragon Dunes” in the Book of the Han Dynasty 2000 years ago [3,5]. Li
Daoyuan, a Chinese geographer during the Wei Dynasty 1500 years ago, proposed that the
yardangs in the Lop Nur region were formed by water erosion and subsequently sculpted
by wind [5]. The Swedish explorer Sven Hedin proposed the name “yardangs” (a Turkmen
word that means “steep hills”) in the Lop Nur region of Northwest China in 1903 [1]. This
word subsequently became the standard terminology that is widely accepted and used by
scholars in geomorphology.

Previous studies have mostly focused on yardangs formed in Gobi desert [3–8] rather
than in agricultural areas. Suoyang City and its surrounding oasis are typical representa-
tives of the ancient cities and oases that suffered from severe desertification in the Hexi
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Corridor. The occurrence of yardangs indicates an important climatic and environmental
change in this region. In this study, we investigated the yardangs around the Suoyang City
ruins in the Hexi Corridor, which was a famous agricultural region in history. Our aim was
to explore the formation process of the yardangs and their climatic–environmental signifi-
cance, as well as provide a reference for the development of agriculture, the prevention
and control of desertification, and the harmonious development between man and nature
in arid areas.

2. Study Area

The yardangs around the Suoyang City ruins (Figure 1) are located in Guazhou basin
of the Hexi Corridor. The Guazhou basin (39◦52′N–41◦53′N and 94◦45′E–97◦00′E) is located
in Northwestern China. Since the Cenozoic, the collision and compression between the
Indian and Eurasian plates have resulted in rapid uplift of the Tibetan Plateau, forming
a wide range of basin mountain tectonic patterns in both the interior and the edge of the
plateau. The Guazhou basin (Figure 1) is located in the basin mountain tectonic pattern
on the northeast edge of the Tibetan Plateau, with the Qilian Mountains to the south and
the Beishan Mountains to the north. Therefore, the terrain has a high elevation in the
south and north, is low in the middle, and gradually inclines toward the center of the
basin. The Guazhou basin is located in the hinterland of the Eurasian continent, with an
arid climate, scarce precipitation, and low vegetation coverage. The main river in this
region is the Shule River. The annual average temperature is 6.79 ◦C (1998–2018) (Figure 2),
with a warm temperate continental arid climate. The annual average precipitation is
64.96 mm (1998–2018), of which 60% occurs during the summer [9]. The zonal soil is
gray-brown desert soil.

Guazhou was located at a bottleneck of the old Silk Road and was a hub for economic
and cultural exchange between China and the West in history. The Suoyang City ruins
(Figure 3a) were listed as a world cultural heritage site in June 2014.

 

Figure 1. Locations of the Suoyang City ruins in Guazhou basin and the sample site.
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Figure 2. Average annual precipitation (a) and temperature (b) of the study area in 1998–2018.

In the past, the oasis reclamation area around the Suoyang City ruins (Figure 3a) was a
prosperous agricultural region. Even today, the remains of ancient irrigation channels and
field ridges are still visible. A dam of about 100 m wide was found 8 km to the southeast of
the Suoyang City ruins, and there is an irrigation channel connected to the dam and the
upstream mountain pass of the Shule River. In the downstream, the channel is divided into
several branches leading to the ancient oasis reclamation area around the Suoyang City
ruins. On the basis of remote sensing images of field ridges and irrigation channels, we
calculated that the ancient reclamation area around the Suoyang City ruins covered roughly
3.42 × 102 km2. Although the Suoyang City oasis was a prosperous region in history, the
geomorphic landscape of this area is currently dominated by vast yardangs (Figures 3b and
4a), nebkhas (Figure 4b), and saline–alkaline land; in some areas, the nebkhas are as high
as the ramparts.

 

Figure 3. The Ta er Temple (a) in Suoyang City ruins, and the surrounding yardangs (b).

 

Figure 4. The dating sample profile (a) and nebkhas (b)surrounding the Suoyang City ruins.
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3. Materials and Methods

3.1. Temperature and Precipitation

The annual mean precipitation and temperature used to describe climatic conditions
in the study area were derived from the TRMM_3B43 and CRU TS4.05 climate datasets,
respectively. As shown in Figure 2, the mean annual precipitation from 1998 to 2018
was 64.96 mm, much less than 200 mm (the thresholds for defining arid land), indicating
an extreme arid climate in the study area. The average annual temperature in the last
20 years (1998–2018) was low and very stable. Additionally, although the average annual
temperature remains low (6.79 ◦C) and shows little long-term trend, climate change also
imposes a great influence on this region for a significant increasing trend (p < 0.05) of
precipitation, as detected by the Mann–Kendall (MK) trend test, which may have resulted
from the impact of global warming [10–13].

3.2. The Age of Yardangs Surrounding the Suoyang City Ruins

Yardangs are wind-eroded landforms that are different from wind accumulation
landforms. The strata age is not the same as the age of the yardangs, the age of the yardangs
is the time when wind erosion first began to cut into the uppermost strata of the land
surface. Therefore, it is very difficult to determine the age of the yardangs. However,
the occurrence of yardangs indicates significant environmental changes, especially for the
development of yardangs in oasis agricultural areas. Therefore, it is very important to
determine the age of the yardangs surrounding the Suoyang City oasis.

In this paper, we attempted to date the existing top stratum of the yardangs using
the optically stimulated luminescence (OSL) dating method to obtain an approximate
age of the yardangs. Samples were dated using the OSL dating method in Luminescence
Research Laboratory, Shandong Provincial Key Laboratory of Water and Soil Conservation
and Environmental Protection, School of Resource and Environmental Sciences, Linyi
University. We collected a 2.8 m deep yardang profile (Figure 4a) and dated the age at the
depths of 0.7 m and 2.5 m; the 0.7 m section showed an age of 0.87 ± 0.04 ka (Table 1), and
the 2.5 m section showed an age of 1.62 ± 0.08 ka (Table 1). As the Suoyang City oasis is
located at the extreme end of the alluvial fan, the deposition rate is relatively stable, and the
sedimentary facies (Figure 4a) also showed that the yardang sedimentary stratum is very
uniform; thus, we assume that this section was relatively uniformly deposited, 0.7–2.5 m
apart by 1.8 m. It took 750 years to deposit this section; thus, we can calculate that the
deposition rate of this section is 0.24 cm/year. According to this deposition rate, we can
calculate that the age of the top stratum of the yardang profile seen at present is about
0.578 ka; hence, we can calculate that the top stratum of the yardang formed at about AD
1444. Radiocarbon 14C dating of branches in the top stratum of the yardang in previous
studies showed that the yardangs surrounding the Suoyang City oasis started to form at
around AD 1410–AD 1460 [14]. Both methods assume that the top strata of the yardangs
are the original final sedimentary layers and that the yardangs began to form immediately
after the original final sedimentary layer deposit. The two methods also assume that the top
stratum of the yardang seen at present has not been eroded. However, since the formation
of yardangs, it is impossible for the top strata of the yardangs to have not suffered from
erosion over time. Therefore, the stratigraphic ages determined using the two methods are
slightly later than the real formation time of the yardangs.

Table 1. K-feldspar pIRIR dating results for samples.

Samples
Depth

(m)
Over-Dispersion

(%)
U

ppm
Th

ppm
K

(%)
Moisture

(%)
Dose Rate

(Gy/ka)
CAM De

(Gy)
CAM

Age (ka)

SYC-02 0.7 8 2.32 9.20 1.59 5 ± 2 3.70 ± 0.10 3.23 ± 0.1 0.87 ± 0.04
SYC-01 2.5 10 2.34 9.00 1.55 5 ± 2 3.59 ± 0.11 5.8 ± 0.2 1.62 ± 0.08
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4. Characteristics and Controlling Factors of the Yardangs

4.1. Characteristics of the Yardangs

The yardangs around the Suoyang City ruins are located on the western edge of the
alluvial fan of the Shule River in Guazhou basin. Unlike the yardangs reported in previous
studies [3,6–8], this region was an oasis reclamation area in the past. Through investigation,
we found that the yardangs were mainly yellow in appearance, elongated and streamlined
in morphology, and developed on fluvial and lacustrine sediments [11]. It is generally
believed that the length of large yardangs is >1000 m, of medium yardangs is 10–1000 m,
and of small yardangs is 1–10 m [14]. In this study, 100 yardangs were measured in the study
area, and we found that their length was 1.6–25.8 m, width was 0.7–9.2 m, and height was
0.8–3.2 m; therefore, the yardangs around the Suoyang City ruins are small–medium in size.
The most important characteristic is that the yardangs surrounding the Suoyang City ruins
show obviously directional, parallel, and streamlined characteristics (Figures 3b and 5).
The majority of the yardangs extend in the east–west direction (Figures 3b and 5), consistent
with the local prevailing wind direction (Figures 5 and 6), but inconsistent with the direction
of gullies formed by flooding (north–south) in this region [9]. In Guazhou basin, the North
Mountain lies in the north, and Qilian Mountain lies in the south; thus, the terrain is high on
both sides and low in the middle. Affected by the terrain, the gullies scoured by local rivers
and floods formed by precipitation extend in the north–south direction. A meteorological
station was installed in the center of the yardang distribution area surrounding the Suoyang
City ruins; the meteorological data (2016–2018) show that the annual sand-driving wind
direction in the study area is mainly easterly (Figure 6), followed by westerly, whereas
other wind directions are rare [9,15]. Therefore, it is easy to understand that the trend of
the yardangs was consistent with the local prevailing wind direction (Figures 5 and 6), but
inconsistent with the direction of gullies formed by rivers and flooding (north–south) in
this region. The strong local prevailing wind transports a large amount of dust and sand,
which grinds and erodes the land surface into long parallel ridges and grooves, forming
large areas of yardangs.

 

Figure 5. Remote sensing image of the yardangs surrounding the Suoyang City ruins.

221



Remote Sens. 2022, 14, 5628

Figure 6. Annual sand-driving wind rose chart: (A) 2016–2017; (B) 2017–2018.

4.2. Controlling Factors of the Yardangs
4.2.1. Sediment Characteristics

The collision and compression between the Indian and Eurasian plates since the
Cenozoic caused rapid uplift of the Tibetan Plateau, forming a range of basin and mountain
tectonic patterns. The Guazhou basin is just located in a basin mountain tectonic pattern
on the northeastern edge of the Tibetan Plateau, with the Qilian Mountains to the south
and the Beishan Mountains to the north. The Shule River, one of the big three inland rivers
in the Hexi Corridor, runs through the basin. The Shule River sediments and the proluvial
deposits brought from the Beishan and Qilian mountains formed a huge piedmont alluvial
fan. These thick Quaternary fluvial and lacustrine sediments provide material conditions
for the development of agriculture and the formation of yardangs.

4.2.2. Fluvial Erosion

Yardangs are considered to be among the most typical wind-eroded landforms, but
the role of water flow should not be ignored. Despite an extreme arid climate, the inter-
mittent water flow formed by precipitation plays an important role in the development
of yardangs. Although the average annual precipitation in Guazhou is only 64.96 mm
(Figure 2), the precipitation during rainstorms is sufficient to form surface runoff and
erode the surface, forming dense gully systems, which provides conditions that are
conducive to enhance wind erosion.

4.2.3. Wind Erosion

Wind erosion is the most significant agent responsible for the formation of yardangs
in the Suoyang City oasis reclamation area. As Guazhou basin is located in the hinterland
of the Eurasian continent and is far from the sea, the Kunlun Mountains, Qilian Mountains,
Himalayas, and Qinling Mountains block the flow of humid air from the Indian and Pacific
Oceans, resulting in an extremely dry climate, highlighting wind as the most important
external force in this region. Guazhou basin is located in the Shule River valley between the
Beishan Mountains and the Qilian Mountains. When airflow enters the valley, the air duct
narrows, and the wind speed increases; thus, Guazhou is known as the “wind reservoir
of the world” [15]. Accordingly, wind erosion in Guazhou basin is very strong. Previous
studies have shown that the threshold velocity for sand movement in Guazhou basin is
mainly composed of two groups of wind with opposite directions. The main wind direction
is northeast, accounting for 68.86% of the annual threshold velocity for sand movement,
followed by southwest wind, accounting for 27.67% of the annual threshold velocity for
sand movement (Figure 6) [9]. Through field investigations, we found that the long axis
of yardangs in the Suoyang City oasis reclamation area mostly extends in the east–west
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direction, consistent with the local prevailing wind direction but inconsistent with the
north–south direction of ravines scoured by rainstorms and floods in this area [9]. Wind
erosion is obviously the main external force for the formation of yardangs surrounding the
Suoyang City ruins.

4.2.4. Weathering and Collapse

Physical weathering and collapse are also important factors in the development of
yardangs. Physical weathering caused by annual and diurnal temperature variations greatly
influences the fluvial and lacustrine sediments, thereby impacting yardangs. Guazhou is
deeply inland, with big annual and diurnal temperature variations, meaning that physical
weathering is significant to the yardangs in the Suoyang City oasis reclamation area.
The temperature changes create mechanical stress that generates horizontal and vertical
fractures, potentially leading to the collapse of sediments. Wind and water erosion of the
underlying soft and loose sediments can also lead to the collapse of overlying strata.

5. Results and Discussion

5.1. Desertification Process of the Oasis in the Hexi Corridor

The Hexi Corridor is located in Northwest China, with an extreme arid climate, low
precipitation, and sparse vegetation. The agricultural production is mainly concentrated
in oasis areas in the lower reaches of rivers. In the past, desertification of oasis in the
Hexi Corridor occurred frequently, causing the loss of agricultural land resources, a sharp
reduction in biomass, and even the destruction of the whole oasis ecosystem. Therefore, the
Hexi Corridor is one of the most severe desertification areas in Northwest China [16–18].

There are ten large desertification areas that evolved from the oasis in the Hexi Corridor.
These desert areas are all located in the lower reaches of rivers, with poor water resources
and potential instability in ecosystems, meaning that they are prone to desertification.
For thousands of years, strong winds swept across the ground like a comb, eroding the
farmland into yardangs and nebkhas; some areas were almost completely swallowed by
quicksand, and people’s homes became places where wind and sand raged. The Hexi
Corridor in Gansu Province, through which the famous old Silk Road used to pass, is one
of the areas with the most ancient city ruins. These ruins are considered to be the best
historical specimens of China’s ancient civilization and Silk Road culture, as well as the
most direct historical evidence of environmental changes in the ancient oasis.

Over the last 2000 years, the agricultural production and social development in the
Hexi Corridor made brilliant achievements, especially in the Han, Sui, and Tang Dynas-
ties (202 BC–AD 907). However, there have been stages of environmental changes with
serious desertification in the Hexi Corridor. The desertification process is mainly concen-
trated in the Wei, Jin, and North–South Dynasties (AD 220–AD 589), the late Tang and
Five Dynasties (AD 907–AD 960), and the Ming and Qing Dynasties (AD 1644–AD 1912).
The desertification area was 1070 km2 in the Wei, Jin, and North–South Dynasties, 1765
km2 in the late Tang and Five Dynasties, and 6884 km2 in the Ming and Qing Dynasties [18].
Moreover, over the past 2000 years, among the 38 ancient cities abandoned through deserti-
fication in the Hexi Corridor, 21.05% were abandoned during the Wei, Jin, and North–South
Dynasties, 21.05% were abandoned during the end of the Tang and Five Dynasties, and
57.9% were abandoned during the Ming and Qing dynasties [16]. It has been reported that
there is a good relationship between climate changes and desertification in history of the
Hexi Corridor [19]. The general characteristics of climate changes over the last 2000 years
in China show that there have been four warm periods since the Qin Dynasty, namely,
the western and eastern Han Dynasties (200 BC–AD 180), the Sui and Tang dynasties
(AD 541–AD 810), the Song and Yuan dynasties (AD 931–AD 1320), and the 20th century
(AD 1921–AD 2000). Moreover, there were three cold phases including the Wei, Jin, and
North–South Dynasties (AD 181–AD 540), the late Tang and Five Dynasties (AD 811–AD
930), and the Ming and Qing dynasties (AD 1321–AD 1920) [19].
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Throughout China’s history, the warm period often brought a warm, wet climate,
social stability, and prosperity, as well as a good ecological environment, while the cold
period was often accompanied by a cold, dry climate. In addition, climate changes could
bring about serious social and ecological problems, such as war and desertification. The
relationship between climate and wars in the past 2000 years of China show that most of
the wars occurred in low-temperature periods. There were seven relatively cold periods
(AD 180–AD 360, AD 420–AD 540, AD 840–AD 960, AD 1110–AD 1200, AD 1290–AD
1500, AD 1560–AD 1680, and AD 1830–AD 1890) in Chinese history. Except for the period
of AD 420–AD 540, the other six period all correspond to the high-frequency period of
wars [19]. The Wei, Jin, and North–South Dynasties and the Ming and Qing Dynasties
were the two coldest periods in Chinese history, as well as the periods with the highest
incidence of wars in Chinese history. In the former period, 595 wars occurred, while, in
the Ming and Qing Dynasties, 810 wars occurred. Moreover, in cold periods, the ethnic
minorities in border areas often moved inward, leading to wars breaking out [19]. During
the years of wars, people either died in the war or fled and moved to other places, while
the nomadic lifestyle of the ethnic minorities usually replaced the agricultural lifestyle
of the Han people. Therefore, large areas of farmlands in the oasis were abandoned and
exposed to the surface, without the protection of vegetation; the ancient oasis then became
desert land under strong wind erosion in cold periods, and the surrounding cities usually
declined or were abandoned.

5.2. Desertification Process of the Suoyang City Oasis

The Suoyang City ruins are among the most representative desertified ancient city ruins
in the Hexi Corridor. Suoyang City was built in the Western Jin Dynasty (AD 295) and was
the capital of Guazhou county from the Tang Dynasty to Yuan Dynasty (AD 618–AD 1291).
The Suoyang City oasis was a very prosperous area in history, especially flourishing during
the Tang Dynasty [17]. On 1 August 2022, People’s Daily Online of China reported that the
latest archaeological evidence confirmed that the Ta er Temple in the Suoyang City ruins
was a high-level temple on the old Silk Road, which was built during the Sui and Tang
Dynasties (AD 581–AD 907) and flourished in the Western Xia Dynasty (AD 1038–AD 1227),
indicating that the Suoyang City oasis should be a relatively prosperous area without
desertification in this period, whereas Guazhou experienced some changes during the
Yuan Dynasty. In the early Yuan Dynasty, Guazhou still existed. However, soon after, the
residents of Guazhou were ordered to move out. In AD 1288, the government ordered
the residents of Guazhou to move to Gan State, and, in AD 1291, the Guazhou residents
were ordered to move to Su State. After these large migrations, the residents of Guazhou
were very few, and historical document reported that Guazhou only existed in name [17].
From then on, Suoyang City became empty; the surrounding farmland was abandoned and
suffered from strong wind erosion. Therefore, we can infer that the desertification process
of the Suoyang City oasis probably started in the mid-Yuan Dynasty (AD 1291).

In the early Ming Dynasty (AD 1368–AD 1644), the decline of Suoyang City and its
surrounding oasis was very serious; the government reopened Suoyang City and repaired
it twice during 1435–1494 [17]. In 1472 AD, the Hami Wei (a military organization) moved
to Suoyang City. In the third year of Jiajing (AD 1524), the government could not resist the
attack of border ethnic minorities; hence, it officially abandoned the large areas west of
Jiayuguan State (including Dunhuang and Guazhou) and moved all residents inland [13].
In the following 200 years, Dunhuang and Guazhou were repeatedly occupied by nomadic
tribes from Turpan, Hami, and Mongolia, and the oasis surrounding Suoyang City no
longer operated [17]. In 1738 of the early Qing Dynasty, it was recorded that there was
little arable land around Suoyang City, and the former irrigation channels were all dry and
covered with sand [15], indicating that the Suoyang City oasis had evolved into desert land.

In the Qing Dynasty (AD 1644–AD 1912), the government gradually recovered vast
areas west of Jiayuguan State and resumed the management of Guazhou, whereas the
development of the drainage area of the Shule River focused on the east and north of the
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alluvial fan, and the waste land in the east and north of the alluvial fan was extensively
reclaimed [17]. It was recorded in the 58th year of Kangxi (AD 1719) that the government
built Yumen City, blocked the Shule River estuary, and drove the water to the southeast to
irrigate the newly reclaimed waste land. From then on, the river channel that originally
flowed to Suoyang City in the west of the alluvial fan was cut off and dried up [17]. The
limited discharge of the Shule River was used to irrigate the newly reclaimed waste land to
the east. Therefore, the Suoyang City oasis was completely dried up, and it quickly evolved
into desert land with yardangs and nebkhas under strong wind erosion.

In conclusion, Suoyang City was first built in the Western Jin Dynasty (AD 295)
and was the capital of Guazhou county from the Tang Dynasty to the Yuan Dynasty
(AD 618–AD 1291). In 1291, the residents of Guazhou moved to Su State, after which
Guazhou only existed in name. Hence, we suggest that the desertification of the Suoyang
City oasis started in the mid-Yuan Dynasty (AD 1291), accelerated following the aban-
donment of Guazhou in the mid-Ming Dynasty (AD 1524), and completely evolved into
desert land after the diversion of the Shule River in the early Qing Dynasty (1719 AD).
Coupled with the OSL dating results, we suggest with some confidence that the occurrence
of yardangs in the Suoyang City oasis started in the mid-Yuan Dynasty (AD 1291).

5.3. Environmental Significance of Desertification and the Occurrence of Yardangs Surrounding
the Suoyang City Ruins

The Hexi Corridor is an important agricultural production base and a densely popu-
lated area in Northwest China. Therefore, desertification of the oasis and the ancient cities
in the Hexi Corridor has important environmental significance. Over the last 2000 years,
desertification of the Hexi corridor mainly occurred in the Wei, Jin, and North–South Dy-
nasties, the late Tang and Five Dynasties, and the Ming and Qing Dynasties [16]. Moreover,
the abandonment of all 38 ancient cities through desertification in the Hexi Corridor in
history also occurred in these cold periods [16]. The reasons can be divided into natural
factors and human factors. In terms of natural factors, climate change, especially a cold,
dry climate, can easily cause desertification. With regard to human factors, war, river
diversion, the increasing intensified human activities such as over-deforestation, overgraz-
ing, reclaiming waste land, and building reservoirs for water storage are responsible for
the desertification in the Hexi Corridor [16]. In addition, population is also an important
factor, especially for an arid area located in NW China with a weak environmental carrying
capacity. In history, the population of the Hexi Corridor rarely exceeded 4 × 105 from
the Han to Tang dynasties (202 BC–AD 907); even in the mid-Ming Dynasty, the total
population was about 3.5 × 105, and water resources were mainly used to meet the needs
of irrigation and everyday life. Thus, water and land resource exploitation did not play a
leading role in environment changes of the Hexi Corridor [16]. However, by the early Qing
Dynasty, a great deal of immigrants came to the Hexi Corridor. It was reported that, during
the Year of Jiaqing (AD 1796–AD 1820) in Qing Dynasty, the total population of the Hexi
corridor was about 1.274 × 106 [16]. For the first time, the population density in the Hexi
region rose to 8.8 per square kilometer and broke through the critical index of population
pressure in an arid region (seven persons per square kilometer set by the United Nations in
1977) [16]. Human activities gradually replaced natural factors and became the primary
factor on environmental changes in the Hexi corridor. Subsequently with the development
of science and technology, human activities become the principal cause during the process
of desertification over the last 300 years [16,19].

In history, Guazhou was rich in water resources, such as the Han Dynasty (202 BC–AD 220)
and the Tang Dynasty (AD 618–AD 907) [20]. It was reported that, during the Han and Tang
Dynasty, a large tributary of the Shule River (named Ming River) flowed to the Suoyang
City oasis area, forming a big swamp (namely a lake) 130 km long and 30 km wide in the
downstream [17]. The large tributary and the big swamp provided sufficient irrigation
water for the Suoyang City oasis. By the mid-Yuan Dynasty, the ecological environment
of Guazhou was much worse than the Tang Dynasty, with infinite dunes [21]. Moreover,
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when the Swedish Explorer Sven Hedin passed through Guazhou in 1933, local people
reported that the discharge of the Shule River was much larger 100 years ago; Sven Hedin
believed that this change was not completely caused by the increase in irrigation [21]. In
history, the Shule River transported a large amount of water and would terminate in Lop
Nur in Xinjiang. The Shule River became a seasonal river below Guazhou in the first half of
the 19th century at the latest [21], because Qi Yunshi and Lin Zexu recorded that the Shule
River was dry near Guazhou when they were demoted to Ili of Xinjiang in 1810 and 1842,
respectively, indicating a reduction in river volume and a more arid climate [21].

Both natural factors and human factors are responsible for the desertification of the
Suoyang City oasis and the occurrence of yardangs. In terms of natural factors, in the
last 1000 years, the climate in China gradually turned cold and dry, and the discharge of
rivers and lakes decreased as well [16,19], especially during the Ming and Qing dynasties,
which occurred in the Little Ice Age. Historical records also show an obvious increase
in sand and wind disasters all over the world in this period [14]. On the other hand, the
increasing intensified human activities also played an important role in the process of
desertification [16–18]. For example, after the construction of Shuangta reservoir in 1960,
the river volume in the lower reaches of the Shule River was greatly reduced. Furthermore,
once the oasis turned into a desert, people often left the oasis and moved to a new oasis [22].
Over time, the area of desertification became larger and larger, as land resources in arid
areas are very limited; desertification not only leads to a reduction in people’s living space
but also seriously threatens human survival and sustainable development of the society.
For example, the reduction in river discharge in the lower reaches of the Shule River caused
the retreat of downstream lakes, the shrinkage of wetlands, a reduction in biodiversity, an
increase in soil salinization, and other serious ecological and environmental problems [23].
Therefore, we should reasonably develop and use land and water resources, effectively
prevent and control desertification, and promote harmonious development between man
and nature in arid areas.

6. Conclusions

The yardangs surrounding the Suoyang City ruins were proven to be wind-eroded
landforms developed in an oasis which was used for agriculture in history. According
to OSL and 14C dating, as well as historical records of local human activities, we suggest
that the formation of yardangs in the Suoyang City oasis probably started in the mid-Yuan
Dynasty of China (AD 1291). After being abandoned, the Suoyang City oasis quickly
evolved into desert land with yardangs and nebkhas under the background of desertifica-
tion enlargement in the cold, dry climate in the Hexi Corridor. Although human factors
are considered to have played an important role in the process of desertification, the effect
imposed by climatic changes should not be ignored. Desertification constitutes a serious
threat to human survival and development; we should reasonably develop and utilize
water and land resources, effectively prevent and control desertification, and promote the
harmonious development between man and nature in arid areas.
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Abstract: Lake surface water temperature (LSWT) is a key parameter in understanding the variability
of lake thermal conditions and evaporation. The MODIS-derived LSWT is widely used as a reference
for lake model validations and process studies in data-scarce regions. In this study, the accuracy of
the MODIS LSWT was examined on the Tibetan Plateau (TP). In-situ subsurface temperatures were
collected at five large lakes. Although the observation period covers from summer to winter, only
the observations during the lake turnover period (from October to freeze-up), when the lakes are
well mixed, can be used as ground truth. The MODIS LSWT agrees well with the selected in-situ
data for the five large lakes, with root mean square error (RMSE) < 1 ◦C at nighttime and <2 ◦C in the
daytime, indicating a high accuracy of the MODIS LSWT data. Before the turnover period, the water
is thermally stratified and the surface water is warmer than the subsurface water, and thus the in-situ
subsurface water temperature data and the MODIS LSWT have different representativeness. In this
case, if the observations are used as a validation basis, the MODIS errors could be much magnified.
This in turn indicates the importance of period selection for the validation.

Keywords: Tibetan Plateau; MODIS; lake surface water temperature; lake turnover

1. Introduction

The contrasting properties between the lake and land surfaces (e.g., their surface
albedo, heat capacity and roughness length) can cause local air circulations that affect the
local climate [1–5]. In particular, lake surface evaporation after the onset of the dry and cold
season can increase greatly, causing heavy rainfall or snow downwind of large lakes at high
latitudes and high elevations [2,6,7]. Therefore, lake–atmosphere interactions are included
in the land surface schemes used in high-resolution weather/climate modeling [1,8–13].
The lake surface water temperature (LSWT) is a crucial parameter in calculating evaporation
and sensible heat flux at the lake–air interface [14–18]. In addition, LSWT is widely used in
lake biology and climate change studies [19,20]. However, in-situ LSWT data are often not
available in remote regions such as the Tibetan Plateau.

Instead of in-situ LSWT data, satellite remote sensing data, if proven reliable, can be
used as an alternative [10,11,21–23]. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) LSWT product has been broadly validated worldwide, showing acceptable
errors [24–28]. For the two largest Swedish lakes, the MODIS retrieval showed good agree-
ment with in-situ measurements at a depth of 0.5 m, with a root mean square error (RMSE)
of less than 0.50 ◦C [29]. At the Great Salt Lake, Utah, the MODIS-derived LSWT showed
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a cold bias (−1.5 ◦C) and an RMSE of 1.6 ◦C compared to the in-situ measurements at a
depth of 0.5 m [30]. A cold bias was also found at Lake Taihu, China, and the RMSE was
less than 1.8 ◦C when compared with field measurements at depths of 0.5 to 1 m [31]. These
validation studies do not pay attention to the representativeness of in-situ measurements,
which could be different for different lake thermal phases.

The Tibetan Plateau (TP) has more than 1400 inland lakes with areas greater than
1 km2, and the total area of TP lakes represents more than 50% of the inland water area
in China [32]. Most of the lakes have expanded since the mid-1990s; the expansion is
continuing [33,34] and represents one of the most outstanding environmental change
events [35]. To better understand the response of the lake water and energy budgets to
climate change on the data-scarce TP, the MODIS LSWT has been used to investigate the
lake warming trends [20,36–38] and to validate the simulated bulk temperature of the
mixed layer in lake modeling [22,39–42].

However, caution must be exercised regarding the accuracy of the MODIS LSWT when
it is used for lake process studies on the TP. Xiao et al. [43] showed that the daytime MODIS
LSWT had an RMSE of 1.5 ◦C at Lake Qinghai compared to the in-situ measurements at
a depth of 0.5 m, but the comparison was based only on a short period of lake thermal
stratification (July of 2010 and 2011). Zhang et al. [36] found that the nighttime MODIS
LSWT had an unexpected high RMSE (4.5 ◦C) in another large lake (Lake Nam Co) using
radiometric skin temperature collected near the lake shoreline, but the comparison period
contained the lake ice phase during which the difference between the two data sets was
large. These studies did not consider the impacts of lake stratification and attributed
the difference between the MODIS LSWT and in-situ data to retrieving errors. Recently,
Wan et al. [44] released a 15-year (2001–2015) time series of the daytime and nighttime
MODIS LSWT for TP lakes, but the accuracy of the MODIS LSWT was not evaluated
by the in-situ observations. Therefore, validation studies of the MODIS LSWT in the
region are limited and even questionable; specifically, they ignored the conditions under
which in-situ subsurface temperature data can be used to validate the satellite-retrieved
surface temperature.

A comprehensive evaluation of the MODIS LSWT data should take the TP’s unique
climate and environment into account. The solar radiation over the TP is very strong [45,46]
and the solar heat on the water surface may cause obvious thermal stratification. This phe-
nomenon should be accounted for carefully, otherwise it will lead to artificially magnified
errors in the MODIS LSWT. The goal of this study is to consider this phenomenon in the
MODIS LSWT evaluation process and to present criteria for validations and applications of
the MODIS LSWT over the TP.

In this study, buoy data at five lakes during the open-water period of a full year
were used to investigate the accuracy of the MODIS LSWT data during two periods (lake
stratification and turnover). The lakes and data sets (buoy data and the MODIS LSWT)
are introduced in Section 2, and the comparison method is described in Section 3. The
discrepancies between the MODIS LSWT and in-situ data are presented in Section 4, and
the reason for the substantial underestimates in the nighttime MODIS LSWT in summer is
discussed in Section 5. Finally, the results of this study are summarized in Section 6.

2. Study Area and Data Sets

The climate in the TP is dominated by the Asian monsoon during summer and early
autumn, and by westerlies during other seasons. The influence of the monsoon is most
prominent during July and August, and the monsoon season in this study refers to the
period during July and August. The climate in northwest TP is mainly influenced by
the westerlies throughout all seasons. Most lakes in the TP are located in the central and
western TP and are influenced by both the monsoon and the westerlies.
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2.1. Lake Locations

Subsurface water temperature data were collected for a full annual cycle at five large
lakes which are located in different climate regions of the TP (Figure 1 and Table 1). The
Lake Bangong Co (33.68◦N, 79.22◦E, 671 km2) on the arid western TP, is an endorheic and
dimictic lake. According to the meteorological data observed in 2013 at Ngari Station for
Desert Environment Observation and Research, CAS (about 10 km away from Bangong
Co), the mean annual air temperature is 1.2 ◦C with the lowest value of −26.1 ◦C in January,
the mean annual relative humidity is 33% and the annual precipitation is 125 mm. Lake
Zhari Namco (30.93◦N, 85.61◦E, 997 km2) is a salt semiarid lake on the southern TP, around
which the mean annual air temperature is 1.2 ◦C and the annual precipitation is 384 mm in
2017 [47]. Lake Dagze Co (31.89◦N, 87.52◦E, 295 km2) is a brackish lake on the central TP
and its salinity is 18 g/L [48]. Based on observation from Xianza Meteorological station 150
km away from the lake, the mean annual air temperature is 0.6 ◦C and annual precipitation
is 316 mm in 2012 [48]. Lake Nam Co (30.74◦N, 90.61◦E, 2021 km2) is a dimictic, deep lake,
and it is the third largest lake in the TP. The weather station on the northeastern shore
of Lake Nam Co (distance of about 1.5 km) shows that the mean annual air temperature
and relative humidity are −1.2 ◦C and 55%, and annual precipitation is 488 mm in 2013,
respectively [40]. Located in the central Himalayas, Lake Peiku Co (28.89◦N, 85.59◦E,
280 km2) is a deep alpine lake with a mean annual air temperature of 4.4 ◦C in 2015/2016
and an annual precipitation varying between 150 and 200 mm [49].

Figure 1. Location of five Tibetan Plateau lakes (Bangong Co, Zhari Namco, Dagze Co, Paiku
Co, and Nam Co) and their surrounding topography (the red dots indicate water temperature
monitoring stations).
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Table 1. Geographical information and measurement information on the buoy stations for the five
lakes. The lake depths are at the buoy stations.

Lake Co-Ordinates
Area
(km2)

Elevation
(m a.s.l)

Lake Depth
(m)

Measurement Depth
(m)

Motoring
Sensor

Acquisition
Period

Bangong Co 33.2–34.0◦N
78.4–80.0◦E 671 4241 36.6 5 HOBO

U22-001
1 Aug 2012–
31 Jul 2013

Zhari Namco 30.75–31.1◦N
85.3–85.9◦E 1000 4613 59.3 0.7 HOBO

U22-001
1 Aug 2016–
31 Jul 2017

Dagze Co 31.8–32.0◦N
87.4–87.7◦E 311 4450 37.3 4 HOBO

U22-001
1 Sep 2012–
31 Aug 2013

Nam Co 30.5–30.95◦N
90.2–91.05◦E 2024 4710 92.0 3 Hydrolab DS5 1 Aug 2012–

31 Jul 2013

Peiku Co 28.75–29.05◦N
85.45–85.7◦E 280 4590 42 0.5 HOBO

U22-001
1 Jun 2016–

31 May 2017

2.2. In-Situ Measurements of Lake Temperature

Table 1 provides the water temperature measurement information on the buoy stations.
Buoy data at Lake Nam Co were measured using a Hydrolab DS5 [50]. This probe has
an accuracy of ±0.1 ◦C between −5 ◦C and 50 ◦C, with a resolution of 0.01 ◦C. Water
temperatures in the other four lakes were recorded via a HOBO water temperature probe
V2/U22-001 (Onset Corp., Cape Cod, USA) [48], which has a temperature range of −10 ◦C
to 50 ◦C with an accuracy of ±0.2 ◦C and a resolution of 0.02 ◦C.

The measuring depths and intervals were set according to the following considerations
in addition to specific reasons for the individual lakes. In previous studies [29,30], the
subsurface temperatures were measured at depths shallower than 1 m. We measured
temperatures at depths deeper than 1 m in some lakes to avoid destruction by ice in winter
due to the lack of lake ice thickness information at the buoy sites. Specifically, subsurface
temperatures were measured at depths of 5 m, 0.7 m, 4 m, 3 m and 0.5 m at these five lakes
in the order shown in Table 1. The measured temperatures are able to represent the bulk
temperature of the mixed layer of the lakes [48,50]. In addition, there are considerable
diurnal variations in the lake surface temperature due to solar heating in the lakes’ stratified
period [20,26,51]. Minnett [52] recommended that validation should be conducted within
±2 h of the satellite overpass, as followed in previous studies [31,53,54]. Therefore, the
buoy data in this study were collected at intervals of 1 or 2 h, and then the average within
±1 h (2 h) of the satellite overpass was sub-sampled to enable comparison between the two
data sets.

According to the measurements, four of the five large lakes were completely frozen
between approximately December–early January and late April–May [55,56], while the
remaining one (Peiku Co) [49] was ice-free in the studied year. After the ice break-up,
the lake water temperature started to increase, and the lakes became thermally stratified.
The maximum water temperature occurred around late August–early September, then the
temperature started to decrease, but the lakes were still stratified. From October, the upper
mixed layer drastically deepened, and the lake turnover appeared before the ice cover. In
this study, the lake stratified period is referred to as the period from May to September,
while the lake turnover period is defined as the period from October to the freeze-up date.

2.3. MODIS Lake Surface Temperature

The MODIS level 3, 1 km nominal resolution at nadir, daily land surface tempera-
ture products (MO/YD11A1) were obtained through the NASA Level 1 and Atmosphere
Archive and Distribution System (https://ladsweb.nascom.nasa.gov/data/ (accessed on
20 August 2020)). The inland lake surface temperature contained in these products was
derived using thermal infrared (TIR) bands 31 and 32, and a generalized split-window
algorithm. LSWT was retrieved from both platforms (Terra and Aqua) at different times
on the same day. In both platforms, two instantaneous observations were collected every
day (Terra: approximately 10:30 and 22:30 local time, Aqua: approximately 13:30 and 01:30
local time). The MODIS LSWT data are pre-processed to account for atmospheric and
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surface emissivity effects. The cloud mask (MOD35) used for inland water provides a
surface temperature measurement when there is a 66% or greater confidence of clear-sky
conditions [57], otherwise no temperature measurement is produced. More details on this
product were provided by Savtchenko et al. [58] and Wan et al. [59].

Satellite-derived LSWT measurements represent the instantaneous water temperature
of the uppermost ∼10–20 μm deep molecular layer; this is known as the skin tempera-
ture [60,61]. However, thermometers are installed well below the lake surface and thus the
measured ones are usually the bulk temperature of the mixed layer. Differences between
the skin and bulk temperature are called skin effects [62–64]. As the lake thermal structure
shown in Wilson et al. [64] demonstrates, the skin temperature of the upper-most layer
whose thickness is less than 1 mm is controlled by heat and the momentum flux at the
lake–air interface; the bulk temperature, at just a few centimeters of depth, is warmer than
the skin temperature by several tenths of 1 ◦C due to solar heating [64,65]; for the depth of
no less than 1 m, the difference between bulk temperature and skin temperature can be
several degrees [27,53]. The skin effect can be impacted by solar radiation which varies
with latitude and altitude, and lake thermal phases for different thermal regimes in the
lake’s stratified and turnover periods [27,31,66]. On the Tibetan Plateau, the stronger solar
radiation in the daytime and intense longwave cooling at nighttime due to the thin air
might enlarge the skin effect.

3. Methods

The MODIS level 3 daily LSWTs derived from both Terra and Aqua platforms were
compared with the in-situ measurements. The MODIS LSWT at a specific lake was ob-
tained using the MODIS Reprojection Tool (MRT, https://lpdaac.usgs.gov/tools/modis_
reprojection_tool (accessed on 20 July 2019)), which involved three steps as follows.

The first step was to identify the lake water body using the MODIS land mask
product at 250 m resolution (http://www.landcover.org/data/watermask/(accessed on
15 July 2019)). The land mask image was then resampled to 0.01◦ spatial resolution to match
the resolution of the MODIS LSWT product, which was resampled to 0.01◦ using MRT.

The second step was data quality assurance to select LSWT data free of cloud contam-
ination and uses the quality flag stored in quality control (QC) scientific data sets. Only
pixels with quality flags designated as good quality and the average LSWT errors less than
or equal to 2 K were retained.

The third step was to obtain the spatially representative MODIS LSWT data. For each
lake water temperature station, a 3 × 3 pixel array centered on the monitoring station
was extracted from the MODIS LSWT data, and its average LSWT was calculated for
subsequent comparison with the in-situ data. Such spatial averaging is widely used for
removing spatial divergence [25,29,65–67].

The selected daily MODIS LSWT data sets from Aqua and Terra were compared
with the in-situ measurements at the five lakes. Given that the agreement between the
observation and the MODIS data may depend on lake thermal conditions, we evaluated
the daytime and nighttime MODIS LSWT in the lake stratified period and the lake turnover
period, respectively. The performance of the MODIS LSWT was assessed via mean differ-
ence (MD) and root mean square difference (RMSD) between the MODIS retrievals and
in-situ measurements. Finally, we investigated the impact of in-situ data from different
periods and times for the evaluation of the MODIS LSWT.

4. Results

The MODIS LSWT is the lake skin temperature, whereas the in-situ data represent
the bulk temperature of the mixed layer of the lakes. The MODIS LSWT was evaluated
for the open-water period of a full year. When lakes were frozen (usually from January to
April in large Tibetan lakes), the MODIS retrieved the ice surface temperature while the
in-situ data were obtained from the subsurface water layer, so they are not comparable.
Four lakes (Bangong Co, Zhari Namco, Dagze Co and Nam Co) had ice cover during the
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study year, and the other one (Peiku Co) remained ice-free. The ice-covered period in the
four lakes can be identified with the MODIS LSWT consequent of most of the satellite data
being missing when the lake was ice-covered [68].

Figure 2 shows the comparisons between the four MODIS products (Terra and Aqua,
in daytime and nighttime) and the buoy data in the five large lakes, and Figure 3 shows the
error metrics of the evaluation. The open-water period consists of the lake stratified period
(from May to September) and the lake turnover period (from October to the freeze-up date).
As shown in Figures 2 and 3, the differences between the MODIS LSWT and in-situ data at
the five large lakes are quite variable during the two periods. They were analyzed in detail
in the following sub-sections.

Figure 2. Comparison of daily MODIS-retrieved lake surface temperature and in-situ observed bulk
temperature in the five large lakes. The four data layers for each lake represent daytime and nighttime
for Terra and Aqua.
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Figure 3. Mean difference (MD (a1,a2,c1,c2)) and root mean square difference (RMSD (b1,b2, d1,d2))
between MODIS LSWT and in-situ data in the daytime and at night, (1) during the lake turnover
period, (2) during the lake stratified period, for Aqua (a1,a2,b1,b2) and Terra (c1,c2,d1,d2), in the five
large lakes on the TP.

4.1. Results during the Lake Turnover Period

During the lake turnover period, the increased air–lake temperature gradient on
the TP combined with strong wind [69,70] results in a considerable energy release from
the lake to the overlying air, in terms of large latent and sensible heat fluxes as well as
longwave radiation [40,71]. The lake heat loss makes the lake surface water temperature
rapidly decrease, causing a sharp increase in the water density of the upper water layer,
which induces vertical water convection to a large extent and eventually develops into lake
turnover. As an example, Figure 4 shows that the temperature is uniform in this mixed
layer. The turnover greatly reduces the difference between the surface skin temperature
and the bulk water temperature, and, therefore, the subsurface temperature data can be
used to validate the MODIS LSWT.

As shown in Figures 2 and 3, the MODIS LSWT is consistent with the in-situ data
during this period for the five lakes, in terms of both magnitude and temporal variability.
The RMSD is less than <1 ◦C at night and <2 ◦C in the daytime, indicating a high accuracy
of the MODIS LSWT. The difference between the MODIS LSWT and in-situ data in Terra
is relatively larger than that in Aqua, in terms of both MD and RMSD. Among the four
MODIS LSWT data sets, retrieval at night from the Aqua sensor performed best in terms of
consistency with the bulk temperature.

While the turnover makes the vertical water mix, the difference between the skin and
bulk temperature remains. In general, the daytime MODIS LSWT is greater than the in-situ
values, while the nighttime MODIS LSWT shows negligible differences from the in-situ
data. The larger difference between the MODIS LSWT and the in-situ data may be due
to solar heating and should not be attributed to the errors in the MODIS LSWT, as solar
radiation on the TP is stronger than that along the same latitude [46,72]. To understand
this, we analyzed the difference in lake temperature between the daytime and nighttime.
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During this turnover period, there is strong longwave emission from the lake surface
while strong solar radiation is received by the lake surface. This may cause a cooling
of the surface layer at night but a warming in the daytime. This diurnal change in skin
temperature can be detected by the MODIS via the Aqua platform, as shown in Figure 5a.
However, the subsurface temperature of these deep lakes has a negligible response to the
diurnal thermal conditions (Figure 5b) because of their huge heat capacity and high level
of vertical mixing. The diurnal variation in subsurface temperature is less than that in skin
temperature. Therefore, the larger MD and RMSD of the MODIS LSWT in the daytime is
due to its greater representativeness in vertical differing than that of the in-situ data.

Figure 4. Observed annual cycle of thermal structure of Lake Zhari Namco in the year of 2016–2017.
Water temperature was measured at five depths.

Figure 5. Time series of (a) MODIS retrievals and (b) in-situ data in the daytime and nighttime for
Lake Zhari Namco in the year of 2016–2017.

Overall, the MODIS retrievals perform well during the lake turnover period for these
large lakes, and using the nighttime MODIS LSWT as the ground truth for the evaluation is
the most reliable.
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4.2. Results during the Lake Stratified Period

At night in the lake stratified period, the MODIS LSWT from both Aqua/Terra plat-
forms is slightly lower than the in-situ data due to the skin cooling effect of the lake, with
a negative MD of less than 1 ◦C (Figures 2 and 3). This phenomenon is seen in both
the turnover period and the stratified period. However, the RMSD in the lake stratified
period is clearly larger than that in the lake turnover period (Figure 3). According to
Figures 2 and 3, the MODIS Aqua has an RMSD that ranges between 0.9 ◦C and 2.0 ◦C and
the MODIS Terra has an RSMD range between 0.9 ◦C and 1.9 ◦C. This is associated with
the different water layer representativeness between the MODIS retrieval and the in-situ
data during the summer, as discussed below.

In the daytime of the lake stratified period, the RMSD may exceed 3 ◦C and is larger
than that at night, so our focus is the discrepancy between the MODIS retrievals and in-situ
measurement in the daytime. As shown in Figure 3a2,c2, the daytime MODIS LSWT from
both Aqua/Terra platforms is clearly higher than the in-situ data, as indicated by the
positive MD. There are two causes for the larger errors in the daytime.

The first is the strong solar radiation in the TP. The solar heating at midday reaches its
diurnal peak with a magnitude greater than 1000 Wm−2 [45,73]. According to the observa-
tions [74,75], the water clarity of lakes on the TP, as defined by the Secchi depth, is high: the
mean is about 5 m. Therefore, most of these lakes are relatively transparent, allowing solar
radiation to penetrate into deep layers. Solar radiation exponentially attenuates with water
depth, which makes a large proportion of solar energy, particularly in the near-infrared
band, be absorbed by the upper-most thin layer during the summer. However, as shown
in Figure 4, there is a strong thermal stratification. This causes a much higher daytime
MODIS LSWT than the subsurface temperature at the Aqua daytime overpass time (13:30
local time). As shown in Figure 3a2,c2, the daytime MD in Aqua is larger than 1.5 ◦C while
in Terra it ranges between 0.6 ◦C and 1.8 ◦C.

The second is the depth of the in-situ measurements. According to the water tem-
perature profile proposed by Wilson et al. [64], the water temperature in the subsurface
layer varies rapidly with depth when the lake is thermally stratified. The depths of in-situ
measurements in some lakes are considerably larger than that in other regions [25,27,31,53],
therefore the measured subsurface temperature may be considerably cooler than the skin
temperature due to the strong thermal stratification in the daytime.

Therefore, the representativeness in the vertical profile is different between the MODIS
and the subsurface data. During the lake turnover period, the water is well mixed and
the difference in representativeness is small and the evaluation result during this period
is credible. However, during the stratification period, the water temperature varies with
depth and the difference in representativeness is considerable; therefore, the evaluation
during this period is not credible, and the difference between the in-situ data and the
MODIS LSWT cannot be harshly attributed to the errors in the MODIS data.

Based on the above evaluation and reasoning, the MODIS LSWT has good accuracy
for the TP lakes, with a root mean square error (RMSE) of less than 1.6 ◦C.

5. Discussions

Although the MODIS LSWT has good accuracy, there are still some distinct errors.
Figure 2 shows some substantial underestimates in the nighttime MODIS LSWT when
compared to the in-situ data during the monsoon season (summer), as also reported by
Wan et al. [44]. Theoretically, the skin cooling effect at night causes the skin temperature to
be slightly lower than the subsurface temperature, but it cannot explain such large cold
biases at night during the monsoon season. We noticed that the large cold biases strongly
depend on climate zones. For the lakes in the monsoon-controlled region (e.g., Lake Peiku
Co and Lake Nam Co), some MODIS LSWTs during the monsoon season were severely
underestimated. On the contrary, this situation was not so apparent for the lakes in the
westerlies-dominated region (e.g., Lake Bangong Co).
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During the monsoon season (from June to August), water vapor content in the
monsoon-controlled region is considerably higher than in the westerly-dominated re-
gion. We speculate that the large cold biases may be related to the water vapor and cloud
processes. As an example, we analyzed the relative humidity data from the observations
of Lake Peiku Co, a typical lake in the monsoon region. The relative humidity data were
measured at the north shoreline [76]. Figure 6a shows the temporal variations of the
MODIS LSWT and in-situ measurements, Figure 6b shows the diurnal variations in relative
humidity in two days with large cold biases in the MODIS LSWT and Figure 6c shows
the same in the adjacent two days with small biases. It can be seen that the nighttimes
with large cold biases are more humid than the ones with small biases. So, the large cold
biases may be associated with the local water vapor circulation and clouds. On the TP, due
to the thin air, the surface energy loss through upwelling longwave radiation is strong,
causing rapid cooling of the land surface but weaker cooling of the lake surface. The
resulting land–lake thermal contrast can drive cold airflow from the land to the lake surface
at night. Meanwhile, evaporation from the warmer lake surface at night can replenish the
water vapor in the cold air. The air convergence over the lake surface due to land wind
causes upward flow. If the relative humidity is high, the upward flow may result in the
condensation of water vapor. The large lakes are still at the warming stage during monsoon
season (e.g., Lake Zhari Namco shown in Figure 4) and the land–lake thermal contrast is
not so strong at night. Thus, upward motion over the TP’s lakes is not strong enough to
cause deep convections. Instead, it may cause the condensation of water vapor to form
low-level fog or shallow clouds, which are usually undetectable by the MODIS sensor.

Figure 6. Comparison of MODIS Aqua and in-situ measurements of nighttime LSWT on Lake Peiku
Co, (located in Himalaya region) (a), the diurnal variation in relative humidity on 14 July 2016 and
29 August 2016 (b) and 20 August 2016 and 28 August 2016 (c). On these two days in panel (b),
MODIS LSWTs showed large negative deviations from the in-situ measurements, and the opposite in
panel (c), indicated by the four red rectangles in part (a).
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At the same time, the cloud mask criterion for the MO/YD11A1 inland water surface
temperature retrieval is relatively relaxed compared to that for retrieving the land surface
temperature, i.e., a water surface temperature is retrieved when the confidence of a clear-
sky condition is 66% or greater, but the confidence must be greater than 99% for the land
temperature retrieval [57]. In other words, the MODIS algorithm’s detection of near-surface
shallow clouds or fog has lower confidence. Therefore, shallow clouds and fog missing
from the cloud mask might result in a considerable underestimate of nighttime LSWT
during the monsoon season. Due to the lack of observational data, this speculation is
subject to further confirmation in the future.

Given the frequent occurrence of large cold biases, the use of nighttime MODIS LSWT
data with large cold biases during the monsoon season should be avoided in the monsoon-
controlled region of the TP.

6. Conclusions

There are more than 1400 lakes with an area greater than 1 km2 on the TP. Due to
the lack of in-situ measurements, the MODIS LSWT product has been used to assess
changes in lake temperature and to calculate evaporation, but the applicability of this
product has remained unclear. Early limited evaluations for this region did not consider the
representativeness of in-situ subsurface data, and thus may have caused uncertainties in
the evaluation. In this study, we deployed buoys to measure subsurface water temperature
in five large lakes on the TP and assessed the advantages and limitations of the MODIS
LSWT (both Terra and Aqua) based on the buoy data. Particularly, we pay attention to the
representativeness of in-situ data that varies with the seasons.

The agreement between the MODIS-derived LSWT and the in-situ observed subsurface
temperature highly depends on the lake’s thermal structure. During the turnover period
(i.e., October to the freeze-up date), the MODIS LSWT generally shows good agreement
with the in-situ data, indicating its high accuracy. Due to water mixing, the in-situ data
during the nighttime of this period can be used as the ground truth in the validation
of the MODIS LSWT, and the result confirms that the MODIS skin temperature can be
representative of the subsurface temperature of the mixed layer of the lakes. During the
lake-stratified period (from May to September), the in-situ data measured below the surface
cannot represent the skin temperature detected by the MODIS LSWT and cannot be used
as the ground truth for the validation of the latter.

Despite good performance in large Tibetan lakes, the MODIS lake surface temperatures
can be questionable in the monsoon-controlled region. Due to the influence of the Asian
monsoon, the nighttime LSWT can be heavily underestimated in the MODIS retrievals on
some humid days in summer. This severely restricts the use of the MODIS LSWT on the
Tibetan Plateau.

In summary, the MODIS LSWT has a high accuracy (RMSE < 2 ◦C) for large lakes in the
TP. However, if the MODIS LSWT is assumed to represent the subsurface water temperature
of a lake, it is preferable to use its nighttime data during the lake turnover period, but not
to use them during the lake stratified period (especially the monsoon period).
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Abstract: Wind profile light detection and ranging (LiDAR) is an important tool for observing features
within the atmospheric boundary layer. Observations of the wind field and boundary layer height
from coherent Doppler wind LiDARs (CDWLs) under sandy and dusty weather conditions were
evaluated using observations from two CDWLs and one GTS radio sounding located at the northern
edge of the Tibetan plateau from 1 May to 30 August 2021. The results showed that CDWL has good
applicability in reproducing wind fields in dust, precipitation, and in clear-sky conditions, and that it
is superior to the v wind field for real measurements of the u wind fields. In terms of the planetary
boundary layer height (PBLH), the validity of the inversion of PBLH in dusty weather was higher
than that under clear-sky conditions. It was found that the PBLH retrieved by the CDWL at 20:00
(BJT) was better than that at 08:00 (BJT). The diurnal variation amplitude of the PBLH before the
occurrence of a sandstorm was larger than the diurnal variation amplitude of the PBLH occurring
during a sandstorm.

Keywords: coherent doppler wind LiDAR; northern edge of Tibetan plateau; dusty weather;
monitoring application assessment

1. Introduction

Sandy weather has a significant impact on arid regions, with the immediate effect of
causing air pollution and mesoscale to large-scale climate change [1–3]. It was discovered
that dust storms can affect the heat balance of planetary radiation, which in turn leads to
climate change [4].

In recent years, scientists have conducted numerous studies on dust cycles, dust prop-
erties, and the environmental effects of dust using ground-based light detection and ranging
(LiDAR) information such as the optical intensity, backscatter intensity, depolarization ratio,
extinction coefficient, and dual-wavelength signal ratio [5–7]. Laser wind measurement
techniques have developed rapidly during the past decades and are mostly used in wind
field observation [8], aircraft wake measurements [9], turbulence measurements [10], cloud
and atmospheric boundary layer characterization [11], and atmospheric aerosol optical
characterization [12]. The fluctuation of boundary layer height with time and the effect of
the entrainment layer and vertical wind speed on the boundary layer height were found
using micro–pulse LiDAR observations [13]. The boundary layer height retrieved by direct
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detection LiDAR and coherent Doppler wind LiDAR (CDWL) were correlated with PM2.5
to study a precipitation event [14]. Ground–based and air–based LiDARs combined with
ground–based aerosol mass concentrations were used to analyze the optical and physical
properties of a dust process [15]. The characteristics of the dust aerosol backscattering
coefficient, extinction coefficient, and depolarization ratio have been gradually studied by
using polarization LiDAR to monitor pollution and dust storm weather in cities [16–19].
The direct observation of seasonal dust weather can be used to study the frequency and
intensity of dust [20] and effectively evaluate the effect of air pollution control [21]. LiDAR
was used to analyze the aerosol extinction coefficients for the inversion of dusty weather
processes and to obtain correlations between the extinction coefficients and ground-level
PM10 concentrations [22]. During the observation of the atmospheric boundary layer of an
urban area using 3D scanning coherent Doppler LiDAR, multiple dust-devil-like vortices
were detected in the area, and the temporal evolution of the precise 3D structure and vortex
intensity was observed [23]. Detection means such as ground-based radar combined with
satellite remote-sensing LiDAR can be used to analyze the transport characteristics and
optical properties of sand and dust [24]. More novel experiments have been used in the
past to quantify changes in aerosol transport and aerosol properties from the Sahara Desert
to the Caribbean Sea by means of airborne coherent Doppler wind LiDAR experiments [25].
Observations of dust events in Iceland have confirmed the possibility of using Doppler
wind LiDAR to monitor volcanic and sedimentary aerosols [26]. The simultaneous 3D
monitoring of wind and pollution is performed using coherent Doppler wind LiDAR,
which then generates a high-resolution wind field to track local air pollution sources and
their dispersal, as well as to analyze transboundary air pollution events [27].

Previously, there have been no relevant observations and studies on the long duration
and continuity of dust storms and floating dust weather at the northern edge of the Tibetan
plateau using the coherent Doppler wind LiDAR (CDWL). The vertical evolution pattern of
dust aerosol concentration and meteorological elements during the maintenance of dusty
weather is not clear. This project proposes the use of CDWL installed at the Minfeng and
Yeyik stations on the northern side of the Tibetan plateau region, combined with GTS ratio
soundings, to conduct a study on the evolution of the atmospheric boundary layer before
and after sand and dust storms and during persistent dusty weather. The objective was to
evaluate the applicability of CDWL in the observation of boundary layer elements under
sandy and dusty weather to provide new observational support for the development of
currently stagnant sand and dust studies. This study was conducted as a basis for the
quantitative assessment of the contribution of dusty weather to regional atmospheric dust
aerosols and its impact on regional and global changes.

This paper is organized as follows: The site and data resources are described in
Section 2. Section 3 provides a comparative analysis of the wind field data observed by
CDWL and GTS soundings and evaluates the performance of CDWL wind field obser-
vations. Section 4 compares the effect of CDWL on the planetary boundary layer height
(PBLH) inversion under different weather conditions. Finally, a discussion and conclusions
are provided in Sections 5 and 6. If not specified, Beijing time (BJT) is used in this paper.

2. Materials and Methods

2.1. Data and Information

In this paper, ground-based coherent Doppler wind LiDAR data were acquired from
1 May to 31 August 2021 at Minfeng station, hereafter referred to as MF (82◦43′E, 37◦04′N,
1410.7 m) and Yeyik station, hereafter referred to as YYK (83◦10′E, 36◦42′N, 2499.0 m) on
the northern edge of the Tibetan plateau (Figure 1). CDWL was obtained using the Wind3D
6000 produced by the Ocean University of China (OUC) and Qingdao Leice Transient
Technology Co., Ltd., Qingdao, China. [28].
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Figure 1. Location map of field experiment station at northern edge of Tibetan plateau.

CDWL performs continuous observations, 24 h a day, with an average of 17 s for
one set of observations, and the 10 min average data were used for the analysis in this
paper. The maximum detection height of CDWL is around 6 km, the minimum detection
height is around 45–100 m, the vertical resolution is 10–30 m, the wind speed measurement
accuracy is below 0.1 m/s, and the wind direction measurement accuracy is below 3◦ [29].
CDWL can detect the horizontal wind direction, wind speed, vertical velocity, atmospheric
refractive index structure constant, and atmospheric extinction coefficient, and can obtain
more reliable information on the wind field and turbulence intensity in the boundary layer
through the electromagnetic wave signals emitted and received back by CDWL. Level 0
is the radial wind speed data, Level 1 is the second level wind profile data, Level 2 is the
10 min average wind profile data, and Level 3 includes the PBLH and cloud height data
products. The vertical height of the CDWL observation at the MF station is 51–5017 m with
a vertical resolution of 26 m.

The GTS sounding observation data were taken from the Minfeng County Meteoro-
logical Bureau (82◦43′E, 37◦04′N), and the sounding instrument used was a GTS13 digital
sounding instrument, which received data through the GFE (L)1 secondary wind radar.
In order to facilitate the comparative analysis of the two types of data, the same vertical
resolution of 26 m was chosen to match that of the CDWL in MF. The CDWL was selected
based on the set of samples with the closest time to the GTS sounding release.

2.2. Research Methods
2.2.1. DBS Wind Field Inversion Method for CDWL

CWDL uses the Doppler effect of light to measure wind. This means that, when the
laser propagates in the atmosphere, particles such as aerosols cause the laser to scatter,
and the movement of the particles such as aerosols causes the received scattered echo to
produce a differential frequency signal, i.e., the Doppler shift. The Doppler shift can be
inverted by Formula (1) to show the component of aerosol motion in the direction of the
laser beam, i.e., radial velocity or radial wind speed [28].

Δ fD =
2Vlos

λ
(1)
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where Δ fD is the Doppler frequency shift, Vlos is the radial velocity, and λ is the wavelength
of the emitted laser.

The Doppler Beam Swinging (DBS) method is a five-beam method (DBS-5) for the
inversion of wind profiles, which requires radial data in five directions—east, west, south,
north, and vertical—which can be used to invert horizontal and vertical wind fields [29].⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u = VN−VS

2cosθ

v = VE−VW
2cosθ

Vh =
√

u2 + v2

w = Vz

(2)

The wind direction is α =
∣∣tan−1 u

v

∣∣
2.2.2. PBLH Inversion Method for CDWL and GTS Soundings

The inversion of PBLH for CDWL uses a wavelet covariance transform based on the
Haar function, which is as follows [14,30]:

h
(

z − b
a

)
=

⎧⎨
⎩
−1, b − a

2 ≤ z < b
1, b ≤ z < b + a

2
0, other

(3)

where z is the height, b is the location where the function is located, and a is the spatial
extent or calculation step, which can be formulated according to local characteristics. The
covariance function Wf of the Haar function is also defined and denoted as:

Wf (a, b) =
1
a

∫ zt

zb

f (z)h
(

z − b
a

)
dz (4)

In this paper, the vertical resolution of CDWL Δz is 26 m, and a is 10 times the
minimum height difference, which is 260 m. The lowest altitude observed by CDWL zmin
is 51 m. Therefore, the theoretical CDWL inversion of the PBLH is no less than zmin + a/2,
which is 181 m.

The determination of the PBLH in this study using GTS soundings is a method of
determining the height of the boundary layer through thermal differences in the vertical
direction. The specific method is the potential temperature gradient method used by Liu
and Liang [31].

2.2.3. The k-Means Clustering Analysis

The k-means algorithm is a commonly used clustering method. This study used
k-means clustering to classify the PBLH of CDWL and GTS sounding inversions and
the difference between them. The aim was to analyze what weather type and other
characteristics were present in clusters where the PBLH of the CDWL inversion was close
to that of the soundings’ inversion. This facilitates an understanding of the conditions
under which the CDWL inversion of the PBLH is applicable.

The k-means algorithm works by dividing n sample points into k clusters, with sample
points within each cluster having a high degree of similarity and sample points between
clusters having a low degree of similarity; moreover, the similarity is calculated based on
the average of the sample points in a cluster.

3. Comparison of Wind Field Observations

The samples were analyzed and compared based on the results of u and v wind fields
as well as on the wind direction and speed data recorded by CDWL and GTS sounding
data at MF from May to August 2021.
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3.1. CDWL and GTS Soundings’ Observation Wind Field Assessment

Based on the hour-by-hour weather phenomenon records from the MF station, all
available samples were classified into three categories: dusty weather (dust storms, blowing
sand, and floating dust), precipitation, and a clear sky. All available samples were used
for analysis. The CDWL and the horizontal wind field observations at the effective height
of the soundings were compared for each of the three weather phenomena. The scatter
plot is shown in Figure 2. There was a greater proportion of dusty weather and clear-sky
days, with fewer precipitation weather samples. In terms of the linear fit results, the linear
coefficients of determination R2 for wind speed during dusty weather, precipitation, and
clear skies were 0.9361, 0.9715, and 0.8747, respectively, and the coefficients of determination
R2 for wind direction were 0.9937, 0.9937, and 0.9592, respectively, all of which passed
the significance test (p < 0.01, results omitted). The root mean square error (RMSE) of u
and v recorded by CDWL and GTS sounding (Table 1) were approximately 2.0 m/s, while
the wind speed and direction were less than 1.5 m/s and 40.0◦, respectively. The above
results are similar to those of previous studies [8,32–34]. The comparison results for the
wind direction were also satisfactory and better than previous studies [35].

Figure 2. Comparison of u, v, wind direction, and wind speed data from CDWL and GTS sounding
samples during (a) dusty weather, (b) precipitation, and (c) a clear sky in MF in August 2021. The
regression line (red line) and reference line y = x (black line) are also shown.
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Table 1. The root mean square error (RMSE) of each element observed by CDWL and GTS sounding
for different weather types.

u (m/s) v (m/s) Wind Speed (m/s) Wind Direction (◦)

Dusty weather 1.18 1.79 1.00 15.04
Precipitation 1.53 1.90 1.05 13.85

Clear sky 1.34 1.97 1.46 21.09

The atmosphere in desert areas is dry and, when there is no precipitation or dusty
weather, the aerosol content in the atmosphere is low. When the air is too “clean”, the signal
returned to the LiDAR is weakened and the signal-to-noise ratio of the LiDAR observation
is reduced, which affects the accuracy of the observation to a certain extent. This is also
a result of the fact that observations during dusty weather and precipitation are better than
when there are clear sky events.

A further comparative analysis of the horizontal wind fields at various heights in
the vertical direction at MF was carried out (Figure 3). Below, albeit close to 2300 m, the
correlation between the u and v wind fields observed by both instruments passed the
significance test (p < 0.01). The overall correlation of u was significantly better than the
correlation of v. Due to the special nature of the soundings’ balloon observations, the
balloon will drift with the wind field, and the higher the wind speed and height, the further
the balloon will drift. This results in some differences between the balloon observations and
the horizontal wind field over CDWL at MF. This also causes a difference in the correlation
between u and v.

Figure 3. Correlation curves of the CDWL observed u and v wind fields with the GTS sounding
observations (p > 0.01 does not pass significance test).
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3.2. Quantile Distribution and Probability Density Analysis of Horizontal Wind Fields from
CDWL and GTS Sounding Observations

The quantile–quantile plot (hereafter referred to as QQ plot) visualizes whether the
distribution of the two variables is skewed or not. The probability density distribution
plot allows a direct observation of the number of samples distributed in different intervals.
Continuing the bias and probability distribution analysis of the horizontal wind field in
MF, the QQ plots of the u and v wind fields show (Figure 4, left) that the two instrumental
observations are the distribution of u around the 1:1 line and that the probability density
distribution is consistent. Moreover, v shows a certain angle to the baseline and the
sounding’s observation; the sounding’s observation was larger than the LiDAR observation
when the wind was southerly, and the sounding’s observation was smaller than the LiDAR
observation when the wind was northerly. The probability density was more concentrated
around 0 m/s.

Figure 4. Quantile-quantile plot and probability density distribution of u and v wind fields and wind
direction and speed from CDWL and GTS soundings’ observations. The regression line (red line) and
reference line y = x (black line) are also shown.

The QQ plots of wind direction and wind speed show (Figure 4 right) that the distri-
butions of wind speed and wind direction observed by both instruments coincide more
perfectly around the 1:1 line. The CDWL wind direction probability density distribution
is, overall, around 10◦ smaller than the soundings’ observations. Therefore, errors were
calculated for the wind directions of −9.69◦, −9.96◦, and −14.44◦ for CDWL and GTS
soundings during dusty weather, precipitation, and clear skies, respectively. This error
occurs because we cannot avoid the fact that the horizontal position of the GTS sounding
changes with the increase in altitude in accordance with the wind field. This problem has
also existed in previous studies [34].

4. Evaluation of PBLH Inversion Results

4.1. Analysis of PBLH Clustering Results

PBLH from soundings data via temperature contour inversions were used as the basis
for clustering, based on the PBLH from CDWL and GTS sounding inversions from May to
August 2021 and the difference between the two. The samples were classified into three and
four types, respectively (Figure 5). The QQ plot of the classification results show that the
distribution of the PBLH results from the CDWL inversions of Type 1 and Type 2 is closer
to that of the sounding inversions when the first classification case is divided into three
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types. Type 3 shows that the PBLH of CDWL are generally smaller than GTS sounding
inversions. The true atmospheric boundary layer heights of the GTS sounding inversions
are in the range of 2000–6000 m, with a concentration of around 4000 m, which exceeds the
effective detection height of CDWL.

 

Figure 5. Quantile–quantile plot of the inversion of the PBLH of CDWL and GTS soundings after
k-means clustering into three (left) and four (right) types.

The statistical results of each sample size for the first classification are shown in Table 2.
Type 1 and Type 2 had a higher percentage of sample sizes where dusty weather and
precipitation occurred, with 54.77% and 47.62% of the categories, respectively. In contrast,
Type 3 had the largest proportion of results with clear-sky days, at 70.49%. PBLH in Type 1
was mainly concentrated below 2000 m, and most of the results were recorded at 8:00 am,
accounting for 77.27% of the results of Type 1. The overall height of Type 2 was between
2000 and 4000 m, with a higher percentage, 88.89%, at 20:00. Almost all of the results for
Type 3 were inversions from 20:00.

Table 2. Weather conditions and percentage of observed moments when PBLH inversion results of
CDWL and GTS soundings were divided into three types.

Type 1 2 3

Sample Size 199 21 61
Dust 109 (54.77%) 10 (47.62%) 12 (19.67%)

Precipitation 29 (14.57%) 5 (23.81%) 6 (9.84%)
Clear Sky 61 (30.65%) 6 (28.57%) 43 (70.49%)

Sample Size 154 18 54
8:00 199 (77.27%) 2 (11.11%) 1 (1.85%)
20:00 35 (22.73%) 16 (88.89%) 53 (98.15%)

The PBLH of Type 1 was low overall, with a high proportion of cases occurring at 8:00
and during dusty weather. The PBLH of Type 2 was higher, mainly concentrated in the
afternoon during dusty weather and when PBLH development was more vigorous. Type
3 accounted mainly for when PBLH development exceeded the effective height for CDWL
detection, and this occurred more often in the late afternoon on clear-sky days.

The results of the second classification case in four types are similar to but different
from the case in the three types. The QQ plot of the results of the four classification types
shows that Type 1 and Type 4, with a better distribution, are similar to the results of Type
1 and Type 3 when classified into three types. Type 3, with an overall low PBLH from
CDWL, is identical to the results of the three types. The difference is that Type 2 of the GTS
soundings’ inversion of PBLH is also clustered as a whole below 1000 m, and the CDWL
inversion is higher than that of the GTS soundings.
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Combining the analysis of weather conditions and observation times after classifica-
tion (Table 3), the characteristics of each type of PBLH were evident in different weather
conditions or in the time of the day.

Table 3. PBLH inversion results of CDWL and GTS soundings by weather conditions and time of the
day when divided into four types.

Type 1 2 3 4

Sample Size 130 70 59 22
Dust 89 (68.46%) 21 (30.00%) 10 (16.95%) 13 (59.09%)

Precipitation 18 (13.85%) 11 (15.71%) 6 (10.17%) 5 (22.73%)
Clear Sky 23 (17.69%) 38 (54.29%) 43 (72.88%) 4 (18.18%)

Sample Size 101 54 52 19
8:00 70 (69.31%) 49 (90.74%) 0 (0.00%) 3 (15.79%)
20:00 31 (30.69%) 5 (9.26%) 52 (100.00%) 16 (84.21%)

Combining the statistical results of the two classifications, it can be found that dusty
weather often occurs when the PBLH inversions of the two are close to each other. When
there is a clear-sky day, the surface can receive more solar shortwave radiation and the
atmospheric boundary layer develops more vigorously, usually to heights above 4000 m;
however, it is often beyond the effective and ineffective detection height of CDWL. Similarly,
the PBLH in desert areas is very low before sunrise—below the minimum height for the
PBLH inversion by CDWL. This provides the basis for the subsequent analysis of the PBLH
inversion results in this study. For example, the analysis can be carried out for different
weather types or within the effective height range.

4.2. Evaluation of PBLH Inversion Results

In order to give a comprehensive assessment of the PBLH inversion by CDWL, the
samples in the effective height range were divided into three weather types—dust (D),
precipitation (P) and clear skies (S)—based on the analysis of the results of the clustering in
Section 3.1, and the PBLHs were compared separately (see Section 4.2.1.). The PBLHs were
also compared separately for the two times of the day 8:00 and 20:00 (representing day and
night, respectively). The inversions are shown in Section 4.2.2.

4.2.1. Evaluation of PBLH Inversion Results for Different Weather Types

In the QQ plot (Figure 6), which divides the samples in the effective height range into
three weather types—dust (D), precipitation (P), and clear skies (S)—the PBLH distribution
was closer to the 1:1 baseline for dusty weather, followed by the inversion results for
precipitation, and again for clear skies. The probability density distribution graph shows
that the PBLH is usually below 1000 m. Below 1000 m, the results of the CDWL inversions
were higher than those of the GTS soundings for all three weather types, and the difference
was more obvious for clear-sky days.

In order to quantify the effect of the PBLH inversions for the different weather types
in the effective height range, a linear fit of the CDWL and GTS sounding inversions of
the PBLH under different weather conditions was distributed (Figure 7). It is clear that
the PBLH inversions for dust and precipitation were better than those for clear weather.
The coefficients of determination R2 were 0.7666 and 0.6906 for dust and precipitation,
respectively, and was 0.4926 for clear skies; the PBLH distributions for all three weather
conditions passed the significance test (p < 0.001). The values of R2 are consistent in
magnitude compared to past studies [30].
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Figure 6. Quantile–quantile plot and probability density distribution of the PBLH inversions of
CDWL and GTS soundings by (a) weather type and (b) overall sample for dust (D), precipitation (P),
and clear skies (S).

Figure 7. Comparison of CDWL and GTS sounding PBLH inversion results for (a) dusty weather,
(b) precipitation, and (c) clear skies in the effective height range. Also shown is the regression line
(red line) and reference line y = x (black line).
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4.2.2. Evaluation of PBLH Inversion Results for Different Observation Times during Dusty
and Precipitation Days

Figure 8 shows the correlation between the CDWL and GTS sounding inversions
of the PBLH at 08:00 and 20:00 during dusty and precipitation days. The test samples
were screened for the effective height of the CDWL inversion of the PBLH. The time
around sunrise is represented by 8:00, when the PBLH is low and the observations within
the effective height range are mainly concentrated below 1000 m, with an R2 of 0.5165,
which passes the significance test (p < 0.01). The time when the PBLH has developed and
accumulated over the day is represented by 20:00. The inversion of the PBLH (Figure 8b)
within the effective height range was a better fit with an R2 of 0.8977, which passes the
significance test (p < 0.001). The inversion of PBLH by CDWL has been effective in the
past [10,30]. The inversion effect of this study on PBLH within the effective inversion height
in the desert area is similar to the above study, which also proves the inversion ability of
CDWL on the PBLH within the effective height, especially at 20:00.

Figure 8. Comparison of CDWL and GTS sounding PBLH inversions at (a) 08:00 BJT and (b) 20:00
BJT in the effective altitude range. The regression line (red line) and reference line y = x (black line)
are also shown.

In combination with the above analysis, we can obtain PBLH results very close to the
true value through CDWL when the actual PBLH is within the effective height of the PBLH
inversion by CDWL.

5. Discussion

Our comparison and analysis of the accuracy of CDWL observations in this particular
region on the northern edge of the Tibetan plateau, where no similar studies have been
carried out in the past, show that CDWL is suitable for the accurate observation of wind
fields in this region under a variety of weather conditions; moreover, it is also efficient for
the acquisition of the PBLH within the effective inversion height.

The detection of wind fields by CDWL is already a relatively mature observation
technique. The advantages of this instrument are its large scanning volume, its mobility,
and the fact that it provides three-dimensional wind measurements, as well as its relatively
high temporal and spatial resolution compared to other measurement devices [36]. In
the past, a wind profile radar was used to monitor a variety of weather processes and
collect 3D wind field data. Typically, for urban air pollution in Beijing [8] and Binzhou [27],
for the monitoring of Typhoon Lekima [32], and for Xiamen on clear and precipitation
days [34], it showed good results in terms of wind direction and speed compared with
sounding observations. The results of this study, using CDWL for wind field observation
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in the desert region, are similar to those of the previous studies mentioned above, and
both R2 and RMSE are consistent in magnitude, which confirms that the CDWL used in
this study is suitable for wind field detection in this region. The inversion of the PBLH
using CDWL data is also a research direction that has been carried out more frequently.
The inversion of the PBLH for Hefei city [10,14], Xilingol, Inner Mongolia [30], the seaside
city of Xiamen [34], and an ocean island site in China [37] has been effective in the past.
The inversion effect of this study on the PBLH within the effective inversion height in the
desert area is similar to the above study, which also proves the inversion ability of CDWL
on the PBLH within the effective height, especially during dusty weather.

In the meantime, we would like to analyze the inversion of the CDWL on the PBLH
by means of an actual example of a dust event. Figure 9 shows a day of four GTS sounding
inversions of the PBLH (02:00, 08:00, 14:00, 20:00) and the CDWL continuum inversions of
the PBLH, where the full range of samples for the time period is shown, including samples
that do not meet the valid inversion height of the CDWL. A correlation analysis for 02:00
and 14:00 was not performed in Section 4.2.2 because the regular GTS soundings only
had two moments per day, 08:00 and 20:00, and only in July was an encrypted sounding
experiment conducted to add two more moments, 2:00 and 4:00. However, the sample
size was still less than 30, which was not enough to complete the correlation analysis.
Nevertheless, for this study, 02:00 and 14:00 are also noteworthy moments. The individual
case of dusty weather occurred on 17–20 July (Figure 9). The CDWL and GTS sounding
inversions of the PBLH for this process showed a continuous elevation of the PBLH during
clear-sky days prior to the onset of the dust storm process. It is clear to see that the PBLH
inversion results at the time of the dust event are due both before and after the dust event.
Moreover, the PBLH inversion results at 02:00 and 14:00 are overall better than 20:00 for
PBLH. The heating effect of solar radiation, which is directly absorbed by the surface on
clear-sky days when the atmosphere is dry and clean, causes the convective boundary layer
to accumulate and thicken. When a dust storm occurs, there is a significant decrease in
PBLH during the daytime and an increase in PBLH at night compared to sunny days. The
decrease in the difference in the daily variation in the PBLH is due to the fact that the dust
aerosols floating in the atmosphere block the solar radiation from reaching the surface and
the surface heating atmospheric effect is weakened, which suppresses the elevation of PBLH
during the daytime. Furthermore, the relatively stable atmosphere during the maintenance
of floating dusty weather allows the residual layer to be maintained at a certain height
during the night. When the atmospheric dust aerosols dissipate and the atmosphere returns
to a dry and clean state, the daytime PBLH is developed again, and the daily variation in
the PBLH varies significantly.

Figure 9. PBLH of dusty weather processes and before and after soundings and the CDWL inversions
at the MF station.
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The limitation of this study is that, compared with other regions, the effect becomes
worse when the effective inversion range of CDWL is exceeded because the PBLH is
lower at night and lifts higher during midday hours in desert areas. This is due to the
rapid absorption of solar short-wave radiation and the warming of the subsurface in the
desert region during clear days; moreover, the atmosphere is subject to surface heating
and turbulence, which may make the PBLH develop vigorously in the late afternoon. At
night, the PBLH decreases to a lower altitude due to the thin atmospheric aerosol and
excessively dry air in the desert area, as well as the rapid cooling of the surface and the
large temperature difference formed during the day [38]. This may be the reason why the
actual PBLH exceeds the effective inversion height of CDWL. Moreover, the release time
of the GTS sounding used for the validation of the PBLH in this study is limited, and, to
address this limitation and dilemma, we suggest increasing the number of daily sounding
experiments in the next experimental design. In future experiments, to compensate for
the shortcomings of the CDWL, the use of microwave wave radar and combined radar
technology is proposed, such as, for example, a combination of microwave wave radar and
LiDAR. In turn, a more comprehensive and better detection of the area will be carried out.

6. Conclusions

In this paper, ground-based CDWL data from two stations were collected over
a 4-month period in 2021. The two stations were the MF station located at Minfeng County
and the YYK observation station located at Yeyik Township, Minfeng County, on the north-
ern side of the Tibetan plateau on the southern margin of the Taklimakan Desert. We
also cooperated with the GTS sounding observation experiment in the same period, from
the Minfeng County National Basic Meteorological Observatory. In order to verify the
accuracy of the CDWL observations and analyze the applicability of CDWL monitoring in
the Minfeng area, the wind field PBLH observed by CDWL and GTS sounding data were
compared and analyzed. The results show that:

(1) CDWL has good applicability for wind field observations in dust storm, floating
dust, and clear-sky conditions, and that it is superior to the v wind field for the real
measurements of u wind fields;

(2) The results of the cluster analysis for the PBLH inversion show that, when the PBLH
inversion results were good, dusty weather accounted for more than the other weather
types, at approximately 50–70%, with more samples observed at 08:00. When the PBLH
inversion results were not good, clear-sky weather accounted for a higher percentage,
with more samples at 20:00. Limited by the effective observation height of CDWL, when
the boundary layer developed vigorously during clear-sky days, the PBLH exceeded
the highest effective detection height of CDWL. Therefore, this part of the data showed
an overall underestimation;

(3) Within the effective inversion height of the PBLH by CDWL, the inversion of the
PBLH for dusty weather and precipitation is better than that for sunny days. The inversion
of the PBLH at 20:00 is better than that at 08:00, and both passed the significance test.
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Abstract: Under conditions of continuous global warming, research into the future change trends
of regional dry-wet climates is key for coping with and adapting to climate change, and is also
an important topic in the field of climate change prediction. In this study, daily precipitation and
mean temperature datasets under four representative concentrative pathway (RCP) scenarios in
the geophysical fluid dynamics laboratory Earth system model with modular ocean model (GFDL-
ESM2M) version 4 were used to calculate the standardized precipitation-evapotranspiration index
of the Tibetan Plateau (TP) at different time scales. Using a multi-analytical approach including the
Mann–Kendall trend test and run theory, the spatiotemporal variation characteristics of drought in
the TP from 2016 to 2099 were studied. The results show that the overall future climate of the TP will
develop towards warm and humid, and that the monthly-scale wet–dry changes will develop non-
uniformly. As the concentration of carbon dioxide emissions increases in the future, the proportion of
extremely significant aridification and humidification areas in the TP will significantly increase, and
the possibility of extreme disasters will also increase. Moreover, influenced by the increase of annual
TP precipitation, the annual scale of future drought in the region will tend to decrease slightly, and
the spatial distributions of the frequency and intensity of droughts at all levels will develop uniformly.
Under all four RCP scenarios, the drought duration of the TP was mainly less than 3 months, and
the drought cycle in the southern region was longer than that in the northern region. The results of
this study provide a new basis for the development of adaptive measures for the TP to cope with
climate change.

Keywords: GFDL-ESM2M; RCPs; drought characteristics projections; standardized precipitation-
evapotranspiration index; Tibetan Plateau

1. Introduction

Drought is one of the most common and widely distributed natural disasters, and
is often responsible for serious losses [1]. It often causes problems such as reduced agri-
cultural production and exacerbated ecological deterioration [2,3]. Especially under the
influences of global climate change and rapid urbanization, frequent drought disasters
seriously restrict the sustainable development of economies and societies [4,5] and lead to
ecological and environmental problems, such as water shortages, land degradation, and
desertification [6–9]. Over the past 40 years, about 12 million hectares of land have been
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lost to drought and desertification each year, and this trend will continue to expand in the
21st century, especially in the mid-latitudes [10,11].

According to the Drought Numbers Report, from 1998 to 2017, the global economic
loss caused by drought was as high as $124 billion. Since 2000, the number and duration
of droughts globally has increased by 29%, affecting about 1.4 billion people. Over the
past century, more than 10 million people have died from major drought events, costing
the global economy hundreds of billions of dollars, and both numbers are rising [12–14].
Frequent drought disasters have become important in restricting regional sustainable
development and ecological protection [15]. In addition, the AR6 Working Group I report
released by the United Nations Special Assessment Committee on Climate Change pointed
out that in the future, global warming will intensify, and the frequency of extreme high
temperature events and marine heat waves will increase accordingly. Additional studies
have also shown that future drought duration, frequency, and intensity will increase to
varying degrees [16]. Therefore, analyzing the spatiotemporal variation characteristics of
future drought is not only beneficial to regional disaster prevention and mitigation, but is
also important for rationally managing and distributing regional water resources, as well
as for improving regional economic and social development planning.

However, most studies focus on the social, agricultural, and environmental impacts of
droughts on a global or regional scale for historical periods [17]. For example, Zhu et al. [18]
constructed a dynamic evaluation model and applied it to the distribution and development
trend of comprehensive drought disaster risk in Xuzhou, China; Hu et al. [19] used the crop
water deficit index for evaluation of agricultural drought, described the spatiotemporal
variation of drought in the growth period of winter wheat in the Huang-Huai-Hai plain,
and constructed a drought disaster risk index of winter wheat in each growth period; and
Orimoloye et al. [20] used the enhanced vegetation index and standardized precipitation
index (SPI) to study drought disaster events and their temporal and spatial patterns in
Free State Province, South Africa. Overall, there are relatively few studies on the changing
characteristics of drought under different climate scenarios in the future, considering the in-
crease of carbon dioxide concentration. In particular, the Tibetan Plateau (TP) region, which
is sensitive to climate change and has an active hydrological cycle, presents significant
knowledge gaps [21].

In addition, existing studies on meteorological drought mainly focus on arid and
semi-arid regions [22]. For example, Annette et al. [23] used the ParFlow-CLM model
to study the driving factors of drought-related changes in the southern United States;
Wang et al. [24] evaluated the drought monitoring effect of remote sensing precipitation
products based on a proposed grid drought index, revealing the drought characteristics
of the Yellow River Basin from 1998 to 2016; and Yang et al. [25] constructed a composite
drought index to determine the duration, peak, and severity of drought in the Weihe River
Basin, to assess multivariate drought risk. However, little is known about the variation
characteristics of drought in the TP, which is rich in glacier resources, especially in terms of
the variation characteristics of drought at different time scales in the future [26]. TP glaciers
are important buffers for regional drought resistance [27]. They can significantly affect the
climate model in East Asia and atmospheric circulation in the northern hemisphere through
dynamic, thermal, and frictional atmospheric effects; affect the regional and surrounding
land-atmosphere interactions and dry–wet changes; and also play a greater role in adapting
to climate change pressures [28,29]. In the context of global warming, the temperature of
the TP has increased significantly, accelerating the melting of ice and snow and increasing
permafrost activities [30,31]. How will the dry and wet conditions of the TP change under
global warming in the future? This is a very important scientific question in the field of
climate science.

This study is aimed at addressing this question. Considering TP as the study area,
according to the climate change prediction results obtained using the geophysical fluid
dynamics laboratory Earth system model with modular ocean model (GFDL-ESM2M)
version 4, and based on the annual scale standardized precipitation-evapotranspiration
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index (SPEI), the spatiotemporal variation trends of meteorological drought in the TP under
various future emissions scenarios were predicted. In addition, based on the monthly SPEI,
the spatiotemporal evolution characteristics of future meteorological droughts in the TP
were systematically analyzed with respect to the duration, frequency, intensity, and cycle
of drought events, and the characteristics of changes in drought under different climate
scenarios were compared and analyzed. The results contribute to a better understanding
of the evolution of meteorological drought on the TP and provide a scientific basis for
relevant agencies to further improve drought prevention systems and formulate appropriate
drought disaster prevention measures and countermeasures.

2. Materials and Methods

2.1. Study Area

The TP, located in southwest China, has a total area of ~2.5 million km2 (26◦00′–39◦47′N,
73◦19′–104◦47′E). It is the largest plateau in China and the highest plateau in the world,
sometimes called “the roof of the world”. The TP has a mean elevation of more than 4000 m
and its 12 major rivers flow to East Asia, Southeast Asia, and South Asia. The major outflow
rivers include the Yangtze, Yellow, Lancang, Nujiang, and Yarlung Zangbo rivers, and the
lake area of the TP comprises more than 1500 large and small lakes. The more famous
lakes are the Nam Co, Qinghai, Qarhan Salt, and Eling lakes (Figure 1a). The TP belongs
to a plateau climate zone with distinct dry and wet conditions and frequent nighttime
rains. The mean annual precipitation in the southern part of the TP is more than 1500 mm,
whereas the mean annual precipitation in the Qaidam Basin (QB) in the northeast is less
than 200 mm (Figure 1b). In addition, the TP experiences strong radiation, a high degree of
sunshine, low temperatures, and low cumulative temperatures. The temperatures decrease
with increasing altitude and latitude. The daily temperature difference is large. The mean
annual temperature of the plateau hinterland is below 0 ◦C, and the mean temperature of
the warmest month in large regions is less than 10 ◦C (Figure 1c).

Figure 1. Main environmental characteristics of the TP: (a) geographical location, topography and
river system of the study area, (b) spatiotemporal variation characteristics of precipitation in the
study area from 1985 to 2015, (c) spatiotemporal variation characteristics of mean temperature in
the study area from 1985 to 2015. River name abbreviations: LR-Lancang; NR-Nujiang; YR-Yellow;
YTR-Yangtze; YZR-Yarlung Zangbo.
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2.2. Data Source and Climate Model

A precipitation and temperature dataset for the TP from 1980 to 2015 was obtained
from the Resources and Environment Science and Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/, accessed on 11 November 2021) [32]. The dataset was
based on daily observation data from more than 2400 meteorological stations in China and
was generated by sorting, calculation, and spatial interpolation processing. In this study,
the dataset for precipitation and temperature on the TP from 1980 to 2015 was obtained by
mask extraction.

The future climate model selected for this study uses the GFDL-ESM2M. GFDL-
ESM2M is a coupled model intercomparison project phase 5 (CMIP5) global coupled carbon-
climate model proposed by the US National Oceanic and Atmospheric Administration
(NOAA) that is similar to GFDL’s previous generation climate model 2.1 (CM2.1) [33].
CM2.1 has exhibited efficient performance in simulating and reproducing global climate
interannual variability and climate characteristics [34]. In contrast to the CM2.1 model,
the GFDL-ESM2M uses modular ocean model version 4.1, with vertical pressure layers
and new biogeochemical algorithms and stoichiometric phytoplankton functional group
dynamics. GFDL-ESM2M includes a revised land model to simulate competing vegetation
distributions and functions, including carbon cycling among vegetation, soil, and the
atmosphere [35]. Therefore, GFDL-ESM2M has a wide range of applications and can
be adapted to various climatic conditions around the world. Jia et al. [36] conducted a
comprehensive evaluation of GFDL–ESM2M by comparing the performance of 33 CMIP5
general circulation models (GCMs) in a temperature simulation of the TP. Their results
showed that GFDL-ESM2M exhibits better temperature simulation performance than other
GCMs, which indicates that GFDL-ESM2M is well suited to the simulation of future climate
changes in the TP. In addition, China’s special program for climate change science and
technology development during the 12th five-year plan period has simulated the future
water resources situation in China based on the GFDL-ESM2M climate model [37]. Based
on that climate model, Ma et al. [38] predicted the future trend of dry–wet area and climate
change in China. The study showed that the GFDL-ESM2M climate model has a good
application effect in China. Therefore, GFDL-ESM2M was considered in this study to
predict future drought changes in the TP.

The GFDL-ESM2M climate model includes the representative concentrative pathways
(RCP) 2.6, 4.5, 6.0, and 8.5 climate scenarios. The RCP2.6, RCP4.5, RCP6.0, and RCP8.5
climate scenarios represent very low, low, medium, and high levels of greenhouse gas
emissions, respectively, meaning that radiative forcing will stabilize at 2.6, 4.5, 6.0, and
8.5 W/m2, respectively, by 2100, and the carbon dioxide concentration will reach 490,
650, 850, and 1370 ppm, respectively. In this study, we used daily precipitation and
temperature datasets from multiple climate models from the National Tibetan Plateau
Data Center (TPDC; http://data.tpdc.ac.cn, accessed on 16 November 2021) [39,40]. In
addition, the geographic coordinate system of all datasets was uniformly transformed into
GCS_WGS_1984.

2.3. Methods
2.3.1. Standardized Precipitation-Evapotranspiration Index (SPEI)

The meteorological drought index integrates different climatic factors that represent
the overall climate and environment of the region [41]. The commonly used meteorological
drought indices include the SPI, Palmer drought severity index (PDSI), and SPEI [42].
The SPEI, proposed by Vicente-Serrano et al. [43], is used to characterize meteorological
drought. This index inherits the characteristics of the PDSI, considering evapotranspiration
to be sensitive to temperature, as well as the advantages of SPI with respect to simplicity of
calculation, multiple time scales, and multiple spatial comparisons [44,45]. In the context
of global warming, temperature increase has become one of the most important factors
affecting regional drought [46–48]. Therefore, SPEI has unique advantages in studying the
characteristics of drought on different time scales in the future, which is of great significance
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to further understand the impact of climate change on drought. Previous studies have
shown that the annual-scale SPEI (SPEI-12) is more suitable for long-term drought trend
assessment [49], and the monthly-scale SPEI (SPEI-1) is sensitive to short-term dry and
wet variation [50]. Therefore, in this study, SPEI was used to analyze the future drought
variation characteristics of the TP on both the annual and monthly scales. The calculation
method of SPEI refers to Vicente-Serrano et al., but it should be noted that in this study, we
used the Thornthwaite approach with a limited range of mean air temperatures to calculate
the potential evapotranspiration (PET) for the TP [51,52]. The formula used is as follows:

PET =

⎧⎨
⎩

0 if T < 0
16( 10T

I )
α

if 26.5 > T ≥ 0
−415.85 + 32.24T − 0.43T2 if T ≥ 26.5

(1)

where I is the heat index, T is the average air temperature (in ◦C), and α is estimated using
an I-related third-order polynomial:

I =
12

∑
i=1

(
Ti
5

)1.514
, (2)

α = 0.49239 + 1.792 × 10−2 I − 7.71 × 10−5 I2 + 6.75 × 10−7 I3, (3)

According to the “Meteorological Drought Grade” classification standard, the SPEI
values were divided into nine classes, as shown in Table 1.

Table 1. Categorization according to the SPEI values.

SPEI Value Category SPEI Value Category SPEI Value Category

<−2 Extreme
drought −1 to −0.5 Light

drought 1 to 1.5 Moderately
wet

−2 to −1.5 Severe
drought −0.5 to 0.5 Normal 1.5 to 2 Severely wet

−1.5 to −1 Moderate
drought 0.5 to 1 Lightly wet >2 Extremely

wet

2.3.2. Mann–Kendall (M-K) Test

The M-K test is often used to analyze the changing trend and significance of various
factors [53,54]. The change trend of SPEI can be expressed as:

Slope = median
( xj − xk

j − k

)
, (4)

where Slope is the rate of change, Slope > 0 represents a wetting trend, and Slope < 0
represents a drought trend.

The significance calculation formula is as follows:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
n(n−1)(2n+5)/18

for S > 0

0 for S = 0,
S+1√

n(n−1)(2n+5)/18
for S < 0

(5)

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(xj − xk), (6)

where S is the Kendall sum statistic, sgn is a symbolic function, and xj and xk are the
parameter values at times j and k, respectively. When |Z| ≥ Z1−α/2, the null hypothesis
that the trend is not significant is not rejected. In this study, α = 0.01, α = 0.05, and α = 0.1
significance levels were considered, and the corresponding value of Z1−α/2 were 2.58, 1.96,
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and 1.64, respectively [55,56]. Based on the SPEI trend, it is further divided into six levels,
as detailed in Table 2.

Table 2. Index Classification.

Data Type Slope |Z| Description Class Slope |Z| Description Class

SPEI >0

[2.58, +∞) Extremely significant
humidification EW

<0

[2.58, +∞) Extremely significant
aridification ED

[1.64, 2.58) Significant
humidification SW [1.64, 2.58) Significant

aridification SD

[0, 1.64) Insignificant
humidification IW [0, 1.64) Insignificant

aridification ID

2.3.3. Run Theory

The run theory is typically used to identify drought events requiring a cutoff level k
(k = drought level corresponding to SPEI) [57,58]. In this study, combined with the drought
characteristics of each grade of the TP, the value of k is –1 (i.e., moderate drought and
above). When the value of the random variable (SPEI) is greater than –1, it has a positive
run; otherwise, it has a negative run. In drought research, the length of a negative run is
called the drought duration (D), and the drought intensity (S) is the area encompassed by
the drought duration and the intercept level (Figure 2).

 
Figure 2. Schematic diagram of drought characteristics recognition process.

According to the run theory, to calculate the return periods of different run lengths [59,60],
the calculation steps are as follows:

P =
1
n

n

∑
t=1

x f (x) x = 1, 2, · · · , n, (7)

where P is the mean probability of occurrence of different drought durations, x is the
drought duration, n is the number of months in the series of monthly precipitation for
many years, and f (x) is the number of occurrences of drought duration x.

The expected length (E) of the runs of different drought durations can be expressed by
the following formula:

E =
n

∑
t=1

x f (x)/
n

∑
t=1

f (x) , (8)

After eliminating the influence of dependent effects, the migration probability (Pz) of
different drought durations can be expressed as follows:

Pz = n(E − 1)/(E(n − 1)). (9)
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Hence, the one-dimensional run probability distribution function (F(x)) with parame-
ters including the drought duration and intensity can be expressed as follows:

F(x) =
1 + (1 − Pz)(n − x)
1 + (1 − Pz)(n − 1)

Pz
x−1. (10)

According to the definition of the run-length return period (T(x)), T(x) can be expressed
by the following formula:

T(x) =
x + (Pz

x − 1)/(1 − Pz)

12
. (11)

In order to reflect the main research content more clarity, we have drawn a flowchart
(Figure 3), which mainly illustrates the input datasets, calculations, methods, and output
results of this study.

 

Figure 3. Flowchart including the main steps of input dataset, computation, method, and output
result. The climate models are defined as follows: HadGEM2-ES-Hadley Centre global environment
model version 2-Earth system configuration, IPSL-CM5A-LR-Institut Pierre-Simon Laplace to study
natural climate variability and climate response to natural and anthropogenic forcings as part of the
5th phase of the coupled model intercomparison project, MIROC5-model of interdisciplinary research
on climate version 5, and NorESM1-M-Norwegian Earth system model.

3. Results

3.1. Model Simulation Capability Assessment

Because the CMIP5 model shows different simulation performances for different
climate elements in different regions, the model with the poorest performance will have
a serious impact on the results [61]. Therefore, according to the simulation ability of
different models in the TP for precipitation and mean temperature, this study selected
the best model, and on this basis, analyzed the future drought variation characteristics of
the TP. In order to more comprehensively and intuitively analyze the precipitation and
mean temperature simulation capabilities of the five CMIP5 models in the TP, the Taylor
diagrams analysis method is introduced here [62]. The Taylor diagrams comprehensively
examine the matching degree of model simulation and observation data from three aspects:
the spatial correlation coefficient, ratio of standard deviation, and centralization root mean
square error (RMSD).

Figure 4 shows the Taylor diagrams of precipitation and mean temperature over the
TP for five CMIP5 models under the RCP2.6 climate scenario from 2007 to 2015. The Taylor
diagram results show that the precipitation simulation capabilities of different models differ
to a certain degree, and the simulation results of the HadGEM2-ES, GFDL-ESM2M, and
NorESM1-M climate models are significantly better than the IPSL-CM5A-LR and MIROC5
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climate simulations. In addition, the variation amplitudes of the GFDL-ESM2M, NorESM1-
M, and IPSL-CM5A-LR climate model simulation results are close to the observed data
(Figure 4a). The five CMIP5 models have a similar ability to simulate the mean temperature
time series, and the spatial correlation coefficients are all above 0.9. Among them, the
GFDL-ESM2M climate model is the closest to the observational data, indicating that this
model can better simulate the variation characteristics of mean temperature (Figure 4b).
Overall, the GFDL-ESM2M model is better than the other four CMIP5 models in terms of
its ability to comprehensively simulate precipitation and mean temperature in the TP.

Figure 4. Taylor diagrams of different parameterization schemes under the RCP2.6 climate scenario:
(a) precipitation and (b) mean temperature from 2007 to 2015.

3.2. Spatiotemporal Variation of SPEI
3.2.1. Temporal Variation Characteristics of SPEI

To explore the characteristics of the future drought evolution of the TP, the trends in
SPEI-12 from 2016 to 2099 under four climatic scenarios were analyzed (Figure 5). Under
the RCP2.6, RCP4.5, and RCP8.5 climate scenarios, the mean values of SPEI-12 for the
TP exhibit insignificant increases (p > 0.1), i.e., 8.93 × 10−5, 7.21 × 10−4, and 1.52 × 10−3,
respectively. Under the RCP6.0 climate scenario, the mean value of SPEI-12 for the TP
exhibits an insignificant (p > 0.1) decreasing trend of 2.07 × 10−4. In addition, under RCP2.6,
RCP4.5, RCP6.0, and RCP8.5, the annual drought probabilities for the TP from 2016 to 2099
are 13.10%, 9.52%, 10.71%, and 14.29%, respectively, and the forecasted drought in each
case is mainly light drought.

In general, the mean value of SPEI-12 for the TP from 2016 to 2099 under the RCP2.6,
RCP4.5, and RCP8.5 climatic scenarios mainly exhibit an increasing trend, indicating that
the drought degree in the study area will be slowing in the future. This is mainly because
of the increasing trends of precipitation and temperature over the TP in the future, with
precipitation having a more significant effect on wet–dry changes over the TP.

To further research the intra-year distribution characteristics of the future wet–dry
variation on the TP, a statistical map of the temporal variation of the TP SPEI-1 from 2016
to 2099 under the four climatic scenarios was drawn (Figure 6). Under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 climate scenarios, the future dry months (SPEI-1 < −0.5) on the TP
will be concentrated in the summer (June to August) and will account for 96.50%, 94.74%,
95.48%, and 92.86% of the total dry months, respectively. The wet months (SPEI-1 > 0.5)
will be concentrated in the spring (March to May) and October and will account for 88.67%,
89.80%, 92.35%, and 90.61% of the total wet months, respectively. In addition, under RCP2.6,
RCP4.5, RCP6.0, and RCP8.5 for the period of 2016–2099, regarding the monthly extreme
difference and standard deviation (Std) of the SPEI-1 of the TP, it can be expected that the
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maximum and minimum values will occur in May and December, respectively. As the
concentration of carbon dioxide emissions increases, the maximum value of the monthly
extreme difference (and the Std) will increase, as evidenced by predicted values of 1.87
(0.40), 1.70 (0.38), 2.14 (0.42), and 2.25 (0.45), respectively.

Figure 5. Temporal variation of SPEI-12 in the TP from 2016 to 2099 under the (a) RCP2.6, (b) RCP4.5,
(c) RCP6.0, and (d) RCP8.5 climate scenarios.

Figure 6. Temporal variation of the SPEI-1 on the TP from 2016 to 2099 under four climate scenarios:
(a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5.
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In general, under the four climate scenarios, the characteristics of monthly wet–dry
variation and the annual distribution patterns for the TP are highly similar. However,
as the concentration of carbon dioxide emissions increases, the dispersion of intra-year
wet–dry variation will gradually increase, that is, towards the direction of non-uniform
development. This indicates that as the concentration of carbon dioxide emissions increases,
the intensity of climate extremes on the TP may also increase.

3.2.2. Spatial Variation Characteristics of SPEI

In this study, only the spatial variation characteristics of SPEI-12 under four future
climate scenarios were analyzed based on Equation (4). Under the RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 climate scenarios, there will be a certain extent in the SPEI-12 of the TP
from 2016 to 2099 (Figure 7). The SPEI-12/10 years ranges from –0.152 to 0.116, from
–0.196 to 0.167, from –0.325 to 0.181, and from –0.374 to 0.269, respectively, for the four
climate scenarios, as listed above. These results indicate that as carbon dioxide emissions
increase, climate change on the TP will become more extreme in the future, and the trend of
increasing extreme drought events will become more obvious. Under RCP2.6, the resulting
aridification areas will be mainly concentrated in the Qilian Mountains, the Hengduan
Mountains, and Lhasa. Under RCP4.5, RCP6.0, and RCP8.5, the aridification areas will be
mainly concentrated in the QB, Kunlun Mountains, and Altun Mountains.

 

Figure 7. Spatial distribution of SPEI-12 trends on the TP from 2016 to 2099 under four climate
scenarios: (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5.

Under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 climate scenarios, 47.87%, 47.65%,
44.80%, and 35.45%, respectively, of the TP region will exhibit a trend of aridification in the
future; that is, the SPEI will exhibit a decreasing trend (Figure 8). Under the four climate
scenarios, the aridification of the TP will be dominated by insignificant aridification, and
the proportions of insignificant aridification will be 45.60%, 40.58%, 33.39%, and 19.75%,
respectively. As the carbon dioxide emissions concentration increases, the proportion of the
area of the TP exhibiting extremely significant aridification will also increase in the future,
from 0.01% to 2.79% to 6.35% to 10.06% for RCP2.6 to RCP8.5, respectively.

In addition, as the concentration of carbon dioxide emissions increases, the proportion
of humidified areas in the TP will increase under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5
climate scenarios, from 52.13% to 52.35% to 55.20% to 65.55%, respectively. Moreover, the
proportions of insignificantly humidified area will be 50.05%, 40.11%, 41.74%, and 34.23%,
respectively. In the future, the TP will exhibit extremely significant humidified area ratios
of 0.05%, 3.39%, 3.04%, and 14.78%, respectively.

In summary, as the concentration of carbon dioxide emissions increases in the future,
the proportion of areal aridification on the TP will decrease, but the proportions of extremely
significant aridification and humidified areas will increase. This suggests that the TP will
be more prone to extreme droughts and floods in the future.
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Figure 8. SPEI-12 changes on the TP from 2016 to 2099 under four climate scenarios: (a) RCP2.6,
(b) RCP4.5, (c) RCP6.0, and (d) RCP8.5. IW-insignificant wetting, SW-significant wetting, EW-
extremely significant wetting, ID-insignificant drought, SD-significant drought, ED-extremely signifi-
cant drought.

3.3. Analysis of Drought Change Characteristics

Based on meteorological predictions for the different climatic scenarios, SPEI-1 was
used to analyze the characteristics of drought changes for the TP from 2016 to 2099. In
this study, we mainly analyzed the changing characteristics of drought frequency, drought
intensity, and drought cycles for the TP under the four climate scenarios.

3.3.1. Variation Characteristics of Drought Frequency in Different Grades

According to the drought identification method, combined with the SPEI-1 calculation
results for the 0.25◦ × 0.25◦ grid of the TP, the droughts in different regions of the TP were
distinguished, and the frequencies of drought events predicted from 2016 to 2099 for each
grid under the four climate scenarios were summarized and counted (Figure 9). Under the
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 climate scenarios, the spatial variation characteristics
of the overall drought frequency on the TP in the future will conform to light drought >
moderate drought > severe drought > extreme drought ranking. Under the four climatic
scenarios, the frequency of light drought will be between 0.11% and 40.84%, mainly in the
southern regions of the TP. The frequency of moderate drought will be between 0.08% and
25.50%, mainly in the QB and southern regions of the TP. The frequency of severe drought
will be less than 16.94%, mainly in the northwestern regions of the TP. Extreme droughts
will occur less frequently, mainly concentrated in the western and central regions of the TP,
with a maximum of 6.32%.
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Figure 9. Spatial distributions of the frequency of droughts of various grades on the TP from 2016
to 2099 under four climatic scenarios: Frequency of light drought under the (a) RCP2.6, (b) RCP4.5,
(c) RCP6.0, and (d) RCP8.5 climatic scenarios; frequency of moderate drought under (e) RCP2.6,
(f) RCP4.5, (g) RCP6.0, and (h) RCP8.5; frequency of severe drought under (i) RCP2.6, (j) RCP4.5,
(k) RCP6.0, and (l) RCP8.5; and frequency of extreme drought under (m) RCP2.6, (n) RCP4.5,
(o) RCP6.0, and (p) RCP8.5.

To examine further the variation characteristics of future drought changes of various
categories for the TP, a statistical analysis of the different categories of drought at each grid
point was carried out (Figure 10). Under the four climate scenarios, the mean frequencies of
monthly droughts on the TP from 2016 to 2099 were relatively similar, but overall, the mean
frequency of droughts is predicted to increase at a rate of 2.65% as the concentration of
carbon dioxide emissions increase (RCP8.5 (30.27%) > RCP6.0 (30.23%) > RCP4.5 (30.07%)
> RCP2.6 (29.49%)). The mean frequencies of light droughts are predicted to be RCP2.6
(10.81%) < RCP8.5 (11.30%) < RCP4.5 (11.42%) < RCP6.0 (11.33%), with the largest rate
of increase being 5.72%. The mean frequencies of moderate and extreme droughts are
predicted to increase (i.e., RCP2.6 < RCP4.5 < RCP6.0 < RCP8.5), and the rates of increase
for moderate and extreme droughts are predicted to be 9.07% and 4.74%, respectively.
The mean frequencies of severe droughts are predicted to decrease gradually (i.e., RCP2.6
(7.34%) > RCP4.5 (6.89%) > RCP6.0 (6.77%) > RCP8.5 (6.66%)), with a decreasing rate of
9.25%. In addition, under the four climatic scenarios from RCP2.6 to RCP8.5, the Std of
various drought categories in the TP are in the order of: light drought > moderate drought >
severe drought > extreme drought, and Cv of various drought categories are in the order of:
extreme drought > severe drought > light drought > moderate drought. These results also
indicate that, as the concentration of carbon dioxide emissions increases, the Std and Cv of
various drought categories on the TP are predicted to exhibit overall decreasing trends.

In general, as the concentration of carbon dioxide emissions increases, the frequency of
monthly droughts on the TP from 2016 to 2099 will increase, the increase of the frequency of
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moderate droughts will become even more pronounced, and all categories of drought will
trend toward more uniform spatial distributions. The degree of dispersion of the spatial
distribution of droughts at different levels for the four climate scenarios are in the order of:
extreme drought > severe drought > light drought > moderate drought.

 

Figure 10. Predicted drought frequencies for various categories at each grid point on the TP from
2016 to 2099 under four climatic scenarios.

3.3.2. Variation Characteristics of Drought Intensity under Different Climatic Scenarios

Based on the calculated sub-mean drought intensity of each grid point, the spatial
distribution map of the sub-mean drought intensity for the four climatic scenarios con-
sidered for the TP from 2016 to 2099 was drawn (Figure 11). Under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 climate scenarios, the sub-mean drought intensities on the TP will
range from 1.030 to 3.106, 1.042 to 3.044, 1.027 to 2.973, and 1.033 to 2.759, respectively. The
region with the strongest drought intensity is located mainly in the northwest and central
part of the TP, while the region with the weakest drought intensity is located mainly in
the south of the TP. As the concentration of carbon dioxide emissions increases, the spatial
means of the sub-mean drought intensity on the TP from 2016 to 2099 are predicted to be
1.549, 1.535, 1.534, and 1.531, respectively; the Std values are predicted to be 0.169, 0.165,
0.168, and 0.163, respectively; and the Cv values are predicted to be 0.109, 0.107, 0.109, and
0.107, respectively.

In general, there are certain differences in the spatial distributions of the sub-mean
drought intensities for the four climatic scenarios for the TP from 2016 to 2099, but the
spatial distribution of drought intensities is more uniform than that of drought frequency.
The spatial mean values of the sub-mean drought intensity are low, not exceeding 1.55,
and the Cv values are also low, not exceeding 0.11. As the concentration of carbon dioxide
emissions increases, the overall change in the spatial mean of sub-mean drought intensity is
predicted to exhibits a decreasing trend, and the spatial distribution of sub-mean drought
intensity develops in a more uniform direction.
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Figure 11. Spatial distribution characteristics of sub-mean drought intensity on the TP from 2016 to
2099 under the (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5 climate scenarios.

3.3.3. Migration Probabilities and Return Periods of Different Drought Durations

In this study, the run theory was used to calculate the migration probabilities and
return periods of different drought durations on the TP under the four climatic scenarios.
In calculating the migration probabilities of different drought durations, combined with
the SPEI drought grade distribution and the impacts of different grades of drought on the
TP, k is taken as –1, i.e., this study only examined the migration probabilities of moderate
and more severe droughts on the TP (Figure 12). Under the four climatic scenarios, the
drought duration of the TP exhibited approximately the same trend as the theoretical
probability distribution. As the drought duration increases, the theoretical probability
density decreases exponentially, and when the drought duration exceeds 5 months, the
theoretical probability density approaches 0. In addition, under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 climate scenarios, the drought duration on the TP is mainly less than
3 months, accounting for 82.09%, 80.89%, 79.80%, and 78.28% of the total drought duration,
respectively. This indicates that as the concentration of carbon dioxide emissions increases,
the possibility of long-lasting meteorological drought on the TP gradually increases.

When the TP drought duration exceeds 5 months, the theoretical probability density
will approach zero. Therefore, only the spatial distribution map of the TP drought cycle
from 1 to 5 months (Figure 13) was drawn in this study. It can be seen from Figure 13
that for the same drought duration conditions, the spatial distribution of the drought
cycles on the TP under the four climate scenarios was relatively consistent. However, as
the concentration of carbon dioxide emissions increases, the drought cycle of the TP is
gradually shortened. In addition, under the four climate scenarios, the drought cycle of
drought duration for one month on the TP is less than one year. The distribution of drought
cycles of drought durations of 2–5 months shows obvious differences between the north
and south, and the drought cycles in the southern region are longer than in the northern
region. The drought cycle of 2-month drought duration in the southern region of the TP is
between 2 and 10 years, and that in the northern region is between 1 and 2 years. The cycle
of 3-month drought duration in the southern region is between 10 and 50 years, and that in
the northern region is between 2 and 5 years. The cycle of 4-month drought duration in the
southern region is between 50 and 200 years, and that in the northern region is between 2
and 10 years. The cycle of 5-month drought duration in the southern region is between 200
and 500 years, and that in the northern region is between 5 and 20 years.

Based on these results, it can be concluded that the drought duration is different across
the different regions of the TP, and the distribution of drought cycles is also different. The
greater the drought duration, the longer the drought cycle. From the perspective of the
spatial distribution of drought cycles, the southern region of the TP has a longer drought
cycle than the northern region, indicating that the northern region is more susceptible
to drought, which is consistent with the actual situation. The reason for this is that the
southern region of the TP has a subtropical and tropical northern marginal mountain forest
climate, with an annual precipitation of more than 1000 mm, while the annual precipitation
in the northern region of the TP is less than 600 mm (Figure 1b). In addition, precipitation
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in the northern region of the TP is more concentrated in summer, therefore, spring and
autumn droughts are more likely to occur in the northern region.

 

Figure 12. Relationship between drought duration and migration probability distribution on the TP
under the (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5 climate scenarios.
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Figure 13. Distribution maps of the drought cycle of the TP for drought durations of 1–5 months under
four climatic scenarios: drought duration of 1 month under the (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and
(d) RCP8.5 climate scenarios; drought duration of 2 months under (e) RCP2.6, (f) RCP4.5, (g) RCP6.0,
and (h) RCP8.5; drought duration of 3 months under (i) RCP2.6, (j) RCP4.5, (k) RCP6.0, and (l) RCP8.5;
drought duration of 4 months under (m) RCP2.6, (n) RCP4.5, (o) RCP6.0, and (p) RCP8.5; drought
duration of 5 months under (q) RCP2.6, (r) RCP4.5, (s) RCP6.0, and (t) RCP8.5.

4. Discussion

4.1. Adaptability Analysis of SPEI Index

To evaluate the ability of the SPEI index to reflect the annual scale of drought on the
TP, the SPEI, SPI, and precipitation anomaly in percentage (PA) indices of each grid point
under the four climate scenarios from 2016 to 2099 were used to conduct a correlation
analysis (Figure 14). The following levels of degree of correlation were defined: greater
than 0.60, a strong positive correlation; between 0.40 and 0.60, a significant correlation;
between 0 and 0.4, a weak positive correlation; and less than 0, a negative correlation.
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Figure 14. Correlations of three drought indices under different climate scenarios: PA index and SPEI
index correlation under the (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and (d) RCP8.5 climate scenarios; SPI
index and SPEI index correlation under (e) RCP2.6, (f) RCP4.5, (g) RCP6.0, and (h) RCP8.5.

Judging from the spatial distribution results of the correlation coefficients of the three
drought indices under the four climate scenarios, the correlations between the SPEI, SPI,
and PA indices for the southern part of the TP are stronger than those for the northern
part, because the southern region receives more precipitation and is mostly a high-altitude
mountainous area, with relatively low temperatures and evaporation [63,64]. The change in
precipitation dominates the wet–dry change in the southern part of the TP [65]. Therefore,
the SPI and PA indices, which only consider precipitation, can better reflect the wet–dry
changes in the southern part of the TP. The SPI, PA, and SPEI indices are all strongly
positively correlated. However, the precipitation in the northern part of the TP is relatively
low, especially in the QB, where precipitation and evaporation jointly dominate the wet–dry
changes in this region [66,67]. Therefore, the correlations between the SPI, PA, and SPEI
indices in the northern region are poorer than in the southern region.

In addition, the temperature and evaporation of the TP increase with carbon dioxide
emissions, and the correlations between the SPEI index (which considers precipitation and
evaporation) and the SPI and PA indices (which only consider precipitation) gradually
decrease. This is especially true for the QB under the RCP8.5 climate scenario: the corre-
lation coefficients of the SPI, PA, and SPEI indices were all less than 0.4, indicating weak
positive correlations. This indicates that as the temperature increases in the future, the
influence of evaporation on climate change on the TP will gradually increase, and the SPEI
index (which considers precipitation and evaporation) will better reflect the characteris-
tics of climate change on the TP [68] This is consistent with research results obtained by
Xu et al. [69], who found that by using different drought indices to predict the drought
characteristics of humid subtropical basins in China in the context of climate warming, the
SPI would not reflect the effect of evaporation and would underestimate the frequency of
regional droughts.

4.2. Difference Analysis of Drought Variation at Different Time Scales

The annual-scale degree of drought in the region will tend to decrease slightly in the
future (Figure 5) as a result of the increases in precipitation and temperature in the TP,
except under the RCP6.0 climate scenario. Xu et al. [70] analyzed China’s past drought
trends and found that the TP has exhibited a wetting trend, which is consistent with our
research findings on the future drought trends predicted for the TP. In addition, we found
that the frequency of monthly-scale droughts in the TP is predicted to increase, which is
consistent with the results of Han et al. [57] and Wang et al. [71], who found that southwest
China may suffer from more severe drought disasters in the future.

275



Remote Sens. 2022, 14, 5084

In general, there will be differences in the characteristics of drought change at different
time scales on the TP in the future. The main reasons for this phenomenon are that the
frequency of severe drought and extreme drought will increase significantly and that
extremely humid events will also become more frequent, especially under the RCP8.5
climate scenario (Figure 8). The annual-scale SPEI can reflect the relationship between the
long-term trend and interannual variation of drought, but it is less sensitive to extreme
events, so it is more suitable for long-term drought trend assessment [49]. The monthly-
scale SPEI can reflect the characteristics of regional short-term dry and wet variation
and is more sensitive to extreme events, and thus it is more suitable for the analysis of
drought characteristics [50]. Therefore, this study analyzed the future drought variation
characteristics of the TP on annual and monthly scales, which can better reflect the drought
variation characteristics of the study area under different climate scenarios.

4.3. Analysis of Difference in Spatiotemporal Variation of Drought Characteristics

As global carbon dioxide emission concentrations, as well as the extreme difference
and Std of the SPEI-1 for the TP, are predicted to increase, this indicates that the dispersion of
dry-wet changes in each month will also gradually increase, and that the annual distribution
law will gradually develop in a non-uniform direction (Figure 6). The main reasons for this
phenomenon are that extreme precipitation in the TP will respond strongly to warming in
the future, daily mean precipitation extremes will increase, extreme precipitation events will
occur significantly more frequently, and the intra-annual distribution of precipitation will
be more uneven than in the past, which is consistent with previous research results [72–74].

Spatially, as the carbon dioxide emission concentration increases, the spatial distri-
butions of drought and sub-mean drought intensity at all levels on the TP will develop
in a more uniform direction (Figures 8 and 10). There are two main reasons for this phe-
nomenon. First, in the context of climate warming, the temperature of the TP has increased
significantly, which has aggravated the melting of ice and snow and the increase of per-
mafrost active layers [75,76]. These changes have led to soil moisture change and migration
(especially in the upper layer), and have affected water and heat exchange between the
land and air [77]. Second, the TP has a high altitude and complex terrain, with a large
spatial variability of annual and seasonal precipitation [78,79]. As the overall precipitation
on the TP increases, the spatial distribution of water differences decreases [80].

In general, the annual precipitation on the TP will increase in the future, and the
annual distribution will develop in a more uneven direction, resulting in differences in the
spatiotemporal variation of drought on the TP and increasing the frequency of extreme
climate events on the TP. Previous studies have shown that ~45% of the world’s land is
affected by drought disasters, and the annual losses due to drought are as high as 6 to
8 billion dollars [81]. In the future, the global area affected by drought will continue to
expand, and there will be a trend of gradual expansion of drought from arid areas to
sub-humid and humid areas [11]. By the end of this century, it is expected that dry land will
cover half of the Earth’s land surface, and the total area of extremely dry land will increase
by more than double [82,83]. In addition, studies have shown that future aridification will
not only cause huge economic losses but also lead to systematic and abrupt changes in
various ecosystem properties [84,85]. Under the scenario of future global warming, the TP,
as a sensitive and vulnerable region, will face a greater threat of drought, especially extreme
drought events. Therefore, we should continue to pay close attention to climate change in
the TP and improve our abilities to predict and provide early warnings of extreme climate
disasters [86,87].

5. Conclusions

Annual and monthly scale SPEI drought indices were used with the GFDL-ESM2M
climate model to study predicted drought trends for the TP from 2016 to 2099 under four
RCP scenarios: RCP2.6, RCP4.5, RCP6.0, and RCP8.5, representing very low, low, medium,
and high levels of greenhouse gas emissions, respectively. The duration, frequency, intensity,
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and cycle of drought events were analyzed based on the variation of SPEI on the TP over
different time, and the applicability of different drought indices was examined. The
following conclusions are drawn from the results:

(1) The future climate of the TP is predicted to be warmer and more humid than that
of the past, and these changes are most obvious under the RCP8.5 climate scenario. As the
concentration of carbon dioxide emissions increases, the annual wet–dry variation of the TP
will tend to develop in a non-uniform direction, and the proportion of areas of extremely
significant aridity and humidification will both increase significantly, which indicates the
possibility of increased extreme disasters for the region in the future.

(2) Under all four climate scenarios, the TP will be dominated by light drought in the
future. As the carbon dioxide emission concentration increases, the frequency of occurrence
of droughts in the TP will gradually increase, yet the spatial average value of sub-mean
drought intensity will decrease. However, the spatial distribution of both these factors will
tend to develop in a uniform direction.

(3) Under all four climate scenarios, the drought duration of the TP is mainly less than
3 months, and when the drought duration exceeds 5 months, the theoretical probability
density will approach 0. As the carbon dioxide emission concentration increases, the
drought cycle of the TP will gradually shorten. The southern region of the TP has a longer
drought cycle than the northern region, which indicates that the northern region is more
susceptible to drought.
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Abstract: Changes in lake water volume can reflect variations in regional hydrometeorology and
are a sensitive indicator of regional environmental change. The Tibetan Plateau, referred to as the
“Asian Water Tower”, has a large number of lakes. These lakes are in a natural state and are relatively
unaffected by human activities. Understanding the changes to lake water volume is a key issue
for the study of lake-atmosphere interactions and the effects of lake expansion and contraction on
regional climate. By using multisource remote sensing and water level observations, this study
systematically analyzed inter-annual changes from 1970 to 2021 of three typical inland lakes basin
(Bamu Co-Peng Co basin, Langa Co-Mapum Yumco basin andLongmu Co-Songmuxi Co basin),
which are located in different climatic regions of the Tibetan Plateau and monthly changes from 2019
to 2021 of Bamu Co, Langa Co and Longmu Co in the lake area, water level, and water volume. In
addition, the study analyzed the response of lakes in different climate regions to climate change
from 1979 to 2018. The main conclusions are as follows. (1) From 1970 to 2021, there were similar
trends in lake changes between the primary and twin lakes. (2) The changes to lakes in different
climatic regions are different: lakes in the monsoon-dominated region showed a significant trend
of expansion from 2000 to 2014, but the trend slowed down and stabilized after 2014; lakes in the
westerlies-dominated region showed a small expansion trend; lakes in the region affected by both
westerlies and the monsoon showed an overall shrinking trend. (3) The monthly variation of lake
water volume showed a trend of first increasing and then decreasing, with the largest relative change
of lake water volume in August and September. (4) Precipitation is a dominant factor controlling lake
variation during the year. (5) Temperature and precipitation are dominant meteorological elements
affecting the decadal variation of the lake, and with the warming of the TP, temperature plays an
increasingly important role.

Keywords: Tibetan Plateau; typical inland twin lakes; change of water volume; multisource altimetry
data; climate zones

1. Introduction

The Tibetan Plateau (TP) has an average elevation of over 4000 m. This region is
known as the “Asian Water Tower” as it contains numerous lakes, covering a total area
of 5 × 104 km2 in 2018 [1], and is the birthplace of many large rivers [2]. Most lakes on
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the TP are in a natural state and are relatively unaffected by human activities. Under the
background of TP warming and wetting in recent decades, the change in lake water volume
is one of the most sensitive indicators of regional environmental change [3]. The change in
lake water volume is the result of the combined action of variability in water level and lake
area. The magnitude of these changes determines the heat absorbed and released by lakes,
which affects the energy exchange between the land and the atmosphere. As such, lakes
need to be closely monitored and are good sentinels of climate change [4–6].

The rapid development of remote sensing, multispectral mapping, and satellite
altimetry has led to great improvements in understanding the variations of TP lakes
in recent years [7,8]. Multispectral optical remote sensing images, such as the Land-
sat MSS/TM/ETM+/OLI, Gaofen series satellites (GF−1 and GF−2), and Sentinel data
(Sentinel−2), have enabled lake mapping since the 1970s [7–9]. Many previous studies
have analyzed the changes in water volume in a single lake on the TP. For example, Zhu
et al., 2010, used remote sensing, meteorological data, and field-measured water depth to
analyze the temporal and spatial changes in water volume in Nam Co from 1970 to 2004.
This study found that lake water volume increased from 78.32 km3 to 86.38 km3 across this
period at a rate of 2.37 km3/a [10]. Zhang et al. used field-measured water depth and the
area extracted from remote sensing images of Nam Co to quantify the lake water volume
and its variation in 2011. The result shows that the water volume of Nam Co increased by
84.24 km3 from 1976 to 2009 [11]. Qiao et al. used field bathymetry data, remote sensing
images, and satellite altimetry of Chibuzhang Co and Duoersuodong Co in 2019. This study
showed that these two lakes increased by 2.4 km3 and 2 km3 from 2003 to 2014, accounting
for 24.5% and 14.1% of the original lake water, respectively [12].

Additional studies have analyzed changes in the lake water volume across the entire
TP. Zhang et al. used SRTM DEM (30 m) data to estimate the water volume change of lakes
with an area greater than 1 km2 from 1976 to 2019 in 2021. The results show that lake water
storage on the TP increased by about 170 km3 mainly in the inflow area (158 km3) [13]. The
increase in water volume of glacial-supplied lakes (about 127 km3) was much higher than
that of non-glacial-supplied lakes (43 km3). This result was related to the large number and
wide area of glacier-supplied lakes. In addition, the increase in the water volume of closed
lakes (about 163 km3) was much higher than that of outflow lakes (about 8 km3). Luo et al.
further estimated the water storage change of 242 lakes on the TP from 2003 to 2019 to be
11.51 ± 2.26 km3/a by integrating ICESat/ICESat−2, the global surface water dataset, and
the HydroLAKES dataset in 2021 [14].

At present, most research on the change of lake water volume on the TP is based on
the analysis of long-term interannual variability. There are relatively few studies on the
trend of water level changes in lakes and the dynamic characteristics of lake areas during
the year in different climate zones. The change in lake water volume can accurately reflect
changes to the regional climate and hydrological processes and is a sensitive indicator of
environmental change. Lake effects affect climate change mainly by affecting the energy
budget. The energy absorbed and released will affect the energy exchange between land
and the atmosphere and affect the regional climate [15]. Therefore, records of lake water
volume changes provide valuable information for understanding how lakes respond to
climate change.

Due to the remote location and a lack of observational data, there is currently limited
research about intra-annual water volume changes and spatial differences of lakes on the
TP. This paper selects three lakes in the westerlies-dominated, monsoon-dominated, and
westerlies–monsoon interaction zones of the TP and analyzes the differences in lake water
volume change between these regions (Figure 1). First, the monthly lake water area of
the three lakes was extracted using multisource remote sensing satellite images and the
Normalized Difference Water Index. Then, the variations in lake water level were calculated
from remote sensing altimetry data and in situ observations of water level. Finally, the
water volume changes of the three lakes and their spatial differences were analyzed by
quantifying the estimated change in the lake area and water level.
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Figure 1. (a) Area of the basins studied, (b) BMC-PC basin, (c) LMC-SMXC basin, (d) LAC-MPYC
basin.

2. Overview of the Study Area

We analyzed three groups of inland lakes in different climate regions for our study.
Firstly, according to the atmospheric circulation field and local dry/wet conditions in
the area, we divided the TP into the monsoon region, westerly region, and monsoon–
westerly interaction region. Then three groups of lakes with large adjacent lakes and similar
topographic conditions in the catchment area were selected from different climate zones,
which were Bamu Co (BMC) and Peng Co (PC) in the monsoon zone, the Longmu Co
(LMC) and Songmuxi Co (SMXC) in the westerly zone and the Langa Co and Mapum
Yumco (MPYC) in the monsoon–westerly interaction zone.

The BMC (31.25◦N, 90.58◦E)–PC (31.52◦N, 90.97◦E) basin locate in the east of Bangor
Country, in the Tibetan Autonomous Region of China, and it is situated in the north of
the Nyenchen Tanglha Mountain. The BMC extends in a north-south direction and is a
relatively regular rectangular shape with an average altitude of 4566 m, a lake area of
242.05 km2 and the PC shows a shape of narrow in the north and wide in the south with an
average altitude of 4553 m, the lake area of 175.43 km2. The basin belongs to the sub-frigid
and semi-arid climate region of the TP, which is mainly affected by the monsoon; the
mean annual temperature is 0.0~2.0 ◦C, with the highest average temperature in July and
the lowest in January; the annual precipitation is 300~400 mm, and multi-year average
precipitation from June to September is 263.30 mm [16]. The area of the catchment is
4839.2 km2 and 1020.3 km2 with a supply factor of 25.3 and 7.5, respectively. The two
lakes both mainly rely on surface runoff for supply, in which BMC has nine inflow rivers,
and among which the Baisangsangqu is mainly a supply river, with a drainage area of
1890.0 km2, accounting for 38% of the total lake catchment area, and PC has 11 inflow
rivers, among which the Dangxiong Co is mainly a supply river [17].

The LAC (30.69◦N, 81.22◦E)–MPYC (30.67◦N, 81.47◦E) basin locate in Pulan County
in Pulan County in the Ali area of the Tibetan Autonomous Region of China, and there are
two high mountains facing each other in the south and north of the basin: The Naimona’nyi
Peak on the south side is 7728 m above sea level with developed glaciers; the Kangrinpoche
Mountain on the north side is 6656 m above sea level and covered with ice and snow the
whole year. There are five tiers of ladder plates in the east and west of the basin, which are
1.5~2.0, 4.0, 8.0~10.0, 13.0~15.0, and 27.0~30.0 m higher than the lake surface, respectively.
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The LAC shows a spoon shape, with an average altitude of 4567 m and a lake area of
252.43 km2, where the northern part is an alluvial fan with a depth of 10 m. The middle
part of the lake is narrow and long, with a depth of about 25 m; and the MPYC exhibits
a trapezoidal shape that is wide in the north and narrow in the south, with an average
altitude of 4572 m, the lake area of 414.23 km2. The basin locates in a semi-arid region with
mountainous shrubs and grasslands, which is a mixed climatic zone that is affected by
both the westerly belt and the monsoon, the mean annual temperature is about 2.0 ◦C, with
the highest average temperature in July and the lowest in January, and the lake surface
temperature reaches a maximum in August [18]; the annual precipitation is 150~200 mm.
The area of the catchment is 2551.5 km2 and 4148.0 km2 with a supply factor of 9.5 and
10.0, respectively. The LAC mainly relies on precipitation and the Ganga River and Nagqu
River in the north of the lake for the supply, and it also receives water from MPYC in the
wet season. The MPYC mainly relies on precipitation and surface runoff supply [17].

The LMC (34.61◦N, 80.45◦E)–SMXC (34.60◦N, 80.25◦E) basin locate in the Ritu County
of the Tibetan Autonomous Region, and it is situated in the northeast of the lowest part
of the Quaternary sedimentary basin on the north side of the Karakoram. The two lakes
belonged to the same great lake in the Quaternary Period, and now these two lakes are
twin lakes. The LMC shows a gourd shape, with an average altitude of 5012 m and an
area of 107.95 km2; the average altitude of the SMXC is 5015 m, and the area is 32.64 km2.
The climate in the basin is cold and dry and mainly affected by the westerly belt, with
an average annual temperature of −8.0 ◦C and annual precipitation of 75–100 mm. The
area of the catchment is 570.0 km2 and 1605.0 km2 and the supply factor of 5.9 and 64.2,
respectively. The LMC mainly relies on underground runoff for supply, and there are three
main rivers in the east of the lake; the SMXC relies on the surface runoff for supply, and
there are two main inflow rivers [17].

The main characteristics of the three inland lakes are shown in Table 1.

Table 1. Main characteristics of the lakes in the study region.

Bamu Co—Peng Co Basin
Langa Co—Mapum

Yumco Basin
Longmu Co—Songmuxi

Co Basin

Climate Region Monsoon Region
Westerly–Monsoon
Interaction Region

Westerly Region

Mean Annual Temperature (◦C) 0.0~2.0 2.0 −8.0
Annual Precipitation (mm) 300~400 150~200 75~100

lake BMC PC LAC MPYC LMC SMXC
Latitude 31.25◦N 31.52◦N 30.69◦N 30.67◦N 34.61◦N 34.60◦N

Longitude 90.58◦E 90.97◦E 81.22◦E 81.47◦E 80.45◦E 80.25◦E
Altitude (m) 4566 4553 4567 4572 5012 5015

Lake Area (km2) 242.05 175.43 252.43 414.23 107.95 36.24
Catchment Area (km2) 4839.2 1220.3 2551.5 4148.0 570.0 1605.0

Supply Factor 25.3 7.5 9.5 10.0 5.9 64.2

Supply Type Surface runoff Surface runoff and
Precipitation

Underground
runoff

Surface
runoff

The climate of the TP is mainly influenced by monsoons (including the Indian monsoon
and East Asian monsoon) and westerlies [19,20]. The monsoon brings abundant rainfall to
the affected areas during the summer, while the westerlies bring cold and dry weather in
winter [21], which will cause different impacts on lakes in different climate zones, resulting
in different expansion or contraction trends. The interaction of atmospheric circulation
patterns in the TP leads to an uneven distribution of precipitation: The annual precipitation
of the BMC-PC basin controlled by the monsoon zone is 300~400 mm; that of the LMC-
SMXC basin controlled by the westerly zone is 75–100 mm, and that of LAC-MPYC basin
controlled by the westerly–monsoon interaction zone is 150–200 mm, which is between the
monsoon zone and the westerly zone.
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3. Data and Methods

3.1. Data Source
3.1.1. Satellite Imagery

Multisource remote sensing images were used to extract the annual lake area changes
of the six lakes from 1970 to 2021 and monthly lake area changes of the three main lakes
from 2019 to 2021 in order to analyze the temporal and spatial variations across the region.
Landsat remote sensing images were mainly used to quantify the annual lake area from
1970 to 2021. Sentinel−2 remote sensing images were mainly used to extract monthly lake
area data from 2019 to 2021. The Landsat project has completed seven missions since 1972
and provided a long time-series of observations for monitoring water resources on the
Earth’s surface [9,22–25]. We selected Landsat images with little or no cloud cover and the
highest satellite repetition period. Sentinel-1 remote sensing images are supplemented into
the dataset. Due to the lack of complete data from 1970 to 2013, we calculated the mean
lake area from 1970 to 1990 as the lake area of the 1970s. From 1990 to 2010, we calculated
the lake area every five years.

The Landsat images used in this study were collected using the Multispectral Scanner
(MSS) of Landsat1-3, Thematic Mapper (TM) of Landsat 5, Enhanced Thematic Mapper
Plus (ETM+) of Landsat7 and Operational Land Imager (OLI) of Landsat8. Sentinel−2 is
a multispectral imaging satellite developed by the European Space Agency. These data
not only have high resolution and a short revisit period but are also freely available to the
public [26]. Sentinel−2A and Sentinel−2B satellites were launched and put into use on
23 June 2015 and 7 March 2017, respectively. The two satellites are polar orbit satellites,
with an orbital altitude of 786 km and an inclination of 98.62◦E. The swath width is 290 km,
and the orbital period is 100 min [27].

Under good meteorological conditions, dual-satellite synchronization can shorten
the satellite revisit period to 5 days and achieve full coverage in 2–3 days in mid-latitude
regions [9]. Sentinel−2A/B satellite is equipped with a multispectral imager MIS (Multi-
spectral Instrument). The sensor is arranged with 12 detection elements along the scanning
direction. The ground reflection spectrum of the scanning zone is obtained by push-broom
scanning. The imager can obtain 13 detection elements. The green light band (B3) and the
near-infrared band (B8) are mainly used to calculate the water body index in this study.

Sentinel−1 contains four imaging modes: SM (Strip map), IW (Interferometric Wide
swath), EW (Extra-Wide swath), and WV (Wave). The SM, IW, and EM modes include
single polarization (HH/VV) and dual polarization ((HH + HV)/(VV + HV)) imaging. The
WV mode contains single polarization (HH/VV) imaging. The acronyms VV, HH, HV,
and VH refer to different transmit and receive angles, which are vertical transmit/vertical
receive, horizontal transmit/horizontal receive, horizontal transmit/vertical receive, and
vertical transmit/horizontal receive, respectively, with a single co-polarization. VV + VV
and VV + HV refer to dual-frequency cross-polarization with different transmit and receive
angles [28]. End users have access to a variety of applications, including surface water
monitoring [29]. To ensure the accuracy of the data, the lake area of this study was also
compared with a long-term dataset of lake areas on the Tibetan Plateau (1970–2013) [30],
and the changing trend was similar.

3.1.2. Satellite Altimetry

Satellite altimetry technology refers to using altimeters carried by satellites to measure
the height of the Earth’s surface. There are two major categories of satellite altimeters:
laser and radar. Laser altimeters are mainly used in the Ice, Cloud, and land Elevation
Satellite (ICESat). Laser altimeters have smaller footprints and higher accuracy than radar
altimeters [31,32] but a lower time resolution. In this study, we use multisource altimetry
data (CryoSat−2, Jason−2, Sentinel−3B, and ICESat−2). These data were combined if
available. A brief description of the data is shown in Table 2 below.
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Table 2. Summary of the multisource altimetry data used in this study.

Mission Sensor Type Duration
Repetition

Period
(day)

Footprint
Interval

(m)

Footprint
Diameter

(km)
Data Source

CryoSat−2 SIRAL radar 2010- 369 280 1.65 ESA
Jason−2 Poseidon-3 radar 2008- 10 300 2–4 CNES Aviso+

Sentinel−3B SRAL radar 2018- 27 291–306 >2 ESA
ICESat−2 ATLAS laser 2018- 91 90 0.0175 NASA

3.1.3. Water Level Observational Data

The water level in the lakes was measured using an automatic water level gauge
(HOBO−U20). The pressure water level gauge can observe small changes (1 mm) in the
lake water level. Two HOBO−U20 loggers were placed on the long axis of the BMC, LAC,
and LMC. The field environment restricted measurements of all six lakes. The water level
gauges observe hourly water levels and obtain average lake water level data every half
hour/day. Due to the climate and geographical environment of the TP, the shallow layers
of the lakes are frozen in winter, and the movement of the ice will damage the instruments.
Therefore, water level data are mainly concentrated in summer (May, June, and July) and
autumn (August, September, and October). Due to the impact of COVID-19 prevention
policies, it was not possible to replace the batteries in the water level gauge, resulting in
partial data loss. The missing data were filled using satellite altimetry data.

3.1.4. Meteorological Data

This study mainly used the dataset of lake-catchment characteristics for the Tibetan
Plateau (LCC−TP v1.0) [33]. The data are the first dataset of lake-catchment characteristics
on the TP; it can provide fundamental data for the study of lakes in the TP. The climate
variables mainly used the grid-based CMFD dataset to calculate the catchment-level climate
characteristics; the CMFD was constructed through the fusion of in situ observation, remote
sensing data, and reanalysis datasets, which improved the data quality in the TP. By
reprocessing the CMFD dataset, the LCC−TP v1.0 dataset obtained the meteorological
data from 1979 to 2018 of lakes over 0.2 km2 with a temporal resolution of 1 day. We
extracted basic meteorological data (temperature, precipitation, wind), which are related to
the change of lake for catchments of the BMC, PC, LMC, SMXC, LAC, and MPYC. Moreover,
the monthly precipitation from 2019 to 2021 is collected by the automatic weather station
and rain gauge set around the BMC, LMC, and LAC.

3.2. Calculation Method
3.2.1. Extraction of Water Area

The extraction of water bodies from remote sensing images mainly uses the different
spectral characteristics of different ground objects on remote sensing images. There are
many satellites remote sensing data available for lake mapping on the TP. The method for
extracting the lake area is generally referred to as the Normalized Difference Water Index
(NDWI), which is a reliable method for the extraction of lake water information on the TP [9].
The normalized difference water body index method was proposed by Mcfeeters [34]. The
method highlights the water body and weakens the background environment. The most
basic formula (1) is:

NDWI =
Green − NIR
Green + NIR

(1)

where Green represents the green wave band, and NIR represents the near-infrared band.
In this study, the long time-series lake area is mainly extracted by the data of Landsat

and Sentinel−1 SAR data, and the monthly lake area from 2019 to 2021 is mainly extracted
by the data of Landsat−8 and Sentinel−2 remote sensing images. The data are processed by
GEE (Google Earth Engine) platform; the GEE is a comprehensive platform for geographic
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information data processing and visualization launched by Google. It provides remote
sensing data, including Sentinel and Landsat and topographic data, and it can process data
online. The Sentinel−1 data provided by the GEE have been preprocessed for thermal noise
removal, radiometric calibration, terrain correction, and fringe processing. We adopt the
SVM (Support Vector Machine) method to extract the lake water body. The SVM is a kind
of generalized linear classifier that classifies data bivariate according to supervised learning.
The decision boundary is the maximum-margin hyperplane solved for the learning sample.
It can be classified nonlinearly by kernel method, which is one of the common kernel
learning methods and is widely used in pattern recognition. In this study, we use the hard
margin linear SVM to classify the water body using NDWI; the ultimate goal of this method
is to calculate an optimal separating hyperplane based on the calculated NDWI as the
identification boundary between land and water bodies (2).

m =
2

‖w‖ (2)

where m is the margin of the optimal separating hyperplane, and ‖w‖ means the two
norms of each element. The calculation result of NDWI, which are larger than the optimal
separating hyperplane, can be recognized in the water body.

The first step is the processing of remote sensing images, which is carried out on the
GEE platform. This preprocessing involves cloud removal and atmospheric correction
on the remote sensing images. We then use the NDWI to identify lakes and a machine
learning method to classify lake water bodies. This study adopts the SVM method, which
enables accurate identification and classification of water bodies. After the water body is
determined, the vectorized processing is performed on ArcGIS. The monthly water body
area of the lake is finally obtained through manual sight translation.

The second step is the processing of remote sensing images, including a topographic
correction and speckle noise removal. The fluctuation of terrain causes significant geometric
distortion of remote sensing images and can lead to perspective shrinkage, overlapping,
shadows, and other phenomena. In addition, when the echoes of continuous radar pulses
are processed over a rough surface, the superposition of reflected electromagnetic waves
and the different distances between each scatterer and the sensor means that the echoes are
incoherent in phase, resulting in echoes. Pixel-by-pixel variation in intensity, which appears
grainy in pattern, resulting in randomly distributed black-and-white specks in the image.
In order to address these issues, the images are topographically corrected, and speckle
noise is removed. The water body index is then calculated as shown in Equation (3):

NDWI = ln(10 × VV × VH) (3)

After determining the water body index, we export the image and carry out a vec-
torization processing in ArcGIS to produce a water area of the lake every month through
visual interpretation (VI).

3.2.2. Extraction and Calculation of the Lake Water Level

The first step is the processing of the observational data of the lake water level. The
HOBO water level gauge is used to observe the lake water level, producing half-hourly
lake water level data. As the gauge use pressure changes to record changes in water level,
air pressure data obtained from meteorological observations are subtracted from the water
level to remove the influence of atmospheric pressure changes. The monthly average water
level is calculated from the data. We mainly focus on the process of lake surface fluctuations
and do not consider the absolute elevation of each lake surface. As such, we only use the
relative change of lake water level of different months in the summer (May, June, July) and
autumn (August, September, October) of the same year, compared to the lake level in May.

The second step involves processing the satellite altimetry data. Using the acquisition
of ICESat−2 altimetry data as an example, we use basic geospatial data such as water bodies
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and lake boundaries to mask the longitude and latitude information of the spot center in
the ATL13 product. Second, we extract the sub-satellite track of the ICESat−2 satellite in the
lake area and perform photon signal delay and geophysical corrections. Third, we correct
the spot heights corresponding to the six pulse signals (gravity level anomaly, level height,
and projection deformation) and calculate the corrected instantaneous water level of the
lake. Finally, a simple Normalized Median Absolute Deviation method (NMAD) is used
to remove outliers and obtain the average lake level [35]. After obtaining the lake water
level data from different satellite altimeters for the six lakes, we compare the mean lake
water level for the same period to eliminate systematic errors between different satellite
altimeters. We also use observational data as a reference for the altimetry-derived water
levels to improve the accuracy of the data.

3.2.3. Estimation of Changes in Water Volume

Because the lake area is irregular, the lake water volume can be approximately simpli-
fied as an irregular platform, as shown in Equation (4):

V =
1
3

H ×
(

S′ + S +
√

S′ × S
)

(4)

where S’ and S are the lake surface area and the lake bottom area, respectively. H is the lake
height. The lake water volume change is calculated from the difference between the upper
and lower bottom areas of the two lakes, as shown in Equation (5):

ΔV =
1
3
(H2 − H1)×

(
S1 + S2 +

√
S1 × S2

)
(5)

where ΔV is the change of lake water volume from lake surface water level H1 and area S1
relative to water level S2 and area S2.

A flowchart showing the method for calculating the relative change in lake water
volume is shown in Figure 2.

 

Figure 2. A flowchart illustrating the method used to calculate lake water volume change.
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3.2.4. Calculating Lakes Changes Responses to Climate Change

In the study, we mainly used Pearson Correlation to analyze the response of lake
changes to climate change. The Pearson correlation coefficient is widely used to measure
the degree of correlation between two variables in natural sciences research. Among them,
the correlation coefficient of the sample is denoted by r, and p is a probability value. If
p < 0.01, it means that the null hypothesis is rejected at the 99% confidence level; p < 0.05 or
0.1 is the same, and the p-value can be used as an evaluation index of contribution. The
formula is shown in formula (6).

r =
∑
(
X − X

)(
Y − Y

)
√

∑
(
X − X

)2
∑
(
Y − Y

)2
(6)

where the X and Y means lake water area and meteorological elements in the same year.

4. Results and Analyses

4.1. Analysis of Lake Change
Analysis of Area Change

The lake area changes differently in different climate zones from the 1970s to 2021
(Figure 3). Lakes in the monsoon region (BMC and PC) and the westerly region (LMC
and SMXC) show an overall expansion trend. The BMC and PC showed a trend of rapid
expansion from 1995 to 2005, with growth rates of 4.746 km2/a and 31.8098 km2/a, re-
spectively, before the trend stabilizes. The LMC and SMXC showed a steady growth trend
from the 1970s to 2021, with growth rates of 1.092 km2/a and 0.747 km2/a, respectively.
Lakes in the westerly–monsoon interaction zone (LAC and MPYC) showed an overall
shrinking trend. Lake areas in this region show a rapid shrinking trend from the 1970s to
2005, with a reduced rate of 1.744 km2/a and 1.061 km2/a, after which the reduction slows
or stabilizes. The three groups of primary and twin lakes have similar trends, suggesting
they are connected by groundwater.

Figure 3. Cont.
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Figure 3. Lake area from 1970 to 2021, (a) lakes in the monsoon region, (b) lakes in the westerly–
monsoon interaction region, (c) lakes in the westerly region.

The changes in the lake area of inland lakes on the TP are primarily affected by
precipitation, snowfall, and melting of glaciers and permafrost. There are obvious seasonal
differences in the supply of these water resources, meaning that changes in lakes within
a year cannot be ignored. In order to make the investigation more accurate and make
full use of the observed meteorological and lake water level data, the analysis of annual
variance in lake water level focuses on 2019–2021. The lakes in the monsoon region and
westerly–monsoon interaction region have similar trends during the year. Lakes in these
regions both began to expand in May, reached the maximum in August then began to
shrink. The lake area expanded slightly in winter after the lake surface froze. The timing of
the maximum lake area in the westerly–monsoon interaction region was delayed by one
month compared to the monsoon region.

It can also be seen in Figure 4 that the seasonal changes in the lake area from 2019 to
2021 are different. For example, at BMC in 2019, the lake area showed a decreasing trend
from January to April. The lake ice started to melt in May, and the lake area expanded and
reached a maximum in August before gradually retreating. In 2020, the lake area showed
a decreasing trend from January to May. The lake ice began to melt in May, and the lake
area began to expand. The lake area reached a maximum in August and then gradually
retreated. In 2021, the lake area showed a decreasing trend from January to March, and
the lake ice began to melt in May. The lake area began to expand in May and reached a
maximum in September before gradually retreating.

Figure 4. Cont.
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Figure 4. The annual lake area changes from 2019 to 2021, (a) BMC, (b) LMC, (c) LAC.

4.2. Analysis of Lake Water Level Change

The parameter of lake level change is very important for estimating the change of
lake water volume and can represent climate change to a certain extent. Lakes located
in different climate zones have different trends (Figure 5). The twin lakes have similar
interannual variations in lake water level as their respective primary lakes.

In this study, lake water level change is mainly analyzed for seasonal characteristics.
The change in lake water level in May is set to zero every year, and then the monthly
average value of water level change during the non-freezing period (May to October)
relative to that in May is calculated. In order to verify the accuracy of the ICESat−2 ATL13
remote sensing altimetry product, this paper selects 26 repeated ATL13 orbital data passing
through the three lakes from May to October every year from 2019 to 2021. We then
calculate the change of lake water level obtained by the ATL13 remote sensing altimetry
products as the change of lake water level in the month relative to that in May. The changes
in the repeater orbit data of ATL13 are not considered due to the relatively small amount of
data obtained from BMC (Table 3). Correlation analysis between the relative change of lake
water level from ATL13 and the observational data (Figure 6) showed R2 values of 0.85.
Therefore, the ICESat−2/ATL13 laser altimetry product can accurately reflect the relative
change in lake water level.

Figure 5. Cont.
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Figure 5. Lake water level from 1970s to 2021, (a) lakes in monsoon region, (b) lakes in westerly–
monsoon interaction region, (c) lakes in westerly region.

Table 3. Repeat orbit data from ATL13 of Bamu Co, Langa Co and Longmu Co (m).

Data Lake May June July August September October

2019
Bamu Co 4566.018 ××× ××× ××× ××× ×××
Langa Co 4567.530 4567.905 ××× 4568.220 4568.026 ×××

Longmu Co 5012.203 5012.101 5012.166 5012.238 ××× ×××

2020
Bamu Co ××× ××× ××× ××× 4566.523 4566.438
Langa Co ××× 4567.656 ××× 4567.706 4567.698 ×××

Longmu Co 5012.485 ××× 5012.507 ××× 5012.460 ×××

2021
Bamu Co 4569.784 ××× ××× ××× ××× ×××
Langa Co 4567.060 4567.039 ××× ××× 4567.147 ×××

Longmu Co 5012.610 5012.689 5012.750 ××× 5012.736 5012.688

××× means lack of data.
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Figure 6. Water level change rate from ICESat−2 and observation.

As is shown in the Figure 7, the relative lake water level change of BMC reached
maximum values in September 2019 (0.32 m), August 2020 (0.23 m), and September 2021
(0.42 m). LMC reached maximum values in August 2019 (0.17 m), August 2020 (0.02 m),
and September 2021 (0.01 m). LAC reached maximum values in September 2019 (0.75 m),
August 2020 (0.07 m), and August 2021 (0.01 m).
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Figure 7. The relative change of water level in (a) BMC, (b) LMC, (c) LAC.

4.3. Analysis of Relative Change in Lake Water Volume

The change in lake water volume is a key factor for evaluating the degree of lake impacts
on climate. Changes in lake volume are the result of the combined action of water level change

293



Remote Sens. 2022, 14, 5015

and lake area change. By using the obtained lake water level change and lake area change, the
lake water volume change can be estimated following Equations (3) and (4) [36,37].

The inter-annual relative change of lake water level from 2013–2021 is calculated
relative to 2011 (Figure 8). The inter-annual relative change of lake water level showed a
significant difference in the different climatic regions. At the BMC and PC, in the monsoon
region, the water volume of the lake was relatively stable before around 2017 but then de-
creased significantly. LAC in the westerly–monsoon interaction region showed a significant
decreasing trend, while MPYC was stable. LMC and SMXC in the westerly region showed
a significant increasing trend. However, the growth rate of SMXC is an order of magnitude
lower than LMC.

Figure 8. Relative change of lake water volume from 2013 to 2021, (a) lakes in the monsoon region,
(b) lakes in the westerly–monsoon interaction region, (c) lakes in the westerly region.

Differences in lake water volume change are significantly related to temporal and spa-
tial variations in precipitation. From 1980–2015, the monsoon region showed a warm-wet
tendency (ΔT = 0.54 ◦C/10a, Δp = −12.44 mm/10a), the Westerly–monsoon interaction
region showed a cold-wet tendency (ΔT = −0.71 ◦C/10a, Δp = 37.66 mm/10a) and the
westerly region showed a warm–dry tendency (ΔT = −0.53 ◦C/10a, Δp = −12.44 mm/a).
The combined action of precipitation and melting of glacial snow cover causes lake ex-
pansion [38]. In the TP, which is relatively unaffected by human factors, variations in
precipitation are the main drivers of inland lake change [39,40].

The annual relative change in 2019–2021 is calculated relative to the first month of the
year for which data are available each year (Figure 9). The relative changes in lake water
volume in typical inland lakes in different climatic regions are different in different seasons.

The lake water volume of BMC, located in the monsoon region, is relatively stable,
and the overall lake water volume shows an increasing trend from 2019 to 2021. Among the
annual changes in the lake water volume, the relative change of lake water volume shows
a trend of first rising and then falling. The relative change of lake water volume reached
maximum values in August 2019 (77.76 × 103 km−3), August 2020 (55.61 × 103 km3),
and September 2021 (102.91 × 103 km3). The lake water volume in LMC, located in the
westerlies area, showed a significant change trend in 2019 but was stable in 2020 and 2021.
The annual changes in the lake water volume at LMC reached maximum values in August
2019 (42.16 × 103 km3), August 2020 (5.66 × 103 km3), and June 2021 (8.67 × 103 km3).
The lake water volume of LAC, located in the westerly–monsoon interaction area, shows
an overall decreasing trend from 2019 to 2021. The relative lake water volume change
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of LAC reached maximum values in September 2019 (81.44 × 103 km3), August 2020
(7.66 × 103 km3), and August 2021 (32.43 × 103 km3).

Figure 9. Monthly relative change of lake water volume and precipitation from 2019–2021, (a,b) lake
water volume change and precipitation of BMC, (c,d) lake water volume change and precipitation of
LAC, (e,f) lake water volume change and precipitation of LMC.

Abnormally high rainfall in the westerly region (LAC and LMC) in 2019 meant that the
precipitation was significantly higher compared with other years. This high precipitation
shows a good correlation with the obvious increase in lake water volume in 2019. In
addition, there is also a good correlation between the peak of precipitation and the increase
in lake water volume, indicating that precipitation is an important factor affecting lake
change.

4.4. Response of Lake Change to Climate Change
4.4.1. Interdecadal Variation of Meteorological Elements

From 1979 to 2018, the temperature showed an overall increasing trend with different
rates: BMC-PC basin in the monsoon region is 0.68 ◦C/10a; LMC-SMXC basin in the
westerly region is 0.24 ◦C/10a; LAC-MPYC basin in the westerly–monsoon interaction
region is 0.064 ◦C/10a (Figure 10), the annual mean temperature of the three basins are
−1.96, −4.26 and −8.48 ◦C, respectively. Among them, we can see that the BMC-PC basin
showed a rapid warming trend, while the LAC-MPYC basin was relatively stable, and it is
worth noting that the LMC-SMXC basin was stable before 2000, but it sharply decreased in
2000 then increased significantly.

The annual cumulative precipitation in different climate regions showed an overall
increasing trend with a ratio of 36.31, 12.40, and 119.12 mm/10a, respectively, from 1979 to
2018. Among them, the cumulative precipitation of the BMC-PC basin was relatively stable
before 2000 but fluctuated significantly after 2000, that of the LAC-MPYC basin increased
significantly after 2000, and that of the LMC-SMXC basin was stable before 1998 and then
increased rapidly. The increasing trend of the cumulative precipitation rate was mostly
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bounded by the year 2000, and the cumulative precipitation increased significantly after
2000, which corresponded to the obvious increase in the lake area after 2000 (Figure 11).

Figure 10. Annual mean temperature of three basins in different climate region, the green lines mean
one linear fitting equation, (a) the BMC-PC basin, (b) the LAC-MPYC basin, (c) the LMC-SMXC basin.

The annual mean wind speed from 1979 to 2018 showed different trends in different
climate regions: the wind speed of the BMC-PC basin decreased slightly, with the rate
of −0.16 m/(s·10a), and the wind speed fluctuated significantly from 1990 to 2000, then
stabilized; the wind speed of LAC-MPYC basin decreased with the rate of −0.20 m/(s·10a),
the wind speed increased in 2000 then decreased rapidly; the wind speed of LMC-SMXC
basin decreased slightly before 1997 then increased rapidly with the rate of 0.39 m/(s·10a)
(Figure 12).

The annual average specific humidity is generally stable from 1979 to 2018, but there
are abnormally large or small around 2000: the specific humidity of the BMC-PC basin in
the monsoon region and the LMC-SMXC basin increased significantly from 1995 to 2000
then decreased gradually while that of the LAC-MPYC basin showed a contrary tendency
(Figure 13).

The variation trends of these meteorological elements changed in 2000, and the varia-
tion trends of the lake also changed in the same period. Therefore, the response mechanism
of lakes to climate change will be analyzed in different periods, and the responses will be
discussed over the entire time, before and after 2000.
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Figure 11. Annual cumulative precipitation of three basins in different climate region, the green lines
mean one linear fitting equation, (a) the BMC-PC basin, (b) the LAC-MPYC basin, (c) the LMC-SMXC
basin.

Figure 12. Cont.
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Figure 12. Annual mean wind speed of three basins in different climate region, the green lines mean
one linear fitting equation, (a) the BMC-PC basin, (b) the LAC-MPYC basin, (c) the LMC-SMXC basin.

Figure 13. Annual Specific Humidity of three basins in different climate region, the green lines mean
one linear fitting equation, (a) the BMC-PC basin, (b) the LAC-MPYC basin, (c) the LMC-SMXC basin.

4.4.2. Response of Lake Change to Climate

In this study, we analyzed the correlation between the lake area and the annual
mean temperature, wind speed, specific humidity, and annual cumulative precipitation.
Analysis results from 1979 to 2918 show that the main factors affecting the lake change are
different from the change in climate zone. For the BMC and PC in the monsoon region, the
correlation between temperature and lake area was the highest, with a correlation coefficient
of 0.90 (p < 0.01), followed by specific humidity, with a correlation coefficient of −0.37
(p = 0.23), indicating a strong correlation; for the LMC and SMXC, the correlation between
cumulative precipitation and lake area was the highest, with a correlation coefficient
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of 0.87 (p < 0.01) and 0.88 (p < 0.01), followed by specific humidity, with a correlation
coefficient of −0.36 (p = 0.24), indicating a strong correlation; for the LAC and MPYC,
the correlation between wind speed, cumulative precipitation, and lake area were both
high, with a correlation coefficient of 0.78 (p < 0.01) and −0.71 (p < 0.01), respectively. In
addition, the dominant meteorological factors also changed in different periods. Before
2000, the dominant factors in the monsoon zone, the westerly zone, and the monsoon–
westerly interaction zone were temperature, precipitation, and wind speed, while after 2000,
which is the period of acceleration of warming on the TP, the dominant factors changed to
temperature, precipitation, temperature and wind speed, specific humidity, respectively
(Table 4). The wind speed and specific humidity (which can represent evaporation) are
the dominant meteorological elements in the LAC-MPYC basin and show a negative
correlation; this explains the contraction trend of lake area changes in the LAC and MPYC.

Table 4. Correlation analysis between lake area and meteorological factors.

Year Climate Region Dominant Factors
Correlation
Coefficient

p-Value

1979–2018
Monsoon Region Temperature,

Specific Humidity
0.90
−0.37

0.001
0.23

Westerly–monsoon
Interaction Region

Temperature
Specific Humidity

0.78
−0.71

0.002
0.009

Westerly Region Precipitation
Specific Humidity

0.88
−0.37

0.002
0.23

1979–2000
Monsoon Region Temperature 0.69 0.30

Westerly–monsoon
Interaction Region Wind Speed 0.60 0.28

Westerly Region Precipitation 0.62 0.38

2000–2018
Monsoon Region Temperature 0.49 0.22

Westerly–monsoon
Interaction Region

Wind Speed
Specific Humidity

−0.50
−0.42

0.24
0.34

Westerly Region Precipitation
Temperature

0.80
0.71

0.02
0.05

In conclusion, although the dominant meteorological factors change with different
climate regions, temperature and precipitation are always the main factors affecting the
change of the lake. With the rapid warming of the TP, the influence of temperature on the
expansion of the lake area is becoming more significant. The warming of the lake catchment
area leads to the melting of glaciers and snow, which increases runoff and leads to the
expansion of lakes. Moreover, with the warming and wetting of the TP, the precipitation
gradually increases, which also promotes the expansion of lakes.

5. Discussion

In recent years, the TP has become warmer and wetter. This trend involves a decreas-
ing surface sensible heat and increasing latent heat from the northwest to the southeast,
resulting in a significant increase in precipitation in the southeast and a decrease in the
northwest [41,42]. In addition to being affected by precipitation, lakes in the TP are also
closely related to glacial meltwater and permafrost degradation in the basin. Lake changes
in the TP are significantly influenced by water and heat exchange between the lakes and
the atmosphere, which in turn affects the regional water cycle. However, quantifying the
dominant factors affecting lakes in different regions and how these factors will change
under climate change conditions is key to accurately understanding the mechanistic role
that lakes play in the water cycle of “Asian Water Tower”.

Therefore, in each typical area of the TP, we should strengthen research on lake water
balance and its response to climate change. This will involve collecting observations
of the spatial and seasonal distribution of precipitation, runoff (including precipitation,
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meltwater, and underground runoff), and evaporation, and using methods such as a total
water balance and isotope segmentation to study the response of lake water balance to
changes in different supply sources. Such research would provide valuable information
about the processes and mechanisms of how climate change will impact lakes in the future.

The changes in the area, water level, and water volume, as well as the monthly water
volume variations of three pairwise lakes from different climate zones, were analyzed
using remote sensing data and in situ observations. For the response of lake change to
meteorological factors, we mainly focused on qualitative research but lacked quantitative
research on the contribution of each meteorological element. In addition, there is still a
part of the research that has not been carried out, such as the reason for lake water decline
after 2020 due to lack of meteorological data. Therefore, quantifying the contribution of
meteorological elements to lake change and using high-frequency meteorological data and
eddy covariance data to analyze the reduction of lake level after 2020 will be the focus of
the next stage of research. This will be helpful in accurately understanding the mechanism
of climate change affecting lakes. Moreover, with the development of tourism in Tibet, the
TP has been affected by more and more human activities; consideration of direct human
impacts on the TP water supply remains poorly articulated but potentially important to the
lake change research [43,44].

6. Conclusions

There is a lack of research on the annual water volume changes and spatial differences
of typical lakes in the TP due to the remote location and the lack of observational data. In
the study, we have found there is obvious spatial heterogeneity in the seasonal changes of
lake water volume in different climate regions. By using Sentine−2 remote sensing images,
multisource altimetry, and observational water level data, the following conclusions are
drawn.

(1) Inter-annual variations of lakes in different climatic zones are markedly different.
From the 1970s to 2021, lakes in the monsoon (BMC and PC) and westerly (LMC and SMXC)
regions show an overall expansion trend, while lakes in the westerly–monsoon interaction
region (LAC and MPYC) showed an overall shrinking trend [45]. In the westerly–monsoon
interaction region, the lake area shows a rapidly shrinking trend from the 1970s to 2005,
after which the reduction slows or stabilizes [46]. The three groups of lakes have similar
trends.

(2) Monthly variations of the lakes during the year in different climatic zones generally
show similar trends. The changes are highly correlated with increases and decreases in
monthly rainfall. This correlation is especially strong in 2019, which was a year of abnormal
fluctuations in the westerly belt, with increased precipitation and significantly increased
monthly changes in lake water volume. In addition, there is a good correlation between
the peak of precipitation and lake water volume increase. These findings indicate that
precipitation is a dominant factor affecting lake changes in the TP.

(3) The paper focuses on the effects of climate change on lakes from 1979 to 2018.
The meteorological factors that dominate lake variation are temperature, precipitation,
specific humidity, and wind speed (where specific humidity and wind speed can represent
evaporation). Increases in temperature (which promotes melting of glaciers and snow)
and precipitation promote the lake expansion, while increases in evaporation cause the
lake shrinkage. For lakes in different climate regions, the main impact of meteorological
elements is different, but with the accelerated warming on the TP, temperature plays an
increasingly important role in accelerating lake expansion, while in the LAC-MPYC basin,
evaporation is the leading factor that has caused the lake to shrink over the past decade.
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Abstract: Using observational data of soil moisture from the third Tibetan Plateau Experiment for
atmospheric science (TIPEX III), the seasonal and diurnal variations characteristics of soil moisture at
different depths of 5–160 cm from seven stations were analyzed, with emphasis on the comparative
analysis of the differences of soil moisture between different sites and the differences of the synergistic
relationship between soil moisture and temperature. The soil moisture was wet in the southeast and
dry in the northwest. The studied sites were Lhari, Biru, Nyainrong, Amdo, Nagqu, Baingoin and
Seng-ge Kambab in descending order, according to the soil moisture. The seasonal variation of soil
moisture at the different sites showed a significant three-peak structure, which was more obvious
in the shallow layer than in the deep layer. The first peak occurred from March to May, which was
mainly due to the soil thawing in spring. The other two peaks corresponded to the two rainy seasons
in the plateau. Soil moisture was the greatest during this rainy period. The diurnal variations of soil
moisture and temperature in Amdo, Nagqu, Nyainrong and Baingoin showed a significant positive
correlation in the four seasons. The soil moisture and temperature in Lhari and Biru were significantly
positively correlated in winter and spring but negatively correlated in summer and autumn. The
profiles of the soil moisture with depth varied greatly at different stations in different seasons. The
distribution of soil water content at each observational site did not increase or decrease with depth
but showed a certain high aquifer, which might be related to the types of the underlying surface and
physical properties of soil. During the summer monsoon period, soil moisture in the shallow layer of
5–10 cm was higher at all observational sites. The spatial distribution of soil moisture in the plateau
was more heterogeneous than that in the plain area, and only in the central part of the Tibetan Plateau,
the soil moisture varied greatly from site to site. This also indicated that it was unreasonable to only
use the soil moisture of several stations to represent the overall soil moisture of the region. The results
provided a multi-angle observational basis for the validation of satellite data and parameterization of
the numerical model of soil moisture over the Tibetan Plateau.

Keywords: soil moisture; soil temperature; seasonal and diurnal variation; vertical profile

1. Introduction

The Tibetan Plateau is known as the “roof of the world” and the “third pole of the
Earth” and covers about one-quarter of China’s land area, with an average altitude of
4500 m. It is the largest plateau in China and the highest in the world, and the origin of
many major rivers in Asia. The Tibetan Plateau has an important impact on the weather and

Remote Sens. 2022, 14, 5010. https://doi.org/10.3390/rs14195010 https://www.mdpi.com/journal/remotesensing
303



Remote Sens. 2022, 14, 5010

climate of China, Asia and the world. It restricts the basic pattern of atmospheric circulation
and its system in East Asia and causes abnormal weather and climate disasters [1–9]. The
terrain of the Tibetan Plateau is complex, including high mountains (the altitude is above
7000 m) and deep ravines (the altitude is below 3000 m); the surface conditions are diverse,
including beaches, meadows, forests, ice and snow. The process of land–air exchange
over the heterogeneous underlying surface of the Tibetan Plateau is extremely complex,
which brings great difficulties to the correct understanding of atmospheric processes and
the accurate prediction of weather and climate processes over the Tibetan Plateau. From
May to August 1978, China conducted the first Tibetan Plateau atmospheric scientific
experiment. The second Tibetan Plateau atmospheric scientific experiment was conducted
to deeply study the process of land–air exchange during the period from May to August
1998. In these experiments, soil temperature and moisture were targeted as important basic
observational items, which are essential for the process of land–atmosphere exchange.

Soil moisture is a physical quantity that indicates the degree of soil wetness. It is
an important variable in the parameterization scheme of the land surface process. Its
variation changes the physical properties of the surface and then affects the energy and
water exchange between the earth and the atmosphere. It gradually affects the troposphere
through the near-surface and boundary layers and is an important influencing factor on
atmospheric circulation and climate change [10–14]. The importance of the role of soil
moisture in the climate system is second only to sea surface temperature. For the climate
system over land, it even exceeds the role of sea surface temperature [15]. Previous studies
have shown that 65% of land precipitation comes from land–surface evaporation, which
largely depends on soil moisture [16,17]. Numaguti [18] pointed out through numerical
simulations that about 71% of precipitation from June to August near Nagqu came from
land evaporation, and the soil water supply for evaporation mainly came from atmospheric
precipitation recharge.

The soil in the Qinghai-Tibet Plateau mainly consists of clay loam and loam, and the
soil sandiness is enhanced with depth. Due to unique soil characteristics and geographical
environment, the variation of soil temperature and humidity in this region is very large [19].
The temporal and spatial variation of soil moisture plays an important role in the water cycle
of the Tibetan Plateau, so it is of great significance to study the distribution characteristics
of soil temperature and moisture in the Tibetan Plateau. The seasonal variation of soil
moisture is mainly affected by soil physical properties and soil water budget. In the
seasonal frozen soil environment of the Tibetan Plateau, soil temperature and precipitation
have significant effects on soil moisture. In general, in the wet season, soil moisture is
significantly affected by local precipitation. If water income is higher than consumption,
soil moisture will increase, and vice versa. In the dry season, soil moisture is greatly affected
by the intensity of water evaporation caused by soil temperature. Yang et al. [20–24] studied
the characteristics of diurnal, annual and spatial changes in soil temperature and moisture
in the northern Tibet Plateau by using the data obtained from GAME-Tibet and analyzed
the role of the freezing and thawing processes in the dry-wet season transition and the
changes in heat distribution. Gao et al. [25] used a SiB2 (Simple Biosphere Mode2) model
to simulate surface energy distribution, soil temperature and moisture conditions on the
underlying surface of low grassland in northern Tibet and obtained reasonable results.
Wang et al. [26], based on the observation results of Tuotuohe station on the northern
Tibetan Plateau, showed that changes in soil moisture associated with the freezing and
thawing processes were closely related to the transformation of dry and wet seasons and
the amount of precipitation in wet seasons on the Tibetan Plateau. Wan et al. [27] analyzed
in detail the changes in soil moisture at different time scales at BJ station near Nagqu in the
central Qinghai-Tibet Plateau, and the results showed that the changes in soil temperature
and moisture were closely related at different time scales. Limited by the lack of observation
data, the above studies mainly focused on the analysis of a single site or typical underlying
surface, while the comparative study of soil temperature and humidity observation data in
different regions of the plateau is very scarce.
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Due to the difficult conditions and the scarcity of observation stations in the plateau
area, the difficulty of soil temperature and moisture observation and research under the
complex terrain of the plateau is much greater than that in other areas. The observation
time, space and physical quantities are very limited, and the data are very scarce. Due
to the complex topography and underlying surface characteristics of the plateau, the
representativeness of the observation stations is limited, as well as the uncertainties of
satellite inversion products on the plateau, which restrict our correct understanding of
the various characteristics of soil moisture at different time scales on the Tibetan Plateau.
In order to compensate for the lack of observational data on the Tibetan Plateau, in 2014,
the China Meteorological Administration (CMA), in collaboration with many domestic
institutions, launched the third Tibetan Plateau atmospheric scientific experiment. The
experimental sites were more widely distributed, and the data were the latest and most
comprehensive, which provides us with an important database for the study of land–
air energy exchange over the Qinghai-Tibet Plateau. Many significant results have been
obtained in the study of land–air energy transport by using this boundary layer observation
data [28–32]. Li et al. [33] analyzed the seasonal and diurnal variation characteristics of soil
moisture at different depths using 28 stations in Nagqu. However, their analysis was mainly
based on the regional average in the Nagqu region, while there was a lack of comparative
studies on the differences among stations in different regions of the plateau. Based on the
observational data for soil temperature and moisture at different depths from 5–160 cm
from the third Tibetan Plateau atmospheric scientific experiment from December 2014 to
December 2015, this study analyzed the seasonal variation characteristics of soil moisture
at different depths at seven stations on the plateau, focusing on the comparative analysis
of the differences in soil moisture at different stations and the differences between the
synergistic changes in soil temperature and moisture.

2. Materials and Methods

The data used in this study were soil temperature and moisture data from TIPEX III
obtained from December 2014 to December 2015. The boundary layer observatories were
obtained in Amdo, Seng-ge Kambab, Baingoin, Biru, Lhari, Nyingchi, Namco, Nagqu and
Nyainrong over the Tibetan Plateau. It should be noted that the Nyingchi and Namco
stations were excluded from our study after the data quality control steps were completed.
Therefore, Amdo, Nagqu, Nyainrong, Baingoin, Biru, Lhari and Seng-ge Kambab were
finally selected for analysis in this study. These seven observational sites are mainly
distributed in the western and central part of the Tibetan Plateau, with the latest data and
relatively complete observations of meteorological elements, which provides an important
database for studying the characteristics of soil temperature and moisture in the Tibetan
Plateau. The vertical depths of soil temperature and moisture in Amdo and Nagqu stations
were 5, 10, 20, 40, 80 and 160 cm. The available vertical depths of Biru, Lhari and Baingoin
stations were 5, 10, 20, 40 and 100 cm. Those of Nyainrong station were 5, 10, 20, 50 and
100 cm, with those of Seng-ge Kambab station at 5, 10, 20, 40 and 80 cm. The soil moisture
sensors were CAMPBELL CS616 (Campbell Scientific, Inc., Logan, UT, USA), and the soil
temperature sensors were CAMPBELL 109 (Campbell Scientific, Inc., Logan, UT, USA).
Soil temperature and moisture detectors were placed at 5 or 6 different depths at each
observation site. The probes were horizontally inserted at different depths to obtain soil
moisture and temperature data. Data were collected every 10 min. For analysis, data were
processed as 30 min averages. Soil moisture is the volumetric water content, with the unit
cm3/cm3, and the unit of soil temperature is ◦C. The distribution of observation stations
is shown in Figure 1, and the detailed geographic information of observation stations is
shown in Table 1.
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Figure 1. Topography of the Tibetan Plateau, with 9 plateau stations denoted by red dots. It should
be noted that the Nyingchi and Namco stations were excluded from our study after the data quality
control steps were completed.

Table 1. Geographical location information of the seven observation sites on the Qinghai-Tibet Plateau.

Stations Location Elevation (m) Plateau Regions

Amdo 91.6◦E, 32.2◦N 4695 central plateau

Seng-ge Kambab 80.1◦E, 32.5◦N 4350 northwest plateau

Nyainrong 92.3◦E, 32.1◦N 4730 central plateau

Baingoin 90.1◦E, 31.4◦N 4700 central plateau

Biru 93.7◦E, 31.5◦N 4408 central plateau

Lhari 93.2◦E,30.7◦N 4500 central plateau

Nagqu 91.9◦E, 32.4◦N 4509 central plateau

3. Results

3.1. Seasonal Variation of Soil Moisture
3.1.1. Seasonal Variation of Soil Moisture at Different Observational Sites

Figure 2 shows the time series of daily accumulated precipitation at different stations
over the Tibetan Plateau from December 2014 to December 2015. Amdo, Nagqu, Nyainrong,
Baingoin, Biru, and Lhari are all located in the central region of the Tibetan Plateau,
influenced by the South Asian summer monsoon; summer and autumn are the main flood
seasons on the Tibetan Plateau, and the annual precipitation is mostly concentrated from
June to September. Seng-ge Kambab is located in the alpine desert area in the western
part of the plateau, with very little rainfall, only a few days in the summer. In general,
the variation of precipitation in the central plateau was relatively consistent, and there
were two rainy seasons. Biru and Lhari are located in the southeast and had the most
precipitation; Nyainrong station was the next, then followed by Amdo and Nagqu stations,
and Baingoin station had less precipitation. The rainy season started in mid-May in Biru
and Lhari and in mid-June in other central stations. The rainy season started one month
earlier in Biru and Lhari than in other central stations.

The geographical location of the Biru and Lhari stations is very close, and the precip-
itation and its variation trends were relatively consistent. The precipitation in Biru and
Lhari began to increase in early April, and there was a rainy period from early April to
early May, but the rainfall was not large. Biru and Lhari officially entered the rainy season
in mid-May. The first rainy season of Biru station lasted from mid-May to mid-July, and the
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second rainy season lasted from early August to mid-September with abundant rainfall.
The rainy seasons in Nyainrong, Amdo, Nagqu and Baingoin were rather consistent, and
they officially entered the rainy season in the middle of June. The first rainy season is from
mid-June to mid-July, and the second rainy season is from early August to mid-September.

   (a) Amdo     (b) Nagqu 

  
       (c) Nyainrong      (d) Baingoin 

  
  (e) Biru    (f) Lhari 

  
(g) Seng-ge Kambab 

 

Figure 2. Daily accumulated precipitation of seven stations over Tibetan Plateau from December 2014
to December 2015 (unit: mm).
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Figure 3 shows the variations in the daily mean soil moisture at different depths
and from different observational sites on the plateau from December 2014 to December
2015. The spatial distribution of the soil moisture showed the characteristics of wet in
the southeast and dry in the northwest. The soil moisture over the Tibetan Plateau had
remarkable seasonal variation. In general, in winter and spring, the shallow soil moisture
was small, while the deep soil moisture was large. In summer and autumn, due to the
increase in precipitation, soil moisture was greater in the shallow layer and lesser in the
deep layer.

   (a) Amdo     (b) Nagqu 

  
     (c) Nyainrong      (d) Baingoin 

  
(e) Biru   (f) Lhari 

  
    (g) Seng-ge Kambab 

 

Figure 3. Time series of daily mean soil moisture at different depths (unit: cm3/cm3). The lines break
in the graphs represents the missing data, the same below.
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In winter and early spring, the soil moisture at different depths was all in the low
stage, with a value of less than 0.15 cm3/cm3 most of the time. In winter and early spring,
there was mainly solid precipitation in the Qinghai-Tibet Plateau, which had little impact
on soil moisture, and the soil moisture was relatively stable.

In April, the soil moisture in all layers increased for the first time, and it reached the
first high-value period from early April to the end of May, which was mainly related to
the rise of spring temperature and the beginning of melting. Since the soil retained a large
amount of water in its frozen state in winter, the soil showed a high water content when
it completed ablation. In May, with the rise in temperature, the ice in the soil completely
melted, and the precipitation began to rapidly increase. At this time, the soil moisture in all
layers rapidly increased. It is worth noting that before the rainy season on the plateau, the
soil moisture at each site showed a certain decline in early June (Biru and Lhari in mid-May).
This was because the rainy season had not yet begun, and the rainfall was still relatively low,
while the incident radiation continued to strengthen and the soil heated faster. Therefore,
evaporation in the shallow layer was larger, and the soil water consumption was greater
than the water income, which led to the rapid decline of the soil moisture in the shallow
layer. This result was consistent with Li et al. [33].

Except for the Seng-ge Kambab station, all the other stations are located in the central
region of the Qinghai-Tibet Plateau. They are all affected by the South Asian summer
monsoon; three-quarters of the annual average precipitation was concentrated from June
to August. Summer and autumn are the main flood seasons on the Qinghai-Tibet Plateau,
and with the arrival of the plateau’s rainy season, the soil moisture in the surface layer
(5–10 cm) was affected by liquid precipitation, and the soil moisture content rapidly in-
creased, resulting in high soil moisture. On average, there were two peaks of soil moisture
in each layer in the flood season, corresponding to the two rainy seasons. Between the two
rainy seasons, soil moisture in all layers significantly decreased from the end of July to the
beginning of August. This was because, with the end of the first rainy season, all stations
were in an intermittent period of precipitation. The precipitation decreased rapidly, and the
daily precipitation of each station was less than 5 mm. At this time, the Tibetan Plateau was
in the high-temperature period of the year, and the soil evaporation was large, resulting
in the rapid decline of soil moisture during this period and the decrease of 5–10 cm depth
was the most significant, which was almost equal to the soil moisture in winter and spring.
After early October, with the retreat of the summer monsoons over the Tibetan Plateau, the
precipitation over the Tibetan Plateau sharply decreased, and the soil moisture significantly
decreased correspondingly, entering the attenuation period of soil moisture. By comparing
Figures 2 and 3, it can be seen that as the shallow soil melted and stabilized in early April,
the plateau entered the wet season, and the seasonal increase of soil moisture caused by
soil freezing and thawing in the plateau area was earlier than the start of the plateau rainy
season, and the earlier time varied at different stations.

The seasonal variation of soil moisture at different sites showed a significant three-
peak structure, which was more obvious in the shallow layer than in the deep layer, and the
peak time at different sites was slightly different. The soil moisture at Amdo station began
to increase in mid-April, and it reached the first peak period from mid-April to early June,
which was mainly related to soil thawing in spring. After entering the rainy season in June,
the shallow soil moisture (5–10 cm) showed two significant peak periods from mid-June
to mid-July and from early August to mid-September, which was completely consistent
with the two rainy seasons of Amdo station. The maximum soil moisture of 5 cm depth
at Amdo station in the rainy season was about 0.3 cm3/cm3. The soil moisture at 160 cm
depth was the lowest in the rainy season and changed little throughout the year, with a
value of about 0.07 cm3/cm3.

The seasonal variation of soil moisture at the Nagqu station was basically the same
as that at the Amdo station, but the first peak period of soil moisture occurred from early
March to mid-May, which was earlier than that at the Amdo station. This meant that
the seasonal increase of soil moisture caused by soil freezing and thawing was earlier
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than that of the Amdo station. The two high-value periods of soil moisture at Nagqu
station in the flood season had good correspondence with the two rainy seasons. The soil
moisture at Nagqu station was slightly lower than that at Amdo station, and the maximum
soil moisture at 5 cm depth was about 0.25 cm3/cm3. The soil moisture at 80 cm depth
fluctuated gently throughout the year, and the value was the smallest, which was about
0.08 cm3/cm3 in flood season.

The high-value period of soil moisture at Nyainrong station was due to soil thawing
in spring and occurred from the end of March to the beginning of June. The two high-value
periods corresponding to the two rainy seasons were from mid-June to the end of July and
from mid-August to the end of September. The soil moisture of Nyainrong was higher than
that of the Amdo and Nagqu stations, and the highest soil moisture at 10 cm depth at the
Nyainrong station was about 0.34 cm3/cm3 in the rainy season.

The three high-value periods of soil moisture at Baingoin station were from mid-
April to mid-May, from mid-June to early July, and from mid-August to mid-September,
with little difference in the three peak values. The soil moisture of Baingoin station was
lower than that of the Amdo, Nagqu and Nyainrong stations, with the highest value of
0.14 cm3/cm3 at 5 cm deep.

The soil moisture at Biru station was higher than that at Nyainrong, Amdo and Nagqu.
The seasonal increase of soil moisture associated with soil freezing and thawing occurred
from the end of March to the beginning of May. The two high-value periods associated
with the rainy season were from mid-May to mid-July and from mid-August to the end
of September, respectively. The maximum value of soil moisture of 5 cm depth can reach
0.4 cm3/cm3 in the rainy seasons.

The soil moisture at Lhari station was higher than that at Biru station, and the variation
trend of soil moisture at each layer was consistent. The seasonal increase of soil moisture
caused by soil freezing and thawing occurred from the end of March to the middle of May.
From the middle of May to the end of June, the soil moisture was in a high-value period,
the data from early July to early September were missing, and the soil moisture was still
in the high-value period from early to mid-September. The soil moisture at 10 cm deep
at the Lhari station was the highest, and the highest value could reach 0.55 cm3/cm3 in
the rainy season.

The soil moisture at Seng-ge Kambab was very small, with few fluctuations throughout
the year, and the maximum value in the rainy season was only about 0.1 cm3/cm3. The soil
moisture increased slightly in mid-June, which was related to the melting of frozen soil.
It increased again in mid-July and early August, which was related to a small amount of
precipitation in Seng-ge Kambab during these days.

Through the comparative analysis of soil moisture changes at different depths at seven
stations (Figure 4), the spatial distribution of soil moisture showed the characteristics of
dry in the northwest and wet in the southeast. To be more specific, the stations with soil
moisture at 5 and 10 cm deep from large to small were Lhari, Biru, Nyainrong, Amdo,
Nagqu, Baingoin and Seng-ge Kambab. Lhari and Biru are located in the southeast, with
abundant precipitation, so the soil moisture was the largest, followed by Nyainrong, Amdo
and Nagqu; Baingoin is located in the west, with less rainfall and lower soil moisture.
Seng-ge Kambab station is located in the alpine desert area in the northwest of the plateau,
with very little precipitation, so the soil moisture was very low and stable throughout the
year with little fluctuation. Soil moisture at 10 cm depth in Lhari and Nyainrong was higher
than that at 5 cm depth but decreased at other sites.

The sites with soil moisture at 20 cm deep from large to small were Lhari, Biru, Amdo,
Nagqu, Nyainrong, Seng-ge Kambab and Baingoin. Lhari and Biru were much higher than
the other sites. The soil moisture in Nyainrong, Amdo and Nagqu decreased very fast. The
soil moisture at Nyainrong dropped to less than that at Amdo and Nagqu, and the soil
moisture at Baingoin dropped to less than that at Amdo station. The sequence of sites with
soil moisture from large to small at 40 cm deep was the same as that at 20 cm deep; Seng-ge
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Kambab and Baingoin were the smallest and remained stable throughout the year with
almost no change. Nyainrong station had no observation data at a depth of 40 cm.

(a) 5 cm (b) 10 cm 

  
(c) 20 cm (d) 40 cm 

  

Figure 4. Time series of daily mean soil moisture at different depths for the seven observational sites
(unit: cm3/cm3).

In terms of spatial distribution, soil moisture decreased from the southeast to the
northwest. More specifically, the sites with soil moisture of 5 and 10 cm deep from large
to small were Lhari, Biru, Nyainrong, Amdo, Nagqu, Baingoin and Seng-ge Kambab.
Except for the Seng-ge Kambab station, the seasonal variation of soil moisture at other sites
showed the characteristics of three peaks, which were more obvious in the shallow layer
than in the deep layer. The first high-value period occurred from March to May, which
was mainly related to the seasonal thawing of soil caused by the rising temperatures in
spring. Summer and autumn are the main rainy seasons on the plateau, and there were two
obvious high-value periods of soil moisture which corresponded to the two rainy seasons.
During this period, the soil moisture was the greatest, reaching the highest value of the
whole year. It should be noted that due to the different geographical locations, the period
of concentrated precipitation at different sites was slightly different, so the period of a high
value of soil moisture was also different. In particular, the rainy season started in mid-May
in Lhari and Biru and in mid-June in other central stations. The rainy season started one
month earlier in Lhari and Biru than in other central stations. Therefore, the first peak
period of soil moisture in flood season at Lhari and Biru stations was one month earlier
than that at other central stations.

In addition, Lhari and Biru stations are located to the southeast and are the wettest,
so the frozen soil held much more water in winter than the other stations, and the water
content of the soil rose very high when the soil was completely melted. Therefore, the
seasonal increase of soil moisture caused by soil freezing and thawing in the Lhari and Biru
stations was much larger than that in other stations. The soil moisture in Biru station after
soil ablation was almost the same as that in flood season, while that in Lhari station was
slightly lower than that in flood season.
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The seasonal increase of soil moisture caused by soil freezing and thawing was
1–2 months earlier than the beginning of summer precipitation over the plateau, indi-
cating that in spring, with the increase in temperature, the soil melted, the soil water
content increased, and the soil moisture was transmitted to the atmosphere through surface
evapotranspiration. Therefore, the atmospheric humidity increased, providing favorable
water vapor conditions for the occurrence of precipitation on the plateau, and the plateau
entered the wet season. This also indicated that during the transition from the dry season to
the wet season, the contribution of soil moisture to precipitation could not be ignored. From
April to May, soil moisture transferred water to the atmosphere through evaporation, which
provided important conditions for the outbreak of the summer monsoon, thus affecting the
time of seasonal transition over the Qinghai-Tibet Plateau.

3.1.2. Seasonal Variation of Soil Temperature at Different Observational Sites

Since the soil on the Tibetan Plateau is frozen for a long time in a year, soil moisture
has significant seasonal variation. Soil freezing is the response of soil moisture to soil
temperature, and soil water will have phase transformation within a certain range of soil
temperature, causing changes in soil moisture. In addition, the surface will evaporate
under the heating of solar radiation, which will affect the change in soil temperature.

Figure 5 shows the variation of daily mean soil temperature of different sites at
different depths on the plateau. The seasonal variation of soil temperature in each layer
was significant. It was frozen from early November to the end of March of the next year,
and the temperature was the lowest in mid-January. It is worth noting that the soil freezing
time obtained in this study is about 5 months, which is 1 month less than the freezing time
obtained in previous studies based on the northern Tibetan Plateau, which may be related
to the significant warming of northern China in recent years [24,26]. Taking Amdo station
as an example, the soil temperature at 5 cm deep reached the lowest value in January, which
was −14 ◦C, and the temperature in the freezing period increased with depth. Thawing
began at the end of March, and the soil temperature reached the maximum temperature
from July to August, and the maximum temperature of the soil at 5 cm deep reached
15 ◦C. In the non-freezing period, the soil temperature decreased with depth. The changing
trend of soil temperature above 40 cm deep was basically the same, and the fluctuation
was obvious. The seasonal variation amplitude of soil temperature at 5 cm deep in the
surface layer was the largest, and with the deepening of the depth, the seasonal variation
amplitude of soil temperature gradually decreased. The seasonal fluctuation amplitude of
soil temperature at 160 cm deep was the smallest, and the freezing time was shorter. The
effects of solar radiation and water evaporation on soil temperature gradually decreased
with the depth.

The seasonal variation trend of the soil temperature at different depths at the seven
stations was quite consistent. Seng-ge Kambab station had the largest seasonal variation,
and Biru station had the smallest. The soil temperature reached the lowest in mid-January,
and the temperature from low to high was Baingoin, Amdo, Seng-ge Kambab, Nyainrong,
Lhari and Biru. In summer, the soil temperature from high to low was Seng-ge Kambab,
Nagqu, Baingoin, Biru, Lhari, Amdo and Nyainrong. During the freezing period, the soil
temperature increased with depth, while the soil temperature in summer decreased with
depth. As the soil temperature was affected by solar radiation and water evaporation, this
effect gradually decreased with depth. Therefore, the fluctuation of soil temperature was
the largest at 5 cm depth, and with the deepening of the depth, the fluctuation amplitude
gradually decreased (Figure 6).

3.2. Relationship between the Diurnal Variation of Soil Moisture and Soil Temperature

Amdo, Nagqu, Nyainrong and Baingoin are located in the northern part of the central
plateau, and their geographical positions are very close to each other. Therefore, the
relationship between the diurnal variation of soil temperature and moisture at these four
stations was quite consistent, and there was a significant positive correlation between the
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four seasons (see Figure 7, Amdo station). The maximum correlation coefficient between soil
moisture and temperature in Amdo and Nagqu occurred in the summer but was relatively
small in autumn. The correlation coefficient between soil moisture and temperature of
Nyainrong station was the largest in winter and weaker in autumn. The correlation
coefficient of the Nyainrong site was at the maximum in winter and weak in autumn. The
soil temperature and moisture at Baingoin station were significantly positively correlated
in four seasons (figure omitted).

     (a) Amdo     (b) Nagqu 

  
        (c) Nyainrong       (d) Baingoin 

  
  (e) Biru     (f) Lhari 

  
(g) Seng-ge Kambab 

 

Figure 5. Time series of daily mean soil temperature at different depths (unit: ◦C).
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(a) 5 cm (b) 10 cm 

  
(c) 20 cm (d) 40 cm 

  

Figure 6. Time series of daily mean soil temperature at different depths for the seven observational
sites (unit: ◦C).

Figure 7. Scatter diagrams and linear fitting lines of diurnal variation of soil temperature and moisture
at 5 cm deep at Amdo station. (The solid blue lines are the linear fitting line and the numbers next
to the black dots represent the time sequence, the data interval is 30 min, from 00:00 to 23:30; there
are 48 numbers in total.) (a) Winter (December–February), (b) Spring (March–May), (c) Summer
(June–August) and (d) Autumn (September).
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Figure 7 shows the fitting relationship between the mean diurnal variation of soil
temperature and moisture at 5 cm deep at the Amdo station in winter (December–February),
spring (March–May), summer (June–August) and autumn (September). As can be seen
from the figure, there was a significant positive correlation between soil moisture and
temperature in the four seasons at Amdo station, with the highest correlation coefficient
of 0.988 in summer, and a relatively small correlation coefficient of 0.699 in autumn, both
of which have passed a 99% reliability test. In the winter and spring, there were frequent
melting and freezing processes on the soil surface, which affected the diurnal variation
of soil temperature and moisture, and the soil moisture w sensitive to the change in soil
temperature. In winter, spring and autumn, it was mainly affected by incident radiation.
During the day, the temperature of the soil surface was heated by radiation and began to
rise in the morning and reached a peak in the afternoon. With the rise in soil temperature,
the frozen water partially melted during the day, and the upper soil moisture gradually
increased in the morning and reached the maximum in the afternoon. Then, as the incident
radiation decreased, the soil temperature dropped, the surface layer cooled at night, and
the melted water froze; the soil moisture also slowly decreased.

The correlation between the diurnal variation of soil temperature and moisture in the
Lhari and Biru stations was basically the same. In winter and spring, soil moisture and
soil temperature were positively correlated. However, there was a significant negative
correlation between summer and autumn (autumn here is only in September) (see Figure 8
for Lhari station). The negative correlation of the Lhari station in winter and autumn was
much more significant than that of the Biru station, and the correlation coefficients were
as high as −0.943 and −0.967, respectively, both of which have passed a 99% reliability
test. The relationship between the diurnal changes in soil temperature and moisture at
the Lhari and Biru stations in summer and autumn was opposite to that at the above
four stations. This was because Lhari and Biru stations are located in the south of the
central plateau, and the precipitation in summer and autumn is more abundant than
that in other stations. The surface soil water is liquid. The soil moisture is sensitive to
precipitation and is relatively less affected by incident radiation. As the surface soil is
relatively wet, evaporation increases with the increase of soil temperature, resulting in a
significant decrease in surface soil moisture.

At the Seng-ge Kambab station, there was a significant positive correlation between
soil moisture and soil temperature in winter and spring, a significant negative correlation
in summer, and little correlation in autumn. Seng-ge Kambab is located in the western part
of the plateau, with little precipitation. Therefore, in summer, the soil temperature was
higher than that of the other stations. With the increase in soil temperature, evaporation
was very great, and the surface soil moisture significantly decreased (figure omitted).

3.3. Vertical Distribution of Soil Moisture and Soil Temperature

Figure 9 shows the vertical profiles of averaged soil temperature and soil moisture
in four seasons at Amdo station. In winter, the variation of soil moisture with depth
at Amdo station presents a step-like change, with the largest soil moisture at a depth
of 80 cm, and soil moisture is similar at a depth of 20 cm and 160 cm (Figure 9a). Soil
moisture increased with depth from the surface to 80 cm and then began to decrease. At
the same time, the soil temperature increased with depth in winter. In spring (Figure 9b),
soil moisture also increased first and then decreased with depth, and soil moisture was
the highest at 40 cm. While the soil temperature decreased with depth, above 40 cm, soil
temperature and moisture inversely changed with depth, while below 40 cm, both had the
same change trend with depth. The variation trend of soil moisture in summer and autumn
was very consistent (Figure 9c,d), which showed a step-like decline with the deepening of
the depth. The soil moisture was the highest at the shallow layer of 5 cm and the lowest at
160 cm. In summer and autumn, the changes in soil temperature and moisture with depth
were quite consistent; with the deepening of the depth, the soil temperature and moisture
both decreased.
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Figure 8. Same as Figure 7, but for the Lhari station: (a) winter, (b) spring, (c) summer and (d) autumn.

Figure 9. Profiles of soil temperature (red line) and soil moisture (blue line) at Amdo Sta-
tion, (a) winter (December–February), (b) spring (March–May), (c) summer (June–August) and
(d) autumn (September).
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The soil moisture at Nagqu station in the winter decreased first and then increased
with the depth, and the soil moisture at 160 cm depth was the greatest (Figure 10). In spring,
summer and autumn, the soil moisture showed a step-like change, with the soil moisture
decreasing first and then increasing. The soil moisture was the greatest at 5 cm depth and
the smallest at 80 cm depth. The variation of soil temperature with depth at Nagqu station
was consistent with that at Amdo Station.

Figure 10. Same as Figure 9, but for the Nagqu station: (a) winter, (b) spring, (c) summer and (d) Autumn.

The vertical changes in soil moisture at the four sites of Nyainrong, Baingoin, Biru,
and Lhari were generally consistent. In the four seasons, the soil moisture decreased first
and then increased with soil depth. The soil moisture in the four seasons at Nyainrong
station was the largest at 10 cm depth, followed by 5 cm, and the smallest at 50 cm (figure
omitted). The soil moisture in the four seasons at Baingoin station had the maximum value
at 5 cm deep and the minimum value at 40 cm deep (no observations at 50 cm) (figure
omitted). In Biru and Lhari, the soil moisture was the greatest at 100 cm in the winter. In
spring, summer and autumn, soil moisture was the greatest at 10 cm, followed by 5 cm, and
the smallest at 40 cm (see Figure 11, no observations at 50 cm). Seng-ge Kambab station had
very little precipitation, so the soil moisture gently changed with depth (figure omitted).

It was concluded that the profiles of soil moisture with depth greatly vary at different
stations and in different seasons. Zhang et al. [34] found that the vertical distribution of soil
moisture was very complex, and there were both regional and soil texture differences in
the vertical distribution. Under the condition of clay loam and loam in the Tibetan Plateau
region, the porosity of the soil in different regions greatly varies. Yang and Ma [35] showed
that at a depth of 40 cm at the Namco station, 20 cm at the Everest station and 60 cm at
the Southeast Tibet station, there was a relatively high aquifer, which was related to the
type of underlying surface and physical properties of soil, such as vegetation coverage,
soil texture and porosity. In the analysis of this observation data, the difference was also
evident. The distribution of soil water content at each observation site did not increase
or decrease with depth but showed a certain high aquifer. This distribution had a great
influence on the freezing and thawing processes of the soil and the spatial and temporal
distribution of soil temperature. During the influential period of the summer monsoon,
the soil’s water content at each observation site was higher in the shallow layer of 5–10 cm.
This was also consistent with the research results of Yang et al. [23,24].
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Figure 11. Same as Figure 9, but for the Biru station. (a) Winter. (b) Spring. (c) Summer. (d) Autumn.

The vertical changes in soil temperature at the seven stations were basically the same,
and they all increased with depth in winter, which meant that the temperature in the deep
layer was higher than that in the shallow layer, and the temperature difference between
the deep and shallow layers was the largest in winter. In spring, summer and autumn, the
soil temperature significantly decreased with soil depth, and the soil temperature of the
shallow soil was higher than that of deep soil. The soil temperature in Seng-ge Kambab
increased with depth in autumn.

4. Discussion

The heterogeneity of soil moisture on the plateau was greater than that in the plain
area. In the center of the plateau, the soil moisture and temperature at different sites
show different variation characteristics. Only in the central part of the Qinghai-Tibet
Plateau, the soil moisture was wet in the southeast and dry in the northwest, and the
spatial heterogeneity was very strong. To be more specific, Lhari and Biru are located in
the southeast and had more rainfall, so the soil moisture was the highest. Among them,
Lhari station is the most southeast, and the soil moisture was higher than that of Biru
station. Then followed by Nyainrong, which is located in the northeast compared to the
other stations, and the soil moisture in Amdo and Nagqu stations was relatively lower,
and their locations are in the north. Baingoin is located in the west, with less rainfall, and
the soil moisture was much smaller than that of other central stations and slightly greater
than that of the Seng-ge Kambab station in the northwest. The sites in descending order of
soil moisture were Lhari, Biru, Nyainrong, Amdo, Nagqu, Baingoin and Seng-ge Kambab.
For the soil moisture of each layer, there were great differences between the different sites,
which also showed that it was unreasonable to only use the soil moisture of several stations
to represent the entire region. In the climate system model, the freezing and thawing
processes related to soil moisture and the calculation of sensible heat play an important
role in the simulation results. The differences in soil moisture among different stations also
illustrated the necessity of a high-resolution grid for accurately simulating the climate of
the Tibetan Plateau.

The vertical distribution of soil moisture in the Qinghai-Tibet Plateau is very complex.
The vertical profile of soil moisture is affected not only by regional differences but also by
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soil properties. Also, the soil porosity greatly varies in different areas. In the analysis of
this observation data, the variation profile of soil moisture with depth at different stations
in different seasons also showed great differences. For example, the soil moisture at Amdo
station reached a maximum of 80 cm deep in winter, 40 cm deep in spring, and 5 cm deep
in summer and autumn. The soil moisture at Nagqu station was the highest at 160 cm
deep in winter and 5 cm in spring, summer and autumn. The soil moisture at Biru station
reached the maximum at 10 cm depth in spring, summer and autumn. The distribution of
soil water content at each observation site did not increase nor decrease with depth but
showed a certain high aquifer, which was related to the underlying surface and the physical
properties of the soil, such as vegetation cover, soil texture and porosity. The differences
among different stations are remarkable, which has great guiding significance for the
construction and improvement of the parameterization process related to soil properties
in the land-surface model. In this study, the seasonal changes and vertical distribution
characteristics of soil moisture at different depths from seven stations on the plateau
were analyzed and focused on a comparative analysis of the soil moisture differences at
different stations, as well as the differences in the relationship between soil temperature
and moisture, providing a multi-angle observational basis for satellite data verification and
model parameterization.

Also, it was found that there was a significant positive correlation between soil temper-
ature and moisture at 5 cm in the north of the central plateau (Amdo, Nagqu, Nyainrong,
Baingoin) in summer, while there was a significant negative correlation between soil tem-
perature and moisture at the southeast of the central plateau (Lhari, Biru). In other words,
the relationship between soil temperature and moisture at 5 cm in the “south-north” sites
of the central plateau was the opposite in summer. The reason was not clear, which may be
related to the amount of precipitation caused by geographical location (less precipitation at
the northern site, more precipitation at the southern site), and may also be related to the
type of underlying surface and soil texture, which are issues that need further study.

The observational data used in this study were only one-year data, and the relevant
conclusions must be verified with longer observation data in the future. Also, due to the
limitation of observational data, only September was used to represent autumn in this
paper. Due to the large spatio-temporal differences in soil moisture and temperature on
the plateau, continuous and in-depth observation and data analysis on a larger spatial
and temporal scale is needed in the future to comprehensively reveal the distribution and
variation of soil moisture on the plateau.

In recent years, many studies have used the analysis method of coefficient of variation
(CV) to describe some significant patterns of mean domain soil moisture content, and
in terms of spatial variation, the relation between CV and soil moisture often shows a
hysteresis pattern [36–38]. In the next step, we will use this method of CV to study whether
hysteresis is also observed in this observational data and how that might differ between
the different rainfall events. Also, the frequency distribution of CV and temporal mean soil
moisture will be analyzed to display the seasonal variations for each soil depth at different
observation sites over the Tibetan Plateau.

5. Conclusions

Using the observational data of soil moisture and temperature from the third Tibetan
Plateau Experiment for atmospheric science (TIPEX III), the seasonal and diurnal variation
characteristics of soil moisture at different depths of 5–160 cm at seven stations in the
Qinghai-Tibet Plateau from December 2014 to December 2015 were analyzed. This study
focused on the comparative analysis of the variations of soil moisture among different
sites, as well as the differences in the synergistic changes between soil moisture and soil
temperature at different sites. The conclusions are as follows:

(1) The spatial distribution of soil moisture showed the characteristics of wet in the
southeast and dry in the northwest. More specifically, according to the soil moisture
at 5 and 10 cm deep, the studied sites were Lhari, Biru, Nyainrong, Amdo, Nagqu,
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Baingoin and Seng-ge Kambab in descending order. Lhari and Biru are located in
the southeast, and the precipitation was relatively abundant, so the soil moisture
was relatively high, followed by Nyainrong, Amdo and Nagqu. Baingoin is located
to the west of other central stations and with less rainfall, so the soil moisture was
lower. Seng-ge Kambab is located in the alpine desert area in the northwest of the
plateau, which was very dry, so the soil moisture was very small with little fluctuation
throughout the year.

(2) The seasonal variation of soil moisture at 5–20 cm depths at all sites showed a signifi-
cant three-peak structure, with the shallow layer more obvious than the deep layer.
The first peak occurred from March to May, which was mainly caused by soil freezing
in spring. The other two peaks were closely related to the two rainy seasons in the
plateau, and the soil moisture was the highest during this period. Different stations
had different rainfall periods, so the period of high soil moisture was slightly differ-
ent. In particular, the first peak period of soil moisture in flood season at Lhari and
Biru stations was one month earlier than that at other central stations. The seasonal
increase of soil moisture caused by soil freezing and thawing in the plateau area was
1–2 months earlier than the start of the rainy season in the plateau. Soil moisture was
transferred to the atmosphere through evaporation, and the atmospheric humidity
increased, which provided favorable water vapor conditions for the beginning of the
plateau rainy season.

(3) The seasonal variation of the soil temperature at different depths was quite consis-
tent. The soil temperature reached the lowest in mid-January, and the stations were
Baingoin, Amdo, Seng-ge Kambab, Nyainrong, Lhari and Biru in ascending order,
according to soil temperature. In midsummer, they were correspondingly Seng-ge
Kambab, Nagqu, Baingoin, Biru, Lhari, Amdo and Nyainrong in descending order.

(4) The diurnal variation of soil moisture and temperature at Amdo, Nagqu, Nyainrong
and Baingoin had the same relationship, which showed a significant positive corre-
lation in the four seasons. In Lhari and Biru stations, the relationship between soil
moisture and temperature was basically the same. In winter and spring, soil moisture
was positively correlated with soil temperature, while there was a significant negative
correlation in summer and autumn, which was contrary to the above four sites. At
Seng-ge Kambab station, soil moisture and temperature had a significant positive
correlation in winter and spring and a significant negative correlation in summer.

(5) The profiles of soil moisture with depth varied greatly at different stations in different
seasons. The distribution of soil water content at each observational site did not
increase or decrease with depth but showed a certain high aquifer, which was related
to the underlying surface and physical properties of soil. Under the influence of
the summer monsoon, the soil’s water content in the shallow layer of 5–10 cm was
higher at all observation sites. The vertical profiles of soil temperature at the seven
stations were basically the same, and they all increased with depth in winter. In
spring, summer and autumn, soil temperature decreased with depth.
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Abstract: The climate warming over the Third Pole is twice as large as that in other regions and glacier
mass loss is considered to be more intensive in the region. However, due to the vast geographical
differences, the characteristics of glacier mass loss might be very different between different parts of
the Third Pole, such as between the southern and northern Third Pole. It is, therefore, very important
to clarify the characteristics of glacier mass loss between different parts of the Third Pole, particularly
between the southern and northern Third Pole. We selected the Yala Glacier in the Central Himalayas
and the Qiyi Glacier in the Qilian Mountains to study the different characteristics of glacier mass loss
between the southern and northern Third Pole using remote sensing data and in situ data. Based
on the results, we found that the Yala Glacier has not only been in a status of mass loss but also in
a status of intensive and accelerating mass loss. Our analysis showed that the average multi-year
mass loss of the Yala Glacier is −736 mm w.e.a−1, with a maximum of −1815 mm w.e.a−1. At the
same time, the Qiyi Glacier has experienced a mild glacier mass loss process compared with the Yala
Glacier. The Qiyi Glacier’s mass loss is −567 mm w.e.a−1 with a maximum of −1516 mm w.e.a−1.
Our results indicate that the mass loss of the Yala Glacier is much stronger than that of the Qiyi
Glacier. The major cause of the stronger mass loss of the Yala Glacier is from the decrease of glacier
accumulation associated with precipitation decrease under the weakening Indian monsoon. Other
factors have also contributed to the more intensive mass loss of the Yala Glacier.

Keywords: Third Pole; in-situ and remote sensing data; modeling; glacier mass

1. Introduction

Glaciers are important water resources for the whole world [1,2]. The Third Pole (TP)
stores the world’s largest glacier mass outside Antarctica and the Arctic [2–4]. Abnormal
climate warming over the TP is twice as large as that in other regions [5–7]. Under the
background of the intensive glacier melt at global scale caused by global warming [8,9],
the glacier melt in the TP is more intensive because of abnormal warming [10–15]. The
intensive glacier melt in the TP causes runoff increase in the short term, benefiting water
resources supply in the downstream areas [16–19]. However, on a longer time scale, glacier
melt ultimately causes substantial runoff decrease and impacts the water supply, and more
than 2 billion people living in the region would face water shortage [16]. The direct impact
of glacier melt on water resource is its close relationship to the rivers of the Asian Water
Tower such as the Yangtze, Yellow, Mekong, Ganges and Indus Rivers, as well as large
inland rivers such as the Tarim, Amu Darya, and SYR Darya. Glacier melt also causes
global sea level rising [4,20] through river discharge contribution. Intensive glacier melt
is also directly related to emerging disasters such as ice collapse, which is a new serious
phenomenon of intensive glacier mass loss [20–22]. It is, therefore, very important to know
the status of glacier mass loss in the TP and to clarify the mass loss difference between
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the southern and northern TP for a comprehensive understanding of its water resource
supplying capability and for the hazard risk management of the societies.

A previous study pointed out spatial heterogeneity of glacier mass loss in the TP [23].
Remote-sensing monitoring showed that glaciers experienced intense mass loss and area
shrinkage in the southern TP, particularly in the Himalayas, with glacier mass loss from
0.21 to 0.38 m w.e. a−1 in different periods [24–27], with glacier area reduction of
−0.18 ± 0.07% a−1 [28] during the 1970s–2010s. In the Central Himalayas, the mass loss was
−0.40 ± 0.09 m w.e. a−1 in 2011–2013 for the Yala Glacier [29], and −0.20 ± 0.30 m w.e. a−1

for the other four glaciers in 2014 [30]. In the Qilian Mountains located in the northern TP,
the average mass loss was −0.24 ± 0.03 m w.e. a−1 during 1961–2010 [31]. The accelerated
melt in the Qilian Mountains began in the early 1990s, as was confirmed by the observa-
tions [3,32]. The mass loss in the Qiyi Glacier reached −0.29 ± 0.22 m w.e. a−1 during
2000–2009 [33]. In the Qilian Mountains, there was rapid glacier mass loss in the eastern
but slow glacier mass loss in the central and in the western [31,34]. Recently, more intensive
mass loss of −0.43± 0.03 m w.e. a−1 was estimated for glaciers in the Lenglongling Moun-
tains in the very eastern of the Qilian Mountains during 1972–2016, whereas less mass loss
of −0.27 ± 0.07 and −0.28 ± 0.03 m w.e. a−1 was estimated for glaciers in the Beida River
basin in the central and Shule River basin in the western [35–38].

The differences in glacier regimes are very important for understanding the differences
of mass loss between the southern TP. In the southern TP, most glaciers are maritime
temperate glaciers. However, most glaciers are continental cold glaciers in the northern TP.
The characteristics of the glacier regimes are determined by both the different temperature
and precipitation characteristics associated with atmospheric circulation processes over the
TP [3,23]. Generally speaking, glaciers in the southern TP are more sensitive to temperature
variations than those in the northern TP since ice temperature is higher in the glaciers
in the southern TP. Furthermore, the southern TP is dominated by the Indian monsoon,
while the northern TP is dominated by the westerly. In the central Himalayas, more annual
precipitation fell in summer [30] compared with that in the Qilian Mountains [39]. Due to
the vast territory of the TP, different geographical zones have different climate conditions
under the dominance of different atmospheric circulation processes, resulting in great
differences in the characteristics of glacier mass loss. Therefore, an important scientific
question is how we can clarify the major difference of the characteristics of glacier mass
loss between the northern and southern TP.

In order to quantitatively study the differences in the characteristics of glacier mass
loss between the northern and southern TP, we selected two representative glaciers, the Yala
Glacier in the southern TP and the Qiyi Glacier in the northern TP and used remote sensing
data, combined with the in situ data, to model the different characteristics of glacier mass
loss shown by the two different types of glaciers, and the potential mechanisms causing
differences in glacier mass loss. Our study will help improve the understanding of glacier
mass loss in the TP under the background of the abnormal climate warming, and deepens
the understanding of the impact mechanism of climate change on glacier fluctuations over
the TP.

2. Methods

2.1. Selection for the Representative Glaciers in the Southern and Northern Third Pole

The Yala Glacier (28◦14′N, 85◦37′E), lying on the south slope of the central Nepal
Himalayas and representing maritime temperate glacier, is selected as the representative
glacier for the southern TP (Figure 1). It is a summer accumulation glacier without de-
bris, with area and length of 1.37 km2 and 1.5 km, respectively. The total area of all the
glaciers in the region is 87.2 km2. The glacier flows southwest from the elevation of 5681 to
5143 m a.s.l. [40]. The Yala Glacier belongs to the Indian monsoon climate, with the high-
est precipitation in summer months (June to September) and a rather dry winter. At the
same time, glacier mass loss reaches the maximum in summer. Based on in situ measure-
ment, the Yala Glacier has been thinning at rates of −0.69 ± 0.25 during 1982–1996 and
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−0.75 ± 0.24 m a−1 during 1996–2009, with an accelerated mass loss since 1990s [41,42].
The glacier mass loss increased from −0.36 m w.e. in 1996 [41] to −0.81 ± 0.27 m w.e. in
2009 [40,43]. The total glacier mass loss is about 40% over the 27 years.

Figure 1. Locations of the Yala Glacier and Qiyi Glacier. In the figure, (a) is for the locations of the
Yala Glacier and Qiyi Glacier, (b,d) are for the river basin where the Yalal Glacier is located and the
contour map of the Yala Glacier, (c,e) for the river basin where the Qiyi Glacier is located and the
contour map of the Qiyi Glacier.

The Qiyi Glacier (39◦15′N, 97◦45′E), lying on the north slope of the Tuolai Mountains
in the Qilian Mountain, representing continental cold glacier, is selected as a representative
glacier for the northern TP (Figure 1). The Qiyi Glacier is also a summer accumulation
glacier and is debris free. It flows northward from an elevation of 5159 to 4304 m a.s.l., with
an area of 2.76 km2 and a length of 3.8 km [3]. The total area of all the glaciers in the region
is 136 km2. The Qiyi Glacier is located in the westerly dominated area in the northern
TP and the eastern margin is affected by the East Asian monsoon. The area is mainly the

325



Remote Sens. 2022, 14, 5190

continental climate and dominant by the cold air mass in winter, but occasionally affected
by the East Asian monsoon in summer. Based on the in situ measurement, the equilibrium
line altitude (ELA) was respectively 4600 m a.s.l. in 1970s, 4708 m a.s.l. in 1980s, 4935 m a.s.l.
in 2000s [44] and 4941 m a.s.l. in 2010s [45]. In addition, the glacier mass was positive
before 1980s (+0.26 m w.e. in 1970s, 0.004 m w.e. in 1980s). Glacier mass loss began after
the 1990s (−0.47 m w.e. in 2000s and −0.50 m w.e. in 2010s [3,32,46]).

2.2. MODIS Temperature Data and TRMM Precipitation Data Acquisition

MODIS is the abbreviation of Moderate Resolution Imaging Spectroradiometer. There
are many sensors used to acquire MODIS temperature data. The MODIS temperature
data for the present study is from the Terra-MOD11A1 which provides observed results
four times a day, 1:30 a.m., 10:30 a.m., 1:30 p.m., 10:30 p.m., through optical and infrared
sensors. We used the Data Interpolating Empirical Orthogonal Functions (abbreviated as
DINEOF method), proposed by Zhou et al. [47], to get accurate remote sensing MODIS
temperature data. The MODIS temperature data we have obtained are satisfactory with
RMSE of 2.91 ◦C and bias of −1.19 ◦C. Based on the interpolation in the DINEOF method,
the data are still satisfactory with RMSE of 1.77 ◦C and bias of −0.52 ◦C Even under the
condition of cloud day.

TRMM is the abbreviation of Tropical Rainfall Measuring Mission. TRMM sensor
consists of a precipitation scanning radar (PR), a passive microwave imager (TRMM TMI)
and an infrared imager (VIRS). TMI provides water vapor and the intensity of precipitation,
which is therefore the core sensor for the TRMM data. The TRMM precipitation data for
the present study are from TRMM 3B43. The time resolution of the TRMM 3B43 is one day
and the spatial resolution is 0.25◦. We used the method proposed by Zhang et al. [48] to
obtain the accurate TRMM precipitation data.

2.3. Model Principle
2.3.1. Model Setup

The glacier mass loss was computed using degree day model [49].

M =

{
DDFsnow/iceT T > TT
0 T < TT

(1)

where M is the meltwater (mm w.e.a−1); DDFsnow/ice is the degree day factor for snow
and ice melting; T is the temperature; Tt is the temperature threshold, when T > Tt, the
melting started.

Total daily precipitation at certain elevation is calculated using Pr observed at auto-
matic weaher station (AWS) and a vertical gradient of precipitation (ΔP). Then, rainfall
and snowfall were separated from total precipitation by linear interpolation using two
temperature thresholds for rain (Train) and snow (Tsnow).

In order to use the remote-sensing data to simulate glacier mass loss, we assembled
four sub-models. The four sub-models driven by four different driving data sets to get
different glacier mass loss: Sub-model1 was driven by the combined data set of in situ
temperature and precipitation data; sub-model2 was driven by the combined data set of
in situ temperature and precipitation data associated with the lapse rate calculated from
the MODIS temperature data from different elevations in the Yala Glacier and Qiyi Glacier;
sub-model3 was driven by the combined data set of MODIS temperature and TRMM
precipitation data; sub-model4 was driven by the combined data set of in situ temperature
data and TRMM precipitation data associated with the lapse rate calculated from the
MODIS temperature data from different elevations in the Yala Glacier and Qiyi Glacier.
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2.3.2. Model Input Data

The main inputs that the model requires are as follows: (1) The glacier outlines of
the Yala and Qiyi glacier obtained from the second glacier inventory dataset of China [50]
and the Randolph Glacier Inventory V6.0 (RGI6.0) [51], and the SRTM DEM (90m) is used
as the glacier surface; (2) observed daily data at two AWSs are used as driving data to
drive the model. In addition, MODIS temperature and MODIS temperature lapse rate
were computed from MOD11A1 and MYD11A1 production, TRMM precipitation were
withdraw from TRMM production; Ta, and Prec are linear interpolated to each grid cell by
using their vertical gradients; (3) The initial snow depth on the glacier is computed using
the linear relationship between measured snow depth and elevations; (4) The density of ice
and fresh snowfall are assumed to be 900 and 200 kg m−3, respectively.

2.3.3. Model Calibration and Validation

The parameter ranges are summarized in Table 1. Monte Carlo simulation method is
used to obtain the optimal combination of parameters for glacier mass loss simulation. The
model results, with the lowest root mean square error (RMSE) between modeled glacier
mass loss and observed ones and between modeled annual point mass loss and observed
ones, are acceptable for selecting the optimal combination of parameters.

Table 1. List of model parameters, their initial ranges.

Symbol Parameter Range

ΔP Gradient of precipitation 0–0.2 m−1

TLR Lapse rate of temperature 0.2–0.9 ◦C/100 m
Tsnow Phase threshold for snow 2–6 ◦C
Train Phase threshold for rain −4–2 ◦C
DDFsnow Degree day factor of fresh snow 1–5 mm w.e./◦C
DDFice Degree day factor of ice 1–10 mm w.e./◦C

We divided the total observations into two periods: one period (2010–2015 for the
Yala Glacier and 2001–2012 for the Qiyi Glacier) was used to calibrate the model, and the
other period (2016–2019 for the Yala Glacier and 2013–2018 for the Qiyi Glacier) was used
to validated the models. The optimal driving data parameters of sub-models 1–4 for the
Yala and Qiyi Glacier are shown in Tables 2 and 3.

Table 2. The optimal driving data parameters of the sub-models 1–4 for the Yala Glacier.

Parameters Sub-Model 1 Sub-Model 2 Sub-Model 3 Sub-Model 4

TLR 0.46 ◦C 0.41 ◦C 0.51 ◦C 0.42 ◦C
Tsnow 1.78 ◦C 2.97 ◦C 0.20 ◦C 2.87 ◦C
Train 3.72 ◦C 3.0 ◦C 3.49 ◦C 3.64 ◦C

DDFice 6.46 ◦C 5.36 ◦C 7.95 ◦C 6.45 ◦C
DDFsnow 5.08 ◦C 3.11 ◦C 5.79 ◦C 3.33 ◦C

Table 3. The optimal driving data parameters of the sub-models 1–4 for the Qiyi Glacier.

Parameters Sub-Model 1 Sub-Model 2 Sub-Model 3 Sub-Model 4

TLR 0.78 ◦C 0.94 ◦C
Tsnow 1.61 ◦C 2.70 ◦C 0.55 ◦C 2.84 ◦C
Train 3.10 ◦C 5.62 ◦C 5.13 ◦C 5.71 ◦C

DDFice 4.04 ◦C 3.05 ◦C 11.10 ◦C 2.48 ◦C
DDFsnow 1.64 ◦C 0.78 ◦C 2.93 ◦C 1.25 ◦C

In the above two tables, temperature lapse rate (TLR) is based on MODIS temperature data, phase threshold
for snow (Tsnow), phase threshold for rain (Train), degree day factor for ice (DDFice), degree day factor for snow
(DDFsnow) were also calculated and shown.
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3. Data

In this study, we used two sets of data: remote sensing data and in situ data.

3.1. Remote Sensing Data

The remote sensing data in the study include land surface temperature based on
MODIS and precipitation based on TRMM, ◦C.

MODIS Temperature Data

The most important parameter for glacier mass loss study is temperature. We have
used the MODIS temperature data to study glacier mass loss for the Yala Glacier and Qiyi
Glaicer. Since MODIS land surface temperature product has already been widely validated
by scientific community, such as Wan et al. [52], Wan et al. [53] and Hu et al. [54], it can
be concluded that MODIS land surface temperature can be used to study glacier mass
loss in this study although some errors exist. The daily mean, minimum and maximum
temperatures data from 2000 to 2008 are calculated from MODIS for the Yala Glacier
and Qiyi Glacier. All the MODIS temperature data were calculated for the whole glacier
rather than pixel temperature. Figure 2 shows the daily mean, minimum and maximum
temperatures from 2000 to 2008 for the Yala Glacier. The MODIS temperature data indicate
obvious diurnal and seasonal changes, reflecting the basic characteristics of temperature
change from 2000 to 2008. The averaged minimum temperature is −4.42 ◦C, the averaged
maximum temperature is 18.86 ◦C, and the mean temperature is 9.83 ◦C.

Figure 2. The glacier surface temperature data for the Yala Glacier. In the figure, we have shown the
daily mean, minimum and maximum temperatures from MOD11A1 and MYD11A1 products.

Figure 3 shows the daily mean, minimum and maximum MODIS temperature data
from 2000 to 2013 for the Qiyi Glacier. The MODIS temperature data indicate obvious
diurnal and seasonal changes, reflecting the basic characteristics of temperature change.
The MODIS temperature data clearly indicated the temperature increase from 2000 to 2013.
The averaged minimum temperature is 3.11 ◦C, the averaged maximum temperature is
20.25 ◦C, and the mean temperature is 7.93 ◦C.
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Figure 3. The glacier surface temperature data for the Qiyi Glacier. In the figure, we have shown the
daily mean, minimum and maximum temperatures from MOD11A1 and MYD11A1 products.

3.2. TRMM Precipitation Data

The TRMM precipitation data for the Yala Glacier and Qiyi Glacier were obtained by:
firstly, the in situ data were used to verify and correct the TRMM data from the seasonal
distribution to ensure that the relative proportions of the average monthly precipitation
of the two data sites in a year are stable; then, precipitation are considered with the
assumption that the amount of occurrence and the amount of accumulative precipitation
are proportional to the deviation correction of TRMM data.

By evaluating the daily mean, monthly mean, and annual mean precipitation and by
calculating the root mean square error of the accumulated precipitation and the difference
of the accumulated precipitation times, the TRMM precipitation data were calibrated.
The missing data were supplemented by interpolation to ensure the completeness and
consistency of the data.

In Situ Data

The in situ air temperature data were from the records of the AWS and the fixed long-
term observing station. The AWS (Figure 1d) for the Yala Glacier is located at the terminus
of the Yala Glacier (5058 m a.s.l.), and the fixed observing station (Kyanging, 2821 m a.s.l.,
Figure 1b) in the middle reaches of the Langtang River basin. The AWS (Figure 1e) for
the Qiyi Glacier is located at the tongue (4408 m a.s.l.) of the Qiyi Glacier. The fixed
observing station (Tuole station, 3367 m a.s.l., Figure 1c) is located in the upper reaches
of the Tuole River basin. The meteorological data, including temperature, precipitation,
humidity, air pressure, wind velocity and direction, were measured synchronously with
glacier mass balance. In addition to the observation data by AWS, some data are from
Chinese Meteorological Agency (CMA) (http://data.cma.cn/ (accessed on 20 March 2020))
and TPE data (data.tpdc.ac.cn (accessed on March 21 2020)). The discontinuous in situ
measurements for the two glaciers were carried out since 1970s. The glacier mass balance
was measured by measuring stakes installed in the two glaciers. The observing system in-
cluded 8 stakes for the Yala Glacier (Figure 1d) and 26 stakes for the Qiyi Glacier (Figure 1e),
respectively. The observations of the Yala Glacier were carried out by Fujita et al. [41,55],
Racoviteanu et al. [56], ICIMOD and Acharya and Kayastha [40], and a recent observation
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was performed by Li (unpublished). The observations of the Qiyi Glacier were carried out
by Guo et al. [57], Wang et al. [45,58], and Pu et al. [32].

4. Results and Discussions

Figure 4 shows the simulations of mass loss for the Yala Glacier by the four sub-models.
It can be seen from the figure that the simulation of the sub-model3 is the best to simulate
glacier mass loss and stake measured point mass loss, compared with the other sub-models
in the calibration period. Although the sub-model4 is improved after adding calibrating
data in the validation period, the sub-mode3 is still the best. The above analyses indicate
that the sub-model using MODIS temperature data and TRMM Precipitation data at the
same time has the highest simulation accuracy. Under some particular conditions, the use
of MODIS temperature lapse rate might also help improve the outcomes of the sub-models.

 

Figure 4. The modeled glacier mass loss and the stake measured mass loss as well as point mass loss
of the Yala Glacier by the four sub-models. In the figure, the red circles are the data of calibration
period and the blue crosses are the data of validation period; (a,c,e,g) are the simulated GMB (Glacier
Mass Blalnce for the whole glacier) results of the four sub-models; (b,d,f,h) are the simulated PMB
(Poin Mass Balance of the glacier).

Figure 5 shows the results of the mass loss for the Qiyi Glacier simulated by four
sub-models. It can be seen from the figure that the sub-model2 is better than the other
sub-models in simulating glacier mass loss and stake measured point mass loss. The sub-
model3 and sub-model4 overestimated the in situ measurement of glacier mass loss during
the calibration period and underestimated the glacier mass loss during the validation
period, showing the inter-annual instability of TRMM precipitation data. Similar to the
Yala Glacier, the Qiyi Glacier also reflects the importance of precipitation data accuracy to
glacier mass loss simulation.
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Figure 5. The modeled glacier mass loss and stake measured mass loss as well as point mass loss of
the Qiyi Glacier by using the four sub-models. In the figure, the red circles are the data of calibration
period and the blue crosses are the data of validation period; (a,c,e,g) are the simulated GMB (Glacier
Mass Blalnce for the whole glacier) results of the four sub-models; (b,d,f,h) are the simulated PMB
(Poin Mass Balance of the glacier).

Using the best sub-model for the Yala Glacier driven by the combined data set of
MODIS temperature and TRMM precipitation data, we have made a regression to get the
mass blance rusults for the Yala Glacier, which is shown as Figure 6a:

MB = −16788.91 + 3177.81 × Ty + 1.98 × Py − 867.86 × Ts − 1521.92 × Tw − 0.92 × Pw (2)

In the regression, Ty is annuan mean temperature, Py annual precipitation, Ts sum-
mer temperature, Tw winter temperature, Pw winter precipitation, R2 0.90 and RMSE
128.8 mm w.e.

Similarly, using the best sub-model for the Qiyi Glacier driven by the combined data
set of in situ temperature and precipitation data associated with the lapse rate calculated
from the MODIS temperature data from different elevations, we have made a regression to
get the mass blance rusults for the Qiyi Glacier, which is shown as Figure 6b:

MB = −124.63 − 14606.2 × Ty + 193.62 × Py + 4642.50 × Ts − 191.84 × Ps + 9566.3 × Tw − 189.22 × Pw (3)

In the regression, Ty is annuan mean temperature, Py annual precipitation, Ts sum-
mer temperature, Tw winter temperature, Pw winter precipitation, R2 0.82 and RMSE
226.6 mm w.e.a−1.

Based on the analyses of the remote sensing data and the in situ data as well as the
results through modeling using four sub-models, we have analyzed the characteristics of
glacier mass loss for both the Yala Glacier located in the southern TP and the Qiyi Glacier
located in the northern TP.
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Figure 6. The modeled glacier mass balance changes of the of the Yala Glacier and Qiyi Glacier. In
the figure, (a) is for the modeled glacier mass balance changes of the Yala Glacier and the (b) for the
modeled glacier mass balance changes of the Qiyi Glacier.

The average multi-year mass loss of the Yala Glacier is −736 mm w.e.a−1, while that
of the Qiyi Glacier is −567 mm; the maximum mass loss is −1815 mm w.e.a−1 for the Yala
Glacier and −1516 mm w.e.a−1 for the Qiyi Glacier. Based on a statistics of glacier mass
loss comparison of the two glaciers in the same year, the mass loss of the Yala Glacier is
much stronger than that of the Qiyi Glacier. From 2000 to 20018, the mass loss of the Yala
Glacier is keeping at a rate −43.8 mm w.e.a−1, while that of Qiyi glacier is keeping at a rate
of −9.4 mm w.e.a−1. The glacier mass loss of the Yala Glacier is significantly faster than
that of the Qiyi Glacier on a longer time scale. The glacier mass loss of the Yala Glacier
was low before 1996. It was only −357 mm w.e. in 1996, but entered into a rapid mass loss
period in the 21st century, particularly after 2011, except 2012/13. At the same time, the
Qiyi Glacier showed mild melt status compared with the Yala Glacier.

The major cause why the mass loss of the Yala Glacier is more intensive than that of
the Qiyi Glacier is from the decrease of glacier accumulation associated with precipitation
decrease under the weakening Indian monsoon and from the more intensified glacier
ablation. In addition, the precipitation increases under the dominance of the westerly
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enhancing reduced the glacier ablation in the Qiyi Glacier. The more intensive glacier mass
loss of the Yala Glacier than that of the Qiyi glacier is also related to the low latitude where
glaciers receive more solar radiation, which will result in more intensive melt.

5. Conclusions

Remote sensing data and in situ data were obtained to study the glacier mass loss in
the two galciers, the Yala Glacier in the Central Himalayas in the southern TP and the Qiyi
Glacier in the Qilian Mountains in the northern TP. By obtaining the remote sensing data
including MODIS land surface temperature and TRMM precipitation data, with calibration
and validation with in situ data, the glacier mass loss were simulated. Based on the
study of glacier mass loss together with the changes of temperature and precipitation, the
climatological factors that resulted in the differences in the two glacier were analyzed. We
concluded from the analyses that the remote sensing data are useful in the glacier mass
loss study on the TP. When the remote sensing data are used to model the glacier mass
loss parameters, they show that the MODIS temperature and TRMM precipitation, after
a simply adjustment, can be used to drive effective models and get accurate mass loss
results. The modeled results show different characteristics of glacier mass loss between
the southern ansd northern parts of the TP. The Yala Glacier has not only been in a state of
mass loss, but also in a status of intensive and accelerating mass loss. Our analyses have
also shown that the average multi-year mass loss of the Yala Glacier is −736 mm w.e.a−1,
with a maximum of −1815 mm w.e.a−1. At the same time, the Qiyi Glacier has experienced
a mild glacier mass loss process compared with the Yala Glacier. The Qiyi Glacier’s mass
loss is −567 mm with a maximum of −1516 mm w.e.a−1. Our results indicate that the mass
loss of the Yala Glacier is much stronger and faster than that of the Qiyi Glacier.
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