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Abstract: Augmented Reality (AR) and cyber-security technologies have existed for several decades,
but their growth and progress in recent years have increased exponentially. The areas of application
for these technologies are clearly heterogeneous, most especially in purchase and sales, production,
tourism, education, as well as social interaction (games, entertainment, communication). Essentially,
these technologies are recognized worldwide as some of the pillars of the new industrial revolution
envisaged by the industry 4.0 international program, and are some of the leading technologies of the
21st century. The ability to provide users with required information about processes or procedures
directly into the virtual environment is archetypally the fundamental factor in considering AR as
an effective tool for different fields. However, the advancement in ICT has also brought about a
variety of cybersecurity challenges, with a depth of evidence anticipating policy, architectural, design,
and technical solutions in this very domain. The specific applications of AR and cybersecurity
technologies have been described in detail in a variety of papers, which demonstrate their potential
in diverse fields. In the context of smart cities, however, there is a dearth of sources describing
their varied uses. Notably, a scholarly paper that consolidates research on AR and cybersecurity
application in this context is markedly lacking. Therefore, this systematic review was designed to
identify, describe, and synthesize research findings on the application of AR and cybersecurity for
smart cities. The review study involves filtering information of their application in this setting from
three key databases to answer the predefined research question. The keynote part of this paper
provides an in-depth review of some of the most recent AR and cybersecurity applications for smart
cities, emphasizing potential benefits, limitations, as well as open issues which could represent new
challenges for the future. The main finding that we found is that there are five main categories of
these applications for smart cities, which can be classified according to the main articles, such as
tourism, monitoring, system management, education, and mobility. Compared with the general
literature on smart cities, tourism, monitoring, and maintenance AR applications appear to attract
more scholarly attention.

Keywords: augmented reality; cybersecurity; smart city; systematic literature review

1. Introduction

Rapid technological advancement has taken place in the last decade, propelled by
developments and advances in information and communication technologies (ICT). This
has revolutionized the way people communicate, live, work, and travel, among other
things. As a result, smart cities have emerged, evolving towards intelligent, dynamic
infrastructures that serve civilizations while accomplishing the criteria of sustainability
and energy efficiency [1]. According to [2,3], the meaning of smart cities implies the
integration of existing substructures with novel ICTs to produce an all-inclusive system of
efficient urban services. Correspondingly, Ref. [4] note that a smart city is a conurbation

Sensors 2022, 22, 2792. https://doi.org/10.3390/s22072792 https://www.mdpi.com/journal/sensors
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that connects physical infrastructure, business infrastructure, social infrastructure, and
information technology (IT) infrastructure to strengthen the city’s collective intelligence.
Although there exists no general consensus on the definition of a smart city, there is a
unanimity within literature that one of the main goals of smart cities is to improve the
quality and efficiency of city services, while at the same time making better use of public
resources and reducing operational costs [5,6]

One of the new technologies that are widely deployed and exploited within smart
cities is Augmented Reality (AR), which, as noted by [7], can enhance human-machine
interaction. Immersive technologies, such as AR and virtual reality (VR), which either
superimpose digital content into a physical world or immerse users into an altogether dif-
ferent, interactive, and digital environment, are shown to have exceptional and convincing
uses in smart cities. As discussed by scholars such as [8–10], the availability of high-speed
and consistent network connectivity has enabled AR technology to mature enough to
impact cities in becoming smart, digital, and connected in various ways, including disaster
response, enabling medical services, and navigation management. Related technologies
such as VR have also enabled services and programs such as police training, education, and
urban planning. In particular, Ref. [11] mention that AR can be described as a coincidental
combination between virtual objects and the real world, which enables real-time interaction
as well as three-dimensional virtual registration.

With human perception regarding the environment increasingly changing with mod-
ern technology, AR becomes progressively prominent. Ref. [11] further note that AR adds
virtual information to a real environment, ultimately impacting user cognition. This aug-
mentation of the virtual intangible information into the tangible world impacts how people
live and interact in smart cities. The application of AR into smart cities offers a unique
immersion into the Internet of Things (IoT) applications. Recent research suggests that this
can guide an interactive demonstration of how public services such as street control [12]
video surveillance [13] solid waste collection [14], and parking management [15] can be
accomplished and controlled from a single platform, making cities safer, cleaner, and more
livable. As suggested previously herein, the key objective of smart cities is to connect every-
thing together and to people. Consequently, AR technology enables smart city inhabitants
to have an instant and immersive connection with everything around them.

The use of smart technologies such as AR, however, raises new issues and challenges.
In smart cities, the vulnerable action of users and organizations can put the entire city at
risk of cybercrimes. Ref. [2] notes that due to the reliance of various components of smart
cities on ICT, cyber-security challenges, including malicious cyber-attacks and leakage of
sensitive information, may affect a smart city’s behavior. When smart cities lose control of
their technologically developed systems, it can negatively impact quality of life, people’s
security and privacy, the city’s economy, technological axis, and even more, can put people
at risk [16]. Given this, in order to respond to the increasing fervent acceptance of global
smart city technologies such as AR, cyber-security programs must be developed in the same
direction. Congruently, Ref. [17] argue that it is clear that cyber-threats for smart cities need
to be taken extremely seriously. The researchers identify key areas for possible solutions,
including the development of procedures and action plans for responding to cyber-attacks;
the implementation of manual overrides and failsafes on all smart city systems; and the
creation and use of security checks for encryption, authorization, authentication, as well as
software updates while implementing new smart city systems.

In this work, an overview of AR applications in smart cities around the world is pro-
vided. The paper also investigates the topic of cyber-security for smart cities, demonstrating
how specific aspects of smart cities give rise to cyber-security challenges in an augmented
reality world. In other words, this article focuses on cyber-security risks that may affect data
privacy and the outputs generated by the AR applications through the device, and how this
could impact the implementation of AR technology in smart cities. The paper adopts a sys-
tematic literature review approach in order to achieve a comprehensive research synthesis
on the basis of evaluation and analysis of literature under investigation in this study. In the
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end, it is believed that the findings of this study will have implications for academicians,
practitioners, and societies at large. It also adds to the academic literature on the use of
AR technology in the building of smart city infrastructure, where government officials and
urban planners can use this technology to enhance cities’ environments, infrastructure,
services, and the quality of life of urban dwellers.

The study consists of six parts: Introduction, Smart City Concept, Methods, Results,
Discussion, Conclusion and Future Work. The second chapter describes the concept,
elements, and general structure of a smart city. The third chapter presents the methodology
adopted in conducting the systematic literature review, including the search strategy and
inclusion and exclusion criteria. The fourth chapter presents the results of the review, while
the fifth presents the discussion. In the final chapter, the conclusion and future research
are stated.

2. Smart City Concept

As noted by researchers such as [7], smart cities describe cities that use ICT systems to
disseminate information to citizens, enhance operational efficiency, and ultimately improve
the quality of public services. In their view, some key aspects of smart cities include smart
education, smart governance, smart environment, smart homes, smart mobility, smart
energy, and smart health. In terms of energy, Ref. [18] agree that smart cities can have
the ability to control and monitor the amount of energy consumed and distributed using
ICT technologies, which can enable cities to improve reliability and provide greater power
quality and profit growth. When it comes to health, Ref. [19] note that the monitoring of
people’s health through IT technologies such as sensor devices help cities provide real-time
information on patient health indicators (breathing, temperature, heartbeat), enabling faster
and better decisions. Ref. [18] further note that environmental parameters such as air
quality, humidity, and temperature are vital for smart cities. As such, ICT technologies such
as AR can aid in the management of such parameters, with applications already successful
in areas such as water and air quality and garbage management. In terms of traffic and
mobility, Ref. [19] argue that efficient exploitation of IoT technologies can help in solving
the problem of traffic congestion, as well as issues in existing transport infrastructure.

The infrastructure of a smart city can create a unique collaborative system where
citizens, educational institutions, industries, prosumers, and researchers can develop inno-
vative products, services, and solutions. Contrary to traditional double-sided marketplaces,
Ref. [20] argue that the ecosystem that results from a smart city allows a multitude of
actors to be engaged in private and public consumption, production, professional activities,
entertainment, research, and education. As suggested herein and noted by [17], a smart city
can be divided into six fundamental aspects: smart people, smart living, smart mobility,
smart government, smart environment, and smart economy (see Table 1), with each element
having its key indicators and benefits.

Table 1. Key Smart City Components (Alibasic et al., 2016).

Component Indicators & Benefits

Smart People Inclusive, creative, educationally excellent

Smart Living Safety and health, happiness, culturally vibrant

Smart Mobility Mixed modalities, clean and non-motorized options, ICT, connected

Smart Government Open data, transparency, e-government application, ICT, supply and
demand-side policies

Smart Economy Local and global business interconnectedness, productivity, innovation,
entrepreneurship

Presently, there are many existing urban projects that have been transformed to meet
the aforementioned smart city criteria. Some projects have been developed from scratch,
while others consist of the transition and modernization of existing cities into smart cities.
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As noted by [1], some of the worldwide smart cities that have been developed from scratch
include Skolkovo in Russia, PlaIT Valley in Portugal, Lavasa in India, Masdar City in Abu
Dhabi, Meixi Lake in China, and Songdo in IBD. Some of the elements and features of such
cities include the development of large tech-driven business centers, innovative education,
cultural and medical services to citizens, sustainable urban infrastructure, green buildings,
power supply through renewable energy, and collective broadband connectivity. Smart
cities that have been developed from existing urban centers include London, Santander, and
Portland. According to [1], some actions that have been undertaken by urban developers
to make such cities smart include the installation of intelligent systems for waste collection
and management, implementation of payment systems through smartphones, control and
monitoring of public security through video monitoring technologies, implementation of
smart devices for tracking and monitoring people’s health, improving tourism through
interactive mobile applications and immersive technologies such as AR and VR, and
management and control of traffic through ICT technologies.

3. Methods

In order to achieve this study’s objectives, a Systematic Literature Review (SLR)
methodology was followed. As pointed out by [21], the SLR approach aims at searching,
appraising, synthesizing, and analyzing all studies relevant to a specific field of research.
Given the nature of this study, the SLR research approach was adopted to aid in planning,
searching, screening, extracting data, and synthesizing and reporting findings.

3.1. Search Strategy

One of the fundamental goals of this study was to be as inclusive as practically possible.
However, the idea was also to obtain scholarly papers within the last decade to ensure
that materials gathered were the latest, and coincided with the digital age and era of smart
cities. As such, all papers published in journals and conferences between 2010 and 2021,
which included the phrases ‘Augmented Reality for Smart Cities’ and ‘Cyber-security
for Smart Cities’, and related user studies were considered. In the planning phase, some
of the most utilized online scientific databases were used to search for peer-reviewed
literature. Three relevant literature databases were selected, including Emerald Insight
(EI), Science Direct (SD), and IEEE Xplore (IX). As research sources, these multidisciplinary
databases were selected and recognized for their indexing and coverage. They were
consulted, and subsequently, the results obtained were cross-checked. Furthermore, the
databases used in these academic studies have met the protocol requirements and used
protocol-specific parameters.

3.2. Inclusion and Exclusion Criteria

The results from the search process were screened against pre-set inclusion and exclu-
sion criteria, as mentioned in Table 2. In terms of inclusion criteria, only studies published
between 2010 and 2021 were considered to ensure that interventions and applications
related to AR and cyber-security for smart cities were relevant and up-to-date. Secondly,
studies were only considered if they reported the application of AR and/or cyber-security
for smart cities. As such, studies that reported the advantage, limitations, uses, challenges,
effectiveness, and scope of AR and cyber-security in smart cities were considered for inclu-
sion. Only studies that were published in the English language were considered for this
review’s inclusion for practical reasons.

Among the exclusion criteria, this study excluded studies that only reported on AR
and cyber-security initiatives in other contexts. Studies that did not mention AR or cyber-
security in smart cities were also excluded. The same applied to studies that claim to
report AR but referred to VR or mixed reality (MR) instead. Studies not considered as
peer-reviewed journals, book chapters, or conference papers in the context of AR and
cyber-security in smart cities were excluded.
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Table 2. Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Addressed the application of AR and
cyber-security for smart cites

Addressed related concepts that were not AR
and cyber-security in smart cities

Published between 2010 and 2021 Published before 2010

Written in English Non-English publications

Peer-reviewed journal, conference papers and
related publications such as book chapters and

seminal works

Unpublished studies (e.g., proposals, theses,
and ongoing projects)

Original publications Duplicates (by title or content)

Publications available online Publications not available online

3.3. Search Results

After performing the search based on the identified keywords, as shows in Figure 1,
421 documents were initially identified from the three selected scientific databases. The
initial search was done on 6 September 2021 and the last was done on 14 September the same
year. An initial filter was conducted on the identified 421 studies among scientific articles,
book chapters, and conference articles. This included evaluating the inclusion and exclusion
criteria, considering the titles and abstracts of studies, and cross-checking the results of the
three databases to remove duplicates. After this initial filter, 176 studies remained.

 

Publications Identified from 

Database Searches (n = 91) 

(n= 421) 

Publications after removal of duplicates  

(n = 176) 

Abstracts and titles 

screened (n = 176) 

Full text evaluated for 

eligibility (n = 71) 

Studies included in the 

SLR (n = 31) 

Publications excluded due to date, 

language, focus of study (n = 105) 

Excluded due to inconclusive findings, 

methods and conclusions (n = 41) 

 

Additional Publications from 

Other Sources (n = 0) 

Emerald Insight 

(n= 3) 

Science Direct  

(n= 16) 

IEEE Xplore  

(n= 12) 

Figure 1. The Preferred Reporting items for SLR flow diagram.
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After further screening titles, abstracts, introductions, and conclusions, a further
105 studies were removed. Finally, following full-text reading and examination of each of
71 articles, a total of 31 studies met the criteria proposed and definition for inclusion in
this review.

3.4. Data Extraction

This phase was a two-part process in which each individual article was analyzed to
determine final inclusion into the SLR. To minimize bias, this process was conducted by
two individuals, each screening articles independently. The initial part involved skimming
through the title and abstracts, as well as introductions and conclusions, to determine
whether the obtained articles were relevant in addressing this study’s research objective.
The second stage involved skimming through and subsequently reading through full texts
to obtain relevant data for SLR. In this stage, five QA criteria were developed to assess each
study’s quality.

• Q1: what was the application area (education, construction, tourism, design, or healthcare)?
• Q2: what was the type of data collected?
• Q3: what was the experimental design (methodology)?
• Q4: where was the research conducted (based)?
• Q5: what type of study was conducted (case study, field, experiment, formal, or pilot)?

In order to systematically and accurately record data based on these QAs, an excel
spreadsheet was developed. During the review of the paper and data extraction, the re-
searcher also flagged certain publications (especially in references) for additional discussion
and cross-referencing. The data extraction form only contained information relevant to this
study for analysis and descriptive purposes (in the discussion chapter) later in the SLR.

3.5. Synthesis

Since this SLR spans across a number of academic disciplines and fields, a thematic
synthesis approach was adopted as the modulus of analysis. As discussed by [22], this
approach in data synthesis is particularly suitable for analyzing and synthesizing multi-
disciplinary datasets. To address the key aims of this study, common themes across the
included studies were identified and analyzed in detail. The identified concepts of AR
and cyber-security applications were seen as the starting point from which to introduce a
common language to compare and contrast identified perspectives and findings in included
studies. As the common concepts in this study, AR and cyber-security applications and
interventions in smart cities were used to provide a common denominator for developing
new themes from the included studies.

4. Results

The search process produced 31 studies that were included in the SLR. The ensuing
sections in this chapter provide a summary of results according to the pre-stated data
extraction criteria intended to fulfill this study’s research objectives. One of the findings
is that most of the studies related to AR and cyber-security for smart cities contexts are
mostly published in Science Direct (16) and IEEE Xplore (12). The third database for this
investigation, Emerald Insight, only produced three results; two relating to AR and one
to cybersecurity, under the researched contexts. The majority of included studies were
published in 2019 (14). Of the rest, three were published in 2014, three in 2016, five in
2017, seven in 2018, and nine in 2020. Based on this SLR, the number of publications
increased from 2014 to 2020. This drastic increase may have been caused by technological
advances and the development of smart cities. Between 2018 and 2020, there is particularly
a consistent number of publications related to AR and cybersecurity for smart cities. As
highlighted in the subsequent sub-sections, AR and cybersecurity papers for smart cities
are divided into various applications and relating aspects.

6
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4.1. AR for Smart Cities

Results under this segment indicate that the most discussed potential AR applications
for smart cities are in various categories including, tourism, information dissemination,
mobility, risk management, construction, education, energy management, and traffic moni-
toring. These application categories can be further grouped into five distinct classifications,
including healthcare, robotics, public sector, tourism, (system) monitoring, (system) man-
agement, education, and mobility. Through this SLR, these categories have been critically
compared based on aim, methodology, and chronological perspective. The results indicate
that a number of AR application studies for smart cities focus on tourism and manage-
ment/monitoring aspects comparing to other aspects.

4.1.1. Tourism

There is considerable consensus that AR allows for the simultaneous perception of
the real environment and a virtual audio overlay. This is particularly vital in mobile
applications, where users are continuously aware of their surroundings, such as in the
case of urban smart and urban tourism, where travelers explore foreign sights and cities.
Recent studies report that AR continues to become increasingly popular within the travel
industry, especially because it enables attraction sites, hotels, and businesses operating
in this industry to enhance physical environments while encouraging both local and
international tourists to visit. As seen subsequently in the Discussion Chapter, previous
studies in this area have shown that AR can be used in a variety of ways, including
augmented reality gasification, beacon technology and push notifications, augmented
reality destinations, and interactive hotel and attraction elements. However, AR application
in tourism for smart cities is not well explored, and as such, publications relating to the
same are limited. From database search, this study only obtained three studies: [23–25].

Ref. [23], in his paper on smart tourism, discusses issues, challenges, and opportunities
presented to the industry by smart technologies such as AR. In this paper, the scholar
clarifies that the smart concept signifies the integration of organizational networks and
smart features such as AI, IoT, big data VR, and AR to enable automation, facilitate daily
activities for users, and enrich the ecosystem and way of life. These latest technologies
have given rise to the concepts of ‘smart destination,’ ‘smart city,’ and ‘smart planet’ that
have become increasingly popular in recent times. Thanks to the visualization feature, the
researcher argues that AR application, in particular, has enabled smart cities to increase
the quality of tourist experience while also enhancing interaction with the physical world.
During on-site travel experience, it is noted in this paper that AR can provide information
about the destination, including image recognition platforms, multiple viewpoints of the
destination, and landscape information that can be viewed in adaptive screens. Given the
power of this technology, Ref. [23] notes that it can be applied in various areas, including
accommodation enterprises, F&B businesses, and museums, among others.

Correspondingly, Ref. [25] believe that advances in AR are expected to further push
the boundaries of what data can be collected and how they can be utilized to improve
touristic experiences for smart cities. They argue that, in connection with the physical
infrastructure (e.g., smart tourism and smart city), the focus is on blurring the lines between
the physical and the digital, and fostering digital integration. In the context of tourism,
smart technologies such as AR are essential in altering consumer experience and are foster-
ing creative tourism business models. In connection with other technologies such as Social
Networking Services (SNSs), VR, beacon technology, geo-tag services, location-based tech-
nologies, mobile apps, big data, and cloud computing, AR is enabling businesses in smart
cities new ways of advertising, novel collaborative ventures, better tourist services, and
better ways of managing tourist flows to innovate beyond traditional industry boundaries.
Ref. [25] further note that smart tourism powered by these technologies allows travelers to
better interact and communicate with and in cities, and to establish closer relationships,
not only with residents but also with city attraction highlights, local government, and
local businesses.
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In the third paper for AR application in tourism for smart cities in this study, Ref. [24]
explore an AR-based prototype in the pilot region of Gökova Mugla, Turkey. In their study,
a mobile application prototype was developed using AR aimed at introducing sightseeing
places, hotels, restaurants, touristic destinations, and other important centers for both
domestic and international tourists. Key information such as price, social media data,
comments, ratings, and intensity about these areas was simultaneously provided on the
mobile application, while location data and image processing techniques were also used
for implementing AR technology. The researchers suggest that a successful implementation
of such an application can be important for smart tourism in a number of ways. First,
social media integration can increase an attraction’s recognition and popularity. Second,
AR-based applications can remove the need to carry maps and brochures, allowing tourists
to obtain real-time information conveniently. Third, such an application can provide current
and simultaneous instant price, intensity, position, and evaluation information, while also
allowing extra virtual images with actual images simultaneously.

4.1.2. System Monitoring

Performing monitoring and maintenance tasks in complex environments has long
been shown to be challenging and difficult due to complexity, and possibly due to the use of
multifaceted processes, heavy machinery, human factors, uneasy access, and underground
facilities, among others. The underlying technology is often shown to be inefficient because
of simultaneous supervision of people working together under extreme settings, missing
multi-input interfaces, and significant delays in communication and data transmission.
Recently, however, AR as a tool for information visualization is said to provide solutions
to these issues, where real-time reports are essential for monitoring systems and aiding in
decision making. This SLR identified two applications where this technology can be applied
for smart cities. The first is the study of [26] that analyses the application of AR service
for efficient information dissemination based on a deep learning algorithm for the smart
city of Jeddah in Saudi Arabia. Their proposed framework uses the system architecture of
the iMARS system that consists of user alerts, deep learning, databases, and municipality
services. These entire components are correlated with each other to enable the application
to provide real-time and prioritized information to users, while also aiding governmental
departments and other organizations to prioritize services based on user needs.

In the second paper under this category, Ref. [8] explore the application of AR for traffic
monitoring in smart cities. By integrating a number of modern technologies, including AR,
cloud computing, machine learning, Internet of Vehicles, and IoT, the researchers intended
to develop a smart traffic control system that can produce traffic updates as well as road
status based on the strength of vehicles in smart cities. They used two types of sensors:
roadside sensors to provide information about the condition of the road, and vehicle sensors
to keep track of the entire information of the vehicle. VEINS (Vehicle in Network Simulator),
which is an amalgam of network simulator OMNET++ and road traffic simulator SUMO,
were used for analyzing traffic density according to different simulations. Their proposed
Internet of Vehicle with AR for smart traffic monitoring model indicates that AR-based
systems can effectively be used for smart transportation and real-time traffic monitoring.

4.1.3. System Management

This study identified four studies that examine how AR can be used in management
systems in various areas, including rent management, emergency management, lighting
system management, and energy management. In the first study under this set, Ref. [27]
analyze how visualization by AR can be used for smart rent portals in smart cities. Their
study proposes a recommender system that is managed and visualized through AR and
Vuforia to provide a platform that allows users to hold out a preference-based cooperative
filtering search on rental properties. This recommender system is shown to enable rental
service seekers to refine their preferences based on shallow learning. This study is grounded
on the premise that locating services or products online that meet every users’ preference is
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more and more troublesome, owing to the massive pool of decisions to think about before
inbound at the required choices. With a management system powered by technologies
such as AR, the researchers conclude that users in smart cities can now be able to visualize
products and services (such as rental properties) to enable more informed decisions than
traditional frameworks and algorithms.

Similarly, Ref. [28] illustrate how the same can be applied for emergency management
in smart cities. In their review of relevant literature through the Web of Science Core
Collection and snowballing, the scholars note that immersive technologies such as AR
and VR can be applied to emergency management systems to allow for better response to
emergency situations that may arise in cities. They provide an instance where AR can be
used combined with databases to explore how to efficiently maintain fire safety equipment
and cope with related fire hazards. They argue that AR can serve as an effective approach
through which disaster scenes can be reproduced in a way that information can be extracted
from the virtual setting for safety assessment, and research results can be applied in real
settings. Given the potential this technology has, Ref. [28] further note that it can be used
in emergency simulation systems to study potential dangers in specific situations such as
potential coastal flooding, evacuation safety, and productivity in manufacturing plants,
oxygen deficiency in the steel industry, as well as accidental perception in construction sites.

A wireless, AR-powered LED streetlight system with centralized and remote-control
technology has also emerged as an innovative application for smart cities. In their study,
Ref. [29] illustrate how such a lighting management system with remote control capability
can provide numerous benefits for smart cities, including monitoring and real-time control
capabilities, as well as reduced energy consumption and operational costs. In their study,
they present two forms of applications powered by modern technologies such as AR
and IoT to aid in lighting management for a learning institution. The first is a mobile
application that can generate the safest walking paths on campus by integrating streetlights
with various pedestrian-counting video sensors. The second is an emergency response
aid application that integrates streetlights with on-campus 911 emergency buttons. Both
applications were designed specifically with the goal of public safety improvement. By
integrating visualization and intelligence into such systems, the scholars suggest that this
can enable controlling of light brightness in real-time based on environmental dynamics to
lower power consumption, while also managing the schedule of light systems. Maintenance
of the streetlights can also be done efficiently by relying on a network system with sensors
that provide usage statistics and operational states.

The search results also indicated that AR could be used in energy management for
human-computer interaction in a smart city. Traditional energy management systems are
often based on graphical and numerical values through monitor screens. Ref. [30] suggest
that such systems are prone to errors and are often very difficult for consumers to interpret.
As such, the researchers propose a novel, AR-enabled interface that can easily be accessed
and interpreted by users in smart cities. Through a diorama that can visualize energy data
intuitively, Ref. [30] illustrate how this new EMS system can enable users to check operation,
renewable energy production, energy consumption, as well as environmental information
of the zone where the systems are installed through Augmented Reality Interface (ARI).
Such information can then be used for improving the indoor environment (maintenance)
and reducing unnecessary energy consumption.

4.1.4. Education and Instruction

The combination of educational content with AR technology to create a new type
of automated applications and enhance the effectiveness and attractiveness of teaching,
learning, and instruction has been explored widely in recent times. However, this explo-
ration is yet to attract considerable attention under the smart city context. In fact, this
study’s SLR only retrieved two studies from the selected databases that met the inclusion
criteria. The first was that of [9] who attempted to explore an AR application for smart
campus urbanization using a Mugla Sitki Kocman University (MSKU) campus prototype.
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Although their study falls under the education and instruction category in this study, their
application was not designed to aid in learning or instruction. Rather, they suggested a
platform that can offer more technical services to users in the university, improve campus
technological infrastructure, increase the interaction between the campus and students,
improve training services and presentation of technological learning environment for the
learner, and enable easier identification of buildings and other locations in the campus.

In the second paper under this category, Ref. [31] examine how AR can be used
to present work instructions for factory employees in order to lighten the workload of
employees (particularly those in assembly, maintenance, and set up) and boost factory
efficiency. The researchers developed a new smart solution for designing and presenting
work instructions through AR, including virtual instructions on the screen (with or without
special controllers, or with or without in-situ projections), video instructions, and traditional
‘paper’ instructions. These are designed as a software system for developing and working
with virtual assembly instructions. Ref. [31] designed and tested this software capable of
creating 3D animated assembly instructions. The results suggest that this software can
provide easy and efficient ways for both technical and non-technical employees to receive
instruction to improve their work efficiency and productivity.

4.1.5. Mobility

Mobility, although examined limitedly, is another area of application of AR in smart
cities. This study only produced one study that explores this application in the smart city
concept. Ref. [32] investigated how AR and IoT can be used to improve the accessibility
of people with motor disabilities in smart cities. The researchers designed a system that
enabled wheelchair users to interact with items placed beyond their arm’s length with the
help of Radio Frequency Identification (RFID) and AR. This application was an interactive
AR that ran on different interfaces to enable users to digitally interact with physical items
thanks to the updated inventory by an RFID system. The result of the study suggests that an
AR-powered system can not only enable disabled people with wheelchairs to interact with
the physical world, it can also enable them to visit and experience various site activities in
an autonomous way.

4.2. Cyber Security for Smart Cities

The implementation of technologies such as AR and IoT in smart cities is normally
hailed as the solution to numerous urban problems such as environmental protection,
waste and energy management, and transportation. However, the implementation of these
technologies is seen to be the source of numerous cybersecurity issues. Scholars agree that
as smart cities become increasingly interconnected and the level of digital infrastructure
becomes more complex, such cities will become more vulnerable to cyber-attacks. This SLR
produces 17 publications that address the topic of cybersecurity for smart cities, with the
majority of articles published in the Science Direct database. After reviewing the articles,
the researcher classified the results under two main categories: challenges (issues) and
opportunities (solutions).

4.2.1. Challenges/Issues

One of the key papers under this category is from the Oxford Analytica Daily Brief
that analyses industrial [33], business, social, economic, and geopolitical developments
on a global and regional basis, providing various sectors with a timely and authoritative
analysis of various issues and solutions. According to this brief, the cyber security of smart
cities will be critical in harnessing the cost and efficiency gains brought about by increased
connectivity. It is believed that systems that analyze and interpret consumer behavior in
these cities will continue to present unique challenges of security and privacy, as they create
attractive targets for malicious actors, intelligence agencies, and repressive regimes. This
expert briefing further states that cybersecurity protections will be a point of differentiation
among technology vendors; citizens will continue to bear ultimate responsibility for what
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data they share and how they are used, and innovation among technology vendors will
be inhibited so long as they see a risk of liability when collaborating with cities. Similar
challenges have also been reported in [34–37].

In a systematic literature review, Ref. [2] also identified a number of security threats
and problems that may affect smart cities—first, eavesdropping on information sent from
sensors and equipment, giving cyber-security attackers sufficient knowledge to undertake
malicious acts. Second, distortion of messages sent to subsystems. As a result, incorrect
messages are sent to various devices, and the normal operation of systems is disturbed.
Third, attackers are also able to delay the messaging and communication between systems
to have the effect of denial of service. Some of the messages exchanged in the transmission
and distribution systems may be time-critical and must be transmitted within a short period
of time. When this does not happen, major negative repercussions may follow.

Reference [38] provide a thorough insight into the smart city threat landscape for
components related to acquisition and storage of smart city data emerging from components
such as smart vehicles, unnamed aerial vehicles, building automation systems, and smart
grids, along with enabling technologies such as cloud computing and IoT sensors. From
the cloud, they identify a variety of cybersecurity issues, including system and application
vulnerabilities, malware injection attacks, denial of service (DoS), malicious insider threats,
and data leakage. From IoT sensors, a number of issues can also materialize, such as
remote exploitation, sensor failure, data storage, and management problems, insecure
communication, and confidentiality leaks. With smart grids, problems such as the attack on
internet-connected devices, rogue/infected devices, eavesdropping, privacy, and protocol
vulnerability can also occur.

Reference [38] also identify a variety of physical threats from such systems, such as
introducing data glitches to gain unauthorized access to debug interfaces, side-channel
attacks to leak information, or fault-injection into the ECU to defeat central locking systems.
Other scholars including [39,40] also report similar cybersecurity challenges for smart cities,
but further address other issues such as man-in-the-middle attack, phishing, and spoofing.
The man-in-the-middle attack is when cyber criminals intercept communication channels
to manipulate transmitted data and falsified operators’ actions. Spooning is when they
duplicate data by a third malicious party and send it to the reader after revealing the
security protocol. Lastly, phishing is when criminals impersonate trusted and reputable
parties to gain critical information such as credit card numbers and passwords.

4.2.2. Opportunities/Solutions

Although the exact shape that smart cities will finally take remains to be indeterminate,
scholars agree that there needs to be a variety of precautions, interventions, and solutions to
cyber threats to guarantee a smoother implementation process and, ultimately, more secure
infrastructure. Some studies included in this SLR provide some solutions and applications
that need to be implemented for smart cities to provide some form of security against
cyber-criminal activities. For instance, Ref. [41] believe that the current cybersecurity devel-
opments for smart cities cannot keep up with the eager adoption of advanced technologies,
so there need to be corresponding measures that avert associated cyber threats. In their
study, they propose designing correct preventive measures based on deep learning methods
to ensure that technological systems in smart cities are robust and well protected. Their
paper provides a summary of the knowledge and interpretation of deep learning, cyber
security, and smart city concepts, as well as discusses existing related work on IoT security
in this setting. Specifically, they review a number of deep learning models that can enhance
the security of these cities, including Boltzmann machines, generative adversarial networks,
convolutional neural networks, recurrent neural networks, and deep belief networks.

In their paper, Ref. [42] propose investigating the security concern of the smart city’s
infrastructure and taking into account the views of both technological and business oper-
ations before building a preventive framework. They state that it is vital to analyze the
threats before developing safe data. The researchers put forth a Hybrid Smart City Cyber
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Security Architecture (HSCCA) framework to enhance cybersecurity for smart cities. In
this model, they consider key factors such as vulnerable data collection, recovery, memory
storage, and well-organized network source supply. To address the key security challenges,
their model first highlights and analyzes these problems along with aspects of risks as-
sociated with them, and then provides recommendations for solutions and prevention.
A similar approach is suggested by ([43,44], and in particular [45]), who design a threat
‘hunting’ model based on Sparse Representation based Classifier (SRC). Their framework
identifies cyber threats by Opcode, Bytecode, and system call views to provide suggestions
on ways of addressing and preventing such threats.

Reference [46] suggests that, other than focusing on the technical part of the solution,
governments should strengthen policies relating to cybersecurity in smart cities. In this
paper, the researcher analyzes the impact of China’s 2016 cybersecurity on foreign technol-
ogy organizations and China’s big data and smart city dreams. He suggests that to reduce
threats, cybersecurity and informatization should be seen as ‘two wings, one body’ and
must be planned together, arranged together, and moved forward together. Implementation
of technologies in smart cities must therefore be integrated with security measures that
are built for the long-term. Similar strategies have also been suggested by a number of
other scholars, including [47,48] who agree that there should be set standards and avert
strategies that govern the implementation of technologies in smart cities to prevent the
stated security threats. Such studies also highlight the role of third-party risk management
and security ownership in such contexts.

5. Discussion

In the context of smart city initiatives in different parts of the world, this SLR reveals
that upcoming digital technologies such as AR play a fundamental role in the develop-
ment of various systems and infrastructures. Indeed, several studies have already been
conducted in this area with a keen focus on the application of AR in different areas, includ-
ing tourism, management, monitoring, education, shopping, transportation, marketing,
interior design, and smart parking. Although this exploration remains limited for smart
cities, the study identified five main areas where recent scholars have investigated the
application of AR for smart cities, including tourism, system monitoring, system manage-
ment, education and instruction, as well as mobility (aid in movement). Under the tourism
category, scholars such as [23–25] highlighted some of the areas of AR application for smart
cities. Some of these include: smart tourism, smart experience, smart destination, smart
trade, geographical information systems, destination managers and marketers, destination
image formation, image recognition platforms, multiple viewpoints of the environment,
landscape information, scene discovery by image detection, GPS and radar implementa-
tion, and prototype screens. Their analyses of these applications are consistent with smart
tourism literature in other contexts.

For example, in exploring the value of AR for tourism, Ref. [49] found five value
dimensions for AR in tourism, including marketing, organizational, epistemic, touristic,
and economical. Ref. [50] also took an internal stakeholder perspective to examine the role
of AR in tourism, and found that this technology adds value in this area by modernizing
the existing offerings, making it more attractive for new markets. Ref. [51] also suggested
the use of AR as robotic tour guides to augment multimedia elements such as 3D objects,
sound clips, and video clips to real artifacts in museums. Similarly, Ref. [52] recommended
the use of AR games for pre-historical places to enhance tourist interaction. This suggests
that AR can be a vital addition for smart cities intending to revamp their tourism sector to
attract both domestic and international tourists.

The SLR also discovered that AR could be effectively used for system management
and monitoring. Studies included in this research, including [8,26–30], which illustrated
how AR could be applied in areas such as real-time information dissemination, smart
traffic monitoring, rent management, emergency management, lighting system manage-
ment, and energy management to eliminate bottlenecks associated in such systems, and
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in turn, improve efficiency and productivity while reducing costs. Similar studies have
also been conducted in other contexts to complement studies included in this SLR. For
instance, Ref. [53] found that AR can successfully be used in system management and
monitoring in construction, particularly in quality and defects management, time and cost
management, safety monitoring and management, worker training, process tracking, and
project scheduling. Other researchers that have explored the successful implementation of
AR in these areas include [54] (traffic monitoring), Ref. [55] (facility management), and [56]
(emergency management), among others.

Education and training are other areas where AR can maximize the potential for smart
cities. In this study’s SLR, Refs. [9,31] highlighted how this technology could effectively
be used for campus urbanization and assembly-line instruction. Although this area is
investigated sparingly in the smart city context, it is one of the most explored in other
settings. Researchers such as [57–59] have all explored opportunities, challenges, and
provided recommendations for the use of AR in education and training. Most of these
academic sources agree that the capacity to overlay rich media through AR onto the real
world for viewing via web-enabled devices such as smartphones and tablets means that
instruction can be made available to learners at the exact time and place of need. This
has the benefit of reducing cognitive overload, improving concentration, and making
education interesting.

The last category, mobility, is also examined and reported by researchers studying the
application of AR in differing frameworks. In the included study for this SLR, Ref. [32]
revealed that this digital tech could be used by smart cities to enhance mobility for people
with motor disabilities. In line with this, other scholars have also suggested that AR can
be used to improve both indoor and outdoor mobility for different people. For example,
Ref. [60] recommended an AR indoor positioning system that can be used to track user
location and their angles of vision, thereby creating a high adaptability space. Ref. [61]
also proposed an indoor navigation system to be used in libraries to help users navigate
to shelves and find books. Consistently, Ref. [62] suggested a new AR indoor navigation
system for a wheeled robot that can be used in shopping malls and museums. On the
other hand, Ref. [63] presented a novel tracking system that can be used for outdoor spaces
using beacons. Ref. [64] also proposed a navigation system that can caution drivers about
unseen obstacles, and suggested a visual/audio information model powered by AR. For
smart cities, such suggestions provide groundwork from which AR-based systems can be
implemented to guide navigation and mobility for people.

While technologies such as AR hold great promise for smart cities, the SLR also
revealed great concern relating to cybersecurity. Included studies suggest that the inter-
connectedness of smart cities through advanced technologies gives room for cyber threats.
It is suggested that lack of protection against these threats, poor understanding of social
engineering, weaponized machine learning technologies by cyber-attackers, non-existent
secure device onboarding services, poor encryption key management, as well as lack of
cryptographic measures are some of the key issues that contribute to the intensification
of cyber threats in smart city ecosystems. Studies included in the SLR, including [34–38],
suggest that some of the key challenges in these systems include system and applica-
tion vulnerabilities, privacy invasion, malware injection attacks, denial of service (DoS),
malicious insider threats, and data leakage. Away from smart cities, similar challenges
have also been reported by researchers such as [65–68]. Although solutions to such chal-
lenges have been suggested, both technical and non-technical, literature suggests that
there is no unanimously agreed solution, and cyber threats will continue to emerge as
technologies advance.

6. Conclusions and Future Work

This SLR intended to address the study’s main topic: AR and cybersecurity for smart
cities. In other words, it intended to investigate the application of AR in this context, and
the cybersecurity issues that may arise as a result of the adoption of digital technologies. A
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review of the final 31 articles was then provided. Based on this review, the application of AR
for smart cities can be categorized into five main classifications, including tourism, system
monitoring, system management, education and instruction, and mobility (navigation).
Tourism, monitoring, and maintenance AR application appear to attract more scholarly
attention than education and mobility for smart cities, compared to the general literature
on the topic. Regardless of attention, it is believed that a close connection between industry
and academic fields is going to be connected. The adoption of these technologies and
continued interconnectedness in smart cities is shown to give rise to a host of cybersecurity
threats, with among them loss of privacy and confidentiality, physical threats, systems and
applications vulnerability, malware injection attacks, denial of service (DoS), malicious
insider threats, and data leakage. Solutions to these problems have been suggested by
various researchers, but they remain inconsistent and widely unproven. Until now, the
majority of studies have attempted to prove concepts rather than describe well-established
analytical approaches. In the future, the need for more practical- and analytically based
studies is emphasized in order to evaluate discussed hypotheses from this SLR in real smart
city contexts.
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Abstract: Several critical infrastructures are integrating information technology into their operations,
and as a result, the cyber attack surface extends over a broad range of these infrastructures. Cyber
attacks have been a serious problem for industries since the early 2000s, causing significant inter-
ruptions to their ability to produce goods or offer services to their clients. The thriving cybercrime
economy encompasses money laundering, black markets, and attacks on cyber-physical systems that
result in service disruptions. Furthermore, extensive data breaches have compromised the personally
identifiable information of millions of people. This paper aims to summarize some of the major
cyber attacks that have occurred in the past 20 years against critical infrastructures. These data are
gathered in order to analyze the types of cyber attacks, their consequences, vulnerabilities, as well
as the victims and attackers. Cybersecurity standards and tools are tabulated in this paper in order
to address this issue. This paper also provides an estimate of the number of major cyber attacks
that will occur on critical infrastructure in the future. This estimate predicts a significant increase in
such incidents worldwide over the next five years. Based on the study’s findings, it is estimated that
over the next 5 years, 1100 major cyber attacks will occur on critical infrastructures worldwide, each
causing more than USD 1 million in damages.

Keywords: computer networks; cyber attack; signal detection; machine learning; smart grid

1. Introduction

With many examples of cyber attacks affecting critical infrastructure (CI) in recent
years, it has become evident that these incidents are a major threat to the existing critical
infrastructure and, thus, society as a whole [1–10]. In this paper, we define CI based on the
definition from the Cyber & Infrastructure Security Agency. Critical infrastructure includes
cyber and physical assets, systems, and networks of chemical and commercial facilities,
communications, critical manufacturing, dams, defense industrial base, emergency services,
energy, financial, food and agriculture, government facilities, healthcare, and public health,
information technology (IT), nuclear reactors, materials and waste, transportation systems,
and water and waste management. Not only are these sectors highly significant to modern
countries but they also have strong interdependencies. A disruptive effect on one CI sector
can have a cascading failure effect on other CIs, specifically, outages in electrical CIs affect
most other CIs [11–13]. CIs are sets of physical and virtual assets, systems, and networks
that provide a nation with economic security, public health, and safety [12]. This review
focuses on electrical grid CIs due to the dependence that other CIs have on the electrical
grid. The electrical grid has numerous remote terminal units for controlling physical
systems and is a balanced system between load and generation. Cyber attacks against the
electrical grid can lead to a cascading failure affecting most other CIs.

CI was listed in [13] as agriculture and food, water, public health and safety, emergency
services, government, defense industrial base, information and telecommunications, energy,
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transportation, banking and finance, industry/manufacturing, postal, and shipping. CI
is not immune to cyber attacks; for example, parts of the power grid in Ukraine have
been taken down by malware named BlackEnergy3. Other examples show that industry-
scale food processing plants have closed due to ransomware, and multiple businesses and
their retail functions have been shuttered by malware embedded in trusted third-party
updating services [14]. In March 2019, a denial of service (DoS) attack was launched against
part of the Supervisory Control and Data Acquisition (SCADA) infrastructures of electric
utilities in Utah, which shut down some of their observation capabilities. The exploitative
programs that are in use today on the internet have enabled cybercriminals to acquire
and update malicious programs with ease. The avenue for attack, once opened, allows
the attacker to explore further attacks over potential vulnerabilities in the victim’s system.
Communications in a network are often assumed to be private; however, an attacker
may exploit the network in a man-in-the-middle attack to steal confidential information,
sabotage a cyber-physical system, or maliciously alter information. Cyber attacks have
malicious intents; they were identified in [15] as obstruction of information, undermining
cybersecurity measures, retardation of the decision-making process, denial in providing
public services, abatement of public confidence, lowering the reputation of the victim
country, and destroying a legal interest.

1.1. Evolution of Cyber Attacks

Cybercrime has existed since the early days of computer networks, with ransomware
attacks seen as early as 1989. The digitization of control systems in CI, which previously op-
erated from electromechanical systems, embeds the vulnerabilities of the digital system. The
opening for cyber attackers grows as CIs have evolved their operational technologies [16].
More advanced malware has been developed over the past three decades, posing a con-
stant threat to CIs. Many types of malware are being developed by professional software
development organizations and purchased by cyber attackers. This division of malware
development and deployment depends on the growing cybercrime economy [16]. Over
time, the complexity of malware has increased, and it is used for the ransom of computer
systems and CI system sabotage. A modern attacker can source customized malware tools
from third-party providers.

Ransomware is expected to be more commonly experienced in CI through the Internet
of Things (IoT) and CPS. While the technical specifics of a cyber attack can vary, the general
flow of such attacks follows a trend. The trend in industrial control system (ICS) cyber
attacks involves initiating a phishing attack to obtain access or insider access to facility
computers. With access, a download or local pen drive can deliver spying and control
malware. This malware carries out the primary sabotage actions, and then the exfiltration
of the computer system is done, often preceded by a kill disk operation. The kill disk
operation writes a binary zero value for all bits in the computer system storage, temporarily
rendering it useless [16].

An emerging type of attack is a false data injection attack (FDIA) that targets the
data stream of state estimation measurement outputs to cause the system operator to take
incorrect control actions, which can have a detrimental physical and economic impact on
the power system. The FDIA depends on three assumptions. The first is that the attacker
has experience with power system operations and the capabilities of the targeted system.
Secondly, the attacker is capable of manipulating meter measurements. Thirdly, the attacker
has knowledge of the network topology, system electrical parameters, an understanding
of the SCADA system, and existing cybersecurity mechanisms [1,8]. Furthermore, as the
power grid digitizes and transitions to a smart grid, implementing neural networks for
prediction has been shown to be highly sensitive to even small manipulations of data [7].
A set of case studies involving FDIA attacks against voltage and current sensors of power
converters in a photovoltaic (PV)-based microgrid concluded that malfunction due to FDIA
in these sensors can damage the PV modules.
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The falsified signal was removed from the control process using sensor malfunction
detection and ride-through operations [17].

Furthermore, the FDIA vulnerability of the power grid being researched is automatic
generator control vulnerability. Such an attack affects the frequency of the power grid by
interrupting the ability of the load control center to calculate control values. This could
be very damaging and potentially cause a blackout [2]. In a specific use-case presented
in [9], considering distributed energy resources, FDIA on PV production meter data used in
15-minute ahead forecasting is simulated and studied. The FDIA causes disruption in the
control center communication with distributed energy resources (DER) assets simulated on
an IEEE 34 bus system with three PVs, one synchronous generator, and one energy storage.
The results showed that the FDIA can potentially lead to cascading failures by creating an
overcurrent and voltage collapse.

1.2. Contributions in This Paper

This paper has the following key contributions: (a) provides a comprehensive set of
major cyber attack categories for a holistic understanding of the threats and damages that
can be expected from a cyber attack; (b) identifies standards and organizations that address
cybersecurity in IT; (c) summarizes some of the historical major cyber attacks against critical
infrastructure; and (d) identifies strategies and tools that cybersecurity teams will use as
they build their defenses through both passive and active methods. The paper provides
a description of seven major categories of cyber attacks, presents a 20-year history of
significant (more than USD 1 million in damages) cyber attacks, and summarizes the way
the systems were compromised.

1.3. Organization of the Paper

This paper focuses on the primary driving factors in cyber attacks and the types
of cyber attacks. It also enumerates methods that are used by cyber security teams to
counter these threats. The rest of the paper is structured as follows. Section 3 discusses
the cybercrime economy and the types of cyber attacks on the CI. Section 4 provides a
systematic process for building cyber defenses, it also discusses attribution techniques and
the role of attribution; Section 5 covers existing standards that detail the frameworks and
best practices that address cyber attacks; the section also shows a process for developing
cyber-secure infrastructure. In Section 6 a discussion of the findings of the review is
conducted. Finally, our conclusions are presented in Section 7.

2. Methodology for Review

The aim of our paper is to review and understand the reported information on cyberse-
curity research and incidents targeted at critical infrastructures, with a focus on the energy
critical infrastructure, in order to identify areas that require future research. Research
questions were devised to motivate the review and evaluate the identified publications.
The contents of the publications and reports in the review are contextualized with the
adversary techniques matrix published by the MITRE organization.

2.1. Research Questions

To evaluate the existing works on the impacts on critical infrastructure from cyber-
incidents, research questions were identified.

• Question 1: What are the motivations of cyber attackers? To understand the motivations
of the adversary, we searched for publications that detailed the modern economic
structure of cybercrime. The cybercrime economy has been growing parallelly with
the internet, enabling a robust network of adversarial actors and advanced persis-
tent threats (APTs). Answering this question provides insight into the degree of
sophistication of the adversary and the level of development.

• Question 2: What are the types of cyber attacks on critical infrastructures? To understand
the technical aspects of a cyber attack, this question aims to list and describe the cyber
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attacks that can be used against critical infrastructures. Answering this question will
help develop knowledge of cyber attacks and the means and mediums through which
they can occur.

• Question 3: How does a cyber attack impact critical infrastructure and how does it affect
citizens? To identify how critical infrastructure is impacted by cyber attacks, this
question aims to create an understanding of the expected impacts that a cyber attack
will have on critical infrastructure and gain some understanding of the effect it will
have on citizens who depend on critical infrastructure services.

• Question 4: How many significant cyber attacks on critical infrastructure have occurred,
and which critical infrastructures are targeted? By analyzing the records of significant
cyber attacks to account for all of the attacks on the various critical infrastructures, this
provides a perspective on the trend in cyber attacks and which CIs can be targeted.

• Question 5: What mitigation strategies are in use to mitigate the effects of a cyber attack?
Answering this question will inform security operators about the various solutions
that exist to enhance infrastructure protection against cyber attacks. If the mitigation
strategies do not address all cyber attack techniques, they could help to identify areas
that require future research.

The research questions require a systematic approach to be answered in-depth and
such an approach was taken in developing the answers to these questions.

To answer these research questions a review and synthesis of the literature was
conducted and followed the sequential process shown in Figure 1.

Figure 1. Method of approach to the review.

2.2. Selection of Papers and Reports

The selection criteria for identifying publications for inclusion in the review are
as follows.

• Directly reports the events of a historical cyber attack.
• Directly implements a study of attack detection and prevention.
• Describes the organizational aspects of cybercrime.
• Describes the implementable network technology practices for mitigation of cyber attacks.

Peer-reviewed publications in international journals and conferences, along with the-
ses, are all considered for review. The search for publications was primarily conducted
through online databases, such as IEEE Xplore, ACM, Science Direct, and Springer Link.
Additionally, white papers from high authority publishers and organizations in the cyber-
security industry were included, including the SANS Institute.

The sourcing of publications and articles along with the evaluation of the selected
materials is done in a systematic way, shown in Figure 2. The various publishing entities,
the numbers of selected works, and the process of evaluation, inclusion, and reporting on
the selected works are listed.
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Figure 2. Publication selection and inclusion.

3. Types of Cyber Attacks on Critical Infrastructure

The projection shown in Figure 3 was conducted from the data collected by the Center
for Strategic and International Studies (CSIS) in Washington, D.C. The CSIS provides a
significant cyber attack list [18]. The CSIS defines a significant cyber attack as one that
results in at least USD 1 million in damage. Significant cyber attacks are defined as cyber
attacks on government agencies, defense, and high-tech companies, or attacks on other
CIs that cause losses of more than USD 1 million Figure 3 shows the total number of
significant cyber attacks measured and includes a projection of expected attacks through
2025. The projection, using polynomial regression, shows that there will be more significant
cyber attacks in the next five years than the combined significant cyber attacks since 2005.
The list from CSIS was further analyzed based on a keyword search to relate the cyber
attack to a specific critical infrastructure. For example, if the cyber attack targeted a military
base, it was attributed to the military CI, and if an attack contained the words financial or
banking, it was included in the financial CI. The significant attacks per-CI are shown in
Figure 4. The rest of this section expands on the discussion of the disruptive cybercrime
economy. The section also enumerates the various top-level cyber attack types with some
of their sub-variants.

Figure 3. Estimate: cyber attacks will increase exponentially.
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Figure 4. Significant cyber attacks by the CI sector since 2006, analyzed from the CSIS incidents list.

3.1. Cybercrime Economy

The cybercriminal economy has emerged worldwide, enabling many types of cy-
ber attack functions as a service. However, while the focus is on cyber attacks in these
sections, the cybercrime economy enables many other types of criminal activity. In [5],
a literature review yields an extensive and consistent survey of the services used by the
cybercrime business, organized using the value chain perspective, to understand cyber
attacks systematically. Further, an understanding of the specialization, commercialization,
and cooperation in coordinating a cyber attack is developed. They identify 24 value-
added activities and their relations in the cybercrime market. These can be offered “as
a service” for use in a cyber attack. The framework in [5] of cyber attacks “as a service”
helps us understand the modern cybercriminal ecosystem and hacking innovations. Some
services that facilitate cyber attacks include training and recruiting, development of ex-
ploitative software, scanning networks, denying service, phishing, target ranking, and
money laundering. These services are provided as subscriptions, licenses, pay-per-records,
or commission-based services [5,19]. The prominent concern for CIs is APTs. APTs are
groups that are supported by their host nations and perform long-term targeting of the
victim’s CI. The general goal of APTs is to steal data from the victim. However, they also
target the control management systems and components [19] of CI. The critical importance
of the power infrastructure to the socioeconomic stability and the effect of blackouts make
the smart grid a primary target [6]. APTs represent a subset of the cybercrime economy,
and an APT is often a benefit to the host nation’s economy, as they are compensated for
their actions. This is due to the subterfuge of critical infrastructures slowing the economies
of competitors to the host nation. An emergent factor for the electrical infrastructure is
electricity theft, which is a major contributor to nontechnical losses in the distribution
systems of the smart grid [4].

Money Laundering, Theft, Black Markets, and Ransom

One role of the cybercrime economy is in money laundering. This activity is evident
in the use of cryptocurrencies for financial exchange from the victims to the attacker.
A cryptocurrency transaction occurs, such as a ransom payment, and it is exchanged into
another currency by the attacker. Cryptocurrencies lend themselves to this practice as they
are functional currencies for communication networks that operate outside of traditional
banks [20]. Trojan malware can facilitate information theft. If an enterprise system is
compromised and the database is accessed to steal personally identifiable information,
this information can be sold online. Online black markets exist, and they are frequently
pursued by law enforcement and shut down. However, popular and well-known digital
black markets commonly re-emerge at a new location, as moving software frameworks
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throughout different IT infrastructures is easily facilitated [21–23]. Another example of the
function of the cybercriminal economy involves the ransom of critical computer systems.
These ransomware-based attacks are targeted against critical services, such as utilities and
hospitals [24]. The reasons for targeting these services are clear. They are critical for the
public, and victims are willing to pay significant amounts of money to free their computer
systems from ransomware. This is simply because it is less expensive for them to pay the
ransom and recover their systems than remain out of operation [25].

3.2. The Ransomware Cyber Attack

A ransomware’s malicious action is to either encrypt, lock, or exfiltrate data, and the
ransomware will be specialized for the target platform. The variety of operating systems
means that system-specific libraries and functions will be used by the ransomware to per-
form malicious actions. Mostly, they will target PC/workstations with a Windows operating
system [16]. Within the cybercrime economy, some groups operate as Ransomware-as-a-
Corporation (RAAC). Attackers operating as RAAC frequently issue press releases and use
corporate language in their communications. If the ransom is not paid, then the victims’
operational systems will remain inaccessible, and any critical personal information that has
been exfiltrated will be posted on a dark web leak site to damage the company’s reputation
and business processes [21].

Although current ransomware campaigns do not target CPS, the installation of more
intelligent electronic devices in the field by CI makes the CI and its CPS a more likely
target for ransomware. As smart technologies continue to expand and integrate into
homes, transportation, buildings, and throughout cities, they will become a growing
target in the future development of ransomware that targets this new environment. Thus,
ransomware that targets industrial CPS intelligent electronic devices will become more
prevalent [16,26–28].

Most commonly, e-mails are the delivery method of ransomware. Malicious e-mails
carry ransomware as an attachment, which contains the malware. These messages are often
sent as spam broadcast to as many e-mail addresses as possible or can be directed and
tailored to specific individuals or organizations. More details on targeted e-mailing are
given in Section 3.5. The attachment can provide a link or file that initiates the installation
of ransomware [16].

Encryption ransomware prevents victims from accessing their files by encrypting them
with a secret key. The key and decryption software are then used for ransom. With advances
in ransomware design, more targeted algorithms are used in encryption to specifically
target file types of higher value to the victim. This reduces the time needed to perform the
malicious encryption action after infecting the victim’s computer. Locking ransomware has
a similar goal to encryption-based malware, but it targets locking mechanisms designed
to lock a system, such as a master boot record lock, screen lock, or computer desktop
lock. The malware uses built-in security systems to lock the victim out of their computer
system [29]. Finally, an information theft ransomware exfiltrates personally identifiable
information (PII) from a victim’s computer. The stolen PII is advertised to the victim as
blackmail, and ransom is paid to prevent the publishing of the PII.

Supply Chain Ransomware

This type of ransomware is distributed through a trusted software distribution mech-
anism, particularly through a software updater provided by an IT service company.
The attack was worldwide and affected businesses such as pharmacies, railways, and storefronts.
The attack exploited a vulnerability in the IT service company’s software updating system,
which compromised the businesses that relied on it for updates [30].

3.3. Denial of Service

In the DoS attack the attacker prevents the intended user from accessing a resource.
The attacker can reduce the intended user’s access to the server by flooding the network
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i.e., increasing the traffic to disrupt access to a service. The attacker also attempts to break
the connectivity between two systems [31]. Flooding services make the system receive too
much traffic for the servers to handle. Flooding a system slows the system down and can
ultimately halt the system.

The implication of DoS-based electricity theft against the energy CI is shown in the
experimental results. The growing installation of intelligent electronic devices in CPS
and the Internet of Things (IoT) domestic devices, such as connected homes and smart
appliances, also increases the potential damage to CI from DoS attacks. The proliferation
of more internet-connected grid technologies creates an increased vulnerability to such
attacks [3].

3.3.1. Flooding in Mesh Networks

A utility can implement advanced meter infrastructure (AMI) using large wireless
mesh networks. However, delays in wireless sensor networks can be caused by network
flooding attacks. A malicious node in a wireless mesh network can tamper with messages
that are sensitive to flooding attacks, resulting in a saturation of the AMI network. The DoS
attack will come from a malicious node or nodes in the mesh network, sending excessive
unnecessary data packets throughout the network and issuing excessive requests for
communication. This traffic congests the mesh network and forms the basis of the flooding
attack, which is identified as a DoS and impacts the network by increasing the latency of
the communications [32,33].

IEC 62351 assigns digital signatures as a requirement for low-latency critical com-
munication in ICS. However, digitally signed messages in wireless mesh networks are
vulnerable to flooding DoS attacks, as demonstrated in [34], in which a model of phasor
measurement data collection and transmission was subjected to flooding DoS. The flooding
blocked the phasor measurement unit from transmitting data to the load flow control
center. This type of interruption can affect the decision-making processes of the control
center and generation control centers. In [3], an experiment with a consumer meter was
performed, in which the meter was subjected to a flooding cyber attack. The flooding
attack caused the meter to under-report the average watt-hour consumed at a rate of 1.77%
less reported power consumption after four days. Other intelligent electronic devices may
also be targeted. In [35], experimental signal jamming is performed on wireless networks
against IEC 62351-based technologies. The GOOSE substation protocol is evaluated on a
WiFi-based wireless power network, and the reactive jamming resulted in an 88% degraded
throughput. Time-critical messaging is affected, resulting in latency overshooting the
maximum message delay constraints.

3.3.2. Incidents of Denial of Service Attack

In 2000, a DoS attack on Yahoo rendered the site non-operational for more than 3 h.
The attack was based on a Smurf attack and a Tribe Flood Network Technique. Through this
attack, Yahoo received data requests of around or greater than one gigabyte per second [31].
Another DoS attack on the electric grid operations of Los Angeles County in California and
Salt Lake County in Utah interrupted the electrical system operations for more than 10 h. It
affected the computer systems used within the electrical utilities responsible for running
the office functions. The attack had little impact on power delivery, but it raises concerns
about the future if proper steps are not taken to mitigate such attacks [36].

3.4. Man-in-the-Middle

This Man-in-the-Middle (MITM) cyber attack is a kind of cyber attack where an out-
sider enters between two communication nodes and tries to remain undetected. The MITM
can change the routed information before the information reaches the other node. This
cyber attack accesses, reads, changes, or modifies the secret information without the vic-
tim’s detecting manipulation. One capability involves injecting new messages and another
involves the capacity to intercept all messages. Despite cryptography, a successful MITM at-
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tacker compromises exchanges between two systems. The MITM is either a passive listener
or imitates one of the parties and manipulates the data sent. There may be many objectives
for an attack either using the data overheard for a subsequent action or changing the data
before it reaches the other party. The attacker extracts information to be used in many ways:
fraud, unapproved support exchanges, blackmail, credential theft, and spying [37].

A MITM attack intercepts the victim’s activity through the attacker’s system before it
is routed to its intended destination. The attacker gains access to an unsecured network,
often targeting networks in public areas such as Wi-Fi access points [37]. This provides the
attacker with an avenue to deploy tools that intercept information between the victims,
often targeting personal computers where their connection to websites is monitored. This
can result in credentials, financial details, and personally identifiable information being
captured [37]. There are several types of MITM attacks, and the man-in-the-browser variant
injects malicious software into the victim’s computer or mobile device through phishing.
Upon clicking on a phishing e-mail link or opening the attachment, the user loads the
malware, and the malware installs itself on the browser without the user’s knowledge.
The malware enables the attacker to capture the information between the victim and specific
websites. Exploits that are used to enter a MITM include internet protocol (IP) spoofing,
address resolution protocol (ARP) spoofing, global navigation satellite system (GNSS)
spoofing, and domain name system (DNS) spoofing [38].

3.4.1. IP Spoofing

In IP spoofing, the attacker modifies the source address in the IP packet header to
make the receiver believe that the packet was received from a trusted site. From the
victim’s side, the packets will be received as though they were sent from a trusted source.
However, the IP source reported in the packet is modified and does not represent the actual
source [39].

3.4.2. ARP Spoofing

ARP spoofing involves sending a false ARP reply message to the default network
gateway, claiming to associate the MAC address with the target’s IP address. This ARP
protocol translates IP addresses to MAC addresses. MITM ARP packets transmit over LAN
by sending malicious ARP packets to a default gateway on the local area network [40].
The re-association request from the attacker can enable them to appear as the default
gateway for traffic; thus, all other hosts in the network will transmit their data through
the MITM.

3.4.3. DNS Spoofing

In DNS spoofing, the IP address in a DNS record is replaced by an IP address in the
control of the attacker. This redirects internet traffic to fraudulent websites that resemble
intended destinations [41–43].

3.4.4. HTTPS/SSL Hijacking

Stolen data can be decrypted using several methods, including HTTPS spoofing, SSL
hijacking, SSL stripping, and others. In HTTPS spoofing, the attacker uses a domain that ap-
pears identical to the target website’s domain. In SSL hijacking, the attacker passes the pro-
duced authentication keys to both the client and application during a TCP handshake [44].
This seems, by all accounts, to be a safe association when the MITM controls the whole
session. In SSL stripping, the attacker sends a decoded form of the application’s site to the
client by maintaining the anchored session with the application. Meanwhile, the client’s
whole session is noticeable to the attacker.

3.5. Phishing and Remote Execution

Phishing and remote attacks rely on social engineering methods designed to have the
victim reveal sensitive information or use malicious software. Phishing is highly prevalent
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in cyber attacks on CIs and it is identified in many of the significant cyber attacks in
Table 1. Attackers send fraudulent communication to coerce a victim into sharing classified
credentials or other information. Credentials obtained can be used to perform other attacks,
such as the installation of malware, remote access, or the theft of information. Attackers
may ransom credentials through the threat of publication [45–47].

Table 1. Abridged list of significant cyber attacks in recent years.

Adversary Technique
Types of Cyber
Attacks Used

CI Impact on CI Operations

Initial Access, Execution, Lateral
Movement, Impact

Phishing, Remote
Desktop, BlackEnergy3
(FDIA)

Energy
(2015–2016)

Opened breakers in substations in Ukraine, causing
230,000 customers to lose power.

Initial Access, Execution, Impact Ransomware Energy (2021)

Fuel shortages for Southeast US with gas prices rising
(9–16 cents per gallon) and 10,600 stations without gas.
The Colonial Pipeline billing system shutdown for six
days.

Initial Access, Execution, Impact Stuxnet Worm, Zero-day
Vulnerabilities IT (2009–2011) Shutdown of uranium enrichment facilities in Natanz,

Iran.

Initial Access, Execution, Persistence,
Collection

Trojan Laziok,
reconnaissance malware Energy (2014) Gathered information from devices on the network that

has vulnerabilities.

Initial Access, Execution, Collection,
Impact Ransomware Food (2021)

Data of customers, suppliers, and employees were stolen.
Productivity was reduced, access to some systems was
blocked. A USD 11 million ransom was paid. Operation
servers were shutdown and operations halted.

Initial Access, Execution, Impact Ransomware Healthcare
(2021)

All Hospital appointments and radiology services were
impacted, the ransomware affected Windows operating
systems. The failure was experienced across national
networks.

Initial Access, Execution, Impact
Phishing and
Ransomware
(Roobinhood)

Financial (2019) Trading services of exchange halted and maintained
offline, as computer systems were maliciously encrypted.

Initial Access, Execution, Collection Phishing Financial
(Disclosed 2017)

The Equifax data breach resulted in the theft of personal
data belonging to 140 million Americans and caused the
company’s share price to drop by 13%.

Initial Access, Execution, Persistence,
Collection Trojan Malware Financial (2016)

The malware recorded debit cards and their pins from
compromised ATM machines. Approximately USD
194,000 was stolen.

Initial Access, Execution, Collection,
Impact

WannaCry Ransomware
Cryptoworm Energy (2017)

Worldwide Microsoft Windows operating systems were
ransomed using an older Windows systems vulnerability
EternalBlue.

Initial Access, Execution, Collection Phishing, Ransomware IT (2021)
The Accellion data breach and ransomware attack led to
the theft of data in the Accellion data management
service.

Initial Access, Execution, Lateral
Movement, Impair Process Control

Supply Chain
Ransomware IT (2021)

Over 1500 businesses and organizations halted
operations. A software updater released by an IT
company, operating as a managed service provider

Initial Access, Execution, Inhibit
Response Function, Impact Ransomware Municipal

Services (2018)

Required over 5000 government computers to be shut
down for 5 days to resolve the attack. Affected servers
that were used to issue police warrants and employ new
hiring processes, as well as official city complaints could
not be submitted.

Phishing methods are also used to introduce ransomware infections on the victim’s
network infrastructure [48]. The 2020 Federal Bureau of Information’s Internet Crime
Report lists phishing as the most common cyber attack performed against US citizens by a
wide margin, likely due to the increasingly sophisticated methods that cybercriminals use.
The report lists 241,342 complaints of phishing in 2020; the next highest reported crime
was non-payment or non-delivery of goods through online transactions, with a total of
108,869 complaints [49].
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Phishing was used to target the Ukrainian Power grid. In the lead-up to Christmas
in 2015, attackers took full control of remote terminal units in the Ukrainian power dis-
tribution grid and used them to change the set points on breakers. This action triggered
the opening of critical breakers, de-energizing around 225,000 customers for an extended
duration [14]. Phishing was the initial means by which attackers gained access to perform
remote connection sabotage. Furthermore, in December 2016, attackers disabled energy
delivery from a Kiev transmission station by using phishing to initiate remote sabotage,
which caused a one-hour outage [50]. The flow of the phishing and remote execution cyber
attack against the energy distribution system CI is shown in Figure 5. The attack sequence
is framed as a separation of the cyber and physical planes, highlighting the sequential
process of the attack by the APT. The process starts with reconnaissance, followed by a
phishing campaign, gaining access, tunneling into OT, installing malware in OT, and finally
using human-machine interfaces to sabotage physical systems in the field. The flow is
captured in Figure 5.

Figure 5. Targeting employees with socially engineered phishing campaigns, leading to remote
sabotage.

3.5.1. Bulk Phishing

The most common form of phishing (bulk phishing) involves broadcasting mes-
sages through emails that are not personalized or targeted towards a specific individual
or company. Attackers typically impersonate banking services, email/cloud providers,
and streaming services to obtain credentials from potential victims.

3.5.2. Spear Phishing

In contrast to bulk phishing, ‘spear phishing’ includes methods of attack intended
to target a specific organization or person with tailored communication. To increase the
chances of deceit, attackers gather and use personal information about their target. Spear
phishing targeted Hilary Clinton’s 2016 presidential campaign by Threat Group-4127 [51].

3.5.3. CEO Phishing and Whaling

Whaling and chief executive officer (CEO) fraud represent two specific types of spear
phishing tactics. Whaling involves phishing targeting CEOs or senior executives. CEO
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fraud is a reciprocal tactic in which the phishing attempt is made to impersonate the
CEO [52].

3.5.4. Clone Phishing

Clone phishing is another phishing attack; in this tactic, attackers manipulate the
link/attachment files included in an otherwise legitimate email. Using a previously deliv-
ered email, attackers will attempt to clone an email and include malicious attachments in
place of original files and links. This form of phishing typically requires that one of the
parties, either the sender or the recipient of the email, has previously had their account
compromised [45].

3.5.5. Additional Phishing Tactics

Phishing is practiced in attacks outside of email communication, as well. Voice
phishing involves attackers spoofing a phone number to resemble a trusted institution.
Attackers will dial large quantities of phone numbers and play automated recordings that
try to coerce sensitive information to help resolve an issue on the victim’s account [53].
Finally, page hijacking is another form of phishing in which attackers will compromise
or mimic legitimate web pages and redirect users to malware or an exploit kit utilizing
cross-site scripting [54].

3.6. False Data Attack (Parameter/Command Injection)

False data injection is an attack that attempts to corrupt the control data. FDIA is
presented in three types [7]:

• Targeted constrained FDIA: In this type of attack, data are injected after clear analysis,
with a known amount of data inserted to appear realistic.

• Targeted unconstrained FDIA: In this type of attack, the attacker attempts to cor-
rupt the values of some variables, and those variables in turn corrupt the remaining
dependent variables.

• Random FDIA: In this type of attack, data packets are randomly distributed without
consideration of the real values.

3.6.1. Protocols without Encryption in the CI

Digitization and ubiquitous computing have found their way into areas once solely
operated by electromechanical controls. False data injection in CI control systems of
the energy sector can damage the power electronics hardware. Protocol-level challenges
in securing cyber-physical systems within the energy distribution grid are apparent in
Distributed Network Protocol 3 (DNP3), GOOSE, and Modbus, as these protocols transmit
data without encryption [55]. These systems should operate on physically isolated networks.
An additional method to enhance their security is through the use of bump in the wire,
an encryption hardware that encrypts the transmitted data before they travel the wider
network. A methodology for layer-by-layer analysis of protocols to identify vulnerabilities
is provided in [55]. Understanding protocol-level weaknesses is key to a secure network.
Cyber-physical systems that utilize data generated from sensors in their processing and
interact with information are prime targets for FDIA attacks. The cyber-physical system
uses sensor data to implement the network and control adjustments of power electronics.
In certain cases, these systems also require low latency in communication, which can make
encryption of communications impossible, such as in the IEC 61850 GOOSE standard.
If voltage is incorrectly controlled, it can cause damage to the power electronics.

3.6.2. Automatic Generator Control

FDIA on automatic generator control is a vulnerability that enables the manipulation
of data in closed-loop control of generator control signals. This type of attack can cause
significant damage to the generation and transmission equipment of the power grid,
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potentially leading to blackouts. This control system—if attacked by FDIA—will lead to
overloading transmission lines by excessive power generation [56].

3.6.3. Parameter Modification in Inverters

As the power grid becomes increasingly dependent on renewable energy sources,
new grid services will emerge based on smart inverters (SI) connected to these sources.
The settings of these smart inverters are critical for these grid services to operate optimally.
The settings of these inverters represent a point where FDIA can be particularly damaging
to the smart grid [10]. A SI attack can affect the SI functions for volt–var, volt–watt, and
a constant power factor. Such attacks potentially impact voltage profiles, system losses,
and the operation of voltage control legacy devices. In such cases of FDIA, the severity
depends on the prevailing SI functions [10].

3.7. Worm and Trojan Malware

A computer worm is a computer virus that is characterized as a self-replicating
malware that spreads across networks executing disruptive payloads [57]. A worm targets
hosts by following these scan types:

• An active selective random scan or sequential scan, in which the worm scans for
vulnerable hosts.

• A hit-list scan, where the worm creates a target list and then searches for susceptible hosts.
• A routable scan, which utilizes information about a network to select and scan the IP

address space [57].

Using a routable IP address allows the worm to propagate quickly and effectively,
avoiding some detection methods. Another characteristic of a worm is the target space or
medium through which it propagates. This includes the internet, email, P2P, USB local,
and more. The worm propagates either as self-carried or through a second channel. In the
second channel method, the main malware payload is remotely downloaded by the base
installer. The activation of a worm on a system uses a vulnerability in the host, and the
worm may protect itself by modifying its binary code with encryption [58].

The Stuxnet Worm

Stuxnet is a computer worm that was initially found in Iran but has since spread
worldwide. This worm targets the control systems of a nation’s critical infrastructure,
and a successful attack by Stuxnet can result in the manipulation of the control system,
causing disruption and damage to critical infrastructure and posing a threat to modern
society. In 2010, Iran identified over 30,000 infected industrial computer systems, with
Stuxnet specifically targeting nuclear power plant operational technology (OT) computers.
The initial infections were at reactor core sites with flash memory used to introduce the
worm locally. The worm targets an industrial control system that runs on Windows from
Siemens [59].

3.8. Trojan

A Trojan can be installed on a computer through phishing or a local device. The purposes
of a Trojan can vary, but often this malware hides its files under well-known directories,
such as the user’s documents, under the name of a trusted program, such as a web browser.
Trojans are commonly used as a backdoor device to collect information from the infected
computer. A keylogger is a type of data collection Trojan that can operate over a network
or locally through a universal serial bus (USB) as an insider threat attack vector [60–62].

Additionally, hardware Trojan attacks refer to malicious modifications of electronic
hardware at various stages of its operation. These attacks are a serious security concern for
the electronics industry as they can lead to control interference and the leaking of secret
data. The growing global demand for electronics makes it a larger point of vulnerability.
It requires the adversary to have physical access to the integrated circuits [63,64].
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4. Processes For Building Cyber Defenses

A successful cyber attack resulting in the unavailability of a critical infrastructure (CI),
such as power delivery, can have an economic impact that extends beyond the systems sus-
taining direct and physical damage. The effects can impact regional and global economies.
To identify security risks, analysis is based on what assets are valuable, who wants to attack
them, and how they can be compromised. Security decisions are based on understanding
the potential damage that can be done to these assets. Recommended cybersecurity for
enterprise systems is provided by NIST. Recommended cybersecurity practices for control
systems are provided by various organizations, including the Department of Homeland
Security (DHS), the North American Electric Reliability Corporation Critical Infrastructure
Protection (NERC CIP) standards, and the National Institute of Standards and Technology
(NIST) [55]. Two of the common IT technologies to mitigate cyber attacks against networks
are illustrated in Figures 6 and 7. The protection scheme for web services and the distri-
bution of content uses load-balancing proxy servers with regionally specific deployments.
These proxies are used to absorb DDoS attacks while secondary proxies continue to serve
legitimate user requests, as shown in Figure 6. In remotely accessed CI devices, a virtual
private network (VPN) can isolate a CI network from the greater internet while leveraging
the internet for communication routing, as depicted in Figure 7.

Figure 6. A proxy for protection against network and transport layer DDoS attacks.

Figure 7. Securing communications (against MITM and FDIA) for SCADA with a VPN.

4.1. Reason to Train Personnel

Surveys of CI sectors have shown an increased vulnerability to cyber attacks as
advances in information technology (IT) are implemented in these sectors. Furthermore,
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results show that the lack of common knowledge of cybersecurity among personnel is
prevalent. Finding personnel lacking knowledge emphasizes the need to increase training
in cybersecurity practices for CI personnel. With cyber threat-aware personnel, CIs can be
hardened against cyber attacks. The emergence of the IoT in ICS has led to new security
challenges, which will require newly developed expertise to prepare for a wide variety of
attacks that may emerge from the integration of these systems [65–69].

4.2. Threat Matrix and Protection Development Process

Historical cyber attacks have been cataloged and studied through the efforts of
Mitre.org, where they have generated an attack matrix for enterprise systems. This matrix
provides the sequential stages of a cyber attack from reconnaissance, resource development,
initial access, execution, persistence, privilege escalation, defense evasion, credential access,
discovery, lateral movement, collection, command and control, exfiltration, and impact.
The matrix is organized by techniques and the procedures to execute them. The matrix
for ICS is shown in Table 2. For example, one technique is spear phishing, which can
involve attaching an (xlsx) file to an email, which side-loads malware into the computer
once opened. For each tactic, many procedures may be used depending on the attacker.
Mitre and other organizations collaborate in the gathering of procedures under each tactic,
and cybersecurity teams around the world can use this matrix to map out their vulnerabili-
ties and areas in which they should develop defenses [70]. The approach to covering an
organization’s cyber vulnerabilities can involve an iterative defense development process,
as summarized in Figure 8. In this process, the list of vulnerabilities is ranked according
to the security operating center (SOC). The time to live of a particular vulnerability is the
maximum amount of time that a vulnerability can be ignored. The values for L, D, and
T are threshold values for the decisions, also set by the SOC. Such a process can leverage
the MITRE matrix to have a comprehensive set of knowledge on attack techniques, with a
security team analyzing the priority of vulnerabilities for their organization and iteratively
developing defenses based on priority.

Figure 8. Cybersecurity development process for protecting IT (iterated at minimum acceptable
cadence).
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4.3. Actions of a Defending Organization during a Cyber Attack

Cyber defenders at an organization run through several phases to protect their sys-
tems. Initially, a risk assessment phase identifies vulnerabilities. In a subsequent protection
phase, the organization develops hardware and software measures to achieve its security
goals. In an attack on normal operations, a detection phase will begin in which monitoring
mechanisms along with intrusion detection system(s) (IDS) classify abnormal and legit-
imate network behaviors. Normal and malicious network traffic inside the system are
detected. Certain systems will be isolated as they are identified as the root of the cyber
attack. The attack will be survived, and in the case of incapacitated OT and IT computer
systems, those systems will be brought back into operation as quickly as possible with new
security precautions.

Numerous CI sectors are facing challenges in identifying the highest-risk new threats
and vulnerabilities. Due to the increased volume and sophistication of cyber attacks, it is
crucial to allocate resources strategically and prioritize stopping the most dangerous and
likely attacks first [71]. The risk to CI is escalating as the shift from isolated environments to
“systems-of-systems” that integrate large information and communications infrastructures
continues. The SOC has the responsibility of short-term and long-term planning for
the IT/OT future. Guidelines for a cybersecure smart grid system are outlined in [19],
emphasizing the enforcement of access control and authentication for all communication
throughout the system.

• Every node in the network must have lightweight cryptographic functions.
• Attack detection and mitigating actions are necessary and must be used throughout

the smart grid.
• Cyber-security testbeds must be created for the purpose of investigating vulnerabilities

in the infrastructure [72].
• The security of network protocols must be designed from the application layer to the

MAC layer [19].

4.4. IT/OT Practices to Mitigate Malware

A defense strategy against computer malware employs detection and removal. Either
signature-based or anomaly-based detection can be used. Furthermore, patching systems
to the latest security needs and anti-virus software are other methods used to prevent
worms [57,58,73]. A specialized framework for handling computer log-generated data from
honeypots, IDS, etc., is proposed for data ingestion, contextualization, and decision-making
in formulating an effective and timely response to cyber attacks [74,75]. Approaches to
detecting malware are listed below [76]:

• Statistics: An algorithm that utilizes statistical analysis of sample characteristics to
determine if the sample is malware.

• Blacklist: The system uses a list of malicious domain names or IP addresses known to
be used by ransomware families to identify malware.

• Rule Driven System: A rule-based decision model that finds malware. Rules may
include scores such as perceived threats, various threshold values, or rules compatible
with malware detection engines.

• Machine Learning-based: Through the use of machine learning (ML) models created
with a variety of analysis features, the system can identify malware. ML approaches
may analyze instruction opcodes, application programming interface (API) calls, and
dynamically linked libraries (DLLs) to build ML classifiers. Systems for detecting
malware can identify patterns in the behavior of the malware program.

Active network monitoring using computer network traffic collection tools is an active
approach to the detection of security incidents. The network monitoring tools include
functionalities for network data collection, parsing of data, the combination of sources into
a single data stream, detection of anomalous events in the stream, further exploration of
data, and automatic action on the network. Traffic statistics of packet transmission can be
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analyzed using the Wireshark tool. Collections of packets can be exported by the tool for
future analysis. The Elastic Stack distributed database technology with data analytics tools
is another option for parsing network activity [77].

IDSs analyze packets or packet flows to detect intrusion into the network by an
adversary. The detection method can be signature-based, anomaly-based, or a hybrid
detection approach. Intrusion detection systems can also be deployed as a centralized
architecture, decentralized, or distributed [78]. It has been found that many existing IDS
signatures are based on obsolete attack classes that do not map to modern attacks. Antonia
et al. [78] identify and describe the behavior of modern attacks that are not mapped in the
IDS attack classes.

4.5. The Role of Attribution in Holding Attackers Accountable and Methods to Attribute Attack
Network Traffic

The Department of Defense of the U.S. has created techniques for tracing the origins
of a cyber attack through intermediaries to the source. The work is presented as a set of
techniques for network analyses to attribute a cyber incident to an original perpetrator [79].
Attribution is also discussed in [80]; the authors explain the legal problem that states often
avoid penalties for being hosts of cybercrime due to the limited abilities of victims to
attribute the attack to the perpetrating state. The paper also suggests that a legal system,
specifically an international tribunal, is a more suitable approach to handling attribution,
as compared to a technological approach to this aspect of cybercrime. Attribution is a
principal aspect of research and spans from the research domains of computer science to
international law [81–83]. The attribution techniques that can be used are:

• Logging and trace-back queries: Routers may log messages passing through their
networks. Backward requests can go up a chain of routers and check if they have
seen a previously seen message. As a result, messages that had not previously been
classified as harmful can now be attributed. This requires that logging routers be
placed in advance, which can lead to cost overruns, poor performance, and numerous
other issues. Implementations can also give rise to privacy concerns.

• Input debugging: Defenders can provide an attack pattern as a query to nearby routers,
and the router can then report any instances of noticing the pattern. Currently, some
distributed denial-of-service (DDoS) attacks are defended against using this strategy.
However, it is mostly reactive and only effective against attacks that continually stream
data.

• Transmitted message modification: As communications are transferred, routers label
them so that their path may be traced. This might affect network performance, increase
bandwidth, or interfere with various authentication methods.

• Transmit separate messages: When routing a message, routers also transmit a different
message to help with attribution.

• Reconfigure and observe network: Reconfigure the network and go back to a previous
phase using the knowledge of what (if anything) changed. Large networks may find it
challenging to implement this, and it could lead to new security flaws. On networks
owned by others, “controlled flooding” is permitted, but it should only be utilized in
specific situations because it could be seen as an attack on third parties.

• Host monitor functions: If a host does not already offer this information, querying
functionality can be added (similar to “Query Hosts”). Without the owner’s consent,
this is known as a “hack back,” and it calls for strong legal oversight. The information
may become substantially less reliable if the host is under the control of an attacker,
alerting the attacker.

• Match streams (e.g., via headers, content, timing): Determining which input streams
correspond to which output streams involves keeping track of the data streams that are
entering and leaving a network or host. This can aid in attribution without requiring
knowledge of the network’s or host’s internal state. However, matching can be a
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challenging technical problem, particularly when dealing with delayed attacks and
internal encryption.

• Exploit/force attacker self-identification: To identify the attacker, any information
they may have sent, whether on purpose or accidentally, can be used. In some cases,
the defender may be able to force the attacker to submit this information. However,
many of these techniques rely on extremely technical and specialized approaches
(such as beacons, web bugs, cookies, and watermarking) that are easily defeated once
an attacker becomes aware of them. When this technique succeeds, it can directly
reveal the attacker regardless of how well they have concealed themselves.

• Honeypot/Honeynet: As decoy systems, honeypots and honeynets are used by de-
fenders to bait attackers. Zombie traps (compromised and maliciously controlled
computers) and honeynets can instantly reveal any zombies attempting to access the
network. However, honeypots and honeynets can only attribute attacks that pass
through them, necessitating extensive experience in monitoring and analysis.

• Intrusion detection systems: These systems should be positioned as close as possible
to potential attackers (instead of near the defended assets). The placements of the
IDSs (which should be close to the attackers) will determine how effective this strategy
is. IDSs are notorious for producing many false positives and false negatives, so this
strategy frequently necessitates intensive monitoring.

• Filtering of Ingress: Messages can be filtered so that specific links only allow them
through if they fulfill particular criteria that make attribution easier. The information
for attribution is contained in the message itself, which has the advantage of being
transparent to users and requiring no extra storage. The technique’s main limitation
is that it can only be used to attribute the locations of internal attacks and often only
provides a range of potential attribution values, not a specific location or identity.
Frequently, there must be several possible routes for a message to take, leading to
uncertainties that reduce the technique’s potency. Network ingress filtering mandates
that every message entering a network has a source address in an acceptable range for
that network entry point. Using the existing transmission control protocol (TCP)/IP
infrastructure, network ingress filtering for IP can be developed and scaled incre-
mentally (one network at a time). The implementation of network ingress filtering
by virtually all of the network’s entrance points is necessary for a given network to
be successful.

• Spoof prevention: Improving the resistance of protocols or their implementation
against fabricated information can significantly reduce the need for examining inter-
mediate systems. However, frequently protocols and/or implementations are difficult
to modify to achieve this.

• Secure hosts/routers: The aim is to limit the number of trustworthy intermediate
systems that an attacker can access. Although perfect security is unrealistic and this
does not accomplish attribution, it simply makes the problem easier to address. This
is nevertheless necessary for computer security.

• Surveil Attacker: Direct surveillance of potential or known attackers can prevent
advanced attacker strategies. However, this requires prior knowledge of the identity
of the expected attacker, and some attackers are very challenging to surveil.

• Employ reverse flow: Data being sent back to the attacker should be marked specifi-
cally, and intermediate systems should be able to identify these markings. This can be
tracked by stepping stones but requires reverse flow detectors and may be prevented
by encryption.

• Combine techniques: Combine multiple approaches. Although it will typically cost
more to accomplish, this has a higher chance of success than any other strategy. Special
attention must be paid when merging strategies because there is limited expertise in
doing so.
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5. Standards That Address Cyber Attacks

The ISO, NIST, and other high-authority organizations create standards for codifying
best practices in establishing cyber-secure environments. Some standards apply to data
management in specific sectors, such as health records management. By following these
standards, the critical infrastructure industry will be able to mitigate the risks of cyber
attacks. Table 3 shows the standards organizations and primary standards that involve
cybersecurity. The standards serve as frameworks to develop secure networks and can be
used as guides and best practice definitions [84]. The standard NISTIR 7628 provides guide-
lines for smart grid cybersecurity, including wide-area measurement systems. Although
both are considered in the engineering of communications systems for CPS [85].

Table 3. Standards that govern the frameworks, best practices, and specifications for cybersecure
information systems.

Body Standard Core Contribution
Adversary Technique
Mitigated

ISO/IEC 27018:2019
Provides security techniques and a code of practice for the protection
of personally identifiable information in public clouds with
guidelines based on ISO/IEC 27002.

Initial access, discovery,
collection

ISO/IEC 27037:2012
Secure techniques for identifying, collecting, and preservation of
digital evidence, and will assist organizations in attributing blame
based on digital evidence.

All Techniques

ISO/IEC 27040:2015
Guidelines on the creation of a low-risk data management security
system. This includes security for devices and media, applications,
and services, and security relevant to end-users.

Initial access, lateral movement,
inhibit response function,
privilege escalation

ISO 22301
A framework for organizations to be resilient and continue business
operations during and after a cyber attack. Develops business
continuation plans in the event of a disruption.

Inhibit response function, impair
process control, impact

ISO/IEC 27001
A framework for the implementation of secure corporate enterprise
computer systems. Details of the implementation of security controls
to manage risks.

All Techniques

ISO/IEC 27002

Extends ISO/IEC 27001 standard with guidelines on best practices.
Provides organizations with generic information security controls,
including implementation guidance. Defined use for an information
security management system based on ISO/IEC 27001.

All techniques

ISO/IEC 27031 Information and communication technology guidelines for business
continuity. Covering concepts and best practices. -

ISO/IEC 27032 Guidance on cybersecurity management system, and best practices
for information security.

Lateral movement, inhibit
response function, collection

ISO/IEC 27701
Specifications for building a privacy information management system
that is based on ISO 27001. Published to address a growing need for a
framework for global data privacy.

Collection

NIST Cyber-security
framework

Guideline for managing cybersecurity risks based on the existing best
practices, guidelines, and standards provided in three components:
core, implementation tiers, and profiles.

All techniques

The ISO 27000 family of standards is an exhaustive and evolving set of standards
for traditional and new environments, such as cloud computing. Certifications provided
by the ISO for the various standards it has put forth create a guarantee for service users
that the system they interact with will be secured. The standard ISO 27018 governs PII
security in cloud computing. By applying this standard with existing ISO 27000 family
standards, an organization can have a layered approach to managing its data in the context
of software as a license on-premise, extending to the cloud context of infrastructure as a
service, platform as a service, and software as a service. Agreements between ISO certified
service providers and their users are guaranteed by contract. The technology services
these standards protect include data, applications, runtime, middleware, operating system,
virtualization, servers, storage, and networking. When an organization complies with the
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standards, it protects its IT and gives confidence to its clients that their information will be
managed securely [86].

NIST Guidelines for Smart Grid Cybersecurity

The National Institute of Standards and Technology (NIST) Guidelines for Smart
Grid Cybersecurity [87] provide a framework for developing smart grid cybersecurity.
The guide includes use cases to identify high-risk assets, threats, and impacts, as well as
high-level security requirements, security architecture, privacy assessment, smart grid
standards assessment, and conformity assessment. The guide identifies several adversaries
to information systems, including nation-states, organized crime, industrial competitors,
disgruntled employees, careless or poorly trained employees, hackers, cyber terrorists, and
other criminal elements. The guide also distinguishes various forms of critical infrastructure
(CI) on the energy CI, including definitions of (1) physical attacks informed by cyber;
(2) cyber-attacks enhancing physical attacks; and (3) the use of a cyber system to cause
physical harm.

The use of IDS, antivirus software, and cryptography, are combined in a defense-
in-depth approach that focuses on securing PII, power systems assets, IT infrastructures,
and communications through layered defenses. Many defenses should be combined to
cover the many types of cyber attack threats. The defense-in-depth approach places a
focus on people, processes, and technologies. The defense-in-depth strategy aims to
place barriers at multiple levels for any cyber attack against the CI. The attacker should
be delayed, thus helping the CI to make timely corrective actions. Some of the specific
infrastructure mentioned in [87] includes cryptography supporting key, privilege, and
certificate management deployed on IT communication technologies, as well as intrusion
detection and prevention systems. The cyber attacks experienced are DoS, unauthorized
vulnerability probes, botnet command and control, data exfiltration, data destruction,
potential physical destruction via alteration of critical software/data. The attacker will
combine social engineering and malware to continue their access. The largest threat comes
from APTs that select a target and plan and execute a cyber attack against that target over a
long time period, with the most damaging attacks being very difficult to detect initially.

6. Discussion of Results

This paper has reviewed cyber attack techniques and mitigation strategies; however,
it is limited by the vast extent of vulnerabilities that cannot be covered within the paper
but which are documented by the community in the Common Weakness Enumeration
database. The review provides detailed descriptions of top-level categories of cyber attacks
to develop an understanding of the scope of the threat and potential damages. It serves as an
introductory point for researchers and industry professionals to enhance their knowledge of
existing cyber attacks and mitigation strategies. The review identifies standards that certify
an organization’s IT as cyber-secured and offers a retrospective of major cyber attacks
launched against critical infrastructures globally in the past 20 years. The paper lists tools
and strategies for cyber security teams to defend their infrastructure. Phishing techniques
are identified as the initial access point in many cyber attacks on CI and phishing detection
and prevention should be further researched.

The reports of major cyber attacks on critical infrastructures have been compiled
to understand the types of cyber attacks that are executed, the vulnerabilities that exist,
and the typical victims and attackers. The standards that guide the development of cyber-
secure infrastructure for organizations, along with practical approaches, are listed in one
location to help mitigate cyber attacks. Moreover, this review projects that over the next
five years, there will be over 1100 significant cyber attacks on global critical infrastructures.
The projection shows the rapid growth of significant cyber attacks globally. By reviewing
several papers, we developed a framework for phishing and remote sabotage in Figure 5;
such an approach utilizes phishing for initial access and lateral movement for access to OT,
deploying remote attacks through the OT to impact the critical infrastructure. By further
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analysis of the adversary techniques, we created a flow chart (Figure 8), which is followed
by the SOC in order to develop the necessary defenses for the CI information systems by
securing their vulnerabilities via the highest priority ranking.

7. Conclusions

The increasing damages caused by cyber attacks, along with their estimated rapid
increase in the coming years, make it critical to study them and document their origins,
effects, the APTs perpetrating them, and the greater cybercrime economy. The use of
ransomware is incredibly profitable when successful, and society pays the price for these
interruptions across critical CI sectors such as food, energy, water, etc. [16,21,28,29]. With
sophisticated phishing attacks targeting the weakest links in an organization, it is difficult
for security teams to secure their networks. Emails, text messages, phone calls, and web
pages can all be vectors for a phishing attack. After gaining initial access, escalation of a
cyber attack against CI can lead to actions of remote sabotage. FDIA is one potential cyber
attack against control systems that is being researched. The need to train all personnel
within CIs to be vigilant of such attacks is a valuable investment for a utility [43–46].

The projection provided by this paper is that the number of significant cyber attacks
on critical infrastructures will continue to grow exponentially in the next five years, high-
lighting the need for increased research in attack detection and prevention. The projection
estimates over 1,100 significant cyber attacks on critical infrastructure worldwide in the
next five years. While best efforts are made to secure systems, those affected by cyber
attacks will mostly be due to selective targeting and efforts by state-sponsored cyber attacks.
Certain zero-day exploits and socially engineered credential theft are expected to remain
perpetual weak points in computer networks for the foreseeable future [5]. Cyber defenses
should include training all personnel to be aware of cyber threats. Further, a process for
developing protection mechanisms for the IT/OT should be used at the SOC. The ability
to attribute a cyber attack to the original attacker is possible through many approaches.
A combined approach to attribution is likely to be the most successful in identifying the
original attacker and allows the CI to cooperate with law enforcement. With the dynamic
and computerized nature of the smart grid, there are now more pressing cybersecurity
requirements on the energy CI than ever before.
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DoS Denial of Service
CIA Confidentiality, Integrity, and Authenticity
DNP3 Distributed Network Protocol 3
CI Critical Infrastructure
IT Information Technology
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OT Operational Technology
RAAC Ransomware-as-a-Corporation
CSIS Center for Strategic and International Studies
VPN Virtual Private Network
MITM Man-in-the-Middle
DNS Domain Name System
TCP Transmission Control Protocol
SSL Secure Socket Layer
FDIA False Data Injection Attack
ICMP Internet Control Message Protocol
CWE Common Weakness Enumeration
ARP Access Resolution Protocol
SOC Security Operating Center
APT Advanced Persistent Threat
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Abstract: Recently, smart cities have increasingly been experiencing an evolution to improve the
lifestyle of citizens and society. These emerge from the innovation of information and communication
technologies (ICT) which are able to create a new economic and social opportunities. However, there
are several challenges regarding our security and expectation of privacy. People are already involved
and interconnected by using smart phones and other appliances. In many cities, smart energy
meters, smart devices, and security appliances have recently been standardized. Full connectivity
between public venues, homes, cares, and some other social systems are on their way to be applied,
which are known as Internet of Things. In this paper, we aim to enhance the performance of
security in smart city communication networks by using a new framework and scheme that provide
an authentication and high confidentiality of data. The smart city system can achieve mutual
authentication and establish the shared session key schemes between smart meters and the control
center in order to secure a two-way communication channel. In our extensive simulation, we
investigated and evaluated the security performance of the smart city communication network with
and without our proposed scheme in terms of throughput, latency, load, and traffic received packet
per seconds. Furthermore, we implemented and applied a man-in-the-middle (MITM) attack and
network intrusion detection system (NIDS) in our proposed technique to validate and measure the
security requirements maintaining the constrained resources.

Keywords: smart city; cyber security for smart cities; communication wireless network; man-in-the-
middle (MITM) attack; network intrusion detection system (NIDS)

1. Introduction

The rapid rise of information and communication technology (ICT) has changed not
only modern society, but also the automation system in industries, including the electric
power system, to a more convenient and dependable system. Electric power system
reliability is one of our society’s most basic necessities, and in today’s technologically
oriented world, an efficient and dependable electric power system is heavily reliant on
ICT [1,2]. In recent years, there has been a lot of interest in upgrading traditional power
systems to smart grid systems, which has boosted the integration of power systems with
ICTs to ensure a dependable system that can overcome the issues that traditional power
systems face. Increased consumption is one of the issues, as is the incorporation of cutting-
edge technologies into power networks, such as renewable energy generation, electric
vehicle charging, and smart meters. The ever-increasing reliance on electricity, as well
as the demand for high-quality power, have necessitated smarter power delivery, more
accessible pricing, and faster power restoration [3].

Sensors 2022, 22, 3053. https://doi.org/10.3390/s22083053 https://www.mdpi.com/journal/sensors
45



Sensors 2022, 22, 3053

Although a new city that connects everything through the internet smartly and elec-
trically does not exist yet, many cities are on their way to develop the connectivity to be
fully smart. However, the increasing number of security concerns have demonstrated that
cyber attacks in smart cities are ubiquitous and can occur at any time. For critical infras-
tructure, complex cyber attacks can occur that may paralyze industrial control systems,
which results in serious damage and terrible consequences. For humans, smart wearables,
such as mobile ransomware and communications hijacking, are able to steal users’ data
and personal identity information (PII). For society, changing or manipulation of these data
can consequently lead to widespread panic and public opinion that can also cause threaten
social management. Furthermore, the cyber security risks have significantly become the
most serious threats in terms of developing the interconnect facilities in smart cities and the
self-driven car industry, where accident liability will also become a particularly important
and hot topic [4].

Therefore, communication trust and security challenges in the deployment of smart
city systems have recently become a source of concern. In particular, a smart electrical
meter distributed in multiple hierarchical networks can significantly achieve mutual au-
thentication and establish the exchange keys. In order to enhance the performance of the
smart city communication network, the OPNET modeler will be used to implement both
(1) the secure scenario with authentication and key session techniques and (2) another
scenario without these techniques. Various objectives should be processed and carried out
in order to build our contribution. These include studying and investigating the security
methods of authentication and confidentiality data relating to smart city technology and
the impact of its integration with various emerging technologies, as well as selecting and
designing authentication and a key exchange schemes approach in order to secure smart
city data. In turn, this will include collecting data and conducting analysis of a secure
control network in smart city communication, comparing and determining secure and
insecure traffic parameters using authentication and key session schemes, and eventually
evaluating the performance of a secure control network in smart city communication using
authentication and key session schemes.

In this paper, we provide a new framework/scheme for enhancing secure control
in smart city communication networks by boosting security performance. This works
by enforcing data secrecy and authentication using efficient key exchange mechanisms.
In order to secure a two-way communication channel, a smart city system can achieve
mutual authentication and build shared session key schemes between smart meters and
the control center.

The remainder of this paper is organised as follows. In Section 2, we review the related
work. Section 3 describes our proposed cyber security framework for smart cities in detail.
Section 4 presents and discusses the results of our simulation study. Finally, Section 5
concludes the paper.

2. Related Work

This section depicts the relevant background information and materials for this in-
vestigation. It will be described how to secure a smart city communication network as
well as information and communication technology (ICT). This is followed by a literature
review that focuses on reviews related to the security networks in smart city communi-
cation by implementing authentication and key exchange schemes. In addition, certain
security strategies that can be applied as security requirements in smart city communication
networks will be discussed in detail.

2.1. Securing Smart City Communication Network

Smart cities have piqued the interest of numerous disciplines, including scholars,
enterprises, and governments, as a result of the rapid growth of ICT. Because a lack of
proper cyber security can result in the theft of a user’s sensitive data, utility fraud, and
grid instability, cyber security is a major concern in the implementation and adoption of
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smart cities [5]. The United States’ National Institute of Standards and Technology (NIST)
established three critical needs for smart city security. These requirements are based on
information availability, integrity, and confidentiality [6].

2.2. Information and Communication Technology (ICT) in a Smart City

As presented in Figure 1, the smart city system has been divided into four layers, each
with its own set of needs in order to be more efficient, reliable, and intelligent. Furthermore,
efficiency, reliability, scalability, and intelligence have become increasingly vital in order to
be fast, better, secure, and resilient controls and communication. The deployment of ICT in
smart grid has involved different applications such as advanced metering infrastructure,
wide area measurement system, substation automation system, and common information
models [7].

Figure 1. Presents the smart city definition.

In a nutshell, overall, the primary purpose of a smart city is to focus on urban residents,
not just to meet current requirements but also to ensure that future generations are kept in
mind with regards to cultural, social, economic, and environmental aspects.

2.3. Offensive Cyber Security Framework

To examine the goal and flow of cyber attacks, we systematized aspects of the offensive
cyber security framework. Individual hackers, cyber crime organizations, and nation-
state hackers, as indicated in Figure 2, perform cyber attacks to achieve their goals, such
as financial gain or system destruction. The framework is designed depending on the
internet/network, treat actors, and targets. Moreover, individuals, nation states, and cyber
crime organizations are all dangerous players in cyber attacks. In order to gain access to
the attack target, the Internet and network are employed, with Public Networks, Proxies,
Virtual Private Networks (VPNs), and the Darknet/Deepweb being used. Organizations
and CPS are the most common targets of an assault.

Figure 2. Offensive cyber security framework [8].

There are open to the outside Web Servers and Web Application Servers (WAS) within
the firm, as well as personal computers and mobile phones with documents and information
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stored on them. Internal systems and databases carrying critical information are also used
by businesses. CPS and Persons have both been targeted in recent attacks. Smart Homes,
Smart Mobility, Smart Economy, and Smart People are among the CPS’s detailed attack
targets [9,10]. The assault categories that cyber attackers must breach, such as encryption,
networks, web, malware, and systems, are referred to as offensive cyber security [8].

2.4. Literature Review

The integration of information and communication technologies in numerous ap-
plication domains, such as transportation, academics, industries, medicine, and energy,
has a significantly positive impact on society; however, systems’ inability to cope with
vulnerable attacks and loss of confidentiality, integrity, and authenticity has stymied this
integration [11]. All application domains with communication infrastructure are vulnerable
to cyber attacks, with the smart city being the most serious and vulnerable. Sensing, com-
munication, control, and actuation systems work together to enable bi-directional pervasive
communication for a variety of applications, including monitoring real-time energy con-
sumption, providing real-time information to consumers, smart monitoring and tracking,
control system commands, and more. One of the most essential roles of SCADA systems
for remotely monitoring the grid’s physical processes is power state system estimation [12].
The power system model and telemetered data help provide the best potential state of the
system and can aid in ensuring appropriate power station performance through various
applications. Because the system’s state is based on a power state system estimation, a
value that is invalid, corrupt, or deceptive as a result of a vulnerable attack might cause the
system’s state, management, and analysis to be diverted. Due to the risk to business-critical
information, the bi-directional flow of information has generated a number of security
and privacy issues; as a result, an efficient strategy is necessary to reduce complexity,
computational cost, and processing time for immediate communication [13]. Although
a large amount of research has been conducted in the realm of traditional cyber security,
many approaches do not effectively meet the security requirements of grid systems. The
following are some of the restrictions:

• Lifespan of grid systems;
• Proprietary system’s dependency;
• Remotely located resources;
• Lack of physical protection;
• Limited computational resources.

The need of key management has been acknowledged in relation to advanced metering
infrastructure, but no plan to combat threats has been proposed [14]. In the context of AMI,
a key management system (KMS) for unicast, multicast, and broadcast transmission has
been developed to improve efficiency, key storage, computation, and administration of keys
with forward and backward security based on key graphs [15]. The authors have taken
into account key creation and key freshness, authentication and integrity, and forward and
backward security, but they have left out the process of key distribution, key destruction,
key renewal/revocation, and the node replacement phase. Furthermore, because storage
costs have become a concern, SELINDA has been proposed as a key establishment and
data collection protocol to allow power operators to initiate shared keys with various
measurement devices through an untrusted data relaying data collector unit [16]. In order
to assure security during data collection, the data collector unit was not deemed to hold any
key established between the power operator and measuring devices. Because the power
operator controls all public keys for all measuring devices, unauthorized access or a little
breach can put the entire system at risk. Furthermore, untrusted data replay nodes can
expose data to a man-in-the-middle attack. The authors of [17] investigated a trust anchor
so that a data collector and a device may do mutual authentication and key establishment.
The suggested technique considers man-in-the-middle and replay attacks and is based on
the public key and Needham–Schroeder authentication protocol. The key benefit of this
method is that it reflects high levels of security, fault tolerance, and accessibility [18].
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However, the complexity of resource constraint nodes in a smart grid is great due
to the integration of both PKI and trustworthy anchors. The approach is not scalable
because as the number of devices grows, the trust anchor’s ability to perform mutual
authentication and key generation may be limited. The authors of [13] demonstrated that a
key management scheme for unicast, multicast, and broadcast has been discussed using
the Iolus framework, which is based on a secure distribution tree using group security
controllers (GSC) to manage top level subgroups and group security intermediaries to
manage the remaining subgroups. The GSC is in charge of all subgroup keys, whereas
subgroups are in charge of all node keys. In terms of scalability, the Iolus framework can
be advantageous because changes in membership within a group will not affect other
subgroups. The Iolus-based technique offers limited multicasting functionality as well as
the production of a larger number of keys stored in remote terminal units, but at the cost of
higher computational overhead and complexity [19].

From the above literature review, it should be emphasized that one of the most basic
requirements for grid systems to enable appropriate resilience to attacks is an improved
security system. Smart grid systems are expected to use a variety of authentication and
secure key management mechanisms. Most of these secure key management systems and
practices, on the other hand, are either incomplete or do not correspond to real-world
scenarios and emerging technologies. As a result, it is crucial to understand that security
requirements differ from one system to the next. As a result, in terms of secrecy, a planned
design is required. However, [20] estimated that the D-H key exchange algorithm provides
security for unprotected channels by exchanging secret keys over unprotected channels,
whereas [21] argued that because the traffic between smart meters and utilities in the smart
grid system is predicted to be massive, the most secure authentication and encryption
solutions may not be the fastest. As a result, it is apparent that secure authentication and
session key exchange systems have an impact on the smart grid communication network’s
performance. Therefore, the goal of this paper is to enhance the performance of security in
smart city communication networks by using a new framework and scheme that provide an
authentication and high confidentiality of data by implementing them along with session
key exchange schemes through the OPNET simulator modeler.

3. Description of Our Proposed Cyber Security Framework for Smart Cities

This section briefly gives an overview of our proposed framework followed by a de-
scription of each operational stage in detail. We finally analyze and evaluate our proposed
framework by using a cyber attack and intrusion detection system.

3.1. Overview

The purpose of our proposed cyber security framework is to enhance the commu-
nication efficiency as well as to reduce any negative impacts of security. In other words,
we aim to improve the security system, which is one of the fundamental requirements for
smart city systems, and also to ensure the sufficient resilience between two parties without
attacks. Notably, the security requirements can vary from system to system. Hence, the
planned design is required in order to overcome these challenges at an early stage.

To deploy our proposed framework along with the key exchange Algorithm 1, two
different tasks are used; namely, authentication and encryption between every smart meter
and the control center in order to create a two-way secure communication.
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Algorithm 1: Modifying the process of D-H keys exchange algorithm.
1 Procedure Exchanging a random number (x, y)
2 Select (p, g, x, y)
3 for user A do
4 A = gx mod p

5 for user B do
6 B = gy mod p

7 // Both users exchange keys in order to calculate K1 and K2
8 K1 = Bx mod p
9 K2 = Ay mod p

10 Select (t, s, m)
11 // Both users choose m as secret number "log"
12 for user A do
13 C = logm (t, K1)

14 for user B do
15 D = logm (s, K2)

16 // Both users exchange their final keys
17 FKA = C * D
18 FKB = D * C
19 // FKA = FKB = FK are shared symmetric keys
20 End procedure

3.2. Secure Two-Way Communication by Using an Authentication and Key Exchange Scheme

The authentication and session key discovery portion of secure two-way communica-
tion work is presented in Figure 3. Every message, m, will be authenticated and encrypted
with key K. Now, every smart meter transmits m to the control center. This m is a trusted
communication, which requests a session key for its communication with the control center.
A control center generates a KSMP, which includes a smart meter’s public key KSMCC and
a ticket generated by the control center to secure the communication between them TCC.
Upon receiving the KSMP, a smart meter immediately decrypts it. Another message, KSMCC,
is sent by the smart meter to the control center, which is a key session between them. This
message contains TCC and random secret number SSM. When the message is received, the
control center decrypts both TCC and SSM; then, it sends the message back to the smart
meter as SSM + 1, which is a value of that message encrypted between them in order to
protect the two-way communication.

Figure 3. Secure two-way communication by providing an authentication and key session algorithm.

For the authentication and key exchange scheme, which is used between a smart
meter and the control center to securely provide a two-way communication as outlined
above, two tasks configurations, authentication and encryption tasks, are illustrated below
in detail.

3.3. Authentication and Encryption Tasks

The authentication task includes two phases, which are described as follows. In
the first phase, a smart meter sends a single message with a specific size to the control
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center. None of the smart meters spend any initialization time to generate this message. In
order to send a response message for every individual smart meter’s request, the control
center spends only 0.5 s of processing time. The second phase involves confirming the
authentication process in each smart meter, and it takes 0.2 s to process the control center’s
return message.

During the second task, encryption, of securing two-way communication between
each smart meter and the control center, two phases are applied to achieve the processing
deployment. The first phase consists of encrypting messages before delivering them
individually from each smart meter to the control center in order to ensure the connection
between these two parties. These encrypted messages are uniformly distributed within
a size of 1 to 10 kilobytes, and the process of the encrypting takes only 0.2 s. The second
phase encrypts messages before sending them from the control center to each smart meter,
as well as ensuring secure connection between them. Table 1 shows the authentication
and encryption tasks, as well as the configurations for each phase, each of which has two
phases that drive traffic from each smart meter to the control center, including two-way
communication, authentication, and encryption.

Table 1. The phases’ configuration.

Task Name Phase Name Start After Source Destination

Authentication task
Smart Meter to Control Center Application Starts Smart Meter Control Center

Verify Control Centre Previous Phase Ends Smart Meter Not Applicable

Encryption task
Smart Meter to Control Center Application Starts Smart Meter Control Center

Control Center to Smart Meter Application Starts Control Center Smart Meter

3.4. Key Exchange Scheme

A cryptographic key exchange system is a method of exchanging cryptographic keys.
We modified the (D-H) key exchange technique, which enables two-way communication
between transmitters with no prior knowledge of one another to join and construct a shared
secret key across unsecured network communications. As a result, using a symmetric key,
this key may be used to encrypt subsequent transmission, which the destination can then
decrypt to safely receive communications. The collaboration of Hitfield Diffie and Martin
Hellman produced the first practical technique for establishing shared secret keys between
two-side communications (such as A and B) via an unsecured communication network,
as shown in our Algorithm 1. The modification of the D-H keys exchange technique is
illustrated in the Algorithm 1. In this pseudocode, ‘p’ denotes a prime number and ‘g’
indicates a primitive root such that g < p. As ‘g’ is a primitive root of ‘p’, the numbers
g mod p, g2 mod p, . . . ., gx mod p will produce all numbers from 1 to p − 1. A and B are
denoted as Alice and Bob, respectively, and K1 and K2 indicated the secret key of each. They
select the arbitrary numbers ‘t’ and ‘s’ such that 0 < t, s < p. Now, the first user selects a
random number (x) as its private key. Its public key is calculated as gx mod p. Similarly, the
second user user selects a random number (y) as its private key. Its public key is calculated
as gy mod p. The public keys are exchanged over a public channel in order to calculate K1
and K2. Both users are now required to choose m as a secret number. Thereafter, both users
exchange their final keys, and then shared the symmetric keys.

3.5. Cyber Attack Evaluation

In this subsection, the analysis and evaluation of our proposed framework requires
first to know the nature of the cyber attack. Because of this nature, malicious malware
incorporates increasingly complex strategies. As a result, we undertook a more in-depth
study of the harmful activities while computing the cyber attack score. The 12 phases of
the MITRE ATT&CK were subjected to an analysis, and the findings are displayed.
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Each layer, in Figure 4, depicts the steps of a cyber attack in MITRE ATT&CK. The flow
of an attack is determined by the layer order. The red line demonstrates a link between a
malicious code technique and the previous approaches used. The color of the blue plane
indicates the cyber attack strategies at each level. Furthermore, the circle’s hue shows the
number of cyber attacks that have used it. For example, if there are five or more cyber
attack kinds, the circle is dark brown; if there are three or four, it is orange; and if there are
two or fewer, it is apricot [8,22,23].

Figure 4. Attack techniques of a fileless cyber attack [8].

Due to these potential cyber attacks that may occur in smart city communication
networks, we implemented and applied a man-in-the-middle (MITM) attack and network
intrusion detection system (NIDS) in our proposed technique to validate and measure the
security requirements maintaining the constrained resources.

Signature-based systems (SBS) and anomaly-based systems (ABS) are examples of
NIDS systems that can dynamically monitor and analyze system events to identify whether
they are assaults or authorized accesses [24]. The goal of NIDS is to detect malicious
behavior related to messages sent across the smart city communication network between a
smart meter and the control center. Different sorts of assaults, such as replay and man-in-
the-middle attacks, can be detected using the simultaneous network intrusion detection
monitoring method. The given topology network is used to investigate the performance
of the smart city wireless communication network by implementing authentication and
session key exchange schemes, and also by preventing the man-in-the-middle attacks in
order to measure our proposed security concerns over the smart city system.

As seen in Figure 5, an MITM attack is characterized as follows: suppose entity “A”
wants to monitor the messages sent by entity “B” as a smart meter to entity “C” as the
control center server. A man-in-the-middle attack using keys can be conducted in this case
to intercept messages between entities “B” and “C”. Thereafter, the interceptor can replace
the message and deceive entity “A”. Entity “A” can be a mobile node observing data
between a smart meter and a capturing device in the context of grid computing. Eavesdrop-
ping, replay attacks, and physical jamming attacks can all be treated in the same way as
man-in-the-middle attacks. Consequently, Figure 6 shows how a man-in-the-middle attack
can be detected and messages intercepted across the smart city communication network.
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Figure 5. Implementing and applying a man-in-the-middle (MITM) attack and network intrusion
detection system (NIDS) in our topology.

Figure 6. How a man-in-the-middle attack intercepted messages passing via the smart city communi-
cation network.

4. Simulation Network and Setup

In this section, we first describe our used simulation tool called OPNET. We then
discuss the simulation setup of our proposed framework for enhancing the security control
in smart city communication networks. We also use the OPNET simulator to study the
performance of the smart city communication network with and without authentication
and key exchange mechanisms. Various performance measures are defined in this study
such as throughput (packet per seconds), delay (packet per seconds), load, and traffic
received (packet per seconds). We finally present and analyze the simulation evaluation.

4.1. Network Simulator

A network simulator is a program that simulates networks with a variety of nodes.
To create real-time network experiments, simulation tools are practically required. Several
simulation tools, such as the OPNET modeler, and other open source simulators, such as
NS-2, GNS2, GNS3, and OMNET, are available.

One of the most widely used data network modeling and network simulation tech-
nologies is the OPNET modeler. It is a comprehensive network modeling tool with a
slew of useful features. The OPNET modeler, in particular, allows for the simulation of
heterogeneous networks using various scenarios, as well as the simulation of specifically
planned network architecture and analysis in order to compare different types of traffic
and situations [25]. It is also used to support a variety of operating systems, including
Linux and Microsoft. Because of its real-time configuration and operation capabilities, the
fundamental advantage of using OPNET is the ability to evaluate and analyze networks
in realistic experiments. As a result, OPNET allows for the comparison of network im-
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provements based on multiple protocols, as well as the development of new protocols and
technologies. OPNET also supports the following simulation technologies: Discreet Event
Simulator (DES), Flow Analysis Simulation, ACE Quick Predict Simulation, and Hybrid
Simulation [26]. Therefore, DES will be the simulation technology used in this study.

As shown in Table 2, we use the following parameters for both authentication and
encryption tasks. Each has two phases, as mentioned above. In the first phase of the authen-
tication task (Smart Meter to Control Center), we set up the requests to be in initialization
time = 0 second, request count = 1 (constant), request packet size = 3 Kbytes (constant).
For the response of this phase, the processing time = 0.5 s, number of replies = 1 (constant),
request packet size = 5 kbytes (constant). In the second phase of the authentication task
(Verify Control Center), we also set the requests in the initialization time = 0.2 s, request
count = 0 (constant), whereas there is no response in this phase.

Table 2. Simulation parameters.

Parameter Value

Initialization time of the first phase 0 s

Request count 1 (constant)

Request packet size 3 Kbytes (constant)

Processing time 0.5 s

Number of replies 1 (constant)

Request packet size of the response 5 kbytes (constant)

Initialization time of the second phase 0.2 s

Request count of the second phase 0 (constant)

Initialization time of encryption task 0.2 s

Request count of encryption task 1000 (constant)

Inter-request time 1.2 s (exponential)

Request packet size of encryption task 1–10 kbytes (uniform_int)

Simulation time for each run 3600 s

For the second task (encryption), the first phase (Smart Meter to Control Center)
includes the following in the request field: initialization time = 0.2 s, request count = 1000
(constant), inter-request time = 1.2 s (exponential), request packet size = 1–10 kbytes
(uniform_int). The request of the second phase (Control Centre to Smart Meter) is exactly
the same as that in the first phase of the encryption task. Now, both requests in both phases
have no responses.

All the results are averaged over 50 runs for randomly generated topologies, while the
simulation time for each run is set to 3600 s.

4.2. Simulation Evaluation

In this set of simulations, we evaluate the throughput packets per seconds, delay, load,
and traffic received. As outlined previously, a smart meter is a two-way data transmission
device. As a result, a smart meter generates packets and assigns a destination address
to each one, which is subsequently sent over an Ethernet switch and then a router to the
control center server. Figures 7–12 show the point-to-point throughput packets per second,
delay, load, and traffic received between a smart meter and the control center; from the
smart meter to the Ethernet switch, the Ethernet switch to the router, and the router to the
control center server, respectively.
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Figure 7. Throughput (packets/s) from a smart meter to the switch for different tasks.

Figure 8. Queuing delay (s) from a smart meter to the switch for different tasks.

Figure 9. Load (packets/s) in a smart meter for different tasks.
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Figure 10. Load (packets/s) in the control center for different tasks.

Figure 11. Traffic received (packets/s) in a smart meter for different tasks.

Figure 12. Traffic received (packets/s) in the control center for different tasks.
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Figure 7 plots the point-to-point throughput packets per second from a smart meter
to an Ethernet switch. It is important to understand the difference between the two line
graphs: the red line depicts secure two-way communication from a smart meter to a switch
via authentication and key exchange schemes, whereas the green line depicts normal traffic
without authentication and key exchange sessions as insecure two-way communication
traffic. The temporal average has been used to evaluate point-to-point throughput packets
per second between a smart meter and a switch in this diagram. Both line graphs began
abruptly from zero to twenty mins with different amounts of packets per second; the green
line for insecure traffic nearly reached seven packets per second, whereas the red line
for securing traffic nearly doubled the green line, with fifteen packets per second as the
point to point throughput. During the 30-min experiment, the red line had the maximum
point-to-point throughput packets per second, around seventeen, while the green line had
declined somewhat, to four packets per second. Following this, the red and green lines
dropped drastically until they reached ten and two packets/second, respectively, at the end
of our simulation time (60 mins). Overall, secure transmission employing authentication
and session keys outperformed insecure traffic from a smart meter to an Ethernet switch in
terms of packets per second.

Figure 8 shows that the best effort between secure and insecure two-way communica-
tion was started with a significant point of queuing delay by 0.77 s and 0.69 s, respectively.
Both graphs illustrate that the number of seconds has fluctuated significantly after five mins
of simulation time. After 10 mins, the seconds of queuing delay in trusted communication
are expected to decrease continuously, whereas the seconds of queuing delay in un-trusted
communication are expected to grow significantly. Both graphs converge significantly
between 15 and 19 mins of simulation time. After that, the un-trusted traffic line (green)
stayed in a steady state for about 0.73 seconds, which was almost 0.2 seconds longer than
the trusted traffic line of queuing delay until the simulation period was up. To summarize,
secure communication traffic between a smart meter and a switch has more service requests
and key session establishment than un-secure communication traffic. When services are
requested and key sessions are established, the queuing latency in trusted communication
appears to be less than in un-trusted communication from a smart meter to the switch.

The load refers to how much load it takes to move packets from a smart meter to
a control center or the other way around in the network. For various circumstances,
Figures 9 and 10 depict how much load the smart meter and control center require to
transport packets across the network.

These two figures show that the number of packets per second for the trusted commu-
nication scenario in the smart meter and control center has increased dramatically. During
the simulation duration, the number of packets per second peaked at around 34 mins for
the smart meter and 36 mins for the control center. Because the control center sent and
received packets from twenty smart meters, and the smart meter only sent and received
packets from the control center, the control center load had a higher amount of packets per
second than the smart meter. At the secure communication scenario in the control center,
the load spiked to almost 340 packets per second after 36 mins, then dropped substantially
(by roughly 50) to nearly 170 packets per second at the end. Meanwhile, the load in the
unsafe scenario increased to just over 120 packets per second at 18 mins, then decreased
significantly to roughly 40 packets per second at the conclusion of the simulation duration.
The load in the smart meter, on the other hand, experienced a sharp increase in the number
of packets per second, reaching over 17 packets at 34 mins; thereafter, the load has reduced
dramatically to around 9 packets per second. The load increased dramatically from 1 to
18 mins in the insecure smart meter scenario, reaching 6 packets per second. Following
that, the amount of load gradually decreased until it reached around 2 packets per second
at the end of the period time. To summarize, because of the requirements of services and
the establishment of keys exchange in order to connect securely, both the smart meter and
the control center loaded many more packets per second in the secure scenario than in the
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un-secure situation. As a result, the load for trusted communication exchange was nearly
double that of un-trusted communication exchange.

To evaluate the performance of receiving packets per second across the smart grid
communication network, the volume of traffic received in packets per second is shown for
both smart meters and control centers.

Two distinct possibilities among a smart meter and the control center server are
depicted in Figures 11 and 12. From 2 to 38 mins of simulation time, the traffic received
packets per second among trusted communication traffic in the smart meter and the
control center has increased significantly. Individually, the control center’s trusted scenario
achieves a peak of around 330 packets per second at 38 mins, following which the traffic
received for the trustworthy scenario reduces substantially to just under 170 packets per
second at the end. Although the control center’s level rose to 120 packets per second
between 2 and 19 mins in the un-trusted scenario, the receiving traffic level declined
slightly to around 35 packets per second at the end. According to the smart meter, the
traffic received in the trusted communication scenario spikes at roughly 38 mins, hitting
17 packets per second, before plummeting to barely 9 packets per second at the end.

Meanwhile, just before 20 mins, the number of packets received in the un-trusted
communication situation increased to 6 packets per second. After 20 mins, the amount of
traffic received in packets per second rapidly decreased until it reached only 2 packets per
second. The control center, on the other hand, has received traffic from 20 smart meters,
but according to the smart grid communication system’s design, the smart meter can only
accept traffic from the control center server. Because it deals with twenty smart meters, the
control center has received significantly more traffic packets per second in both scenarios,
especially in the scenario with authentication and session key exchange schemes, which
required a secure two-way communication channel from each smart meter to the control
center. In this situation, the control center receives many more packets per second than in
the other scenario, which does not use authentication or key exchange systems.

5. Conclusions

This paper has been enhancing and investigated the performance of securing two-way
communication in smart city communication networks by using a new framework and
scheme that provide an authentication and high confidentiality of over two different tasks
over the OPNET simulator. In order to secure a two-way communication channel, the
smart city system can achieve mutual authentication and build shared session key schemes
between smart meters and the control center. We researched and assessed the security
performance of the smart city communication network with and without our proposed
algorithm in terms of throughput and end-to-end delay in our extensive simulation.

The results of this study reveal that raising the time average in all measures within the
authentication and session key exchange schemes scenario degrades performance when
compared to the situation without authentication and encryption. There is a comparison of
different smart city communication network tasks to investigate authentication and session
key exchange schemes in smart city communication networks, as well as other reasons for
lower performance when using authentication and session key exchange schemes in smart
city communication networks.

In the future, instead of considering a handshaking algorithm between neighborhoods,
it would be interesting to increase and enhance the cyber security systems by using the
proposed framework for underwater sensor networks in [27–29]. Another area of future
interest is verifying the protocol’s reliability when employing the mobile Autonomous
Underwater Vehicle (AUV) in a distributed way in order to develop an efficient cyber
security framework [30–33].

Author Contributions: Conceptualization, F.A.A.; Data curation, F.A.A.; Formal analysis, F.A.A.;
Funding acquisition, K.K.; Investigation, F.A.A., K.K. and N.M.A.; Methodology, F.A.A.; Project
administration, F.A.A.; Resources, F.A.A., K.K. and N.M.A.; Software, F.A.A.; Validation, F.A.A.,

58



Sensors 2022, 22, 3053

K.K. and N.M.A.; Visualization, F.A.A.; Writing—original draft, F.A.A.; Writing—review and editing,
F.A.A., K.K. and N.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research work has received funding from the Security Research Center of Naif Arab
University for Security Sciences, under grant agreement no PR2-05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Elmaghraby, A.S.; Losavio, M.M. Cyber security challenges in Smart Cities: Safety, security and privacy. J. Adv. Res. 2014,
5, 491–497. [CrossRef] [PubMed]

2. Yan, J. Modelling and Analysis on Smart Grid Against Smart Attacks; University of Rhode Island: Kingston, RI, USA, 2013.
3. Baig, Z.A.; Szewczyk, P.; Valli, C.; Rabadia, P.; Hannay, P.; Chernyshev, M.; Johnstone, M.; Kerai, P.; Ibrahim, A.; Sansurooah, K.;

et al. Future challenges for smart cities: Cyber-security and digital forensics. Digit. Investig. 2017, 22, 3–13. [CrossRef]
4. Kimani, K.; Oduol, V.; Langat, K. Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 2019,

25, 36–49. [CrossRef]
5. Jain, R.; Nagrath, P.; Thakur, N.; Saini, D.; Sharma, N.; Hemanth, D.J. Towards a Smarter Surveillance Solution: The Convergence

of Smart City and Energy Efficient Unmanned Aerial Vehicle Technologies. In Development and Future of Internet of Drones (IoD):
Insights, Trends and Road Ahead; Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–140.

6. Ghosal, A.; Conti, M. Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Commun. Surv.
Tutorials 2019, 21, 2831–2848. [CrossRef]

7. Gao, J.; Xiao, Y.; Liu, J.; Liang, W.; Chen, C.P. A survey of communication/networking in smart grids. Future Gener. Comput. Syst.
2012, 28, 391–404. [CrossRef]

8. Kim, K.; Alfouzan, F.A.; Kim, H. Cyber-Attack Scoring Model Based on the Offensive Cybersecurity Framework. Appl. Sci. 2021,
11, 7738. [CrossRef]

9. Kim, K.; Cho, K.; Lim, J.; Jung, Y.H.; Sung, M.S.; Kim, S.B.; Kim, H.K. What is your protocol: Vulnerabilities and security threats
related to Z-Wave protocol. Pervasive Mob. Comput. 2020, 66, 101211. [CrossRef]

10. Kim, K.; Kim, J.S.; Jeong, S.; Park, J.H.; Kim, H.K. Cybersecurity for autonomous vehicles: Review of attacks and defense. Comput.
Secur. 2021, 103, 102150. [CrossRef]

11. Axelrod, C.W. Applying lessons from safety-critical systems to security-critical software. In Proceedings of the 2011 IEEE Long
Island Systems, Applications and Technology Conference, Farmingdale, NY, USA, 6 May 2011; pp. 1–6.

12. Dán, G.; Sandberg, H.; Ekstedt, M.; Björkman, G. Challenges in power system information security. IEEE Secur. Priv. Mag. 2012,
10, 62–70. [CrossRef]

13. Long, X.; Tipper, D.; Qian, Y. An advanced key management scheme for secure smart grid communications. In Proceedings
of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24
October 2013; pp. 504–509.

14. Shein, R. Security measures for advanced metering infrastructure components. In Proceedings of the 2010 Asia-Pacific Power
and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–3.

15. Liu, N.; Chen, J.; Zhu, L.; Zhang, J.; He, Y. A key management scheme for secure communications of advanced metering
infrastructure in smart grid. IEEE Trans. Ind. Electron. 2012, 60, 4746–4756. [CrossRef]

16. Dán, G.; Lui, K.S.; Tabassum, R.; Zhu, Q.; Nahrstedt, K. SELINDA: A secure, scalable and light-weight data collection protocol
for smart grids. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm),
Vancouver, BC, Canada, 21–24 October 2013; pp. 480–485.

17. Wu, D.; Zhou, C. Fault-tolerant and scalable key management for smart grid. IEEE Trans. Smart Grid 2011, 2, 375–381. [CrossRef]
18. Alzahrani, N.M.; Alfouzan, F. Augmented Reality (AR) and Cyber-security for Smart Cities. Sensors 2022, 22, 2792. [CrossRef]

[PubMed]
19. Chen, D.; Wawrzynski, P.; Lv, Z. Cyber security in smart cities: A review of deep learning-based applications and case studies.

Sustain. Cities Soc. 2021, 66, 102655. [CrossRef]
20. Ibrahem, M.K. Modification of Diffie-Hellman key exchange algorithm for Zero knowledge proof. In Proceedings of the 2012

International Conference on Future Communication Networks, Baghdad, Iraq, 2–5 April 2012; pp. 147–152.
21. Mahmood, K.; Chaudhry, S.A.; Naqvi, H.; Shon, T.; Ahmad, H.F. A lightweight message authentication scheme for smart grid

communications in power sector. Comput. Electr. Eng. 2016, 52, 114–124. [CrossRef]
22. Qureshi, K.N.; Ahmad, A.; Piccialli, F.; Casolla, G.; Jeon, G. Nature-inspired algorithm-based secure data dissemination framework

for smart city networks. Neural Comput. Appl. 2021, 33, 10637–10656. [CrossRef]
23. Lee, G.; Shim, S.; Cho, B.; Kim, T.; Kim, K. Fileless cyberattacks: Analysis and classification. ETRI J. 2021, 43, 332–343. [CrossRef]

59



Sensors 2022, 22, 3053

24. Obimbo, C.; Zhou, H.; Wilson, R. Multiple SOFMs working cooperatively in a vote-based ranking system for network intrusion
detection. Procedia Comput. Sci. 2011, 6, 219–224. [CrossRef]

25. Saputro, N.; Akkaya, K.; Uludag, S. A survey of routing protocols for smart grid communications. Comput. Netw. 2012,
56, 2742–2771. [CrossRef]

26. Christhu, M.; Marium, N.; Major, J.; Shibin, D. A comprehensive overview on different network simulators. Int. J. Eng. Technol.
(IJET) 2013, 5, 325–332.

27. Alfouzan, F.; Shahrabi, A.; Ghoreyshi, S.; Boutaleb, T. An Efficient Scalable Scheduling MAC Protocol for Underwater Sensor
Networks. Sensors 2018, 18, 2806. [CrossRef]

28. Alfouzan, F.A.; Shahrabi, A.; Ghoreyshi, S.M.; Boutaleb, T. A Collision-Free Graph Coloring MAC Protocol for Underwater
Sensor Networks. IEEE Access 2019, 7, 39862–39878. [CrossRef]

29. Alfouzan, F.A.; Shahrabi, A.; Ghoreyshi, S.M.; Boutaleb, T. An Energy-Conserving Collision-Free MAC Protocol for Underwater
Sensor Networks. IEEE Access 2019, 7, 27155–27171. [CrossRef]

30. Alfouzan, F.A.; Ghoreyshi, S.M.; Shahrabi, A.; Ghahroudi, M.S. An AUV-Aided Cross-Layer Mobile Data Gathering Protocol for
Underwater Sensor Networks. Sensors 2020, 20, 4813. [CrossRef] [PubMed]

31. Alfouzan, F.A. Energy-efficient collision avoidance MAC protocols for underwater sensor networks: Survey and challenges. J.
Mar. Sci. Eng. 2021, 9, 741. [CrossRef]

32. Alfouzan, F.; Shahrabi, A.; Ghoreyshi, S.M.; Boutaleb, T. An energy-conserving depth-based layering mac protocol for underwater
sensor networks. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30
August 2018; pp. 1–6.

33. Alfouzan, F.; Shahrabi, A.; Ghoreyshi, S.; Boutaleb, T. A comparative performance evaluation of distributed collision-free
MAC protocols for underwater sensor networks. In Proceedings of the 8th International Conference on Sensor Networks
(SENSORNETS 2019), Setubal, Portugal, 26–27 February 2019; pp. 1–9.

60



Citation: Ghaleb, F.A.; Alsaedi, M.;

Saeed, F.; Ahmad, J.; Alasli, M. Cyber

Threat Intelligence-Based Malicious

URL Detection Model Using

Ensemble Learning. Sensors 2022, 22,

3373. https://doi.org/10.3390/

s22093373

Academic Editor: Jiankun Hu

Received: 7 March 2022

Accepted: 20 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cyber Threat Intelligence-Based Malicious URL Detection
Model Using Ensemble Learning

Mohammed Alsaedi 1, Fuad A. Ghaleb 2,*, Faisal Saeed 1,3, Jawad Ahmad 4 and Mohammed Alasli 1

1 College of Computer Science and Engineering, Taibah University, P.O. Box 344, Medina 41411, Saudi Arabia;
masadi@taibahu.edu.sa (M.A.); fsaeed@taibahu.edu.sa (F.S.); masali@taibahu.edu.sa (M.A.)

2 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
3 DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital

Technology, Birmingham City University, Birmingham B4 7XG, UK
4 School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK; j.ahmad@napier.ac.uk
* Correspondence: abdulgaleel@utm.my

Abstract: Web applications have become ubiquitous for many business sectors due to their platform
independence and low operation cost. Billions of users are visiting these applications to accomplish
their daily tasks. However, many of these applications are either vulnerable to web defacement
attacks or created and managed by hackers such as fraudulent and phishing websites. Detecting
malicious websites is essential to prevent the spreading of malware and protect end-users from being
victims. However, most existing solutions rely on extracting features from the website’s content which
can be harmful to the detection machines themselves and subject to obfuscations. Detecting malicious
Uniform Resource Locators (URLs) is safer and more efficient than content analysis. However, the
detection of malicious URLs is still not well addressed due to insufficient features and inaccurate
classification. This study aims at improving the detection accuracy of malicious URL detection
by designing and developing a cyber threat intelligence-based malicious URL detection model
using two-stage ensemble learning. The cyber threat intelligence-based features are extracted from
web searches to improve detection accuracy. Cybersecurity analysts and users reports around the
globe can provide important information regarding malicious websites. Therefore, cyber threat
intelligence-based (CTI) features extracted from Google searches and Whois websites are used to
improve detection performance. The study also proposed a two-stage ensemble learning model that
combines the random forest (RF) algorithm for preclassification with multilayer perceptron (MLP)
for final decision making. The trained MLP classifier has replaced the majority voting scheme of
the three trained random forest classifiers for decision making. The probabilistic output of the weak
classifiers of the random forest was aggregated and used as input for the MLP classifier for adequate
classification. Results show that the extracted CTI-based features with the two-stage classification
outperform other studies’ detection models. The proposed CTI-based detection model achieved a
7.8% accuracy improvement and 6.7% reduction in false-positive rates compared with the traditional
URL-based model.

Keywords: malicious URLs; cyber threat intelligence; ensemble learning; internet security; cybersecurity

1. Introduction

Recently, the number of users surfing the Internet has increased exponentially. Due
to the proliferation of mobile devices, ad hoc networks, smart sensors, and the Internet of
Things technologies fueled by the imposed lockdown to mitigate the COVID-19 pandemic, the
Internet has become an essential part of people’s daily lives and activities worldwide [1–4].
Most businesses shifted online due to the availability of reliable infrastructures such as
cloud storage, cost-effective platforms, and a large target market. However, the Internet
brings many cyber threats such as malware, spamming, phishing, financial fraud, infor-
mation theft, and data sabotage [3–6]. Malicious websites are the primary attack vector
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that is used by cybercriminals to spread malware and archive attackers’ objectives [1]. A
malicious website contains content that can be harmful such as malware or phishing attacks
infecting the visitors’ smart devices with malware without user interaction, such as clicking
or downloading, with the website.

According to [5], 18.5 million websites are infected by malware. Moreover, according
to Google’s safe browsing report [6], there were two million phishing websites in September
2020, an increase of nearly 2800% compared with the number in September 2010. Attackers
spread fake information and advertisements to attract users to visit malicious websites.
Once a victim visits a malicious website, attackers use different strategies to infect users
browsing devices with malicious payloads or deceive victims into interacting with the
attackers for financial fraud or other types of attacks. Many harmful websites are not
intended to be malicious by the developers. Attackers can exploit vulnerable websites to
perform malicious intent. For example, an attacker can inject cross-site scripting into a
vulnerable website to steal a visitor victim’s sensitive information or perform a phishing
attack [7].

The problem with detecting malicious websites has been around since early 2004 [8–18].
Many solutions have been proposed to accurately detect these websites. These solutions
can be divided into three categories by their source of investigation: URL-based [8–16],
web content-based [19–21], and script-based [17,18]. URL-based detection is the most
investigated approach followed by content-based detection, while little research has been
investigated on script-based detection. URL-based detection is preferable because it is a
proactive and safe approach for the detection machines as it can detect the malicious URLs
before it is visited by the user. Moreover, detecting malicious URLs is more efficient for
real-time detection and resource-constrained applications such as mobile and Internet of
Things (IoT) devices.

Various techniques have been suggested to detect malicious websites and harmful
content by extracting features from their URLs [15,16,22–28]. Most of these techniques
rely on humans to derive the features [16,22–26] while few solutions used deep learning
techniques to automate the features [15,27,28]. Many sets of features were extracted and
used for the detection including host information features such as country name and host
sponsor, domain features such as .com and .tk, and lexical features such as the number of
dots in URL and URL length. However, the URL-based features are subject to manipulation
by attackers and can be dynamically changed, and may be insufficient for effective repre-
sentation. Attackers can use evasive techniques to bypass the security countermeasures.
Accordingly, any features extracted from these URLs can be misleading as attackers can
manipulate them to hide the malicious intent and malicious patterns of the website. There-
fore, features that are out of attackers’ control will be beneficial for improving detection
accuracy and reducing the false alarm rate.

The CTI feature can be used to enrich URL-based features to improve detection
performance. Cybersecurity analysts, users’ experiences, and website reputations can be
important sources of information. People usually share knowledge regarding malicious
websites in discussion forums, social media, and news websites. Cyber threat intelligence
can be safer, more efficient, and provide more accurate results than investigating the
website content. This study designed and developed a malicious URL detection model
that utilizes cyber threat intelligence-based features to improve classification performance.
The proposed model, called the Cyber Threat Intelligence-based Malicious URL Detection
model (CTI-MURLD), consists of three main components. The first component is for feature
collection. Three types of features are extracted: URL-based features, Whois information-
based features, and cyber threat intelligence features. The threat factors are researched
using Google searches and Whois information. The second component contains data
processing, including feature extraction, representation, and selection. N-gram is used for
feature extraction, the Term Frequency-Inverse Document Frequency (TF-IDF) technique
is used for feature representation, and mutual information (information gain) is used for
feature selection. The third component is classification and decision making. The RF
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algorithm was used to train three ensemble classifiers. Each classifier was trained using
different features. The probabilistic outputs of the decision tree classifiers in each forest were
aggregated and used to train a multilayer perceptron-based classifier for decision making.
The multilayer perceptron-based classifier could learn the hidden patterns that map the
classifier’s output with the correct class of URLs. We hypothesize that the multilayer
perceptron-based classifier can be more effective than the random forest classifiers’ three
independent majority voting schemes. The results of the experiments were validated
employing commonly used performance measures and benchmarked using a widely
accepted dataset that contains benign and malicious URLs. Additionally, a comparison
of related studies was carried out that shows the superiority of the proposed work. The
results show a significant improvement in the proposed model’s performance compared
with the state-of-the-art models. This study makes the following contributions:

1. A malicious URL-detection model based on CTI was designed and developed. Both
the URL and web content are subject to obfuscation; an independent source of features
that are outside of the attacker’s control was needed to strengthen the model’s perfor-
mance. Thus, cyber threat intelligence-based features were extracted from a Google
search and Whois information and used as new knowledge to train the proposed
detection model.

2. The study designed and developed an ensemble learning-based model that combines
three random forest-based predictors such as predetection and feature extractions
with multilayer perceptron-based classifiers for the final decision. Three RF classifiers
were trained using different feature dimensions extracted from URLs, Whois, and
Google-based CTI. The three majority voting schemes that were used by the trained
RF classifiers were replaced by the trained multilayer perceptron-based classifiers for
accurate detection.

3. Several machine learning algorithms have been investigated, including deep learning
techniques such as the convolutional neural network (CNN) model and sequential
deep learning model, which were trained to distinguish between malicious and benign
patterns. Results demonstrated that the cyber threat intelligence collected from Google
improves the detection performance of malicious websites.

The remainder of the manuscript is organized as follows: Section 2 reviews the related
work; Section 3 describes the proposed model; Section 4 explains the experimental design;
Section 5 presents the results with a detailed discussion; Section 6 presents the conclusion
and future work.

2. Related Work

For many decades, malicious URL detection has been a major concern for cybersecu-
rity specialists [8–14]. Several solutions have been proposed to detect malicious URLs and
protect users from being victims of an attack. These solutions can be categorized based
on the type of detection into feature-based detection or blacklist-based detection [23]. In
feature-based detection, the features that represent the URLs are extracted and automati-
cally analyzed while blacklist-based detection relies on user reports and expert analysis.
The centralized blacklist is the most widely used detection method in practice. The Internet
Protocol (IP) address of the malicious website is stored in a database through matching
detection. The feature-based detection can be further categorized into URL-based features
or web content-based features. In the former, the features are extracted from the URL’s
characters using N-gram techniques or derived directly from the URL (i.e., the length of the
URL, whether it contains a file, the status, request protocol, IP, domain name, and registrar
information). Meanwhile, in the latter, the features are crawled from the web content in
terms of text, HTML code, and programs scripts. Detecting malicious URLs is crucial as
many attackers spread malicious links to legitimate websites such as social media platforms
and e-mails. Moreover, some malicious URLs are spread by downloading malware which
can infect the detection machine during the crawling. Furthermore, detecting malicious
URLs is more efficient and accurate than detecting web content due to the high similarity of

63



Sensors 2022, 22, 3373

some malicious web content with legitimate content, for example, phishing and fraudulent
websites. Accordingly, this study focuses on reviewing URL-based detection solutions.

In [26], the authors proposed an improved malicious URL-detection model based on a
two-stage distance-metric learning approach, namely singular value decomposition and
linear programming for feature extraction. A set of 62 features were extracted from the
URLs including information from Whois such as top-level domain names (TLDs), registrar
information, lexical features such as the number of dots, keywords, and reputation-based
features. A dataset consisting of 33,1622 URLs was collected from “PhishTank” and used
to train three machine learning classifiers for the evaluation, namely K-nearest neighbor,
support vector machine, and neural networks. Results showed that the improvement of
the proposed feature extraction method was significant. However, the results showed that
the false alarm (false positive) and misrate (false negative) were still high.

Rakesh and Muthurajkumar [22] modified the C4.5 algorithm to detect cross-site
request forgery. Authors in [23] analyzed malicious URLs to extract common features
regarding attacker behavior. A similarity matching technique was used to detect attackers’
habitual behavior. A small set of features were extracted from the URLs. Chiramdasu and
Srivastava [16] proposed a malicious-URL-detection model using logistic regression. Three
sets of features were extracted, host information features such as country name and host
sponsor, domain features such as .com and .tk, and lexical features such as the number of
dots in the URL and URL length. He and Li [24] focused on the class imbalance issue and
then trained a model using XGBoost with cost-sensitive learning for detecting malicious
URLs. A total of 28 features were extracted from the domain name, Whois information,
geographic information, and suspicious words. Despite the results demonstrating that
the proposed model outperformed related studies, the poor sensitivity achieved is the
main limitation of this model. Authors in [29] proposed ensemble learning using a support
vector machine (SVM) and a neural network to identify the command and control (C&C)
server. The classifiers were trained based on features extracted from Whois and the DNS
of domains of C&C servers. Another study [25] extracted 117 features from URL features,
lexical features, domain name features, webpage source features, and short URL features.
Then, various decision-tree-based learning algorithms were studied including J48 decision
tree, simple CART, random forest (RF), random tree, ADTree, and REPTree for detecting
malicious URLs. Results showed that the random forest-based classifier outperformed
other constructed classifiers. In [30], two classifiers were trained using naïve Bayes and
logistic regression. Different sets of features were extracted including lexical features and
textual features represented by terms frequency/inverse documents frequency (TF-IDF). In
their experiments, logistic regression outperformed the naïve Bayes algorithm.

The performance of various deep learning techniques in detecting malicious URLs was
evaluated in [28]. The evaluated techniques included the recurrent neural network (RNN),
identity-recurrent neural network (I-RNN), long short-term memory (LSTM), convolution
neural network (CNN), and convolutional neural network-long short-term memory (CNN-
LSTM). The model constructed using LSTM and the hybrid network of CNN and LSTM
outperformed other studied models.

To summarize, many solutions have been proposed for detecting malicious
URLs [16,22,26]. Most of these solutions utilize supervised-based machine learning tech-
niques for classification [16,26,29]. The deep learning approach has also been investi-
gated [28]. However, most of these solutions extract the features solely from URLs such
as lexical features, textual features, and host features. It is commonly agreed among re-
searchers that obfuscated URLs and web content hinder effective detection. CTI has not yet
been investigated for improving detection performance. Therefore, this study proposed a
malicious URL detection model that utilized CTI to extract features safely without crawling
the actual malicious websites. User expertise regarding malicious URLs can be used for the
early detection of URLs without the need for intensive analysis of the websites. Due to their
classification performance and ability to extract effectiveness patterns from textual-based
features, the RF algorithm and the multilayer perceptron were combined to improve the
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classification performance. A detailed description of the proposed model is provided in the
following section.

3. The Proposed CTI-MURLD Model

Figure 1 shows the proposed Cyber Threat Intelligence-based Malicious URL Detec-
tion (CTI-MURLD) model. The proposed CTI-MURLD model consists of seven phases:
data collection, feature preprocessing, feature extraction, feature representation, feature
selection, ensemble learning-based prediction, and decision making. In the first six phases,
three ensemble-learning-based predictors were constructed using the random forest (RF)
algorithm. Each RF-based predictor was trained using different feature sets, URL-based,
Google-based CTI, and Whois-based features. Each RF classifier had two probabilistic out-
puts. The first output represents the belief that a sample is a malicious URL (p0 in Figure 1),
and the second output is the amount of belief that the URL is benign (p1 in Figure 1). In the
last phase, an artificial neural network (ANN) classifier was built for decision making. The
probabilistic outputs of the three RF classifiers were used to train the ANN classifier for
the final decision. As shown in Figure 1, the URLs requested by users were intercepted,
and three types of features were extracted. Each type of feature set was preprocessed to
remove the noise. Then, more features were extracted using the N-gram technique and
then represented by the TF-IDF technique. Then, the most representative features in each
set were selected from each feature set (denoted by f1 to fn) using information gain. Each
feature set is passed to its specifically trained RF predictor. The probabilistic outputs (two
probabilistic outputs for each predictor) of these predictors were fed into the ANN classifier
for the final decision about the URL class, whether it was malicious or benign. A detailed
description of each phase is presented in the following subsections.

Figure 1. The proposed CTI-MURLD model.

3.1. Phase 1: Data Collection Phase

In this phase, three types of features were collected, namely, URL content features,
cyber threat intelligence data crawled using a web search (Google-based CTI), and data
related to the domain owners crawled from Whois lookup (Whois-based CTI). The URL
data were collected by intercepting user HTTP requests in the application layer. To collect
the Google-based CTI, first, the domain name was extracted from the URL and the IP
address of the domain was searched, and then data related to the domain and its IP were
crawled from a Google search. The Whois-based CTI was crawled from a Whois search
which included the website owner, creation date, contacts, domain status, registrant email,
and registrant country.
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3.2. Phase 2: Data Preprocessing

In this phase, the textual data that were collected in the previous phase were sanitized
and normalized. The URL was preprocessed by removing symbols while the Google-based
CTI and Whois-based CTI data were preprocessed using natural language processing (NLP)
text-preprocessing techniques. Since Google-based CTI and Whois-based CTI data were
crawled from websites, unwanted text such as HTML codes, symbols, and punctuation
were removed to reduce feature complexity and enhance the classification performance.
The collected text data were converted to lower case and then normalized. The normaliza-
tion process aims were two-fold. Firstly, to convert the text from unstructured data to a
structured word vector. Secondly, to reduce the scarcity of the feature vectors by remov-
ing unnecessary words and reducing the number of words by rooting the words to their
originals. The normalization started with tokenization, then the removal of stop words,
lemmatization, stemming, and finally converting the words to their equivalent numerical
format. Tokenization is the process of representing the text sample by a list of words that
construct the URL data sample. Stemming is converting the words into their roots e.g.,
removing “s” from the plural words and removing “ing” from the word. Lemmatization is
the process of converting the words into base form by rooting the verbs to their root using
lexical knowledge base e.g., ‘took’ to ‘take’.

3.3. Phase 3: N-Gram Feature Extraction

The N-gram technique [31] was used to enrich the feature sets and create more repre-
sentative features. N-gram has been a commonly used method for malicious URL detection
and text analysis due to its effectiveness in improving the classification accuracy as reported
by previous researchers [32–36]. Both word N-gram and character N-gram were used in
this study. The character N-gram was used to extract features from the URL while the
word N-gram was used for Google-based CTI and Whois-based CTI data. The URL data
were converted to vectors of words each consisting of three, four, or five characters. To
reduce feature complexity the word bi-gram technique was used for Google-based CTI and
Whois-based CTI data. Each subsequent word was considered one additional feature. The
output of this phase was three feature vectors each consisting of sets of words called tokens.

3.4. Phase 4: TF-IDF Feature Representations

To convert the words (the tokens) to their equivalent numerical values, a corpus that
contained the list of unique tokens was constructed based on their frequency of occurrence
in each class. Then, the statistical-based text representation, namely TF-IDF was calculated
using the following equation:

t f _id f = t f .log
N
d f

(1)

where t f is the term frequency of the word in a specific instance, d f is the document
frequency for the word, N is the number of samples in the dataset. The term frequency
t f is the number of times a word has occurred in the sample while the inverse document
frequency id f refers to the inverse number of documents where the word has occurred. The
higher the t f _id f of a word in a document, the more relevant the document. The output of
this phase was three numerical vectors for each sample.

3.5. Phase 5: Feature Selections

In this phase, the features that represented the URL well were selected using informa-
tion gain (mutual information). As the CTI features were collected from Google, a huge
number of irrelevant features were included. These irrelevant features hindered the ability
to differentiate between benign and malicious URLs due to the high dimensionality of the
features. Thus, the learning task became complex, leading to poor training accuracy [28,37].
Similarly, the Whois information and URL features also contained irrelevant features, es-
pecially when the N-gram was used. The features were doubled based on the n-value
of the N-gram. Moreover, feature selection is common research procedure for text-based
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features [12,28,37,38]. Therefore, feature selection is important in this study. However, this
study selected the top five thousand features to minimize the probability of losing some
information while maximizing the generalizability of the trained models.

The features with low probabilities (the uncommon features) have more informa-
tion compared to features with high probabilities (the common features). The mutual
information-based feature selection uses entropy to measure the impurity of the features
when it is used to split the target variable. The entropy can be calculated using Equation (2).
The higher the entropy the more information. Mathematically, the entropy is written as:

E(p) = −
n

∑
i=1

pi log(pi) (2)

where n is the target class, pi the probability of a feature split the class i. The information
gain which represents the quality of the split can be calculated using the following equation.

Gain = 1 − E(p) (3)

where n is the target class of the entropy and the Gain is the quality of the split. A feature is
important for classification if it has a high gain. The higher the gain, the lower the entropy.
If the entropy is zero, the less impure the split. The output of this phase is a feature vector
with only high-gain features selected.

3.6. Phase 6: RF Ensemble-Based Prediction

Three predictors were constructed and grouped using the RF algorithm in this phase. A
predictor was trained for each type of feature, namely URL, Google-CTI, and Whois-CTI. A
random forest algorithm was selected to construct these predictors. RF was selected for two
reasons: firstly, for its diversity, which fits the diverse nature of the features in our collected
datasets, and secondly for its effectiveness with high-dimensional data. Even after selecting
a subset of important features, a high-dimensional vector consisting of 5000 elements was
selected so that we did not lose the valuable features and generalizability. RF is a supervised
machine learning algorithm that trains ensembles of weak classifiers using decision trees
and bagging methods. The RF algorithm searches for the best split in a random subset of
features before the tree is constructed. Thus, diverse trees were constructed that would
improve the model’s performance. The RF classifier was constructed using 100 decision
tree classifiers. Each decision tree classifier was trained based on a random subset of the
original features with a random subset of the training dataset. The results were three forests
of weak but diverse classifiers. The probabilistic outputs of these weak classifiers were
averaged to be used as the RF decision about the class of the sample. The output of a tree
was a real number between zero and one for each class. When the output value approaches
zero, it means a low probability that the sample belongs to that class. Because the trees
in the three RF classifiers were trained based on three different datasets, the results were
more diverse and thus the probabilistic output. Instead of using the majority voting as
the RF, in this study, the probabilistic outputs of the ensemble classifiers are used as input
to the artificial neural network (ANN) classifier for decision making. Meanwhile, if the
output value approaches one, it indicated a high belief that the sample belonged to that
class. Figure 2 illustrates how these probabilities are extracted and fed as new features to
the next stage of classification for decision making.
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Figure 2. The new features extracted from the three ensemble models.

In Figure 2, P(0) is the average probability of predicting a benign URL. In contrast,
P(1) is the average probability of predicting a malicious URL, DT denotes a decision tree
(the weak classifier), and N1 − 6 represents the neuron node in the ANN model. These
probabilistic values can be calculated as follows

P(0) =
∑n

i=0 p(class_label = 0)
n

(4)

P(1) =
∑n

i=0 p(class_label = 1)
n

(5)

where n denotes the total number of the estimators in each forest. These outputs are
aggregated using a voting scheme in the standard RF algorithm, and the decision is based
on the majority. In contrast, this study replaces the voting scheme of the three trained RF
classifiers with one trained using the multilayer perceptron (MLP) algorithm for decision
making. The MLP-based classifier uses the aggregated outputs of the RF classifiers as new
knowledge to train the ANN classifier to learn the hidden patterns that can collectively be
extracted from the outputs of these three ensemble models. A detailed description of this is
explained in the next section.
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3.7. Phase 7: ANN Decision Making

In this phase, a multilayer perceptron (MLP) artificial neural network (ANN) classifier
was constructed for decision making. The classifier was trained using a three-layer network
consisting of 6 input neurons, 6 hidden neurons, and one output neuron. ANN has
better generalization and can predict the actual class even with smaller data and complex
nonlinear problems. Given a set of input features X = (x1, x2, x3 . . . xn) and Y target
class, the MLP learns the relationship between the X and Y. Some parameters affect the
performance of the neural network such as weight initialization, biases, the activation
function, the loss function, the optimizer, the number of hidden layers, and the number
of neurons in each layer. The activation function provides output for the next layer by
calculating the sum of the products of numerical values of input features by their weights.
The loss or cost function is used to determine the classification error while the optimizer
is used to reduce the error. In this study, the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm was used as the optimization algorithm. BFGS is a local search and gradient-
based algorithm that is suitable for unconstrained nonlinear optimization problems to
effectively determine the decent direction. It approximates the second derivative of the
cost function (the Hessian) when the second derivative cannot be detected. The Sigmoid
function in the following equation is used as an activation function:

Segmoid(x) =
1

1 + e−x (6)

where x denotes the classification score and e is the natural logarithm which is approxi-
mately equal to 2.718281828.

To summarize, Figure 3 illustrates the operations of the proposed CTI-MURLD model.
As can be seen in Figure 3, once the URL was intercepted (e.g., by the network sniffer of
the detection system), three types of features were collected: the first types were the URL
features such as the domain name, sub-domains, and types; the second types were the CTI
features which were collected from a Google search; and the third types of features were
collected from Whois information. These features were preprocessed, enriched using N-gram,
and represented using TF-IDF techniques, as described in Sections 3.1–3.3. The important
features were selected and input into the three pre-trained RF-based prediction models.
Inspired by the divide and conquer principle, the RF prediction models were trained based
on a single type of feature set, namely, CTI-Google, CTI-Whois, or URL features. The
probabilistic aggregated outputs of the three RF prediction models (total output were 6
variables as shown in Figure 2, two values for each classifier) were used as input for the
ANN-based classifier. The ANN classifier was used to learn the correlation between the RF
prediction scores and the target class. It replaced the majority voting schemes used by the
three RF classifiers for more accurate detection. Without this divide and conquer principle,
such a correlation would not be released due to the curse of dimensionality because of the
massive set of extracted multifaceted features.
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Figure 3. Flowchart of the CTI-MURLD model Operation.
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4. Performance Evaluation

In this section, the used dataset, the experimental procedures, and the performance
evaluation are described.

4.1. Sources and Preprocessing of Datasets

This study used a malicious URLs dataset that is publicly available on the Kaggle.com
repository (available at https://www.kaggle.com/sid321axn/malicious-urls-dataset, ac-
cessed on 25 February 2022). The dataset was collected from widely-used sources by
researchers of malicious URL detection domains such as Phishtank [39,40] (available
at https://phishtank.org/, accessed on 25 February 2022) and URL dataset (ISCX-URL-
2016) [8] (available at https://www.unb.ca/cic/datasets/url-2016.html, accessed on 25
February 2022). The URLs in the dataset were categorized into two types, malicious and be-
nign. Malicious URLs included malware links, web defacement, spam, phishing, drive-by
downloads, etc. A random sample consisting of 20,000 URLs was drawn and used in this
study. Table 1 shows the number and types of URL samples in the datasets.

Table 1. Number and types of URLs used in this study.

Category Number of Samples

Total URLs 651,191
Total Benign 428,103

Total Malicious 223,088
Malicious URLs

Defacement 96,457
Phishing 94,111

Malware Link 32,520

4.2. Experimental Procedures

The dataset was split into training and testing sets with 70% for training and 30% for
testing. The training dataset was used to train the RF and MLP/ANN classifiers. The out-
puts (prediction values) of RF classes were used to train the ANN-based decision-making
classifier. For each RF classifier, 100 estimators were created. For the ANN prediction model,
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used as the optimization
algorithm. BFGS is one of the variants of the gradient descent algorithm and has proven to
have better accuracy than the plain gradient descent algorithm. The learning rate was set
close to zero i.e., 10–5 for better generalizability. Meanwhile, the logistic sigmoid function
was used as an activation function. The neural network prediction model consisted of three
layers, the input, hidden, and output layers. The input layer consisted of 6 neurons, the
hidden layer contained 6 neurons, and the output layer contained a single neuron.

4.3. Performance Evaluation

To validate the detection performance of the proposed model, five performance mea-
sures were used: the overall accuracy; the detection rate (recall); the precision; the F1 score;
the false-positive rate (FPR); and the false-negative rate (FNR). These performance mea-
sures are commonly used to evaluate the accuracy of the malware detection solutions in
the literature. To evaluate the proposed model, the commonly used machine learning
techniques that were used to evaluate the related malicious URL detection were used.
Moreover, three models were developed for the evaluation of the CTI-MURLD, Google-CTI,
Whois-CTI, and lexical URL-based features as baselines [8,11,13–15,23,41]. Furthermore,
two deep learning-based models were developed for the evaluation of SDL and CNN-based
malicious URL-detection models. A detailed description of the results is illustrated in the
following section. The following equations were used for calculating the used performance
measures in this study.
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Accuracy =
TP + TN

TP + TN + FP + FN
(7)

FPR =
FP

TP + FN
(8)

DR (Recall) =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

F-measure =
2 × Precision × Recall

Precision + Recall
(11)

For comparison, the base classifier of CTI-MURLD has been trained using state-of-the-
art machine learning techniques including deep learning that have been used for malicious
website detection, namely naïve Bayes (NB), logistic regression (LR), decision tree (DT),
random forest (RF), convolutional neural network (CNN), and sequential deep learning
(SDL) models.

5. Results and Discussion

The proposed Cyber Threat Intelligence-based Malicious URL Detection (CTI-MURLD)
model has been validated using the aforementioned dataset and performance measures.
Additionally, it was evaluated against the commonly used feature sets including the URL-
based features and Whois-based features. Different feature sets have been compared to
evaluate the proposed CTI-MURLD model. Table 2 and Figures 4–9 illustrate the results
obtained in terms of the detection accuracy, false-positive rate, false-negative rate, precision,
recall, and F1-Measure, respectively.

Table 2. Performance of the CTI-MURLD model using Different Classifiers.

Ensemble
Classifiers

Accuracy FPR FNR Recall Precession F1

NB 75.60% 40.04% 11.27% 88.73% 68.65% 77.41%
LR 86.15% 18.85% 9.18% 90.82% 82.21% 86.30%
DT 95.70% 4.10% 4.29% 95.71% 95.69% 95.70%
RF 96.80% 3.13% 3.13% 96.88% 96.72% 96.80%

CNN 94.70% 5.27% 5.09% 94.91% 94.48% 94.69%
SDL 95.61% 4.57% 4.20% 95.80% 95.41% 95.61%

Figure 4. Comparison in terms of the detection-accuracy performance.
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Figure 5. Comparison in terms of the FPR.

Figure 6. Comparison in terms of the FNR.
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Figure 7. Comparison in terms of the precision.

Figure 8. Comparison in terms of the recall (True Positive Rate).

Figure 9. Comparison in terms of the F1-Measure.
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Table 2 presents the performance of the CTI-MURLD model. As can be seen in Table 1,
the RF technique outperformed the other machine learning algorithms. The decision tree
algorithm also achieved the second-best performance while the sequential deep learning
model and the CNN model performed slightly lower compared with RF and DT. However,
the sequential model SDL model was better than the CNN model. It was expected that
RF will perform better than DT because RF is a collection of DTs. A single DT can make a
series of decisions based on the given set of features based on the information gained.

In terms of accuracy, Figure 4 depicts the accuracy performance of the proposed
CTI-MURLD model compared with related works. In most cases, the CTI-based features
especially the combined ones, outperformed the traditional-based features and the single
set of features. For example, RF and DT DSL achieved accuracy higher than 95% with the
combined CTI-based features. Meanwhile, the accuracy of the same classifiers using URL-
based features was always lower than 90% except with the CNN model which achieved
90.8%. CNN was a commonly reported method that outperforms the conventional machine
learning classifiers. However, it is believed that CNN performance depends on the compe-
tence of the representative features present in the image-like matrix. In the case of a huge
number of features such as CTI-based features, a large portion of the dataset should be
available to achieve maximum accuracy. It is worth mentioning that Whois-based features
alone achieved the worst performance among the tested features while Google-based CTI
achieved almost similar performance results to the URL-based features. For example, with
the models DT, RF, SDL, LR, and NB, Google-based CTI features achieved the second-best
accuracy performance. This indicates that the CTI-based features can complement the
traditional features for detecting evasive malicious websites which try to evade detection
by looking similar to benign websites.

Figures 5 and 6 present the results in terms of FPR and FNR, respectively. The
models designed using the combined CTI-based features and the Google-based CTI features
achieved the lowest rate of false positives while Whois-based features achieved the highest
rate of false positives. However, the combined-based CTI features achieved the lowest
rate of false negatives. Meanwhile, the models designed based on the Google-based CTI
features suffered from a high rate of false negatives. In general, all models designed with
a single feature set such as the URL, Whois, or Google CTI suffered from a considerable
number of false negatives. This is because it is difficult to differentiate between some
malicious websites such as spoofing websites and other benign websites. Meanwhile, the
proposed combined features set with the RF classifier achieved the lowest rate of false
negatives which was 3.3% followed by SDL (4.2%) and DT (4.29%).

Figure 7 depicts the performance in terms of precision. The precision measures the
predictability of the positive class. The proposed CTI-MURLD models using decision
trees and deep learning-based classifiers achieved the highest precision compared with the
URL-based features and the single set features such as Google CTI and Whois information.
The proposed CTI-MURLD model achieved 96.7% precision using the RF classifier, 95.69%
using the DT, 95.41% using SDL, and 94.48% using the CNN-based classifier. The models
designed using the Google-based CTI features achieved the second-best results for precision.
For instance, it achieved 94.54% using the RF-based classifier and 91.43% using the DT
classifier. Meanwhile, the model’s design using Whois information is unprecise with all
classifiers compared with the URL-based and the other CTI features.

Figure 8 shows the performance in terms of the recall or the defection rate. The
proposed CTI-MURLD models using all classifiers outperformed the other types of feature
sets, namely, URL-based features and single-set features such as Google CTI and Whois
information. It achieved a 96.88% true positive rate using the RF-based classifier, 95.8%
using the SDL, 95.71% using DT, 94.91% using the CNN, 90.82%, and 88.73% using NB-
based classifier. The models designed using other feature sets vary lower than 90% except
with SDL-based classifier, the Google-based CTI features achieve 96% and URL-based
features achieve 92%.
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The harmonic means results in Figure 9 in terms of F-Measure (also called F1-Score)
summarizes how well the model performs with both precision and recall. The proposed
CTI-MWD model using a decision tree and deep learning-based classifiers achieved the
highest F1-Score value compared with the URL-based features and the single set features
such as Google CTI and Whois information. In most cases, the F1-Score of the proposed
CTI-MWD model achieves a 95% or higher value. It achieves a 96.8% score using the
RF classifier, 95.7% using the DT, 95.61% using SDL, and 94.69% using the CNN-based
classifier. The models designed using other feature sets vary lower than 90% except with
CN-based classifier and the Whois information-based features the model achieves 90% and
the model designed using Google-based CTI features with RF archives 90% F-Score.

As RF implicit feature selection by applying information gain and feature importance,
an experiment was conducted to evaluate the effectiveness of the feature selection used
by the model before applying the RF algorithms. Given that the datasets used in this
study were text data containing a massive number of features, most of these features were
irrelevant and should be eliminated. The results in Table 3 (see RF without FS in Table 3)
indicate that the RF with the proposed feature selection achieved better than the RF without
the selection. The RF randomly selects a subset feature to train each weak classifier. The
selection of the important features happened within the subset. In contrast, in this study,
selecting the importance classifiers before the RF enforces the RF algorithm to select the
subset features of the pool of the selected important features, which improves the accuracy
of the weak classifier and thus the overall accuracy.

Table 3. Performance of the CTI-MURLD model with and without feature selection and with grid
search best-found hyperparameters.

Ensemble
Classifiers

Accuracy FPR FNR Recall Precession F1

RF without FS 96.30% 3.81% 3.59% 96.20% 96.58% 96.39%
RF with FS 96.80% 3.13% 3.13% 96.88% 96.72% 96.80%
RF with GS 97.25% 2.73% 2.76% 97.26% 97.36% 97.31%

Because RF algorithms use a different range of hyperparameters, a grid search is used
to search for the best parameters that improve the performance. Table 3 (see RF with GS in
Table 3) shows the performance results of the grid search. Based on the grid search results,
the hyperparameters that gave the best performance were: 1000 estimators, five minimum
sample split, two minimum samples leaf, an unlimited number of leaf nodes, samples
drawn with replacement, and an unlimited maximum number of features. As shown in
Table 3, the performance was further improved, as expected.

The results obtained using the proposed CTI-MURLD model raise an interesting but
fundamental question of why the ensemble-based RF and DT-based classifiers achieved
the best results compared with the deep learning-based classifiers. The answer lies in
the dataset itself, the number of features extracted using the Google-based CTI was huge
compared to the URL or the Whois information features. This created highly noisy data
with a sparse feature vector. Moreover, when the features were combined from CTI, Whois
information, and URL-based features a high-dimensional problem was created. In this
situation, DT and RF were suitable for high-dimensional noisy data [42]. With such high-
dimensional features, deep learning models such as CNN and SDL need a larger dataset to
attain their maximum performance. In addition, neural network-based classifiers create
patterns by connecting neurons with each other which is difficult to generalize in high-
dimensional datasets. Meanwhile, the RF classifier creates independent patterns which are
suitable for high-dimensional data and small datasets. This may be an indication of why
the decision tree-based classifier outperformed the deep learning model.
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6. Conclusions

In this study, a malicious website detection model was designed and developed based
on cyber threat intelligence extracted from Google. The first main contribution of these
studies was the use of cyber threat intelligence as a new set of features with a hypothesis
stating that cyber threat intelligence is an effective and safer alternative to improve the
detection accuracy of malicious websites. The domain names of the websites were extracted
using the Whois technique, and cyber threat intelligence was collected from Google and
combined with URL-based features. Due to the diversity of attack vectors of malicious
websites, high-dimensional features were created and used to train the proposed model.
The second main contribution of this study is in the design of the proposed detection
model. Three random forest classifiers were developed, each of which was trained based
on different features, namely, URL-based features, cyber threat intelligence features based
on Google, and Whois information-based features. The probabilistic outputs of the weak
classifiers in each tree were aggregated and used as input features to a multilayer perceptron
designed to replace the three majority voting schemes used by the trained random forest
classifiers. Several types of machine learning classifiers were investigated to validate
and evaluate the proposed model. Results show that the CTI-based features significantly
improved the detection performance, achieving 96.80% compared with the best 90.4%
achieved by the URL-based features. The false-positive rate was significantly decreased to
3.1% compared with 12% performed by the URL-based model. The main drawback of this
study is that the cyber threat intelligence collected is obtained from a Google search. Such
a source of data is not necessarily reliable and hence, false information is highly probable.
As a result, a solution based on a trusted source could be a possible future direction for
other researchers.
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Abstract: The Internet of Things (IoT) is a widely used technology in automated network systems
across the world. The impact of the IoT on different industries has occurred in recent years. Many
IoT nodes collect, store, and process personal data, which is an ideal target for attackers. Several
researchers have worked on this problem and have presented many intrusion detection systems
(IDSs). The existing system has difficulties in improving performance and identifying subcategories
of cyberattacks. This paper proposes a deep-convolutional-neural-network (DCNN)-based IDS. A
DCNN consists of two convolutional layers and three fully connected dense layers. The proposed
model aims to improve performance and reduce computational power. Experiments were conducted
utilizing the IoTID20 dataset. The performance analysis of the proposed model was carried out
with several metrics, such as accuracy, precision, recall, and F1-score. A number of optimization
techniques were applied to the proposed model in which Adam, AdaMax, and Nadam performance
was optimum. In addition, the proposed model was compared with various advanced deep learning
(DL) and traditional machine learning (ML) techniques. All experimental analysis indicates that the
accuracy of the proposed approach is high and more robust than existing DL-based algorithms.

Keywords: convolution neural network; cybersecurity; deep learning; Internet of Things; intrusion
detection

1. Introduction

The IoT foresees the networking of a wide range of smart things in our environment
that are capable of accumulating, processing, and communicating data [1]. The IoT is a
widely used technology in automated network systems across the world that has had an
impact on different areas, such as the agricultural, medical, transport, and automobile
industries, and water monitoring in recent years [2,3]. The use of IoT devices has increased
dramatically, from 15.41 billion in 2015 to more than 35.8 billion in 2021, as homes and
businesses increasingly rely on online technology [4]. The IoT is anticipated to reach
75.44 billion devices by 2025, as shown in Figure 1, which will generate 79 zettabytes
(ZB) of data [5]. The IoT has been identified as a critical component of digitization for a
transforming society [6].
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Figure 1. Growth of IoT devices from 2015 to 2025 [5].

Many IoT devices capture, store, and process personal data, making them a feasible
target for assailants because of their distributed structure and openness [7]. The effective
deployment of IoT networks is becoming more dependent on security [8]. An IDS is
required to examine IoT network traffic for the identification of cyberattacks [9]. Several
researchers have worked on IDSs in which machine learning (ML) and deep learning (DL)
models play a key role [10]. ML and DL techniques are widely used in different fields,
such as in agriculture [11], medical [12], and automobile industries [13,14]. DL is a branch
of ML, and it is generalizable to new problems with complicated and high-dimensional
data. Furthermore, DL methods allow for the training of nonlinear models on big datasets
in a systematic way [15]. This is why DL performs well in detecting intrusions, as it not
only handles a large amount of data but also can generalize to new types of attacks in the
network [16].

The existing system has difficulties in improving performance and identifying subcat-
egories of cyberattacks. This paper proposes a DCNN followed by a deep-neural-networks
(DNN)-based IDS. The primary advantage of a DCNN is its ability to exploit the correlation
between features [17]. A DCNN works on a lower number of parameters than other DL
models [18]. Thus, the required computational power is decreased, and the learning process
is improved. The proposed system improves the performance of existing IDSs and extends
to subcategories of malicious attack detection in IoT networks. The IoT network intrusion
dataset 2020 (IoTID20) was used for experiments on the proposed model. This dataset
includes data for binary, multi-category, and subcategories of IoT networks.

Contributions

• We proposed a DCNN technique for malicious activity identification in IoT networks.
• We improved performance and reduced the computational power of an IDS for low-

power IoT devices in the network.
• We identified the subcategory of cyberattacks in the IoT networks.
• We compared the proposed scheme with other DL and traditional ML techniques.

The remainder of the article is organized as follows. Section 2 discusses related
work and presents a literature comparison. A step-by-step methodology of the proposed
system is presented in Section 3. Section 4 provides a detailed analysis of the results and a
comparison with state-of-the-art models. This work is concluded in Section 5.

2. Related Works

Security is an essential part of an IoT network for stability, reliability, and safe com-
munication. Several researchers have proposed different techniques for the detection of
malicious attacks in IoT networks. Basati et al. [19] presented an IDS called deep feature
extraction (DFE). This model is based on a CNN. The authors mainly focused on those
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devices that have low processing power. They used UNSW-NB15, CICIDS2017, and KDD-
Cup99 datasets for their experiments. The model was tested for both binary and multi-class
classifications. Rashid et al. [20] proposed a stacking ensemble approach based on trees
for intrusion detection in the IoT. Two incursion datasets, NSL-KDD and UNSW-NB15,
were used to evaluate the efficacy of the proposed model. They also improved efficacy by
integrating feature selection strategies to identify the most relevant features.

Fatani et al. [21] introduced a novel feature engineering technique for the IDS system
while using the benefits of swarm intelligence (SI) techniques. Four popular public datasets,
CIC2017, NSL-KDD, BoT-IoT, and KDD99, were utilized to test the quality of the proposed
IDS technique. Alkahtani et al. [22] suggested three advanced and widely used DL models
for intrusion detection. The authors conducted experiments on long short-term memory
(LSTM), CNN, and a hybrid model of CNN–LSTM. They used the IoTID20 dataset for the
evaluation of these DL models. Keserwani et al. [23] presented a method for extracting
significant IoT network features for intrusion detection. The proposed method consists of
a combination of grey wolf optimization (GWO) and particle swarm optimization (PSO).
They utilized the KDDCup99, NSL-KDD, and CICIDS-2017 datasets.

A single hidden layer feedforward neural network (SLFN) method was introduced by
Qaddoura et al. [24] for malicious activity detection in IoT networks. The authors used data
reduction with clustering and the SMOTE oversampling technique. For the evaluation of
the model, they used accuracy, precision, recall, and G-mean. Saba et al. [25] introduced a
two-stage hybrid technique for the detection of malicious attacks in IoT networks. A genetic
algorithm (GA) was used to choose relevant features as well as the famous ML techniques,
such as support vector machine (SVM), ensemble classifier, and decision tree (DT).

The existing systems cannot identify the subcategories of multi-class attacks in the
network. In addition, for binary and multi-class detection, the performance of the existing
system can be improved. A comparison of the related work is given in Table 1.

Table 1. A comparison of existing work related to intrusion detection in IoT.

Authors Year Technique Dataset
Multi-Class
Detection

Sub-Categories
Multi-Class Detection

Basati et al. [19] 2022 DFE KDDCup99, CICIDS2017,
UNSW-NB15

×

Rashid et al. [20] 2022 Ensemble NSL-KDD, UNSW-NB15 × ×
Fatani et al. [21] 2022 AQU, PSO CIC2017, NSL-KDD,

BoT-IoT, KDD99
×

Alkahtani et al. [22] 2021 CNN-LSTM IoTID20 × ×
Keserwani et al. [23] 2021 GWO–PSO–RF KDDCup99, NSL–KDD,

CICIDS-2017
×

Qaddoura et al. [24] 2021 SLFN-SVM-
SMOTE IoTID20 ×

Saba et al. [25] 2021 GA-(SVM,
Ensemble, DT) NSL-KDD ×

Propose Study 2022 CNN-DNN IoTID20

3. The Proposed Framework

This section provides a detailed explanation of the utilized dataset, preprocessing ap-
proaches, the proposed deep convolutional neural network (DCNN), and evaluation metrics.

3.1. IoTID20 Dataset

The IoTID20 dataset was developed to identify cyberattacks in IoT networks. This
dataset was generated through home-connected smart devices using SKT NGU and EZVIZ
Wi-Fi cameras [26]. The main advantage of this dataset is that it includes modern com-
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munication data and new data on network interference detection. This dataset has 83 IoT
network features and three labels [27]: binary, category, and subcategory; details are given
in Table 2.

Table 2. Label details of IoTID20 dataset.

Binary Category Subcategory

Normal Normal Normal

Anomaly

DoS DoS-Synflooding

Mirai

Mirai-Ackflooding
Mirai-HTTP Flooding
Mirai-Hostbruteforceg
Mirai-UDP Flooding

MITM MITM ARP Spoofing

Scan Scan Port OS
Scan Hostport

3.2. Preprocessing

Data preprocessing is an essential step for ML/DL methods. Preprocessing converts
data into a suitable format for any neural network. This section consists of cleaning, label
encoding, feature engineering, normalization, and data splitting.

3.2.1. Dataset Cleaning

A dataset must be verified for empty and undefined instances before training a model.
In this experiment, the Python built-in library (Pandas) was used to validate the dataset.
The utilized IoTID20 dataset has some missing values. To clean the dataset, we removed all
missing value instances.

3.2.2. Label Encoding

Label encoding is a well-known encoding approach for dealing with categorical values.
It assigns a unique numeric value to each categorical value. For ML algorithms and DL
neural networks to operate, the input and output values must be integers. The utilized
dataset has some categorical features. Each categorical feature has several categories for
which one-hot encoding requires greater memory and more time [28]. In this study, the label
encoder approach was used to convert the categorical features into numeric.

3.2.3. Feature Engineering

Each dataset contains its own set of features. If a dataset contains multiple features
as well as certain insignificant features that have no impact on the output label, we must
eliminate those features from the dataset because they lead to overfitting and underfitting,
which significantly influence the executing time and performance of the classifier. In this
study, the filter approach was used. In filtering features, the extra tree classifier (ETC)
technique was applied. This method calculates the impact of each feature on the output
label. The utilized dataset has 83 features. We select all the features greater than 0.001 for
information gain. After applying the feature filtering approach, 62 features were selected.

3.2.4. Normalization

Normalization is a method commonly used in the preprocessing of data for ML/DL
algorithms. The purpose of normalization is to convert the numeric column values in a
dataset to a common scale while maintaining variations in value ranges. Each feature of the
IoTID20 dataset has different values. Some feature values are in the thousands, and some
have negative values that reduce the model performance. To solve this problem, the data
are normalized between 0 and 1 via min–max method, as represented by Equation (1).
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Data are converted into an array and reshaped (number of total records, number of input
features, 1) using Python’s NumPy library.

Xnorm =
x − xmin

xmax − xmin
(1)

3.2.5. Data Splitting

Splitting the data into train and test sets is one of the common preprocessing steps used
to evaluate the ML/DL models’ performance. In an unbalanced dataset, random splitting
of datasets can lead to an unequal split of data, which cannot evaluate the performance
of the model accurately. To address this problem, we used a stratified method to split the
dataset into train and test sets. A stratified sampling procedure splits the entire dataset into
homogenous sets. In this work, the stratified method splits the data into 80% train and
20% test sets for each class. A detailed splitting of the cleaned dataset for binary, category,
and subcategory classification is given in Table 3.

Table 3. A detailed distribution of IoTID20 dataset in train and test.

Type Class Instances Train Set Test Set

Binary Anomaly 585,342 468,274 117,068
Normal 40,073 32,058 8015

Total 625,415 500,332 125,083

Category

Mirai 415,309 332,247 83,062
Scan 75,265 60,212 15,053
DoS 59,391 47,513 11,878

MITM ARP Spoofing 35,377 28,302 7075
Normal 40,073 32,058 8015

Total 625,415 500,332 125,083

Sub-Category

Mirai-UDP Flooding 183,189 146,551 36,638
Mirai-Hostbruteforceg 121,178 96,943 24,235
Mirai-HTTP Flooding 55,818 44,654 11,164

Mirai-Ackflooding 55,124 44,099 11,025
DoS-Synflooding 59,391 47,513 11,878

Scan Port OS 53,073 42,458 10,615
Scan Hostport 22,192 17,754 4438

MITM ARP Spoofing 35,377 28,302 7075
Normal 40,073 32,058 8015

Total 625,415 500,332 125,083

3.3. Designing the DCNN Model

CNN is a DL technique that consists of convolutional layers, pooling layers, and fully
connected layers [29]. CNN is usually utilized for image classification and voice recognition.
In this study, we used a DCNN followed by a DNN for malicious activities identification
in IoT networks. The proposed approach consists of two 1D convolutional layers, two
max-pooling layers, flatten, and three dense layers, as shown in Figure 2. The input shape
in the first convolutional layer is (none, 62, 1). Here, “none” is the dynamic number
of instances, “62” is the number of input features and “1” is the third-dimension value.
The size of the kernel is three, and sixty-two filters were used in this layer, which produces
output in the form of (none, 62, 62). The output of the first convolutional layer is given as
an input in the max-pooling layer. In this layer, pool size four was used which produces
(none, 15, 62) output. The second convolutional layer is placed here, in which the size
of the kernel is three and thirty filters are used, which produce the output in the form of
(none, 15, 30). The output of the second convolutional layer is given as an input in the
max-pooling layer. In this layer, pool size two was used, which produces (none, 7, 30)
output. The convolutional layer not only converges the most important features but also
reduces noise [30]. The 1D convolutional layer is demonstrated in Equations (2) and (3).
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xk = bk +
N

∑
i=1

(si, wik) (2)

yk = f (xk) (3)

where xk is the input in the 1D convolutional layer. The output of the previous layer
neuron is represented by sk, wik represents the kernel from i to k. bk is the bias value of
the neuron in the convolutional layer. The ReLU activation function is represented by f ().
Equation (4) describes the ReLU. yk is the output of the 1D convolutional layer. The output
of the convolutional layer is the input in the pooling layer demonstrated in Equation (5).
We select the maximum value from region � which contains the output values of the
convolutional layer. sk is the output of the max-pooling layer.

f (xk) = max(0, xk) (4)

sk =
max
i∈� yk (5)
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Figure 2. Architecture of the proposed DCNN model.

The flatten method is used to convert the output shape of the last pooling layer into
a single-dimensional array. The output of the flatten is (none, 210) which is input in the
first dense layers. The output of the first dense layer is (none, 50) which is given as input
in the second dense layer. The second dense layer produces (none, 25) output which is
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input in the last dense layer. The ReLU activation function is used in dense layers. The last
dense layer produces output results in which sigmoid function for binary classification and
softmax function for multi-class classification are used, respectively. Sigmoid and softmax
are demonstrated in Equations (6) and (7).

σ(x) =
1

1 + e−x (6)

softmax(x)i =
exi

∑K
j=1 exj

(7)

3.4. Evaluation Metrics

The evaluation of the DCNN approach was carried out with accuracy, precision, recall,
and F1-score. We start by explaining these four parameters, true positive (TP), false negative
(FN), false positive (FP), and true negative (TN), which are used to compute the evaluation
metrics such as accuracy, precision, recall, and the F1-score. TP refers to the number of
instances that have been correctly identified as normal. The number of instances that
misclassify normal data as an attack is known as the FN. FP represents the number of
malicious instances that are wrongly classified as normal. TN represents the number of
instances that are classified correctly as malicious. All of these evaluation metrics were
calculated by using Equations (8)–(11).

Accuracy =
α + β

α + β + γ + δ
(8)

Precision =
α

α + γ
(9)

Recall =
α

α + δ
(10)

F1-score =
2 × ( Precision × Recall )

Precision + Recall
(11)

where α represents TP, β represents TN, γ represents FP, and δ represents FN.

3.5. Experimental Platform

Experiments on the DCNN model were conducted with the HP ProBook G5 8th gener-
ation laptop. This laptop contains 24 GB ram and an Intel Core i5 processor. In software
specifications, we used Windows 11 Pro, Python 3.8.5, Tensorflow, and Keras library.

4. Performance Analysis

This section provides a detailed evaluation of the proposed model. The proposed
DCNN model was evaluated on the IoTID20 dataset. The performance of the DCNN
was tested for binary, multi-class categories, and multi-class subcategories classifications.
This section presents a comparison of convolutional layers followed by dense layers for
multi-class categories and multi-class subcategories. The same comparison was performed
for famous optimizers. The optimal solutions were selected from the comparison and
compared with other ML/DL models.

4.1. Performance Evaluation of Convolutional and Dense Layers

The CNN algorithm consists of convolutional layers, pooling layers, and fully con-
nected layers. This experiment was conducted for one and two convolutional layers,
followed by fully connected dense 1–5 layers. These experiments were conducted for the
multi-class category and subcategory classification. A detailed comparison is given in
Tables 4 and 5. The experimental results showed that the average optimal solution is two
convolutional layers and three dense layers.
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Table 4. A comparison of CNN layers for multi-class category classification.

Convolutional Layers Dense Layers Accuracy Precision Recall F1-Score

1 1 0.9465 0.92 0.9297 0.9237

1 3 0.9798 0.9712 0.9723 0.9716

2 1 0.9791 0.9756 0.9656 0.9701

2 2 0.9823 0.9744 0.9753 0.9747

2 3 0.9833 0.9742 0.9788 0.9764

2 4 0.9794 0.9697 0.9735 0.9713

2 5 0.9813 0.974 0.9757 0.9744

Table 5. A comparison of CNN layers for multi-class sub-category classification.

Convolutional Layers Dense Layers Accuracy Precision Recall F1-Score

1 1 0.7232 0.7056 0.6443 0.6182

1 3 0.7633 0.7660 0.7157 0.6804

2 1 0.7690 0.7518 0.6563 0.7008

2 2 0.7731 0.7955 0.7320 0.6989

2 3 0.7755 0.7876 0.7343 0.7600

2 4 0.7732 0.7890 0.6790 0.6541

2 5 0.7650 0.8499 0.6527 0.6160

4.2. Performance Evaluation of Optimizers

An optimizer is a function used to update the neural network weights and learning
rates. It helps to reduce the loss and improve the performance of the model [31,32].
Famous optimizers for DL algorithms are stochastic gradient descent (SGD), root mean
square propagation (RMSProp), adaptive moment estimation (Adam), adaptive moment
estimation maximization (AdaMax), and Nesterov-accelerated adaptive moment estimation
(Nadam). The performances of these modifiers are optimal for CNN, as validated in Ref. [33].
The aforementioned five optimizers were used in this experiment. A detailed comparison of
optimizers for the multi-class category and subcategory classification is shown in Tables 6
and 7, respectively. The experimental results show that Adam, Nadam, and AdaMax were
the top three optimizers in this experiment.

Table 6. A detailed comparison of optimizers for multi-class category classification.

Optimizer Accuracy Precision Recall F1-Score

SGD 0.9789 0.9676 0.9706 0.9690

RMSprop 0.7630 0.7457 0.7195 0.6527

Adam 0.9801 0.9761 0.9695 0.9725

Nadam 0.9838 0.9773 0.9783 0.9777

AdaMax 0.9806 0.9726 0.9721 0.9723

Table 7. A detailed comparison of optimizers for multi-class sub-category classification.

Optimizer Accuracy Precision Recall F1-Score

SGD 0.9789 0.9676 0.9706 0.969

RMSprop 0.7630 0.7457 0.7195 0.6527

Adam 0.9801 0.9761 0.9695 0.9725

Nadam 0.9838 0.9773 0.9783 0.9777

Adamax 0.9806 0.9726 0.9721 0.9723
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4.3. Performance Analysis of the Proposed DCNN

In this study, we propose a DCNN architecture for malicious activities identification in
IoT networks. For DCNN, the above results show that the optimal solution for the IoTID20
dataset is two convolutional layers, followed by three dense layers. In addition, from the
above results, we selected the top three optimizers (Adam, Nadam, and AdaMax) for
this experiment. This section provides a detailed classification of binary-class, multi-class
category, and multi-class subcategories for batch sizes 32, 64, 128, and 256.

4.3.1. DCNN Evaluation for Binary-Class Classification

The performance of the proposed approach was tested for a binary-class scenario.
The DCNN model was trained with the IoTID20 dataset for 50 epochs, and the binary
cross-entropy function was used to calculate the loss. In the first step, the proposed
DCNN performance for the Adam optimizer is compared in the bar graphs in Figure 3.
Based on the findings, the proposed model had the highest anomaly detection accuracy of
99.89% at batch size 128. For this optimizer, the other evaluation scores, namely, precision,
recall, and F1-score, were 99.77%, 99.37%, and 99.57%, respectively. In the second step,
all the experiments for the Nadam optimizer were rearranged with the same batch sizes.
The proposed DCNN performance for the Nadam optimizer is compared in the bar graphs
in Figure 4. Based on the findings, the proposed model had the highest anomaly detection
accuracy of 99.91% at batch size 128. For this optimizer, the other evaluation scores, namely,
precision, recall, and F1-score, are 99.87%, 99.38%, and 99.62%, respectively. In the third
step, all the experiments for the AdaMax optimizer were repeated with the same batch sizes.
The proposed DCNN performance for the Nadam optimizer is compared in the bar graphs
in Figure 5. Based on the findings, the proposed model had the highest anomaly detection
accuracy of 99.86% at batch size 128. For this optimizer, the other evaluation scores, namely,
precision, recall, and F1-score, were 99.74%, 99.14%, and 99.44%, respectively.

Figure 3. Adam optimizer for binary class scenario.
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Figure 4. Nadam optimizer for binary class scenario.

Figure 5. AdaMax optimizer for binary class scenario.

4.3.2. DCNN Evaluation for Multi-Class Category Classification

In this stage, the performance of the proposed study was evaluated for a multi-class
category classification scenario. The DCNN model was trained with the IoTID20 dataset
for 50 epochs, and a sparse categorical cross-entropy function was used to calculate the
loss. As noted previously, for the binary-class studies, an Adam optimizer was chosen at
the initial stage. The proposed DCNN performance for the Adam optimizer is compared
in the bar graphs in Figure 6. Based on the analysis of the results, the proposed model
had the highest anomaly detection accuracy of 98.13% at batch size 64. For this optimizer,
the other performance scores, namely, precision, recall, and F1-score, were 97.40%, 97.53%,
and 97.45%, respectively. In the second step, all the experiments for the Nadam optimizer
were rearranged with the same batch sizes. The proposed DCNN performance for the
Nadam optimizer is compared in the bar graphs in Figure 7. Based on the analysis of the
results, the proposed model had the highest anomaly detection accuracy of 98.38% at batch
size 32. For this optimizer, the other performance scores, namely, precision, recall, and F1-
score, were 97.73%, 97.83%, and 97.77%, respectively. In the third step, all the experiments
for the AdaMax optimizer were repeated with the same batch sizes. The proposed DCNN
performance for the Nadam optimizer is compared in the bar graphs in Figure 8. Based
on the analysis of the results, the proposed model had the highest anomaly detection
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accuracy of 98.06% at batch size 32. For this optimizer, the other performance scores,
namely, precision, recall, and F1-score, were 97.26%, 97.21%, and 97.23%, respectively.

Figure 6. Adam optimizer for multi-class category classification scenario.

Figure 7. Nadam optimizer for multi-class category classification scenario.

Figure 8. AdaMax optimizer for multi-class category classification scenario.
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4.3.3. DCNN Evaluation for Multi-Class Subcategory Classification

In the final stage, the performance of the proposed study was evaluated for multi-
class subcategory classification scenarios. The DCNN model was trained with the IoTID20
dataset for 100 epochs, and a sparse categorical cross-entropy function was used to calculate
the loss. As noted previously, for the binary and multi-class category studies, an Adam
optimizer was chosen at the initial stage. The proposed DCNN performance for the Adam
optimizer is compared in the bar graphs in Figure 9. Based on the analysis of the results,
the proposed model had the highest anomaly detection accuracy of 77.55% at batch size 32.
For this optimizer, the other performance scores, namely, precision, recall, and F1-score,
were 78.76%, 73.43%, and 76.00%, respectively. In the second step, all the experiments for
the Nadam optimizer were rearranged with the same batch sizes. The proposed DCNN
performance for the Nadam optimizer is compared in the bar graphs in Figure 10. Based
on the analysis of the results, the proposed model had the highest anomaly detection
accuracy of 77.44% at batch size 64. For this optimizer, the other performance scores,
namely, precision, recall, and F1-score, were 86.02%, 72.58%, and 78.73%, respectively.
In the third step, all the experiments for the AdaMax optimizer were repeated with the
same batch sizes. The proposed DCNN performance for the Nadam optimizer is compared
in the bar graphs in Figure 11. Based on the analysis of the results, the proposed model
had the highest anomaly detection accuracy of 77.11% at batch size 64. For this optimizer,
the other performance scores, namely, precision, recall, and F1-score, were 77.35%, 70.85%,
and 73.95%, respectively.

Figure 9. Adam optimizer for multi-class sub-category classification scenario.

Figure 10. Nadam optimizer for multi-class sub-category classification scenario.
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Figure 11. AdaMax optimizer for multi-class sub-category classification scenario.

4.4. Performance Discussion

The performance of the proposed DCNN was analyzed for binary, multi-class category,
and multi-class subcategory classification. The results presented earlier show a comparison
of optimizers and batch sizes. Based on the performance analysis of the proposed model for
binary class, the Nadam optimizer with a batch size of 128 performs better than the others.
Similarly, in the performance analysis of the proposed model for the multi-class category
and subcategory classification, the Adam optimizer with a batch size of 32 performs better
than others. For testing the performance of the proposed model, k-fold cross-validation
was also used, where the “k” value is 7. The results of the k-fold cross-validation are
approximately equivalent.

4.5. Performance Comparison with Other DL and Traditional ML-Based IDSs

The performance of the proposed DCNN was compared with other DL and tradi-
tional ML methods to evaluate its efficacy. LSTM, gated recurrent unit (GRU), deep neural
network (DNN), deep belief network (DBN), deep autoencoder (DAE), and multilayer
perceptron (MLP) are examples of DL methods. Decision tree (DT), logistic regression
(LR), naive Bayes (NB), support vector machine (SVM), and k-nearest neighbors (KNN)
are all examples of traditional ML methods. All of these methods were implemented
in the same environment for an accurate performance comparison. The preprocessing
steps were the same for all models, including the proposed model. We split the dataset
into 80% train and 20% test sets. For all of the DL algorithms, we used Adam optimizer
and default batch size 32. The optimal solution of each model was used for the compar-
ison. The hidden layers used in LSTM, GRU, DNN, DBN, AE, and MLP are 3, 3, 4, 4, 6,
and 10, respectively. The number of training epochs for all these models was the same as
the proposed model. A detailed analysis for binary-class category, multi-class category,
and subcategory classifications is shown in Tables 8–10, respectively. According to the
results, the performance of the proposed DCNN model is optimal as compared to other
DL models. The proposed model detection accuracy is 99.84%, 98.12%, and 77.55% for
binary-class, multi-class, and subcategory classifications, respectively.

For optimal performance, each DL model requires multiple layers that maximize
computational power. The proposed DCNN model improves the performance and also
reduces computational power as it narrows to specific features, compared to other ML and
DL models. Comparing the performance of the proposed DCNN with other ML and DL
models shows the optimal results.
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Table 8. A comparison of DCNN with other DL models on binary-class.

Models Accuracy Precision Recall F1-Score

LSTM 0.9952 0.9943 0.9662 0.9797

GRU 0.9959 0.9856 0.9807 0.9832

DNN 0.9981 0.9983 0.9862 0.9922

DBN 0.9969 0.9937 0.9807 0.9871

AE 0.9974 0.9895 0.9887 0.9891

MLP 0.9972 0.9938 0.9832 0.9884

DT 0.9857 0.9819 0.9861 0.9840

LR 0.9659 0.9034 0.7879 0.8345

NB 0.6504 0.5765 0.8093 0.6733

SVM 0.9744 0.9199 0.8552 0.8844

KNN 0.9983 0.9964 0.9894 0.9929

Proposed DCNN 0.9984 0.9967 0.9902 0.9934

Table 9. A comparison of DCNN with other DL models on multi-class category.

Model Accuracy Precision Recall F1-Score

LSTM 0.9584 0.9543 0.9201 0.9355

GRU 0.9681 0.9576 0.9468 0.9519

DNN 0.9547 0.9340 0.9447 0.9367

DBN 0.9589 0.9430 0.9549 0.9469

AE 0.9644 0.9515 0.9440 0.9456

MLP 0.9238 0.8933 0.8436 0.8529

DT 0.9770 0.9744 0.9737 0.9741

LR 0.8314 0.7728 0.7297 0.7311

NB 0.6772 0.6628 0.7381 0.6479

SVM 0.8557 0.8416 0.7845 0.7883

KNN 0.9793 0.9746 0.9699 0.9722

Proposed DCNN 0.9812 0.9713 0.9783 0.9746

Table 10. A comparison of DCNN with other DL models on multi-class sub-category.

Model Accuracy Precision Recall F1-Score

LSTM 0.7141 0.6993 0.5992 0.6453

GRU 0.7615 0.7571 0.6996 0.7272

DNN 0.7483 0.7244 0.6610 0.6912

DBN 0.6888 0.6916 0.6166 0.6519

AE 0.7535 0.7805 0.7016 0.7389

MLP 0.7065 0.7124 0.6263 0.6665

DT 0.7530 0.7508 0.7362 0.7413

LR 0.5481 0.4457 0.4239 0.4142

NB 0.5298 0.4878 0.5032 0.4481

SVM 0.6240 0.4888 0.4741 0.4624

KNN 0.7621 0.7634 0.7477 0.7515

Proposed DCNN 0.7755 0.7876 0.7343 0.7600
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5. Conclusions

This study presents a new DCNN-based DL model and feature engineering method
for malicious attack detection in IoT networks. The objective was to improve performance
and reduce computational power. The proposed DCNN model successfully improves
performance and reduces computational power. It is useful for low-power IoT network
devices. The IoTID20 dataset was used to analyze the performance of the proposed DCNN
model. The proposed model was evaluated for binary, multi-class category, and subcategory
classifications. Experiments were performed for different layers of the CNN algorithm,
and an optimal solution was selected. The proposed model was evaluated in-depth with
Adam, Nadam, and AdaMax optimizers. The Nadam optimizer peformance was optimum
for binary, multi-class category, and multi-class subcategory with 128, 32, and 64 batch sizes,
respectively. The proposed model was also compared with state-of-the-art DL techniques
and other traditional ML algorithms for a broader view in terms of efficacy, robustness, etc.
The experimental analysis indicates that the proposed approach obtained optimum results
when compared through accuracy, precision, recall, and F1-score parameters.
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Abstract: Unmanned Aerial Vehicles (UAVs) seem to be the most efficient way of achieving the
intended aerial tasks, according to recent improvements. Various researchers from across the world
have studied a variety of UAV formations and path planning methodologies. However, when
unexpected obstacles arise during a collective flight, path planning might get complicated. The study
needs to employ hybrid algorithms of bio-inspired computations to address path planning issues
with more stability and speed. In this article, two hybrid models of Ant Colony Optimization were
compared with respect to convergence time, i.e., the Max-Min Ant Colony Optimization approach in
conjunction with the Differential Evolution and Cauchy mutation operators. Each algorithm was run
on a UAV and traveled a predetermined path to evaluate its approach. In terms of the route taken
and convergence time, the simulation results suggest that the MMACO-DE technique outperforms
the MMACO-CM approach.

Keywords: path planning; Max-Min Ant Colony Optimization; differential evolution; Cauchy mutation

1. Introduction

Motivation: Today, the applications of Unmanned Aerial Vehicles (UAVs) in the field
of aeronautics are expanding day-by-day, due to their impact in every field [1]. At once, a
single UAV was able to do a small task with a high operational cost. With the development of
research and technology, multiple UAVs are used for complex tasks e.g., military, construction,
surveying, and pattern formations [2–5]. However, one of the best reasons to use UAVs in a
lethal environment is to secure humans from an ambiguous situation [6].

Biological behavior in nature is so inspiring for the real-world problem formulation of
aerial robotics [7,8]. When aerial robotics becomes complex in multi-tasking applications,
these biological behaviors will help find the optimal solution. In most cases related to the
formation and path planning problems of UAVs, various bio-inspired algorithms become
feasible [9]. However, one of the oldest optimization techniques widely used for shortest
path routing problems is Ant Colony Optimization (ACO) [10–12].

Background and Related Work: The dynamics of complex aerial systems are diffi-
cult to handle especially when they are in clusters and want to achieve the same target
smoothly [13]. Therefore, various controlling and optimization techniques are widely
used in this area. Some famous intelligent optimizing algorithms, i.e., ACO, PSO, ABC,
PIO, etc., are gaining popularity due to their problem-solving ability with the simplest
structure [14–17]. Based on the food searching intelligence of real ants in nature; Ant
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Colony Optimization and its variants have been used to solve the complex dynamics of
a system [18]. ACO initially proposed by Dorigo et al. [19] was applied to Travelling
Salesman Problem (TSP). However, the ACO algorithm resolves path planning problems of
UAVs to obtain better routes and faster convergence [20].

Rapid progress in this area needs a hybrid approach based on ACO to optimize the
previous attainments [21–23]. In [24], MAX–MIN Ant System (MMAS), an Ant Colony
Optimization technique evolved from Ant System in which search space is bounded for
better results. Later on, in [25], the author introduces efficient route planning by achieving
the maximum convergence of the target. Similarly, in [26], an improved ACO is used to
solve the trajectory planning of multiple UAVs. In [27], Duan et al. combined the ACO
algorithm with Differential Evolution (DE) for 3D path planning of uninhabited combat air
vehicles. Another author contributed in [28], for feature selection based on the combination
of ACO and DE.

Contributions: This article compares the convergence rate of two state-of-the-art
hybrid algorithms based on Max-Min Ant Colony Optimization techniques for the path
planning of multiple UAVs. In [29], the author proposed a hybrid algorithm of Max-Min
Ant Colony Optimization combined with Differential Evolution (MMACO-DE) on behalf of
the path planning multiple UAVs. The author also added the dynamic environment in his
research and proved with the simulation that the target achieved by his proposed algorithm
has better results with a successful collision avoidance approach. The main feature of this
article is that it selects only the finest ant in each cluster among all for the creation of the
required path. In addition, the multiple colonies concept in the research saves the duration
of target detection with fewer computations. In [30], the author used the Cauchy Mutant
operator along with Max-Min Ant Colony Optimization (MMACO-CM) to improve his
previous results. In this article, the same issue regarding path planning of Multiple UAVs
in a dynamic environment is resolved with the new hybrid technique of MMACO-CM.
This article has two important features, which include increasing the convergence speed
for the avoidance falling into local optimum and achieving the shortest path for the target.

Organization: The following section is prearranged as follows. Section 2 elaborates
the problem statement associated with the path planning of UAVs. Section 3 presents the
preliminaries of Unmanned Aerial Vehicles. Section 4 deals with hybrid algorithm along
with their mathematical modeling. Section 5 discusses the results obtained by comparison
of the algorithm while Section 5 concludes the article.

2. Problem Statement

Path planning of aerial vehicles needs precise optimization techniques to obtain
optimal routes despite manmade and natural threats. To achieve the target in the shortest
possible time along with the shortest distance taken by each UAV, the best hybrid algorithm
needs to have minimal complexions. However, the study uses the artificial obstacle theme
containing mountains with different peaks and tornados in simulations. Unlike in urban
environments, the mountainous area has uneven peaks and hence poses a greater challenge.
Moreover, each hybrid algorithm requires a UAV to follow the same path simultaneously. Both
UAVs move from the same starting point to the desired location to analyze the performance
of the individual algorithm. Each UAV will travel along the specified route by implementing
the hybrid algorithm and providing optimal route as well as convergence speed.

3. Preliminaries of Unmanned Aerial vehicles

3.1. Path Planning

The term “Path Planning” determines the route planned for an object for any specified
mission, which includes various obstacles along the path [31]. The planned path restricts
the UAV from possible crashes from obstacles or neighboring UAVs. Path planning is more
feasible when operating with large quantities of robots. Path planning of aerial systems is
categorized into motion-based and tracking-based approaches [32].
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Motion planning: The term motion planning refers to the movement of aerial or ground
robots for the specified or desired task [33]. The basics of motion planning include the
shortest possible path, along with a precise turning angle. Motion planning consists of two
basic configurations i.e., start and goal configurations. It uses two-dimensional (2D) or
three-dimensional (3D) space configurations to show their path [34].

Table 1 shows the difficulty level of robotic motion planning in terms of information
provided to the robot. The robot may calculate the size, nature, and distance of obstacles at
every instant to avoid a collision [35]. There are four possible scenarios shown in Table 1.
The first scenario is the simplest one with completely known information while in the
third scenario, the information is partially known. In the second and fourth scenarios, the
information regarding obstacles is completely and partially known for dynamic obstacles;
therefore, these scenarios are considered difficult ones for robotic motion planning [36].

Table 1. Possible scenarios between obstacle types and information available.

Static Obstacle Dynamic Obstacle

Complete Information Known 1st Scenario 2nd Scenario

Partial Information Known 3rd Scenario 4th Scenario

Trajectory planning: Trajectory planning comes into existence when another motional
variable encloses the path planning rather than obstacles. The velocity of robots, time
taken by the path, and relative kinematics of the system are equally responsible to achieve
the goal [37]. Moving from the initial point to the final point using collision avoidance is
what trajectory planning is all about. In trajectory planning, both discrete and continuous
methods use parametric calculations required to achieve the target. To follow a specific
path with control parameters, e.g., location, rate, and acceleration, there must be the
scheduling of time, and applying a control system that can accurately execute the trajectory
is required [38].

When aerial vehicles fly simultaneously to achieve the desired task, they must follow
the planned path to achieve that target. However, artificial intelligence and state-of-the-art
technologies are still not capable of providing real-time solutions to UAVs in operating
mode [39]. Therefore, nature-inspired algorithms based on the natural behavior of species
are serving to provide solutions for the real time scenarios with fewer computations [40].

3.2. Collision Avoidance Protocol

Path planning of UAVs is incomplete without using a collision avoidance protocol.
When UAVs form a specific shape during flight then they must follow the air collision
rules to maintain a safe distance [41]. The environmental hurdles can be of many types
including mountain, air disturbance, harsh weather, or any unwanted disturbance. The
distance between the UAVs continues to decrease when moving towards the destination
due to path planning constraints. To avoid a collision near the target, a safe distance is
required by the following relationship [42].

Lsafe(t) =
{

L, t ≤ Td,n
l, t > Td,n

(1)

where L and l are the distance between UAVs and it varies according to the path planning.
As a result, when planning or controlling multi-UAV formations, make sure there is no
overlap between UAVs as much as possible to build air space cooperation.

Furthermore, changing the height of a UAV regularly puts the flight’s safety at risk.
As a result, it is best to avoid changing the altitude regularly. The fluctuating height Ch of
the UAV states

Ch =

√√√√ 1
mk

mk

∑
k=0

(
(hk − (

1
mk + 1

)∑mk
l=0 hk)

)2
(2)
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where hk is the height of UAV, kth represents path leg and leg number is denoted by mk.
Because all UAVs are flying close together, the turning angle is a significant component of
information control and path planning issues. The connection between nodes, edges, and
legs is shown in Figure 1. The UAV travels between nodes, which serve as waypoints. It is
limited to moving solely between nodes. When the algorithm begins, nodes are created.
While the surroundings are three-dimensional, we separate it into the x, y, and z planes to
make calculations easier. The nodes are therefore in 2D space. The dynamic topology of
these nodes changes depending on the situational context.

Figure 1. Correlation of Edge, Node, and Legs along with spinning angle ψ.

Each UAV has various limits in cooperatively altering its attitude due to constraints in
the maneuverability of its maximum angle, which may result in an impact between UAVs.
The projection of kth and (k + 1)th leg on the parallel plan of the present location is pre-
sented by pk and pk+1. The calculated spinning angle along with its limited maneuverability
is given by ψ.

Cosψmax ≤ (pT
k pk+1/|pk||pk+1|), k = 1, 2, . . . ., n − 1 (3)

3.3. Environmental Threats

Air space contains various threats and hurdles for flying vehicles, which can produce
uncertainties and delays in-flight operation [43]. In natural threats, air dynamics, weather,
humidity, and temperature can disturb UAV flight operations. Similarly, artificial threats
including enemies, hurdles, and obstacles can also disturb its operation. To cope with these
types of threats, a 3D complex environment needs to be created in simulation [44]. This
environment tests the performance of the proposed algorithm by adding uncertainties with
respect to the system. In this study, there are two types of environmental threats, which
contain multiple mountains with altered peaks and air disturbance in between mountains
to create cyclones.

4. Hybrid Algorithm

To optimize the system more rapidly and accurately, a hybrid algorithm plays a vital
role by combining two or more algorithms. It selects a suitable collection of optimization
algorithms to reduce the errors in the system.

4.1. Ant Colony Optimization

In the field of optimization algorithms, the Ant Colony Optimization algorithm is ex-
tensively used in UAVs. It provides the optimal solution for a complex problem associated
with air vehicles. When compared with other algorithms and techniques, ACO has an edge
in its distributed computation approach and pre-mature convergence avoidance. In the ant
system, real ants create the food-searching algorithm with the help of multiple tours. The
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most followed route is the optimal route for the rest of the ants. The pheromone trail is the
basic tool in the path for indication [45].

Searching for food in insects is common in nature, where each species has their own
natural procedure to follow. The most famous species in search of food are ants, due to
their unmatched behavior [46–48]. The Ant Colony Optimization (ACO) algorithm gives
a comprehensive food searching performance of ants [49]. In this algorithm, the social
behavior of ants presents mathematically to find the optimal solution for the target. Initially,
the ants distribute in different clusters and follow all possible paths to reach the food. In
this journey, all ants leave pheromone (a chemical substance) along the route to help other
following ants. After the first round, all the ants will try to follow the shortest route in
consecutive rounds [50]. Thus, after specific rounds, a single shortest route allowed the
ants to follow from the initial point to the target as shown in Figure 2.

 
Figure 2. Food hunting procedure in Ant system, case 1 presents the multiple routes while Case 1
shows only single shortest route available for ants.

In the ACO algorithm, the pheromone value replaces with an updated one after every
iteration. This process is autonomous, and all ants will follow the same instructions based
on pheromone value, which can reflect the food quality and quantity on the desired path.
This process continues until one of the possible paths can get more pheromone than the
rest. The preferred path will now be the only path allowed for all ants to form the shortest
path in their food search process [10]. However, the path with the most pheromone has a
very high probability to be the best path as shown by

Px
i,j(t) =

ρα
i,j(t)

β
i,j(t)

∑j∈accept(i) ρα
i,j(t)

β
i,j(t)

(4)

where Px
i,j(t) the probability of xth ant city between i to j, ρα

i,j(t) is measured pheromone at

the corner of the cities, β
i,j(t) is the reciprocal of the length between two cities, α and β are

the pheromone weight and distance traveled by the xth ant. Initially, the rate of pheromone
is not constant at the corners of the cities but later on, the pheromone weight is greater to
form a most visible line across all paths [19]. The following relation determines the rate of
the pheromone.

ρ
q
i,j(t + 1) = (1 − δ)·ρq

i,j(t) + Δρ
q
i,j (5)

where δ ∈ (0,1), the amount of evaporation concerning time t to t+1

ρ
q
i,j(t) = ∑

l=1
Δρ

q
i,j,y (6)

where Δρ
q
m,j,y, the present amount of pheromone.
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4.2. Maximum Minimum Ant Colony Optimization

Maximum Minimum Ant Colony Optimization (MMACO) is a technique for improv-
ing the system’s search space capability and obtaining the fastest convergence time. The
search space is constrained with this strategy by specifying a range, which reduces the
search time and allows it to converge quickly. Updated trails in MMACO depend on decent
travels of selected ants with the highest fitness value among all ants. In MMACO, consider
m ants are assigned for the ith UAV for multiple routes. The mean cost μ of the route gives,

μi,m(t) =
1
m

m

∑
k=1

ji,k(t) (7)

To fulfill the required condition of route cost μi,min(t) ≥ μi,k(t), Hunt stagnation
alleviates a distinct solution for the finest iteration global ants for the updated trail pheromone.
This form of stagnation avoids the next resolution of the pheromone trails. Although the
discrepancy among pheromone trails is prohibited with the minimal effects of pheromone trails.

ACO conducts maximum and minimum pheromone trails. The following equation
is responsible to update the pheromone trails in the final iteration of upgrading the trail
pheromones. The entire pheromone trail is denoted by ρmax and ρmin. ACO carries out the
maximum and minimum pheromone trails for all of the pheromone trails referred to as
ρmax and ρmin. Now, improving the trail pheromones in the last iteration, the following
equation updates the pheromone points.

ρi,j(t) =

⎧⎨
⎩

ρmax; ρi,j(t) ≥ ρmax
ρi,j(t); ρmax ≥ ρi,j(t) ≥
ρmin; ρmin(t) > ρi,j(t)

ρmin (8)

4.2.1. Maximum Minimum Ant Colony Optimization with Differential Evolution

Based on the evolutionary process, a meta-heuristic search technique Differential
Evolution (DE) solves the optimization issues. A population-based searching procedure
improves the system performance for large search spaces. For continuous optimization
problems, this adaptable optimization technique will be providing a better solution than
others will. Moreover, DE has three core control factors, upon which it is based i.e., operator
selection, mutated DE, and crossover DE. In this technique, a random system solution is
subsequently magnified using population vectors. It creates the trail alteration first and then
connects the trail mutation with the objective mutations to create an updated distinct. It will
accept and replace the prior individual with an updated one who has good fitness results.

In the MMACO-DE algorithm, Zain et al. presented a hybrid algorithm that depends
on Max-Min ACO and DE algorithms. This algorithm provides improved performance of
path planning of multiple UAVs in 3D search space. Moreover, the multi-colonies approach
carries out the shortest route to achieve the target with improved convergence speed. There
are multiple sub-colonies in the ant colony system in which each sub-colony has its leader
whose fitness value is best among all. This ant is responsible for forming and updating the
route for other ants to follow. Similarly, the best sub-colony will lead the other colonies to
obtain a robust path [24].

To deal with the issues related to path planning, the finest ant from every single colony
will represent the colony, and the finest ants of the colony control the pheromone trails for
the entire situation. There are three colonies, each with its colony number, which limits
the total number of ants, according to the MMACO strategy model. There will be no DE
operation if the value of Pcr is zero as shown in Equation (10). Nonetheless, one element
of the mutation pheromone mechanism has now been identified which will be delivered
to the newly generated pheromone matrix with confidence. However, the DE mutation
method and a better trail spreading form a general equation.
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ρi,j(t) =

{
ρt+1

i,j , if t ≤ Pcr

ρt
i,j, t > Pcr

(9)

where ρt+1
i,j is denoted as the number of pheromone trails between two repeated nodes i to

j of the ant colony and Pcr is crossover probability.

4.2.2. Maximum Minimum Ant Colony Optimization with Cauchy Mutant Operator

To increase the performance of UAVs in difficult situations, one more combinatorial
approach for path planning is applied. To improve the system’s performance, Max-Min
Ant Colony Optimization pairs with the Cauchy mutation approach. The major perceptive
for combining these two algorithms is to speed up convergence and to keep track of any
UAV’s future failure. The Cauchy mutation distribution gives the following formula,

f(a : a0, z) = 1/π
[
t/(a − a0)

2 + t2
]

(10)

where Cauchy distribution cost is a0, t is the thickness value related to the maximum cost
of Cauchy distribution. The incremental function of the distribution function is as follows,

F(a : 0, 1) =
1
π

tan−1(a) +
1
2

(11)

Compass and map operator: Compass operators employ conventional ant colony opti-
mization (ACO) to identify the boundaries of the equivalent direction. Furthermore, the
map operator utilizes to examine the global best objects to determine the location, velocity,
and subsequent transformation of the ACO’s environment to the best individuals. The
compass and map operator denotes the coefficient M1. It will not help you find the search
area, but it might help you reduce the threat level. The Cauchy distribution and its mutation
mass coefficient state as follows.{

rand = 1
2 + 1

π tan−1(M1 )
M1 = tan(π(rand − 1/2))

(12)

The rand function is used in the preceding equation to choose a random value of 0 or
1. The rule develops to update the position of each best ant for each iteration.

X̂k = X0k + M1

(
X0k − Xgbest

)
(13)

where X̂k, X0k are the current locations of the kth ant with the updated one. Similarly,
the global best location is denoted by Xgbest. Moreover, the next iteration for the specific
location follows,

Xk =

{
f
(
X̂k
)
< X̂k, f(X0k)

f(X0k) < X0k, f
(
X̂k
) (14)

When map and compass operator values of Cauchy mutation become positive, then
the position updates the global optimal position. Furthermore, partial distinct entities
will fail to discover the optimal and improved location. This happens due to the Cauchy
mutation variations. When comparing the unadapted and current position, the superior
result is obtained. This approach will not only ensure the optimization method’s supremacy
but will also broaden the population’s range [25].

Landmark operator: Traditionally, the landmark operator in ACO reduces the population
size instantly after every iteration update and a small number of ants will move towards
the map’s edge. In an unsuitable manner, this rapid decrease in population will induce
an undeveloped convergence of the approach, which results in an unfavorable perception
of the optimization at the landmark operator stage. To improve the convergence rate, we
must use the Cauchy landmark function instead of the local landmark operator to update
the position of each ant’s colony to the best possible place.
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The Cauchy landmark function states that.

F(a : 0, 1) =
2
π

tan−1(a) +
1
2

(15)

The landmark operator’s Cauchy mutant weight coefficient is M2 and it follows the
appropriate distribution is given by;

{
rand = 2

π tan−1(M2)
M2 = tan(2/π ∗ rand)

(16)

The above expression for the updated location is

XNc
0k = XNc−1

0k + M2(Xgbest − XNc−1
0k ) (17)

where the term XNc−1
0k is the distinct kth ant position of Nc − 1 iteration. During the Cauchy

mutant landmark operator’s operational stage, all diverse ants will gradually achieve the
global ideal result. A suitable Cauchy mutant operator will efficiently move the ant colony
at a proper speed and direction, ensuring the algorithm’s stability and speedy convergence.

5. Results and Discussion

This section compares the effectiveness of both the algorithms and puts their results
side by side to determine which algorithm performs better. The simulations were performed
on a computer with an Intel Core i7-1165G7 processor, 16 GB DDR4 Ram, and Windows 11
operating system. The simulation software used was MATLAB 2021a.

The hybrid algorithms of Max-Min ACO apply to two different UAVs to obtain the
best result among them in terms of the route followed and convergence rate. In UAV1,
MMACO combined with DE to follow the route from the initial point to the target in the
presence of a bunch of obstacles. Similarly, UAV2 specifies the effectiveness of the second
algorithm i.e., MMACO with CM.

Case 1:
In case 1, the UAVs start from the same initial point and have the same target as well.

Wind forces are present in this scenario. Table 2 presents the constraints of the wind force.

Table 2. Constraints of wind force.

No. Constraints Radius, Center Coordinates Unit

1
Radius 1.8

km
Center (7,6,1)

2
Radius 2.5

km
Center (6,14,1)

3
Radius 1.3

km
Center (16,6,0.9)

4
Radius 0.8

km
Center (15,12,1)

Table 3 gives the initial and target points of UAVs along with the total distance traveled
by these two for case 1.
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Table 3. Case 1 initial and target points.

UAV
Algorithm
Applied

Initial Point
(x,y,z)

Target Point
(x,y,z)

Distance Travelled
(in KM)

UAV1 MMACO-DE (0,2,0) (20,20,1) 23.5

UAV2 MMACO-CM (0,2,0) (20,20,1) 24.1
MMACO-DE: Max-Min Ant Colony Optimization with Differential Evolution; Max-Min Ant Colony Optimization
with Cauchy Mutation.

To determine the best algorithm for case 1, both UAVs start from the same location
simultaneously to the same target point (*) above the ground and are allowed to choose
their own shortest path according to their approaches. Figure 3a,b describes the path
obtained by UAV1 and UAV2 from the initial point to the target point in a 2-dimensional
system. As we can see in Figure 3a, the path constructed by the MMACO-DE is shorter
than MMACO-CM and has fewer turns. While Figure 3b, presents the different view of the
path followed by the compared algorithms implemented on UAVs.

(a) 

(b) 

Figure 3. (a,b) Case1; 2D views of path followed by UAV1(MMACO-DE) and UAV2 (MMACO-CM)
to the target (*).

The 3 dimensional view for case 1 has also been shown in Figure 4 which provides
the sense of flying in a dynamic environment including obstacles such as tornados and
mountains with different peaks. Again, it is clear from Figure 4 that the MMACO-DE takes
fewer turns, hence saving time and minimizing the distance.
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Figure 4. Case1; 3D view of path followed by UAV1 and UAV2 to the target (*).

The take-off points for both UAVs is (0,2,0) which means that both UAVs will fly
simultaneously. Initially, both UAVs will fly on their route by analyzing the obstacles and
target point (20,20,1) but after a 2 Km distance, MMACO-CM goes slightly off the route
which increases its time of flight whereas MMACO-DE continues to follow the shortest
route. At the end of the journey, UAV1 will reach the destination earlier than UAV2, and it
verifies that the convergence rate of UAV1 is better than UAV2.

Case 2:
For case 2, the UAVs start from different initial points. Wind forces are present in this

scenario as well. The constraints for the wind forces are the same as case 1 and given in
Table 2. Table 4 gives the initial and target points of UAVs along with the total distance
traveled by these two for case 2.

Table 4. Case 2 initial and target points.

UAV
Algorithm
Applied

Initial Point
(x,y,z)

Target Point
(x,y,z)

Distance Travelled
(in KM)

UAV1 MMACO-DE (0,1,0) (19.8,20,1) 24.221

UAV2 MMACO-CM (0,2,0) (19.8,19.8,1) 27.242
MMACO-DE: Max-Min Ant Colony Optimization with Differential Evolution; Max-Min Ant Colony Optimization
with Cauchy Mutation.

To determine the best algorithm for case 2, both UAVs start from different locations
and are allowed to choose their own shortest path according to their approaches. Figure 5
describes the path obtained by UAV1 and UAV2 from the initial point to the target point in a
2-dimensional system. As we can see in Figure 5a, the path constructed by the MMACO-DE
is again shorter than the MMACO-CM and has fewer turns.

The 3-dimensional view for case 2 is shown in Figure 6 which provides the sense of
flying in a dynamic environment including obstacles such as wind forces and mountains
with different peaks. Again, it is clear from Figure 6 that MMACO-DE takes fewer turns,
hence saving time and minimizing the distance.

Analyzing the two case studies, we can clearly see that even if the UAVs start from
different locations, MMACO-DE still performs better than MMACO-CM. It picks the
shortest distance while avoiding the wind forces and the uneven peaks. It also takes less
turns, which in turn ensures that MMACO-DE takes less time to reach the destination than
MMACO-CM.

Figure 7 presents the estimation costs of MMACO-DE and MMACO-CM to validate
the work.
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(a) 

(b) 

Figure 5. (a,b) Case 2; 2D path followed by UAV1(MMACO-DE) and UAV2 (MMACO-CM) to
the target (*).

Figure 6. Case 2; 3D view path followed by UAV1 (MMACO-DE) and UAV2 (MMACO-CM) to
the target (*).

Figure 7. Estimation costs of MMACO-DE and MMACO-CM.
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6. Conclusions

Nowadays, bio-inspired algorithms are becoming famous to solve issues related
to path planning of unmanned aerial systems with their simplest approach. There are
numerous methods in nature offered for this cause i.e., Particle Swarm Optimization, Ant
Colony Optimization, Pigeon Inspired Optimization Artificial Bee Colony Optimization,
etc., however, one of the most commonly used algorithms for path planning of Unmanned
Aerial Vehicles (UAVs) is Ant Colony Optimization (ACO). This article compared two
hybrid optimization algorithms for path planning and determines which one is more
efficient. Both algorithms use a modified ACO, called Max-Min Ant Colony Optimization
algorithm (MMACO), with another algorithm to enhance their effectiveness. The first
hybrid algorithm is a combination of the MMACO with the Differential Evolution approach
and the second hybrid algorithm is a combination of MMACO with the Cauchy Mutant
approach. The MMACO algorithm has tremendous problem-solving skills, especially
in complex environments. To reduce noise and disturbance in operation, along with
improvement of robustness in the flying, MMACO combines with Differential Evolution
and Cauchy Mutant operator. In MMACO–DE, the route followed by UAVs provides the
best and shortest route than basic Ant Colony Optimization (ACO); while in MMACO-CM,
a flock of UAVs when compared to basic MMACO achieves the optimal route.

Using simulations, this paper concluded that the MMACO-DE algorithm was better
than MMACO-CM in achieving a shorter path with less path cost. For future work, we
propose to implement the proposed algorithms on hardware and compare the experimental
results with the simulations.
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Abstract: Currently, Android apps are easily targeted by malicious network traffic because of their
constant network access. These threats have the potential to steal vital information and disrupt the
commerce, social system, and banking markets. In this paper, we present a malware detection system
based on word2vec-based transfer learning and multi-model image representation. The proposed
method combines the textual and texture features of network traffic to leverage the advantages of
both types. Initially, the transfer learning method is used to extract trained vocab from network
traffic. Then, the malware-to-image algorithm visualizes network bytes for visual analysis of data
traffic. Next, the texture features are extracted from malware images using a combination of scale-
invariant feature transforms (SIFTs) and oriented fast and rotated brief transforms (ORBs). Moreover,
a convolutional neural network (CNN) is designed to extract deep features from a set of trained
vocab and texture features. Finally, an ensemble model is designed to classify and detect malware
based on the combination of textual and texture features. The proposed method is tested using two
standard datasets, CIC-AAGM2017 and CICMalDroid 2020, which comprise a total of 10.2K malware
and 3.2K benign samples. Furthermore, an explainable AI experiment is performed to interpret the
proposed approach.

Keywords: malware detection; malware visualization; transfer learning; network traffic; explainable
AI; cyber security

1. Introduction

We have entered the “mobile era” with the advent of sophisticated technologies
and smartphones becoming increasingly common. Traditional cognitive platforms that
power desktop computers are being displaced by smartphones and tablets with massive
computational capability. Apps that were previously only available on high-end desktop
computers are now available on a variety of mobile platforms. Mobile phones have evolved
into devices that allow users to conduct online transactions, communicate with friends,
and play games [1]. The number of apps accessible for download on the Google Play Store
expanded between 2009 and 2017. The Google Play Store (https://www.statista.com/
statistics/266210/number-of-available-applications-in-thegoogle-play-store (accessed on
20 February 2022)) had more than 3.5 million apps as of December 2017, an increase
from slightly more than 1 million in July 2013. Furthermore, mobile network data are
rapidly growing, and cloud services are hastening this process. Android has the largest
market share in terms of mobile operating systems. The rapid expansion of Android
has spawned a thriving developer community. Hundreds of millions of apps can be
downloaded in seconds from various Android marketplaces. As smartphones and tablets
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become more popular, the number of mobile malware threats targeting them grows [2].
The number of ransomware attacks nearly doubled in 2021, as reported by the National
Computing Centre (NCC) (https://www.nccgroup.com/uk/ (accessed on 3 July 2022))
Group. For instance, the number of reported ransomware attacks increased by 92.7%
between 2020 and 2021, from 1389 to 2690. Network-based malware is becoming more
sophisticated and difficult to combat. This means that we must now deal with everything
from network-based malware to internet services that are protected by mobile devices.
Furthermore, adversaries are becoming increasingly capable of creating malware that can
avoid traditional sandboxing [3]. It is critical to establish a strong network-based malware
classification and detection mechanism.

Mobile malware detection solutions can be classified as static, dynamic, or traffic-
based [4]. Several previous studies used a static technique to detect vulnerabilities and
malware in Android apps. The complexity and diversity of the required codes make
this method challenging. Many dynamic approaches attempt to change the operating
system of the phone to monitor and recover sensitive information. These strategies are
effective, but they necessitate a significant amount of computing power to investigate
all possible app patterns [5]. Several malware detection algorithms focus on network
traffic generated by Android apps. Malware can be identified by abnormal network
behavior patterns. This type of malware detection technology is very useful because the
vast majority of Android malware performs harmful behaviors via network activity. To
perform malicious acts, malware must communicate with a host system via the network.
These traces allow different types of malwares to be tracked and identified. Furthermore,
compared to previous methods, developing a network-based malware detection system is
less difficult. For instance, such a method can be used at an entry point or gateway without
overburdening the mobile device. These solutions are solely based on data generated by
consumers, ensuring that users have access to desired mobile apps. Furthermore, other than
granting rights to the identifying service, these solutions require no user engagement [6,7].
The goal of network traffic-based approaches is to discover distinctive features of malware
that may be used to classify it accurately.

1.1. Problem Statement

Network traffic malware may employ several malicious URL scripts to affect a target
Android app. Text-based feature analysis can identify potentially harmful scripts in terms of
behavioral segmentation. Figure 1 depicts the malicious activities of adware and riskware.
Riskware can embed malicious bytes required for remote code execution. For instance,
“application/x-javascript” is incorporated in network traffic to be executed on a remote
device to prevent normal access. Similarly, Adware is a type of malware that hides on the
target system and displays advertisements. Some adware also monitors internet activity to
serve relevant advertisements. Such behavior cannot be achieved solely through image
visualization. However, text-based analysis is associated with several issues, such as code
obfuscation, insertion, reordering, etc. Image-based malware classification is widely used
because it can collect all types of structural information such as memory, process, header, etc.
As a result, visual images can be used to retrieve any type of dynamic or obfuscated data.
However, it can alter the overall structure of network traffic files, rendering it impossible to
target a specific script, such as a malicious script, URL, etc. Furthermore, this method is
completely reliant on image attributes. For instance, a hacker can attack a malware image,
affecting overall classification performance. As a result, we combined text-based features
to detect potential malicious scripts and textural image features to detect other dangerous
behaviors, such as memory or resource utilization. A hybrid approach can efficiently use
and classify malware and benign files.
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(a) 

 
(b) 

Figure 1. Malicious behaviors of adware and riskware network traffic. (a) Adware, (b) riskware.

1.2. Research Contributions

In this paper, we propose a novel method for analyzing and characterizing network-
based malware. The HTTP and TCP flows are filtered from encrypted communications for
broad analysis. Then, word2vec is utilized to capture the trained vocab features. Then, the
network-based byte stream is converted to an image. The text-based and visual features are
combined for effective malware classification. We observed that these two sorts of features
complement one other and that combining them can increase the detection rate of malware.
The main contributions of the paper are as follow:

• A malware classification and detection system is proposed using a hybrid approach of
transfer learning and texture features. The proposed method adopts the benefits of
both methods, i.e., textual and visual analysis.

• An explainable AI experiment is designed to interpret and validate the proposed approach.

The remainder of this paper is organized as follows. In Section 2, we describe the re-
lated work, and in Section 3, we describe the proposed method. In Section 4, we thoroughly
discuss the experiments, and in Section 5 we present our conclusions.

2. Related Work

Several studies [8,9] had demonstrated how the Android platform protects infected
target devices using a variety of security measures, including permission processes. How-
ever, individuals have to be adequately qualified with respect to security concerns to
benefit from admin privilege protection. These limits imposed by excessive reliance on the
customer enable Android malware to infiltrate and proliferate via portable devices. The
majority of such analyzers examine aspects such as permissions and potentially unwanted
programs to determine whether an application is suspicious or not. Antivirus apps protect
computers against malware threats. However, malicious software is always evolving and
expanding. As a consequence, malware detection methods need improvement. Several
malware detection systems can currently decipher malicious activity in APK files without
executing them.

Sanz et al. [10] developed a static approach that accurately classifies infections by cap-
turing an app’s uses-permission and uses-feature details, as well as the user’s permission
information for log files. The proposed method achieved 86.41% classification accuracy.
Puerta et al. [11] used the same approach to detect malware using the Drebin dataset and
achieved 96.05% accuracy. Liu et al. [12] proposed a two-phase malware detection method.
The first phase involves analyzing the app’s Manifest.xml document, which provides re-
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quested permissions. The second phase is to preprocess the APK file using APK tools to
obtain the smali code. The smali code may contain details about asserted permissions, in-
cluding API calls, which may be used to detect malicious acts. The suggested technique has
a detection performance of 98.6%. Shanshan et al. [13] proposed an HTTP- and TCP-based
malware detection system for abnormal network assessment. The network device replicates
the portable app’s data flow. All information retrieval and malware identification take
place on the web, utilizing the fewest resources possible. Network-based characteristics
and neural network models are coupled to identify mobile malware with an accuracy of
97.89%. Aresu et al. [14] investigated HTTP-based datagrams produced by Android apps
when they interact with distant malicious servers. It also applies a grouping method of
producing profiles from several malware variants. These markers are then employed to
determine unusual operations. Wang et al. [15] developed the TextDroid methodology,
which divides an HTTP content flow into special symbols and then generates n-gram
sequences to study the layout of the resulting attributes. TextDroid also collects sequential
information to feed into a learning algorithm for malware identification. This text-based
technique achieved a classification score of 76.99%. Shanshan et al. [16] presented data
traffic as a concept for detecting mobile malware. Natural language processing (NLP) tools
are used to exploit an HTTP text file for knowledge representation. The next step is to detect
malware by inspecting the linguistic characteristics of network data. The presented scheme
has a classification performance of 95%. Data from TCP and HTTP traffic features are
extracted by TrafficAV and compared to each other using a C4.5 decision tree for accuracy
comparison. However, this method does not integrate TCP and HTTP network traces for
the machine learning model. It provides a malware detection rate of 98.16% based on HTTP
flows [17]. Johann et al. [18] proposed a WebEye framework that generates feasible HTTP
traffic on its own, enriches captured traffic with detailed information, and classifies records
as malicious or benign using various classifiers, with an accuracy rate of 89.52%.

Numerous studies [19,20] using deep learning to classify malware have produced
promising results. A perceptron called the multi-layer perceptron (MLP) [21] works with
other perceptrons stacked in multiple layers to categorize malware. A CNN [22] is primarily
used to deal with texture features from malware images in order to classify malware.
Gradient boosting [23] uses an ensemble of weak prediction models, usually decision
trees, to classify malware. A temporal convolutional network (TCN) [24] is influenced by
convolutional architectures, which combine easiness, vector autoregression prediction, and
enormously long memory for malware classification. A general meta-approach to machine
learning called ensemble learning combines the predictions from various models to improve
malware classification performance [25]. Chen et al. [26] proposed a CNN model for
categorizing mobile apps that relies on HTTP logs. The use of CNN speeds up the selection
of features, resulting in more precise traffic detection outputs. The presented method
achieved an identification rate of 98%. David et al. [27] introduced the DeepSign method,
which is based on deep belief networks. It is capable of producing immutable, concise
definitions of malware activities, which can enable it to effectively differentiate nearly all
current malware variants with an accuracy of 98.6%. Shanshan et al. [28] introduced an
HTTP-based malware classification method. A multi-view neural network is used to detect
destructive behavior with varying levels of penetration. This method can be used to focus
on certain attributes of input parameters by allocating continuous attention to features. The
highest and lowest accuracy rates are 98.81% and 89.33%, respectively.

3. Proposed Method

Figure 2 explains the architectural framework of the proposed method. Android
network traffic is monitored and extracts encrypted communication in the form of packet
capture files. The network traffic in two ways, i.e., via textual or visual features.
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Figure 2. Cyber-threat detection system using a hybrid approach of word2vec-based transfer learning
and visual representation.

3.1. Network Trace Collection
3.1.1. Network Data Preprocessing

HTTP traffic is used because it is the most widely used protocol for global communi-
cation. HTTP headers contain data that can be used to detect malicious behavior. However,
because mobile apps communicate via HTTP, critical information cannot be obtained. To
address this issue, we analyze TCP streams with HTTP traces from packet capturing (PCAP)
files. PCAP files are source documents generated by network communication. Such files
contain network traffic information and are used to assess the underlying information
exchange between malicious nodes. Furthermore, they make network traffic management
and network activity detection easier. A packet parsing method that filters secure commu-
nication and extracts HTTP and TCP flows is developed. The packet parser algorithm is
used to filter the PCAP file, as shown in Algorithm 1.

Algorithm 1: Packet Parser Algorithm

Input: Packet Capturing Files (PCAP)
Output: TCP, HTTP as output files
Step 1: Set P = {p1, p2, . . . , pn}, where P is a packet
Step 2: Filter (P) = P′
Step 3: Compute PCAP from P′, where P′ = (IP, TCP, HTTP, . . . , n)
Step 4: Select NF from PCAP, where NF is the required network flows
Step 5: Display/select HTTP + TCP

HTTP traces include source IP, destination IP, port, host address, source info, bytes,
packet length, frame length, and TTL. The source information section includes GET, POST,
and URLs, such as “www.yahoo.com” (accessed on 5 December 2021). TCP flows provide
three-way handshake information, including uploaded and downloaded bytes and total
packet numbers during different sessions. Such information can be filtered to capture
meaningful information, preserving the actual semantics. We developed a semantic tok-
enizer that can filter such information. The main steps taken during data preprocessing are
as follow:

• Remove consecutively identical features from input sequences to avoid duplicated data.
• Short sequences may not include enough information to identify the relevant network

traffic and are eliminated from the dataset.
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• Because different sequence lengths confuse neural network models, unifying sequence
length is critical for malware classification. This approach uses a preset sequence
length (L) to balance the lengths. Sequences greater than L keep their first L names,
but those shorter than L are unified through zero padding.

3.1.2. Transfer Learning with Word2vec

The neural network operates through the use of vectors. Network traffic is represented
by a fixed-size vector (L), and a one-hot vector can be employed. However, its scope is
limited by the variety of features. This method is unsuitable for learning large datasets.
Therefore, a reduced and meaningful vector is required. Word2vec [29] satisfies these
criteria. Our goal is to construct a dense vector for each network element that records its
contexts in a big dataset. Geometric techniques can be used on network vectors to detect
their logical similarities, i.e., intruders use the same web address or TCP conversation for
the same victim. Figure 3 demonstrates word2vec with TensorFlow embedding. In our
situation, word2vec is used to mine trained vocab features from legitimate and malignant
apps. The embedding word model output is a matrix, K × A, where K is the embedding
vector size, and A is the number of unique network features. The encoded-word vector can
be trained independently for malware classification [30]. The embed vectors are trained
with 8-dimensionally for small datasets and with 1024-dimensionally for large datasets. We
selected 300 dimensions for HTTP and TCP. Higher-dimensional embeddings require more
data for finer word correlations. The trained vocab features are extracted from word2vec
using dynamic fine tuning. Using this procedure, each feature is transferred to a large
number of vectors with the same meaning. As a result, this mapping function allows for
multiple interpretations of the same feature, which may change over time. Algorithm 2
shows trained feature extraction process from network flows.

Algorithm 2: Trained Feature Mining

Input: HTTP and TCF flows
Output: Trained features
Step 1: Select HTTP and TCP flows
Step 2: Tokenize and filter HTTP and TCP flows = clean features
Step 3: Apply fine-tune embedding

• Dynamic word2vec = train feature
Step 4: Extraction = train feature
Step 5: Compute trained files = mining trained files
Step 6: Finish

Figure 3. Visualization of trained features (transmission, tcp) using word2vec and TensorFlow.
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3.2. Texture Feature Collection

Considering that malware is frequently changed to circumvent static and dynamic
identification, we analyzed a malware detection system based on texture properties. This
technique detects the malware as a whole by turning the malware into an image and
obtaining the textural features. It is not necessary to collect malware fingerprints or use
reverse engineering tools. This strategy is effective against antidetection technologies,
such as signature modification and dynamic feature detection evasion. We developed a
malware-to-image conversion algorithm capable of retrieving images from PCAP files.
The eight-bit vectors are retrieved from network traffic first and then processed to pro-
duce grayscale malware images. The image sizes are then standardized to 229 × 229 and
256 × 256. Figure 4 depicts a collection of malware images for adware (229 × 229), banking
(229 × 229), adware (256 × 256), and SMS (256 × 256). A large PCAP size is transformed
to a smaller image size. For instance, the PCAP is converted from megabytes to kilobytes
in the image. As a result, it may be possible to reduce computation power. The extraction
of texture features is illustrated in Algorithm 3. The extracted network bytes from PCAP
files are utilized to mine texture features. These network bytes are represented as images.
The texture features are then extracted from these images by combining SIFT and ORB
descriptors. SIFT identifies key points or local features within a texture. These steady char-
acteristics can be used for image comparison, object tracking, and scene recognition, among
other applications. SIFT consistently outperforms ORB, although ORB is the fastest method.
When the angle of rotation is 90 degrees, ORB and SIFT exhibit similar behavior [31]. In
order to take advantage of both techniques, we combined SIFT and ORB descriptors to
obtain pixel values representing texture features.

Algorithm 3: Texture Feature Mining

Input: Network traffic (Bytes)
Output: Texture features
Step 1: Compute B = {B1, B2, . . . ., Bn }, where B is for Bytes
Step 2: Compute I, where I is image
Step 3: Decompose I in SS1 & SS2, where SS1 = 229 × 229 and SS2 = 256 × 256
Step 4: Apply SIFT and ORB on SS1
Step 5: Apply SIFT and ORB on SS2
Step 6: Generate texture features from the combination of SIFT and ORB
Step 7: Get texture features
Step 8: Finish

Adware (229 × 229) (5.9KB) Banking (229 × 229) (5.02KB) Adware (256 × 256) (8KB) SMS (256 × 256) (8KB) 

Figure 4. A chunk of malware images (229 × 229, 256 × 256) extracted from network traffic.

3.3. Deep and Prominent Feature Selection Using CNN

A CNN network is designed to mine a large number of features and extract deep and
prominent characteristics that can lessen the load and processing power on the classification
model. To achieve this, the pretrained dictionary and visually based texture features are
combined and fed into the CNN. Several studies [32,33] have used CNN to categorize
malware. The CNN model performs better with a variety of information, including text,
images, and video files. We use a one-dimensional CNN network containing convolutional
layers, pooling layers, dropout layers, and a fully connected layer. Convolution acts as
a filter, repeatedly cycling through the combined features and obtaining the best feature
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representations. Each filter generates a new set of features, called a feature map. The
optimal number of filters is determined by adjusting the hyperparameters. We used three
convolution layers with 32, 64, and 128 filters, respectively. Max pooling reduces the
size of the feature space, the range of features, and the computational cost. This layer
also generates a feature map with the most important features from the preceding set.
Furthermore, we combine the Keras batch normalization layer with the CNN network.
Batch normalization keeps the resultant mean close to zero and the standard deviation
close to one. Notably, it operates differently throughout training and testing. This stabilizes
the learning process and reduces the number of training epochs deep networks need. In
the proposed CNN network, softmax and dropout layers address overfitting. Equation (1)
represents the CNN network’s output.

o1
k = f(c1

k +
Nl−1

∑
i=1

Con1D(Xl−1
ik , tl−1

i )) (1)

where c1
k is the parameter bias of the kth neuron in the first layer, tl−1

i is the outcome of the
ith neuron in layer l − 1, Xl−1

ik is the kernel strength from the ith neuron in layer l − 1 to the
kth neuron in layer l, and “f ()” is the activation function. After analyzing the deep features,
we chose the top 250 prominent features for accurate malware classification.

3.4. Ensemble Model for Malware Classification

The deep and prominent features are fed into the voting-based ensemble model for
malware classification and detection.

3.4.1. Naive Bayes (SVM)

To perform classification tasks, the NB algorithm, commonly known as the prob-
abilistic algorithm, is utilized. It is a simple algorithm that works well in a variety of
circumstances. The Bayes theorem is utilized to construct the classifier in Equation (2).

P(y|X) =
P(X|y)P(y)

P(X)
(2)

where y indicates the class variable, whereas X indicates the characteristics or attributes.
Here, X is defined as (x1, x2, . . . , xn). Gaussian naive Bayes (GNB) conditional probability
arises from normal distribution, as shown in Equation (3).

P(x1|y) = 1
σy
√

2π
e−(xi−μy)

2
/2σy

2 (3)

3.4.2. Support Vector Machine (SVM)

SVM is a supervised learning approach for classification and regression. It classifies by
finding the most distinct hyperplane. It locates the hyperplane by widening the distance.
Using the kernel function, the kernel trick converts a non-separable job into a separable
solution. It is especially useful when dealing with non-linear discrete problems. We used
sigmoid as a kernel function. The soft margin of an SVM classifier is calculated by reducing
an expression of the kind given in Equation (4).[

1
n

n

∑
i=1

max(0.1 − yi(wTxi − b))

]
+ λ‖w‖2 (4)

3.4.3. Decision Tree (DT)

Each leaf node in a decision tree represents the outcome, a branch represents a decision
rule, and an internal node represents a task. The top node is the root node. It usually
segments based on the level of an attribute. A tree is partitioned using iterative segmen-
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tation. This flow design could help make better decisions. It uses loss functions to assess
the integrity of produced nodes. We employed entropy to estimate the decision node’s
impurity, as illustrated in Equation (5).

Entropy = −
K

∑
i=1

pi × log2 pi (5)

The entropy value varies between 0 and 1. The lower the entropy, the higher the purity
of the node. Using entropy as a loss function allows for division only if the new nodes tend
to have lower entropy than the parent node.

3.4.4. Logistic Regression (LR)

LR accurately predicts binary outcomes (y = 0 or 1). LR is better than linear regression
for forecasting classification. Equation (6) shows the logistic function.

f x =
1

1 + e−x (6)

3.4.5. Random Forest (RF)

RF is an estimator that uses DT models to improve the detection rate and reduce
overfitting. DTs are often trained by “bagging”, which creates a “forest” of trees. The
bagging technique claims that integrating many DT models will yield excellent performance.
During training, it may handle the growth of numerous DTs and extract information,
aggregating the results of each DT [34].

3.4.6. Voting-Based Ensemble Learning

Ensemble is a robust model created by systematically combining base technologies.
Unlike individual models, the ensemble model is able to solve classification and regression
problems. The proposed investigation employs the soft polling ensemble approach. To be-
gin, we used training data to build basic GNB, SVM, DT, LR, and RF models. The efficiency
of the base models is then validated using test data, with each model producing a unique
classification. To obtain the final classification performance, ensemble learning employs
the estimations of several approaches as supplementary information [35]. The trained and
texture features are combined for malware classification, as shown in Algorithm 4.

Algorithm 4: Malware Classification

Input: Trained and texture features
Output: Malware classification
Step 1: Insert T and I
Step 2: T′ = CNN(T) to apply the CNN technique of trained features
Step 3: I′ = CNN(I) to apply CNN the technique of texture features
Step 4: Calculate deep PF as a prominent features as a prominent features
Step 5: Apply voting-based ensemble learning on deep PF
Step 6: App classification as malware or benign
Step 7: Finish

Computational complexity is concerned with categorizing computational issues based
on their resource utilization and relating these classes to one another. We analyzed the
computational complexity for each algorithm presented in Table 1. The complexity is based
on the space required for the proposed approach.
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Table 1. Computational cost analysis.

Algorithm
Computational Costs

P/T D/E/D C/S

Algorithm 1 |P|= |p1|+ |p2|+ . . . +|pn| |P| = |n| |P′ | = |n|

Algorithm 2 |HTTP| + |TCP| |TF| |MTF|

Algorithm 3 |B|= |B1|+ |B2|+ . . . +|Bn||I|+|SS1|+ |SS2| |SS1|+ |SS2|
Algorithm 4 |T| + |I| = |n| |T′ |+ |I′ |= |n| |PF|

P/T, packets/tokenize; D/E/D, decryption/extraction/decomposed, TF, trained feature; MTF, mining trained
files; C/S, computes/shifting.

4. Results and Discussions

4.1. Dataset Preparation

The proposed method is thoroughly examined using two datasets obtained from
the Canadian Institute for Cybersecurity (https://www.unb.ca/cic/datasets/index.html
(accessed on 6 September 2021)). The first dataset, the Canadian Institute of Cybersecurity
Android Adware and General Malware (CICAAGM2017) dataset [36] is gathered semi-
automatically by installing Android apps on authorized mobile devices. The dataset is
generated using 1900 apps and is separated into three classes: adware, general malware,
and benign. The adware contains 250 malicious apps, including Airpush, Dowgin, kemoge,
mobidash, and shuanet. The general malware consists of 150 malicious apps, including
AVpass, fakeAV, fakeflash, GGtracker, and penetho. A total of 1500 apps are included in
the benign set. Table 2 contains a detailed description of the dataset. The second dataset,
CICMalDroid 2020 [25,37], collected over 17,341 Android samples from different sources,
including the VirusTota l service, the Contagio security blog, AMD, and MalDozer between
December 2017 and December 2018. The classification of Android apps as malware is
critical for cybersecurity investigators to implement effective classification and detection
systems. As a result, this dataset contains adware, banking, riskware, and SMS as malware,
as well as benign apps. The number of adware, banking, riskware, SMS, and benign apps
is 1253, 2100, 2546, 3904, and 1795, respectively. A detailed description of each app is
presented in Table 3.

Table 2. Android Adware and General Malware Dataset (CIC-AAGM2017) (dataset 1).

App No. of Apps Family Description

Adware 250

Airpush Distributes intrusive adverts to bypass security

Dowgin Ad package that collects data

Kemoge Takes over the user’s Android phone

Mobidash Created to broadcast ads and illegal access

Shuanet Takes over the user’s device

General Malware 150

AVpass A utility software masquerading as a clock

FakeAV Phishing scam to obtain full-version apps

FakeFlash Fake Flash software that redirects viewers to a fake website

Ggtracker Employed to obtain data via SMS fraud

Penetho Fake tool to recover WiFi passwords

Benign 1500 Benign Clean apps (not malicious)
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Table 3. CICMalDroid 2020 dataset (dataset 2).

App Family No. of Apps Description

Malware

Adware 1253 Ads can be hidden within malware-infected programs

Banking 2100 Connects directly to the user’s online payments

Riskware 2546 Any legitimate program can be abused to inflict harm

SMS 3904 Attacks via SMS

Benign Benign 1795 Clean apps (not malicious)

4.2. Result Analysis and Performance Comparison

The trained textual features are combined with visual texture features before being fed
into the designed model. We generated texture features with 229 × 229 and 256 × 256 and
then combined them with textual features to analyze the impact. Figure 5 shows the training
and testing curves for malware classification and detection using dataset 1. We utilized two
standard image sizes: 229 × 229 and 256 × 256. In terms of model accuracy, the blue and
red curves represent the training and testing data points, respectively. In terms of model
loss, the yellow and green curves represent the training and testing points, respectively.
(a–d) demonstrate classification and detection for 229 × 229 images, whereas (e–h) demon-
strate classification and detection for 256 × 256 images. These curves represent the dynamic
behavior of the specified model during the training phase. Using 229 × 229 texture features,
the model accuracy curves range from 40% to 98% for classification and 40% to 99% for
detection. The model accuracy curves for 256 × 256 texture features result in 35% to 98.1%
classification and 30%to 99.16% detection accuracy. As a result, the combined features with
256 × 256 texture features outperform. The model loss is inversely proportional to the
model accuracy. Figure 6 depicts the training and testing curves for model accuracy and
loss using dataset 2. The model accuracy curves achieve between 50% and 98.1% accuracy
for classification and between 40% and 99.1% for detection using dataset 1. Similarly, the
same curves provide performance accuracy ranging from 30% to 98.11% for classification
and from 40% to 99% for detection. It is clear that textual features with 256 × 256 work
better for malware detection.

The confusion matrices for malware detection are obtained to examine misclassifi-
cation errors for each class, such as malware and benign. Figure 7 depicts the confusion
matrices for the individual approaches and the ensemble model, allowing for detailed
comparison. The ensemble model outperforms RF in terms of classification. For instance,
both approaches had 99% classification and 12% misclassification accuracy for malware
and 90% and 10% for benign, respectively. The LR model behaves similarly to ensemble
learning but with different results. For example, LR has a 100% classification accuracy and
0% misclassification for malware and 91% classification and 9% misclassification for benign.
Figure 8 depicts the confusion matrices for malware classification using 256 × 256 dataset 2.
Ensemble and RF models outperform other methods. For instance, they provide classifica-
tion and misclassification rates of 99% and 1%, respectively, for each class, such as adware,
banking, riskware, and SMS.

Table 4 shows the precision, recall, f1-score, and accuracy measures for both datasets
using 229 × 229. Performance matrices are provided for each approach, as well as for the
ensemble. The ensemble model outperforms the other models in terms of malware classi-
fication and detection when utilizing dataset 1. For malware classification, the precision,
recall, f1-score, and accuracy measures are 98%, 97, 98%, and 98.18%, respectively. The
same performance measures achieve 99%, 99%, 99%, and 99.02% accuracy for malware and
detection, respectively. Using dataset 2, the ensemble approach performs better for malware
classification; however, the RF approach works better for malware detection. Malware cate-
gorization performance measures are 98, 98%, 98%, and 98.1%, respectively. Similarly, the
performance measures for malware detection are 99%, 99%, 99%, and 99.04%, respectively.
Table 5 shows the performance measures for malware classification and detection using

121



Sensors 2022, 22, 5883

both 256 × 256 datasets. The proposed approach achieves the best classification results
using both datasets with 256 × 256 dimensions. Table 6 shows the malware classification
performance measures for each class label using dataset 1. Table 7 shows the performance
measures for each class label using dataset 2. The methods with a bold style demonstrate
that they outperform others for the designed experiment.

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. Cont.
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(g) (h) 

Figure 5. Epoch curves for training and testing data points using different visual representations
for dataset 1, i.e., 229 × 229, 256 × 256 (training accuracy, training loss; testing accuracy, test-
ing loss). (a) 229 × 229 (classification); (b) 229 × 229 (classification); (c) 229 × 229 (detection);
(d) 229 × 229 (detection); (e) 256 × 256 (classification); (f) 256 × 56 (classification); (g) 256 × 256
(detection); (h) 256 × 256 (detection).

(a) (b) 

(c) (d) 

Figure 6. Cont.
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(e) (f) 

(g) (h) 

Figure 6. Epoch curves for training and testing data points using different visual representations
for dataset 2, i.e., 229 × 229, 256 × 256. (training accuracy, training loss; testing accuracy, test-
ing loss). (a) 229 × 229 (classification); (b) 229 × 229 (classification); (c) 229 × 229 (detection);
(d) 229 × 229 (detection); (e) 256 × 256 (classification); (f) 256 × 56 (classification); (g) 256 × 256
(detection); (h) 256 × 256 (detection).

Table 8 depicts the analysis of the optimum features used to determine the best feature
selection. The proposed method is tested with a variety of feature counts, such as 100, 150,
200, 250, etc., corresponding to classification accuracy. Dataset 1 is used to examine feature
selection with various feature counts. The NB, SVM, DT, LR, RF, and ensemble models
provide the highest classification accuracy for 250 features. The classification accuracy
increases from 100 to 200 features but decreases after 250. With 400 classification features,
classification accuracy increases slightly but then decreases. According to this analysis,
250 is the optimal number of features for the proposed approach.

Generally, classification models produce different results after each execution. To
evaluate performance, the datasets are randomly divided into train and test models. As
a result, each execution produces unique results for each classification model. We used
the same random seed on all classification models with 10 executions to test the scalability
and reliability of the proposed ensemble model. Table 9 shows the classification model
performance using the same random seeds. On 8 of 10 random seeds, the ensemble
model outperforms other classification models, demonstrating that the ensemble model
configuration is more reliable than a single classification model. At execution times 2 and 10,
the RF slightly outperforms other models relative to the ensemble. Surprisingly, the average
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performance of 10 executions demonstrates that the ensemble model is more scalable and
reliable than the random forest, and it is adopted as the best solution for malware detection
and classification. Furthermore, the ensemble model has an accuracy range of 98.98% to
99.02%, whereas the RF has an accuracy range of 98.86% to 99.02%.

  
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. Confusion matrices for malware detection using dataset 2 with 256 × 256. (a) GNB; (b) SVM;
(c) DT; (d) LR; (e) RF; (f) ensemble.
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(a) (b) 

 

(c) (d) 

  
(e) (f) 

Figure 8. Confusion matrices for malware classification using dataset 2 with 256 × 256. (a) GNB;
(b) SVM; (c) DT; (d) LR; (e) RF; (f) ensemble.

Table 10 compares the proposed approach to previously published studies. These
studies mostly made use of network traffic to classify Android malware. Aresu et al. [14],
showed how analysis of mobile botnets’ HTTP traffic can be utilized to classify them
into families. To do so, it analyzes HTTP traffic data to create malware clusters. This
method also extracts signatures that can be used to detect new clustered malware with an
accuracy of 98.66%. Li et al. [20] presented the Droid Classifier, which automatically builds
multiple models over a set of annotated malware apps. Each model is built using common
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identifiers collected from network traffic. Adaptive threshold settings are designed to
represent diverse virus traits with an accuracy of 94.66%. Shanshan et al. [38] proposed
identifying infected files by their URLs. Multi-view neural networks provide depth and
breadth of information when analyzing malware, in addition to creating and distributing
soft attention-weighting elements for use with specific data. The accuracy of URL-based
malware classification is 95.74%. Shyong et al. [39] combined static authorization with
dynamic network monitoring to classify Android apps. During the dynamic evaluation
step, malicious network traces are used to obtain various attributes, and Random Forest
is then used to identify malware samples. The average Android malware performance is
98.86%. Shanshan et al. [28] presented a method to detect Android malware using URLs.
Multi-view neural networks are used to construct malware detection models that focus on
feature depth. The weights of the features are dispersed to work on certain inputs. The
suggested approach has an accuracy of 98%. Our technique outperforms this method, with
a 99% malware detection accuracy.

Table 4. Performance comparisons for malware classification and detection using both datasets with
229 × 229.

Dataset 1 (229 × 229)

Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Classification

GNB 86 90 86 87.21

SVM 95 89 81 93.11

DT 98 98 97 98.03

LR 95 89 91 93.34

RF 98 97 98 98.03

Ensemble 98 97 98 98.18

Detection

GNB 94 91 92 92.24

SVM 93 93 92 92.16

DT 99 99 98 98.94

LR 93 93 92 92.16

RF 99 99 99 99.02

Ensemble 99 99 99 99.02

Dataset 2 (229 × 229)

Classification

GNB 98 95 96 98.02

SVM 96 92 94 95.96

DT 95 95 94 95.04

LR 98 97 97 97.98

RF 97 97 97 97.02

Ensemble 98 98 98 98.1

Detection

GNB 94 93 93 93.11

SVM 93 91 91 91.08

DT 99 99 99 98.96

LR 95 93 93 93.1

RF 99 99 99 99.04

Ensemble 95 93 93 94.16
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Table 5. Performance comparisons for malware classification and detection using both datasets with
256 × 256.

Dataset 1 (256 × 256)

Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Classification

GNB 91 84 85 84.98

SVM 92 91 90 91.02

DT 96 96 96 96

LR 92 91 90 91.02

RF 96 96 96 96

Ensemble 96 96 96 96

Detection

GNB 94 94 94 94.01

SVM 94 94 94 94.01

DT 98 98 97 98

LR 94 95 94 94.08

RF 99 99 99 99

Ensemble 94 95 94 94.11

Dataset 2 (256 × 256)

Classification

GNB 93 90 91 91.14

SVM 97 98 97 97.21

DT 96 96 96 96.1

LR 98 98 97 97.99

RF 97 97 97 97

Ensemble 98 98 99 98.11

Detection

GNB 93 90 91 90.84

SVM 93 91 91 91.46

DT 99 99 99 99

LR 94 91 92 91.36

RF 99 99 99 99

Ensemble 99 99 99 99

Table 6. Per-class performance comparisons for malware classification using dataset 1 with 256 × 256.

Class Method Precision (%) Recall (%) F1-Score (%)

Adware

GNB 88 100 94

SVM 88 100 94

DT 97 98 98

LR 88 100 94

RF 97 100 99

Ensemble 88 100 94

Gen: Mal

GNB 100 88 93

SVM 100 88 93

DT 98 97 98

LR 100 88 93

RF 100 98 99

Ensemble 100 88 93
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Table 7. Per-class performance comparisons for malware classification using dataset 2 with 256 × 256.

Class Method Precision (%) Recall (%) F1-Score (%)

Adware

GNB 73 100 85

SVM 100 87 93

DT 98 99 99

LR 1 88 93

RF 99 99 99

Ensemble 98 99 99

Banking

GNB 100 92 96

SVM 100 92 96

DT 99 98 98

LR 1 92 96

RF 99 99 99

Ensemble 100 99 99

Riskware

GNB 100 86 93

SVM 99 86 92

DT 99 99 99

LR 1 86 93

RF 99 99 99

Ensemble 100 99 99

SMS

GNB 100 83 91

SVM 74 100 85

DT 99 99 99

LR 74 1 85

RF 99 99 99

Ensemble 98 99 99

Table 8. Optimum feature analysis.

Dataset 1 (229 × 229)

Method
Features

100 150 200 250 300 350 400 450 500

NB 90.61 91.53 92.14 92.24 91.22 90.52 90.66 89.71 89.62

SVM 91.18 91.74 91.36 92.16 91.49 91.92 91.82 90.28 89.12

DT 95.84 96.51 97.36 98.94 97.44 96.62 97.88 95.72 95.14

LR 91.56 91.92 91.98 92.16 92.14 91.94 92.1 90.82 90.24

RF 97.24 97.54 98.82 99.02 98.13 97.76 96.71 96.19 95.96

Ensemble 96.88 97.76 98.96 99.02 98.52 97.48 96.98 96.71 96.28

Table 9. Average performance comparison with multiple executions.

Dataset 1 (229 × 229)

Method
Execution Times

1 2 3 4 5 6 7 8 9 10 Average

NB 92.14 92.24 92.2 91.99 92.22 92.18 92.24 92.22 92.24 91.98 92.16

SVM 92.12 92.16 92.16 91.99 92.11 91.98 91.92 92.16 92.12 92.14 92.09

DT 98.88 98.94 98.9 98.94 98.44 98.92 98.89 98.72 98.94 98.92 98.85

LR 92.16 92.16 92.14 92.04 92.1 91.99 91.96 92.16 92.13 92.16 92.1

RF 98.97 99.02 98.96 99.02 99.01 98.74 98.91 98.86 99.00 99.02 98.95

Ensemble 98.99 99.00 98.99 99.02 99.02 99.00 99.00 98.98 99.02 99.00 99.01
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Table 10. Comparison with previously published works.

Work Year Method Dataset Accuracy (%)

Aresu et al. [14] 2015 Signature-based clustering Drebin and VirusTotal 96.66

Li et al. [40] 2016 Droid classifier VirusTotal 94.66

Shanshan et al. [38] 2018 Skip gram with neural
network Malicious URLs (Emulator) 95.74

Shanshan et al. [13] 2019 C4.5 decision tree Drebin and VirusTotal 97.89

Shyong et al. [39] 2020 Random forest Drebin 98.86

Shanshan et al. [28] 2020 Multi-view neural network VirusShare 98.81

Our approach . . . Hybrid features with
ensemble learning

CIC-AAGM2017 and
CICMalDroid 2020 99

The proposed method is thoroughly compared to existing methods using the same
datasets. Table 11 shows a performance comparison with state-of-art methods using the
same datasets with different strategies. Texture, text, or a combination of both can be used
to classify malware. Furthermore, some researchers used a CNN model to classify malware
images without using descriptors to select special features. Alani et al. [21] introduced
AdStop, a machine-learning-based method that identifies malware in data traffic. The pro-
posed method classified malware using textual features from the CIC-AAGM2017 dataset
and a multi-layer perceptron with an accuracy of 98.02%. Acharya et al. [22] proposed a
framework that extracts clusters using latent Dirichlet allocation and hierarchical clustering
techniques. They used a CNN model, which has a precision of 98.3%, to classify malware
without relying on any special features. In [22,24,41,42] CNN and TCN models were used to
classify malware with texture features. The proposed deep learning models directly collect
the malware images for classification without selecting the special features using descrip-
tors. In [21,23,25] multi-layer perceptron (MLP), gradient boosting, and ensemble methods
were used to classify malware with textual features. To classify malware, we propose a
method that combines textual and texture features from both datasets. When compared to
state-of-the-art methods, the proposed approach outperforms, with a classification accuracy
of 99%.

Table 11. Performance comparison with state-of-the-art methods using the same datasets.

Work Dataset Strategy Method Accuracy (%)

Alani et al. [21] CIC-AAGM2017 Textual MLP (DNN) 98.02

Acharya et al. [22] CIC-AAGM2017 Texture CNN 98.3

Hadiprakoso et al. [23] CICMalDroid 2020 Textual Gradient Boosting 96.35

Mohammad et al. [41] CICMalDroid 2020 Texture CNN 96.4

Zhang et al. [24] CICMalDroid 2020 Texture TCN 95.44

Mahdavifar et al. [25] CICMalDroid 2020 Textual Ensemble 97.84

Peng et al. [42] CICMalDroid 2020 Texture CNN 98.6

Our approach
CIC-AAGM2017 &
CICMalDroid 2020 Hybrid Hybrid features with ensemble learning 99

4.3. Model Interpretation and Validation Using Explainable AI and t-SNE

To interpret and validate the proposed approach, we extracted a chunk of the most
important features from the embedded matrix. Figure 9 depicts the importance of the
features among the 30 features. The feature “F24” is the most effective, indicating that
it makes the most contribution to malware classification detection. However, the “F29”
feature is the least effective and may perform the worst for the proposed strategy. The “F17”
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feature is the next most effective feature. Thus, we can readily determine which features are
the most and least important. To explain the impact of each feature on the model output,
we used the Local Interpretable Model-agnostic Explanation (LIME) and SHapley Additive
exPlanations (SHAP) libraries [43]. Figure 10 illustrates the proportionate contribution of
features to from the average of samples with a base value of 0 (malware) to the output
value of 1 (benign). The values for this sample are indicated by numbers at the bottom of
the figure. In our case, the base value is 0.22. The red values are those that are moving
underneath the base value, whereas the blue values are those that are moving above the
base value. The base value is a threshold, and values less than the base value can contribute
to the malware class. Values that are greater than the base value can contribute to the benign
class. This allows us to evaluate the contribution of each feature to a specific class. Figure 11
depicts the effect of combined features on model output. The red color represents a higher
contribution of each feature, whereas the green color represents smaller contributions. The
combined effect of the “F24” feature is significant, whereas that of F15 is the smallest. This
allows us to easily describe the impact of each feature on a certain class, such as malware
or benign. This experiment evaluates the effectiveness of each feature, providing a clear
picture of how each attribute affects the model output.

Figure 9. Most significant features.

Figure 10. Contribution of features to a certain class based on a threshold value.
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Figure 11. Combined effect of features on model output.

The purpose of the t-distributed stochastic neighbor embedding (t-SNE) visualiza-
tion method is to identify whether features possess high or sparse knowledge. Fur-
thermore, the t-SNE method is intended to evaluate the efficiency of the suggested ap-
proach. Maaten et al. [44] proposed the t-SNE method to visualize high-dimensional data.
Figure 12 shows the attentive ratio of semantic and syntactic feature local and global scores
for various perplexity values. Using the R programming language, we designed two t-SNE
visual studies. In the first experiment, we attempted to determine how much perplexity
is required to distinguish between the benign and malicious classes. The best Android
malware clusters are distinguished by the highest perplexity scores in the second experi-
ment. For instance, (a,c) have the lowest perplexity values, whereas (b,d) have the highest
values. t-SNE makes use of iterations to distinguish between different types of samples. We
utilized 400 iterations for each perplexity factor to display the distinct malware and benign
groupings. The dataset density has a significant impact on the overall classification results.
Because more qualitative data are presented for training, a higher density usually improves
accuracy. To improve classification outcomes, the t-SNE visual clusters are better segre-
gated using optimal perplexity settings. A dataset can be divided into sections using an
acceptable perplexity value and classified using important hyperparameters. This method
is used to demonstrate the efficacy of the presented strategy because semantic aspects can
be extracted and classified as malware or benign to improve classification performance.

 
(a) (b) 

Figure 12. Cont.
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(c) (d) 

Figure 12. t-SNE visualization for fused features using minimum (30 and 35) and optimal (50 and 70)
perplexity values. (a) Perplexity, 30; (b) perplexity, 50; (c) perplexity, 35; (d) perplexity, 70.

5. Conclusions

Mobile apps are susceptible to malicious network activity because of their frequent
remote access. Such threats could gather crucial information while adversely affecting
commerce, social order, and financial institutions. The malware detection system used
in this study takes advantage of the combined influence of textual and textural features,
combining the strengths of text and visual elements. We proposed an algorithm for a packet
parser that is used to collect HTTP and TCP streams from the encrypted communications
generated by malicious traffic. It is possible to recover training vocab features from decoded
information using word2vec embeddings. A method for transforming malware images is
then developed to examine the byte stream with visual features. We used two standard
image sizes (229 × 229) and (256 × 256) to test the proposed approach on features of
varying size. The texture features from malware images are combined with trained vocab
to classify and detect malware. We designed a voting-based ensemble model for accurate
malware classification and detection. The classification and detection rates for dataset 1
with an image size of 229 × 229 are 98.18% and 99.02%, respectively. The classification
and detection rates for dataset 2 using a 229 × 229 image size are 98.1% and 99.04%,
respectively. Similarly, for a 256 × 256 image size with dataset 1, these values are 96%
and 99%, respectively. For dataset 2, these values are 98.11% and 99%, respectively. The
first dataset with an image size of 229 × 229 provides better classification results than the
second dataset with an image size 256 × 256. The proposed approach outperforms the
state-of-the-art methods using the same datasets, as shown in Tables 9 and 11.

In the future, we plan to extract the trained vocab from other pretrained models, such
as FastText and BERT. Then, the trained features can be combined with texture features to
classify malware. Moreover, the proposed method can be tested with different types of
ensembles, such as bagging and stacking.
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Abstract: The article discusses an approach to the construction and operation of a proactive system
for protecting smart power grids against cyberattacks on service data transfer protocols. It is based
on a combination of computational intelligence methods: identifying anomalies in network traffic
by evaluating its self-similarity, detecting and classifying cyberattacks in anomalies, and taking
effective protection measures using Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) cells. Fractal analysis, mathematical statistics, and neural networks with long short-term
memory are used as tools in the development of this protection system. The issues of software
implementation of the proposed system and the formation of a data set containing network packets
of a smart grid system are considered. The experimental results obtained using the generated data
set demonstrated and confirmed the high efficiency of the proposed proactive smart grid protection
system in detecting cyberattacks in real or near real-time, as well as in predicting the impact of
cyberattacks and developing efficient measures to counter them.

Keywords: time series; fractal analysis; fractal dimension; Hurst exponent; scaling exponent; cyberattacks

1. Introduction

World trends in information and telecommunication technologies based on digital
methods of information transmission, processing, storage, presentation, and protection
consist in the mutual penetration and “merging” of information and telecommunication
systems not only at the level of technologies for their development and operation, but
also their structural and functional association. In this case, the term “data transmission
network” (DTN) is widely used [1].

There is an integration and convergence of networks and services. This provides users
with access to any service available in multiple networks, due to the flexible possibilities for
their processing and management. As a result, on the one hand, the efficiency, reliability,
economic benefits, and sustainability of the DTN operation increase. On the other hand, it
gives the malefactors the opportunity to act by implementing cyberattacks (CAs) [2].

There are many reasons why it becomes possible to implement CAs. It can be an
operating system or other software that has not been updated in time. In addition, outdated
security features or vulnerabilities inherent in poorly protected network protocols can lead
to attacks. As a result, an attacker can perform various malicious actions, such as blocking
network communication, making unauthorized access to DTN devices, controlling traffic,
changing network device parameters, and other actions.

The category of dangerous services includes services whose placement on the perime-
ter carries increased risks: file system access services, Remote Procedure Call (RPC), direc-
tory services, printers, virtualization system service interfaces, Virtual Private Network

Sensors 2022, 22, 7506. https://doi.org/10.3390/s22197506 https://www.mdpi.com/journal/sensors
137



Sensors 2022, 22, 7506

(VPN), DTN-specific systems, network device services, Telnet, Secure Shell Protocol (SSH),
Remote Desktop Protocol (RDP), Virtual Network Computing (VNC), and others [3]. In
addition, it should be noted that security flaws in service protocols that lead to traffic
redirection and interception of network configuration information, security flaws in the
NetBIOS Name Service (NBNS) and Link-Local Multicast Name Resolution (LLMNR)
protocols, as well as the use of open (unsecured) data transfer protocols in modern DTNs,
have a high level of risk [4]. As practice shows, the vast majority of successful CAs are
based on the exploitation of vulnerabilities in some resources that should not be available
on the network perimeter [5].

This fully applies to information systems in the energy sector, built according to
the Smart Grid (SG) concept. In accordance with this concept, the priority areas for the
development of DTN in the energy sector for the coming years include [6]:

• widespread introduction at new and upgraded measurement points of intelligent mea-
suring instruments—“smart” meters with the function of remote control of the load
profile of the measured line and measuring transducers with standard communication
interfaces and protocols that comply with information security standards;

• installation at each large facility connected to the power grid, advanced automated
information-measuring systems operating in real-time;

• creation of a wide network of integrated communications based on various communi-
cation lines;

• implementation of automated production management systems in energy companies.

The application of modern information technologies (ITs) makes it possible to signifi-
cantly increase SGs operation efficiency, making them more reliable and economical, which,
in its turn, leads to a reduction in the cost of power reproduced or distributed by them.
However, at the same time, there are opportunities to influence SGs by various CAs. A
consequence of this impact is the appearance of anomalies in the SG network traffic [6].

Detecting CAs in SGs is quite a complex task. It is necessary to constantly monitor
security and control network traffic in order to detect anomalous activity in it. If traffic
anomalies are detected, it is necessary to analyze a large number of routes in the network,
where sharp fluctuations in traffic, delays in its transmission, or large packet losses appear.
At the same time, a high quality of telecommunications service and application service
should be ensured. All of this is the motivation for finding and developing new methods
and approaches for CAs detection in SGs. Such approaches in this article include an
approach that combines several methods of computational intelligence: the use of fractal
analysis, statistical methods, and machine learning.

It should be noted that a fairly large number of classification and prediction meth-
ods mostly related to anomaly detection [7,8] are currently known and widely used. In
particular, regression-based methods have performed well. These include non-parametric
regression and classification tree method (CART) [9], multivariate adaptive regression
splines (MARS) [10,11], support vector regression (SVR) [12] and others. Regression-based
methods demonstrate high classification and prediction performance if their parameters
are well-tuned. In some cases (for example, for MARS and SVR), it is proposed to use
genetic algorithms to adjust the regression parameters.

However, this does not allow one to speak about the possibility of early detection of
CAs. Therefore, it is believed that the most effective method of classification and prediction
is the Long Short-Term Memory (LSTM) neural network algorithm. The LSTM property of
recurrence allows an Artificial Neural Network (ANN) to “refer” to the results of its work
in the past, to analyze predictions. Thus, the content of decisions made to protect SGs from
CAs will depend not only on the results of initial training of the LSTM network, but also
on the results of further operation of this network in the flow [13,14].

The key parameter of fractal analysis is the Hurst exponent. This measure is used in
the analysis of time series. The Hurst exponent shows the amount of delay in the time
series between two identical pairs of values. The bigger it is, the smaller this parameter is.
To find this parameter, it is first necessary to check the process under study for stationarity.
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The presence or absence of stationarity of the process influences the choice of the algorithm
by which the scaling index can be calculated.

Fractal properties are more pronounced in non-stationary network traffic, which is
predominant in SGs on large data scales. On small amounts of data, or in application layer
protocols of the TCP/IP (Transmission Control Protocol/Internet Protocol) model, network
traffic can be stationary and show less fractal properties. In this case, machine learning
methods are used for further analysis.

Thus, in order to detect and classify the CAs, first, it is necessary to determine whether
the traffic is stationary or non-stationary. Next, you should calculate the Hurst exponent
(i.e., determine the presence of the self-similarity property in the traffic). In the final stage,
anomalies are detected and measures are developed to protect the SG using LSTM [6,15].

The main contribution of this work is as follows: (1) the structures of long-term depen-
dencies in the SG traffic were studied, which made it possible to identify its characteristic
features in the interest of the early detection of CAs; (2) a new approach to the detection of
CAs based on the study of the fractal properties of traffic has been proposed; (3) the LSTM
structure was substantiated, which makes it possible to detect SC with a probability of
0.99; (4) a software prototype was developed that implements the proposed system, and a
dataset was generated with SG traffic containing anomalies from the impact of both known
and unknown CAs; (5) a comparison was made with other methods of machine learning in
identifying the fact of the impact of CAs; (6) an experimental evaluation of the proposed
system was carried out, showing its rather high efficiency.

The significance of the new contribution lies in the fact that the detection of CAs is
performed using an autoencoder trained on the basis of the reference data of the SG operation
and the information exchange in it, taking into account all deviations from the SG regular
operation. During operation, the autoencoder is additionally trained by a validated neural
network. The result is a generative adversarial network in which neural networks learn from
each other. This made it possible to reduce the time for detecting anomalies in network traffic
and increase the probability of detecting unknown computer attacks up to 0.8.

The proposed approach has a number of methodological and technical limitations.
Methodologically, the approach is limited to the use of the most well-known methods of
fractal analysis, which include the Dickey–Fuller test, the rescaled range (R/S) analysis,
and the Detrended Fluctuation Analysis (DFA) method, and one of the most promising
ANN models, which is the LSTM model. The technical limitations are determined by the
computing power of the environment, on which the autoencoder and the neural network are
trained, as well as by obtaining a reference sample of the SG operation, taking into account
all deviations from the normal operation mode. The training quality of the generative-
adversarial network and the detection efficiency of known and unknown CAs depend on
the quality of the sample made. Since the autoencoder is additionally trained by the ANN,
an incorrect sample can break the ANN operation logic.

The novelty of the results obtained lies in the fact that, based on experimental studies,
the best method for determining self-similarity for non-stationary and stationary time series
is substantiated, which allows detecting changes in traffic with high accuracy and quickly,
and the structure of the LSTM neural network is determined, which provides high accuracy
and can sufficiently quickly predict the impact of CAs and allows developing proactive
protection measures. This is a significant advantage of the proposed system.

This work is a continuation of the studies published in [6] and is devoted to testing
the possibility of using fractal analysis methods for detecting CAs against smart power
grids. The difference in this work lies in the addition of neural network analysis methods
using LSTM networks to fractal analysis methods. This approach, in contrast to [6], allows
one not only to detect anomalies in the SG traffic, but also to identify the types of CAs that
are the causes of these anomalies.

For this purpose, we propose the structure of an autoencoder trained on the normal
data of the SG network operation, considering possible deviations from the SG normal
operation. The complex use of fractal analysis methods, autoencoder, and LSTM network
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forms the basis of the SG proactive protection system, which is able to detect both known
and unknown CAs.

The article has the following further structure. Section 2 is devoted to the analysis of
known works in the research field. The theoretical foundations of the proposed proactive
CA detection system, which is based on the fractal analysis of the network traffic and
their subsequent processing using LSTM networks, are discussed in Section 3. A general
description of the proposed system is given in Section 4. Section 5 presents the experi-
mental evaluation results. Section 6 is a discussion of the experimental results and their
comparative evaluation. Final conclusions and directions for further research are contained
in Section 7.

2. Related Work

Fractal analysis, which studies the properties of self-similarity, is currently in a phase of
active development. Fractal analysis is widely used for state monitoring problems, in which
time series are investigated. For example, [16] proposes to use the R/S analysis method to
analyze the self-similarity of time series. The self-similarity properties of the Voice Over
Internet Protocol (VoIP) traffic are modeled and studied in [17]. The fractal dimension,
which is an additional measure with respect to the Hurst exponent, is investigated in [18].
The reasons explaining the presence of self-similarity properties in telecommunication
traffic are given in [19]. However, the main area of research in all these papers, as a rule, is
both VoIP-telephony and economic systems.

At the same time, it should be noted that there are few practical experiments aimed at
studying the fractal properties of the network traffic in information and telecommunication
systems. Among such works, we can single out works [20–22]. However, [20] considers
the mobile communication traffic generated by cellular stations. The authors conclude that
the properties of self-similarity are inherent not only in computer and telecommunications
networks, but also in the radio waves on which cellular stations operate. Self-similarity of
motion is considered in [21,22]. To detect it, it is proposed to use visual cues, which allow one to
find similar areas on the motion graph. These areas allow one to identify self-similar processes.

One of the first works, in which the main attention was paid to the self-similarity
property of the network traffic, is the work [11]. It significantly changed the existing ideas
about the processes taking place in information and telecommunication networks. These
issues will be discussed in more detail in the next section. In addition, we should mention
some works in which the mathematical models designed to describe self-similarity in
network traffic have been proposed and investigated [23,24]. However, these works cannot
be considered exhaustive, since they did not consider the issues of CA detection. Conse-
quently, we can assume that our work, on the one hand, further develops the theoretical
positions achieved in the study of the fractal properties of the network traffic. On the other
hand, it develops the well-known solutions further in the direction of creating a method
that makes it possible to detect network traffic anomalies caused by the impact of CAs.

At the same time, it should be noted that when considering threats to SG security,
one should be guided by the following two indicators that characterize these threats.
The first indicator is the probability of the threat realization. The second indicator is the
potential damage that can be incurred by the power company in case of security threat
realization [6,14]. Considering and combining these indicators, it is possible to substantiate
the choice of the most acceptable threat models for SGs and to create protection systems for
them, in which the decisions made would allow one to minimize security risks.

The first group [25–31] summarizes the techniques based on quantitative criteria.
Thus, [25] proposes to use the acceptable level of the possible damage from information and
technical impact on SG resources and the assessment of the profit factor from investments
in protective measures as a measure to rank threat models. Quantitative methods comply
with the requirements of ISO 27,001 and 27,002, NIST, and COBIT IV [26,27]. Although
these methods take into account the predetermined risk appetite, they do not consider
the variability in the construction of the SG protection system [28]. In addition, one of the
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significant disadvantages of the aforementioned methods is the high cost and complexity
of their implementation [29]. At the same time, the complexity of quantitative methods
is due to the need to take into account each potential security threat in the formation of
options for counteracting CAs and developing solutions to eliminate the consequences of
CAs [30]. For these purposes, [31] proposes to perform the ranking of security SG risks.
Although this technique is undoubtedly of interest, it contains a number of negative factors
associated with the problem of cloud resources.

The second group of methods [32–35] received the generally accepted name of qual-
itative methods. These methods apply qualitative indicators and criteria for the char-
acterization of SG security threats. The essence of qualitative methods is the search for
such a solution, in which the necessary balance is observed between the costs spent on
building the protection system and the effect achieved with its help. Such methods form a
direction called Cost/Benefit Analysis. In these methods, basically, different positions of
the game theory, for example, matrix games are used. Speaking about the disadvantages of
qualitative methods, it is necessary to point out their comparatively high computational
complexity. It is due to the need to conduct a security risk analysis in order to make an
economic justification for the introduction of protection mechanisms and means for various
threat models into SG protection systems. Methods using qualitative criteria are similar in
essence to the Facilitated Risk Analysis Process (FRAP) method [36,37].

The third approach [38–41] is an integrated one; it rationally combines the first and
second groups of methods. Most often, the methods of this group find their application in
small and medium-sized energy companies. The disadvantages of these methods include,
as a rule, a very small amount of analytical data characterizing the potential damage under
the given models of CA realization, as well as insufficiently complete risk assessment.

Besides, the works [42,43] present a structured approach to assessing the threat model
for information and telecommunication resources (methods “CRAMM”, “MEHARI”). Here
an integrated representation of the information security threat parameters is performed,
but the specificity of building the SG protection system is practically not considered.

There is a well-known methodology for managing the information security system—
Microsoft Security Assessment Tool (MSAT) [44,45]. This tool uses a mechanism for ranking
threat models. In addition, the tool provides countermeasures for SG security threats and
evaluates their effectiveness. However, the tool is not scalable enough. That is why in SG
it is usually implemented in local computing networks or in companies with fewer than
1000 employees. The Risk Management Guide [34] is the basis for this tool’s design and
operation. Among the main functions performed by the tool, in addition to risk assessment
and decision support, one can include performance monitoring and evaluation [13].

Thus, all the considered approaches to CA early detection and prediction are based
either on an in-depth analysis of possible risks (probable damage), or on a selective ranking
of threats and defenses. In our opinion, these approaches are insufficient to protect SGs from
CAs. For this reason, this article discusses the key points of building an improved system
for CA early detection, which can be called proactive. The proactivity of the system lies
in the fact that it implements anomaly detection in the network traffic, their identification,
and classification based on fractal analysis methods, and a neural network with a long
short-term memory, which allows one to reduce risks in the implementation of CAs. The
consideration of the proposed system is architecture-oriented. On the one hand, it goes
beyond an abstract representation, and on the other hand, it does not pay much attention
to technical details. We conclude this article with a detailed look at the proposed active
security solutions for SGs and their implementation.

3. Theoretical Foundations of the Proposed System

3.1. Stationarity of Temporary Traffic

Consider the autoregressive process in general terms:

xt = C + ∑p
i=1 ϕiXt−i+ ∈t +∑q

i=0 θi ∈t−1 (1)
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where ϕp, θq 
= 0 are the model parameters, C is a constant, ∈t is a white noise, xt−i is a
previous element of the time series.

The model can be interpreted as follows: the current value depends on past values up
to lag p and on current and past external shocks up to lag q. To write the autoregressive
process, it is convenient to use the lag operator L. The lag operator allows one to obtain the
values of the elements of the time series based on several previous values. A lag operator
of order i is an operator that shifts the value of the time series xt by i values back, i.e.,
Li : xt → xt−i . Using lag operators, the autoregressive process can now be written more
visually as follows:

xt = C + ∑p
i=1 ϕiLiXt+ ∈t +∑q

i=0 θiLi ∈t (2)

Let us rewrite as follows, moving the autoregressive part to the left side of the equality:(
1 − ∑p

i=1 ϕiLi
)

xt = C +
(

1 + ∑q
i=1 θiLi

)
∈t (3)

Now we introduce two polynomials of degree p and q:

ϕ(z) = 1 − ∑p
j=1 ϕjzj = 1 − ϕ1z − ϕ2z2 − . . . − ϕpzp (4)

θ(z) = 1 + ∑q
j=1 θjzj = 1 + θ1z + θ2z2 + . . . + θpzp (5)

where ϕj and θj are polynomial coefficients depending on the monomial z, which is a
complex number.

Then the autoregressive model can be formally written as ϕ(L)xt = C + θ(L) ∈t,
where ϕ(L)x is the autoregressive part of the polynomial, and θ(L) ∈t is the moving
average part.

The time series is stationary if all roots of the autoregressive polynomial
ϕ(z) = 1 − ϕ1z − . . . − ϕpzp lie outside the unit circle of the complex plane

∣∣zj
∣∣ > 1 (that is,

they are greater than 1 in absolute value). The inequality
∣∣zj
∣∣ > 1 is satisfied if

∣∣ϕj
∣∣ < 1.

Consequently, the relation
∣∣ϕj
∣∣ < 1 is a condition of stationarity of the autoregressive

process.
In addition, for a stationary process, the average is constant in time Ext ≡ const,

i.e., the time series does not have a trend, and the covariance between different elements
of the time series depends only on how far they are from each other in time. In other
words, the covariance depends only on the lag h cov(xt, xt+h) = γ(h). The value h, which
characterizes the difference in time between the elements of the time series, is called a lag
variable or delay. Since γ(0) = cov(xt, xt) = Var(xt), the variance of the stationary time
series also does not change with time.

Thus, to test the hypothesis of stationarity of the series, the generalized Dickey–Fuller
test is used, and to determine anomalous activity in the network, we are guided by the
principle of self-similarity for non-stationary traffic, which is violated when anomalous
activity occurs. R/S or DFA algorithms are used to calculate the self-similarity property.
The first one is faster, and the second one is more accurate. The process is non-stationary if
these conditions are violated.

3.2. Self-Similarity Analysis in Network Traffic

Many natural processes are characterized by distributions with heavy tails. Such
distributions include the Pareto, Cauchy, Levy, and Weibull distributions, as well as the
lognormal distribution. An important feature of exponential distributions is the realization
of events that deviate strongly from the norm. Such distributions can be applied to model
network traffic intensities and rates that have large, theoretically infinite variances.

The lognormal distribution is the earliest model of self-similar traffic. It is used to model
network packet arrival intervals and file sizes transmitted [46]. The Weibull distribution is
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applied to model the arrival processes of FTP protocol blocks. The Pareto distribution is used to
model the intervals between requests to web resources and VoIP traffic [17,46].

In our work, network traffic is considered as an aggregation of several flows from
different sources. The aggregated flow, jointly transmitted over communication channels
with infinite variance, leads to self-similar network traffic, which is described by the model
of fractal Brownian motion [47]. If one of the partial flows has self-similarity when aggre-
gating flows, then the resulting aggregate flow will also have self-similarity [24]. In this
case, self-similarity is preserved when aggregating flows coming from both homogeneous
and heterogeneous traffic sources.

Fractal Brownian motion is easily applicable to modeling self-similar traffic. The
process X(t) is called a fractal Brownian motion with the parameter H, 0 ≤ H ≤ 1, if the
increments of the random process have a Gaussian distribution:

P(ΔX < x) =
1√

2πδ0τH

∫ x

−∞
exp

[
− z2

2δ2
0τ2H

]
dz (6)

where δ0 is a diffusion coefficient.
Wherein:
(1) X(0) = 0;
(2) ΔX = X(t2) − X(t1) has a normal distribution with zero mean and variance—

δ2(t2 − t1)
2H , 0 ≤ H ≤ 1, where H = 0.5 indicates a random row. The events are random

and uncorrelated. The range of accumulated deviations should increase in proportion to
the square root of time.

As noted above, the Hurst exponent H is a measure of the self-similarity of the process. If
the process has strongly pronounced fractal properties, then H approaches unity. In the absence of
self-similarity H = 0.5 [15]. In this case we speak about fractal Brownian motion, which coincides
with the classical Brownian motion and imposes a large noise on the time series [16,26,27].

3.3. Detecting Anomalous Bursts Using Machine Learning Techniques

There are many ways to identify anomalies. Figures 1–3 demonstrate the operation of
the most popular machine learning algorithms tested on time series generated using an
autoregressive integrated moving average model.

 

Figure 1. Cumulative sums.
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Figure 2. Support Vector Machine.

Figure 3. Isolated forest.

Figure 1 shows different variants of time series with different values of the threshold
and drift parameters, on which anomalies (changes) are detected using the cumulative sum
method. Detected changes are marked with red dots. It can be seen that the number of
detected anomalies in the time series can be different (from two to 62).
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Figure 2 outlines the results of anomaly detection using the support vector machine.
Each observation has two normalized coordinates—Feature 1 and Feature 2. Feature 1
plays the role of the “Packet Delay” characteristic, and Feature 2 displays the “Bandwidth”
characteristic. The white dots indicate the observations that were used in the training set.
Their boundaries are marked with red lines. Testing a new dataset using a trained Support
Vector Machine (SVM) classifier results in a division of observations into normal (purple
dots) and anomalous (yellow dots).

Figure 3 depicts the results of anomaly detection in a time series using an isolated forest.
At points where there are anomalies (red dots), the time series changes the parameters of
its distribution. An isolated forest is good at detecting these changes.

As can be seen from the figures, the algorithms do an excellent job of detecting
anomalous outliers. In this case, the anomaly manifests itself in the form of the non-
stationarity of some observed time series. These are not only instantaneous jumps in the
measurement amplitude, but also slow trends that are practically invisible during the
observation period.

However, when testing the above algorithms on real network traffic, it turned out that
outliers are not always anomalous. Therefore, to study the features of anomaly detection in
SG traffic, a cyber polygon was developed, shown in Figure 4.

 

Figure 4. Cyber polygon designed to collect network traffic and analyze its security.

About 30 types of CAs were carried out in the cyber polygon and 40 GB of legitimate
traffic was generated. Network traffic was redirected to Security Onion and written to pcap
files. From this traffic, a dataset was formed using Netsniff-ng and Bro. The attacks were
carried out using the Kali Linux distribution against known vulnerable services deployed
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in the central part of the scheme. Next, a search for anomalous bursts was carried out using
the algorithms of cumulative sums, isolated forest, and SVM. Despite the fact that these
algorithms do an excellent job of finding anomalous bursts, it was found that bursts are not
always anomalies.

For data packet transmission, modern standards, protocols, and technologies for
high-speed electrical networking were considered, such as:

• Fast Ethernet and Gigabit Ethernet suite of standards, which define wired connections
and electrical signals at the physical layer, and packet format and medium access
control protocols at the data link layer;

• wireless transmission standards based on GSM/EDGE and UMTS/HSPA, which allow
data rates of 100 Mbps (with mobile subscribers) and 1 Gbps (with fixed subscribers);

• IEEE 802.11 local wireless networks, which use infrared radiation and radio waves as
the physical transmission medium.

The scenario according to which the message packets are transmitted is stationary
in this case. Sensors were installed in homes, shops, and offices. The Leningrad Nuclear
Power Plant (LNPP) and the South-Western Thermal Power Plant (SWTPP) acted as sources
of electricity. The control over the security of the SG network was ensured by the operator
(the incident monitoring system).

The intercepted traffic was a data set containing information processed by the oper-
ators and dispatching systems of the SG power system. This information included the
following parameters:

• equipment state parameters;
• load parameters for transformers;
• parameters of the distributed measurement system;
• power quality parameters;
• information about the locations of damage and denial of service;
• power factor values;
• profiles and forecasts of electricity consumption, as well as some other parameters.

The SG telecommunications network was considered one of the types of computer
networks. Therefore, we assumed that the telecommunications SG network has the self-
similarity property. Our assumption was later confirmed in the course of experiments.

Based on the fact that the greatest amount of information is stored and transmitted by
the operators and dispatchers of the SG power system, the monitoring system, as well as
the LNPP and SWTPP data transmission networks with control system were selected as
the object for the implementation of the CA.

It was assumed that the ports in the edge network equipment have a bandwidth of
1 Gbit/s [6] and operate over the Ethernet protocol. Traffic generation was performed
using the developed simulation model. The GNS3 framework (Galaxy Technologies, LLC.,
https://www.gns3.com/ (accessed on 20 September 2022)) was used to build this model.

Table 1 shows a list of the main attributes that were included in the dataset generated
with GNS3.

The total number of different Flow.ID values in the dataset was 1,522,917. Address
10.200.7.217, corresponding to SWTPP, was used as Source.IP for 7% of all entries. The
value 10.200.7.218 corresponding to LNPP was in the Source.IP parameter for 8% of all
records. The rest 85% of the entries had other Source.IP values. The generated addresses
10.200.7.7 and 10.200.7.8 were used as Destination.ID field values in 9% of all records.
They corresponded to computer networks located in the “Passage” and “Gostiny Dvor”
shopping centers. The remaining 82% of the records had other values of the Destination.IP
field (their number was 2,939,141).

The self-similarity analysis was performed on the time series formed from the values
of the Packet.Length.Mean field. This attribute in the generated dataset had 10,700 unique
values. The most frequent values were 267.5 and 243.5 [6].
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Table 1. The main attributes included in the dataset.

# Attribute Name Comments

1 Bwd.Packet. Length.Max The maximum packet length (in bytes) in the
backward direction

2 Bwd.Packet. Length.Mean The mean packet length (in bytes) in the
backward direction

3 Bwd.Packet. Length.Min The minimum packet length (in bytes) in the
backward direction

4 Bwd.Packet. Length.SD The standard packet length deviation (in bytes) in the
backward direction

5 Destination.IP The destination IP address

6 Destination.Port The destination port number

7 Flow.Duration The total flow duration

8 Flow.ID A flow identifier. It has the following format: Source.IP-
Destination.IP-Source.Port-Destination.Port-Protocol

9 Fwd.Packet. Length.Max The maximum packet length (in bytes) in the
forward direction

10 Fwd.Packet. Length.Mean The mean packet length (in bytes) in the
forward direction

11 Fwd.Packet. Length.Min The minimum packet length (in bytes) in the
forward direction

12 Fwd.Packet. Length.SD The standard packet length deviation (in bytes) in the
forward direction

13 Packet.Length.Mean The mean length value of the packets registered in the
flow (both forward and backward directions)

14 Protocol The transport layer protocol number identification (value
is 6 for the TCP protocol and 17 for the UDP protocol)

15 Source.IP The source IP address of the flow

16 Source.Port The source port number

17 Timestamp Packet capture moment. The value is stored in the
following format: Dd/mm/yyyy HH:MM:SS

18 Total.Backward.Packets The total number of the backward packets

19 Total.Fwd.Packets The total number of the forward packets

20 Total.Length.of. Backward
The total number of bytes in the backward direction

obtained from all the flow (all the packets have
been transmitted)

21 Total.Length.of. Fwd
The total number of bytes in the forward direction

received from all the flow (all packets have
been transmitted)

Two CA types impacted the SG’s simulated infrastructure. These attacks were a DDoS
attack and a “Network and Vulnerability Scanning” attack. Traffic impacted by the first
type of attack was simulated using the IXIA’s IP network test equipment. A distributed
network and SYN Flood, Ping Flood, and UDP Flood methods were used to implement the
first CA type. The second CA type was simulated using IP network scanning tools Nmap
and Xspider. The probing method was used to implement this attack. According to this
method, Nmap or Xspider network scanner simulates an attack aimed at active exploitation
of the analyzed vulnerability.

A SYN Flood attack was simulated as follows. The attacker (client) used the standard
way of opening TCP connections. For this purpose, a SYN packet was sent to an open
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server port. After receiving and processing this packet, the server returned the SYN-ACK
packet. The SYN-ACK packet contained client-specific data taken from the Traffic Control
Unit (TCU) store. In normal circumstances, the client sends back an ACK packet, which
serves as confirmation and allows a TCP connection to be opened. However, in the case of
a SYN attack, the attacker generated and sent multiple repeat requests to the server with
spoofed IP addresses. The server, being the target of the attack, treated them as legitimate
requests. It processed them all and tried to open a TCP connection for them. Ping Flood
and UDP Flood attacks were implemented in a similar way.

Thus, under conditions of CAs, the data set included the additional attributes (flags)
shown in Table 2.

Table 2. Additional dataset attributes.

# Attribute Name Comments

1 ACK.Flag.Count The number of times the ACK (Acknowledged) flag for
packets sent in both directions was 1

2 FIN.Flag.Count
The number of times the FIN flag for sent packets was 1.
Normally the operation ends with the transmission of a

packet in which the FIN is 1

3 RST.Flag.Count The number of times the RST (Reset) flag for packets sent in
both directions was 1

4 SIN.Flag.Count The number of times the SIN (Synchronization) flag for
packets sent in both directions was 1

The type of attacks being modeled was considered during dataset generation and
determined the FIN, SIN, RST, and ACK flags values. For example, the number of single
SIN and ACK flag values increased if the “Network and Vulnerability Scanning” attack
was simulated. Thus, in the traffic used for the experiments described in this article, single
SIN flag values accounted for 20% and single ASK flag values for 60% of all values [6].

Figures 5–8 and Table 3 present the data obtained at the cyber polygon on the protocols
and network parameters under study. Table 3 shows the network protocol parameters
that were studied. Figure 5 shows statistics on retransmitted or dropped packets. Figure 6
demonstrates the dynamics of changes in the number of connections to the server. Figure 7
depicts how the state of the TCP header parameters changed over time during the lifetime
of the IP packet. Figure 7 shows how the packet rate has changed over time.

 

Figure 5. Retransmitted or dropped packets.
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Figure 6. Number of connections to the server.

 

Figure 7. States of TCP header parameters during the lifetime of an IP packet.

Figure 8. Packet transfer rate, bit/sec.
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Table 3. Network protocol parameters.

No. Name Type Description

1 dbytes integer Destination to source transaction bytes

2 dintpkt float Destination interpacket arrival time

3 djit float Destination jitter (mSec)

4 dload float Destination bits per second

5 dloss integer Destination packets retransmitted or dropped

6 dmeansz integer Mean of the packet size sent by destinations

7 dpkts integer Destination to source packet count

8 dsport integer Destination port number

9 dstip nominal Destination IP address

10 dtcpb integer Destination TCP base sequence number

11 dttl integer Destination to source time to live value

12 dur float Record total duration

13 dwin integer Destination TCP window advertisement value

14 ltime timestamp Record last time

15 proto nominal Transaction protocol

16 res_bdy_len integer Actual uncompressed content size of data

17 sbytes integer Source to destination transaction bytes

18 service nominal http, ftp, smtp, ssh, dns, ftp-data, irc and others

19 sintpkt float Source interpacket arrival time

20 sjit float Source jitter (mSec)

21 sload float Source bits per second

22 sloss integer Source packets retransmitted or dropped

23 smeansz integer Mean of the packet size sent by sources

24 spkts integer Source to destination packet count

25 sport integer Source port number

26 srcip nominal Source IP address

27 state nominal Indicates to the state and its dependent protocol

28 stcpb integer Source TCP base sequence number

29 stime timestamp Record start time

30 sttl integer Source to destination time to live value

31 swin integer Source TCP window advertisement value

32 synack float TCP connection setup time

33 tcprtt float TCP connection setup round-trip time

34 trans_depth integer Represents the pipeline depth into connection

In Figures 5–8, anomalous packets are marked with red dots and normal (legitimate)
packets are marked with green dots. As can be seen from these figures, many bursts are
legitimate and, conversely, in many places where there are no bursts, there are anomalies.
Therefore, the issue of timely detection of bursts of traffic in SG, identification of anomalous
ones from them, as well as classification of detected anomalies in order to predict the fact
of the impact of CAs and develop effective countermeasures is an acute issue.
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3.4. Anomaly Detection with Classifiers

To evaluate the effectiveness of popular classifiers, a dataset was formed containing
correlated parameters with anomalous queries. For this purpose, a correlation matrix was
built (Figure 9).

 

Figure 9. Correlation matrix.

The label parameter (the last parameter in the correlation matrix) is an indicator
showing the presence of anomalies. From the parameters presented in the correlation
matrix, 20 parameters were selected that are most correlated with anomalies. They are
outlined in Figure 10.
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Figure 10. Most correlated parameters.

The sttl parameter, which indicates the lifetime of the packet during its transmission
from source to sender, is most affected. The dynamics of this parameter with indications
of anomalies (shown in red dots) are demonstrated in Figure 11. The figure shows the
dynamics of the value, which tells the local server how long to keep the packet information
in the IP protocol.

152



Sensors 2022, 22, 7506

 

Figure 11. Packet lifetime from source to sender.

Logistic regression, random forest, and decision tree were chosen as classifiers that
were used at the cyber polygon. These classifiers are not chosen by chance. They have been
widely used in the works of many researchers and in many cases provide a sufficiently high
classification efficiency, including in ensembles of classifiers. To evaluate their effectiveness,
a confusion matrix was calculated. It was used to determine not only the accuracy, but also
the number of false positives. The results of the selected classifiers are shown in Figure 12.
It can be seen that despite the high efficiency of the classifiers used at the cyber polygon,
they all had a large number of false positives.

Figure 12. Comparing the efficiency of classifiers.

For Logistic Regression the First Kind Error is 39%. The Random Forest algorithm has
56% of false positives. The Decision Tree algorithm also shows quite aggressive behavior,
which is caused by the First Kind Error, equal to 43%.

The obtained results confirm that the main problem of known classifiers is the poor
ability to recognize previously unknown anomalies.

4. General Description of the Proposed System

4.1. Stages of System Operation

To detect anomalies in smart power grids from cyber attacks, a proactive protection system
is proposed. The scheme of operation of this system contains the following stages (Figure 13):

• collection of network traffic;
• stationarity check;
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• preparation of initial data;
• fractal analysis;
• machine learning.

 

Figure 13. Scheme of the proactive protection system when anomalies are detected.

Initially, after traffic is collected, it is checked for stationarity. To calculate the Hurst
exponent in stationary traffic, R/S analysis is used, and in non-stationary noisy traffic with
time-varying characteristics, DFA analysis is used. The procedure for estimating the Hurst
exponent based on R/S and DFA analysis was considered in detail in [6,48].

Next, the detected anomalies are processed in order to predict the fact of the impact
of cyber attacks. To do this, a hybrid neural network consisting of an autoencoder and a
classifier is used as a machine learning method.

An autoencoder is a feed-forward neural network that reconstructs the input signal
at the output. Inside it has a hidden layer, which is the code that specifies the model. The
autoencoder is designed to be able to exactly copy the input to the output.

It is proposed to use cells with LSTM as autoencoder layers in the system. The
architecture of the LSTM and the algorithm of its operation were considered in detail
in [13,49]. Therefore, further, we will consider in more detail the operation of the developed
SG protection system against CAs on service data transfer protocols.

4.2. Software Implementation

For the software implementation of the proposed CA detection system (Figure 14),
the Python language was chosen. Pandas library, written in the programming languages
C, Cython, and Python, was used for data processing and analysis. As a result, Python,
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despite its high availability, becomes quite a powerful tool for data analysis. It allows one to
perform groupings, create pivot tables at a high level, and have easy access to tabular data.

 

Figure 14. Scheme of functioning of the system for CA detection in stationary traffic.

In addition to the Pandas library, we used the NumPy library, which is a lower-level
toolkit that allows one to work with multidimensional arrays (tensors) and high-level
mathematical functions. The Matplotlib module was used to build graphs. Necessary
calculations were carried out in the integrated development environment Jupiter notebook.
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In order to intercept the request, a middleware layer (framework Django) was used. It
is a middleware framework that allows one to process requests from the browser before
they reach the server, as well as to handle responses before they are returned to the browser.

To test the stationarity of traffic, an experiment was carried out, which consisted in
plotting the distribution of lengths between two identical characters and estimating the
stationarity of the resulting series using the Dickey–Fuller test.

Next, preprocessing and normalization of the resulting sample were performed. Vector
representation of characters was used, since the HTTP protocol is a text-based protocol. To
implement this method of representation, all the characters available in the dataset were
replaced by numeric equivalents (tokens), which have no independent application. Then
the words were translated into a sequence of sequences.

An example of the resulting array of sequences is shown in Figure 15.

Figure 15. Sequence example.

It was taken into account that all sequences must have the same length. If the request
length was less than the sequence length, the missing characters were replaced by zeros.

4.3. Subsystem for Determining the Stationarity of Network Traffic

Using the Dickey–Fuller test, the value of the autoregression coefficient α is checked
in the first-order autoregressive equation AR(1):

yt = α · yt−1 + εt , (7)

where yt is a time series and ε is white noise, t = 1, . . . , T.
1. If H1 : α < 1, then the series yt will be stationary, yt ∼ I(0) and the Ordinary least

squares (OLS) estimator α̂ will have a normal distribution with zero mean and variance α̂.
To test the unit root hypothesis, an OLS estimator α̂ is constructed:

α̂ =
∑T

t=1 yt−1yt

∑T
t=1 y2

t−1

(8)

and the corresponding t-statistic:

tα =
α̂ − 1

S/
√

∑T
t=1 y2

t−1

(9)

where S2 = T−1 ∑T
t=1 (yt − α̂yt−1)

2 is the estimated variance of the residuals.
If the value of statistic tα lies to the left of the critical value at the 5% significance level,

i.e., tα < t5%
critical, then the time series is stationary.

2. If H0 : α = 1, then the distribution of this estimate will no longer be normal, and the
process yt will be non-stationary with a time-dependent variance yt ∼ I(1). In this case, to
model the dynamics of such a series, it is necessary to use its first difference Δyt = yy − yt−1.
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Under the null hypothesis, the normalized bias statistic T(α̂ − 1) and the t-statistic tα have
non-standard marginal Dickey–Fuller distributions:

T(α̂ − 1) ⇒
∫ 1

0 W(r)dW(r)∫ 1
0 W2(r)dr

and tα ⇒
∫ 1

0 W(r)dW(r)√∫ 1
0 W2(r)dr

(10)

where W(r) is the standard Wiener process (Brownian motion).
If tα > t5%

critical, then the time series is non-stationary.

4.4. Subsystem of Anomaly Analysis in a Stationary and Non-Stationary Network

To detect anomalies in a stationary network, it is proposed to use a hybrid neural net-
work model (Figure 16) created on the TensorFlow framework using the Python language.

 

Figure 16. Hybrid neural network model.

The autoencoder model consists of Gated Recurrent Units (GRUs), which are elements of
the LSTM neural network. Data up to 699 symbols are fed to the input of the neural network.

157



Sensors 2022, 22, 7506

The neural network has several output layers. The output layer of an autoencoder
has exactly the same dimension as the input layer. The classifier has one output layer. It
determines if the request is anomalous or legitimate.

5. Experimental Evaluation of the System

Non-stationary network traffic received using the created cyber polygon was divided
into legitimate (Figure 17) and anomalous (Figure 18) samples.

Figure 17. Legitimate traffic.

Figure 18. Abnormal traffic.

The analysis showed that in order to detect anomalous behavior in traffic, it is enough
to analyze its main parameters. There is no need to study the contents of each packet.
Examples of anomalies detected based on traffic telemetry analysis are a sudden increase
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in traffic from a workstation or a change in its structure compared to normal daily rates for
a given network device.

For each sample, the Hurst exponent was calculated using the R/S algorithm.
Figure 19 depicts an example of calculating H for non-stationary traffic, which showed

the result H = 1.378.

Figure 19. R/S versus time on a logarithmic scale.

In turn, the Hurst exponent exceeding the maximum value of 1 confirms the presence
of anomalies in network traffic.

To quickly find anomalies caused by CAs, the network stream is first divided into groups.
The Hurst exponent is then calculated for each of the groups. The result of such processing is
shown in Figure 20. In this example, 10,000 points were divided into 20 groups.

Figure 20. Computing H for legitimate UDP traffic.
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The threshold corresponding to the white noise boundary (H = 0.5) is indicated by
the blue line. The points on the second graph correspond to the number of packet groups
(30 points in total). On the third graph, the dots correspond to the number of scales (12 dots in
total). The number of scales affects the accuracy and duration of the algorithm. Increasing the
number of scales increases accuracy, and decreasing the number of scales decreases accuracy.

Figure 20 shows the Hurst exponent for all groups of packages, which is above the
0.5 mark. This indicates self-similarity properties for each of the network traffic groups. The
third graph (logarithmic regression graph) shows the Hurst exponent for all data, which
confirms the presence of fractal properties and repetitive processes.

Next, we tested abnormal network traffic received during a DDoS attack and a cyber-
attack “Scanning the network and its vulnerabilities”. The result of calculating H for this
anomalous traffic is shown in Figure 21. It can be seen that in this case the self-similarity
property is violated, since the Hurst exponent at each of the intervals has a value less than
the threshold of 0.5.

 

Figure 21. Computing H for abnormal UDP traffic.

The training dataset includes both legitimate and anomalous traffic. Only legitimate
traffic was fed to the input of the autoencoder. The classifier input received legitimate and
anomalous traffic, as well as hidden latent representations received from the autoencoder
after encoding the information. The results of the selection of the neural network parameters
are shown in Figure 22. The selection of parameters was carried out in such a way that
the loss function during training of the autoencoder decreased, while the accuracy of the
classifier grew.
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Figure 22. Selection of neural network hyperparameters.

Figure 23 demonstrates the results of estimating accuracy growth and loss reduction
over 30 training epochs.
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Figure 23. Decoder and classifier training on 30 epochs.

To empirically evaluate the generalizing ability of the neural network, a 10-fold
stratified K-Folds cross-validator was used on unique data with the most uniform use of
available data (Figure 24).

Figure 24. 10-fold cross-validation at 15 epochs.
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After training the neural network, an experiment was conducted to assess the accuracy
and completeness of the detection of known anomalies. First, a dataset with CAs of the
same type was used as in the dataset when training the model. The anomaly detection
result showed a value of 96.9%.

Then a new dataset was formed containing CAs previously unknown to the classifier
(“0-day” attacks). The algorithm recognized 80% of previously unknown attacks. At the
same time, it determined that 99% of legitimate requests are not anomalous.

It has been observed that the system allows false positives. In particular, two requests
were dropped by the neural network. Examples of such false positives in the system are
shown in Figure 25.

Figure 25. Examples of false positives in the system.

Given the fact that the dataset contained 57,000 queries, of which 20,000 were anoma-
lous, the value of 2 is not a significant drawback of the proposed approach.

6. Discussion

Experiments have shown that SG network traffic has fractal properties. In other words,
in large volumes this traffic has the property of self-similarity.

In addition, experiments have shown that the proposed proactive SG protection system
upon detection of CAs based on the assessment of self-similarity of system functioning
parameters using fractal indicators and predicting the fact of the impact of CAs by applying
the proposed structure of the LSTM neural network has fairly high efficiency in detecting
both known and unknown CAs. The probability of detecting known CAs is 0.96, and
“0-day” attacks is 0.8.

A comparative evaluation of the proposed approach was carried out with intrusion
detection systems (IDS) and intrusion prevention systems (IPS), which were based on
signature [50], statistical [51], and machine learning methods [52,53].

The results of this assessment are shown in Table 4. It demonstrates the detection rate
(in seconds) and detection accuracy of known and unknown CAs types. In addition, the
table indicates what type of traffic the method is suitable for.

Table 4. Comparative analysis of methods for detecting cyber attacks.

Method Name
Detection

Rate (s)

Detection Accuracy Traffic Type

Known
Attacks

Unknown
Attacks

Stationary Non-Stationary

Signature methods [50] 5 0.99 0.5 + -

Statistical methods [51] 30 0.92 0.6 + -

Machine learning
methods [52,53] 28 0.72–0.97 0.8 + -

Proposed method 5 0.96 0.8 + +

Table 4 shows that signature methods and the proposed method are the fastest in
terms of detection rate. Also, because signature methods use predefined rules, they have
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the highest accuracy in detecting known attacks. However, their accuracy in detecting
unknown attacks is very low. A value of 0.5 indicates that this accuracy corresponds to the
law of equiprobability.

Statistical methods lose out to signature methods in terms of detection rate and
accuracy, since they use accumulated statistics. However, sometimes they are able to detect
unknown attacks.

Machine learning methods are quite diverse and well-developed. Their effectiveness
depends on the classification and clustering models they use. In the works [52,53] con-
sidered in Table 4, the SVM, Gaussian Naive Bayes, and Decision Tree models were used.
In these methods, it is necessary to train models on control samples. Therefore, machine
learning methods lose signature methods in detection rate. However, they have higher
accuracy in detecting unknown attacks.

The proposed method has a detection rate, similar to the signature methods, and the
accuracy corresponds to the values, similar to the machine learning methods. At the same time,
it retains its effectiveness when working with non-stationary traffic, which is most typical for
SG traffic. The remaining methods work well only in the case of stationary traffic.

It should be noted that, at present, for the continuous controlling of the transfer of
technological and other information in SG, the systems built on distributed ledger and
blockchain technologies, based on smart contracts, are actively used [54,55]. The use of
such solutions makes it possible to protect the information transmitted in SG from CAs
aimed at violating its confidentiality and integrity. However, these technologies do not
provide early detection of CAs, their classification, and protection of SG network devices
from CAs, the implementation of which is aimed at learning the SG structure and the
subsequent violation of the performance of the network and its elements.

The proposed approach to proactive protection of SG from CAs can be implemented in
many existing IDS and IPS, whose main task is to analyze internal data streams, searching in
them for bit sequences that may represent malicious actions or events, as well as monitoring
system logs. It increases the probability of detecting unknown CAs by using the autoencoder
and LSTM networks, reducing the probability of false positives and the time and the amount
of RAM involved in analyzing the network traffic. Thus, the disadvantages of existing IDS
and IPS, based on rules, as well as signature and anomaly technologies are leveled.

It should be noted that the conducted studies only demonstrate the effectiveness of
the proposed proactive system for predicting and detecting CAs in the SG network. It
can be considered as an attack detection system that combines the advantages inherent
in signature, statistical, and machine learning methods, and is devoid of their inherent
disadvantages. At the same time, it expands the scope of attack detection methods by
extending them to a non-stationary type of traffic.

7. Conclusions

The article discusses a new approach to the operation of a system for protecting
smart power grids from CAs on service data transfer protocols, based on the detection
of anomalies in network traffic by evaluating its self-similarity property, detecting cyber
attacks in anomalies in real or near real-time, their classification and acceptance effective
protection measures using LSTM and GRU cells. Fractal analysis, mathematical statistics,
and neural networks with long short-term memory were used as tools in the development
of this protection system.

The proposed system is based on the application of the main provisions of the theory
of fractals and the use of self-similarity assessment methods proposed by this theory, such
as the Dickey–Fuller test, R/S analysis, and the DFA method. When testing fractal methods
that make it possible to study long-term dependencies in network traffic, the DFA method
is more efficient than R/S analysis due to its ability to process not only stationary, but also
non-stationary series with high accuracy. Its joint application with LSTM networks can
significantly increase the probability of detecting CAs.
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The experimental evaluation of the proposed approach showed that, compared with
many other approaches, one of the main advantages of fractal analysis is its speed, as well
as the ability to detect anomalies in traffic of any kind. Only an increase in the number of
processed data transfer protocol header parameters (packet length, flags, and others) leads
to an increase in the calculation time. At the same time, the proposed system demonstrated
a fairly high probability of detecting CAs, reaching a value of 0.96 for known attacks and
0.8 for previously unknown attacks.

The specificity of the proposed system is that the detection of CAs is performed using
an autoencoder trained on the basis of the reference data of the SG operation and the
information exchange in it, taking into account all deviations from the regular operation of
the SG. During operation, the autoencoder is additionally trained by a reasonable neural
network, i.e., the result is a generative adversarial network in which neural networks learn
from each other.

Further studies are associated with the integration of the proposed system with other
known protection systems, as well as with the attack detection methods available in the
arsenal of computer security systems.
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5. Uçtu, G.; Alkan, M.; Doğru, İ.A.; Dörterler, M. Perimeter Network Security Solutions: A Survey. In Proceedings of the 2019 3rd
International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October
2019; pp. 1–6. [CrossRef]

6. Kotenko, I.; Saenko, I.; Lauta, O.; Kribel, A. An Approach to Detecting Cyber Attacks against Smart Power Grids Based on the
Analysis of Network Traffic Self-Similarity. Energies 2020, 13, 5031. [CrossRef]

7. Ageev, S.; Kotenko, I.; Saenko, I.; Kopchak, Y. Abnormal Traffic Detection in Networks of the Internet of Things Based on
Fuzzy Logical Inference. In Proceedings of the IEEE International Conference on Soft Computing and Measurements (SCM), St.
Petersburg, Russia, 19–21 May 2015; pp. 5–8. [CrossRef]

8. Desnitsky, V.A.; Kotenko, I.V.; Nogin, S.B. Detection of Anomalies in Data for Monitoring of Security Components in the Internet
of Things. In Proceedings of the IEEE International Conference on Soft Computing and Measurements (SCM), St. Petersburg,
Russia, 19–21 May 2015; pp. 189–192. [CrossRef]

9. Brezigar-Masten, A.; Masten, I. CART-based selection of bankruptcy predictors for the logit model. Expert Syst. Appl. 2012, 39,
10153–10159. [CrossRef]

10. Ju, X.; Chen, V.C.P.; Rosenberger, J.M.; Liu, F. Fast knot optimization for multivariate adaptive regression splines using hill
climbing methods. Expert Syst. Appl. 2021, 171, 114565. [CrossRef]

11. Ju, X.; Rosenberger, J.M.; Chen, V.C.P.; Liu, F. Global optimization on non-convex two-way interaction truncated linear multivariate
adaptive regression splines using mixed integer quadratic programming. Inf. Sci. 2022, 597, 38–52. [CrossRef]

164



Sensors 2022, 22, 7506

12. Ju, X.; Liu, F.; Wang, L.; Lee, W.-J. Wind farm layout optimization based on support vector regression guided genetic algorithm
with consideration of participation among landowners. Energy Convers. Manag. 2019, 196, 1267–1281. [CrossRef]

13. Kotenko, I.; Saenko, I.; Lauta, O.; Karpov, M. Methodology for Management of the Protection System of Smart Power Supply
Networks in the Context of Cyberattacks. Energies 2021, 14, 5963. [CrossRef]

14. Kotenko, I.; Saenko, I.; Lauta, O.; Kribel, A. Ensuring the survivability of embedded computer networks based on early detection
of cyber attacks by integrating fractal analysis and statistical methods. Microprocess. Microsyst. 2022, 90, 104459. [CrossRef]

15. Leland, W.E.; Taqqu, M.S.; Willinger, W.; Wilson, D.V. On the self-similar nature of Ethernet traffic. SIGCOMM Comput. Commun.
1993, 23, 183–193. [CrossRef]

16. Raimundo, M.S.; Okamoto, J., Jr. Application of Hurst Exponent (H) and the R/S Analysis in the Classification of FOREX
Securities. Int. J. Model. Optim. 2018, 8, 116–124. [CrossRef]

17. Dang, T.D.; Sonkoly, B.; Molnar, S. Fractal analysis and modeling of VoIP traffic. In Proceedings of the 11th International
Telecommunications Network Strategy and Planning Symposium (NETWORKS 2004), Vienna, Austria, 13–16 June 2004; IEEE:
Vienna, Austria, 2004; pp. 123–130. [CrossRef]

18. Sánchez-Granero, M.J.; Fernández-Martínez, M.; Trinidad-Segovia, J.E. Introducing fractal dimension algorithms to calculate the
Hurst exponent of financial time series. Eur. Phys. J. B 2012, 85, 1–13. [CrossRef]

19. Grillo, D.; Lewis, A.; Pandya, R. Personal Communication Services and Teletraffic Standardization in ITU-T. In The Fundamental
Role of Teletraffic in the Evolution of Telecommunications Networks, Proceedings of the 14th International Teletraffic Congress—ITC 14,
Antibes Juan-les-Pins, France, 6-10 June 1994; Labetoulle, J., Roberts, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1994;
pp. 1–12. [CrossRef]

20. Strelkovskaya, I.; Solovskaya, I.; Makoganiuk, A. Spline-Extrapolation Method in Traffic Forecasting in 5G Networks. J.
Telecommun. Inf. Technol. 2019, 3, 8–16. [CrossRef]

21. Ju, F.; Yang, J.; Liu, H. Analysis of Self-Similar Traffic Based on the On/Off Model. In Proceedings of the 2009 International
Workshop on Chaos-Fractals Theories and Applications, Shenyang, China, 6–8 November 2009; pp. 301–304. [CrossRef]

22. Fractal Objects and Self-Similar Processes. Available online: https://archive.physionet.org/tutorials/fmnc/node3.html
(accessed on 15 January 2022). [CrossRef]

23. Ruoyu, Y.; Wang, Y. Hurst Parameter for Security Evaluation of LAN Traffic. Inf. Technol. J. 2012, 11, 269–275. [CrossRef]
24. Ably, P.; Flandrin, P.; Taqqu, M.S.; Veitch, D. Self-Similarity and long-range dependence through the wavelet lens. In Theory and

Applications of Long Range Dependence; Birkhauser Press: Boston, MA, USA, 2002; pp. 345–379.
25. Canadian Electricity Association. Canadian Smart Grid Framework; Canadian Electricity Association: Calgary, AB, Canada, 2010.
26. Federal Office for Information Security. Protection Profile for the Gateway of a Smart Metering System; V.1.2; Federal Office for

Information Security: Bonn, Germany, 2014.
27. European Network and Information Security Agency (ENISA). Smart Grid Security: Recommendations for Europe and Member States;

ENISA: Athens, Greece, 2015.
28. ISO/IEC 27005; Information Technology—Security Techniques—Information Security Risk Management. ISO: Geneva, Switzerland, 2008.
29. ISO/IEC TR 27019:2013; Information Security Management Guidelines based on ISO/IEC 27002 for Process Control Systems

Specific to the Energy Utility Industry. ISO: Geneva Switzerland, 2013.
30. Kendrick, D.; Groom, L.; Stewart, J.; Watson, M.; Mulvaney, C.; Casterton, R. “Risk Watch”: Cluster randomised controlled trial

evaluating an injury prevention program. Inj. Prev. 2007, 13, 93–99. [CrossRef]
31. Fang, X.; Misra, S.; Xue, G.; Yang, D. Managing smart grid information in the cloud: Opportunities, model, and applications.

IEEE Netw. 2012, 26, 32–38. [CrossRef]
32. Prasad, I. Smart Grid Technology: Application and Control. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2014, 3, 9533–9542.
33. Müller, K.J. Verordnete Sicherheit—Das Schutzprofil für das Smart Metering Gateway. Datenschutz Datensicherheit 2014, 35,

547–551. [CrossRef]
34. Protection Profile for the Security Module of a Smart Metering System (Security Module PP). Available online: http://www.

commoncriteriaportal.org/files/ppfiles/pp0077b_pdf.pdf (accessed on 15 January 2022).
35. Anwar, A.; Mahmood, A. Cyber Security of Smart Grid Infrastructure. In The State of the Art in Intrusion Prevention and Detection;

CRC Press: Boca Raton, FL, USA, 2014; pp. 139–154. [CrossRef]
36. Bale, J.P.M.; Sediyono, E.; Marwata, M. Risk management in information technology using facilitated risk analysis process (FRAP)

(case study: Academic information systems of Satya Wacana Christian University). J. Theor. Appl. Inf. Technol. 2014, 68, 339–351.
37. Nurul, A.H.; Zaheera, Z.A.; Puvanasvaran, A.P.; Zakaria, N.A.; Ahmad, R. Risk assessment method for insider threats in cyber

security: A review. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 16–19. [CrossRef]
38. Tankard, C. Advanced persistent threats and how to monitor and deter them. Netw. Secur. 2011, 2011, 16–19. [CrossRef]
39. Lekidis, A. Cyber-Security Measures for Protecting EPES Systems in the 5G Area. In Proceedings of the 17th International

Conference on Availability, Reliability and Security (ARES ’22), Vienna, Austria, 23–26 August 2022. [CrossRef]
40. Bella, H.K.; Vasundra, S. A study of Security Threats and Attacks in Cloud Computing. In Proceedings of the 2022 4th International

Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 658–666. [CrossRef]
41. Sterbenz, J.P.G.; Hutchison, D.; Çetinkaya, E.K.; Jabbar, A.; Rohrer, J.P.; Schöller, M.; Smith, P. Resilience and survivability in

communication networks: Strategies, principles, and survey of disciplines. Comput. Netw. 2010, 54, 1245–1265. [CrossRef]

165



Sensors 2022, 22, 7506

42. El Fray, I. A Comparative Study of Risk Assessment Methods, MEHARI & CRAMM with a New Formal Model of Risk Assessment
(FoMRA) in Information Systems. In Computer Information Systems and Industrial Management. CISIM 2012. Lecture Notes in
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Abstract: In this paper, a defused decision boundary which renders misclassification issues due to
the presence of cross-pairs is investigated. Cross-pairs retain cumulative attributes of both classes
and misguide the classifier due to the defused data samples’ nature. To tackle the problem of the
defused data, a Tomek Links technique targets the cross-pair majority class and is removed, which
results in an affine-segregated decision boundary. In order to cope with a Theft Case scenario, theft
data is ascertained and synthesized randomly by using six theft data variants. Theft data variants
are benign class appertaining data samples which are modified and manipulated to synthesize
malicious samples. Furthermore, a K-means minority oversampling technique is used to tackle the
class imbalance issue. In addition, to enhance the detection of the classifier, abstract features are
engineered using a stochastic feature engineering mechanism. Moreover, to carry out affine training
of the model, balanced data are inputted in order to mitigate class imbalance issues. An integrated
hybrid model consisting of Bi-Directional Gated Recurrent Units and Bi-Directional Long-Term
Short-Term Memory classifies the consumers, efficiently. Afterwards, robustness performance of the
model is verified using an attack vector which is subjected to intervene in the model’s efficiency and
integrity. However, the proposed model performs efficiently on such unseen attack vectors.

Keywords: electricity theft detection; smart grids; robustness; smart meters; Tomek links

1. Introduction

Power generation, transmission and distribution collectively build a power system
infrastructure. The power generation phase generates electricity at a high voltage level. The
generated electricity is supplied to the end user through transmission lines. The end user is
the consumer who consumes the supplied electricity via distribution network [1]. Smart
Meters (SMs) are installed on the end users’ side by Utility Providers (UPs) in order to
monitor the consumed energy [2]. There are two types of losses, Technical Losses (TLs) and
Non-Technical Losses (NTLs) [3]. TLs are the network-associated losses, which are confined
to the design and material of the infrastructure, while NTLs are the losses which occur due
to the interruption of the end consumers to obtain financial benefits by under-reporting the
consumed energy. The interruption of the end consumer is basically a malicious activity,
which is adopted by the fraudulent consumers. The connected fraudulent consumers tend
to tamper the net metering of their consumed energy by adopting various data tampering
techniques, such as meter tampering using shunt devices, double tapping of the lines and
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electronic faults [4]. The effects of such malicious activities over-burden the UPs with huge
financial losses, which disrupt the smooth energy flow and demand curve. For instance,
the study conducted in [5] reports that the monitored losses have been increased from
11 percent to 16 percent during the last two decades (1980–2000). The increased losses
clearly highlight that revenue losses due to NTLs are a conspicuous issue and need special
attention. NTLs vary from country to country. The literature in [6] reports that about
20% of the total revenue loss in Indian electricity network is due to the aforementioned
malicious activities. Similarly, the United States is also facing a revenue loss of USD 6 billion
annually [7,8]. Worldwide, revenue losses of about USD 96 billion are reported due to such
malicious activities [9].

In order to investigate the aforementioned problems, the literature suggests various
counter measure approaches to reduce such losses. The suggested approaches are advance
metering infrastructure (AMI) and Neighborhood Area Network (NAN) [10], which are
hardware-based approaches. In AMI, a sequential data is a target parameter, which is
analyzed to extract suspicious behavior in order to find out maliciousness. Furthermore,
consideration of sequential and non-sequential information enhances the detection of
malicious behavior. Sequential data are Time-Series Data of the consumers, whereas non-
sequential data are an auxiliary data that contain attributes of geographical, demographical
and topographical data. Moreover, NAN and morphological patterning assessment focuses
on multiuser network-based detection. A NAN is a multiple consumer network where
a master meter is deployed to monitor the total consumed energy. A master meter is
connected to a distribution low-voltage side of the transformer, which works as an ob-
server meter to monitor the cluster of the connected SMs. TLs of the distribution lines
are numerically adjusted as a beta σ, which is added to the total network’s consumption.
The data relevancy of the network is observed in order to investigate the maliciousness.
Total consumption in addition with the σ factor is related to the observer meter’s reading.
Furthermore, in morphological patterning analysis, a historic and forecasted data compe-
tency is measured, which is correlated based on the error factor. A threshold is set as a
monitoring parameter which analyzes the parity check of each of the consumptions and
reports malicious activity.

Based on the above analysis, the motivation is to propose a data-oriented approach to
detect NTLs. The problem of imbalanced data, defused decision boundary and extraction
of abstract features are the main factors to target through data-oriented-based analysis of
the Time-Series Data.

2. List of Contributions

The contributions are as follows:

• To tackle the imbalance data issue, theft class data are synthesized using six theft
variants. Later on, the synthesized data are oversampled using a K-means synthetic
minority oversampling technique (SMOTE).

• A Tomek links technique is used to eliminate cross-pairs across the decision boundary.
• To overcome the data leakage problem, a simple stratified approach is opted for.
• Cumulative and distinct features are engineered using stochastic feature engineering,

which enables the model to learn data characterization and uniqueness.
• An integrated hybrid model of Bi-Directional Gated Recurrent Units (Bi-GRU) and bi-

directional long-term short-term memory (Bi-LSTM) is used to tackle misclassification
and high FPR issues.

• Furthermore, to verify the robustness of the proposed model, an unseen variant of
the theft data with temperate randomness is analyzed to acknowledge the stability
and integrity.

3. Literature Review

This section overviews Electricity Theft Detection (ETD)-related proposed research
activities of various authors in smart metering applications.
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3.1. Considering Sequential Data

A major portion of NTLs is due to fraudulent behavior of the consumers’ accom-
plishing an effort to bypass the Utility Provider (UP) surveillance and to under-report the
consumed energy. A solution proposed in [11] adopts a data-driven approach which uses a
Machine Learning technique, Ensemble Bagged Tree (EBT) algorithm by stacking many
Decision Trees to detect NTLs. As time complexity and memory consumption due to large
computational complexity have remained formal constrains for Machine Learning (ML)
algorithms. To improve both, searching and Weighted Feature Importance (WFI) tech-
niques are deployed to enhance theft detection schematics. A Gradient Boosting Classifier
(GBCs)-based detector is used to detect anomalies by considering intentional remedies
while non-fraudulent anomaly intervention is ignored. Furthermore, the Gradient Boosting
Theft Detector (GBTD) for the classification purposes is pursued by a preprocessing module
using WFI. WFI uses stochastic features such as mean, min, max and Standard Deviation
in collaboration with the consumption pattern extracted features, which improves perfor-
mance and reduces time complexity [12]. The author pinpoints the Detection Rate and FPR
only, however, a clustering mechanism is required to be considered in order to identify
the misclassification due to a sudden drop in the consumption, which is ultimately started
before the period of analysis. During training of the model, a problem of data leakage
occurs which is not tackled properly. In [13], a maximal overlapped discrete wavelet packet
transform is used to extract the abstract features from the dense time-series electricity
consumption data, whereas, to tackle the data balancing issue, a random under-sampling
boosting (RUSBoost) algorithm is proposed, which eliminates vital information of the data
while re-sampling the data samples. Similarly, [14] uses SMOTE for data balancing. The
balanced data are then preprocessed using a min–max scalar normalization method to
refine the input raw data. A pool of various algorithms is used containing AdaBoost, Cat-
Boost, XGBoost, LGBoost, RF [15] and extra trees to find FPR and Detection Rate, however,
SMOTE over-samples the minority class, with confused pairs having trace contents of
both classes. The generalization performance of single hidden-layer feed-forward neural
networks (SLFN) due to over-training leads to degradation when the back-propagation
algorithm performs. To overcome such issues, a hybrid Convolutional Neural Network
and Fandom Forest (CNN–RF) is proposed, where the CNN is designed to learn features
between different hours of the day [15]. Obtained features are taken as an input by Random
Forest (RF) to segregate thieves from honest customers. However, memory elapsing is a
serious issue to monitor consumption patterns for long periods of time. The RF module
takes a lot of memory, causing over-fitting issues. Significantly, a fast operation is an
optimum choice, whereas operating maxpooling is a slower operation and causes greater
time of execution. Furthermore, due to the non-availability of real-world theft scenarios,
data analyzing classification based only on linear Theft Cases is not a significant investi-
gation scenario. Similarly, a hybrid module integrating Convolutional Neural Network
and long-term short-term memory (CNN–LSTM) has been developed [4]. CNNs have the
capability of self-learning, whereas LSTM performs better on sequential data, however,
memory elapse is still a question for such scenarios. A Semi-Supervised Auto-Encoder
(SSEA) is used to learn the advanced features [16]. The input of multiple Time-Series Data
is organized as a 1D vector in multiple channels. Moreover, to improve a linear separability
of the samples, a distributed stochastic neighbor embedding (t-SNE) is used to localize
each data point. Adding a high dimensionality though class separation is a pre-requisite
for such a scenario, which is not simply tackled by t-SNE to add dimensionality for the
class separation. Data leakage during training of the model and the consideration of non-
malicious factors are important aspects, however, [17] pays no attention to these issues.
Furthermore, the authors in [18,19] adopt a data-driven approach using a Machine Learning
technique, XGBoost, without considering any auxiliary information. The study in [20,21]
investigates the impact of imbalanced data. The imbalanced data are balanced through
synthesized data. The data reductionality is carried out through Principle Component
Analysis (PCA) and hyper parameters are tuned through Bayesian optimizer. An AUC
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score of 97% is reported using a feed-forward network. The study in [22] uses a hybrid
model of graph convolutional network and EU Convolutional Neural Network. CNN
is used to capture the latest features. The study in [23] targets the AMI infrastructure to
investigate malicious consumers. The benign data are manipulated through cyber attacks.
A deep neural network CNNGRU hybrid model is developed to correlate the malicious
and benign samples.

3.2. Monitoring Morphological Patterning

An LSTM model is used by [24,25] to investigate pattern morphology. The pattern
authentication is investigated by mapping them together. A prediction error is calculated
between the real and predicted consumption, which decides the authenticity of the con-
sumed pattern. However, due to excessive computational complexities, LSTM is not a
suitable option. The authors in [26] propose a Stacked Sparse Denoising Auto-Encoder
(SSDAE), which monitors the reconstruction error of the corresponding consumption pat-
tern based on the extracted features. The extracted key features from the raw samples
are provided as an input. A comparative correlation is observed between the samples
provided as an input and reconstructed patterns. The similarity index is observed through
an Optimized Estimated Threshold (OET). OET decides the sample’s class based on the
measured value of reconstruction error (RE). However, based on non-sequential attributes,
consideration of exogenous variables affects the morphology of consumers’ patterns [27].
In addition to short-term vacations, demographical, geographical, SM firmware and EM
distort the pattern’s morphology, which is beyond the scope of detection, using SSDAE’s es-
timated threshold as a segregating boundary for the classes. Furthermore, the tampering of
consumption patterns before installation of SM on customers’ premises remains undetected.
The tampered pattern reconstruction significantly deceives the SSDAE detector, which
causes misclassification. In [28], NTLs are categorically divided based on the time period,
including consumers cheating during ON-Peak hours, OFF-Peak hours and malicious
customers cheating constantly. The detection model becomes unstable when inconsistent
attacks are injected. To monitor such inconsistent variations, categorical variables are
incorporated in linear regression to develop a categorical variable linear regression detector.
In [29], an Anomaly Pattern Detection Hypothesis Testing (APD-HT) investigates theft
activities. A reference and a detection window are used to analyze the data streaming
of SMs. The data streaming analysis is based on binomial data distribution. However,
variations due to the intervention of non-malicious factors are beyond detection.

3.3. Tampering with Smart Meter Readings

In addition to the data-oriented approaches [30–32], another novel Distributed Genera-
tion (DG)-based approach of energy monitoring is proposed. A renewable DG unit consists
of Photo-Voltaic (PV) modules, which are installed on consumers’ premises. Consumers
generate energy according to their needs and sell back the excessive amount of energy to
the UPs. A two-metering system is adopted, namely, net metering system and Feed-in
Tariffs (FITs) policy. Net metering systems monitor consumed energy provided by the UP,
while FITs policy monitors the excessive energy generated by a DG for selling purposes.
Manipulating and tampering with injected (sold) readings of DG by malicious customers
tends to falsely report over-charging. The work in [33] proposed a solution by deploying
Supervisory Control and Data Acquisition (SCADA) metering points to monitor various
electrical parameters.

3.4. Investigating Neighborhood Area Networks

Hardware-based infrastructure utilizes network-based topology to enhance detection
performance. The authors pinpoint the limitations of misclassification due to manipulation
of non-malicious factors and deceiving a detection detector to accept the malicious pattern
as a normal one [34]. The authors suggest to deploy an SM on the transformer’s side, so that
a balancing load flow scenario is overlooked, scrutinizing the discrepancies being caused
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by the non-malicious factors and smart attackers. A Neighborhood Area Network (NAN)
proposes a master meter (MM) approach, which is installed on the distribution transformer
side and monitors total supplied energy to the NAN [35]. The total supplied energy is
compared with the sum of total individuals’ SM readings within the corresponding NAN,
where TLs are accommodated by addition of a constant parameter. The inequality within
the readings indicates a theft occurrence, while equality in the NAN means a complete
benign consumption. A Correlation Analysis for Pinpointing Electricity Theft (CAPET)
scheme is introduced, which measures the correlation between total utilized energy in
the NAN at the low voltage level side. Inequality and deviation shows malicious activity.
However, change in TLs is subjected to environmental conditions; a seasonal change
abruptly affects the balanced correlation between MM and SM readings. Inequality in
reading of the dispatched side and consumer premises indicates suspicious activity, which
is beyond consideration. Similarly, in [36], the author develops an ensemble technique
by combining the suspicious ranks obtained from the Maximum Information Coefficient
(MIC) and clustering technique. The arithmetic and geometric means of these two ranks
are combined using a famous rank product method which decides whether a sample is
benign or malicious. The decision is based on the rank’s intensity. A high intensity indicates
malicious activity. The MIC and clustering technique analyzes the correlation of NTLs
and the observer meter, respectively. In order to identify unusual shapes, a degree of
abnormality is calculated by clustering technique [37]. However, such correlations are void
of consideration for variable TLs and non-sequential auxiliary data aspects.

4. Proposed System Model

Figure 1 shows the proposed system model, while limitations, along with their pro-
posed solutions, are mapped in Table 1.

The system model comprises the data preprocessing module, data augmentation
module and classification module. These modules are subdivided into 7 main steps.

• Step (1) is a data preprocessing step, where missing values are filled using a mean-
based strategy and outliers are removed. Filling and removing such values is a
necessary step of the data preprocessing, as noisy and ambiguous data affect accuracy
and degrade the misclassification scenario. A simple imputer is implemented to fill
such values.

• In step (2), the preprocessed data are augmented where benign samples are modified
and manipulated due to their rare existence. The problems of skewness and bias are
observed if the model is trained on such imbalanced data. Therefore, it is a necessary
step to balance the data before the training of the model.

• In step (3), benign class data are manipulated and theft class data are generated.
• In step (4), decision boundaries’ associated cross-pairs are identified and eliminated.

As cross-pair is a combination of the opposite class samples. Henceforth, a Tomek
links technique is used. The majority class samples are removed, and minority class
samples are retained in order to preserve the data integrity.

• In step (5), the data is stratified in order to inhibit the defusion of the data while splitting.
• In step (6), abstract features are engineered based on stochastic feature engineering.
• In step (7), Time-Series Data are inputted to a developed Bi-GRU [38] and Bi-LSTM [39].

A binary sigmoid function classifies the samples [40]. Bi-LSTM [41] is featured with the
handling of high dimensional data, while Bi-GRU is used to avoid the computational
complexity due to its fast operating features.
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Figure 1. System Model Architecture.

Table 1. Mapping of Limitations and Proposed Solutions.

Limitation Number Limitation Identified Solution Number Solution Proposed Validations

L1 Data imbalance issue S1

A K-means SMOTE
technique is used to

solve the data
imbalance issue

V1: Performance
comparison of the

models

L2 Misclassification due to
cross-pairs S2

A Tomek links
technique is used to

identify the cross-pairs
and remove them

accordingly

V2: Table 3 Removal of
cross-pairs

L3 Data leakage during
training S3

A simple stratified
methodology is used to
divide the data based
on key attributes into

subgroups for training
of the model

V3: Equations (1)–(7)

L4 High FPR S4

A hybrid model of
Bi-GRU and Bi-LSTM is

used to classify
samples precisely and

reduce high FPR

V4: Figure 6a,b AUC
and PRC curve

L5 Lack of abstract
features S5

A stochastic feature
engineering approach
is opted to generate

abstract features

V5: Table 5
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This paper is an extension of [9]. Algorithm 1 presents the BiGRU–BiLSTM-based
scheme for the detection of the anomalies in smart grids. It consists of seven steps. Initially,
data are segregated based on distinct characterizations. Later on, six data manipulating
techniques are appertained on the honest consumers’ data, which are pursued by concate-
nation and data balancing techniques. Moreover, data are preprocessed and cross-pairs are
removed. Furthermore, stratified sampling and feature engineering are accomplished.

Algorithm 1: Bi-GRU- and Bi-LSTM-based Detection Scheme.

1 Step 1:
2 Input: Benign Consumers BC, Output: Fraudulent Consumers FC
3 Step 2: Generating Theft Samples
4 T1 = BC∗random(0.1, 0.9);
5 T2 = BC∗xt where (xt = random(0.1, 0.9));
6 T3 = BC∗random[0, 1];
7 T4 = mean (BC)∗random(0.1, 1.0);
8 T5 = Mean(S) for each column;
9 T6 = S(T)− t revesing a time sequence;

10 Step 3: concatenation
11 Concat (BC + FC);
12 Step 4: Balancing Data
13 BC = FC;
14 Step 5:
15 Sith of majority class having smaller EU Distance with decision boundary is re-

moved;
16 Step 6: Data Leakage
17 p(s) = Ci + Cj;
18 Ci ⊆ p(s);
19 Cj ⊆ p(s);
20 Sj1, Sj2, Sj3, . . . , Sjn ε Cj;
21 Si1, Si2, Si3, . . . , Sin ε Ci;
22 Si /∈ Sj ;
23 Ci(Si1,...,n) /∈ Cj(Sj1,...,n);
24 Step 7: Feature Engineering
25 F1 = Mean of Ps against each row;
26 F2 = Std of Ps against each row;
27 F3 = Min ∈ Ci against each row;
28 F4 = Max ∈ Cj against each row;
29 Output: Honest Consumers ε BC , Fraudulent Consumers ε FC.

4.1. Dataset

A realistic electricity consumption dataset, namely, the State Grid Corporation of
China (SGCC), is used in this paper. It is administered during the 2014–2016 period and is
supposed to be one of the most extensive datasets of SMs. It is structured as Time-Series
Data, which are collected after every 24 h. Each consumer has a unique household ID.
The consumption volume of each consumer is recorded against their household ID along
with the date and time. It is a dataset of 1035 days and 42,372 consumers. We are using
1500 benign consumers’ data of six months due to the limited resources of our machine.
Machine specifications are Intel(R) core (TM) M-5y10c, CPU@ 0.80 GHz 1.00 GHz, RAM
4 GB. Moreover, The simulator is Google CoLab. The meta information of the SGCC dataset
is shown in Table 2.

Generally, in a power system, the electricity consumption data of end users are col-
lected through SMs. The collected data are acquired using various sensors of the SMs. A
data communication network aggregates the data at a specific central location. However,
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certain complications such as the malfunctioning of the sensors, failure of the SMs, errors
in data transmission and storage servers generate inherent erroneous and ambiguous
data. Discarding such data shrinks the size of the dataset considerably, and thus authentic
analysis of the data becomes onerous.

Table 2. Metadata Information of SGCC Dataset.

Description Value

Administering years of the dataset 2014–2016

Total number of benign consumers 38,756

Total number of fraudulent consumers 3616

4.2. Data Leakage

The population is divided into mutually exclusive subgroups using stratified sam-
pling. It is a homogeneous division and known as strata. The purpose of using stratified
sampling is to clearly classify each strata of the samples’ population. The SGCC dataset
is divided into training and testing data. The training and testing samples are segregated
into subgroups by opting stratified sampling in order to avoid misclassification due to
extensive diversity in the data. Training and testing samples are confined to their specific
operations only. Training samples are used to train the model, whereas testing samples are
exploited to validate classification and prediction. In this way, data leakage of training into
testing and vice versa is reduced, which results in a good generalization. The mathematical
representation of the data leakage is as follows:

p(s) = Ci + Cj (1)

Ci ⊆ p(s) (2)

Cj ⊆ p(s) (3)

Sj1, Sj2, Sj3, . . . , Sjn ε Cj (4)

Si1, Si2, Si3, . . . , Sin ε Ci (5)

Si /∈ Sj (6)

Ci(Si1,...,n) /∈ Cj(Sj1,...,n) (7)

where p, s and C represent Population of the Samples, Number of Samples and samples’
unique class, respectively, whereas i and j are the mutual binary classes.

4.3. Data Preprocessing

Data is preprocessed where raw data are transformed into affine usable data. As the
consumption data are highly complex in nature and dimensionality, tackling such large
data manually is an impractical task, which takes much time to execute. Such complex data
results in high FPR and low accuracy. Missing values in raw data are filled by applying a
simple imputer, where a mean-based strategy is applied for such ambiguous values.

4.4. Data Augmentation and Balancing

Due to the rare existence of the malicious samples, the benign class samples’ are
modified and manipulated to synthesize malicious class data, which are inputted to ML
and Deep Learning (DL) models. Such random data distribution causes skewness and
bias problems. To tackle such issues, over-sampling techniques are used. Under-sampling
techniques discard the majority class, which disrupts the important information, while
oversampling techniques synthesize the duplicate samples of the minority class, which are
prone to over-fitting. In our scenario, the balanced data are synthesized by six theft variants
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to cope with the realistic theft data. Manipulating techniques used for the synthesis of the
data are as follows [42–46]:

T1(st) = st ∗ rand(0.1, 0.9) (8)

T2(st) = st ∗ xt(xt = random(0.1, 0.9)) (9)

T3(st) = st ∗ (random[0, 1]) (10)

T4(st) = mean(st) ∗ random(0.1, 1.0) (11)

T5(st) = mean(st) (12)

T6(st) = ST−t (Where T is consumption time) (13)

• In data manipulation technique 1, as shown in Figure 2a, a random number is multi-
plied with benign class Time-Series Data in order to manipulate fair consumption.

• The data manipulating technique 2 is shown in Figure 2b. To capture the consump-
tion’s discontinuity, a random number is multiplied to manipulate the honest con-
sumption’s data. Random number multiplication is a series-based discontinuity in the
consumption pattern.

• The data manipulating technique 3 is shown in Figure 3a. A random multiplication of 1
and 0 with Time-Series Data shows either the original consumption or a complete zero
consumption. There is no ramping function in between 1 and 0. It is a straightforward
switching ON, OFF operation with a complete connected load or the cut off. The
multiplication is a mode to copy the historic consumption project, and it is not confined
to a continuous Time-Series Data.

• In Theft Case 4, total consumption is aggregated into a mean which is multiplied by a
random number in between (0.1, 1.0), as shown in Figure 3b.

• The data manipulating technique 5 is shown in Figure 4a. The aggregated mean is
multiplied with a random number. It is a two-part manipulation. The average value is
a centered value of continuous Time-Series Data, where maximum consumption is
under-reported. In the second part, the same aggregated value is multiplied with a
random number in between (0.1–0.9), where the average value is under-reported as
well in an extra exploitation.

• The data manipulating technique 6 is shown in Figure 4b. A continuous swapping
of the low consumption and peak consumption hours is practiced, where a couple
slabs of consumed energy are shifted from ON-Peak hours to OFF-Peak hours and
vice versa. In such manipulating techniques, the consumer pays the charges for the
consumed energy, however, the vigilant swapping does not affect the UPs extensively.
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Figure 2. (a) Theft Case 1. (b) Theft Case 2.
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Figure 4. (a) Theft Case 5. (b) Theft Case 6.

4.5. Bi-Directional LSTM

To resolve the problem of vanishing gradients in RNNs [47], Bi-LSTM is developed
to preserve information for a long time period. Bi-LSTM infrastructure consists of two
LSTMs, which operate parallel in the forward and backward direction. Past and future
Time-Series Data are processed through forward and backward direction gates, respectively.
The input data are fed in the forward direction, and the reverse copy of the same inputted
data are fed in the backward direction as well. Such nature of the inputted data with a
reverse copy increases the data compatibility. The compatibility limits the gates to function
accordingly as needed. The architecture contains two hidden layers, and the output layer is
concatenated afterwards.

4.6. Feature Engineering

Synthetic features are helpful to improve the performance of the model. Four various
types of synthetic stochastic features are generated, namely, mean, min, max and standard
deviation. Time-Series Data of SGCC are analyzed on a monthly usage basis. The generation
of the stochastic features creates a subset of available features, which reduces noise and
improves DR slightly. However, FPR is reduced to a larger extent. The stochastic features
are numeric features. Weighted Feature Importance (WFI) of these features is classifier-
dependent. Certain features may not be of default importance to obtain a suitable DR and
low FPR. The stochastic features are the principal important features, which contribute in
our scenario. To confirm the validation, we iteratively tested and trained the classifiers on
the SGCC dataset. Mathematical representation of the generated features is as follows:

y(t) = {yt; t = 0, 1, 2, 3, 4, . . . , n} (14)
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μ =
n

∑
i

On

TO
(15)

σ =

√
∑n

i=0(Oi − μ)2

Py
(16)

Minimum = Osv[y{ti}] (17)

Maximum = Ohv[y{ti}] (18)

where, y(t), t, O, T, n, u, sv, hv and P show Time-Series Data containing various numbers
of features, time spans, observations, total number of observations of a specific time
sequence, number of observations, mean, smallest value, highest value and total population
of the dataset, respectively. Figure 5 shows the complete flow diagram of the overall
classification scenario.

Figure 5. Methodology outline for detection of NTLs.

5. Performance Evaluation

To evaluate the performance of our developed hybrid model, we use DR, FPR and
AUC scores and accuracy [48]. The origin of all of the aforementioned parameters is a
confusion matrix. Parametric division of the dataset is observed based on the confusion
matrix in shapes of True Positive (TP), FP, True Negative (TN) and False Negative (FN). TP
and TN correctly analyze the honest user as honest and malicious as malicious, respectively.
FP and FN wrongly classify the samples. Similarly, a model’s detection and sensitivity are
monitored by DR, which is referred to as TPR in the literature as well. Basically, DR is the
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representation of the model’s sensitivity and detection, which is mathematically shown in
Equation (19).

DetectionRate =
TruePositive

(TruePositive + FalseNegative)
(19)

FPR is a vital evaluation factor in a detection and classification scenario to monitor the
competency of a model which shows false alarms. A false alarm is an incorrect classification
of positive samples as negative ones and vice versa. Such alarming parameters are quite
expensive, which requires on-site inspection to verify, and it results in a huge monitory
loss. To mitigate huge revenue losses, high FPR needs to be reduced. Mathematically, it is
shown in Equation (20) [49].

FPR =
FalsePositive

(FalsePositive + TrueNegative)
(20)

Moreover, the accuracy is the measure of the correctly predicted instances. Mathematically,
it is represented as in Equation (21).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(21)

A suitable and good classifier is one having low FPR, high DR and high accuracy as well.

6. Simulation Results

The exploited data (SGCC) are a real-time residential consumer’s data. Similar index-
ing pattern-based morphology classifies the consumers into two classes, in perspective
of their consumption, which are properly labeled. A staging numeric binary is placed
for each individual consumer’s consumption pattern. Label 0 indicates a fair consumer,
whereas 1 indicates a fraudulent consumer. The monitored and reordered patterns are
recorded after every 24 h for each consumer. Benign class data are manipulated in order
to synthesize malicious data for each of the theft variants. Later on, both classes’ data are
concatenated. However, a data balancing technique is required to reduce the class bias
issue due to the skewness of the model towards the majority class. K-means SMOTE is
deployed to balance the data. Before provision of the data to a model for training, both
classes are segregated through an affine decision boundary, where cross-pairs are removed,
which degrades model detection and classification accuracy. The Tomek links technique
identifies and removes the in-rushed cross-pairs across the decision boundary. The number
of identified and removed samples is shown in Table 3.

Table 3. Cross-Pairs Identification and Removal.

Total Samples (Before) Removal of Cross-Pairs Remaining Samples

10,500 105 10,395

In Figure 6a, the performance of the proposed BiGRU–BiLSTM is compared with
an existing CNN–LSTM model [32]. The curves in Figure 6a indicate the AUC of the
CNN–LSTM, proposed and ML-based models. Initially, at an AUC score of 0.50, both of the
classifying models comparatively perform quite well, where high TPR and the lowest FPR
are achieved, as shown in Figure 7a. The initial assessment based on the AUC curve shows
that the CNN–LSTM model [32] classifies the samples efficiently with the recorded lowest
FPR when the inputted samples passed are fewer in number. However, a small spike in the
AUC curve at 0.60 shows that the data complexity moderately confuses the CNN–LSTM
classification and results in an increasing FPR. The increasing FPR behavior is fluctuated
in a range of AUC scores from 0.60–0.82, while during the defined ranged our proposed
hybrid model Bi-GRU–Bi-LSTM performs much better to learn the data complexity and
reduce FPR. The maximum AUC score of 0.93 is achieved by our proposed model with a
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high sensitivity rate (TPR) as compared with the opponent model. Moreover, performance
of the proposed model is analyzed using a PRC curve. Figure 7b shows the performance
curve of PRC, which ensures that a low PRC rate is not an optimal factor due to the high
misclassification rate. Misclassification of the consumers spikes FPR and burdens the
UPs due to the on-site inspection for the conformation of the consumers’ nature, which is
expensive in practice due to the revenue loss.

Figure 6. (a) AUC Analysis of the proposed and CNN–LSTM models. (b) PRC analysis of
both models.

Figure 7. (a) F1 Score of different models. (b) Comparison of F1 Score, precision and recall.

Similarly, accuracy is not a good metric to evaluate the results of the whole classi-
fication scenario. Accuracy-based performance analysis of different models is shown in
Figure 7a,b. Accuracy is the number of correct predictions over the total number of pre-
dictions. However, the prediction sometimes goes wrong and misclassifies the samples
mistakenly. Figure 7b shows that CNN is a dumb classifier, and it takes advantage of the
skewness of available data. To overcome the issue and to evaluate the performance of the
classifier, F1 and precision scores are plotted.

The leading diagonal of the confusion matrix contains FP and FN, which are referred to
as mistakes of the classifiers. A perfect classifier has the zero leading diagonal. Fluctuations
in precision and recall are formally due to these two aforementioned factors.

Precision- and recall-based performance of a model is integrated into a single matrix
called an F1 score. It is the harmonic mean of the precision and recall. Only a significant
increase in both, i.e., precision and recall, can cause an increase in F1 score. Figure 7b shows
an equilibrium in precision and recall, which results in a high F1 score, while the existing
model has a low F1 score due to imbalance increase in precision and recall. Moreover, the
bench mark models such as SVM, RF and DT depict the same scenario of the existing model
with high fluctuations in F1 scores.

A comparative analysis in Table 4 shows a subsequent improvement in classification
between the honest and fraudulent consumers. In addition, feature engineering improves
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the accuracy of the proposed detection model as shown in Table 5. It is observed that the
accuracy is increased from 88.7% to 95%.

Table 4. Performance mapping of the executed models.

Models F1 Score Precision Recall Accuracy

Proposed 80.7 80.6% 80.9% 88.7%

Existing [33] 76.3 84.3% 74.7% 83.1%

SVM 75.0 62.5% 84.3% 72.5%

DT 75.7 62.3% 79.5% 76.3%

RF 78.2 64.2% 77.6 % 73.6%

Table 5. Performance improvement of the proposed model against stochastic feature engineering.

Models Without Feature Engineering With Stochastic Features

Proposed Model 88.7% 95%

7. Robustness Analysis

Robustness shows the effectiveness of a classifier against unseen and independent
samples of a similar dataset whenever it is tested on such type of data. The unseen and
independent data are referred to as the worst case of noisy data due to their distinctive
characterization. In our case, Theft Case 3’s data are taken to verify the robustness of the
model. Theft Case 3 presents the most irregular consumption patterns as compared with
the other Theft Cases due to a temperate randomness in consumption patterns, which
is caused by the multiplication of the patterns with 1 and 0. The irregular and distinct
patterns mimic changes as directives of inevitable factors, which proscribe the changes
as suspected ones. A high-degree patterns’ variation disrupts models’ decision making.
However, the proposed model survives to generalize completely on unseen data, as shown
in Table 6.

Table 6. Robustness Performance of Proposed Model against Unseen Theft Attacks.

Models Accuracy AUC Score F1 Score

Proposed Model 88.3% 57.6 54.9

Existing Model 86.9% 54.9 53.6.7

Table 6 depicts the observed accuracy, AUC and F1 scores. The statistics in Table 6
show that a higher DR is achieved with a high FPR. However, the high FPR is within an
acceptable range as compared with the existing model.

8. Computational Complexity

To analyze the computational complexity of the proposed model, execution time is
considered. Table 7 shows the execution time of the proposed and existing models. It is
observed that the execution time of the proposed model is slightly greater as compared with
the existing model. However, our major concern is high FPR. The proposed model beats
the existing model in high the FPR perspective, which is an expensive parameter. High
FPR burdens the UP and results in excessive monitory costs, whereas the computational
complexity is a time-oriented parameter, which can be compromised.
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Table 7. Computational Complexity Analysis.

Input Batch Size
Execution Time Proposed

Model (s)
Execution Time Existing

Model (s)

50 218 62

100 165 88

150 159 48

200 159 87

250 166 87

300 152 88

9. Performance Validation

In order to validate the effectiveness of our proposed model, a random testing on
unseen theft class data is tested. The unseen theft class data are manipulated data of
Theft Case 3, as shown in Equation (10). The observed AUC score of 57% validates the
performance of the proposed model. Moreover, variation in the testing data due to the
addition of the stochastic features challenges the performance, where an AUC score of 95%
is observed. An AUC score of 95% is a good achievement and validates the performance of
the proposed model.

10. Conclusions

This research proposes a hybrid model of BiLSTM and BiGRU in order to detect
NTLs. Initially, benign and fraudulent consumers are segregated by defining an affine
decision boundary through the Tomek Links techniques. Cross-pairs are identified and
transformed into majority samples, where the majority class samples are removed and
reduce the misclassification of the defused data across a decision boundary, which results
in a low FPR. Furthermore, to synthesize theft variants, honest consumption is modified
and manipulated by using six different data manipulating techniques. Six numbers of
manipulated readings are synthesized for a single benign sample, which requires data
balancing. For provision of the balanced benign class data, K-means SMOTE is used. K-
means SMOTE over-samples the benign class using a clustering mechanism. The balanced
data are inputted to the hybrid architecture of Bi-GRU–Bi-LSTM. The classification analysis
is carried out on unseen data samples and achieves an AUC score of 0.93. Similarly, a
competitive model of CNN–LSTM is trained and tested on the same data, which fails in the
provision of a precise and accurate classification as compared with our proposed model.
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Abbreviations

The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure
APD-HT Anomaly Pattern Detection Hypothesis Testing
Bi-GRU Bi-directional Gated Recurrent Unit
AUC Area Under the Curve
Bi-LSTM Bi-directional Long Short-Term Memory
CatBoost Categorical Boosting
CNN Convolutional Neural Network
DTKSVM Decision Tree Combined K-Nearest Neighbor and Support Vector Machine
EBT Ensemble Bagged Tree
ETD Electricity Theft Detection
DT Decision Tree
DR Detection Rate
DG Distributed Generation
XGBoost Extreme Gradient Boosting
Fits Feed-in Tariffs
FN False Negative
FP False Positive
FPR FP Rate
GBCs Gradient Boosting Classifiers
LGBoost Light Gradient Boosting
MIC Maximum Information Coefficient
ML Machine Learning
NaN Not a Number
NAN Neighborhood Area Network
NTLs Non-Technical Losses
PV Photo Voltaic
PRC Precision Recall Curve
RUSBOOST Random Under Sampling Boosting
RF Random Forest
SSEA Semi-Supervised Auto-Encoder
SGCC State Grid Corporation of China
SMs Smart Meters
SSDAE Stacked Sparse Denoising Auto-Encoder
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machine
TLs Technical Losses
TN True Negative
TP True Positive
UP Utility Provider
WFI Weighted Feature Importance
C Sample’s Unique Class
O Observations
p Population of the Samples
S Number of Samples
St Time-Series Data
T Theft Case
σ Standard Deviation
μ Mean
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Abstract: We develop a probabilistic model for determining the location of dc-link faults in MT-HVdc
networks using discrete wavelet transforms (DWTs), Bayesian optimization, and multilayer artificial
neural networks (ANNs) based on local information. Likewise, feedforward neural networks (FFNNs)
are trained using the Levenberg–Marquardt backpropagation (LMBP) method, which multi-stage BO
optimizes for efficiency. During training, the feature vectors at the sending terminal of the dc link
are selected based on the norm values of the observed waveforms at various frequency bands. The
multilayer ANN is trained using a comprehensive set of offline data that takes the denoising scheme
into account. This choice not only helps to reduce the computational load but also provides better
accuracy. An overall percentage error of 0.5144% is observed for the proposed algorithm when tested
against fault resistances ranging from 10 to 485 Ω. The simulation results show that the proposed
method can accurately estimate the fault site to a precision of 485 Ω and is more robust.

Keywords: Levenberg–Marquardt backpropagation; protection sensor; Bayesian optimization;
modular multilevel converter

1. Introduction

To date, China celebrates the completion of 30,000 km of ultra-high-voltage lines
connecting six regional grids with a total transmission capacity of close to 150 gigawatts [1].
However, power engineers struggle to manage and regulate the impact of dc-link faults
in hybrid ac/dc systems [2]. Let us say the 8 GW dc-link from Gansu reports a fault
unexpectedly, and the protection algorithm cannot locate it. The power outage might start
a chain reaction, resulting in widespread blackouts throughout Hunan and beyond. As a
result, ensuring accurate fault location is beneficial to minimize the threat of possible failure
and is a prerequisite for the successful and safe operation of dc transmission systems [3].
Furthermore, accurate fault location estimation is important for maintaining the voltage
stability of the power system [4] and operating the electricity market efficiently [5].

The prediction of correct fault sites in dc transmission systems has been shown to be
reliable by frequency extraction, fault signal analysis, and travelling-wave (TW) approaches
in previous studies [2,3,6]. Currently, TW methods based on the concept of travelling-wave
reflections are preferred in dc transmission projects since they are highly accurate, reliable,
and have high fault resistance [7]. The advancement of TW theory has led to the devel-
opment of several signal processing techniques, such as wavelet transformation (WT) [8],
S and Hilbert–Huang transform [6,9], empirical mode decomposition (EMD) [10], etc. A
waveform’s characteristics are analyzed using approximate or detailed coefficients in WT to
predict fault locations. However, conventional TW methods require a very high sampling
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frequency to accurately predict fault location, which leads to expensive computation in the
power grid [11].

Researchers have begun exploring intelligent algorithms to rectify computation burden
and noise handling capabilities [12]. With the alienation coefficient and the Wigner distri-
bution function [13], an effective transmission line protection mechanism for underground
cables is proposed in [14] and implemented for a renewable-energy-based grid. In addition,
machine-learning tools such as the radial basis function neural network (RBFNN) [15], sup-
port vector machine (SVM) [16,17], extreme machine learning [18], k-means cluster [19], etc.,
are also utilized. These algorithms can self-learn and modify weights and thresholds while
training with historical data. Therefore, they are suitable for complex networks such as
multiterminal high-voltage direct-current (MMC-MT-HVdc) systems, where constructing a
feasible intelligent algorithm can be challenging.

Because of the enlargement of the structure and the extraordinary growth in the
number of learning parameters in MMC-MT-HVdc networks, these intelligent algorithms
experience slow convergence and computational burden [20]. Downsampling learning
parameters may resolve the above issue but may eliminate valuable features. It is, therefore,
imperative to find an algorithm for fault location with high accuracy, minimal computa-
tional burden, and low sensitivity to noise [21,22]. With this in mind, this work combines
the discrete wavelet transform (DWT) [23], Bayesian optimization (BO) [24], and multilayer
feedforward neural network (FFNN) to locate the dc-link faults.

A multilayer FFNN model based on BO is trained and evaluated using the selected
features. BO is well-known as a powerful technique for optimizing black-box functions
when closed-form expressions or surrogate models are unavailable [24]. A study in the
literature found that BO provided a higher convergence rate than standard tuning methods
after the neural network was adjusted [25,26]. The multi-stage BO introduced in this work
reduces the computational burden by reducing the number of simulations needed to find
the optimal design for any given neural network. As a result, it provides a well-tuned
multilayer FFNN that can achieve improved response with better accuracy.

To simulate numerous fault scenarios, a four-terminal MT-HVdc system is developed
in PSCAD/EMTDC, and the proposed model is investigated in a Matlab® environment.
Meanwhile, the proposed algorithm is compared to intelligent adversaries such as back-
propagation neural networks (BP-NNs) and conventional FFNNs. The test results show
that the suggested model performs with the highest fault localization accuracy.

Under the circumstances above, the main contribution of this study is:

• Our initial goal is to create a learning-based algorithm that relies on only one end
of the communication link for fault location. Hence, eliminating reliance on the
communication link.

• In general, a signal detected by a sensor is invariably interfered with by the surround-
ing environment or modified by the detecting equipment during the detection process,
increasing failure chances. The DWT-based signal analysis model is used to eliminate
interference from the observed signal to improve signal analysis and recognition.

• The energy or norm of the current and voltage signals at each frequency band gives a
unique signature for different fault locations and has been found to be robust against
noise. Therefore, it is used as an extracted feature for pattern recognition.

• The proposed algorithm must be able to locate internal faults with high fault impedances
at further distances.

The remainder of the paper is organized in the following way.
Section 2 discusses the mathematical model derivation from a simple backpropagation

algorithm to the improvised backpropagation algorithm. It also discusses the implementation
of the proposed framework as well. Meanwhile, Section 3 introduces the conditions and
properties of the chosen system model, which has been developed to capture fault data under
dynamic fault scenarios. Section 4 covers the methodologies utilized to analyze input features
extracted under dynamic fault scenarios. It also covers a denoising scheme that is used to
denoise features before training and data preprocessing. Section 5 presents comparisons and
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analyses against adversaries. Finally, Section 6 concludes with a summary of the proposed
algorithm. An overview of the proposed method is presented in the next section.

2. Proposed Framework

Figure 1 illustrates the architecture with the proposed methodology. During fault lo-
calization, the proposed method has two stages. In the first one, the captured fault window
is filtered using discrete wavelets to rectify the noise issue, set to 10 ms. After denoising, the
measured time-domain segment is transformed into a time-frequency domain by splitting
it into low- and high-frequency components with a DWT-based multi-resolution analysis
(MRA) technique.

 

Figure 1. Proposed architecture.

The multilayer neural network receives decluttered information from voltage and
current signals as inputs. It then estimates the fault site using the activation function.
Levenberg–Marquardt backpropagation (LMBP) is implemented instead of a standard
backpropagation algorithm with a performance function. It is a function of the ANN
regression model and ground truth of fault sites. The Levenberg–Marquardt method is used
to update the weight and bias. The Jacobian matrix of the performance function with respect
to the weight and bias variables is calculated via the proposed backpropagation algorithm.
After updating the weight and bias, the multilayer ANN is applied to determine the fault
site. The multi-stage BO procedure is conducted prior to the update, aiming to increase
accuracy during training and to provide an optimal multilayer FFNN by optimizing
hyperparameters. The hyperparameters, unlike internal parameters (weights, bias, etc.),
are set before the neural network is trained, and they influence the neural network’s
performance. Regulating them via the trial-and-error method lengthens the training set-up
time and may reduce accuracy. Hence, optimizing these hyperparameters enhances the
accuracy and convergence speed [24]. In the following sub-section, the detailed architecture
of the proposed algorithm is described.

2.1. Feedforward Neural Network (FFNN)

This study uses a feedforward neural network with a single hidden layer to model
because a neural network with a single hidden layer can handle the most complex functions
(i.e., one input layer, one output layer, and one hidden layer) [27]. In a multilayer FFNN,
the basic building block is a neuron that mimics a biological neuron’s functions and
behavior [27]. The schematic structure based on the neuron is shown in Figure 2.
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Figure 2. Structure of the multi-input neuron.

Usually, a neuron has multiple inputs. Each element of the input vector p = [p1, p2, K,
pR] is weighted by elements w1, w2, K, wj of the weight matrix W. Next, the bias of each
neuron is summed with the weighted inputs to form the net-input n, expressed as:

n = ∑R
j = 1 wj pj + b = Wp + b. (1)

Following that, net-input n is sent via an activation function f, which results in the
neuron’s output a. Mathematically expressed as:

a = f (n) (2)

In this work, the activation function is based on the hyperbolic tangent sigmoid
transfer function. The following equation presents it.

f (x) =
2

1 + e−2x − 1 (3)

With reference to Figure 2, the multi-input FFNN executes the following equation:

a2 = f 2(∑s
i = 1 w2

1,i f 1(∑R
j = 1 w1

i,j pj + b1
i ) + b2) (4)

The output of the neural network is represented by a2. R stands for the number of
inputs, the number of neurons in the hidden layer is denoted by S, and the jth input is
represented by pj. The activation functions of the output and hidden layers are represented
by f 2 and f 1, respectively. The bias of the ith neuron is defined by b1

i , whereas the bias
of the neuron in the output layer is represented by b2. The weight w1

i,j pj represents the
connection between the jth input and the ith neuron of the hidden layer. Meanwhile, the
weight connecting the ith hidden layer source to the output layer neuron is denoted by w2

1,i.

2.2. Backpropagation Algorithm

Following the definition of the FFNN, the next step is to create an algorithm for train-
ing such networks. To train the established multilayer FFNN, an error backpropagation
algorithm based on the steepest descent technique is typically utilized [28]. For the pro-
posed three-layer FFNN, we now express the function that represents the output of unit i
in layer m + 1 as:

am+1 = f m+1
(

nm+1(i)
)

(5)
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Then to propagate the function and generate net-input (nm+1(i)) to unit i, the neuron
in the first layer receives extracted features from the MT-HVdc system to provide an initial
condition for Equation (5):

a0 = p (6)

Equation (5) is further translated in matrix form for an M number of layers in a neural
network as:

am+1 = f m+1
(

Wm+1am + bm+1
)

, . . . , m = 0, 1. (7)

where am+1 and am are the outputs of the network’s (m+1)th and mth layers. bm+1 reflect
the bias vector of the network’s (m+1)th layer. Here, external inputs passing to the network
via Equation (7), the overall network’s outputs are equal to the outputs of the neurons in
the last layer:

a = a M (8)

The objective of this study is to locate the dc-link faults. Therefore, the proposed
multilayer FFNN requires a set of input–output pairs that characterize the behavior of an
MT-HVdc system under faulty settings. Mathematically expressed as:

[
(p1, t1), (p2, t2), (p3, t3), . . . , . . . , . . . ,

(
pQ, tQ

)]
, pq is input and tq is the relevant

target of the network that uses for training.
(9)

After each input propagates through the multilayer FFNN during training, the net-
work output is compared to the target. While doing so, the performance index for the
backpropagation algorithm is the mean-square error (MSE), which is to be reduced by
modifying the network parameters, given as:

F(x) = E[(e2)] = E[(t − a)2] (10)

In the FFNN, x is the vector matrix containing the network weights and biases. How-
ever, in our case, the proposed network has multiple outputs. Therefore, Equation (10)
generalized to:

F(x) = E
[
(eTe)

]
= E[(t − a)T(t − a)] (11)

Since the steepest descent rule is utilized for the standard backpropagation algorithm,
the performance index F(x) can be approximated as follows:

F∧(x) = E
[
(t(k)− a(k))T(t(k)− a(k)))

]
= eT(k)e(k) (12)

The squared error replaces the expectation of the squared error in Equation (11) at
iteration step k. The steepest (gradient) descent algorithm for the estimated MSE is then:

wm
i,j(k + 1) = wm

i,j(k)− ∝
dF∧

dwm
i,j

(13)

bm
i (k + 1) = bm

i (k)− ∝
dF∧

dbm
i

(14)

∝ is the learning rate, similar to the number of neurons (S); it is also a hyperparameter.
Defined:

sm
i =

dF∧

dnm
i

(15)
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as the performance index ( F∧) sensitivity (sm
i ) that measures the changes in the net input of

the ith element in layer m. Next, based on the chain rule, the derivate of Equations (13) and (14)
using Equations (5), (12) and (15) can be simplified as:

dF∧

dwm
i,j

=
dF∧

dnm
i

∗ dnm
i

dwm
i,j

= sm
i ∗ am−1

j (16)

dF∧

dbm
i

=
dF∧

dnm
i

∗ dnm
i

dbm
i

= sm
i (17)

Now with the definition of gradient, the steepest descent algorithm is approximated as:

wm
i,j(k + 1) = wm

i,j(k)− ∝ ∗sm
i ∗ am−1

j (18)

bm
i (k + 1) = bm

i (k)− ∝ ∗sm
i (19)

The following recurrence relation in matrix form can be satisfied by the sensitivity [29,30]:

sm = F m
(nm)

(
Wm+1

)T
sm+1, for. m = M − 1, . . . , 2, 1. (20)

Equation (20) expresses the step used to propagate the sensitivities backward through a
neural network. Mathematically, the sensitivities propagate backward across the network as:

sM → sM−1 → · · · → s2 → s1 (21)

where

F m
(nm)=

⎡
⎢⎢⎢⎣

f
m(

nm
1m
)

0 K 0
0 f

m
(nm

2m) 0
M M M
0 0 K f

m
(nm

sm)

⎤
⎥⎥⎥⎦ (22)

And

f
m
(

nm
jm

)
=

d f m
(

nm
j

)
dnm

j
(23)

Whereas a recurrence relation is initialized at the final layer as:

sM = −2F m
(

nM
)
(t − a) (24)

Now, we can summarize the overall backpropagation (BP) based on the steepest
descent algorithm as (1): First, use Equations (6)–(8) to propagate the input through the
network. (2): Next, using Equations (20) and (24), backpropagate the sensitivity. (3): Finally,
using Equations (18) and (19), update the weights and biases.

2.3. Levenberg–Marquardt Backpropagation

The backpropagation algorithm exhibits asymptotic convergence properties while
training the multilayer FFNN, which causes a slow convergence rate due to minor weight
changes around the solution. Meanwhile, Levenberg–Marquardt (LM) backpropaga-
tion [29] is a variant of Newton’s method, which inherits the stability of the steepest
descent algorithm and the speed of the Gauss–Newton algorithm [27,29,30]. Now, suppose
we want to optimize performance index F(x); then, Newton’s method is:

xk+1 = xk − A−1
k gk. (25)
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where Ak
∼= ∇2F(x)

∣∣
X = Xk

, plus gk
∼= ∇F(x) |X = Xk

. Note that ∇2F(x) represents the
Hessian matrix, and ∇F(x) denotes the gradient. Let us assume that F(x) is a sum-of-
squares function, then:

F(x) = ∑N
i = 1 v2

i (x) = vT(x)v (x). (26)

Then the gradient and Hessian matrix are expressed in matrix form as:

∇F(x) = 2 JT(x)v(x). (27)

∇2F(x) = 2 JT(x)J(x) + 2 S(x). (28)

J(x) denotes the Jacobian matrix as:

J(x)=

⎡
⎢⎢⎢⎢⎣

dv1(x)
dx1

dv1(x)
dx2

· · · dv1(x)
dxn

dv2(x)
dx1

dv2(x)
dx2

· · · dv2(x)
dxn

M M · · · M
dvN(x)

dx1

dvN(x)
dx1

· · · dvN(x)
dxn

⎤
⎥⎥⎥⎥⎦ (29)

S(x) = ∑N
i = 1 vi(x)∇2vi(x) (30)

Assume that S(x) ≈ 0, then Equation (30) (Hessian matrix) approximate as ∇2F(x) ∼=
2 JT(x)J(x). Next, Equation (25) updates after substituting Equation (27) and the approxi-
mation of Equation (28) as:

Δxk = xk+1 − xk = −
[

JT(xk)J(xk)
]−1 ∗ JT(xk)v(xk). (31)

The matrix (H = JTJ ) may not be invertible using the Gauss–Newton method. This
issue can be fixed by making the following changes to the approximation Hessian matrix:

G = H + μI (32)

This modification to the Gauss–Newton method eventually leads to the LM algo-
rithm [29]:

Δxk = −
[

JT(xk)J(xk) + μkI
]−1

JT(xk)v(xk). (33)

Now, using the Δxk direction, recalculate the approximated F(x). If a smaller number
is obtained, then the computation procedure is repeated, but the parameter μk is divided
by a factor (α > 1). If the value of F(x) does not decrease, then the value of μk for the next
iteration in the step is multiplied by α.

The calculation of the Jacobian matrix is an essential step in the LM method. The elements
of the Jacobian matrix are calculated using a slight modification to the BP algorithm to address
the NN mapping difficulty [29]. For better understanding, similar to Equation (12) for the BP
algorithm, Equation (26) is a performance index for the mapping problem in the LM algorithm,
where the error vector is vT = [v1 v2 K vN ]=

[
e1,1 e2,1 K esM,1 e2,1K esM,Q

]
, and the vector x

parametric values are xT = [x1 x2 K xN]=
[
w1

1,1, w1
1,2 K , w1

S,1R . b1
1, K , b1

S1 .w2
1,1 , K , bM

SM

]
, sub-

script N defined as N = Q ∗ SM.
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Similarly, the n subscript is defined as n = S1(R + 1)+S2(S1 + 1
)
+ . . .+SM(SM−1 + 1

)
in the Jacobian matrix. Now making all these substitutions in Equation (29) of the Jacobian
matrix as:

J(x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

de1,1
dw 1

1,1

de1,1
dw 1

1,2
· · · de1,1

dw 1
S1,R

de1,1
db 1

1
· · ·

de2,1
dw 1

1,1

de2,1
dw 1

1,2
· · · de2,1

dw 1
S1,R

de2,1
db 1

1
· · ·

M M M M
deSM ,R
dw 1

1,1

deSM ,R
dw 1

1,2
· · · deSM ,R

dw 1
S1,R

deSM ,R
db 1

1
· · ·

de 1,2
dw 1

1,1

de 1,2
dw 1

1,2
· · · de 1,2

dw 1
S1,R

de 1,2
db 1

1
· · ·

M M · · · M M · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

Until now, the standard BP algorithm has been used to calculate the Jacobian matrix
terms as follows:

dF∧(x)
dxI

=
deT

q eq

dxI
(35)

Meanwhile, in the LM algorithm, the terms for the elements of the Jacobian matrix can
be calculated using the following:

[J]h,I =
dvh
dxI

=
dek,q

dwi,j
(36)

Thus, rather than computing the derivatives of the squared errors as in standard
backpropagation, we are calculating the derivatives of the errors in this modified Levenberg–
Marquardt algorithm. Similar to the concept for standard backpropagation sensitivities, a
new Marquardt sensitivity is defined as follows:

[J]h,I =
dek,q

dwm
i,j

=
dek,q

dnm
i,j

∗
dnm

i,j

dwm
i,j

= s
∧m
i,h ∗ am−1

j,q (37)

if xI is a bias,

[J]h,I =
dek,q

dbm
i

=
dek,q

dnm
i,q

∗
dnm

i,q

dbm
i

= s
∧m
i,h (38)

As previously stated, the Marquardt sensitivity can be determined using the same
recurrence relation as the standard sensitivities. However, toward the conclusion of the
final layer, there is only one modification for calculating the new Marquardt sensitivity:

s
∧M
i,h =

dek,q

dnM
i,q

=
d
(

tk,q − aM
k,q

)
dnM

i,q
=

daM
k,q

dnM
i,q

(39)

for i = k , it is
s
∧M
i,h = − f

∧M
(

nM
i,q

)
(40)

for i 
= k, it is equal to zero. Note that f
∧M and its matrix can be defined with the help of

Equations (22) and (23). In the proposed model, when extracted features from the MT-HVdc
network are applied to the multilayer FFNN as an input (pq) and the corresponding output
(aM

q ) is processed, the LMBP algorithm is initialized with the following:

S
∧M
q = −F

∧M
(

nM
q

)
(41)

192



Sensors 2022, 22, 9936

Each column of the matrix in Equation (41) is a sensitivity vector that must propagate
back through the network to generate one row of the Jacobian matrix. The columns are
propagated backward as follows:

S
∧m
q = F

∧m
(

nm
q

)(
Wm+1

)
S
∧m+1
q (42)

The augmentation that follows then obtains all of the Marquardt sensitivity matrices
for the overall layers.

S
∧m = [S

∧m

1
...S

∧m

2
...S

∧m

3
...S

∧m

4
...K

...S
∧m

Q ] (43)

The proposed algorithm based on Levenberg–Marquardt’s backpropagation algorithm
for fault allocation is given for clarity in Table 1.

Table 1. LMBP algorithm.

LMBP Algorithm for the Fault Location Process

a. With initial weights and bias (randomly generated), all extracted features should be fed into the FFNN as inputs. The outputs
of the corresponding features are computed in the network using Equations (6) and (7), followed by error prediction using
eq = tq − aM

q .

b. Using F(x) = ∑Q
q = 1 (tq − aq)

T(tq − aq), calculate the sum of squared errors for all inputs with the Q targets in the training
set.

c. After initializing with Equation (41), calculate the sensitivity using Equation (42) and augment the individual matrices into
the Marquardt sensitivities using Equation (43). Meanwhile, Equations (37) and (38) are used to determine elements of the
Jacobian matrix.

d. Then, to obtain Δx k, update Equation (33) to adjust weights and biases.
e. Using x k + Δx k recalculate the total of the squared errors. If the newly generated error value is less than the previous one,

then divide μk by α and return to step a with x k+1 = x k + Δx k. If the recalculated value does not decrease, then multiply
μk by α and return to step c with the new weights.

2.4. Parameter Optimization

Hyperparameters should be distinguished from internal parameters such as weights
and biases that are taken into account by the Levenberg–Marquardt backpropagation
algorithm in the FFNN model. However, finding values for hyperparameters is a non-
convex optimization process for optimal fitting. This is because, like the MT-HVdc system,
most existing systems do not have linear responses to their control parameters. From the
standpoint of optimization, the problem can be presented as follows:

minxεXd f (x), where xεX ⊂ � (44)

x is the input vector (control parameters) of dimension d. f (x) is an objective function
that depicts a multiscale system with high dimensional control parameters functioning
under high-speed channels, such as an FFNN-based relaying model under dynamic condi-
tions to protect the MT-HVdc grid. It is not a simple task to create a precise and accurate
model of such systems in this situation. As a result, it is necessary to approach the problem
in Equation (44) using the black-box settings shown in Figure 3.
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Figure 3. Optimization of black-box systems.

2.4.1. Black-Box Settings

In most black-box systems, including MT-HVdc grids relaying models, it is not easy to
acquire f (x) gradient information at an arbitrary value of x. However, gradient information
is not required when employing BO based on Gaussian processes (GPs) [31]. As a result, it
is a promising and appropriate candidate for black-box optimization. While optimizing,
BO is an active learning method that chooses the next observation to maximize the reward
for solving Equation (45). Its foundation is Bayes’ Theorem.

P( f |D1:t) ∝ P(D1:t| f )P( f ) (45)

P( f ), P( f |D1:t) and P(D1:t| f ) are probabilities of prior, posterior, and likelihood based
on the current observations, i.e., D1:t = [(x1, y1), (x2, y2), .., (xt, yt)]. Various predictive
and distributional models can be used as priors in BO, but the GP is preferred due to its
practical and theoretical advantages [31].

2.4.2. Gaussian Process (GP)

In the GP, the surrogate model replicates the behaviors of the expensive underlying
function. While doing this, the underlying function f (x) that requires optimization is
represented in BO as a collaborative and multidimensional Gaussian process. The mean
(μ) and covariance (K) functions are calculated using:

f1:t = N (μ(x1:t),K(x1:t)) (46)

In BO, Equation (46) illustrates the process in which the predictive GP is trained.
It is worth noting that, unlike other machine-learning algorithms, the goal of BO is to
properly forecast where global extrema are situated in the sample space based on previous
observations rather than to develop predictors that cover the entire sample space. Further-
more, the problem in Equation (44) is solved using black-box settings, implying that we
do not have any prior information about the underlying function. Therefore, to improve
the regression quality of the GP, we use a popular kernel/covariance function called the
automatic relevance determination Matern 5/2 function in conjunction with a zero-mean
GP for P( f ), given as:

K(x) =

⎡
⎢⎣

k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt, x1) · · · k(xt, xt)

⎤
⎥⎦ (47)

k
(
xi, xj

)
= σ2

f (1 +
√

5r +
5
3

r2)e−
√

5r (48)

where r = (∑D
d = 1

(
xi,d − xj,d)

2
/σ2

d ))
1/2; σf and σd are hyperparameters of K(x). These

hyperparameters are modified throughout the training phase to reduce the GP’s negative-
log marginal likelihood using the global or local method. Each parameter in an ARD-type
kernel has a scaling parameter that must be set. If the σd of one parameter is larger than the
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others after the GP-based predictive model has been trained, then it can be assumed that a
change in this parameter has less sensitivity on the prediction. Furthermore, if a certain
parameter has a greater effect, then the proposed solution in BO will alter the training
process to reduce σd of that parameter in comparison to others. These advantages make the
underlying function more interpretable and serve as an implicit sensitivity analysis.

2.4.3. Acquisition Function

Since the original function f (x) is hard to estimate, based on a predefined strategy
and auxiliary optimization, an acquisition function u(x) is obtained to find the next point
xt+1 of the solution. It is worth noting that u(x) does not require any additional points;
instead, it relies on past sample knowledge to make predictions at candidate points.

μ(xt+1) = kTK−1 f1:t (49)

σ2(xt+1) = k(xt+1, xt+1)−kTK−1k (50)

Then predictive distribution at the next point is given as:

P( ft+1|D1:t, xt+1) ∼ N
(

μ(xt+1), σ2(xt+1)
)

(51)

The most prominent acquisition functions in BO are the probability of improvement,
upper confidence bound and expected improvement per second. However, we propose an
expected improvement per second-plus in this paper. In comparison, it allows for faster
model building and optimization, and the term ‘plus’ prevents a region from overexploiting
(more search for a global minimum). Expected improvement (EI) is given as:

μ(EI) =
(

μ(x)− f
∧∗ − ζ

)
Φ(Z) + σ(x)φ(Z) (52)

where f
∧∗ is the best point observed so far. ζ is a hyperparameter for μ(EI), Z =

(
μ(x)− f

∧∗

−ζ)/σ(x), φ(.) and Φ(.) are the probability density function and cumulative distribution
function of normal distribution. Further interpreted in EI per second (EIpS) as:

EIpS(x) = μ(EI)/μS(x) (53)

where μS(x) is the posterior mean of the timing Gaussian process model, respectively.
The next sampling point xt+1 is found by minimizing the expected improvement per
second-plus EIpSp(x) acquisition function.

xt+1 = argmin EIpSp
(

μ(xt+1), σ2(xt+1)
)

(54)

In doing so, the proposed acquisition function escapes the local objective function
minimum and searches for a global minimum by setting σf (x) to be the posterior objective
function (P( f |D1:t)) standard deviation at point x. Let σNP be the additive noise posterior
standard deviation so that σ2

Q(x) = σ2
F(x) + σ2

NP. The positive exploration ratio is denoted
by tσNP. After each iteration, the acquisition function evaluates if the next point x satisfies
σf (x) < tσNPσNP. If this is the case, then the acquisition function will announce that
x is overexploiting and adjust its kernel function by multiplying θ by the number of
iterations [32]. When compared to EIpS(x), this adjustment increases the variation σQ for
points between observations. It then creates a new point using the newly fitted kernel
function. However, if the new point x is still being overexploited, then the function
multiplies θ by a factor of ten and tries again. This process is repeated five times, with the
goal of generating a point x that is not overexploited. The new x is accepted as the next
exploration ratio by the proposed acquisition function. As a result, it manages the tradeoff
between examining new points, searching for a better global solution, and focusing on
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nearby already investigated points. The whole process optimizes the FFNN structure in a
much faster and more efficient manner with a reduced computation burden.

2.4.4. Implementation of Proposed Framework

The steps to train the FFNN model with the LMBP algorithm and optimize network
hyperparameters with the Bayesian algorithm are demonstrated in Figure 4.

 
Figure 4. Proposed Framework.

In step 1, fault location and impedance are modified to create the training and testing
datasets for several simulations. Additionally, data events are labeled and normalized
according to criteria to improve the training process in this mode. The ANN hyperparame-
ters are determined by feeding the training dataset into BO’s AI model until the maximum
number of iterations is reached. The AI model is updated each time the maximum number
of iterations is reached. In step 2, the optimal hyperparameters of the ANN, which gives
the minimum root-mean-square error (RMSE), are selected by BO, and the FFNN is trained
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for the given training data with the help of the LMBP algorithm. In step 3, the trained ANN
model is evaluated on a different testing dataset from the training dataset.

To prevent overfitting, K-fold cross-validation was used during the assessment with

K = 5. RMSE =
√

1
Rz

∑Rz
n = 1(yn − y◦n), Rz stands for the data size, yn for the actual output,

and y◦n represents the predicted output. The proposed framework can now be implemented;
a system model will be presented in the next section, which enables the collection and
analysis of input features for fault types, matching the theoretical foundation to real-world
fault scenarios, and using intelligent computation to train and evaluate the framework’s
effectiveness.

3. System Model

The electrical power from two offshore wind farms is transferred to two onshore
converters through dc transmission, as shown in Figure 5 [33]. A boundary is defined by
installing current limiter inductors at the end of a dc line. Other test grid settings and
MMC parameters are provided in Tables 2 and 3. The cable specifications are provided
in Table 4. It is a single-end scheme, which means that information will be gathered near
circuit breakers and inductor lines.

Figure 5. Configuration of MMC-based dc grid.

Table 2. Converter parameters.

Station
Rated dc

Voltage [kV]
Rated Capacity

[MVA]

Arm
Capacitance

Carm (μF)

Arm
Inductance
Larm [mH]

Arm
Resistance
Rarm [Ω]

Bus Filter
Reactor [mH]

MMC1 ±320 900 29.3 84.8 0.885 10
MMC2 ±320 900 29.3 84.8 0.885 10
MMC3 ±320 900 29.3 84.8 0.885 10
MMC4 ±320 1200 39.0 63.6 0.67 10
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Table 3. AC/dc System parameters.

dc System Link12 Link13 Link34 Link24

Length [km] 100 200 100 150
Inductance [mH] 100 100 100 100

ac system AC 1 AC 2 AC 3 AC 4
Rated voltage [kV] 400 400 400 400
Reactance Xac [Ω] 17.7 17.7 17.7 13.4
Resistance Rac [Ω] 1.77 1.77 1.77 1.34

Transformer μk [pu] 0.15 0.15 0.15 0.15

Table 4. Cable parameters.

Cable Outer Radius [mm] [Ωm] Єre1 [-] μre1 [-] Link34

Core 19.5 1.7 × 10−8 – 1
Insulation 48.7 – 2.3 150 1

Sheath 51.7 2.2 × 10−7 – 100 1
Insulation 54.7 – 2.3 AC4 1

Armor 58.7 1.8 × 10−7 – 400 10
Insulation 63.7 – 2.3 13.4 1

Model Output

As shown in Table 5, the examined system model has several outputs that can be
used to determine fault distance from a relay contact point. Additionally, it shows fault
resistances and fault types along with a total of 714 dc-link fault scenarios (k) for training.
By doing so, dc-link faults are categorized into pole-to-pole (PTP) and pole-to-ground
(PTG) faults. It is important to note that a dc-link problem is an internal fault, so the criteria
(dVdc/dT) should be applied when an internal failure occurs. By activating this criterion,
the trained algorithm begins sampling relevant values for the 10 ms time window and
estimating the fault distance. Note that the fault detection strategy is selective in nature.

Table 5. Internal fault scenarios for training data.

Transient Period
Training
Samples

Fault Resistance (Ω) Fault Distance (km) Noise (dB)

10 ms 357 0.01, 25, 50, . . . , 375, 400 1, 10, 20, . . . , 180, 190, 198 20, 25, 30

Total faulty sample = 357/each fault type; dc-link faults are first classified into two parts: pole to pole and pole to ground fault.
Therefore, total training samples = k = (Fint = 357 ∗ 2) = 714. Fault distance is noted from MMC1 to MMC 3 and MMC1 to MMC2,
respectively.

4. Data Processing

The fact that the initial travelling waves of the voltage and current induced by the
dc-link faults from the system above contain helpful information about fault distance
is exploited in this study [7]. However, noise interference is expected, considering the
dynamic disturbances associated with the MT-HVdc system. Therefore, the following
sub-section discusses the noise suppression mechanism before processing data for the
regression model.

4.1. Signal Processing

The implementation of the DWT to suppress noises from a measured signal is shown
in Figure 6 [34].
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Figure 6. Signal denoising.

4.1.1. Setting Numbers of Decomposition Layers

Transforming discrete wavelets into more decomposition layers helps separate noise
from the original signal, resulting in better signal filtering. We have chosen eight lev-
els to keep the balance between signal processing burden and robustness against noise,
corresponding to the frequency band of 195.3–390.6 Hz at a sampling frequency of 50 kHz.

4.1.2. Selection of Mother Wavelet Function

The next critical step in the denoising scheme is choosing a mother wavelet. A litera-
ture review and practical results presented in the previous studies show that Daubechies
(dB) is an appropriate mother wavelet for analyzing fault signals [35]. It is suggested
that, in this study, the Pearson correlation coefficient be used to determine the correlation
between the Daubechies wavelet function and the cable fault signals in order to determine
the best mother wavelet function. The mother wavelet function is written as follows:

∅ = ∑
(
X − X

)(
Y − Y

)
/
√

∑
(
X − X

)2(Y − Y
)2 (55)

199



Sensors 2022, 22, 9936

where X is the original fault signal, X denotes the original fault signal’s average, Y denotes
the noise-eliminated fault signal, and Y denotes the noise-eliminated fault signal’s average.

4.1.3. Set the Threshold and Filter the Signal

After selecting the mother wavelet, the noise from the fault signal can be filtered out.
The Universal threshold is multiplied by the median of each decomposition layer after
wavelet decomposition to automatically set the threshold, as expressed:

λj =
σj

0.6745
∗
√

2 log nj (56)

λj is the threshold of the jth decomposition layer, σj is the median of the jth decom-
position layer, and nj is the signal length of the jth decomposition layer. After setting the
threshold, the noise is filtered out through the thresholding process. This thresholding
process usually includes soft and hard thresholds [35]. However, in this study, a hard
threshold is set to filter out the noise.

δλ
Hard =

[
x(t), i f |x(t)| > λ

0, otherwise
(57)

This equation demonstrates that the hard threshold retains a larger wavelet coefficient
while the coefficient below the threshold is set to zero. Finally, using inverse DWT (IDWT),
the signal processed by the hard threshold can be configured layer by layer into a noise-free
signal. The implementation of the proposed denoising approach with a 20 dB signal-to-
noise ratio (SNR) is shown in Figure 7.

Figure 7. Effect of the denoised solution on the contaminated signal of 20 dB signal-to-noise ratio (SNR).

4.2. Feature Extraction Set-Up

After selecting and denoising the signal, the feature extraction stage is critical for
data-driven-based fault detection and location estimation problems. Extracted features
are measurable data taken from the transient of the current- and voltage-filtered signals to
create a feature vector. This feature vector should be dimensionally compact to successfully
implement the learning and generalization processes in the estimation algorithms for
fault location. The feature extraction stage is divided into two sub-stages. The first stage
involves decomposing all generated samples for each fault location up to eight levels using
DWT-MRA to obtain wavelet coefficients. The wavelet coefficients are Aj approximation
and Dj detail levels. For each type of fault location, vectors of D1–D8 and A8 coefficients
are obtained. The second stage of feature extraction involves providing effective and
appropriate statistical parameters for feature vector creation to reduce the collected data
and improve estimation performance.
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4.2.1. Feature Extraction Results

When a large number of high-frequency components of voltage and current signals are
fed for training, several learning tools face problems due to a limitation on the input space
dimension. These learning tools lack the capability to provide suitable learning patterns
with a large number of features. This is due to the enlargement of the structure and an
extreme increase in the number of learning parameters [11]. The regression model used
in this study is designed to train with the second norm (referred to as the norm) of the
wavelet coefficients. In general, the decomposed signal’s norm for wavelet coefficients is
determined as follows:

normDj =
√

∑n
i = 1

∣∣ Di,j
∣∣2 (58)

normAj =
√

∑n
i = 1

∣∣ Ai,j
∣∣2 (59)

j denotes the decomposition level, and the maximum level of decomposition is N. The
detail and approximate coefficients have n values at level j. Overall, the proposed energy
vector obtained from the MRA-based DWT for any current or voltage signal from a given
time window is represented as

x =
[

normD1 , normD2 , . . . , normD8 , normA8

]
(60)

Using the MRA-based DWT, norm values of current for ground faults at various sites
are calculated and presented in Figure 8, respectively. There is a distinct difference in
the approximate norms between the given fault locations at levels D6 through D8. These
differences in norms indicate that the obtained features contain distinct fingerprints for
estimating ground faults at various places. Figure 9 shows the obtained features of the
voltage signal for ground faults between locations 40 to 200 km.

 
Figure 8. Feature vector extracted for ground fault at various locations of the current signal.
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. 
Figure 9. Feature vector extracted for ground fault at various locations of the voltage signal.

In Figure 9, the norm values for each location are significantly different in the dominant
frequency band between D5 and D8 and can be used as input vectors to establish fault
estimation rules. Similarly, as illustrated in Figure 10, a unique signature of the pole-to-pole
fault may be derived at different frequency bands. A schematic diagram for the feature
vector development process is shown in Figure 11.

 
Figure 10. Feature vector extracted for the PTP fault at various locations of the voltage signal.
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Figure 11. Flow chart for the development of the feature vector.

4.2.2. Training Set-Up

Following preprocessing strategies, these extracted features are standardized for
computational simplification. The decluttered training dataset is then applied to the BO-
based AI model to find the appropriate hyperparameters for the FFNN once the feature
vectors have been determined. The input vector p = (x1, x2, x3, x4) of 10 ms is designed
for the FFNN input; two inputs (x1, x2) represent the transient dc current second norm
from positive and negative poles, while the rest (x3, x4) indicate the dc voltage second
norm from positive and negative poles. This corresponds to 36 inputs for each training
sample (total training samples = k = 714). In doing so, BO’s AI model is modified each
time until the maximum number of iterations is reached. BO then selects the ideal FFNN
hyperparameters that result in the lowest RMSE, and the FFNN is trained using the LMBP
algorithm. The final RMSE obtained is 0.0132, with a total evaluation time of 39.3428 s for
30 iterations. Some key hyperparameters of the multilayer FFNN model obtained via BO
are presented in Table 6.

Table 6. Optimized parameters.

Hyperparameters Range Fault Location Model

Learning Rate [1 × 10−2–1] 0.010037

Hidden Layers/Neurons (NHL) [1–40] 28

Momentum [0.001–0.005] 0.0028608

Epochs [20–1000] 994

Gradient [1 × 10−7–10−6] 1.2925 × 10−7

Validation [0–6] 4

5. Simulation Results and Discussions

A. Metric for Evaluation and Testing Set-Up

Although, during validation, the selected models’ average estimation accuracy was
98.94%. However, we tested our method for further investigation using case studies given
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in Table 7. For verification and more in-depth analysis, a performance index based on
percentage error was used as follows:

Percentage error =
Actual Location − Prediction location

Total lenght of transmission line
× 100 (61)

Table 7. Testing fault scenarios for testing data.

Transient Period
[10 ms]

Testing
Samples

Fault Resistance (Ω) Fault Distance (km) Noise (dB)

10 ms 400 10, 35, 60, 85, . . . , 435, 460, 485 5, 15, 25, . . . , 175, 185, 195 20, 25, 45
Total faulty sample = 400/each fault type, Total testing samples = [(400) ∗ 2] = 800, Refer Table 6 for fault distance

5.1. Case 1 (Fault Location)

In Case 1 (under varying fault locations and fault resistance), the functionality of the
proposed technique was tested using the scenarios given in Table 7. After thorough training,
fault analyses were carried out with varying fault distances and resistances. Table 8 shows
the 800 test samples, absolute and percentage errors for two types of dc-link faults: PTP
and PTG. It can be observed that the percentage error for the testing dataset was found
to be 0.4927% and 0.5361% for the PTP fault and PTG fault, respectively. The proposed
technique’s total percentage error was found to be 0.5144 percent, which demonstrated that
the misclassification was well within acceptable bounds.

Table 8. Fault location estimation errors.

Fault Type
Total
Faults

Max Absolute Error
(km)

Max Percentage
Error (%)

Overall Absolute
Error (km)

Overall
Percentage
Error (%)

PTP 400 2.6350 1.3174 0.9853 0.4927

PTG 400 2.6412 1.3206 1.0723 0.5361

Average Error NA NA NA 1.0288 0.5144

In addition, Figure 12 depicts the percentage inaccuracy for the proposed technique in
locating PTP faults on line 13 PTP faults with fault distances ranging from 5 km to 200 km.
With a maximum percentage error of 1.3174% at 175 km and a minimum value of 0.00103%
at 15 km, the findings revealed that the proposed algorithm had no major impact on the
variance of fault distance. Therefore, the proposed approach is suitable for locating close-in
and far-away faults.

Figure 12. Accuracy of the proposed technique.
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5.2. Case 2 (Fint)

Apart from fault location, it is important to note that the characteristics and amplitude
of faulty signals, such as voltage and current measured at the local terminal, are also
determined by fault parameters such as fault resistance. Therefore, it is crucial to highlight
the proposed approach’s performance under diverse fault resistances. This section analyzes
the proposed algorithm’s performance for in-depth fault resistance validity ranging from 10
to 385 Ω, and the results are given in Table 9. Notably, in the event of high fault resistance,
such as 385 Ω, with an actual fault distance of 185 km, the energy of the travelling waves
tended to be on the lower side, bringing the system closer to the steady state. However,
the proposed algorithm with selected features extracted even the most minute voltage
and current information. For example, the predicted fault distances for PTP and PTG at
385 Ω were 183.63147 km and 186.93141 km, respectively. The associated misclassification
of 0.68427% and 0.96571% for each fault type was well within acceptable limits.

Table 9. Fault resistance estimation errors.

Fault
Location

Fault
Resistance (Ω)

Fault Type

dc-Link
Fault Location Results

Predicted Location Absolute Error Percentage Error (%)

PTP PTG PTP PTG PTP PTG

5 km of
dc link

10 PTP PTG 5.02021 5.03022 0.02021 0.03022 0.01011 0.01511

110 PTP PTG 5.07141 5.08142 0.07141 0.08142 0.03571 0.04071

260 PTP PTG 5.63413 5.76481 0.63413 0.76481 0.31707 0.38241

35 km of
dc link

35 PTP PTG 35.05123 35.07134 0.05123 0.07134 0.025615 0.03567

235 PTP PTG 35.62858 36.10184 0.62858 1.10184 0.31429 0.55092

285 PTP PTG 35.86144 36.31471 0.86144 1.31471 0.43072 0.65736

125 km of
dc link

260 PTP PTG 126.67141 126.81487 1.67141 1.81487 0.83571 0.90744

385 PTP PTG 126.76175 126.91231 1.76175 1.91231 0.88088 0.956155

110 PTP PTG 126.01522 126.52812 1.01522 1.52812 0.50761 0.76406

185 km of
dc link

260 PTP PTG 186.94571 186.75387 1.94571 1.75387 0.972855 0.87694

385 PTP PTG 183.63147 186.93141 1.36853 1.93141 0.68427 0.96571

110 PTP PTG 186.34578 186.53681 1.34578 1.53681 0.67289 0.76841

Normal
operation X X X X NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE

5.3. Case 3 (Noisy Events)

In this case, a white Gaussian was added to the testing signals to examine the proposed
fault-locating scheme under various noisy occurrences. Original signals with SNRs ranging
from 20 to 45 dB were employed to assess fault location performance. Table 10 indicates
that the proposed scheme could locate all sorts of faults with a reasonable mean percentage
error rate for close-in, mid-point of line, and far-end of line. In the case of 45 dB noise
additions at the far end of 155 km of the dc-link, the total mean percentage error was
0.72424% and 0.83147% for PTP and PTG faults. It is worth noting that the proposed
method was noise-resistant because of the denoising process with better threshold settings
and functions. This improved the estimation accuracy despite the high noise level of 20 dB
with an overall mean percentage error of 0.9411% and 0.8561% for PTP and PTG faults,
respectively.

205



Sensors 2022, 22, 9936

Table 10. Results under the different noisy event.

Noise
(dB)

Fault
Location

Fault
Resistance

(Ω)
Fault Type

dc-Link
Fault Location Results

Predicted Location Absolute Error
Percentage Error

(%)

PTP PTG PTP PTG PTP PTG

25
5 km of
dc link

10 PTP PTG 5.04512 5.06727 0.04512 0.06727 0.02256 0.03364

110 PTP PTG 6.01202 6.03567 1.01202 1.03567 0.50601 0.51784

260 PTP PTG 6.26783 6.15872 1.26783 1.15872 0.63392 0.57936

20
45 km of
dc link

35 PTP PTG 46.06982 46.23672 1.06982 1.23672 0.53491 0.61836

235 PTP PTG 46.84612 47.03452 1.84612 2.03452 0.92306 1.01726

285 PTP PTG 47.03487 46.76324 2.03487 1.76324 1.01744 0.88162

45 155 km of
dc link

260 PTP PTG 156.96342 154.06853 1.96342 0.93147 0.98171 0.46574

385 PTP PTG 154.13647 153.02356 0.86353 1.97644 0.43177 0.98822

110 PTP PTG 154.43628 154.36571 0.56372 0.63429 0.28186 0.31715

5.4. Case 4 (Comparison with Existing Methods)

To further validate the proposed scheme’s robustness, Figure 13 replaces it with
intelligent adversaries such as the conventional FFNN and BP-NN with an original current
signal as the input under the testing conditions listed in Table 7.

Figure 13. Comparative analysis.

On a dual 2.9 GHz, Intel Core i7 with 16 GB RAM, the current version of the algorithm
implemented in Matlab® R2020a took 39.3428 s to run. Thirty ANN models were selected,
trained, and validated with this runtime. It was approximately five times faster than a
conventional FFNN configured manually with hyperparameters. The results showed that
the proposed algorithm performed better than the BP-NN and had the lowest percentage
error (i.e., 0.49%, 0.54% and 0.51%) for all fault types. In terms of percentage error, the
conventional FFNN with hyperparameters such as 15 neurons in the hidden layer and
a learning rate of 0.01 gave an average percentage error of 0.56%. This showed that
efficient features and regulating parameters in the proposed algorithm helped to increase
the interpretability of the spectrum generated by the wavelet.
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6. Comparison and Analysis

This section compares the proposed methodology with existing fault estimation
schemes for the MT-HVdc grid.

6.1. Non-AI-Based Methods

The proposed fault location method utilizes a continuous wavelet transform on dc
line current signals in the MT-HVdc network [36]. The technique is quite efficient; how-
ever, a high sampling frequency of 200 kHz and time-synchronized measurements are
required. Further, evaluation under high fault resistance has not been investigated thor-
oughly. Another work used time-stamped measurements to locate faults at a 200 kHz
sampling frequency [37]. The proposed model is robust against noise measurement, but
high sampling frequency and synchronized measurements could be a barrier to practical
applications. The single-ended TW-based fault location model has no synchronized mea-
surement issue [38] but has a high sampling frequency (100 kHz) [39]. In another example,
modal voltage and current measurements are sampled at 1 MHz to develop a single-end
fault location model [40]. However, it has only been tested for 100 Ω fault resistance. All
the aforementioned TW-based fault location models require a high sampling frequency for
good accuracy. Such a requirement is frequently considered a drawback. In comparison, the
proposed single-end fault location approach operates with reasonable sampling frequency
and tests against fault resistance as high as 485 Ω.

6.2. AI-Based Methods

Among the fault location approaches, learning-based techniques fall into a distinct
category. Even though such practices are commonly utilized in AC systems for fault
localization, few papers discuss their relevance to MT-HVdc networks. For example, an
extreme learning machine was proposed to locate the fault in the MT-HVdc network [41].
Voltage and current measurements were captured at a 500 kHz sampling frequency during
the learning phase to perform the wavelet transform and s-transform for feature extraction.
However, the entire scheme has been tested for fault resistance up to 100 Ω. Similarly,
the high voltage and current measurements sampled at 200 kHz and the investigation of
highly resistive faults are missing [42]. Another method applied a traditional two-ended
TW-based fault location algorithm to current measurements sampled at 5 kHz [43]. The
distance inaccuracy caused by the moderate sampling frequency was subsequently reduced
using a machine-learning approach. However, utilizing multiple distributed sensors on
long transmission added cost to the method. With the help of the ANN, the real-time
implementation of the proposed method is quite efficient. It has been proven to have a low
execution time on low-spec machines [44]. Further, all the aforementioned models do not
discuss the optimization of the machine-learning model. The proposed approach optimizes
the pre-training set-up with the help of Bayesian optimization.

7. Conclusions

At first, a novel dc fault location scheme based on AI for a meshed dc grid is proposed.
The BO-based FFNN model with DWT application is used to determine the best hyper-
parameters that improve the selected model’s performance while keeping the RMSE low.
Levenberg–Marquardt backpropagation is used to adjust weights and biases during train-
ing for the chosen multilayer FFNN model. The contribution of this work is summarized
as follows:

1. The wavelet coefficient energies of voltage and current over 10 ms are calculated and
denoised during the learning phase for feature extraction. This leads to fewer features
yet is robust for the learning model.

2. A comprehensive training dataset is collected to train the multilayer FFNN model for
different fault locations by varying fault impedance.
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3. The performance of this model is then evaluated on data points that are not included
in the training dataset. The study results show that the fault location can be calculated
using the FFNN for fault resistance up to 485 Ω.

4. Because the signal and Gaussian noise are integrated into the FFNN training sets, the
influence of the noise-contained environment is reduced.

5. Due to plug-and-play capability, the suggested intelligent algorithm is tailored for a
multi-vendor-based fault location estimation strategy in meshed MT-HVdc grids.

6. The case studies show that the proposed scheme performs well against many variables,
such as different fault resistances, transmission line lengths, and non-ideal noise
events. Thus, that makes it feasible for practical application in the MT-HVdc grid.

In future work, variable time windows will be used to consider the effect of the fault
location, fault resistance, and computational burden. This work provides an analysis of
the fault location estimation method for HVdc cable grids that can be applied to hybrid
cable–overhead line systems as well.
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Abstract: Illicitly obtaining electricity, commonly referred to as electricity theft, is a prominent
contributor to power loss. In recent years, there has been growing recognition of the significance of
neural network models in electrical theft detection (ETD). Nevertheless, the existing approaches have
a restricted capacity to acquire profound characteristics, posing a persistent challenge in reliably and
effectively detecting anomalies in power consumption data. Hence, the present study puts forth a
hybrid model that amalgamates a convolutional neural network (CNN) and a transformer network
as a means to tackle this concern. The CNN model with a dual-scale dual-branch (DSDB) structure
incorporates inter- and intra-periodic convolutional blocks to conduct shallow feature extraction
of sequences from varying dimensions. This enables the model to capture multi-scale features in a
local-to-global fashion. The transformer module with Gaussian weighting (GWT) effectively captures
the overall temporal dependencies present in the electricity consumption data, enabling the extraction
of sequence features at a deep level. Numerous studies have demonstrated that the proposed method
exhibits enhanced efficiency in feature extraction, yielding high F1 scores and AUC values, while also
exhibiting notable robustness.

Keywords: electricity theft detection; transformer neural network; convolutional neural network;
smart grids

1. Introduction

With the advancement of smart grid technology and the ongoing expansion of power
system infrastructure, the power industry, as a fundamental sector facilitating national
economic growth, has increasingly emphasized the need to enhance the economic efficiency
and ensure the stable operation of power companies [1]. The categorization of electricity
losses can be divided into two main types: technical losses (TLs) and non-technical losses
(NTLs) [2]. Technical losses are a result of disparities in infrastructure and energy dissi-
pation, whereas non-technical losses emerge from the disparity between the total power
transferred over distribution lines and the power consumed by customers. Electricity theft
is the predominant type of non-technical loss, encompassing a range of techniques includ-
ing private cables, physical manipulation of meter counting components, and destructive
modification of meter facilities resulting in inconsistent meter readings [3]. Electricity theft
not only carries significant economic consequences for the nation but also poses a threat
to public safety, since it heightens the risk of mishaps such as fires and electric shocks.
According to the source cited as [4], the aggregate financial impact of power theft on a
global scale is estimated to be around CAD 100 million per year. This substantial amount
of money, if not lost to theft, might instead be utilized to supply electricity to around
77,000 households for a duration of 1 year.

Numerous potential resolutions to the issue of power theft have been put out in
the existing body of scholarly work [5–7]. The existing body of literature classifies these
solutions into two primary categories: hardware-based solutions and data-driven solutions.

Sensors 2023, 23, 8405. https://doi.org/10.3390/s23208405 https://www.mdpi.com/journal/sensors
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Hardware-based solutions primarily center around the development of intelligent devices
and sensors with the capability to identify and detect irregularities. Nevertheless, it should
be noted that the aforementioned solutions incur significant maintenance expenses, exhibit
lower levels of efficiency, and require a substantial amount of time [8]. Furthermore,
they demonstrate an elevated false-positive rate (FPR). On the other hand, there exists a
plethora of data-driven methodologies aimed at detecting instances of electricity theft [9].
These solutions utilize methodologies rooted in artificial intelligence (AI) [10], game theory
(GT) [11], and machine learning (ML), which are extensively applied in various fields such
as healthcare, education, and transportation. According to cited source [12], solutions that
are driven by data have enhanced resilience, efficiency, and comprehensibility. Furthermore,
the scholarly literature [13] presents a methodology centered on grid analysis as a means to
examine the identification of abnormal power consumption patterns. This methodology
involves scrutinizing several parameters of the grid, such as current, voltage, and others, in
order to find any atypical usage behavior. Anomaly detection encompasses the utilization
of diverse data types, encompassing network-related data such as the operational state of
switches and circuit breakers, alongside sensor data like voltage and current magnitudes
captured by remote terminal units.

During the early phases of classification research, conventional machine learning tech-
niques [14,15] were employed for the purposes of feature extraction and classification. The
approaches employed in this study encompassed support vector machines (SVMs) [16,17],
decision trees (DTs) [18,19], and nearest neighbors [20,21]. With the advancement of ma-
chine learning algorithms, there has been an increasing adoption of integrated learning
algorithms that consist of several individual learners for the purpose of power theft detec-
tion. Several studies have presented several strategies for detecting instances of electricity
theft, utilizing integrated learning algorithms such as random forest (RF), Adaboost, and
XGBoost [22–25]. The experimental findings provided evidence that the integrated learn-
ing algorithms exhibit superior performance compared to conventional approaches. In
a specific research investigation [26], deep learning models [27] were utilized as binary
classifiers, with the purpose of detecting instances of energy theft. The researchers exam-
ined various deep learning architectures, such as CNN, Multi-Layer Perceptron (MLP),
Long–Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) networks. Pereira
et al. [28] employed a CNN for the purpose of detecting instances of power theft. Addi-
tionally, they conducted a comparative analysis of different oversampling approaches to
investigate the potential effects of dataset imbalance. Zheng et al. [29] utilized a CNN to
extract periodic features from load data that were transformed into a two-dimensional
format. These extracted features were subsequently combined with global characteristics
acquired from one-dimensional load data, which were captured using a fully connected
network. The purpose of this approach was to detect instances of power theft. In a separate
investigation, the authors of study [30] employed a fusion of clustering algorithms and
Long–Short-Term Memory networks in order to identify instances of electricity theft. The
methodology employed entailed forecasting the subsequent electricity usage of a client at
each given time and afterwards evaluating the disparity between the projected values and
the actual data. Deep learning techniques provide the advantage of automated sequence
feature extraction in comparison to conventional machine learning algorithms.

The issue of detecting electricity theft has been extensively explored in academic
research, leading to the development and widespread adoption of several hybrid neural
network models that incorporate deep learning techniques. The study conducted by [2]
introduced a hybrid neural network that integrates Long–Short-Term Memory (LSTM) and
Multilayer Perceptron (MLP) models. This hybrid network demonstrates the ability to
extract characteristics from diverse data sources. The authors Ismail et al. [31] proposed
a hybrid neural network model that combines CNN and GRU to tackle the issue of elec-
tricity theft in distributed generation systems. The researchers in [32] devised a novel
hybrid neural network architecture that integrates the GRU, CNN, and Particle Swarm
Optimization (PSO) algorithms. This model was trained and evaluated using real-time data
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on electricity use. The utilization of the CNN facilitates the reduction of dimensionality
and redundancy within time series data. The classification of consumption patterns into
normal and fraudulent categories is achieved by the utilization of the GRU network and
particle swarm algorithm. The integration of the long- and short-term memory strategies
into CNN technology was found to boost e-fraud detection, as demonstrated in a study
conducted by [33]. The optimal values of the hyperparameters for the CNN–LSTM were
computed using meta-heuristic techniques, namely Black-Widow Optimization (BWO) and
Blue-Monkey Optimization (BMO). The aforementioned works [30–33] have introduced de-
tectors that function as hybrid deep-learning models, specifically designed for the purpose
of feature extraction.

The aforementioned models have demonstrated favorable outcomes in the domain of
electricity theft detection, yet certain concerns persist. The initial approach in many electri-
cal theft detection models relies on CNNs. However, CNNs have limitations in properly
capturing the global characteristics of time series data and calculating the relative corre-
lations among the retrieved features. The excessive dependence on the initial input data
presents a notable limitation. Furthermore, it is possible for the model to experience over-
fitting as a result of the disparity between the amount of data available in the training set
and the intricacy of the model. As a result, the model’s capacity to generalize to real-world
scenarios is constrained. Therefore, it is imperative to consider the importance of mitigating
model overfitting and improving feature extraction capabilities. Ding et al. [34] introduced
a multivariate-branching block (DBB) as a means to extract feature information. The DBB
accomplishes this by integrating several branches with diverse widths and complexities.
The Gaussian-weighted feature-tokenization transformer module (FTT) was introduced
by Sun et al. [35]. The FTT module aims to investigate the transformer’s ability to capture
local spatial semantic information and effectively represents the links between adjacent
sequences. Moreover, Shi et al. [36] introduced a novel methodology for detecting power
theft through an end-to-end approach by utilizing the transformer neural network. This
study presents a novel hybrid model named the DSDB CNN and the Gaussian-weighted
transformer network (DSDBGWT), which integrates a CNN with a DSDB structure and
a GWT network. In contrast to a CNN, the DSDBGWT model demonstrates enhanced
proficiency in extracting global features and determining the relative relationships among
various characteristics. As a result, it diminishes its dependence on the initial input data
when performing classification tasks. In order to augment the model’s ability to extract
features, a GWT module is utilized, which is particularly well-suited for processing se-
quences of extended duration. The present module effectively captures the characteristics
of extended temporal sequences through the computation of attention coefficients, which
are determined by the positional information of the input sequences. As a result, the model
demonstrates enhanced efficacy in the detection of electricity theft. In order to address the
issue of overfitting in the model, the initial step involves incorporating suitable normal-
ization layers (LN) into both the regular block and transformer block. Furthermore, the
dropout regularization technique is utilized to stochastically deactivate a certain proportion
of neurons throughout the training process.

The main contributions of this article are summarized as follows:
(1) We propose a simple and efficient DSDB convolutional module in our network to ex-

tract inter- and intra-periodic features from sequences. This module replaces the traditional
CNN structure, resulting in a lightweight model while improving model accuracy;

(2) We employ a transformer network with Gaussian weighting. The attention weights
in this network can be attenuated based on the distance between related symbols. This
allows for a more rational allocation of the attention mechanism, leading to more efficient
extraction of sequence features and improved model accuracy;

(3) The systematic combination of CNN network and GWT network can fully extract
the electricity consumption information in the sequences and accurately and efficiently
recognize the semantic features, thus significantly improving the classification accuracy.
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Extensive experiments on the China National Grid dataset show that our DSDBGWT model
outperforms other existing methods.

The remainder of this paper is structured as follows. Section 2 presents the framework
of the proposed model and provides specific details on the implementation of its constituent
modules. In Section 3, we elaborate on the dataset processing, conduct comparative
experiments to assess the effectiveness of our framework, and discuss the experimental
results. Finally, Section 4 concludes the paper.

2. Materials and Methods

The overall architecture of the hybrid model for electricity theft detection (DSDBGWT)
based on a CNN with DSDB and a GWT network is shown in Figure 1. The framework
has three distinct modules: a CNN that incorporates a DSDB structure to facilitate shal-
low feature extraction, a GWT network designed specifically for long-distance feature
extraction, and a classification module. Initially, the original sequence is segmented on a
weekly basis using patch [37] to effectively capture the overall characteristics and minimize
computing workload, while still retaining the information from the original sequence.
Following the implementation of the patch, two DSDB structures are employed, possessing
identical structures. This approach enables the extraction of inter- and intra-week features
of electricity consumption information with enhanced accuracy and efficiency. Addition-
ally, this significantly reduces the computational burden associated with the convolutional
operation. Subsequently, the output data generated by the CNN are once again divided
into discrete four-week intervals, employing patches as the input for the transformer model.
The GWT network is capable of extracting a sequence’s global features, which can produce
varying weighting weights based on the input data’s distance. Thus, enhancement in
feature extraction accuracy is achieved. It is important to highlight that this approach
differs from the standard transformer in that it does not incorporate a class token and
position embedding into the transformer’s tokens. Consequently, it does not engage in
MLP processing within the tokens, but instead prioritizes the extraction of deep features
from the tokens. Ultimately, the outcomes of the encoding process for each token are fed
into the classification module.

sf ef cf

L

 

Figure 1. The overall architecture of the proposed hybrid neural network, combining DSDB convolu-
tional neural network and GWT network (DSDBGWT).

The DSDBGWT network model proposed in this paper can be denoted as f =
fc � fe � fs, with parameters ω = {ωs, ωe, ωc}. Here, fs is a convolutional neural net-
work, used for shallow feature extraction, and its output is v = fe(x; ωe); fe is a transformer
network, used for long-distance feature extraction, and its output is z = fe[ fs(x; ωs); ωe];
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and fc is a classifier, used for result categorization, which maps instances from the repre-
sentations to the corresponding logics, which can be transformed into similar classes by
p(y|z; ω) = sigmoid( fc(z; ωc)). We optimize the end-to-end parameters by minimizing the
cross-entropy loss on the set of markers denoted as ∑(x,y)∼Dtrain

[l( fc � fe � fs(x; ω), y)]. We
define x to represent the input data, p(; ) to represent the derived probability value, and
∑(x,y) to represent the sum of the loss functions.

2.1. Data Preprocessing

The suggested approach is used for the smart meter data of consumers’ daily electricity
consumption, which is sourced from the State Grid Corporation of China (SGCC) [38]. The
dataset provided includes authentic power consumers as well as those engaged in electricity
theft, with more information about the dataset available in Table 1. Figure 2 illustrates
the electricity consumption patterns of two users within the dataset. User 1 exhibits the
highest electricity usage, with a daily consumption reaching close to 2000. In contrast, User
2 represents the majority of electricity users, ranging from a few kWh to a dozen kWh
per day. This discrepancy highlights the significant variation in electricity consumption
among users. To address this, it is necessary to normalize the data. Normalization not only
stabilizes the dataset but also enhances the convergence speed and overall efficiency of
the model. Furthermore, it is evident that the data from User 2 exhibits discontinuity in
certain instances. This can be attributed to various intricate factors encountered during
the meter collection process, such as unreliable transmission of data due to smart meter
faults, irregular system maintenance, occurrence of special events, and other multifaceted
elements. Consequently, these factors contribute to the absence of electricity consumption
data. In order to mitigate the impact of data variations on the neural network model, it is
imperative to employ appropriate data preprocessing techniques. This study undertakes the
normalization of raw data and addresses the issue of missing values through appropriate
processing techniques.

Table 1. Raw data status.

Description Value

Total number of electricity consumers 42,372
Number of abnormal electricity consumers 3615

Time span 1 January 2014–31 October 2016
Proportion of missing data 25.7%

Maximum daily consumption of electricity by
customers 2782.2

Figure 2. Display of electricity consumption by the largest user in the dataset and by an average user.

(1) The process of normalization.
The act of normalizing the dataset has the effect of increasing the numerical con-

ditions of the dataset, which in turn enhances the stability of the optimization method.

215



Sensors 2023, 23, 8405

Consequently, this phenomenon enhances the speed of model training and augments the
efficiency of the algorithm. In addition, the process of normalization serves to standardize
the distribution of data and reduce the influence of outliers on the model, improving its
resilience. We choose the scaling method of MAX − MIN to normalize the data accord-
ing to the following equation. In the normalization process, we leave the missing values
untouched first:

n(x) =
x − min(x)

max(x)−min(x)
(1)

Here, x represents the user’s electricity consumption on a specific day, while min(x )
and max(x ) represent the minimum and maximum values, respectively, across the en-
tire dataset.

(2) Missing value processing.
Missing values are predominantly observed when there is a lack of data at a partic-

ular point in time, typically resulting from mistakes in the measuring instrument. The
inclusion of these omitted values serves to improve the overall quality of the data, en-
hancing its trustworthiness and suitability for analytical and modeling purposes. The
zero-replacement approach is employed to address the presence of missing data that meet
the specified requirements:

f (xt) =

{
0xt ∈ NAN
xtxt /∈ NAN

(2)

where xt indicates the user’s electricity consumption at a given time and xt ∈ NAN
indicates that xt is a null value.

The network encountered difficulty distinguishing between the original value being
zero and the missing value being imputed as zero, due to the preexistence of zero values in
the samples. In order to tackle this matter, we implemented an additional input channel
by using a binary mask [39]. Within the mask matrix, the original data’s missing value
is designated as 0, whereas the normal value of 0 is designated as 1. By employing this
approach, the neural network is capable of differentiating between these two situations,
thereby improving the resilience of the model.

The initial dataset, denoted as X, comprises the electricity consumption data for a
specific electricity user (referred to as M) over a time period of L days in the past. Therefore,
we can represent the original dataset as X ∈ R

M×L. The dataset undergoes preprocessing,
which involves normalizing the raw data, processing missing values, and adding binary
masks. These processes transform the dataset from a two-dimensional structure to a
three-dimensional structure for variable X′ ∈ R

M×L×2.

2.2. Patch

Due to the considerable length of the sample sequence, it is necessary to employ the
patch technique to partition the data into several subsequences at specific intervals. This
strategy not only maintains the intrinsic properties of sequence but also enables more
effective management and processing of the data for a range of activities, such as model
training, feature extraction, and predictive analytics. The length of the patch is represented
by the variable P. The sampling step is marked as S. The total number of patches is
indicated by the variable N. The electricity usage per user over a period of L days is
symbolized by the variable L. The calculation formula can be expressed as follows:

N =

⌊
(L − P)

S

⌋
+ 1 (3)

Electricity consumption data for normal users are usually more cyclical than for
abnormal users [29,40,41] (detailed analysis in Section 3.3). To effectively process such
periodic data using CNN, we employ the Patch architecture. Taking a specific sample
as an example, the preprocessed data has a spatial size of H × W. Utilizing the Patch
architecture and considering the weekly periodicity of the data, we set the parameters
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P = 7 and S = 7, thus transforming the data into a three-dimensional space represented
as H ×

(⌊
(L−P)

S

⌋
+ 1

)
× S after Patch processing, as illustrated in Figure 3. Similarly,

as shown in Figure 4, the inputs to the transformer network undergo processing using
Patch. The decision to employ Patch processing on a four-week cycle is motivated by
the transformer network’s exceptional feature extraction capabilities and its proficiency
in capturing distant features. The parameters Patch_size = 28 and Stride_size = 28 were
set to partition the data based on monthly time intervals. This Patch architecture trans-
forms the dimensionality of the output data from U × K × V to U × (K × V), then to
U ×

(⌊(
K×V−P)

S

⌋
+ 1

)
× S. Moreover, the Patch operation reduces the number of input

channels from L to approximately L
S , resulting in a reduction in computational complexity

by a factor of S. Additionally, the Patch operation enables the model to have a stronger
ability to refer back to earlier data, enhancing the network’s learning capability and leading
to significant improvements in prediction performance.

 

Figure 3. Patch architecture for CNN (N followed by data that are not divisible).

U

U

K V×

K

V

C

T

D
Figure 4. Patch architecture for transformer networks (each channel is patched separately).

2.3. Shallow Feature Extraction for DSDB Structures

After performing data preprocessing, the sequence features of the samples are ex-
tracted using 2D convolution. Figure 5 depicts the implementation of a DSDB structure
during this phase. Each branch within the structure incorporates a convolution kernel of
different scales, enabling the extraction of more complete feature information compared to
a single convolutional network. Taking inspiration from work with ACNet [42], we propose
the incorporation of asymmetric convolution into our approach. Specifically, we construct
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the convolution kernels for each branch to have dimensions of 1 × s and s × 1, respectively.
The convolution kernel with dimensions s × 1 is utilized for feature extraction within a
singular cycle, whereas the 1 × s convolution kernel is employed for extracting features
across different cycles. The process involves the linear combination of two convolutions
that are applied to the same locations but on different channels. This results in the empha-
sis of the squared convolution kernel in both horizontal and vertical directions, thereby
highlighting distinct locally prominent features from various orientations. After the inte-
gration of the outputs from both branches into a single DSDB output, a 1 × 1 convolutional
kernel is employed to maintain the inherent structure of the original sequence. In order to
accelerate the rate at which the model converges during training and improve the overall
generalization ability of the network [43], a normalization layer is implemented following
the convolutional layer in each branch. The normalization layer is responsible for ensuring
the normalization of the feature mapping in each branch. This process results in the output
features becoming nonlinear and effectively reduces data dispersion. Additionally, it serves
as a preventive measure against problems such as gradient explosion or gradient vanishing.
Following the normalizing procedure, the PReLu activation function is employed to coun-
teract linearity inside the network, so enabling the network to acquire knowledge about
nonlinear mappings in a hierarchical fashion. Ultimately, the utilization of Dropout serves
as a means to change data in order to mitigate the occurrence of overfitting.

H

W

iC

V Z

W

H

oC
W

H

oC

H

oC

W

H

oC

W

ia oa

Figure 5. Convolutional neural network model with DSDB structure.

The model employs two distinct DSDB structures, and the subsequent description
pertains to both of these DSDBs. The input data of the DSDB CNN are denoted as ai ∈
R

H×W×Ci , where H × W represents the spatial size and Ci represents the number of input
channels. The mathematical expression for the DSDB convolution at point (h, w) of its jth
channel can be represented by the following formula:

Vh,w
j =

Ci

∑
k

S

∑
h′=0

ωh′ ,0
v1,j,k · ah+h′−� S

2 �,w
i,k +

Ci

∑
k

S

∑
w′=0

ω0,w′
v2,j,k · ah,w+w′−� S

2 �
i,k (4)

Here, v1 represents the s × 1 convolution kernel, v2 represents the 1 × s convolution
kernel, k represents the sum of Ci channels, h′ represents the corresponding position ranging
from 1 to s in the s × 1 convolution kernel, and, similarly, w′ represents the corresponding
position ranging from 1 to s in the 1 × s convolution kernel. To maximize data utilization,
it is essential to employ the padding operation by adding zeros around the space H × W.
The padding size is determined by

⌊
S
2

⌋
; at this point, V ∈ R

H×W×CO .
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Following the DSDB structure, a 1 × 1 convolution kernel is utilized to perform the
convolution operation. Consequently, the value at the (h, w) position of the jth channel can
be obtained as follows:

Zh,w
j =

Co

∑
l

ωz,j,l · Vh,w
l (5)

where l represents the sum of CO channels. At this point, Z ∈ R
H×W×CO .

Finally, we perform linear normalization processing and use PReLu activation function
to obtain ao = φ(γZ + β).

2.4. Gaussian-Weighted Transformer Encoder Module

Regarding the detection of electricity theft, past research has predominantly concen-
trated on shallow feature extraction using convolutional neural networks, resulting in
favorable outcomes. However, when addressing the issue of electricity theft, it is crucial
to consider the correlation of data over an extended period. The data samples in this case
consist of long time series. CNN has limitations in representing features for such long-time
series data. The shallow feature extraction of CNN restricts their ability to capture long-
term dependencies, as the extensive use of convolutional operations can only encompass a
limited range of features. Moreover, the sample data contain a small number of anomalous
samples, accounting for only 8.5% of the total. Relying solely on CNNs not only fails to
extract more positive outcomes, but also runs the risk of gradient vanishing. To address
the challenge at hand, this study introduces a transformer network into the framework.
By incorporating the transformer network, the model is able to effectively capture global
dependencies, enabling the extraction of long-distance characteristics. Additionally, the
transformer network offers parallel computing capabilities, enhancing the overall efficiency
of the network. This paper aims to enhance the precision of the model by enhancing
the transformer network’s Gaussian-weighted attention mechanism. The proposed im-
provement involves incorporating a Gaussian-weighted self-attention mechanism into the
original network. This mechanism combines features extracted from WQ, WK, and WV

using a Gaussian-weighted matrix, thereby eliminating the reliance on attention weights
for feature utilization. The weights undergo attenuation based on the proximity of tokens,
with the degree of attenuation being defined by the Gaussian variance. This variance is
acquired through the training process. The proposed method has the capability to compre-
hensively and precisely capture the temporal dependencies on a worldwide scale inside
electricity consumption data. Consequently, this approach has the potential to enhance the
effectiveness of power theft detection to a greater extent.

The module comprises two blocks of multi-head self-attention mechanism (MSA),
as depicted in Figure 1. The residual operation is iterated by using the input channels as
the heads of the first MSA, and mapping the output of the first MSA to the second MSA
as the input heads of the second MSA, with the same dimensions for A0 and A2. The
matrix dimensions of the input and output features are shown in Figure 6. To encompass
the global relationship, the multi-head attention mechanism incorporates three learnable
weight matrices, namely, WQ, WK, and WV . The ith self-attention (SA) is chosen using the
three learnable weight matrices mentioned above. It is then linearly normalized to obtain
Scaled Dot-Product Attention, as depicted in Figure 7. This section introduces the concept of
Gaussian-weighted self-attention, which allows for the utilization of varying weights based
on the proximity of tokens. This feature enhances the accuracy of the findings obtained.

The formula for the SA mechanism is as follows:

SA = Attention(Q, K, V)= so f tmax(
QKT
√

dK

)
V (6)

where dK is the dimension of K.

219



Sensors 2023, 23, 8405

A C T D× × A C T h× × A C T D× ×

Q

K

V

Q

K

V

Figure 6. The matrix dimension of input and output features.
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Figure 7. Multi-head self-attention module and the internal structure of a single self-attention.

The diagram illustrating the internal architecture of Gaussian-weighted self-attention
is depicted in Figure 8. In this context, B represents the size of the batch, T defines the
length of the sequence, D marks the dimension of the input, and E relates to the number
of units in the self-attention mechanism. The matrices for the query, key, and value are
defined in the following manner:

QW
i = WQ Al−1

KW
i = WK Al−1

VW
i = WV Al−1

(7)

where Al−1 is the input to the lth hidden layer (l = 0, 1, 2). WQ, WK, and WV are network
parameters. The score matrix in our proposed method is scaled by utilizing a Gaussian
weighting matrix. This matrix is computed through the multiplication of key and query
matrices, as described below:

Si = Gl
S ◦

(
Qω

i
(
Kω

i )
T

√
d

)
(8)

Vi = Gl
v ◦ Vω

i (9)

Oi = so f tmax(Si) ◦ Vi (10)

Gl
s is the Gaussian weight matrix.

Within the MSA block, a series of weight matrices in variables Q, K, and V are subjected
to the same operating technique. This results in the calculation of multiple head-attention
values. Afterwards, the outcomes of each individual head attention are combined. The
mathematical representation of this process can be expressed by the following equation:

MSA(Q, K, V) = Concat(O0, O1, ..., Oh−1) (11)

where h represents the number of heads.
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Figure 8. Proposed multi-head self-attention block diagram. The G.W. block performs element-wise
multiplication of the Gaussian-weight matrix with the generated score matrix. The matrix dimensions
are noted beside each signal.

Ultimately, the characteristics acquired within the transformer are afterward inputted
into the classifier for the purpose of categorization. This classifier comprises two fully linked
layers, with the Sigmoid activation function being employed for the output of the final
layer. The function maps the output values within the range of 0 and 1. Individuals with a
value equal to or beyond a threshold of 0.5 are classified as engaging in electro-pilfering,
whilst individuals falling below this threshold are categorized as regular users.

2.5. Overall Algorithm Steps

The overall process of the proposed DSDBGWT is shown in Algorithm 1.

Algorithm 1 DSDBGWT Model

Input: Input a dataset X ∈ R
1035×2; patch size s1 = 7; patch size s2 = 28; training sample rate = 80%.

Output: Normal and abnormal prediction of test sets
1: Set batch size to 100, optimizer Adam (learning rate: 10−4), epochs number e to 80.
2: Perform patch1 in the X, available to X ∈ R

7×147×2 and divide them into training dataset and
test dataset.
3: Generate training loader and test loader.
4: for i = 1 to e do

5: Perform DSDB convolution layer.
6: Perform patch 2 to change X ∈ R

7×147×16 to X ∈ R
36×28×16.

7: Perform a transformer network using Gaussian weighting.
8: Spread the transformer output to pass into the classifier.
9: Use the sigmoid function to identify the labels.
10: end for

11: Use test dataset with the trained model to get predicted labels.

3. Experimental Results and Analysis

3.1. Raw Electricity Consumption Dataset

The methodology was evaluated using a genuine dataset acquired from the State
Grid Corporation of China. The dataset consists of a collection of daily power usage
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data series spanning from January 2014 to October 2016. This dataset encompasses a
total of 43,272 customers. Approximately 8.55% of the aforementioned consumers were
detected by the data source as participating in electricity theft operations and, as a result,
were categorized as anomalous. We preprocessed the dataset according to the method
in Section 2.1. It was randomly divided into five separate subsets of equal size while
maintaining the original ratio of abnormal samples to normal samples. Four of these
subsets were used as the training set to train the models, while the remaining subset was
used as the test set to evaluate the models. The aforementioned procedure was iterated
for the five potential choices, wherein a distinct subset was selected as the test set on each
occasion. Consequently, five models are trained, with each model being evaluated on its
respective test set to determine the test error. This process yields five test results, which are
subsequently averaged. By repeating the aforementioned steps three times, the final results
are obtained.

3.2. Experimental Setting

The experiments conducted in this paper were carried out on a server equipped with
an Intel(R) Core (TM) i5-1035G1 CPU operating at a frequency of 1.7 GHz, with a maximum
turbo frequency of 2.19 GHz. The server also had a total of 128 GB of RAM and was
equipped with an NVIDIA GeForce RTX 3090 Ti GPU. The PyTorch 1.10.0 deep learning
framework and Python 3.9 compiler were utilized on an Ubuntu machine to create the
specific software. In the experiments, the batch size was set to 100, the learning rate was
set to 0.001, the epoch was set to 80, and the Adam optimizer was used to make the model
converge quickly.

3.3. Data Description

The chosen dataset is published by the State Grid of China and contains electricity
consumption data of 43,272 electricity users over a period of 1035 days. The dataset contains
electricity consumption data of 42,372 customers over a total of 1034 days from 1 January
2014 to 31 October 2016, of which 38,757 customers are normal electricity users (marked as
0) and the remaining 3615 customers are identified as electricity theft users (marked as 1).
The details of the dataset are shown in Table 1.

The anomalous manifestations of electricity theft are not only shown on the surface
of the data, but their implied patterns and trends are equally characterized. In particular,
Figure 9a gives an example of the electricity consumption data of a normal electricity user
in one year (i.e., 2016), and Figure 9b represents an example of the electricity consumption
data of an electricity theft user in one year. As can be seen from Figure 9, the electricity
consumption data of normal users in July, August, and September are higher than that in
other months (high air conditioning usage in summer), but overall are relatively stable.
The overall data in other months are generally consistent with little fluctuation; the data
of the electricity theft user appear to be abnormally chaotic, and the decline in electricity
consumption in a certain month is particularly high, which is not in line with the normal
pattern of electricity consumption. As shown in Figure 10, the electricity consumption data
for four weeks (February 2015) of normal users and electricity theft users are extracted for
further analysis. Figure 10a shows that, under normal circumstances, normal electricity
users can exhibit significant periodicity, with weekly electricity consumption usually peak-
ing on day 2 or 3, often reaching a low on day 4, and then starting to rise again, whereas the
electricity consumption data for those defined as stealing (Figure 10b) fluctuates cyclically
for the first two weeks (i.e., week 1 and week 2). However, from the second week onwards,
electricity consumption decreases significantly and, thereafter, electricity consumption
remains at a low level.
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Figure 9. Average monthly electricity consumption in 2015. (a) Normal energy users. (b) Energy
theft users.

Figure 10. Average daily electricity consumption every four weeks (February 2015). (a) Normal
energy users. (b) Energy theft users.

In order to better analyze the periodicity of normal customers and the non-periodicity
of electricity theft users, we performed a correlation analysis on the electricity consumption
data. Figure 3 shows the Pearson correlation coefficient (PCC) of the electricity consumption
of the above two users over a four-week period. In this case, Figure 11a shows the PCC
values for normal users and Figure 11b shows the PCC values for electricity theft users.
From Figure 11a, we can find that the electricity consumption data of normal users have a
strong positive correlation. Most of their PCC values are around 0.5, and some even reach
0.9 (a closer PCC value to 1 means that a stronger correlation [30]), whereas the PCC value
of the electricity consumption data of abnormal users is not more than 0.4 (Figure 11b),
and even the phenomenon of negative PCC values occurs, which means that they show a
negative correlation.

Figure 11. PCC of electricity consumption by week (February 2015). (a) Normal energy users.
(b) Energy theft users.

By statistically analyzing the electricity consumption data of normal users and elec-
tricity theft users, we can find that the electricity consumption data of electricity theft users
are usually not periodic or non-periodic compared to normal users. Therefore, weekly,
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monthly, quarterly, and annual electricity consumption data can be used as benchmarks for
feature extraction.

3.4. Evaluation Indicators

In order to evaluate the efficacy of the model, its performance was assessed using
various metrics, including precision, recall, F1 score (F1), Area Under the Curve (AUC),
and Mean Average Precision (MAP). The measurements encompass four primary error
rates, namely, false positive (FP), false negative (FN), true positive (TP), and true negative
(TN) [2,31].

The recall metric is defined as the ratio of accurately recognized instances of electricity
theft by the model to the total number of real electricity theft samples:

recall =
TP

TP + FN
(12)

Precision is a metric that quantifies the proportion of samples accurately identified by
the model as instances of power theft relative to the overall number of samples categorized
as instances of electricity theft across all detection tests:

precision =
TP

TP + FP
(13)

The F1 score, also known as the balanced score, is a statistical measure used to assess
the precision of a binary classification model. The evaluation metric takes into account both
the precision and recall of the classification model:

F1 =
2 × precision × recall

precision + recall
(14)

AUC is defined as the area under the ROC curve and is used to measure the over-
all quality of the classifier. The larger the value of AUC, the better the performance of
the classifier:

AUC =
∑i∈positiveClass Ranki − M(1+M)

2

M × N
(15)

where Ranki denotes the rank value of sample i, M is the number of normal samples, and
N is the number of electricity theft samples.

MAP is a position sensitive indicator; if the abnormal samples are ranked higher than
the normal samples, the higher the value of MAP. It can be calculated as follows:

MAP@K =
1
m

m

∑
i=1

i
pi

(16)

Considering the top K users in the sorted list, m is the number of selected users
who have actually performed a power theft operation and pi(i = 1, 2, 3, ..., m) denotes the
position of each anomaly in the sorted list. In our experiments, we compute this metric for
all samples in a given list and abbreviate the metric as MAP@ALL.

3.5. Comparison with Advanced Methods

In order to demonstrate the efficacy of the suggested model, a selection of representa-
tive methodologies has been chosen to perform comparative tests using the DSDBGWT
model. These methods integrate both representative and high-level scholarly publications
with publicly accessible source code, spanning the period from 2001 to 2022. It is notewor-
thy to emphasize that the aforementioned methods were applied to a preprocessed dataset
in order to ensure a fair comparison:

(1) Random forest (RF) [44]: The RF classifier, also known as random forest, is a machine
learning algorithm composed of several decision trees;
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(2) MiniRocket [45]: The MiniRocket model is a time series classification model that oper-
ates at rapid speeds. It utilizes a concise collection of predetermined convolutional
kernels to convert the input time series data. The extracted features are subsequently
employed in the training of a linear classifier;

(3) Wide and Deep CNN (Wide and Deep) [29]: The Wide and Deep model, which has
a wide component and a deep CNN component, has gained significant traction as a
fundamental approach in various domains;

(4) Hybrid-Order Representation Learning [40]: The electrical behavior classifier employs
a comprehensive representation that combines first-order and second-order variables
to detect occurrences of electricity theft;

(5) Hybrid Attention (HyAttn) [39]: The extraction of features is performed using a
convolutional module that is enhanced by an MSA technique. Subsequently, the
classification of these features is carried out evenly by concatenating convolutional
layers with a kernel size of 1.

To ensure the integrity of the experimental findings, the network architecture and
associated parameters from both classical and contemporary methodologies in the existing
literature are employed to replicate the models for comparison studies. All tests were
conducted using identical hardware configurations and maintained a consistent ratio of
training to testing samples. The empirical findings are shown in Table 2.

Table 2. Performance comparison of different methods.

Methods F1 AUC MAP@ALL

RF [44] 0.386 ± 0.011 0.804 ± 0.018 0.603 ± 0.011
MiniRocket [45] 0.427 ± 0.008 0.829 ± 0.013 0.683 ± 0.009

Wide and Deep CNN [29] 0.468 ± 0.004 0.862 ± 0.011 0.751 ± 0.007
Hybrid-Order Representation

Learning [40] 0.594 ± 0.004 0.895 ± 0.007 0.807 ± 0.006

HyAttn [39] 0.609 ± 0.003 0.907 ± 0.006 0.831 ± 0.006
DSDBGWT (proposed) 0.629 ± 0.002 0.923 ± 0.004 0.834 ± 0.004

Table 2 presents a comprehensive overview of the performance exhibited by all the
approaches that were compared. The classification methods RF and MiniRocket, although
known for their strong performance, are not specifically tailored for the purpose of power
theft detection. The utilization of a Wide and Deep CNN in a CNN-based framework
yields forecasts that are more dependable. The Wide and Deep CNN exhibits the capability
to capture periodicity in weekly patterns through the utilization of deep CNN models
and the integration of global knowledge from wide components. However, the perfor-
mance of the model is constrained by the simplistic approach of stacking convolutional
and fully connected layers, resulting in limited effectiveness for long-distance feature
extraction and consequently leading to its poor accuracy. The HORLN model leverages
first-order information to conduct shallow feature extraction on the sample sequence. Sub-
sequently, the recovered features from the first-order information are employed as input
for second-order processing. Despite the implementation of shallow feature extraction and
long-distance feature extraction, the current model lacks the necessary level of granular-
ity. HyAttn significantly enhances performance by integrating extended convolutional
layers and including a self-attention mechanism. This approach effectively leverages both
CNN and SA to extract shallow features and long-distance features from the input data
simultaneously. However, it lacks selectivity in extracting features across long distances
and does not dynamically adjust the weights of feature extraction across tokens while
considering temporal considerations. The extracted features are not sufficiently complete,
leaving potential for further improvement in accuracy. The model proposed in this article,
known as the DSDBGWT model, incorporates a DSDB structure to enhance the extraction
of comprehensive feature information during shallow feature extraction. Additionally, it in-
corporates Gaussian weighting processing on the token during training, enabling accurate
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and efficient feature extraction and F1 score calculation. The AUC and MAP@ALL metrics
exhibit increases of 3.28%, 1.76%, and 0.36% compared to the highest values achieved by
the aforementioned methods.

3.6. Parametric Analysis

The examination of parameters examines several elements that impact both the perfor-
mance of classification and the process of training. The factors encompassed in this analysis
consist of the number of output channels inside the convolutional network, the count of
tokens, and the number of heads involved in the multi-head attention mechanism.

The augmentation of channels within the convolutional kernel improves the model’s
ability to extract features. However, this augmentation also introduces greater complexity
to the model, which can potentially result in overfitting issues. The discussion revolves
around the number of output channels in the two convolutional layers of the convolutional
neural network. The impact of this parameter on F1, AUC, and MAP@ALL metrics is
illustrated in Figure 12. The number of output channels for the first convolutional layer
is denoted as output_DSDB1, whereas the number of output channels for the second
convolutional layer is denoted as output_DSDB2. Based on the data presented in Figure 12,
it can be observed that F1 achieves optimal performance when the values of output_DSDB1
and output_DSDB2 are set to 32 and 16, respectively, resulting in a performance metric
of 0.629. Additionally, this configuration corresponds to the largest AUC value of 0.923.
In the context of MAP@ALL, the maximum value is observed at output_DSDB1 = 48 and
output_DSDB2 = 32, with a corresponding value of 0.848. In terms of the parameters, if
the number of output channels of output_DSDB1 is doubled, it will lead to a doubling of
the number of input channels of output_DSDB2. Consequently, this will not only increase
the parameters of output_DSDB1, but will also increase the parameters of output_DSDB2.
The excessive number of parameters can negatively impact the efficiency of the model.
Therefore, in order to maintain model accuracy, measures need to be taken. Simultaneously,
it is imperative to minimize the selection of output channels. After considering all relevant
factors and analyzing the experimental findings, we have determined that the optimal
number of output channels is output_DSDB1 = 32 and output_DSDB2 = 16. At this
configuration, the corresponding values for F1, AUC, and MAP@ALL metrics are 0.629,
0.923, and 0.834, respectively.

Figure 12. The impact of the number of output channels in CNN on various evaluation metrics.

The computational cost is directly influenced by the quantity of tokens in MSA. To
regulate the CNN output features at various scales, we employ patching, which ultimately
controls the quantity and dimensions of tokens. The fine-grained characteristics are influ-
enced by the number of tokens, while the receptive field of the token features is determined
by the dimension. The findings shown in Table 3 demonstrate the impact of token count
on F1, AUC, and MAP@ALL within the context of MSA. The observed sample sequence
exhibits periodicity not just on a weekly basis, but also on monthly and quarterly time
scales. When the number of P is 7, 28, or 91, these correspond to the studies conducted in
weekly, monthly, and quarterly patches, respectively. The table presents the performance
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metrics of F1, AUC, and MAP@ALL for different token values. It is seen that, when P = 28,
F1 achieves a value of 0.629 and AUC achieves a value of 0.923. Comparatively, the impact
of P = 7 and P = 28 on MAP@ALL is similar. Therefore, P = 28 (token = 36) is selected as the
input for the transformer network. Based on the findings, it can be inferred that, while the
transformer network exhibits strong capability in handling long-distance dependencies,
its effectiveness is not only determined by the length of the sequence; rather, there exists a
specific range within which the network performs optimally.

Table 3. The impact of the number of tokens in transformer networks on various evaluation metrics.

P, Token F1 AUC MAP@ALL

P = 7, Token = 147 0.570 0.915 0.835
P = 28, Token = 36 0.629 0.923 0.834
P = 91, Token = 11 0.576 0.903 0.816

The primary purpose of employing multiple heads is to concurrently execute numer-
ous independent attention computations, while also connecting their respective outputs.
The use of multi-head attention in neural networks enhances the capacity to capture more
comprehensive feature information. Similar to how raising the number of channels in a
convolutional kernel in a CNN amplifies model complexity, augmenting the number of
attention heads in multi-head attention similarly substantially elevates model complex-
ity. The impact of the number of heads in the multi-head attention mechanism on each
evaluation parameter is depicted in Table 4. Based on the data presented in the table, it
is evident that the F1 score exhibits an upward trend as the number of heads increases,
particularly when the number of heads is relatively small. Notably, the F1 score reaches
its peak value of 0.629 when the number of heads reaches 48. However, a gradual decline
in the F1 score is observed as the number of heads further increases to 64 and 80. This
observation demonstrates that an excessive number of heads is not essential. When a
sufficient number of heads are present, this enables comprehensive utilization of all aspects
of the feature information. However, as the number of heads increases, so does the number
of parameters and the computational load. Consequently, this leads to a decrease in the
efficiency of the model. In conclusion, the value of h = 48 was selected as the designated
quantity of heads for the MSA.

Table 4. The impact of the number of heads in multi-head attention mechanism on various evalua-
tion metrics.

h F1 AUC MAP@ALL

16 0.616 0.922 0.813
32 0.618 0.917 0.833
48 0.629 0.923 0.834
64 0.620 0.921 0.827
80 0.612 0.919 0.816

3.7. Ablation Experiments

To assess the efficacy of the multi-branch component, we substitute it with a conven-
tional two-dimensional convolution kernel for verification purposes. In this particular case,
the substitution of a 1 × 3 and 3 × 1 convolution kernel is made with a 3 × 3 convolution
kernel, while leaving other structures unaltered. The classification results obtained from
the SGCC dataset are depicted in Figure 13. The figure demonstrates that the suggested
model exhibits enhancements in the F1 score, AUC, and MAP@ALL by 4.31%, 1.76%, and
1.33%, correspondingly, in comparison to the model ordinary convolution. This is because
the 1 × 3 convolution kernel in the dual-branch structure we designed efficiently extracts
the intra-week features in the power data, and the 3 × 1 convolution kernel efficiently
extracts the intra-week features in the power data. The experimental results show that the
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proposed dual-branching part can enhance the feature extraction ability of the network
model and that the scheme is feasible.

Figure 13. Performance comparison results between CNN with DSDB architecture and tradi-
tional CNN.

The proposed model utilizes a fusion of DSDB CNN and GWT techniques for the
purpose of identifying instances of electricity theft among customers. A series of ablation
experiments were performed on the SGCC dataset to comprehensively evaluate the efficacy
of the approach. These experiments involved testing various combinations of components.
Table 5 examines five combinations and evaluates the influence of various components
on the overall model in terms of classification accuracy. “

√
” indicates that the structure

is added to the model, and “×” indicates that the structure is not used in the model.In
this context, DSDB refers to a CNN with a DSDB structure. The term “conv” denotes
the utilization of a regular 2D convolutional kernel. G.W. symbolizes the incorporation
of Gaussian weighting treatment into the transformer model. Lastly, “tran” refers to the
transformer network without Gaussianization. In Variant (1), the utilization of solely
CNN is limited due to the absence of transformers. Consequently, the receptive field is
restricted, leading to the extraction of primarily local information. As a result, the achieved
F1 score is quite low. Variant (2) refers to the utilization of the tran network exclusively for
long-distance feature extraction, while neglecting the use of CNN for shallow extraction
of samples. Consequently, this approach exhibits limited capability in capturing local
information and is susceptible to the issue of gradient vanishing. As a result, its F1 score is
notably low, measuring only 0.426. Variant (3) entails the fusion of CNN with transformer. It
is evident that the combination of these two models yields significantly improved accuracy
compared to their individual implementations. This finding underscores the importance
of incorporating both local and global temporal dependencies in the context of power
theft detection. Notably, the F1 score of this combined approach reaches a value of 0.597.
In (4), we use CNN with DSDB structure and transformer for combination. One can see
that its accuracy is a little better than (3), which perfectly proves the effectiveness of the
DSDB structure. In accordance with premise (3), we applied Gaussian weighting to the
transformer, as described in (5). This approach considers both shallow and long-distance
feature extraction, while also incorporating Gaussian weighting based on token distance
closeness. As a result, the F1 score exhibits a 1% improvement compared to the approach
outlined in (3). In (6), we once again integrate the CNN with DSDB structure using GWT.
We replace the k × k convolution kernel with 1 × k and k × 1, allowing for simultaneous
extraction of both inter-periodic and intra-periodic features. This modification not only
enhances the model’s efficiency by reducing parameter usage, but also improves its accuracy.
The F1 score exhibits a significant increase of 5.36% when compared to the value obtained
in (3). In conclusion, the examination of the amalgamated experimental findings serves to
reinforce the soundness and credibility of our theoretical framework.
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Table 5. Performance of different variants of DSDBCGW.

DSDB conv G.W. tran F1 AUC MAP@ALL

(1) × √ × × 0.562 0.874 0.827
(2) × × × √

0.426 0.830 0.737
(3) × √ × √

0.597 0.909 0.816
(4)

√ × × √
0.599 0.897 0.815

(5) × √ √ √
0.603 0.907 0.823

(6)
√ × √ √

0.629 0.923 0.834

4. Conclusions

This research presents a novel approach for power usage anomaly identification by
proposing a hybrid network that combines a DSDB CNN with a GWT network. The pro-
posed model incorporates a DSDB to perform shallow feature extraction on the sample
sequence. This approach not only enables the extraction of more comprehensive features
but also efficiently decreases parameter usage and enhances efficiency. The GWT network
is capable of extracting characteristics from long-distance sequences in a more reasoned
manner by utilizing the Gaussian-weighted technique. To assess the efficacy of the ap-
proach, a comparative experiment was undertaken, employing DSDBGWT alongside other
classification methods. The experiment was performed on the publicly available dataset of
SGCC. The experimental findings demonstrate that the approach described in this research
study is capable of effectively extracting the abnormal characteristics of power consumption
from the provided training samples. Moreover, the method exhibits a notable enhancement
in F1 performance, surpassing the current state-of-the-art method by a margin of 3.28%.
This improvement signifies a significant advancement over the existing advanced method.
The technique described in this study is limited to feature extraction from data on electricity
consumption. In actuality, a variety of complex factors, like the weather, holidays, the
economy, etc., also influence how much power people use. The proposed DSDBGWT has
good scalability in the high-level semantic feature extraction of multimodal data. In the
future, we will build on the DSDBGWT model by fusing the model with more modes
of data to extract high-level features of electricity consumption sequences, thus further
improving the classification accuracy.

Author Contributions: Conceptualization, Y.B.; methodology, Y.B.; software, Y.B.; validation, Y.B.
and H.S.; formal analysis, Y.B. and H.S.; investigation, Y.B.; resources, Y.B. and H.S.; data curation,
Y.B.; writing—original draft preparation, H.S.; writing—review and editing, Y.B., H.S., L.Z. and H.W.;
visualization, Y.B.; supervision, Y.B.; project administration, Y.B.; funding acquisition, L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Liaoning Province Education Administration under Grant
LJKZ0174.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are very grateful to the editors and reviewers for their valuable comments, to
the providers of all the data used in the paper, and to the people who helped to complete this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [CrossRef]
2. Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Hybrid deep neural networks for detection of non-

technical losses in electricity smart meters. IEEE Trans. Power Syst. 2019, 35, 1254–1263. [CrossRef]
3. McLaughlin, S.; Holbert, B.; Fawaz, A.; Berthier, R.; Zonouz, S. A multi-sensor energy theft detection framework for advanced

metering infrastructures. IEEE J. Sel. Areas Commun. 2013, 31, 1319–1330. [CrossRef]

229



Sensors 2023, 23, 8405

4. Smart Meters Help Reduce Electricity Theft, Increase Safety; BCHydro, Inc.: Vancouver, BC, Canada, 2011; Available online:
https://www.bchydro.com/news/conservation/2011/smart_meters_energy_theft.html (accessed on 20 March 2023).

5. Leite, D.; Pessanha, J.; Simões, P.; Calili, R.; Souza, R. A stochastic frontier model for definition of non-technical loss targets.
Energies 2020, 13, 3227. [CrossRef]

6. Nabil, M.; Ismail, M.; Mahmoud, M.M.E.A.; Alasmary, W.; Serpedin, E. PPETD: Privacy-preserving electricity theft detection
scheme with load monitoring and billing for AMI networks. IEEE Access 2019, 7, 96334–96348. [CrossRef]

7. Maamar, A.; Benahmed, K. A Hybrid Model for Anomalies Detection in AMI System Combining K-means Clustering and Deep
Neural Network. Comput. Mater. Contin. 2019, 60, 15–39. [CrossRef]

8. Krysanov, V.; Danilov, A.; Burkovsky, V.; Gusev, P.; Gusev, K. Optimization of electric transmission lines (ETL) operation modes
based on hardware solutions of process platform FACTS. In Proceedings of the 14th International Conference on Electromechanics
and Robotics “Zavalishin’s Readings”, Kursk, Russia, 17–20 April 2019.

9. Saeed, M.S.; Mustafa, M.W.; Hamadneh, N.N.; Alshammari, N.A.; Sheikh, U.U.; Jumani, T.A.; Khalid, S.B.A.; Khan, I. Detection of
non-technical losses in power utilities—A comprehensive systematic review. Energies 2020, 13, 4727. [CrossRef]

10. Winston, P.H. Artificial Intelligence; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1984.
11. Lin, C.H.; Chen, S.J.; Kuo, C.L.; Chen, J.L. Non-cooperative game model applied to an advanced metering infrastructure for

non-technical loss screening in micro-distribution systems. IEEE Trans. Smart Grid 2014, 5, 2468–2469. [CrossRef]
12. Liu, Y.; Liu, T.; Sun, H.; Zhang, K.; Liu, P. Hidden electricity theft by exploiting multiple-pricing scheme in smart grids. IEEE

Trans. Inf. Forensics Secur. 2020, 15, 2453–2468. [CrossRef]
13. Yan, Z.; Wen, H. Performance analysis of electricity theft detection for the smart grid: An overview. IEEE Trans. Instrum. Meas.

2021, 71, 2502928. [CrossRef]
14. Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997.
15. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
16. Toma, R.N.; Hasan, M.N.; Nahid, A.A.; Li, B. Electricity theft detection to reduce non-technical loss using support vector machine

in smart grid. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics
Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6.

17. Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision tree and SVM-based data analytics for theft detection in
smart grid. IEEE Trans. Ind. Inf. 2016, 12, 1005–1016. [CrossRef]

18. Monedero, I.; Biscarri, F.; León, C.; Guerrero, J.I.; Biscarri, J.; Millán, R. Detection of frauds and other non-technical losses in a
power utility using Pearson coefficient, Bayesian networks and decision trees. Int. J. Electr. Power Energy Syst. 2012, 34, 90–98.
[CrossRef]

19. Song, Y.Y.; Ying, L.U. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130.
[PubMed]

20. Aziz, S.; Naqvi, S.Z.H.; Khan, M.U.; Aslam, T. Electricity theft detection using empirical mode decomposition and K-nearest
neighbors. In Proceedings of the IEEE International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi,
Pakistan, 26–27 March 2020; pp. 1–5.

21. Larose, D.T.; Larose, C.D. k-Nearest Neighbor Algorithm. 2014. Available online: onlinelibrary.wiley.com (accessed on 30 August 2023).
22. Meira, J.A.; Glauner, P.; State, R.; Valtchev, P.; Dolberg, L.; Bettinger, F.; Duarte, D. Distilling Provider-Independent Data for

General Detection of Non-Technical Losses. In Proceedings of the 2017 IEEE Power and Energy Conference at Illinois (PECI),
Champaign, IL, USA, 23–24 February 2017.

23. Avila, N.F.; Figueroa, G.; Chu, C.C. NTL detection in electric distribution systems using the maximal overlap discrete wavelet-
packet transform and random undersampling boosting. IEEE Trans. Power Syst. 2018, 33, 7171–7180. [CrossRef]

24. Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Detection of non-technical losses using smart meter data
and supervised learning. IEEE Trans. Smart Grid 2018, 10, 2661–2670. [CrossRef]

25. Parmar, A.; Katariya, R.; Patel, V. A review on random forest: An ensemble classifier. In Proceedings of the International
Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, Coimbatore, India, 7–8 August
2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 758–763.

26. Li, S.; Han, Y.; Yao, X.; Song, Y.; Wang, J.; Zhao, Q. Electricity theft detection in power grids with deep learning and random
forests. J. Electr. Comput. Eng. 2019, 2019, 4136874. [CrossRef]

27. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electr. Mark. 2021, 31, 685–695. [CrossRef]
28. Pereira, J.; Saraiva, F. Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data

handling techniques. Int. J. Electr. Power Energy Syst. 2021, 131, 107085. [CrossRef]
29. Zheng, Z.; Yang, Y.; Niu, X.; Dai, H.; Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection to

secure smart grids. IEEE Trans. Ind. Inf. 2017, 14, 1606–1615. [CrossRef]
30. Kocaman, B.; Tümen, V. Detection of electricity theft using data processing and LSTM method in distribution systems. Sādhanā
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