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Preface

Distributed generation sources use renewable sources within the electricity systems to supply

electricity to households, industry, etc. Distributed generation must be controlled and monitored for

more efficient use.

Renewable sources allow clean energy to be supplied close to the points of consumption, thus

reducing losses and improving energy efficiency.

IoT systems can be applied within smart grids to improve the operation of electricity systems.

These systems consist of sensors, actuators, and communications equipment, allowing real-time data

to be obtained. IoT applications in smart grids can improve the operation of electricity grids and

monitor the different magnitudes in real time.

The integration of renewable sources such as photovoltaic, wind, hydro and biomass in

electricity systems reduces the greenhouse gas effect and emissions of polluting gases into the

atmosphere, so their integration into smart grids is essential. In this sense, the development of

applications for monitoring and control of renewable sources are fundamental tools and allow for

better development of electricity systems.

The development of smart meters allows measurements of electrical variables to be taken and

data to be sent via communications such as Wi-Fi, Bluetooth, Ethernet, etc., to the cloud, where they

are subsequently processed and analysed. In this sense, both consumers and generation companies

can analyse consumption at all times and create more efficient consumption patterns.

The development of electric vehicles and their integration into smart grids requires the

development of IoT systems to monitor and control the charging of electric vehicles and their

integration into the V2G grid or V2H home. This equipment has the mission to measure key

parameters of the electrical system and to analyse the quality of the power supply.

Wireless networks are a fundamental part of IoT systems. It is necessary to take measurements

in remote and difficult-to-access areas. The most commonly used wireless networks are Wi-Fi,

Bluetooth, ZigBee, LoRa, SigFox, Nb-IoT, Bluetooth LE, etc.

Therefore, this book includes recent advances in the development and implementation of IoT

devices applied to renewable energy for use in smart grids, so that readers can become familiar with

new methodologies directly explained by experts in this scientific field.

Antonio Cano-Ortega and Francisco Sánchez-Sutil

Editors
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Article

Design and Implementation of a Cloud-IoT-Based Home
Energy Management System

Felipe Condon 1, José M. Martínez 1, Ali M. Eltamaly 2,3, Young-Chon Kim 4,* and Mohamed A. Ahmed 1,*

1 Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
2 Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
3 Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
4 Department of Computer Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
* Correspondence: yckim@jbnu.ac.kr (Y.-C.K.); mohamed.abdelhamid@usm.cl (M.A.A.)

Abstract: The advances in the Internet of Things (IoT) and cloud computing opened new opportuni-
ties for developing various smart grid applications and services. The rapidly increasing adoption of
IoT devices has enabled the development of applications and solutions to manage energy consump-
tion efficiently. This work presents the design and implementation of a home energy management
system (HEMS), which allows collecting and storing energy consumption data from appliances and
the main load of the home. Two scenarios are designed and implemented: a local HEMS isolated
from the Internet and relies on its processing and storage duties using an edge device and a Cloud
HEMS using AWS IoT Core to manage incoming data messages and provide data-driven services
and applications. A testbed was carried out in a real house in the city of Valparaiso, Chile, over a
one-year period, where four appliances were used to collect energy consumption using smart plugs,
as well as collecting the main energy load of the house through a data logger acting as a smart meter.
To the best of our knowledge, this is the first electrical energy dataset with a 10-second sampling rate
from a real household in Valparaiso, Chile. Results show that both implementations perform the
baseline tasks (collecting, storing, and controlling) for a HEMS. This work contributes by providing a
detailed technical implementation of HEMS that enables researchers and engineers to develop and
implement HEMS solutions to support different smart home applications.

Keywords: home energy management system; smart home; Internet of Things; cloud infrastructure

1. Introduction

Nowadays, the applications of the Internet of Things (IoT) are appearing in different
domains, such as transportation [1], healthcare [2], agriculture [3], and power systems [4].
These IoT solutions aim to monitor and control various elements and devices in different
scenarios that will ease tasks and provide useful applications for daily living [5]. In the
electric power system, energy plays a central role in powering our homes and appliances.
However, the metering process for estimating the consumption of a house is widely depen-
dent on an electromechanical energy meter, which implies that utility companies have to
employ personnel to perform the metering tasks monthly in order to bill their customers [6].
As for the appliance consumption within a house, residents may not be aware of individual
power consumption for each appliance, therefore facing inefficient energy usage without
even knowing. In this regard, Chile has set a goal to have around 6.5 million smart meters
installed by 2025 [7]. This goal focuses mainly on using smart meters to lower energy
demand by providing more detailed energy billing and interfaces of energy consumption
through web interfaces and applications, as well as implementing new tariff systems.

IoT will play a key role in enabling several energy efficiency mechanisms, such as the
Internet of Energy, smart grids, and smart homes. This is possible by using digital sensors
and communication devices that enable a home energy management system (HEMS), which
allows continuous consumption monitoring and appliance control, as well as supporting

Sensors 2023, 23, 176. https://doi.org/10.3390/s23010176 https://www.mdpi.com/journal/sensors
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the communication between the utility and the power grid [8]. Data are collected using
IoT devices and later transferred to the cloud-based system infrastructure from where it is
stored and processed [9]. Data-driven applications, databases, and file storage systems are
key features that can be designed and deployed in cloud-based infrastructure to support
the IoT cloud-based requirement for several energy Internet applications.

The design and implementation of a proper architecture are the main challenges for
enabling applications based on IoT-collected data on a global level. Several works have
proposed HEMS-IoT architectures to solve these challenges. The common criterion used to
define an architecture is the data processing and storage location. Three layers are found in
the literature where data processing and storage can occur: edge, fog, and cloud.

In this paper, an overview of the HEMS-related work is presented, focusing on key
elements, such as the design of a HEMS architecture enabled by IoT devices and the usage
of local and cloud computing for data storage and processing. We propose a Cloud-IoT
based home energy management system, which helps residents, landlords, researchers,
and administrators manage the energy consumption within a house. The proposed HEMS
implements a four-layer architecture, which is capable of collecting and storing energy
consumption data. Consumption data are obtained from two kinds of devices: smart
meters and smart plugs. The smart meter units are able to collect the energy consumption
of the entire house, while smart plugs are capable of collecting energy consumption and
controlling the power supplied to a single appliance. Two implementations were carried
out following two different approaches. In one approach, a local HEMS was isolated
from the Internet with a central processing unit. In the other approach, a cloud-based
implementation used the cloud for data storage and processing. Both systems provide
baseline features, such as collecting measurements from the devices, storing them in a
database or performing load control actions, such as turning on/off a device manually or
by scheduling. Results show the capability of both systems to perform the collection and
storing features for energy consumption and to control the appliances by using smart plugs.
The main contributions of this work can be summarized as follows:

• Design and implementation of a four-layer HEMS architecture that allows collecting
and storing energy consumption data from appliances and the main load of the home.

• Two scenarios are designed and implemented: a local HEMS isolated from the Internet
that relies on its processing and storage duties using an edge device and a Cloud
HEMS using AWS IoT.

• To the best of the authors knowledge, this work is the first electrical energy dataset
with a 10-second sampling rate from a real household in the city of Valparaiso, Chile,
over a one-year period.

• Detailed technical implementation of HEMS will enable researchers and engineers to
develop and implement HEMS solutions to support different smart home applications.

The rest of the paper is structured as follows: In Section 2, related work for HEMS
is explained. Section 3 presents the proposed HEMS architecture. Section 4, presents two
case studies: a local HEMS, and a Cloud HEMS. Section 5 elaborates on the technical
details for the implementation of both systems. Section 6 discusses the results from the case
studies and the future challenges for HEMS implementations. Finally, Section 7 concludes
the paper.

2. Related Work

Several applications benefit from energy consumption data obtained from HEMS and
appliance control. One example is peer-to-peer (P2P) energy trading which flips the tradi-
tional scenario, where electricity is transmitted from large-scale generators to consumers
over long distances, while the cash flow goes in the opposite way. In contrast, P2P energy
trading encourages multi-directional trading within a local geographical area [10]. With the
increasing connection of distributed energy resources (DER), traditional energy consumers
are becoming prosumers who can consume and generate energy [11].
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Authors in [12] analyzed several IoT applications for smart grids, such as smart homes,
smart metering, and energy management, among others. Challenges, issues, and future
research regarding the use of IoT to enable Energy Internet (EI) applications were also
discussed. A smart home incorporates various IoT-based smart technologies with the
goal of providing security, convenience, comfort, energy efficiency, and entertainment
which results in improving the quality of life within a residence. Ambient assisted living
service, smart energy management technology service, and security are the predominant
technology services associated with smart homes [13].

In [14], the authors presented an overview of IoT-enabled energy systems. Some of
the outlined challenges include mapping every object into a unique virtual object which
can be addressed with standard communication protocols. The authors also stated that
given the variety of design decisions made by the system designers, there are different
architectures to enable an IoT-based energy system, which implies that there is no unified
architecture. In [15], the authors presented a smart load node (SLN) for enabling non-smart
home appliances to operate efficiently in a smart grid paradigm. SLN is an innovative
solution given that it does not require any modifications in the electrical wiring of a house,
nor any modification on the appliances. SLN integrates within a HAN with other devices,
such as smart meters and a load management unit (LMU), which enable various smart grid
applications within a house, such as scheduling loads in a demand–response (DR) scheme.
Authors in [16] presented a novel methodology including the concept of green building
in order to reduce energy consumption. A key element stated by the authors is not only
regarding the energy efficiency for appliances and at home but also to create awareness
among residents on power conservation.

Authors in [8] presented a survey on HEMS which provides an aggregated and unified
perspective on residential buildings. An overview of the literature on commonly managed
household appliances was also presented. Home energy management systems (HEMS) aim
to improve efficiency by providing control of smart home appliances, and this is feasible due
to the use of the Internet of Things (IoT) [8]. HEMS relies on smart sensors, appliances, and
advanced metering infrastructure (AMI) to achieve continuous monitoring. Authors in [16]
presented a survey on the concepts, technical background, architecture, and infrastructure,
among other challenges and issues regarding HEMS. The use of IoT will allow any smart
device, also known as the “things” to interact with one or several sensors and other devices
in the network, forming a wireless sensor network (WSN). This WSN can rely on a gateway
for Internet connection, allowing the implementation of applications based on the collected
data. Authors in [9] presented an overview, architecture, and implementation of IoT in
energy systems. The HEMS follows some baseline features, such as monitoring of the main
load of the property, individual loads of appliances, and control of appliances. Regarding
the components that comprise a HEMS, such a system possesses sensing and measuring
devices, smart appliances, a user interface, and a central platform.

Due to the services provided by public clouds, there has been an increasing interest
in developing data-driven applications. Some of the data-driven applications that can be
implemented in the context of a smart home are alarms on irregular load scenarios and
scheduling the use of appliances in case of dynamic tariff systems. In [17], the authors
presented a comparison between three cloud platforms: Amazon, Google, and Microsoft.
MQTT messaging was used by IoT devices to send information to the cloud platforms,
where a performance evaluation was carried out, not to benchmark the maximum message
throughput, but rather to measure the service time of the provided message broker. Cost
comparison and description of available tiers were also discussed.

Authors in [18] developed a demand response (DR) application on a HEMS in order
to reduce utility operational costs and the consumer energy bill price. The proposed
infrastructure by the authors is based on an edge–fog–cloud computing architecture, which
allows for monitoring and control of residential loads. The testbed was carried out using
Raspberry Pi as the HEMS and NodeMCU ESP8266 as smart plugs for energy-related
measurements and controlling tasks. Results showed that the proposed system was able

3
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to schedule loads and reduce the energy bill when compared to the scenario without the
DR algorithm. The proposed testbed scenario considered a dynamic tariff system. Another
energy management system (EMS) was proposed by authors in [19], where a system was
implemented at the IoT Microgrid Laboratory at Aalborg University. The IoT-based EMS
showed the feasibility of using IoT devices to regulate consumption. Features, such as
energy management using load priority, were presented in the results.

Authors in [20] presented a cloud-based platform that collects electricity consumption,
indoor climate, and occupancy data in real-time using sensors. The energy monitoring
platform was implemented in a smart villa. The architecture showed the devices’ interaction
over a star topology. The system utilizes ThinkEE, a cloud platform for connecting IoT
devices. It also provided a web interface for data display and an energy management
system for energy control. Authors in [21] described the building operation data, which
includes electricity consumption and environmental measurements. The work provided
information regarding the architecture of the system, which utilizes EMU, smart meters,
and sensors for collecting the data. The data include one-minute interval measurements
from 1 July 2018 to 31 December 2019 which are provided to support a variety of data-driven
applications. In [22], the authors released I-BLEND, a 52-month electrical energy dataset
at a one-minute sampling rate from commercial and residential buildings of an academic
institute campus. The data collection of the system was carried out using a Raspberry Pi to
collect measurements from smart meters, while also using the cloud for data storage and
processing. The authors in [23] , introduced Plug-Mate, an IoT-based occupancy-driven
plug load management system. Plug-Mate was able to deliver occupancy information,
plug load type, and plug load usage preference. The solution was tested during a 5-month
study in a university office with 10 participants. Results showed about 51.7% in the overall
energy saving improvement among different plug loads and about 7.5% reduction in the
building overall energy consumption.

Although previous research provided information on how to implement IoT-based
HEMS and how to apply data-driven algorithms, such as demand response and load
schedule, most of the solutions were implemented in a laboratory environment that does
not represent the actual condition of a smart home. This work aims to fill the knowledge
gap by providing a detailed description of the technical implementation of how to design
and implement a HEMS that can be used for different applications. Two architectures are
considered for local/cloud implementation using available IoT devices while deploying the
system on a public cloud. Table 1 shows the comparison among previous research work.

Table 1. Comparison among previous research work.

Ref. Year Type Description

[8] 2020 Survey A survey on home energy management including main goals for
operation and target strategies

[9] 2021 Survey Comprehensive study of IoT business applications and smart
energy systems

[10] 2018 Technical/Simulation P2P energy trading was designed and simulated for energy trading
among prosumers and consumers in a microgrid

[11] 2014 Technical/Simulation Energy trading among prosumers in a microgrid to increase the
utilization of renewable energy

[12] 2019 Survey Comprehensive survey on IoT applications for smart grid and
smart environments

[13] 2021 Review Literature review on smart home adoption including motivations,
barriers, and risks

[14] 2018 Review Review on IoT-based energy system with respect to features,
specifications, communication infrastructures, and privacy

[15] 2019 Technical/ Implementation Design and implementation of a low-cost smart load node for
monitoring and control non-smart residential load
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Table 1. Cont.

Ref. Year Type Description

[16] 2022 Review Comprehensive review for home energy management system with
respect to concepts, architecture infrastructure, and challenges

[17] 2020 Technical/Simulation
Performance analysis among three different Cloud-IoT platforms

services for Amazon web service, Microsoft Azure, and
Google Cloud

[18] 2021 Technical/Implementation IoT-based infrastructure on edge–fog–cloud architecture to monitor
and control residential loads to support demand response

[19] 2019 Technical/Implementation IoT-based infrastructure for EMS. The system has been tested in a
pilothouse named IoT Microgrid Living Lab, Denmark

[20] 2019 Technical/Implementation Energy monitoring platform to collect real-time electricity
consumption data in a smart villa, Doha Qatar

[21] 2020 Technical/Implementation Detailed building operation data (electricity consumption and
indoor environment) of seven-story building in Bangkok, Thailand

[22] 2019 Technical/Implementation Electrical energy dataset (52 months) from commercial and
residential building at one minute sampling rate, India

[23] 2022 Technical/Implementation
IoT-based plug load management system capable of providing

occupancy and energy consumption information for smart
building, Singapore

This work 2022 Technical/Implementation Design and implementation of two HEMS architectures (local vs.
cloud) in a real household environment located in Valparaiso, Chile

3. Cloud-IoT Home Energy Management System

Figure 1 shows the proposed Cloud-IoT HEMS architecture. It consists of four layers:
perception layer, communication layer, middleware layer, and application layer.

Smart Meter Smart Plug

Pe
rc

ep
tio

n 
La

ye
r

Microcontroller

Sensors

Ed
ge

Th
in

gs

Local StorageProcessing devices

C
om

m
un

ic
at

io
n 

La
ye

r

Wi-Fi
Mobile

Networks
Fibre/Cable In

te
rn

et
 A

cc
es

s

M
id

dl
ew

ar
e 

La
ye

r

DatabaseApplication
Programing

Interface (API)

File Storage
System

Microservices C
lo

ud
 S

er
vi

ce
s

Ap
pl

ic
at

io
n 

La
ye

r

Dashboard
and analytics

Alarms Demand
ResponseEnergy Trading

En
d 

U
se

rs

Figure 1. Cloud-IoT HEMS architecture.
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3.1. Perception Layer

The perception layer enables data collection through sensors, as well as data storage
and data processing tasks through edge devices. This layer considers several physical
devices, such as sensors, smart meters, and smart plugs, which are often referred to as
“things”. Edge devices enable tasks, such as data storage, data processing, and performing
actions, on things that are located in the edge sub-layer. The perception layer is a key
element in the proposed architecture, working as the first step in the energy data collecting
process and as the last step in the appliance controlling process.

• Things Layer: The things layer is composed of sensors and actuators. Sensors are used
to collect information on important measurements of the smart home. Sensors, such
as temperature, humidity, and light detection, among others, are used for comfort
purposes. Regarding appliances’ power consumption, two devices are introduced:
smart meters and smart plugs. A smart meter is able to collect energy consumption
information of the main loads of the smart home. It utilizes a current transformer (CT)
and a voltage sensor to compute the power consumption. Smart plugs (SP) work as a
middleware between the power line of the house and the appliance plug. The purpose
of SPs is to collect energy consumption data from a specific appliance while also being
able to control the energy delivered to the appliance using a relay.

• Edge Layer: The edge is the closest to the sensors and actuators. It provides the
capability to collect data and perform command operations over “things”. The edge
layer considers a low latency but limited data storage and processing capabilities
as available resources. From a HEMS perspective, the edge layer is found at the
house level, where it is able to use this layer as a perception layer to collect the data
of interest.

3.2. Communication Layer

This layer allows the connection of the perception layer with the middleware layer.
Several communications technologies could be used to perform this task, among them
WiFi, Zigbee, LoRa, Fiber, and mobile networks such as 4G and 5G. The election of the
technology has various attributes, such as effective range (short range and long range),
cost, coverage, and availability of a given communication system. An important role of the
network layer is providing a home area network (HAN) for perception layer devices to join.
The HAN allows communication between devices, also known as machine-to-machine
(M2M) communication, which allows routing the data from the things to the edge or from
the edge to the middleware layer.

3.3. Middleware Layer

The middleware layer is related to cloud-based services that rely on the received
data to perform some tasks. The most common functions of a HEMS consider storing
measurements in a database, performing data processing tasks through microservices, and
providing an application programming interface (API) for managing data requests. These
services can be implemented by using a public cloud, such as Amazon Web Services (AWS),
Google Cloud Platform (GCP), and Microsoft Azure (Azure). Given the functionality, the
middleware layer is similar to the edge layer but provides a scalable infrastructure to
serve higher traffic and more demanding processing and storage tasks. Several technology
stacks are available for developers to carry out the required implementation to achieve the
abovementioned tasks. Some challenges and decisions that need to be addressed in order to
provide a robust system consider database election, designing and deploying the required
cloud architecture, programming language, and/or framework election. The middleware
in this architecture serves as a bridge between the data perspective provided by the “things”
and the intended smart home features or applications identified in the application layer.
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3.4. Application Layer

A HEMS aims to provide data to several domains, such as Energy Internet, smart grids,
and smart homes. Some data-driven applications for HEMS are, for example, demand
response, P2P energy trading, and monitoring energy consumption for user awareness.
These applications serve as the last layer in the proposed architecture which is the closest
to the end user.

4. Home Energy Management System Design

Two case studies are proposed to compare different approaches for HEMS: a local
HEMS and a cloud-based HEMS. On the one hand, a local HEMS system uses a central
computing unit to handle data storage and processing tasks. On the other hand, a cloud-
based system collects the data through a gateway and is able to enable several solutions
and applications.

Both systems are designed to meet the following tasks, which enable HEMS to perform
some features of a smart home:

• Monitoring of the energy consumption: HEMS should store data about the power
consumption of the appliances monitored by the smart plugs and the main load of the
smart home.

• Appliance control: HEMS should allow a resident to interact with the appliances
connected to smart plugs to supply or deny energy.

In this work, the smart home includes some features that are present on both sys-
tems as a requirement. We recognize two categories that are common ground for the
implementation of such systems:

• The things: Both case studies utilize the same end devices: smart plugs and smart
meters. The task of the smart meter is to collect the total power consumption reading
of the house. On the other hand, a smart plug is able to collect the power consumption
and control the supplied power of a single appliance.

• Networking and communications: From a communication perspective, we considered
that the smart home has WiFi capabilities, enabling devices to interact within a home
area network (HAN). Devices such as smart plugs and smart meters have the capability
to join the HAN using WiFi technology. An Internet Protocol (IP) address is assigned
to each device that joins the network. The things have the capability to periodically
send measurements of the energy consumption telemetry to the destination. Direct
energy consumption requests can also be performed, following the messaging protocol
that each device supports. The things send the collected data using MQTT, a popular
Pub/Sub (publisher/subscriber) messaging protocol, where each device sends data
over a unique topic.

Figure 2 shows a schematic diagram for HEMS design. On the left side, the system is
composed of home appliances, a smart meter, smart plugs, and a computing unit serving
as the local HEMS. This approach considers a solution that relies solely on monitoring
and managing house appliance consumption in a local scenario. Such solution presents
benefits from a privacy perspective, given that it is isolated from the Internet. The main
drawback of this kind of approach is the limited computational and storage capacity of
the HEMS, which is directly related to the provisioned on-premise hardware. From the
Edge perspective, the devices such as smart plugs and smart meters are intended to collect
energy measurements based on the energy consumption of certain appliances and the total
energy consumption of the main home, respectively.
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Smart Plug

Smart Meter

Smart Plug Smart Plug Smart Plug

Cloud HEMS

Gateway

Data

Energy

Smart Plug

Smart Meter

Smart Plug Smart Plug Smart Plug

Local HEMS

Figure 2. Schematic diagram for HEMS. Left: Local HEMS design, Right: Cloud HEMS design.

The design of the Cloud-IoT HEMS is presented on the right side of Figure 2, where the
energy and data interactions are shown. Smart meters and smart plugs allow the collection
of energy-related data. The main objective is to send the energy consumption data to the
cloud. For this purpose, the things send information to a gateway, which allows bridging
the data into the cloud.

These data are stored and processed by databases and cloud microservices. Several
data-driven HEMS applications can be designed and implemented. One benefit of using
public cloud services is the infinite scaling opportunity, which allows applications to
scale as needed. Cloud providers manage the hardware and configurations required to
enable any architecture to function appropriately, easing the development experience. This
allows for cheaper costs when comparing cloud-based implementations to on-premise
implementations for a scalable system.

5. Implementation

The testbed was carried out in a real house located in the city of Valparaiso, Chile. A
wireless local area network (WLAN) was set up by a router that provides WiFi connectivity
for all devices located in the house. The energy consumption data was acquired starting
from July 2021 up to September 2022. Four appliances were used: a kettle, a washing
machine, a refrigerator, and a microwave.

The selected smart plugs were the Sonoff POW R2, which were modified to fit inside
a small electrical box, as seen in Figure 3a. This configuration provides one outlet for
connecting the appliance and one plug for connecting the unit to the power outlet of the
home. Each appliance was connected to a smart plug, as seen in Figure 3b. These devices
were configured using the open-source firmware Tasmota. This firmware allows for an
easier development experience enabling easier management of the configurations of smart
plugs. The web interface was used to set up the WiFi connection with the HAN.

On the smart plugs, MQTT was set using the web user interface (UI) by specifying the
required connection parameters, as seen in Figure 3c. Each smart plug uses a unique MQTT
topic to publish and/or subscribe to messages. The Sonoff devices were configured to send
one measurement every 10 s using the telemetry feature within Tasmota. Message data
were transmitted using JavaScript Object Notation (JSON) structure. The topic structure
for smart plugs is “tele/device-ID/sensor”, which represents the telemetry event sent by a
specific device informing its sensors data collection.
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(a) (b) (c)

Figure 3. Sonoff POW R2 as smart plug, overview, usage, and configuration. (a) Smart plug unit;
(b) Two smart plug units connected to a kettle (left) and a microwave (right); (c) MQTT configuration
on Tasmota web interface.

For the smart meter, the eGauge EG4115 unit was selected, as seen in Figure 4a. This
device uses current transformer (CT) sensors, as seen in Figure 4b, and voltage sensors to
compute the energy consumption of the house with frequencies of one measurement per
second. This device was connected via Ethernet to the router, joining the local area network
(LAN) and obtaining an IP address. This device comes with XML API within its firmware,
which enables any device in the network to request measurements of the unit.

(a) (b)

Figure 4. eGauge EG4115 data logger used as smart meter to collect energy consumption data from
the main load of the house.(a) eGauge data logger unit showing instant power consumption; (b) CT
Sensor (blue device) used to collect the current of the main load of the house.

Messages sent by smart plugs and the smart meter are composed of several attributes
that compose the payload of the message. Table 2 presents the data structured object
provided on the event emission by the smart plug and the smart meter. These messages are
structured in a data object based on a key-value pair structure. The attribute column in the
table references the key of the data object, while the type column provides the data type of
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the value associated with the attribute. The description and measuring unit are provided
for all attributes on the smart plug and the smart meter.

Table 2. The things, smart plug, and smart meter energy data collection attributes on messages.

Device Attribute Type Description Unit

Sonoff POW R2
Smart Plug

TotalStartTime S Starting timestamp for period computations Date

Total N Total Energy usage including Today kWh

Yesterday N Total Energy usage between 00:00 and 24:00 yesterday kWh

Today N Total Energy usage today from 00:00 until now kWh

Period N Energy usage between previous message and now Wh

Power N Current effective power load W

Apparent Power N Power load on the cable W

Reactive Power N Reactive load W

Factor N Power factor of the load -

Voltage N Current line voltage V

Current N Current line current A

eGauge EG4115
Smart Meter

Date & Time N Timestamp of the current measurement Unix Timestamp

Usage N Current effective power load kW

Current N Current line current A

Voltage N Current Line Voltage V

Factor N Current Power factor -

5.1. HEMS Local Implementation

The local implementation was carried out using a Raspberry Pi as the local HEMS, as
shown in Figure 5. A Raspberry Pi was configured with Raspberry Pi OS-Lite, which is a
Linux distribution developed to serve as the suggested operating system (OS).

MQTT 
 

JSON

Smart Plug Local HEMS Mosquitto

MongoDb

Python
Smart Meter

XML 
 

CSV file

User

HEMS Applications

Appliances Control

Energy
Consumption Data

Collection

Figure 5. Schematic diagram for local HEMS implementation.

Several services were configured in the Raspberry Pi to allow this unit to establish
MQTT communication, provide a database to store measurements, and perform lightweight
processing tasks. Mosquitto is an open-source MQTT broker, which was used in the
Raspberry Pi to participate in a publish–subscribe messaging scheme with the things. The
MQTT broker was set up on port 1883.

MongoDB is a non-relational database that allows storing data in a JSON structure. A
single MongoDB instance was set up on the Raspberry Pi on port 27017. Python is a high-
level scripting language that was used to automatize the process of storing a document in
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the database for each measurement received. Three scripts were developed: the first one
for collecting the measurements of the smart plugs, the second one to collect measurements
of the smart meter, and the last one to handle appliance control commands. The first script
uses the paho MQTT client, which connects to the MQTT broker and subscribes to each
smart plug MQTT topic. PyMongo, a MongoDB client, is used to perform operations in the
database. For each message received by the broker, the content of the message is saved into
the database.

For collecting the smart meter measurements, the second Python script uses requests,
an HTTP client for Python, to request the last four hours of energy consumption recorded
by the eGauge unit. This request is fulfilled by a CSV file that contains the requested data.
The file is saved in local storage within the Raspberry Pi. This script is scheduled to be
performed every four hours using a cron job. Please note that the time of “4 h” could be
adjusted based on application requirements. The last script provides the capability to send
commands to a specific appliance topic for turning the relay of the smart plugs ON or OFF.

5.2. HEMS Cloud-Based Implementation

The Cloud HEMS system was implemented following the structure presented in
Figure 6. A Raspberry Pi was configured as an MQTT broker using mosquitto. This broker
was used as a host by the things to send the telemetry events using MQTT on individual
topics. The MQTT broker was set up in a bridge mode, allowing it to route the inbound
data to a new destination provided by the cloud provider.

MQTT

Smart Plug

Gateway
AWS IoT Core

DynamoDb

S3Cloud HEMS

MQTT
MQTT

Smart Plug

Cloud Watch Lambda

Kinesis

Smart Meter
XML 

 
CSV file

MicroservicesUser

HEMS Applications

Alarm and
Monitoring

Energy
Consumption

Data Collection

Appliances
Control

Demand
Response

P2P Energy
Trading

Figure 6. Schematic diagram for Cloud HEMS implementation.

AWS IoT Core was set up using the AWS console. The IoT Core provides an MQTT
broker, which is able to manage MQTT connections from smart homes. IoT Core also allows
setting up triggers for executing events when data is received. The implemented triggers
and actions are presented in Figure 7.

Two rules are set in order to perform some actions. The first one considers that all
the incoming messages that match the topic structure “tele/+/sensor” will be logged into
AWS CloudWatch. The plus sign “+” is an MQTT single-level wildcard on AWS IoT Core
rules that matches any value in that position; in this case, it represents the device ID from
the smart plug unit. The rest of the actions are executed only when the second rule is met,
which implies that the power consumption informed by the received message is greater
than zero. This rule was set to optimize the storage and costs of the implemented system.
When the rules are not matched by the incoming MQTT messages, these are discarded.
Regarding the actions, the Cloud HEMS stores the data using DynamoDB, where smart
plug data are stored in a JSON object using the schema and attributes presented in the

11



Sensors 2023, 23, 176

data payload in Table 2. For storing the smart meter data, an S3 bucket is used to handle
the CSV files provided by the unit over MQTT. Kinesis Firehouse is used to ingest the
received MQTT message into a data stream enabling further processing, data events, and
real-time-based applications.

AWS IoT Core 

DynamoDB

Kinesis Firehose

Stores smart plugs
energy consumption

data

Stores smart meter
energy consumption

data

Data Streams

CloudWatch

Logging and
Monitoring

S3 Bucket

AWS IoT Rule: 
MQTT Topic matches  

'tele/+/SENSOR'

AWS IoT Action

Inbound MQTT message
on AWS IoT Topic

AWS IoT Rule: 
ENERGY.Power > 0

AWS IoT Action

Figure 7. AWS IoT Core implemented rules and actions.

5.3. Case Study 1: Local HEMS Results

For the local HEMS, results show the capability of the system to store the energy
consumption data of the appliances and from the main load of the house. Figure 8 shows a
snapshot of the MongoDB collection that contains the measurements from the appliances
collected by the smart plugs.

Figure 8. Database record of smart plug measurement of the kettle.

Each document contains the energy-related parameters for each telemetry event. The
document contains one parameter that allows for appliance identification. By using the
ID of the smart plug, it is labeled as the correct appliance with the same name attribute in
the database document. This parameter is configured in the collection as an index, which
allows for faster queries when used as a filter parameter. The records collected by the smart
meter are shown in Figure A1, where they are stored as CSV files in a directory.

5.4. Case Study 2: Cloud HEMS Results

Cloud HEMS was deployed starting in July 2021, during which data were collected
and stored in the cloud. The AWS S3 web panel allows checking the individual files stored
by the system for the smart meter measurements, as seen in Figure A2. Each file is around
3MB, and it contains a four-hour window of measurements taken by the smart meter every
second. These files follow the structured data provided by the eGauge unit.
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Batch processes can be scheduled to perform analytics operations over the stored data.
Figure 9 shows a pie chart for the energy consumption per appliance for the first week of
August 2022. This information intends to serve the residents as feedback on their behavior
regarding the energy consumption of each appliance.

Figure 9. Energy consumption per appliance for resident awareness.

One feature that benefits from data analysis services provided by AWS in the cloud is
shown in Figure A3, where an email notification alerts when the system has not detected
any writing activity in the database. This enables the residents to be aware of appliance
malfunction, energy blackouts, connectivity issues, or any other problem regarding the
energy consumption in the home.

Figure 10 shows the data availability of the system regarding the collected data from
the devices. The x-axis presents the available time period since the system started recording
data from July 2021 up to the end of the study (grouped by months). The four appliances
and the main load of the home are shown on the Y-axis. The values shown for each
device and the month represent the percentage number of messages received from each
device during a certain month over the total amount of messages that could be received
considering the sample rate for each device. This graph shows that in some periods,
such as August 2022, there were some constraints on receiving data from the house. This
happened due to a system malfunction, blackouts, or scheduled maintenance from the
power utility provider.
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Figure 10. Analysis of system availability for the collected data.
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Regarding data visualization, Figure 11 shows the main load of the house collected
by the eGauge unit. The period shows the regular power consumption over the month
of August with a gap of data. In Figure 12, a window of two hours shows the specific
energy consumption for the kettle, refrigerator, microwave, washing machine, and the
main load of the house on 2 August 2022. A slice of the data collected from our real house
implementation with some instructions regarding the implementation of the HEMS can
be found at our repository of the project https://github.com/pipegreyback/EViG-Server,
(accessed on 1 October 2022).

Figure 11. Total power consumption of the main load of the house using the eGauge unit during the
period of July, August, and September 2022.

Figure 12. Power consumption data from the four appliances using smart plugs and the main load of
the house.

6. Discussion

Data-driven applications provide an enormous benefit in various fields. In distribution
power systems, the new applications of the Energy Internet, smart grids, and smart homes
will allow, for example, disaggregated consumption per appliance using the total power
consumption of the home. Some other applications allow load scheduling for appliances.
These applications require reliable architecture and implementation that allow the collection,
storage, and processing of such data. Such a challenge has been discussed widely, but there
is no one standardized architecture that fits all solutions, thus the architects and developers
need to identify the requirements of the system in order to design a reliable architecture
that allows the system to function properly. Some of the considerations will enforce the
data storage and processing to be deployed locally at the edge or remotely in the cloud.
Nevertheless, a system such as the proposed HEMS could present different requirements
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when multiple houses implement the system. There are other constraints, such as a massive
amount of data sent to the cloud from individual houses, which could result in high latency
and degradation of the service. Thus, solutions that use a fog layer as data concentrators
within a neighborhood, such as Neighborhood Area Network (NAN) should be considered
when looking to deploy a HEMS in various houses within a neighborhood.

New tools such as AWS Cloud Development Kit (CDK) for speeding the provision-
ing process of services appear as an interesting alternative to provisioning infrastructure
through web interfaces, such as the AWS console. AWS CDK follows the paradigm of
Infrastructure as Code (IaaC) which enables the developers to write code in several pro-
gramming languages such as Typescript, Python, and Go. The code represents the required
services to be provisioned, with the respective configurations which are then synthesized
and deployed into AWS through cloud formation.

6.1. Technology Adoption

The acquisition of dedicated sensors and actuators with Internet capabilities and
IoT devices provide multiple benefits for different data-driven applications, but it comes
with the challenge of technology adoption. In [24,25], the authors investigated the user
perception on acceptance of monitoring energy consumption devices such as smart meters.
In [24], the authors reviewed consumer beliefs regarding smart meters using behavioral
decision research. Results showed that consumers are positively predisposed toward smart
meters; however, the authors proposed recommendations for electric utilities in order to
address misconceptions about smart meters’ benefits and concerns over risks. Even though
the use of smart energy management systems in the residential context provided energy
savings, increasing user acceptance has been a challenge over field implementations [25].
The authors identified seven high-level categories based on a mixed-method approach
providing a more holistic understanding of users’ perception of smart energy management
system adoption.

6.2. Implications of the Proposed Solution and Future Directions

The design of HEMS still entails a degree of uncertainty, given that developers and
architects might propose different approaches on how to carry out such a system. This
is due to multiple factors, such as the variety of IoT-enabled devices, networking and
communication protocols, and data resolution requirements. The usage of IoT devices such
as smart plugs, a common component of both implementations, provides the benefit of
enabling existing households to benefit from smart grid applications without interventions
of the property. Our implementation was able to perform a set of features available in
HEMS for a real house in Valparaiso, Chile. However, another direction is the integration
of other communication protocols such as Zigbee or LoRa. Such solutions will enable our
system to support heterogeneous IoT systems, which provide flexibility while choosing IoT
end devices such as smart meters and smart plugs.

7. Conclusions

In this paper, we designed and implemented two HEMS solutions that are able to store
power consumption and control appliances by using edge (local) devices or the cloud. The
proposed architecture consists of four layers: perception layer, communication network
layer, middleware layer, and application layer. The local HEMS is isolated from the Internet
and utilizes an edge device to serve as the main processing unit. The cloud-based HEMS
utilizes a gateway to send the data to the cloud. Both implementations are driven by IoT
devices to send data measurements or receive control signals. We reviewed, designed,
and implemented the most common approaches on state-of-the art edge (local) HEMS
and cloud-based HEMS. Both systems have some common features of HEMS; however,
they differ in terms of privacy and scalability. In this regard, new challenges appear when
multiple HEMSs need to be deployed in a community or a neighborhood area network.
A hybrid approach could enable a more reliable and integral solution than using edge
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devices or the cloud as individual systems. Our ongoing work considers extending the
developed HEMS to support different applications, such as energy disaggregation, anomaly
detection, demand response, and peer-to-peer energy trading, further extending the system
capabilities to enable real-time data processing applications through data streams.
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Appendix A

Figure A1. Smart Meter energy records from eGauge unit.

Figure A2. AWS S3 bucket with energy consumption records from smart meter.
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Figure A3. Email notification when a smart plug has not write into the database in a fixed period
of time.
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Abstract: With the growing need to obtain information about power consumption in buildings,
it is necessary to investigate how to collect, store, and visualize such information using low-cost
solutions. Currently, the available building management solutions are expensive and challenging to
support small and medium-sized buildings. Unfortunately, not all buildings are intelligent, making
it difficult to obtain such data from energy measurement devices and appliances or access such
information. The internet of things (IoT) opens new opportunities to support real-time monitoring
and control to achieve future smart buildings. This work proposes an IoT platform for remote
monitoring and control of smart buildings, which consists of four-layer architecture: power layer,
data acquisition layer, communication network layer, and application layer. The proposed platform
allows data collection for energy consumption, data storage, and visualization. Various sensor nodes
and measurement devices are considered to collect information on energy use from different building
spaces. The proposed solution has been designed, implemented, and tested on a university campus
considering three scenarios: an office, a classroom, and a laboratory. This work provides a guideline
for future implementation of intelligent buildings using low-cost open-source solutions to enable
building automation, minimize power consumption costs, and guarantee end-user comfort.

Keywords: intelligent campus; smart building; internet of things platform; remote monitoring
and control

1. Introduction

The Chilean new energy efficiency law No. 21,305 was published on 13 February
2021, establishing Chile’s national energy efficiency plan. Among the main aspects of
energy efficiency that the new law targets are the national energy efficiency plan, energy
management of large consumers, energy labeling/rating for buildings, and efficiency
standards for vehicles [1]. Considering that buildings are responsible for about 60% of
the total global electricity consumption [2], information on energy usage is fundamental
for the development of different energy management system (EMS) solutions [3–23]. In
particular, such solutions are critical for those users in charge of buildings administration.
Knowing the different equipment power consumptions is vital for controlling the expenses
associated with building operations.

The applications of IoT in smart homes [9–12,14] and smart buildings [2–8,13,15–23]
have been discussed in many publications covering different domains, including
surveys [6,7,10–12,15,18], architectures [5], frameworks [8,14], platforms [9], and algorithms [16].

Sensors 2022, 22, 9045. https://doi.org/10.3390/s22239045 https://www.mdpi.com/journal/sensors
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However, most of the research is based on assumptions or simulations which ignore the
practical issues from the real implementation. Examples of real implementation can be
found in [3,4,9,12,19]. Furthermore, the condition of the electricity system differs between
countries and regions, which then requires identifying the specific requirements and needs
for each design. This work aims to fill the gap related to technical implementation in a
realistic environment. The main objective of this work is to design and implement an
IoT platform that integrates information from various smart sensor nodes and measuring
devices connected to buildings for obtaining information related to power consumption
in order to support energy management solutions. All collected data will be processed
to deliver the relevant information to the end user, who can then perform remote actions
accordingly. The main activities required to achieve the proposed objective are:

• Define the system requirements for intelligent buildings and prioritize these require-
ments for developing the solution, including data collection from different sensor
nodes and measurement devices.

• Build the IoT platform for smart buildings, which includes four main layers: power
layer, data acquisition layer, communication network layer, and application layer.

• Implement the back-end and front-end systems. The proposed solution involves the
development of a network of sensors and measurement devices and the integration of
the processing unit and the databases. The front-end implementation phase consists
of developing a user interface for interaction, visualization, and data analysis.

• Implementation of the testbed and validation, where the designed prototype will
be installed and tested in the context of a real application (Department of Electronic
Engineering, Universidad Técnica Federico Santa María (UTFSM), Valparaíso, Chile),
including an office, a laboratory, and a classroom to assess the functionality and
usability of the proposed solution.

This paper is structured as follows: Section 2 presents a review of related work for
smart buildings. Section 3 introduces the hierarchical energy management architecture for
the intelligent campus. Section 4 presents the proposed IoT architecture for smart buildings.
Section 5 discusses and analyses the proposed solution and the results. Section 6 presents
the conclusion and future work.

2. Related Work

Smart buildings and building energy management systems (BEMS) are active research
areas with different application domains such as demand response programs, optimizing
building power consumption, integrating renewable energy systems, etc. In [2], the authors
highlighted that IoT provides a new opportunity to integrate intelligence into building
management systems. Such IoT solutions are cost-effective, enabling monitoring and
managing the energy consumption of the buildings. The work summarized the application
of IoT in buildings, including lighting, heating, ventilation, air conditioning (HVAC),
flexible loads, human detection and diagnostics, and prognostics. A case study was
discussed on how to use low-cost IoT devices to provide building management with key
insights into human activity and occupancy detection.

In [3], the authors presented the design and implementation of an IoT gateway for
a cloud-based building energy management system. The work focused on the software
architecture and the software design of the gateway device, which acts as a master device,
polling devices on the network and pushing the received data to the cloud. The gateway
device was designed to support legacy protocols such as Modbus, BACnet, and HTTP
RESTful interface devices. The developed software was evaluated with respect to RAM
consumption under various stress tests and bandwidth utilization.

In [4], the authors proposed a fog-based IoT platform for smart building, which
consists of five layers: end devices, network connectivity, fog processing, cloud processing,
and security and privacy layer. The end devices include sensor nodes (temperature and
humidity sensor, light sensor, PIR sensor, and accelerometer sensor) and actuator nodes
(feedback action). The work focused on indoor ambience monitoring and occupancy
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monitoring. A prototype has been deployed and tested in a testbed room for door/window
state detection, room occupancy detection, and room lighting sense and control. In [5], the
authors proposed an IoT architecture for hybrid wind/PV/diesel/battery on a university
campus. The proposed architecture consists of four layers: power layer, data acquisition
layer, communication network layer, and application layer. The work is considered a case
study on a university campus. However, the work focused on network modeling and
simulation of the communication network layer for the hybrid energy system with respect
to network topology, link capacity, and latency.

In [6], the authors presented a review of the concept of IoT and its potential ap-
plication in smart buildings where the major components of the IoT system consist of
devices/sensors, networks, cloud, analytics, and actuators/user interfaces. The conven-
tional architecture for the smart building consists of three layers: the perception layer,
network layer and application layer. The work discussed the challenges and recommen-
dations for future research, including (1) security and privacy issues, (2) data acquisition,
processing and storage issues, (3) feasibility and practicality issues, and (4) collaboration
between IoT developers and the building industry. In [7], the authors presented a survey
for different types of applications in smart buildings, including security control, energy
management, monitoring and control of HVAC, water management, lighting system, fire
detection, and health system for elders.

In [8], the authors proposed IoT based thermal model learning framework for a smart
building based on low-cost IoT devices (smart thermostats). The data collected from
the IoT platform installed inside the building has been used for validating the learning
framework. In [9], the authors presented a low-cost solution for non-smart residential load
appliances using smart load nodes. The integration of this solution does not require any
change in the electric infrastructure of the house, as well as no modifications to the load
appliances. The system considered wireless communication using WiFi in HAN, where the
main measurements include voltage, current, power, and power factor.

In [10], the authors presented a comprehensive survey on the intersection of IoT
and smart grid systems (IoT-aided smart grid systems), which includes architectures,
applications, and prototypes. The work also presented different challenges and future
research directions. In [11], the authors reviewed the architectures and functions of IoT-
enabled smart energy grid systems. Special focus was given to IoT technologies such as
sensing, communication, and computing. The work also reviewed security vulnerability,
attack models, and existing threat summarizing mitigation techniques for such security
vulnerabilities. In [12], the authors reviewed recent activities related to IoT-based energy
systems. The work highlighted the potential areas to improve at different layers and
reviewed communication technologies and standards related to energy systems. Some
examples were discussed, including smart homes, smart power grids, and smart cities.

In [13], the authors presented a hierarchical IoT-based microgrid for energy-aware
buildings. The proposed framework consists of the physical layer, information layer,
control layer, and dispatch layer. The IoT microgrid laboratory at Aalborg university was
introduced to explain how to implement the proposed scheme in a building. In [18], the
authors presented a comprehensive review of thermal comfort in hospitals, identifying the
current status of research and future research directions. The main research themes were
influencing factors, field surveys, measures to improve and energy saving.

In [19], the authors proposed an IoT-based occupancy-driven plug load management
system with the objective of reducing the energy consumption of plug loads and plug
load automation. Six different strategies for plug load control, such as manual control,
predefined schedule, occupancy-driven control, and hybrid control, were evaluated during
a field study of 5-months within a university office space. In [22], the authors introduced
the application of deep learning and IoT to control the operation of air conditioners to
reduce energy consumption in a smart building. In order to count the number of persons
in a certain area, the work considered the YOLOv3 algorithm. In [23], the authors provided
architectural elements of connected indoor lighting systems within a building. In particular,
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application programming interfaces (APIs) were presented to support data access and
lighting system control.

Table 1 summarizes the discussed related work highlighting the presence or absence
of the different smart building IoT layers. The work proposed here aims to develop a
hardware/software solution to enable gathering the information from smart sensors and
energy monitoring devices and display it to the end users so they can take the necessary
actions for the proper functioning of the building.

Table 1. Summary of related work for different IoT layers in related work for smart buildings.

Ref.
Type/

Case Study
Power
Layer

DAQ
Layer

Network
Layer

Application
Layer

Contribution

[2] Technical/
Australia YES NO NO YES Building energy management with key insight into human

activity and occupancy detection.

[3] Technical/
USA NO YES YES NO

Building energy management with a focus on the software
architecture and software design for the gateway device to
support various legacy protocols.

[4] Technical/
Egypt NO NO YES YES

Fog-based IoT platform consists of five layers: end devices,
network connectivity, fog processing, cloud processing, and
security and privacy layer. The work focused on indoor
ambience monitoring and occupancy monitoring.

[5] Simulation/
Saudi Arabia NO NO YES NO

The work focused on network modeling and simulation of the
communication layer for a hybrid energy system with respect to
network topology, link capacity and latency.

[6] Review YES YES YES NO
Overview of IoT technology for smart buildings. The
components of the IoT system are devices/sensors, networks,
cloud, analytics, and actuators/user interfaces.

[7] Review YES NO NO YES

Survey on different types of applications in the smart building,
including security control, energy management, monitoring and
control of HVAC, water management, lighting system, fire
detection and health system of elders.

[8] Technical/
USA YES NO NO YES IoT-based thermal model learning framework for smart

buildings based on low-cost IoT devices (smart thermostats).

[9] Technical/
India YES YES YES NO A low-cost solution for non-smart residential load appliances

using smart load nodes (SLN).

[10] Review YES YES YES YES A comprehensive survey on the intersection of IoT and smart
grid systems (IoT-aided smart grid systems)

[11] Review YES YES YES YES Review the architectures and functions of IoT-enabled smart
energy grid systems

[12] Review YES YES YES YES
Review for recent activities related to IoT-based energy systems.
Examples were discussed, including smart homes, smart power
grids, and smart cities

[13] Technical/
Denmark YES YES YES YES A hierarchical IoT-based microgrid for energy-aware buildings

[18] Review YES NO NO NO
A comprehensive review on thermal comfort in hospitals,
identifying the current status of research and future
research directions.

[19] Technical/
Singapore YES YES YES YES

IoT-based occupancy-driven smart plug load management
system that reduces plug load energy consumption. The
occupancy information of users is collected using an indoor
localization system.

[22] Technical/
Finland NO NO NO YES

Application of deep learning and IoT to control the operation of
air conditioners to reduce energy consumption in a
smart building.

[23] Technical/
Netherlands YES NO NO YES

Architectural elements of connected indoor lighting systems
within a building. In particular, APIs were presented to support
data access and lighting system control

Present
Work

Technical/
Chile YES YES YES YES

Developed a hardware and software platform for remote
monitoring and control of smart buildings. A real testbed has
been designed, implemented, and tested at Universidad Técnica
Federico Santa María, Valparaiso, Chile.

3. IoT-Based Architecture for Smart Buildings

3.1. Hierarchical Energy Management Architecture for Intelligent Campus

A university campus generally consists of a group of buildings connected to the
main power grid. The energy management approach can be classified into different levels:
campus energy management system (CEMS), building energy management system (BEMS),
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and office/laboratory/classroom level. The CEMS operates as an energy manager for the
campus by collecting energy consumption data from each building through intelligent
BEMS (iBEMS), as shown in Figure 1.

• Campus energy management system (CEMS): The CEMS monitors the power genera-
tion (renewable energy), energy storage, and consumption of university buildings and
interacts with each BEMS to optimize energy usage. In addition, the CEMS receives
the energy consumption data of each building, stores it in a database, and estimates
the consumption and future generation based on historical data.

• Building energy management system (BEMS): In general, university buildings consist
of a group of offices, laboratories, and classrooms. The BEMS collects the energy data
and other weather information collected by different smart meters and sensors located
in the building and interacts with the building loads.

Figure 1. The schematic diagram for the intelligent campus. CEMS: campus energy management sys-
tem; iBEMS: intelligent building energy management system; CS: charging station; PV: photovoltaic
system.

The CEMS provides large-scale data acquisition, communication, and data processing
for energy management in buildings which requires cooperation among each BEMS in
order to meet the operator requirements for minimizing power consumption and costs.
However, as the number of energy management units increases, many challenges are
related to cost, latency and reliability. This work target one building (Building B) of the
UTFSM Campus, Valparaiso, Chile.

The university campus (Casa Central, Valparaíso, Chile) was inaugurated in 1931.
Nowadays, there is a lack of monitoring and control for energy consumption in univer-
sity buildings. There is still a high cost for building automation systems for small and
medium-sized buildings, which prohibits purchasing such solutions. Furthermore, there
is still a limitation for compatibility with different vendors, devices, and communication
technologies in case of relying on using a particular platform. The proposed IoT platform
aims to develop a custom solution using cost-effective off-the-shelf sensors/devices for
real-time monitoring and control of building energy consumption through a web interface.
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Three case studies are considered: an office, a laboratory, and a classroom. Three case
studies are considered: an office, a laboratory, and a classroom.

3.2. IoT-Based Architecture for Smart Buildings

The main objective of this work is to design and implement an IoT platform for real-
time monitoring and control of energy consumption in buildings to achieve an intelligent
campus. There are different IoT architectures., such as three-layer (perception layer, network
layer, and application layer), four-layer (perception layer, network layer, service layer, and
application layer), and five-layer (perception layer, network layer, service layer, application
layer, and business layer) [5,10–14]. Considering the various IoT-based architectures,
Figure 2 shows the main components of a three-layers IoT-based architecture for smart
buildings, which consist of the perception layer, network layer, and application layer. The
perception layer usually emphasizes energy usage, occupant activities, and environmental
condition. Different wired/wireless communication technologies could be used for data
transmissions, such as WiFi, ZigBee, Bluetooth, and LoRa in the network layer. The
application layer corresponds to business, application, and service management. The
collected data at the application layer explains the actual building energy usage, energy
management, occupant information, etc.

Figure 2. The schematic diagram for IoT-based architecture for smart buildings. iBEMS: intelligent
building energy management system.

Figure 3 shows a detailed schematic diagram of the proposed IoT-based architecture
for smart buildings. Our work aims to achieve building automation to minimize energy
consumption costs and guarantee the comfort of the occupants. Our proposed architecture
consists of four layers: power layer, data acquisition layer, communication network layer
and application layer.

• Power Layer: the power layer consists of power generation, power storage, and loads
that are connected to the power grid. In this study, the campus buildings are connected
to the power distribution network (provided by Chilquinta). Other power generation
sources may include solar panels, wind turbines, and batteries for power storage.
The main power consumption in buildings may consist of HVAC, lights, and vehicle
charging stations.

• Data Acquisition Layer: the data acquisition layer is responsible for capturing all
the data coming from the power layer devices for making decisions. Examples of
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sensor nodes are measuring devices from light, temperature, power consumption, and
meteorological station.

• Communication Network Layer: Different communication technologies and protocols
are defined from data acquisition devices in the communication network layer. The
communication network layer receives the sensors’ data and sends them to the appli-
cation layer. Data might need to be sent over various networks, such as the local area
network (LAN) and building area network (BAN). The most common communication
technologies are ZigBee, Bluetooth, WiFi, and LoRa, using different communication
protocols such as MQTT, CoAP, and Web Socket.

• Application Layer: the end-user can recognize the middleware services that allow
data storage and interaction with building data in the cloud. All monitoring and
status information received from the devices are stored and visualized. Real-time
monitoring and control can then be achieved using different approaches such as energy
management, safety, user comfort, and management of HVAC.

Figure 3. IoT-based architecture for the intelligent campus.

4. Smart Building Implementation

The proposed solution was implemented considering three locations with different
needs. The details for each scenario and location are given below:

• Office Room: The first scenario is office B-349. This is a representation of professors’
offices distributed in Jeonju pus. Most offices include computers with one or more
monitors, printers, and plugs to charge mobile devices. All offices include fixed
lighting activated by a switch on the wall. Because it is a relatively small space, the
energy measurement of the entire room was not considered.

• Laboratory Room: The second scenario is laboratory B-110. In this laboratory, there are
at least four permanent workstations where a computer can be connected and external
monitors for each of these positions. In addition, there is a shared space to carry out
different activities. In this case, the implementation of smart plugs is proposed to
monitor computers and other equipment connected to the power network. On the
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other hand, given the energy requirements of the space, it is suggested to install an
energy meter in the electrical panel to monitor the total energy in the room.

• Classroom: The third scenario is classroom B-213. This classroom has luminaires
that can be controlled with smart switches, one projector that can be controlled with
smart plugs, and several sockets that allow students and teachers to connect their
personal devices. An energy meter can be used on the electric board. In addition, an
environmental measuring device can be installed to monitor the air quality during
the classes.

Figure 4 shows the locations of different scenarios, while Table 2 shows the list of
appliances and sensors considered at each location.

  
(a) (b) 

  
(c) (d) 

Figure 4. Locations of different implantation scenarios: (a) Engineering building B; (b) Office B-349;
(c) Laboratory B-110; and (d) Classroom B-213.

Table 2. List of appliances.

Location Details

Office Room (OR) 1 Computer, 1 Monitor, 1 Printer
Lighting

Classroom (CR)
1 Projector, Many sockets

Main electric board
Lighting

Laboratory (LAB)
4 computers, 1 Printer, Many sockets,

Lighting
PV panels

4.1. Selected Alternatives Solutions for Devices, Technologies, and Services

The implementation is carried out considering the proposed 4 layers discussed in the
previous section. The description of equipment and technologies used in each layer are
given in Table 3 and Figure 5. Although the system is proposed and designed for the three
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different scenarios in different locations, we organized and assembled a testbed shown in
Figure 6. The testbed will allow us to collect data from various appliances individually
and/or together for later using it to validate different machine learning algorithms.

Table 3. List of sensors and measuring devices used for the testbed.

Layer Details

Data Acquisition Layer

Smart Plug, Air quality sensor, Smart meter for the total
power consumption, Data acquisition module for

photovoltaic system,
Data collection module for a weather station

Communication Network Layer Cloud Service (Raspberry Pi, Node-RED)
Network Layer (WiFi, LoRa, MQTT)

Application Layer Digital Ocean, Node-RED, MySQL

  
(a) (b) 

  
(c) (d) 

Figure 5. Selected devices for data acquisition layer: (a) Raspberry Pi 4B; (b) PZEM-004t-100 A;
(c) Sonoff Pow R2; and (d) Air quality LAQ4.

 

Figure 6. SThe schematic diagram for the testbed.

The testbed is powered by an external source connected directly to a small electrical
panel. On the board, there is a pilot light to verify the electric power at the input, then a
switch for protection in case of current overconsumption, and a tetrapolar bar to facilitate
the connection of equipment on the testbed. The testbed also includes two circuits: the
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lighting circuit and the sockets circuit. Furthermore, other components include a small
router that provides a local WiFi network for the equipment, a LoRa gateway, and a
Raspberry Pi that implements the proposed architecture. Detailed characteristics, setup and
comparison among different types of sensors, measuring devices, and network elements
are given in Appendices A and B.

4.2. Power Layer
4.2.1. Monitoring Power Consumption of Appliances

For monitoring the power consumption of appliances, smart plugs of the “Sonoff
POW R2” type are used [24]. All smart plugs were updated with ESPurna firmware and
configured for wireless data transmission using WiFi [25]. Regarding the electric connection,
the smart plugs need to be connected with electric cables and installed between the electric
power supply and the appliances.

Different configurations for using smart plugs type “Sonoff POW R2” are considered
for the testbed:

• Control the complete circuit: In this case, the whole lighting circuit was passing
through the smart plug, which allows measuring and control of the lights (highlighted
with green color in Figure 6)

• Control a socket: In this case, the connection was configured, which allows obtain-
ing data from all equipment connected to the socket (highlighted with yellow color
in Figure 6)

• Control a single device: This configuration allows a single device to be connected
(highlighted with blue color in Figure 6)

4.2.2. Monitoring Total Power Consumption

The total power consumption measurement is carried out using the pzem-004t-100a
module. The module measures the input voltage of the electrical panel under study and a
current transformer sensor for the current. The module is connected to the ESP32 platform
for subsequent data sending.

4.2.3. Monitoring Photovoltaic System

The main parameters considered for monitoring the photovoltaic panel include mea-
suring the current with a current transform (CT) sensor. The sensor delivers a current
proportional to the measurement current and a voltage divider for voltage measurement.
Both measurements are captured with ADC pins of the Arduino nano development board.
Data is sent to the NodeMCU development board Amica, which has WiFi communication
and send the data by MQTT along with the date and time they were captured using a
real-time clock (RTC).

4.3. Data Acquistion Layer
4.3.1. Monitoring Indoor Environmental Condition

The air quality sensor type “Dragino LAQ4” was used to monitor indoor environmen-
tal conditions [26]. The main parameters measured are total volatile organic compound,
CO2 equivalent, temperature, and relative humidity of the air. To obtain such indoor
environmental data, the configuration of LoRa Gateway is required. In this work, we use
the Dragino Gateway LG308 [27].

4.3.2. Monitoring Weather Station

The meteorological information was measured using Davis Advantage Pro 2 Plus
weather station [28]. The weather station obtains the data from the sensors physically
connected to the station, then sends data wirelessly to the Vantage Pro 2 console. If
connected to the datalogger, we can connect the console with a USB cable to the computer.
Please note that the weather station is a closed system that does not allow the external
manipulation of the data obtained.
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4.4. Communication Network Layer
4.4.1. Network Layer

The communication protocols for data transmission are MQTT and LoRa, which
have been considered for implementing the communication network layer. For the smart
plugs, the communication using MQTT is activated and configured by choosing the MQTT
section from the side menu displayed in the web interface of the smart plugs with ESPurna
firmware installed. In the case of general measurement devices and photovoltaic panels, the
integration of the MQTT protocol is carried out within the code which we were programmed
with. The configurations for all devices connecting via MQTT are similar; that is, they
connect to the broker running on the Raspberry Pi with the IP 192:168:2:2 through port
1883 and are differentiated by the topic in which they publish. The topics were defined as a
descriptive manner of the measurement and the locations where the data are taken and
displayed, as shown in Table 4.

Table 4. Description of topics connected to MQTT.

Name Task Location Topic

Sonoff POW R2 Smart Plug Office
B-349

officeB349/enches01/
ESPURNAA9F0E4

Sonoff POW R2 Illumination Office
B-349

officeB349/ilminacionGeneral
ESPURNA9CFBF8

Sonoff POW R2 Computer Office
B-349

officeB349/connectedDevice/
Computer/ESPURNA9CFBF8

DC Measurement PV Panel Outside photovoltaicSystem/panel01

AC Measurement General Electric Panel Class
B-213 classroomB213/generalPanel

In the case of the air quality measurement device (LAQ4), a procedure should be
carried out for the configurations. An account is created on the things network server
at (https://www.thethingsnetwork.org (accessed on 10 January 2022)) [29]; then, when
registering, you must enter the start section (which leads to the address https://console.
cloud.thethings.network/ (accessed on 10 January 2022)) where the Cluster “Nam1” located
in the state of Carolina in United States was chosen, and once selected you enter the
Gateways tab where you press the + add gateway button, filling in all the requested data,
in particular, the Gateway ID which is the unique number associated with each gateway
LoRa. For the case of this work, the names used are GatewayOfBuilding, and the gateway ID
is gatewaylorabuilding01. Once the registration of the LoRa gateway is completed, one can
return to the gateways tab and select the registered gateway to see information about this
connection with the network server.

Once the gateway connection has been verified, we go to the applications tab and
press the button + add application. Only 3 parameters must be filled, namely “Application
ID”, “Application Name” and “Description” that, for this case is filled with the data of
smart-“buildingslora-sensors-usmcc” in Application ID and “lora sensors in usmcc” in
Application Name. Once the application has been created and when entering it, press the
button + add end device and enter the data for the desired sensor, which in this case is
the LAQ4. Then, data can be entered corresponding to the manufacturer and model of the
device. Next, the sensor’s own parameters, called Registration Key, are entered. In addition,
in this case, the value of “airqualitysensorusmcc” was added to the parameter End Device
ID, and Register End Device was pressed. Once registration is complete, go back to the
applications tab, and in the end devices, one can enter the newly created one. Finally, being
inside the added device, it is possible to enter the side menu section Integrations and then
MQTT, where the subscription data to the broker of the things network, data that will be
used in the application layer to visualize the data.
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4.4.2. Cloud Service

There are different service providers for the cloud layer (middleware). The major
public service providers include Amazon, Microsoft, and Google [30,31]. Being leaders
in the market, it is observed that the services are similar in almost all the services they
provide. Due to the difficulty in calculating the costs associated with the service (the charge
is made per hour of use and depends on the capabilities contracted), particularly when the
project starts and the requirements can change; therefore, it was decided to use the service
of virtual machines of Digital Ocean [32].

For this layer, a Raspberry Pi with the Raspberry Pi OS operating system is used,
which is loaded into a micro-SD memory by downloading the installation software from
(https://www.raspberrypi.com/software/ (accessed on 10 January 2022)), choosing the
procedure to install and selecting the memory micro SD to use in the aforementioned
Raspberry Pi. For later configuration, the system is accessed using a display with HDMI
input and a mouse to activate the option to allow the connection by the SSH protocol.
After doing this, it simply connects to the local network via the Ethernet cable. Then, on a
computer within the same network, the connection is made via SSH (considering that the
IP of the Raspberry Pi is 192.168.2.2).

Once the computer is connected to the Raspberry Pi via SSH, Mosquitto is installed
as the selected MQTT broker [33]. Then, Node-RED is installed, with which the data is
managed locally, following the official page’s recommendation (nodered.org). To access
the node-red programming palette, it is enough to be within the same local network of
the Raspberry Pi and go to http://192.168.2.2:1880. Then, once inside the programming
palette, the division is made into 3 flows that correspond to smart plugs (see Figure 7a), the
metering device alternating current (see Figure 7b) and the direct current measuring device
(see Figure 7c). In the 3 flows, MQTT data is received from each device and forwarded
using the same protocol (MQTT) to the server hosted at Digital Ocean.

 
(a) 

 
(b) 

 
(c) 

Figure 7. Node-RED configuration for forwarding data received from different devices (a) smart
plugs; (b) general energy measurement; (c) direct current measurement.
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4.5. Application Layer

The application layer is entirely supported on a virtual machine contracted with
the services of Digital Ocean. The system supports a machine with 2 Gb of RAM and
50 Gb of hard disk. To acquire these services, one must enter the provider’s page https:
//www.digitalocean.com/go/developer-brand (accessed on 10 January 2022) AND must
be registered (considering that a valid credit card must be included during the registration
process). After logging in to the page, a new project is generated, which, in this case, is
called IoTPlatform4ManageEnergy and then the create button is pressed to create a new
Droplet which is the way that Digital Ocean calls virtual machines, and this is created with
2 Gb of RAM, 50 Gb of hard disk and the Ubuntu 20.04 operating system is installed (LTS)
x64. Once the Droplet has been created, it can be accessed with the fixed IP provided by
the provider (165.232.139.50) via SSH. The Mosquitto broker was installed on this server to
define communication via MQTT. In addition, Node-RED is installed to manipulate the
data, and MySQL is installed to allow data storage. Figures 8 and 9 show the configuration
for Node-RED for control and data visualization, respectively.

 

Figure 8. Configuration for Node-RED for the control of smart plugs.

The schematic diagram for the complete system is shown in Figure 10. The experiments
were carried out on 11 November 2022. Different electric appliances in the laboratory were
connected to validate the operation of the platform (Plug01: Hair Drayer-SiEGEN-Model
SG-3049, Illumination: Led bulb-9W, Desktop Computer: TV Monitor-LG-24TL520S-PS).
The dashboard, shown in Figures 11–13, shows an example for those observed from a
computer; since Node-red is responsive, the visualization can adapt according to the
display device, such as a smartphone or a tablet. Furthermore, with the implementation of
the MYSQL database interaction block, the data is saved in the cloud.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Configuration for Node-RED for data visualization: (a) Smart plugs; (b) Electric panel;
(c) PV system; and (d) Air quality.
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Figure 10. Schematic diagram for the complete system.

 

Figure 11. Real-time monitoring data from an office room.
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Figure 12. Real-time monitoring data from a laboratory room.

 

Figure 13. Real-time monitoring data from a classroom.

34



Sensors 2022, 22, 9045

5. Discussion

This section provides a detailed analysis of the proposed IoT platform for building im-
plementation and the future extension for large-scale performance on the university campus.

5.1. Analysis

The advances in IoT technologies will play a vital role in the development of different
smart building solutions, such as smart lighting to minimize light load, smart HVAC
to improve indoor comfort, smart plug loads to monitor and control usage, and smart
energy management systems, toward achieving an intelligent campus. Among the key
technologies which have been investigated in this work are smart plug loads to monitor and
control various types of appliances (located in offices, labs, and classrooms), distributed
energy resources including a PV system, outdoor data using a meteorological station,
and indoor air quality monitoring. Detailed technical hardware/software configuration
and implementations have been discussed, as well as the network connectivity among
different subsystems. As real-time data monitoring is the first step toward transforming
conventional buildings into smart buildings, the proposed solution will enable the building
operator to view, analyze, and predict different appliance profiles and the occupancy of the
buildings using a dashboard to visualize such real-time/historical data and alerts.

With respect to the cost, the proposed solution uses off-the-shelf components. The
main electronic components used were Sonoff POW R2, PZEN-004T-100A, Raspberry Pi
4B, and Dragino LAQ4, which cost about CLP 20.900, CLP 26.812, CLP 78.390, and CLP
51.899, respectively. The total hardware cost of the proposed solution can be adapted
for the university campus to support real-time data monitoring for power consumption
from different buildings and environmental data with the objective of improving energy
performance and building operation.

Given the experience gained during the development of the proposed IoT platform,
the following are the guidelines that need to be considered for developing such a solution
(in Chile or another region) that fits the user’s requirements.

• Definition of requirements and services: This allows knowing the main problems and
defining the objectives to be achieved during the full development of the proposed
solution following the requirements:

• Define a network architecture for smart sensors and meters. Structure a network
architecture that connects nodes, gateways, and servers seamlessly and efficiently to
measure real-time electricity consumption and transmit the information obtained for
the end-user.

• Develop a cloud storage server. This allows data storage and access to the information
stored from anywhere through an API.

• Develop a platform for visualization. This platform enables the visualization of real-
time data from each device/appliance connected to the platform.

5.2. Technology Adoption

The way toward an intelligent campus requires the acceptance of new technologies
and the opportunities they provide. User perceptions on the acceptance and adoption
of smart energy management in the workplace is an essential aspect that needs to be
investigated [20,21,34]. In this regard, the work in Ref. [20] identified different types of
behavior change interventions that are successful in saving energy in the workplace, such
as education, persuasion, incentivization, and training. Another study in Ref. [21] proposed
seven design implications that guide the future design of smart energy management sys-
tems in the workplace, including internal and external influence, user appeal, user control,
ease of use, reliability, personalized and contextualized information, and data privacy.
Among the open research topics are conducting a large-scale study in multiple countries
(different geographical contexts and cultures) to identify overlaps in user perceptions.
In addition, expanding the scope for other workplaces such as hotels, retail stores, and
industrial sites [21].
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5.3. Future Direction

There are different directions to extend the current work. From the power layer point
of view, we aim to extend the current prototype to support an electric vehicle charging
station, a battery storage system, smart lighting (dimmer lights and lights coupled with
motion sensors), sensors for motion detection, and magnetic sensors for the doors. From
the data acquisition layer point of view, our ongoing work aims to develop a low-cost
meteorological station using off-the-shelf components to be able to access and control
the data obtained. From the communication network layer point of view, heterogeneous
communication technologies could be integrated to support different short-/long-range
communications across the campus.

As a short-term goal, we aim to demonstrate the feasibility of the proposed IoT
platform in one complete building to collect power consumption data during the whole
semester with everyday activities and during the vacation period. Before implementing
such a system, two different dashboards need to be developed: one for the end-user, who
can control their plug loads, and the other for the building administrator. There is also
a need to define which control strategy should be selected, which can be a manual or
predefined schedule. In this regard, the authors in Ref. [19] performed different plug load
automation strategies for a university office space which could be a starting point for the
office scenario.

Other challenges are related to the internal electrical wiring for the building, as
each floor may share various offices and laboratories from different departments. In
addition, the absence of historical power consumption data for buildings/floors/zones.
Therefore, historical power consumption data will need to be collected from the main
electric panels using smart meters for individual rooms/zones. This step is essential
to define spaces with high energy consumption. Based on energy consumption data
from different floors/areas, the performance will be evaluated before and after applying
different plug load management strategies. Special attention should be given to privacy and
security, which should be considered at every step during the platform design. Emerging
technologies such as blockchain, machine learning, and artificial intelligence are opening
new opportunities to mitigate such security vulnerabilities.

6. Conclusions

This work proposed a cost-effective IoT solution for smart buildings to enable remote
monitoring and control of power consumption at the appliance level. The proposed
architecture consists of four layers: power layer, data acquisition layer, communication
network layer, and application layer. The physical layer was characterized by different
subsystems such as plug circuits, lighting, and the photovoltaic system. For the acquisition
layer, measurement devices were used for electrical panels, smart plugs, direct current
energy metering devices, air quality monitoring, and a meteorological station. The network
layer was defined to gather the information captured from the physical layer and forward
it to the remote server. A fog layer was implemented on a Raspberry Pi, and the data was
handled with NodeRED. The communication technologies defined to obtain the information
from the installed equipment were WiFi and LoRa, and the communication protocol to
the server was through the MQTT. The Digital Ocean Droplet service was used as a server
where the MQTT Broker was installed. For data management, NodeRED was installed for
the general management of the data messages and the visualization by the end user. MySQL
was installed, which allows storing the information in tables that were defined for each data
acquisition device. This project was implemented using a testbed defined to characterize
equipment and conditions in three different locations in Engineering Building, Universidad
Técnica Federico Santa María, Valparaíso, Chile, including an office, a classroom, and a
laboratory. This testbed allowed the design, implementation, and testing of the complete
system in reduced space. At the end of the development of this work, a functional platform
was obtained that brings together energy consumption data that will contribute to energy
awareness and conservation.
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Nomenclature

IoT Internet of Things
EMS Energy Management System
BEMS Building Energy Management System
CEMS Campus Energy Management System
HVAC Heating, Ventilation, and Air Conditioning
HTTP Hypertext Transfer Protocol
REST Representational State Transfer
WiFi Wireless Fidelity
HAN Home Area Network
SLN Smart Load Node
CEMS Campus Energy Management System
CS Charging Station
PV Photovoltaic
LoRa Long Range
BAN Building Area Network
MQTT Message Queuing Telemetry Transport
CoAP Constrained Application Protocol
TTN The Things Network
CT Current Transformer
ADC Analog to Digital Converter
RTC Real Time Clock
PIR Passive InfraRed

Appendix A

For all devices considered, the communication technology should be compatible with
data acquisition, and great importance should be given to equipment and devices that are
sold in the country (Chile). Table A1 shows the characteristics of the smart plugs. Due to
their significant similarity, the only one that allows the power measurement of the device
connected to it has been selected (Sonoff Pow R2). On the other hand, it is decided to use
the same smart plug but connected in series to the lighting circuit.
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Table A1. Characteristics of smart plug devices.

Model
Xiaomi

Smart Plug *
Sonoff Pow R2
Smart Plug **

S26 WiFi R2
Smart Plug ***

Maximum current 16 A 16 A 16 A
Energy measurement NO YES NO

Connectivity WiFi 2.4 GHz WiFi 2.4 GHz WiFi 2.4 GHz
Price 19.990 CLP 20.990 CLP 14.990 CLP

* https://www.paris.cl/mi-smart-plug-wifi-MKA3SGOLRU.html (accessed on 22 October 2022); ** https://
www.paris.cl/interruptor-wifi-diy-sonoff-pow-r2-MK4BFC5Y9J.html (accessed on 22 October 2022); *** https:
//www.paris.cl/sonoff-s26-r2/ (accessed on 22 October 2022).

For the energy measurement device, pzem-004t-100a equipment has been selected,
as shown in Table A2. In the case of the temperature and humidity measurement device,
significant similarities are observed in the characteristics of all the proposed alternatives.
Dragino LAQ4 has been selected, which reads the most number of variables, as shown in
Table A3. Table A4 shows the alternative gateway that allows obtaining the data from the
LoRa sensors, where minor differences are observed between each device. Since the LG308
LORAWAN gateway is available in the laboratory, it has been selected for this work.

Table A2. Characteristics of energy metering devices.

Model Sonoff POW R3 * Vbestlife ZMAi-90 ** PZEM ***

Voltage input/output 100–240 V 90–250 V 80–260 V
Maximum current 25 A 60 A 100 A

Price 48.990 CLP 38.570 CLP 26.812 CLP
* https://www.paris.cl/interruptor-wifi-de-alta-potencia-sonoff-powr3-MKSS3WI6FZ.html (accessed on
22 October 2022); ** https://articulo.mercadolibre.cl/MLC-1069867809-medidor-de-energia-inteligente-wifi-de-
consumo-unico (accessed on 22 October 2022); *** https://articulo.mercadolibre.cl/MLC-915082915-pzem-004t-
voltaje-de-corriente-multimetro-modulo-80-260v-100 (accessed on 22 October 2022).

Table A3. Characteristics of devices with ambient sensors.

Model LHT65 * Sonoff SNZB-02 **
Sonoff

TH16+AM2301 ***
Dragino LAQ4 ****

Parameters Temperature
Humidity

Temperature
Humidity

Temperature
Humidity

CO2, Temperature
Relative Humidity

Power Battery 2400 mAh CR2450—3V Power connected 4000mAh Li-SOC12
Connectivity LoRa ZigBee WiFi 2.4 GHz LoRa

Price 37.890 CLP 9.890 CLP 14.990 CLP 51.899 CLP
* https://altronics.cl/sensor-lht65-lorawan?search=LHT65 (accessed on 22 October 2022); ** https://altronics.
cl/sensor-temp-hum-zigbee-sonoff (accessed on 22 October 2022); *** https://sonoff.cl/pack-interruptor-diy-
sonoff-th16-sensor-de-temperatura-y-humedad-am2301/ (accessed on 22 October 2022); **** https://altronics.cl/
sensor-calidad-aire-laq4?search=LAQ4 (accessed on 22 October 2022).

Table A4. Characteristics of LoRa gateway.

Model LG308 * Laird RG191 ** LIG16-915 ***

Transceiver SX1308/SX1276 SX1301/SX1257 SX1302
Frequency 915 MHz 915 MHz 915 MHz

WiFi Connectivity WiFi 2.4 GHz WiFi 2.4 GHz WiFi 2.4 GHz
Price 249.900 CLP 499.990 CLP 154.690 CLP

* https://altronics.cl/lora-gateway-lg308 (accessed on 22 October 2022); ** https://mcielectronics.cl/shop/
product/gateway-lora-915mhz-wi-fi-bluetooth-ethernet-laird-rg191-laird-25707/ (accessed on 22 October 2022);
*** https://altronics.cl/lig16-gateway-lorawan (accessed on 22 October 2022).

The proposed alternatives for the local computing device with its main hardware
characteristics are summarized in Table A5. Considering the highest percentage of the
connectivity item and the cheap cost of the device, the Raspberry Pi 4B was chosen as the
local computing device.
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Table A5. Characteristics of computing devices.

Name Core/RAM Storage Connectivity Price

Raspberry Pi 4B * 4/4-8 SD Gigabit Ethernet
WiFi, BLE 78.390 CLP

Odroid-xu4 ** 8/2 Flash board Gigabit Ethernet 99.990 CLP
Jetson Nano
Nvidia *** 4/4 microSD Gigabit Ethernet 185.990 CLP

* https://altronics.cl/raspberry-pi-4-4gb (accessed on 22 October 2022); ** https://mcielectronics.cl/?s=Odroid-
xu4&post_type=product&product_cat=0, (accessed on 22 October 2022); *** https://mcielectronics.cl/shop/
product/kit-de-desarrollo-jetson-nano-nvidia-nvidia-27557/ (accessed on 22 October 2022).

Appendix B

Figure A1a shows the setup of the smart plug device, while Figure A1b shows the
setup of the module pzem-004t-100a. Figure A1c shows the configuration of the solar panel
measurement device. The CT sensor must be connected by wrapping the positive cable
of the panel, and the terminals of voltage test (brown → ground and red → VCC) are
connected in parallel to the current bus of the photovoltaic panel system. Figure A1d shows
the configuration of the Dragino LAQ4 device. Figure A2 shows the data obtained using
the weather station.

  
(a) (b) 

  
(c) (d) 

Figure A1. Setup of sensors and measuring devices: (a) smart plug device; (b) pzem-004t-100a
module for total power consumption; (c) monitoring the PV system; and (d) Dragino LAQ4 for indoor
environmental data.
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Figure A2. Weather station data obtained using Weather Link software.
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Abstract: Electricity consumption is rising due to population growth, climate change, urbanization,
and the increasing use of electronic devices. The trend of the Internet of Things has contributed to
the creation of devices that promote the thrift and efficient use of electrical energy. Currently, most
projects relating to this issue focus solely on monitoring energy consumption without providing
relevant parameters or switching on/off electronic devices. Therefore, this paper presents in detail
the design, construction, and validation of a smart meter with load control aimed at being part of a
home energy management system. With its own electronic design, the proposal differs from others
in many aspects. For example, it was developed using a simple IoT architecture with in-built WiFi
technology to enable direct connection to the internet, while at the same time being big enough to
be part of standardized electrical enclosures. Unlike other smart meters with load control, this one
not only provides the amount of energy consumption, but rms current and voltage, active, reactive,
and apparent power, reactive energy, and power factor—parameters that could be useful for future
studies. In addition, this work presents evidence based on experimentation that the prototype in
all its readings achieves an absolute percentage error of less than 1%. A real-life application of the
device was also demonstrated in this document by measuring different appliances and switching
them on/off manually and automatically using a web-deployed application.

Keywords: smart meter; power meter; internet of things; load control; energy meter; smart socket

1. Introduction

Energy consumption all over the world is increasing mainly because of population
growth, urbanization, and new technological trends that need a large amount of electricity
to work, such as smartphones, electric cars, and the mining of cryptocurrencies. However,
what is the problem with the high usage of power? We can examine this question from
different perspectives, such as the production approach. According to [1], fossil fuels
are the main source of energy worldwide, making up 62% of total consumption by 2021.
The problems with this class of resources are that they are non-renewable, so the more they
are used, the faster they disappear, and they also contribute significantly to global pollution
and climate change.

Additionally, many power plants or equipment installed inside the distribution infras-
tructure are not ready to handle the new levels of energy consumption that are required
by trend technologies. This results in inadequate power supply during peak hours for
end-users or even complete power outages [2]. The above issues are common in microgrids,
which are decentralized power systems composed of small, diverse sources of energy that
operate independently or in parallel with the main grid.

The increase in power consumption comes with a series of challenges that can be
addressed through better energy efficiency, which can be encouraged by the implementation
of Smart Grids (SGs). This distribution method enables a balance between supply and
consumption through an effective management based on the use of modern technologies
of measuring and communication [2–5].

Sensors 2022, 22, 7536. https://doi.org/10.3390/s22197536 https://www.mdpi.com/journal/sensors
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Traditional electric grids suffer from significant limitations because they do not have
the capability of anticipating or responding to sudden failures that may occur within
the structure. The nature of these power grids is their monodirectional communication
with end-users. Therefore, the supplier company does not receive timely feedback about
problems presented that might help it resolve them [6,7]. However, the bidirectionality of
smart grids, which allow both electricity production and demand to be coordinated, may
result in a better energy efficiency and in a higher level of customer comfort. For example,
in a conventional system when the required energy is greater than the available, the supply
company chooses to carry out total load shedding in areas of lesser commercial interest,
whereas in smart grids, information is delivered practically instantly from the end user, so
strategic areas or even appliances can be located to reduce consumption [2].

Following the information presented, how does a power grid become smart? To answer
this question, we need to take into account the instrument that enables the main feature of
SGs, that is, bidirectional communication. This characteristic is possible due to the Smart
Meter (SM), which is considered the key component inside this distribution architecture.
The smart meter is capable of measuring many electrical parameters, displaying locally or
remotely the gathered information and sometimes controlling loads [2,3,5,6].

The efficient disconnection of loads due to insufficient energy generation is one of the
most important problems in the field of smart grids; however, the consumer domain has
been the least explored [8]. In isolated microgrids, for example, this type of situation is
common, since the electricity produced is heavily reliant on renewable resources that are
available and/or stored. In this situation, if the available power is divided by the number
of dwellings inside the grid, the power will be variable. Therefore, this type of context
is where load control management at the appliance level plays an extremely significant
role. In recent years, in order to overcome the problem of the total electrical blackout,
an important area of research has been attracting growing interest since it focuses on the
design of Home Energy Management Systems (HEMS) that benefits both utility companies
and end-users [9].

In HEMS, the main goal is to ensure the user’s comfort while minimizing energy
consumption so as to achieve a balance between the supplier and demand. In energy
management on the domestic demand side, during the maximum usage window, there are
multiple limitations to optimally schedule loads. According to [10], household devices can
be categorized into two types: schedulable and non-schedulable. Moreover, schedulable
appliances can be interruptible and non-interruptible [2]. For example, a water heater can
be considered a programmable non-interruptible appliance, and a garden water pump can
be a programmable interruptible appliance.

The Internet of things (IoT) is an ideal architecture for the creation of energy manage-
ment systems that address the interaction with human beings, mainly because the devices
with an IoT scheme are those that are in contact with an environment and provide feedback
to the people through the internet [11]. Considering the above, and the importance of
smart meters and the management of household appliances within HEMS in a smart grid
system, this work presents the design and development of a smart meter within an IoT
scheme aimed at monitoring and controlling loads on the domestic demand side accord-
ing to their energy consumption, and thus consequently avoiding collapses or blackouts.
The development of this device, which is called Smart Meter with Load Control (SMLC)
in this document, took into account a few areas of opportunity found in related projects
that are studied in the next section. As a result, our work differs from the others in the
following ways:

• Simple IoT architecture (no gateway needed);
• Own design electronic implementation;
• Non-invasive electronic instrumentation;
• Integration of electrical parameters monitoring and load control;
• Scalability in standardized electrical installations;
• Presentation of calibration and validation of measurements.
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The hardware application of the prototype presented in this document was carried
out in different configurable priority environments, and the experiments took place in a
laboratory space. However, the developed device can also be used to optimize the use
of the energy generated by solar power plants, wind power plants, or some other green
energy sources used in isolated systems such as in a microgrid.

The content of this paper has been organized as follows: After this introductory section,
a review of the related works is presented in Section 2. The description and the process of
development of the proposed device can be found in Section 3. Section 4 presents details of
the experimental setup, an implementation in a real environment, the performance analysis,
and results. Finally, the paper is concluded in Section 5.

2. Related Works

In the state of the art, different projects were found which address the management
of loads at a domestic level from different approaches. For instance, Khan et al. in [12]
conducted a systematic review of various home energy management schemes. Several
topics were discussed, such as the advantages of HEMS, the coordination of Distributed
Energy Resources (DER) (local generation) and/or appliances mixed with different tariff
schemes that lead to an efficient electrical energy usage, and also the challenges of hardware
that each architecture faces. In addition, Qureshi et al. investigated in [13] the existence of
energy management systems for smart homes. According to the flaws that they found in the
reviewed projects, they proposed an energy management scheme for smart homes based on
the Internet of Things (IoT). Their design has a security mechanism to control end-to-end
communication and the use of smart scheduling and time management for controllable
and non-controllable household loads in order to monitor and reduce energy consumption.

Additionally, some researchers have studied the effects resulting from the demand
control. For example, in [14], the National Renewable Energy Laboratory (NREL) of the
United States conducted a study to identify the most effective way to reduce plug load
energy use, using three different approaches. One of them and the most effective method
was an automated energy management system which turns off equipment when it is unused
for a certain period of time. In addition, 126 persons were tested with this technique and
obtained a 21% energy reduction from the baseline.

Klein et al. in [15] simulated the operation of a multi-agent system. Their strategy is
about taking real information from a building and combining it with parameters given by
the occupants in order to manage and coordinate the different devices inside the building.
A 12% reduction in energy consumption and a 5% improvement in occupant comfort
are the impact they achieved. The proposal was never implemented in the real world.
Similarly, a comprehensive automation system for buildings was discussed in [16], where
they demonstrated, through a simulation, how the use of electrical energy is reduced by
controlling objects like heating ventilation, air-conditioning, lighting, and plugs.

On the other hand, some other studies are focused on the development or implemen-
tation of algorithms in the demand-side energy management framework. That is the case
of Ahmed et. al in [17]. For HEMS architecture, they created a new real-time load controller
with a scheduling technique based on a Binary Tracking Search Algorithm (BBSA). The goal
of this project is to achieve energy savings and limit household peak demand based on
the scheduled operation of various appliances according to specific time, resident comfort
restrictions, and priorities. Similarly, ref. [18] implemented a reinforcement learning algo-
rithm to a home energy management system with the purpose of optimizing the household
electric appliances power demand. It is important to highlight that, in the presented work,
a smart meter is the source of data for the applied algorithm. According to the simulations,
the approach this research took can save between 6.23% and 11.54% of electricity costs.

Rocha et al. published in [19] an artificial intelligence (AI) algorithm for energy
management on the demand side in smart homes. With a new methodology, they combined
three AI techniques to solve the planning of power demand in smart homes and reach
a harmony between the cost of energy and user comfort. Using the techniques of Elitist
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Non-dominated Sorting Genetic Algorithm II, Support Vector Regression and K-means
clustering, demand management was implemented taking into account the fluctuations in
the price of electricity over time and the priority of appliances. Furthermore, they were
able to consider forecasts of a distributed generation for the next day and determine user
comfort levels.

Other authors have also covered the topic of HEMS from the perspective of developing
and implementing devices for switching on/off household appliances, or measuring the
amount of energy consumed by those appliances. For instance, Kang et al. introduced
a light-powered remote control system that consumes absolute zero power in standby
mode. The goal of this scheme is to reduce the energy usage of appliances when they
are in standby mode. In their design, a 15 mW laser diode is mounted on a commercial
remote controller. A 2 cm × 2.5 cm photovoltaic array, an autonomous connection circuit
(ACC), and a latch type power relay are mounted on a receiver unit it does not have any
power supply. This receiver is a bridge between the appliance and the AC power line, so it
can completely de-energize equipment when they receive the shutdown signal from the
remote control. The receiver does not have any power supply, but when it receives light, it
energizes a capacitor and connects the appliance again [20].

The NREL in [21] presented research focused on plug load control and behavioral
change in office buildings. The study consisted of a deployment of advanced power strips
(APS) in GSA offices along with two plug load reduction strategies: schedule timer and load
sensing. Under the test conditions, APS implementation resulted in an average electricity
savings of 21% for laptops, 35% for printers, 7% for monitors, 12% for under-cabinet lights,
and 48% for shared equipment (office and kitchen combined). The APS characteristics
were four receptacles for plug-in devices, a fuse that trips at 1800 watts (W) and a manual
reset button, which allows the user to override the controls that were programmed into
the device. The APS used does not have direct internet communication so it has to transfer
data through Zigbee to a gateway, which must be within 50 m (164 feet) of the APS.

Park et al. proposed in [22] a Smart Energy Management Systems SEMS based on a
smart power strip and motion sensors. The power strip uses ZigBee wireless communica-
tion and relays to control sockets, as well as current transformers and an integrated circuit
to measure energy consumption in individual plugs. The SEMS can turn on/off loads in
two ways, depending on the test room activity based on motion sensors (whether or not
people are present) or according to a predetermined time of use. This SEMS does not use
an IoT architecture but rather has a computer server that allows the user to set timers and
view only the power and energy consumption.

In [8], Spanò et al. proposed an architecture for a smart meter based on the Internet of
Things with the intention to be part of the smart grid infrastructure. The scheme presented
is focused on the end-user in order to enable smart home applications such as smart plugs.
The device is capable of turning on/off electronic devices and also providing some electrical
parameters such as active, reactive and apparent power, power factor, and rms current and
voltage. The smart plug is based on the energy measurement unit ADE7953, and it uses a
shunt resistor as a current sensor, which requires an invasive application to function. This
outlet does not have direct internet communication, but it transmits directly to a gateway
using ZigBee technology, which is responsible for sending all the information to the cloud.

In the same way, Tsai et al. [23] worked on a residence energy control system based on a
wireless smart socket and IoT. Their implementation has three major components including
smart socket, home gateway, and energy controller. The smart socket was equipped with
a digital power meter which supports between 50 V and 350 V, and current from 10 mA
to 15 A. The smart socket itself does not have direct internet communication. It transmits
the information via ZigBee to a gateway equipped with 64 MB SDRAM, ZigBee module,
100 Mbps Ethernet inter- face, and USB I/O interface. The energy controller was developed
on a server with an Intel i5-2300 2.8 GHz processor, 16 GB RAM, 1 TB hard disk, and a Linux
3.8.13 operating system. With all that hardware, the system provides four control modes,
including peak-time control, energy-limit control, automatic control, and user control. In
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addition, they showed how the proposed scheme could save up to 43.4% of energy for
some appliances in one weekday, but there is no electrical parameters’ validation.

Pawar and Vittal K in [2] worked on the design and development of an intelligent
energy management system integrated into the IoT framework and addressed to a smart
grid environment, which is based on a smart socket module. The electronic circuit they
made is big compared to conventional plugs because it is built based on existing electronic
modules, such as the Arduino Uno, a relay module for load control and an Xbee for
wireless communication. It also has the LEM LV-25P voltage transducer which requires
a transformer to be implemented and the LEM LA-55P current transducer. Their system
only provides the electrical parameters of rms current and voltage, apparent power, power
factor, and energy in watt-hours. As in [8], the smart socket module does not have direct
internet communication, so it sends all the collected data by Xbee to a gateway, which can
upload the information to a cloud database.

Similarly, in [24], an IoT smart socket for electricity control in a home environment was
presented. The system uses two invasive current sensors, two relays to switch on/off up to
two loads per device, an AC/DC converter to supply the whole circuit from the line power,
and the Wemos D1 Mini development board with a WiFi module to control the complete
system and enable internet communication. All the components and connections were
enclosed inside a wall socket. However, the system did not include any voltage sensors, so
in order to compute the power consumption, a voltage of 220 V rms was assumed. In the
web application, the user can monitor current from the smart socket plugged, turning on/off
the electricity switch manually and setting a timer for turning on/off the smart socket.

An Internet of Things smart energy meter for monitoring energy usage in a device-
level was presented in [25]. Their concept consists of an outlet capable of obtaining rms
current and voltage and active power and energy, but it does not have the feature of
controlling the load of what is connected to it. Karthick et al. in [26] designed and built an
IoT-based smart compact energy metering system to monitor and control energy usage and
power quality with demand-side management for a commercial building. In their scheme,
there are groups of primary and secondary loads to control and monitor their consumption,
but there is not a measurement of energy in individual household devices. The system as a
whole has a distributed architecture, which has a central measurement system based on
the PZEM-004T (sensor with an invasive application) and different smart switches. Each
component uses the ESP8266 to communicate with a Raspberry Pi, which is responsible for
calculating some other electrical parameters and sending the information to the cloud.

To conclude with this section, ref. [27] conducted an investigation that provided
valuable information for the design and implementation of smart energy management
systems. The authors focused on providing a better understanding of user perception and
motivations when adopting energy management systems for plug loads in the workplace.
With a comprehensive analysis of what they obtained in the research, they proposed seven
design implications that could improve the following areas in SEMS: external and internal
influence, user appeal, user control, reliability, ease of use, personalized and contextualized
information, and data privacy. The same authors, but in [28], worked with strategies to
improve the implementation of plugs with load control. Tekler et al. state that real-world
applications in this area remain relatively unexplored due to several issues related to
deployment viability, energy-saving potentials, and system acceptance. For the above,
they presented a novel IoT-based occupancy-driven plug load management system, called
“Plug-Mate”, designed to reduce plug load energy consumption and user burden through
intelligent plug load automation. The researchers spread 30 smart plugs inside a university
office space that recorded users’ real-time plug load power consumption, which was
transmitted to a gateway device via Z-wave communication protocol. They proposed and
applied different levels of plug load automation, including manual, predefined schedules,
and occupancy-driven, all of them implemented from an online user interface. With the
above strategies, they achieved an average energy savings of 51.7% among different plug
load types evaluated.
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Discussion

As a result of the study of the existing works that address home energy management
systems by developing and implementing devices with load control and energy monitoring,
it was concluded that there are aspects that need to be improved. For example, those based
on IoT architectures that require more than one device for internet connection make it
more difficult for users to implement and adapt. In addition, some approaches do not use
their own electronic circuits, limiting them to the characteristics provided by smart meter
manufacturers or electronic module manufacturers. Additionally, customized circuits make
it easier to develop devices that are scalable with standardized electrical systems.

Likewise, how current is measured is a topic to take into account. An important
drawback of invasive sensors, such as shunts, is that they are unavoidably electrically
connected to the current to be measured and the sense circuit, which means there is no
isolation and that the whole circuit is less protected. The above is not the case of current
transformers or some Hall effect sensors [29].

Even though the main idea in HEMS is the efficient consumption of energy, there is
no reason to only present this electrical parameter. Smart meters with load control that
provide more electrical parameters (such as active, reactive, apparent power, power factor,
line frequency, etc.) can be used in a wide range of scenarios, including detecting appliance
failures, or detecting loads automatically with machine learning algorithms.

Furthermore, how the user interacts with energy management systems is very im-
portant for adaptation. Some applications only focus on automatic control and do not
provide direct manual control for the user. Some others, however, use manual control
only and do not incorporate automatic functions to make their systems more efficient. In
addition, many studies do not present how their devices were calibrated and a validation
of their measurements, which adds an uncertainty regarding how correct the information
they provide is. Moreover, a demonstration of how the proposed system functions is very
important, so it is critical to illustrate how the system behaves with real appliances in
real situations.

A comparison is presented in Table 1 among existing works related to the application
of energy management systems by developing and implementing devices that control load
and monitor energy consumption.

Table 1. Comparison among existing works that apply energy management systems by developing
and implementing devices that control load and monitor energy consumption.

Authors (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Kang et al. [20] No No Yes Yes No No Yes No 1 No No Yes
Metzger et al. [21] Yes No No Yes Yes No No yes 4 No No Yes

Park et al. [22] No No Yes Yes Yes No No Yes 3 No No Yes
Spanò et al. [8] Yes No Yes No Yes Yes Yes Yes 1 Yes Yes Yes
Tsai et al. [23] Yes No Yes - Yes Yes Yes Yes 1 No No Yes

Pawar et al. [2] Yes No Yes Yes Yes Yes No Yes 1 No No Yes
Phangbertha et al. [24] Yes Yes No No Yes No Yes Yes 2 Yes No Yes
Muralidhara et al. [25] Yes Yes Yes No Yes No Yes Yes 1 - Yes Yes

Karthick et al. [26] Yes No Yes yes Yes Yes Yes Yes - No No Yes
Tekler et al. [28] Yes No No - Yes No Yes Yes 1 No No No

Us Yes Yes Yes Yes Yes Yes Yes Yes 2 Yes Yes Yes
Note: (1) Access to Internet; (2) Simple IoT architecture (no gateway needed, on board internet connection);
(3) Electronic board design and implementation; (4) Non-invasive current sensor; (5) Energy consumption;
(6) Other electrical parameters (V rms, A rms, VA, VAR, pF, etc.); (7) Remote manual load control; (8) Automatic
load control; (9) Number of sockets per device; (10) Scalability in standardized electrical installations; (11) Include
calibration or validation of measurements; (12) Implementation in a real environment.
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3. Description and Development of the Smart Meter with Load Control

In order to have a better understanding of the usefulness of the device proposed in
this document, an example of application in an isolated microgrid context can be seen
in Figure 1. As mentioned above, with this type of generation and distribution grid,
the amount of electricity that homes can use is limited by the availability of renewable
sources, and, when power is insufficient, it is necessary to limit it among users. Therefore,
the use of a smart central meter placed before the power panel is essential to know how
much power is consumed in each dwelling in real time. As a result of the information
that is collected for each house and the avoidance of a total power outage in the grid,
the smart meter with load control in an outlet format becomes an important tool, since it
is capable of sending electrical data (rms voltage and current, active and reactive energy,
power factor, and active, reactive and apparent power) through the internet about the
electrical equipment connected to it, allowing better and substantiated decision-making.
Furthermore, with this device, strategic appliances could be turned on or off remotely,
and they could also be categorized in order to schedule and prioritize their usage.

Photovoltaic units

Wind turbines

Other green power

Photovoltaic units

Wind turbines

Other green power

Smart meter with 
load control

Smart central
 meter

Renewable resources

Figure 1. Environment of usage of the smart meter with load control.

3.1. Architecture

The smart meter and load controller is used here to replace the traditional electrical
outlet, measure energy consumption at a device level, and allow the on/off switching
of equipment connected to it. In addition, the complete functionality of the system is
monitored wirelessly through a web application. In order to achieve the above features,
the device’s scheme is built around the ADE7758 as an energy measurement unit, the
ESP32 microcontroller, the CST-1020 current transformer, a resistive attenuator for the
voltage input, the SRA-05VDC-CL relays, and an integrated power supply HLK-PM01.
The architecture used can be seen in the diagram of Figure 2.

Figure 2. Architecture of the smart meter with load control.
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3.1.1. Energy Measurement Unit: ADE7758

The ADE7758 is a high accuracy three-phase electrical energy measurement IC that
supports the implementation of IEC 60687, IEC 61036, IEC 61268, IEC 62053-21, IEC 62053-
22, and IEC 62053-23 standards. It has an SPI serial communication interface and two pulse
outputs to interact with external equipment. The ADE7758 incorporates a second order
Delta-Sigma type ADC, a digital integrator, reference circuits, a temperature sensor and
also the implementation algorithms to determine the active, reactive and apparent power,
active and reactive energy, and rms voltage and current calculations, all in a dynamic range
of 1000:1. Many three-phase configurations can be used, either for delta or star services of
three or four cables, but it can be also implemented for single-phase systems; such is the
case in this project.

3.1.2. Microcontroller: ESP32

The ESP32 is a 2.4 GHz Wi-Fi and Bluetooth microcontroller created by Espressif
Systems and manufactured by TSMC with 40 nm ultra-low power technology. The product
is designed to be robust and reliable in a variety of applications and power scenarios, and to
provide optimal RF performance and power consumption. ESP32 is designed for mobile
applications, wearable electronics and projects based on the Internet of Things platform. It
features all the state-of-the-art characteristics of low-power chips, including fine-grained
clock gating, multiple power modes, and dynamic power scaling. In addition, the ESP32
includes a dual core CPU, a 520 KiB SRAME memory, and peripheral interfaces, such as
I2C, SPI, I2S, UART, CAN BUS, etc.

3.1.3. Current Sense Input

The ADE7758 has six analog inputs divided into two sets for current and voltage
measurement. The current group consists of three pairs of fully differential voltage inputs:
IAP and IAN, IBP and IBN, and ICP and ICN, of which just the first two were used. These
fully differential voltage input pairs have a maximum differential signal of ±0.5 V. Due
to the above, as well as the size of the traditional electrical outlets and the fact that they
typically handle up to 15 A, an insert mount transformer (CST-1020) was used as current
sensor. It has a turns ratio of 1000:1 and is capable of handling 20 A. It is also able to
operate at 50 Hz as well as 60 Hz. For the electronic instrumentation, shunt-type load
resistors were placed at the output of the secondary winding of the transformer to generate
a voltage signal that is directed to IAP and IAN. In addition, RC low pass filters with a
corner frequency of 4.8 kHz were used on these analog inputs, Figure 3.

ADE7758

IAP

IAN

CST-102

Figure 3. Electronic instrumentation of current input.

3.1.4. Voltage Sense Inputs

Figure 4 shows the phase voltage channel signal path on the SMLC circuit. The voltage
group has three single-ended voltage inputs: VAP, VBP, and VCP. These single-ended
voltage inputs have a maximum input voltage of ±0.5 V with respect to VN. Only VAP and
VN were used here. The line voltage is attenuated using a simple resistor divider network
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before it is presented to the ADE7758. The attenuation network with a ratio of 1000:1 on
the voltage channels is designed such that the corner frequency (3 dB frequency) of the
network matches that of the RC (anti-aliasing) filters on the current channels inputs.

ADE7758

VAP

VAN

Figure 4. Electronic instrumentation of voltage input which allows a maximum input of 353 V rms.

3.1.5. Load Switcher

In conventional outlets, there are at least two sockets to power different instruments
at the same time; this is why the SMLC is designed to switch on/off two plugs individually.
This function is achieved by using two electromechanical relays, specifically the SRA-05-
VDC-CL. According to its technical specifications, the coil’s nominal voltage is 5VDC, its
nominal current is 120 mA, and it can handle loads up to 20 A and switch currents up to 10
A. This relay was chosen because of the good relationship between size and performance.

3.2. Printed Circuit Board and Enclosure

All the components of the architecture were taken into account in designing a schematic
and a two-layer PCB, which is shown already manufactured with a size of 3.3′′ × 3′′ and
with all the elements soldered in Figure 5. The SMLC aims to replace the traditional do-
mestic electrical outlet so the electronic circuit was placed inside a 4′′ × 4′′ metal electrical
wall box. On the circuit board, neutral and phase were connected to the voltage inputs,
the hot wire was also passed through the current transformer, and the relays were wired to
a duplex socket, where each plug was labeled as “A” and “B”. Figure 6 is the final prototype
of the SMLC.

ESP32

Relays

AC/DC

CT

Voltage
attenuator

ADE7758

3.3"

     3"

Phase 
input

Figure 5. Printed circuit board and components of the SMLC.
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Plug A

Plug B

(a) (b)

Figure 6. (a) Plugs of the SMLC; (b) electrical wiring of the SMLC.

3.3. Calibration

The calibration of the SMLC is a procedure for configuring some registers of the
ADE7758 through spi communication, for which the manufacturer supplies a method
called line accumulation [30]. In this process, the target is to determine the offset for rms
voltage and current, the gain for active, reactive, and apparent power, as well as the phase
delay and the offset for active and apparent energy. Part of the calibration process is to
measure electrical parameters under different electrical load conditions and compare them
with a reference meter, for which the HIOKI PW3360-20 was used, whose characteristics
can be found in [31].

3.3.1. Calibration of rms Voltage and Current

Adding an offset to the input signals helps to reduce the noise or previous offset that
can appear while a measurement is in process. This can be accomplished by modifying
thexIRMSOS (0x36) and xVRMSOS (0x33) registers of the ADE7758. To calculate the value
to establish in these registers, the following steps were carried out:

1. Activation of zero crossing detection on the input phase by modifying the LCYCMODE
(0x17) register;

2. Modification of the register MASK (0x18) to allow the interrupt pin to be activated
with a zero crossing of phases;

3. Set up the calibration system to achieve a test rms current, nominal rms voltage,
and minimum rms current and voltage;

4. Average of N samples from the lecture of the registers xIRMS (0x0A) and xVRMS
(0x0D) after each interruption caused by the zero crossing detection;

5. Calculation of the offsets with Equations (1) and (2).

xIRMSOS =
1

16384
×

(
I2
TEST × IRMS2

IMIN
)− (

I2
MIN × IRMS2

ITEST
)

I2
MIN − I2

TEST
. (1)

xVRMSOS =
1

64
× (VNOM × VRMSVMIN)− (VMIN × VRMSVNOM)

VMIN − VNOM
. (2)

6. Adjustment of the registers xIRMSOS (0 × 36) and xVRMSOS (0 × 33) with the values
calculated.

For the calibration system, a test current (ITEST) of 10 A rms and a minimum cur-
rent (IMIN) of 0.052 A rms were used. In Equation (1), IRMSIMIN corresponds to the
value of the register xIRMS (0x0A) when IMIN is measured, as well as IRMSITEST with
ITEST . The register gave an average of 5221 with a current of 0.052 A rms and 100 sam-
ples, whereas with 10 A rms 1,045,378. With the values of the readings, the calculation of
xIRMSOS resulted in 140. On the other hand, xVRMSOS was calculated using a nominal

52



Sensors 2022, 22, 7536

voltage (VNOM) of 123 V rms and a minimum voltage (VMIN) of 20 V rms. In Equa-
tion (2), VRMSVNOM is the reading of the register xVRMS (0x0D) when measuring VNOM,
and VRMSVMIN when measuring VMIN . This register averaged 565,547 with 100 samples
of 123 V rms and 94,088 with 20 V rms; therefore, the outcome of Equation (2) was −40.

3.3.2. Gain Power Calibration

This calibration is primarily used to adjust active, reactive, and apparent power
measurements. The ADE7758 accomplishes this by utilizing its three registers: xWG,
xVARG, and xVAG (0x2A to 0x32), which can be used to increase or decrease the amplitude
of the reading. In order to calculate the mentioned gains, the following steps were taken:

1. Clearing of the xWG, xVARG, and xVAG registers;
2. Selection of phase A, B, or C for a line period measurement with register MMODE

(0x14);
3. Set up the ADE7758 for the line accumulation mode by writing to LCYCMODE

register;
4. Set the number of half-line cycles for line accumulation by modifying the register

LINECYC (0x1C);
5. Modification of the interrupt mask with the register MASK (0x18) in order to enable

the interrupt signaling the end of the line cycle accumulation;
6. Set up the calibration system. To obtain the gain for active and apparent power, it

is necessary to work with a test current and a nominal voltage with a unity power
factor;

7. Reset the interrupt status register by reading RSTATUS (0x1A);
8. Read the energy registers xWATTHR and xVAHR after the interruption of line accu-

mulation has occurred and store the values;

(a) Calculate the values to be written to xWG register according to the following
equation:

xWG =

(
WATTHREXPECTED
WATTHRMEASURED

− 1
)
× 212, (3)

before obtaining xWG, an expected value in the register of active energy must
be determined, which is represented by:

WATTHREXPECTED =
4 × 3200 × ITEST × VNOM × cos(θ)× AccumTime × APCFDEN

1000 × 3600
, (4)

where θ represents the phase angle between the voltage and the current,
and AccumTime is the total energy accumulation time inside the ADE7758
according to the number of half-line cycles selected. Tacum can be determined
as

AccumTime =
No. o f hal f cycles

2 × line f requency × No. used phases
, (5)

whereas APCFDEN is

APCFDEN = INT

⎛
⎝ 16000 × VNOM

VMAX
× ITEST

IMAX
3200×ITEST×VNOM

1000×3600 × cos(θ)

⎞
⎠. (6)

(b) Calculate the values to be written to the xVAG register using the following
equation:

xVAG =

(
VAHREXPECTED
VAHRMEASURED

− 1
)
× 212, (7)

VAHREXPECTED is the same as WATTHREXPECTED as long as a unity power
factor is being used for the calibration system.
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9. Write the outcomes of Equations (3) and (7) into registers xWG and xVAG.
10. Set up the calibration system. To obtain the gain for reactive, it is necessary to work

with a test current and a nominal voltage with a power factor of 0.5.
11. Repeat step 7.
12. Read the energy register xVARHR after the interruption of line accumulation has

occurred and store the values.
13. Calculate the values to be written to the xVARG register using Equation (8):

xVARG =

(
VARHREXPECTED
VARHRMEASURED

− 1
)
× 212, (8)

where VARHREXPECTED is

VARHREXPECTED =
4 × 3200 × ITEST × VNOM × sin(θ)× AccumTime × VARCFDEN

1000 × 3600
, (9)

and VARCFDEN is calculated as

VARCFDEN = INT

⎛
⎝ 16000 × VNOM

VMAX
× ITEST

IMAX
3200×ITEST×VNOM

1000×3600 × sin(θ)

⎞
⎠. (10)

14. Write the outcome of Equation (8) into register xVARG.

The calibration system consisted of a nominal voltage of 123.9 V rms at 60 Hz, a test
current of 10 A rms with unity power factor, which means there is no phase shift between
the voltage and current signals (θ = 0), and 128 half cycles for the line accumulation time.
Once all the electrical physical parameters had been established, the energy consumption
measurements were taken. The results were 12,862 and 12,824 for registers xWATTHR
and xVAHR, respectively, while, using Equation (4), the expected value was 11,950 for
both registers. Utilizing Equations (3) and (7) and the data previously obtained, xWG and
xVAG were calculated, resulting in −279 and 290, respectively. According to [30], the gain
adjustment for reactive power requires a power factor of 0, which was not achievable with
the available loads; therefore, the lowest possible power factor was used: 0.1190, which
means an angle of 83.0617◦ between the voltage and the current. In this calibration, the
nominal voltage was 125.85 V rms, the test current was 5.06 A rms, and the line accumu-
lation was 128 half cycles. This scenario caused the reactive energy register xVARHR to
return 6565, while the expected value was 6143 based on Equation (9). Using the previous
data in Equation (8), the gain for active power to write in the register xVARG was −264.

3.3.3. Phase Calibration

The ADE7758 includes a phase calibration register in each current channel xPHCAL
(0x3F to 0 x41) to compensate small phase errors caused mainly by current transformers,
complex phase errors must be fixed by adjusting the values of the antialiasing filters from
Figure 3. Phase calibration consists of adding a time delay that can be in a positive or
negative direction. To calculate the degree of phase shift of the signal and the value to be
written in the xPHCAL register, the following steps were followed:

1. Repeat steps 1, 2, 3, 4, and 5 of the gain calibration to select the phase to calibrate, set
the line accumulation mode, define the number half cycles in the line accumulation,
and set the interrupt mask;

2. Set up the calibration system. Two active power measurements are required for this
calibration, one with a nominal voltage and a test current with a unity power factor
and another with a power factor of 0.5;

3. Reset the interrupt status register by reading RSTATUS (0x1A);
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4. Read the active energy register xWATTHR after the interruption of line accumulation
has occurred and store the values;

5. Repeat steps 2, 3, and 4 but using a power factor of 0.5 in the calibration system;
6. Calculate the phase error in degrees with the Equation (11):

phaseError(°) = Arcsin
(

digitalError√
3

)
, (11)

to determine phaseError(°) it is necessary to obtain a digital phase error, which can be
computed by:

digitalError =
xWATTHRp f=0.5 − xWATTHRp f=1

2
xWATTHRp f=1

2

. (12)

7. Find the value to be written in the register xPHCAL with the following equation:

xPHCAL = phaseError(°)× 9.6μs
Ph/Lsb/W

×
1

line f requency×9.6μs

360
, (13)

where

PH/Lsb/W =

{
1.2μs digitalError < 0
2.4μs digitalError > 0

.

8. Modify the register xPHCAL with the outcome of Equation (13).

For the phase calibration, as mentioned in step 2, two active energy measurements are
required. The first one was carried out in a unity power factor with a nominal voltage of
123.6 V rms at 60 Hz and a test current of 7.21 A rms. With the above electrical conditions
and 128 half cycles for the line accumulation time, the active energy register xWATTHR
showed a value of 8641. In the second measurement a power factor of 0.505, a nominal
voltage of 123.4 V rms at 60 Hz, and a current of 7.22 A rms were used, resulting in a value
of 4470 in the xWATTHR register. A digital phase error of 0.0346 was obtained substituting
the measured values in Equation (12), and this datum was used in Equation (11) to find that
the phase had a shift of −1.1447°. For the phase error correction, the value to be written in
the xPHCAL register was obtained with Equation (13), resulting in a value of −44.

3.3.4. Power Offset Calibration

This calibration serves to meet exceptional performance within the dynamic measure-
ment range of 1000:1, especially when power consumption levels are very low. The ADE7758
has offset registers for the active and reactive power, xWATTOS (0x39 to 0x3B) and
xVAROS (0x3C to 0x3E), whereas the offset in the apparent power measurements is af-
fected by adjusting the rms offset registers. This calibration must be performed with a
test current as close as possible to the minimum current within the dynamic range, and a
greater number of half cycles for the line accumulation is also required to avoid the effect of
quantization errors. In order to calculate the power offsets, the following steps were taken:

1. Repeat steps 1, 2, 3, 4, and 5 of the gain calibration to select the phase to calibrate, set
the line accumulation mode, define the number half cycles in the line accumulation,
and set the interrupt mask;

2. Set up the calibration system with a nominal voltage and a test current achieving a
unity power factor;

3. Reset the interrupt status register by reading RSTATUS (0x1A);
4. Read the active energy register xWATTHR after the interruption of line accumulation

has occurred and store the values;
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5. Calculate the value to be written in the register xWATTOS with:

xWATTOS =
o f f setW × 4

AccumTime × CLKIN
× 229, (14)

where CLKIN is the oscillator frequency used for the ADE7758, and O f f setW can be
obtained as

o f f setW =
xWATTHRIMIN × ITEST −

(
xWATTHRITEST × No. o f hal f cycles IMIN

No. o f hal f cycles ITEST

)
× IMIN

IMIN − ITEST
. (15)

6. Modify the value of the register xWATTOS;
7. Modify the calibration system with a nominal voltage and a test current at a power

factor of 0;
8. Reset the interrupt status register by reading RSTATUS (0x1A);
9. Read the reactive energy register xVARHR after the interruption of line accumulation

has occurred and store the values;
10. Calculate the offset for the reactive energy with Equation (16).

xVAROS =
o f f setV × 4

AccumTime × CLKIN
× 229, (16)

o f f setV is equal to

o f f setV =
xVARHRIMIN × ITEST −

(
xVARHRITEST × No. o f hal f cycles IMIN

No. o f hal f cycles ITEST

)
× IMIN

IMIN − ITEST
. (17)

11. Write the Outcome of Equation (16) in the Register xVAROS

In order to obtain the value of xWATTOS, the calibration system was set to 123.5 V
rms as nominal voltage and 0.0525 A rms as a minimum test current with a unity power
factor. For the line accumulation, 4096 half cycles were used, resulting in a reading in the
active energy accumulation register of 1991, a value that corresponds to xWATTHRIMIN .
For xWATTHRITEST , a nominal voltage of 123.4 V rms, a test current of 7.2 A rms, and 128
half cycles for line accumulation were used, resulting in a value of 8826 in the xWATTHR
register. Once the xWATTHRIMIN and xWATTHRITEST readings were obtained, both with
different accumulation times and a 10 Mhz clock (CLKIN), the o f f setW was calculated
with Equation (15) giving an outcome of 63, which was used in Equation (14) for xWATTOS,
resulting in 397. In the same way, to calculate reactive power offset, a 123.5 V rms voltage
and a minimum test current of 0.06 A rms were used, but now with a power factor as
close to 0 as possible, 0.1260 in this case. The line accumulation was performed using 4096
half cycles, resulting in a value of 1831 in the reactive energy register, which was used as
xVARHRIMIN . For xVARHRITEST , a nominal voltage of 123.3 V rms and a test current of
7.22 A rms with a power factor of 0.1260 were used. These electrical conditions, along with
128 half cycles, resulted in a reading of 7655 for the reactive energy register. As a result of
the above measurements, o f f setV had a value of 206 according to Equation (17), and, using
that in Equation (16), xVAROS had a value of 1396.

3.4. IoT Integration of the SMLC

One of the novelties of this work is that the SMLC is capable of providing all the
electrical parameters previously mentioned in real time through the internet, and it can
also receive orders to turn on/off any device that is connected to it. According to [32], there
are six levels of IoT implementations and the integration of the SMLC corresponds to the
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last one because of the following characteristics: (1) it is designed to be an independent
end node within a network of multiple SMLCs, the printed electronic circuit developed
enables the wide scalability where each SMLC has an internet connection thanks to the
ESP32 microcontroller. (2) The information that is sent by the SMLC is stored in a cloud
database, specifically MongoDB Atlas. (3) Only electrical variables are calculated by the
SMLC; everything else needed is computed in the server. (4) In order to visualize the
data, we developed a web app using Node js and Express as a framework, and the PaaS
(Platform as a service) Heroku for deploying. The web application can be seen in Figure 7.
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Figure 7. Web application to monitor two smart meters with load control.

It is important to point out that the communication between the SMLC and the server
is carried out by the network protocol based on the publish/subscribe method MQTT over
TCP/IP sockets, mainly because its publish operation is faster and consumes less energy.
On the other hand, to avoid data going through the server and after that to the webapp,
we implemented MQTT over websockets to receive data directly from the broker. This
technique allows for achieving a latency under 500 ms, from when the measure is taken to
it is shown in the cloud interface. An example of how data are transferred can be seen in
Figure 8.
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Figure 8. Data flow in the IoT scheme for the SMLC.

4. Experiments and Results

4.1. Data Validation

In the measurement tests, a modular electrical training system with switchable loads
was used to control the physical scenarios of the experiments and thus create different
electrical conditions. The modules applied were an AC variable power supply and banks
of resistors and inductors. To compare the SMLC readings, the HIOKI PW3360-20 network
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analyzer was used as a reference measurement instrument. The setup for the validation
can be seen in Figure 9.

Figure 9. Modular electrical training system used for calibration and validation of the SMLC readings.

In order to achieve better data validation, all the electrical parameters the SMLC can
provide were tested twice, once in a unit power factor and once in a 0.5 power factor.
The first experiment consisted of making different current values (from 10 A rms to 0.5 A
rms) flow through the SMLC using the modules of the power supply (at 127 V rms) and
the banks of resistors (p f = 1). Under the above conditions, the readings of rms current
and active and apparent power were taken. In Table 2, all the outcomes of the SMLC
and how they were compared with the HIOKI PW3360-20 measurements can be found.
Calculating each error in the readings yields a mean absolute percentage error (MAPE) of
0.1340, and we also carried out a linear regression analysis, Figure 10, to determine the
coefficient of determination R2 that can be used to weigh how well the SMLC behaves
against the reference.

0 1 2 3 4 5 6 7 8 9 10

Hioki
0

2

4

6

8

10

12

SM
LC

 

R2= 0.99999795

Figure 10. R2 of SMLC against HIOKI PW3360-20 using rms current measurements.
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Table 2. Comparison of rms current samples between HIOKI PW3360 and the SMLC.

HIOKI PW3360 SMLC %Error

10.031 10.036 0.0498
9.559 9.566 0.0732
9.023 9.03 0.0776
8.489 8.494 0.0589
8.06 8.058 0.0248

7.531 7.535 0.0531
7.049 7.053 0.0567
6.532 6.529 0.0459
6.022 6.026 0.0664
5.571 5.568 0.0539
4.999 4.998 0.0200
4.516 4.512 0.0886
4.028 4.025 0.0745
3.516 3.513 0.0853
3.092 3.088 0.1294
2.582 2.58 0.0775
2.056 2.052 0.1946
1.553 1.55 0.1932
1.038 1.033 0.4817
0.516 0.512 0.7752

% MAPE 0.1340

As mentioned in the previous paragraph, in addition to the rms, current other electrical
variables were tested, and the R2 and the mean absolute percentage errors for all the
different parameters are shown in Table 3. For instance, the MAPE for active power was
0.1639 and the R2 0.99999460, whereas the apparent power results were identical to those
for active power because, for this experiment, there was no phase shift between current
and voltage, which means a unit power factor.

Table 3. Resume of all the mean absolute percentage errors and R2 of different electrical variables
under a unit power factor.

Electrical Parameter %MAPE R2

Rms current 0.1340 0.99999795
Active power 0.1639 0.99999460

Apparent power 0.1639 0.99999460

After finishing the unit power factor trial, distinct power factors were evaluated too,
and in order to do so, some banks of inductors were added to the setup to mix them with
the resistor loads and thus lag the voltage against the current. Initially, the experiment had
a power factor of approximately 0.95, and after that, it gradually decreased in steps of 0.05.
The complete readings are in Table 4 along with the error resulting from the comparison
with the HIOKI PW3360-20 values, the mean of which was 0.7976%. Moreover, the linear
regression analysis is in Figure 11, with an R2 of 0.99974430.
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Table 4. Comparison of power factors samples between HIOKI PW3360 and the SMLC.

HIOKI PW3360 SMLC %Error

0.9512 0.95 0.1262
0.9074 0.906 0.1543
0.8508 0.848 0.3291
0.8047 0.802 0.3355
0.7522 0.746 0.8242
0.7024 0.697 0.7688
0.6578 0.652 0.8817
0.6028 0.598 0.7963
0.5526 0.548 0.8324
0.5037 0.5 0.7346
0.4499 0.446 0.8669
0.4076 0.404 0.8832
0.3511 0.346 1.4526
0.2963 0.294 0.7762
0.2486 0.245 1.4481
0.2055 0.204 0.7299
0.1667 0.164 1.6197

% MAPE 0.7976
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Figure 11. R2 of SMLC against HIOKI PW3360-20 using power factors’ measurements.

Similarly to the last experiment, every time a power factor reading was made, other
electrical values were taken, in this case rms current and voltage and active, apparent,
and reactive power. To summarize the results, Table 5 contains the MAPE for every parame-
ter according to SMLC and HIOKI PW3360-20 measurements, as well as the corresponding
R2. In this table, it can be seen that now active and apparent powers have different values;
this happens because the power factor is not a unit anymore, which gives a MAPE for
active powers of 0.4623% and an R2 of 0.99992047, whereas, for the apparent powers, the
MAPE was 0.0900% and the R2 0.99994137. It was possible to evaluate the reactive power
using this test, which resulted in a MAPE of 0.2443% and R2 of 0.99974305.
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Table 5. Resume of all the mean absolute percentage errors and R2 of different electrical variables
under different power factors.

Electrical Parameter %MAPE R2

Power factor 0.7976 0.99974430
Rms current 0.0633 0.99997885

Active power 0.4623 0.99992047
Apparent power 0.0900 0.99994137
Reactive power 0.2443 0.99974305

In order to test how well the SMLC calculates the energy consumption, the source
power module (at 126.15 V rms) and the load banks were set, obtaining an rms current of
6.1 A rms and a 0.5 power factor. The SMLC provides this information every second, but to
synchronize the kW/h samples with those of the HIOKI PW3360-20, they were compared
in steps of one minute. The mean absolute percentage error of the SMLC active energy
measurements versus the HIOKI PW3360-20 readings was 0.4242%, and its R2 value was
0.99988799, whereas, for the reactive power, it was 0.1095% and 0.999999309, respectively.
The last evidence is summarized in Table 6.

Table 6. Resume of the mean absolute percentage errors and R2of active and reactive power using
126.15 V rms and 6.1 A rms.

Electrical Parameter %MAPE R2

Active energy 0.4242 0.99988799
Reactive energy 0.1095 0.99999309

A final experiment was conducted to validate the rms voltage estimation by subjecting
the SMLC voltage inputs to values from about 15 V rms to 125 V rms in steps of 5 V rms
using the variable part of the power source module. The complete samples are listed in
Table 7, along with their respective errors. Considering all the readings, the MAPE resulted
in 0.3774% and, according to the linear regression analysis of Figure 12, R2 in 0.99996019.
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Figure 12. R2 of SMLC against HIOKI PW3360-20 using rms voltage readings.
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Table 7. Comparison of rms voltage samples between HIOKI PW3360 and the SMLC.

HIOKI PW3360 SMLC %Error

15.44 15.4 0.2591
20.16 20.026 0.6647
25.44 25.19 0.9827
29.95 29.707 0.8114
35.12 34.86 0.7403

40 39.638 0.9050
45 44.672 0.7289

49.94 49.605 0.6708
55.15 54.82 0.5984
60.13 59.812 0.5289
65.11 64.833 0.4254
70.02 69.834 0.2656
75.14 74.946 0.2582
80.05 79.906 0.1799
85.42 85.271 0.1744
90.01 89.874 0.1511
95.24 95.105 0.1417

100.14 100.14 0.0000
105.41 105.349 0.0579
110.38 110.329 0.0462
115.42 115.461 0.0355
120.23 120.241 0.0091
125.18 125.123 0.0455

% MAPE 0.3774

4.2. Implementation

To demonstrate its functionality, the SMLC was applied in a real-life operative envi-
ronment, where it measured electrical parameters and controlled what was connected to
it. The setup of the application is shown in Figure 13, where it can be seen how a central
smart meter was placed in the main power panel to compare the information provided by
the SMLC, which had a coffee maker and an electric heater plugged in; according to the
manufacturer, those devices have an active power of 540 W and 720 W, respectively. With
the above arrangement, two tests were run, a manual trail where one user turned on and
off the loads, and another trail where the loads switched automatically.

Central Meter

Main power panel

(a) (b)

SMLC

(c)

Figure 13. (a) Central smart meter next to the main breaker box; (b) current transformers of the
central smart meter over the two phases of the house; (c) coffee maker and electric heater plugged in
the SMLC.
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Three states were monitored in the manual test: the first with both appliances off,
the second with just the electric heater on, and the third with both devices on at the same
time. Figure 14 shows how in the beginning there was no active power in the SMLC
while in the whole house there was almost 1500 W. At 19:42:10, the button “A” (from
Figure 7) was pressed, causing the electric heater to be turned on, resulting in a reading
after a momentary peak of 715 W in the SMLC and a rise to 2184 W in the entire house.
After almost one minute, at 19:43:02, the coffee maker was turned on using the button “B”
in the web application. The SMLC’s active power went from 715 W to 1245 W after a short
transient, which means 530 W for the coffee maker; the central smart meter reported 2776
W. The coffee maker was switched off at 19:43:02, decreasing the active power in the SMLC
to 637 W, while the whole house to 2092 W.
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Figure 14. Behavior of the SMLC readings during the manual control of the test loads.

Another experiment was carried out using the same set up that appeared in Figure 13.
This time the loads were switched on/off automatically according to an active power
setpoint, which was 5100 W for the entire house. If the power used in the house exceeds
5100 W for 30 s, the SMLC would have to turn off the electric heater or the coffee maker.
The first household appliance being switched would be the one connected to plug “B”,
and if the total power continues over 5100 W, the next one would be plug “A”. Figure 15
presents the results of the test. At first, the house had a power of 3590 W, then the electric
heater and the coffee maker were turned on and the power increased to 4826 W, still
under the setpoint. It occurred at 00:43:04 that the power jumped to 5935 W for more than
30 s, which caused the SMLC to turn off the plug “B” (coffee maker), going to 5345 W.
After turning off the coffee maker, the total power was still over 5100 W, so 30 s after the
first shut-off, the SMLC opened the plug “A”, lowering the power to 4808 W in the house.
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Figure 15. Behavior of the SMLC readings during the automatic control of the test loads.
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5. Conclusions

The development of the smart meter with load control for a home energy management
system was presented in this paper. The whole practice involved the design and imple-
mentation of the electronic instrumentation, the creation of a simple IoT scheme model,
a calibration process, the measurement validation, and the demonstration of the system in
a space environment.

In contrast to those works that require a gateway to send measurements to the
cloud [2,8,21–23,26,28], the SMLC electronic proposal based on the ESP32 simplifies the
IoT architecture of the entire system because it enables direct internet communication
without an extra device. In addition, using integrated circuits specifically designed for
calculating electric parameters facilitates future international certifications and assures
accurate measurements. Furthermore, the use of a CT as well as the custom-made PCB
allows scalability of the prototype in electrical installations, since the circuit board fits in
standard 4′′ × 4′′ metal electrical wall boxes, and, thanks to the CT as a current sensor, a
non-intrusive connection can be carried out.

Following the calibration steps for the ADE7758 provided in [30], the SMLC was
able to provide readings with a mean absolute percentage error below 0.5% in all its
electrical parameters tested with a unit power factor, particularly 0.1340%, 0.1639% and
0.1639% in rms current and active and apparent power. Similarly, but in measurements
under no-unit power factor conditions, the MAPE was less than 1%, for example, 0.7976%,
0.0633%, 0.4623%, 0.090%, and 0.2433% in power factor, rms current, and active, apparent,
and reactive power, respectively. Active energy consumption exhibited an error of 0.4242%
and reactive energy 0.1095%. Readings of rms voltage also showed errors below 0.5%,
specifically a MAPE of 0.3774%.

Furthermore, the fact that the SMLC not only provides the active power, but a variety
of electrical parameters, including rms current and voltage, reactive and apparent power,
and power factor, is an advantage over [20–22,24,25,28], as it can be used in future appli-
cations. For example, according to Angelis et al. [33], meters that offer the above kind of
readings are necessary to implement automatic appliance recognition in HEMS.

Real-time monitoring of electrical energy consumption could not be enough for its effi-
cient use and saving, but it is also essential to facilitate its control. Thanks to the electronic
implementation of the SMLC, both functions were possible, and the SMLC includes two
electromechanical relays, which demonstrated to be effective switching elements as can
be seen in Section 4.2, where they turned on/off different household appliances. In addi-
tion, how users interact with energy management systems is crucial to their adaptation.
The loads in the SMLC can be switched off/on manually and automatically, unlike [20]
that only offer manual control, and [2,21,22] only automatic control.

Future research will focus on how the device proposed in this work could be a useful
tool for the areas of smart grids and microgrids, primarily because it allows the opportunity
to know exactly how energy is being used in individual appliances, as well as enabling
remote control of them—aspects that can help to limit the energy consumption.
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Abstract: Monitoring and data acquisition are essential to recognize the renewable resources available
on-site, evaluate electrical conversion efficiency, detect failures, and optimize electrical production.
Commercial monitoring systems for the photovoltaic system are generally expensive and closed
for modifications. This work proposes a low-cost real-time internet of things system for micro and
mini photovoltaic generation systems that can monitor continuous voltage, continuous current,
alternating power, and seven meteorological variables. The proposed system measures all relevant
meteorological variables and directly acquires photovoltaic generation data from the plant (not from
the inverter). The system is implemented using open software, connects to the internet without
cables, stores data locally and in the cloud, and uses the network time protocol to synchronize the
devices’ clocks. To the best of our knowledge, no work reported in the literature presents these
features altogether. Furthermore, experiments carried out with the proposed system showed good
effectiveness and reliability. This system enables fog and cloud computing in a photovoltaic system,
creating a time series measurements data set, enabling the future use of machine learning to create
smart photovoltaic systems.

Keywords: monitoring; data acquisition systems; renewable energy

1. Introduction

The share of renewable energies in electricity generation has been growing worldwide.
In 2019, there was an increase of 200 gigawatts of renewable energy in the world energy
matrix, with photovoltaic energy being responsible for 57.5% of this increase according to
[1]. Small and medium-sized distributed photovoltaic generation systems were the ones
that grew the most. In Brazil, at the end of 2020, distributed generation represented 59% of
installed photovoltaic sources, with a 107% growth compared to 2019, while centralized
generation had an increase of only 24% [2].

The expansion of distributed renewable energies presents several benefits, such as less
environmental impact, reduced emission of carbon dioxide, and less degradation of fauna
and flora. Regarding social impacts, this type of generation system can be employed in
remote locations that do not have access to the power grid, enabling and improving access
to communication, education, and agricultural production. Renewable energies, especially
solar energy, tend to generate more jobs than non-renewable energy generation, and less
centralized systems can create more opportunities.

A primary feature of photovoltaic (PV) systems is the correlation between the climatic
conditions and the performance of its generation. The availability of sunlight, temper-
ature and various other climatic factors directly affect energy production. In large and

Sensors 2021, 21, 3293. https://dx.doi.org/10.3390/s21093293 https://www.mdpi.com/journal/sensors
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medium-sized centralized photovoltaic systems, many of the efforts and resources are
used in monitoring and acquiring data, which is essential to recognize the renewable
resources available on-site, evaluate the efficiency of electrical conversion, detect failures
and optimize electrical production.

On the other hand, in small photovoltaic systems, the high monitoring cost generally
makes its implementation inaccessible. The high cost can lead to situations in which the
system operators do not detect failures such as loss of efficiency, peaks and falls in voltage,
and insertion of harmonics in the power grid [3,4]. These failures can disrupt the operation
of the photovoltaic system or even cause damage to the power grid [5].

The introduction of the Internet of Things (IoT) concept to monitoring devices can
bring several benefits, such as access to real-time data, remote device management, cost
reduction, and system scalability. Moreover, it allows the integration of devices into the
smart grid, enabling improvements in the photovoltaic system’s processing, fault recovery,
and reliability skills [6]. Furthermore, wireless communication decreases the distance range
limitation and costs typical of wired communication.

This paper presents the design, development, and validation of a low-cost IoT data
acquisition system that focuses on real-time monitoring of photovoltaic energy generation
and the main meteorological factors that influence the generation. The principal motivation
is to provide an alternative solution for commercial systems that are usually expensive and
closed to adjustments and modifications. The proposal consists of three main elements:
(1) two data logger devices for data acquisition, one for meteorological data and other for
PV generation data; (2) an IoT cloud system that processes and stores the data obtained;
(3) and a web application that displays the real-time data and the previous data collected.

The proposal includes improvements in software, hardware, and system architecture
(IoT). To the best of our knowledge, considering the similar works found in the literature,
this is the first proposed PV monitoring system that aggregates all of the following features:

• Measurements of all the relevant meteorological variables;
• Open software implementation;
• LoRa (Long Range) as the data transmission technology and connection with the

internet without cables;
• Data storage locally and in the cloud;
• Network time protocol (NTP) to synchronize the devices’ clocks;
• PV generation variables measured directly from the plant, not from the inverter.

The focus of hardware development was flexibility and cost reduction. Furthermore,
with the application of the IoT cloud system, the proposed system allows remote control,
local and cloud storage of data, real-time access to data, and scalability. Due to these
features, the system is more oriented to small/medium operators than distribution system
operators (DSOs). Furthermore, it can be of interest to researchers because it provides an
enabling technological system at an affordable price. Moreover, it can be of high interest
to professionals working in developing countries where the limited diffusion of solar
technology can be attributed to lack of funding and research and development activities [7].

It is worth mentioning that this is an enabling system for creating intelligent photo-
voltaic systems. It provides an IoT architecture that enables machine learning techniques to
be executed using cloud or fog computing paradigms. Moreover, the data sets generated
by the system can be used to train machine learning algorithms for fault detection and
power generation forecasting, for example.

The rest of the paper is structured as follows. Section 2 describes the proposed system
with details about the device’s hardware, the operation of the devices, the LoRa protocol
developed, the IoT architecture used, and the web application developed. Section 3 presents
a review of related works in the literature. Section 4 presents the results and discussions
with a technical comparison of the proposed system with previous systems, experimental
results for the validation of the proposed system, and cost analysis of the proposed system.
Finally, Section 5 provides the conclusions.
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2. Proposed System Description

2.1. System Overview

Figure 1 shows an overview of the system. The data logger devices are responsible for
collecting, conditioning, storing, and transmitting data from all sensors. We developed two
different devices. The first one is responsible for collecting the meteorological data from the
solarimetric station sensors. The second one is a data logger to monitor the PV generation.

The data logger devices use LoRa wireless communication to send the data obtained
to a LoRa gateway, and Wi-Fi (IEEE 802.11) connects the gateway to the internet. The
gateway is the intermediary between the devices and the cloud system. It is responsible for
redirecting the monitored data to the cloud, storing it, or directing commands and settings
from the cloud to the devices.

Data Logger

PV modules

Transducers
Data Logger

LoRa Gateway Internet Router Internet

Cloud

Monitoring Data
PV Generation
Wireless Communication
App Data

Solarimetric Station

WEB Application

Figure 1. Simplified diagram of the proposed system.

All data acquired by the system can be accessed easily through the web application,
allowing real-time viewing of data or querying data stored in the cloud database. A remote
server hosts the web application, enabling users to access it from any browser.

2.2. Data Logger Devices

When designing the data logger devices, the goal was to achieve low production
costs, provide wireless communication, and be flexible for software and hardware changes.
The main component of these devices is the Heltec Wi-Fi LoRa 32 (V2) IoT dev-board [8],
which features the ESP32 dual-core microcontroller (MCU) [9] and integrates Wi-Fi, LoRa,
Bluetooth (IEEE 802.15.1), onboard OLED display, and micro-USB connector.

The solarimetric station data logger requires a robust MCU to operate in harsh envi-
ronments since the station will be exposed to different climatic conditions. The ESP32 was
built for use in industrial environments. It can work in temperatures between −40 and
125 ºC and adapt dynamically to external condition changes.

Each data logger has an SD card (secure digital card), where the obtained data are
saved temporarily before sending it to the gateway. This local storage ensures that data are
not lost if communication with the gateway or the cloud is not available. The 74HC125D
buffer [10] performs communication between the MCU and the SD through a serial periph-
eral interface (SPI) bus.

Furthermore, a real-time clock (RTC) was used to monitor the date and time of each
measurement, providing an accurate time when the MCU will read the sensors’ data. The
RTC communicates directly with the MCU through an inter-integrated circuit (I2C) bus
and has a dedicated battery allowing the time to be tracked continuously even if the data
logger is without power.
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2.2.1. Solarimetric Station Data Logger and the Meteorological Variables

Figure 2 shows the solarimetric station data logger’s main components and the con-
nections between them. This device is responsible for monitoring the following variables:
irradiance, PV module temperature, wind speed and direction, ambient temperature,
humidity, and rain.

ADS1115

RTC

SHT20 Wind Direction
Indicator

NTC

Pluviometer

Anemometer

74HC125D

Pyranometer

SD
Card

I2C
Bus

SPI Bus

Digital
pulse

Digital
pulse

Analog

Analog

Differential
Analog

Heltec WiFi
LoRa 32 (V2)

Figure 2. Simplified diagram of the solarimetric station data logger, with emphasis on the components
and connections.

Solar irradiance is one of the essential meteorological variables. The energy generated
by a photovoltaic system is directly proportional to the irradiance that reaches the pho-
tovoltaic modules. A low-cost pyranometer measures solar irradiance. The relationship
between pyranometer input and output is given by Equation (1). G is the irradiance in-
cident, K is the calibration constant of the pyranometer, and mV is the output voltage in
millivolts. Since the pyranometer generates a very low voltage, the high precision ADS1115
analog-to-digital converter (ADC) [11] was used to read the measurements.

G =
mV
K

(1)

The photovoltaic module temperature influences its photovoltaic conversion efficiency.
It was estimated at [12] that 0.5% PV module efficiency is reduced with an increase of 1 ºC
in its temperature. The data logger uses a 10 kΩ negative temperature coefficient (NTC)
sensor to measures the PV module temperature. The relationship between the resistance
of the NTC (R) and its temperature (Tm) is provided by Equation (2), where R25 is the
resistance of the NTC at the reference temperature, T25 is the reference temperature (25 ºC),
and β is the NTC constant.

Tm(R) =
1

ln
( R

R25

)
β + 1

T25

(2)

The ambient temperature influences the PV module temperature, and air humidity
can absorb or reflect solar energy, decreasing the irradiance that reaches the photovoltaic
module. The SHT20 sensor [13] measures these two factors. Rain can affect many factors at
the same time, such as reducing solar irradiance and panel temperature. The data logger
obtains the rainfall index through a rain gauge.

The wind can help reduce the PV module temperature, improving its efficiency. An
anemometer measures wind speed, which generates a digital pulse at each turn around
itself. The accumulated pulses (CP) during a given period (P) are used to calculate the
revolutions per minute (RPM), as shown in Equation (3). The revolutions per minute are
then converted to km/h using Equation (4), where r is the radius of the anemometer. The
wind direction measurement is performed by a wind direction indicator with an analog
output that varies according to the direction the indicator is pointing.

RPM =
CP × 60 × 1000

P
(3)
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Ws =
4 × π × r × RPM

60 × 1000
× 3.6 (4)

2.2.2. PV Generation Data Logger

The PV generation data logger is responsible for monitoring the direct current (DC)
voltage and current of multiple PV strings and active alternating current (AC) power at
the inverter output. To achieve this, six ADC ADS8668 [14] were used. Each ADS8668 has
eight channels of differential analog input and communicates with the MCU through the
SPI bus. To establish the communication of the six ADCs with the MCU using only one
chip selector pin, a unique topology called daisy-chain was used, as illustrated in Figure 3.

RTC 74HC125D SD
Card

I2C
Bus

SPI Bus

ADS8668

CS SCLK MOSI

MISODAISY ADS8668

CS SCLK MOSI

MISODAISY ADS8668

CS SCLK MOSI

MISODAISY

Heltec WiFi
LoRa 32 (V2)

Voltage, Current and Power Transducers

SCLK MOSI MISO

CS

Figure 3. Simplified diagram of the PV generation data logger, with emphasis on the components
and connections.

During the experiment and validation of the system, five SECON transducers [15]
were used, two for current, two for voltage, and one for power. The current transducer
proportionally converts an input current between 0 and 10 A into a voltage between 0
and 5 V. The two voltage transducers have different measurement ranges; the first reads
between 0 and 400 V and the second between 0 and 500 V. Both have a proportional output
between 0 and 10 V.

P = Vout × 3600 − 9000 (5)

A ±9 kW bidirectional three-phase transducer measures the AC power. This trans-
ducer can receive power up to 9000 W as input and provides an output voltage between 0
and 5 V. Because the transducer is bidirectional, the relationship between its output and
measured power is provided by Equation (5), where P is power, and Vout is the transducer
output voltage.

2.3. Data Loggers Operation

Figure 4 shows a flowchart illustrating the main steps in the operation of the devices;
both data loggers operate similarly. When powered on, the data logger first initializes the
LoRa radio, RTC, and SD card. Then, the existence of the data and settings files on the SD
card is verified, and if these files do not exist, they are created in a comma-separated values
(CSV) format. The data file is created with a header that informs the data type in each file
column. The configuration file is created with the default sensor settings.
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Figure 4. Simplified diagram representing the operation of the data logger devices.

Next, all connected sensors are initialized, and the saved settings are applied to some
of those sensors (transducers and the pyranometer). After the initialization of the sensors,
two tasks are assigned to each of the ESP32 cores to run in parallel.

The first task is responsible for reading the sensors’ data. It contains a loop that
performs polling of the time marked by the RTC. If the time obtained second value is
different from the last sampling second value, a new sampling is performed, and each of
the obtained data is added to the value stored in its respective variable. When the second
equals 00, the values accumulated in the variables are divided by the number of samples,
averaging the last-minute data (60 samples). This approach is based on [16].

In short, the data are sampled every second for one minute, and then an average
is calculated. This method is not applied to the monitoring of rain, which is the daily
accumulation, and the direction of the wind, determined by the most frequent direction in
that last minute. After calculating the average, a timestamp is obtained from the RTC. Then,
the results and timestamps are saved in the SD card data file, and the storage variables are
reset to zero.

The second task is performed every five seconds (using the function delay) and
manages LoRa communication. This interval was defined based on tests to obtain a high
send frequency without interfering with the execution of the first task. Each time the
second task is executed, it is checked if there are data on the SD card to be sent. If data are
detected on the SD card, the first data set in the file is compressed, added to a LoRa packet,
and sent to the LoRa gateway. After, the task expects to receive an acknowledgment (ACK)
that the data have reached the gateway. If confirmation does not arrive within a specific
time, the data are resent. When the ACK is received, the data set sent is removed from the
SD card, and a new set is prepared for sending.
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Therefore, in regular operation, data are sent from the data loggers to the cloud every
minute. In the event of a communication failure, upon returning, the accumulated data
will be sent every five seconds until all data are sent and the operation is normalized.

The LoRa gateway is always synchronized with the NTP.br server [17]. When an
ACK is sent to a device, a timestamp obtained through the NTP is sent with it. The NTP
timestamp is used by the second task to update the RTC date and time. Thus, the RTC will
always maintain the correct time with great precision. This RTC update also allows the
devices’ time to be synchronized, causing data sampling to occur roughly at the same time.

Sensors’ configurations may also be included in the ACK package. These settings can
be set in the cloud system and contain constants used in the initialization and the reading
of the transducers and the pyranometer, allowing remote adjustments of the measurements.
The second task applies the settings and saves them to the SD card file to be maintained
even if the data logger is restarted or loses communication with the cloud.

2.4. LoRa Network Protocol

A custom LoRa network protocol was developed specifically for the proposed system
to send the data in the most efficient way possible. The Arduino-LoRa library [18] was
used for both devices and at the gateway to transmit and receive LoRa packets. This library
exposes the LoRa radio directly and allows it to send data to any radios in range with the
same radio parameters, without using compression or addressing.

Two functions offered by the library were used: sync word and cyclic redundancy
check (CRC). The sync word function limits data transmission only to devices that share
the same sync word value, creating an isolated LoRa network. CRC is an error detection
method to detect an accidental change in the transmitted data packets.

A payload structure was developed to maximize data transfer using the smallest
number of bits. Figure 5 shows the structure for transmitting sensor data and ACK
information. The first byte is a header that contains the information of whom the sender
and recipient are, performing the addressing, and also contains bits that inform if the
payload is an ACK and if it contains sensor settings information.

Header Ambient
Temperature HumidityMeasurement

Timestamp

1 byte 4 bytes 2 bytes 1 byte

Irradiance

2 bytes

Wind Speed

1 byte

Wind
Direction

1 byte

Rainfall

1 byte

PV
Temperature

2 bytes

Header Current
String 1

Current
String 2

Measurement
Timestamp

1 byte 4 bytes 1 byte 1 byte

Voltage
String 1

2 bytes

Voltage
String 2

2 bytes

Power

3 bytes

Header Sensors Settings
(Optional)

NTP
Timestamp

1 byte 4 bytes 9 bytes

Recipient Not used Contains
SettingsSender

2 bits 2 bits 2 bits 1 bit

Is ACK

1 bit

Solarimetric Station
Data Logger Payload

PV Generation
 Data Logger Payload

ACK Payload

Figure 5. Proposed LoRA payload structure.

The data are compressed using a bit-packing, so its representation uses fewer bits than
if they were transmitted as ASCII code. Bit-packing is a simple compression, where the
data are first represented in an integer value using the bit packing formula, and then it is
represented in binary. Table 1 details this representation for each type of data.

As Arduino-LoRa only supports transmitting char (1 byte in C language), even the
pieces of data less than 8 bits were allocated one byte in the structure. This allocation also
facilitates the separation of the data in the receiver.
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Table 1. Data bit-packing.

Data Type Bit-Packing Formula Bits Required Range Precision

Timestamp B = seconds from 1 Jan 1970 00:00:00 32 1 Jan 1970 00:00:00 to Jan 19 2038 03:14:07 1 s
Temperature B = (T + 40) × 10 16 −40 to 125 °C 0.1 °C

Humidity B = H 7 0 to 100% 1%
Irradiance B = I × 10 16 0 to 6553.5 W/m² 0.1 W/m²

Wind Speed B = S 8 0 to 255 Km/h 1 Km/h
Wind Direction Maps to a value that represents the direction 3 0, 45, 90, 135, 180, 225, 270, 315° -

Rainfall B = R/0.25 8 0 to 63.75 mm 0.25 mm
Voltage B = V × 10 16 0 to 6553.5 V 0.1 V
Current B = C × 10 8 0 to 25.5 A 0.1 A
Power B = (P + 9000) × 10 24 −9000 to 9000 W 0.1 W

2.5. IoT Architecture

The data collected by the proposed system are made available to the user through
a cloud system. For this project, the Google Cloud Platform (GCP) [19] was used to
implement the IoT architecture. However, Amazon Web Service, Microsoft Azure, or any
other cloud system could also be used. Figure 6 illustrates the proposed IoT architecture.

Google Cloud Platform

StorageIngest Data

Cloud IoT
Core

Cloud
Pub/Sub

BigQuery

Go

Cloud
Functions

Web application
Heroku hosting

Real-time
Monitoring

LoRa Gateway

MQTT
Protocol

ESP32

Consult Data
History

Figure 6. Diagram representing the IoT architecture.

The GCP IoT Core module is responsible for managing the devices and defining
which communication protocol they can use. IoT Core provides the options to register,
update, and monitor the devices’ status as a device manager. In this proposal, the LoRa
gateway was registered as an IoT device, and a key pair was generated to perform the
device authentication and secure communication. The generated public key was registered
in the IoT Core while the private key was implemented in the LoRa gateway.

For communication between the GCP and LoRA gateway, the protocol “message
queuing telemetry transport” (MQTT) is used. MQTT is a machine-to-machine communica-
tion protocol based on the publish/subscribe pattern to exchange asynchronous messages.
The Pub/Sub module is the GCP MQTT broker, responsible for managing topics and
subscriptions. Pub/Sub offers temporary message storage and real-time message delivery
with high availability and consistent performance on a large scale.

Two MQTT topics were created, one to receive data sent from the station and the other
to receive PV generation data. Each of these topics has two subscribers. The first subscriber
is the real-time monitoring page of the web application, allowing a real-time data display
to the user. The second subscriber is the cloud functions module of GCP, which transfers
the data to BigQuery for storage.

The GCP BigQuery module is a standard query language (SQL) database for large data
sets. A table was created to store the data for each data logger device. The web application
can make queries to BigQuery based on dates and obtain a data history for display.

The IoT Core automatically creates two topics for each registered device, a configu-
ration topic and a command topic. The configuration topic is used to transmit the sensor
settings of the data logger devices, and the command topic can be used to reset the LoRa
gateway remotely. Both topics are accessible only through the IoT Core web page.
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2.6. Web Application

The web application provides a simple and easy way for the user to view and obtain
the data acquired by the proposed system. The application was developed using the Django
Web framework, which uses Python to manage and render web pages. In Python, four
endpoints were created to access the cloud services using the GCP SDK: two endpoints
for subscription in the MQTT topics of each data logger and two others to query the
BigQuerry tables.

Three web pages were implemented using HTML and JavaScript: home page, real-
time monitoring, and consult data history. Figure 7 shows the applications home page
that contains some information about the work developed. Each device has a real-time
monitoring page and a consult data history page, accessed from the top menu. When
the cursor passes through the devices’ names in the top menu, a drop-down sub-menu is
displayed to select the desired page.

Figure 7. Web application home page, displaying the drop-down sub-menu.

The real-time monitoring page uses one of the Python endpoints to subscribe to
the device’s data topic. As soon as the data are received through the MQTT, they are
displayed in two sections of this page. The first section shows the latest data set that
arrived, including the date and time it was obtained. In the second section, each monitored
variable is displayed in a different line chart. The charts begin to display the data received
from the moment the page is opened and can display up to 1440 points simultaneously
(24 h of monitoring). When the maximum point limit is reached, the oldest points are
removed as new data are received. Figure 8 shows the real-time monitoring page of the
solarimetric station, with the first section and the first chart of the second section.

On the consult data history page (Figure 9), the user can choose a day, manually typing
in MM/DD/YYYY format or using an interactive calendar to consult the data saved in
BigQuery. When choosing the date and pressing the “Consult” button, the Python endpoint
queries the table in BigQuery, and the data obtained, if any, are displayed on the page in
table format. The “Download” button converts the data displayed in the table into a CSV
file transferred to the user’s computer.
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The web application is hosted on Heroku [20], a cloud platform as a service with
support for different profile languages, including the Django framework.

Figure 8. Web application page for real-time monitoring of the solarimetric station.

Figure 9. Web application page to consult the history of PV generation data.
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3. Literature Review and Comparison of Monitoring Systems Applied to PV Plants

Several related works can be found in the literature. Despite the advantages and
advances of the literature systems presented below, they all have at least one limitation.
Table 2 presents a comparison of some of the technical characteristics of the systems
available in the literature and the system proposed in this work. In the rest of this section,
we will discuss the similarities and differences between the proposed system and the
related ones.

The monitoring system proposed in [21] consists of two types of devices: smart meter
and main brain. Smart meters are the devices responsible for monitoring the voltage and
current data of the PV system in real-time, while the main brain is the center where the
data collected by the devices smart meter will be stored. Both are based on the ATmega
328P-PU MCU and communicate via a radio frequency (RF) wireless network operating at
315 MHz. The data can be accessed by a mobile application that communicates with the
main brain via Bluetooth.

In [22], a two-level sensor network was developed for monitoring PV systems. The
first level of the network consists of sensor nodes that monitor the voltage and temperature
of each PV module. In contrast, the second level consists of sensor nodes that monitor
irradiance, ambient temperature, voltage, and current of each string. In addition, the
second-level nodes merge their monitored data with the data obtained by the first level
and send it to a data center. The communication between the levels is via a radio frequency
wireless network, and the second level uses ZigBee [23] to send all the collected data to
the center.

Internet connection is crucial to provide real-time monitoring of data and to allow
remote access to the system. In [21,22], the data are only available locally. Local-only
availability would also make it difficult for future integration of these systems into a smart
grid network. Internet-connected monitoring systems can be configured in two different
topologies: the data logger devices connect directly to the internet or intermediate devices
between the internet and the data loggers.

The authors of [24] developed a wireless sensor network based on the ESP8266 MCU
to monitor the photovoltaic system. Each network node monitors the current and voltage
data of a set of photovoltaic modules and connects to the internet via Wi-Fi to send the
collected data to an IoT cloud platform. The system is also capable of monitoring the
humidity and temperature of the solar plant.

In [25], the proposed system is based on ESP32 and ESP8266, which communicate
with an unspecified cloud system via Wi-Fi. Data for temperature, irradiance, humidity,
wind speed, and DC generation are collected every 47 s and are made available through a
web application.

Initially, the proposal’s data loggers were configured to communicate with the internet
via Wi-Fi, similarly to [24,25]. However, this approach presented a limitation in the
positioning of data logger devices due to the Wi-Fi range. Thus, the second topology
using LoRa and Wi-Fi was adopted in the current version.

Aghenta and Iqbal [26] present an IoT approach that focuses on monitoring PV gener-
ation without performing meteorological data acquisition. An Arduino performs sensor
data acquisition and communicates with a Raspberry Py via a serial bus. The Raspberry Pi
is connected to the internet via an Ethernet cable through which the collected data are sent
to an IoT platform based on a local server, where it is stored and can be accessed.
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The system proposed in [27] monitors voltage, current, temperature, and irradiance.
This system is based on an Arduino and uses a Raspberry Py as a gateway. The two devices
communicate using the I2C protocol, while the Raspberry Py communicates with a cloud
service using the MQTT protocol. In addition to storing and making data available, the
cloud service can also send configuration commands to devices.

Regarding data transmission between devices, in [26,27], short-distance wired commu-
nication was used, limiting the disposition of devices and making installation more complex.

The system presented in [28] has a structure based on wireless sensor networks, in
which each sensor node monitors the current and voltage generated by an individual
photovoltaic module. The nodes send data via ZigBee to a Raspberry Py that hosts a web
page, allowing access to data locally and over the internet via Wi-Fi.

In [29], ZigBee modules are used to collect and transmit data obtained from the PV
plant inverters, building a local sensor network. A 4G gateway is used to connect the local
network to the internet, enabling remote data access. Checksum verification is used to
ensure the stability of the data transmission and to verify its integrity.

ZigBee technology generally has a range of 10 to 100 m and low energy consumption.
The LoRa typically has a range of 2–5 km in urban areas or 15 km in suburban areas
and has an even lower energy consumption than ZigBee. These were the main reasons
for the adoption of LoRa in the proposal. However, LoRa has a lower data transfer rate
than ZigBee.

LoRa is also used in the system implemented in [30] for data transmission. The system
can monitor DC and AC electrical data, the temperature of the PV modules, irradiance,
ambient temperature, and humidity. A LoRa gateway is responsible for making the data
available on a local network to be accessed from a computer.

A few studies have reported a method for synchronizing the clocks of the devices that
make up the system. The clock synchronization is essential for systems that use a single
device and systems composed of multiple devices, allowing the measurements to have a
correct timestamp and accurately represent the events in the PV plant.

A system for fault detection in PV systems is presented in [31]. The National Instru-
ments CompactRIO (cRIO) controller is used to obtain the solar irradiance and ambient
temperature data from a weather station and the DC and AC voltage and current data from
the PV system. The collected data are then used in techniques for detecting and classifying
faults in the PV system. The cRIO clock is updated through the LabVIEW software.

In [32], precision time protocol (PTP) (IEEE 1588) was used to synchronize the times-
tamps of the slides that make up a wireless sensor network. The network comprises
wireless sensors that monitor irradiance, ambient temperature, the temperature of the PV
modules, rainfall index, wind speed and direction, atmospheric pressure, DC and AC
electrical data.

Network time protocol was used in the proposed system due to its easy access to
information and because it is widely used in applications that require a precise timestamp.
In [25], the NTP was also used, as the devices connect directly to the internet, it is only
necessary to access the date and time information using the IP address of the NTP server. In
the proposal, for the NTP data to be transmitted to the data logger devices, it was necessary
to integrate it into the LoRa payload.

The system proposed in [33] is based on PcDuino (discontinued), which combines
Arduino with Raspberry Py operating on Linux, being able to monitor temperature, irradi-
ance, wind speed and direction, and AC and DC electrical data. The data are stored locally
on an SD card and accessed over the internet. Storing data only locally on the system can
create difficulties and a greater complexity when providing remote access. This form of
storage is performed in [21,22,26,28,31,32].

Storing data only on remote servers can cause data loss if there is a communication
failure. This is done in [24,29,30]. Performing both types of storage can prevent these
problems and make the system more reliable, as was done in [25,27] and in our proposal.
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Commercial software that requires a license is used in [22,31,32]; in addition to making
changes to the system challenging, it also makes it more expensive. In the proposed system,
the device software is developed in C++ using the Arduino framework, which is open-
source and widely used and supported by the community.

Finally, for complete monitoring of a PV system, it is necessary to monitor: (1) the
meteorological factors to which the system is subjected; (2) the DC electrical generation
of the PV modules; (3) and the AC output of the inverter. This is accomplished in [30–33].
Our proposal also involves acquiring these three types of data. Furthermore, dedicated
sensors are used without relying on data provided by the inverter. Dedicated sensors allow
the proposed system to be applied to any PV system and independent of the sampling of
data provided by the inverters. The systems in [25,29,33] are dependent on the inverter.

4. Results and Discussions

4.1. Experiment

The proposed system was applied to monitor a PV microsystem consisting of 19
polycrystalline silicon (Si-p) modules. Each module has a nominal power of 270 Wp
(watt-peak) and can be associated in series with a nominal 5130 Wp. The PV system was
configured in two strings due to the maximum voltage limitations of the inverter used.
String 1 has ten panels associated in series, and String 2 has nine panels also associated in
series. The connection of the strings is made through a DC/AC inverter with a nominal
power of 5000 W, reaching a maximum peak of 6500 W.

Figure 10 shows the system installed on-site. Figure 10a shows the solarimetric station
discussed in Section 2.2.1, with highlight 1 showing the pyranometer, anemometer, rain
gauge, and wind direction indicator. The SHT20 is positioned inside a weather shelter in
the middle of the station’s structure. The NTC is fixed to the back of one of the PV modules.
The solarimetric station data logger is contained in an airtight box for protection and is
shown in highlight 2.

The cabinet shown in Figure 10b is located next to the inverter and has devices for
protection and sectioning of the PV plant. Highlight 3 shows the DC voltage transducers
(white) and DC current (black). Next to them is the AC power transducer. As detailed in
Section 2.2.2, the data from the transducers are acquired by the PV generation data logger
(highlight 4). The following results refer to the data monitored from 27 February 2021, to
14 March 2021.

1

2

(a)

3

4

(b)

Figure 10. Proposed system installed in a PV plant. (a) Solarimetric station, with emphasis on its data logger and sensors.
(b) Cabinet with the transducers and the PV generation data logger.
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4.2. Proposed System Operation

The architecture of the proposed system has good reliability and was effective in
displaying collected data in real-time. During the 16-day experimental period, 23,040 data
sets from each data logger were expected to be collected and sent. A total of 99.13% of the
data sets from the solarimetric station, and 99.40% of the PV generation data sets, reached
the cloud, demonstrating the system’s reliability.

All data that arrived at GCP were successfully saved in BigQuery and sent to the web
application via MQTT. Regarding the effectiveness of being in real-time, calculating the
average of the data obtained by task 1 until these data are displayed in the web application
is fast, with a delay of at most five seconds. Most of this delay is introduced by executing
task 2 of the data loggers every five seconds, which is necessary to maintain the consistency
of the device’s operation.

The use of dedicated sensors allows the proposed system to be applied to other
photovoltaic systems, regardless of the inverter used. Furthermore, the sampling of the
proposal does not depend on the sampling of PV generation data provided by the inverter.
Sampling every second for one minute, followed by the average of the data obtained in
that interval, provides accurate measurements, keeping the transmission, storage, and
computation of data in low complexity [16].

The proposed LoRa protocol reduces the size of the payload allowing a more efficient
transmission, which reduces the transmission time and energy consumption. Table 3 shows
a comparison with the load sizes transmitted by the proposed structure, by LoRaWAN
using Cayenne low power payload (LPP) [34] and as a text string.

Table 3. Payload size in bytes considering different protocols.

Protocol Station Data PV Generation Data ACK (min)

Proposed 15 B 14 B 5 B
Cayenne LPP [34] 33 B 28 B 9 B

Text String 61 B 56 B 27 B

The use of NTP to synchronize RTCs brought significant advantages. First, it allowed
RTCs to have the correct date and time. Before using NTP, the RTC had a small precision
error that could accumulate, generating an error of several minutes. Second, it allowed a
simple way to synchronize the measurements between the two data loggers.

4.3. Measured Data Validation

A comparison with the data collected by a second monitoring system was performed
to validate the data collected by the proposed system. This second monitoring system is
based on the CR1000 data logger from Campbell Scientific [35] and has external sensors for
measuring the ambient temperature, solar irradiance, and temperature of a PV module.
The PV generation data are obtained by the same transducers used by the proposed system.

Before performing the comparisons and statistical calculations, a preprocessing of the
data was performed. Regarding the data obtained by the proposed system, some of the
PV generation values had errors in their measurements (e.g., being outside the expected
range). The last valid reading replaced these values. Some current data obtained by CR1000
showed the not-a-number (NAN) value. These values were also removed and replaced by
the last valid read value.

After preprocessing, the following statistical metrics were calculated between the data
obtained from the two systems: mean absolute error (MAE) (Equation (6)), root mean
square deviation (RMSD) (Equation (7)) and weighted absolute percent error (WAPE)
(Equation (8)).
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MAE =
1
n

i=1

∑
n
|yi − xi| (6)

RMSD =
[ 1

n ∑i=1
n (yi − xi)

2
]0.5

(7)

WAPE =
∑i=1

n |yi − xi|
∑i=1

n |yi|
(8)

where n is the number of data samples, yi is the i-th sample of data collected by CR1000,
and xi is the i-th sample of data collected by the proposed system. Table 4 shows the results.

MAE measures the average magnitude of the errors between the two data sets without
considering their direction. Similarly, RMSD expresses average error, but as the errors are
squared before they are averaged, the RMSD gives a relatively high weight to large errors.
MAE and RMSD provide the error in units of the variable of interest, which can generate a
misleading comparison between the errors of the different measurements. For this reason,
WAPE was also calculated, showing the errors as a percentage.

Table 4. Statistical comparison between the measures of the proposed system and the CR1000 data
logger considering the 16 days of the experiment and three types of metrics: MAE, RMSD and WAPE.

Data type MAE RMSD WAPE

Ambient Temp. 1.21 °C 1.46 °C 4.13%
Irradiance 37.05 W/m² 68.12 W/m² 13.54%

PV Module Temp. 5.67 °C 6.73 °C 17.56%
DC Current String 1 0.12 A 0.41 A 5.37%
DC Current String 2 0.17 A 0.41 A 7.29%
DC Voltage String 1 21.46 V 48.02 V 15.15%
DC Voltage String 2 14.51 V 38.23 V 11.99%

AC Power 74.01 W 210.90 W 6.60%

The factors that presented WAPE below 10% were considered acceptable, including
ambient temperature (4.13%), currents of the two strings (5.37% and 7.29%), and the AC
power (6.6%). Considering the units and magnitudes of these factors, they also presented
a low MAE that should not impact the measurement quality. The RMSD of the power
(210.9 W) and currents were between 2.4 and 3.2 times higher than the MAE. This rela-
tionship between errors may indicate the presence of outliers in these measurements. The
irradiance (13.54%), the temperature of the PV module (17.56%), and the voltage measure-
ments (15.15% and 11.99%) showed WAPE greater than the acceptable value. Although,
these values can be improved with some adjustments discussed below.

Figures 11 and 12 shows graphical comparisons of measurements over seven days
(1 March to 7 March 2021). The blue line represents the measurements returned by our
proposed system, and the red line represents the measurements returned by the CR1000.
The CR1000-based system does not monitor data on humidity, wind speed, wind direction,
and rain, so they have not been compared.

One can see that the error in the measurement of irradiance is mainly present when
this factor reaches its maximum value (Figure 11c). This error can be caused due to the
difference in the pyranometers’ installation location. The pyranometer of the proposed
system is installed on top of the structure of the solarimetric station (Figure 10a). In
contrast, the pyranometer of the CR1000 system is installed at a lower level, next to the PV
modules. Furthermore, the irradiance signal of the proposed system also presents noise.
The application of a filter can reduce this noise and the error.
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(a) (b)

(c) (d)

Figure 11. Graphical comparison of the data obtained during one week (1 March to 7 March 2021) by our proposed system
(blue) and the CR1000 (red). The graphs show the following measurements: (a) ambient temperature, (b) PV module
temperature, (c) irradiance, (d) AC power.

(a) (b)

(c) (d)

Figure 12. Graphical comparison of the data obtained during one week (1 March to 7 March 2021) by our proposed system
(blue) and the CR1000 (red). The graphs show the following measurements: (a) string 1 current, (b) string 2 current,
(c) string 1 voltage, (d) string 2 voltage.
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Most of the error in voltage measurements is generated during the night, where the
proposed station measured values above 0 V when it should be zero (Figure 12c,d). Zeroing
the reading below a threshold value would reduce these errors in the voltage readings.
The temperature of the PV module showed the most significant error among all factors
when using an NTC to monitor these data. In the equation used to convert the resistance
presented by the NTC to temperature, expected constants were applied for an ideal 10 kΩ
NTC. Performing a calibration to find the specific constants of the NTC used would reduce
the error presented.

4.4. Cost Description and Comparison

The cost of producing the solarimetric station data logger was USD 65.42, and this
value includes the printed circuit board and electronic components, such as resistors,
capacitors, voltage regulator, ADS1115, RTC, SD card, and Heltec Wi-Fi LoRa 32 (V2). The
production of the PV generation data logger was USD 109.11. The higher price is due to the
ADCs that the device contains. The LoRa gateway is a Heltec Wi-Fi LoRa 32 (V2), costing
USD 20.80.

The cost of the sensors used are: pyranometer—USD 279.45, NTC 10K—USD 3.14,
SHT20 (with waterproof protection)—USD 27.97, anemometer—USD 37.10, wind direction
indicator—USD 37.10, pluviometer—USD 48.44, voltage transducer—USD 55.93, current
transducer—USD 82.96 and power transducer—USD 236.24. Adding the costs of the data
loggers and their sensors, we have a total cost of USD 498.62 for the solarimetric station
and USD 623.13 for the PV generation monitors, so the total hardware cost of the proposed
system is USD 1142.55, including the gateway.

The production cost can be lower when considering only the components used in the
experiment and if the purchase of the components is optimized. For example, only one
of the ADCs of the PV generation data logger was used during the experiments. Thus,
the remaining ADCs can be removed, reducing USD 44.4, for a total cost of USD 1098.15.
Furthermore, as the system is flexible, any sensors or transducers can be easily replaced
with cheaper alternatives.

A comparison can be made with the work developed in [33] since it is one of the
most complete of the literature and provides the cost of its development. The authors
reported a cost of USD 25,000.00 to develop 20 units of the system. Therefore, each unit
has a value of around USD 1250.00. To monitor meteorological and PV generation factors,
two units of this system are required. Thus, our system is two times cheaper than this
one. Another comparison can be made with the CR1000 data logger, the cost of which is
about USD 1354.32 (average of eBays offers). The CR1000 does not include any sensors or
transducers. Adding these devices to the CR1000, forming a PV monitoring system that
monitors the proposed system’s same factors, would be more expensive. Hypothetically,
applying the sensors and the transducers used in the proposed system, which cost USD
926.42, to the CR1000 would result in a system with a total cost of approximately USD
2280.74 (CR1000 + sensors).

Regarding the proposed system software, all the code used in the developed devices
was open source, adding no extra cost. In relation to GCP, the monthly cost is USD
0.20, based on the amount of data obtained during the month of March 2021 (31 days)
and without considering the free monthly use of some of the services. We intend to
implement in the future the same IoT infrastructure based on the open-source messaging
agent Mosquitto [36], offering a free alternative to GCP. Heroku offers 1000 h per month to
run free applications at no cost, so the web application does not add costs to the system.

5. Conclusions

In this work, an IoT system was developed for the real-time monitoring of photovoltaic
systems. The IoT system comprises two data logger devices, a cloud system, and a web
application. It can monitor weather and PV generation data.
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The proposed system differential is that it measures all the relevant meteorological
variables, is implemented using open software, uses LoRa as the data transmission technol-
ogy, connects with the internet without cables, storages data locally and in the cloud, uses
network time protocol to synchronize the devices’ clocks, and measures PV generation
variables directly from the plant (not from the inverter). To the best of our knowledge, no
work reported in the literature presents these features altogether.

Moreover, experimental results showed the correct effectiveness of real-time data
display and good reliability of the proposed system. The cost of production proved to be
low, being almost twice as cheap as a system based on a commercial data logger and one
of the complete systems found in the literature. Therefore, the proposed system can be
an excellent alternative to micro and mini PV systems. Nevertheless, since it is an open
system, it is scalable and easily modified, enabling it to be used in PV systems of different
topologies and sizes.

Some of the future works are:

• Implement filters and perform sensor calibration on the proposed system to improve
the accuracy of PV module temperature, DC voltages, and irradiance measurements;

• Implement a Mosquitto message broker in a dedicated server to avoid the need for a
paid cloud service, which will decrease the data cost;

• We intend to integrate the proposed system with machine learning techniques to
forecast photovoltaic generation based on meteorological data and automatically
detect failures, allowing optimization of the electrical production process and increase
the reliability of the PV plant.
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Abbreviations

The following abbreviations are used in this manuscript:

PV Photovoltaic
IoT Internet of Things
LoRa Long Range
NTP Network Time Protocol
DSO Distribution System Operator
MCU Microcontroller Unit
RF Radio Frequency
cRIO Compact RIO
DC Direct Current
AC Alternating Current
PTP Precision Time Protocol
I2C Inter-Integrated Circuit
MQTT Message Queuing Telemetry Transport
SD Secure Digital
SPI Serial Peripheral Interface
RTC Real-Time Clock
ADC Analog-to-Digital Converter
ACK Acknowledgment
CRC Cyclic Redundancy Check
GCP Google Cloud Platform
SQL Standard Query Language
CSV Coma-Separated Values
UN Unspecified
NM Not Mentioned
Idc DC Current
Vdc DC Voltage
Pdc DC Power
Iac AC Current
Vac AC Voltage
Pac AC Power
Ta Ambient Temperature
Tm PV Module Temperature
G Irradiance
h Humidity
rf Rainfall
p Pressure
Ws Wind Speed
Wd Wind Direction
USD United States Dollar
LPP Low Power Payload
NAN Not A Number
MAE Mean Absolute Error
RMSD Root Mean Square Deviation
WAPE Weighted Absolute Percent Error
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Abstract: Smart meter (SM) deployment in the residential context provides a vast amount of data of
high granularity at the individual household level. In this context, the choice of temporal resolution
for describing household load profile features has a crucial impact on the results of any action or
assessment. This study presents a methodology that makes two new contributions. Firstly, it proposes
periodograms along with autocorrelation and partial autocorrelation analyses and an empirical
distribution-based statistical analysis, which are able to describe household consumption profile
features with greater accuracy. Secondly, it proposes a framework for data collection in households at
a high sampling frequency. This methodology is able to analyze the influence of data granularity on
the description of household consumption profile features. Its effectiveness was confirmed in a case
study of four households in Spain. The results indicate that high-resolution data should be used to
consider the full range of consumption load fluctuations. Nonetheless, the accuracy of these features
was found to largely depend on the load profile analyzed. Indeed, in some households, accurate
descriptions were obtained with coarse-grained data. In any case, an intermediate data-resolution of
5 s showed feature characterization closer to those of 0.5 s.

Keywords: smart meter; temporal data granularity; electric load profile; time slices; time series;
advanced metering infrastructure

1. Introduction

Large temporal datasets for household electricity consumption, provided by smart meters (SMs),
offer significant potential for energy time-series scientists. These datasets permit increased resolution
and analysis at the level of individual households. Recent studies by Zhou and co-workers [1,2] focus
on the challenges and opportunities that SMs provide for smarter energy management where SM data
are an essential component.

Traditionally, consumption load metering in the residential context has been conducted at a
low time resolution. Thus, consumption profiles are generally gathered for different dwelling types,
based on a sampling frequency that provides a data granularity from 1 to 30 min [3]. However, current
SCADA systems can sample consumption data at a higher frequency (typically 1 Hz) though standard
practice is to store averaged values of 1 min or higher [4].

Reference [5] highlights the importance of taking into account both a wide time slice and frequency
spectrum for an accurate description of the load profile features of household consumption.

More specifically, the choice of a temporal data granularity (data sampling frequency) for specifying
consumption load profile features has a crucial impact on the results of any action or assessment,
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as discussed in the literature [6–48], see Table 1. This table summarizes for each potential action or
assessment the time resolution (data granularity) and time horizon (time slice) envisaged for the
works related to load profiles in households. The impact of temporal data granularity is important
because the consumption profile is known to fluctuate at a high temporal resolution (i.e., interval of
0.01–5 Hz [16,49,50]). Therefore, when a longer time resolution is envisaged, the profile dynamics
become increasingly biased. This means that the profile should be sampled at a more fine-grained level,
which will more accurately describe its behavior. Nonetheless, there is a trade-off between the
computational burden and accuracy of any action or assessment, which is determined by this discrete
time resolution [51]. Moreover, the effective measurement of the electrical variables –root-mean-square
(RMS) value– requires at most a 5-Hz sampling frequency [52]; a higher frequency would provide just
punctual values.

The dynamic nature and frequently high variation typical of household consumption load profiles
in the residential context has been analyzed for different temporal data granularities, as shown
in Table 1. As disclosed, most of the time resolutions were longer than 1 min. Few references
focused on granularities lower than 15 s. High data granularity naturally implies larger amounts
of data to be locally stored (either hard disk or memory card) or uploaded to the cloud. This has
led many researchers and industry practitioners to develop and survey a vast number of analytical
tools that could help to segment and cluster SM big data so that they can be analyzed in real
time [11,32]. On the other hand, uploading these data to the cloud (data traffic with the cloud) is
another important limitation [11,44,53]. High granularity requires a large bandwidth, which is not
always available in individual households. Since data cannot be transmitted at such high resolutions,
data compression algorithms are required. The compression ratio can be 10:1 or even 1000:1 can be
achieved. For example, Kelly [8] performed measurements every 6.25 × 10−5 s(16 kHz) and used the
free lossless audio codec (FLAC) compression algorithm that reduced the daily data of 28.8 GB to
4.8 GB with a 6:1 compression ratio. Also, reference [54] developed a new method of data compression
via stacked convolutional sparse auto-encoder. These algorithms are usually time consuming, and thus,
the gathered data are not available in real time.

The scientific community currently has very limited access to consumption load data in the
residential context. The information available for private purposes is either free or must be purchased.
Free options are available at different web sites that provide records for homes. Pecan Street [55] is
a web site that provides data from 1115 houses with PV and/or EV. Mack [56] developed a web site
on SMs for homes, with the aim of saving electricity. Wilcox [53] built a hadoop-scaled SM analytics
platform that allows the use of large datasets at a 20 TB scale. Furthermore, there are other web sites
that provide household consumption load data with a granularity from 1 s to 1 min [57–64].

Some studies evaluated the feature bias due to the use of coarse-grained data when assessing
the consumption load profiles in households. Murray [38] compared time resolution data of 1 min
and 15 min and demonstrated the damping effect when working with data with high temporal
resolutions in 21 houses in the UK. Naspolini [39] showed that the use of a 15-min data granularity
was not well adjusted because of load fluctuations with a period lower than 15 min (5 min) in the
operation of electric water heaters. Bucher [40] studied a 1 s and 15-min data granularity in domestic
PV-household load profiles. Shi [41] analyzed the accuracy of predictions based on different data
granularity. Hoevenaars [64] showed that using a 1-h time step hid the load variability within the
hour for models of renewable power systems. Regarding optimization purposes, Van der Meer [42]
concluded that a 5-min time resolution provided a good balance between accuracy and the burden
of data size, whereas [45] showed that using hourly data led to large biases compared to 1-min data.
However, coarser data could be sufficient for household aggregation [48]. A shorter fluctuation at a
granularity of only 4 s was investigated in [65].
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In this context, it was found that the availability of household consumption load data at a
fine granularity (high sampling frequency) obtained from SM measurements allows users to do the
following actions or assessments (see Table 1):

• To dynamically adjust electricity tariffs as fine temporal resolutions make it possible to quickly
adapt to changes in consumption and thus reduce the electricity bill.

• To improve energy efficiency, comfort, and safety in households with an intelligent automation system.
• To recognize activities (i.e., analysis of energy consumption through observation) that are

potentially more meaningful to users.
• To optimally size renewable generation system and storage systems.
• To forecast household load profiles with different time horizons, from a short-term load forecast

(hourly and daily) to long-term forecast-based planning studies.
• To perform studies of angle stability, transient analysis, and frequency control in electrical

energy systems.
• To characterize household consumption load profile features.
• To perform load forecasting by applying probabilistic techniques.

To date, the major obstacle to accurately describing household consumption load profile features is
the fact that this type of profile has not been sampled at temporal low-resolution (high frequency) that
gathers its intrinsic dynamics. Thus, most of the examples mentioned in Table 1 used an hourly or even
a 30-min or 15-min time resolution, but they do not include enough information to accurately provide
actions or assessments. Furthermore, even though the current trend is to use more temporally granular
data sets in household applications, the influence of temporal granularity has not as yet been analyzed
using a comprehensive and high-resolution data set. Quite a few papers [38–42,45,48,65] evaluated
the bias due to the use of coarse-grained data, but never compared resolutions lower than 1 to 5 min.
Still another shortcoming is the fact that most studies cover short time slices. These involve a reduced
timespan chosen to characterize key aspects of temporal variability, for example, covering weekdays
and weekends, different times of day, and different seasons. The time horizon (time slice) envisaged
in Table 1 was typically restricted to minutes, a few hours or a few days. However, the resulting
description is not accurate since it does not take seasonality into account. Lastly, SM data only reflect a
few electrical variables, which means that very little information regarding electrical behavior can be
derived (usually energy or power).

To fill this gap, the new methodology presented in this paper makes two major contributions.
It first proposes periodograms along with autocorrelation and partial autocorrelation analyses and an
empirical distribution-based statistical analysis, which are able to describe household consumption
profile features with greater accuracy. This type of analysis reveals key issues about the granularity
impact on the load fluctuation, such as the accurate description of its constituent signals. In contrast,
the temporal analysis usually found in literature only offers information regarding the granularity
impact on the change in the magnitude of the peak and trough load. Secondly, it proposes a framework
for data collection in households at a high sampling frequency (>4 Hz) that provides data to be used in
the proposed methodology.

A case study of four households in Spain, using thirteen data granularities, from a half-second to
30 min (0.5, 1, 2, 5, 10, 15, 30 s, and 1, 2, 5, 10, 15, and 30 min), provided valuable insights into the influence
of data granularity on the description of consumption load profile features. The data set selected, during
almost two years, had different consumption features, namely with varying characteristics in terms of
the relation between the peak and base load and load fluctuations, which made it possible to take the
heterogeneity of real-world load profiles into account. We acknowledge that conducting our analysis
with a data sample from four households is a limitation of this study. However, this data sample
was adequate to achieve our primary objective of demonstrating the usefulness of the methodology
proposed, which was to highlight the information loss regarding the profile features when using
coarse-grained data.
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The remainder of the paper is organized as follows: Section 2 describes the methodology
implemented in this study. Section 3 discusses the results that reflect the influence of data granularity
(sampling frequency) on consumption load profile features. Finally, Section 4 presents the conclusions
that can be derived from this research.

2. Methodology

This section first presents a set of variables for a full description of features for the stochastic
dataset derived from household consumption load profiles. The variables are defined from estimated
time series models. This is followed by an explanation of the concepts of granularity and time slices.
An outline is then provided of the framework for consumption data collection in households at high
sampling frequency and its post-processing.

2.1. Time-Series Theory

For stationary stochastic data, the theory of time series models provides estimated models,
which include the description of the probability mass function (PMF), power spectral density function,
and autocorrelation function [66,67].

The features of a stationary stochastic dataset are fully described by the joint probability density
function of the observations [66,67]. The joint probability density function of the observations are
fully depicted by a stationary stochastic dataset. If the density could be calculated on the basis
of observations, then this density would provide all of the information pertaining to the signal.
Nevertheless, this is usually not feasible without a great deal of additional knowledge about how such
observations were obtained. Features that can always be estimated include the power spectral density
and the autocorrelation function. In addition, knowledge of the spectrum (power spectral density
function) or autocorrelation (autocorrelation function) along with the first two statistical moments
makes it possible to accurately describe the joint probability density function of normally distributed
observations [66,67]. Even when assumptions regarding the normal distribution and strict stationarity
are not confirmed, previous estimators still provide a sound basis for further research [67]. Nonetheless,
in the case of other distributions, higher-order moments provide more information.

2.1.1. Stationary

A time series x (and thus the underlying stochastic process) is considered stationary if the
process is in a certain state of statistical equilibrium. Accordingly, the properties of a stochastic
processes are assumed to be invariant during the translation trough time. This signifies that the joint
probability distribution associated with m observations (x1, x2, . . . , xm), for any set of time measurements
(t1, t2, . . . , tm), is the same as that for m observations (x1+k, x2+k, . . . , xm+k), at times (t1+k, t2+k, . . . , tm+k).
Therefore, the joint distribution must not change when all of the observation times are shifted backward
or forward by any integer amount k.

Household consumption load profiles are usually not stationary; there is usually daily, weekly,
and monthly seasonality and an upward trend as the number of appliances in the household rises.
However, as stationary datasets are easier to analyze, there are numerous techniques that can be applied
on time series to make it stationary, i.e., transformations, deseasonalisation, and differencing [68].

There are many methods to check whether a time series is stationary or non-stationary:
(i) look at plots; (ii) summary statistics; and (iii) statistical tests. The most rigorous approach to
detecting stationarity in time series data is using statistical tests developed to detect specific types
of stationarity, such as simple parametric models that generate the stochastic process. Among them,
it is important to mention the following: (i) Augmented Dickey-Fuller (ADF) test [69]; (ii) Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) test [70,71]; (iii) Variance ratio test [72]; (iv) Leybourne-McCabe
(LMC) test [73]; and (v) Phillips-Perron (PP) test [74].

The Dickey-Fuller test was the first statistical test developed to check the null hypothesis that
a unit root is present in an autoregressive model of a given time series, and that the process is thus
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not stationary. An extension of this test (the ADF test) was developed to accommodate more complex
models and data. The KPSS test assumes the null hypothesis of stationarity in relation to the linear
or average trend, as opposed to the ADF test. While the alternative is the presence of unitary root.
The unitary hypothesis represents the stationary nature of the process. The variance ratio test is
included in the semi-parametric tests, unlike the two previous ones, which are parametric. The null
hypothesis implies non-stationary, and the alternative hypothesis indicates that the process is stationary.
El LCM test allows for additional autoregressive lags similar to the ADF test. Although both tests have
the same asymptotic distribution, the statistics from the LMC test converge at a higher rate. The PP test
states the null hypothesis as the non-stationarity in time series data and the rejection of the unit-root
null in favor of the alternative model.

2.1.2. Metrics for Statistics and Probability Analysis

In probability theory, the moments of a stochastic dataset (random variable) x consist of the
expected values of certain functions x. Such variables are a set of descriptive measurements that
correspond to the probability distribution of x and determine whether all the moments of x are known.

Let x be a discrete univariate dataset with a finite number of outcomes (x1, x2, . . . , xm) occurring
with probabilities px(xi), i.e., with PMF px(xi)(= P(x = xi)]), its moment of order one, two, and r can
be specified as follows [75,76]:

m1
x = E[x]; m2

x = E
[
x2
]
; mr

x = E[xr]

mr
x =

∞∑
i=1

xr
i · px(xi)

(1)

The cumulants of a stochastic dataset are variables that constitute an alternative to the moments
described in the previous paragraph [76]. Unlike moments, these cumulants cannot be directly obtained
by summatory or integrative processes, such as (1). Cumulants can only be found by identifying
the moments and applying relationship formulas [75,76]. Accordingly, the first cumulant is the
expected value; the second cumulant is the variance; the third cumulants measures asymmetry; and the
fourth cumulant measures the tailedness of the probability distribution.

Equation (1) describes how to find the expected value, variance, skewness and kurtosis for discrete
random variables according to probability theory. However, some of these variables such as the
expected value and variance might strike as very similar to the sample mean and sample variance,
respectively, in descriptive statistics. The sample mean and sample variance are random variables
because their values depend on what the particular random sample happens to be. In other words,
if we know the frequency distribution, or how many times a data value is repeated in the dataset,
the following formula can be used to determine the statistics sample mean, x, and sample variance, s2:

x =
∑

f ·xi∑
f

s2 =
∑

f ·(xi−x)2∑
f

(2)

Notice that m =
∑

f is the dataset sample size.
The distinction between variables in statistics and probability analysis is that the statistics vary

with each sample dataset, whereas probability variables are fixed when you know the dataset’s
probability distribution. The law of large numbers states that as the sample size grows to infinity,
statistics provide a more accurate picture of moments of distribution.

2.1.3. Autocorrelation and Spectrum

The covariance between two observations xn and xn+k of a stationary stochastic dataset is
formulated as follows:

r(k) = cov(xn, xn+k) = E[(xn − μx)(xn+k − μx)] (3)
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where μx is the mean of the dataset.
The quantity r(k) is specified for each integral value of k, and the combination of all of these

quantities is known as the autocovariance function of xn. It quantifies the covariance between pairs at a
distance or lag k, for all values of k. This signifies that it is a function of lag k.

The autocovariance function expresses all knowledge pertaining to Gaussian stochastic data.
In combination with the first two statistical moments, it fully characterizes the joint probability
distribution function of the data. Only when the distribution significantly departs from normal,
it is interesting to study higher-order moments or other features.

In the same way as the covariance between two variables, it is also possible to normalize the
autocovariance function r(k) and thus obtain the autocorrelation function ρ(k):

ρ(k) =
r(k)
r(0)

=
r(k)
σ2

x
(4)

where σ2
x is the variance of the dataset.

The autocorrelation function reveals how rapidly a signal can change over a period of time.
At lag 0, the autocorrelation value is 1. In the case of most physical processes, there is an autocorrelation
function that progressively diminishes for greater lags. Accordingly, the relation at a short temporal
distance is greater than the relation for longer distances. A long lag value in the autocovariance
function is indicative of the slow variation of the data. In contrast, a short lag value signifies that
the data at short distances are correlated. Nonetheless, a high value in the autocorrelation function
signifies a repetition pattern, and thus reveals a constituent signal in the analyzed dataset. Therefore,
the resulting variable that includes the set of high values of the autocorrelation function can provide a
means for describing the features of a stationary stochastic dataset.

The partial autocorrelation function, α(k) represents the autocorrelation between xn and xn+k is
an indication of xn on xn+k through xn+k−1 removed. In the same way, it denotes the autocorrelation
between xn and xn+k, which is not explained by lags 1 through k-1, inclusively [77]:

α(1) = corr[xn+1, xn] for k= 1
α(k) = corr

[
xn+k − Pn,k(zn+k), xn − Pn,k(xn)

]
for k ≥ 2

(5)

where Pn,k(x) is the surjective operator of orthogonal projection of x onto the linear subspace of the
Hilbert space spanned by xn+1, . . . , xn+k−1.

There are algorithms for estimating the partial autocorrelation based on the sample
autocorrelations [78].

The Discrete Fourier Transform (DFT) of the autocovariance function constitutes the spectrum or
power spectral density function h(ω). The Wiener-Khintchine theorem [79,80] defines conditions in
which valid autocovariances have a transform that is always non-negative in all contexts; see [81].

h(ω) = 1
2π

∞∑
k=−∞

r(k)e− jωk, −π ≤ ω ≤ π
r(k) =

∫ π
−π h(ω)ejωkdω, k = 0,± 1,±2, . . .

(6)

The reason why this is known as the ‘power spectral density function’ is evident in the integral
for the value k = 0:

r(0) =
∫ π
−π

h(ω)dω = r(0) = σ2
x (7)

The variance represents the total power in the signal. It is the power spectral density function that
provides the distribution of the total power over the frequency range. When the data are characterized
by a strong quasi-periodicity with a specific period, they show a narrow peak in the power spectral
density instead of one exact frequency, thus revealing a constituent signal in the analyzed dataset.
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Therefore, the resulting variable that includes the set of narrow peaks of the power spectral density
function can provide a means for describing the features of a stationary stochastic dataset.

The fast Fourier transform (FFT) is an algorithm used for computing the DFT more efficiently
and faster, described in Equation (6) as an infinite sum. The FFT algorithm systematizes the redundant
calculations in a very efficient way, taking advantage of the algebraic properties of the Fourier matrix.
The FFT applied to a signal allows thus obtaining its power spectrum, namely, the periodogram of
the signal. When a high number of observations (N) is involved, the FFT results assure a high accuracy.

When (4) is divided by the variance of the signal, this results in the normalized autocorrelation
function ρ(k) and the normalized power spectral density ϕ(ω):

ϕ(ω) = 1
2π

∞∑
k=−∞

ρ(k)e− jωk, −π ≤ ω ≤ π
ρ(k) =

∫ π
−π ϕ(ω)e

jωkdω, k = 0,± 1,±2, . . .
(8)

2.2. Temporal Granularity and Time Slices

Granularity is the temporal resolution of a recorded measurement set, which is used to obtain the
variability of the data set, pertaining to a given measurement interval. The time slice is the temporal
framework for a given study. The quality of the results depends on the choice of the appropriate
granularity and time slice for establishing the household consumption load profile features.

The temporal framework for analyzing the electrical energy system differs, depending on the
action or assessment performed [19], as shown in Figure 1. Very short-term analysis involves a
temporal framework from 0.5 s to 1 min, and mainly includes transient analysis, demand response
in real time, angle stability, and frequency control. Short-term analysis is associated with the system
operation from various seconds to thirty minutes. It includes day-to-day system operation, hour-ahead
scheduling, studies of probabilistic load forecasting, and seasonal prediction of demand. A mid-term
analysis involves a temporal framework from various days to one year. This includes maintenance
of system assets, unit commitment, energy trading, and energy sales. Finally, long-term analyses,
which range from 3 years to more than a decade [19], cover new capacity addition [82], system planning,
and energy policies covering future demand growth.
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Figure 1. Temporal framework for analyzing the electrical energy system.

2.3. Planned Framework for Consumption Data Collection in Households

Figure 2 shows the planned framework for the remote real-time collection of consumption data
at high sampling frequency (>4 Hz) in households with SMs and the uploading of this information
to the cloud. This development is one of the most important issues targeted by the SEREDIS project
(‘Nuevos servicios de red para microredes renovables inteligentes. Contribución a la generación
distribuida residencial’: Grant No. ENE 2017-83860-R [44,49,83,84]). In this framework, the SM
designed in [44] is installed in the general protection box, and the data gathered are dumped directly
into two data storage solutions: (i) the cloud and (ii) a local storage in SD card.

2.3.1. SM

As shown in Figure 3, the SM is composed of a data acquisition block and a data-to-cloud upload
block (see [44] for a more in-depth explanation). This SM was calibrated and tested to ensure its
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reliability and accuracy [44]. This SM has two Arduino boards: (i) the Arduino Uno Rev3 (AUR3 [85]);
(ii) the Wemos Arduino D1R1 (AD1R1 [86]). The AUR3 board was used for the measurement process
whereas the AD1R1 board uploaded data to the cloud. This reduced the time needed to process data
and upload them to the cloud.

The SM simultaneously performed two processes. In the first process, the AUR3 microcontroller
software determined the fundamental and derived electrical variables, sent data via serial port
to AD1R1, and then stored information in the local data logger. The AD1R1 software read from the
serial port and uploaded the data to the cloud via Wi-Fi in a parallel process.

 

SM #1
SM #2

SM #3

SM #4

Residential building #1

SM #5

Household #1

Residential building #n
Household #n

SM #n

Database

Cloud 
Computing

Firebase Web Portal

www

Wi-Fi
signal

Figure 2. Remote real-time data collection schematic.
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Figure 3. Block diagram for the data acquisition and uploading.

The timeline of the processes is shown in Figure 4. In the first process, the required time
for measuring electrical variables is a 10-cycle time interval for a 50-Hz power system (Class-A
performance [52]). In order to be accurately measured, the frequency of sampling must be at least twice
the frequency of the signal. Therefore, 200 samples were used for the 10-cycle interval with a sampling
frequency of 1 kHz. Derived variables are then calculated, which takes about 30 ms. The transmission
of the information to the serial part only takes 1 ms, and data storage in SD memory, 9 ms. This leaves
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10 ms for the waiting time In the second process, the SM reads the data received in 1 ms and uploads
the data in 150 ms. About 50 ms are required to confirm the data upload, which leaves 49 ms for the
waiting time.
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2 31
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4
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5
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Data-to-cloud upload

Data acquisition

Figure 4. Process timeline for the SM.

Data Acquisition

Figure 3 shows the hardware for the data acquisition process. Analogical voltage and current
sensors measured the electrical variables, which were then processed in the Arduino AUR3 [85]
microprocessor. Once the fundamental variables were obtained, the derived variables were computed.
More specifically, the current sensor STC-013 [87] (of the non-invasive type) together with the voltage
sensor ZMPT101b were used for this purpose [88]. A digital/analogue converter ADS1115 was planned
to increase the 1V DC output of the current sensor to the 5 V analogue input of AUR3 [89].

Data-To-Cloud Upload

The cloud provides a cost-effective method of supporting big data analytics. Therefore, the cloud
data storage solution is suitable in scenarios where a real-time response from a given stream of SM
data is required. This real-time data availability aids in personalizing applications that benefit both
household owners and the scientific community when analyzing consumer profiles.

When data with finer granularities are gathered, the amount of information involved is high and
requires data compression algorithms. These algorithms are usually time consuming; thus, a delay
between the measurement and the data availability in the cloud appears. To enable a real-time response,
this research does not apply compression algorithms, and the time of data-to-cloud upload is set to
0.25 s (see Figure 4), the same as the data acquisition time.

According to Figure 3, the base of the wireless communication module of the SM was the AD1R1
board [88] that acted as the interface between the microcontroller and cloud data storage (i.e., Firebase).
The board used the ESP8266 platform as the operation core, which permitted Wired Equivalent Privacy
(WEP) or Wi-Fi Protected Access (WPA)/WPA2 () authentication for secure Wi-Fi communication.
In addition, it operated with 802.11 b/g/n wireless systems, which were compatible with the majority of
the routers and modems on the market. This framework used the platform Firebase [90] to store huge
amounts of data from households monitored with IoT technology and cloud computing. Alternatively,
wireless communication systems such as 4G and 5G networks can be used. This implies a more
expensive data service contract for data-to-cloud uploading.

Local Data Storage

A SM is equipped with a SD card mounted on a data logger shield, which is used as a backup to
avoid data lost because of data-to-cloud upload problems. The memory size required per household in
a year is about 2.2 GB.
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2.4. Data Post-Processing

In an asynchronous way, data collected can be used for different actions or assessments. In our study,
the assessment aims to show the influence of data granularity on the description of consumption load
profile features. This required post-processing the data that involved the extraction of data from the
planned storage solution and its adaptation for different granularities.

Cloud data were stored in json format and could be downloaded at any time. Also, SD card data
were stored in CSV format and could be downloaded anytime. Therefore, firstly the data of each house
in Figure 2 could be downloaded and converted to CSV format, if required, resulting in a daily CSV file
of all electrical measurements. This format could be recognized by applications used for the processing
and analysis of data, such as MS Excel and MatLab.

Secondly, the adaptation for different granularities from raw data on a 0.25 s-basis was carried
out by the up-sampling method of the RMS value. The data size was reduced in the up-sampling
operation. This allowed obtaining data at thirteen resolutions of data granularity, from a half-second
to 30 min (0.5, 1, 2, 5, 10, 15, 30 s, and 1, 2, 5, 10, 15, and 30 min).

3. Results and Discussion

This section shows the results of the influence of data granularity on the description of household
consumption load profile features based on the methodology presented in Section 2. This framework
highlighted the information loss regarding the profile features when coarse-grained data were used.
We first focus on the temporal results for different time slices from a sub-hourly to a monthly analysis,
including daily and weekly analyses. However, the global influence assessment was based on a
yearly analysis. This first involved a statistical analysis. After this, periodograms were compared
to autocorrelation and partial autocorrelation analyses to highlight significant outcomes regarding
profile features.

3.1. Case Study

The case study focused on four real-world households in the city of Jaen in southern Spain.
As explained, this research is part of the SEREDIS project, which characterized load profiles for
household consumption, electric vehicles (EVs), and PV systems in the residential context. Nonetheless,
this study is limited to the consumption load in households. The consumption load data came from
SM readings as described in Section 2.3, being post-processed as stated in Section 2.4.

The household set selected had different consumption features, namely with varying characteristics
in terms of the relation between the peak and base load and load fluctuations, which made it possible
to take the heterogeneity of real-world load profiles into account (see Table 2). In addition, important
issues determined the household selection, such as the power contracted from the electric mains and
the type of supply at home. Single-phase systems were designed at households #1, #2, and #4, whereas
household #3 had a three-phase system. The contracted power in Spanish legislation reflects how the
household is equipped with different electrical appliances (see Table 3). In this study, the limitation
in the number of households was due to a combination of limited financial budget, limited number
of households that included EVs and PV systems, and a low number of families who voluntarily
cooperated on the research project.

In particular, household #1 was a family flat with three children. Household #2 was a semi-detached
house with only two inhabitants. Household #3 was a detached house with two children and their parents.
Household #4 was a terraced house of four components, inhabited by two adults and two teenagers.

The city of Jaén has a Mediterranean climate with hot summers but cool winters. Therefore,
the houses in our study were all equipped with climate control systems. More specifically, household #1
had a heating system for the whole building with a gas boiler. The flat also had an air-conditioning
system for summer. Household #2 had an individual gas boiler for heating, and a two-split air
conditioner system (living room and master bedroom). Household #3 was equipped with a central
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electrical air-thermal system for heating and cooling. Household #4 had an air-conditioning/heat
pump system. Each household had different electrical appliances, depending on the age and behavior
of the family members, see Table 3.

Table 2. Key features of four households in Jaén (southern Spain). Case study.

Household #1 Household #2 Household #3 Household #4

Total annual
consumption
(kWh/year)

3033 2626 22,058 4139

Total surface (m2) 100 125 210 140
Number of family

members 5 2 4 4

Is there at least an
adult during the

morning at home?
No No Yes Yes

Electric heating No No Yes Yes
Electric air

conditioned Yes Yes Yes Yes

Building type Flat Semi-Detached house Detached house Terraced house
Contracted power
from the electric

mains (kW)
3.45 2.3 5.75 4.6

Number of phases 1-phase 1-phase 3-phase 1-phase

Table 3. Appliances and lighting installed in every household case study.

Item Power (W) Household #1 Household #2 Household #3 Household #4

Oven 1200–2200
√ √ √ √

Electric cooker 900–2000
√ √ √ √

Extractor hood 70–200
√ √ √ √

Microwave oven 900–2500
√ √ √ √

Dishwasher 1500–2200
√

—-
√ √

Refrigerator 250–350
√ √ √ √

Washing machine 1500–2200
√ √ √ √

Electric water
heater 1500–5500 —- —-

√
—-

Vacuum cleaner 1100–2000
√

—-
√

—-
Dryer 1000–2500

√ √ √ √
Clothes dryer 1500–3000

√
—-

√
—-

Desktop
computer 150–300

√
—-

√
—-

Laptop 100–250
√ √ √ √

Smart phone 15–25
√ √ √ √

Tablet 20–30
√

—-
√

—
LED TV 150–550

√ √ √ √
BlueRay-DVD

player 50–75 —-
√

—- —-

Stereo system 100–150
√ √

—-
√

Video games
console 25–150

√
—-

√ √

Low energy
bulbs 5–20

√ √ √
—-

Florescent lamps 18–58
√ √

—-
√

LED lamps 4–12
√

—-
√ √

Halogen lamps 25–60 —- —- —-
√

All of the households had the usual appliances installed in the kitchen. Household #2 did not have
a dishwasher. The computer equipment in each household was quite heterogeneous (desktop computer,
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laptop, smart phone, tablet), and depended on the profession of the occupants, and whether certain
members of the household were still students. Moreover, the ages of the occupants also determined the
entertainment equipment (TV, stereo system, video games console, etc.). Thus, households #1, #3 and
#4 had video game consoles for the children and adolescents that lived there. In contrast, the occupants
of household #2 preferred listening to music on a CD/disc or playing movies on DVD/BlueRay.
The lighting system in all households was low consumption and high efficiency. Low consumption
lamps were planned in households #1, #2 and #3. Households #1, #2 and #4 also had fluorescent lamps.
LED lighting was present in households #1, #3 and #4. Only household #4 used halogen lamps.

3.2. Reliability of the Planned Framework to Provide Data

Figure 5 shows the data availability for the data-to-cloud upload in each household within the
SEREDIS project up to July 2020. The gaps in the figure represent the days when some information
was lost because of data-to-cloud upload problems, particularly when the data loss exceeded 25%
in one day. Data collection started in July 2018 (household #3) and is still going on for all of the
households. On September 2018, SMs were added to households #1 and #2. Finally, household #4 was
equipped with an SM in October 2018.

Figure 5. Data availability for every household.

As data were collected on a 0.25 s basis, 345,600 measurements for six electrical variables (voltage,
current, active, reactive and apparent power, power factor) were stored each day. This provided a total
data set of 2,073,600 per day, 62,208,000 per month, and 746,496,000 per year.

The reliability of the data-to-cloud upload (Firebase [90]) during 2019 was greater than 99%
because of the high quality of the fiber optic Internet connection in all of the households. Figure 6
depicts the percentages of successful data-to-cloud upload.

Figure 6. Percentage of successful data-to-cloud upload in 2019.

As explained, the SM also included a local 8-GB memory card that served as a data backup.
This permitted an operational autonomy of 1.88 years. This local storage guaranteed 100% data
availability; thus, the assessment shown hereafter is based on data of this storage solution.
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3.3. Sub-Hourly Time Slice Analysis

The influence of the data granularity on the temporal change features of the household consumption
load profile at sub-hourly level is analyzed in this section. Figure 7 shows the measurements for all of
the households and thirteen resolutions of data granularity from 0.5 s to 30 min on a working day in
September. Data with finer granularities, from 0.5 s to 30 s, are shown on a 5-min timespan whereas
coarser resolutions, from 0.5 min to 30 min, cover a 2-h timespan.

For household #1, Figure 7a1 highlights the smoothing of peaks and troughs in the consumption
load because of the use of coarse-grained data. For example, the 1.77 kW load peak at 22:26:26 h was
only achieved at a 0.5-s granularity. The granularity of 1 and 2 s gave a load peak of 1.67 kW and
1.61 kW, which meant a decrease of 5.64% and 9.04%, respectively. However, the flattening of this peak
was very pronounced for the 30-min granularity where a decrease of 27.12% was observed.

Regarding household #2, the increase in the maximum load peak for the finest granularity in regard
to the coarse resolution occurred at 23:42:52 h and was 56.44%. The comparison of the consumption
load in household #3 at 12:07:00 h, as an example, shows a reading of 1.83 kW for a 0.5-s granularity,
0.53 kW for a 15 min granularity and 0.81 kW for a 30 min granularity, which meant a decrease of
71.03% and 55.73%, respectively. For household #4, the reading of 1.81 kW for a 0.5-s granularity at
14:30:00 h was reduced to 0.88 kW for the 30-min granularity, which meant a decrease of 51.38%.

Coarse data granularities tend to flatten the peaks and troughs in the consumption load. Since there
is a considerable loss of information, the consumption thus evaluated does not conform to reality.
The smaller the granularity used, the smoother the load peaks and troughs will be. As a result,
the reduction in the measured power is greater, and is thus a less accurate reflection of reality.
One problem with reducing the temporal resolution of consumption data sampling is the loss of
variability in regard to the intra-temporal steps, which has a particularly high effect on the actions or
assessments. The loss of detail observed in Figure 7, does not justify the reduction of the sampling
resolution for the consumption load data.

3.4. Daily Time Slice Analysis

This section extends the timeframe of Section 3.3 to one day when analyzing the influence of the
data granularity. This provides information pertaining to the daily consumption in the households.
Figure 8 shows the six samples of data granularity for all of the households on the previously mentioned
day of September. This figure highlights the dual nature of the consumption load profile, namely,
the continuity of the rough base-load and the intermittent spikes of the peak-load.

For household #1, the maximum daily load peak occurred at 22:00:00 h with a 0.5-s reading
of 4.13 kW. However, the readings for the 10 and 30-min granularity dropped to 2.65 and 1.69 kW,
respectively, which signified a decrease of 36.07% and 59.09%. As can be observed, the consumption
load for household #2 had a sequence of peaks throughout the day for the finest data granularity.
These peaks were strongly attenuated for a 5-s data granularity, and much more reduced for the coarse
data resolutions. These repeated peaks were caused by the operation of the refrigerator. As an example,
the 0.5-s reading at 23:49:53 h was 2.27 kW, after which it dropped to 0.95 kW (a 58.14% decrease) for
the 30-min granularity. The central electrical air-thermal system in household #3 originated peaks
at a stable timespan. The maximum daily load peak occurred at 19:23:51, with a reading of 7.47 kW
for the 0.5-s granularity. In contrast, the 30-min granularity reading dropped to 5.95 kW, a value
that was 20.34% lower. In household #4 the maximum daily load peak occurred at 9:17:23 h with
a value of 3.14 kW for a 0.5-s granularity, whereas for a 30-min granularity, it decreased by 57.64%
(1.33 kW). Repeated peaks were only identified at 0.5 and 5-s granularities during hours when the
consumption was lower. These were caused by equipment disconnection. In summary, the greatest loss
of information occurred in household #1 (59.07%), followed by #2 (58.14%), #4 (57.64%) and #3 (20.34%).
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Figure 7. Consumption load profile for household #1 to #4: (a1–a4) 0.5 to 30 s granularities (5-min
timespan); (b1–b4) 0.5 to 30-min granularities (2-h timespan).
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Figure 8. Daily consumption load profile for household #1 to #4: (a1–a4) 0.5 to 30 s granularities;
(b1–b4) 2 to 30-min granularities.
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3.5. Weekly Time Slice Analysis

This section discusses the influence of the three samples of data granularity on weekly consumption
features, Figure 9. For household #1, the maximum load peaks occurred on Thursday and Friday,
with 5.48 kW for the 0.5-s data granularity. These peaks were reduced by 12.77% and 34.67% at the
granularities of 30 s and 30 min, respectively. Repeated peaks throughout the day in household #2 were
also observed during the weekly analysis. The reduction of peaks by using coarse data granularity,
(up to 75%), was the most pronounced in the households analyzed. Intermediate data granularity
decreased the weekly load peaks by 37%. In household #3, the highest reduction occurred at the end of
Wednesday, which signified a reduction of 30.62% and 72.76% in the temporal resolution of 30 s and
30 min, respectively. The reduction in household #4 was lower, and came to a 62.07% droop for the
30-min data granularity.

  

  

Figure 9. Weekly consumption load profile in households #1 to #4 for three data granularities.

3.6. Monthly Time Slice Analysis

This section examines the daily smoothing of the highest peak and deepest trough when using
coarse-grained data to underline their accuracy. The analysis focused on data from January.

Unlike the remaining sections where the temporal framework and the analysis were very
short-term, the results of this section are applicable to medium-term analysis where knowledge of
day-to-day operation is required. For this purpose, the ratio between the daily peak or trough load
and the daily mean load is used as a metric.

Figure 10 shows the ratio for the peak load and all of the households for a 0.5–30 min data
granularity. The load profiles show a widening spread in the daily mean load for households #3, #1, #2,
and #4. This reveals an increase in daily variability as shown in Figure 9.
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Figure 10. Ratio of daily peak load vs. daily average load in households #1 to #4 for 1.66–30 min data
granularity in January.

Table 4 summarizes the highest peak-mean and deepest trough-mean ratios for the thirteen
granularities and four households. As can be observed, the monthly maximum peak-mean ratios
achieved the highest values for a data granularity of 0.5 s. The ratio decrease for the 30-min data
granularity was 50.02%, 39.66%, 35.07% and 36.89% with regard to the 0.5-s granularity, respectively
for households #1, #2, #3, and #4. The monthly minimum trough-mean ratio also achieved the highest
value for a 0.5-s data granularity. The decrease in percentages with coarser granularity, which was
greater than the one for maximum peak-mean ratios, was the following: 64.07%, 75.22%, 27.67%
and 59.64%. This lack of accuracy indicates the need to adjust the data granularity at 0.5 s for the
medium-term analysis.

Table 4. Monthly maximum/minimum ratio of daily peak-mean load and of daily trough-mean load
in January.

Data
Granularity

Household #1 Household #2 Household #3 Household #4

Maximum
Peak-Mean

Minimum
Trough-Mean

Maximum
Peak-Mean

Minimum
Trough-Mean

Maximum
Peak-Mean

Minimum
Trough-Mean

Maximum
Peak-Mean

Minimum
Trough-Mean

0.5 s 17.7714 7.4346 13.2673 6.1029 6.3413 3.1745 6.9320 3.2970
1 s 17.4875 7.4233 13.2562 5.4252 6.3114 3.1726 6.9318 3.2951
2 s 17.5749 7.2256 13.2559 4.7885 6.2524 3.1693 6.8127 3.2876
5 s 17.4989 7.0880 13.1816 3.6465 6.2348 3.1668 6.7546 3.2712
10 s 17.3746 6.8418 13.1445 2.3266 6.2191 3.1642 6.7268 3.2671
15 s 17.1912 6.5573 13.0965 2.0043 6.2258 3.1601 6.6947 3.2524
30 s 17.1558 6.5692 13.0793 1.6689 6.1782 3.1554 6.6404 3.2491

1 min 16.0662 6.5542 11.4579 1.6763 5.3288 3.0967 6.5740 3.2495
2 min 15.4650 6.0329 10.8880 1.7029 5.6834 2.9352 6.1811 3.0951
5 min 14.8479 5.0117 9.3116 1.6465 5.3142 2.8401 5.9447 1.7821

10 min 13.4116 4.7214 8.6840 1.6023 4.5818 2.7117 5.5095 1.8488
15 min 12.0069 3.7204 8.6675 1.5882 4.7191 2.3409 4.6373 1.5840
30 min 8.8820 2.6709 8.0044 1.5119 4.1170 2.2958 4.3747 1.3305
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3.7. Yearly Time Slice Analysis

This section highlights the influence of data granularity on the description of household consumption
load profile features by means of different complementary analyses. Firstly, the consumption pattern of
each household is justified. Then, based on the use of coarse-grained data, a statistical analysis underlines
the change in the annual empirical distribution shape. Finally, periodograms and autocorrelation
analyses are used to focus on the loss of information pertaining to profile features, caused by the
use of coarse-grained data. This was based on the knowledge of the main constituent signals of the
load fluctuations.

3.7.1. Temporal Consumption Pattern

The yearly consumption pattern in a household reflects the energy behavior of the occupants
during all seasons, and is strongly influenced by temperature, wind speed, relative humidity, etc. [16,34].
It also takes vacation and holiday periods into account. Accordingly, Figure 11 shows the daily average
consumption load during the year for five samples of data granularity in all of the households.

  

  

Figure 11. Daily average consumption load profile in households #1 to #4 for five data granularities.

Consumption pattern #1 was stable during spring, autumn, and winter. The heating system in the
household was for the whole building, and thus did not influence electricity consumption. However,
the air-conditioning system from May to September strongly increased consumption, except for the
month of August when the occupants were away on holiday. During the summer (June to September),
the children spent more time at home, which increased consumption.

Consumption pattern #2 was stable throughout the year because the occupants were at work
all day, and were only at home at night. Nonetheless, there were days between June and October when
consumption peaked because of the use of the split air conditioner system.

The central electrical air-thermal system for heating and cooling in household #3 operated
the whole year. When temperatures were lower (i.e., January to April), consumption was greater.
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Regarding household #4, electricity consumption decreased in January and August because the family
moved to their second residence.

3.7.2. Statistical Analysis

This section presents a statistical analysis of the datasets monitored in the course of a year
(see Section 3.2 for a detailed explanation of the timespan) for the four households in the case study
(see Section 3.1), once these datasets were post-processed for different granularities according to
Section 2.4. This analysis shows the impact of data granularity on the description of household
consumption load profile features. Accordingly, Figure 12 represents the annual empirical distributions
(PMFs of the discrete variables) of the consumption load for all of the households and for four data
granularities. Specific zooms were included for a better understanding of results.

  

  

Figure 12. Annual empirical distribution of the consumption load profile in households #1 to #4 for
four data granularities.

As can be observed, the PMFs of the household consumption load data are clearly not normal or
Gaussian. The most non-Gaussian behavior is evident for household #1, followed by household #3.
This result is in consonance with the dual nature of the consumption load profile in Figure 8.
In addition, the use of coarser temporal granularity, ranging from 0.5 s to 30 min, substantially affected
the PMF shapes. Thus, opposite behaviors were observed. The PMF shape either moved further away
from a Gaussian distribution (households #1 and #3) or began to show a more Gaussian behavior
(households #2 and #4). In general, the shape was more frequently skewed near those hours with a
lower load, which removed many of the extremes. The extreme ends of the PMF were of potential
interest as they represented periods of very low or very high consumption.

For profile #1, the PMF moved largely within the intervals of 0.0–0.4 kW and 0.6–3.0 kW. A reduction
of occurrences in the 0.0–0.4 kW interval was observed, which moved the higher occurrences towards
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the 0.6–1.5 kW load interval. In household #3, the lower occurrences in the 0.0–2.5 kW interval
were compensated by higher ones in the 2.25–3.20 kW interval. For household #4, a displacement of
occurrences from the 0.30–0.55 kW interval to the 0.55–1.50 kW interval was observed.

Table 5 summarizes the statistical results of the annual empirical distributions for all of the data
granularities. For purposes of comparison, the values at the 0.5-s data granularity were used as a
reference. Using coarser temporal granularity, ranging from 0.5-s to 30-min, led the sample mean of
the consumption load to decrease by 17.61%, 17.68%, 17.65%, and 17,74%, respectively for households
#1, #2, #3, and #4. In general, the level of variability for all households was significantly reduced as the
maximum load values decreased by 15.55%, 18.28%, 13.74%, and 18.49%, respectively. Nonetheless,
larger droops were observed for the relevant minimum values, namely, 20.98%, 19.93%, 17.59%,
and 16.02%. The reduction in percentage for the variance of all households was in the 27.54–31.29%
interval. This again confirmed the drop in the variability of the consumption load for the households.

Table 5. Descriptive statistics of the consumption load profile throughout the year.

Household
Data

Granularity

Sample
Mean
(kW)

Maximum
Value
(W)

Minimum
Value
(kW)

Sample
Variance

(kW2)

Sample
Skewness

(kW3)

Sample
Kurtosis

(kW4)

#1

0.5 s 0.3771 1.2884 0.1021 0.0326 1.7935 7.8044
1 s 0.3752 1.2821 0.1016 0.0323 1.7932 7.8035
2 s 0.3733 1.2756 0.1011 0.0320 1.7938 7.8060
5 s 0.3658 1.2497 0.0991 0.0307 1.7930 7.8024
10 s 0.3628 1.2397 0.0982 0.0302 1.7931 7.8048
15 s 0.3619 1.2369 0.0980 0.0301 1.7959 7.8179
30 s 0.3582 1.2247 0.0971 0.0295 1.7940 7.8073

1 min 0.3545 1.2112 0.0960 0.0288 1.7950 7.8130
2 min 0.3506 1.1994 0.0950 0.0283 1.7988 7.8334
5 min 0.3430 1.1722 0.0918 0.0270 1.7963 7.8290

10 min 0.3388 1.1616 0.0926 0.0264 1.8027 7.8813
15 min 0.3285 1.1191 0.0884 0.0248 1.7985 7.8953
30 min 0.3106 1.0882 0.0801 0.0224 1.8782 8.5657

#2

0.5 s 0.2998 0.4912 0.1922 0.0030 0.4923 3.6786
1 s 0.2983 0.4888 0.1912 0.0028 0.4920 3.6774
2 s 0.2968 0.4863 0.1903 0.0029 0.4934 3.6812
5 s 0.2908 0.4764 0.1864 0.0028 0.4927 3.6803
10 s 0.2884 0.4725 0.1849 0.0028 0.4930 3.6810
15 s 0.2878 0.4715 0.1845 0.0028 0.4906 3.6731
30 s 0.2848 0.4668 0.1827 0.0027 0.4913 3.6795

1 min 0.2818 0.4622 0.1809 0.0027 0.4947 3.6930
2 min 0.2788 0.4573 0.1790 0.0026 0.4876 3.6675
5 min 0.2728 0.4488 0.1748 0.0025 0.4886 3.6615

10 min 0.2701 0.4417 0.1732 0.0025 0.4827 3.6079
15 min 0.2606 0.4229 0.1683 0.0023 0.4702 3.5331
30 min 0.2469 0.4014 0.1539 0.0021 0.3548 3.3360

#3

0.5 s 2.5180 3.0848 2.0955 0.0276 0.8327 3.4692
1 s 2.5054 3.0690 2.0844 0.0273 0.8323 3.4684
2 s 2.4928 3.0545 2.0745 0.0270 0.8332 3.4696
5 s 2.4425 2.9928 2.0321 0.0260 0.8329 3.4723
10 s 2.4224 2.9683 2.0174 0.0255 0.8328 3.4685
15 s 2.4173 2.9608 2.0108 0.0254 0.8317 3.4663
30 s 2.3922 2.9311 1.9906 0.0249 0.8312 3.4660

1 min 2.3670 2.9016 1.9720 0.0244 0.8309 3.4660
2 min 2.3420 2.8627 1.9485 0.0239 0.8324 3.4470
5 min 2.2913 2.7917 1.9029 0.0229 0.8126 3.4436

10 min 2.2669 2.8123 1.8726 0.0225 0.8498 3.5525
15 min 2.1899 2.6639 1.8024 0.0211 0.7854 3.5506
30 min 2.0736 2.6612 1.7269 0.0200 1.0132 4.1224
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Table 5. Cont.

Household
Data

Granularity

Sample
Mean
(kW)

Maximum
Value
(W)

Minimum
Value
(kW)

Sample
Variance

(kW2)

Sample
Skewness

(kW3)

Sample
Kurtosis

(kW4)

#4

0.5 s 0.4726 0.6576 0.0880 0.0059 −0.5149 4.8532
1 s 0.4702 0.6544 0.0876 0.0058 −0.5147 4.8532
2 s 0.4678 0.6510 0.0871 0.0057 −0.5154 4.8545
5 s 0.4584 0.6379 0.0854 0.0055 −0.5152 4.8533
10 s 0.4546 0.6323 0.0847 0.0054 −0.5175 4.8579
15 s 0.4537 0.6314 0.0845 0.0054 −0.5147 4.8602
30 s 0.4489 0.6251 0.0836 0.0053 −0.5129 4.8537

1 min 0.4442 0.6179 0.0828 0.0052 −0.5167 4.8618
2 min 0.4396 0.6133 0.0819 0.0051 −0.5198 4.8590
5 min 0.4302 0.5983 0.0803 0.0049 −0.5133 4.8487

10 min 0.4248 0.5972 0.0797 0.0048 −0.5042 4.8242
15 min 0.4111 0.5617 0.0773 0.0044 −0.5558 4.9013
30 min 0.3888 0.5360 0.0739 0.0041 −0.4903 4.7124

The sample skewness [91] was positive in households #1, #2, and #3, which underlines that the
right tail of the consumption load distribution was longer than the left. On the contrary, household #4
had a negative sample skewness. For coarser data granularities, households #1 and #3 increased
their sample skewness value whereas the behavior in households #2 and #4 was exactly the opposite.
This was confirmed by the displacement of PMFs in Figure 12.

The sample kurtosis values indicate that all households were leptokurtic [91], which means that
the consumption loads were concentrated around the sample mean as household profiles had values
greater than 3. Households #1 and #3 had higher sample kurtosis values for coarser granularities,
which revealed that the consumption load tended to be closer to the sample mean. This outcome was
more pronounced in household #3. However, the behavior in households #2 and #4 was the opposite.
Once again, the change in the sample kurtosis values was confirmed by the displacement of PMFs
in Figure 12.

3.7.3. Periodogram, Autocorrelation, and Partial Autocorrelation Analyses

This section presents a set of complementary analyses that were performed to explain the influence
of data granularity on the description of load profiles. A periodogram analysis, along with an
autocorrelation analysis and a partial autocorrelation analysis made it possible to obtain the main
periods (or frequencies) of the constituent signals of consumption load fluctuations. The results
highlighted the loss of information when using coarse-grained data to describe the load profile features.
The analyses were split into two time slices, namely, the 1–100 s interval and the 100 s (1.66 min)–30 min
interval. This showed the influence of the aggregation data on these intervals of data granularity.
This section concludes by highlighting the daily, weekly, and monthly seasonality of the household
consumption load profiles.

Since household consumption load profiles contain more than one source of seasonality,
as previously described, our approach at the very beginning removed the trend and seasonal components
altogether through differencing and seasonal differencing [68].

To confirm the stationary of the datasets used in periodograms and autocorrelation and partial
autocorrelation analyses, Table 6 shows the results the statistical tests described in Section 2.1.1.
These tests were applied on the datasets of the annual consumption load profiles for different data
granularities. We interpret results using the p-value from the test. A p-value below a threshold (such
as 5%) suggests that we reject the null hypothesis, whereas a p-value above the threshold suggests that
we fail to reject the null hypothesis.
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As can be seen in Table 6, the null hypothesis was rejected in all the tests (h = 0 for the tests ADF,
variance ratio, LMC, and PP, whereas h = 1 for the KPSS test). In addition, the p-value analysis for the
KPSS and LMC tests yielded reliability levels higher than 99% for most granularities and households.
Nonetheless, the reliability levels for the remaining cases were higher than 95%. Therefore, results in
Table 6 assured that the differenced time series data were stationary.

Figure 13 depicts the periodogram of the four consumption load profiles for the 0.5-s data
granularity and a period of load fluctuations from 1 to 100 s. The different curves in the graphs
were generated with 4000 observations (N) drawn on logarithmic scales for better visualization [67].
The property of the autocovariance function assured that its accuracy was proportionally improved
with 1/N. The accuracy of the periodogram was thus 2.5 × 10−4. The finest data granularity of 0.5 s,
as described in Section 2, limited the frequency analysis to 1 Hz (100). The power spectral density for
load fluctuations showed striking behavior differences for each household. The most stable power
spectrum was that of household #1, followed by households #2, #4, and #3. In general, the power
spectrum for the four load profiles showed two different patterns. For households #1 and #2, the power
level for the 15–80 s interval remained stable. This meant that load fluctuations included several
constituent signals of equivalent significance. Thus, main constituent signals at periods of 14, 27,
40, 55, and 68 s can be clearly observed. In contrast, although households #3 and #4 showed various
peaks in the periodogram, which corresponded to different constituent signals, their relevance strongly
increased with the period rise. This was due to the greater relevance of the induced cycling by the
climate control system that masked other minor fluctuating cycles. Nonetheless, some main constituent
signals can be observed, such as those at periods of 80 s for household #3, and others at periods of
30, 60, and 90 s for household #4.

  

  

Figure 13. Periodogram of the consumption load profile for households #1 to #4: 1–100 s time slice.

These graphs show that when coarse-grained data were used, from 1 to 100 s, there was a loss
of information regarding load profile features. This loss was the greatest for household #1, and in
descending order of relevance for households #2, #4, and #3. Furthermore, the main constituent signals
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that reflect this loss of information for coarse data are evident in these graphs. This analysis confirms
the results of the information loss in the daily time-slice analysis (Figure 8), where household #1 also
showed the worst behavior, followed by households #2, #4, and #3.

The autocorrelation function, which studies the cross-correlation of a signal with itself, also underlined
the constituent signals of load fluctuations. Accordingly, Figure 14 shows the autocorrelation function
of the load profiles for four finer levels of data granularity. The curves in the graphs for granularities
of 0.5, 2, 5, and 10 s were generated with 200, 50, 20, and 10 observations, respectively. Therefore,
the related accuracies were 0.005, 0.02, 0.05, and 0.1, respectively.

  

  

Figure 14. Autocorrelation function of the consumption load profile in households #1 to #4 for four
data granularities.

A high value in the autocorrelation function signifies a repetition pattern, and thus reveals a
constituent signal in the load fluctuation. The first two households had an autocorrelation function
that was much lower than 30. For example, in household #1, both the peak autocorrelation values at
lags of 14, 27, 40, 52, and 68 s and very strong dips at 11, 25, 38, 50, and 66 s were quite remarkable.
The former lags were in consonance with the periods found for the constituent signals in Figure 13a
(the periodogram). This outcome is also striking for the other households in Figure 14 when compared
with the results in Figure 13.

Figure 14 also underlines the loss of information for the load profile features when using coarser
temporal granularity, ranging from 0.5 to 10 s. As the granularity increased, the autocorrelation value
at the specific lags moved closer to unity. This unit value meant that data were fully autocorrelated and
no different information (different constituent signals) was involved. The higher the granularity was,
the greater the loss of information. As an example for household #1 and a lag of 14 s, the autocorrelation
value increased by 0.9%, 1,72%, and 2.21% for a data granularity of 2, 5, and 10 s, respectively. As can
be observed, the shifting of the curves for each granularity was the highest in household #1, followed
by households #2, #4, and #3. This was a consequence of a much ampler and more stable power
spectral density level for the 2–10 s period in the constituent signals for household #1 (Figure 13).

114



Sensors 2020, 20, 6034

The partial autocorrelation function can also be used to underline the loss of information when
coarse-grained data were used. Thus, Figure 15 shows the partial autocorrelation function of the
load profiles for four data granularities. As an example, the constituent signal of a 14 s period in
household #2 was analyzed. As the granularity increased, the partial autocorrelation value at this
specific lag moved closer to unity. This unit value meant that data were fully autocorrelated and no
different information (different constituent signals) was involved. More specifically, the value of 0.5 s
moved from 0.0166 to 0.1031, 0.2794, and 0.5042 for 2, 5, and 10 s, respectively.

 

  

Figure 15. Partial autocorrelation function of the consumption load profile in households #1 to #4 for
four data granularities.

Figure 16 broadens the periodogram in Figure 13 covering the period of load fluctuations from
1.66 min to 30 min. The comparison of the power spectral density for the load profiles shows an
increasing spread between the base and peak load for profiles #1, #2, #4, and #3. This outcome is
evident in Figures 8 and 9, where a drastic reduction of the peaks with higher granularities can be
observed. Furthermore, in this interval, the power spectrum level is two orders of magnitude higher
compared to that of the 1–100 s interval (Figure 13). Consequently, the contribution to the overall
power of the 1–100 s interval was less important and was at least 1% of that of the 1.66–30 min interval.

The power spectrum clearly shows a single constituent signal for household #3, at a period
of 25 min, whereas for the remaining households, several main constituent signals are evident.
Therefore, in households #1 and #2, there were signals at the 27.45 and 12 min periods, and in
household #4, at the 24 and 12.20 min periods. Figure 16 shows that when coarse-grained data from
1.66 to 30 min were used, load profile features were increasingly inaccurate. This lack of accuracy was
the greatest for household #1, and in descending order of relevance, for households #2, #4, and #3.
Furthermore, the main constituent signals that represent the loss of information for coarse data are
shown in Figure 16.

The autocorrelation analysis in Figure 17 pertaining to the 1.66–30 min time slice confirms the
constituent signals found in Figure 16 for the different households. In addition, the shifting of the curves
(inaccurate profile characterization) for each granularity was in consonance with the power spectral
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density levels for this 1.66–30 min interval (Figure 16). Thus, the greatest shifting and thus the most
inaccurate profile characterization was found in household #1, followed by households #2, #4, and #3.

  

Figure 16. Periodogram of the consumption load profile for households #1 to #4: 1.66–30 min time slice.

  

  
Figure 17. Autocorrelation function of the consumption load profile in households #1 to #4 for four
data granularities.

This section concludes by highlighting the seasonality of household consumption load profiles.
However, it is important to note that this seasonality, namely daily, weekly, and monthly, is out of
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the temporal resolution scope of data granularity analyzed in this study (up to 30 min). Accordingly,
raw datasets without applying differencing processes were used.

Figure 18 shows the periodograms of the four consumption load profiles for the time horizon daily
(a) and weekly/monthly (b). Regarding the daily seasonality in Figure 18a, except for household #2,
the power spectrum from the interval of 0.65 h to 24 h had almost the same order of magnitude. For the
different households, their main constituent signals can be clearly identified as follows: (i) #1 (0.65,
3.49 and 6 h); (ii) #2 (0.65, 3 and 8 h); (iii) #3 (0.71, 1.50, 1.71, 3, and 12 h); and (iv) #4 (0.92, 1.41, 2.67,
and 4.9 h).

 

  

Figure 18. Periodogram of the consumption load profile for households #1 to #4: (a) daily time horizon
(30 min–1 day time slice); (b) weekly/monthly time horizon (1–365 day time slice).

Within the time horizon of one year, Figure 18b, the power spectrum shows that cyclic household
power levels differ substantially from one month to the next. In addition, the cyclic power in the
interval lower than seven days shows striking behavior differences for each household, decreasing
in households #1 and #2 and keeping a more stable value in households #3 and #4. For the different
households, their main constituent signals during the weekly and monthly time horizons are as follows:
(i) #1 (1, 7, 10, 22, 50, 83, and 167 days); (ii) #2 (1, 7, 10, 21, 41, and 73 days); (iii) #3 (1, 7, 15, 52, 91,
and 182.5 days); and (iv) #4 (1, 7, 25, 41, 91, 182.5 days).

3.8. Comparative Study of Granularity Impact in the Literature

The results obtained in this study were compared with other studies in the literature that address
granularity impact. It is important to note that this research not only provides temporal results for
different time slices from a sub-hourly to a monthly analysis, but it also offers periodograms along
with autocorrelation and partial autocorrelation analyses and empirical distribution-based statistical
analysis. The temporal analysis offers information regarding the granularity impact on the change in
the magnitude of the peak and trough load. In contrast, the second type of analysis reveals additional
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information such as the constituent signals in the load fluctuation. Since studies in the literature have
focused only on temporal analysis, this comparison was limited to the impact on the magnitude change
of the peak load because of the lack of data for autocorrelation analyses and empirical distribution-based
statistical analysis.

In this study, the values obtained in the temporal analysis (Figures 7–11) and the empirical
distribution-based statistical analysis (Figure 12) illustrated that the load peak decreased when the
coarse-grained data was compared with the finest data granularity as follows: (i) sub-hourly analysis
(between 27.12–56.44%); (ii) daily analysis (between 20.34–59.09%); and (iii) monthly analysis (between
35.07–50.02%).

Wright [27] compared granularities of 30 and 1 min and revealed a peak load reduction between
16–47% for different households. Murray [38] showed peak load changes in the range of 8.9–16% for
granularities of 8 s using a meter. Naspolini [39] registered a drop between 18.56–28.36% when 15 min
granularity was compared to 5 min granularity. Bucher [40] studied granularities between 5 s and 1 h,
which resulted in a reduction between 2–38% as compared to a 1-s based granularity. Shi [41] carried
out analysis with granularities of 1, 5, 10, 15, 30, and 60 min and obtained reductions in the peak load
of up to 20% (5 min granularity) and up to 80% (60 min granularity) as compared with the 1 min
granularity. Widen [48] found drops between 19.19–26.29% for the 60 min granularity with respect to
the 10 min. Hoevenaars [64] disclosed a reduction in the peak load when compared to the 1-s based
granularity for different granularities as follows: (i) 10 s (between 1.28–7.45% for different sources);
(ii) 1 m (between 1.78–15.04%); (iii) 10 min (between 2.46–22.62%); (iv) 60 min (between 8.01–20.65%).

4. Conclusions

Increasing interest in the analysis of household electricity consumption profiles, thanks to the
rapid deployment of SMs in the residential context, may significantly change the relevance of such
profiles in the near future. To understand profile features and their applicability to any action or
assessment, it is necessary to appreciate the full range of consumption load fluctuations.

For this purpose, this paper has presented and discussed a methodology that makes two
contributions to the state of the art. Firstly, this research proposed periodograms along with
autocorrelation and partial autocorrelation analyses and empirical distribution-based statistical
analysis, which were used to describe household consumption load profile features. This type of
analysis reveals key issues of the granularity impact on the load fluctuation, such as the accurate
description of its constituent signals. Secondly, a framework was developed to collect household
consumption data at high sampling frequency (>4 Hz). This methodology allowed us to analyze
the influence of data granularity on the description of household consumption load profile features.
The effectiveness of this methodology was illustrated in a case study of four households in Spain,
using thirteen resolutions of data granularity (0.5, 1, 2, 5, 10, 15, 30 s, and 1, 2, 5, 10, 15, and 30 min).
We acknowledge that conducting our analysis with this reduced data sample is a limitation of this study.
However, it was adequate for achieving our primary objective of demonstrating the usefulness of the
proposed methodology in which the ultimate goal was to highlight the information loss regarding the
profile features when using coarse-grained data.

Bearing in mind the limits of applicability of our findings, the main outcomes of the study
are detailed below. The influence of data granularity on the results for different time slices from
sub-hourly to monthly analysis, including daily and weekly analyses, was discussed. Results from
sub-hourly analyses highlight the smoothing of peaks and troughs in the consumption load, based on
coarse-grained data from 0.5 s to 30 min. More specifically, peaks decreased by 27.12%, 56.44%, 55.73%,
and 51.38%, respectively for households #1, #2, #3, and #4. The daily analysis showed higher peak
reductions such as 59.09%, 58.14%, 20.34%, and 57.64%, respectively for the previously mentioned
households. The repeated peaks were only identified in the daily and weekly analysis at granularities
from 0.5 s to 5 s. The monthly analysis provided data pertaining to the day-to-day load behavior by
using the ratio between the daily peak or trough load and the daily mean load. This ratio decreased
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for coarse data granularity by 50.02%, 39.66%, 35.07%, and 36.89%, respectively for households
#1, #2, #3, and #4.

However, the overall influence that data granularity had on the description of household
consumption load profile features was performed on an annual basis by using a set of complementary
analyses. A statistical analysis based on coarse-grained data underlined the significant change in
the empirical distribution shape. The analysis of statistical moments up to the fourth-order reflected
the reduction of the level of variability of the consumption load for households when coarse-grained
data were used. Periodograms and autocorrelation analyses also indicated the loss of information
regarding the profile features caused by the use of coarse-grained data. These analyses were based
on the main constituent signals of the load fluctuations. In conclusion, the analyses for different
granularities showed that some important loads (e.g., cooling or heating devices, electric water
heaters, etc.) produced fluctuations that became increasingly ill-suited for resolutions of 5 s or higher.
This confirms that coarse granularities should not be used to collect consumption data because they do
not reflect the reality.

The results of our study indicate that it is not necessary to use the finest data granularity,
i.e., the 0.5-s resolution. In fact, even for profiles #1 and #2, which showed the greatest fluctuation,
a data-resolution of 5 s produced a sufficiently accurate characterization of profile features since the
results generated were very close to those of a data-resolution of 0.5 s. Therefore, the use of the 5-s
granularity achieves a balance between the computational burden associated with storage data in the
cloud and their post-processing, and the loss of information for the consumption profile features.

The results in this research were in line with other studies in the literature that address granularity
impact. Since studies in the literature focused only on temporal analysis, this comparison was limited
to the impact on the magnitude change of the peak load because of the lack of data for autocorrelation
analyses and empirical distribution-based statistical analysis. This review offered a peak load reduction
between 1.28–80% with granularities in the interval of 1 s to 1 h.

Future work in the field should take the current limitation of this study into consideration.
Further analysis could have been conducted with other households of different characteristics, or the
methodology could have been applied to a large set of buildings. It is our hope that this study will
spur future work and discussion in the research community regarding the accurate description of
household load profile features based on an appropriate data granularity and will ultimately lead to
similar work on datasets from other multi-family residential buildings.
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Abstract: Photovoltaic (PV) energy is a renewable energy resource which is being widely integrated
in intelligent power grids, smart grids, and microgrids. To characterize and monitor the behavior
of PV modules, current-voltage (I-V) curves are essential. In this regard, Internet of Things (IoT)
technologies provide versatile and powerful tools, constituting a modern trend in the design of
sensing and data acquisition systems for I-V curve tracing. This paper presents a novel I-V curve
tracer based on IoT open-source hardware and software. Namely, a Raspberry Pi microcomputer
composes the hardware level, whilst the applied software comprises mariaDB, Python, and Grafana.
All the tasks required for curve tracing are automated: load sweep, data acquisition, data storage,
communications, and real-time visualization. Modern and legacy communication protocols are
handled for seamless data exchange with a programmable logic controller and a programmable
load. The development of the system is expounded, and experimental results are reported to prove
the suitability and validity of the proposal. In particular, I-V curve tracing of a monocrystalline PV
generator under real operating conditions is successfully conducted.

Keywords: IoT; renewable energy sources; photovoltaic energy; I-V curve; monitoring and data
acquisition; microgrid; open-source; communication protocols

1. Introduction

Photovoltaic (PV) technology is one of the most widespread renewable energy sources
(RES) [1,2] and contributes to reducing greenhouse gas emissions and fighting against
climate change [3]. In intelligent energy facilities conceived under the paradigm of smart
grids and microgrids, PV generators are commonly the main source of renewable energy [4].
In these facilities, PV can be combined with other equipment for energy production and
consumption such as wind turbines, batteries, and hydrogen-related devices (fuel cells
and electrolyzers).

In PV-based grids, it is required to monitor the state and operation of the PV devices.
In this regard, the efficiency of PV cells under natural conditions is measured using current-
voltage (I-V) characteristic curves [5]. Consequently, to evaluate the performance of PV
modules, it is necessary to measure their I-V output characteristics [6].

I-V curves are obtained by performing a voltage sweep on the PV module, while
measuring the output current which is delivered to a connected load [5]. Such curves
display maximum voltage and current values of a module in a given setting [5]. This
way, the analysis of the curves provides direct information on the electrical state of the
module, allowing the researcher to obtain data on the expected performance under different
conditions of irradiance and load [7]. The measurement system used to acquire data of the
PV modules and to visualize the I-V curve is commonly known as the I-V curve tracer.

In the context of RES, monitoring and data acquisition are essential to recognize
the resources available on-site, evaluate electrical conversion efficiency, detect failures,
and optimize electrical production [8]. In particular, the characterization of PV modules
through I-V curves is required for different purposes, and the applicability of such curves
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has been widely reported in the literature. For instance, I-V curve tracing is the most
commonly applied technique for the electrical characterization of PV modules [9]. An
in situ measurement system of PV characteristics can provide valuable information for
optimized power generation [10]. I-V curves are widely used to evaluate power generation
performance and detect fault conditions of PV generators [11].

Aging effects of PV cells affect the I-V curve [10], and the consequent degradation is
usually assessed by means of such I-V characteristics [6]. It must be noted that failures in
PV modules may be caused by several reasons such as corrosion failures, cell cracks, hot-
spots, encapsulation failures, electrical or mechanical connection failures, potential induced
degradation, accumulation of dust or soiling, or partial shading, among others [12].

In the context of degradation and failure analyses, detailed parameter fitting can
be carried out using the I-V characteristics of the strings or modules for a deeper un-
derstanding of degradation mechanisms prior to failure [13]. According to [14], the I-V
curve measurement method is time-consuming, but it is very reliable and considered a
paramount step in fault detection. For diagnosis, electrical parameters are extracted from
the measured I-V curves such as the short circuit current, the open-circuit voltage, the
maximum power-point, and the fill factor [6,14]. Indeed, decisions on the replacement of
faulty or degraded devices are better taken based on a direct measurement than based on
estimation [15].

In addition, another application of I-V curves is related to the modeling of PV mod-
ules, which requires estimating or measuring certain parameters. In this regard, a data-
acquisition system is essential to collect and store I-V curves so simulated I-V curves can be
plotted based on different models [16]. Namely, the well-known single diode model (SDM)
requires estimating the values of series and parallel resistances which can be calculated
from the I-V curves [17].

However, the manufacturer provides curves measured at laboratory conditions, ob-
tained under standard conditions of temperature and irradiance (standard test conditions,
STC), which do not correspond to real operation in physical facilities. These differences
affect the I-V characteristic and, thus, the module production, so it is crucial to use an I-V
curve tracer [6].

The relevance of I-V tracing can be witnessed in the literature; the instrumentation and
monitoring equipment for such a task have received important research efforts. For exam-
ple, in-depth reviews of curve tracers according to their topologies can be found in [7,11].
Additionally, diverse equipment is available in the market and in the scientific literature.
On the one hand, commercial curve tracers can be found in the market, such as in [18–20].
Their main advantage is the reliable measurements that are performed, guaranteed by
the manufacturer of the device. On the contrary, the most noticeable drawbacks are that
commercial systems are generally expensive and closed for modifications [8]. Furthermore,
another important disadvantage is that the control software of commercial tracers is not
prepared for an automatic experimental campaign of measurements [21].

On the other hand, custom-designed I-V curve tracers constitute an important trend in
recent years. Diverse works have designed curve tracers using general purpose electronic
boards such as microcontrollers and digital signal processors (DSP). For example, in [22,23],
a portable I-V curve tracer is based on a DSP, being connected to a personal computer (PC)
through serial communication. Vega et al. [6] combine a peripheral interface controller
(PIC) and an electronic load (MOSFET) to implement an I-V curve tracer. Acquired data
are stored on a PC or a smartphone. A low-cost PIC is used by Ortega et al. [12] to develop
a prototype of an I-V curve tracer for individual modules in large photovoltaic systems. A
curve tracer developed around a commercial low-cost embedded microcontroller (TivaC)
is presented in [24]. Additionally, a low-cost microcontroller is the core of the curve
tracer presented in [15], where measurements are stored in local memory and downloaded
through a universal synchronous asynchronous receiver transmitter (USART) connected to
a Bluetooth device.
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Moreover, within custom-designed curve tracers, new developments are progressively
including Internet of Things (IoT) open-source technology. Namely, open-source hardware
platforms such as Arduino and Raspberry Pi (RPi) are being introduced in research projects
and facilities. In the scope of PV energy, these devices are applied for data acquisition
and monitoring tasks. For example, Arduino is used in [25,26] to sense the temperature
of PV modules. With higher computation capabilities, the RPi microprocessor is used to
implement monitoring systems for PV-based microgrids in [4,27,28] and for PV plants
in [5,29,30].

In particular, to deploy I-V curve tracers, there are still scarce developments involving
such IoT open-source technology, so the most recent research works will now be discussed.
Within the open-source community, there is information publicly available about I-V curve
tracers using Python and the Arduino microcontroller [31]. In the curve tracer proposed
in [21], Arduino is responsible for managing a capacitive load, while data storage and
visualization are performed by a PC. Arduino is used together with a commercial data
logger in [32] to handle a MOSFET load in order to trace I-V curves of PV modules. An
Arduino together with a PC is used in [33] to deploy an I-V curve tracer, the PC acting as a
storage means for the measured data. The work reported in [34] applies an Arduino board
with data storage on an SD card to collect the data of PV modules under shading conditions.
Papageorgas et al. [10] develop a low-cost curve tracer involving an open-source platform
with an embedded microcontroller called Polytropon and message queueing telemetry
transport (MQTT) as a communication protocol.

Regarding the use of RPi, the following works are found. In [35], an IoT-based remote
I-V tracing system is developed using an RPi and a cloud-based server aimed at analyzing
soiling losses in distributed solar facilities. An RPi is used in [36] to implement a plug and
play I-V curve tracer oriented toward the diagnosis of PV modules. A power MOSFET
transistor is used as the electronic load during characterization, the data being recorded
on the RPi and on an intermediate file transfer protocol (FTP) server. In [37], an RPi is
used as the main component in a so-called outdoor test facility (OTF) with IoT capabilities
employed to capture I-V and P-V curves of PV modules. Python scripts are used, and
experimental validation is reported.

Some relevant requirements and trends of curve tracers have been identified in the
previous literature. For example, in [33], it is pointed out that the measure of the entire I-V
curve in a short time requires a suitable data acquisition device. Reference [7] identifies
various trends in the advancement of curve tracers, among which low-cost measurement
systems and low-cost communications are highlighted. In the same sense, the important
role that reliable low-cost communications play is emphasized in [15].

The utilization of open-source and IoT technologies for curve tracing and monitoring
constitutes another new trend [16,38]. Furthermore, such technologies encourage the
previously mentioned trends of low-cost measurements and communication systems.
These technologies provide rapid development and cost-effective solutions for smart
monitoring systems [16]. Related to costs, as pointed out in [24], the low-cost characteristic
of open-source platforms provides greater accessibility to I-V curve tracing equipment for
any research or academic center.

An issue of the existing literature is signaled in [38]: there are papers that do not
offer information either about the measurement performance or about the equipment used,
showing only the results. Moreover, as it is asserted in [7], most of the curve tracers found
in the literature are complex and difficult to integrate in real scenarios.

Aiming at overcoming the aforesaid drawbacks and integrating the identified trends,
this paper presents the development of a novel IoT open-source hardware and software I-V
curve tracer to characterize PV generators. The RPi microcomputer composes the hardware
level; concerning software, Python, MariaDB, and Grafana are applied for data acquisition,
storage, and visualization. Open communication protocols, such as Modbus TCP, enable
seamless data exchange with proprietary equipment. The program coded in Python is
responsible for automating the curve tracing of the PV modules through the modification
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of the current demanded by an electronic programmable load. The developed system is
oriented towards the I-V curve tracing for already existent functioning facilities that require
diagnostics, analyses, and/or modeling. In such a situation, this curve tracer is coupled to
the facility by means of open protocols and shares data without altering the installation.

For the sake of clarity, a table summarizing the aforementioned literature as well
as the present proposal has been elaborated (Table 1). The considered categories are the
following: Device, referred to as the equipment used to collect data from PV modules;
Load, to indicate the type of load; Data storage means, to discriminate if local (within
the Device) or remote accumulation is applied; Language, for a clear identification of
the programming language used to gather data; and Communication, in order to specify
the protocols for data sharing. In the cases where the information has not been found,
Unspecified has been written.

Table 1. Table comparative of previous literature dealing with custom-made curve tracers.

References Device Load Data Storage Language Communication

[6] PIC MOSFET External (PC or smart device) Unspecified Bluetooth/USB
[10] Microcontroller MOSFET Local database (NoSQL) Unspecified MQTT

[12] PIC Capacitive Unspecified Unspecified Power line
communication

[15] Microcontroller MOSFET Local memory Unspecified USART/Bluetooth
[22,23] DSP Capacitive External (PC) Unspecified Serial

[24] Microcontroller Capacitive Unspecified Unspecified Unspecified
[21] Arduino Capacitive External (PC) Arduino sketch USB
[32] Arduino MOSFET External (datalogger) Arduino sketch No
[33] Arduino MOSFET External (PC) Arduino sketch USB
[34] Arduino Resistive Local SD card Arduino sketch USB
[35] RPi Capacitive External cloud server Unspecified MQTT
[36] RPi MOSFET FTP server or local SD card Python Ethernet
[37] RPi Capacitive Unspecified Python Ethernet/Wi-Fi

Present work RPi Programmable
electronic load Local database (mariaDB) Python Modbus TCP

In view of the previous table, it can be derived that the presented curve tracer is a
novelty due to the fact that it is a unique proposal which combines open-source components
(hardware and software) and open communication protocols, all being managed by the
RPi. In other words, in most of the literature, an IoT open-source device is used to gather
data from sensors and handle the load, data storage and visualization being performed
by external equipment or services such as PCs or cloud servers. The present work is the
only proposal where the RPi is responsible for automating all the tasks involved in the
I-V tracing: load sweep, data acquisition, data storage, communications, and visualization
in real-time.

Moreover, as can be observed in Table 1, some works do not report information about
certain aspects such as the programming language or data storage means (software or
hardware), as it has been previously indicated in [38]. Moreover, none of the surveyed
references apply a programmable electronic load to perform the I-V tracing. Resistive,
capacitive, or electronic loads (power MOSFET) are among the common methods [7], but
they require designing specific electronic circuitry for the curve tracing process and only
serve for such a purpose. On the contrary, programmable loads are commonly used in
microgrids and PV facilities [4,20,39–41] to emulate the behavior of DC or AC loads in order
to test control algorithms and energy management strategies under different load profiles.
In this regard, the target groups of this paper are scientists and practitioners in the scope of
PV-based microgrids and facilities involved in research and development (R&D) activities.

In addition, the validation of the proposal is performed with a medium-scale PV
generator under real conditions, which constitutes a requirement to demonstrate the
suitability of open-source technologies [4].

It must be remarked that the presented curve tracer is used to characterize and
diagnose a PV generator integrated in a smart microgrid (SMG) which combines renewable
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sources with hydrogen. Such a facility is framed in an R&D project envisioned to develop
a digital replica of the subsystems of the microgrid.

The main contributions of the work are now summarized:

• Open-source hardware and software is applied for data storage and visualization. As
a consequence, easy and low-cost deployment and replication are feasible;

• Open communication protocols are used to provide a seamless data exchange;
• The curve tracer can be coupled to an already existent PV generator and gather

operational data;
• Experimental results achieved on a medium-scale PV generator, not only for a labora-

tory scale, are reported to prove the suitability of the developed curve tracer;
• Capability of configuration for facilities with a larger number of sensors to manage as

well as different communication protocols;
• Utilization of proprietary medium-scale programmable electronic load providing

accurate and reliable measurements;
• IoT-enabled remote monitoring of real-time data in the form of time-series;
• Automated data acquisition under programmed conditions without requiring

operator intervention.

The structure of the rest of the paper is as follows. The Section 2 describes the
developed I-V curve tracer concerning hardware, software, and communications. Section 3
deals with the achieved results from a PV generator of 1100 W, whereas the associated
discussion is carried out in Section 4. Finally, the main conclusions of the reported work
and further research guidelines are addressed.

2. Developed I-V Curve Tracer

The developed curve tracer is solved by a software application made in Python and
executed on an RPi, as well as a database and a data visualization interface. The version
of the microcomputer is the RPi 3 model B+. As commented in the previous section, the
proposed curve tracer is applied to an existing SMG equipped with an automation system
based on a Programmable Logic Controller (PLC) model S7_1516, which is in charge of
the energy management of the SMG. Figure 1 shows the interconnection of all the devices
used in the I-V curve tracer. This figure shows the sensors involved (irradiance, voltage,
current) together with the PLC, the RPi, and a programmable electronic load. The proposed
platform takes advantage of an electronic programmable load model Prodigit 32612A (New
Taipei City, Taiwan). This legacy device accepts communication through an RS232 interface
in order to exchange commands and is used to configure the current profiles demanded by
the photovoltaic panels.

The communications diagram of the deployed system can be seen in Figure 2. The
RPi acts as a Grafana server, so the user/operator can visualize and download the data
processed by the curve tracer through a web browser running on a computer or smartphone
connected to the Internet. Namely, the Grafana software provides a user-friendly graphical
user interface (GUI) for real-time access to numerical and graphical information about the
measurements of the PV system during the tracing.

Among other elements, the RPi includes serial communication through universal
serial bus (USB) ports, so a protocol converter from USB to RS232 has been required to
establish communication between the load and the RPi.

Concerning sensors, Table 2 summarizes the magnitudes that are measured and the
corresponding sensor. It must be noted that the required sensors could be connected to the
RPi in a direct manner or through proper electronic boards. In this sense, the presented
solution is applicable to already existing automation and monitoring systems or for new
facilities without such systems. Using open protocols, such as Modbus TCP, enables
easy communication given the widespread availability of this protocol in automation and
energy-related equipment [28]. In addition, Modbus TCP has been pointed out as an
industrial IoT communication protocol [42] and is supported by both open-source and
proprietary equipment.
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Figure 1. Interconnection of the I-V curve tracer components together with equipment of the
existing microgrid.

Figure 2. Communications diagram of the I-V curve tracer.

Table 2. Magnitudes and sensors used in the curve tracer.

Magnitude Sensor

Current Hall-effect sensor
Voltage Potentiometric voltage divider

Irradiance Pyranometer
Temperature Pt-100

A block diagram with the functionalities associated with each component is illustrated
in Figure 3. From a functional viewpoint, it is interesting to note that all the tasks required
for the process of I-V curve tracing rely on the RPi. On the one hand, this microprocessor
acquires data from the PLC and stores them in a database (mariaDB). Data backup is also
handled by the RPi together with other system tasks. On the other hand, the programmable
load is managed through Python commands. Lastly, the Grafana server is hosted to
establish Internet-enabled data visualization in real-time.
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Figure 3. Functionalities implemented by the curve tracer.

Figure 4 shows the flow diagram of the algorithm that implements the I-V tracer.
First of all, the irradiance existing at a given time is measured. It is verified whether
the measured irradiance exceeds the preset threshold of 100 W/m2 to initiate the current
profile generation and data acquisition processes. Once the minimum irradiance condi-
tion is met, a profile of the current demanded by the electronic load is created, which
progressively increases from zero to the maximum possible current that the PV module(s)
can deliver for the sensed irradiance. The maximum value is calculated based on the
existing modules configuration and the irradiance at each moment. This ensures that the
PV generator will not be required to provide currents that cannot be achieved for this
irradiance value. In particular, the following equation has been used to determine the
maximum current, Imax:

Imax = np × (0.0055 × G + 0.1), (1)

where np is the number of paired modules, and G is the incident irradiance on the plane of
the modules.

Figure 4. Flowchart of operations performed by the curve tracer.
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The following step consists of establishing communication via RS232 from the RPi
to the programmable electronic load, so the current value corresponding to each instant
is sent. Next, the RPi takes the sensor data obtained by the PLC through a Modbus TCP
channel, as well as from the electronic load itself through the RS232 connection. After this,
the retrieved data are stored in a mariaDB database specifically designed for this purpose
(Figure 5). This process is carried out continuously for each PV module current until the
maximum current set is reached.

Figure 5. Database created with mariaDB for characterization of PV modules.

In this way, all the necessary data for the characterization of the photovoltaic panels
are acquired and stored. As a sample, Figure 6 shows the data taken for the characterization
of the PV modules.

Figure 6. Data taken during characterization of PV modules.

To achieve representative data, the irradiance should change as little as possible
during the characterization. Each acquisition cycle can vary from 24 s, for an irradiance of
200 W/m2 and a single panel configuration (12 samples), to 320 s, considering an irradiance
of 1000 W/m2 for the whole group of panels (320 samples), keeping the step sampling rate
at 0.1 A. During these short intervals, irradiance is scarcely altered.

On the other hand, Figure 7 shows a screenshot of part of the Python code running to
automate the labeled stages and, hence, the I-V curve tracing.

Aiming to illustrate the described sequence, the main code of Python concerning the
load management is shown in Algorithm 1. To begin with, an instance for communication
is created, specifying parameters such as port, transmission bit rate, parity bit, etc. After
that, the connection is open, and the commands to determine the load current are sent.
Namely, the load is activated, the operation mode is selected, and the current demanded
to the PV module(s) is established. Moreover, the reached voltage and current values are
retrieved. Finally, the connection is closed.
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Figure 7. Python code for I-V curve tracing.

Algorithm 1 RS232 Communication through Python

1: while (inclirradiance_d>=G):
2: ser = serial.Serial(
3: port = ‘COM4’,
4: baudrate = 9600,
5: parity = serial.PARITY_NONE,
6: stopbits = serial.STOPBITS_ONE,
7: bytesize = serial.EIGHTBITS
8: )
9: ser.isOpen()

10: ser.write(b”LOAD ON\r\n”)
11: . . .
12: cadena = “LIN:A “+str(i/10)[0:5]+”;\r\n”
13: ser.write(cadena.encode())
14: ser.write(b”LIN:A?\r\n”)
15: out = ser.readline()
16: ser.write(b”MEAS:CURR?\r\n”)
17: out1 = ser.readline()
18: ser.write(b”MEAS:VOLT?\r\n”)
19: out2 = ser.readline()
20: . . .
21: ser.close()

3. Results

In this section, the experimental results of applying the I-V curve tracer are reported to
demonstrate its successful operation. Namely, a PV generator hybridized with hydrogen in
a stand-alone SMG, placed at the University of Extremadura (Spain), is fully characterized.

3.1. Experimental Setup

The PV generator (Figure 8) consists of six monocrystalline modules, each one with
maximum output of 185 W, providing a total power of 1110 W. These modules have a fixed
inclination angle, the irradiance measured being in the same plane. The main parameters
of the PV modules are listed in Table 3. Note that electric characteristics are given for STC
by the manufacturer.
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Figure 8. PV generator for experimentation.

Table 3. Main parameters of PV modules.

Parameter Value

Model LDK Solar 185D-24S
Maximum power (Pmax) 185 W

Voltage at max power (Vmp) 36.9 V
Current at max power (Imp) 5.02 A

Open circuit voltage (Voc) 45.1 V
Short-circuit current (Isc) 5.48 A

Nominal voltage 24 V
Number of solar cells 72

Cell efficiency 17.77%
Module efficiency 14.49%

The curve tracer is coupled to the PLC and the load of the SMG in the laboratory as
can be observed in Figure 9a. Note that an Ethernet switch allows data exchange between
the RPi and the PLC. The programmable load can be seen in Figure 9b, also placed in
the laboratory setup. On the other hand, the block diagram of the SMG is depicted in
Figure 10. As can be observed, the PV array is linked to a DC voltage bus through a solar
charger. A battery acts as electrochemical energy storage whilst the programmable load
conducts the energy consumer role. Regarding hydrogen generation and consumption, an
electrolyzer (EL) produces hydrogen, harnessing the surplus of PV energy, and a fuel cell
(FC) performs the opposite process, converting hydrogen into electricity when there is no
renewable energy availability. A more detailed description of the SMG components can be
found in [4,28].

3.2. Data Visualization

The measurement process was carried out during different days due to the variability
of weather conditions (cloudy and rainy days, etc.). More than 194,000 samples were
recorded during the whole measurement campaign. The stored data are represented
through the GUI created in Grafana, which displays the involved magnitudes in the form
of time-series.

As a proof of the visualization capabilities, Figure 11 depicts the aspect of the GUI
showing the measurements during a day of the PV generator characterization, in particular,
16 March 2021 from 8:00 to 19:00. The typical curve of solar irradiance along the day can
be appreciated in the lower graph, reaching a maximum value of 1031.48 W/m2 at 13:17.
During this day, the procedure begins at 8:18 once the irradiance threshold of 100 W/m2

is exceeded and lasts until 18:47. The top chart represents the current delivered by the
PV generator, which fluctuates according to the management performed by the Python
program of the curve tracer.
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(a)

(b)

Figure 9. Setup in laboratory: (a) detailed view of curve tracer; (b) entire view including the
programmable load.

Figure 10. Block diagram of SMG where the PV modules are installed.
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Figure 11. Grafana GUI displaying time-series of PV current and irradiance during a day of characterization.

Figure 12 contains a detailed view of the GUI during the same day for a better
observation of the magnitude evolution. In the top graph, it can be seen that the current
delivered by the PV generator (blue color) and the load current (red color) are coincident
and both exhibit a saw tooth-shaped evolution, coherent with the implemented algorithm.
The sensed irradiance during the viewed interval is 1027 W/m2.

Figure 12. Detailed view of Grafana GUI to observe PV current and irradiance during characterization.

In order to verify the capabilities of the curve tracer, the computational resources of
the RPi are also monitored by means of Grafana. To this aim, the GUI includes a dashboard
based on Telegraf [43] to visualize the central processing unit (CPU) temperature and
load, memory usage, and network statistics. Figure 13 shows this dashboard during the
characterization experiments on the same day shown in the previous figures. There are
some relevant aspects to discuss in this sense. The usage of CPU is observable in the
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graph placed in the top left position, and its nominal value is around 4%. There are certain
intervals during which the usage rises up to 17% for the system (yellow color) and up to
54% for the user (green color), respectively. These increments are due to Grafana operations,
e.g., access for online monitoring and requests to the database. Another parameter is the
memory usage (graph in the low and left part) where less than 1 GB is used (yellow line)
and around 1 GB is cached (blue line), leaving 2 GB free (orange line), showing a stable
behavior. Concerning the CPU temperature, it has a stable value around 35 ◦C, being an
appropriate level to avoid overheating issues.

Figure 13. Dashboard devoted to monitoring the resources of RPi during experiments.

3.3. I-V Curves of PV Generator

To achieve a proper validation, I-V curves have been obtained under real operating
conditions for the PV generator. In addition, three configurations of the modules have been
applied: a single module, a pair of modules connected in series, and the whole generator,
consisting of the parallel connection of three pairs.

For the curve tracing, it has been required to select the data for the different irradiances
close to the values commonly provided by manufacturers and reported in the literature,
namely 200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2, and 1000 W/m2. Due to the short
duration of the data acquisition intervals, the initial and final values of irradiance are
averaged. Table 4 shows the measurements of the incident irradiance and the temperature
of the modules during the characterization campaign for each one of the described electrical
configurations. Moreover, electrical parameters of the generator can be measured in the I-V
curves, such as short circuit current, open-circuit voltage, fill factor, etc.; hence, in Table 4,
such parameters are also included.

Figure 14 shows the I-V curves obtained for a single module. The shape and trend
of the curves correspond to those expected, matching the information provided by the
manufacturer. As can be observed, the open circuit voltage (Voc) decreases whilst the
irradiation increases. This effect is due to the associated temperature increase, which causes
the curves to move to the left. In particular, the open circuit voltage strongly depends on
temperature, while its dependence on irradiance has a modest effect [17]. This relationship
can be expressed through Equation (2) [17]:

Voc(T) = Voc,STC + μVoc (T − TSTC), (2)
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where Voc,STC is the open circuit voltage for STC, TSTC corresponds to the STC temperature,
and μVoc is the voltage temperature coefficient, found in the PV module datasheet. For the
LDK Solar 185D-24S, such a coefficient has a value of −0.34%/◦C, so it is easy to check that
temperature increments give place to decrements of Voc.

Table 4. Irradiance, temperature, and electrical parameters measured during characterization for different configurations of
the PV modules.

Configuration G (W/m2) T (◦C) Voc (V) Isc (A) Vmp (V) Imp (A) Pmax (W)

Single module

195 11.46 42.23 0.84 37.38 0.74 27.07
401 19.70 42.49 1.91 35.50 1.79 63.72
603 26.06 42.39 3.12 34.75 2.83 98.41
871 41.39 41.01 5.17 29.08 4.78 139.03
1019 45.1 40.93 6.20 29.20 5.68 165.89

Two modules in series

198.34 6.44 85.49 0.86 77.55 0.74 57.23
396.59 14.71 85.71 1.92 74.87 1.74 130.66
608.45 28.75 83.91 3.46 69.44 3.10 215.27
799.63 39.05 82.57 5.07 64.50 4.42 283.80
1001.68 50.96 80.07 7.05 58.02 6.45 374.11

Whole PV generator

190.18 11.46 80.65 2.63 67.69 2.46 166.59
389.94 19.70 84.17 6.18 69.57 5.82 404.89
603.68 26.06 82.89 9.35 66.74 8.96 597.85
776.29 41.39 81.84 12.45 64.06 11.83 757.94
878.30 45.1 80.82 13.81 62.12 13.16 820.19

Figure 14. I-V curves for a single PV module.

In a similar sense, the power-voltage (P-V) curve can also be plotted from the acquired
data; for instance, Figure 15 shows such a curve for the single PV module. Valuable
information such as the maximum power point values (power, current, and voltage) for
sensed irradiances can be studied through these curves.

The maximum power produced (165 W) by the module is lower than that reported by
the manufacturer (185 W) given the fact that the existing conditions differ from the STC.
Moreover, the degradation of the module also contributes to reducing the peak power that
can be delivered.
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Figure 15. P-V curves for a single PV module.

Following the validation procedure reported in [23,33,34,36,37], the experimental
measurements are reproduced by means of a simulator of PV modules based on the SDM.
This model is based on the equivalent circuit and is the most widely used method to
provide an estimation of the current generated by a PV cell. The circuit consists of a single
diode connected in parallel with a photo-generated current source (IPH), a series resistance
(RS) to represent voltage drops and internal losses, and a shunt resistance (RSH) to take into
account the leakage currents. Equation (3) describes the model for a module of NS cells
in series:

I = IPH − Io

[
exp

(
V + IRS
nNSVTH

)
− 1

]
− V + IRS

RSH
(3)

where Io is the saturation current of the diode, V is the output voltage, and VTH is the
thermal equivalent voltage. The last variable is given in terms of the electron charge, q; the
Boltzmann constant, K; the cell temperature, T; and the diode ideality factor, n, according
to Equation (4):

VTH = KT/q, (4)

The I-V curve experimentally measured with the curve tracer at an irradiance of
1019 W/m2 and temperature of 45.1 ◦C is plotted in Figure 16 (black color) together with
the curve provided by the SDM simulator (orange color). As can be observed, the curves
show the same trend with very scarce differences. Namely, the ideality factor of the SDM
explains the difference appreciated in the knee of the curve [36].

For a better appreciation, the difference between the currents (simulated and mea-
sured) can be used to illustrate the achieved fitting [44,45]. In this regard, Figure 17 shows
the difference of currents for the characterized module versus the voltage at the reported
irradiance levels. The errors are small, reaching a maximum value of 0.21 A for 870 W/m2.
In Figures 14 and 17, it can be seen that the maximum values of these differences are located
in a reduced range between the maximum power point (voltage higher than 29 V) and the
Voc. These results exhibit proper agreement with the well-known SDM.

The traced I-V curves for a pair of modules connected in series are depicted in
Figure 18. The shape observed in the traced curves allows diagnosing or detecting di-
verse effects in the PV modules, as pointed out in previous works [7,36]. In this case,
the curves show a certain alteration in the inflection point and slopes, which indicate the
degradation of one of the modules. Therefore, these curves serve for fault detection and
diagnostics; namely, aging effects, cell cracking, hot spots, potential induced degradation,
and other deterioration situations can be detected. In fact, the modules have been working
for 10 years, so aging effects can be expected. Nonetheless, in-depth diagnosis and fault
analyses are out of the scope of this paper. On the other hand, Figure 19 contains the traced
P-V curves for the pair of modules.
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Figure 16. Experimental and simulated I-V curves for a single PV module at 871 W/m2.

Figure 17. Difference of measured and simulated currents for the single PV module.

Figure 18. I-V curves for two PV modules connected in series.
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Figure 19. P-V curves of a pair of PV modules.

Finally, the I-V curves captured for the whole PV generator are shown in Figure 20. The
corresponding P-V curves are depicted in Figure 21. As in the previous figures, the curves
display the expected operation of the generator and can be applied for diagnostics purposes.

Figure 20. I-V curves of PV generator.

Figure 21. P-V curves of PV generator.
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4. Discussion

Experimental results provide I-V curves for different electrical configurations and
environmental conditions, emphasizing the suitability of the designed curve tracer.

The main strength is that the developed system is not limited to data acquisition
of PV modules for I-V curves, but data recording and visualization in real-time during
the characterization are also entirely approached. Indeed, once the desired conditions
are programmed, the fully autonomous operation of the curve tracer is achieved without
requiring the intervention of the operator.

The deployed curve tracer consists of the RPi and the associated software, whilst a
PLC and a programmable load of an experimental SMG are used to validate the operation
of such curve tracer.

The computational capabilities of the microprocessor are proven to be adequate to
resolve for data acquisition, storage, and visualization. It must be emphasized that none of
the previous literature provides information in this regard.

Using an in-house database (mariaDB) and a web-enabled user interface (Grafana)
avoids dependencies on external servers and the associated hosting or licensing costs.
Hosting on one’s own databases even implies a total control of administration aspects [4].

As a proof of concept, in the reported application case, Modbus TCP and RS232 have
been used. However, the curve tracer can manage virtually any communication protocol
given the wide availability of libraries on the Internet. Furthermore, this ability to support
many other protocols provides features such as configurability and modularity, facilitating
interoperability [46].

In particular, the use of open communication protocols such as Modbus TCP together
with the ability of the open-source equipment allows for the establishment of seamless
data exchange. This way, proprietary equipment (PLC) is combined with the curve tracer
without interoperability issues. In fact, logical connections through communication proto-
cols enable measurement information sharing and facilitate integration in real scenarios,
which constitutes a disadvantage in most of the curve tracers in the literature [5]. In this
regard, the deployed system is focused on PV facilities already existent, so the coupling
is made through the aforementioned open protocol. The curve tracer even makes use of
already existing sensors, which is a benefit since the PV generator can be re-characterized
when required without essential alterations in the electrical and communications schemes.

Instead of using a variable resistor, capacitive load, or a power MOSFET, the proposal
employs a real electronic programmable load to perform the I-V tracing. In addition, the
used load is legacy equipment which does not support modern communication interfaces,
so being able to manage such valuable equipment is an important advantage. In fact, IoT
technologies must contribute to solve compatibility and interoperability issues with legacy
devices [47,48].

Regarding economic assessments, the cost of the curve tracer is very low given the
inexpensive nature of the IoT open-source equipment, which constitutes an advantage of
scientific equipment based on this type of technology [49]. Namely, taking into account
that all the software is free (Python, mariaDB, Grafana), only the RPi involves expenses;
the overall cost is around EUR 70. Auxiliary elements such as a memory card, heatsink
and fan for cooling, and power adapter are also included.

Analyses of the retrieved I-V curves allow decision making with respect to operation
and maintenance of the PV modules as well as implementing accurate models. Moreover,
further experiments will include partial shading of the PV modules in order to obtain and
analyze the measured I-V curves.

Thanks to the flexibility and availability of open-source equipment, the system can
be customized to fulfill particular requirements in research or academic contexts. The
RPi provides a large number of analogue and digital inputs, allowing the connection of
additional sensors or instruments. Indeed, advances in IoT technology, both hardware and
software, can be integrated in the presented system.
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Despite the obtained results, the presented system has some limitations which are now
briefly described. To begin with, managing open-source technology does not imply ease of
configuration when advanced functions are required. For example, programming skills
and a certain expertise in communication protocols and networks are needed. In addition,
the proposal does not allow online measurements of the PV modules; it is only devoted to
offline characterization. For a proper data exchange, it is necessary that the automation
unit (PLC or similar device) and the programmable load provide communication interfaces
that the RPi can handle. It is not a probable boundary in modern devices, but for legacy
equipment, it must be carefully tackled. Finally, the representation of the I-V curves
requires manual data extraction from the files that Grafana stores and provides. This can
be a time-consuming task when a large number of measurements have been conducted.

5. Conclusions

RES are key enablers for the evolution towards a more sustainable energetic global
scenario, PV technology being one of the most applied RES in microgrids. In order to
characterize and study the behavior of PV modules, an I-V curve tracer based on IoT open-
source technologies has been presented. Namely, software such as Python, MariaDB, and
Grafana run on an RPi are responsible for automating all the required tasks: load sweep,
data acquisition, data storage, communications, and visualization in real-time. An open
communication protocol (Modbus TCP) has been applied to exchange information with a
PLC, whilst an RS232 allows for managing a legacy programmable load. Both proprietary
devices belong to a research-oriented microgrid facility and serve as proof of concept to
prove the suitability of the curve tracer.

It must be emphasized that this development is a novelty in the existing literature,
addresses trends, and overcomes limitations identified in previous works, among which
short-time measurements, low-cost measurement systems, low-cost communications, and
IoT open-source technology can be highlighted.

Experimental results under real operating conditions are used to validate the proposal.
Namely, a PV generator of 1110 W integrated into an SMG is characterized by means of the
developed curve tracer.

Future research includes diagnostics and fault detection of the PV modules. Further-
more, another interesting topic deals with the development of an on-line characterization
procedure using the presented system.
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CPU Central Processing Unit
DSP Digital Signal Processor
EL Electrolyzer
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GUI Graphical User Interface
I-V Current-Voltage
IoT Internet of Things
MQTT Message Queue Telemetry Transport
OTF Outdoor Test Facility
P-V Power-Voltage
PC Personal Computer
PLC Programmable Logic Controller
PV Photovoltaic
R&D Research and Development
RES Renewable Energy Sources
RPi Raspberry Pi
SMG Smart MicroGrid
STC Standard Test Conditions
TCP/IP Transmission Control Protocol/Internet Protocol
USART Universal Synchronous Asynchronous Receiver Transmitter
USB Universal Serial Bus
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Abstract: Kinmen, the famous Cold War island also known as Quemoy, is a typical island with
isolated power grids. It considers the promotion of renewable energy and electric charging vehicles
to be two essential strategies to achieve the goal of a low-carbon island and smart grid. With this
motivation in mind, the main objective of this study is to design and deploy an energy management
system for hundreds of current PV sites distributed on the island, energy storage systems, and
charging stations on the island. In addition, the real-time acquisition of the data for power generation,
power storage, and power consumption systems will be used for future demand and response
analysis. Moreover, the accumulated dataset will also be utilized for the forecast or prediction
of renewable energy generated by the PV systems or power consumed by the battery units or
charging stations. The results of this study are promising since a practical, robust, and workable
system and database are developed and implemented with a variety of Internet of Things (IoT), data
transmission technologies, and the hybrid of on-premises and cloud servers. Users of the proposed
system can remotely access the visualized data through the user-friendly web-based and Line bot
interfaces seamlessly.

Keywords: distributed PV; energy management system; energy storage units; charging piles;
smart grid; redundancy; IoT; Home Assistant; low-carbon island; Kinmen

1. Introduction

1.1. Climate Responsibility and Energy Generation of Kinmen, Taiwan

From Taiwan’s perspective, three forces firmly push the renewable energy strategy
forward. First, as a member of a global society, Taiwan provided its Intended Nationally
Determined Contribution (INDC) on the 17 September 2015, including targets to achieve
a 50% reduction below the BUA GHG emission level by 2030 [1]. Furthermore, Taiwan
has demonstrated its commitment to achieving net zero by 2050 [2] through concrete
actions, including implementing the Climate Change Response Act [3] in response to the
2021 26th Session of the Conference of the Parties (COP26), the U.N. climate conference
held in Glasgow. Second, from an energy source viewpoint, Taiwan’s dependency on
imported energy was 97.5% in 2020 [4] and even higher over the past 10 years. Looking
into the composition of net power generated and purchased energy in 2021 [5], thermal
energy dominated at 81.6%, as shown in Figure 1. It is apparently a risk regarding energy
dependency and diversity. Third, Taiwan is still ambitious to strive for the vision of a
nuclear-free homeland in 2025 with a clear energy target: 50% by natural gas, 30% by coal,
and 20% by renewable energy. For the aforementioned goals, it is clear that promoting low-
carbon renewable energy plays an essential role in achieving INDC and the nuclear-free
vision and further balancing energy generation dependency and diversity.

Sensors 2023, 23, 5286. https://doi.org/10.3390/s23115286 https://www.mdpi.com/journal/sensors
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Figure 1. The net power generated and purchased by Taiwan’s Taipower Company, a state-owned
exclusive enterprise.

Kinmen is an outlying island of Taiwan with a 150 km2 area, which has an isolated
power grid for its electricity supply due to a distance of 248 km from western Taiwan.
In Kinmen’s history, it had 43 years of being front-line against Communists until the
abolishment of the military administration in 1992 [6]. With the gradually improved
relationship between Taiwan and China and direct transportation across the national
border, more and more tourists came to the Kinmen islands, resulting in higher and higher
energy demand. Since 2013, Kinmen has been selected as a demonstrated low-carbon
island by Taiwan Executive Yuan, and visions and strategies were set to reach zero carbon
by 2030 [7]. The installation of renewable energy stations and low-carbon transportation
have become two of the main strategies to achieve these goals.

In 43 years of military administration, this front-line constructed many distributed
military facilities across the whole Kinmen islands, which were gradually released or
abandoned since the troops left. From the analysis of [8–11], a distributed renewable energy
power grid integrated with those facilities is a suggested and suitable strategy to fulfill
Kinmen’s low-carbon vision.

Compared with traditional power networks, the smart grid is an advanced electricity
platform that emphasizes two-way communication based on digital information technology.
Key elements of an advanced smart grid include bulk electricity generation, demand
response, distribution, utility companies, customers, transmission, service providers, and
renewable energies [12]. Among these, sustainable analysis and management of data and
information generated along with all activities is one of the most critical and valuable
measures to get system efficiency and constant improvement.

In September 2021, the total installed PV capacity in Kinmen reached about 10.7 MW.
While a distributed PV and energy storage system has become an essential approach for
the Kinmen local government to move the low-carbon island vision forward, a reliable
monitoring and data acquisition system that can constantly work for future data analysis
of energy generation and efficiency under different circumstances is needed for this goal of
a low-carbon island.

1.2. Remote Real-Time Monitoring and Controlling System for Distributed PV and Energy
Storage Stations

Rahman et al. [13] conducted a very detailed review of different monitoring systems
for PV since 1994, including RTAI, ZigBee, DAQ, SCXI, PIC, PLC, etc., in terms of their
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fundamental features, architecture, performance, and budget. Some of these remote systems
further embrace the Internet of Things, web applications, and cloud platforms. The value
of gathered data includes the sustainable status of the PV system, failure or error detection,
and warning notification.

Al-Fuqaha et al. [14] reviewed the overview of the most relevant architectures and
protocol standards for IoT. This study summarized the five-layer IoT model as the most
functional architecture to develop an IoT system: Objects, Object abstraction, Service Man-
agement, the Application Layer, and the Business Layer. The Application layer relies on
high computational machine resources. IoT functionality includes Identification, Sensing,
Communication, Computation, Service, and Semantics. Challenges of Availability, Reliabil-
ity, Mobility, Performance, Management, Scalability, Interoperability, and Security Privacy
should be carefully considered in developing an IoT system.

In [15], a comparison of IoT sensor modules among Arduino, Raspberry Pi, PLC,
and BeagleBone shows perspectives of data handling, cost and module size, and coding
language. Ansari et al. concluded that Raspberry Pi is the most recommended due to its
extension capability.

Plenty of research has explored this field regarding local IoT networks and remote
system connections. The popular wireless communication technologies used by IoT are
shown in Figure 2.

 
Figure 2. Comparison of different wireless technologies in terms of data rate and transmission distance.

Belghith et al. [16] designed a remote monitoring system that features star architec-
ture of sensors, GSM communication, and a human–machine interface. Zego et al. [17]
developed a wireless network to send sensed data to a local Raspberry Pi server via Zigbee.
Li et al. [18] proposed a local ZigBee network and GSM connection for PV monitoring and
fault diagnosis. It consists of data acquisition, data gateways, and a monitoring website
based on the PHP Laravel framework. In Low-Power Wide-Area Network (LPWAN) appli-
cations, LTE-M, Sigfox, LoRa, and NB-IoT were developed. Among them, LoRa and NB-IoT
are the most promising. LoRa is used in [19] for long-range and low power consumption
requirements. In another implemented study [20], an Arduino-based data logger was
designed to integrate 3G communication to serve stand-alone PV sites. Ascensión et al.
described detailed designed data logger specifications corresponding to the IEC61724 stan-
dard. In [21], ZigBee was used as a local sensor network. After that, a 4G gateway was used
to connect the local network to the internet for remote real-time monitoring. Melo et al. [22]
proposed LoRa and Wi-Fi as local wireless networks. The structure comprises three key
parts: data loggers, a local IoT system, and a Web application for monitoring.

Key research and comparisons are summarized in Table 1.
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Table 1. Comparisons with cited research.

Title
Published

Year
Data Log
System

Monitoring
System or
SCADA

Data
Transmission

(LAN)

Data
Transmission
(to Internet)

Remote GSM module monitoring and
photovoltaic system control [16] 2014 PIC18F4550

MCU LabVIEW Wired GSM

A low-cost solar generation
monitoring system suitable for

Internet of Things [17]
2017 Raspberry Pi Web APP ZigBee NA

Online monitoring system of PV
array based on Internet of Things

technology [18]
2017

DSP-
TMS320F28335/

Raspberry Pi
Web APP ZigBee/

Wi-Fi Wired

An Alternative Internet-of-Things
Solution Based on LoRa for PV Power

Plants [19]
2019 Arduino/

Raspberry Pi NA LoRa Wired

IoT Application for Real-Time
Monitoring of Solar Home Systems

Based on ArduinoTM
With 3G Connectivity [20]

2019 Arduino UNO ThingSpeak Wired 3G

A Real-time Monitoring System
Based on ZigBee and 4G

Communications for Photovoltaic
Generation [21]

2020 Cloud server Web APP ZigBee 4G

A Low-Cost IoT System for Real-Time
Monitoring of Climatic Variables and

Photovoltaic Generation for Smart
Grid Application [22]

2021 Heltec Wi-Fi
LoRa 32 Web APP LoRa/Wi-Fi Wired

Proposed system -- Central/Cloud
servers Web APP Wired/Wi-

Fi/IR/BLE
Wired/
4G LTE

Redundancy refers to the backup of the system to prevent service disruption due to
single-point failure. Namely, redundancy is the measure to achieve a robust and reliable
service system. In order to ensure system redundancy, extra replicated servers are created
with the same functions, applications, and other important service components. Failover
means seamlessly and automatically switching to prepared backup servers while the
primary system is down. The purpose of failover is to reduce the impact when a system
failure happens. To the best of the authors’ knowledge, no previous studies have ever
explored this mechanism in the renewable energy field or established reliable systems with
this approach.

Moniruzzaman et al. [23] proposed a reliable web system supporting continuous
service even if a system component fails. This high-availability system features computer
cluster and loading balancing deployment via a three-tier architecture consisting of a Linux
virtual server, virtualization, and shared storage.

Nguyen et al. [24] analyzed a hospital MIS system and suggested integrating differ-
ent load balance and failover strategies to sustain hospital services under heavy system
workloads. This edge/fog-based system design evaluated three load balance techniques:
probability, random, and shortest queue-based approaches with or without failover function
at different layers.

The main objective of this study is to develop and deploy a robust, reliable, workable,
and suitable IoT-based PV monitoring system specific to Kinmen as a significant approach
to achieving zero-carbon and smart-grid visions. This monitoring system is implemented in
Kinmen with coverage of more than 40 sites, which is about half of the whole PV installed
capacity in Kinmen. It is capable of collecting and archiving real-time data into on-premises
and cloud database servers with IoT subsystem support that leverages Home Assistant, an
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open source of IoT Hub, to monitor the status and electricity usage of appliances, power
generation of PV panels, and charging stations for electric motorcycles.

The main contributions and novelty of this study are as follows.

• A reliable and workable system: the relevant solar power generation facilities covered
in this study started as early as 2015, including self-generation and self-use, Feed-In
Tariff (FIT) wholesale sales, and grid connection. The total number of monitoring sites
in Kinmen reached 50 by early 2023, proving that this system is a long-term effective
practical information system and a crucial demonstration of island-level independent
power grids.

• Leveraged technologies: from the data acquisition perspective, this study covers
several technologies corresponding to different facility environments and data sources,
including wired networks, wireless networks, TCP/IP, HTTP, crawler, IoT technology,
and cloud technology. It demonstrates that IoT and cloud technology can significantly
facilitate and manage large-scale renewable energy facilities.

• Established dataset: data established and collected by this research are an essential
dataset for future power generation and consumption research in the Kinmen area.

• Integration of distributed PV, energy storage, and charging stations: this research
includes integrating electric vehicle charging stations, solar power generation, and
energy storage, which is vital as leading pre-research on demand response and smart
grid research in the future.

• Redundancy and failover design with a hybrid of on-premises and cloud systems:
no previous studies have ever explored this field or established reliable systems with
this approach.

2. System and Methods

This study designed and deployed a set of information systems for data acquisition
and monitoring, which was applied to many distributed energy storage and renewable
energy sites on a medium-sized island with an independent power grid as a basis for
system security, performance, maintenance, and data technology development.

2.1. System Overview and General Description

The overview of the proposed system, which aims to contribute a smart grid in
Kinmen, is composed of five layers of critical functions, as illustrated in Figure 3. The first
layer is distributed facility sites, including PV, battery, and charging stations, and it is the
core of the green energy facilities of the whole project. The second layer is IoT, the front
tier of the proposed monitoring information system, which is deployed to sense real-time
data of the daily running facilities. The third layer is data acquisition, which is designed to
get all real-time data back to on-premises servers. The fourth layer is the hybrid of cloud
and on-premises deployment, which is capable of handling ample data information flow
and designed with the perspective of redundancy and failover. The last layer is a custom
SCADA system designed by this project with various friendly user interfaces.

The most valuable element of this proposed system is the data. These facilities operate
daily and generate real-time big data, which could be further analyzed and transformed
into periodical reports, or as critical datasets for predictions in future uses. The four-
layer architecture of data processing is explained in Figure 4, namely, data sensing, data
transmission, data storage and process, and data display and access. For the long-term
study of the following plan, demand response analysis, this plan is deployed mainly to
collect three types of data, power generation, power consumption, and power storage,
depicted in Figure 5.

In addition to the overview mentioned above, Figure 6 presents low-level intra-system
interactions, dataflow, network, interface, and user GUI, which is depicted based on on-
premises deployment and will be explained in the following sections.
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Figure 3. The high-level and five-layer architecture of the proposed system.

 

Figure 4. The four-layer architecture of the data processing flow of the proposed system.

Figure 5. Purpose of dataset collection.
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Figure 6. Low-level block diagram of on-premises deployment of the proposed system.

Redundancy and failover design are basic requirements for a sustainable and robust
system. AWS cloud service is leveraged in the redundancy plan in this study. Figure 7
depicts the cooperation and backup among servers belonging to on-premises or cloud.

Figure 7. Cluster redundancy design based on a hybrid of cloud and on-premises deployment.
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Figure 8 shows key software and hardware technologies that serve the system per the
site’s conditions and connection flexibility. Open-source software is leveraged as much
as possible for better coding extensionality while hardware and facility are developed
and deployed.

 
Figure 8. Key technologies of the software and hardware used.

2.2. Detailed Design

As described in Figures 3 and 4, the system operates within five-layer system architec-
ture in which each subsystem interacts and four-layer data processing architecture in which
data are generated, transmitted, stored, processed, and displayed. This section explains
low-level activities and critical designs.

2.2.1. On-Premises Remote Central Monitoring and Archiving Database System

• Web server

The SCADA, a custom web application as the monitoring and controlling core, can
be remotely accessed from anywhere and at any time. It is designed with Python-based
Django architecture and mainly leveraged with Google Maps and Google Chart APIs for
site localization and statistics visualization. Regarding remote controlling, Python-based
APIs were developed for front-end requests through HTTP. This server lives in Windows
OS with an Apache web server in the production phase.

• MySQL master server

The MySQL server supports the back-end data archive and retrieval. The master
is installed with the web server in one host for better transmission speed. The database
application GUI example is shown in Figure 9. The earliest data were established in 2015.

• Line bot GUI

The Apache server uses an SSL certificate for the HTTPS channel. Line bot web-hook
lives in Django with HTTPS support. Users can actively query from a smart device or
passively receive daily reports via this automatic bot publication functionality.
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Figure 9. MySQL Workbench.

• Data Collector

In Figure 6, group 1 PV is mainly state-owned facilities. A C# API was designed as
a data collector for retrieving the data servers of this group. Meanwhile, a C# TCP/IP
application was designed for direct connection to group 3’s PV inverters, which were
designed without middle data servers. As for group 2’s PV and charging station, the
crawler is used to collect from a third-party’s API from middle servers. These groups were
built for different purposes at different times, so different data acquisition approaches are
used to retrieve and observe their real-time data. Nevertheless, all data are finally archived
in the same database with the same data format.

2.2.2. IoT Hub, Local Database, and IoT Network

• IoT Hub

Home Assistant (HA), a popular hub tool for most IoT devices, was introduced as
the IoT Hub, a Python-based open-source platform specific to smart-home applications.
Dataflow between HA and IoT devices could be direct and local via LAN or indirect via
external third-party API. The former is preferred because of privacy considerations. For
the GUI of HA, users can access it via a web browser or smart device APP. In a LAN case, it
may need VLAN to get a HA link to a different subnet, while VPN is required in order to
be through the internet. This GUI is mainly for developers or system administrator access,
not for regular users.

• Local Database

SQLite is used locally to work with HA. It also works as a data logger for IoT devices
and local backup for the central MySQL database in case the internet is out of the connection.

• IoT Network

The wireless IoT controllers and sensors are connected to LAN via Wi-Fi, BLE, IR,
or sub-1G. In case the facility site condition is complex for mentioned wireless or wired
internet access, 4G LTE is used for internet connection, such as for stations in rural areas.

2.2.3. PV, Battery, and Charging Stations

• PV station

The ongoing project continues to increase data collection of newly built PV stations in
Kinmen. So far, the relevant data includes information from state-owned stations, privately
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owned resident stations, Taipower project stations, and Lab stations, among others. Some
sites are based on FIT contracts, and some are for private use or research. The earliest sites
have been running since 2015. The total installed and monitored capacity in this system is
about 5 MW. More than 5 years of data from state-owned sites are incorporated. Figure 10a
shows all monitored sites in the system via Google Maps, and Figure 10b shows one case
with clear PV panels on the roof in satellite picture mode.

 
(a) 

 
(b) 

Figure 10. (a) All monitored PV sites in Kinmen are shown on Google Maps; (b) a clear PV-panel
image on the roof of the monitored site.
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• Battery station

Distributed battery stations were added to this project in 2021, mainly for demand
response research. Until now, one site stably runs for over a year with a 10 kWh storage
capacity. The key components are a Windows PC, inverters, meters, and batteries inside
this facility.

• Charging stations

Kinmen has 65 state-owned free charging sites for electric motorcycles. It started
monitoring the charging data from some newly built charging piles for vehicles and
motorcycles in 2021. Figure 11 shows one newly built site in Kinmen National Park.

  
(a) (b) 

Figure 11. (a) Field picture with charging piles, (b) power distribution box with an IoT clamp-meter
marked in red.

2.2.4. Redundancy and Failover

• Cloud redundancy

In Figure 6, a cloud AWS VM is used for the replicated web server and load balancers.
As to the Mysql database, SaaS database service is used as well. A load balancer contributes
workload balancing and automatic web service failover functions.

• On-premises redundancy

The load balancer is used for database failover with a shared NAS drive. All Mysql
servers get real-time synchronization by setting one master and two slaves.

2.2.5. Software and Language

• Python 3.9

Python and open-source Python-based applications were mainly used for better in-
tegration, extensions, and sustainability, such as Django, Flask, HA, HTTP API, Line bot,
data collector, and battery charging scheduling application.

• C# 10

For the site group 1,2, a C# application was developed to work as the data collector.
This application GUI is shown in Figure 12.

• Vendors’ APP for IoT device

This is a backup alternative to web GUI and HA GUI of deployed IoT devices. How-
ever, the disadvantage is privacy concerns due to data uploaded to third-party servers.

• Labview for battery module

The battery control console was designed by Labview.

• HA

A VM of Linux-based HA OS is used inside the Windows server. GUI for HA is used
via web service. It is easy to access from anywhere with the internet.
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Figure 12. C# GUI for PV stations.

2.2.6. Hardware

• PC

Regular PCs are used with Windows OS for servers.

• IoT devices and network devices

Devices including smoke sensors, temperature and humidity sensors, motion sensors,
clamp-on meters for electricity measurement, switches, curtain controllers, air conditioning
controllers, and smart lighting bulbs were installed, as well as network devices including
routers, Wi-Fi AP, Wi-Fi/BLE gateways, and infrared (IR) remote controllers.

• Facility Stations

The facility station mainly includes PV panels, inverters, batteries, and charging piles.

3. Results

3.1. PV Stations

For PV site real-time monitoring and historical data review, users can accomplish this
via web GUI on a desktop or line bot on smart devices, as shown in Figure 13. Users can
actively or passively receive detailed daily data from the Line bot application (Figure 13b).

3.2. IoT Devices

For IoT hub monitoring and controlling, users can accomplish this via HA GUI or
web GUI as in Figures 14 and 15. Due to the higher risk of battery operation, a tempera-
ture/humidity sensor and a smoke sensor were put inside the battery cabinet to monitor
environmental security.

3.3. Battery Station

Battery monitoring and schedule control can be accomplished via HA GUI or web
GUI as in Figure 16.

3.4. Redundancy and Failover Based on a Hybrid of On-Premises and Cloud Servers

The on-premises central hosts are located in a lab of Quemoy University. Typically,
several power failures or internet disconnections happen each year. In the initial stage
of the project, these events would lead to the web service going down or discontinuity
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of collected real-time data in database servers. Since the introduction of redundancy and
failover mechanisms, the supporting servers are globally deployed on AWS with much less
chance of being down in the meantime.

  
(a) (b) 

Figure 13. (a) Desktop web GUI, (b) smartphone line bot GUI. Both show PV daily data.

 

Figure 14. HA browser GUI for IoT device controlling and monitoring.
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(a) (b) 

Figure 15. (a) HA temperature daily charting of IoT sensor, (b) Web browser GUI for IoT device
control.

 

Figure 16. Web GUI for battery.

4. Discussion

SCADA mainly uses the Django web application and Home Assistant to monitor and
control the facility and IoT devices. They are browser-based, so users can easily access
them anywhere on any computer or smart device. It also provides Line Bot, which has
“reply message” and “push message” functions as monitoring alternatives. The front-end
service servers are deployed both on-premises and in the cloud as a redundancy design,
and back-end database servers are deployed similarly. From the perspective of service
accessibility, reliability, flexibility, and availability, this proposed system is much more
comprehensive and functional than the cited research.

Facility stations in this study spread across the whole main island of Kinmen. Some of
the stations downtown can be connected to the internet via wired or wireless methods, but
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some rural areas must use 4G LTE for wireless internet access. 4G LTE has higher quality
and transmission rate than the other technologies shown in Figure 2 in case more extensive
data transmission is needed, such as video surveillance.

Via scheduling setup, the energy storage system is beneficial to balance PV power
generating fluctuation due to sunlight intensity and time-of-use rate mechanism. Electrical
transportation is a sure trend for low-carbon policy. A good understanding of vehicle user
charging behavior could contribute to stabilizing the power grid. None of the cited research
has worked on integrating power generation, power storage, and power consumption.

The coverage of this work is more versatile than the cited research. Moreover, all
collected data, system facilities, and approaches are beneficial for future demand response
plans based on distributed virtual power plants. Good utilization of accumulated raw big
data would make this system valuable and in line with the future smart grid vision.

Current limitations and future work:

• This study selected available methods for the IoT transmission approach but only
explored some relevant technologies. It is believed there is room for optimization.

• Due to budget limitations and the availability of data sources, the quantity of energy
storage facilities and wind energy generation stations is insufficient, and the monitor-
ing data for power consumption is insufficient to produce an informative dataset for
demand response analysis.

• Data value is based on good extraction and transformation. Although the current
system can collect raw data and visualize it well, it needs to upgrade system capability
further and integrate artificial intelligence models to make meaningfully data-driven
predictions and optimize future demand response design to the automatic level of the
machine-to-machine (M2M) by machine learning.

5. Conclusions

Kinmen is a resource-limited island with good solar and wind energy potential. The
low-carbon trend is a must-do item to fulfill responsibility as a world member. Smart grid
and low-carbon requirements could simultaneously move forward well with the support
of a well-designed information system. Technically, only a system that can dynamically
adjust demand response balance could make a smart grid possible.

In this work, a comprehensive monitoring and data collection system is well developed
and deployed with versatile technologies corresponding to different environments and
service requirements. With the redundancy deployment on a hybrid of on-premises and
cloud systems, this robust, reliable, workable, and suitable IoT-based PV monitoring system
specific to Kinmen is a practical approach to achieving zero-carbon and smart grid visions.
Users can remotely access visualized data through the developed user-friendly web browser
and Line bot. This implemented system collected and archived real-time data in terms of
power generation, power storage, and power consumption since 2015 with IoT subsystem
support to monitor site status and electricity usage of each site. The established dataset is
essential for future power generation and consumption research in the Kinmen area.

The proposed system is on the way to integrating dataflow of distributed energy
generation and storage, charging stations, and home electricity usage via IoT to make
Kinmen a benchmark city with the smart grid.
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Abbreviations

The following abbreviations are used in this paper:
AP Access Point
API Application Programming Interface
APP Application
AWS Amazon Web Services
BLE Bluetooth Low Energy
DAQ Data Acquisition
FIT Feed-In Tariff
GUI Graphical User Interface
HA Home Assistance
HTTP Hyper Text Transfer Protocol
HTTPS Hyper Text Transfer Protocol Secure
IoT Internet of Things
LoRa Long Range
LPWAN Low-Power Wide-Area Network
LTE Long-Term Evolution
MCU Microcontroller Unit
MQTT Message Queuing Telemetry Transport
NAS Network Attached Storage
TCP/IP Transmission Control Protocol/Internet Protocol
PIC Peripheral Interface Controller
PLC Programmable Logic Controller
PV Photovoltaic
RTAI Real-Time Application Interface
SCADA Supervisory Control and Data Acquisition
SQL Standard Query Language
SaaS Software as a Service
Wi-Fi Wireless Fidelity
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Abstract: The exploitation and utilization of clean energy such as wind and photovoltaic power plays
an important role in the reduction in carbon emissions to achieve the goal of “emission peak and
carbon neutral”, but such a quantity of clean energy accessing the electric system will foster the
transition of the electric power system structure. The intelligentization of power equipment will
be an inevitable trend of development. High breaking performance, remote control and a digital
detection platform of miniature circuit breaker, a protective equipment of a power distribution system,
have also been inevitable requirements of the power Iot system. Based on the above, this paper
studies three aspects: high-performance AC and DC general switching technology, remote control
technology and operation status’ digital monitoring. A new DC non-polar breaking technology is
proposed, which improves the short circuit breaking ability. An experimental prototype using the
above techniques was fabricated and passed the DC 1000 V/10 kA short-circuit breaking test. On
the basis of the above, an intelligent circuit breaker is developed, which contains multiple functions:
remote switching, real-time temperature detection, energy metering and fault warning. Moreover,
a software for digital condition monitoring and remote control is developed. This work has certain
theoretical and practical significance for the development of the power Internet of things.

Keywords: DC interrupting; digitization; remote control; electric energy measurement; miniature
circuit breaker

1. Introduction

Today, the regulation of the global pollution has been urgent, especially massive
quantities of carbon dioxide emissions which lead to a more serious greenhouse effect
and higher sea level that are threatening the global environment. Therefore, it has been
a Global Common Mission to reduce the carbon emissions. China has also put forward
the long-term vision of “emission peak and carbon neutral”, and the raising of the goal
will necessitate the exploitation and utilization of clean energy. Such substantial quantities
of distributed clean energy accessing the electric system will foster the transition of the
power system framework and equipment. Aiming to adequately absorb clean energy, it has
been a trend of electric system reform to construct a new power system taking clean energy
as the main body, and the promised power system will be more intelligent, shared and
controllable [1,2]. At the same time, smart grid and distributed power technology will also
boom. The digitalization and intellectualization of the core power equipment among the
new power system will hoist visualization, regulation capacity and promote consumption
utilization level of new energy generation, so as to speed up the transformation from
power grid to energy internet; electrical equipment’s intellectualization and digitalization
endow its status with visualization, so as to support a more flexible and moderate energy
rationing platform [3,4]. Digitalization of power distribution allows facility managers
and maintainers to efficiently solve problems with less energy, reducing operating and
maintenance expenses [5].
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Acting as the core equipment of the power distribution system’s terminal protec-
tion and regulation, MCB (miniature circuit breaker)’s intellectual trend promotes the
achievement of power distribution digitalization [6]. At the same time, the exploitation
and utilization of new energy generation, especially the boom of photovoltaic power, raises
higher requirements to the DC current breaking capacity of MCB. With the development of
AC–DC hybrid distribution network, high voltage (1000 V) and AC/DC universal MCB
faces a great challenges.

The research on the breaking ability and the invention of new products concerning
MCB have been going on for many years. A large number of scholars have conducted
thorough research on its arc extinguishing ability [7,8]. Most of the research focuses on
arc characteristics. There are two main schemes to study the arc characteristics of the cir-
cuit breaker: simulation and experiment [9–14]. For simulation, magneto-hydrodynamics
(MHD) has become an effective auxiliary mean to study characteristics of arc’s motion
and vanishing [15–18]; for experiment, the arc’s diagnostic means mainly include optical
fiber testing, high-speed photography and laser light filling. The dynamic characteristics
and breaking performance of arc via recording the arc motion form are studied [19–21].
Most of the DC MCB products on the market are below 1000 V, and the breaking capacity
is insufficient (6 kA) and unstable. Regarding remote control and digitalization, as the
technology of the Internet of things experiences continuous development in recent years, re-
mote monitoring technology based on WIFI/4G is proposed [22]. Some industry conducted
preliminary studies on the intelligent circuit breaker and developed some of those products.
However, there are few circuit breakers that can realize electric energy measurement and
real-time online monitoring of operating status [23,24]. Therefore, it is of great theoretical
and practical significance to study the remote control, digitalization and AC/DC general
high-performance breaking technology. Based on this, the DC non-polar breaking technol-
ogy of MCB is studied firstly, and an arc extinguishing strategy of coordinated control of
magnetic blowing and air blowing is proposed. An experimental prototype using the above
techniques was fabricated and passed the DC 1000 V/10 kA short-circuit breaking test.
Secondly, the intelligent technology of MCB is studied. The integrating electric operation
mechanism to realize remote control, visualization system, digital monitoring platform and
mobile application (APP) based on a cloud platform are developed. The remote control,
temperature monitoring, power management, automatic alarm and real-time monitoring
of MCB are realized. The safe and efficient operation of load and terminal network is
enhanced. The above research contributes to the development of a new power system via
providing theoretical and technical reference for the improvement and optimization of
system protection appliances after the high proportion of new energy access.

This paper is organized as follows: Section 2 presents high-performance (1000 V/10 kA)
DC/AC breaking technology, and the principle and experimental results are introduced.
Section 3 presents intelligent technologies of MCB, and the prototype realization principle
and product performance are introduced. Section 4 is the conclusion.

2. High-Performance DC/AC Breaking Technology

For the breaking characteristics of a micro-circuit breaker, whether the circuit breaker
can be successfully broken is directly determined by whether the air arc can be extin-
guished smoothly and quickly. Because of the inexistence of natural zero point, a DC
arc is more difficult to put out compared with that of AC, and its breaking ability cannot
be improved via increasing the distances and quantities of open gate pieces or any other
conventional technologies due to the limitation of small volume of MCB; furthermore,
single arc extinguishing measures have been unable to meet the higher voltage (1000 V)
of the DC circuit breaker open performance requirements. At the same time, the require-
ments of power system distribution equipment hope the DC circuit breaker can realize the
non-polarity breaking, so the structure design of its arc extinguishing chamber is facing
tougher challenges.
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In order to enhance the energy dissipation of the arc, this paper puts forward an arc
extinguishing strategy coordinated by air blowing and magnetic blowing, so as to realize
the purpose of breaking large DC current with a small volume by increasing the effect of
air blowing and magnetic blowing in the arc extinguishing chamber.

2.1. Theoretical Analysis and Practical Scheme of DC Non-Polar Arc Extinguishing

The traditional arc extinguishing strategy has been difficult to match the high voltage
DC interruption. Therefore, an arc extinguishing scheme with coordinated control of
magnetic blowing and air blowing is proposed. Specifically, the permanent magnets and
gas-producing materials are added to the arc extinguishing chamber: on the one hand,
permanent magnet is used to enhance the magnetic blowing effect; on the other hand, gas
generation material is used to enhance the air blowing effect. The overall layout scheme
of the arc extinguishing chamber is shown in Figure 1. Permanent magnets are placed on
both sides of the contact and arc running area, respectively, and the gas-producing material
is wrapped on the outside of the permanent magnet. On the one hand, the air blowing
can be enhanced, and on the other hand, the permanent magnet can be prevented from
losing magnetism due to direct contact with the high-temperature arc. Due to the polarity
of permanent magnets, it is a necessity to arrange the position of permanent magnets
reasonably in order to realize the non-polar breaking of DC arc. The schematic diagram
of non-polar permanent magnet layout scheme is shown in Figure 2. Figure 2 shows the
schematic diagram of the arrangement of two permanent magnets’ S poles opposite each
other. In order to realize the DC non-polar breaking, the permanent magnets are arranged
on both sides of the arc extinguishing chamber wall, respectively, with the same magnetic
poles being opposite with each other.

 
Figure 1. Layout scheme of arc extinguishing chamber.

  
(a) (b) 

Figure 2. Arrangement schematic diagram of permanent magnet. (a) The current goes into the paper.
(b) The current goes out of the paper.
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The extinguishing of the DC arc mainly depends on the current limiting of the arc
voltage, which forces the current to cross zero to extinguish. Therefore, increasing the arc
voltage is the fundamental measure for arc extinguishing. Increasing the arc voltage mainly
depends on the splitter plate cutting the arc, forming multiple near-pole voltage drops.
Therefore, the main measures in the arc extinguishing design are to make the arc enter the
splitter plate area quickly. For DC non-polar breaking, that is, after the current direction is
changed, it does not affect the smooth entry of the arc into the arc extinguishing chamber.

Figure 2a shows the direction of the Loren magnetic force in the arc columns at eight
different locations when the current direction is straight into the page. It can be seen from
the figure that when arc column is located in the point 2 or 5, the Loren magnetic force
moves arc to left and up direction; when arc column is located in the point 3 or 8, the Loren
magnetic force moves arc to right and up direction, which is of benefit for the arc being
blown into the grid, cooled and cut so as to improve the arc voltage.

When the arc column is located at point 1, it will move to the point 2 under the action
of Loren magnetic force, and the changed Loren magnetic force will move arc to right and
up direction and push it into grid region; when the arc column is located at point 6, it will
move to the point 3 and receive the force to the upper right of the grid; when the arc column
is located at point 7, it will move to the point 8, and the Loren magnetic force will move
arc to right and up direction and push it into grid region. When the arc column is located
at point 4, on the one hand, Loren magnetic force will move the arc toward the contact
area; on the other hand, the presence of gas producing materials will force arc toward the
grid area, and, due to the complex interaction, the arc will eventually move toward the
grid area.

From the above analysis, it can be seen that the arc can enter the grid area and be cut
quickly no matter how the direction of current place. At the same time, the permanent
magnet arrangement scheme shown in Figure 2 can reduce the pinch force of the magnetic
field generated by the arc itself and weaken the hindering effect of the magnetic field on
the arc column movement, so as to further hasten the speed of that entering the grid area,
promote the rapid rise of the arc voltage and improve the DC arc breaking ability.

2.2. DC Breaking Test and Result Analysis

(1) Test prototype and conditions.
Based on the above theory, a MCB test prototype is made, as shown in Figure 3: The

permanent magnet is arranged on both sides of the contact and arc running area and
wrapped by the gas-producing material. In order to verify the breaking ability of this
scheme, the test was carried out under the conditions of 1000 V DC, 10 kA short-circuit
current and 5 ms time constant. The test was carried out in the standard circuit breaker
test station.

 
Figure 3. Experimental prototype.
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(2) Analysis of test results.
In order to verify the non-polarity breaking capacity of this scheme, a prototype

of forward connection and reverse connection was tested in the short-circuit experi-
ment. According to the short-circuit breaking capacity test standard of circuit breakers,
an o (open)-co (close-open) standard process needs to be completed under short-circuit
current. That is to say, one experiment is closed before power-on and opened directly after
power-on, and the second time is closed and then opened after power-on. DC breaking
waveform (including the arc current and voltage curves) is shown in Figure 4.

 
(a) 

  
(b) 

Figure 4. DC breaking test waveform (third party test). (a) The waveform of forward connection.
(b) The waveform of reverse connection.

It can be seen from the arc voltage waveform that the arc voltage rises rapidly, and the
highest voltage is more than 1800 V, which exceeds the system voltage 1000 V to a large
extent. At the same time, the arcing time is about 5 ms. This is mainly because the arc
quickly enters the splitter plate area and is cut by the splitter plate under the combined
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action of magnetic blowing and air blowing. At the same time the dissipation of arc
energy is enhanced. Under the joint action, the arc voltage rises rapidly, and the current
limiting effect is obvious. Therefore, the arc current quickly crosses zero and extinguishes,
shortening the arcing time.

As it can be seen from the above test waveform, whether it is a forward or reverse
connection, the circuit breaker prototype has successfully broken the short circuit current of
10 kA, and shortened the arc burning time, which fully verifies that the above permanent
magnet layout scheme can achieve non-polar breaking and improve the breaking capacity
compared with that of the market conventional circuit breaker (6 kA). The results show that
the magnetic blowing and air blowing coordinated control strategy is effective in improving
the breaking capacity.

The coordinated control strategy of arcing above does not need to change the size of
the original circuit breaker and the main structure but only needs to place the permanent
magnets and gas material on both sides of contact and arc running area; therefore, the
scheme can not only be used for the development of high-performance DC circuit breaker
but can also be applied to existing AC–DC optimal design of the miniature circuit breaker
directly, in order to enhance the breaking capacity of short-circuit current.

3. Intellectualization of MCB

With the development of Internet of things technology, intelligent and digital require-
ments are put forward for the MCB used in the distribution system terminal. In order to
realize the remote opening and closing control and online status monitoring of the MCB,
the hardware and software systems are researched and developed.

3.1. Intelligent Platform Architecture

The intelligent platform architecture of MCB is shown in Figure 5. The APP is
an abbreviation of “mobile phone application”. The remote control is mainly based on the
cloud platform, and the communication between the cloud platform and the circuit breaker
is realized through the gateway. The gateway is connected with the circuit breaker module
by a Type C data cable and can be configured with WIFI and data networks. At the same
time, the development of a web version and a portable mobile phone APP realize the digital
monitoring of the circuit breaker running state, remote opening and closing through the
operation of the APP, power managing, temperature monitoring, overtemperature alarm,
automatic trip and other multiple functions.

 

Figure 5. Intelligent overall architecture of circuit breaker.
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In order to achieve remote control, it is necessary to configure the circuit breaker
hardware as follows: through the operating mechanism to realize the opening and closing
operation, through the voltage and current sensor to realize the data acquisition and power
management and through the temperature sensor to realize the real-time monitoring of the
temperature of the circuit breaker.

3.2. Intelligent and Digital Circuit Breaker System

The whole intelligent circuit breaker is shown in Figure 6, which mainly consists of
three modules: power module, gateway and circuit breaker module. The three modules
are connected by a Type C data cable. The input of the power module is AC 220 V, and
the output is DC 12 V, whose main function is to supply power to the gateway and single
chip operating mechanism of the circuit breaker module. The gateway plays the role of
network communication; the Type C cable not only provides power but also implements
communication for the gateway and the circuit breaker modules.

 

Figure 6. Composition of intelligent MCB.

Compared with the conventional circuit breaker, the new intelligent micro-circuit
breaker products share the circuit breaker module plus a pole, used to install operating
mechanism, control board, sensors and other devices to build a digital monitoring platform.
The hardware system mainly includes a data acquisition system, central processor, actuator,
display unit and circuit breaker. The hardware system diagram is shown in Figure 7.

 

Figure 7. Diagram of hardware system.
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(1) Remote control opening and closing technology.
The “conditioning circuit” mainly filters the arc voltage and current signals. The MCU

is the Single Chip Microcomputer MKE02Z. The main function is to process and display
the collected data and issue opening and closing instructions to the motor control chip.

In order to realize the software remote control circuit breaker opening and closing,
the hardware system added a motor with a control chip. When switching remote control
points, firstly choose circuit breaker which requires operation in the display interface or the
phone APP interface, clicking on the corresponding button; then issue instructions to the
chip which control the motor turning forward or reverse by the single chip micro-computer;
then drive the gears which link the circuit breaker handle with coaxial connection, so as to
realize the remote points and closing operation. The entire operating mechanism and data
acquisition hardware layout are shown in Figure 8.

 

Figure 8. Hardware of operating mechanism and data processing and acquisition.

(2) Data acquisition and digital display interface.
In order to realize the digital monitoring of running status of the circuit breaker,

the hardware system uses an NXP single-chip micro-computer as the main control chip,
installed the voltage sensor, current transformer and temperature sensor to complete the
data collection of voltage, current and temperature. In order to realize the electric energy
metering function, the voltage and current signals are sent into the electric energy metering
chip through the conditioning circuit to complete the consumption calculation, then are
sent into the digital display interface through the MCU main control chip to realize the
digital real-time display of voltage, current and electric energy.

Moreover, the single-chip computer stores and processes data. When the circuit
breaker’s real-time temperature exceeds its rated temperature, the main control chip will
emit alarm instructions, on the one hand displaying alarm information on popup win-
dows in the system, on the other hand conveying fault signal to the circuit breaker failure
indicator and control its flashing, so as to realize real-time fault alarm, facilitating mainte-
nance personnel.

Based on the above principles, the corresponding monitoring system and APP were
developed. The interface of monitoring system is shown in Figure 9. The number of circuit
breakers and specific information in different states (include good, alarm, fault and offline)
are displayed in the interface. At the same time, the fault recognition rate, push information
method, etc. are also displayed on the interface. Opening and closing commands can be
issued through the circuit breaker monitoring interface and display the operating status of
the circuit breaker. The temperature and power of each circuit breaker can also be viewed
in real time through the interface.
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(a) 

 
(b) 

Figure 9. Circuit breaker digital monitoring system. (a) The main interface. (b) Circuit breaker
monitoring interface.

Through this monitoring system, all circuit breaker layout points and operation data
in the whole process can be digitally monitored. At the same time, the system can be used
for a specific circuit breaker to achieve remote open and close operation, electric energy
measurement, current and voltage monitoring, circuit breaker operating temperature
display, real-time warning of overtemperature and so on. In the opening and closing
operation, one circuit breaker can be operated alone, and multiple channels can be operated
at the same time. Voice control is added in the mobile phone APP.

The digital control system above endows the power distribution system terminal
protection equipment MCB with intelligent and digital monitoring and endows it with the
functions of remote opening and closing, electric energy measurement, over-temperature
alarm and so on, which facilitates the operation of users and improves the reliability of
power equipment. At the same time, it can be seen that the current digital monitoring
of the circuit breaker is still on a computer or mobile phone APP, with limited functions,
requiring further research and development aiming digital control pane, so as to realize the
integrated design of circuit breaker and digital monitoring platform, providing theoretical
foundation for research of new generations of digital circuit breakers.

In combination with the high-performance arc open-circuit technology and intelligent
technology mentioned above, the prototype was made and successfully passed through the
third party test, providing technical reference for intellectualization and digitalization of
power equipment in China, providing reference for the research and development of a high-
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performance DC intelligent circuit breaker for photovoltaic power generation, intelligent
park and energy storage system.

4. Conclusions

(1) The arc extinguishing strategy coordinated by air blowing and magnetic blowing was
proposed. The high-voltage DC non-polar breaking capacity of circuit breaker was
improved, which increased from 6 kA to 10 kA DC.

(2) Through the reasonable arrangement of permanent magnet, this arc extinguishing
scheme can realize DC non-polar breaking, AC and DC universal, while keeping the
original circuit breaker structure size unchanged. The arc-extinguishing scheme can
be extended to the research and development of high-performance DC molded case
circuit breakers and frame circuit breakers.

(3) Based on the cloud platform, the intelligent and digital monitoring system of circuit
breaker was developed, which provides a reference for the digitalization of power
equipment.

(4) Through the combination of the above high-performance breaking technology and
intelligent technology, the prototype was developed, confirming this technology has
formed a mature product and has been promoted and transformed.
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Abstract: To reduce the cost of generated electrical energy, high-concentration photovoltaic systems
have been proposed to reduce the amount of semiconductor material needed by concentrating sunlight
using lenses and mirrors. Due to the concentration of energy, the use of tracker or pointing systems
is necessary in order to obtain the desired amount of electrical energy. However, a high degree of
inaccuracy and imprecision is observed in the real installation of concentration photovoltaic systems.
The main objective of this work is to design a knowledge-based controller for a high-concentration
photovoltaic system (HCPV) tracker. The methodology proposed consists of using fuzzy rule-based
systems (FRBS) and to implement the controller in a real system by means of Internet of Things
(IoT) technologies. FRBS have demonstrated correct adaptation to problems having a high degree of
inaccuracy and uncertainty, and IoT technology allows use of constrained resource devices, cloud
computer architecture, and a platform to store and monitor the data obtained. As a result, two
knowledge-based controllers are presented in this paper: the first based on a pointing device and the
second based on the measure of the electrical current generated, which showed the best performance
in the experiments carried out. New factors that increase imprecision and uncertainty in HCPV solar
tracker installations are presented in the experiments carried out in the real installation.

Keywords: knowledge-based sensor; Internet of Things; high-concentration photovoltaic systems;
sun tracker

1. Introduction

The European Commission has recently published the photovoltaic (PV) status report [1] in which
PV market, electricity costs, and the economics of PV systems are analyzed. Within its conclusions, the
following stand out: (a) the new installed capacity of solar PV power and the number and volume of
PV markets are increasing; (b) a rapid decarbonization is necessary; (c) a rapid cost reduction exists in
PV manufacturing; (d) different studies about subsidies for combustibles, fuels, and electricity have
been presented; (e) solar energy will continue to grow at high rates; and (f) electricity from PV systems
could be cheaper than residential consumer prices in a wide range of countries.

To analyze the PV system profitability, it is convenient to take into account additional factors such
as subsidies and forecasting of PV power generation. According to [1], while fossil fuel subsidies could
indirectly increase noxious and greenhouse gases, renewable energies and energy efficient technologies
subsidies may help to reduce emissions. A new scheme of subsidies based on the price of CO2 is
presented in the literature [2]. A review of forecasting of PV generation is presented in the literature [3].
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High-concentration photovoltaic systems (HCPVs) [4–7] concentrate the sunlight received between
300 and 2000 times onto photovoltaic cells by means of optical concentration devices. The main objective
of these systems is to replace semiconductor materials (photovoltaic cells) with more economical
optical materials (lenses and mirrors), reducing the cost of power plants and generated energy.

Although HCPV is a young technology, it has already demonstrated a great capacity for growth
in recent years. In this sense, the number of companies that develop HCPV systems has grown rapidly,
and the installed power has gone from a few kWs in laboratories to several megawatts.

According to [8] concentration photovoltaic (CPV) has potential for reducing the levelized cost of
electricity. In this sense, if installations continue growing, CPV could reach a cost ranging between
€0.045/kWh and €0.075/kWh. The system prices, including installation for CPV power plants, would
then be between €700 and €1100/kWp. On the other hand, HCPV could be competitive in some
locations in 2020 [9].

Due to the concentration of energy, tracker or pointing systems [10] are necessary in CPV and
HCPV systems, which represents one of the differences with respect to conventional photovoltaic (PV)
systems [11,12]. In these systems, power generation decreases dramatically with a sun pointing error
greater than 0.5◦, becoming practically zero if the error exceeds even a few degrees.

Frequently, a high degree of inaccuracy and uncertainty or imprecision are observed in HCPV
tracker installations due to factors such as HCPV module manufacturing errors, module alignment
errors, and the precision and accuracy of the tracker control system [13].

Fuzzy rule-based systems (FRBSs) [14] have demonstrated correct adaptation to problems having
a high degree of inaccuracy and uncertainty. Based on fuzzy logic (FL) [15], these systems express
knowledge by means of a set of linguistic rules grouped in a knowledge base (KB). FRBSs can be used
in control systems, e.g., fuzzy logic controllers (FLCs), in which the control algorithm is expressed as a
set of actuation linguistic rules.

Currently, there is a persistent trend to integrate knowledge-based systems (e.g., FRBSs) and FLCs
into resource-constrained devices and into the paradigm of the Internet of Things (IoT) [16].

The IoT concept was introduced by Kevin Ashton in 1999, in which the physical world is connected
to the Internet through ubiquitous sensors [17,18]. The IoT refers to the use of constrained resource
devices, data acquisition, actuation, data communication with fog and cloud servers, data storage, and
subsequent analysis. The range of applications of the IoT is very wide and includes environmental
monitoring systems, fire detection, intelligent buildings, smart cities (traffic, lighting, parking location,
garbage containers, etc.), intelligent agriculture, industrial control and monitoring, logistics, health
monitoring, etc.

The main objective of this work is to design a knowledge-based controller for an HCPV tracker
and to implement it in a real system by means of IoT technology (i.e., constrained resource devices,
data communication, and a cloud computing server for data storage and analysis).

The remainder of this paper is organized as follows. The following section shows related work.
Section 3 addresses the proposed controller and knowledge-based FRBS sensors. Section 4 presents the
real HCPV tracker, the experiment that was carried out, and the results obtained. Finally, conclusions
and future work are presented in Section 5.

2. Related Work and Background

To achieve the objective, this work proposes to use FRBS due to the high degree of inaccuracy and
uncertainty presented in real installations of PV trackers and IoT technologies to integrate the tracker
controller into a resource-constrained device and monitor the data obtained. The following sections
show the related work about PV trackers, and an introduction to FRBS and IoT technologies.
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2.1. PV Trackers

To point to the sun, PV installations use solar tracking systems or trackers that are composed of
a metal structure that may be moved (whether on a dual or single axis) using motors, PV modules,
position sensors, and a control system.

A review of different conventional PV tracker systems was presented in the literature [19], in
which they are classified as active or passive control systems. The most common are active control
systems, which may be differentiated into five types:

(a) Open–closed loop driver systems. The main difference of this type of controller is based on the
feedback loop, which broadly uses closed loop systems that use the output variables as inputs to
the control system.

(b) Sensor driver systems. These controllers are based on different devices (electronic components,
sensors, or probes), such as electro-optical sensors, light-dependent resistors (LDRs) [20], light
intensity sensors [21], and pointing devices.

(c) Microprocessor driver systems. The information processing capacity of the microprocessor
allows the controller to execute algorithms such as calculating the sun position. The ephemeris
algorithm presented in the literature [22] precisely calculates the azimuth and elevation angles of
sun position using time, date, and tracker global position.

(d) Intelligent driver systems. These controllers are based on artificial intelligence technologies (using
personal computers), such as neural networks and FL [23–27].

(e) Combination of sensors and microprocessors. The last type of controller is based on a hybrid
system of sensors and microprocessors. Reference [11] presents a CPV hybrid controller with
different strategies and an auto calibration system.

The main objective of controllers is to generate the maximum energy stabilizing the PV system
in the maximum power point (MPP) by means of the maximum power point tracking (MPPT)
technique [28,29] that is widely used in PV systems. A MPPT tracking based on learning is presented
in [30]. To verify the proper operation of PV systems it is necessary to monitor the evolution of the
significant magnitudes involved in the system [31–33].

Despite the wide interest in PV tracker controllers, little attention has been paid to tracker
controllers for HCPV systems.

When HCPV systems are used, the sun pointing error has a maximum admitted value. The electrical
current generation surface presents a maximum if azimuth and elevation errors are zero. If these errors
are greater, the electrical current generated by the module decreases dramatically [34]. For example,
the HCPV modules used in the experiments in this work require azimuth and elevation errors lower
than ± 0.6◦.

Although the algorithms and pointing devices are able to calculate the solar position with sufficient
accuracy for HCPV systems, there is a high degree of inaccuracy and uncertainty or imprecision in
HCPV tracker installations due to multiple factors. According to [13], there are three factors that cause
system mismatches and power losses: manufacture error in HCPV modules, alignment error in the
installation of the modules, and imprecision and inaccuracy in the tracker control system.

Due to these errors, the maximum power generation does not coincide with the zero error
pointing of the tracker [35] in the installation of HCPV modules; therefore, controllers based on
pointing algorithms (e.g., ephemeris) and pointing devices that minimize pointing error may present
unacceptable errors in HCPV systems. However, the precision used in CPV installations is lower than
that required in HCPV systems.

As a consequence, current trackers are not properly adapted to HCPV systems. These systems
require more complex controls in order to obtain the maximum energy. Due to the optical concentration,
the complexity of these systems, and the high degree of inaccuracy and uncertainty observed in the
installation of these systems, a greater degree of precision and complexity in the control of tracker
systems is necessary.
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2.2. Fuzzy Rule-Based Systems

A technology that has been demonstrated to adapt correctly to environments with inaccuracy and
uncertainty is the FRBS [8], which uses FL and expresses knowledge through IF-THEN-type linguistic
rules. These systems (Figure 1) are composed of a fuzzification interface, a KB, an inference engine,
and defuzzification interface. The fuzzification interface adapts the actual input values to the fuzzy
system. The KB contains the definition of input and output variables, the fuzzy sets defined in the
variables, and a set of IF-THEN-type linguistic rules that corelate these variables. The inference engine
is responsible for inferring the fuzzy output of the system from the input variables and the KB. Finally,
the defuzzification interface adapts the value of the fuzzy output to a real output value.

 

Figure 1. Fuzzy rule-based system.

Two approaches have been proposed within FRBSs: those of Mamdani [36,37] and Takagi–
Sugeno–Kang (TSK) [38]. The main difference between the two approaches lies in the consequent
knowledge rules. In the Mandani approach, the consequent is expressed as a linguistic variable:

IF X1 is A1 and . . . and Xn is An THEN Y is B,

where Xi represents input variables, Ai is fuzzy sets associated with input variables, Y is the output
variable, and B is a fuzzy set associated with the output variable.

In the TSK approach, the consequent is an analytical function of the input variables:

IF X1 is A1 and . . . and Xn is An THEN Y = f (X1, . . . , Xn).

where Xi represents input variables, Ai is fuzzy sets associated with input variables, Y is the output
variable, and f (X1, . . . , Xn) is the output function, in most cases, a linear function.

Controllers that use FRBS systems incorporating control knowledge are called FLCs (Figure 1).
In the literature [14], several FRBS applications are presented, such as classification systems,

modeling systems, control systems, and robotics. A model of an HCPV module is presented using an
FRBS system [39].

Currently, there is a trend to integrate knowledge-based systems into resource-constrained devices.
Reference [40] presents a collaborative FRBS system for integration into wireless sensor networks
(WSNs). In the literature [41], an optimization for smart spaces is proposed. Mariscal-Ramirez et al. [42]
designed a sensor to monitor noise pollution adapted to resource-constrained devices.
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2.3. Internet of Things

One of the objectives of this work is the use of IoT technologies to integrate the controller of
an HCPV tracker into a resource-constrained device and monitor the data obtained using an IoT
cloud platform.

Basically, IoT technologies [17,43] consist of constrained resource devices, data networks,
communication protocols, and cloud platforms as follows:

(a) Although IoT devices have constrained resources, they have information processing capacity,
sensor capacity of the environment, local information process, action on the environment, and the
ability to communicate data with servers on the Internet. A first classification divides them into
devices with an operating system (e.g., Raspberry) or without one (e.g., WaspMote, Arduino).
These devices are used to obtain environmental data (temperature, pressure, etc.), detect alarms
or extreme conditions (fire, gas leaks, etc.), or perform system control.

(b) Although there are data networks commonly used in IoT (IEEE 802.15.4, Long Rang (LORA),
etc.), it is also possible to use conventional networks such as local area networks (LAN) (Ethernet,
Wi-Fi, etc.) or mobile networks (4G).

(c) Specific IoT application protocols such as Message Queue Telemetry Transport (MQTT) or
Constrained Application Protocol (CoAP) have been designed, although the use of other protocols
such as HTTP is feasible.

(d) The data generated by IoT devices are sent to platforms for storage, visualization, analysis, and
processing. Depending on the location of the servers, the platforms can be divided into cloud
computing [44] and fog computing [45,46]. While cloud systems locate servers anywhere on the
Internet, fog computing servers are closed to devices, usually on the same local network.

The use of IoT in smart spaces [18] and smart devices is widely referenced in European Commission
documents [47,48] concerning the Internet of Things and the Internet of the Future. These documents
present devices called smart things in which several algorithms can be executed for intelligent decisions
based on real-time measurements of the sensors.

3. HCPV Tracker Knowledge-Based Controller

The main objective of this work is to design a knowledge-based controller for an HCPV tracker.
Due to the uncertainty and inaccuracy of the positioning or tracker systems, this work proposes the
use of FRBS systems because these knowledge-based systems have demonstrated their effectiveness in
these conditions.

In addition, the proposed system will be implemented in a real system using IoT technology with
constrained resource devices, data communication, and a platform for storing and analyzing the data
obtained. Therefore, all the algorithms used in the control system will be designed to be executed in a
low-cost microcontroller with low information processing capacity.

Therefore, the novelty of the proposed controller lies in (a) the design of a knowledge-based
controller by means of FRBS, (b) easy to understand control knowledge, and (c) a design to be executed
on a resource-constrained device.

The following sections show the structure of the proposed controller and two knowledge-based
FRBS sensors: the first uses a positioning device, and the second is based on the electrical current
generated by the photovoltaic concentration modules.

3.1. Controller Structure

Figure 2 shows the basic structure of the control system, which is composed of a pointing system,
an error inference system, and a solar tracking system. In this way, the positioning of the tracker will
be calculated as the sum of the positioning algorithm and the error inferred by the FRBS systems.
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Figure 2. Controller structure.

The calculation of the solar position can be performed by different algorithms (such as ephemeris)
or by a solar position sensor. If an ephemeris algorithm is used, it calculates the position of the sun
using the date, time, and global position of the solar tracker. After that step, the controller compares
the position of the sun with the position to which the tracker is pointing and calculates the azimuth
and elevation angles that the solar tracker has to perform in the next movement.

To calculate the pointing error, a knowledge-based FRBS is used. To execute the FRBS in a
constrained resource device, we introduced several modifications to the classical structure of Mandani
FRBS to minimize computational burden: the device executes a small but complete FRBS; only
triangular fuzzy sets are available; fuzzification and defuzzification interfaces only admit linear
conversions; a First Infer Then Aggregate (FITA) inference approach is used; the inference engine
operates with numerical values instead of linguistic labels; and the number of fuzzy sets defined in
each variable and rules in the KB is small.

This work presents two knowledge-based FRBSs to infer the pointing error. The first is a smart
sensor that is composed of a pointing device and an FRBS that infers the error. The second one is a
different smart sensor composed of a probe that obtains the electric current generated by the HCPV
module and another FRBS to infer the error.

3.2. FRBS Sensor Based on a Pointing Device

This smart sensor is composed of a hardware pointing device that allows measuring luminosity
by means of four photoresistors (PRs) and an FRBS that infers the pointing error using a specific KB.

The pointing device is composed of an optical light/shadow device, a set of four PRs, and a signal
adaptation stage. In this way, the luminosity values measured by the PRs are the inputs to the FRBS
that infer the error. If the sensor is pointed correctly to the sun, each of the PRs has the same solar
radiation. In the case of a pointing error, the optical device increases the radiation difference that some
PRs receive compared to others to detect small pointing errors.

Figures 3 and 4 show the pointing device used by the sensor. The difference between the luminosity
measured by PR1 and PR2 allows the sensor to infer the elevation error. Similarly, it can be estimated
using PR4 and PR3, which allows the sensor to infer the error with two different systems. On the other
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hand, the difference in luminosity measured by PR4 and PR1 (as well as between PR3 and PR2) allows
the sensor to infer the azimuth error.

 

PR1

PR2

PR4

PR3

Figure 3. Pointing device. Top view.

Figure 4. Pointing device.

This work proposes to use two KBs, one to infer the elevation error and another to infer the
azimuth error. Since KBs will be executed in a constrained resource system, a small number of fuzzy
sets defined in variables and action rules will be used to infer the error as quickly as possible.

Elevation error KB consists of two input variables (luminosity measured in two PRs), one output
variable (elevation error), and a set of action rules. Figure 5 shows the fuzzy sets defined for all input
variables (PRs) and the output variable (elevation error).
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Figure 5. Fuzzy sets defined in input (PRs) and output variables (elevation error).

Table 1 shows the KB elevation error action rules for the sensor using PR1 and PR2.

Table 1. Action rules for the elevation error (PR1 and PR2).

Rule Antecedents Consequent

R1 If PR1 is shaded and PR2 is shaded then the elevation error is null
R2 If PR1 is shaded and PR2 is sunlit then the elevation error is positive
R3 If PR1 is sunlit and PR2 is shaded then the elevation error is negative
R4 If PR1 is sunlit and PR2 is sunlit then the elevation error is null

Table 2 shows the KB elevation error action rules for the sensor using PR4 and PR3.

Table 2. Action rules for the elevation error (PR4 and PR3).

Rule Antecedents Consequent

R1 If PR4 is shaded and PR3 is shaded then the elevation error is null
R2 If PR4 is shaded and PR3 is sunlit then the elevation error is positive
R3 If PR4 is sunlit and PR3 is shaded then the elevation error is negative
R4 If PR4 is sunlit and PR3 is sunlit then the elevation error is null

The azimuth error KB uses the same definition of input and output variables as the elevation error
KB (Figure 5). However, the set of action rules is different. Table 3 shows the KB azimuth error action
rules for the sensor using PR4 and PR1.

Table 3. Action rules for the azimuth error (PR4 and PR1).

Rule Antecedents Consequent

R1 If PR4 is shaded and PR1 is shaded then the azimuth error is null
R2 If PR4 is shaded and PR1 is sunlit then the azimuth error is positive
R3 If PR4 is sunlit and PR1 is shaded then the azimuth error is negative
R4 If PR4 is sunlit and PR1 is sunlit then the azimuth error is null

Table 4 shows the KB elevation error action rules for the sensor using PR3 and PR2.
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Table 4. Action rules for the azimuth error (PR3 and PR2).

Rule Antecedents Consequent

R1 If PR3 is shaded and PR2 is shaded then the azimuth error is null
R2 If PR3 is shaded and PR2 is sunlit then the azimuth error is positive
R3 If PR3 is sunlit and PR2 is shaded then the azimuth error is negative
R4 If PR3 is sunlit and PR2 is sunlit then the azimuth error is null

The fuzzification interface linearly converts the range [0, 1024] measured by the PRs to the
normalized range [0, 1] and the output range [0, 1] to [−3◦, 3◦].

3.3. FRBS Sensor Based on the Electrical Current Generated

This sensor is composed of a hardware probe that measures the electrical current generated by
HCPV modules and an FRBS, which infers the elevation and azimuth errors.

The controller uses the usual sun tracking movements to measure the electrical current generation
before and after each movement. After each movement, these two measurements are used to infer the
elevation and azimuth errors. The inferred errors are taken into account in the next tracker movement
to correct the errors and follow the maximum electrical current generated. Therefore, no extraordinary
movements are made.

The KB of this FRBS system is used to infer both the elevation and azimuth errors and is composed
of two input variables (electrical current before and after the movement), an output variable (error
committed), and a set of action rules. Figure 6 shows the fuzzy sets defined in input variables (It and
It + 1) and output variable (Error) (with an HCPV module with Imax 6A and a maximum error of ± 3◦).

Figure 6. Fuzzy sets defined in input (It and It + 1) and output variables (error).

Table 5 shows the KB error action rules used by the sensor.

Table 5. Action rules in knowledge base (KB) error.

Rule Antecedents Consequent

R1 If It is low and It+1 is low then the error is null
R2 If It is low and It+1 is high then the error is negative
R3 If It is high and It+1 is low then the error is positive
R4 If It is high and It+1 is high then the error is null

The fuzzification interface linearly converts the range [0, 6] measured by the electrical current
probe to the normalized range [0, 1] and the output range [0, 1] to [−3◦, 3◦].
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4. Experimental Results

To evaluate the controller and FRBS sensors proposed in the previous section, a real two-axis
tracker with HCPV modules controlled by a low-cost microcontroller was designed and implemented.
In addition, elevation and azimuth errors of tracker pointing with respect to the sun are measured
by a precision instrument. On the other hand, data obtained (most significant tracker variables and
elevation and azimuth errors) were sent to an IoT platform in order to analyze their evolution and
compare the results of the different FRBS systems proposed.

This section describes the HCPV tracker used in the experiments carried out and the results
obtained with the following controllers based on (a) an ephemeris algorithm only; (b) an FRBS sensor
based on a pointing device; and (c) an FRBS sensor based on the electrical current generated.

4.1. HCPV Tracker

The two-axis solar tracker (Figures 7 and 8) is composed of a metal structure with the possibility
of movement in elevation and azimuth by means of gearboxes, various HCVPV modules, a calibrated
solar cell, DC azimuth and elevation motors, a measurement system of the angular movement of each
motor (encoders), a pointing error sensor, electrical current-generated sensors, and the control system.

 

Figure 7. The designed high-concentration photovoltaic system (HCPV) tracker.

 

Figure 8. The designed high-concentration photovoltaic system (HCPV) tracker.
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The control system (Figure 9) is based on a low-cost 32-bit microcontroller and several signal
adaptation interfaces to the following inputs and outputs:

• Nine analog inputs: four PRs, temperature, solar radiation, direction and speed wind sensors,
and electrical current generated.

• Ten digital inputs: two encoders, four inputs for a joystick, and four limit switches.
• Two digital outputs: azimuth and elevation motors.

 
Figure 9. Controller.

The controller calculates the elevation and azimuth angles to be performed at each moment using
the state of the system (date, time, position of the sun, position of the tracker, etc.). On the other hand,
the error inferred by the FRBS system is added to the calculated angles. The angular movements
of elevation or azimuth of the tracker are carried out by means of an algorithm that calculates the
activation and braking time of the motor as well as a maximum safety time. The movement made at
each angle is verified by means of the encoders.

To measure the real elevation and azimuth error of the tracker in the sun, a Black Photon Tracking
Accuracy Sensor measuring instrument (Figure 10) is available. The instrument is able to measure
elevation and azimuth errors in the range ± 1.2◦ with a resolution of 0.0005◦. The data obtained from
the instrument allow us to check the correct tracker pointing and are not used in tracker control.

 

Figure 10. Tracking accuracy sensor.

Data generated by the system (sensor measurements, solar radiation, temperature, solar position,
tracker position, electrical current generated, etc.) are sent to an Internet IoT cloud platform that stores
the data and allows users to monitor the temporal evolution of all variables using a web browser.

The main characteristics of HCPV modules used in the tracker are the following (at 1000 W/m2,
25◦C, AM1.5D): short-circuit current 6.35A, open-circuit voltage 18.45 V, DC power 95 W, and needed
pointing error < ± 0.6◦.
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To characterize the HCPV module, a complete exploration was carried out by measuring the
short-circuit electrical current generated by varying its position with respect to the sun in an angular
sector of ± 3◦ in elevation and azimuth. Figure 11 shows the obtained surface where it is observed that
the maximum electrical current generation is not at the 0◦ elevation and azimuth point. The maximum
current (5.54 A) is at an elevation error of +0.2◦ and an azimuth error of −0.8◦. On the other hand, the
surface shows that the current generated falls drastically with a small variation of the elevation and
azimuth angles.

 

 
Figure 11. Electrical current generated in an elevation and azimuth sector of ±3◦.

4.2. Controller based on an Ephemeris Algorithm

The first part of the experiments carried out has the objective of measuring the effectiveness of an
ephemeris algorithm applied to a real tracker in which different imprecision factors can exist according
to the reasons stated in Section 2.

Figure 12 shows a simulation in which the position of the sun (angles of azimuth and elevation) is
calculated by the ephemeris algorithm as well as the tracker pointing during a day without taking
into account the elevation and azimuth errors. In the graph, it can be observed how the tracker would
be pointing at the sun practically without error during the period of time in which the sun elevation
was greater than 15◦. The rest of the day, the tracker would be in a resting position (45◦ elevation,
180◦ azimuth).

Figure 13 shows the results obtained when the real tracker is controlled with the ephemeris
algorithm. Figure 13a shows the DNI (direct normal irradiance) of March 15, 2019. It is a sunny day
with a maximum of 1000 w/m2. Figure 13b shows the Isc (short circuit current) obtained by the HCPV
module. Figure 13c shows the evolution of elevation and azimuth errors (measured by the precision
instrument) with respect to the sun. Finally, Figure 13d presents the Isc/DNI ratio, which represents a
normalization that allows comparison of the currents generated on different days. Figure 13c,d shows
the results from approximately 9:00 a.m. at 6:00 p.m. which corresponds to an elevation of the sun
greater than 15◦.
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Figure 13. Results of the ephemeris controller. March 15, 2019.

Figure 13c shows how at the beginning of the experiment (9 am), it starts with an error of 0◦
in elevation and azimuth errors and the way in which both errors are increasing and exceeding the
values recommended by the manufacturer (elevation error). Due to these errors, the generated current
decreases in the first part of the day, although it is stabilized at the end. As a result of the elevation and
azimuth pointing errors, the concentration generator does not operate at maximum, and the current
generated is much lower than expected.
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4.3. Controller Based on an FRBS Sensor with a Pointing Device

To improve the performance of the photovoltaic generator and correct the evolution of elevation
and azimuth errors, this work proposes the use of an economic sensor based on an FRBS system and a
pointing device that infers the elevation and azimuth errors.

This controller is composed of an optical light/shadow pointing device, a set of four PRs, a signal
adaptation stage and an FRBS system. In the case of a pointing error, the pointing device increases
the difference in radiation received by some PRs compared to others to detect small pointing errors.
The pointing sensor is based on the device shown in Figure 14, and the FRBS system is shown in
Figure 5 and Tables 1–4.

 
Figure 14. Pointing device.

Each PR of the pointing sensor is able to measure the luminosity that they are receiving by means
of modifying their electrical resistance. Through an adaptation stage, the microcontroller can measure a
proportional voltage (by means of a 12-bit analog input) in such a way that a value of 1,023 is obtained
in the maximum luminosity and 0 in the dark.

Figure 15 shows the evolution of the luminosity value obtained in the four PRs. The data in the
figure have been obtained with the tracker stopped while pointing to the sun with an approximate
error of 0◦ in elevation and azimuth at a certain time (2:00 p.m). In this way, the evolution of the
luminosity measured can be observed during a full sunny day.
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Figure 16 shows the error inferred by the FRBS system between 13:00 and 15:00. In the initial and
final parts, the sensor infers a constant error: a positive degree of error in elevation and azimuth in the
initial part and a positive degree in elevation and a negative degree in azimuth. In the central part, the
figure shows the inferred error when the device is pointing to the sun, inferring that the sensor has not
been correctly oriented (minimum inferred error +0.5◦ elevation, 0◦ azimuth).
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Figure 16. Elevation and azimuth errors inferred by the FRBS.

Figure 17 shows the results obtained when the tracker is controlled by the ephemeris algorithm
modified with the FRBS sensor with the pointing device. Figure 17a shows the DNI of March 12, 2019.
It is a sunny day with a maximum of 850 w/m2. Figure 17b shows the Isc current obtained by the HCPV
module. Figure 17c shows the evolution of elevation and azimuth errors (measured by the precision
instrument) with respect to the sun. Finally, Figure 17d presents the Isc / DNI ratio. Figure 17c,d shows
the results from approximately 9:00 a.m. at 6:00 p.m. which corresponds to a sun elevation greater
than 15◦.
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Figure 17. Results of the controller based on an FRBS sensor with the pointing device. March 12, 2019.

Figure 17 shows the following:

(a) Although the maximum electrical current generation (obtained in the characterization of the
HCPV module) is not achieved, the generated electrical current is greater when using the controller
based on an FRBS sensor with the pointing device.

(b) The elevation and azimuth errors of this controller are quite minor compared to the errors
observed in the controller based on an ephemeris algorithm. The average values of the errors
measured by the instrument are −0.10◦ for the azimuth and −0.45◦ for the elevation, closer to
those of the characterization.

(c) The Isc/DNI ratio shows a performance improvement when using this control system.

4.4. Controller based on an FRBS Sensor based on the Electrical Current Generated

Although the inference of the pointing error improves the electrical current generated by the
HCPV module, it does not obtain the maximum current generated.

In this section, an FRBS based on the electrical current generated is proposed in order to modify
the position of the tracker obtained by the ephemeris algorithm. The controller proposed is based on
the calculation of the pointing error by means of the FRBS system described in Section 3.3. In this
controller, each time the tracker moves in elevation or azimuth (by means of ephemeris), the pointing
error is inferred. The error is corrected in the next movement so that no extraordinary movements are
made exclusively to correct the error.

Figure 18a shows the DNI of March 14, 2019. It was a sunny day with a maximum of 1000
w/m2. Figure 18b shows the Isc electrical current obtained by the HCPV module. Figure 18c shows
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the evolution of elevation and azimuth errors (measured by the precision instrument) with respect
to the sun. Finally, Figure 18d presents the Isc / DNI ratio, which represents a normalization that
allows comparison of the currents generated on different days. Figure 18c,d shows the results from
approximately 9:00 a.m. to 6:00 p.m., which correspond to an elevation of the sun greater than 15◦.

(a) DNI (W/m2) (b) I (A)

(c) Azimuth error ( ) (blue) (d) I/DNI

Elevation error ( ) (red)
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Figure 18. Results of the controller based on the FRBS sensor based on the electrical current generated.
14 March 2019.

Figure 18 shows the following:

(a) The generated current is greater than that obtained with previous controllers, with a value very
similar to the value obtained in the characterization of the module. On the other hand, there is
less ripple in the current in this case.

(b) Although the electrical current is stabilized and the Isc/DNI ratio is practically flat, it should be
noted that the error does not remain constant throughout the day. The control method dynamically
modifies the error and tracker position in order to obtain the highest current.

(c) The average values of the errors measured by the instrument (average azimuth −0.91◦; average
elevation 0.27◦) are very similar to those obtained in the characterization of the module (azimuth
error −0.8◦; elevation error +0.2◦).

(d) The Isc/DNI ratio shows a performance improvement over the other control methods.

The main benefits of the proposed controller are as follows:

• The controller showed the best performance, near the maximum current measured in the
module characterization;
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• A knowledge-based controller with correct adaptation to inaccuracy and uncertainty and easy to
understand knowledge;

• The controller can be executed on a resource-constrained cheap device, using IoT technology. A
summary of the controller cost is as follows: 32 bits microcontroller—€20, wind sensors—€20,
calibrated solar cell—€7, electrical current sensor—€4, miscellaneous material (photoresistors,
temperature probe, etc.)—€2;

• It dynamically modifies the tracker position to obtain near the maximum of generated electrical
energy with minimal oscillation.

5. Conclusions

IoT technologies were able to execute HCPV controllers and monitor the evolution of variables in
a satisfactory way. The constrained resource microcontroller executed the knowledge-based controllers
with response times shorter than needed in the application. Although there was some timely loss of
data due to the unavailability of communication on the Internet, the cloud computing architecture
used in the project was more than sufficient. Data obtained in the system was correctly stored in the
platform and monitored by users

Additional factors were presented to those provided in the literature [13], which increase
imprecision and uncertainty in HCPV solar tracker installations. The factors presented in the project
are the following:

(a) Inaccuracy in the manufacturing process of HCPV modules in relation to the alignment of the
different components;

(b) Precision errors in the manufacture of the tracker structure;
(c) Precision errors in the installation of tracker structure (e.g., wrong leveling);
(d) Precision errors in the installation of HCPC modules in the tracker;
(e) Minimum movement of the electrical engines, which may be greater than necessary in

some instances;
(f) Inaccurate movement of the electrical engines;
(g) Low resolution of encoders that measure the angle performed by electrical engines;
(h) Other factors such as wind.

The characterization of the HCPV module installed in the tracker verifies that the maximum
energy may not be in the zero pointing error of the tracker due to the imprecision and uncertainty
factors. In addition, to generate the maximum electrical current, it must be taken into account that a
pointing error less than 0.6◦ is necessary.

The controller based exclusively on the ephemeris algorithm obtains very low performance due to
the accumulation of azimuth and elevation errors. In this case, the tracker leveling error was important.
When using this kind of controller, it would be necessary to calculate the error made and take it into
account in the control algorithm.

The controller based on the FRBS sensor with a pointing device infers the azimuth and elevation
error and increases the generated electrical current, improving the performance of the exclusively
ephemeris-based controller. This controller requires that the maximum electrical current generation of
the HCPV module installed in the tracker and the pointing device be perfectly calibrated (pointing to
the same exact angle). In this case, a periodic calibration would be necessary.

The controller based on the FRBS sensor and an electrical current probe showed the best
performance, obtaining values similar to those obtained in the module characterization. In this case,
calibration is not necessary since the algorithm dynamically locates the maximum current generation.

Regarding future work, we propose the following actions: to use an IoT fog computing architecture
in order to avoid punctual data loss; to characterize different HCPV modules in the real tracker; to
compare other controllers; and to characterize HCPV systems composed of several modules in order to
locate their maximum current generation.
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Abstract: Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data)
plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart
homes’ energy consumption data. From the literature, it has been identified that the data imputation
with machine learning (ML)-based single-classifier approaches are used to address data quality
issues. However, these approaches are not effective to address the hidden issues of smart home
energy consumption data due to the presence of a variety of anomalies. Hence, this paper proposes
ML-based ensemble classifiers using random forest (RF), support vector machine (SVM), decision
tree (DT), naive Bayes, K-nearest neighbor, and neural networks to handle all the possible anomalies
in smart home energy consumption data. The proposed approach initially identifies all anomalies
and removes them, and then imputes this removed/missing information. The entire implementation
consists of four parts. Part 1 presents anomaly detection and removal, part 2 presents data imputation,
part 3 presents single-classifier approaches, and part 4 presents ensemble classifiers approaches. To
assess the classifiers’ performance, various metrics, namely, accuracy, precision, recall/sensitivity,
specificity, and F1 score are computed. From these metrics, it is identified that the ensemble classifier
“RF+SVM+DT” has shown superior performance over the conventional single classifiers as well the
other ensemble classifiers for anomaly handling.

Keywords: classification; data anomalies; data imputation; energy consumption data; ensemble
classifiers; machine learning; smart home data; smart meter data; tracebase dataset

1. Introduction

Considering the global thrust towards the development of grid-independent and green
energy systems for addressing the unrelenting growth of loads as well as environmental
pollution, smart home and renewable energy-based microgrid culture has been increasing
worldwide. Smart cities are new-era establishments where all the smart homes are jointly
operated to consolidate and optimize electricity utilization. As these establishments are
realized with a combination of electrical, communication, and information technology, the
gathering of quality data is a challenging task. Smart homes connected to the power net-
work continuously generate huge volumes of energy consumption data, which is normally
a combination of timestamps and readings. The reading information in this data is a key
value that helps in understanding the energy consumption behavior, billing generation,
load profiling, forecasting, contingency analysis, device health condition analysis, etc. All
these operations rely upon the quality of the data being captured. However, this data
often may consist of different anomalies, viz., garbage data, outliers, redundant data, and
missing data due to malfunctioning of advanced metering infrastructure, failure of com-
munication channels, unanticipated issues in power networks, etc. If these anomalies are
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left unhandled in the dataset, there will be an adverse effect on the system operations and
further delude the analytics of the energy consumption data. So, handling these anomalies
is highly essential to enable analysts to perform accurate energy data analytics. Thus,
the multifaceted nature of the smart home data when compared to other datasets gains
importance in the data analysis field. So, this becomes an important research focus for data
analysts when compared to the datasets of other applications. This is the prime motivation
for the proposed work of this paper.

Big data refers to a huge quantity of data. However, the data quality is a more complex
and significant aspect than the quantity in the direction of research [1]. Moreover, the issues
related to data quality have gained much importance and attention in energy big data
analytics [2]. The increased use of several intelligent devices in power system applications
has become the major source of big data, which reflects on data storage, data processing,
and data quality [3–5]. The failure of these intelligent devices makes data incomplete
during the acquisition of energy consumption data. This incomplete data is commonly
referred to as missing data [6–8]. Handling rather than ignoring this missing data drives
toward better data analytics on energy consumption [9]. Hence, it is essential to analyze
and impute the missing data in the smart home energy consumption data. Following
this, several state-of-the-art works on missing data imputation and ensemble methods are
discussed as follows.

The researchers suggested several ML-based imputation methods as well as thorough
benchmarks for the comparison between conventional and modern methods [10]. An im-
putation algorithm “opt.impute” was introduced in [11] to achieve the finest solutions
to the missing data. Further, an extensive review was conducted on the imputation of
missing data using ML which helps in understanding the limitations of ML imputation
methods [12]. A framework was implemented to improvise the multivariate imputation
by chained equations (MICE) in imputing the missing sensor data [13]. A graph-based
method was discussed in [14] to impute the missing sensor data. A copy-paste imputa-
tion method was introduced in [15] to impute the time-series data of energy. A mixture
factor analysis method was discussed to estimate the missing data in the building’s energy
load [16]. Different imputation methods, viz., MICE, KNN, and RF-based imputation were
implemented to impute the missing data in the sensor data of the internet of things [17].
A data splitting-based imputation method named “nullify the missing values before the
imputation” was proposed to impute the missing data [18].

A new statistical and ML-based imputation method was implemented in [19] to impute
missing data in the applications of power grids. A fuzzy inductive reasoning method was
discussed to deal with the missing data during the forecasting process in smart grids [20].
A six-stage particle swarm optimization imputation method was implemented for smart
meter data collected from an Indian institution [21]. An imputation method based on
a denoising autoencoder was presented in [22]. An imputation model named “bagged
averaging of multiple linear regression” was discussed in [23] for imputing missing data in
phasor measurement units. A two-stage deep autoencoder-based data imputation method
was discussed in [24] for imputing missing data in wind farms. A bagging algorithm was
implemented to impute the missing data in time-series data [25]. An autoencoder neural
network was presented to impute missing data for classification [26]. The appropriate
selection of the best imputation method and classification was discussed in [27]. An
extensive study on the packages available in “R” for data imputation was presented in [28].
Electricity theft detection in smart grids using various ML algorithms and deep learning
techniques was discussed in [29,30]. An AdaBoost ensemble model was implemented to
detect electricity theft [31]. An improvised ensemble model of a general regression neural
network and successive geometric transformations model was presented in [32] to recover
the partial or fully missed data.

In summary, the abovementioned literature discusses the concepts of big data, sources
of big data, and energy data analytics. In addition, the importance of handling anomalies
in big data was discussed. To handle the anomalies in energy consumption datasets,
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a few imputation methods such as data splitting, fuzzy inductive reasoning, denoising
autoencoder, and bagging are used. Further, to evaluate their performance, various single
classifiers, namely, SVM, neural networks, etc., are used. However, these approaches are
found ineffective to address the hidden issues of smart home energy consumption data
due to the presence of a variety of anomalies such as garbage data, outlier data, redundant
data, missing data, etc.

On the other hand, in recent days, the ensemble classification approach is supporting
effective classification in data imputation in different applications, which was not tried
for the smart home energy consumption data. With this motivation, this paper proposes
ML-based ensemble classifiers to handle all the possible anomalies in smart home energy
consumption data. The major contributions of this paper are summarized as follows:

� The proposed approach initially identifies all anomalies and removes them, and then
imputes this information. The entire implementation consists of four parts.

- Part 1 (anomaly detection and removal) considers the original dataset and refines
it by removing all the identified anomalies.

- Part 2 (data imputation) considers this refined dataset and performs the missing
data imputation using median, KNN, and bagging imputation methods, thereby
producing an anomaly-free dataset.

- Part 3 (single-classifier approaches) performs the classification of the dataset
using the conventional single-classifier approaches such as RF, SVM, DT, NB,
KNN, and NNET.

- Part 4 (ensemble classifiers approaches) performs the classification of the dataset
using the proposed ensemble classifier approaches such as RF+SVM+DT, RF+SVM+NB,
RF+SVM+KNN, RF+SVM+NNET, RF+DT+NB, RF+DT+KNN, RF+DT+NNET,
RF+NB+KNN, RF+NB+NNET, and RF+KNN+NNET.

� To assess the classifiers’ performance, various metrics, namely, accuracy, precision,
recall/sensitivity, specificity, and F1 score are computed. From these metrics, it is
identified that the ensemble classifier “RF+SVM+DT” has shown superior perfor-
mance over the conventional single classifiers as well the other ensemble classifiers
for anomaly handling in smart home energy consumption data.

All these contributions are structured in the paper as follows. Section 2 presents the
description of the dataset. Section 3 presents the description and implementation of the
proposed approach. Section 4 presents simulation results and their discussion. Finally,
Section 5 concludes the outcomes of the paper in a synopsized way.

2. Description of Dataset

To implement the proposed approach, the data of an appliance (refrigerator) from
the Tracebase dataset [33] is considered. This dataset consists of 43 different appliances
with 158 device IDs that are connected to various smart homes/buildings. Each appliance
consists of CSV files that represent the energy consumption data of a day. A detailed
description of this dataset can be obtained from [34]. Further, this dataset was considered
and used in various literary works. The Tracebase dataset was used in the extensive study
of different non-intrusive load monitoring (NILM) power consumption datasets described
in [35–37]. The present and the future directions for energy management techniques using
NILM datasets are discussed in [38].

The CSV file (dev_98C08A_2011.09.17.csv) data of the refrigerator appliance is prepared
with the columns such as CAPTURED_DATE, CAPTURED_HOUR, CAPTURED_MINUTE,
CAPTURED_SECOND, and CAPTURED_READING for implementing the proposed en-
semble classifier approach.

3. Description and Implementation of the Proposed Approach

The conceptual model of the proposed approach is shown in Figure 1. It consists of
four parts, viz., Part 1, Part 2, Part 3, and Part 4. The smart home energy consumption
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dataset will be given as input to Part 1. In Part 1, an analysis of the missing data will
be carried out for understanding the missingness in the original dataset. Further, the
identification and removal of different anomalies (viz., garbage data, outliers in the data,
and redundant data) will be performed. From this, a dataset with the abovementioned
anomalies removed will be produced and given as input to Part 2. In Part 2, the imputation
of missing data will be completed. In Part 3, a single-classifier approach will be applied.
This will provide a recommendation of the best single-classifier approach as the output.
By taking this best single-classifier as the basis, the ensemble classifiers approach will be
applied in Part 4. This will provide a recommendation of the best ensemble classifier to
perform the imputation.

 
Figure 1. Conceptual model for the proposed approach.

The implementation flow of the proposed ensemble classifiers approach through all
the proposed parts is shown in Figure 2. The detailed description and implementation
processes are discussed in Sections 3.1–3.4 respectively for Part 1, Part 2, Part 3, and Part 4.

3.1. Implementation of Part 1 (Anomaly Detection and Removal)

The process starts from Part 1 by reading the smart home energy consumption dataset
and saving it in an object “shec_dat”. Initially, the missing data information in this
“shec_dat” is analyzed [6]. Further, the process is continued with the identification of
garbage data in the dataset. To identify the garbage data i.e., the data other than the numer-
ical data, a function grepl(“[[:digit:]] is used on each column of the dataset. If garbage data
exists, those records are removed and the remaining data are given as input to identify the
outliers data. If there is no garbage data, the existing dataset is used as it is and is given as
input to identify the outliers data. The outliers data is the data that does not exist within the
expected range. To identify outliers data, a boxplot analysis is applied to the data obtained
after removing the garbage data. The boxplot analysis is a standardized approach to show-
ing data distribution in a five-number summary (i.e., minimum, first quartile, median, third
quartile, and maximum). The data that lies in between the “minimum” and “maximum”
values are considered as the data within the range and useful for the analysis. The data
that lies below the “minimum” and above the “maximum” values are considered outliers
data and needs to be removed to achieve better analytics. The function boxplot() is applied
to the readings column by using boxplot(shec_dat$CAPTURED_READING, plot=F)$out. If
the outliers exist in the readings column, those records are removed and the remaining
data are given as input to identify the redundant data. If there are no outliers, the existing
dataset is used as it is to identify the redundant data. In general, redundant data refers to
the duplication of the entire record in the dataset. However, in this case, there exist two
types of redundant data in the dataset. They are the records with the same timestamp and
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same reading information, and records with the same timestamp and different reading
information. The detailed process of identifying these types of redundant data is discussed
in [39]. If the abovementioned types of redundant data exist, those records are removed.
If there are no redundant data, the existing data is used as it is to perform the next step.
At the end of Part 1, a dataset is obtained after removing all the anomalies (garbage data,
outliers data, and redundant data). As several records in the dataset are removed due to
the existence of different anomalies, this dataset consists of missing timestamps. Hence,
these missing timestamps are filled, and the respective reading information is set to “NA
(Not Available)” [8] before proceeding to the implementation of Part 2.

 

Figure 2. Implementation flow of the proposed approach.

3.2. Implementation of Part 2 (Data Imputation)

Once all the missing records are finalized in the dataset obtained after removing all
the anomalies, the imputation methods such as median imputation, KNN imputation,
and bagging imputation are applied. The implementation of these imputation methods
produces datasets with imputed reading values. Further, the single-classifier approach is
applied to these imputed datasets. The implementation of the median, KNN, and bagging
imputation methods is discussed in Sections 3.2.1–3.2.3 respectively.

3.2.1. Implementation of the Median Imputation Method

In the median imputation method, the median value of the reading information in
the CAPTURED_READING column is calculated, and that value is used for imputing the
missing reading information. This imputation method is simple and fast. The process of
calculating the median value starts with the ordering of readings information in ascending
order. Once the ordering of readings information is done, then the number of values (odd
or even) in the CAPTURED_READING is taken into consideration. Here, the number of
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values plays a major role in calculating the median value of the readings information. The
formula for calculating the median value is given in Equation (1).

Median(D) =

⎧⎨
⎩

D
(

s+1
2

)
i f s is odd

D( s
2 )+D( s

2+1)
2 i f s is even

(1)

where D = list of values ordered in the CAPTURED_READING column, and s = number of
values in the CAPTURED_READING column.

If the number of values in the CAPTURED_READING column is odd, then the
middle value is considered as the median. If the number of values is even in the CAP-
TURED_READING column, then the average of the middle two values is considered as
the median.

3.2.2. Implementation of the KNN Imputation Method

In the KNN imputation method, the distance between the k-nearest neighbor values is
calculated by using the Euclidean distance metric. In the CAPTURED_READING column,
the distance between the k-closest samples of the readings is calculated and that distance
value is used to impute the missing reading information. The formula for calculating
Euclidean distance is given in Equation (2).

dist(p, q) =

√
m

∑
i=1

(pi − qi)
2 (2)

where dist = Euclidean distance, m = number of points, and pi & qi are the points.

3.2.3. Implementation of the Bagging Imputation Method

In the bagging imputation method, the term ‘bagging’ refers to bootstrap aggregation.
The bootstrap is a statistical technique of iteratively resampling the data with replacement
in the dataset. To perform this, initially, the number of bootstrap samples is to be fixed,
and then the sample size. For each sample of bootstrap the following steps are performed:
draw the sample with replacement, fit the model, anticipate the performance of the model
based on the out-of-bag sample, and calculate the average of the sample of the model. The
multiple iterations of sampling improve the prediction performance of the model. The
bagging method fits a bagged tree. This method is simple, powerful, and accurate to impute
the missing values in the readings information. However, it is computationally high-cost.

3.3. Implementation of Part 3 (Single-Classifier Approach)

In this section, the single-classifier approach is performed using various classifiers,
viz., RF, SVM, DT, NB, KNN, and NNET, for the classification. All these classifiers are
implemented individually on the dataset. To implement these, the dataset is divided into
train_set and test_set. These classifiers are trained on the train_set using k-fold cross-
validation. Here, the k-value considered is 10. Further, these classifiers are applied to the
test_set to predict the classes Yes (Y) or No (N). Here, class ‘Y’ represents missing data,
and class ‘N’ represents non-missing data. After the implementation, the performance
metrics such as accuracy, precision, recall/sensitivity, specificity, and F1 score are computed
using a confusion matrix to evaluate each classifier’s performance. The confusion matrix
is shown in Figure 3 and the formulae for computing the performance metrics are given
in Equations (3)–(7).

Accuracy =
T.Pos. + T.Neg.

T.Pos. + T.Neg. + F.Pos. + F.Neg.
(3)

Precision =
T.Pos.

T.Pos. + F.Pos.
(4)
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Recall/Sensitivity =
T.Pos.

T.Pos. + F.Neg.
(5)

Speci f icity =
T.Neg.

T.Neg. + F.Pos.
(6)

F1Score =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(7)

Class ‘N’ Class ‘Y’
C
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’
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C
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’
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True Negative 
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te
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Figure 3. Confusion matrix.

If all the single classifiers are implemented and their performance is verified, then, the
best single classifier is recommended. Otherwise, the performance metrics are re-verified.

3.4. Implementation of Part 4 (Ensemble Classifiers Approach)

This section uses the best single classifier recommended in Part3 as the input to
develop ensemble classifiers. The ensemble of classifiers is performed using the “stacking”
method. In stacking, there are two layers called the top layer and the bottom layer. The
top layer consists of a classifier, which is referred to as a base classifier and the bottom
layer consists of other classifiers. The output of the bottom layer is given as input to the
top layer. The classifier used in the top layer is an ensemble with the output of the bottom
layer classifiers, which produces an ensemble classifier. The stacking of classifiers is shown
in Figure 4. From this figure, it is seen that the single classifiers used in the bottom layer
are an ensemble with the recommended best classifier used in the top layer. For example,
the single classifiers SVM and DT are part of the ensemble with the recommended best
classifier RF. Similarly, all the other single classifiers form an ensemble with RF and produce
ensemble classifiers. To implement these ensemble classifiers, the imputed datasets are
given as input. Further, each imputed dataset is divided into train_set and test_set. The
ensemble classifiers are trained on the train_set using k-fold cross-validation. Here, the
k-value considered is 10. Further, these ensemble classifiers are applied to test_set to predict
the classes Y or N. After the implementation, the performance metrics such as accuracy,
precision, recall/sensitivity, specificity, and F1 score are computed using a confusion matrix
to evaluate each ensemble classifier’s performance. If all the ensemble classifiers are
implemented and their performance is verified then the best ensemble classifier for the
imputation is recommended, otherwise the performance metrics are re-verified.
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Figure 4. Stacking of classifiers.

4. Simulation Results and Discussion

In keeping with the aims of the paper, the simulation results of the implementation
are presented in three subsections. Sections 4.1–4.3 present the results corresponding
to anomaly detection and removal, single-classifier approach, and ensemble classifiers
approach, respectively.

4.1. Results Corresponding to Anomaly Detection and Removal

This section presents the details of the missing data in the original CSV file (original
dataset) and the missing data in the dataset after eliminating the anomalies. The number of
records in this original dataset is 155,374. During the analysis of missing data, 700 records
are missed in the original dataset [7]. During the identification of garbage data, no garbage
data (other than numerical data) are identified in the original CSV file. Hence, no records are
removed and the same number of records (155,374) are available. During the identification
of outliers data, there are 25 readings identified as outliers and the respective records
are removed from the dataset. The removal of records with outliers left the dataset with
155,349 records. During the identification of redundant data, the records with the same
timestamp and same reading are identified and those records are removed from the dataset.
This removal left the dataset with 98,779 records. Further, the records with the same
timestamp and different readings are identified and those records are removed from the
dataset. This removal left the dataset with 72,597 records. Once the redundant data are
removed, the missing data are filled with the respective timestamps and the respective
reading with NA value, as shown in Figure 5 (all the highlighted rows). After this filling,
there are 86,400 records in the dataset, out of these, 13,803 records contain missing readings.

The proportions of the available data and missing data in the original dataset and the
dataset available after removing anomalies are shown in Figure 6a–c. These figures show
the proportion of the missing data and available data in the considered dataset in three
different scenarios, namely, (i) consideration of the original dataset, (ii) consideration of the
dataset that is obtained after removing the anomalies, and (iii) consideration of the dataset
after filling the missing timestamps, ready for the imputation.

From Figure 6a, it is understood that the proportion of available data is 99.55% and
missing data is 0.45% in the original dataset. From Figure 6b, it is seen that the proportion
of available data is 84% and missing data is 16% in all columns of the dataset obtained
after removing anomalies. From Figure 6c, it is evident that there are no missing data
in the columns CAPTURED_DATE, CAPTURED_HOUR, CAPTURED_MINUTE, CAP-
TURED_SECOND and the proportion of data availability is 84%. Further, there are missing
readings in the column CAPTURED_READING with a proportion of 16%.
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Figure 5. Data after filling missing timestamps and placing NA.

 
(a) 

(b) 

 
(c) 

Figure 6. Proportion of missing data in the dataset. (a) Original dataset. (b) After removing the
anomalies. (c) After filling missing timestamps.
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4.2. Results Corresponding to the Single-Classifier Approach

This section presents the performance of a single-classifier approach on the imputed
datasets. The performance of classifiers in the median, KNN, and bagging imputation
methods are discussed in Sections 4.2.1–4.2.3, respectively.

4.2.1. Performance of the Single-Classifier Approach in the Median Imputation Method

The performance metrics of each classifier are shown in Figure 7, where the red colored
bar(s) indicate the highest value achieved corresponding to that particular metric. From
this, the highest accuracy value of 98.1% is observed in RF, while the lowest accuracy value
of 76.3% is observed in KNN, as shown in Figure 7a. The highest precision value of 99% is
observed in RF, while the lowest precision value of 80.5% is observed in SVM and NB, as
shown in Figure 7b. The highest recall value of 100% is observed in SVM and NB, while
the lowest recall value of 87.9% is observed in KNN, as shown in Figure 7c. The highest
specificity value of 95.9% is observed in RF, while the lowest specificity value of 0% is
observed in SVM and NB, as shown in Figure 7d. The highest F1 Score value of 98.8% is
observed in RF, while the lowest F1 Score value of 85.7% is observed in KNN, as shown
in Figure 7e. From the subplots in Figure 7a–e, it is understood that the classifier RF has
outperformed the others. Further, the performance summary of all the single classifiers is
given in Table 1.

   

(a) (b) (c) 

  
(d) (e) 

Figure 7. Performance metrics for the single-classifier approach on the median imputed dataset.
(a) Accuracy (b) Precision. (c) Recall. (d) Specificity. (e) F1 Score.
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Table 1. Performance comparison of single-classifier approach on the median imputed dataset.

Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

RF 98.1 99 98.6 95.9 98.8
SVM 80.5 80.5 100 0 89.2
DT 96 96.5 98.6 85.3 97.5
NB 80.5 80.5 100 0 89.2
KNN 76.3 83.6 87.9 28.6 85.7
NNET 88.8 93.2 92.9 71.9 93

Superior
Classifier RF RF SVM, NB RF RF

4.2.2. Performance of the Single-Classifier Approach in the KNN Imputation Method

The performance metrics of each classifier are shown in Figure 8, where the red colored
bar(s) indicate the highest value achieved corresponding to that particular metric. From
this, the highest accuracy value of 87.7% is observed in RF, while the lowest accuracy value
of 68% is observed in NNET, as shown in Figure 8a. The highest precision value of 86.6% is
observed in RF, while the lowest precision value of 80.3% is observed in NNET, as shown
in Figure 8b. The highest recall value of 100% is observed in RF, SVM, DT, NB, and KNN,
while the lowest recall value of 79.9% is observed in NNET, as shown in Figure 8c. The
highest specificity value of 36.3% is observed in RF, while the lowest specificity value of
0% is observed in SVM and KNN, as shown in Figure 8d. The highest F1 Score value of
92.8% is observed in RF, while the lowest F1 Score value of 80.1% is observed in NNET, as
shown in Figure 8e. From the subplots in Figure 8a–e, it is understood that the classifier RF
has outperformed the others. Further, the percentage summary of all classifiers is given in
Table 2.

 

(a) (b) (c) 

  
(d) (e) 

Figure 8. Performance metrics for the single-classifier approach on the KNN imputed dataset.
(a) Accuracy. (b) Precision. (c) Recall. (d) Specificity. (e) F1 Score.
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Table 2. Performance comparison of the single-classifier approach on the KNN imputed dataset.

Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

RF 87.7 86.6 100 36.3 92.8
SVM 80.5 80.5 100 0 89.2
DT 87.4 86.4 100 35.1 92.7
NB 81.1 81 100 3.3 89.5
KNN 80.5 80.5 100 0 89.2
NNET 68 80.3 79.9 18.8 80.1

Superior
Classifier RF RF All except

NNET RF RF

4.2.3. Performance of the Single-Classifier Approach in the Bagging Imputation Method

The performance metrics of each classifier are shown in Figure 9, where the red colored
bar(s) indicate the highest value achieved corresponding to that particular metric. From
this, the highest accuracy value of 95.2% is observed in RF, while the lowest accuracy value
of 75.7% is observed in NNET, as shown in Figure 9a. The highest precision value of 100%
is observed in RF and DT, while the lowest precision value of 79.5% is observed in NNET,
as shown in Figure 9b. The highest recall value of 100% is observed in SVM, and NB, while
the lowest recall value of 84.3% is observed in DT, as shown in Figure 9c. The highest
specificity value of 100% is observed in RF and DT, while the lowest specificity value of 0%
is observed in SVM, NB, and NNET, as shown in Figure 9d. The highest F1 Score value of
96.9% is observed in RF, while the lowest F1 Score value 86.1% is observed in NNET, as
shown in Figure 9e. From the subplots Figure 9a–e, it is understood that the classifier RF
has outperformed the others. Further, the percentage summary of all classifiers is given in
Table 3.

   

(a) (b) (c) 

  

(d) (e) 

Figure 9. Performance metrics for the single-classifier approach on the bagging imputed dataset.
(a) Accuracy. (b) Precision. (c) Recall. (d) Specificity. (e) F1 Score.
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Table 3. Performance comparison of the single-classifier approach on the bagging imputed dataset.

Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

RF 95.2 100 94 100 96.9
SVM 80.5 80.5 100 0 89.2
DT 87.4 100 84.3 100 91.5
NB 80.5 80.5 100 0 89.2
KNN 76.2 79.7 94.5 0.4 86.5
NNET 75.7 79.5 94 0 86.1

Superior
Classifier RF RF, DT SVM, NB RF, DT RF

4.3. Results Corresponding to the Ensemble Classifiers Approach

This section presents the performance of the ensemble classifiers approaches on the
imputed datasets. The performance of ensemble classifiers in the median, KNN, and
bagging imputation methods are discussed in Sections 4.3.1–4.3.3 respectively.

4.3.1. Performance of the Ensemble Classifiers Approach in the Median Imputation Method

The performance metrics of each ensemble classifier are shown in Figure 10, where
the red colored bar(s) indicate the highest value achieved corresponding to that particular
metric. From this, the highest accuracy value of 98.9% is observed in RF+SVM+DT and
RF+DT+NNET, while the lowest accuracy value of 72.5% is observed in RF+NB+KNN, as
shown in Figure 10a. The highest precision value of 99.4% is observed in RF+SVM+NB,
while the lowest precision value of 77.5% is observed in RF+SVM+KNN, as shown in
Figure 10b.

The highest recall value of 100% is observed in RF+SVM+DT, RF+DT+NB, RF+DT+NNET,
RF+NB+NNET, and RF+KNN+NNET, while the lowest recall value of 81.6% is observed in
RF+SVM+NB, as shown in Figure 10c. The highest specificity value of 94.5% is observed
in RF+SVM+DT, RF+DT+NB, RF+DT+NNET, and RF+KNN+NNET, while the lowest
specificity value of 34.7% is observed in RF+NB+KNN, as shown in Figure 10d.

The highest F1 Score value of 99.3% is observed in RF+SVM+DT, RF+DT+NB, RF+DT+NNET,
and RF+KNN+NNET, while the lowest F1 Score value of 82.2% is observed in RF+SVM+KNN
and RF+NB+KNN, as shown in Figure 10e. From the subplots in Figure 10a–e, it is under-
stood that the ensemble classifiers RF+SVM+DT and RF+DT+NNET have outperformed
the others.

Further, the performance summary of all ensemble classifiers with respect to various
parameters is given in Table 4.

Table 4. Performance comparison of the ensemble classifiers approach on the median imputed dataset.

Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

RF+SVM+DT 98.9 98.6 100 94.5 99.3
RF+SVM+NB 81.5 99.4 81.6 76.5 89.7
RF+SVM+KNN 73 77.5 87.5 36.8 82.2
RF+SVM+NNET 91.7 99 91.4 93.6 95
RF+DT+NB 98.8 98.6 100 94.5 99.3
RF+DT+KNN 92.5 98.9 92.4 93.7 95.5
RF+DT+NNET 98.9 98.6 100 94.5 99.3
RF+NB+KNN 72.5 78.9 85.9 34.7 82.2
RF+NB+NNET 88.3 85.5 100 62.6 92.2
RF+KNN+NNET 98.8 98.6 100 94.5 99.3

Superior Classifier RF+SVM+DT
RF+DT+NNET RF+SVM+NB

RF+SVM+DT
RF+DT+NB
RF+DT+NNET
RF+NB+NNET
RF+KNN+NNET

RF+SVM+DT
RF+DT+NB
RF+DT+NNET
RF+KNN+NNET

RF+SVM+DT
RF+DT+NB
RF+DT+NNET
RF+KNN+NNET
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 10. Performance metrics for the ensemble classifiers approach on the median imputed dataset.
(a) Accuracy. (b) Precision. (c) Recall. (d) Specificity. (e) F1 Score.

4.3.2. Performance of the Ensemble Classifiers Approach in the KNN Imputation Method

The performance metrics of each ensemble classifier are shown in Figure 11, where
the red colored bar(s) indicate the highest value achieved corresponding to that particular
metric. From this, the highest accuracy value of 80.2% is observed in RF+DT+KNN,
while the lowest accuracy value of 70.9% is observed in RF+SVM+KNN, as shown in
Figure 11a. The highest precision value of 99.3% is observed in RF+DT+KNN, while the
lowest precision value of 81.3% is observed in RF+NB+NNET, as shown in Figure 11b.
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(e) 

Figure 11. Performance metrics for the ensemble classifiers approach on the KNN imputed dataset.
(a) Accuracy. (b) Precision. (c) Recall. (d) Specificity. (e) F1 Score.

The highest recall value of 82.6% is observed in RF+NB+NNET, while the lowest recall
value of 80.5% is observed in RF+SVM+DT, RF+SVM+NNET, as shown in Figure 11c. The
highest specificity value of 43.6% is observed in RF+DT+NNET, while the lowest specificity
value of 19.2% is observed in RF+SVM+NNET, as shown in Figure 11d. The highest F1
Score value of 89% is observed in RF+DT+KNN, while the lowest F1 Score value of 81.9% is
observed in RF+NB+NNET, as shown in Figure 11e. From the subplots in Figure 11a–e, it is
understood that the ensemble classifier RF+DT+KNN has outperformed the others. Further,
the performance summary of all ensemble classifiers with respect to various parameters is
given in Table 5.
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Table 5. Performance comparison of the ensemble classifiers approaches on the KNN imputed dataset.

Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

RF+SVM+DT 78.8 97.2 80.5 19.7 88.1
RF+SVM+NB 75.7 88.9 82.4 31.7 85.5
RF+SVM+KNN 70.9 82.9 81.4 23.3 82.1
RF+SVM+NNET 72.8 87.5 80.5 19.2 83.8
RF+DT+NB 79.9 97.8 81.1 40.1 88.7
RF+DT+KNN 80.2 99.3 80.6 29.5 89
RF+DT+NNET 79.7 95.4 82.2 43.6 88.3
RF+NB+KNN 76.1 91.3 81.3 27 86
RF+NB+NNET 71.1 81.3 82.6 27.4 81.9
RF+KNN+NNET 77.5 93.1 81.5 31.2 86.9

Superior Classifier RF+DT+KNN RF+DT+KNN RF+NB+NNET RF+DT+NNET RF+DT+KNN

4.3.3. Performance of the Ensemble Classifiers Approach in the Bagging Imputation Method

The performance metrics of each ensemble classifier are shown in Figure 12, where
the red colored bar(s) indicate the highest value achieved corresponding to that particular
metric. From this, the highest accuracy value of 89.6% is observed in RF+SVM+DT, while
the lowest accuracy value of 71.2% is observed in RF+SVM+KNN, as shown in Figure 12a.
The highest precision value of 98.8% is observed in RF+SVM+DT, while the lowest precision
value of 86.5% is observed in RF+SVM+KNN, as shown in Figure 12b. The highest recall
value of 89.4% is observed in RF+SVM+DT, while the lowest recall value of 78.8% is
observed in RF+SVM+NNET, as shown in Figure 12c.

The highest specificity value of 91.1% is observed in RF+SVM+DT, while the lowest
specificity value of 0.2% is observed in RF+SVM+NNET, as shown in Figure 12d. The
highest F1 Score value of 93.9% is observed in RF+SVM+DT, while the lowest F1 Score
value 82.8% is observed in RF+SVM+KNN, as shown in Figure 12e. From the subplots in
Figure 12a–e, it is understood that the ensemble classifier RF+SVM+DT has outperformed
the others.

Further, the performance summary of all ensemble classifiers with respect to various
parameters is given in Table 6.

Table 6. Performance comparison of the ensemble classifiers approaches on the bagging im-
puted dataset.

Classifier Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 Score (%)

RF+SVM+DT 89.6 98.8 89.4 91.1 93.9
RF+SVM+NB 75.7 93.3 79.9 8.9 86.1
RF+SVM+KNN 71.2 86.5 79.5 12.5 82.8
RF+SVM+NNET 72.4 89.9 78.8 0.2 84
RF+DT+NB 77.9 96.8 80 0.7 87.6
RF+DT+KNN 75.9 93.2 80.2 14.5 86.2
RF+DT+NNET 75.9 93.2 80.2 14.5 86.2
RF+NB+KNN 77 94.5 80.4 16.9 86.8
RF+NB+NNET 78.9 93.9 82.3 40 87.7
RF+KNN+NNET 75.2 92.6 79.8 9.3 85.7

Superior Classifier RF+SVM+DT RF+SVM+DT RF+SVM+DT RF+SVM+DT RF+SVM+DT
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Figure 12. Performance metrics for ensemble classifiers approach on bagging imputed dataset.
(a) Accuracy. (b) Precision. (c) Recall. (d) Specificity. (e) F1 Score.

5. Conclusions

This paper proposes a machine learning-based ensemble classifiers approach to ad-
dress the anomalies present in smart homes’ energy consumption data. This proposed
approach has proven to be more effective than the conventional single-classifier approach
that is presented in the literature. The salient observations from this work are summarized
as follows:

� All the possible anomalies are successfully identified and removed from the dataset.
The number of records in the original dataset is 155,374 and the number of records
available in the refined dataset after removing anomalies is 86,400, which is the actual
expected number of records as per the dataset description.
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� Out of 86,400 records, 13,803 records are identified as records with missing data. This
missing data has been successfully imputed by using various imputation methods
(median, KNN, and bagging).

� To assess the process of imputation, various conventional single-classifier approaches,
as well as the proposed ensemble classifiers approaches, are implemented. From
the computation of the performance metrics (accuracy, precision, recall/sensitivity,
specificity, and F1 score), the RF classifier is identified as the superior single-classifier
to all other single classifiers.

� Out of the proposed ensemble classifiers, “RF+SVM+DT” has shown superior perfor-
mance over the conventionally best single classifier (RF) as well the other ensemble
classifiers for imputing the missing reading information.

Thus, the proposed ensemble classifiers approach has successfully handled anomalies
that exist in the smart home energy consumption data.

Impacts and Implications of the Work

The proposed work in this paper helps in data preprocessing by the cleansing of data,
which is typically essential to carry out precise analytics, and thereby, take superior deci-
sions for energy management in smart buildings. Furthermore, the outcome of this work
helps as a ready reference to understand the irregularities of the live data captured in a
smart building/home/grid application for better data analytics. This impacts one of the im-
portant objectives of “United Nations Sustainable Development Goals (UN SDGs)—SDG 7:
Energy” in producing an anomaly-free dataset for providing several customer services.

In addition, the identification of different data anomalies, viz., missing data, outliers
data, garbage data, and redundant data in the energy consumption dataset, may be ap-
plied to the malfunctioning of metering infrastructure, failure/glitches of communication
channels, cyber-attacks, energy thefts, unanticipated situations in power networks, etc.
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Abbreviations

CSV comma-separated values
DT decision tree
KNN K-nearest neighbour
ML machine learning
MICE multivariate imputation by chained equations
NA not available
NB naive Bayes
NILM non-intrusive load monitoring
NNET neural networks
RF random forest
SVM support vector machine
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Abstract: Irrigation installations in cities or agricultural operations use large amounts of water
and electrical energy in their activity. Therefore, optimising these resources is essential nowadays.
Wireless networks offer ideal support for such applications. The long-range wide-area network
(LoRaWAN) used in this research offers a large coverage of up to 5 km, has low power consumption
and does not need additional hardware such as repeaters or signal amplifiers. This research develops
a control and monitoring system for irrigation systems. For this purpose, an irrigation algorithm is
designed that uses rainfall probability data to regulate the irrigation of the installation. The algorithm
is complemented by checking the sending and receiving of information in the LoRa network to
reduce the loss of information packets. In addition, two temperature and humidity measurement
devices for LoRaWAN (THMDLs) and an electrovalve control device for LoRaWAN (ECDLs) were
developed. The hardware and software were also designed, and prototypes were built with the
development of the electronic board. The wide coverage of the LoRaWAN allows the covering of
small to large irrigation areas.

Keywords: LoRaWAN; smart irrigation systems; smart energy

1. Introduction

In modern irrigated agricultural facilities, the competitiveness of the sector, combined
with rising global temperatures, has necessitated the development of new and more sustain-
able agricultural techniques and crops to help reduce water consumption in these facilities,
coupled with optimal water and energy management strategies. An efficient farming
system is defined by the right amount of water at the right time, resulting in improved crop
yields through efficient energy consumption. The use of innovative irrigation technologies
is necessary to ensure an optimal amount of irrigation water. Optimisation of the irrigation
system involves improving crop development conditions by planning the installation:
optimal water and energy quantity and management. This requires variable monitoring
and decision-making systems that allow us to optimise current irrigation installations.

The need for optimisation in agriculture began in the last century. In the beginning,
design solutions with wired electronics were used but had numerous problems. Since then,
the development and optimisation of irrigation systems have been linked to the rise and
evolution of ICT (Information and Communication Technology). It is important to design
sustainable models capable of supplying energy through renewable sources based on solar
photovoltaic (PV) energy. Another fundamental part is given by the communication net-
work, which is currently realised through wireless networks with low energy consumption,
such as Low-Power Wide-Area Networks (LPWANs).

This article describes the design of an intelligent system to implement the irrigation
control of a facility located on the university campus of the University of Jaén through
wireless communication and low energy consumption powered by solar PV panels. This
system consists of a wireless network with sensors and actuators that send the collected
data, which are subsequently analysed in the cloud. This research focuses on optimising
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an irrigation system and reducing its energy consumption with an LPWAN supplied by a
PV system.

2. Related Work

In the last decade, there has been a tendency to implement intelligent irrigation
management systems based on wireless sensor networks, which have also been used in
other areas such as industry, cities, housing, etc. The advantages of these wireless networks
in the agricultural sector have been analysed by several authors, such as Goumopoulos
et al. [1], who described the design of an intelligent system based on a wireless sensor
and actuator network used for irrigation control in greenhouses. Doko Bandur et al. [2]
analysed the energy consumption of the different components of the wireless sensor
network, indicating the main energy consumers as well as how energy efficiency should
be improved. The study of greenhouse crops with wireless technology used for sensor
communication as well as the transmission rate was presented by Kochhar et al. [3].
Hamami et al. [4] reviewed the wireless sensor networks used in irrigation systems. This
type of technology is ideal for system management and reducing water consumption.

Nowadays, the integration of devices with long-range wide-area networks (LoRaWAN)
stores data in the cloud, where they are processed, analysed through Big Data and interact
with other networks. These technologies enable the design of the Internet of Things (IoT)
and cloud computing systems applicable to agriculture. Froiz-Míguez et al. [5] detailed
an IoT system that develops a smart irrigation system covering large areas through a net-
work (LPWAN) with soil temperature and humidity and air temperature sensors. Valente
et al. [6] presented the development of a low-cost system and analysed energy consump-
tion with a maximum of 400μA using a LoRaWAN network. Ameloot et al. [7] developed
and analysed a wireless network with six wireless nodes to characterise the temperature
and relative humidity of suburban areas using a long-range network (LoRa) at various
locations in the city of Ghent (Belgium). It has also been used by Cano-Ortega et al. [8],
who developed an optimal LoRa network using ABC algorithms to reduce Package Loss
Rate (PLR) and dispatch time to determine the load profiles of a dwelling. Smart street
lighting systems using an LPWAN control was realised by Sánchez-Sutil et al. [9,10]. Finally,
Cruz et al. [11] monitored the filling level of urban waste containers in Lisbon (Portugal)
using LPWAN technology. Ritesh-Kumar et al. [12] applied LoRaWANs to implement a
greenhouse control system that enables energy and water savings through continuous
monitoring of the installation.

The advances of ICTs in irrigation systems have been quite important, as can be seen.
Nam et al. [13] discussed the use of ICTs in water management in agriculture and irrigation
facilities. Goap et al. [14] presented an intelligent system that obtains soil moisture data
through sensors together with current meteorological information to optimise the irrigation
of an agricultural facility. To minimise water losses, Canales-Ide et al. [15] analysed a set
of techniques and criteria aimed at optimal irrigation management that determines the
water needs of plants and the optimal efficiency of the irrigation systems. By studying
each plant from existing databases, Munir et al. [16] proposed an optimal irrigation system
based on daily needs, considering the time of day, soil moisture and humidity. Migliaccio
et al. [17] developed a smartphone application for scheduling urban lawn irrigation using
evapotranspiration data from weather stations.

Among the most important advantages of using IoT systems in agriculture is au-
tomated irrigation, as measurements can be taken by sensors (humidity, temperature,
irradiation, etc.) and actions (solenoid valves, pumps) through the different devices that
make up this system. Methodologies have also been developed for the analysis and devel-
opment of scientific networks based on the evaluation of the needs of different crops, soil
attributes, climate, etc. Some authors have developed different IoT devices, as Fernández-
Ahumada et al. [18] presented a low-cost device for automatic irrigation based on an
ESP32-LoRa microcontroller and Internet connection through the Sigfox network. Fraga-
Lamas et al. [19] proposed an IoT smart irrigation system specifically designed for remote
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urban areas. Chazarra-Zapata et al. [20] presented an IoT device that optimises battery
power consumption, GPRS (General Packet Radio Service) with an Nb-IoT (Narrow-band
Internet of Things) system for communication and sending information every two hours to
reduce energy consumption. López-Morales et al. [21] proposed an IoT system that enables
decision making on pumping efficiency in an irrigation community by easily integrating
heterogeneous data sources, which improves the energy efficiency of pumping with higher
economic, environmental and social returns in a sustainable way. Additionally, Glória
et al. [22] developed a sustainable irrigation system that allows for improving natural
resources, both water and energy, and reducing the economic cost through an IoT system
with a network with batteries that has communication times of two hours. The monitoring
of climatic parameters, soil moisture, vegetation health, plant diseases and crop yields
while using IoT systems with wireless networks was developed by Khan et al. [23]. Ad-
ditionally, Mohammed et al. [24] developed an IoT system for the control of date palms
in arid regions using an underground irrigation system that remotely controlled climatic
parameters and water volume in the soil. Tiglao et al. [25] presented a low-cost system that
has a soil moisture sensor, a temperature sensor, a humidity sensor and a valve actuator
within a mesh configuration that regulates drip irrigation. Finally, Sánchez Sutil et al. [26]
performed the design of an intelligent system for measuring electrical variables to obtain
load profiles in households.

Different control systems applied to irrigation have been developed. Al-Ali et al. [27]
presented a microcontroller based on fuzzy logic algorithms for drip irrigation control,
and Sudharshan et al. [28] studied a solenoid valve control system using fuzzy logic data
from temperature, humidity and soil moisture sensors. Nawandar et al. [29] proposed a
greenhouse, garden and farm control system and an automatic irrigation system capable
of tracking the water needs of the crop, providing real-time and historical data of the
farm. Liao et al. [30] performed the design of an automatic irrigation system with real-time
soil moisture data to estimate the depth of water absorption. Finally, Eltohamy et al. [31]
analysed how phosphorus released from the soil surface in paddy fields is influenced
under different irrigation scenarios for different soil moistures.

The literature review found the following technological aspects.

• Wireless technologies are used in the works Wi-Fi [1,17,27–30], NRF [25], and RFID [13].
• Different works use LoRa technology [5–7,12,12,18,20,21].
• The algorithms used are optical algorithm [5], multi-objective function [18], and fuzzy

logic [27,28].
• The following works use open-source platforms [5,13,29].

Based on the weaknesses and opportunities identified, the main contributions of this
research are:

• Irrigation algorithm that connects to the Internet to obtain the probability of precipita-
tion and does not irrigate if the probability of precipitation is greater than specified.

• Change of parameters in real time that allows the system to be much more dynamic
and can be adjusted to the needs of the installation at any given moment.

• Routine checking of sending and receiving messages to minimise the number of
packets of information lost in the LoRaWAN network.

• Development of low cost and open-source prototypes, which allow the system to be
adapted to the particular needs of each installation.

The rest of the document is organised as follows: Section 3 provides an overview of
the developed system, including the modular architecture of the system, the developed
LPWAN network and the supported sensors and their interconnection with the platform.
Section 4 details the technological results obtained. An evaluation of the developed system
in terms of a prototype, the analysis of the performance of the LPWAN wireless network,
the agronomic impact of the system and an evaluation of the energy consumption of the
system are provided. Finally, Section 5 presents the conclusions drawn from this work.
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3. Methodology and Design

3.1. Network Scheme

The proposed network scheme has two distinct parts. The first corresponds to the
LoRaWAN and the second to the Wide-Area Network (WAN), which can be either wired
using Ethernet protocol or wireless using Wi-Fi (Wireless Fidelity) protocol. The PG1301
concentrator manufactured by Dragino Technology Co., LTD., Shenzhen, China, is used as
the link between the two networks. PG1301 is mounted on a Raspberry 3 or higher, which
provides support for the WAN network. In addition, it can host up to 1000 LoRaWAN
devices, which is sufficient for most applications. If a larger number is required, it is
sufficient to install more concentrators to cover the required needs. Figure 1 shows the
network scheme.

Figure 1. Proposed network scheme.

Within the LoRaWAN, communication is bidirectional between the Temperature and
Humidity Measurement Device for LoRaWAN (THMDLs) and Electrovalve Control Device
for LoRaWAN (ECDLs) with PG1301 since both data messages (upstream) and command
messages (downstream) are needed. The information is concentrated on The Things Net-
work (TTN) server [32]. This service is specially designed to work with LoRaWANs and
supports upstream and downstream messages to LoRaWAN devices, such as the ones de-
veloped in this research (THMDL and ECDL). Currently, TTN has just implemented the new
v3 version, which is much more powerful than the previous one. From TTN, it is possible
to send and receive information to different IoT services through the available integrations.
These include (i) AWS IoT [33], (ii) Akenza core [34], (iii) Datacake [35], (iv) deZem [36],
(v) InfluxDB Cloud 2. 0 [37], (vi) Microsoft Azure [38], (vii) Qubitro [39], TagoIO [40],
(ix) thethings.iO [41], (x) ThingsBoard [42], (xi) ThingSpeak [43], (xii) Ubidots [44] and
(xiii) UIB [45].

In addition to the above integrations, it is possible to use other options such as (i) Mes-
sage Queue Telemetry Transport (MQTT) [46], (ii) LoRa cloud [47], (iii) Node-RED [48] and
If This, Then That (IFTTT) [49]. Finally, TTN has available the HTTP Webhooks integration
that allows sending data to any server using POST and GET. From these, IoT services such
as Google Sheets [50], Google Firebase [51], etc., can be accessed. As can be seen, there is a
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wide range of possibilities that allows the developer or user to find the service that best
suits each situation at any given time.

3.2. Hardware Design
3.2.1. Design Challenges and Objectives

In order to obtain fully functional devices that perfectly fulfil their assigned tasks, it is
necessary to perfectly define the performance objectives to be met by the devices. These
objectives will have a decisive influence on the choice of components and technologies to
be implemented in THMDL and ECDL. They will also have an important bearing on the
software that will run inside these devices. The hardware design objectives are listed below:

• Low power consumption: The devices are placed in the field (THMDL) or where the
electrovalves are located (ECDL), and a mains power supply is not always available.
It is necessary to use batteries and Solar Panels (SPs) to ensure the power supply of
the equipment. In this sense, low power consumption is essential for batteries and
SPs to be as small as possible.

• Small size: The devices must be installed in the smallest possible space. In the case of
the THMDL, the goal is to be as imperceptible as possible in landscaped areas. For the
ECDL, the goal is to be close to the electrovalve, but it is not always possible to have
large spaces. This design objective is indivisibly linked to the previous one.

• Component integration, modular design and fault response: If one of the components
has a problem and develops a malfunction, the device must be able to maintain the
other features that have not been affected by the malfunction. The modular design
is of vital importance in these scenarios since it allows components to be changed
without the system ceasing to function. This results in highly fault-tolerant devices
that provide a high degree of security against device malfunctions.

• Operational safety: The devices are designed to operate autonomously and continu-
ously 24/7. It is, therefore, necessary for the design to be as robust as possible in order
to minimise operating problems. This, together with the previous objective, gives the
designed devices a high tolerance to failures.

• Low price: In addition to meeting all of the above objectives, the devices must have a
final cost that is as low as possible. Thus, achieving designs that can be mass-produced
and that are accessible to the majority of users is essential.

The aforementioned objectives entail overcoming a series of challenges and difficulties,
the resolution of which will result in the development of fully functional devices. The
following is the list of elements to be considered:

• Component selection: In achieving the design objectives, the selection of the com-
ponents to be implemented in the devices is of particular importance. They have a
decisive influence on the proper functioning of the devices and on achieving a final
system that is fully functional and safe in its operation.

• Modular design: Combined with the design objectives of component integration,
modular design, fault response and operational safety, the objective must provide
robustness to the devices. Thus, devices cannot be taken out of service in the event of a
malfunction. Rather, all features unaffected by the problem must continue to function
correctly.

• Evaluation of alternatives leading to an optimal design: It is essential to evaluate the
different implementation possibilities for each of the devices and the final system. The
choice of the most correct, optimal and appropriate solution will lead to the fulfilment
of the objectives set for the design.

• Printed Circuit Board (PCB) design: The design must be optimised to achieve a
minimum size that allows the integration of all the selected components in each of
the devices. In this case, two PCBs will be created, one for the THMDL and one for
the ECDL.
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3.2.2. Components

An appropriate selection of the components to be implemented in the devices will
have a decisive influence on the optimisation of the devices. The design objectives of low
power consumption, small size, modularity and operational safety must be addressed in
the approach to component selection.

Microcontroller

In order for a device to function properly and perform all assigned tasks, it is necessary
to have a core. This core is the microcontroller that must drive the interaction between
components within the device. Thus, the microcontroller must have different elements
such as the microprocessor, memory, ports for communications with other components,
digital and analogue inputs and outputs, etc.

Once the design objectives have been studied, it can be concluded that the Arduino
family of microcontrollers is an ideal platform for use in the construction of the devices
created in this research. The Arduino platform is endorsed by its use in a multitude of
projects with industrial and domestic applications.

Table 1 shows some of the most essential features of the various microcontrollers in
the Arduino family. This table is the basis for choosing the microprocessor applied to the
devices developed in this research.

The Arduinos shown have sufficient memory capacity for program code and data.
Therefore, the decision to use one or the other microcontroller depends on other design
objectives, which are mainly power consumption and size. In this sense, the microcontroller
that best meets the requirements defined in the design is the Arduino Nano (AN), whose
specifications can be found in [52].

Table 1. Comparison of the Arduino family.

Component Surface (mm2) Microcontroller
Current

Consumption
(mA)

Flash Memory
(kB)

Clock Speed
(MHz)

Unit Price
(€)

Arduino Uno [53] 3663.24 ATmega328P 46 32 16 20.00
Arduino Mega [54] 5421.17 ATmega2560 93 256 16 35.00
Arduino Nano [52] 810.00 ATmega328 15 32 16 20.00
Arduino Micro [55] 864.00 ATmega32U4 15 32 16 18.00

LoRa Wireless System

Regarding the LoRa communication system, it should be noted that two components
are required: (i) the end device (to be installed in the THMDL and ECDL) and (ii) the
gateway responsible for communication with the cloud.

LoRa communication chips are diverse, including (i) Semtech (Semtech Corporation,
Camarillo, CA, USA) SX1308 [56], SX1301 [57], SX1276 [58], SX1278 [58] and SX1257 [59];
(ii) HOPERF chip RFM95/96/97/98 [60] (HOPERF, Shenzhen, China); and (iii) Murata
CMWX1ZZABZ (Murata Manufacturing, Nagaokakyo, Japan) [61].

Commercially available LoRaWAN-compatible models are built from these chips.
Five models were analysed. From this analysis, the model to be implemented in the
THMDL and ECDL was chosen. The models analysed were the following: (i) Arduino
MKRWAN 1310 (Arduino AG, Ivrea, Italy) [62]; (ii) Monteino (LowPowerLab, Canton-
Michigan, USA) [63]; (iii) Libelium (Libelium, Zaragoza, Spain) [64]; (iv) Lopy4 (Pycom,
Bucharest, Romania) [65]; and (v) Dragino LoRa Bee (DLB) (Dragino Technology Co., LTD.,
Shenzhen, China) [66]. These models use the following chips: (i) Murata CMWX1ZZABZ
for the Arduino MKR WAN 1310; (ii) HOPERF chip RFM95/96/97/98 for the Monteino;
(iii) SX1276 and SX1278 for the Lopy4 and DLB, respectively; and (iv) Semtech SX1272 for
the Libelium. The characteristics of the models analysed are similar. Therefore, the DLB
was chosen in this research as the component to be installed in the THMDL and ECDL due
to its reduced price. Table 2 illustrates the characteristics of the components analysed.

224



Sensors 2021, 21, 7041

Table 2. Comparison of LoRa end-devices.

Component
Surface
(mm2)

Current
Consumption (A)

RSSI Range
(dBm)

Sensitivity
(dBm)

Blocking
Immunity

Unit Price
(€)

Lopy4 [65] 1100.00 Rx 12 mA–0.2 μA
register retention −126 −148 High 33.06

Monteino [63] 240.05 RX 10.3 mA–200 nA
register retention −127 −148 Excellent 22.95

Libelium [63] 775.00 RX 10.3 mA–200 nA
register retention −127 −148 Excellent 32.35

MKR WAN 1310 [62] 1693.75 Rx 23.5 mA −117.5 −133.5 High 33.00
Dragino LoRa Bee

[66] 775.00 RX 10.3 mA–200 nA
register retention −127 −148 Excellent 14.50

Once the LoRa component was selected, it was necessary to choose the gateway. This
component is responsible for handling the upstream and downstream messages sent back
and forth between the THMDL and ECDL to TTN. Although there are different options
on the market, we chose to use the Dragino family to ensure better compatibility with the
chosen LoRa component. Table 3 shows the four gateways tested, from which the LoRa
PG1301 [67] concentrator was chosen. PG1301 is capable of handling up to 1000 devices
with 10 channels of communication, which is more than enough for most systems. If one
needs to control more than 1000 LoRa devices, additional gateways can be added. PG1301
was mounted on a Raspberry Pi computer that provides support for Internet access, either
via Ethernet cable or Wi-Fi.

Table 3. Comparison of LoRa gateways and concentrators.

Component
Number of
Channels

Communication Paths
Number of LoRa

Devices
Unit Price

(€)

Dragino OLG01 [68] 1 Ethernet—Wi-Fi—3G/4G 300 85.79
Dragino OLG02 [69] 2 Ethernet—Wi-Fi—3G/4G 300 95.89

LoRa concentrator [67] 10 Ethernet—Wi-Fi provided by Raspberry 1000 100.19
LoRa GPS Hat [70] 1 Ethernet—Wi-Fi provided by Raspberry 300 35.90

Electrical Variables Meter

For the measurement of DC variables, there are fewer options with sufficient quality.
There are three possibilities: (i) FZ0430 [71]; (ii) ACS712 [72]; and (iii) INA219 [73]. FZ0430
is capable of measuring only voltage up to 25 V in direct current. ACS712 measures currents
in ranges of 5, 20 or 30 A, depending on the version. To obtain the power consumption, it is
necessary to include a unit of these sensors and then perform the necessary calculations. A
complementary option is to use the INA219 m, which is capable of measuring voltage and
voltage in the same component. It also provides a direct reading of the power consumed. In
this research, INA219 has been chosen as it involves making all voltage, current and power
measurements on the same component. The characteristics of the components analysed
are shown in Table 4.

Table 4. Comparison of electrical sensors.

Component Measured Variable Surface (mm2) Price (€)

FZ0430 [71] Voltage 378 1.73
ACS712 [72] Current 420 1.28
IN219 [73] Voltage, current, PF and power 2211 1.70

SHT30 Temperature and Humidity Sensor

After searching for temperature and humidity sensors that could work with the
Arduino platform, five families of sensors were found. These families are the following:
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(i) SHT1x [74]; (ii) SHT2x [75]; (iii) SHT3x [76]; (iv) DHT11 [77]; and (v) DHT22 [78].
Measurement ranges, accuracy, power consumption, supply voltage and communications
paths are diverse. Table 5 shows the comparison of the analysed sensor models.

Table 5. Comparison of temperature and humidity sensors.

Sensor
Humidity
Accuracy

(%)

Temperature
Accuracy

(◦C)

Supply
Voltage

(V)

Energy
Consumption

(μW)

Humidity
Range

(%)

Temperature
Range
(◦C)

Interface

SHT10 [74] ±4.5 ±0.5
2.4–5.5 80 0–100 −40/125 SBusSHT11 [74] ±3 ±0.4

SHT15 [74] ±2 ±0.3
SHT20 [75] ±2 ±0.3

2.1–3.6 3.2 0–100 −40/125
I2C

PWM
SDM

SHT21 [75] ±2 ±0.3
SHT25 [75] ±1.8 ±0.2
SHT30 [76] ±2 ±0.2

2.15–5.5 4.8 0–100 −40/125 I2CSHT31 [76] ±2 ±0.2
SHT35 [76] ±1.5 ±0.1
DHT11 [77] ±5 ±5 3.3–5 100 20–80 0–50 Digital pin
DHT22 [78] ±5 ±5 3.3–5 100 0–100 −40/125 Digital pin

It can be seen that the family offering the best performance is the SHT3x. Accuracy,
power consumption and measurement ranges are outstanding. Moreover, the supply
voltage and the I2C (Inter-Integrated Circuit) bus are ideal for use in conjunction with AN.
Finally, within the SHT3x family, the SHT30 sensor was chosen for implementation in the
THMDL.

Charge Regulator

SeeedStudio controllers offer a wide range of use in the charge control of batteries
with SPs. Of the three models analysed, the Lipo Rider Pro (LiPo) [79] model was chosen
for implementation in the devices. This model offers ideal characteristics for the 3.7 V
battery and the 4.8 V SP used. Moreover, it is also perfectly suited to the supply voltage of
the AN board. Table 6 shows the characteristics of the models tested.

Table 6. Comparison of charge regulators.

Sensor
Vin Solar

(V)
Icharge

(mA)
Iload

(mA)
Vbatt

(V)
Vsource

(%)
Vdestination

(◦C)

Lipo Rider Pro [79] 5 500 1000 4.2 5 5
Lipo Rider Plus [80] 5 250 250 100 3.3 3.3
Lipo Rider v1.3 [81] 5 800 600 4.2 5 5

Solar Panel

Solar energy is clean, renewable and simple to use. In this sense, it is of great interest
to be used as a source of energy for equipment working outdoors, such as those used in this
research. The chosen SP has a high transformation efficiency of around 17%. It is made of
monocrystalline material and coated with a thin layer of resin on the surface that protects it
from atmospheric agents and makes it ideal for outdoor use. The dimensions of the SP are
138 × 160 mm. The nominal output voltage is 5.5 V, with an output of 540 mA, depending
on the luminous intensity received. The open-circuit voltage is 8.4 V, and the maximum
load voltage is 6.4. The main characteristics can be found in [82].

Battery

For use in THMDL and ECDL, a 3.7 V, 7800 mAh, 28.86 Wh lithium-ion battery was
chosen. This is more than enough to power the designed devices. It should be noted that
the THMDL has an average consumption of 166.5 Ah, which ensures 31 h of operation
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with a fully charged battery. In the case of the ECDL, the average consumption is 31 Ah,
with a battery life of 174.5 h if the battery is fully charged.

The battery pack has dimensions of 68 × 55 × 19 mm and consists of three individual
batteries, with an operating temperature of between −20 ◦C and +60 ◦C. The characteristics
of the battery are available for consultation in [83].

3.2.3. Hardware Implementation for the THMDL

In the design of the THMDL, two AN microcontroller was used. This is because the
communications paths system chosen (LoRaWAN) and the chip that gives access to the
DLB are not compatible with the I2C communications paths bus used to read the INA219
and SHT30 sensors. To perform the measurements, AN1 sends the reading request via
the serial port, and AN2 performs the measurement of electrical variables, temperature
and humidity and returns them via the serial port. Therefore, AN1 takes care of the
communication with the LoRaWAN network and controls the measurement request, and
AN2 takes care of the necessary measurements.

Due to the fact that the devices developed in this research work autonomously with
no possible wired connection to the electrical and Ethernet networks, it is necessary to
implement power supply systems and access to communications paths that do not depend
on wired networks. For the electrical network, two solutions have been considered: (i) a
battery and (ii) a battery and SP controlled by a regulator. This results in two different
versions of the THMDL. The aim is to monitor the power consumption of the joint system
and the contribution of the battery and the SP in order to control the system and replace or
charge the battery to keep the system running.

For the implementation of the wireless system, there are several applicable technolo-
gies. These include the following: (i) Bluetooth; (ii) SigFox; (iii) ZigBee; (iv) Nb-IoT; and
(v) Wi-Fi. The coverage offered by each of these is variable, in many cases not exceeding
tens of metres, as well as requiring repeaters to extend their coverage. SigFox is owned by
a company, which is why all services must be contracted with it. NB-IoT requires a data
contract and a SIM card to send and receive information.

This research uses LoRaWAN because communications paths can be achieved up to
10 km, with an average of 5 km, which are sufficient distances for application in most
landscaped areas in cities. If larger extensions are required, it is only necessary to in-
stall more gateways to ensure the necessary system coverage. Figure 2 shows the block
diagrams of the two versions of the THMDL. These diagrams express the relationships
that are established between the different components of the devices and how they share
information and electrical characteristics.

To complement the block diagrams, the wired connections made between the differ-
ent components are included. This allows any researcher to be able to clone the devices
presented in this research. The power supply, serial port communication, I2C bus commu-
nication and LoRaWAN network connections can be seen in the block diagrams. Figure 3
shows the wiring diagram for the THMDL in both versions.

The THMDLs PCB board was also designed in its two versions: battery power sup-
ply and battery power supply plus SP. The board integrates all the components used,
avoids wiring as much as possible and gives solidity to the whole. The dimensions are
95 × 58 mm for the battery-only version and 191 × 71 mm for the version with battery
and SP. Figures 4 and 5 show the design of the PCB boards. Figure 6 shows the electronic
schematic of the PCB board for THMDL.
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(a) 

 
(b) 

Figure 2. Block diagram of the THMDL: (a) battery power supply and (b) battery and solar panel power supply.

It is important to perform the economic valuation of the THMDL in its two versions
to check whether the reduced-price target is met. In this regard, Tables 7 and 8 show the
price of each product and the price of the final set for the two versions of the THMDL. It
should be noted that the price of the products is obtained from the official shops of the
manufacturers. On the other hand, the fact that the components are licence free means that
there are compatible components on the market that can further reduce the price of the set.

Table 7. Cost of components for the THMDL with a battery power supply.

Description Number Unit Price (€) Total (€)

Microcontroller Arduino Nano 2 20.00 40.00
Dragino LoRa Bee 1 14.50 14.50

INA219 1 1.70 1.70
Battery 1 32.96 32.96

PCB board 1 0.40 0.40
SHT30 sensor 1 6.80 6.80
Box container 1 2.54 2.54

Auxiliary material and wiring - 1.05 1.05

Total cost 99.95
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Table 8. Cost of components for the THMDL with a battery and solar panel power supply.

Description Number Unit Price (€) Total (€)

Microcontroller Arduino Nano 2 20.00 40.00
Dragino LoRa Bee 1 14.50 14.50

INA219 3 1.70 5.10
Battery 1 32.96 32.96

Solar panel 1 12.28 12.28
Li-Po Rider Pro 1 15.33 15.33

PCB board 1 0.40 0.40
SHT30 sensor 1 6.80 6.80
Box container 1 3.02 3.02

Auxiliary material and wiring - 1.27 1.27

Total cost 131.66

 
(a) 

 
(b) 

Figure 3. Wiring diagram of the THMDL: (a) battery power supply and (b) battery and solar panel power supply.
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(a) (b) 

Figure 4. PCB of the THMDL with battery power supply: (a) front side and (b) back side.

  
(a) (b) 

Figure 5. PCB of the THMDL with battery and solar panel power supply: (a) front side and (b) back side.
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(a) 

 
(b) 

Figure 6. Schematic of the THMDL: (a) battery power supply and (b) battery and solar panel power supply.

3.2.4. Hardware Implementation for the ECDL

Similar to the THMDL, the ECDL has two ANs due to the incompatibility of the I2C
bus with the LoRaWAN system. In this case, a relay is available to operate the electrovalve.
This relay is connected to digital output 3 of AN1. The supply voltage of the relay is
therefore 5 V, and it can withstand currents of up to 10 A.

AN2 takes care of the electrical measurements made by the INA219. In the SP versions
of the THMDL and ECDL, 3 INA219 m are required. It is, therefore, necessary to assign an
address on the I2C bus in order to be able to read the contents of each one. The INA219
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output meter of the charge controller is assigned the default address 0 × 40. The battery
measurement INA219 was assigned the address 0 × 41. For this reason, it is necessary to
make a bridge between the A0 contacts of INA219. Finally, the INA219 m of the SP was
assigned the address 0 × 44, bridging, in this case, the two A1 contacts. This allows access
to the individual measurements without any interference between the measuring device
addresses.

The system for access to the LoRaWAN network via the DLB is the same as explained
for the THMDL. The difference is the messages exchanged with the network because the
ECDL performs different functions. To understand the functional relationships between
the components used in the two versions of the ECDL, see Figure 7.

 
(a) 

 
(b) 

Figure 7. Block diagram of the ECDL: (a) battery power supply and (b) battery and solar panel power supply.

For the ECDL, it is also necessary to include the wiring diagrams that show the
electrical connections to be made in order to build this device. The wiring diagrams are
complemented with the block diagrams for a complete definition of the ECDL. With all
the information provided, the ECDL is reproducible for any interested researcher. Figure 8
shows the wiring diagrams for the ECDL in its two versions.
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(a) 

 
(b) 

Figure 8. Wiring diagram of the ECDL: (a) battery power supply and (b) battery and solar panel power supply.

Finally, Figures 9 and 10 show the electronic board developed for the ECDL in its two
versions. In this case, the dimensions of the boards are 125 × 59 and 220 × 70 for the ECDL
versions with and without an SP. The electronic schematic of the PCB board for THMDL is
shown in Figure 11.
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(a) (b) 

Figure 9. PCB of the ECDL with battery power supply: (a) front side and (b) back side.

  
(a) (b) 

Figure 10. PCB of the ECDL with battery power supply: (a) front side and (b) back side.
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(a) 

 
(b) 

Figure 11. Schematic of the ECDL: (a) battery power supply and (b) battery and solar panel power supply.

The economic valuation for the ECDL versions has also been done to verify that the
reduced-price target has been met. Tables 9 and 10 give the approximate cost of the two
ECDL versions.
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Table 9. Cost of components for the ECDL with a battery power supply.

Description Number Unit Price (€) Total (€)

Microcontroller Arduino Nano 2 20.00 40.00
Dragino LoRa Bee 1 14.50 14.50

INA219 1 1.70 1.70
Battery 1 32.96 32.96

PCB board 1 0.40 0.40
Relay 1 0.27 0.27

Box container 1 2.54 2.54
Auxiliary material and wiring - 1.05 1.05

Total cost 93.62

Table 10. Cost of components for the ECDL with a battery and solar panel power supply.

Description Number Unit Price (€) Total (€)

Microcontroller Arduino Nano 2 20.00 40.00
Dragino LoRa Bee 1 14.50 14.50

INA219 3 1.70 5.10
Battery 1 11.50 11.50

Solar panel 1 12.28 12.28
Li-Po Rider Pro 1 15.33 15.33

PCB board 1 0.55 0.55
Relay 1 0.27 0.27

Box container 1 3.02 3.02
Auxiliary material and wiring - 1.27 1.27

Total cost 122.28

3.3. Software Design

The system designed in this research is intended to operate continuously in a 24/7
mode. This allows the automated system to be permanently under control. In addition,
the devices have to perform all their functionalities again when there is any problem, e.g.,
battery change.

Several functionalities have been implemented in the system: (i) battery charge level
control; (ii) watering routine based on the weather forecast and humidity level; (iii) com-
plete electrical (v, I, p) and environmental (temperature, humidity) measurements; and
(iv) parameter change.

3.3.1. THMDL Software

The THMDL program is structured in two main sections: (i) initialisation and (ii) com-
mand control. The initialisation tasks must prepare the components used and the commu-
nication ports to start the continuous process.

The command control routine must continuously scan the network for messages sent
from the system. These messages are of two types: (i) measurement message and (ii) irri-
gation message. When the measurement message is received, the measurement routine
that measures the electrical and environmental parameters is executed. Subsequently, the
battery check routine is executed to check the state of charge of the battery. If the message
sent is for irrigation, the need to irrigate is checked, and the necessary order is sent to the
system.

Once the task required by the system has been performed, a task completed confir-
mation message is sent so that the system is notified of the completion of the task. Once
the confirmation message is sent, the system returns to the initial step of scanning the
LoRaWAN network for new messages. The above process for the command control routine
is performed continuously as long as the THMDL is connected. Figure 12 shows the
flowchart for the main THMDL program.
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Figure 12. Flow chart of the main program for the THMDL.

Figure 13 shows the flowcharts for the measurement routines in the two versions of the
THMDL. The routine is divided into two parts: (i) measurement of electrical variables and
(ii) measurement of environmental variables. First, the measurement phase of the electrical
part is performed. In this phase, the corresponding INA219 m is called, which returns the
variables v, i and p. In the case of the battery-only version, only one measurement is taken.
The version with an SP performs three measurements in this order: (i) regulator, (ii) battery
and (iii) SP.

 
(a) (b) 

Figure 13. Flow chart of the measurement routines for the THMDL: (a) battery power supply and
(b) battery and solar panel power supply.
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Once the measurement of electrical variables has been completed, the measurement
of environmental variables is performed. To do this, SHT30 is called and returns the
temperature and humidity data recorded at that moment. Finally, all the measured data
are sent to the LoRaWAN network. In this sense, a message security system has been
implemented in order to minimise the loss of information in the system.

Figure 14 shows the flow chart of the irrigation routine. It is important to note that
this routine has been implemented based on weather forecasts so that water expenditure
is minimised. When the routine is started, a request for rainfall forecast data is sent.
The forecast can be extended over the necessary time horizon to be estimated in each
application. Once the probability of precipitation is received, it is compared with the
minimum probability assigned. If the probability received is higher, the message that it
is not necessary to irrigate is sent. On the other hand, if the probability of precipitation
is lower than the minimum, it is passed to the part of comparison with the measured
humidity level.

Figure 14. Flow chart of the irrigation routine for THMDL.

If the humidity level is lower than the minimum level set for watering, the watering
message is sent. Otherwise, the message that watering is not necessary is sent. The levels
of precipitation probability and minimum humidity can be changed by the user at any
time, making the system much more efficient and dynamic.

The battery check routine is shown in Figure 15a. Here, it can be seen that the check is
performed in relation to the battery voltage. If the above voltage falls below the defined
minimum, a low battery message is sent to the system for action by the maintenance staff.

To make the system more dynamic, it is necessary to be able to change the action limits
at any time. This allows it to adapt to new situations or approaches in system policies. It
also allows sectorisation of the system, making it possible to have different parameters in
each zone reflecting the particular characteristics. For this purpose, Figure 15b shows the
THMDL parameter change routine. Parameters can be changed together, either individually
or in groups, as the routine is prepared for this.
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(a) (b) 

Figure 15. Flow chart of the (a) check battery routine and (b) change parameters routine for the
THMDL.

3.3.2. ECDL Software

The design of the main ECDL programme follows a similar philosophy to that of
the THMDL. It starts with the initialisation phase of all components. Subsequently, in
continuous mode, it executes the following tasks: (i) scanning the LoRaWAN network for
new messages; (ii) if a measurement message arrives, it performs the measurement, checks
the battery state of charge and sends data; (iii) if a parameter change message arrives, it
executes the parameter change routine and sends confirmation; (iv) if the message is an
electrovalve on-or-off message, it activates or deactivates the relay. Figure 16 shows the
flowchart for the main ECDL program.

Figure 16. Flow chart of the main program for the ECDL.
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Figure 17 shows the flowcharts of the measurement routines for the two versions of
the ECDL. The routines work in the same way as those shown above for the THMDL. In
this case, the temperature and humidity measurement part is omitted, as this device does
not need to take these measurements. It is also enabled to send messages until receiving
confirmation of the arrival of the data.

 

(a) (b) 

Figure 17. Flow chart of the measurement routines for the ECDL: (a) battery power supply and
(b) battery and solar panel power supply.

As with other routines, the data modification routine is based on the one described
for the THMDL. In this case, only two variables are needed: (i) timeout for receiving and
sending messages and (ii) minimum voltage for sending low battery warnings. Figure 18
shows the parameter change routine for the ECDL.

 
Figure 18. Flow chart of the change parameters routine for the ECDL.
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4. Results and Discussion

This section shows the tests conducted to check the devices created in this research.
Data were collected in Jaén, Andalusia, Spain, during different times of the year in order to
validate the design and implementation.

4.1. Case Study

Figure 19 shows the distribution of irrigation zones on the campus. The number of
zones is 22, in which a THMDL device for temperature and humidity measurement has
been installed in each zone. An ECDL actuator has also been installed in each zone to
control the irrigation electrovalve. This allows the areas to be separated and only irrigate
those that really need water. This avoids unnecessary water wastage in areas with sufficient
humidity.

 

Figure 19. Distribution of irrigation zones on the campus.

For applications in cities, the necessary zones will be distributed according to the
characteristics of the area to be irrigated automatically. In each zone, a THMDL device
must be installed to monitor the zone. The THMDL will communicate with the LoRaWAN
system, sending all the recorded data and irrigation orders required. As for the ECDL
devices, these will be installed in each of the electrovalves that irrigate the automated zones.
It may happen that several zones monitored with the THMDL are irrigated with the same
electrovalve. Therefore, the number of THDML devices does not always coincide with the
number of ECDL devices. Aerial photographs, photographs taken with drones, maps of
the area, etc., can be used to perform the study. These tools allow a detailed study of the
area to be done and the best possible system to be implemented.

4.2. LoRaWAN Configuration

In this research, we chose to send messages every minute, which is sufficient for an
installation of this type. The initial configuration chosen in this case is BW125 (Band Width
125 kHz), SF7 (Spreading Factor) and CR4/5 (Code Rate). The length of the payload is
16 bytes plus 13 bytes for the header. The 16 bytes of the payload are distributed in 2 bytes
for each variable, 2 bytes for temperature, 2 bytes for humidity, 2 bytes for battery voltage,
2 bytes for battery current, 2 bytes for PV module voltage, 2 bytes for PV module current,
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2 bytes for bus voltage and 2 bytes for bus current. The header layout is 1 byte for MAC
header (MHDR), 4 bytes for LoRaWAN device address, 1 byte for FCtrl (control bit), 2 bytes
for Fcont (count bits), 4 bytes for the message integrity code (MIC) and 1 byte for Fport
(port number).

Due to the 60 s send time and the chosen payload length, it is only possible to use SFs
between 7 and 10, with a 1% duty cycle duration of 41.2 s for SF10 and less for the other
SFs. SF7 is chosen as it has the shortest duty cycle duration. The location of the installation
is in Europe, so only BW125 and BW250 are possible. The speed of BW250 is higher, but the
transmission distance is shorter. To ensure less PLR with the existing distances, a BW125
has been chosen.

Table 11 shows the calculation of the on-air times for the header and payload used.
Here, you can see the minimum time for sending messages according to the 1% duty cycle.
With the chosen configuration, it is 6.7 s. Table 11 shows all possible combinations for the
EU868 zone in Europe. In other regions of the world with different frequency plans, other
results can be easily obtained.

Table 11. Airtime parameters for the LoRaWAN in EU868 zone.

Data Rate Parameters Airtime
Duty Cycle (1% max) Fair Access Policy

Time (s) Msg/Hour Avg/s Avg/Hour Msg/24h

DR5 SF7-BW125 66.8 6.7 538 192.4 18.7 448
DR4 SF8-BW125 123.4 12.3 291 355.4 10.1 243
DR3 SF9-BW125 226.3 22.6 159 651.8 5.5 132
DR2 SF10-BW125 441.6 41.2 87 1185.5 3.0 72
DR1 SF11-BW125 905.2 90.5 39 2607.0 1.4 33
DR0 SF12-BW125 1646.2 164.7 21 4742.2 0.8 18
DR6 SF6-BW250 33.4 3.3 1077 96.2 37.4 897

4.3. Measurement of Soil Temperature and Humidity

This section shows the temperature and humidity measurements for all days of the
four seasons taken in one of the zones in the year 2020. It can be seen that temperature
increases and humidity decreases in the seasons of the year. The season with the highest
average temperature corresponds to summer with an average of 29.31 ◦C, the lowest
average temperature of 12.14 ◦C and the annual average of 19.03 ◦C.

The highest average humidity occurs in winter with a value of 67.81%, the lowest
average in summer with 35.40% and the annual average is 56.09%. Figure 20 shows the
data obtained during the meteorological stations of the year 2020.

The location of the campus is defined by its UTM coordinates referenced to zone
30: X = 431,582 and Y = 4,182,595. The geographical location of Jaen has a continental
Mediterranean climate. As it is located near the Guadalquivir river valley, this has a
decisive influence on the climatic conditions. The temperature variation that can occur is
around 20 ◦C.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 20. Temperature and humidity graphs for the year 2020: (a) temperature in winter; (b) humidity in winter;
(c) temperature in spring; (d) humidity in spring; (c) temperature in summer; (f) humidity in summer; (g) temperature in
autumn; and (h) humidity in autumn.

4.4. Battery Charge

It is possible to charge the battery in two different ways: (i) via the USB port and
(ii) via the SP. The first option is possible via the mini USB port of the LiPo.

This port can be connected to various devices, such as a computer USB port, a mobile
phone charger, or any other type of charger that provides 5 V and 500 mA DC. Figure 21a,b
shows the voltage and current of a complete charging process through the USB port, in this
case, of a laptop. From the voltage curve, it can be seen that the voltage increases as the
accumulated battery charge increases. The voltage evolves from 2.2 V to 2.6 V at the end
of the charging process. The charging current averages 350 mA until the seventh hour of
charging. Thereafter, the current decreases to 100 mA at the end of the charging process,
which drops abruptly to zero when the battery is fully charged. The complete charging
process takes 10 h and 50 min.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 21. Electrical variables measurement in battery charge: (a) battery voltage in USB charge; (b) battery current in USB
charge; (c) battery voltage in PV charge; (d) battery current in PV charge (e) PV voltage in PV charge; and (f) PV current in
PV charge.

Figure 21c–f shows the battery charging process using the SP. It can be seen that
although the SP is live, LiPo only switches on the battery charging when the SP voltage
is close to 4V. The battery charge remains constant at 3 V, with some periods of 2 V. The
charging current depends on the radiation that the SP is receiving. A voltage drop is also
observable around 10 am due to passing clouds.

As can be seen, charging the battery with a USB is much faster and more recommend-
able when the battery is discharged. With a full day of charging with the SP, the battery
was not fully charged. This affirms that the function assigned to the SP is to extend the
duration of the battery charge by providing charging during sunshine hours. Thus, the SP
replenishes the energy consumed during the night and makes the equipment autonomous
for long periods of time without the need to charge the battery.

4.5. Battery Discharge

The full discharge test has been performed on a fully charged battery. Figure 22
shows the results for the voltages and currents of the battery and at the output of the LiPo
controller board. The time required for full discharge was 166.5 h, which ensures a week of
operation with only one battery charge without using an SP.

The battery voltage remains constant at 3 V until the point of full discharge. On the
other hand, the regulator card maintains an output voltage between 4 and 5 V. The average
current consumption is around 33 mA. In this case, it can be seen that the regulator card
maintains an output current of between 204 and 210 mA until the end of the charge.
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(a) (b) 

  
(c) (d) 

Figure 22. Discharge measurement: (a) battery voltage; (b) battery current; (c) LiPo out voltage; and (d) LiPo out current.

4.6. Energy Consumption Comparative

In addition to the wide coverage provided by the LoRaWAN equipment, there is the
advantage of the reduced power consumption of these devices. At this point, the consump-
tion of the developed equipment was tested in relation to other wireless technologies.

The comparison was conducted during the month of January 2020 with data taken
from THMDL and a Wi-Fi device. The Wi-Fi device tested was an Arduino Wemos D1
mini [84] without a connection to any of the electrical sensors, temperature and humidity
sensors or the drive relay. The use of these components would increase the power con-
sumption of the device. It should be noted that the Wemos D1 mini board is one of the
boards with the lowest power consumption among those with Internet access via Wi-Fi
and the ESP8266 chip. Other boards with this chip have higher power consumption, such
as NodeMCU [85], Wemos D1 mini pro [86], Wemos D1 R1 [87], etc.

Figure 23 shows the result of the voltage and current measurements on the battery
at the output of the LiPo board. It can be seen that the power consumption of the Wemos
D1 mini is approximately three times higher than that of the THMDL, which would be
increased by adding the sensors. In addition to this high consumption, the necessary Wi-Fi
repeaters or routers would have to be added, as the Wi-Fi coverage is much lower than
that offered by the LoRaWAN network, which would increase the final consumption of
the whole.

The average THMDL consumption is 33.02 mA, with a standard deviation of 1.76.
Wemos D1 mini has a mean of 98.01 mA and a standard deviation of 2.28. The energy
consumed by THMDL in January 2020 is 73.6329 Wh and 218.61 Wh for Wemos D1
mini. The total energy consumed in 2020 by THMDL was 869.0219 Wh, corresponding to
2.3762 Wh/day.

As for the output of the LiPo card, it can be seen that, as mentioned above, it maintains
an output of between 204 and 210 mA, regardless of the battery consumption. In view
of the consumption results, together with the wireless coverage, this supports the use of
LoRaWAN technology in systems such as the one developed in this research.

245



Sensors 2021, 21, 7041
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(c) (d) 

Figure 23. Consumption comparative in January 2020: (a) battery current with THMDL connected; (b) battery current with
Arduino Wemos D1 mini connected; (c) LiPo current out with THMDL connected; and (d) LiPo current out with Arduino
Wemos D1 mini connected.

Statistics for the annual consumption of THMDL have been done. Since the average
consumption is 33.02 mA and almost constant, the mean is almost equal in all months
at around 2.3750, and a standard deviation of 0.0026 is almost zero. The skewness is
practically close to zero, with some positive and negative values but in the region of zero,
indicating a symmetrical distribution curve. On the other hand, the kurtosis reflects a
mesokurtic distribution with a curve with uniformly distributed values in the symmetrical
distribution. Table 12 shows the results obtained.

Table 12. Descriptive statistics of the power THMDL consumption in year 2020.

Month
Energy

Generated
(Wh)

Sample
Daily Mean

(Wh)

Sample
Variance

(Wh2)

Sample
Skewness

(Wh3)

Sample
Kurtosis

(Wh4)

January 73.6329 2.3768 0.0026 0.0143 1.7544
February 68.7263 2.3715 0.0025 0.0418 1.8301

March 73.5223 2.3764 0.0025 −0.0118 1.8161
April 71.2977 2.3782 0.0026 −0.0391 1.7955
May 73.6111 2.3761 0.0025 0.0044 1.8280
June 71.2468 2.3765 0.0025 0.0084 1.8135
July 73.4652 2.3714 0.0025 0.0613 1.8834

August 73.5958 2.3756 0.0026 0.0163 1.7741
September 71.3757 2.3808 0.0025 −0.0511 1.8063

October 73.5985 2.3757 0.0025 −0.0037 1.8309
November 71.1906 2.3746 0.0025 0.0261 1.8079
December 73.7580 2.3808 0.0025 −0.0592 1.8529

Year 869.0216 2.3762 0.0025 0.0008 1.8140

4.7. Solar Energy Generated

This section shows the power and energy generated by the 3 W SP used in THMDL
and ECDL. The data were collected during 2020 from one of the THMDLs with SP. Figure 24
shows the energy and power for the month of January 2020, which is the lowest generation
month together with December and for the whole year.
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(a) (b) 

(c) (d) 

Figure 24. Consumption comparative: (a) power obtained in January; (b) energy obtained in January; (c) power obtained in
the year 2020; and (d) energy obtained in the year 2020.

The energy generated in January is 202.19 Wh, with a daily average of 6.5266 Wh. The
annual photovoltaic generation amounts to 4594.73 Wh and a daily average of 12.5639 Wh.

Table 13 summarises the statistical results of the annual empirical distributions for
SP power generation. To compare the results, the monthly and annual average was taken.
Thus, the month of maximum generation is June with a mean pf 18.9210 Wh/day. On
the other hand, December has the lowest generation with a mean of 6.2873 Wh/day. The
generation in December is 33.22% over June and 50.04% over the annual average.

Table 13. Descriptive statistics of the power SP generation in year 2020.

Month
Energy

Generated
(Wh)

Sample
Daily Mean

(Wh)

Sample
Variance

(Wh2)

Sample
Skewness

(Wh3)

Sample
Kurtosis

(Wh4)

January 202.19 6.5266 0.2142 1.3553 3.4122
February 276.04 9.5255 0.2751 0.9939 2.3714

March 394.35 12.7469 0.3600 1.0546 2.6887
April 452.60 15.0974 0.4086 1.0099 2.5663
May 538.46 17.3816 0.4194 0.7060 1.9756
June 567.23 18.9210 0.4213 0.4987 1.6505
July 542.87 17.5239 0.3927 0.4846 1.5712

August 496.76 16.0353 0.3786 0.5693 1.6509
September 399.08 13.3120 0.3475 0.8171 2.0916

October 326.09 10.5262 0.2974 0.9640 2.3564
November 204.23 6.8126 0.2220 1.3580 3.4074
December 194.77 6.2873 0.2103 1.3909 3.5401

Year 4594.73 12.5639 0.3502 1.0595 2.7639

Positive skewness values indicate that the tail of the distribution is longer on the right
for values above the mean, and the values are concentrated more to the left of the mean,
with only January, November and December located to the right of the mean.

The months of January, November and December present a leptokurtic kurtosis
because their coefficient is greater than 3, indicating that the values are concentrated
around the mean. The rest of the months are mesokurtic because they have a coefficient
lower than 3 and their values are further away from the mean.
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4.8. Analysis of Consumption, Photovoltaic Generation and Battery Life

Using the data in Tables 12 and 13, a comparison can be made between the energy
consumed by THMDL and SP. Starting from the month of lowest generation, which is
December with 194.77 Wh and 6.2873 Wh/day and comparing them with the THMDL
consumption of 73.7580 Wh and 2.3808 Wh/day, it can be concluded that the energy
generated in the most unfavourable month covers the total daily consumption required.
The ratio of generation to consumption is 2.64 times higher.

Considering the results obtained for the total discharge of the battery with an average
of 33 mA, 166.5 h were needed, which is much longer than the time needed to recover
the sunlight the next day and generate the energy consumed during the hours of no
photovoltaic generation.

In this sense, fully discharging the battery would take 6.9375 days, corresponding
to 1 day 14.41% of the total charge of the battery in the absence of sunlight. As in the
most unfavourable month, there are 6.2873 Wh/day of generation and 2.3808 Wh/day are
consumed, the PV generation largely covers the maximum of 14.41% of the battery charge
consumed. In this way, the lifetime of the battery is extended to a large extent, as complete
charge and discharge cycles are not necessary.

4.9. LoRaWAN Measurements

The LoRaWAN was implemented with the network optimisation algorithm developed
by Cano-Ortega et al. [8]. The algorithm allows adapting the network parameters in real
time in order to obtain the smallest possible ratio of lost packets so as to minimise the loss
of information. The algorithm was implemented in the Raspberry that supports the LoRa
concentrator.

Figure 25 shows a part of the measurements made on the network. Two hours of
measurements are shown. In the graphs, one can see the changes made by the algorithm
marked by the points in the graph, where one can see the change of parameters and the
reduction in the rate of loss of information. It should be noted that the location of the
devices with respect to the concentrator has a decisive influence on the rate of packets lost.
The THMDL device is closer to the concentrator than the ECDL device shown. As can be
seen, this has a clear influence on the rate of lost data.

  
(a) (b) 

Figure 25. LoRaWAN PLR: (a) THMDL measurement and (b) ECDL measurement.

4.10. ThingSpeak Integration

As discussed in Section 3.1, data are sent to TTN, and from there, they can be derived
to multiple services operating in the cloud. A large number of possible integrations
supported by TTN are available. Among them, the integration with the MathWorks
ThingSpeak service was chosen to be shown in this research. ThingSpeak allows sending
information in its free version of up to four channels of eight fields with a data latency of
15 s. If the needs of the system are greater, it is possible to switch to the paid version, which
allows latency times to be reduced to 1 s.

The configuration chosen for the LoRaWAN has the following parameters: BW125,
SF7, CR4/5, message header 13 bytes and 16 bytes payload. As can be seen in Table 11, the
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minimum information sending time is 6.7 s, calculated from the European Telecommuni-
cations Standards Institute (ETSI) standard [88], complying with the 1% maximum duty
cycle rule. As a data sending time of 60 s was chosen, it complies with the current regula-
tions. Figure 26 shows three examples of integration: (a) temperature and humidity data
collection; (b) electrical variables of battery charging in USB mode; and (c) data collection
of the electrical variables of the THMDL in the battery-only version.

  
(a) (b) 

 
(c) 

Figure 26. ThingSpeak Integration: (a) temperature and humidity data; (b) battery USB charge; and (c) THMDL battery
power supply operation.

4.11. Future Work

The high power of LoRaWAN is limited by the 1% duty cycle time for sending data,
which for the payload used in this research is 6.7 s, together with the limitation of sending
data to ThingSpeak every 15 s in the free version may limit the message sending. If the
payload is increased with more sensors added to THMDL or ECDL, the minimum time for
sending data would increase. In this sense, a future line of research would be to develop a
LoRa concentrator that works outside the LoRaWAN specification using technology that
avoids data delivery limitations for systems with data latency of less than 1% of the duty
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cycle. Complementing the previous line, higher data latency systems should be used in the
cloud, such as Google’s Firebase, which allows up to 0.2 s of data upload time.

It would also be interesting to create a web page and an application for mobile
devices where the monitored and controlled installations are collected in real time. Finally,
further studies should provide algorithms with machine learning intelligence to improve
its performance through the experiences collected during the operation of the installations.

5. Conclusions

This research develops a complete irrigation system based on wireless communication
over a LoRaWAN. It meets the objectives of low power consumption, small size, integration,
modular design, fault response, operational safety and low price. These objectives have
been achieved by overcoming a number of technical challenges, including component
selection, modular design, evaluation of alternatives and PCB design to integrate the
components used in the THMDL and ECDL.

LoRaWAN has a wide coverage of up to 10 km, with coverage in urban environments
reaching up to 5 km. In addition, up to 1000 devices can be integrated with a single
gateway or hub, reducing the infrastructure to be installed. If Wi-Fi, Bluetooth, etc.,
devices were used, a multitude of repeater devices would be required, which would greatly
complicate the complexity of the installation. On the other hand, the power consumption of
LoRaWAN devices is extremely low compared to Wi-Fi and similar devices. This reduced
power consumption increases battery life and extends system uptime.

The system incorporates battery management for low battery warnings with an
adjustable warning level. The irrigation routine allows the minimum moisture level
for watering to be set. This routine also incorporates a rainfall forecast query that offers
the possibility of not watering if the probability of rainfall is higher than the set value and
no watering message is sent. The system is equipped with redundant message sending,
which minimises the loss of information in the system. On the other hand, all minimum
battery voltage levels, minimum rain probability, minimum humidity and waiting time
for receiving and sending messages can also be set. This makes for a dynamic, robust and
fault-tolerant system that can be installed in a multitude of locations.

A comparison of the prototypes used with other wireless technologies was performed.
In this sense, the average consumption of THDML is 2.3762 Wh/day, and the average
consumption of the Wi-Fi device studied is 7.0519 Wh/day without sensors and other
components, which is 2.96 times higher. The generation of the SP used is 6.2873 Wh/day
in the month of lowest generation, which is well within the THMDL average consumption
of 2.3808 Wh/day, which is 14.41% of the battery capacity. This contributes to decreasing
the charge and discharge cycles of the battery and extending the battery life.

The use of TTN opens up a wide range of possibilities for the development of system
functionalities and adaptation to the needs of each implementation. TTN integrates a
large set of cloud services, such as the one presented at the end of the Results section
(ThingSpeak). In each implementation of the system, the needs of each problem can be
studied, and the most suitable service can be used to offer the best solution. On the other
hand, the system can also be reprogrammed by adding new functionalities to improve
its performance characteristics. By using Arduino as the basis for the devices, the system
benefits from the advantages of the open-source platform of this family.
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Abbreviations

The following abbreviations are used in this manuscript.
AN Arduino Nano
BW Bandwidth
CR Code rate
DLB Dragino LoRa Bee
ECDL Electrovalve Control Device for LoRaWAN
GPRS General Packet Radio Service
I2C Inter-Integrated Circuit
IFTTT If This, Then That
IoT Internet of Things
LiPo Lipo Rider Pro
LoRa Long range
LoRaWAN Long-range wide-area network
LPWAN Low-power wide-area network
MQTT Message Queue Telemetry Transport
NB-IoT Narrow-band Internet of Things
PCB Printed Circuit Board
SF Spread factor
SP Solar panel
THMDL Temperature and Humidity Measurement Device for LoRaWAN
TTN The Things Network
Wi-Fi Wireless Fidelity
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Abstract: Due to industrialization and the rising demand for energy, global energy consumption
has been rapidly increasing. Recent studies show that the biggest portion of energy is consumed in
residential buildings, i.e., in European Union countries up to 40% of the total energy is consumed by
households. Most residential buildings and industrial zones are equipped with smart sensors such
as metering electric sensors, that are inadequately utilized for better energy management. In this
paper, we develop a hybrid convolutional neural network (CNN) with an long short-term memory
autoencoder (LSTM-AE) model for future energy prediction in residential and commercial buildings.
The central focus of this research work is to utilize the smart meters’ data for energy forecasting
in order to enable appropriate energy management in buildings. We performed extensive research
using several deep learning-based forecasting models and proposed an optimal hybrid CNN with the
LSTM-AE model. To the best of our knowledge, we are the first to incorporate the aforementioned
models under the umbrella of a unified framework with some utility preprocessing. Initially, the
CNN model extracts features from the input data, which are then fed to the LSTM-encoder to generate
encoded sequences. The encoded sequences are decoded by another following LSTM-decoder to
advance it to the final dense layer for energy prediction. The experimental results using different
evaluation metrics show that the proposed hybrid model works well. Also, it records the smallest
value for mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE)
and mean absolute percentage error (MAPE) when compared to other state-of-the-art forecasting
methods over the UCI residential building dataset. Furthermore, we conducted experiments on
Korean commercial building data and the results indicate that our proposed hybrid model is a worthy
contribution to energy forecasting.

Keywords: buildings energy management; deep learning; energy consumption prediction; LSTM;
autoencoder; load forecasting; smart sensors

1. Introduction

Electrical energy consumption has recently been accelerating due to rapid population and economic
growth [1]. According to the World Energy Outlook (2017), global energy demand is predicted to
increase by 1.0% compound annual growth rate (CAGR) over the period of 2016-40 [2]. Residential
buildings play a vital role in this consumption, constituting 27% of total global energy usage, and have
a substantial impact on overall energy consumption [3]. In the US, buildings make up 40% of their
national overall energy usage [4]. Due to the high level of electricity consumption in commercial and
residential buildings, efficient smart electrical energy prediction and its management are becoming
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more important because the load forecasting directly affects the control and planning of power systems’
operation. A research study estimated that a 1% decrease in forecasting errors can save £10 million
per year for the UK power system [5]. Therefore, appropriate energy planning plays a vital role in
saving energy, as well as being an economical solution. Future energy planning is possible through
computationally intelligent electricity forecasting methods [6,7].

Electricity consumption prediction is a multivariate time series problem where the sensors
generate data that may contain uncertainty [8,9], redundancy, missing values, etc. Due to irregular
trend components and seasonal patterns, it is difficult to accurately predict electricity consumption
by employing traditional machine learning models [10]. On the other hand, deep learning models
yield ultimately better results and are less error prone. Deep learning models are aggressively studied
in several applications such as CNNs, which are superior at recognizing images, and recurrent
neural networks (RNNs) [11], which perform well in natural language processing (NLP) [12] and
speech recognition problems. In recent studies, many researchers integrated multiple models in the
aforementioned domains to achieve convincing results that are applicable in real-world scenarios.
Utilizing hybrid techniques, CNN with LSTM has achieved state-of-the-art results for various domains,
such as convincing results for emotion recognition [13], speech processing [14], activity recognition [15]
and also in the medical domain, where it shows superior performance in detecting arrhythmias [16].
Similar hybrid models are used in the energy forecasting domain to achieve state-of-the-art results.

Several techniques have been developed for energy consumption prediction, including ARIMA [17],
SVM and SVR [18], time series [8], neuro fuzzy and linear regression (LR) models [19] and artificial
neural networks [20]. These prediction models are grouped into four major groups: statistical, machine
learning (ML), deep learning and hybrid models. Energy forecasting related studies are grouped based
on this categorization and their descriptions along with the dataset used and strategy followed is given
in Table 1.

Among the statistical-based models, Fumo and Biswas [21] used a linear regression model for
residential energy prediction and observed time resolution effects on the model’s performance. Daily
energy consumption prediction is proposed in Reference [22] by using multiple-linear regression with
genetic programming. They integrated five variables through genetic programming and then fed
them into their proposed prediction model. The performance of this model is increased by removing
unnecessary variables, but independent variables correlation leads to the problem of multicollinearity
and it is also challenging to get explanatory variables via linear regression models. Therefore, such
models are not recommended for electricity prediction.

In the machine learning approaches category, SVR was used to forecast electricity consumption in
buildings [23] and improved the performance of the model by adding temperature variables. Another
approach based on random forest was developed in Reference [24], in which the authors predicted
the following week’s energy by using human dynamics. In the machine learning approach, if the
model does not have many features, then it generates complex decision boundaries. However, these
models drain into an overfitting problem if the data is increased or the correlation between variables
is complicated. If a model is overfitted, it greatly affects the prediction accuracy and hence is not
recommended for use in residential or commercial buildings energy forecasting.

Deep learning models are widely used for electricity prediction, in which Reference [25] used
a sequence-to-sequence model for electricity consumption prediction in buildings and achieved the
highest possible performance. The authors of Reference [1] used stacked AE and reduced noise
disturbance and randomness from the electricity consumption data via deep features. These models
extracted important features in cases where they had complex attributes and a lot of redundant data.
However, modeling the spatial and temporal features of electricity consumption data is difficult for
deep learning models.

Among these approaches, some recent studies show combinations of models for electricity
consumption prediction. The authors of Reference [26] integrated CNN with the LSTM model for
electricity prediction, where the CNN layers were used to extract spatial features and LSTM was
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utilized for modeling temporal information. The combination of CNN with Bi-directional LSTM was
presented in Reference [27] where the CNN layers were used to extract important information and the
Bi-directional LSTM used these features in both the forward and backward direction to make a final
prediction. These models achieved the best results but still the error rate was too high for them to be
implemented for accurate electricity consumption prediction in real-world scenarios.

Table 1. The four types of prediction models for energy consumption.

Category Paper Learning Strategy Dataset Description

Statistical models

[21] LR

Electricity
consumption

Analysis of electricity prediction
using LR according to time resolution.

[22] Multiple regression
(MR)

Develops two models: ML and
genetic algorithm (GA), where GA is
used to select critical information
from the dataset followed by optimal
prediction via the ML model.

[28] MR

Uses backward elimination and a
multicollinearity process for suitable
variable selection and uses a MR
model for medium-term electricity
prediction.

Machine
learning-based
models

[23] SVR Electricity load
Adds a temperature variable to
improve the performance of SVR for
electricity prediction.

[24] Random forest
regressor

Electricity
consumption

Avoids overfitting by using an
ensembled method and transforms
the data from time to frequency
domain to solve the input data
computational complexity.

DL-based models

[25] Seq2seq Electricity load

Collects data from real smart meters
and develops a
sequence-to-sequence-based
prediction model for short-term
electricity prediction in buildings.

[1] Stacked AE (SAE) Electricity
consumption

Combines SAE with an extreme
learning machine (ELM), where SAE
is used to extract features and ELM is
used as a prediction model.

[29] DRNN based on
pooling Electricity load

Uses pooling based DRNN, addresses
the overfitting problem in a naïve
deep learning network and tests the
method in a real environment on
smart meters in Ireland.

[30] Seq2seq

Electricity
consumption

Uses a sequence-to-sequence model
based on modified LSTM.

Hybrid models

[26] CNN-LSTM
CNNs are used to extract spatial
features and LSTM is used for
modeling temporal features.

[27] CNN-bidirectional
LSM

CNNs are used to extract spatial
features and bidirectional LSTM is
used for these features for final
prediction.

We proposed a hybrid model of CNN LSTM-AEs’ synergy for electricity prediction in residential
and commercial buildings. CNN layers are used to extract spatial features and their output is fed into
LSTM-AE, followed by a dense (fully connected) layer for final prediction. Finally, the time resolution
is changed to observe if further improvement can be made using the CNN with a LSTM-AE model.
For the first time, a hybrid model of CNN and LSTM-AE is developed and tested to predict residential
and commercial power consumption. The following are the main contributions of this research work:
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• The input dataset is passed through a preprocessing step where redundant, outlier or missing
values are removed, and the data are normalized to achieve satisfactory prediction results.

• A novel hybrid model is developed in this work for accurate future energy prediction. The proposed
model integrates CNN with LSTM_AE in which the CNN layers are used to extract spatial features
from input data and then LSTM-AE are used to model these features.

• The experimental results demonstrate that the proposed CNN with LSTM-AE model has the best
performance compared to other models. The evaluation metrics record the smallest value for
MSE, MAE, RMSE and MAPE for energy consumption prediction.

2. Proposed Framework

Prediction of electrical power consumption in residential and commercial buildings is very
important to provide better energy management services. Due to the impact of unpredictability or the
noisy arrangement of data, accurate electricity consumption prediction is a challenging task. For these
reasons, the forecasting model sometimes generates incorrect prediction results. Moreover, several
methods have been developed based on traditional networks with high error rates. The traditional
methods have the problems of needing to learn from scratch, overfitting or short-term memory
challenges if the data increase or the correlation between variables is complicated. These issues
can be easily solved using sequential learning models, through modeling the spatial and temporal
features for electricity consumption is also challenging. Therefore, in this paper, we developed a CNN
with LSTM-AE model and a data preprocessing step to efficiently predict electricity consumption
in residential and commercial buildings. The overall architecture of the proposed framework for
electricity consumption is shown in Figure 1. Further, each section of the proposed framework for
electricity consumption is discussed in the next sections.

Figure 1. Proposed framework for electricity consumption prediction.

2.1. Data Preprocessing

This section offers detailed analysis about the collection and refinement of data. The data is
collected from smart meters which are installed at the edge of the electricity network and connect all
appliances to a main board. Normally, the data are gathered annually or monthly, which generates
noise and abnormalities in the data due to measurement or human error, meter problems and climate
change, if the meters are installed for a long time. Before training, the data need to be refined and
normalized for good results.

The tested datasets include null, redundant and outlier values. Similarly, samples from the
datasets are not all in the same range and need to be normalized before training for accurate prediction.
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Null, redundant and outlier values are extracted from the datasets and are discussed in this section.
Also, different normalization techniques were applied to get the odd range values within a specified
limit. These techniques include Min-Max scalar, standard transform, Max-Abs scalar, quantile and
power transform, as shown in Figure 2. After detailed analysis of each technique, finally, we selected
standard transform for data normalization because it centers and scales each feature independently.

Figure 2. Data normalization techniques, where (a) original data in the dataset, (b) the range of data
after applying Min-Max scalar, (c) the range of data after applying Max-Abs scalar, (d) the range of
values after applying power transform, (e) the data plot after quantile transformation, and (f) the range
of data after applying standard transformation.

The range of each feature is different in the original dataset, as shown in Figure 2a where the ranges
of features are between 0–10, 0–50 and 200–250. After applying Max-Min normalization technique, the
range of these features lies between 0 and 0.7, as visualized in Figure 2b. Similarly, after processing data
with Max-Abs, the ranges are normalized between 0 to 0.8, as shown in Figure 2c. After normalizing
data with quantile transformation, the features range is achieved between 0 to 1, as visualized in
Figure 2e. However, we needed to transform the input data in a way such that the negative values
also exist in the features to achieve good results. The range of power transformation is between −2 to
5 as visualized in Figure 2d, and standard transform is −2 to 6 as given in Figure 2f. However, the
computational complexity of power law transformation is higher than standard transformation. Also,
standard transform processes each feature independently. Due to these reasons, finally, we selected
standard transform for data normalization.

2.2. ANN

ANN is a type of strong mathematical modeling tool inspired by the human nervous system.
An early ANN model is MLP [31] which includes input, hidden and output layers. Each neuron
relates to the next and previous layer neurons, which are similar in MLP with several input and output
links. The value retrieved from the previous layer is summed up with some weight for each neuron
individually, and a bias term. Finally, activation function “f” is used to transform the sum, which may
be different for each neuron, as shown in Figure 3.
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Figure 3. The simple neuron operation in ANN, where “X” represents the input data, “W” represents
the weights, ”F” is the activation function and “Yi” is the output.

2.3. CNN

CNN was specially developed for grid topology data processing [32]. For example, visual data,
i.e., images and videos, are viewed as a two-dimensional grid and time series data are viewed as
one-dimensional data. The CNN [33–35] uses a weight sharing concept that provides high accuracy
in nonlinear problems, such as energy consumption prediction. Convolution-pooling layers of one
dimension are shown in Figure 4. When the convolution is applied to the input data, I1, I2, I3, I4, I5
and I6 are converted to a features map C1, C2, C3, C4. Next, a pooling layer is applied to sample
the feature-maps of the convolution layer. The pooling layer procedure is important for extracting
high-level convolution features; after applying the pooling layer, the dimension of the features map is
reduced to 2.

Figure 4. The operation of convolution layers and pooling layers over input data.

2.4. LSTM

The recurrent neural network (RNN) is another popular deep learning architecture, where
connections between units form a directed graph along with the sequence information from the input,
as depicted in Figure 5. The RNN processes a sequence of input data by using their internal state and
turns into a vanishing gradient problem, which has a major negative effect on the model accuracy. An
enhanced version of RNN is LSTM [36], which overcomes the vanishing gradient problem via the
concept of gates (input, forget, and output) and memory cells. The LSTM operation is illustrated by
the following equations and its structure is shown in Figure 5.

ft = Φ
(
Ŵ f · [ht−1, xt] + B f

)
(1)

it = Φ
(
Ŵi · [ht−1, xt] + Bi

)
(2)

Ct = tanh
(
ŴC · [ht−1, xt] + BC

)
(3)

Ct = ft ×Ct−1 + it ×Ct (4)
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ot = Φ
(
Ŵo · [ht−1, xt] + Bo

)
(5)

ht = ot × tanh(Φ(Ct). (6)

Figure 5. Standard architecture of RNN and LSTM.

In Equation (1), the network input is xt, ht is the output of the hidden layer, Φ represents the
sigmoid function, the cell state is Ct and the state candidate values are represented through Ċt. Ŵi, Ŵo,
Ŵf and ŴC are the weights for the input, output, forget gate and memory cells, while Bi, Bo, Bf and
BC represent the bias for the input, output, forget gate and cell, respectively. The input gate decides
whether input data will be reserved or not, the forget gate verifies if data will be lost or not, the cell
records the processing state and the output is delivered through the output gate. This architecture is
specially designed to address the vanishing gradient problem in RNNs.

2.5. LSTM-AE

Autoencoders (AE) are generally used in representation learning to understand unsupervised
inputs in a feature vector. The conventional method utilizing an LSTM-AE is illustrated in Figure 6.
We employed sequence-to-sequence AE for a time-series sequence dataset. The optimal goal is to
predict the short-term electricity consumption of residential and commercial buildings. AE consists of
an encoder and a decoder, where the input sequence is first encoded and then decoded. Let xt be the
input features and F the feature space. The encoder function applied is: ϕ: xt→F that learns important
features and encodes the features vector F. In the decoder, Ð= F→ X, which intends to reconstruct the
input by utilizing internal representations [37]

Figure 6. The internal structure of LSTM-AE where the first LSTM layer used as an encoder and the
second is a decoder.

We employed LSTM cells for the execution of the encoder and decoder, which are capable of
learning from temporal dependencies from one sequence and another. Formally, for input samples
sequence X(N), the AE function is applied ΦAE: ϕ Ð, which outputs samples x(N).

ΦAE(X(N)) = x(N) (7)
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2.6. Training

In our proposed framework, the refined input data is passed to the training step. The training
step includes two sub-sections where “A” demonstrates the CNN architecture and “B” shows the
LSTM-AE architecture. The proposed hybrid model combines CNN with LSTM-AE to predict hourly
and daily electricity consumption for residential and commercial buildings. The CNN layers include
an input layer, hidden layers and an output layer, which extract features for LSTM-AE. The hidden
layers include convolution, dropout, pooling and ReLU layers. Two convolution layers with the RELU
activation function and dropout layer after each convolution are employed. Initially, the CNN extracts
feature from the refined input data, then the output CNN features are fed into the LSTM encoder,
which encodes the input sequences of four time-steps. The repeated vector layer replicates these
encoded sequences twice from the model. These encoded sequences are inputted into another LSTM
for decoding and finally a dense layer is used to produce the output prediction for the input sequence.
The LSTM has problems modeling spatial features, so in this work we used CNN to extract spatial
features and then fed them to the LSTM. Normally, the LSTM fails to learn temporal dependencies
from one sequence to another, so in this work we developed a hybrid network to tackle these issues
and developed a reliable solution for accurate electricity prediction. In this architecture, we used
two 1D-convolutional layers, where two dropout layers are inserted after each convolutional layer,
two encoder LSTM layers, one repeated vector layer, two decoder LSTM layers and finally one fully
connected layer. As a result, the total number of layers are 10 in the proposed architecture and the
model size is 445 KB with 33,811 parameters. The filter size for first convolution layer is 8 while for the
second layer it is 16 and the kernel size is one for both convolution layers.

The proposed method works better than other state-of-the-art models because we integrated
multiple architectures to develop a hybrid model (CNN-LSTM-AE), where CNN is used to extract
spatial features from the input dataset and then feed these features to LSTM-AE. The simple LSTM
model works well but is unable to learn temporal dependency between sequences, while LSTM-AE is
capable of learning from temporal dependencies from one sequence and another. This is experimentally
proven and the results are discussed in the Section 3. Therefore, we claim that our model works well
and show convincing results when compared to other models.

3. Results

This section provides detailed discussion about the experimental setup, datasets, evaluation
metrics, evaluation of the UCI dataset, evaluation of the Korean commercial building dataset and
finally a comparative analysis of the proposed hybrid network with other baseline models.

3.1. Experimental Setup

We evaluated and validated the efficiency of the proposed hybrid CNN with LSTM-AE model
using residential and commercial buildings datasets. We trained our hybrid model on TITAN X
(Pascal)/PCLe/SSE2 GPU with an Intel Core i5-6600 processor, with 64 GB memory over the Ubuntu
16.4 LTS operating system. This model was implemented in Python (V3.5) in Keras (V2.2.4) with
a TensorFlow (V1.12) backend and employed Adam as the optimizer. Several experiments were
conducted to find the optimal selection of the hyper perimeter of each model. After extensive
experiments, finally we decided to train the model over 50 epochs with 1000 as the batch size and a 0.2
validation split.

3.2. Datasets

In this paper, we used two datasets: the household electric power consumption dataset available
on the UCI machine learning repository [38] and our own commercial data. A number of time-series
variables were used in the proposed architecture to predict the global active power consumption.
The UCI dataset contains actual power consumption data, with one-minute resolution, collected from
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a single residential building in France between 2006 and 2010. A total of 2,075,269 records are present
in the dataset, with 25,979 missing values that are handled in the preprocessing step of the proposed
framework. The dataset is then grouped into hourly and daily resolution to predict the electricity
consumption for the short term. Table 2 shows the electricity consumption variables of the UCI dataset,
which include date, time, global active power, global reactive power, voltage, intensity, submetering_1,
submetering_2 and submetering_3 variables. The time variable includes months, days, years, hours
and minutes. The submetering shows the electricity consumption in the home, where submetering_1-3
corresponds to the kitchen, laundry room and living room, respectively.

Table 2. Feature representation and detailed description of the residential dataset, namely the
“individual household electricity consumption dataset”.

Variable Description

Date Presented in dd/mm/yyyy format.

Time Time variable given in hours, minutes and seconds (hh:mm:ss)

Global active power Minutely given average active and reactive power for individual house.
Global active power

Voltage One-minute average voltage

Intensity Current intensity for every minute.

Submetering (1, 2, 3)
Active electricity related to kitchen, laundry room and living room of
residential home, while only one submetering_1 sensor in commercial

dataset is related to office electricity.

Our new dataset is similar to the UCI dataset but with some differences which are mentioned below:

• The UCI dataset was derived from residential buildings while the proposed dataset was generated
in commercial buildings.

• The UCI dataset has three consumption sensors: submeters 1, 2 and 3, while our dataset includes
only one electricity consumption sensor.

• The UCI dataset includes 1-minute resolution, while the proposed dataset has 15-minute resolution.

3.3. Evaluation Metrics

The proposed method is evaluated on four standard metrics: MSE, MAE, RMSE and MAPE.
The mathematical formulas of these metrics are given in Equations (8)–(11). RMSE is the percentage
of difference between predicted and testing variables, MAE represents the percentage of difference
between the predicted variables, MSE represents the average square value between the testing and
predicted variables, while the last metric MAPE expresses the prediction accuracy in percentage.
The training and validation loses for both UCI and Korean commercial building dataset are shown
in Figure 7, where “A”, “B”, “C” and “D” represent the loses for residential building hourly data,
residential building daily data, Korean commercial building hourly data and Korean commercial
building daily data, respectively.

There are a total of 960,000 records in our dataset, with null and redundant values that are removed
in the preprocessing step. Next, we normalized the input data to train the proposed model efficiently.
For training purposes, 75% of the data are used from each dataset, while the remaining 25% are used
for testing. This means that the first three years data of the UCI dataset are used for training, while the
last year’s data are used for testing. Furthermore, we performed several experiments on different deep
models for comparison, such as CNN, LSTM, LSTM-AE and the CNN with LSTM-AE models.

MSE =
1
n

∑n

1
(y− ŷ)2 (8)
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Figure 7. Training and validation loss during training.

3.4. Performance Evaluation over UCI Dataset

To validate the robustness of the proposed hybrid model, we performed experiments on several
deep learning models with variable sets of resolutions. The results achieved for each model over
hourly data are shown in Figure 8. First, we used CNN to check the performance of the model, and
obtained values of 0.37, 0.47 and 0.67 for MSE, MAE and RMSE, respectively. On the other hand, when
using LSTM, we observed 0.35, 0.45 and 0.61 for MAE, MSE and RMSE, correspondingly. Moreover,
with the combined CNN-LSTM we obtained 0.31, 0.44, and 0.58 for MSE, MAE, RMSE, and with the
LSTM-AE model values of 0.26, 0.38 and 0.56 for MSE, MAE, and RMSE, respectively. Inspired by the
results of LSTM-AE, we combined CNN with LSTM-AE and recorded the smallest values: 0.19, 0.31
and 0.47 for MSE, MAE and RMSE, respectively.
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Figure 8. The MSE, MAE and RMSE error rates of different deep learning models for hourly
electricity prediction.

Next, the performance of the aforementioned deep learning models for daily data was tested.
For the MSE, MAE and RMSE evaluation metrics, our method performed best compared to the baseline
models. In more detail, CNN achieved values of 0.006, 0.05 and 0.07 for MSE, MAE and RMSE,
respectively, while LSTM reduced its error rate (compared with the hourly rate) to 0.05, 0.13 and 0.22
for MAE, MSE and RMSE. Furthermore, we combined the CNN with LSTM and achieved 0.007, 0.06,
and 0.08 for MSE, MAE, and RMSE, whereas LSTM-AE showed values of 0.01, 0.07 and 0.11 for MSE,
MAE, and RMSE, respectively. Finally, we tested the proposed CNN with LSTM-AE hybrid model and
obtained the lowest values of all, at 0.0004, 0.01 and 0.02 for MSE, MAE and RMSE, respectively, as
shown in Figure 9b.

Figure 9. The detailed results of different deep learning-based models for one day resolution data
where (a) demonstrates MSE, MAE and RMSE for the Korean commercial building dataset and (b)
shows these error rates over UCI dataset.

3.5. Performance Evaluation over Newly Generated Dataset

The aforementioned models were also tested on our newly generated dataset, and the proposed
model recorded convincing values for the tested evaluation metrics. The dataset was tested on both
hourly and daily data resolution, as shown in Figure 10 where (a) shows electricity consumption
prediction for hourly data, while (b) indicates electricity prediction for daily data. The difference
between actual and predicted values is very narrow, but better performance is evident for the proposed
model, especially for daily data future load prediction.
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Figure 10. Visualization of performance of our proposed CNN with LSTM-AE over testing data for
electricity prediction. (a) electricity consumption prediction for hourly data; (b) electricity prediction
for daily data.

For hourly electricity prediction on the Korean commercial building dataset, the proposed model
stands in third place, LSTM-AE is second and LSTM is first. For daily electricity prediction, the
proposed model achieved the lowest error rates of 0.0003, 0.01 and 0.01 for MSE, MAE and RMSE,
respectively. Figure 9a shows the prediction performance of the proposed hybrid model for hourly
electricity consumption, while Figure 11 demonstrates the daily energy prediction error rate for
each model.

Figure 11. The results achieved by different deep learning-based models for daily resolution of data on
our own dataset.

3.6. Comparison with other Baseline Models

The performance of the proposed hybrid model was evaluated and compared with other
competitive baseline models, which were similarly used for the same dataset. The results were compared
for both hourly and daily data. For hourly prediction, the proposed method was compared with
References [26,27,30,39] and achieved the smallest error rate among these models, as shown in Table 3.
For daily prediction, the proposed model performance was compared with References [26,27,30,40,41]
and achieved better results, as demonstrated in Figure 12. For instance, the proposed hybrid model
recorded the smallest error rates of 0.19, 0.31 and 0.47 for the hourly dataset, and recorded 0.01, 0.08,
0.11 and 0.69 for the daily dataset.
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Table 3. The comparative analysis of the proposed method with other state-of-the-art Deep Learning
and traditional techniques for hourly data resolution.

Methods MSE MAE RMSE MAPE

Deep Learning
Methods

Kim, T.-Y et al. [26] 0.35 0.33 0.59 -

Kim, J, -Y et al. [39] 0.38 0.39 - -

Marino et al. [30] - - 0.74 -

Le et al. [27] 0.29 0.39 0.54 -

Traditional
Machine
Learning
models

ARMA [42] - - 0.30 -

SVM [43] - 1.12 1.25 -

Linear Regression [41] - - - 1.03

SVR [41] - - - 1.29

Gaussian Process [41] - - - 0.82

Proposed 0.19 0.31 0.47 0.76

Figure 12. Comparative analysis of the proposed hybrid CNN with LSTM-AE model with the methods
developed by Kim et al. [26], Marino et al. [30], Almalaq et al. [40], Wu et al. [41] and Le et al. [27]. In
the figure, our model performance is compared with other state-of-the-art models in term of MSE,
MAE, RMSE and MAPE. Our model attains the smallest values for each metric.

4. Conclusions

In this article, we developed a novel framework for the prediction of electricity consumption in
residential and commercial buildings, and evaluated it using two datasets including the UCI household
electricity consumption prediction and Korean commercial building data. Initially, the input data are
preprocessed to remove missing, redundant and outlier values. Next, we apply different normalization
techniques for better representation of the input data, which yields an effective model. Further, we
developed a novel hybrid CNN with LSTM-AE model. The proposed model has three modules for
predicting electricity consumption: CNN, LSTM-AE and FC. Primarily, two CNN layers are used
to extract information from several variables in the dataset, which are then fed to LSTM-AE, which
converts the sequence into an encoded features vector and then decodes it through another LSTM.
The encoded feature vector layer duplicates these encoded sequences and finally a dense layer is used
to produce the output prediction. The experimental results of the proposed hybrid model outperform
other state-of-the-art models for electricity consumption prediction, in terms of different performance
metrics such as MSE, MAE, RMSE and MAPE.
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